1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/stream.h> 31 #include <sys/dlpi.h> 32 #include <sys/stropts.h> 33 #include <sys/sysmacros.h> 34 #include <sys/strsubr.h> 35 #include <sys/strlog.h> 36 #include <sys/strsun.h> 37 #include <sys/zone.h> 38 #define _SUN_TPI_VERSION 2 39 #include <sys/tihdr.h> 40 #include <sys/xti_inet.h> 41 #include <sys/ddi.h> 42 #include <sys/sunddi.h> 43 #include <sys/cmn_err.h> 44 #include <sys/debug.h> 45 #include <sys/kobj.h> 46 #include <sys/modctl.h> 47 #include <sys/atomic.h> 48 #include <sys/policy.h> 49 #include <sys/priv.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/sdt.h> 55 #include <sys/socket.h> 56 #include <sys/vtrace.h> 57 #include <sys/isa_defs.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/kstatcom.h> 72 73 #include <netinet/igmp_var.h> 74 #include <netinet/ip6.h> 75 #include <netinet/icmp6.h> 76 #include <netinet/sctp.h> 77 78 #include <inet/ip.h> 79 #include <inet/ip_impl.h> 80 #include <inet/ip6.h> 81 #include <inet/ip6_asp.h> 82 #include <inet/tcp.h> 83 #include <inet/tcp_impl.h> 84 #include <inet/ip_multi.h> 85 #include <inet/ip_if.h> 86 #include <inet/ip_ire.h> 87 #include <inet/ip_ftable.h> 88 #include <inet/ip_rts.h> 89 #include <inet/optcom.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/tun.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <sys/sunddi.h> 121 122 #include <sys/tsol/label.h> 123 #include <sys/tsol/tnet.h> 124 125 #include <rpc/pmap_prot.h> 126 127 /* 128 * Values for squeue switch: 129 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 130 * IP_SQUEUE_ENTER: squeue_enter 131 * IP_SQUEUE_FILL: squeue_fill 132 */ 133 int ip_squeue_enter = 2; 134 squeue_func_t ip_input_proc; 135 /* 136 * IP statistics. 137 */ 138 #define IP_STAT(x) (ip_statistics.x.value.ui64++) 139 #define IP_STAT_UPDATE(x, n) (ip_statistics.x.value.ui64 += (n)) 140 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 141 142 typedef struct ip_stat { 143 kstat_named_t ipsec_fanout_proto; 144 kstat_named_t ip_udp_fannorm; 145 kstat_named_t ip_udp_fanmb; 146 kstat_named_t ip_udp_fanothers; 147 kstat_named_t ip_udp_fast_path; 148 kstat_named_t ip_udp_slow_path; 149 kstat_named_t ip_udp_input_err; 150 kstat_named_t ip_tcppullup; 151 kstat_named_t ip_tcpoptions; 152 kstat_named_t ip_multipkttcp; 153 kstat_named_t ip_tcp_fast_path; 154 kstat_named_t ip_tcp_slow_path; 155 kstat_named_t ip_tcp_input_error; 156 kstat_named_t ip_db_ref; 157 kstat_named_t ip_notaligned1; 158 kstat_named_t ip_notaligned2; 159 kstat_named_t ip_multimblk3; 160 kstat_named_t ip_multimblk4; 161 kstat_named_t ip_ipoptions; 162 kstat_named_t ip_classify_fail; 163 kstat_named_t ip_opt; 164 kstat_named_t ip_udp_rput_local; 165 kstat_named_t ipsec_proto_ahesp; 166 kstat_named_t ip_conn_flputbq; 167 kstat_named_t ip_conn_walk_drain; 168 kstat_named_t ip_out_sw_cksum; 169 kstat_named_t ip_in_sw_cksum; 170 kstat_named_t ip_trash_ire_reclaim_calls; 171 kstat_named_t ip_trash_ire_reclaim_success; 172 kstat_named_t ip_ire_arp_timer_expired; 173 kstat_named_t ip_ire_redirect_timer_expired; 174 kstat_named_t ip_ire_pmtu_timer_expired; 175 kstat_named_t ip_input_multi_squeue; 176 kstat_named_t ip_tcp_in_full_hw_cksum_err; 177 kstat_named_t ip_tcp_in_part_hw_cksum_err; 178 kstat_named_t ip_tcp_in_sw_cksum_err; 179 kstat_named_t ip_tcp_out_sw_cksum_bytes; 180 kstat_named_t ip_udp_in_full_hw_cksum_err; 181 kstat_named_t ip_udp_in_part_hw_cksum_err; 182 kstat_named_t ip_udp_in_sw_cksum_err; 183 kstat_named_t ip_udp_out_sw_cksum_bytes; 184 kstat_named_t ip_frag_mdt_pkt_out; 185 kstat_named_t ip_frag_mdt_discarded; 186 kstat_named_t ip_frag_mdt_allocfail; 187 kstat_named_t ip_frag_mdt_addpdescfail; 188 kstat_named_t ip_frag_mdt_allocd; 189 } ip_stat_t; 190 191 static ip_stat_t ip_statistics = { 192 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 193 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 194 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 195 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 196 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 197 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 198 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 199 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 200 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 201 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 202 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 203 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 204 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 205 { "ip_db_ref", KSTAT_DATA_UINT64 }, 206 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 207 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 208 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 209 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 210 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 211 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 212 { "ip_opt", KSTAT_DATA_UINT64 }, 213 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 214 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 215 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 216 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 217 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 218 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 219 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 220 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 221 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 222 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 223 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 224 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 225 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 226 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 227 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 228 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 229 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 230 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 231 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 232 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 233 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 234 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 235 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 236 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 237 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 238 }; 239 240 static kstat_t *ip_kstat; 241 242 #define TCP6 "tcp6" 243 #define TCP "tcp" 244 #define SCTP "sctp" 245 #define SCTP6 "sctp6" 246 247 major_t TCP6_MAJ; 248 major_t TCP_MAJ; 249 major_t SCTP_MAJ; 250 major_t SCTP6_MAJ; 251 252 int ip_poll_normal_ms = 100; 253 int ip_poll_normal_ticks = 0; 254 int ip_modclose_ackwait_ms = 3000; 255 256 /* 257 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 258 */ 259 260 struct listptr_s { 261 mblk_t *lp_head; /* pointer to the head of the list */ 262 mblk_t *lp_tail; /* pointer to the tail of the list */ 263 }; 264 265 typedef struct listptr_s listptr_t; 266 267 /* 268 * This is used by ip_snmp_get_mib2_ip_route_media and 269 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 270 */ 271 typedef struct iproutedata_s { 272 uint_t ird_idx; 273 listptr_t ird_route; /* ipRouteEntryTable */ 274 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 275 listptr_t ird_attrs; /* ipRouteAttributeTable */ 276 } iproutedata_t; 277 278 /* 279 * Cluster specific hooks. These should be NULL when booted as a non-cluster 280 */ 281 282 /* 283 * Hook functions to enable cluster networking 284 * On non-clustered systems these vectors must always be NULL. 285 * 286 * Hook function to Check ip specified ip address is a shared ip address 287 * in the cluster 288 * 289 */ 290 int (*cl_inet_isclusterwide)(uint8_t protocol, 291 sa_family_t addr_family, uint8_t *laddrp) = NULL; 292 293 /* 294 * Hook function to generate cluster wide ip fragment identifier 295 */ 296 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 297 uint8_t *laddrp, uint8_t *faddrp) = NULL; 298 299 /* 300 * Synchronization notes: 301 * 302 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 303 * MT level protection given by STREAMS. IP uses a combination of its own 304 * internal serialization mechanism and standard Solaris locking techniques. 305 * The internal serialization is per phyint (no IPMP) or per IPMP group. 306 * This is used to serialize plumbing operations, IPMP operations, certain 307 * multicast operations, most set ioctls, igmp/mld timers etc. 308 * 309 * Plumbing is a long sequence of operations involving message 310 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 311 * involved in plumbing operations. A natural model is to serialize these 312 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 313 * parallel without any interference. But various set ioctls on hme0 are best 314 * serialized. However if the system uses IPMP, the operations are easier if 315 * they are serialized on a per IPMP group basis since IPMP operations 316 * happen across ill's of a group. Thus the lowest common denominator is to 317 * serialize most set ioctls, multicast join/leave operations, IPMP operations 318 * igmp/mld timer operations, and processing of DLPI control messages received 319 * from drivers on a per IPMP group basis. If the system does not employ 320 * IPMP the serialization is on a per phyint basis. This serialization is 321 * provided by the ipsq_t and primitives operating on this. Details can 322 * be found in ip_if.c above the core primitives operating on ipsq_t. 323 * 324 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 325 * Simiarly lookup of an ire by a thread also returns a refheld ire. 326 * In addition ipif's and ill's referenced by the ire are also indirectly 327 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 328 * the ipif's address or netmask change as long as an ipif is refheld 329 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 330 * address of an ipif has to go through the ipsq_t. This ensures that only 331 * 1 such exclusive operation proceeds at any time on the ipif. It then 332 * deletes all ires associated with this ipif, and waits for all refcnts 333 * associated with this ipif to come down to zero. The address is changed 334 * only after the ipif has been quiesced. Then the ipif is brought up again. 335 * More details are described above the comment in ip_sioctl_flags. 336 * 337 * Packet processing is based mostly on IREs and are fully multi-threaded 338 * using standard Solaris MT techniques. 339 * 340 * There are explicit locks in IP to handle: 341 * - The ip_g_head list maintained by mi_open_link() and friends. 342 * 343 * - The reassembly data structures (one lock per hash bucket) 344 * 345 * - conn_lock is meant to protect conn_t fields. The fields actually 346 * protected by conn_lock are documented in the conn_t definition. 347 * 348 * - ire_lock to protect some of the fields of the ire, IRE tables 349 * (one lock per hash bucket). Refer to ip_ire.c for details. 350 * 351 * - ndp_g_lock and nce_lock for protecting NCEs. 352 * 353 * - ill_lock protects fields of the ill and ipif. Details in ip.h 354 * 355 * - ill_g_lock: This is a global reader/writer lock. Protects the following 356 * * The AVL tree based global multi list of all ills. 357 * * The linked list of all ipifs of an ill 358 * * The <ill-ipsq> mapping 359 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 360 * * The illgroup list threaded by ill_group_next. 361 * * <ill-phyint> association 362 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 363 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 364 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 365 * will all have to hold the ill_g_lock as writer for the actual duration 366 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 367 * may be found in the IPMP section. 368 * 369 * - ill_lock: This is a per ill mutex. 370 * It protects some members of the ill and is documented below. 371 * It also protects the <ill-ipsq> mapping 372 * It also protects the illgroup list threaded by ill_group_next. 373 * It also protects the <ill-phyint> assoc. 374 * It also protects the list of ipifs hanging off the ill. 375 * 376 * - ipsq_lock: This is a per ipsq_t mutex lock. 377 * This protects all the other members of the ipsq struct except 378 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 379 * 380 * - illgrp_lock: This is a per ill_group mutex lock. 381 * The only thing it protects is the illgrp_ill_schednext member of ill_group 382 * which dictates which is the next ill in an ill_group that is to be chosen 383 * for sending outgoing packets, through creation of an IRE_CACHE that 384 * references this ill. 385 * 386 * - phyint_lock: This is a per phyint mutex lock. Protects just the 387 * phyint_flags 388 * 389 * - ip_g_nd_lock: This is a global reader/writer lock. 390 * Any call to nd_load to load a new parameter to the ND table must hold the 391 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 392 * as reader. 393 * 394 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 395 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 396 * uniqueness check also done atomically. 397 * 398 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 399 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 400 * as a writer when adding or deleting elements from these lists, and 401 * as a reader when walking these lists to send a SADB update to the 402 * IPsec capable ills. 403 * 404 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 405 * group list linked by ill_usesrc_grp_next. It also protects the 406 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 407 * group is being added or deleted. This lock is taken as a reader when 408 * walking the list/group(eg: to get the number of members in a usesrc group). 409 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 410 * field is changing state i.e from NULL to non-NULL or vice-versa. For 411 * example, it is not necessary to take this lock in the initial portion 412 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 413 * ip_sioctl_flags since the these operations are executed exclusively and 414 * that ensures that the "usesrc group state" cannot change. The "usesrc 415 * group state" change can happen only in the latter part of 416 * ip_sioctl_slifusesrc and in ill_delete. 417 * 418 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 419 * 420 * To change the <ill-phyint> association, the ill_g_lock must be held 421 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 422 * must be held. 423 * 424 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 425 * and the ill_lock of the ill in question must be held. 426 * 427 * To change the <ill-illgroup> association the ill_g_lock must be held as 428 * writer and the ill_lock of the ill in question must be held. 429 * 430 * To add or delete an ipif from the list of ipifs hanging off the ill, 431 * ill_g_lock (writer) and ill_lock must be held and the thread must be 432 * a writer on the associated ipsq,. 433 * 434 * To add or delete an ill to the system, the ill_g_lock must be held as 435 * writer and the thread must be a writer on the associated ipsq. 436 * 437 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 438 * must be a writer on the associated ipsq. 439 * 440 * Lock hierarchy 441 * 442 * Some lock hierarchy scenarios are listed below. 443 * 444 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 445 * ill_g_lock -> illgrp_lock -> ill_lock 446 * ill_g_lock -> ill_lock(s) -> phyint_lock 447 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 448 * ill_g_lock -> ip_addr_avail_lock 449 * conn_lock -> irb_lock -> ill_lock -> ire_lock 450 * ill_g_lock -> ip_g_nd_lock 451 * 452 * When more than 1 ill lock is needed to be held, all ill lock addresses 453 * are sorted on address and locked starting from highest addressed lock 454 * downward. 455 * 456 * Mobile-IP scenarios 457 * 458 * irb_lock -> ill_lock -> ire_mrtun_lock 459 * irb_lock -> ill_lock -> ire_srcif_table_lock 460 * 461 * IPsec scenarios 462 * 463 * ipsa_lock -> ill_g_lock -> ill_lock 464 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 465 * ipsec_capab_ills_lock -> ipsa_lock 466 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 467 * 468 * Trusted Solaris scenarios 469 * 470 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 471 * igsa_lock -> gcdb_lock 472 * gcgrp_rwlock -> ire_lock 473 * gcgrp_rwlock -> gcdb_lock 474 * 475 * 476 * Routing/forwarding table locking notes: 477 * 478 * Lock acquisition order: Radix tree lock, irb_lock. 479 * Requirements: 480 * i. Walker must not hold any locks during the walker callback. 481 * ii Walker must not see a truncated tree during the walk because of any node 482 * deletion. 483 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 484 * in many places in the code to walk the irb list. Thus even if all the 485 * ires in a bucket have been deleted, we still can't free the radix node 486 * until the ires have actually been inactive'd (freed). 487 * 488 * Tree traversal - Need to hold the global tree lock in read mode. 489 * Before dropping the global tree lock, need to either increment the ire_refcnt 490 * to ensure that the radix node can't be deleted. 491 * 492 * Tree add - Need to hold the global tree lock in write mode to add a 493 * radix node. To prevent the node from being deleted, increment the 494 * irb_refcnt, after the node is added to the tree. The ire itself is 495 * added later while holding the irb_lock, but not the tree lock. 496 * 497 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 498 * All associated ires must be inactive (i.e. freed), and irb_refcnt 499 * must be zero. 500 * 501 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 502 * global tree lock (read mode) for traversal. 503 * 504 * IPSEC notes : 505 * 506 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 507 * in front of the actual packet. For outbound datagrams, the M_CTL 508 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 509 * information used by the IPSEC code for applying the right level of 510 * protection. The information initialized by IP in the ipsec_out_t 511 * is determined by the per-socket policy or global policy in the system. 512 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 513 * ipsec_info.h) which starts out with nothing in it. It gets filled 514 * with the right information if it goes through the AH/ESP code, which 515 * happens if the incoming packet is secure. The information initialized 516 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 517 * the policy requirements needed by per-socket policy or global policy 518 * is met or not. 519 * 520 * If there is both per-socket policy (set using setsockopt) and there 521 * is also global policy match for the 5 tuples of the socket, 522 * ipsec_override_policy() makes the decision of which one to use. 523 * 524 * For fully connected sockets i.e dst, src [addr, port] is known, 525 * conn_policy_cached is set indicating that policy has been cached. 526 * conn_in_enforce_policy may or may not be set depending on whether 527 * there is a global policy match or per-socket policy match. 528 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 529 * Once the right policy is set on the conn_t, policy cannot change for 530 * this socket. This makes life simpler for TCP (UDP ?) where 531 * re-transmissions go out with the same policy. For symmetry, policy 532 * is cached for fully connected UDP sockets also. Thus if policy is cached, 533 * it also implies that policy is latched i.e policy cannot change 534 * on these sockets. As we have the right policy on the conn, we don't 535 * have to lookup global policy for every outbound and inbound datagram 536 * and thus serving as an optimization. Note that a global policy change 537 * does not affect fully connected sockets if they have policy. If fully 538 * connected sockets did not have any policy associated with it, global 539 * policy change may affect them. 540 * 541 * IP Flow control notes: 542 * 543 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 544 * cannot be sent down to the driver by IP, because of a canput failure, IP 545 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 546 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 547 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 548 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 549 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 550 * the queued messages, and removes the conn from the drain list, if all 551 * messages were drained. It also qenables the next conn in the drain list to 552 * continue the drain process. 553 * 554 * In reality the drain list is not a single list, but a configurable number 555 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 556 * list. If the ip_wsrv of the next qenabled conn does not run, because the 557 * stream closes, ip_close takes responsibility to qenable the next conn in 558 * the drain list. The directly called ip_wput path always does a putq, if 559 * it cannot putnext. Thus synchronization problems are handled between 560 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 561 * functions that manipulate this drain list. Furthermore conn_drain_insert 562 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 563 * running on a queue at any time. conn_drain_tail can be simultaneously called 564 * from both ip_wsrv and ip_close. 565 * 566 * IPQOS notes: 567 * 568 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 569 * and IPQoS modules. IPPF includes hooks in IP at different control points 570 * (callout positions) which direct packets to IPQoS modules for policy 571 * processing. Policies, if present, are global. 572 * 573 * The callout positions are located in the following paths: 574 * o local_in (packets destined for this host) 575 * o local_out (packets orginating from this host ) 576 * o fwd_in (packets forwarded by this m/c - inbound) 577 * o fwd_out (packets forwarded by this m/c - outbound) 578 * Hooks at these callout points can be enabled/disabled using the ndd variable 579 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 580 * By default all the callout positions are enabled. 581 * 582 * Outbound (local_out) 583 * Hooks are placed in ip_wput_ire and ipsec_out_process. 584 * 585 * Inbound (local_in) 586 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 587 * TCP and UDP fanout routines. 588 * 589 * Forwarding (in and out) 590 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 591 * 592 * IP Policy Framework processing (IPPF processing) 593 * Policy processing for a packet is initiated by ip_process, which ascertains 594 * that the classifier (ipgpc) is loaded and configured, failing which the 595 * packet resumes normal processing in IP. If the clasifier is present, the 596 * packet is acted upon by one or more IPQoS modules (action instances), per 597 * filters configured in ipgpc and resumes normal IP processing thereafter. 598 * An action instance can drop a packet in course of its processing. 599 * 600 * A boolean variable, ip_policy, is used in all the fanout routines that can 601 * invoke ip_process for a packet. This variable indicates if the packet should 602 * to be sent for policy processing. The variable is set to B_TRUE by default, 603 * i.e. when the routines are invoked in the normal ip procesing path for a 604 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 605 * ip_policy is set to B_FALSE for all the routines called in these two 606 * functions because, in the former case, we don't process loopback traffic 607 * currently while in the latter, the packets have already been processed in 608 * icmp_inbound. 609 * 610 * Zones notes: 611 * 612 * The partitioning rules for networking are as follows: 613 * 1) Packets coming from a zone must have a source address belonging to that 614 * zone. 615 * 2) Packets coming from a zone can only be sent on a physical interface on 616 * which the zone has an IP address. 617 * 3) Between two zones on the same machine, packet delivery is only allowed if 618 * there's a matching route for the destination and zone in the forwarding 619 * table. 620 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 621 * different zones can bind to the same port with the wildcard address 622 * (INADDR_ANY). 623 * 624 * The granularity of interface partitioning is at the logical interface level. 625 * Therefore, every zone has its own IP addresses, and incoming packets can be 626 * attributed to a zone unambiguously. A logical interface is placed into a zone 627 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 628 * structure. Rule (1) is implemented by modifying the source address selection 629 * algorithm so that the list of eligible addresses is filtered based on the 630 * sending process zone. 631 * 632 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 633 * across all zones, depending on their type. Here is the break-up: 634 * 635 * IRE type Shared/exclusive 636 * -------- ---------------- 637 * IRE_BROADCAST Exclusive 638 * IRE_DEFAULT (default routes) Shared (*) 639 * IRE_LOCAL Exclusive (x) 640 * IRE_LOOPBACK Exclusive 641 * IRE_PREFIX (net routes) Shared (*) 642 * IRE_CACHE Exclusive 643 * IRE_IF_NORESOLVER (interface routes) Exclusive 644 * IRE_IF_RESOLVER (interface routes) Exclusive 645 * IRE_HOST (host routes) Shared (*) 646 * 647 * (*) A zone can only use a default or off-subnet route if the gateway is 648 * directly reachable from the zone, that is, if the gateway's address matches 649 * one of the zone's logical interfaces. 650 * 651 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 652 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 653 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 654 * address of the zone itself (the destination). Since IRE_LOCAL is used 655 * for communication between zones, ip_wput_ire has special logic to set 656 * the right source address when sending using an IRE_LOCAL. 657 * 658 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 659 * ire_cache_lookup restricts loopback using an IRE_LOCAL 660 * between zone to the case when L2 would have conceptually looped the packet 661 * back, i.e. the loopback which is required since neither Ethernet drivers 662 * nor Ethernet hardware loops them back. This is the case when the normal 663 * routes (ignoring IREs with different zoneids) would send out the packet on 664 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 665 * associated. 666 * 667 * Multiple zones can share a common broadcast address; typically all zones 668 * share the 255.255.255.255 address. Incoming as well as locally originated 669 * broadcast packets must be dispatched to all the zones on the broadcast 670 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 671 * since some zones may not be on the 10.16.72/24 network. To handle this, each 672 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 673 * sent to every zone that has an IRE_BROADCAST entry for the destination 674 * address on the input ill, see conn_wantpacket(). 675 * 676 * Applications in different zones can join the same multicast group address. 677 * For IPv4, group memberships are per-logical interface, so they're already 678 * inherently part of a zone. For IPv6, group memberships are per-physical 679 * interface, so we distinguish IPv6 group memberships based on group address, 680 * interface and zoneid. In both cases, received multicast packets are sent to 681 * every zone for which a group membership entry exists. On IPv6 we need to 682 * check that the target zone still has an address on the receiving physical 683 * interface; it could have been removed since the application issued the 684 * IPV6_JOIN_GROUP. 685 */ 686 687 /* 688 * Squeue Fanout flags: 689 * 0: No fanout. 690 * 1: Fanout across all squeues 691 */ 692 boolean_t ip_squeue_fanout = 0; 693 694 /* 695 * Maximum dups allowed per packet. 696 */ 697 uint_t ip_max_frag_dups = 10; 698 699 #define IS_SIMPLE_IPH(ipha) \ 700 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 701 702 /* RFC1122 Conformance */ 703 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 704 705 #define ILL_MAX_NAMELEN LIFNAMSIZ 706 707 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 708 709 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 710 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 711 712 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t); 713 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 714 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 715 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 716 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 717 mblk_t *, int); 718 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 719 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 720 ill_t *, zoneid_t); 721 static void icmp_options_update(ipha_t *); 722 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t); 723 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 724 zoneid_t zoneid); 725 static mblk_t *icmp_pkt_err_ok(mblk_t *); 726 static void icmp_redirect(mblk_t *); 727 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t); 728 729 static void ip_arp_news(queue_t *, mblk_t *); 730 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *); 731 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 732 char *ip_dot_addr(ipaddr_t, char *); 733 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 734 int ip_close(queue_t *, int); 735 static char *ip_dot_saddr(uchar_t *, char *); 736 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 737 boolean_t, boolean_t, ill_t *, zoneid_t); 738 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 739 boolean_t, boolean_t, zoneid_t); 740 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 741 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 742 static void ip_lrput(queue_t *, mblk_t *); 743 ipaddr_t ip_massage_options(ipha_t *); 744 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 745 ipaddr_t ip_net_mask(ipaddr_t); 746 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *, 747 zoneid_t); 748 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 749 conn_t *, uint32_t, zoneid_t); 750 char *ip_nv_lookup(nv_t *, int); 751 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 752 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 753 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 754 static boolean_t ip_param_register(ipparam_t *, size_t, ipndp_t *, 755 size_t); 756 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 757 void ip_rput(queue_t *, mblk_t *); 758 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 759 void *dummy_arg); 760 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 761 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *); 762 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 763 ire_t *); 764 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *); 765 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 766 uint16_t *); 767 int ip_snmp_get(queue_t *, mblk_t *); 768 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *); 769 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *); 770 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *); 771 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *); 772 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *); 773 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *); 774 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *); 775 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *); 776 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *); 777 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *); 778 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *); 779 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *); 780 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *); 781 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *); 782 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *); 783 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *); 784 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 785 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 786 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 787 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 788 static boolean_t ip_source_routed(ipha_t *); 789 static boolean_t ip_source_route_included(ipha_t *); 790 791 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 792 zoneid_t); 793 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int); 794 static void ip_wput_local_options(ipha_t *); 795 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 796 zoneid_t); 797 798 static void conn_drain_init(void); 799 static void conn_drain_fini(void); 800 static void conn_drain_tail(conn_t *connp, boolean_t closing); 801 802 static void conn_walk_drain(void); 803 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 804 zoneid_t); 805 806 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 807 zoneid_t); 808 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 809 void *dummy_arg); 810 811 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 812 813 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 814 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 815 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 816 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 817 818 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 819 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 820 caddr_t, cred_t *); 821 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 822 caddr_t cp, cred_t *cr); 823 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 824 cred_t *); 825 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 826 caddr_t cp, cred_t *cr); 827 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 828 cred_t *); 829 static squeue_func_t ip_squeue_switch(int); 830 831 static void ip_kstat_init(void); 832 static void ip_kstat_fini(void); 833 static int ip_kstat_update(kstat_t *kp, int rw); 834 static void icmp_kstat_init(void); 835 static void icmp_kstat_fini(void); 836 static int icmp_kstat_update(kstat_t *kp, int rw); 837 838 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 839 840 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 841 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 842 843 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 844 ipha_t *, ill_t *, boolean_t); 845 846 timeout_id_t ip_ire_expire_id; /* IRE expiration timer. */ 847 static clock_t ip_ire_arp_time_elapsed; /* Time since IRE cache last flushed */ 848 static clock_t ip_ire_rd_time_elapsed; /* ... redirect IREs last flushed */ 849 static clock_t ip_ire_pmtu_time_elapsed; /* Time since path mtu increase */ 850 851 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 852 clock_t icmp_pkt_err_last = 0; /* Time since last icmp_pkt_err */ 853 uint_t icmp_pkt_err_sent = 0; /* Number of packets sent in burst */ 854 855 /* How long, in seconds, we allow frags to hang around. */ 856 #define IP_FRAG_TIMEOUT 60 857 858 time_t ip_g_frag_timeout = IP_FRAG_TIMEOUT; 859 clock_t ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 860 861 /* 862 * Threshold which determines whether MDT should be used when 863 * generating IP fragments; payload size must be greater than 864 * this threshold for MDT to take place. 865 */ 866 #define IP_WPUT_FRAG_MDT_MIN 32768 867 868 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 869 870 /* Protected by ip_mi_lock */ 871 static void *ip_g_head; /* Instance Data List Head */ 872 kmutex_t ip_mi_lock; /* Lock for list of instances */ 873 874 /* Only modified during _init and _fini thus no locking is needed. */ 875 caddr_t ip_g_nd; /* Named Dispatch List Head */ 876 877 878 static long ip_rput_pullups; 879 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 880 881 vmem_t *ip_minor_arena; 882 883 /* 884 * MIB-2 stuff for SNMP (both IP and ICMP) 885 */ 886 mib2_ip_t ip_mib; 887 mib2_icmp_t icmp_mib; 888 889 #ifdef DEBUG 890 uint32_t ipsechw_debug = 0; 891 #endif 892 893 kstat_t *ip_mibkp; /* kstat exporting ip_mib data */ 894 kstat_t *icmp_mibkp; /* kstat exporting icmp_mib data */ 895 896 uint_t loopback_packets = 0; 897 898 /* 899 * Multirouting/CGTP stuff 900 */ 901 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 902 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 903 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 904 /* Interval (in ms) between consecutive 'bad MTU' warnings */ 905 hrtime_t ip_multirt_log_interval = 1000; 906 /* Time since last warning issued. */ 907 static hrtime_t multirt_bad_mtu_last_time = 0; 908 909 kmutex_t ip_trash_timer_lock; 910 krwlock_t ip_g_nd_lock; 911 912 /* 913 * XXX following really should only be in a header. Would need more 914 * header and .c clean up first. 915 */ 916 extern optdb_obj_t ip_opt_obj; 917 918 ulong_t ip_squeue_enter_unbound = 0; 919 920 /* 921 * Named Dispatch Parameter Table. 922 * All of these are alterable, within the min/max values given, at run time. 923 */ 924 static ipparam_t lcl_param_arr[] = { 925 /* min max value name */ 926 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 927 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 928 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 929 { 0, 1, 0, "ip_respond_to_timestamp"}, 930 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 931 { 0, 1, 1, "ip_send_redirects"}, 932 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 933 { 0, 10, 0, "ip_debug"}, 934 { 0, 10, 0, "ip_mrtdebug"}, 935 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 936 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 937 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 938 { 1, 255, 255, "ip_def_ttl" }, 939 { 0, 1, 0, "ip_forward_src_routed"}, 940 { 0, 256, 32, "ip_wroff_extra" }, 941 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 942 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 943 { 0, 1, 1, "ip_path_mtu_discovery" }, 944 { 0, 240, 30, "ip_ignore_delete_time" }, 945 { 0, 1, 0, "ip_ignore_redirect" }, 946 { 0, 1, 1, "ip_output_queue" }, 947 { 1, 254, 1, "ip_broadcast_ttl" }, 948 { 0, 99999, 100, "ip_icmp_err_interval" }, 949 { 1, 99999, 10, "ip_icmp_err_burst" }, 950 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 951 { 0, 1, 0, "ip_strict_dst_multihoming" }, 952 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 953 { 0, 1, 0, "ipsec_override_persocket_policy" }, 954 { 0, 1, 1, "icmp_accept_clear_messages" }, 955 { 0, 1, 1, "igmp_accept_clear_messages" }, 956 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 957 "ip_ndp_delay_first_probe_time"}, 958 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 959 "ip_ndp_max_unicast_solicit"}, 960 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 961 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 962 { 0, 1, 0, "ip6_forward_src_routed"}, 963 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 964 { 0, 1, 1, "ip6_send_redirects"}, 965 { 0, 1, 0, "ip6_ignore_redirect" }, 966 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 967 968 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 969 970 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 971 972 { 0, 1, 1, "pim_accept_clear_messages" }, 973 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 974 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 975 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 976 { 0, 15, 0, "ip_policy_mask" }, 977 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 978 { 0, 255, 1, "ip_multirt_ttl" }, 979 { 0, 1, 1, "ip_multidata_outbound" }, 980 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 981 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 982 { 0, 1000, 1, "ip_max_temp_defend" }, 983 { 0, 1000, 3, "ip_max_defend" }, 984 { 0, 999999, 30, "ip_defend_interval" }, 985 { 0, 3600000, 300000, "ip_dup_recovery" }, 986 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 987 { 0, 1, 1, "ip_lso_outbound" }, 988 #ifdef DEBUG 989 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 990 #endif 991 }; 992 993 ipparam_t *ip_param_arr = lcl_param_arr; 994 995 /* Extended NDP table */ 996 static ipndp_t lcl_ndp_arr[] = { 997 /* getf setf data name */ 998 { ip_param_generic_get, ip_forward_set, (caddr_t)&ip_g_forward, 999 "ip_forwarding" }, 1000 { ip_param_generic_get, ip_forward_set, (caddr_t)&ipv6_forward, 1001 "ip6_forwarding" }, 1002 { ip_ill_report, NULL, NULL, 1003 "ip_ill_status" }, 1004 { ip_ipif_report, NULL, NULL, 1005 "ip_ipif_status" }, 1006 { ip_ire_report, NULL, NULL, 1007 "ipv4_ire_status" }, 1008 { ip_ire_report_mrtun, NULL, NULL, 1009 "ipv4_mrtun_ire_status" }, 1010 { ip_ire_report_srcif, NULL, NULL, 1011 "ipv4_srcif_ire_status" }, 1012 { ip_ire_report_v6, NULL, NULL, 1013 "ipv6_ire_status" }, 1014 { ip_conn_report, NULL, NULL, 1015 "ip_conn_status" }, 1016 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 1017 "ip_rput_pullups" }, 1018 { ndp_report, NULL, NULL, 1019 "ip_ndp_cache_report" }, 1020 { ip_srcid_report, NULL, NULL, 1021 "ip_srcid_status" }, 1022 { ip_param_generic_get, ip_squeue_profile_set, 1023 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 1024 { ip_param_generic_get, ip_squeue_bind_set, 1025 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 1026 { ip_param_generic_get, ip_input_proc_set, 1027 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 1028 { ip_param_generic_get, ip_int_set, 1029 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 1030 { ip_cgtp_filter_get, ip_cgtp_filter_set, (caddr_t)&ip_cgtp_filter, 1031 "ip_cgtp_filter" }, 1032 { ip_param_generic_get, ip_int_set, 1033 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" } 1034 }; 1035 1036 /* 1037 * ip_g_forward controls IP forwarding. It takes two values: 1038 * 0: IP_FORWARD_NEVER Don't forward packets ever. 1039 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 1040 * 1041 * RFC1122 says there must be a configuration switch to control forwarding, 1042 * but that the default MUST be to not forward packets ever. Implicit 1043 * control based on configuration of multiple interfaces MUST NOT be 1044 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 1045 * and, in fact, it was the default. That capability is now provided in the 1046 * /etc/rc2.d/S69inet script. 1047 */ 1048 int ip_g_forward = IP_FORWARD_DEFAULT; 1049 1050 /* It also has an IPv6 counterpart. */ 1051 1052 int ipv6_forward = IP_FORWARD_DEFAULT; 1053 1054 /* 1055 * Table of IP ioctls encoding the various properties of the ioctl and 1056 * indexed based on the last byte of the ioctl command. Occasionally there 1057 * is a clash, and there is more than 1 ioctl with the same last byte. 1058 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1059 * ioctls are encoded in the misc table. An entry in the ndx table is 1060 * retrieved by indexing on the last byte of the ioctl command and comparing 1061 * the ioctl command with the value in the ndx table. In the event of a 1062 * mismatch the misc table is then searched sequentially for the desired 1063 * ioctl command. 1064 * 1065 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1066 */ 1067 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1068 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 1079 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1080 MISC_CMD, ip_siocaddrt, NULL }, 1081 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1082 MISC_CMD, ip_siocdelrt, NULL }, 1083 1084 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1085 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1086 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1087 IF_CMD, ip_sioctl_get_addr, NULL }, 1088 1089 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1090 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1091 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1092 IPI_GET_CMD | IPI_REPL, 1093 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1094 1095 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1096 IPI_PRIV | IPI_WR | IPI_REPL, 1097 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1098 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1099 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1100 IF_CMD, ip_sioctl_get_flags, NULL }, 1101 1102 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 1105 /* copyin size cannot be coded for SIOCGIFCONF */ 1106 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1107 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1108 1109 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1110 IF_CMD, ip_sioctl_mtu, NULL }, 1111 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1112 IF_CMD, ip_sioctl_get_mtu, NULL }, 1113 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1114 IPI_GET_CMD | IPI_REPL, 1115 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1116 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1117 IF_CMD, ip_sioctl_brdaddr, NULL }, 1118 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1119 IPI_GET_CMD | IPI_REPL, 1120 IF_CMD, ip_sioctl_get_netmask, NULL }, 1121 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1122 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1123 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1124 IPI_GET_CMD | IPI_REPL, 1125 IF_CMD, ip_sioctl_get_metric, NULL }, 1126 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1127 IF_CMD, ip_sioctl_metric, NULL }, 1128 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1129 1130 /* See 166-168 below for extended SIOC*XARP ioctls */ 1131 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1132 MISC_CMD, ip_sioctl_arp, NULL }, 1133 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1134 MISC_CMD, ip_sioctl_arp, NULL }, 1135 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1136 MISC_CMD, ip_sioctl_arp, NULL }, 1137 1138 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1153 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1154 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1155 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1156 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1157 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1158 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1159 1160 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1161 MISC_CMD, if_unitsel, if_unitsel_restart }, 1162 1163 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1164 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1165 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1166 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1167 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1168 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1169 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1170 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1180 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1181 1182 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1183 IPI_PRIV | IPI_WR | IPI_MODOK, 1184 IF_CMD, ip_sioctl_sifname, NULL }, 1185 1186 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1188 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1189 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1190 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1191 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1192 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1193 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1194 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1195 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1196 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1197 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1198 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1199 1200 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1201 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1202 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1203 IF_CMD, ip_sioctl_get_muxid, NULL }, 1204 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1205 IPI_PRIV | IPI_WR | IPI_REPL, 1206 IF_CMD, ip_sioctl_muxid, NULL }, 1207 1208 /* Both if and lif variants share same func */ 1209 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1210 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1211 /* Both if and lif variants share same func */ 1212 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1213 IPI_PRIV | IPI_WR | IPI_REPL, 1214 IF_CMD, ip_sioctl_slifindex, NULL }, 1215 1216 /* copyin size cannot be coded for SIOCGIFCONF */ 1217 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1218 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1219 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1220 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1221 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1222 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1223 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1224 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1225 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1226 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1227 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1228 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1229 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1230 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1231 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1232 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1233 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1234 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1235 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1236 1237 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1238 IPI_PRIV | IPI_WR | IPI_REPL, 1239 LIF_CMD, ip_sioctl_removeif, 1240 ip_sioctl_removeif_restart }, 1241 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1242 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1243 LIF_CMD, ip_sioctl_addif, NULL }, 1244 #define SIOCLIFADDR_NDX 112 1245 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1246 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1247 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1248 IPI_GET_CMD | IPI_REPL, 1249 LIF_CMD, ip_sioctl_get_addr, NULL }, 1250 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1251 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1252 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1253 IPI_GET_CMD | IPI_REPL, 1254 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1255 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1256 IPI_PRIV | IPI_WR | IPI_REPL, 1257 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1258 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1259 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1260 LIF_CMD, ip_sioctl_get_flags, NULL }, 1261 1262 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1263 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1264 1265 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1266 ip_sioctl_get_lifconf, NULL }, 1267 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1268 LIF_CMD, ip_sioctl_mtu, NULL }, 1269 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1270 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1271 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1272 IPI_GET_CMD | IPI_REPL, 1273 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1274 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1275 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1276 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1277 IPI_GET_CMD | IPI_REPL, 1278 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1279 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1280 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1281 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1282 IPI_GET_CMD | IPI_REPL, 1283 LIF_CMD, ip_sioctl_get_metric, NULL }, 1284 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1285 LIF_CMD, ip_sioctl_metric, NULL }, 1286 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1287 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1288 LIF_CMD, ip_sioctl_slifname, 1289 ip_sioctl_slifname_restart }, 1290 1291 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1292 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1293 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1294 IPI_GET_CMD | IPI_REPL, 1295 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1296 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1297 IPI_PRIV | IPI_WR | IPI_REPL, 1298 LIF_CMD, ip_sioctl_muxid, NULL }, 1299 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1300 IPI_GET_CMD | IPI_REPL, 1301 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1302 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1303 IPI_PRIV | IPI_WR | IPI_REPL, 1304 LIF_CMD, ip_sioctl_slifindex, 0 }, 1305 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1306 LIF_CMD, ip_sioctl_token, NULL }, 1307 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1308 IPI_GET_CMD | IPI_REPL, 1309 LIF_CMD, ip_sioctl_get_token, NULL }, 1310 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1311 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1312 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1313 IPI_GET_CMD | IPI_REPL, 1314 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1315 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1316 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1317 1318 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1319 IPI_GET_CMD | IPI_REPL, 1320 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1321 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1322 LIF_CMD, ip_siocdelndp_v6, NULL }, 1323 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1324 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1325 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1326 LIF_CMD, ip_siocsetndp_v6, NULL }, 1327 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1328 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1329 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1330 MISC_CMD, ip_sioctl_tonlink, NULL }, 1331 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1332 MISC_CMD, ip_sioctl_tmysite, NULL }, 1333 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1334 TUN_CMD, ip_sioctl_tunparam, NULL }, 1335 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1336 IPI_PRIV | IPI_WR, 1337 TUN_CMD, ip_sioctl_tunparam, NULL }, 1338 1339 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1340 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1341 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1342 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1343 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1344 1345 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1346 IPI_PRIV | IPI_WR | IPI_REPL, 1347 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1348 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1349 IPI_PRIV | IPI_WR | IPI_REPL, 1350 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1351 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1352 IPI_PRIV | IPI_WR, 1353 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1354 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1355 IPI_GET_CMD | IPI_REPL, 1356 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1357 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1358 IPI_GET_CMD | IPI_REPL, 1359 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1360 1361 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1362 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1363 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1364 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1365 1366 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1367 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1368 1369 /* These are handled in ip_sioctl_copyin_setup itself */ 1370 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1371 MISC_CMD, NULL, NULL }, 1372 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1373 MISC_CMD, NULL, NULL }, 1374 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1375 1376 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1377 ip_sioctl_get_lifconf, NULL }, 1378 1379 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1380 MISC_CMD, ip_sioctl_xarp, NULL }, 1381 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1382 MISC_CMD, ip_sioctl_xarp, NULL }, 1383 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1384 MISC_CMD, ip_sioctl_xarp, NULL }, 1385 1386 /* SIOCPOPSOCKFS is not handled by IP */ 1387 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1388 1389 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1390 IPI_GET_CMD | IPI_REPL, 1391 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1392 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1393 IPI_PRIV | IPI_WR | IPI_REPL, 1394 LIF_CMD, ip_sioctl_slifzone, 1395 ip_sioctl_slifzone_restart }, 1396 /* 172-174 are SCTP ioctls and not handled by IP */ 1397 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1398 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1399 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1400 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1401 IPI_GET_CMD, LIF_CMD, 1402 ip_sioctl_get_lifusesrc, 0 }, 1403 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1404 IPI_PRIV | IPI_WR, 1405 LIF_CMD, ip_sioctl_slifusesrc, 1406 NULL }, 1407 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1408 ip_sioctl_get_lifsrcof, NULL }, 1409 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1410 MISC_CMD, ip_sioctl_msfilter, NULL }, 1411 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1412 MISC_CMD, ip_sioctl_msfilter, NULL }, 1413 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1414 MISC_CMD, ip_sioctl_msfilter, NULL }, 1415 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1416 MISC_CMD, ip_sioctl_msfilter, NULL }, 1417 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1418 ip_sioctl_set_ipmpfailback, NULL } 1419 }; 1420 1421 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1422 1423 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1424 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1425 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1426 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1427 TUN_CMD, ip_sioctl_tunparam, NULL }, 1428 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1429 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1430 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1431 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1432 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1433 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1434 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1435 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1436 MISC_CMD, mrt_ioctl}, 1437 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1438 MISC_CMD, mrt_ioctl}, 1439 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1440 MISC_CMD, mrt_ioctl} 1441 }; 1442 1443 int ip_misc_ioctl_count = 1444 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1445 1446 static idl_t *conn_drain_list; /* The array of conn drain lists */ 1447 static uint_t conn_drain_list_cnt; /* Total count of conn_drain_list */ 1448 static int conn_drain_list_index; /* Next drain_list to be used */ 1449 int conn_drain_nthreads; /* Number of drainers reqd. */ 1450 /* Settable in /etc/system */ 1451 uint_t ip_redirect_cnt; /* Num of redirect routes in ftable */ 1452 1453 /* Defined in ip_ire.c */ 1454 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1455 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1456 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1457 1458 static nv_t ire_nv_arr[] = { 1459 { IRE_BROADCAST, "BROADCAST" }, 1460 { IRE_LOCAL, "LOCAL" }, 1461 { IRE_LOOPBACK, "LOOPBACK" }, 1462 { IRE_CACHE, "CACHE" }, 1463 { IRE_DEFAULT, "DEFAULT" }, 1464 { IRE_PREFIX, "PREFIX" }, 1465 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1466 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1467 { IRE_HOST, "HOST" }, 1468 { 0 } 1469 }; 1470 1471 nv_t *ire_nv_tbl = ire_nv_arr; 1472 1473 /* Defined in ip_if.c, protect the list of IPsec capable ills */ 1474 extern krwlock_t ipsec_capab_ills_lock; 1475 1476 /* Defined in ip_netinfo.c */ 1477 extern ddi_taskq_t *eventq_queue_nic; 1478 1479 /* Packet dropper for IP IPsec processing failures */ 1480 ipdropper_t ip_dropper; 1481 1482 /* Simple ICMP IP Header Template */ 1483 static ipha_t icmp_ipha = { 1484 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1485 }; 1486 1487 struct module_info ip_mod_info = { 1488 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1489 }; 1490 1491 /* 1492 * Duplicate static symbols within a module confuses mdb; so we avoid the 1493 * problem by making the symbols here distinct from those in udp.c. 1494 */ 1495 1496 static struct qinit iprinit = { 1497 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1498 &ip_mod_info 1499 }; 1500 1501 static struct qinit ipwinit = { 1502 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1503 &ip_mod_info 1504 }; 1505 1506 static struct qinit iplrinit = { 1507 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1508 &ip_mod_info 1509 }; 1510 1511 static struct qinit iplwinit = { 1512 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1513 &ip_mod_info 1514 }; 1515 1516 struct streamtab ipinfo = { 1517 &iprinit, &ipwinit, &iplrinit, &iplwinit 1518 }; 1519 1520 #ifdef DEBUG 1521 static boolean_t skip_sctp_cksum = B_FALSE; 1522 #endif 1523 1524 /* 1525 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1526 * ip_rput_v6(), ip_output(), etc. If the message 1527 * block already has a M_CTL at the front of it, then simply set the zoneid 1528 * appropriately. 1529 */ 1530 mblk_t * 1531 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid) 1532 { 1533 mblk_t *first_mp; 1534 ipsec_out_t *io; 1535 1536 ASSERT(zoneid != ALL_ZONES); 1537 if (mp->b_datap->db_type == M_CTL) { 1538 io = (ipsec_out_t *)mp->b_rptr; 1539 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1540 io->ipsec_out_zoneid = zoneid; 1541 return (mp); 1542 } 1543 1544 first_mp = ipsec_alloc_ipsec_out(); 1545 if (first_mp == NULL) 1546 return (NULL); 1547 io = (ipsec_out_t *)first_mp->b_rptr; 1548 /* This is not a secure packet */ 1549 io->ipsec_out_secure = B_FALSE; 1550 io->ipsec_out_zoneid = zoneid; 1551 first_mp->b_cont = mp; 1552 return (first_mp); 1553 } 1554 1555 /* 1556 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1557 */ 1558 mblk_t * 1559 ip_copymsg(mblk_t *mp) 1560 { 1561 mblk_t *nmp; 1562 ipsec_info_t *in; 1563 1564 if (mp->b_datap->db_type != M_CTL) 1565 return (copymsg(mp)); 1566 1567 in = (ipsec_info_t *)mp->b_rptr; 1568 1569 /* 1570 * Note that M_CTL is also used for delivering ICMP error messages 1571 * upstream to transport layers. 1572 */ 1573 if (in->ipsec_info_type != IPSEC_OUT && 1574 in->ipsec_info_type != IPSEC_IN) 1575 return (copymsg(mp)); 1576 1577 nmp = copymsg(mp->b_cont); 1578 1579 if (in->ipsec_info_type == IPSEC_OUT) 1580 return (ipsec_out_tag(mp, nmp)); 1581 else 1582 return (ipsec_in_tag(mp, nmp)); 1583 } 1584 1585 /* Generate an ICMP fragmentation needed message. */ 1586 static void 1587 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid) 1588 { 1589 icmph_t icmph; 1590 mblk_t *first_mp; 1591 boolean_t mctl_present; 1592 1593 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1594 1595 if (!(mp = icmp_pkt_err_ok(mp))) { 1596 if (mctl_present) 1597 freeb(first_mp); 1598 return; 1599 } 1600 1601 bzero(&icmph, sizeof (icmph_t)); 1602 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1603 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1604 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1605 BUMP_MIB(&icmp_mib, icmpOutFragNeeded); 1606 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 1607 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 1608 } 1609 1610 /* 1611 * icmp_inbound deals with ICMP messages in the following ways. 1612 * 1613 * 1) It needs to send a reply back and possibly delivering it 1614 * to the "interested" upper clients. 1615 * 2) It needs to send it to the upper clients only. 1616 * 3) It needs to change some values in IP only. 1617 * 4) It needs to change some values in IP and upper layers e.g TCP. 1618 * 1619 * We need to accomodate icmp messages coming in clear until we get 1620 * everything secure from the wire. If icmp_accept_clear_messages 1621 * is zero we check with the global policy and act accordingly. If 1622 * it is non-zero, we accept the message without any checks. But 1623 * *this does not mean* that this will be delivered to the upper 1624 * clients. By accepting we might send replies back, change our MTU 1625 * value etc. but delivery to the ULP/clients depends on their policy 1626 * dispositions. 1627 * 1628 * We handle the above 4 cases in the context of IPSEC in the 1629 * following way : 1630 * 1631 * 1) Send the reply back in the same way as the request came in. 1632 * If it came in encrypted, it goes out encrypted. If it came in 1633 * clear, it goes out in clear. Thus, this will prevent chosen 1634 * plain text attack. 1635 * 2) The client may or may not expect things to come in secure. 1636 * If it comes in secure, the policy constraints are checked 1637 * before delivering it to the upper layers. If it comes in 1638 * clear, ipsec_inbound_accept_clear will decide whether to 1639 * accept this in clear or not. In both the cases, if the returned 1640 * message (IP header + 8 bytes) that caused the icmp message has 1641 * AH/ESP headers, it is sent up to AH/ESP for validation before 1642 * sending up. If there are only 8 bytes of returned message, then 1643 * upper client will not be notified. 1644 * 3) Check with global policy to see whether it matches the constaints. 1645 * But this will be done only if icmp_accept_messages_in_clear is 1646 * zero. 1647 * 4) If we need to change both in IP and ULP, then the decision taken 1648 * while affecting the values in IP and while delivering up to TCP 1649 * should be the same. 1650 * 1651 * There are two cases. 1652 * 1653 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1654 * failed), we will not deliver it to the ULP, even though they 1655 * are *willing* to accept in *clear*. This is fine as our global 1656 * disposition to icmp messages asks us reject the datagram. 1657 * 1658 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1659 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1660 * to deliver it to ULP (policy failed), it can lead to 1661 * consistency problems. The cases known at this time are 1662 * ICMP_DESTINATION_UNREACHABLE messages with following code 1663 * values : 1664 * 1665 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1666 * and Upper layer rejects. Then the communication will 1667 * come to a stop. This is solved by making similar decisions 1668 * at both levels. Currently, when we are unable to deliver 1669 * to the Upper Layer (due to policy failures) while IP has 1670 * adjusted ire_max_frag, the next outbound datagram would 1671 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1672 * will be with the right level of protection. Thus the right 1673 * value will be communicated even if we are not able to 1674 * communicate when we get from the wire initially. But this 1675 * assumes there would be at least one outbound datagram after 1676 * IP has adjusted its ire_max_frag value. To make things 1677 * simpler, we accept in clear after the validation of 1678 * AH/ESP headers. 1679 * 1680 * - Other ICMP ERRORS : We may not be able to deliver it to the 1681 * upper layer depending on the level of protection the upper 1682 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1683 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1684 * should be accepted in clear when the Upper layer expects secure. 1685 * Thus the communication may get aborted by some bad ICMP 1686 * packets. 1687 * 1688 * IPQoS Notes: 1689 * The only instance when a packet is sent for processing is when there 1690 * isn't an ICMP client and if we are interested in it. 1691 * If there is a client, IPPF processing will take place in the 1692 * ip_fanout_proto routine. 1693 * 1694 * Zones notes: 1695 * The packet is only processed in the context of the specified zone: typically 1696 * only this zone will reply to an echo request, and only interested clients in 1697 * this zone will receive a copy of the packet. This means that the caller must 1698 * call icmp_inbound() for each relevant zone. 1699 */ 1700 static void 1701 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1702 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1703 ill_t *recv_ill, zoneid_t zoneid) 1704 { 1705 icmph_t *icmph; 1706 ipha_t *ipha; 1707 int iph_hdr_length; 1708 int hdr_length; 1709 boolean_t interested; 1710 uint32_t ts; 1711 uchar_t *wptr; 1712 ipif_t *ipif; 1713 mblk_t *first_mp; 1714 ipsec_in_t *ii; 1715 ire_t *src_ire; 1716 boolean_t onlink; 1717 timestruc_t now; 1718 uint32_t ill_index; 1719 1720 ASSERT(ill != NULL); 1721 1722 first_mp = mp; 1723 if (mctl_present) { 1724 mp = first_mp->b_cont; 1725 ASSERT(mp != NULL); 1726 } 1727 1728 ipha = (ipha_t *)mp->b_rptr; 1729 if (icmp_accept_clear_messages == 0) { 1730 first_mp = ipsec_check_global_policy(first_mp, NULL, 1731 ipha, NULL, mctl_present); 1732 if (first_mp == NULL) 1733 return; 1734 } 1735 1736 /* 1737 * On a labeled system, we have to check whether the zone itself is 1738 * permitted to receive raw traffic. 1739 */ 1740 if (is_system_labeled()) { 1741 if (zoneid == ALL_ZONES) 1742 zoneid = tsol_packet_to_zoneid(mp); 1743 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1744 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1745 zoneid)); 1746 BUMP_MIB(&icmp_mib, icmpInErrors); 1747 freemsg(first_mp); 1748 return; 1749 } 1750 } 1751 1752 /* 1753 * We have accepted the ICMP message. It means that we will 1754 * respond to the packet if needed. It may not be delivered 1755 * to the upper client depending on the policy constraints 1756 * and the disposition in ipsec_inbound_accept_clear. 1757 */ 1758 1759 ASSERT(ill != NULL); 1760 1761 BUMP_MIB(&icmp_mib, icmpInMsgs); 1762 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1763 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1764 /* Last chance to get real. */ 1765 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1766 BUMP_MIB(&icmp_mib, icmpInErrors); 1767 freemsg(first_mp); 1768 return; 1769 } 1770 /* Refresh iph following the pullup. */ 1771 ipha = (ipha_t *)mp->b_rptr; 1772 } 1773 /* ICMP header checksum, including checksum field, should be zero. */ 1774 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1775 IP_CSUM(mp, iph_hdr_length, 0)) { 1776 BUMP_MIB(&icmp_mib, icmpInCksumErrs); 1777 freemsg(first_mp); 1778 return; 1779 } 1780 /* The IP header will always be a multiple of four bytes */ 1781 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1782 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1783 icmph->icmph_code)); 1784 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1785 /* We will set "interested" to "true" if we want a copy */ 1786 interested = B_FALSE; 1787 switch (icmph->icmph_type) { 1788 case ICMP_ECHO_REPLY: 1789 BUMP_MIB(&icmp_mib, icmpInEchoReps); 1790 break; 1791 case ICMP_DEST_UNREACHABLE: 1792 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1793 BUMP_MIB(&icmp_mib, icmpInFragNeeded); 1794 interested = B_TRUE; /* Pass up to transport */ 1795 BUMP_MIB(&icmp_mib, icmpInDestUnreachs); 1796 break; 1797 case ICMP_SOURCE_QUENCH: 1798 interested = B_TRUE; /* Pass up to transport */ 1799 BUMP_MIB(&icmp_mib, icmpInSrcQuenchs); 1800 break; 1801 case ICMP_REDIRECT: 1802 if (!ip_ignore_redirect) 1803 interested = B_TRUE; 1804 BUMP_MIB(&icmp_mib, icmpInRedirects); 1805 break; 1806 case ICMP_ECHO_REQUEST: 1807 /* 1808 * Whether to respond to echo requests that come in as IP 1809 * broadcasts or as IP multicast is subject to debate 1810 * (what isn't?). We aim to please, you pick it. 1811 * Default is do it. 1812 */ 1813 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1814 /* unicast: always respond */ 1815 interested = B_TRUE; 1816 } else if (CLASSD(ipha->ipha_dst)) { 1817 /* multicast: respond based on tunable */ 1818 interested = ip_g_resp_to_echo_mcast; 1819 } else if (broadcast) { 1820 /* broadcast: respond based on tunable */ 1821 interested = ip_g_resp_to_echo_bcast; 1822 } 1823 BUMP_MIB(&icmp_mib, icmpInEchos); 1824 break; 1825 case ICMP_ROUTER_ADVERTISEMENT: 1826 case ICMP_ROUTER_SOLICITATION: 1827 break; 1828 case ICMP_TIME_EXCEEDED: 1829 interested = B_TRUE; /* Pass up to transport */ 1830 BUMP_MIB(&icmp_mib, icmpInTimeExcds); 1831 break; 1832 case ICMP_PARAM_PROBLEM: 1833 interested = B_TRUE; /* Pass up to transport */ 1834 BUMP_MIB(&icmp_mib, icmpInParmProbs); 1835 break; 1836 case ICMP_TIME_STAMP_REQUEST: 1837 /* Response to Time Stamp Requests is local policy. */ 1838 if (ip_g_resp_to_timestamp && 1839 /* So is whether to respond if it was an IP broadcast. */ 1840 (!broadcast || ip_g_resp_to_timestamp_bcast)) { 1841 int tstamp_len = 3 * sizeof (uint32_t); 1842 1843 if (wptr + tstamp_len > mp->b_wptr) { 1844 if (!pullupmsg(mp, wptr + tstamp_len - 1845 mp->b_rptr)) { 1846 BUMP_MIB(&ip_mib, ipInDiscards); 1847 freemsg(first_mp); 1848 return; 1849 } 1850 /* Refresh ipha following the pullup. */ 1851 ipha = (ipha_t *)mp->b_rptr; 1852 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1853 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1854 } 1855 interested = B_TRUE; 1856 } 1857 BUMP_MIB(&icmp_mib, icmpInTimestamps); 1858 break; 1859 case ICMP_TIME_STAMP_REPLY: 1860 BUMP_MIB(&icmp_mib, icmpInTimestampReps); 1861 break; 1862 case ICMP_INFO_REQUEST: 1863 /* Per RFC 1122 3.2.2.7, ignore this. */ 1864 case ICMP_INFO_REPLY: 1865 break; 1866 case ICMP_ADDRESS_MASK_REQUEST: 1867 if ((ip_respond_to_address_mask_broadcast || !broadcast) && 1868 /* TODO m_pullup of complete header? */ 1869 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1870 interested = B_TRUE; 1871 BUMP_MIB(&icmp_mib, icmpInAddrMasks); 1872 break; 1873 case ICMP_ADDRESS_MASK_REPLY: 1874 BUMP_MIB(&icmp_mib, icmpInAddrMaskReps); 1875 break; 1876 default: 1877 interested = B_TRUE; /* Pass up to transport */ 1878 BUMP_MIB(&icmp_mib, icmpInUnknowns); 1879 break; 1880 } 1881 /* See if there is an ICMP client. */ 1882 if (ipcl_proto_search(IPPROTO_ICMP) != NULL) { 1883 /* If there is an ICMP client and we want one too, copy it. */ 1884 mblk_t *first_mp1; 1885 1886 if (!interested) { 1887 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1888 ip_policy, recv_ill, zoneid); 1889 return; 1890 } 1891 first_mp1 = ip_copymsg(first_mp); 1892 if (first_mp1 != NULL) { 1893 ip_fanout_proto(q, first_mp1, ill, ipha, 1894 0, mctl_present, ip_policy, recv_ill, zoneid); 1895 } 1896 } else if (!interested) { 1897 freemsg(first_mp); 1898 return; 1899 } else { 1900 /* 1901 * Initiate policy processing for this packet if ip_policy 1902 * is true. 1903 */ 1904 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 1905 ill_index = ill->ill_phyint->phyint_ifindex; 1906 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1907 if (mp == NULL) { 1908 if (mctl_present) { 1909 freeb(first_mp); 1910 } 1911 BUMP_MIB(&icmp_mib, icmpInErrors); 1912 return; 1913 } 1914 } 1915 } 1916 /* We want to do something with it. */ 1917 /* Check db_ref to make sure we can modify the packet. */ 1918 if (mp->b_datap->db_ref > 1) { 1919 mblk_t *first_mp1; 1920 1921 first_mp1 = ip_copymsg(first_mp); 1922 freemsg(first_mp); 1923 if (!first_mp1) { 1924 BUMP_MIB(&icmp_mib, icmpOutDrops); 1925 return; 1926 } 1927 first_mp = first_mp1; 1928 if (mctl_present) { 1929 mp = first_mp->b_cont; 1930 ASSERT(mp != NULL); 1931 } else { 1932 mp = first_mp; 1933 } 1934 ipha = (ipha_t *)mp->b_rptr; 1935 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1936 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1937 } 1938 switch (icmph->icmph_type) { 1939 case ICMP_ADDRESS_MASK_REQUEST: 1940 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1941 if (ipif == NULL) { 1942 freemsg(first_mp); 1943 return; 1944 } 1945 /* 1946 * outging interface must be IPv4 1947 */ 1948 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1949 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1950 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1951 ipif_refrele(ipif); 1952 BUMP_MIB(&icmp_mib, icmpOutAddrMaskReps); 1953 break; 1954 case ICMP_ECHO_REQUEST: 1955 icmph->icmph_type = ICMP_ECHO_REPLY; 1956 BUMP_MIB(&icmp_mib, icmpOutEchoReps); 1957 break; 1958 case ICMP_TIME_STAMP_REQUEST: { 1959 uint32_t *tsp; 1960 1961 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1962 tsp = (uint32_t *)wptr; 1963 tsp++; /* Skip past 'originate time' */ 1964 /* Compute # of milliseconds since midnight */ 1965 gethrestime(&now); 1966 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1967 now.tv_nsec / (NANOSEC / MILLISEC); 1968 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1969 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1970 BUMP_MIB(&icmp_mib, icmpOutTimestampReps); 1971 break; 1972 } 1973 default: 1974 ipha = (ipha_t *)&icmph[1]; 1975 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1976 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1977 BUMP_MIB(&ip_mib, ipInDiscards); 1978 freemsg(first_mp); 1979 return; 1980 } 1981 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1982 ipha = (ipha_t *)&icmph[1]; 1983 } 1984 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1985 BUMP_MIB(&ip_mib, ipInDiscards); 1986 freemsg(first_mp); 1987 return; 1988 } 1989 hdr_length = IPH_HDR_LENGTH(ipha); 1990 if (hdr_length < sizeof (ipha_t)) { 1991 BUMP_MIB(&ip_mib, ipInDiscards); 1992 freemsg(first_mp); 1993 return; 1994 } 1995 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1996 if (!pullupmsg(mp, 1997 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1998 BUMP_MIB(&ip_mib, ipInDiscards); 1999 freemsg(first_mp); 2000 return; 2001 } 2002 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2003 ipha = (ipha_t *)&icmph[1]; 2004 } 2005 switch (icmph->icmph_type) { 2006 case ICMP_REDIRECT: 2007 /* 2008 * As there is no upper client to deliver, we don't 2009 * need the first_mp any more. 2010 */ 2011 if (mctl_present) { 2012 freeb(first_mp); 2013 } 2014 icmp_redirect(mp); 2015 return; 2016 case ICMP_DEST_UNREACHABLE: 2017 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 2018 if (!icmp_inbound_too_big(icmph, ipha, ill, 2019 zoneid, mp, iph_hdr_length)) { 2020 freemsg(first_mp); 2021 return; 2022 } 2023 /* 2024 * icmp_inbound_too_big() may alter mp. 2025 * Resynch ipha and icmph accordingly. 2026 */ 2027 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2028 ipha = (ipha_t *)&icmph[1]; 2029 } 2030 /* FALLTHRU */ 2031 default : 2032 /* 2033 * IPQoS notes: Since we have already done IPQoS 2034 * processing we don't want to do it again in 2035 * the fanout routines called by 2036 * icmp_inbound_error_fanout, hence the last 2037 * argument, ip_policy, is B_FALSE. 2038 */ 2039 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 2040 ipha, iph_hdr_length, hdr_length, mctl_present, 2041 B_FALSE, recv_ill, zoneid); 2042 } 2043 return; 2044 } 2045 /* Send out an ICMP packet */ 2046 icmph->icmph_checksum = 0; 2047 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 2048 if (icmph->icmph_checksum == 0) 2049 icmph->icmph_checksum = 0xFFFF; 2050 if (broadcast || CLASSD(ipha->ipha_dst)) { 2051 ipif_t *ipif_chosen; 2052 /* 2053 * Make it look like it was directed to us, so we don't look 2054 * like a fool with a broadcast or multicast source address. 2055 */ 2056 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 2057 /* 2058 * Make sure that we haven't grabbed an interface that's DOWN. 2059 */ 2060 if (ipif != NULL) { 2061 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2062 ipha->ipha_src, zoneid); 2063 if (ipif_chosen != NULL) { 2064 ipif_refrele(ipif); 2065 ipif = ipif_chosen; 2066 } 2067 } 2068 if (ipif == NULL) { 2069 ip0dbg(("icmp_inbound: " 2070 "No source for broadcast/multicast:\n" 2071 "\tsrc 0x%x dst 0x%x ill %p " 2072 "ipif_lcl_addr 0x%x\n", 2073 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2074 (void *)ill, 2075 ill->ill_ipif->ipif_lcl_addr)); 2076 freemsg(first_mp); 2077 return; 2078 } 2079 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2080 ipha->ipha_dst = ipif->ipif_src_addr; 2081 ipif_refrele(ipif); 2082 } 2083 /* Reset time to live. */ 2084 ipha->ipha_ttl = ip_def_ttl; 2085 { 2086 /* Swap source and destination addresses */ 2087 ipaddr_t tmp; 2088 2089 tmp = ipha->ipha_src; 2090 ipha->ipha_src = ipha->ipha_dst; 2091 ipha->ipha_dst = tmp; 2092 } 2093 ipha->ipha_ident = 0; 2094 if (!IS_SIMPLE_IPH(ipha)) 2095 icmp_options_update(ipha); 2096 2097 /* 2098 * ICMP echo replies should go out on the same interface 2099 * the request came on as probes used by in.mpathd for detecting 2100 * NIC failures are ECHO packets. We turn-off load spreading 2101 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2102 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2103 * function. This is in turn handled by ip_wput and ip_newroute 2104 * to make sure that the packet goes out on the interface it came 2105 * in on. If we don't turnoff load spreading, the packets might get 2106 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2107 * to go out and in.mpathd would wrongly detect a failure or 2108 * mis-detect a NIC failure for link failure. As load spreading 2109 * can happen only if ill_group is not NULL, we do only for 2110 * that case and this does not affect the normal case. 2111 * 2112 * We turn off load spreading only on echo packets that came from 2113 * on-link hosts. If the interface route has been deleted, this will 2114 * not be enforced as we can't do much. For off-link hosts, as the 2115 * default routes in IPv4 does not typically have an ire_ipif 2116 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2117 * Moreover, expecting a default route through this interface may 2118 * not be correct. We use ipha_dst because of the swap above. 2119 */ 2120 onlink = B_FALSE; 2121 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2122 /* 2123 * First, we need to make sure that it is not one of our 2124 * local addresses. If we set onlink when it is one of 2125 * our local addresses, we will end up creating IRE_CACHES 2126 * for one of our local addresses. Then, we will never 2127 * accept packets for them afterwards. 2128 */ 2129 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2130 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2131 if (src_ire == NULL) { 2132 ipif = ipif_get_next_ipif(NULL, ill); 2133 if (ipif == NULL) { 2134 BUMP_MIB(&ip_mib, ipInDiscards); 2135 freemsg(mp); 2136 return; 2137 } 2138 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2139 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2140 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE); 2141 ipif_refrele(ipif); 2142 if (src_ire != NULL) { 2143 onlink = B_TRUE; 2144 ire_refrele(src_ire); 2145 } 2146 } else { 2147 ire_refrele(src_ire); 2148 } 2149 } 2150 if (!mctl_present) { 2151 /* 2152 * This packet should go out the same way as it 2153 * came in i.e in clear. To make sure that global 2154 * policy will not be applied to this in ip_wput_ire, 2155 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2156 */ 2157 ASSERT(first_mp == mp); 2158 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 2159 BUMP_MIB(&ip_mib, ipInDiscards); 2160 freemsg(mp); 2161 return; 2162 } 2163 ii = (ipsec_in_t *)first_mp->b_rptr; 2164 2165 /* This is not a secure packet */ 2166 ii->ipsec_in_secure = B_FALSE; 2167 if (onlink) { 2168 ii->ipsec_in_attach_if = B_TRUE; 2169 ii->ipsec_in_ill_index = 2170 ill->ill_phyint->phyint_ifindex; 2171 ii->ipsec_in_rill_index = 2172 recv_ill->ill_phyint->phyint_ifindex; 2173 } 2174 first_mp->b_cont = mp; 2175 } else if (onlink) { 2176 ii = (ipsec_in_t *)first_mp->b_rptr; 2177 ii->ipsec_in_attach_if = B_TRUE; 2178 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2179 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2180 } else { 2181 ii = (ipsec_in_t *)first_mp->b_rptr; 2182 } 2183 ii->ipsec_in_zoneid = zoneid; 2184 ASSERT(zoneid != ALL_ZONES); 2185 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2186 BUMP_MIB(&ip_mib, ipInDiscards); 2187 return; 2188 } 2189 BUMP_MIB(&icmp_mib, icmpOutMsgs); 2190 put(WR(q), first_mp); 2191 } 2192 2193 static ipaddr_t 2194 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2195 { 2196 conn_t *connp; 2197 connf_t *connfp; 2198 ipaddr_t nexthop_addr = INADDR_ANY; 2199 int hdr_length = IPH_HDR_LENGTH(ipha); 2200 uint16_t *up; 2201 uint32_t ports; 2202 2203 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2204 switch (ipha->ipha_protocol) { 2205 case IPPROTO_TCP: 2206 { 2207 tcph_t *tcph; 2208 2209 /* do a reverse lookup */ 2210 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2211 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2212 TCPS_LISTEN); 2213 break; 2214 } 2215 case IPPROTO_UDP: 2216 { 2217 uint32_t dstport, srcport; 2218 2219 ((uint16_t *)&ports)[0] = up[1]; 2220 ((uint16_t *)&ports)[1] = up[0]; 2221 2222 /* Extract ports in net byte order */ 2223 dstport = htons(ntohl(ports) & 0xFFFF); 2224 srcport = htons(ntohl(ports) >> 16); 2225 2226 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 2227 mutex_enter(&connfp->connf_lock); 2228 connp = connfp->connf_head; 2229 2230 /* do a reverse lookup */ 2231 while ((connp != NULL) && 2232 (!IPCL_UDP_MATCH(connp, dstport, 2233 ipha->ipha_src, srcport, ipha->ipha_dst) || 2234 !IPCL_ZONE_MATCH(connp, zoneid))) { 2235 connp = connp->conn_next; 2236 } 2237 if (connp != NULL) 2238 CONN_INC_REF(connp); 2239 mutex_exit(&connfp->connf_lock); 2240 break; 2241 } 2242 case IPPROTO_SCTP: 2243 { 2244 in6_addr_t map_src, map_dst; 2245 2246 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2247 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2248 ((uint16_t *)&ports)[0] = up[1]; 2249 ((uint16_t *)&ports)[1] = up[0]; 2250 2251 if ((connp = sctp_find_conn(&map_src, &map_dst, ports, 2252 0, zoneid)) == NULL) { 2253 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2254 zoneid, ports, ipha); 2255 } else { 2256 CONN_INC_REF(connp); 2257 SCTP_REFRELE(CONN2SCTP(connp)); 2258 } 2259 break; 2260 } 2261 default: 2262 { 2263 ipha_t ripha; 2264 2265 ripha.ipha_src = ipha->ipha_dst; 2266 ripha.ipha_dst = ipha->ipha_src; 2267 ripha.ipha_protocol = ipha->ipha_protocol; 2268 2269 connfp = &ipcl_proto_fanout[ipha->ipha_protocol]; 2270 mutex_enter(&connfp->connf_lock); 2271 connp = connfp->connf_head; 2272 for (connp = connfp->connf_head; connp != NULL; 2273 connp = connp->conn_next) { 2274 if (IPCL_PROTO_MATCH(connp, 2275 ipha->ipha_protocol, &ripha, ill, 2276 0, zoneid)) { 2277 CONN_INC_REF(connp); 2278 break; 2279 } 2280 } 2281 mutex_exit(&connfp->connf_lock); 2282 } 2283 } 2284 if (connp != NULL) { 2285 if (connp->conn_nexthop_set) 2286 nexthop_addr = connp->conn_nexthop_v4; 2287 CONN_DEC_REF(connp); 2288 } 2289 return (nexthop_addr); 2290 } 2291 2292 /* Table from RFC 1191 */ 2293 static int icmp_frag_size_table[] = 2294 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2295 2296 /* 2297 * Process received ICMP Packet too big. 2298 * After updating any IRE it does the fanout to any matching transport streams. 2299 * Assumes the message has been pulled up till the IP header that caused 2300 * the error. 2301 * 2302 * Returns B_FALSE on failure and B_TRUE on success. 2303 */ 2304 static boolean_t 2305 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2306 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length) 2307 { 2308 ire_t *ire, *first_ire; 2309 int mtu; 2310 int hdr_length; 2311 ipaddr_t nexthop_addr; 2312 2313 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2314 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2315 2316 hdr_length = IPH_HDR_LENGTH(ipha); 2317 2318 /* Drop if the original packet contained a source route */ 2319 if (ip_source_route_included(ipha)) { 2320 return (B_FALSE); 2321 } 2322 /* 2323 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2324 * header. 2325 */ 2326 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2327 mp->b_wptr) { 2328 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2329 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2330 BUMP_MIB(&ip_mib, ipInDiscards); 2331 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2332 return (B_FALSE); 2333 } 2334 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2335 ipha = (ipha_t *)&icmph[1]; 2336 } 2337 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2338 if (nexthop_addr != INADDR_ANY) { 2339 /* nexthop set */ 2340 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2341 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2342 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW); 2343 } else { 2344 /* nexthop not set */ 2345 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2346 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2347 } 2348 2349 if (!first_ire) { 2350 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2351 ntohl(ipha->ipha_dst))); 2352 return (B_FALSE); 2353 } 2354 /* Check for MTU discovery advice as described in RFC 1191 */ 2355 mtu = ntohs(icmph->icmph_du_mtu); 2356 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2357 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2358 ire = ire->ire_next) { 2359 /* 2360 * Look for the connection to which this ICMP message is 2361 * directed. If it has the IP_NEXTHOP option set, then the 2362 * search is limited to IREs with the MATCH_IRE_PRIVATE 2363 * option. Else the search is limited to regular IREs. 2364 */ 2365 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2366 (nexthop_addr != ire->ire_gateway_addr)) || 2367 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2368 (nexthop_addr != INADDR_ANY))) 2369 continue; 2370 2371 mutex_enter(&ire->ire_lock); 2372 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2373 /* Reduce the IRE max frag value as advised. */ 2374 ip1dbg(("Received mtu from router: %d (was %d)\n", 2375 mtu, ire->ire_max_frag)); 2376 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2377 } else { 2378 uint32_t length; 2379 int i; 2380 2381 /* 2382 * Use the table from RFC 1191 to figure out 2383 * the next "plateau" based on the length in 2384 * the original IP packet. 2385 */ 2386 length = ntohs(ipha->ipha_length); 2387 if (ire->ire_max_frag <= length && 2388 ire->ire_max_frag >= length - hdr_length) { 2389 /* 2390 * Handle broken BSD 4.2 systems that 2391 * return the wrong iph_length in ICMP 2392 * errors. 2393 */ 2394 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2395 length, ire->ire_max_frag)); 2396 length -= hdr_length; 2397 } 2398 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2399 if (length > icmp_frag_size_table[i]) 2400 break; 2401 } 2402 if (i == A_CNT(icmp_frag_size_table)) { 2403 /* Smaller than 68! */ 2404 ip1dbg(("Too big for packet size %d\n", 2405 length)); 2406 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2407 ire->ire_frag_flag = 0; 2408 } else { 2409 mtu = icmp_frag_size_table[i]; 2410 ip1dbg(("Calculated mtu %d, packet size %d, " 2411 "before %d", mtu, length, 2412 ire->ire_max_frag)); 2413 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2414 ip1dbg((", after %d\n", ire->ire_max_frag)); 2415 } 2416 /* Record the new max frag size for the ULP. */ 2417 icmph->icmph_du_zero = 0; 2418 icmph->icmph_du_mtu = 2419 htons((uint16_t)ire->ire_max_frag); 2420 } 2421 mutex_exit(&ire->ire_lock); 2422 } 2423 rw_exit(&first_ire->ire_bucket->irb_lock); 2424 ire_refrele(first_ire); 2425 return (B_TRUE); 2426 } 2427 2428 /* 2429 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2430 * calls this function. 2431 */ 2432 static mblk_t * 2433 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2434 { 2435 ipha_t *ipha; 2436 icmph_t *icmph; 2437 ipha_t *in_ipha; 2438 int length; 2439 2440 ASSERT(mp->b_datap->db_type == M_DATA); 2441 2442 /* 2443 * For Self-encapsulated packets, we added an extra IP header 2444 * without the options. Inner IP header is the one from which 2445 * the outer IP header was formed. Thus, we need to remove the 2446 * outer IP header. To do this, we pullup the whole message 2447 * and overlay whatever follows the outer IP header over the 2448 * outer IP header. 2449 */ 2450 2451 if (!pullupmsg(mp, -1)) { 2452 BUMP_MIB(&ip_mib, ipInDiscards); 2453 return (NULL); 2454 } 2455 2456 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2457 ipha = (ipha_t *)&icmph[1]; 2458 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2459 2460 /* 2461 * The length that we want to overlay is following the inner 2462 * IP header. Subtracting the IP header + icmp header + outer 2463 * IP header's length should give us the length that we want to 2464 * overlay. 2465 */ 2466 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2467 hdr_length; 2468 /* 2469 * Overlay whatever follows the inner header over the 2470 * outer header. 2471 */ 2472 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2473 2474 /* Set the wptr to account for the outer header */ 2475 mp->b_wptr -= hdr_length; 2476 return (mp); 2477 } 2478 2479 /* 2480 * Try to pass the ICMP message upstream in case the ULP cares. 2481 * 2482 * If the packet that caused the ICMP error is secure, we send 2483 * it to AH/ESP to make sure that the attached packet has a 2484 * valid association. ipha in the code below points to the 2485 * IP header of the packet that caused the error. 2486 * 2487 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2488 * in the context of IPSEC. Normally we tell the upper layer 2489 * whenever we send the ire (including ip_bind), the IPSEC header 2490 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2491 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2492 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2493 * same thing. As TCP has the IPSEC options size that needs to be 2494 * adjusted, we just pass the MTU unchanged. 2495 * 2496 * IFN could have been generated locally or by some router. 2497 * 2498 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2499 * This happens because IP adjusted its value of MTU on an 2500 * earlier IFN message and could not tell the upper layer, 2501 * the new adjusted value of MTU e.g. Packet was encrypted 2502 * or there was not enough information to fanout to upper 2503 * layers. Thus on the next outbound datagram, ip_wput_ire 2504 * generates the IFN, where IPSEC processing has *not* been 2505 * done. 2506 * 2507 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2508 * could have generated this. This happens because ire_max_frag 2509 * value in IP was set to a new value, while the IPSEC processing 2510 * was being done and after we made the fragmentation check in 2511 * ip_wput_ire. Thus on return from IPSEC processing, 2512 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2513 * and generates the IFN. As IPSEC processing is over, we fanout 2514 * to AH/ESP to remove the header. 2515 * 2516 * In both these cases, ipsec_in_loopback will be set indicating 2517 * that IFN was generated locally. 2518 * 2519 * ROUTER : IFN could be secure or non-secure. 2520 * 2521 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2522 * packet in error has AH/ESP headers to validate the AH/ESP 2523 * headers. AH/ESP will verify whether there is a valid SA or 2524 * not and send it back. We will fanout again if we have more 2525 * data in the packet. 2526 * 2527 * If the packet in error does not have AH/ESP, we handle it 2528 * like any other case. 2529 * 2530 * * NON_SECURE : If the packet in error has AH/ESP headers, 2531 * we attach a dummy ipsec_in and send it up to AH/ESP 2532 * for validation. AH/ESP will verify whether there is a 2533 * valid SA or not and send it back. We will fanout again if 2534 * we have more data in the packet. 2535 * 2536 * If the packet in error does not have AH/ESP, we handle it 2537 * like any other case. 2538 */ 2539 static void 2540 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2541 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2542 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2543 zoneid_t zoneid) 2544 { 2545 uint16_t *up; /* Pointer to ports in ULP header */ 2546 uint32_t ports; /* reversed ports for fanout */ 2547 ipha_t ripha; /* With reversed addresses */ 2548 mblk_t *first_mp; 2549 ipsec_in_t *ii; 2550 tcph_t *tcph; 2551 conn_t *connp; 2552 2553 first_mp = mp; 2554 if (mctl_present) { 2555 mp = first_mp->b_cont; 2556 ASSERT(mp != NULL); 2557 2558 ii = (ipsec_in_t *)first_mp->b_rptr; 2559 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2560 } else { 2561 ii = NULL; 2562 } 2563 2564 switch (ipha->ipha_protocol) { 2565 case IPPROTO_UDP: 2566 /* 2567 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2568 * transport header. 2569 */ 2570 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2571 mp->b_wptr) { 2572 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2573 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2574 BUMP_MIB(&ip_mib, ipInDiscards); 2575 goto drop_pkt; 2576 } 2577 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2578 ipha = (ipha_t *)&icmph[1]; 2579 } 2580 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2581 2582 /* 2583 * Attempt to find a client stream based on port. 2584 * Note that we do a reverse lookup since the header is 2585 * in the form we sent it out. 2586 * The ripha header is only used for the IP_UDP_MATCH and we 2587 * only set the src and dst addresses and protocol. 2588 */ 2589 ripha.ipha_src = ipha->ipha_dst; 2590 ripha.ipha_dst = ipha->ipha_src; 2591 ripha.ipha_protocol = ipha->ipha_protocol; 2592 ((uint16_t *)&ports)[0] = up[1]; 2593 ((uint16_t *)&ports)[1] = up[0]; 2594 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2595 ntohl(ipha->ipha_src), ntohs(up[0]), 2596 ntohl(ipha->ipha_dst), ntohs(up[1]), 2597 icmph->icmph_type, icmph->icmph_code)); 2598 2599 /* Have to change db_type after any pullupmsg */ 2600 DB_TYPE(mp) = M_CTL; 2601 2602 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2603 mctl_present, ip_policy, recv_ill, zoneid); 2604 return; 2605 2606 case IPPROTO_TCP: 2607 /* 2608 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2609 * transport header. 2610 */ 2611 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2612 mp->b_wptr) { 2613 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2614 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2615 BUMP_MIB(&ip_mib, ipInDiscards); 2616 goto drop_pkt; 2617 } 2618 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2619 ipha = (ipha_t *)&icmph[1]; 2620 } 2621 /* 2622 * Find a TCP client stream for this packet. 2623 * Note that we do a reverse lookup since the header is 2624 * in the form we sent it out. 2625 */ 2626 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2627 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN); 2628 if (connp == NULL) { 2629 BUMP_MIB(&ip_mib, ipInDiscards); 2630 goto drop_pkt; 2631 } 2632 2633 /* Have to change db_type after any pullupmsg */ 2634 DB_TYPE(mp) = M_CTL; 2635 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2636 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2637 return; 2638 2639 case IPPROTO_SCTP: 2640 /* 2641 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2642 * transport header. 2643 */ 2644 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2645 mp->b_wptr) { 2646 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2647 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2648 BUMP_MIB(&ip_mib, ipInDiscards); 2649 goto drop_pkt; 2650 } 2651 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2652 ipha = (ipha_t *)&icmph[1]; 2653 } 2654 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2655 /* 2656 * Find a SCTP client stream for this packet. 2657 * Note that we do a reverse lookup since the header is 2658 * in the form we sent it out. 2659 * The ripha header is only used for the matching and we 2660 * only set the src and dst addresses, protocol, and version. 2661 */ 2662 ripha.ipha_src = ipha->ipha_dst; 2663 ripha.ipha_dst = ipha->ipha_src; 2664 ripha.ipha_protocol = ipha->ipha_protocol; 2665 ripha.ipha_version_and_hdr_length = 2666 ipha->ipha_version_and_hdr_length; 2667 ((uint16_t *)&ports)[0] = up[1]; 2668 ((uint16_t *)&ports)[1] = up[0]; 2669 2670 /* Have to change db_type after any pullupmsg */ 2671 DB_TYPE(mp) = M_CTL; 2672 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2673 mctl_present, ip_policy, 0, zoneid); 2674 return; 2675 2676 case IPPROTO_ESP: 2677 case IPPROTO_AH: { 2678 int ipsec_rc; 2679 2680 /* 2681 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2682 * We will re-use the IPSEC_IN if it is already present as 2683 * AH/ESP will not affect any fields in the IPSEC_IN for 2684 * ICMP errors. If there is no IPSEC_IN, allocate a new 2685 * one and attach it in the front. 2686 */ 2687 if (ii != NULL) { 2688 /* 2689 * ip_fanout_proto_again converts the ICMP errors 2690 * that come back from AH/ESP to M_DATA so that 2691 * if it is non-AH/ESP and we do a pullupmsg in 2692 * this function, it would work. Convert it back 2693 * to M_CTL before we send up as this is a ICMP 2694 * error. This could have been generated locally or 2695 * by some router. Validate the inner IPSEC 2696 * headers. 2697 * 2698 * NOTE : ill_index is used by ip_fanout_proto_again 2699 * to locate the ill. 2700 */ 2701 ASSERT(ill != NULL); 2702 ii->ipsec_in_ill_index = 2703 ill->ill_phyint->phyint_ifindex; 2704 ii->ipsec_in_rill_index = 2705 recv_ill->ill_phyint->phyint_ifindex; 2706 DB_TYPE(first_mp->b_cont) = M_CTL; 2707 } else { 2708 /* 2709 * IPSEC_IN is not present. We attach a ipsec_in 2710 * message and send up to IPSEC for validating 2711 * and removing the IPSEC headers. Clear 2712 * ipsec_in_secure so that when we return 2713 * from IPSEC, we don't mistakenly think that this 2714 * is a secure packet came from the network. 2715 * 2716 * NOTE : ill_index is used by ip_fanout_proto_again 2717 * to locate the ill. 2718 */ 2719 ASSERT(first_mp == mp); 2720 first_mp = ipsec_in_alloc(B_TRUE); 2721 if (first_mp == NULL) { 2722 freemsg(mp); 2723 BUMP_MIB(&ip_mib, ipInDiscards); 2724 return; 2725 } 2726 ii = (ipsec_in_t *)first_mp->b_rptr; 2727 2728 /* This is not a secure packet */ 2729 ii->ipsec_in_secure = B_FALSE; 2730 first_mp->b_cont = mp; 2731 DB_TYPE(mp) = M_CTL; 2732 ASSERT(ill != NULL); 2733 ii->ipsec_in_ill_index = 2734 ill->ill_phyint->phyint_ifindex; 2735 ii->ipsec_in_rill_index = 2736 recv_ill->ill_phyint->phyint_ifindex; 2737 } 2738 ip2dbg(("icmp_inbound_error: ipsec\n")); 2739 2740 if (!ipsec_loaded()) { 2741 ip_proto_not_sup(q, first_mp, 0, zoneid); 2742 return; 2743 } 2744 2745 if (ipha->ipha_protocol == IPPROTO_ESP) 2746 ipsec_rc = ipsecesp_icmp_error(first_mp); 2747 else 2748 ipsec_rc = ipsecah_icmp_error(first_mp); 2749 if (ipsec_rc == IPSEC_STATUS_FAILED) 2750 return; 2751 2752 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2753 return; 2754 } 2755 default: 2756 /* 2757 * The ripha header is only used for the lookup and we 2758 * only set the src and dst addresses and protocol. 2759 */ 2760 ripha.ipha_src = ipha->ipha_dst; 2761 ripha.ipha_dst = ipha->ipha_src; 2762 ripha.ipha_protocol = ipha->ipha_protocol; 2763 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2764 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2765 ntohl(ipha->ipha_dst), 2766 icmph->icmph_type, icmph->icmph_code)); 2767 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2768 ipha_t *in_ipha; 2769 2770 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2771 mp->b_wptr) { 2772 if (!pullupmsg(mp, (uchar_t *)ipha + 2773 hdr_length + sizeof (ipha_t) - 2774 mp->b_rptr)) { 2775 2776 BUMP_MIB(&ip_mib, ipInDiscards); 2777 goto drop_pkt; 2778 } 2779 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2780 ipha = (ipha_t *)&icmph[1]; 2781 } 2782 /* 2783 * Caller has verified that length has to be 2784 * at least the size of IP header. 2785 */ 2786 ASSERT(hdr_length >= sizeof (ipha_t)); 2787 /* 2788 * Check the sanity of the inner IP header like 2789 * we did for the outer header. 2790 */ 2791 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2792 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2793 BUMP_MIB(&ip_mib, ipInDiscards); 2794 goto drop_pkt; 2795 } 2796 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2797 BUMP_MIB(&ip_mib, ipInDiscards); 2798 goto drop_pkt; 2799 } 2800 /* Check for Self-encapsulated tunnels */ 2801 if (in_ipha->ipha_src == ipha->ipha_src && 2802 in_ipha->ipha_dst == ipha->ipha_dst) { 2803 2804 mp = icmp_inbound_self_encap_error(mp, 2805 iph_hdr_length, hdr_length); 2806 if (mp == NULL) 2807 goto drop_pkt; 2808 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2809 ipha = (ipha_t *)&icmph[1]; 2810 hdr_length = IPH_HDR_LENGTH(ipha); 2811 /* 2812 * The packet in error is self-encapsualted. 2813 * And we are finding it further encapsulated 2814 * which we could not have possibly generated. 2815 */ 2816 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2817 BUMP_MIB(&ip_mib, ipInDiscards); 2818 goto drop_pkt; 2819 } 2820 icmp_inbound_error_fanout(q, ill, first_mp, 2821 icmph, ipha, iph_hdr_length, hdr_length, 2822 mctl_present, ip_policy, recv_ill, zoneid); 2823 return; 2824 } 2825 } 2826 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2827 ipha->ipha_protocol == IPPROTO_IPV6) && 2828 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2829 ii != NULL && 2830 ii->ipsec_in_loopback && 2831 ii->ipsec_in_secure) { 2832 /* 2833 * For IP tunnels that get a looped-back 2834 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2835 * reported new MTU to take into account the IPsec 2836 * headers protecting this configured tunnel. 2837 * 2838 * This allows the tunnel module (tun.c) to blindly 2839 * accept the MTU reported in an ICMP "too big" 2840 * message. 2841 * 2842 * Non-looped back ICMP messages will just be 2843 * handled by the security protocols (if needed), 2844 * and the first subsequent packet will hit this 2845 * path. 2846 */ 2847 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2848 ipsec_in_extra_length(first_mp)); 2849 } 2850 /* Have to change db_type after any pullupmsg */ 2851 DB_TYPE(mp) = M_CTL; 2852 2853 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2854 ip_policy, recv_ill, zoneid); 2855 return; 2856 } 2857 /* NOTREACHED */ 2858 drop_pkt:; 2859 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2860 freemsg(first_mp); 2861 } 2862 2863 /* 2864 * Common IP options parser. 2865 * 2866 * Setup routine: fill in *optp with options-parsing state, then 2867 * tail-call ipoptp_next to return the first option. 2868 */ 2869 uint8_t 2870 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2871 { 2872 uint32_t totallen; /* total length of all options */ 2873 2874 totallen = ipha->ipha_version_and_hdr_length - 2875 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2876 totallen <<= 2; 2877 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2878 optp->ipoptp_end = optp->ipoptp_next + totallen; 2879 optp->ipoptp_flags = 0; 2880 return (ipoptp_next(optp)); 2881 } 2882 2883 /* 2884 * Common IP options parser: extract next option. 2885 */ 2886 uint8_t 2887 ipoptp_next(ipoptp_t *optp) 2888 { 2889 uint8_t *end = optp->ipoptp_end; 2890 uint8_t *cur = optp->ipoptp_next; 2891 uint8_t opt, len, pointer; 2892 2893 /* 2894 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2895 * has been corrupted. 2896 */ 2897 ASSERT(cur <= end); 2898 2899 if (cur == end) 2900 return (IPOPT_EOL); 2901 2902 opt = cur[IPOPT_OPTVAL]; 2903 2904 /* 2905 * Skip any NOP options. 2906 */ 2907 while (opt == IPOPT_NOP) { 2908 cur++; 2909 if (cur == end) 2910 return (IPOPT_EOL); 2911 opt = cur[IPOPT_OPTVAL]; 2912 } 2913 2914 if (opt == IPOPT_EOL) 2915 return (IPOPT_EOL); 2916 2917 /* 2918 * Option requiring a length. 2919 */ 2920 if ((cur + 1) >= end) { 2921 optp->ipoptp_flags |= IPOPTP_ERROR; 2922 return (IPOPT_EOL); 2923 } 2924 len = cur[IPOPT_OLEN]; 2925 if (len < 2) { 2926 optp->ipoptp_flags |= IPOPTP_ERROR; 2927 return (IPOPT_EOL); 2928 } 2929 optp->ipoptp_cur = cur; 2930 optp->ipoptp_len = len; 2931 optp->ipoptp_next = cur + len; 2932 if (cur + len > end) { 2933 optp->ipoptp_flags |= IPOPTP_ERROR; 2934 return (IPOPT_EOL); 2935 } 2936 2937 /* 2938 * For the options which require a pointer field, make sure 2939 * its there, and make sure it points to either something 2940 * inside this option, or the end of the option. 2941 */ 2942 switch (opt) { 2943 case IPOPT_RR: 2944 case IPOPT_TS: 2945 case IPOPT_LSRR: 2946 case IPOPT_SSRR: 2947 if (len <= IPOPT_OFFSET) { 2948 optp->ipoptp_flags |= IPOPTP_ERROR; 2949 return (opt); 2950 } 2951 pointer = cur[IPOPT_OFFSET]; 2952 if (pointer - 1 > len) { 2953 optp->ipoptp_flags |= IPOPTP_ERROR; 2954 return (opt); 2955 } 2956 break; 2957 } 2958 2959 /* 2960 * Sanity check the pointer field based on the type of the 2961 * option. 2962 */ 2963 switch (opt) { 2964 case IPOPT_RR: 2965 case IPOPT_SSRR: 2966 case IPOPT_LSRR: 2967 if (pointer < IPOPT_MINOFF_SR) 2968 optp->ipoptp_flags |= IPOPTP_ERROR; 2969 break; 2970 case IPOPT_TS: 2971 if (pointer < IPOPT_MINOFF_IT) 2972 optp->ipoptp_flags |= IPOPTP_ERROR; 2973 /* 2974 * Note that the Internet Timestamp option also 2975 * contains two four bit fields (the Overflow field, 2976 * and the Flag field), which follow the pointer 2977 * field. We don't need to check that these fields 2978 * fall within the length of the option because this 2979 * was implicitely done above. We've checked that the 2980 * pointer value is at least IPOPT_MINOFF_IT, and that 2981 * it falls within the option. Since IPOPT_MINOFF_IT > 2982 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2983 */ 2984 ASSERT(len > IPOPT_POS_OV_FLG); 2985 break; 2986 } 2987 2988 return (opt); 2989 } 2990 2991 /* 2992 * Use the outgoing IP header to create an IP_OPTIONS option the way 2993 * it was passed down from the application. 2994 */ 2995 int 2996 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2997 { 2998 ipoptp_t opts; 2999 const uchar_t *opt; 3000 uint8_t optval; 3001 uint8_t optlen; 3002 uint32_t len = 0; 3003 uchar_t *buf1 = buf; 3004 3005 buf += IP_ADDR_LEN; /* Leave room for final destination */ 3006 len += IP_ADDR_LEN; 3007 bzero(buf1, IP_ADDR_LEN); 3008 3009 /* 3010 * OK to cast away const here, as we don't store through the returned 3011 * opts.ipoptp_cur pointer. 3012 */ 3013 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 3014 optval != IPOPT_EOL; 3015 optval = ipoptp_next(&opts)) { 3016 int off; 3017 3018 opt = opts.ipoptp_cur; 3019 optlen = opts.ipoptp_len; 3020 switch (optval) { 3021 case IPOPT_SSRR: 3022 case IPOPT_LSRR: 3023 3024 /* 3025 * Insert ipha_dst as the first entry in the source 3026 * route and move down the entries on step. 3027 * The last entry gets placed at buf1. 3028 */ 3029 buf[IPOPT_OPTVAL] = optval; 3030 buf[IPOPT_OLEN] = optlen; 3031 buf[IPOPT_OFFSET] = optlen; 3032 3033 off = optlen - IP_ADDR_LEN; 3034 if (off < 0) { 3035 /* No entries in source route */ 3036 break; 3037 } 3038 /* Last entry in source route */ 3039 bcopy(opt + off, buf1, IP_ADDR_LEN); 3040 off -= IP_ADDR_LEN; 3041 3042 while (off > 0) { 3043 bcopy(opt + off, 3044 buf + off + IP_ADDR_LEN, 3045 IP_ADDR_LEN); 3046 off -= IP_ADDR_LEN; 3047 } 3048 /* ipha_dst into first slot */ 3049 bcopy(&ipha->ipha_dst, 3050 buf + off + IP_ADDR_LEN, 3051 IP_ADDR_LEN); 3052 buf += optlen; 3053 len += optlen; 3054 break; 3055 3056 case IPOPT_COMSEC: 3057 case IPOPT_SECURITY: 3058 /* if passing up a label is not ok, then remove */ 3059 if (is_system_labeled()) 3060 break; 3061 /* FALLTHROUGH */ 3062 default: 3063 bcopy(opt, buf, optlen); 3064 buf += optlen; 3065 len += optlen; 3066 break; 3067 } 3068 } 3069 done: 3070 /* Pad the resulting options */ 3071 while (len & 0x3) { 3072 *buf++ = IPOPT_EOL; 3073 len++; 3074 } 3075 return (len); 3076 } 3077 3078 /* 3079 * Update any record route or timestamp options to include this host. 3080 * Reverse any source route option. 3081 * This routine assumes that the options are well formed i.e. that they 3082 * have already been checked. 3083 */ 3084 static void 3085 icmp_options_update(ipha_t *ipha) 3086 { 3087 ipoptp_t opts; 3088 uchar_t *opt; 3089 uint8_t optval; 3090 ipaddr_t src; /* Our local address */ 3091 ipaddr_t dst; 3092 3093 ip2dbg(("icmp_options_update\n")); 3094 src = ipha->ipha_src; 3095 dst = ipha->ipha_dst; 3096 3097 for (optval = ipoptp_first(&opts, ipha); 3098 optval != IPOPT_EOL; 3099 optval = ipoptp_next(&opts)) { 3100 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3101 opt = opts.ipoptp_cur; 3102 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3103 optval, opts.ipoptp_len)); 3104 switch (optval) { 3105 int off1, off2; 3106 case IPOPT_SSRR: 3107 case IPOPT_LSRR: 3108 /* 3109 * Reverse the source route. The first entry 3110 * should be the next to last one in the current 3111 * source route (the last entry is our address). 3112 * The last entry should be the final destination. 3113 */ 3114 off1 = IPOPT_MINOFF_SR - 1; 3115 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3116 if (off2 < 0) { 3117 /* No entries in source route */ 3118 ip1dbg(( 3119 "icmp_options_update: bad src route\n")); 3120 break; 3121 } 3122 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3123 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3124 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3125 off2 -= IP_ADDR_LEN; 3126 3127 while (off1 < off2) { 3128 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3129 bcopy((char *)opt + off2, (char *)opt + off1, 3130 IP_ADDR_LEN); 3131 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3132 off1 += IP_ADDR_LEN; 3133 off2 -= IP_ADDR_LEN; 3134 } 3135 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3136 break; 3137 } 3138 } 3139 } 3140 3141 /* 3142 * Process received ICMP Redirect messages. 3143 */ 3144 /* ARGSUSED */ 3145 static void 3146 icmp_redirect(mblk_t *mp) 3147 { 3148 ipha_t *ipha; 3149 int iph_hdr_length; 3150 icmph_t *icmph; 3151 ipha_t *ipha_err; 3152 ire_t *ire; 3153 ire_t *prev_ire; 3154 ire_t *save_ire; 3155 ipaddr_t src, dst, gateway; 3156 iulp_t ulp_info = { 0 }; 3157 int error; 3158 3159 ipha = (ipha_t *)mp->b_rptr; 3160 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3161 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3162 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3163 BUMP_MIB(&icmp_mib, icmpInErrors); 3164 freemsg(mp); 3165 return; 3166 } 3167 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3168 ipha_err = (ipha_t *)&icmph[1]; 3169 src = ipha->ipha_src; 3170 dst = ipha_err->ipha_dst; 3171 gateway = icmph->icmph_rd_gateway; 3172 /* Make sure the new gateway is reachable somehow. */ 3173 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3174 ALL_ZONES, NULL, MATCH_IRE_TYPE); 3175 /* 3176 * Make sure we had a route for the dest in question and that 3177 * that route was pointing to the old gateway (the source of the 3178 * redirect packet.) 3179 */ 3180 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3181 NULL, MATCH_IRE_GW); 3182 /* 3183 * Check that 3184 * the redirect was not from ourselves 3185 * the new gateway and the old gateway are directly reachable 3186 */ 3187 if (!prev_ire || 3188 !ire || 3189 ire->ire_type == IRE_LOCAL) { 3190 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3191 freemsg(mp); 3192 if (ire != NULL) 3193 ire_refrele(ire); 3194 if (prev_ire != NULL) 3195 ire_refrele(prev_ire); 3196 return; 3197 } 3198 3199 /* 3200 * Should we use the old ULP info to create the new gateway? From 3201 * a user's perspective, we should inherit the info so that it 3202 * is a "smooth" transition. If we do not do that, then new 3203 * connections going thru the new gateway will have no route metrics, 3204 * which is counter-intuitive to user. From a network point of 3205 * view, this may or may not make sense even though the new gateway 3206 * is still directly connected to us so the route metrics should not 3207 * change much. 3208 * 3209 * But if the old ire_uinfo is not initialized, we do another 3210 * recursive lookup on the dest using the new gateway. There may 3211 * be a route to that. If so, use it to initialize the redirect 3212 * route. 3213 */ 3214 if (prev_ire->ire_uinfo.iulp_set) { 3215 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3216 } else { 3217 ire_t *tmp_ire; 3218 ire_t *sire; 3219 3220 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3221 ALL_ZONES, 0, NULL, 3222 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT)); 3223 if (sire != NULL) { 3224 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3225 /* 3226 * If sire != NULL, ire_ftable_lookup() should not 3227 * return a NULL value. 3228 */ 3229 ASSERT(tmp_ire != NULL); 3230 ire_refrele(tmp_ire); 3231 ire_refrele(sire); 3232 } else if (tmp_ire != NULL) { 3233 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3234 sizeof (iulp_t)); 3235 ire_refrele(tmp_ire); 3236 } 3237 } 3238 if (prev_ire->ire_type == IRE_CACHE) 3239 ire_delete(prev_ire); 3240 ire_refrele(prev_ire); 3241 /* 3242 * TODO: more precise handling for cases 0, 2, 3, the latter two 3243 * require TOS routing 3244 */ 3245 switch (icmph->icmph_code) { 3246 case 0: 3247 case 1: 3248 /* TODO: TOS specificity for cases 2 and 3 */ 3249 case 2: 3250 case 3: 3251 break; 3252 default: 3253 freemsg(mp); 3254 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3255 ire_refrele(ire); 3256 return; 3257 } 3258 /* 3259 * Create a Route Association. This will allow us to remember that 3260 * someone we believe told us to use the particular gateway. 3261 */ 3262 save_ire = ire; 3263 ire = ire_create( 3264 (uchar_t *)&dst, /* dest addr */ 3265 (uchar_t *)&ip_g_all_ones, /* mask */ 3266 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3267 (uchar_t *)&gateway, /* gateway addr */ 3268 NULL, /* no in_srcaddr */ 3269 &save_ire->ire_max_frag, /* max frag */ 3270 NULL, /* Fast Path header */ 3271 NULL, /* no rfq */ 3272 NULL, /* no stq */ 3273 IRE_HOST, 3274 NULL, 3275 NULL, 3276 NULL, 3277 0, 3278 0, 3279 0, 3280 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3281 &ulp_info, 3282 NULL, 3283 NULL); 3284 3285 if (ire == NULL) { 3286 freemsg(mp); 3287 ire_refrele(save_ire); 3288 return; 3289 } 3290 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3291 ire_refrele(save_ire); 3292 atomic_inc_32(&ip_redirect_cnt); 3293 3294 if (error == 0) { 3295 ire_refrele(ire); /* Held in ire_add_v4 */ 3296 /* tell routing sockets that we received a redirect */ 3297 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3298 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3299 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR)); 3300 } 3301 3302 /* 3303 * Delete any existing IRE_HOST type redirect ires for this destination. 3304 * This together with the added IRE has the effect of 3305 * modifying an existing redirect. 3306 */ 3307 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3308 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE)); 3309 if (prev_ire != NULL) { 3310 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3311 ire_delete(prev_ire); 3312 ire_refrele(prev_ire); 3313 } 3314 3315 freemsg(mp); 3316 } 3317 3318 /* 3319 * Generate an ICMP parameter problem message. 3320 */ 3321 static void 3322 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid) 3323 { 3324 icmph_t icmph; 3325 boolean_t mctl_present; 3326 mblk_t *first_mp; 3327 3328 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3329 3330 if (!(mp = icmp_pkt_err_ok(mp))) { 3331 if (mctl_present) 3332 freeb(first_mp); 3333 return; 3334 } 3335 3336 bzero(&icmph, sizeof (icmph_t)); 3337 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3338 icmph.icmph_pp_ptr = ptr; 3339 BUMP_MIB(&icmp_mib, icmpOutParmProbs); 3340 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 3341 } 3342 3343 /* 3344 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3345 * the ICMP header pointed to by "stuff". (May be called as writer.) 3346 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3347 * an icmp error packet can be sent. 3348 * Assigns an appropriate source address to the packet. If ipha_dst is 3349 * one of our addresses use it for source. Otherwise pick a source based 3350 * on a route lookup back to ipha_src. 3351 * Note that ipha_src must be set here since the 3352 * packet is likely to arrive on an ill queue in ip_wput() which will 3353 * not set a source address. 3354 */ 3355 static void 3356 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3357 boolean_t mctl_present, zoneid_t zoneid) 3358 { 3359 ipaddr_t dst; 3360 icmph_t *icmph; 3361 ipha_t *ipha; 3362 uint_t len_needed; 3363 size_t msg_len; 3364 mblk_t *mp1; 3365 ipaddr_t src; 3366 ire_t *ire; 3367 mblk_t *ipsec_mp; 3368 ipsec_out_t *io = NULL; 3369 boolean_t xmit_if_on = B_FALSE; 3370 3371 if (mctl_present) { 3372 /* 3373 * If it is : 3374 * 3375 * 1) a IPSEC_OUT, then this is caused by outbound 3376 * datagram originating on this host. IPSEC processing 3377 * may or may not have been done. Refer to comments above 3378 * icmp_inbound_error_fanout for details. 3379 * 3380 * 2) a IPSEC_IN if we are generating a icmp_message 3381 * for an incoming datagram destined for us i.e called 3382 * from ip_fanout_send_icmp. 3383 */ 3384 ipsec_info_t *in; 3385 ipsec_mp = mp; 3386 mp = ipsec_mp->b_cont; 3387 3388 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3389 ipha = (ipha_t *)mp->b_rptr; 3390 3391 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3392 in->ipsec_info_type == IPSEC_IN); 3393 3394 if (in->ipsec_info_type == IPSEC_IN) { 3395 /* 3396 * Convert the IPSEC_IN to IPSEC_OUT. 3397 */ 3398 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3399 BUMP_MIB(&ip_mib, ipOutDiscards); 3400 return; 3401 } 3402 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3403 } else { 3404 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3405 io = (ipsec_out_t *)in; 3406 if (io->ipsec_out_xmit_if) 3407 xmit_if_on = B_TRUE; 3408 /* 3409 * Clear out ipsec_out_proc_begin, so we do a fresh 3410 * ire lookup. 3411 */ 3412 io->ipsec_out_proc_begin = B_FALSE; 3413 } 3414 ASSERT(zoneid == io->ipsec_out_zoneid); 3415 ASSERT(zoneid != ALL_ZONES); 3416 } else { 3417 /* 3418 * This is in clear. The icmp message we are building 3419 * here should go out in clear. 3420 * 3421 * Pardon the convolution of it all, but it's easier to 3422 * allocate a "use cleartext" IPSEC_IN message and convert 3423 * it than it is to allocate a new one. 3424 */ 3425 ipsec_in_t *ii; 3426 ASSERT(DB_TYPE(mp) == M_DATA); 3427 if ((ipsec_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 3428 freemsg(mp); 3429 BUMP_MIB(&ip_mib, ipOutDiscards); 3430 return; 3431 } 3432 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3433 3434 /* This is not a secure packet */ 3435 ii->ipsec_in_secure = B_FALSE; 3436 /* 3437 * For trusted extensions using a shared IP address we can 3438 * send using any zoneid. 3439 */ 3440 if (zoneid == ALL_ZONES) 3441 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3442 else 3443 ii->ipsec_in_zoneid = zoneid; 3444 ipsec_mp->b_cont = mp; 3445 ipha = (ipha_t *)mp->b_rptr; 3446 /* 3447 * Convert the IPSEC_IN to IPSEC_OUT. 3448 */ 3449 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3450 BUMP_MIB(&ip_mib, ipOutDiscards); 3451 return; 3452 } 3453 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3454 } 3455 3456 /* Remember our eventual destination */ 3457 dst = ipha->ipha_src; 3458 3459 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3460 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE); 3461 if (ire != NULL && 3462 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3463 src = ipha->ipha_dst; 3464 } else if (!xmit_if_on) { 3465 if (ire != NULL) 3466 ire_refrele(ire); 3467 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3468 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY)); 3469 if (ire == NULL) { 3470 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3471 freemsg(ipsec_mp); 3472 return; 3473 } 3474 src = ire->ire_src_addr; 3475 } else { 3476 ipif_t *ipif = NULL; 3477 ill_t *ill; 3478 /* 3479 * This must be an ICMP error coming from 3480 * ip_mrtun_forward(). The src addr should 3481 * be equal to the IP-addr of the outgoing 3482 * interface. 3483 */ 3484 if (io == NULL) { 3485 /* This is not a IPSEC_OUT type control msg */ 3486 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3487 freemsg(ipsec_mp); 3488 return; 3489 } 3490 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3491 NULL, NULL, NULL, NULL); 3492 if (ill != NULL) { 3493 ipif = ipif_get_next_ipif(NULL, ill); 3494 ill_refrele(ill); 3495 } 3496 if (ipif == NULL) { 3497 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3498 freemsg(ipsec_mp); 3499 return; 3500 } 3501 src = ipif->ipif_src_addr; 3502 ipif_refrele(ipif); 3503 } 3504 3505 if (ire != NULL) 3506 ire_refrele(ire); 3507 3508 /* 3509 * Check if we can send back more then 8 bytes in addition 3510 * to the IP header. We will include as much as 64 bytes. 3511 */ 3512 len_needed = IPH_HDR_LENGTH(ipha); 3513 if (ipha->ipha_protocol == IPPROTO_ENCAP && 3514 (uchar_t *)ipha + len_needed + 1 <= mp->b_wptr) { 3515 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + len_needed)); 3516 } 3517 len_needed += ip_icmp_return; 3518 msg_len = msgdsize(mp); 3519 if (msg_len > len_needed) { 3520 (void) adjmsg(mp, len_needed - msg_len); 3521 msg_len = len_needed; 3522 } 3523 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3524 if (mp1 == NULL) { 3525 BUMP_MIB(&icmp_mib, icmpOutErrors); 3526 freemsg(ipsec_mp); 3527 return; 3528 } 3529 /* 3530 * On an unlabeled system, dblks don't necessarily have creds. 3531 */ 3532 ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL); 3533 if (DB_CRED(mp) != NULL) 3534 mblk_setcred(mp1, DB_CRED(mp)); 3535 mp1->b_cont = mp; 3536 mp = mp1; 3537 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3538 ipsec_mp->b_rptr == (uint8_t *)io && 3539 io->ipsec_out_type == IPSEC_OUT); 3540 ipsec_mp->b_cont = mp; 3541 3542 /* 3543 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3544 * node generates be accepted in peace by all on-host destinations. 3545 * If we do NOT assume that all on-host destinations trust 3546 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3547 * (Look for ipsec_out_icmp_loopback). 3548 */ 3549 io->ipsec_out_icmp_loopback = B_TRUE; 3550 3551 ipha = (ipha_t *)mp->b_rptr; 3552 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3553 *ipha = icmp_ipha; 3554 ipha->ipha_src = src; 3555 ipha->ipha_dst = dst; 3556 ipha->ipha_ttl = ip_def_ttl; 3557 msg_len += sizeof (icmp_ipha) + len; 3558 if (msg_len > IP_MAXPACKET) { 3559 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3560 msg_len = IP_MAXPACKET; 3561 } 3562 ipha->ipha_length = htons((uint16_t)msg_len); 3563 icmph = (icmph_t *)&ipha[1]; 3564 bcopy(stuff, icmph, len); 3565 icmph->icmph_checksum = 0; 3566 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3567 if (icmph->icmph_checksum == 0) 3568 icmph->icmph_checksum = 0xFFFF; 3569 BUMP_MIB(&icmp_mib, icmpOutMsgs); 3570 put(q, ipsec_mp); 3571 } 3572 3573 /* 3574 * Determine if an ICMP error packet can be sent given the rate limit. 3575 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3576 * in milliseconds) and a burst size. Burst size number of packets can 3577 * be sent arbitrarely closely spaced. 3578 * The state is tracked using two variables to implement an approximate 3579 * token bucket filter: 3580 * icmp_pkt_err_last - lbolt value when the last burst started 3581 * icmp_pkt_err_sent - number of packets sent in current burst 3582 */ 3583 boolean_t 3584 icmp_err_rate_limit(void) 3585 { 3586 clock_t now = TICK_TO_MSEC(lbolt); 3587 uint_t refilled; /* Number of packets refilled in tbf since last */ 3588 uint_t err_interval = ip_icmp_err_interval; /* Guard against changes */ 3589 3590 if (err_interval == 0) 3591 return (B_FALSE); 3592 3593 if (icmp_pkt_err_last > now) { 3594 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3595 icmp_pkt_err_last = 0; 3596 icmp_pkt_err_sent = 0; 3597 } 3598 /* 3599 * If we are in a burst update the token bucket filter. 3600 * Update the "last" time to be close to "now" but make sure 3601 * we don't loose precision. 3602 */ 3603 if (icmp_pkt_err_sent != 0) { 3604 refilled = (now - icmp_pkt_err_last)/err_interval; 3605 if (refilled > icmp_pkt_err_sent) { 3606 icmp_pkt_err_sent = 0; 3607 } else { 3608 icmp_pkt_err_sent -= refilled; 3609 icmp_pkt_err_last += refilled * err_interval; 3610 } 3611 } 3612 if (icmp_pkt_err_sent == 0) { 3613 /* Start of new burst */ 3614 icmp_pkt_err_last = now; 3615 } 3616 if (icmp_pkt_err_sent < ip_icmp_err_burst) { 3617 icmp_pkt_err_sent++; 3618 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3619 icmp_pkt_err_sent)); 3620 return (B_FALSE); 3621 } 3622 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3623 return (B_TRUE); 3624 } 3625 3626 /* 3627 * Check if it is ok to send an IPv4 ICMP error packet in 3628 * response to the IPv4 packet in mp. 3629 * Free the message and return null if no 3630 * ICMP error packet should be sent. 3631 */ 3632 static mblk_t * 3633 icmp_pkt_err_ok(mblk_t *mp) 3634 { 3635 icmph_t *icmph; 3636 ipha_t *ipha; 3637 uint_t len_needed; 3638 ire_t *src_ire; 3639 ire_t *dst_ire; 3640 3641 if (!mp) 3642 return (NULL); 3643 ipha = (ipha_t *)mp->b_rptr; 3644 if (ip_csum_hdr(ipha)) { 3645 BUMP_MIB(&ip_mib, ipInCksumErrs); 3646 freemsg(mp); 3647 return (NULL); 3648 } 3649 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3650 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3651 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3652 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3653 if (src_ire != NULL || dst_ire != NULL || 3654 CLASSD(ipha->ipha_dst) || 3655 CLASSD(ipha->ipha_src) || 3656 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3657 /* Note: only errors to the fragment with offset 0 */ 3658 BUMP_MIB(&icmp_mib, icmpOutDrops); 3659 freemsg(mp); 3660 if (src_ire != NULL) 3661 ire_refrele(src_ire); 3662 if (dst_ire != NULL) 3663 ire_refrele(dst_ire); 3664 return (NULL); 3665 } 3666 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3667 /* 3668 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3669 * errors in response to any ICMP errors. 3670 */ 3671 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3672 if (mp->b_wptr - mp->b_rptr < len_needed) { 3673 if (!pullupmsg(mp, len_needed)) { 3674 BUMP_MIB(&icmp_mib, icmpInErrors); 3675 freemsg(mp); 3676 return (NULL); 3677 } 3678 ipha = (ipha_t *)mp->b_rptr; 3679 } 3680 icmph = (icmph_t *) 3681 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3682 switch (icmph->icmph_type) { 3683 case ICMP_DEST_UNREACHABLE: 3684 case ICMP_SOURCE_QUENCH: 3685 case ICMP_TIME_EXCEEDED: 3686 case ICMP_PARAM_PROBLEM: 3687 case ICMP_REDIRECT: 3688 BUMP_MIB(&icmp_mib, icmpOutDrops); 3689 freemsg(mp); 3690 return (NULL); 3691 default: 3692 break; 3693 } 3694 } 3695 /* 3696 * If this is a labeled system, then check to see if we're allowed to 3697 * send a response to this particular sender. If not, then just drop. 3698 */ 3699 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3700 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3701 BUMP_MIB(&icmp_mib, icmpOutDrops); 3702 freemsg(mp); 3703 return (NULL); 3704 } 3705 if (icmp_err_rate_limit()) { 3706 /* 3707 * Only send ICMP error packets every so often. 3708 * This should be done on a per port/source basis, 3709 * but for now this will suffice. 3710 */ 3711 freemsg(mp); 3712 return (NULL); 3713 } 3714 return (mp); 3715 } 3716 3717 /* 3718 * Generate an ICMP redirect message. 3719 */ 3720 static void 3721 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway) 3722 { 3723 icmph_t icmph; 3724 3725 /* 3726 * We are called from ip_rput where we could 3727 * not have attached an IPSEC_IN. 3728 */ 3729 ASSERT(mp->b_datap->db_type == M_DATA); 3730 3731 if (!(mp = icmp_pkt_err_ok(mp))) { 3732 return; 3733 } 3734 3735 bzero(&icmph, sizeof (icmph_t)); 3736 icmph.icmph_type = ICMP_REDIRECT; 3737 icmph.icmph_code = 1; 3738 icmph.icmph_rd_gateway = gateway; 3739 BUMP_MIB(&icmp_mib, icmpOutRedirects); 3740 /* Redirects sent by router, and router is global zone */ 3741 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID); 3742 } 3743 3744 /* 3745 * Generate an ICMP time exceeded message. 3746 */ 3747 void 3748 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid) 3749 { 3750 icmph_t icmph; 3751 boolean_t mctl_present; 3752 mblk_t *first_mp; 3753 3754 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3755 3756 if (!(mp = icmp_pkt_err_ok(mp))) { 3757 if (mctl_present) 3758 freeb(first_mp); 3759 return; 3760 } 3761 3762 bzero(&icmph, sizeof (icmph_t)); 3763 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3764 icmph.icmph_code = code; 3765 BUMP_MIB(&icmp_mib, icmpOutTimeExcds); 3766 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 3767 } 3768 3769 /* 3770 * Generate an ICMP unreachable message. 3771 */ 3772 void 3773 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid) 3774 { 3775 icmph_t icmph; 3776 mblk_t *first_mp; 3777 boolean_t mctl_present; 3778 3779 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3780 3781 if (!(mp = icmp_pkt_err_ok(mp))) { 3782 if (mctl_present) 3783 freeb(first_mp); 3784 return; 3785 } 3786 3787 bzero(&icmph, sizeof (icmph_t)); 3788 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3789 icmph.icmph_code = code; 3790 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 3791 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3792 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3793 zoneid); 3794 } 3795 3796 /* 3797 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3798 * duplicate. As long as someone else holds the address, the interface will 3799 * stay down. When that conflict goes away, the interface is brought back up. 3800 * This is done so that accidental shutdowns of addresses aren't made 3801 * permanent. Your server will recover from a failure. 3802 * 3803 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3804 * user space process (dhcpagent). 3805 * 3806 * Recovery completes if ARP reports that the address is now ours (via 3807 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3808 * 3809 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3810 */ 3811 static void 3812 ipif_dup_recovery(void *arg) 3813 { 3814 ipif_t *ipif = arg; 3815 ill_t *ill = ipif->ipif_ill; 3816 mblk_t *arp_add_mp; 3817 mblk_t *arp_del_mp; 3818 area_t *area; 3819 3820 ipif->ipif_recovery_id = 0; 3821 3822 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3823 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 3824 /* No reason to try to bring this address back. */ 3825 return; 3826 } 3827 3828 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3829 goto alloc_fail; 3830 3831 if (ipif->ipif_arp_del_mp == NULL) { 3832 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3833 goto alloc_fail; 3834 ipif->ipif_arp_del_mp = arp_del_mp; 3835 } 3836 3837 /* Setting the 'unverified' flag restarts DAD */ 3838 area = (area_t *)arp_add_mp->b_rptr; 3839 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3840 ACE_F_UNVERIFIED; 3841 putnext(ill->ill_rq, arp_add_mp); 3842 return; 3843 3844 alloc_fail: 3845 /* On allocation failure, just restart the timer */ 3846 freemsg(arp_add_mp); 3847 if (ip_dup_recovery > 0) { 3848 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3849 MSEC_TO_TICK(ip_dup_recovery)); 3850 } 3851 } 3852 3853 /* 3854 * This is for exclusive changes due to ARP. Either tear down an interface due 3855 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3856 */ 3857 /* ARGSUSED */ 3858 static void 3859 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3860 { 3861 ill_t *ill = rq->q_ptr; 3862 arh_t *arh; 3863 ipaddr_t src; 3864 ipif_t *ipif; 3865 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3866 char hbuf[MAC_STR_LEN]; 3867 char sbuf[INET_ADDRSTRLEN]; 3868 const char *failtype; 3869 boolean_t bring_up; 3870 3871 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3872 case AR_CN_READY: 3873 failtype = NULL; 3874 bring_up = B_TRUE; 3875 break; 3876 case AR_CN_FAILED: 3877 failtype = "in use"; 3878 bring_up = B_FALSE; 3879 break; 3880 default: 3881 failtype = "claimed"; 3882 bring_up = B_FALSE; 3883 break; 3884 } 3885 3886 arh = (arh_t *)mp->b_cont->b_rptr; 3887 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3888 3889 /* Handle failures due to probes */ 3890 if (src == 0) { 3891 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3892 IP_ADDR_LEN); 3893 } 3894 3895 (void) strlcpy(ibuf, ill->ill_name, sizeof (ibuf)); 3896 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3897 sizeof (hbuf)); 3898 (void) ip_dot_addr(src, sbuf); 3899 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3900 3901 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3902 ipif->ipif_lcl_addr != src) { 3903 continue; 3904 } 3905 3906 /* 3907 * If we failed on a recovery probe, then restart the timer to 3908 * try again later. 3909 */ 3910 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3911 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3912 ill->ill_net_type == IRE_IF_RESOLVER && 3913 ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0) { 3914 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3915 ipif, MSEC_TO_TICK(ip_dup_recovery)); 3916 continue; 3917 } 3918 3919 /* 3920 * If what we're trying to do has already been done, then do 3921 * nothing. 3922 */ 3923 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3924 continue; 3925 3926 if (ipif->ipif_id != 0) { 3927 (void) snprintf(ibuf + ill->ill_name_length - 1, 3928 sizeof (ibuf) - ill->ill_name_length + 1, ":%d", 3929 ipif->ipif_id); 3930 } 3931 if (failtype == NULL) { 3932 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3933 ibuf); 3934 } else { 3935 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3936 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3937 } 3938 3939 if (bring_up) { 3940 ASSERT(ill->ill_dl_up); 3941 /* 3942 * Free up the ARP delete message so we can allocate 3943 * a fresh one through the normal path. 3944 */ 3945 freemsg(ipif->ipif_arp_del_mp); 3946 ipif->ipif_arp_del_mp = NULL; 3947 if (ipif_resolver_up(ipif, Res_act_initial) != 3948 EINPROGRESS) { 3949 ipif->ipif_addr_ready = 1; 3950 (void) ipif_up_done(ipif); 3951 } 3952 continue; 3953 } 3954 3955 mutex_enter(&ill->ill_lock); 3956 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3957 ipif->ipif_flags |= IPIF_DUPLICATE; 3958 ill->ill_ipif_dup_count++; 3959 mutex_exit(&ill->ill_lock); 3960 /* 3961 * Already exclusive on the ill; no need to handle deferred 3962 * processing here. 3963 */ 3964 (void) ipif_down(ipif, NULL, NULL); 3965 ipif_down_tail(ipif); 3966 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3967 ill->ill_net_type == IRE_IF_RESOLVER && 3968 ip_dup_recovery > 0) { 3969 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3970 ipif, MSEC_TO_TICK(ip_dup_recovery)); 3971 } 3972 } 3973 freemsg(mp); 3974 } 3975 3976 /* ARGSUSED */ 3977 static void 3978 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3979 { 3980 ill_t *ill = rq->q_ptr; 3981 arh_t *arh; 3982 ipaddr_t src; 3983 ipif_t *ipif; 3984 3985 arh = (arh_t *)mp->b_cont->b_rptr; 3986 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3987 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3988 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3989 (void) ipif_resolver_up(ipif, Res_act_defend); 3990 } 3991 freemsg(mp); 3992 } 3993 3994 /* 3995 * News from ARP. ARP sends notification of interesting events down 3996 * to its clients using M_CTL messages with the interesting ARP packet 3997 * attached via b_cont. 3998 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3999 * queue as opposed to ARP sending the message to all the clients, i.e. all 4000 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 4001 * table if a cache IRE is found to delete all the entries for the address in 4002 * the packet. 4003 */ 4004 static void 4005 ip_arp_news(queue_t *q, mblk_t *mp) 4006 { 4007 arcn_t *arcn; 4008 arh_t *arh; 4009 ire_t *ire = NULL; 4010 char hbuf[MAC_STR_LEN]; 4011 char sbuf[INET_ADDRSTRLEN]; 4012 ipaddr_t src; 4013 in6_addr_t v6src; 4014 boolean_t isv6 = B_FALSE; 4015 ipif_t *ipif; 4016 ill_t *ill; 4017 4018 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 4019 if (q->q_next) { 4020 putnext(q, mp); 4021 } else 4022 freemsg(mp); 4023 return; 4024 } 4025 arh = (arh_t *)mp->b_cont->b_rptr; 4026 /* Is it one we are interested in? */ 4027 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 4028 isv6 = B_TRUE; 4029 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 4030 IPV6_ADDR_LEN); 4031 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 4032 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 4033 IP_ADDR_LEN); 4034 } else { 4035 freemsg(mp); 4036 return; 4037 } 4038 4039 ill = q->q_ptr; 4040 4041 arcn = (arcn_t *)mp->b_rptr; 4042 switch (arcn->arcn_code) { 4043 case AR_CN_BOGON: 4044 /* 4045 * Someone is sending ARP packets with a source protocol 4046 * address that we have published and for which we believe our 4047 * entry is authoritative and (when ill_arp_extend is set) 4048 * verified to be unique on the network. 4049 * 4050 * The ARP module internally handles the cases where the sender 4051 * is just probing (for DAD) and where the hardware address of 4052 * a non-authoritative entry has changed. Thus, these are the 4053 * real conflicts, and we have to do resolution. 4054 * 4055 * We back away quickly from the address if it's from DHCP or 4056 * otherwise temporary and hasn't been used recently (or at 4057 * all). We'd like to include "deprecated" addresses here as 4058 * well (as there's no real reason to defend something we're 4059 * discarding), but IPMP "reuses" this flag to mean something 4060 * other than the standard meaning. 4061 * 4062 * If the ARP module above is not extended (meaning that it 4063 * doesn't know how to defend the address), then we just log 4064 * the problem as we always did and continue on. It's not 4065 * right, but there's little else we can do, and those old ATM 4066 * users are going away anyway. 4067 */ 4068 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 4069 hbuf, sizeof (hbuf)); 4070 (void) ip_dot_addr(src, sbuf); 4071 if (isv6) 4072 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL); 4073 else 4074 ire = ire_cache_lookup(src, ALL_ZONES, NULL); 4075 4076 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4077 uint32_t now; 4078 uint32_t maxage; 4079 clock_t lused; 4080 uint_t maxdefense; 4081 uint_t defs; 4082 4083 /* 4084 * First, figure out if this address hasn't been used 4085 * in a while. If it hasn't, then it's a better 4086 * candidate for abandoning. 4087 */ 4088 ipif = ire->ire_ipif; 4089 ASSERT(ipif != NULL); 4090 now = gethrestime_sec(); 4091 maxage = now - ire->ire_create_time; 4092 if (maxage > ip_max_temp_idle) 4093 maxage = ip_max_temp_idle; 4094 lused = drv_hztousec(ddi_get_lbolt() - 4095 ire->ire_last_used_time) / MICROSEC + 1; 4096 if (lused >= maxage && (ipif->ipif_flags & 4097 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4098 maxdefense = ip_max_temp_defend; 4099 else 4100 maxdefense = ip_max_defend; 4101 4102 /* 4103 * Now figure out how many times we've defended 4104 * ourselves. Ignore defenses that happened long in 4105 * the past. 4106 */ 4107 mutex_enter(&ire->ire_lock); 4108 if ((defs = ire->ire_defense_count) > 0 && 4109 now - ire->ire_defense_time > ip_defend_interval) { 4110 ire->ire_defense_count = defs = 0; 4111 } 4112 ire->ire_defense_count++; 4113 ire->ire_defense_time = now; 4114 mutex_exit(&ire->ire_lock); 4115 ill_refhold(ill); 4116 ire_refrele(ire); 4117 4118 /* 4119 * If we've defended ourselves too many times already, 4120 * then give up and tear down the interface(s) using 4121 * this address. Otherwise, defend by sending out a 4122 * gratuitous ARP. 4123 */ 4124 if (defs >= maxdefense && ill->ill_arp_extend) { 4125 (void) qwriter_ip(NULL, ill, q, mp, 4126 ip_arp_excl, CUR_OP, B_FALSE); 4127 } else { 4128 cmn_err(CE_WARN, 4129 "node %s is using our IP address %s on %s", 4130 hbuf, sbuf, ill->ill_name); 4131 /* 4132 * If this is an old (ATM) ARP module, then 4133 * don't try to defend the address. Remain 4134 * compatible with the old behavior. Defend 4135 * only with new ARP. 4136 */ 4137 if (ill->ill_arp_extend) { 4138 (void) qwriter_ip(NULL, ill, q, mp, 4139 ip_arp_defend, CUR_OP, B_FALSE); 4140 } else { 4141 ill_refrele(ill); 4142 } 4143 } 4144 return; 4145 } 4146 cmn_err(CE_WARN, 4147 "proxy ARP problem? Node '%s' is using %s on %s", 4148 hbuf, sbuf, ill->ill_name); 4149 if (ire != NULL) 4150 ire_refrele(ire); 4151 break; 4152 case AR_CN_ANNOUNCE: 4153 if (isv6) { 4154 /* 4155 * For XRESOLV interfaces. 4156 * Delete the IRE cache entry and NCE for this 4157 * v6 address 4158 */ 4159 ip_ire_clookup_and_delete_v6(&v6src); 4160 /* 4161 * If v6src is a non-zero, it's a router address 4162 * as below. Do the same sort of thing to clean 4163 * out off-net IRE_CACHE entries that go through 4164 * the router. 4165 */ 4166 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4167 ire_walk_v6(ire_delete_cache_gw_v6, 4168 (char *)&v6src, ALL_ZONES); 4169 } 4170 } else { 4171 nce_hw_map_t hwm; 4172 4173 /* 4174 * ARP gives us a copy of any packet where it thinks 4175 * the address has changed, so that we can update our 4176 * caches. We're responsible for caching known answers 4177 * in the current design. We check whether the 4178 * hardware address really has changed in all of our 4179 * entries that have cached this mapping, and if so, we 4180 * blow them away. This way we will immediately pick 4181 * up the rare case of a host changing hardware 4182 * address. 4183 */ 4184 if (src == 0) 4185 break; 4186 hwm.hwm_addr = src; 4187 hwm.hwm_hwlen = arh->arh_hlen; 4188 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4189 ndp_walk_common(&ndp4, NULL, 4190 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4191 } 4192 break; 4193 case AR_CN_READY: 4194 /* No external v6 resolver has a contract to use this */ 4195 if (isv6) 4196 break; 4197 /* If the link is down, we'll retry this later */ 4198 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4199 break; 4200 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4201 NULL, NULL); 4202 if (ipif != NULL) { 4203 /* 4204 * If this is a duplicate recovery, then we now need to 4205 * go exclusive to bring this thing back up. 4206 */ 4207 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4208 IPIF_DUPLICATE) { 4209 ipif_refrele(ipif); 4210 ill_refhold(ill); 4211 (void) qwriter_ip(NULL, ill, q, mp, 4212 ip_arp_excl, CUR_OP, B_FALSE); 4213 return; 4214 } 4215 /* 4216 * If this is the first notice that this address is 4217 * ready, then let the user know now. 4218 */ 4219 if ((ipif->ipif_flags & IPIF_UP) && 4220 !ipif->ipif_addr_ready) { 4221 ipif_mask_reply(ipif); 4222 ip_rts_ifmsg(ipif); 4223 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4224 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4225 } 4226 ipif->ipif_addr_ready = 1; 4227 ipif_refrele(ipif); 4228 } 4229 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp)); 4230 if (ire != NULL) { 4231 ire->ire_defense_count = 0; 4232 ire_refrele(ire); 4233 } 4234 break; 4235 case AR_CN_FAILED: 4236 /* No external v6 resolver has a contract to use this */ 4237 if (isv6) 4238 break; 4239 ill_refhold(ill); 4240 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_excl, CUR_OP, 4241 B_FALSE); 4242 return; 4243 } 4244 freemsg(mp); 4245 } 4246 4247 /* 4248 * Create a mblk suitable for carrying the interface index and/or source link 4249 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4250 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4251 * application. 4252 */ 4253 mblk_t * 4254 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags) 4255 { 4256 mblk_t *mp; 4257 in_pktinfo_t *pinfo; 4258 ipha_t *ipha; 4259 struct ether_header *pether; 4260 4261 mp = allocb(sizeof (in_pktinfo_t), BPRI_MED); 4262 if (mp == NULL) { 4263 ip1dbg(("ip_add_info: allocation failure.\n")); 4264 return (data_mp); 4265 } 4266 4267 ipha = (ipha_t *)data_mp->b_rptr; 4268 pinfo = (in_pktinfo_t *)mp->b_rptr; 4269 bzero(pinfo, sizeof (in_pktinfo_t)); 4270 pinfo->in_pkt_flags = (uchar_t)flags; 4271 pinfo->in_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4272 4273 if (flags & IPF_RECVIF) 4274 pinfo->in_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4275 4276 pether = (struct ether_header *)((char *)ipha 4277 - sizeof (struct ether_header)); 4278 /* 4279 * Make sure the interface is an ethernet type, since this option 4280 * is currently supported only on this type of interface. Also make 4281 * sure we are pointing correctly above db_base. 4282 */ 4283 4284 if ((flags & IPF_RECVSLLA) && 4285 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4286 (ill->ill_type == IFT_ETHER) && 4287 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4288 4289 pinfo->in_pkt_slla.sdl_type = IFT_ETHER; 4290 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4291 (uchar_t *)pinfo->in_pkt_slla.sdl_data, ETHERADDRL); 4292 } else { 4293 /* 4294 * Clear the bit. Indicate to upper layer that IP is not 4295 * sending this ancillary info. 4296 */ 4297 pinfo->in_pkt_flags = pinfo->in_pkt_flags & ~IPF_RECVSLLA; 4298 } 4299 4300 mp->b_datap->db_type = M_CTL; 4301 mp->b_wptr += sizeof (in_pktinfo_t); 4302 mp->b_cont = data_mp; 4303 4304 return (mp); 4305 } 4306 4307 /* 4308 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4309 * part of the bind request. 4310 */ 4311 4312 boolean_t 4313 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4314 { 4315 ipsec_in_t *ii; 4316 4317 ASSERT(policy_mp != NULL); 4318 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4319 4320 ii = (ipsec_in_t *)policy_mp->b_rptr; 4321 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4322 4323 connp->conn_policy = ii->ipsec_in_policy; 4324 ii->ipsec_in_policy = NULL; 4325 4326 if (ii->ipsec_in_action != NULL) { 4327 if (connp->conn_latch == NULL) { 4328 connp->conn_latch = iplatch_create(); 4329 if (connp->conn_latch == NULL) 4330 return (B_FALSE); 4331 } 4332 ipsec_latch_inbound(connp->conn_latch, ii); 4333 } 4334 return (B_TRUE); 4335 } 4336 4337 /* 4338 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4339 * and to arrange for power-fanout assist. The ULP is identified by 4340 * adding a single byte at the end of the original bind message. 4341 * A ULP other than UDP or TCP that wishes to be recognized passes 4342 * down a bind with a zero length address. 4343 * 4344 * The binding works as follows: 4345 * - A zero byte address means just bind to the protocol. 4346 * - A four byte address is treated as a request to validate 4347 * that the address is a valid local address, appropriate for 4348 * an application to bind to. This does not affect any fanout 4349 * information in IP. 4350 * - A sizeof sin_t byte address is used to bind to only the local address 4351 * and port. 4352 * - A sizeof ipa_conn_t byte address contains complete fanout information 4353 * consisting of local and remote addresses and ports. In 4354 * this case, the addresses are both validated as appropriate 4355 * for this operation, and, if so, the information is retained 4356 * for use in the inbound fanout. 4357 * 4358 * The ULP (except in the zero-length bind) can append an 4359 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4360 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4361 * a copy of the source or destination IRE (source for local bind; 4362 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4363 * policy information contained should be copied on to the conn. 4364 * 4365 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4366 */ 4367 mblk_t * 4368 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4369 { 4370 ssize_t len; 4371 struct T_bind_req *tbr; 4372 sin_t *sin; 4373 ipa_conn_t *ac; 4374 uchar_t *ucp; 4375 mblk_t *mp1; 4376 boolean_t ire_requested; 4377 boolean_t ipsec_policy_set = B_FALSE; 4378 int error = 0; 4379 int protocol; 4380 ipa_conn_x_t *acx; 4381 4382 ASSERT(!connp->conn_af_isv6); 4383 connp->conn_pkt_isv6 = B_FALSE; 4384 4385 len = MBLKL(mp); 4386 if (len < (sizeof (*tbr) + 1)) { 4387 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4388 "ip_bind: bogus msg, len %ld", len); 4389 /* XXX: Need to return something better */ 4390 goto bad_addr; 4391 } 4392 /* Back up and extract the protocol identifier. */ 4393 mp->b_wptr--; 4394 protocol = *mp->b_wptr & 0xFF; 4395 tbr = (struct T_bind_req *)mp->b_rptr; 4396 /* Reset the message type in preparation for shipping it back. */ 4397 DB_TYPE(mp) = M_PCPROTO; 4398 4399 connp->conn_ulp = (uint8_t)protocol; 4400 4401 /* 4402 * Check for a zero length address. This is from a protocol that 4403 * wants to register to receive all packets of its type. 4404 */ 4405 if (tbr->ADDR_length == 0) { 4406 /* 4407 * These protocols are now intercepted in ip_bind_v6(). 4408 * Reject protocol-level binds here for now. 4409 * 4410 * For SCTP raw socket, ICMP sends down a bind with sin_t 4411 * so that the protocol type cannot be SCTP. 4412 */ 4413 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4414 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4415 goto bad_addr; 4416 } 4417 4418 /* 4419 * 4420 * The udp module never sends down a zero-length address, 4421 * and allowing this on a labeled system will break MLP 4422 * functionality. 4423 */ 4424 if (is_system_labeled() && protocol == IPPROTO_UDP) 4425 goto bad_addr; 4426 4427 if (connp->conn_mac_exempt) 4428 goto bad_addr; 4429 4430 /* No hash here really. The table is big enough. */ 4431 connp->conn_srcv6 = ipv6_all_zeros; 4432 4433 ipcl_proto_insert(connp, protocol); 4434 4435 tbr->PRIM_type = T_BIND_ACK; 4436 return (mp); 4437 } 4438 4439 /* Extract the address pointer from the message. */ 4440 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4441 tbr->ADDR_length); 4442 if (ucp == NULL) { 4443 ip1dbg(("ip_bind: no address\n")); 4444 goto bad_addr; 4445 } 4446 if (!OK_32PTR(ucp)) { 4447 ip1dbg(("ip_bind: unaligned address\n")); 4448 goto bad_addr; 4449 } 4450 /* 4451 * Check for trailing mps. 4452 */ 4453 4454 mp1 = mp->b_cont; 4455 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4456 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4457 4458 switch (tbr->ADDR_length) { 4459 default: 4460 ip1dbg(("ip_bind: bad address length %d\n", 4461 (int)tbr->ADDR_length)); 4462 goto bad_addr; 4463 4464 case IP_ADDR_LEN: 4465 /* Verification of local address only */ 4466 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4467 ire_requested, ipsec_policy_set, B_FALSE); 4468 break; 4469 4470 case sizeof (sin_t): 4471 sin = (sin_t *)ucp; 4472 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4473 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4474 break; 4475 4476 case sizeof (ipa_conn_t): 4477 ac = (ipa_conn_t *)ucp; 4478 /* For raw socket, the local port is not set. */ 4479 if (ac->ac_lport == 0) 4480 ac->ac_lport = connp->conn_lport; 4481 /* Always verify destination reachability. */ 4482 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4483 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4484 ipsec_policy_set, B_TRUE, B_TRUE); 4485 break; 4486 4487 case sizeof (ipa_conn_x_t): 4488 acx = (ipa_conn_x_t *)ucp; 4489 /* 4490 * Whether or not to verify destination reachability depends 4491 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4492 */ 4493 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4494 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4495 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4496 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4497 break; 4498 } 4499 if (error == EINPROGRESS) 4500 return (NULL); 4501 else if (error != 0) 4502 goto bad_addr; 4503 /* 4504 * Pass the IPSEC headers size in ire_ipsec_overhead. 4505 * We can't do this in ip_bind_insert_ire because the policy 4506 * may not have been inherited at that point in time and hence 4507 * conn_out_enforce_policy may not be set. 4508 */ 4509 mp1 = mp->b_cont; 4510 if (ire_requested && connp->conn_out_enforce_policy && 4511 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4512 ire_t *ire = (ire_t *)mp1->b_rptr; 4513 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4514 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4515 } 4516 4517 /* Send it home. */ 4518 mp->b_datap->db_type = M_PCPROTO; 4519 tbr->PRIM_type = T_BIND_ACK; 4520 return (mp); 4521 4522 bad_addr: 4523 /* 4524 * If error = -1 then we generate a TBADADDR - otherwise error is 4525 * a unix errno. 4526 */ 4527 if (error > 0) 4528 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4529 else 4530 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4531 return (mp); 4532 } 4533 4534 /* 4535 * Here address is verified to be a valid local address. 4536 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4537 * address is also considered a valid local address. 4538 * In the case of a broadcast/multicast address, however, the 4539 * upper protocol is expected to reset the src address 4540 * to 0 if it sees a IRE_BROADCAST type returned so that 4541 * no packets are emitted with broadcast/multicast address as 4542 * source address (that violates hosts requirements RFC1122) 4543 * The addresses valid for bind are: 4544 * (1) - INADDR_ANY (0) 4545 * (2) - IP address of an UP interface 4546 * (3) - IP address of a DOWN interface 4547 * (4) - valid local IP broadcast addresses. In this case 4548 * the conn will only receive packets destined to 4549 * the specified broadcast address. 4550 * (5) - a multicast address. In this case 4551 * the conn will only receive packets destined to 4552 * the specified multicast address. Note: the 4553 * application still has to issue an 4554 * IP_ADD_MEMBERSHIP socket option. 4555 * 4556 * On error, return -1 for TBADADDR otherwise pass the 4557 * errno with TSYSERR reply. 4558 * 4559 * In all the above cases, the bound address must be valid in the current zone. 4560 * When the address is loopback, multicast or broadcast, there might be many 4561 * matching IREs so bind has to look up based on the zone. 4562 * 4563 * Note: lport is in network byte order. 4564 */ 4565 int 4566 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4567 boolean_t ire_requested, boolean_t ipsec_policy_set, 4568 boolean_t fanout_insert) 4569 { 4570 int error = 0; 4571 ire_t *src_ire; 4572 mblk_t *policy_mp; 4573 ipif_t *ipif; 4574 zoneid_t zoneid; 4575 4576 if (ipsec_policy_set) { 4577 policy_mp = mp->b_cont; 4578 } 4579 4580 /* 4581 * If it was previously connected, conn_fully_bound would have 4582 * been set. 4583 */ 4584 connp->conn_fully_bound = B_FALSE; 4585 4586 src_ire = NULL; 4587 ipif = NULL; 4588 4589 zoneid = IPCL_ZONEID(connp); 4590 4591 if (src_addr) { 4592 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4593 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 4594 /* 4595 * If an address other than 0.0.0.0 is requested, 4596 * we verify that it is a valid address for bind 4597 * Note: Following code is in if-else-if form for 4598 * readability compared to a condition check. 4599 */ 4600 /* LINTED - statement has no consequent */ 4601 if (IRE_IS_LOCAL(src_ire)) { 4602 /* 4603 * (2) Bind to address of local UP interface 4604 */ 4605 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4606 /* 4607 * (4) Bind to broadcast address 4608 * Note: permitted only from transports that 4609 * request IRE 4610 */ 4611 if (!ire_requested) 4612 error = EADDRNOTAVAIL; 4613 } else { 4614 /* 4615 * (3) Bind to address of local DOWN interface 4616 * (ipif_lookup_addr() looks up all interfaces 4617 * but we do not get here for UP interfaces 4618 * - case (2) above) 4619 * We put the protocol byte back into the mblk 4620 * since we may come back via ip_wput_nondata() 4621 * later with this mblk if ipif_lookup_addr chooses 4622 * to defer processing. 4623 */ 4624 *mp->b_wptr++ = (char)connp->conn_ulp; 4625 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4626 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4627 &error)) != NULL) { 4628 ipif_refrele(ipif); 4629 } else if (error == EINPROGRESS) { 4630 if (src_ire != NULL) 4631 ire_refrele(src_ire); 4632 return (EINPROGRESS); 4633 } else if (CLASSD(src_addr)) { 4634 error = 0; 4635 if (src_ire != NULL) 4636 ire_refrele(src_ire); 4637 /* 4638 * (5) bind to multicast address. 4639 * Fake out the IRE returned to upper 4640 * layer to be a broadcast IRE. 4641 */ 4642 src_ire = ire_ctable_lookup( 4643 INADDR_BROADCAST, INADDR_ANY, 4644 IRE_BROADCAST, NULL, zoneid, NULL, 4645 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY)); 4646 if (src_ire == NULL || !ire_requested) 4647 error = EADDRNOTAVAIL; 4648 } else { 4649 /* 4650 * Not a valid address for bind 4651 */ 4652 error = EADDRNOTAVAIL; 4653 } 4654 /* 4655 * Just to keep it consistent with the processing in 4656 * ip_bind_v4() 4657 */ 4658 mp->b_wptr--; 4659 } 4660 if (error) { 4661 /* Red Alert! Attempting to be a bogon! */ 4662 ip1dbg(("ip_bind: bad src address 0x%x\n", 4663 ntohl(src_addr))); 4664 goto bad_addr; 4665 } 4666 } 4667 4668 /* 4669 * Allow setting new policies. For example, disconnects come 4670 * down as ipa_t bind. As we would have set conn_policy_cached 4671 * to B_TRUE before, we should set it to B_FALSE, so that policy 4672 * can change after the disconnect. 4673 */ 4674 connp->conn_policy_cached = B_FALSE; 4675 4676 /* 4677 * If not fanout_insert this was just an address verification 4678 */ 4679 if (fanout_insert) { 4680 /* 4681 * The addresses have been verified. Time to insert in 4682 * the correct fanout list. 4683 */ 4684 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4685 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4686 connp->conn_lport = lport; 4687 connp->conn_fport = 0; 4688 /* 4689 * Do we need to add a check to reject Multicast packets 4690 * 4691 * We need to make sure that the conn_recv is set to a non-null 4692 * value before we insert the conn into the classifier table. 4693 * This is to avoid a race with an incoming packet which does an 4694 * ipcl_classify(). 4695 */ 4696 if (*mp->b_wptr == IPPROTO_TCP) 4697 connp->conn_recv = tcp_conn_request; 4698 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4699 } 4700 4701 if (error == 0) { 4702 if (ire_requested) { 4703 if (!ip_bind_insert_ire(mp, src_ire, NULL)) { 4704 error = -1; 4705 /* Falls through to bad_addr */ 4706 } 4707 } else if (ipsec_policy_set) { 4708 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4709 error = -1; 4710 /* Falls through to bad_addr */ 4711 } 4712 } 4713 } else if (connp->conn_ulp == IPPROTO_TCP) { 4714 connp->conn_recv = tcp_input; 4715 } 4716 bad_addr: 4717 if (error != 0) { 4718 if (connp->conn_anon_port) { 4719 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4720 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4721 B_FALSE); 4722 } 4723 connp->conn_mlp_type = mlptSingle; 4724 } 4725 if (src_ire != NULL) 4726 IRE_REFRELE(src_ire); 4727 if (ipsec_policy_set) { 4728 ASSERT(policy_mp == mp->b_cont); 4729 ASSERT(policy_mp != NULL); 4730 freeb(policy_mp); 4731 /* 4732 * As of now assume that nothing else accompanies 4733 * IPSEC_POLICY_SET. 4734 */ 4735 mp->b_cont = NULL; 4736 } 4737 return (error); 4738 } 4739 4740 /* 4741 * Verify that both the source and destination addresses 4742 * are valid. If verify_dst is false, then the destination address may be 4743 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4744 * destination reachability, while tunnels do not. 4745 * Note that we allow connect to broadcast and multicast 4746 * addresses when ire_requested is set. Thus the ULP 4747 * has to check for IRE_BROADCAST and multicast. 4748 * 4749 * Returns zero if ok. 4750 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4751 * (for use with TSYSERR reply). 4752 * 4753 * Note: lport and fport are in network byte order. 4754 */ 4755 int 4756 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4757 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4758 boolean_t ire_requested, boolean_t ipsec_policy_set, 4759 boolean_t fanout_insert, boolean_t verify_dst) 4760 { 4761 ire_t *src_ire; 4762 ire_t *dst_ire; 4763 int error = 0; 4764 int protocol; 4765 mblk_t *policy_mp; 4766 ire_t *sire = NULL; 4767 ire_t *md_dst_ire = NULL; 4768 ire_t *lso_dst_ire = NULL; 4769 ill_t *ill = NULL; 4770 zoneid_t zoneid; 4771 ipaddr_t src_addr = *src_addrp; 4772 4773 src_ire = dst_ire = NULL; 4774 protocol = *mp->b_wptr & 0xFF; 4775 4776 /* 4777 * If we never got a disconnect before, clear it now. 4778 */ 4779 connp->conn_fully_bound = B_FALSE; 4780 4781 if (ipsec_policy_set) { 4782 policy_mp = mp->b_cont; 4783 } 4784 4785 zoneid = IPCL_ZONEID(connp); 4786 4787 if (CLASSD(dst_addr)) { 4788 /* Pick up an IRE_BROADCAST */ 4789 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4790 NULL, zoneid, MBLK_GETLABEL(mp), 4791 (MATCH_IRE_RECURSIVE | 4792 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4793 MATCH_IRE_SECATTR)); 4794 } else { 4795 /* 4796 * If conn_dontroute is set or if conn_nexthop_set is set, 4797 * and onlink ipif is not found set ENETUNREACH error. 4798 */ 4799 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4800 ipif_t *ipif; 4801 4802 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4803 dst_addr : connp->conn_nexthop_v4, 4804 connp->conn_zoneid); 4805 if (ipif == NULL) { 4806 error = ENETUNREACH; 4807 goto bad_addr; 4808 } 4809 ipif_refrele(ipif); 4810 } 4811 4812 if (connp->conn_nexthop_set) { 4813 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4814 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4815 MATCH_IRE_SECATTR); 4816 } else { 4817 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4818 &sire, zoneid, MBLK_GETLABEL(mp), 4819 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4820 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4821 MATCH_IRE_SECATTR)); 4822 } 4823 } 4824 /* 4825 * dst_ire can't be a broadcast when not ire_requested. 4826 * We also prevent ire's with src address INADDR_ANY to 4827 * be used, which are created temporarily for 4828 * sending out packets from endpoints that have 4829 * conn_unspec_src set. If verify_dst is true, the destination must be 4830 * reachable. If verify_dst is false, the destination needn't be 4831 * reachable. 4832 * 4833 * If we match on a reject or black hole, then we've got a 4834 * local failure. May as well fail out the connect() attempt, 4835 * since it's never going to succeed. 4836 */ 4837 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4838 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4839 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4840 /* 4841 * If we're verifying destination reachability, we always want 4842 * to complain here. 4843 * 4844 * If we're not verifying destination reachability but the 4845 * destination has a route, we still want to fail on the 4846 * temporary address and broadcast address tests. 4847 */ 4848 if (verify_dst || (dst_ire != NULL)) { 4849 if (ip_debug > 2) { 4850 pr_addr_dbg("ip_bind_connected: bad connected " 4851 "dst %s\n", AF_INET, &dst_addr); 4852 } 4853 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4854 error = ENETUNREACH; 4855 else 4856 error = EHOSTUNREACH; 4857 goto bad_addr; 4858 } 4859 } 4860 4861 /* 4862 * We now know that routing will allow us to reach the destination. 4863 * Check whether Trusted Solaris policy allows communication with this 4864 * host, and pretend that the destination is unreachable if not. 4865 * 4866 * This is never a problem for TCP, since that transport is known to 4867 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4868 * handling. If the remote is unreachable, it will be detected at that 4869 * point, so there's no reason to check it here. 4870 * 4871 * Note that for sendto (and other datagram-oriented friends), this 4872 * check is done as part of the data path label computation instead. 4873 * The check here is just to make non-TCP connect() report the right 4874 * error. 4875 */ 4876 if (dst_ire != NULL && is_system_labeled() && 4877 !IPCL_IS_TCP(connp) && 4878 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4879 connp->conn_mac_exempt) != 0) { 4880 error = EHOSTUNREACH; 4881 if (ip_debug > 2) { 4882 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4883 AF_INET, &dst_addr); 4884 } 4885 goto bad_addr; 4886 } 4887 4888 /* 4889 * If the app does a connect(), it means that it will most likely 4890 * send more than 1 packet to the destination. It makes sense 4891 * to clear the temporary flag. 4892 */ 4893 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4894 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4895 irb_t *irb = dst_ire->ire_bucket; 4896 4897 rw_enter(&irb->irb_lock, RW_WRITER); 4898 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4899 irb->irb_tmp_ire_cnt--; 4900 rw_exit(&irb->irb_lock); 4901 } 4902 4903 /* 4904 * See if we should notify ULP about LSO/MDT; we do this whether or not 4905 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4906 * eligibility tests for passive connects are handled separately 4907 * through tcp_adapt_ire(). We do this before the source address 4908 * selection, because dst_ire may change after a call to 4909 * ipif_select_source(). This is a best-effort check, as the 4910 * packet for this connection may not actually go through 4911 * dst_ire->ire_stq, and the exact IRE can only be known after 4912 * calling ip_newroute(). This is why we further check on the 4913 * IRE during LSO/Multidata packet transmission in 4914 * tcp_lsosend()/tcp_multisend(). 4915 */ 4916 if (!ipsec_policy_set && dst_ire != NULL && 4917 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4918 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4919 if (ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4920 lso_dst_ire = dst_ire; 4921 IRE_REFHOLD(lso_dst_ire); 4922 } else if (ip_multidata_outbound && ILL_MDT_CAPABLE(ill)) { 4923 md_dst_ire = dst_ire; 4924 IRE_REFHOLD(md_dst_ire); 4925 } 4926 } 4927 4928 if (dst_ire != NULL && 4929 dst_ire->ire_type == IRE_LOCAL && 4930 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4931 /* 4932 * If the IRE belongs to a different zone, look for a matching 4933 * route in the forwarding table and use the source address from 4934 * that route. 4935 */ 4936 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4937 zoneid, 0, NULL, 4938 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4939 MATCH_IRE_RJ_BHOLE); 4940 if (src_ire == NULL) { 4941 error = EHOSTUNREACH; 4942 goto bad_addr; 4943 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4944 if (!(src_ire->ire_type & IRE_HOST)) 4945 error = ENETUNREACH; 4946 else 4947 error = EHOSTUNREACH; 4948 goto bad_addr; 4949 } 4950 if (src_addr == INADDR_ANY) 4951 src_addr = src_ire->ire_src_addr; 4952 ire_refrele(src_ire); 4953 src_ire = NULL; 4954 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4955 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4956 src_addr = sire->ire_src_addr; 4957 ire_refrele(dst_ire); 4958 dst_ire = sire; 4959 sire = NULL; 4960 } else { 4961 /* 4962 * Pick a source address so that a proper inbound 4963 * load spreading would happen. 4964 */ 4965 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4966 ipif_t *src_ipif = NULL; 4967 ire_t *ipif_ire; 4968 4969 /* 4970 * Supply a local source address such that inbound 4971 * load spreading happens. 4972 * 4973 * Determine the best source address on this ill for 4974 * the destination. 4975 * 4976 * 1) For broadcast, we should return a broadcast ire 4977 * found above so that upper layers know that the 4978 * destination address is a broadcast address. 4979 * 4980 * 2) If this is part of a group, select a better 4981 * source address so that better inbound load 4982 * balancing happens. Do the same if the ipif 4983 * is DEPRECATED. 4984 * 4985 * 3) If the outgoing interface is part of a usesrc 4986 * group, then try selecting a source address from 4987 * the usesrc ILL. 4988 */ 4989 if ((dst_ire->ire_zoneid != zoneid && 4990 dst_ire->ire_zoneid != ALL_ZONES) || 4991 (!(dst_ire->ire_type & IRE_BROADCAST) && 4992 ((dst_ill->ill_group != NULL) || 4993 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4994 (dst_ill->ill_usesrc_ifindex != 0)))) { 4995 /* 4996 * If the destination is reachable via a 4997 * given gateway, the selected source address 4998 * should be in the same subnet as the gateway. 4999 * Otherwise, the destination is not reachable. 5000 * 5001 * If there are no interfaces on the same subnet 5002 * as the destination, ipif_select_source gives 5003 * first non-deprecated interface which might be 5004 * on a different subnet than the gateway. 5005 * This is not desirable. Hence pass the dst_ire 5006 * source address to ipif_select_source. 5007 * It is sure that the destination is reachable 5008 * with the dst_ire source address subnet. 5009 * So passing dst_ire source address to 5010 * ipif_select_source will make sure that the 5011 * selected source will be on the same subnet 5012 * as dst_ire source address. 5013 */ 5014 ipaddr_t saddr = 5015 dst_ire->ire_ipif->ipif_src_addr; 5016 src_ipif = ipif_select_source(dst_ill, 5017 saddr, zoneid); 5018 if (src_ipif != NULL) { 5019 if (IS_VNI(src_ipif->ipif_ill)) { 5020 /* 5021 * For VNI there is no 5022 * interface route 5023 */ 5024 src_addr = 5025 src_ipif->ipif_src_addr; 5026 } else { 5027 ipif_ire = 5028 ipif_to_ire(src_ipif); 5029 if (ipif_ire != NULL) { 5030 IRE_REFRELE(dst_ire); 5031 dst_ire = ipif_ire; 5032 } 5033 src_addr = 5034 dst_ire->ire_src_addr; 5035 } 5036 ipif_refrele(src_ipif); 5037 } else { 5038 src_addr = dst_ire->ire_src_addr; 5039 } 5040 } else { 5041 src_addr = dst_ire->ire_src_addr; 5042 } 5043 } 5044 } 5045 5046 /* 5047 * We do ire_route_lookup() here (and not 5048 * interface lookup as we assert that 5049 * src_addr should only come from an 5050 * UP interface for hard binding. 5051 */ 5052 ASSERT(src_ire == NULL); 5053 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5054 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 5055 /* src_ire must be a local|loopback */ 5056 if (!IRE_IS_LOCAL(src_ire)) { 5057 if (ip_debug > 2) { 5058 pr_addr_dbg("ip_bind_connected: bad connected " 5059 "src %s\n", AF_INET, &src_addr); 5060 } 5061 error = EADDRNOTAVAIL; 5062 goto bad_addr; 5063 } 5064 5065 /* 5066 * If the source address is a loopback address, the 5067 * destination had best be local or multicast. 5068 * The transports that can't handle multicast will reject 5069 * those addresses. 5070 */ 5071 if (src_ire->ire_type == IRE_LOOPBACK && 5072 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5073 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5074 error = -1; 5075 goto bad_addr; 5076 } 5077 5078 /* 5079 * Allow setting new policies. For example, disconnects come 5080 * down as ipa_t bind. As we would have set conn_policy_cached 5081 * to B_TRUE before, we should set it to B_FALSE, so that policy 5082 * can change after the disconnect. 5083 */ 5084 connp->conn_policy_cached = B_FALSE; 5085 5086 /* 5087 * Set the conn addresses/ports immediately, so the IPsec policy calls 5088 * can handle their passed-in conn's. 5089 */ 5090 5091 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5092 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5093 connp->conn_lport = lport; 5094 connp->conn_fport = fport; 5095 *src_addrp = src_addr; 5096 5097 ASSERT(!(ipsec_policy_set && ire_requested)); 5098 if (ire_requested) { 5099 iulp_t *ulp_info = NULL; 5100 5101 /* 5102 * Note that sire will not be NULL if this is an off-link 5103 * connection and there is not cache for that dest yet. 5104 * 5105 * XXX Because of an existing bug, if there are multiple 5106 * default routes, the IRE returned now may not be the actual 5107 * default route used (default routes are chosen in a 5108 * round robin fashion). So if the metrics for different 5109 * default routes are different, we may return the wrong 5110 * metrics. This will not be a problem if the existing 5111 * bug is fixed. 5112 */ 5113 if (sire != NULL) { 5114 ulp_info = &(sire->ire_uinfo); 5115 } 5116 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info)) { 5117 error = -1; 5118 goto bad_addr; 5119 } 5120 } else if (ipsec_policy_set) { 5121 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5122 error = -1; 5123 goto bad_addr; 5124 } 5125 } 5126 5127 /* 5128 * Cache IPsec policy in this conn. If we have per-socket policy, 5129 * we'll cache that. If we don't, we'll inherit global policy. 5130 * 5131 * We can't insert until the conn reflects the policy. Note that 5132 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5133 * connections where we don't have a policy. This is to prevent 5134 * global policy lookups in the inbound path. 5135 * 5136 * If we insert before we set conn_policy_cached, 5137 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5138 * because global policy cound be non-empty. We normally call 5139 * ipsec_check_policy() for conn_policy_cached connections only if 5140 * ipc_in_enforce_policy is set. But in this case, 5141 * conn_policy_cached can get set anytime since we made the 5142 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5143 * called, which will make the above assumption false. Thus, we 5144 * need to insert after we set conn_policy_cached. 5145 */ 5146 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5147 goto bad_addr; 5148 5149 if (fanout_insert) { 5150 /* 5151 * The addresses have been verified. Time to insert in 5152 * the correct fanout list. 5153 * We need to make sure that the conn_recv is set to a non-null 5154 * value before we insert into the classifier table to avoid a 5155 * race with an incoming packet which does an ipcl_classify(). 5156 */ 5157 if (protocol == IPPROTO_TCP) 5158 connp->conn_recv = tcp_input; 5159 error = ipcl_conn_insert(connp, protocol, src_addr, 5160 dst_addr, connp->conn_ports); 5161 } 5162 5163 if (error == 0) { 5164 connp->conn_fully_bound = B_TRUE; 5165 /* 5166 * Our initial checks for LSO/MDT have passed; the IRE is not 5167 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5168 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5169 * ip_xxinfo_return(), which performs further checks 5170 * against them and upon success, returns the LSO/MDT info 5171 * mblk which we will attach to the bind acknowledgment. 5172 */ 5173 if (lso_dst_ire != NULL) { 5174 mblk_t *lsoinfo_mp; 5175 5176 ASSERT(ill->ill_lso_capab != NULL); 5177 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5178 ill->ill_name, ill->ill_lso_capab)) != NULL) 5179 linkb(mp, lsoinfo_mp); 5180 } else if (md_dst_ire != NULL) { 5181 mblk_t *mdinfo_mp; 5182 5183 ASSERT(ill->ill_mdt_capab != NULL); 5184 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5185 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5186 linkb(mp, mdinfo_mp); 5187 } 5188 } 5189 bad_addr: 5190 if (ipsec_policy_set) { 5191 ASSERT(policy_mp == mp->b_cont); 5192 ASSERT(policy_mp != NULL); 5193 freeb(policy_mp); 5194 /* 5195 * As of now assume that nothing else accompanies 5196 * IPSEC_POLICY_SET. 5197 */ 5198 mp->b_cont = NULL; 5199 } 5200 if (src_ire != NULL) 5201 IRE_REFRELE(src_ire); 5202 if (dst_ire != NULL) 5203 IRE_REFRELE(dst_ire); 5204 if (sire != NULL) 5205 IRE_REFRELE(sire); 5206 if (md_dst_ire != NULL) 5207 IRE_REFRELE(md_dst_ire); 5208 if (lso_dst_ire != NULL) 5209 IRE_REFRELE(lso_dst_ire); 5210 return (error); 5211 } 5212 5213 /* 5214 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5215 * Prefers dst_ire over src_ire. 5216 */ 5217 static boolean_t 5218 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info) 5219 { 5220 mblk_t *mp1; 5221 ire_t *ret_ire = NULL; 5222 5223 mp1 = mp->b_cont; 5224 ASSERT(mp1 != NULL); 5225 5226 if (ire != NULL) { 5227 /* 5228 * mp1 initialized above to IRE_DB_REQ_TYPE 5229 * appended mblk. Its <upper protocol>'s 5230 * job to make sure there is room. 5231 */ 5232 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5233 return (0); 5234 5235 mp1->b_datap->db_type = IRE_DB_TYPE; 5236 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5237 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5238 ret_ire = (ire_t *)mp1->b_rptr; 5239 /* 5240 * Pass the latest setting of the ip_path_mtu_discovery and 5241 * copy the ulp info if any. 5242 */ 5243 ret_ire->ire_frag_flag |= (ip_path_mtu_discovery) ? 5244 IPH_DF : 0; 5245 if (ulp_info != NULL) { 5246 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5247 sizeof (iulp_t)); 5248 } 5249 ret_ire->ire_mp = mp1; 5250 } else { 5251 /* 5252 * No IRE was found. Remove IRE mblk. 5253 */ 5254 mp->b_cont = mp1->b_cont; 5255 freeb(mp1); 5256 } 5257 5258 return (1); 5259 } 5260 5261 /* 5262 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5263 * the final piece where we don't. Return a pointer to the first mblk in the 5264 * result, and update the pointer to the next mblk to chew on. If anything 5265 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5266 * NULL pointer. 5267 */ 5268 mblk_t * 5269 ip_carve_mp(mblk_t **mpp, ssize_t len) 5270 { 5271 mblk_t *mp0; 5272 mblk_t *mp1; 5273 mblk_t *mp2; 5274 5275 if (!len || !mpp || !(mp0 = *mpp)) 5276 return (NULL); 5277 /* If we aren't going to consume the first mblk, we need a dup. */ 5278 if (mp0->b_wptr - mp0->b_rptr > len) { 5279 mp1 = dupb(mp0); 5280 if (mp1) { 5281 /* Partition the data between the two mblks. */ 5282 mp1->b_wptr = mp1->b_rptr + len; 5283 mp0->b_rptr = mp1->b_wptr; 5284 /* 5285 * after adjustments if mblk not consumed is now 5286 * unaligned, try to align it. If this fails free 5287 * all messages and let upper layer recover. 5288 */ 5289 if (!OK_32PTR(mp0->b_rptr)) { 5290 if (!pullupmsg(mp0, -1)) { 5291 freemsg(mp0); 5292 freemsg(mp1); 5293 *mpp = NULL; 5294 return (NULL); 5295 } 5296 } 5297 } 5298 return (mp1); 5299 } 5300 /* Eat through as many mblks as we need to get len bytes. */ 5301 len -= mp0->b_wptr - mp0->b_rptr; 5302 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5303 if (mp2->b_wptr - mp2->b_rptr > len) { 5304 /* 5305 * We won't consume the entire last mblk. Like 5306 * above, dup and partition it. 5307 */ 5308 mp1->b_cont = dupb(mp2); 5309 mp1 = mp1->b_cont; 5310 if (!mp1) { 5311 /* 5312 * Trouble. Rather than go to a lot of 5313 * trouble to clean up, we free the messages. 5314 * This won't be any worse than losing it on 5315 * the wire. 5316 */ 5317 freemsg(mp0); 5318 freemsg(mp2); 5319 *mpp = NULL; 5320 return (NULL); 5321 } 5322 mp1->b_wptr = mp1->b_rptr + len; 5323 mp2->b_rptr = mp1->b_wptr; 5324 /* 5325 * after adjustments if mblk not consumed is now 5326 * unaligned, try to align it. If this fails free 5327 * all messages and let upper layer recover. 5328 */ 5329 if (!OK_32PTR(mp2->b_rptr)) { 5330 if (!pullupmsg(mp2, -1)) { 5331 freemsg(mp0); 5332 freemsg(mp2); 5333 *mpp = NULL; 5334 return (NULL); 5335 } 5336 } 5337 *mpp = mp2; 5338 return (mp0); 5339 } 5340 /* Decrement len by the amount we just got. */ 5341 len -= mp2->b_wptr - mp2->b_rptr; 5342 } 5343 /* 5344 * len should be reduced to zero now. If not our caller has 5345 * screwed up. 5346 */ 5347 if (len) { 5348 /* Shouldn't happen! */ 5349 freemsg(mp0); 5350 *mpp = NULL; 5351 return (NULL); 5352 } 5353 /* 5354 * We consumed up to exactly the end of an mblk. Detach the part 5355 * we are returning from the rest of the chain. 5356 */ 5357 mp1->b_cont = NULL; 5358 *mpp = mp2; 5359 return (mp0); 5360 } 5361 5362 /* The ill stream is being unplumbed. Called from ip_close */ 5363 int 5364 ip_modclose(ill_t *ill) 5365 { 5366 5367 boolean_t success; 5368 ipsq_t *ipsq; 5369 ipif_t *ipif; 5370 queue_t *q = ill->ill_rq; 5371 hook_nic_event_t *info; 5372 clock_t timeout; 5373 5374 /* 5375 * Wait for the ACKs of all deferred control messages to be processed. 5376 * In particular, we wait for a potential capability reset initiated 5377 * in ip_sioctl_plink() to complete before proceeding. 5378 * 5379 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5380 * in case the driver never replies. 5381 */ 5382 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5383 mutex_enter(&ill->ill_lock); 5384 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5385 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5386 /* Timeout */ 5387 break; 5388 } 5389 } 5390 mutex_exit(&ill->ill_lock); 5391 5392 /* 5393 * Forcibly enter the ipsq after some delay. This is to take 5394 * care of the case when some ioctl does not complete because 5395 * we sent a control message to the driver and it did not 5396 * send us a reply. We want to be able to at least unplumb 5397 * and replumb rather than force the user to reboot the system. 5398 */ 5399 success = ipsq_enter(ill, B_FALSE); 5400 5401 /* 5402 * Open/close/push/pop is guaranteed to be single threaded 5403 * per stream by STREAMS. FS guarantees that all references 5404 * from top are gone before close is called. So there can't 5405 * be another close thread that has set CONDEMNED on this ill. 5406 * and cause ipsq_enter to return failure. 5407 */ 5408 ASSERT(success); 5409 ipsq = ill->ill_phyint->phyint_ipsq; 5410 5411 /* 5412 * Mark it condemned. No new reference will be made to this ill. 5413 * Lookup functions will return an error. Threads that try to 5414 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5415 * that the refcnt will drop down to zero. 5416 */ 5417 mutex_enter(&ill->ill_lock); 5418 ill->ill_state_flags |= ILL_CONDEMNED; 5419 for (ipif = ill->ill_ipif; ipif != NULL; 5420 ipif = ipif->ipif_next) { 5421 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5422 } 5423 /* 5424 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5425 * returns error if ILL_CONDEMNED is set 5426 */ 5427 cv_broadcast(&ill->ill_cv); 5428 mutex_exit(&ill->ill_lock); 5429 5430 /* 5431 * Send all the deferred control messages downstream which came in 5432 * during the small window right before ipsq_enter(). We do this 5433 * without waiting for the ACKs because all the ACKs for M_PROTO 5434 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5435 */ 5436 ill_send_all_deferred_mp(ill); 5437 5438 /* 5439 * Shut down fragmentation reassembly. 5440 * ill_frag_timer won't start a timer again. 5441 * Now cancel any existing timer 5442 */ 5443 (void) untimeout(ill->ill_frag_timer_id); 5444 (void) ill_frag_timeout(ill, 0); 5445 5446 /* 5447 * If MOVE was in progress, clear the 5448 * move_in_progress fields also. 5449 */ 5450 if (ill->ill_move_in_progress) { 5451 ILL_CLEAR_MOVE(ill); 5452 } 5453 5454 /* 5455 * Call ill_delete to bring down the ipifs, ilms and ill on 5456 * this ill. Then wait for the refcnts to drop to zero. 5457 * ill_is_quiescent checks whether the ill is really quiescent. 5458 * Then make sure that threads that are waiting to enter the 5459 * ipsq have seen the error returned by ipsq_enter and have 5460 * gone away. Then we call ill_delete_tail which does the 5461 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 5462 */ 5463 ill_delete(ill); 5464 mutex_enter(&ill->ill_lock); 5465 while (!ill_is_quiescent(ill)) 5466 cv_wait(&ill->ill_cv, &ill->ill_lock); 5467 while (ill->ill_waiters) 5468 cv_wait(&ill->ill_cv, &ill->ill_lock); 5469 5470 mutex_exit(&ill->ill_lock); 5471 5472 /* qprocsoff is called in ill_delete_tail */ 5473 ill_delete_tail(ill); 5474 5475 /* 5476 * Walk through all upper (conn) streams and qenable 5477 * those that have queued data. 5478 * close synchronization needs this to 5479 * be done to ensure that all upper layers blocked 5480 * due to flow control to the closing device 5481 * get unblocked. 5482 */ 5483 ip1dbg(("ip_wsrv: walking\n")); 5484 conn_walk_drain(); 5485 5486 mutex_enter(&ip_mi_lock); 5487 mi_close_unlink(&ip_g_head, (IDP)ill); 5488 mutex_exit(&ip_mi_lock); 5489 5490 /* 5491 * credp could be null if the open didn't succeed and ip_modopen 5492 * itself calls ip_close. 5493 */ 5494 if (ill->ill_credp != NULL) 5495 crfree(ill->ill_credp); 5496 5497 /* 5498 * Unhook the nic event message from the ill and enqueue it into the nic 5499 * event taskq. 5500 */ 5501 if ((info = ill->ill_nic_event_info) != NULL) { 5502 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, 5503 (void *)info, DDI_SLEEP) == DDI_FAILURE) { 5504 ip2dbg(("ip_ioctl_finish:ddi_taskq_dispatch failed\n")); 5505 if (info->hne_data != NULL) 5506 kmem_free(info->hne_data, info->hne_datalen); 5507 kmem_free(info, sizeof (hook_nic_event_t)); 5508 } 5509 ill->ill_nic_event_info = NULL; 5510 } 5511 5512 mi_close_free((IDP)ill); 5513 q->q_ptr = WR(q)->q_ptr = NULL; 5514 5515 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5516 5517 return (0); 5518 } 5519 5520 /* 5521 * This is called as part of close() for both IP and UDP 5522 * in order to quiesce the conn. 5523 */ 5524 void 5525 ip_quiesce_conn(conn_t *connp) 5526 { 5527 boolean_t drain_cleanup_reqd = B_FALSE; 5528 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5529 boolean_t ilg_cleanup_reqd = B_FALSE; 5530 5531 ASSERT(!IPCL_IS_TCP(connp)); 5532 5533 /* 5534 * Mark the conn as closing, and this conn must not be 5535 * inserted in future into any list. Eg. conn_drain_insert(), 5536 * won't insert this conn into the conn_drain_list. 5537 * Similarly ill_pending_mp_add() will not add any mp to 5538 * the pending mp list, after this conn has started closing. 5539 * 5540 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5541 * cannot get set henceforth. 5542 */ 5543 mutex_enter(&connp->conn_lock); 5544 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5545 connp->conn_state_flags |= CONN_CLOSING; 5546 if (connp->conn_idl != NULL) 5547 drain_cleanup_reqd = B_TRUE; 5548 if (connp->conn_oper_pending_ill != NULL) 5549 conn_ioctl_cleanup_reqd = B_TRUE; 5550 if (connp->conn_ilg_inuse != 0) 5551 ilg_cleanup_reqd = B_TRUE; 5552 mutex_exit(&connp->conn_lock); 5553 5554 if (IPCL_IS_UDP(connp)) 5555 udp_quiesce_conn(connp); 5556 5557 if (conn_ioctl_cleanup_reqd) 5558 conn_ioctl_cleanup(connp); 5559 5560 if (is_system_labeled() && connp->conn_anon_port) { 5561 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5562 connp->conn_mlp_type, connp->conn_ulp, 5563 ntohs(connp->conn_lport), B_FALSE); 5564 connp->conn_anon_port = 0; 5565 } 5566 connp->conn_mlp_type = mlptSingle; 5567 5568 /* 5569 * Remove this conn from any fanout list it is on. 5570 * and then wait for any threads currently operating 5571 * on this endpoint to finish 5572 */ 5573 ipcl_hash_remove(connp); 5574 5575 /* 5576 * Remove this conn from the drain list, and do 5577 * any other cleanup that may be required. 5578 * (Only non-tcp streams may have a non-null conn_idl. 5579 * TCP streams are never flow controlled, and 5580 * conn_idl will be null) 5581 */ 5582 if (drain_cleanup_reqd) 5583 conn_drain_tail(connp, B_TRUE); 5584 5585 if (connp->conn_rq == ip_g_mrouter || connp->conn_wq == ip_g_mrouter) 5586 (void) ip_mrouter_done(NULL); 5587 5588 if (ilg_cleanup_reqd) 5589 ilg_delete_all(connp); 5590 5591 conn_delete_ire(connp, NULL); 5592 5593 /* 5594 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5595 * callers from write side can't be there now because close 5596 * is in progress. The only other caller is ipcl_walk 5597 * which checks for the condemned flag. 5598 */ 5599 mutex_enter(&connp->conn_lock); 5600 connp->conn_state_flags |= CONN_CONDEMNED; 5601 while (connp->conn_ref != 1) 5602 cv_wait(&connp->conn_cv, &connp->conn_lock); 5603 connp->conn_state_flags |= CONN_QUIESCED; 5604 mutex_exit(&connp->conn_lock); 5605 } 5606 5607 /* ARGSUSED */ 5608 int 5609 ip_close(queue_t *q, int flags) 5610 { 5611 conn_t *connp; 5612 5613 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5614 5615 /* 5616 * Call the appropriate delete routine depending on whether this is 5617 * a module or device. 5618 */ 5619 if (WR(q)->q_next != NULL) { 5620 /* This is a module close */ 5621 return (ip_modclose((ill_t *)q->q_ptr)); 5622 } 5623 5624 connp = q->q_ptr; 5625 ip_quiesce_conn(connp); 5626 5627 qprocsoff(q); 5628 5629 /* 5630 * Now we are truly single threaded on this stream, and can 5631 * delete the things hanging off the connp, and finally the connp. 5632 * We removed this connp from the fanout list, it cannot be 5633 * accessed thru the fanouts, and we already waited for the 5634 * conn_ref to drop to 0. We are already in close, so 5635 * there cannot be any other thread from the top. qprocsoff 5636 * has completed, and service has completed or won't run in 5637 * future. 5638 */ 5639 ASSERT(connp->conn_ref == 1); 5640 5641 /* 5642 * A conn which was previously marked as IPCL_UDP cannot 5643 * retain the flag because it would have been cleared by 5644 * udp_close(). 5645 */ 5646 ASSERT(!IPCL_IS_UDP(connp)); 5647 5648 if (connp->conn_latch != NULL) { 5649 IPLATCH_REFRELE(connp->conn_latch); 5650 connp->conn_latch = NULL; 5651 } 5652 if (connp->conn_policy != NULL) { 5653 IPPH_REFRELE(connp->conn_policy); 5654 connp->conn_policy = NULL; 5655 } 5656 if (connp->conn_ipsec_opt_mp != NULL) { 5657 freemsg(connp->conn_ipsec_opt_mp); 5658 connp->conn_ipsec_opt_mp = NULL; 5659 } 5660 5661 inet_minor_free(ip_minor_arena, connp->conn_dev); 5662 5663 connp->conn_ref--; 5664 ipcl_conn_destroy(connp); 5665 5666 q->q_ptr = WR(q)->q_ptr = NULL; 5667 return (0); 5668 } 5669 5670 int 5671 ip_snmpmod_close(queue_t *q) 5672 { 5673 conn_t *connp = Q_TO_CONN(q); 5674 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5675 5676 qprocsoff(q); 5677 5678 if (connp->conn_flags & IPCL_UDPMOD) 5679 udp_close_free(connp); 5680 5681 if (connp->conn_cred != NULL) { 5682 crfree(connp->conn_cred); 5683 connp->conn_cred = NULL; 5684 } 5685 CONN_DEC_REF(connp); 5686 q->q_ptr = WR(q)->q_ptr = NULL; 5687 return (0); 5688 } 5689 5690 /* 5691 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5692 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5693 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5694 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5695 * queues as we never enqueue messages there and we don't handle any ioctls. 5696 * Everything else is freed. 5697 */ 5698 void 5699 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5700 { 5701 conn_t *connp = q->q_ptr; 5702 pfi_t setfn; 5703 pfi_t getfn; 5704 5705 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5706 5707 switch (DB_TYPE(mp)) { 5708 case M_PROTO: 5709 case M_PCPROTO: 5710 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5711 ((((union T_primitives *)mp->b_rptr)->type == 5712 T_SVR4_OPTMGMT_REQ) || 5713 (((union T_primitives *)mp->b_rptr)->type == 5714 T_OPTMGMT_REQ))) { 5715 /* 5716 * This is the only TPI primitive supported. Its 5717 * handling does not require tcp_t, but it does require 5718 * conn_t to check permissions. 5719 */ 5720 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5721 5722 if (connp->conn_flags & IPCL_TCPMOD) { 5723 setfn = tcp_snmp_set; 5724 getfn = tcp_snmp_get; 5725 } else { 5726 setfn = udp_snmp_set; 5727 getfn = udp_snmp_get; 5728 } 5729 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5730 freemsg(mp); 5731 return; 5732 } 5733 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5734 != NULL) 5735 qreply(q, mp); 5736 break; 5737 case M_FLUSH: 5738 case M_IOCTL: 5739 putnext(q, mp); 5740 break; 5741 default: 5742 freemsg(mp); 5743 break; 5744 } 5745 } 5746 5747 /* Return the IP checksum for the IP header at "iph". */ 5748 uint16_t 5749 ip_csum_hdr(ipha_t *ipha) 5750 { 5751 uint16_t *uph; 5752 uint32_t sum; 5753 int opt_len; 5754 5755 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5756 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5757 uph = (uint16_t *)ipha; 5758 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5759 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5760 if (opt_len > 0) { 5761 do { 5762 sum += uph[10]; 5763 sum += uph[11]; 5764 uph += 2; 5765 } while (--opt_len); 5766 } 5767 sum = (sum & 0xFFFF) + (sum >> 16); 5768 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5769 if (sum == 0xffff) 5770 sum = 0; 5771 return ((uint16_t)sum); 5772 } 5773 5774 void 5775 ip_ddi_destroy(void) 5776 { 5777 ipv4_hook_destroy(); 5778 ipv6_hook_destroy(); 5779 ip_net_destroy(); 5780 5781 tnet_fini(); 5782 tcp_ddi_destroy(); 5783 sctp_ddi_destroy(); 5784 ipsec_loader_destroy(); 5785 ipsec_policy_destroy(); 5786 ipsec_kstat_destroy(); 5787 nd_free(&ip_g_nd); 5788 mutex_destroy(&igmp_timer_lock); 5789 mutex_destroy(&mld_timer_lock); 5790 mutex_destroy(&igmp_slowtimeout_lock); 5791 mutex_destroy(&mld_slowtimeout_lock); 5792 mutex_destroy(&ip_mi_lock); 5793 mutex_destroy(&rts_clients.connf_lock); 5794 ip_ire_fini(); 5795 ip6_asp_free(); 5796 conn_drain_fini(); 5797 ipcl_destroy(); 5798 inet_minor_destroy(ip_minor_arena); 5799 icmp_kstat_fini(); 5800 ip_kstat_fini(); 5801 rw_destroy(&ipsec_capab_ills_lock); 5802 rw_destroy(&ill_g_usesrc_lock); 5803 ip_drop_unregister(&ip_dropper); 5804 } 5805 5806 5807 void 5808 ip_ddi_init(void) 5809 { 5810 TCP6_MAJ = ddi_name_to_major(TCP6); 5811 TCP_MAJ = ddi_name_to_major(TCP); 5812 SCTP_MAJ = ddi_name_to_major(SCTP); 5813 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5814 5815 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5816 5817 /* IP's IPsec code calls the packet dropper */ 5818 ip_drop_register(&ip_dropper, "IP IPsec processing"); 5819 5820 if (!ip_g_nd) { 5821 if (!ip_param_register(lcl_param_arr, A_CNT(lcl_param_arr), 5822 lcl_ndp_arr, A_CNT(lcl_ndp_arr))) { 5823 nd_free(&ip_g_nd); 5824 } 5825 } 5826 5827 ipsec_loader_init(); 5828 ipsec_policy_init(); 5829 ipsec_kstat_init(); 5830 rw_init(&ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5831 mutex_init(&igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5832 mutex_init(&mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5833 mutex_init(&igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5834 mutex_init(&mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5835 mutex_init(&ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5836 mutex_init(&ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5837 rw_init(&ill_g_lock, NULL, RW_DEFAULT, NULL); 5838 rw_init(&ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5839 rw_init(&ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5840 5841 /* 5842 * For IP and TCP the minor numbers should start from 2 since we have 4 5843 * initial devices: ip, ip6, tcp, tcp6. 5844 */ 5845 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5846 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5847 cmn_err(CE_PANIC, 5848 "ip_ddi_init: ip_minor_arena creation failed\n"); 5849 } 5850 5851 ipcl_init(); 5852 mutex_init(&rts_clients.connf_lock, NULL, MUTEX_DEFAULT, NULL); 5853 ip_ire_init(); 5854 ip6_asp_init(); 5855 ipif_init(); 5856 conn_drain_init(); 5857 tcp_ddi_init(); 5858 sctp_ddi_init(); 5859 5860 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5861 5862 if ((ip_kstat = kstat_create("ip", 0, "ipstat", 5863 "net", KSTAT_TYPE_NAMED, 5864 sizeof (ip_statistics) / sizeof (kstat_named_t), 5865 KSTAT_FLAG_VIRTUAL)) != NULL) { 5866 ip_kstat->ks_data = &ip_statistics; 5867 kstat_install(ip_kstat); 5868 } 5869 ip_kstat_init(); 5870 ip6_kstat_init(); 5871 icmp_kstat_init(); 5872 ipsec_loader_start(); 5873 tnet_init(); 5874 5875 ip_net_init(); 5876 ipv4_hook_init(); 5877 ipv6_hook_init(); 5878 } 5879 5880 /* 5881 * Allocate and initialize a DLPI template of the specified length. (May be 5882 * called as writer.) 5883 */ 5884 mblk_t * 5885 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 5886 { 5887 mblk_t *mp; 5888 5889 mp = allocb(len, BPRI_MED); 5890 if (!mp) 5891 return (NULL); 5892 5893 /* 5894 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 5895 * of which we don't seem to use) are sent with M_PCPROTO, and 5896 * that other DLPI are M_PROTO. 5897 */ 5898 if (prim == DL_INFO_REQ) { 5899 mp->b_datap->db_type = M_PCPROTO; 5900 } else { 5901 mp->b_datap->db_type = M_PROTO; 5902 } 5903 5904 mp->b_wptr = mp->b_rptr + len; 5905 bzero(mp->b_rptr, len); 5906 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 5907 return (mp); 5908 } 5909 5910 const char * 5911 dlpi_prim_str(int prim) 5912 { 5913 switch (prim) { 5914 case DL_INFO_REQ: return ("DL_INFO_REQ"); 5915 case DL_INFO_ACK: return ("DL_INFO_ACK"); 5916 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 5917 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 5918 case DL_BIND_REQ: return ("DL_BIND_REQ"); 5919 case DL_BIND_ACK: return ("DL_BIND_ACK"); 5920 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 5921 case DL_OK_ACK: return ("DL_OK_ACK"); 5922 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 5923 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 5924 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 5925 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 5926 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 5927 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 5928 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 5929 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 5930 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 5931 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 5932 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 5933 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 5934 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 5935 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 5936 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 5937 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 5938 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 5939 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 5940 default: return ("<unknown primitive>"); 5941 } 5942 } 5943 5944 const char * 5945 dlpi_err_str(int err) 5946 { 5947 switch (err) { 5948 case DL_ACCESS: return ("DL_ACCESS"); 5949 case DL_BADADDR: return ("DL_BADADDR"); 5950 case DL_BADCORR: return ("DL_BADCORR"); 5951 case DL_BADDATA: return ("DL_BADDATA"); 5952 case DL_BADPPA: return ("DL_BADPPA"); 5953 case DL_BADPRIM: return ("DL_BADPRIM"); 5954 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 5955 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 5956 case DL_BADSAP: return ("DL_BADSAP"); 5957 case DL_BADTOKEN: return ("DL_BADTOKEN"); 5958 case DL_BOUND: return ("DL_BOUND"); 5959 case DL_INITFAILED: return ("DL_INITFAILED"); 5960 case DL_NOADDR: return ("DL_NOADDR"); 5961 case DL_NOTINIT: return ("DL_NOTINIT"); 5962 case DL_OUTSTATE: return ("DL_OUTSTATE"); 5963 case DL_SYSERR: return ("DL_SYSERR"); 5964 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 5965 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 5966 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 5967 case DL_TOOMANY: return ("DL_TOOMANY"); 5968 case DL_NOTENAB: return ("DL_NOTENAB"); 5969 case DL_BUSY: return ("DL_BUSY"); 5970 case DL_NOAUTO: return ("DL_NOAUTO"); 5971 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 5972 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 5973 case DL_XIDAUTO: return ("DL_XIDAUTO"); 5974 case DL_TESTAUTO: return ("DL_TESTAUTO"); 5975 case DL_PENDING: return ("DL_PENDING"); 5976 default: return ("<unknown error>"); 5977 } 5978 } 5979 5980 /* 5981 * Debug formatting routine. Returns a character string representation of the 5982 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5983 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 5984 * 5985 * Once the ndd table-printing interfaces are removed, this can be changed to 5986 * standard dotted-decimal form. 5987 */ 5988 char * 5989 ip_dot_addr(ipaddr_t addr, char *buf) 5990 { 5991 uint8_t *ap = (uint8_t *)&addr; 5992 5993 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 5994 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 5995 return (buf); 5996 } 5997 5998 /* 5999 * Write the given MAC address as a printable string in the usual colon- 6000 * separated format. 6001 */ 6002 const char * 6003 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6004 { 6005 char *bp; 6006 6007 if (alen == 0 || buflen < 4) 6008 return ("?"); 6009 bp = buf; 6010 for (;;) { 6011 /* 6012 * If there are more MAC address bytes available, but we won't 6013 * have any room to print them, then add "..." to the string 6014 * instead. See below for the 'magic number' explanation. 6015 */ 6016 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6017 (void) strcpy(bp, "..."); 6018 break; 6019 } 6020 (void) sprintf(bp, "%02x", *addr++); 6021 bp += 2; 6022 if (--alen == 0) 6023 break; 6024 *bp++ = ':'; 6025 buflen -= 3; 6026 /* 6027 * At this point, based on the first 'if' statement above, 6028 * either alen == 1 and buflen >= 3, or alen > 1 and 6029 * buflen >= 4. The first case leaves room for the final "xx" 6030 * number and trailing NUL byte. The second leaves room for at 6031 * least "...". Thus the apparently 'magic' numbers chosen for 6032 * that statement. 6033 */ 6034 } 6035 return (buf); 6036 } 6037 6038 /* 6039 * Send an ICMP error after patching up the packet appropriately. Returns 6040 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6041 */ 6042 static boolean_t 6043 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6044 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, zoneid_t zoneid) 6045 { 6046 ipha_t *ipha; 6047 mblk_t *first_mp; 6048 boolean_t secure; 6049 unsigned char db_type; 6050 6051 first_mp = mp; 6052 if (mctl_present) { 6053 mp = mp->b_cont; 6054 secure = ipsec_in_is_secure(first_mp); 6055 ASSERT(mp != NULL); 6056 } else { 6057 /* 6058 * If this is an ICMP error being reported - which goes 6059 * up as M_CTLs, we need to convert them to M_DATA till 6060 * we finish checking with global policy because 6061 * ipsec_check_global_policy() assumes M_DATA as clear 6062 * and M_CTL as secure. 6063 */ 6064 db_type = DB_TYPE(mp); 6065 DB_TYPE(mp) = M_DATA; 6066 secure = B_FALSE; 6067 } 6068 /* 6069 * We are generating an icmp error for some inbound packet. 6070 * Called from all ip_fanout_(udp, tcp, proto) functions. 6071 * Before we generate an error, check with global policy 6072 * to see whether this is allowed to enter the system. As 6073 * there is no "conn", we are checking with global policy. 6074 */ 6075 ipha = (ipha_t *)mp->b_rptr; 6076 if (secure || ipsec_inbound_v4_policy_present) { 6077 first_mp = ipsec_check_global_policy(first_mp, NULL, 6078 ipha, NULL, mctl_present); 6079 if (first_mp == NULL) 6080 return (B_FALSE); 6081 } 6082 6083 if (!mctl_present) 6084 DB_TYPE(mp) = db_type; 6085 6086 if (flags & IP_FF_SEND_ICMP) { 6087 if (flags & IP_FF_HDR_COMPLETE) { 6088 if (ip_hdr_complete(ipha, zoneid)) { 6089 freemsg(first_mp); 6090 return (B_TRUE); 6091 } 6092 } 6093 if (flags & IP_FF_CKSUM) { 6094 /* 6095 * Have to correct checksum since 6096 * the packet might have been 6097 * fragmented and the reassembly code in ip_rput 6098 * does not restore the IP checksum. 6099 */ 6100 ipha->ipha_hdr_checksum = 0; 6101 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6102 } 6103 switch (icmp_type) { 6104 case ICMP_DEST_UNREACHABLE: 6105 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid); 6106 break; 6107 default: 6108 freemsg(first_mp); 6109 break; 6110 } 6111 } else { 6112 freemsg(first_mp); 6113 return (B_FALSE); 6114 } 6115 6116 return (B_TRUE); 6117 } 6118 6119 /* 6120 * Used to send an ICMP error message when a packet is received for 6121 * a protocol that is not supported. The mblk passed as argument 6122 * is consumed by this function. 6123 */ 6124 void 6125 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid) 6126 { 6127 mblk_t *mp; 6128 ipha_t *ipha; 6129 ill_t *ill; 6130 ipsec_in_t *ii; 6131 6132 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6133 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6134 6135 mp = ipsec_mp->b_cont; 6136 ipsec_mp->b_cont = NULL; 6137 ipha = (ipha_t *)mp->b_rptr; 6138 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6139 if (ip_fanout_send_icmp(q, mp, flags, ICMP_DEST_UNREACHABLE, 6140 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid)) { 6141 BUMP_MIB(&ip_mib, ipInUnknownProtos); 6142 } 6143 } else { 6144 /* Get ill from index in ipsec_in_t. */ 6145 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6146 B_TRUE, NULL, NULL, NULL, NULL); 6147 if (ill != NULL) { 6148 if (ip_fanout_send_icmp_v6(q, mp, flags, 6149 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6150 0, B_FALSE, zoneid)) { 6151 BUMP_MIB(ill->ill_ip6_mib, ipv6InUnknownProtos); 6152 } 6153 6154 ill_refrele(ill); 6155 } else { /* re-link for the freemsg() below. */ 6156 ipsec_mp->b_cont = mp; 6157 } 6158 } 6159 6160 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6161 freemsg(ipsec_mp); 6162 } 6163 6164 /* 6165 * See if the inbound datagram has had IPsec processing applied to it. 6166 */ 6167 boolean_t 6168 ipsec_in_is_secure(mblk_t *ipsec_mp) 6169 { 6170 ipsec_in_t *ii; 6171 6172 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6173 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6174 6175 if (ii->ipsec_in_loopback) { 6176 return (ii->ipsec_in_secure); 6177 } else { 6178 return (ii->ipsec_in_ah_sa != NULL || 6179 ii->ipsec_in_esp_sa != NULL || 6180 ii->ipsec_in_decaps); 6181 } 6182 } 6183 6184 /* 6185 * Handle protocols with which IP is less intimate. There 6186 * can be more than one stream bound to a particular 6187 * protocol. When this is the case, normally each one gets a copy 6188 * of any incoming packets. 6189 * 6190 * IPSEC NOTE : 6191 * 6192 * Don't allow a secure packet going up a non-secure connection. 6193 * We don't allow this because 6194 * 6195 * 1) Reply might go out in clear which will be dropped at 6196 * the sending side. 6197 * 2) If the reply goes out in clear it will give the 6198 * adversary enough information for getting the key in 6199 * most of the cases. 6200 * 6201 * Moreover getting a secure packet when we expect clear 6202 * implies that SA's were added without checking for 6203 * policy on both ends. This should not happen once ISAKMP 6204 * is used to negotiate SAs as SAs will be added only after 6205 * verifying the policy. 6206 * 6207 * NOTE : If the packet was tunneled and not multicast we only send 6208 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6209 * back to delivering packets to AF_INET6 raw sockets. 6210 * 6211 * IPQoS Notes: 6212 * Once we have determined the client, invoke IPPF processing. 6213 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6214 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6215 * ip_policy will be false. 6216 * 6217 * Zones notes: 6218 * Currently only applications in the global zone can create raw sockets for 6219 * protocols other than ICMP. So unlike the broadcast / multicast case of 6220 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6221 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6222 */ 6223 static void 6224 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6225 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6226 zoneid_t zoneid) 6227 { 6228 queue_t *rq; 6229 mblk_t *mp1, *first_mp1; 6230 uint_t protocol = ipha->ipha_protocol; 6231 ipaddr_t dst; 6232 boolean_t one_only; 6233 mblk_t *first_mp = mp; 6234 boolean_t secure; 6235 uint32_t ill_index; 6236 conn_t *connp, *first_connp, *next_connp; 6237 connf_t *connfp; 6238 boolean_t shared_addr; 6239 6240 if (mctl_present) { 6241 mp = first_mp->b_cont; 6242 secure = ipsec_in_is_secure(first_mp); 6243 ASSERT(mp != NULL); 6244 } else { 6245 secure = B_FALSE; 6246 } 6247 dst = ipha->ipha_dst; 6248 /* 6249 * If the packet was tunneled and not multicast we only send to it 6250 * the first match. 6251 */ 6252 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6253 !CLASSD(dst)); 6254 6255 shared_addr = (zoneid == ALL_ZONES); 6256 if (shared_addr) { 6257 /* 6258 * We don't allow multilevel ports for raw IP, so no need to 6259 * check for that here. 6260 */ 6261 zoneid = tsol_packet_to_zoneid(mp); 6262 } 6263 6264 connfp = &ipcl_proto_fanout[protocol]; 6265 mutex_enter(&connfp->connf_lock); 6266 connp = connfp->connf_head; 6267 for (connp = connfp->connf_head; connp != NULL; 6268 connp = connp->conn_next) { 6269 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6270 zoneid) && 6271 (!is_system_labeled() || 6272 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6273 connp))) 6274 break; 6275 } 6276 6277 if (connp == NULL || connp->conn_upq == NULL) { 6278 /* 6279 * No one bound to these addresses. Is 6280 * there a client that wants all 6281 * unclaimed datagrams? 6282 */ 6283 mutex_exit(&connfp->connf_lock); 6284 /* 6285 * Check for IPPROTO_ENCAP... 6286 */ 6287 if (protocol == IPPROTO_ENCAP && ip_g_mrouter) { 6288 /* 6289 * If an IPsec mblk is here on a multicast 6290 * tunnel (using ip_mroute stuff), check policy here, 6291 * THEN ship off to ip_mroute_decap(). 6292 * 6293 * BTW, If I match a configured IP-in-IP 6294 * tunnel, this path will not be reached, and 6295 * ip_mroute_decap will never be called. 6296 */ 6297 first_mp = ipsec_check_global_policy(first_mp, connp, 6298 ipha, NULL, mctl_present); 6299 if (first_mp != NULL) { 6300 if (mctl_present) 6301 freeb(first_mp); 6302 ip_mroute_decap(q, mp); 6303 } /* Else we already freed everything! */ 6304 } else { 6305 /* 6306 * Otherwise send an ICMP protocol unreachable. 6307 */ 6308 if (ip_fanout_send_icmp(q, first_mp, flags, 6309 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6310 mctl_present, zoneid)) { 6311 BUMP_MIB(&ip_mib, ipInUnknownProtos); 6312 } 6313 } 6314 return; 6315 } 6316 CONN_INC_REF(connp); 6317 first_connp = connp; 6318 6319 /* 6320 * Only send message to one tunnel driver by immediately 6321 * terminating the loop. 6322 */ 6323 connp = one_only ? NULL : connp->conn_next; 6324 6325 for (;;) { 6326 while (connp != NULL) { 6327 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6328 flags, zoneid) && 6329 (!is_system_labeled() || 6330 tsol_receive_local(mp, &dst, IPV4_VERSION, 6331 shared_addr, connp))) 6332 break; 6333 connp = connp->conn_next; 6334 } 6335 6336 /* 6337 * Copy the packet. 6338 */ 6339 if (connp == NULL || connp->conn_upq == NULL || 6340 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6341 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6342 /* 6343 * No more interested clients or memory 6344 * allocation failed 6345 */ 6346 connp = first_connp; 6347 break; 6348 } 6349 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6350 CONN_INC_REF(connp); 6351 mutex_exit(&connfp->connf_lock); 6352 rq = connp->conn_rq; 6353 if (!canputnext(rq)) { 6354 if (flags & IP_FF_RAWIP) { 6355 BUMP_MIB(&ip_mib, rawipInOverflows); 6356 } else { 6357 BUMP_MIB(&icmp_mib, icmpInOverflows); 6358 } 6359 6360 freemsg(first_mp1); 6361 } else { 6362 /* 6363 * Don't enforce here if we're an actual tunnel - 6364 * let "tun" do it instead. 6365 */ 6366 if (!IPCL_IS_IPTUN(connp) && 6367 (CONN_INBOUND_POLICY_PRESENT(connp) || secure)) { 6368 first_mp1 = ipsec_check_inbound_policy 6369 (first_mp1, connp, ipha, NULL, 6370 mctl_present); 6371 } 6372 if (first_mp1 != NULL) { 6373 /* 6374 * ip_fanout_proto also gets called from 6375 * icmp_inbound_error_fanout, in which case 6376 * the msg type is M_CTL. Don't add info 6377 * in this case for the time being. In future 6378 * when there is a need for knowing the 6379 * inbound iface index for ICMP error msgs, 6380 * then this can be changed. 6381 */ 6382 if ((connp->conn_recvif != 0) && 6383 (mp->b_datap->db_type != M_CTL)) { 6384 /* 6385 * the actual data will be 6386 * contained in b_cont upon 6387 * successful return of the 6388 * following call else 6389 * original mblk is returned 6390 */ 6391 ASSERT(recv_ill != NULL); 6392 mp1 = ip_add_info(mp1, recv_ill, 6393 IPF_RECVIF); 6394 } 6395 BUMP_MIB(&ip_mib, ipInDelivers); 6396 if (mctl_present) 6397 freeb(first_mp1); 6398 putnext(rq, mp1); 6399 } 6400 } 6401 mutex_enter(&connfp->connf_lock); 6402 /* Follow the next pointer before releasing the conn. */ 6403 next_connp = connp->conn_next; 6404 CONN_DEC_REF(connp); 6405 connp = next_connp; 6406 } 6407 6408 /* Last one. Send it upstream. */ 6409 mutex_exit(&connfp->connf_lock); 6410 6411 /* 6412 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6413 * will be set to false. 6414 */ 6415 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6416 ill_index = ill->ill_phyint->phyint_ifindex; 6417 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6418 if (mp == NULL) { 6419 CONN_DEC_REF(connp); 6420 if (mctl_present) { 6421 freeb(first_mp); 6422 } 6423 return; 6424 } 6425 } 6426 6427 rq = connp->conn_rq; 6428 if (!canputnext(rq)) { 6429 if (flags & IP_FF_RAWIP) { 6430 BUMP_MIB(&ip_mib, rawipInOverflows); 6431 } else { 6432 BUMP_MIB(&icmp_mib, icmpInOverflows); 6433 } 6434 6435 freemsg(first_mp); 6436 } else { 6437 if (IPCL_IS_IPTUN(connp)) { 6438 /* 6439 * Tunneled packet. We enforce policy in the tunnel 6440 * module itself. 6441 * 6442 * Send the WHOLE packet up (incl. IPSEC_IN) without 6443 * a policy check. 6444 */ 6445 putnext(rq, first_mp); 6446 CONN_DEC_REF(connp); 6447 return; 6448 } 6449 6450 if ((CONN_INBOUND_POLICY_PRESENT(connp) || secure)) { 6451 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6452 ipha, NULL, mctl_present); 6453 } 6454 6455 if (first_mp != NULL) { 6456 /* 6457 * ip_fanout_proto also gets called 6458 * from icmp_inbound_error_fanout, in 6459 * which case the msg type is M_CTL. 6460 * Don't add info in this case for time 6461 * being. In future when there is a 6462 * need for knowing the inbound iface 6463 * index for ICMP error msgs, then this 6464 * can be changed 6465 */ 6466 if ((connp->conn_recvif != 0) && 6467 (mp->b_datap->db_type != M_CTL)) { 6468 /* 6469 * the actual data will be contained in 6470 * b_cont upon successful return 6471 * of the following call else original 6472 * mblk is returned 6473 */ 6474 ASSERT(recv_ill != NULL); 6475 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6476 } 6477 BUMP_MIB(&ip_mib, ipInDelivers); 6478 putnext(rq, mp); 6479 if (mctl_present) 6480 freeb(first_mp); 6481 } 6482 } 6483 CONN_DEC_REF(connp); 6484 } 6485 6486 /* 6487 * Fanout for TCP packets 6488 * The caller puts <fport, lport> in the ports parameter. 6489 * 6490 * IPQoS Notes 6491 * Before sending it to the client, invoke IPPF processing. 6492 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6493 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6494 * ip_policy is false. 6495 */ 6496 static void 6497 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6498 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6499 { 6500 mblk_t *first_mp; 6501 boolean_t secure; 6502 uint32_t ill_index; 6503 int ip_hdr_len; 6504 tcph_t *tcph; 6505 boolean_t syn_present = B_FALSE; 6506 conn_t *connp; 6507 6508 first_mp = mp; 6509 if (mctl_present) { 6510 ASSERT(first_mp->b_datap->db_type == M_CTL); 6511 mp = first_mp->b_cont; 6512 secure = ipsec_in_is_secure(first_mp); 6513 ASSERT(mp != NULL); 6514 } else { 6515 secure = B_FALSE; 6516 } 6517 6518 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6519 6520 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 6521 NULL) { 6522 /* 6523 * No connected connection or listener. Send a 6524 * TH_RST via tcp_xmit_listeners_reset. 6525 */ 6526 6527 /* Initiate IPPf processing, if needed. */ 6528 if (IPP_ENABLED(IPP_LOCAL_IN)) { 6529 uint32_t ill_index; 6530 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6531 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6532 if (first_mp == NULL) 6533 return; 6534 } 6535 BUMP_MIB(&ip_mib, ipInDelivers); 6536 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6537 zoneid)); 6538 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 6539 return; 6540 } 6541 6542 /* 6543 * Allocate the SYN for the TCP connection here itself 6544 */ 6545 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6546 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6547 if (IPCL_IS_TCP(connp)) { 6548 squeue_t *sqp; 6549 6550 /* 6551 * For fused tcp loopback, assign the eager's 6552 * squeue to be that of the active connect's. 6553 * Note that we don't check for IP_FF_LOOPBACK 6554 * here since this routine gets called only 6555 * for loopback (unlike the IPv6 counterpart). 6556 */ 6557 ASSERT(Q_TO_CONN(q) != NULL); 6558 if (do_tcp_fusion && 6559 !CONN_INBOUND_POLICY_PRESENT(connp) && !secure && 6560 !IPP_ENABLED(IPP_LOCAL_IN) && !ip_policy && 6561 IPCL_IS_TCP(Q_TO_CONN(q))) { 6562 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6563 sqp = Q_TO_CONN(q)->conn_sqp; 6564 } else { 6565 sqp = IP_SQUEUE_GET(lbolt); 6566 } 6567 6568 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6569 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6570 syn_present = B_TRUE; 6571 } 6572 } 6573 6574 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6575 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6576 if ((flags & TH_RST) || (flags & TH_URG)) { 6577 CONN_DEC_REF(connp); 6578 freemsg(first_mp); 6579 return; 6580 } 6581 if (flags & TH_ACK) { 6582 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 6583 CONN_DEC_REF(connp); 6584 return; 6585 } 6586 6587 CONN_DEC_REF(connp); 6588 freemsg(first_mp); 6589 return; 6590 } 6591 6592 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6593 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6594 NULL, mctl_present); 6595 if (first_mp == NULL) { 6596 CONN_DEC_REF(connp); 6597 return; 6598 } 6599 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6600 ASSERT(syn_present); 6601 if (mctl_present) { 6602 ASSERT(first_mp != mp); 6603 first_mp->b_datap->db_struioflag |= 6604 STRUIO_POLICY; 6605 } else { 6606 ASSERT(first_mp == mp); 6607 mp->b_datap->db_struioflag &= 6608 ~STRUIO_EAGER; 6609 mp->b_datap->db_struioflag |= 6610 STRUIO_POLICY; 6611 } 6612 } else { 6613 /* 6614 * Discard first_mp early since we're dealing with a 6615 * fully-connected conn_t and tcp doesn't do policy in 6616 * this case. 6617 */ 6618 if (mctl_present) { 6619 freeb(first_mp); 6620 mctl_present = B_FALSE; 6621 } 6622 first_mp = mp; 6623 } 6624 } 6625 6626 /* 6627 * Initiate policy processing here if needed. If we get here from 6628 * icmp_inbound_error_fanout, ip_policy is false. 6629 */ 6630 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6631 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6632 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6633 if (mp == NULL) { 6634 CONN_DEC_REF(connp); 6635 if (mctl_present) 6636 freeb(first_mp); 6637 return; 6638 } else if (mctl_present) { 6639 ASSERT(first_mp != mp); 6640 first_mp->b_cont = mp; 6641 } else { 6642 first_mp = mp; 6643 } 6644 } 6645 6646 6647 6648 /* Handle IPv6 socket options. */ 6649 if (!syn_present && 6650 connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) { 6651 /* Add header */ 6652 ASSERT(recv_ill != NULL); 6653 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6654 if (mp == NULL) { 6655 CONN_DEC_REF(connp); 6656 if (mctl_present) 6657 freeb(first_mp); 6658 return; 6659 } else if (mctl_present) { 6660 /* 6661 * ip_add_info might return a new mp. 6662 */ 6663 ASSERT(first_mp != mp); 6664 first_mp->b_cont = mp; 6665 } else { 6666 first_mp = mp; 6667 } 6668 } 6669 6670 BUMP_MIB(&ip_mib, ipInDelivers); 6671 if (IPCL_IS_TCP(connp)) { 6672 (*ip_input_proc)(connp->conn_sqp, first_mp, 6673 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6674 } else { 6675 putnext(connp->conn_rq, first_mp); 6676 CONN_DEC_REF(connp); 6677 } 6678 } 6679 6680 /* 6681 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6682 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6683 * Caller is responsible for dropping references to the conn, and freeing 6684 * first_mp. 6685 * 6686 * IPQoS Notes 6687 * Before sending it to the client, invoke IPPF processing. Policy processing 6688 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6689 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6690 * ip_wput_local, ip_policy is false. 6691 */ 6692 static void 6693 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6694 boolean_t secure, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6695 boolean_t ip_policy) 6696 { 6697 boolean_t mctl_present = (first_mp != NULL); 6698 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6699 uint32_t ill_index; 6700 6701 if (mctl_present) 6702 first_mp->b_cont = mp; 6703 else 6704 first_mp = mp; 6705 6706 if (CONN_UDP_FLOWCTLD(connp)) { 6707 BUMP_MIB(&ip_mib, udpInOverflows); 6708 freemsg(first_mp); 6709 return; 6710 } 6711 6712 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6713 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6714 NULL, mctl_present); 6715 if (first_mp == NULL) 6716 return; /* Freed by ipsec_check_inbound_policy(). */ 6717 } 6718 if (mctl_present) 6719 freeb(first_mp); 6720 6721 if (connp->conn_recvif) 6722 in_flags = IPF_RECVIF; 6723 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 6724 in_flags |= IPF_RECVSLLA; 6725 6726 /* Handle IPv6 options. */ 6727 if (connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) 6728 in_flags |= IPF_RECVIF; 6729 6730 /* 6731 * Initiate IPPF processing here, if needed. Note first_mp won't be 6732 * freed if the packet is dropped. The caller will do so. 6733 */ 6734 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6735 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6736 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6737 if (mp == NULL) { 6738 return; 6739 } 6740 } 6741 if ((in_flags != 0) && 6742 (mp->b_datap->db_type != M_CTL)) { 6743 /* 6744 * The actual data will be contained in b_cont 6745 * upon successful return of the following call 6746 * else original mblk is returned 6747 */ 6748 ASSERT(recv_ill != NULL); 6749 mp = ip_add_info(mp, recv_ill, in_flags); 6750 } 6751 BUMP_MIB(&ip_mib, ipInDelivers); 6752 6753 /* Send it upstream */ 6754 CONN_UDP_RECV(connp, mp); 6755 } 6756 6757 /* 6758 * Fanout for UDP packets. 6759 * The caller puts <fport, lport> in the ports parameter. 6760 * 6761 * If SO_REUSEADDR is set all multicast and broadcast packets 6762 * will be delivered to all streams bound to the same port. 6763 * 6764 * Zones notes: 6765 * Multicast and broadcast packets will be distributed to streams in all zones. 6766 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 6767 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 6768 * packets. To maintain this behavior with multiple zones, the conns are grouped 6769 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 6770 * each zone. If unset, all the following conns in the same zone are skipped. 6771 */ 6772 static void 6773 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 6774 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 6775 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 6776 { 6777 uint32_t dstport, srcport; 6778 ipaddr_t dst; 6779 mblk_t *first_mp; 6780 boolean_t secure; 6781 in6_addr_t v6src; 6782 conn_t *connp; 6783 connf_t *connfp; 6784 conn_t *first_connp; 6785 conn_t *next_connp; 6786 mblk_t *mp1, *first_mp1; 6787 ipaddr_t src; 6788 zoneid_t last_zoneid; 6789 boolean_t reuseaddr; 6790 boolean_t shared_addr; 6791 6792 first_mp = mp; 6793 if (mctl_present) { 6794 mp = first_mp->b_cont; 6795 first_mp->b_cont = NULL; 6796 secure = ipsec_in_is_secure(first_mp); 6797 ASSERT(mp != NULL); 6798 } else { 6799 first_mp = NULL; 6800 secure = B_FALSE; 6801 } 6802 6803 /* Extract ports in net byte order */ 6804 dstport = htons(ntohl(ports) & 0xFFFF); 6805 srcport = htons(ntohl(ports) >> 16); 6806 dst = ipha->ipha_dst; 6807 src = ipha->ipha_src; 6808 6809 shared_addr = (zoneid == ALL_ZONES); 6810 if (shared_addr) { 6811 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 6812 if (zoneid == ALL_ZONES) 6813 zoneid = tsol_packet_to_zoneid(mp); 6814 } 6815 6816 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6817 mutex_enter(&connfp->connf_lock); 6818 connp = connfp->connf_head; 6819 if (!broadcast && !CLASSD(dst)) { 6820 /* 6821 * Not broadcast or multicast. Send to the one (first) 6822 * client we find. No need to check conn_wantpacket() 6823 * since IP_BOUND_IF/conn_incoming_ill does not apply to 6824 * IPv4 unicast packets. 6825 */ 6826 while ((connp != NULL) && 6827 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 6828 !IPCL_ZONE_MATCH(connp, zoneid))) { 6829 connp = connp->conn_next; 6830 } 6831 6832 if (connp == NULL || connp->conn_upq == NULL) 6833 goto notfound; 6834 6835 if (is_system_labeled() && 6836 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6837 connp)) 6838 goto notfound; 6839 6840 CONN_INC_REF(connp); 6841 mutex_exit(&connfp->connf_lock); 6842 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6843 recv_ill, ip_policy); 6844 IP_STAT(ip_udp_fannorm); 6845 CONN_DEC_REF(connp); 6846 return; 6847 } 6848 6849 /* 6850 * Broadcast and multicast case 6851 * 6852 * Need to check conn_wantpacket(). 6853 * If SO_REUSEADDR has been set on the first we send the 6854 * packet to all clients that have joined the group and 6855 * match the port. 6856 */ 6857 6858 while (connp != NULL) { 6859 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 6860 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6861 (!is_system_labeled() || 6862 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6863 connp))) 6864 break; 6865 connp = connp->conn_next; 6866 } 6867 6868 if (connp == NULL || connp->conn_upq == NULL) 6869 goto notfound; 6870 6871 first_connp = connp; 6872 /* 6873 * When SO_REUSEADDR is not set, send the packet only to the first 6874 * matching connection in its zone by keeping track of the zoneid. 6875 */ 6876 reuseaddr = first_connp->conn_reuseaddr; 6877 last_zoneid = first_connp->conn_zoneid; 6878 6879 CONN_INC_REF(connp); 6880 connp = connp->conn_next; 6881 for (;;) { 6882 while (connp != NULL) { 6883 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 6884 (reuseaddr || connp->conn_zoneid != last_zoneid) && 6885 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6886 (!is_system_labeled() || 6887 tsol_receive_local(mp, &dst, IPV4_VERSION, 6888 shared_addr, connp))) 6889 break; 6890 connp = connp->conn_next; 6891 } 6892 /* 6893 * Just copy the data part alone. The mctl part is 6894 * needed just for verifying policy and it is never 6895 * sent up. 6896 */ 6897 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6898 ((mp1 = copymsg(mp)) == NULL))) { 6899 /* 6900 * No more interested clients or memory 6901 * allocation failed 6902 */ 6903 connp = first_connp; 6904 break; 6905 } 6906 if (connp->conn_zoneid != last_zoneid) { 6907 /* 6908 * Update the zoneid so that the packet isn't sent to 6909 * any more conns in the same zone unless SO_REUSEADDR 6910 * is set. 6911 */ 6912 reuseaddr = connp->conn_reuseaddr; 6913 last_zoneid = connp->conn_zoneid; 6914 } 6915 if (first_mp != NULL) { 6916 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6917 ipsec_info_type == IPSEC_IN); 6918 first_mp1 = ipsec_in_tag(first_mp, NULL); 6919 if (first_mp1 == NULL) { 6920 freemsg(mp1); 6921 connp = first_connp; 6922 break; 6923 } 6924 } else { 6925 first_mp1 = NULL; 6926 } 6927 CONN_INC_REF(connp); 6928 mutex_exit(&connfp->connf_lock); 6929 /* 6930 * IPQoS notes: We don't send the packet for policy 6931 * processing here, will do it for the last one (below). 6932 * i.e. we do it per-packet now, but if we do policy 6933 * processing per-conn, then we would need to do it 6934 * here too. 6935 */ 6936 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6937 ipha, flags, recv_ill, B_FALSE); 6938 mutex_enter(&connfp->connf_lock); 6939 /* Follow the next pointer before releasing the conn. */ 6940 next_connp = connp->conn_next; 6941 IP_STAT(ip_udp_fanmb); 6942 CONN_DEC_REF(connp); 6943 connp = next_connp; 6944 } 6945 6946 /* Last one. Send it upstream. */ 6947 mutex_exit(&connfp->connf_lock); 6948 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6949 ip_policy); 6950 IP_STAT(ip_udp_fanmb); 6951 CONN_DEC_REF(connp); 6952 return; 6953 6954 notfound: 6955 6956 mutex_exit(&connfp->connf_lock); 6957 IP_STAT(ip_udp_fanothers); 6958 /* 6959 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 6960 * have already been matched above, since they live in the IPv4 6961 * fanout tables. This implies we only need to 6962 * check for IPv6 in6addr_any endpoints here. 6963 * Thus we compare using ipv6_all_zeros instead of the destination 6964 * address, except for the multicast group membership lookup which 6965 * uses the IPv4 destination. 6966 */ 6967 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 6968 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6969 mutex_enter(&connfp->connf_lock); 6970 connp = connfp->connf_head; 6971 if (!broadcast && !CLASSD(dst)) { 6972 while (connp != NULL) { 6973 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6974 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 6975 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6976 !connp->conn_ipv6_v6only) 6977 break; 6978 connp = connp->conn_next; 6979 } 6980 6981 if (connp != NULL && is_system_labeled() && 6982 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6983 connp)) 6984 connp = NULL; 6985 6986 if (connp == NULL || connp->conn_upq == NULL) { 6987 /* 6988 * No one bound to this port. Is 6989 * there a client that wants all 6990 * unclaimed datagrams? 6991 */ 6992 mutex_exit(&connfp->connf_lock); 6993 6994 if (mctl_present) 6995 first_mp->b_cont = mp; 6996 else 6997 first_mp = mp; 6998 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6999 ip_fanout_proto(q, first_mp, ill, ipha, 7000 flags | IP_FF_RAWIP, mctl_present, 7001 ip_policy, recv_ill, zoneid); 7002 } else { 7003 if (ip_fanout_send_icmp(q, first_mp, flags, 7004 ICMP_DEST_UNREACHABLE, 7005 ICMP_PORT_UNREACHABLE, 7006 mctl_present, zoneid)) { 7007 BUMP_MIB(&ip_mib, udpNoPorts); 7008 } 7009 } 7010 return; 7011 } 7012 7013 CONN_INC_REF(connp); 7014 mutex_exit(&connfp->connf_lock); 7015 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 7016 recv_ill, ip_policy); 7017 CONN_DEC_REF(connp); 7018 return; 7019 } 7020 /* 7021 * IPv4 multicast packet being delivered to an AF_INET6 7022 * in6addr_any endpoint. 7023 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7024 * and not conn_wantpacket_v6() since any multicast membership is 7025 * for an IPv4-mapped multicast address. 7026 * The packet is sent to all clients in all zones that have joined the 7027 * group and match the port. 7028 */ 7029 while (connp != NULL) { 7030 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7031 srcport, v6src) && 7032 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7033 (!is_system_labeled() || 7034 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7035 connp))) 7036 break; 7037 connp = connp->conn_next; 7038 } 7039 7040 if (connp == NULL || connp->conn_upq == NULL) { 7041 /* 7042 * No one bound to this port. Is 7043 * there a client that wants all 7044 * unclaimed datagrams? 7045 */ 7046 mutex_exit(&connfp->connf_lock); 7047 7048 if (mctl_present) 7049 first_mp->b_cont = mp; 7050 else 7051 first_mp = mp; 7052 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 7053 ip_fanout_proto(q, first_mp, ill, ipha, 7054 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7055 recv_ill, zoneid); 7056 } else { 7057 /* 7058 * We used to attempt to send an icmp error here, but 7059 * since this is known to be a multicast packet 7060 * and we don't send icmp errors in response to 7061 * multicast, just drop the packet and give up sooner. 7062 */ 7063 BUMP_MIB(&ip_mib, udpNoPorts); 7064 freemsg(first_mp); 7065 } 7066 return; 7067 } 7068 7069 first_connp = connp; 7070 7071 CONN_INC_REF(connp); 7072 connp = connp->conn_next; 7073 for (;;) { 7074 while (connp != NULL) { 7075 if (IPCL_UDP_MATCH_V6(connp, dstport, 7076 ipv6_all_zeros, srcport, v6src) && 7077 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7078 (!is_system_labeled() || 7079 tsol_receive_local(mp, &dst, IPV4_VERSION, 7080 shared_addr, connp))) 7081 break; 7082 connp = connp->conn_next; 7083 } 7084 /* 7085 * Just copy the data part alone. The mctl part is 7086 * needed just for verifying policy and it is never 7087 * sent up. 7088 */ 7089 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7090 ((mp1 = copymsg(mp)) == NULL))) { 7091 /* 7092 * No more intested clients or memory 7093 * allocation failed 7094 */ 7095 connp = first_connp; 7096 break; 7097 } 7098 if (first_mp != NULL) { 7099 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7100 ipsec_info_type == IPSEC_IN); 7101 first_mp1 = ipsec_in_tag(first_mp, NULL); 7102 if (first_mp1 == NULL) { 7103 freemsg(mp1); 7104 connp = first_connp; 7105 break; 7106 } 7107 } else { 7108 first_mp1 = NULL; 7109 } 7110 CONN_INC_REF(connp); 7111 mutex_exit(&connfp->connf_lock); 7112 /* 7113 * IPQoS notes: We don't send the packet for policy 7114 * processing here, will do it for the last one (below). 7115 * i.e. we do it per-packet now, but if we do policy 7116 * processing per-conn, then we would need to do it 7117 * here too. 7118 */ 7119 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 7120 ipha, flags, recv_ill, B_FALSE); 7121 mutex_enter(&connfp->connf_lock); 7122 /* Follow the next pointer before releasing the conn. */ 7123 next_connp = connp->conn_next; 7124 CONN_DEC_REF(connp); 7125 connp = next_connp; 7126 } 7127 7128 /* Last one. Send it upstream. */ 7129 mutex_exit(&connfp->connf_lock); 7130 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 7131 ip_policy); 7132 CONN_DEC_REF(connp); 7133 } 7134 7135 /* 7136 * Complete the ip_wput header so that it 7137 * is possible to generate ICMP 7138 * errors. 7139 */ 7140 int 7141 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid) 7142 { 7143 ire_t *ire; 7144 7145 if (ipha->ipha_src == INADDR_ANY) { 7146 ire = ire_lookup_local(zoneid); 7147 if (ire == NULL) { 7148 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7149 return (1); 7150 } 7151 ipha->ipha_src = ire->ire_addr; 7152 ire_refrele(ire); 7153 } 7154 ipha->ipha_ttl = ip_def_ttl; 7155 ipha->ipha_hdr_checksum = 0; 7156 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7157 return (0); 7158 } 7159 7160 /* 7161 * Nobody should be sending 7162 * packets up this stream 7163 */ 7164 static void 7165 ip_lrput(queue_t *q, mblk_t *mp) 7166 { 7167 mblk_t *mp1; 7168 7169 switch (mp->b_datap->db_type) { 7170 case M_FLUSH: 7171 /* Turn around */ 7172 if (*mp->b_rptr & FLUSHW) { 7173 *mp->b_rptr &= ~FLUSHR; 7174 qreply(q, mp); 7175 return; 7176 } 7177 break; 7178 } 7179 /* Could receive messages that passed through ar_rput */ 7180 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7181 mp1->b_prev = mp1->b_next = NULL; 7182 freemsg(mp); 7183 } 7184 7185 /* Nobody should be sending packets down this stream */ 7186 /* ARGSUSED */ 7187 void 7188 ip_lwput(queue_t *q, mblk_t *mp) 7189 { 7190 freemsg(mp); 7191 } 7192 7193 /* 7194 * Move the first hop in any source route to ipha_dst and remove that part of 7195 * the source route. Called by other protocols. Errors in option formatting 7196 * are ignored - will be handled by ip_wput_options Return the final 7197 * destination (either ipha_dst or the last entry in a source route.) 7198 */ 7199 ipaddr_t 7200 ip_massage_options(ipha_t *ipha) 7201 { 7202 ipoptp_t opts; 7203 uchar_t *opt; 7204 uint8_t optval; 7205 uint8_t optlen; 7206 ipaddr_t dst; 7207 int i; 7208 ire_t *ire; 7209 7210 ip2dbg(("ip_massage_options\n")); 7211 dst = ipha->ipha_dst; 7212 for (optval = ipoptp_first(&opts, ipha); 7213 optval != IPOPT_EOL; 7214 optval = ipoptp_next(&opts)) { 7215 opt = opts.ipoptp_cur; 7216 switch (optval) { 7217 uint8_t off; 7218 case IPOPT_SSRR: 7219 case IPOPT_LSRR: 7220 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7221 ip1dbg(("ip_massage_options: bad src route\n")); 7222 break; 7223 } 7224 optlen = opts.ipoptp_len; 7225 off = opt[IPOPT_OFFSET]; 7226 off--; 7227 redo_srr: 7228 if (optlen < IP_ADDR_LEN || 7229 off > optlen - IP_ADDR_LEN) { 7230 /* End of source route */ 7231 ip1dbg(("ip_massage_options: end of SR\n")); 7232 break; 7233 } 7234 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7235 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7236 ntohl(dst))); 7237 /* 7238 * Check if our address is present more than 7239 * once as consecutive hops in source route. 7240 * XXX verify per-interface ip_forwarding 7241 * for source route? 7242 */ 7243 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7244 ALL_ZONES, NULL, MATCH_IRE_TYPE); 7245 if (ire != NULL) { 7246 ire_refrele(ire); 7247 off += IP_ADDR_LEN; 7248 goto redo_srr; 7249 } 7250 if (dst == htonl(INADDR_LOOPBACK)) { 7251 ip1dbg(("ip_massage_options: loopback addr in " 7252 "source route!\n")); 7253 break; 7254 } 7255 /* 7256 * Update ipha_dst to be the first hop and remove the 7257 * first hop from the source route (by overwriting 7258 * part of the option with NOP options). 7259 */ 7260 ipha->ipha_dst = dst; 7261 /* Put the last entry in dst */ 7262 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7263 3; 7264 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7265 7266 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7267 ntohl(dst))); 7268 /* Move down and overwrite */ 7269 opt[IP_ADDR_LEN] = opt[0]; 7270 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7271 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7272 for (i = 0; i < IP_ADDR_LEN; i++) 7273 opt[i] = IPOPT_NOP; 7274 break; 7275 } 7276 } 7277 return (dst); 7278 } 7279 7280 /* 7281 * This function's job is to forward data to the reverse tunnel (FA->HA) 7282 * after doing a few checks. It is assumed that the incoming interface 7283 * of the packet is always different than the outgoing interface and the 7284 * ire_type of the found ire has to be a non-resolver type. 7285 * 7286 * IPQoS notes 7287 * IP policy is invoked twice for a forwarded packet, once on the read side 7288 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 7289 * enabled. 7290 */ 7291 static void 7292 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 7293 { 7294 ipha_t *ipha; 7295 queue_t *q; 7296 uint32_t pkt_len; 7297 #define rptr ((uchar_t *)ipha) 7298 uint32_t sum; 7299 uint32_t max_frag; 7300 mblk_t *first_mp; 7301 uint32_t ill_index; 7302 ipxmit_state_t pktxmit_state; 7303 ill_t *out_ill; 7304 7305 ASSERT(ire != NULL); 7306 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 7307 ASSERT(ire->ire_stq != NULL); 7308 7309 /* Initiate read side IPPF processing */ 7310 if (IPP_ENABLED(IPP_FWD_IN)) { 7311 ill_index = in_ill->ill_phyint->phyint_ifindex; 7312 ip_process(IPP_FWD_IN, &mp, ill_index); 7313 if (mp == NULL) { 7314 ip2dbg(("ip_mrtun_forward: inbound pkt " 7315 "dropped during IPPF processing\n")); 7316 return; 7317 } 7318 } 7319 7320 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 7321 ILLF_ROUTER) == 0) || 7322 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 7323 BUMP_MIB(&ip_mib, ipForwProhibits); 7324 ip0dbg(("ip_mrtun_forward: Can't forward :" 7325 "forwarding is not turned on\n")); 7326 goto drop_pkt; 7327 } 7328 7329 /* 7330 * Don't forward if the interface is down 7331 */ 7332 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 7333 BUMP_MIB(&ip_mib, ipInDiscards); 7334 goto drop_pkt; 7335 } 7336 7337 ipha = (ipha_t *)mp->b_rptr; 7338 pkt_len = ntohs(ipha->ipha_length); 7339 /* Adjust the checksum to reflect the ttl decrement. */ 7340 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 7341 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 7342 if (ipha->ipha_ttl-- <= 1) { 7343 if (ip_csum_hdr(ipha)) { 7344 BUMP_MIB(&ip_mib, ipInCksumErrs); 7345 goto drop_pkt; 7346 } 7347 q = ire->ire_stq; 7348 if ((first_mp = allocb(sizeof (ipsec_info_t), 7349 BPRI_HI)) == NULL) { 7350 goto drop_pkt; 7351 } 7352 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7353 /* Sent by forwarding path, and router is global zone */ 7354 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED, 7355 GLOBAL_ZONEID); 7356 return; 7357 } 7358 7359 /* Get the ill_index of the ILL */ 7360 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 7361 7362 /* 7363 * This location is chosen for the placement of the forwarding hook 7364 * because at this point we know that we have a path out for the 7365 * packet but haven't yet applied any logic (such as fragmenting) 7366 * that happen as part of transmitting the packet out. 7367 */ 7368 out_ill = ire->ire_ipif->ipif_ill; 7369 7370 DTRACE_PROBE4(ip4__forwarding__start, 7371 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7372 7373 FW_HOOKS(ip4_forwarding_event, ipv4firewall_forwarding, 7374 in_ill, out_ill, ipha, mp, mp); 7375 7376 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 7377 7378 if (mp == NULL) 7379 return; 7380 pkt_len = ntohs(ipha->ipha_length); 7381 7382 /* 7383 * ip_mrtun_forward is only used by foreign agent to reverse 7384 * tunnel the incoming packet. So it does not do any option 7385 * processing for source routing. 7386 */ 7387 max_frag = ire->ire_max_frag; 7388 if (pkt_len > max_frag) { 7389 /* 7390 * It needs fragging on its way out. We haven't 7391 * verified the header checksum yet. Since we 7392 * are going to put a surely good checksum in the 7393 * outgoing header, we have to make sure that it 7394 * was good coming in. 7395 */ 7396 if (ip_csum_hdr(ipha)) { 7397 BUMP_MIB(&ip_mib, ipInCksumErrs); 7398 goto drop_pkt; 7399 } 7400 7401 /* Initiate write side IPPF processing */ 7402 if (IPP_ENABLED(IPP_FWD_OUT)) { 7403 ip_process(IPP_FWD_OUT, &mp, ill_index); 7404 if (mp == NULL) { 7405 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 7406 "dropped/deferred during ip policy "\ 7407 "processing\n")); 7408 return; 7409 } 7410 } 7411 if ((first_mp = allocb(sizeof (ipsec_info_t), 7412 BPRI_HI)) == NULL) { 7413 goto drop_pkt; 7414 } 7415 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7416 mp = first_mp; 7417 7418 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID); 7419 return; 7420 } 7421 7422 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 7423 7424 ASSERT(ire->ire_ipif != NULL); 7425 7426 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 7427 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7428 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 7429 NULL, out_ill, ipha, mp, mp); 7430 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 7431 if (mp == NULL) 7432 return; 7433 7434 /* Now send the packet to the tunnel interface */ 7435 mp->b_prev = SET_BPREV_FLAG(IPP_FWD_OUT); 7436 q = ire->ire_stq; 7437 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_FALSE); 7438 if ((pktxmit_state == SEND_FAILED) || 7439 (pktxmit_state == LLHDR_RESLV_FAILED)) { 7440 ip2dbg(("ip_mrtun_forward: failed to send packet to ill %p\n", 7441 q->q_ptr)); 7442 } 7443 7444 return; 7445 7446 drop_pkt:; 7447 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 7448 freemsg(mp); 7449 #undef rptr 7450 } 7451 7452 /* 7453 * Fills the ipsec_out_t data structure with appropriate fields and 7454 * prepends it to mp which contains the IP hdr + data that was meant 7455 * to be forwarded. Please note that ipsec_out_info data structure 7456 * is used here to communicate the outgoing ill path at ip_wput() 7457 * for the ICMP error packet. This has nothing to do with ipsec IP 7458 * security. ipsec_out_t is really used to pass the info to the module 7459 * IP where this information cannot be extracted from conn. 7460 * This functions is called by ip_mrtun_forward(). 7461 */ 7462 void 7463 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 7464 { 7465 ipsec_out_t *io; 7466 7467 ASSERT(xmit_ill != NULL); 7468 first_mp->b_datap->db_type = M_CTL; 7469 first_mp->b_wptr += sizeof (ipsec_info_t); 7470 /* 7471 * This is to pass info to ip_wput in absence of conn. 7472 * ipsec_out_secure will be B_FALSE because of this. 7473 * Thus ipsec_out_secure being B_FALSE indicates that 7474 * this is not IPSEC security related information. 7475 */ 7476 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 7477 io = (ipsec_out_t *)first_mp->b_rptr; 7478 io->ipsec_out_type = IPSEC_OUT; 7479 io->ipsec_out_len = sizeof (ipsec_out_t); 7480 first_mp->b_cont = mp; 7481 io->ipsec_out_ill_index = 7482 xmit_ill->ill_phyint->phyint_ifindex; 7483 io->ipsec_out_xmit_if = B_TRUE; 7484 } 7485 7486 /* 7487 * Return the network mask 7488 * associated with the specified address. 7489 */ 7490 ipaddr_t 7491 ip_net_mask(ipaddr_t addr) 7492 { 7493 uchar_t *up = (uchar_t *)&addr; 7494 ipaddr_t mask = 0; 7495 uchar_t *maskp = (uchar_t *)&mask; 7496 7497 #if defined(__i386) || defined(__amd64) 7498 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7499 #endif 7500 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7501 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7502 #endif 7503 if (CLASSD(addr)) { 7504 maskp[0] = 0xF0; 7505 return (mask); 7506 } 7507 if (addr == 0) 7508 return (0); 7509 maskp[0] = 0xFF; 7510 if ((up[0] & 0x80) == 0) 7511 return (mask); 7512 7513 maskp[1] = 0xFF; 7514 if ((up[0] & 0xC0) == 0x80) 7515 return (mask); 7516 7517 maskp[2] = 0xFF; 7518 if ((up[0] & 0xE0) == 0xC0) 7519 return (mask); 7520 7521 /* Must be experimental or multicast, indicate as much */ 7522 return ((ipaddr_t)0); 7523 } 7524 7525 /* 7526 * Select an ill for the packet by considering load spreading across 7527 * a different ill in the group if dst_ill is part of some group. 7528 */ 7529 ill_t * 7530 ip_newroute_get_dst_ill(ill_t *dst_ill) 7531 { 7532 ill_t *ill; 7533 7534 /* 7535 * We schedule irrespective of whether the source address is 7536 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7537 */ 7538 ill = illgrp_scheduler(dst_ill); 7539 if (ill == NULL) 7540 return (NULL); 7541 7542 /* 7543 * For groups with names ip_sioctl_groupname ensures that all 7544 * ills are of same type. For groups without names, ifgrp_insert 7545 * ensures this. 7546 */ 7547 ASSERT(dst_ill->ill_type == ill->ill_type); 7548 7549 return (ill); 7550 } 7551 7552 /* 7553 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7554 */ 7555 ill_t * 7556 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6) 7557 { 7558 ill_t *ret_ill; 7559 7560 ASSERT(ifindex != 0); 7561 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 7562 if (ret_ill == NULL || 7563 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7564 if (isv6) { 7565 if (ill != NULL) { 7566 BUMP_MIB(ill->ill_ip6_mib, ipv6OutDiscards); 7567 } else { 7568 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 7569 } 7570 ip1dbg(("ip_grab_attach_ill (IPv6): " 7571 "bad ifindex %d.\n", ifindex)); 7572 } else { 7573 BUMP_MIB(&ip_mib, ipOutDiscards); 7574 ip1dbg(("ip_grab_attach_ill (IPv4): " 7575 "bad ifindex %d.\n", ifindex)); 7576 } 7577 if (ret_ill != NULL) 7578 ill_refrele(ret_ill); 7579 freemsg(first_mp); 7580 return (NULL); 7581 } 7582 7583 return (ret_ill); 7584 } 7585 7586 /* 7587 * IPv4 - 7588 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7589 * out a packet to a destination address for which we do not have specific 7590 * (or sufficient) routing information. 7591 * 7592 * NOTE : These are the scopes of some of the variables that point at IRE, 7593 * which needs to be followed while making any future modifications 7594 * to avoid memory leaks. 7595 * 7596 * - ire and sire are the entries looked up initially by 7597 * ire_ftable_lookup. 7598 * - ipif_ire is used to hold the interface ire associated with 7599 * the new cache ire. But it's scope is limited, so we always REFRELE 7600 * it before branching out to error paths. 7601 * - save_ire is initialized before ire_create, so that ire returned 7602 * by ire_create will not over-write the ire. We REFRELE save_ire 7603 * before breaking out of the switch. 7604 * 7605 * Thus on failures, we have to REFRELE only ire and sire, if they 7606 * are not NULL. 7607 */ 7608 void 7609 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp, 7610 zoneid_t zoneid) 7611 { 7612 areq_t *areq; 7613 ipaddr_t gw = 0; 7614 ire_t *ire = NULL; 7615 mblk_t *res_mp; 7616 ipaddr_t *addrp; 7617 ipaddr_t nexthop_addr; 7618 ipif_t *src_ipif = NULL; 7619 ill_t *dst_ill = NULL; 7620 ipha_t *ipha; 7621 ire_t *sire = NULL; 7622 mblk_t *first_mp; 7623 ire_t *save_ire; 7624 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7625 ushort_t ire_marks = 0; 7626 boolean_t mctl_present; 7627 ipsec_out_t *io; 7628 mblk_t *saved_mp; 7629 ire_t *first_sire = NULL; 7630 mblk_t *copy_mp = NULL; 7631 mblk_t *xmit_mp = NULL; 7632 ipaddr_t save_dst; 7633 uint32_t multirt_flags = 7634 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7635 boolean_t multirt_is_resolvable; 7636 boolean_t multirt_resolve_next; 7637 boolean_t do_attach_ill = B_FALSE; 7638 boolean_t ip_nexthop = B_FALSE; 7639 tsol_ire_gw_secattr_t *attrp = NULL; 7640 tsol_gcgrp_t *gcgrp = NULL; 7641 tsol_gcgrp_addr_t ga; 7642 7643 if (ip_debug > 2) { 7644 /* ip1dbg */ 7645 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7646 } 7647 7648 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7649 if (mctl_present) { 7650 io = (ipsec_out_t *)first_mp->b_rptr; 7651 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7652 ASSERT(zoneid == io->ipsec_out_zoneid); 7653 ASSERT(zoneid != ALL_ZONES); 7654 } 7655 7656 ipha = (ipha_t *)mp->b_rptr; 7657 7658 /* All multicast lookups come through ip_newroute_ipif() */ 7659 if (CLASSD(dst)) { 7660 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7661 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7662 freemsg(first_mp); 7663 return; 7664 } 7665 7666 if (mctl_present && io->ipsec_out_attach_if) { 7667 /* ip_grab_attach_ill returns a held ill */ 7668 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7669 io->ipsec_out_ill_index, B_FALSE); 7670 7671 /* Failure case frees things for us. */ 7672 if (attach_ill == NULL) 7673 return; 7674 7675 /* 7676 * Check if we need an ire that will not be 7677 * looked up by anybody else i.e. HIDDEN. 7678 */ 7679 if (ill_is_probeonly(attach_ill)) 7680 ire_marks = IRE_MARK_HIDDEN; 7681 } 7682 if (mctl_present && io->ipsec_out_ip_nexthop) { 7683 ip_nexthop = B_TRUE; 7684 nexthop_addr = io->ipsec_out_nexthop_addr; 7685 } 7686 /* 7687 * If this IRE is created for forwarding or it is not for 7688 * traffic for congestion controlled protocols, mark it as temporary. 7689 */ 7690 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7691 ire_marks |= IRE_MARK_TEMPORARY; 7692 7693 /* 7694 * Get what we can from ire_ftable_lookup which will follow an IRE 7695 * chain until it gets the most specific information available. 7696 * For example, we know that there is no IRE_CACHE for this dest, 7697 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7698 * ire_ftable_lookup will look up the gateway, etc. 7699 * Check if in_ill != NULL. If it is true, the packet must be 7700 * from an incoming interface where RTA_SRCIFP is set. 7701 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7702 * to the destination, of equal netmask length in the forward table, 7703 * will be recursively explored. If no information is available 7704 * for the final gateway of that route, we force the returned ire 7705 * to be equal to sire using MATCH_IRE_PARENT. 7706 * At least, in this case we have a starting point (in the buckets) 7707 * to look for other routes to the destination in the forward table. 7708 * This is actually used only for multirouting, where a list 7709 * of routes has to be processed in sequence. 7710 * 7711 * In the process of coming up with the most specific information, 7712 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7713 * for the gateway (i.e., one for which the ire_nce->nce_state is 7714 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7715 * Two caveats when handling incomplete ire's in ip_newroute: 7716 * - we should be careful when accessing its ire_nce (specifically 7717 * the nce_res_mp) ast it might change underneath our feet, and, 7718 * - not all legacy code path callers are prepared to handle 7719 * incomplete ire's, so we should not create/add incomplete 7720 * ire_cache entries here. (See discussion about temporary solution 7721 * further below). 7722 * 7723 * In order to minimize packet dropping, and to preserve existing 7724 * behavior, we treat this case as if there were no IRE_CACHE for the 7725 * gateway, and instead use the IF_RESOLVER ire to send out 7726 * another request to ARP (this is achieved by passing the 7727 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7728 * arp response comes back in ip_wput_nondata, we will create 7729 * a per-dst ire_cache that has an ND_COMPLETE ire. 7730 * 7731 * Note that this is a temporary solution; the correct solution is 7732 * to create an incomplete per-dst ire_cache entry, and send the 7733 * packet out when the gw's nce is resolved. In order to achieve this, 7734 * all packet processing must have been completed prior to calling 7735 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7736 * to be modified to accomodate this solution. 7737 */ 7738 if (in_ill != NULL) { 7739 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 7740 in_ill, MATCH_IRE_TYPE); 7741 } else if (ip_nexthop) { 7742 /* 7743 * The first time we come here, we look for an IRE_INTERFACE 7744 * entry for the specified nexthop, set the dst to be the 7745 * nexthop address and create an IRE_CACHE entry for the 7746 * nexthop. The next time around, we are able to find an 7747 * IRE_CACHE entry for the nexthop, set the gateway to be the 7748 * nexthop address and create an IRE_CACHE entry for the 7749 * destination address via the specified nexthop. 7750 */ 7751 ire = ire_cache_lookup(nexthop_addr, zoneid, 7752 MBLK_GETLABEL(mp)); 7753 if (ire != NULL) { 7754 gw = nexthop_addr; 7755 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7756 } else { 7757 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7758 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7759 MBLK_GETLABEL(mp), 7760 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 7761 if (ire != NULL) { 7762 dst = nexthop_addr; 7763 } 7764 } 7765 } else if (attach_ill == NULL) { 7766 ire = ire_ftable_lookup(dst, 0, 0, 0, 7767 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7768 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7769 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7770 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE); 7771 } else { 7772 /* 7773 * attach_ill is set only for communicating with 7774 * on-link hosts. So, don't look for DEFAULT. 7775 */ 7776 ipif_t *attach_ipif; 7777 7778 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7779 if (attach_ipif == NULL) { 7780 ill_refrele(attach_ill); 7781 goto icmp_err_ret; 7782 } 7783 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7784 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7785 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7786 MATCH_IRE_SECATTR); 7787 ipif_refrele(attach_ipif); 7788 } 7789 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7790 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7791 7792 /* 7793 * This loop is run only once in most cases. 7794 * We loop to resolve further routes only when the destination 7795 * can be reached through multiple RTF_MULTIRT-flagged ires. 7796 */ 7797 do { 7798 /* Clear the previous iteration's values */ 7799 if (src_ipif != NULL) { 7800 ipif_refrele(src_ipif); 7801 src_ipif = NULL; 7802 } 7803 if (dst_ill != NULL) { 7804 ill_refrele(dst_ill); 7805 dst_ill = NULL; 7806 } 7807 7808 multirt_resolve_next = B_FALSE; 7809 /* 7810 * We check if packets have to be multirouted. 7811 * In this case, given the current <ire, sire> couple, 7812 * we look for the next suitable <ire, sire>. 7813 * This check is done in ire_multirt_lookup(), 7814 * which applies various criteria to find the next route 7815 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7816 * unchanged if it detects it has not been tried yet. 7817 */ 7818 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7819 ip3dbg(("ip_newroute: starting next_resolution " 7820 "with first_mp %p, tag %d\n", 7821 (void *)first_mp, 7822 MULTIRT_DEBUG_TAGGED(first_mp))); 7823 7824 ASSERT(sire != NULL); 7825 multirt_is_resolvable = 7826 ire_multirt_lookup(&ire, &sire, multirt_flags, 7827 MBLK_GETLABEL(mp)); 7828 7829 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7830 "ire %p, sire %p\n", 7831 multirt_is_resolvable, 7832 (void *)ire, (void *)sire)); 7833 7834 if (!multirt_is_resolvable) { 7835 /* 7836 * No more multirt route to resolve; give up 7837 * (all routes resolved or no more 7838 * resolvable routes). 7839 */ 7840 if (ire != NULL) { 7841 ire_refrele(ire); 7842 ire = NULL; 7843 } 7844 } else { 7845 ASSERT(sire != NULL); 7846 ASSERT(ire != NULL); 7847 /* 7848 * We simply use first_sire as a flag that 7849 * indicates if a resolvable multirt route 7850 * has already been found. 7851 * If it is not the case, we may have to send 7852 * an ICMP error to report that the 7853 * destination is unreachable. 7854 * We do not IRE_REFHOLD first_sire. 7855 */ 7856 if (first_sire == NULL) { 7857 first_sire = sire; 7858 } 7859 } 7860 } 7861 if (ire == NULL) { 7862 if (ip_debug > 3) { 7863 /* ip2dbg */ 7864 pr_addr_dbg("ip_newroute: " 7865 "can't resolve %s\n", AF_INET, &dst); 7866 } 7867 ip3dbg(("ip_newroute: " 7868 "ire %p, sire %p, first_sire %p\n", 7869 (void *)ire, (void *)sire, (void *)first_sire)); 7870 7871 if (sire != NULL) { 7872 ire_refrele(sire); 7873 sire = NULL; 7874 } 7875 7876 if (first_sire != NULL) { 7877 /* 7878 * At least one multirt route has been found 7879 * in the same call to ip_newroute(); 7880 * there is no need to report an ICMP error. 7881 * first_sire was not IRE_REFHOLDed. 7882 */ 7883 MULTIRT_DEBUG_UNTAG(first_mp); 7884 freemsg(first_mp); 7885 return; 7886 } 7887 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 7888 RTA_DST); 7889 if (attach_ill != NULL) 7890 ill_refrele(attach_ill); 7891 goto icmp_err_ret; 7892 } 7893 7894 /* 7895 * When RTA_SRCIFP is used to add a route, then an interface 7896 * route is added in the source interface's routing table. 7897 * If the outgoing interface of this route is of type 7898 * IRE_IF_RESOLVER, then upon creation of the ire, 7899 * ire_nce->nce_res_mp is set to NULL. 7900 * Later, when this route is first used for forwarding 7901 * a packet, ip_newroute() is called 7902 * to resolve the hardware address of the outgoing ipif. 7903 * We do not come here for IRE_IF_NORESOLVER entries in the 7904 * source interface based table. We only come here if the 7905 * outgoing interface is a resolver interface and we don't 7906 * have the ire_nce->nce_res_mp information yet. 7907 * If in_ill is not null that means it is called from 7908 * ip_rput. 7909 */ 7910 7911 ASSERT(ire->ire_in_ill == NULL || 7912 (ire->ire_type == IRE_IF_RESOLVER && 7913 ire->ire_nce != NULL && ire->ire_nce->nce_res_mp == NULL)); 7914 7915 /* 7916 * Verify that the returned IRE does not have either 7917 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 7918 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 7919 */ 7920 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 7921 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 7922 if (attach_ill != NULL) 7923 ill_refrele(attach_ill); 7924 goto icmp_err_ret; 7925 } 7926 /* 7927 * Increment the ire_ob_pkt_count field for ire if it is an 7928 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 7929 * increment the same for the parent IRE, sire, if it is some 7930 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 7931 * and HOST_REDIRECT). 7932 */ 7933 if ((ire->ire_type & IRE_INTERFACE) != 0) { 7934 UPDATE_OB_PKT_COUNT(ire); 7935 ire->ire_last_used_time = lbolt; 7936 } 7937 7938 if (sire != NULL) { 7939 gw = sire->ire_gateway_addr; 7940 ASSERT((sire->ire_type & (IRE_CACHETABLE | 7941 IRE_INTERFACE)) == 0); 7942 UPDATE_OB_PKT_COUNT(sire); 7943 sire->ire_last_used_time = lbolt; 7944 } 7945 /* 7946 * We have a route to reach the destination. 7947 * 7948 * 1) If the interface is part of ill group, try to get a new 7949 * ill taking load spreading into account. 7950 * 7951 * 2) After selecting the ill, get a source address that 7952 * might create good inbound load spreading. 7953 * ipif_select_source does this for us. 7954 * 7955 * If the application specified the ill (ifindex), we still 7956 * load spread. Only if the packets needs to go out 7957 * specifically on a given ill e.g. binding to 7958 * IPIF_NOFAILOVER address, then we don't try to use a 7959 * different ill for load spreading. 7960 */ 7961 if (attach_ill == NULL) { 7962 /* 7963 * Don't perform outbound load spreading in the 7964 * case of an RTF_MULTIRT route, as we actually 7965 * typically want to replicate outgoing packets 7966 * through particular interfaces. 7967 */ 7968 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7969 dst_ill = ire->ire_ipif->ipif_ill; 7970 /* for uniformity */ 7971 ill_refhold(dst_ill); 7972 } else { 7973 /* 7974 * If we are here trying to create an IRE_CACHE 7975 * for an offlink destination and have the 7976 * IRE_CACHE for the next hop and the latter is 7977 * using virtual IP source address selection i.e 7978 * it's ire->ire_ipif is pointing to a virtual 7979 * network interface (vni) then 7980 * ip_newroute_get_dst_ll() will return the vni 7981 * interface as the dst_ill. Since the vni is 7982 * virtual i.e not associated with any physical 7983 * interface, it cannot be the dst_ill, hence 7984 * in such a case call ip_newroute_get_dst_ll() 7985 * with the stq_ill instead of the ire_ipif ILL. 7986 * The function returns a refheld ill. 7987 */ 7988 if ((ire->ire_type == IRE_CACHE) && 7989 IS_VNI(ire->ire_ipif->ipif_ill)) 7990 dst_ill = ip_newroute_get_dst_ill( 7991 ire->ire_stq->q_ptr); 7992 else 7993 dst_ill = ip_newroute_get_dst_ill( 7994 ire->ire_ipif->ipif_ill); 7995 } 7996 if (dst_ill == NULL) { 7997 if (ip_debug > 2) { 7998 pr_addr_dbg("ip_newroute: " 7999 "no dst ill for dst" 8000 " %s\n", AF_INET, &dst); 8001 } 8002 goto icmp_err_ret; 8003 } 8004 } else { 8005 dst_ill = ire->ire_ipif->ipif_ill; 8006 /* for uniformity */ 8007 ill_refhold(dst_ill); 8008 /* 8009 * We should have found a route matching ill as we 8010 * called ire_ftable_lookup with MATCH_IRE_ILL. 8011 * Rather than asserting, when there is a mismatch, 8012 * we just drop the packet. 8013 */ 8014 if (dst_ill != attach_ill) { 8015 ip0dbg(("ip_newroute: Packet dropped as " 8016 "IPIF_NOFAILOVER ill is %s, " 8017 "ire->ire_ipif->ipif_ill is %s\n", 8018 attach_ill->ill_name, 8019 dst_ill->ill_name)); 8020 ill_refrele(attach_ill); 8021 goto icmp_err_ret; 8022 } 8023 } 8024 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8025 if (attach_ill != NULL) { 8026 ill_refrele(attach_ill); 8027 attach_ill = NULL; 8028 do_attach_ill = B_TRUE; 8029 } 8030 ASSERT(dst_ill != NULL); 8031 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8032 8033 /* 8034 * Pick the best source address from dst_ill. 8035 * 8036 * 1) If it is part of a multipathing group, we would 8037 * like to spread the inbound packets across different 8038 * interfaces. ipif_select_source picks a random source 8039 * across the different ills in the group. 8040 * 8041 * 2) If it is not part of a multipathing group, we try 8042 * to pick the source address from the destination 8043 * route. Clustering assumes that when we have multiple 8044 * prefixes hosted on an interface, the prefix of the 8045 * source address matches the prefix of the destination 8046 * route. We do this only if the address is not 8047 * DEPRECATED. 8048 * 8049 * 3) If the conn is in a different zone than the ire, we 8050 * need to pick a source address from the right zone. 8051 * 8052 * NOTE : If we hit case (1) above, the prefix of the source 8053 * address picked may not match the prefix of the 8054 * destination routes prefix as ipif_select_source 8055 * does not look at "dst" while picking a source 8056 * address. 8057 * If we want the same behavior as (2), we will need 8058 * to change the behavior of ipif_select_source. 8059 */ 8060 ASSERT(src_ipif == NULL); 8061 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8062 /* 8063 * The RTF_SETSRC flag is set in the parent ire (sire). 8064 * Check that the ipif matching the requested source 8065 * address still exists. 8066 */ 8067 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8068 zoneid, NULL, NULL, NULL, NULL); 8069 } 8070 if (src_ipif == NULL) { 8071 ire_marks |= IRE_MARK_USESRC_CHECK; 8072 if ((dst_ill->ill_group != NULL) || 8073 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8074 (connp != NULL && ire->ire_zoneid != zoneid && 8075 ire->ire_zoneid != ALL_ZONES) || 8076 (dst_ill->ill_usesrc_ifindex != 0)) { 8077 /* 8078 * If the destination is reachable via a 8079 * given gateway, the selected source address 8080 * should be in the same subnet as the gateway. 8081 * Otherwise, the destination is not reachable. 8082 * 8083 * If there are no interfaces on the same subnet 8084 * as the destination, ipif_select_source gives 8085 * first non-deprecated interface which might be 8086 * on a different subnet than the gateway. 8087 * This is not desirable. Hence pass the dst_ire 8088 * source address to ipif_select_source. 8089 * It is sure that the destination is reachable 8090 * with the dst_ire source address subnet. 8091 * So passing dst_ire source address to 8092 * ipif_select_source will make sure that the 8093 * selected source will be on the same subnet 8094 * as dst_ire source address. 8095 */ 8096 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8097 src_ipif = ipif_select_source(dst_ill, saddr, 8098 zoneid); 8099 if (src_ipif == NULL) { 8100 if (ip_debug > 2) { 8101 pr_addr_dbg("ip_newroute: " 8102 "no src for dst %s ", 8103 AF_INET, &dst); 8104 printf("through interface %s\n", 8105 dst_ill->ill_name); 8106 } 8107 goto icmp_err_ret; 8108 } 8109 } else { 8110 src_ipif = ire->ire_ipif; 8111 ASSERT(src_ipif != NULL); 8112 /* hold src_ipif for uniformity */ 8113 ipif_refhold(src_ipif); 8114 } 8115 } 8116 8117 /* 8118 * Assign a source address while we have the conn. 8119 * We can't have ip_wput_ire pick a source address when the 8120 * packet returns from arp since we need to look at 8121 * conn_unspec_src and conn_zoneid, and we lose the conn when 8122 * going through arp. 8123 * 8124 * NOTE : ip_newroute_v6 does not have this piece of code as 8125 * it uses ip6i to store this information. 8126 */ 8127 if (ipha->ipha_src == INADDR_ANY && 8128 (connp == NULL || !connp->conn_unspec_src)) { 8129 ipha->ipha_src = src_ipif->ipif_src_addr; 8130 } 8131 if (ip_debug > 3) { 8132 /* ip2dbg */ 8133 pr_addr_dbg("ip_newroute: first hop %s\n", 8134 AF_INET, &gw); 8135 } 8136 ip2dbg(("\tire type %s (%d)\n", 8137 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8138 8139 /* 8140 * The TTL of multirouted packets is bounded by the 8141 * ip_multirt_ttl ndd variable. 8142 */ 8143 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8144 /* Force TTL of multirouted packets */ 8145 if ((ip_multirt_ttl > 0) && 8146 (ipha->ipha_ttl > ip_multirt_ttl)) { 8147 ip2dbg(("ip_newroute: forcing multirt TTL " 8148 "to %d (was %d), dst 0x%08x\n", 8149 ip_multirt_ttl, ipha->ipha_ttl, 8150 ntohl(sire->ire_addr))); 8151 ipha->ipha_ttl = ip_multirt_ttl; 8152 } 8153 } 8154 /* 8155 * At this point in ip_newroute(), ire is either the 8156 * IRE_CACHE of the next-hop gateway for an off-subnet 8157 * destination or an IRE_INTERFACE type that should be used 8158 * to resolve an on-subnet destination or an on-subnet 8159 * next-hop gateway. 8160 * 8161 * In the IRE_CACHE case, we have the following : 8162 * 8163 * 1) src_ipif - used for getting a source address. 8164 * 8165 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8166 * means packets using this IRE_CACHE will go out on 8167 * dst_ill. 8168 * 8169 * 3) The IRE sire will point to the prefix that is the 8170 * longest matching route for the destination. These 8171 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8172 * 8173 * The newly created IRE_CACHE entry for the off-subnet 8174 * destination is tied to both the prefix route and the 8175 * interface route used to resolve the next-hop gateway 8176 * via the ire_phandle and ire_ihandle fields, 8177 * respectively. 8178 * 8179 * In the IRE_INTERFACE case, we have the following : 8180 * 8181 * 1) src_ipif - used for getting a source address. 8182 * 8183 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8184 * means packets using the IRE_CACHE that we will build 8185 * here will go out on dst_ill. 8186 * 8187 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8188 * to be created will only be tied to the IRE_INTERFACE 8189 * that was derived from the ire_ihandle field. 8190 * 8191 * If sire is non-NULL, it means the destination is 8192 * off-link and we will first create the IRE_CACHE for the 8193 * gateway. Next time through ip_newroute, we will create 8194 * the IRE_CACHE for the final destination as described 8195 * above. 8196 * 8197 * In both cases, after the current resolution has been 8198 * completed (or possibly initialised, in the IRE_INTERFACE 8199 * case), the loop may be re-entered to attempt the resolution 8200 * of another RTF_MULTIRT route. 8201 * 8202 * When an IRE_CACHE entry for the off-subnet destination is 8203 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8204 * for further processing in emission loops. 8205 */ 8206 save_ire = ire; 8207 switch (ire->ire_type) { 8208 case IRE_CACHE: { 8209 ire_t *ipif_ire; 8210 mblk_t *ire_fp_mp; 8211 8212 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8213 if (gw == 0) 8214 gw = ire->ire_gateway_addr; 8215 /* 8216 * We need 3 ire's to create a new cache ire for an 8217 * off-link destination from the cache ire of the 8218 * gateway. 8219 * 8220 * 1. The prefix ire 'sire' (Note that this does 8221 * not apply to the conn_nexthop_set case) 8222 * 2. The cache ire of the gateway 'ire' 8223 * 3. The interface ire 'ipif_ire' 8224 * 8225 * We have (1) and (2). We lookup (3) below. 8226 * 8227 * If there is no interface route to the gateway, 8228 * it is a race condition, where we found the cache 8229 * but the interface route has been deleted. 8230 */ 8231 if (ip_nexthop) { 8232 ipif_ire = ire_ihandle_lookup_onlink(ire); 8233 } else { 8234 ipif_ire = 8235 ire_ihandle_lookup_offlink(ire, sire); 8236 } 8237 if (ipif_ire == NULL) { 8238 ip1dbg(("ip_newroute: " 8239 "ire_ihandle_lookup_offlink failed\n")); 8240 goto icmp_err_ret; 8241 } 8242 /* 8243 * XXX We are using the same res_mp 8244 * (DL_UNITDATA_REQ) though the save_ire is not 8245 * pointing at the same ill. 8246 * This is incorrect. We need to send it up to the 8247 * resolver to get the right res_mp. For ethernets 8248 * this may be okay (ill_type == DL_ETHER). 8249 */ 8250 res_mp = save_ire->ire_nce->nce_res_mp; 8251 ire_fp_mp = NULL; 8252 /* 8253 * save_ire's nce_fp_mp can't change since it is 8254 * not an IRE_MIPRTUN or IRE_BROADCAST 8255 * LOCK_IRE_FP_MP does not do any useful work in 8256 * the case of IRE_CACHE. So we don't use it below. 8257 */ 8258 if (save_ire->ire_stq == dst_ill->ill_wq) 8259 ire_fp_mp = save_ire->ire_nce->nce_fp_mp; 8260 8261 /* 8262 * Check cached gateway IRE for any security 8263 * attributes; if found, associate the gateway 8264 * credentials group to the destination IRE. 8265 */ 8266 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8267 mutex_enter(&attrp->igsa_lock); 8268 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8269 GCGRP_REFHOLD(gcgrp); 8270 mutex_exit(&attrp->igsa_lock); 8271 } 8272 8273 ire = ire_create( 8274 (uchar_t *)&dst, /* dest address */ 8275 (uchar_t *)&ip_g_all_ones, /* mask */ 8276 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8277 (uchar_t *)&gw, /* gateway address */ 8278 NULL, 8279 &save_ire->ire_max_frag, 8280 ire_fp_mp, /* Fast Path header */ 8281 dst_ill->ill_rq, /* recv-from queue */ 8282 dst_ill->ill_wq, /* send-to queue */ 8283 IRE_CACHE, /* IRE type */ 8284 res_mp, 8285 src_ipif, 8286 in_ill, /* incoming ill */ 8287 (sire != NULL) ? 8288 sire->ire_mask : 0, /* Parent mask */ 8289 (sire != NULL) ? 8290 sire->ire_phandle : 0, /* Parent handle */ 8291 ipif_ire->ire_ihandle, /* Interface handle */ 8292 (sire != NULL) ? (sire->ire_flags & 8293 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8294 (sire != NULL) ? 8295 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8296 NULL, 8297 gcgrp); 8298 8299 if (ire == NULL) { 8300 if (gcgrp != NULL) { 8301 GCGRP_REFRELE(gcgrp); 8302 gcgrp = NULL; 8303 } 8304 ire_refrele(ipif_ire); 8305 ire_refrele(save_ire); 8306 break; 8307 } 8308 8309 /* reference now held by IRE */ 8310 gcgrp = NULL; 8311 8312 ire->ire_marks |= ire_marks; 8313 8314 /* 8315 * Prevent sire and ipif_ire from getting deleted. 8316 * The newly created ire is tied to both of them via 8317 * the phandle and ihandle respectively. 8318 */ 8319 if (sire != NULL) { 8320 IRB_REFHOLD(sire->ire_bucket); 8321 /* Has it been removed already ? */ 8322 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8323 IRB_REFRELE(sire->ire_bucket); 8324 ire_refrele(ipif_ire); 8325 ire_refrele(save_ire); 8326 break; 8327 } 8328 } 8329 8330 IRB_REFHOLD(ipif_ire->ire_bucket); 8331 /* Has it been removed already ? */ 8332 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8333 IRB_REFRELE(ipif_ire->ire_bucket); 8334 if (sire != NULL) 8335 IRB_REFRELE(sire->ire_bucket); 8336 ire_refrele(ipif_ire); 8337 ire_refrele(save_ire); 8338 break; 8339 } 8340 8341 xmit_mp = first_mp; 8342 /* 8343 * In the case of multirouting, a copy 8344 * of the packet is done before its sending. 8345 * The copy is used to attempt another 8346 * route resolution, in a next loop. 8347 */ 8348 if (ire->ire_flags & RTF_MULTIRT) { 8349 copy_mp = copymsg(first_mp); 8350 if (copy_mp != NULL) { 8351 xmit_mp = copy_mp; 8352 MULTIRT_DEBUG_TAG(first_mp); 8353 } 8354 } 8355 ire_add_then_send(q, ire, xmit_mp); 8356 ire_refrele(save_ire); 8357 8358 /* Assert that sire is not deleted yet. */ 8359 if (sire != NULL) { 8360 ASSERT(sire->ire_ptpn != NULL); 8361 IRB_REFRELE(sire->ire_bucket); 8362 } 8363 8364 /* Assert that ipif_ire is not deleted yet. */ 8365 ASSERT(ipif_ire->ire_ptpn != NULL); 8366 IRB_REFRELE(ipif_ire->ire_bucket); 8367 ire_refrele(ipif_ire); 8368 8369 /* 8370 * If copy_mp is not NULL, multirouting was 8371 * requested. We loop to initiate a next 8372 * route resolution attempt, starting from sire. 8373 */ 8374 if (copy_mp != NULL) { 8375 /* 8376 * Search for the next unresolved 8377 * multirt route. 8378 */ 8379 copy_mp = NULL; 8380 ipif_ire = NULL; 8381 ire = NULL; 8382 multirt_resolve_next = B_TRUE; 8383 continue; 8384 } 8385 if (sire != NULL) 8386 ire_refrele(sire); 8387 ipif_refrele(src_ipif); 8388 ill_refrele(dst_ill); 8389 return; 8390 } 8391 case IRE_IF_NORESOLVER: { 8392 /* 8393 * We have what we need to build an IRE_CACHE. 8394 * 8395 * Create a new res_mp with the IP gateway address 8396 * in destination address in the DLPI hdr if the 8397 * physical length is exactly 4 bytes. 8398 */ 8399 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8400 uchar_t *addr; 8401 8402 if (gw) 8403 addr = (uchar_t *)&gw; 8404 else 8405 addr = (uchar_t *)&dst; 8406 8407 res_mp = ill_dlur_gen(addr, 8408 dst_ill->ill_phys_addr_length, 8409 dst_ill->ill_sap, 8410 dst_ill->ill_sap_length); 8411 8412 if (res_mp == NULL) { 8413 ip1dbg(("ip_newroute: res_mp NULL\n")); 8414 break; 8415 } 8416 } else if (dst_ill->ill_resolver_mp == NULL) { 8417 ip1dbg(("ip_newroute: dst_ill %p " 8418 "for IF_NORESOLV ire %p has " 8419 "no ill_resolver_mp\n", 8420 (void *)dst_ill, (void *)ire)); 8421 break; 8422 } else { 8423 res_mp = NULL; 8424 } 8425 8426 /* 8427 * TSol note: We are creating the ire cache for the 8428 * destination 'dst'. If 'dst' is offlink, going 8429 * through the first hop 'gw', the security attributes 8430 * of 'dst' must be set to point to the gateway 8431 * credentials of gateway 'gw'. If 'dst' is onlink, it 8432 * is possible that 'dst' is a potential gateway that is 8433 * referenced by some route that has some security 8434 * attributes. Thus in the former case, we need to do a 8435 * gcgrp_lookup of 'gw' while in the latter case we 8436 * need to do gcgrp_lookup of 'dst' itself. 8437 */ 8438 ga.ga_af = AF_INET; 8439 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8440 &ga.ga_addr); 8441 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8442 8443 ire = ire_create( 8444 (uchar_t *)&dst, /* dest address */ 8445 (uchar_t *)&ip_g_all_ones, /* mask */ 8446 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8447 (uchar_t *)&gw, /* gateway address */ 8448 NULL, 8449 &save_ire->ire_max_frag, 8450 NULL, /* Fast Path header */ 8451 dst_ill->ill_rq, /* recv-from queue */ 8452 dst_ill->ill_wq, /* send-to queue */ 8453 IRE_CACHE, 8454 res_mp, 8455 src_ipif, 8456 in_ill, /* Incoming ill */ 8457 save_ire->ire_mask, /* Parent mask */ 8458 (sire != NULL) ? /* Parent handle */ 8459 sire->ire_phandle : 0, 8460 save_ire->ire_ihandle, /* Interface handle */ 8461 (sire != NULL) ? sire->ire_flags & 8462 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8463 &(save_ire->ire_uinfo), 8464 NULL, 8465 gcgrp); 8466 8467 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 8468 freeb(res_mp); 8469 8470 if (ire == NULL) { 8471 if (gcgrp != NULL) { 8472 GCGRP_REFRELE(gcgrp); 8473 gcgrp = NULL; 8474 } 8475 ire_refrele(save_ire); 8476 break; 8477 } 8478 8479 /* reference now held by IRE */ 8480 gcgrp = NULL; 8481 8482 ire->ire_marks |= ire_marks; 8483 8484 /* Prevent save_ire from getting deleted */ 8485 IRB_REFHOLD(save_ire->ire_bucket); 8486 /* Has it been removed already ? */ 8487 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8488 IRB_REFRELE(save_ire->ire_bucket); 8489 ire_refrele(save_ire); 8490 break; 8491 } 8492 8493 /* 8494 * In the case of multirouting, a copy 8495 * of the packet is made before it is sent. 8496 * The copy is used in the next 8497 * loop to attempt another resolution. 8498 */ 8499 xmit_mp = first_mp; 8500 if ((sire != NULL) && 8501 (sire->ire_flags & RTF_MULTIRT)) { 8502 copy_mp = copymsg(first_mp); 8503 if (copy_mp != NULL) { 8504 xmit_mp = copy_mp; 8505 MULTIRT_DEBUG_TAG(first_mp); 8506 } 8507 } 8508 ire_add_then_send(q, ire, xmit_mp); 8509 8510 /* Assert that it is not deleted yet. */ 8511 ASSERT(save_ire->ire_ptpn != NULL); 8512 IRB_REFRELE(save_ire->ire_bucket); 8513 ire_refrele(save_ire); 8514 8515 if (copy_mp != NULL) { 8516 /* 8517 * If we found a (no)resolver, we ignore any 8518 * trailing top priority IRE_CACHE in further 8519 * loops. This ensures that we do not omit any 8520 * (no)resolver. 8521 * This IRE_CACHE, if any, will be processed 8522 * by another thread entering ip_newroute(). 8523 * IRE_CACHE entries, if any, will be processed 8524 * by another thread entering ip_newroute(), 8525 * (upon resolver response, for instance). 8526 * This aims to force parallel multirt 8527 * resolutions as soon as a packet must be sent. 8528 * In the best case, after the tx of only one 8529 * packet, all reachable routes are resolved. 8530 * Otherwise, the resolution of all RTF_MULTIRT 8531 * routes would require several emissions. 8532 */ 8533 multirt_flags &= ~MULTIRT_CACHEGW; 8534 8535 /* 8536 * Search for the next unresolved multirt 8537 * route. 8538 */ 8539 copy_mp = NULL; 8540 save_ire = NULL; 8541 ire = NULL; 8542 multirt_resolve_next = B_TRUE; 8543 continue; 8544 } 8545 8546 /* 8547 * Don't need sire anymore 8548 */ 8549 if (sire != NULL) 8550 ire_refrele(sire); 8551 8552 ipif_refrele(src_ipif); 8553 ill_refrele(dst_ill); 8554 return; 8555 } 8556 case IRE_IF_RESOLVER: 8557 /* 8558 * We can't build an IRE_CACHE yet, but at least we 8559 * found a resolver that can help. 8560 */ 8561 res_mp = dst_ill->ill_resolver_mp; 8562 if (!OK_RESOLVER_MP(res_mp)) 8563 break; 8564 8565 /* 8566 * To be at this point in the code with a non-zero gw 8567 * means that dst is reachable through a gateway that 8568 * we have never resolved. By changing dst to the gw 8569 * addr we resolve the gateway first. 8570 * When ire_add_then_send() tries to put the IP dg 8571 * to dst, it will reenter ip_newroute() at which 8572 * time we will find the IRE_CACHE for the gw and 8573 * create another IRE_CACHE in case IRE_CACHE above. 8574 */ 8575 if (gw != INADDR_ANY) { 8576 /* 8577 * The source ipif that was determined above was 8578 * relative to the destination address, not the 8579 * gateway's. If src_ipif was not taken out of 8580 * the IRE_IF_RESOLVER entry, we'll need to call 8581 * ipif_select_source() again. 8582 */ 8583 if (src_ipif != ire->ire_ipif) { 8584 ipif_refrele(src_ipif); 8585 src_ipif = ipif_select_source(dst_ill, 8586 gw, zoneid); 8587 if (src_ipif == NULL) { 8588 if (ip_debug > 2) { 8589 pr_addr_dbg( 8590 "ip_newroute: no " 8591 "src for gw %s ", 8592 AF_INET, &gw); 8593 printf("through " 8594 "interface %s\n", 8595 dst_ill->ill_name); 8596 } 8597 goto icmp_err_ret; 8598 } 8599 } 8600 save_dst = dst; 8601 dst = gw; 8602 gw = INADDR_ANY; 8603 } 8604 8605 /* 8606 * We obtain a partial IRE_CACHE which we will pass 8607 * along with the resolver query. When the response 8608 * comes back it will be there ready for us to add. 8609 * The ire_max_frag is atomically set under the 8610 * irebucket lock in ire_add_v[46]. 8611 */ 8612 8613 ire = ire_create_mp( 8614 (uchar_t *)&dst, /* dest address */ 8615 (uchar_t *)&ip_g_all_ones, /* mask */ 8616 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8617 (uchar_t *)&gw, /* gateway address */ 8618 NULL, /* no in_src_addr */ 8619 NULL, /* ire_max_frag */ 8620 NULL, /* Fast Path header */ 8621 dst_ill->ill_rq, /* recv-from queue */ 8622 dst_ill->ill_wq, /* send-to queue */ 8623 IRE_CACHE, 8624 NULL, 8625 src_ipif, /* Interface ipif */ 8626 in_ill, /* Incoming ILL */ 8627 save_ire->ire_mask, /* Parent mask */ 8628 0, 8629 save_ire->ire_ihandle, /* Interface handle */ 8630 0, /* flags if any */ 8631 &(save_ire->ire_uinfo), 8632 NULL, 8633 NULL); 8634 8635 if (ire == NULL) { 8636 ire_refrele(save_ire); 8637 break; 8638 } 8639 8640 if ((sire != NULL) && 8641 (sire->ire_flags & RTF_MULTIRT)) { 8642 copy_mp = copymsg(first_mp); 8643 if (copy_mp != NULL) 8644 MULTIRT_DEBUG_TAG(copy_mp); 8645 } 8646 8647 ire->ire_marks |= ire_marks; 8648 8649 /* 8650 * Construct message chain for the resolver 8651 * of the form: 8652 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8653 * Packet could contain a IPSEC_OUT mp. 8654 * 8655 * NOTE : ire will be added later when the response 8656 * comes back from ARP. If the response does not 8657 * come back, ARP frees the packet. For this reason, 8658 * we can't REFHOLD the bucket of save_ire to prevent 8659 * deletions. We may not be able to REFRELE the bucket 8660 * if the response never comes back. Thus, before 8661 * adding the ire, ire_add_v4 will make sure that the 8662 * interface route does not get deleted. This is the 8663 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8664 * where we can always prevent deletions because of 8665 * the synchronous nature of adding IRES i.e 8666 * ire_add_then_send is called after creating the IRE. 8667 */ 8668 ASSERT(ire->ire_mp != NULL); 8669 ire->ire_mp->b_cont = first_mp; 8670 /* Have saved_mp handy, for cleanup if canput fails */ 8671 saved_mp = mp; 8672 mp = copyb(res_mp); 8673 if (mp == NULL) { 8674 /* Prepare for cleanup */ 8675 mp = saved_mp; /* pkt */ 8676 ire_delete(ire); /* ire_mp */ 8677 ire = NULL; 8678 ire_refrele(save_ire); 8679 if (copy_mp != NULL) { 8680 MULTIRT_DEBUG_UNTAG(copy_mp); 8681 freemsg(copy_mp); 8682 copy_mp = NULL; 8683 } 8684 break; 8685 } 8686 linkb(mp, ire->ire_mp); 8687 8688 /* 8689 * Fill in the source and dest addrs for the resolver. 8690 * NOTE: this depends on memory layouts imposed by 8691 * ill_init(). 8692 */ 8693 areq = (areq_t *)mp->b_rptr; 8694 addrp = (ipaddr_t *)((char *)areq + 8695 areq->areq_sender_addr_offset); 8696 if (do_attach_ill) { 8697 /* 8698 * This is bind to no failover case. 8699 * arp packet also must go out on attach_ill. 8700 */ 8701 ASSERT(ipha->ipha_src != NULL); 8702 *addrp = ipha->ipha_src; 8703 } else { 8704 *addrp = save_ire->ire_src_addr; 8705 } 8706 8707 ire_refrele(save_ire); 8708 addrp = (ipaddr_t *)((char *)areq + 8709 areq->areq_target_addr_offset); 8710 *addrp = dst; 8711 /* Up to the resolver. */ 8712 if (canputnext(dst_ill->ill_rq) && 8713 !(dst_ill->ill_arp_closing)) { 8714 putnext(dst_ill->ill_rq, mp); 8715 ire = NULL; 8716 if (copy_mp != NULL) { 8717 /* 8718 * If we found a resolver, we ignore 8719 * any trailing top priority IRE_CACHE 8720 * in the further loops. This ensures 8721 * that we do not omit any resolver. 8722 * IRE_CACHE entries, if any, will be 8723 * processed next time we enter 8724 * ip_newroute(). 8725 */ 8726 multirt_flags &= ~MULTIRT_CACHEGW; 8727 /* 8728 * Search for the next unresolved 8729 * multirt route. 8730 */ 8731 first_mp = copy_mp; 8732 copy_mp = NULL; 8733 /* Prepare the next resolution loop. */ 8734 mp = first_mp; 8735 EXTRACT_PKT_MP(mp, first_mp, 8736 mctl_present); 8737 if (mctl_present) 8738 io = (ipsec_out_t *) 8739 first_mp->b_rptr; 8740 ipha = (ipha_t *)mp->b_rptr; 8741 8742 ASSERT(sire != NULL); 8743 8744 dst = save_dst; 8745 multirt_resolve_next = B_TRUE; 8746 continue; 8747 } 8748 8749 if (sire != NULL) 8750 ire_refrele(sire); 8751 8752 /* 8753 * The response will come back in ip_wput 8754 * with db_type IRE_DB_TYPE. 8755 */ 8756 ipif_refrele(src_ipif); 8757 ill_refrele(dst_ill); 8758 return; 8759 } else { 8760 /* Prepare for cleanup */ 8761 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8762 mp); 8763 mp->b_cont = NULL; 8764 freeb(mp); /* areq */ 8765 /* 8766 * this is an ire that is not added to the 8767 * cache. ire_freemblk will handle the release 8768 * of any resources associated with the ire. 8769 */ 8770 ire_delete(ire); /* ire_mp */ 8771 mp = saved_mp; /* pkt */ 8772 ire = NULL; 8773 if (copy_mp != NULL) { 8774 MULTIRT_DEBUG_UNTAG(copy_mp); 8775 freemsg(copy_mp); 8776 copy_mp = NULL; 8777 } 8778 break; 8779 } 8780 default: 8781 break; 8782 } 8783 } while (multirt_resolve_next); 8784 8785 ip1dbg(("ip_newroute: dropped\n")); 8786 /* Did this packet originate externally? */ 8787 if (mp->b_prev) { 8788 mp->b_next = NULL; 8789 mp->b_prev = NULL; 8790 BUMP_MIB(&ip_mib, ipInDiscards); 8791 } else { 8792 BUMP_MIB(&ip_mib, ipOutDiscards); 8793 } 8794 ASSERT(copy_mp == NULL); 8795 MULTIRT_DEBUG_UNTAG(first_mp); 8796 freemsg(first_mp); 8797 if (ire != NULL) 8798 ire_refrele(ire); 8799 if (sire != NULL) 8800 ire_refrele(sire); 8801 if (src_ipif != NULL) 8802 ipif_refrele(src_ipif); 8803 if (dst_ill != NULL) 8804 ill_refrele(dst_ill); 8805 return; 8806 8807 icmp_err_ret: 8808 ip1dbg(("ip_newroute: no route\n")); 8809 if (src_ipif != NULL) 8810 ipif_refrele(src_ipif); 8811 if (dst_ill != NULL) 8812 ill_refrele(dst_ill); 8813 if (sire != NULL) 8814 ire_refrele(sire); 8815 /* Did this packet originate externally? */ 8816 if (mp->b_prev) { 8817 mp->b_next = NULL; 8818 mp->b_prev = NULL; 8819 /* XXX ipInNoRoutes */ 8820 q = WR(q); 8821 } else { 8822 /* 8823 * Since ip_wput() isn't close to finished, we fill 8824 * in enough of the header for credible error reporting. 8825 */ 8826 if (ip_hdr_complete(ipha, zoneid)) { 8827 /* Failed */ 8828 MULTIRT_DEBUG_UNTAG(first_mp); 8829 freemsg(first_mp); 8830 if (ire != NULL) 8831 ire_refrele(ire); 8832 return; 8833 } 8834 } 8835 BUMP_MIB(&ip_mib, ipOutNoRoutes); 8836 8837 /* 8838 * At this point we will have ire only if RTF_BLACKHOLE 8839 * or RTF_REJECT flags are set on the IRE. It will not 8840 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8841 */ 8842 if (ire != NULL) { 8843 if (ire->ire_flags & RTF_BLACKHOLE) { 8844 ire_refrele(ire); 8845 MULTIRT_DEBUG_UNTAG(first_mp); 8846 freemsg(first_mp); 8847 return; 8848 } 8849 ire_refrele(ire); 8850 } 8851 if (ip_source_routed(ipha)) { 8852 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8853 zoneid); 8854 return; 8855 } 8856 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid); 8857 } 8858 8859 /* 8860 * IPv4 - 8861 * ip_newroute_ipif is called by ip_wput_multicast and 8862 * ip_rput_forward_multicast whenever we need to send 8863 * out a packet to a destination address for which we do not have specific 8864 * routing information. It is used when the packet will be sent out 8865 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 8866 * socket option is set or icmp error message wants to go out on a particular 8867 * interface for a unicast packet. 8868 * 8869 * In most cases, the destination address is resolved thanks to the ipif 8870 * intrinsic resolver. However, there are some cases where the call to 8871 * ip_newroute_ipif must take into account the potential presence of 8872 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8873 * that uses the interface. This is specified through flags, 8874 * which can be a combination of: 8875 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8876 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8877 * and flags. Additionally, the packet source address has to be set to 8878 * the specified address. The caller is thus expected to set this flag 8879 * if the packet has no specific source address yet. 8880 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8881 * flag, the resulting ire will inherit the flag. All unresolved routes 8882 * to the destination must be explored in the same call to 8883 * ip_newroute_ipif(). 8884 */ 8885 static void 8886 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8887 conn_t *connp, uint32_t flags, zoneid_t zoneid) 8888 { 8889 areq_t *areq; 8890 ire_t *ire = NULL; 8891 mblk_t *res_mp; 8892 ipaddr_t *addrp; 8893 mblk_t *first_mp; 8894 ire_t *save_ire = NULL; 8895 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8896 ipif_t *src_ipif = NULL; 8897 ushort_t ire_marks = 0; 8898 ill_t *dst_ill = NULL; 8899 boolean_t mctl_present; 8900 ipsec_out_t *io; 8901 ipha_t *ipha; 8902 int ihandle = 0; 8903 mblk_t *saved_mp; 8904 ire_t *fire = NULL; 8905 mblk_t *copy_mp = NULL; 8906 boolean_t multirt_resolve_next; 8907 ipaddr_t ipha_dst; 8908 8909 /* 8910 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 8911 * here for uniformity 8912 */ 8913 ipif_refhold(ipif); 8914 8915 /* 8916 * This loop is run only once in most cases. 8917 * We loop to resolve further routes only when the destination 8918 * can be reached through multiple RTF_MULTIRT-flagged ires. 8919 */ 8920 do { 8921 if (dst_ill != NULL) { 8922 ill_refrele(dst_ill); 8923 dst_ill = NULL; 8924 } 8925 if (src_ipif != NULL) { 8926 ipif_refrele(src_ipif); 8927 src_ipif = NULL; 8928 } 8929 multirt_resolve_next = B_FALSE; 8930 8931 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 8932 ipif->ipif_ill->ill_name)); 8933 8934 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 8935 if (mctl_present) 8936 io = (ipsec_out_t *)first_mp->b_rptr; 8937 8938 ipha = (ipha_t *)mp->b_rptr; 8939 8940 /* 8941 * Save the packet destination address, we may need it after 8942 * the packet has been consumed. 8943 */ 8944 ipha_dst = ipha->ipha_dst; 8945 8946 /* 8947 * If the interface is a pt-pt interface we look for an 8948 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 8949 * local_address and the pt-pt destination address. Otherwise 8950 * we just match the local address. 8951 * NOTE: dst could be different than ipha->ipha_dst in case 8952 * of sending igmp multicast packets over a point-to-point 8953 * connection. 8954 * Thus we must be careful enough to check ipha_dst to be a 8955 * multicast address, otherwise it will take xmit_if path for 8956 * multicast packets resulting into kernel stack overflow by 8957 * repeated calls to ip_newroute_ipif from ire_send(). 8958 */ 8959 if (CLASSD(ipha_dst) && 8960 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 8961 goto err_ret; 8962 } 8963 8964 /* 8965 * We check if an IRE_OFFSUBNET for the addr that goes through 8966 * ipif exists. We need it to determine if the RTF_SETSRC and/or 8967 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 8968 * propagate its flags to the new ire. 8969 */ 8970 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 8971 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 8972 ip2dbg(("ip_newroute_ipif: " 8973 "ipif_lookup_multi_ire(" 8974 "ipif %p, dst %08x) = fire %p\n", 8975 (void *)ipif, ntohl(dst), (void *)fire)); 8976 } 8977 8978 if (mctl_present && io->ipsec_out_attach_if) { 8979 attach_ill = ip_grab_attach_ill(NULL, first_mp, 8980 io->ipsec_out_ill_index, B_FALSE); 8981 8982 /* Failure case frees things for us. */ 8983 if (attach_ill == NULL) { 8984 ipif_refrele(ipif); 8985 if (fire != NULL) 8986 ire_refrele(fire); 8987 return; 8988 } 8989 8990 /* 8991 * Check if we need an ire that will not be 8992 * looked up by anybody else i.e. HIDDEN. 8993 */ 8994 if (ill_is_probeonly(attach_ill)) { 8995 ire_marks = IRE_MARK_HIDDEN; 8996 } 8997 /* 8998 * ip_wput passes the right ipif for IPIF_NOFAILOVER 8999 * case. 9000 */ 9001 dst_ill = ipif->ipif_ill; 9002 /* attach_ill has been refheld by ip_grab_attach_ill */ 9003 ASSERT(dst_ill == attach_ill); 9004 } else { 9005 /* 9006 * If this is set by IP_XMIT_IF, then make sure that 9007 * ipif is pointing to the same ill as the IP_XMIT_IF 9008 * specified ill. 9009 */ 9010 ASSERT((connp == NULL) || 9011 (connp->conn_xmit_if_ill == NULL) || 9012 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 9013 /* 9014 * If the interface belongs to an interface group, 9015 * make sure the next possible interface in the group 9016 * is used. This encourages load spreading among 9017 * peers in an interface group. 9018 * Note: load spreading is disabled for RTF_MULTIRT 9019 * routes. 9020 */ 9021 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9022 (fire->ire_flags & RTF_MULTIRT)) { 9023 /* 9024 * Don't perform outbound load spreading 9025 * in the case of an RTF_MULTIRT issued route, 9026 * we actually typically want to replicate 9027 * outgoing packets through particular 9028 * interfaces. 9029 */ 9030 dst_ill = ipif->ipif_ill; 9031 ill_refhold(dst_ill); 9032 } else { 9033 dst_ill = ip_newroute_get_dst_ill( 9034 ipif->ipif_ill); 9035 } 9036 if (dst_ill == NULL) { 9037 if (ip_debug > 2) { 9038 pr_addr_dbg("ip_newroute_ipif: " 9039 "no dst ill for dst %s\n", 9040 AF_INET, &dst); 9041 } 9042 goto err_ret; 9043 } 9044 } 9045 9046 /* 9047 * Pick a source address preferring non-deprecated ones. 9048 * Unlike ip_newroute, we don't do any source address 9049 * selection here since for multicast it really does not help 9050 * in inbound load spreading as in the unicast case. 9051 */ 9052 if ((flags & RTF_SETSRC) && (fire != NULL) && 9053 (fire->ire_flags & RTF_SETSRC)) { 9054 /* 9055 * As requested by flags, an IRE_OFFSUBNET was looked up 9056 * on that interface. This ire has RTF_SETSRC flag, so 9057 * the source address of the packet must be changed. 9058 * Check that the ipif matching the requested source 9059 * address still exists. 9060 */ 9061 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9062 zoneid, NULL, NULL, NULL, NULL); 9063 } 9064 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 9065 (connp != NULL && ipif->ipif_zoneid != zoneid && 9066 ipif->ipif_zoneid != ALL_ZONES)) && 9067 (src_ipif == NULL)) { 9068 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9069 if (src_ipif == NULL) { 9070 if (ip_debug > 2) { 9071 /* ip1dbg */ 9072 pr_addr_dbg("ip_newroute_ipif: " 9073 "no src for dst %s", 9074 AF_INET, &dst); 9075 } 9076 ip1dbg((" through interface %s\n", 9077 dst_ill->ill_name)); 9078 goto err_ret; 9079 } 9080 ipif_refrele(ipif); 9081 ipif = src_ipif; 9082 ipif_refhold(ipif); 9083 } 9084 if (src_ipif == NULL) { 9085 src_ipif = ipif; 9086 ipif_refhold(src_ipif); 9087 } 9088 9089 /* 9090 * Assign a source address while we have the conn. 9091 * We can't have ip_wput_ire pick a source address when the 9092 * packet returns from arp since conn_unspec_src might be set 9093 * and we loose the conn when going through arp. 9094 */ 9095 if (ipha->ipha_src == INADDR_ANY && 9096 (connp == NULL || !connp->conn_unspec_src)) { 9097 ipha->ipha_src = src_ipif->ipif_src_addr; 9098 } 9099 9100 /* 9101 * In case of IP_XMIT_IF, it is possible that the outgoing 9102 * interface does not have an interface ire. 9103 * Example: Thousands of mobileip PPP interfaces to mobile 9104 * nodes. We don't want to create interface ires because 9105 * packets from other mobile nodes must not take the route 9106 * via interface ires to the visiting mobile node without 9107 * going through the home agent, in absence of mobileip 9108 * route optimization. 9109 */ 9110 if (CLASSD(ipha_dst) && (connp == NULL || 9111 connp->conn_xmit_if_ill == NULL)) { 9112 /* ipif_to_ire returns an held ire */ 9113 ire = ipif_to_ire(ipif); 9114 if (ire == NULL) 9115 goto err_ret; 9116 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9117 goto err_ret; 9118 /* 9119 * ihandle is needed when the ire is added to 9120 * cache table. 9121 */ 9122 save_ire = ire; 9123 ihandle = save_ire->ire_ihandle; 9124 9125 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9126 "flags %04x\n", 9127 (void *)ire, (void *)ipif, flags)); 9128 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9129 (fire->ire_flags & RTF_MULTIRT)) { 9130 /* 9131 * As requested by flags, an IRE_OFFSUBNET was 9132 * looked up on that interface. This ire has 9133 * RTF_MULTIRT flag, so the resolution loop will 9134 * be re-entered to resolve additional routes on 9135 * other interfaces. For that purpose, a copy of 9136 * the packet is performed at this point. 9137 */ 9138 fire->ire_last_used_time = lbolt; 9139 copy_mp = copymsg(first_mp); 9140 if (copy_mp) { 9141 MULTIRT_DEBUG_TAG(copy_mp); 9142 } 9143 } 9144 if ((flags & RTF_SETSRC) && (fire != NULL) && 9145 (fire->ire_flags & RTF_SETSRC)) { 9146 /* 9147 * As requested by flags, an IRE_OFFSUBET was 9148 * looked up on that interface. This ire has 9149 * RTF_SETSRC flag, so the source address of the 9150 * packet must be changed. 9151 */ 9152 ipha->ipha_src = fire->ire_src_addr; 9153 } 9154 } else { 9155 ASSERT((connp == NULL) || 9156 (connp->conn_xmit_if_ill != NULL) || 9157 (connp->conn_dontroute)); 9158 /* 9159 * The only ways we can come here are: 9160 * 1) IP_XMIT_IF socket option is set 9161 * 2) ICMP error message generated from 9162 * ip_mrtun_forward() routine and it needs 9163 * to go through the specified ill. 9164 * 3) SO_DONTROUTE socket option is set 9165 * In all cases, the new ire will not be added 9166 * into cache table. 9167 */ 9168 ire_marks |= IRE_MARK_NOADD; 9169 } 9170 9171 switch (ipif->ipif_net_type) { 9172 case IRE_IF_NORESOLVER: { 9173 /* We have what we need to build an IRE_CACHE. */ 9174 mblk_t *res_mp; 9175 9176 /* 9177 * Create a new res_mp with the 9178 * IP gateway address as destination address in the 9179 * DLPI hdr if the physical length is exactly 4 bytes. 9180 */ 9181 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 9182 res_mp = ill_dlur_gen((uchar_t *)&dst, 9183 dst_ill->ill_phys_addr_length, 9184 dst_ill->ill_sap, 9185 dst_ill->ill_sap_length); 9186 } else if (dst_ill->ill_resolver_mp == NULL) { 9187 ip1dbg(("ip_newroute: dst_ill %p " 9188 "for IF_NORESOLV ire %p has " 9189 "no ill_resolver_mp\n", 9190 (void *)dst_ill, (void *)ire)); 9191 break; 9192 } else { 9193 /* use the value set in ip_ll_subnet_defaults */ 9194 res_mp = ill_dlur_gen(NULL, 9195 dst_ill->ill_phys_addr_length, 9196 dst_ill->ill_sap, 9197 dst_ill->ill_sap_length); 9198 } 9199 9200 if (res_mp == NULL) 9201 break; 9202 /* 9203 * The new ire inherits the IRE_OFFSUBNET flags 9204 * and source address, if this was requested. 9205 */ 9206 ire = ire_create( 9207 (uchar_t *)&dst, /* dest address */ 9208 (uchar_t *)&ip_g_all_ones, /* mask */ 9209 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9210 NULL, /* gateway address */ 9211 NULL, 9212 &ipif->ipif_mtu, 9213 NULL, /* Fast Path header */ 9214 dst_ill->ill_rq, /* recv-from queue */ 9215 dst_ill->ill_wq, /* send-to queue */ 9216 IRE_CACHE, 9217 res_mp, 9218 src_ipif, 9219 NULL, 9220 (save_ire != NULL ? save_ire->ire_mask : 0), 9221 (fire != NULL) ? /* Parent handle */ 9222 fire->ire_phandle : 0, 9223 ihandle, /* Interface handle */ 9224 (fire != NULL) ? 9225 (fire->ire_flags & 9226 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9227 (save_ire == NULL ? &ire_uinfo_null : 9228 &save_ire->ire_uinfo), 9229 NULL, 9230 NULL); 9231 9232 freeb(res_mp); 9233 9234 if (ire == NULL) { 9235 if (save_ire != NULL) 9236 ire_refrele(save_ire); 9237 break; 9238 } 9239 9240 ire->ire_marks |= ire_marks; 9241 9242 /* 9243 * If IRE_MARK_NOADD is set then we need to convert 9244 * the max_fragp to a useable value now. This is 9245 * normally done in ire_add_v[46]. We also need to 9246 * associate the ire with an nce (normally would be 9247 * done in ip_wput_nondata()). 9248 * 9249 * Note that IRE_MARK_NOADD packets created here 9250 * do not have a non-null ire_mp pointer. The null 9251 * value of ire_bucket indicates that they were 9252 * never added. 9253 */ 9254 if (ire->ire_marks & IRE_MARK_NOADD) { 9255 uint_t max_frag; 9256 9257 max_frag = *ire->ire_max_fragp; 9258 ire->ire_max_fragp = NULL; 9259 ire->ire_max_frag = max_frag; 9260 9261 if ((ire->ire_nce = ndp_lookup_v4( 9262 ire_to_ill(ire), 9263 (ire->ire_gateway_addr != INADDR_ANY ? 9264 &ire->ire_gateway_addr : &ire->ire_addr), 9265 B_FALSE)) == NULL) { 9266 if (save_ire != NULL) 9267 ire_refrele(save_ire); 9268 break; 9269 } 9270 ASSERT(ire->ire_nce->nce_state == 9271 ND_REACHABLE); 9272 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9273 } 9274 9275 /* Prevent save_ire from getting deleted */ 9276 if (save_ire != NULL) { 9277 IRB_REFHOLD(save_ire->ire_bucket); 9278 /* Has it been removed already ? */ 9279 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9280 IRB_REFRELE(save_ire->ire_bucket); 9281 ire_refrele(save_ire); 9282 break; 9283 } 9284 } 9285 9286 ire_add_then_send(q, ire, first_mp); 9287 9288 /* Assert that save_ire is not deleted yet. */ 9289 if (save_ire != NULL) { 9290 ASSERT(save_ire->ire_ptpn != NULL); 9291 IRB_REFRELE(save_ire->ire_bucket); 9292 ire_refrele(save_ire); 9293 save_ire = NULL; 9294 } 9295 if (fire != NULL) { 9296 ire_refrele(fire); 9297 fire = NULL; 9298 } 9299 9300 /* 9301 * the resolution loop is re-entered if this 9302 * was requested through flags and if we 9303 * actually are in a multirouting case. 9304 */ 9305 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9306 boolean_t need_resolve = 9307 ire_multirt_need_resolve(ipha_dst, 9308 MBLK_GETLABEL(copy_mp)); 9309 if (!need_resolve) { 9310 MULTIRT_DEBUG_UNTAG(copy_mp); 9311 freemsg(copy_mp); 9312 copy_mp = NULL; 9313 } else { 9314 /* 9315 * ipif_lookup_group() calls 9316 * ire_lookup_multi() that uses 9317 * ire_ftable_lookup() to find 9318 * an IRE_INTERFACE for the group. 9319 * In the multirt case, 9320 * ire_lookup_multi() then invokes 9321 * ire_multirt_lookup() to find 9322 * the next resolvable ire. 9323 * As a result, we obtain an new 9324 * interface, derived from the 9325 * next ire. 9326 */ 9327 ipif_refrele(ipif); 9328 ipif = ipif_lookup_group(ipha_dst, 9329 zoneid); 9330 ip2dbg(("ip_newroute_ipif: " 9331 "multirt dst %08x, ipif %p\n", 9332 htonl(dst), (void *)ipif)); 9333 if (ipif != NULL) { 9334 mp = copy_mp; 9335 copy_mp = NULL; 9336 multirt_resolve_next = B_TRUE; 9337 continue; 9338 } else { 9339 freemsg(copy_mp); 9340 } 9341 } 9342 } 9343 if (ipif != NULL) 9344 ipif_refrele(ipif); 9345 ill_refrele(dst_ill); 9346 ipif_refrele(src_ipif); 9347 return; 9348 } 9349 case IRE_IF_RESOLVER: 9350 /* 9351 * We can't build an IRE_CACHE yet, but at least 9352 * we found a resolver that can help. 9353 */ 9354 res_mp = dst_ill->ill_resolver_mp; 9355 if (!OK_RESOLVER_MP(res_mp)) 9356 break; 9357 9358 /* 9359 * We obtain a partial IRE_CACHE which we will pass 9360 * along with the resolver query. When the response 9361 * comes back it will be there ready for us to add. 9362 * The new ire inherits the IRE_OFFSUBNET flags 9363 * and source address, if this was requested. 9364 * The ire_max_frag is atomically set under the 9365 * irebucket lock in ire_add_v[46]. Only in the 9366 * case of IRE_MARK_NOADD, we set it here itself. 9367 */ 9368 ire = ire_create_mp( 9369 (uchar_t *)&dst, /* dest address */ 9370 (uchar_t *)&ip_g_all_ones, /* mask */ 9371 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9372 NULL, /* gateway address */ 9373 NULL, /* no in_src_addr */ 9374 (ire_marks & IRE_MARK_NOADD) ? 9375 ipif->ipif_mtu : 0, /* max_frag */ 9376 NULL, /* Fast path header */ 9377 dst_ill->ill_rq, /* recv-from queue */ 9378 dst_ill->ill_wq, /* send-to queue */ 9379 IRE_CACHE, 9380 NULL, /* let ire_nce_init figure res_mp out */ 9381 src_ipif, 9382 NULL, 9383 (save_ire != NULL ? save_ire->ire_mask : 0), 9384 (fire != NULL) ? /* Parent handle */ 9385 fire->ire_phandle : 0, 9386 ihandle, /* Interface handle */ 9387 (fire != NULL) ? /* flags if any */ 9388 (fire->ire_flags & 9389 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9390 (save_ire == NULL ? &ire_uinfo_null : 9391 &save_ire->ire_uinfo), 9392 NULL, 9393 NULL); 9394 9395 if (save_ire != NULL) { 9396 ire_refrele(save_ire); 9397 save_ire = NULL; 9398 } 9399 if (ire == NULL) 9400 break; 9401 9402 ire->ire_marks |= ire_marks; 9403 /* 9404 * Construct message chain for the resolver of the 9405 * form: 9406 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9407 * 9408 * NOTE : ire will be added later when the response 9409 * comes back from ARP. If the response does not 9410 * come back, ARP frees the packet. For this reason, 9411 * we can't REFHOLD the bucket of save_ire to prevent 9412 * deletions. We may not be able to REFRELE the 9413 * bucket if the response never comes back. 9414 * Thus, before adding the ire, ire_add_v4 will make 9415 * sure that the interface route does not get deleted. 9416 * This is the only case unlike ip_newroute_v6, 9417 * ip_newroute_ipif_v6 where we can always prevent 9418 * deletions because ire_add_then_send is called after 9419 * creating the IRE. 9420 * If IRE_MARK_NOADD is set, then ire_add_then_send 9421 * does not add this IRE into the IRE CACHE. 9422 */ 9423 ASSERT(ire->ire_mp != NULL); 9424 ire->ire_mp->b_cont = first_mp; 9425 /* Have saved_mp handy, for cleanup if canput fails */ 9426 saved_mp = mp; 9427 mp = copyb(res_mp); 9428 if (mp == NULL) { 9429 /* Prepare for cleanup */ 9430 mp = saved_mp; /* pkt */ 9431 ire_delete(ire); /* ire_mp */ 9432 ire = NULL; 9433 if (copy_mp != NULL) { 9434 MULTIRT_DEBUG_UNTAG(copy_mp); 9435 freemsg(copy_mp); 9436 copy_mp = NULL; 9437 } 9438 break; 9439 } 9440 linkb(mp, ire->ire_mp); 9441 9442 /* 9443 * Fill in the source and dest addrs for the resolver. 9444 * NOTE: this depends on memory layouts imposed by 9445 * ill_init(). 9446 */ 9447 areq = (areq_t *)mp->b_rptr; 9448 addrp = (ipaddr_t *)((char *)areq + 9449 areq->areq_sender_addr_offset); 9450 *addrp = ire->ire_src_addr; 9451 addrp = (ipaddr_t *)((char *)areq + 9452 areq->areq_target_addr_offset); 9453 *addrp = dst; 9454 /* Up to the resolver. */ 9455 if (canputnext(dst_ill->ill_rq) && 9456 !(dst_ill->ill_arp_closing)) { 9457 putnext(dst_ill->ill_rq, mp); 9458 /* 9459 * The response will come back in ip_wput 9460 * with db_type IRE_DB_TYPE. 9461 */ 9462 } else { 9463 mp->b_cont = NULL; 9464 freeb(mp); /* areq */ 9465 ire_delete(ire); /* ire_mp */ 9466 saved_mp->b_next = NULL; 9467 saved_mp->b_prev = NULL; 9468 freemsg(first_mp); /* pkt */ 9469 ip2dbg(("ip_newroute_ipif: dropped\n")); 9470 } 9471 9472 if (fire != NULL) { 9473 ire_refrele(fire); 9474 fire = NULL; 9475 } 9476 9477 9478 /* 9479 * The resolution loop is re-entered if this was 9480 * requested through flags and we actually are 9481 * in a multirouting case. 9482 */ 9483 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9484 boolean_t need_resolve = 9485 ire_multirt_need_resolve(ipha_dst, 9486 MBLK_GETLABEL(copy_mp)); 9487 if (!need_resolve) { 9488 MULTIRT_DEBUG_UNTAG(copy_mp); 9489 freemsg(copy_mp); 9490 copy_mp = NULL; 9491 } else { 9492 /* 9493 * ipif_lookup_group() calls 9494 * ire_lookup_multi() that uses 9495 * ire_ftable_lookup() to find 9496 * an IRE_INTERFACE for the group. 9497 * In the multirt case, 9498 * ire_lookup_multi() then invokes 9499 * ire_multirt_lookup() to find 9500 * the next resolvable ire. 9501 * As a result, we obtain an new 9502 * interface, derived from the 9503 * next ire. 9504 */ 9505 ipif_refrele(ipif); 9506 ipif = ipif_lookup_group(ipha_dst, 9507 zoneid); 9508 if (ipif != NULL) { 9509 mp = copy_mp; 9510 copy_mp = NULL; 9511 multirt_resolve_next = B_TRUE; 9512 continue; 9513 } else { 9514 freemsg(copy_mp); 9515 } 9516 } 9517 } 9518 if (ipif != NULL) 9519 ipif_refrele(ipif); 9520 ill_refrele(dst_ill); 9521 ipif_refrele(src_ipif); 9522 return; 9523 default: 9524 break; 9525 } 9526 } while (multirt_resolve_next); 9527 9528 err_ret: 9529 ip2dbg(("ip_newroute_ipif: dropped\n")); 9530 if (fire != NULL) 9531 ire_refrele(fire); 9532 ipif_refrele(ipif); 9533 /* Did this packet originate externally? */ 9534 if (dst_ill != NULL) 9535 ill_refrele(dst_ill); 9536 if (src_ipif != NULL) 9537 ipif_refrele(src_ipif); 9538 if (mp->b_prev || mp->b_next) { 9539 mp->b_next = NULL; 9540 mp->b_prev = NULL; 9541 } else { 9542 /* 9543 * Since ip_wput() isn't close to finished, we fill 9544 * in enough of the header for credible error reporting. 9545 */ 9546 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 9547 /* Failed */ 9548 freemsg(first_mp); 9549 if (ire != NULL) 9550 ire_refrele(ire); 9551 return; 9552 } 9553 } 9554 /* 9555 * At this point we will have ire only if RTF_BLACKHOLE 9556 * or RTF_REJECT flags are set on the IRE. It will not 9557 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9558 */ 9559 if (ire != NULL) { 9560 if (ire->ire_flags & RTF_BLACKHOLE) { 9561 ire_refrele(ire); 9562 freemsg(first_mp); 9563 return; 9564 } 9565 ire_refrele(ire); 9566 } 9567 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid); 9568 } 9569 9570 /* Name/Value Table Lookup Routine */ 9571 char * 9572 ip_nv_lookup(nv_t *nv, int value) 9573 { 9574 if (!nv) 9575 return (NULL); 9576 for (; nv->nv_name; nv++) { 9577 if (nv->nv_value == value) 9578 return (nv->nv_name); 9579 } 9580 return ("unknown"); 9581 } 9582 9583 /* 9584 * one day it can be patched to 1 from /etc/system for machines that have few 9585 * fast network interfaces feeding multiple cpus. 9586 */ 9587 int ill_stream_putlocks = 0; 9588 9589 /* 9590 * This is a module open, i.e. this is a control stream for access 9591 * to a DLPI device. We allocate an ill_t as the instance data in 9592 * this case. 9593 */ 9594 int 9595 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9596 { 9597 uint32_t mem_cnt; 9598 uint32_t cpu_cnt; 9599 uint32_t min_cnt; 9600 pgcnt_t mem_avail; 9601 ill_t *ill; 9602 int err; 9603 9604 /* 9605 * Prevent unprivileged processes from pushing IP so that 9606 * they can't send raw IP. 9607 */ 9608 if (secpolicy_net_rawaccess(credp) != 0) 9609 return (EPERM); 9610 9611 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9612 q->q_ptr = WR(q)->q_ptr = ill; 9613 9614 /* 9615 * ill_init initializes the ill fields and then sends down 9616 * down a DL_INFO_REQ after calling qprocson. 9617 */ 9618 err = ill_init(q, ill); 9619 if (err != 0) { 9620 mi_free(ill); 9621 q->q_ptr = NULL; 9622 WR(q)->q_ptr = NULL; 9623 return (err); 9624 } 9625 9626 /* ill_init initializes the ipsq marking this thread as writer */ 9627 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9628 /* Wait for the DL_INFO_ACK */ 9629 mutex_enter(&ill->ill_lock); 9630 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9631 /* 9632 * Return value of 0 indicates a pending signal. 9633 */ 9634 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9635 if (err == 0) { 9636 mutex_exit(&ill->ill_lock); 9637 (void) ip_close(q, 0); 9638 return (EINTR); 9639 } 9640 } 9641 mutex_exit(&ill->ill_lock); 9642 9643 /* 9644 * ip_rput_other could have set an error in ill_error on 9645 * receipt of M_ERROR. 9646 */ 9647 9648 err = ill->ill_error; 9649 if (err != 0) { 9650 (void) ip_close(q, 0); 9651 return (err); 9652 } 9653 9654 /* 9655 * ip_ire_max_bucket_cnt is sized below based on the memory 9656 * size and the cpu speed of the machine. This is upper 9657 * bounded by the compile time value of ip_ire_max_bucket_cnt 9658 * and is lower bounded by the compile time value of 9659 * ip_ire_min_bucket_cnt. Similar logic applies to 9660 * ip6_ire_max_bucket_cnt. 9661 */ 9662 mem_avail = kmem_avail(); 9663 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9664 ip_cache_table_size / sizeof (ire_t); 9665 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 9666 9667 min_cnt = MIN(cpu_cnt, mem_cnt); 9668 if (min_cnt < ip_ire_min_bucket_cnt) 9669 min_cnt = ip_ire_min_bucket_cnt; 9670 if (ip_ire_max_bucket_cnt > min_cnt) { 9671 ip_ire_max_bucket_cnt = min_cnt; 9672 } 9673 9674 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9675 ip6_cache_table_size / sizeof (ire_t); 9676 min_cnt = MIN(cpu_cnt, mem_cnt); 9677 if (min_cnt < ip6_ire_min_bucket_cnt) 9678 min_cnt = ip6_ire_min_bucket_cnt; 9679 if (ip6_ire_max_bucket_cnt > min_cnt) { 9680 ip6_ire_max_bucket_cnt = min_cnt; 9681 } 9682 9683 ill->ill_credp = credp; 9684 crhold(credp); 9685 9686 mutex_enter(&ip_mi_lock); 9687 err = mi_open_link(&ip_g_head, (IDP)ill, devp, flag, sflag, credp); 9688 mutex_exit(&ip_mi_lock); 9689 if (err) { 9690 (void) ip_close(q, 0); 9691 return (err); 9692 } 9693 return (0); 9694 } 9695 9696 /* IP open routine. */ 9697 int 9698 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9699 { 9700 conn_t *connp; 9701 major_t maj; 9702 9703 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9704 9705 /* Allow reopen. */ 9706 if (q->q_ptr != NULL) 9707 return (0); 9708 9709 if (sflag & MODOPEN) { 9710 /* This is a module open */ 9711 return (ip_modopen(q, devp, flag, sflag, credp)); 9712 } 9713 9714 /* 9715 * We are opening as a device. This is an IP client stream, and we 9716 * allocate an conn_t as the instance data. 9717 */ 9718 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP); 9719 connp->conn_upq = q; 9720 q->q_ptr = WR(q)->q_ptr = connp; 9721 9722 if (flag & SO_SOCKSTR) 9723 connp->conn_flags |= IPCL_SOCKET; 9724 9725 /* Minor tells us which /dev entry was opened */ 9726 if (geteminor(*devp) == IPV6_MINOR) { 9727 connp->conn_flags |= IPCL_ISV6; 9728 connp->conn_af_isv6 = B_TRUE; 9729 ip_setqinfo(q, geteminor(*devp), B_FALSE); 9730 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9731 } else { 9732 connp->conn_af_isv6 = B_FALSE; 9733 connp->conn_pkt_isv6 = B_FALSE; 9734 } 9735 9736 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9737 q->q_ptr = WR(q)->q_ptr = NULL; 9738 CONN_DEC_REF(connp); 9739 return (EBUSY); 9740 } 9741 9742 maj = getemajor(*devp); 9743 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9744 9745 /* 9746 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9747 */ 9748 connp->conn_cred = credp; 9749 crhold(connp->conn_cred); 9750 9751 /* 9752 * If the caller has the process-wide flag set, then default to MAC 9753 * exempt mode. This allows read-down to unlabeled hosts. 9754 */ 9755 if (getpflags(NET_MAC_AWARE, credp) != 0) 9756 connp->conn_mac_exempt = B_TRUE; 9757 9758 connp->conn_zoneid = getzoneid(); 9759 9760 /* 9761 * This should only happen for ndd, netstat, raw socket or other SCTP 9762 * administrative ops. In these cases, we just need a normal conn_t 9763 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 9764 * an error will be returned. 9765 */ 9766 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 9767 connp->conn_rq = q; 9768 connp->conn_wq = WR(q); 9769 } else { 9770 connp->conn_ulp = IPPROTO_SCTP; 9771 connp->conn_rq = connp->conn_wq = NULL; 9772 } 9773 /* Non-zero default values */ 9774 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9775 9776 /* 9777 * Make the conn globally visible to walkers 9778 */ 9779 mutex_enter(&connp->conn_lock); 9780 connp->conn_state_flags &= ~CONN_INCIPIENT; 9781 mutex_exit(&connp->conn_lock); 9782 ASSERT(connp->conn_ref == 1); 9783 9784 qprocson(q); 9785 9786 return (0); 9787 } 9788 9789 /* 9790 * Change q_qinfo based on the value of isv6. 9791 * This can not called on an ill queue. 9792 * Note that there is no race since either q_qinfo works for conn queues - it 9793 * is just an optimization to enter the best wput routine directly. 9794 */ 9795 void 9796 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib) 9797 { 9798 ASSERT(q->q_flag & QREADR); 9799 ASSERT(WR(q)->q_next == NULL); 9800 ASSERT(q->q_ptr != NULL); 9801 9802 if (minor == IPV6_MINOR) { 9803 if (bump_mib) 9804 BUMP_MIB(&ip6_mib, ipv6OutSwitchIPv4); 9805 q->q_qinfo = &rinit_ipv6; 9806 WR(q)->q_qinfo = &winit_ipv6; 9807 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 9808 } else { 9809 if (bump_mib) 9810 BUMP_MIB(&ip_mib, ipOutSwitchIPv6); 9811 q->q_qinfo = &iprinit; 9812 WR(q)->q_qinfo = &ipwinit; 9813 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 9814 } 9815 9816 } 9817 9818 /* 9819 * See if IPsec needs loading because of the options in mp. 9820 */ 9821 static boolean_t 9822 ipsec_opt_present(mblk_t *mp) 9823 { 9824 uint8_t *optcp, *next_optcp, *opt_endcp; 9825 struct opthdr *opt; 9826 struct T_opthdr *topt; 9827 int opthdr_len; 9828 t_uscalar_t optname, optlevel; 9829 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9830 ipsec_req_t *ipsr; 9831 9832 /* 9833 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9834 * return TRUE. 9835 */ 9836 9837 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9838 opt_endcp = optcp + tor->OPT_length; 9839 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9840 opthdr_len = sizeof (struct T_opthdr); 9841 } else { /* O_OPTMGMT_REQ */ 9842 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9843 opthdr_len = sizeof (struct opthdr); 9844 } 9845 for (; optcp < opt_endcp; optcp = next_optcp) { 9846 if (optcp + opthdr_len > opt_endcp) 9847 return (B_FALSE); /* Not enough option header. */ 9848 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9849 topt = (struct T_opthdr *)optcp; 9850 optlevel = topt->level; 9851 optname = topt->name; 9852 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9853 } else { 9854 opt = (struct opthdr *)optcp; 9855 optlevel = opt->level; 9856 optname = opt->name; 9857 next_optcp = optcp + opthdr_len + 9858 _TPI_ALIGN_OPT(opt->len); 9859 } 9860 if ((next_optcp < optcp) || /* wraparound pointer space */ 9861 ((next_optcp >= opt_endcp) && /* last option bad len */ 9862 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9863 return (B_FALSE); /* bad option buffer */ 9864 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9865 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9866 /* 9867 * Check to see if it's an all-bypass or all-zeroes 9868 * IPsec request. Don't bother loading IPsec if 9869 * the socket doesn't want to use it. (A good example 9870 * is a bypass request.) 9871 * 9872 * Basically, if any of the non-NEVER bits are set, 9873 * load IPsec. 9874 */ 9875 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9876 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9877 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9878 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9879 != 0) 9880 return (B_TRUE); 9881 } 9882 } 9883 return (B_FALSE); 9884 } 9885 9886 /* 9887 * If conn is is waiting for ipsec to finish loading, kick it. 9888 */ 9889 /* ARGSUSED */ 9890 static void 9891 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9892 { 9893 t_scalar_t optreq_prim; 9894 mblk_t *mp; 9895 cred_t *cr; 9896 int err = 0; 9897 9898 /* 9899 * This function is called, after ipsec loading is complete. 9900 * Since IP checks exclusively and atomically (i.e it prevents 9901 * ipsec load from completing until ip_optcom_req completes) 9902 * whether ipsec load is complete, there cannot be a race with IP 9903 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9904 */ 9905 mutex_enter(&connp->conn_lock); 9906 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9907 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9908 mp = connp->conn_ipsec_opt_mp; 9909 connp->conn_ipsec_opt_mp = NULL; 9910 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9911 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 9912 mutex_exit(&connp->conn_lock); 9913 9914 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9915 9916 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9917 if (optreq_prim == T_OPTMGMT_REQ) { 9918 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9919 &ip_opt_obj); 9920 } else { 9921 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 9922 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9923 &ip_opt_obj); 9924 } 9925 if (err != EINPROGRESS) 9926 CONN_OPER_PENDING_DONE(connp); 9927 return; 9928 } 9929 mutex_exit(&connp->conn_lock); 9930 } 9931 9932 /* 9933 * Called from the ipsec_loader thread, outside any perimeter, to tell 9934 * ip qenable any of the queues waiting for the ipsec loader to 9935 * complete. 9936 * 9937 * Use ip_mi_lock to be safe here: all modifications of the mi lists 9938 * are done with this lock held, so it's guaranteed that none of the 9939 * links will change along the way. 9940 */ 9941 void 9942 ip_ipsec_load_complete() 9943 { 9944 ipcl_walk(conn_restart_ipsec_waiter, NULL); 9945 } 9946 9947 /* 9948 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 9949 * determines the grp on which it has to become exclusive, queues the mp 9950 * and sq draining restarts the optmgmt 9951 */ 9952 static boolean_t 9953 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 9954 { 9955 conn_t *connp; 9956 9957 /* 9958 * Take IPsec requests and treat them special. 9959 */ 9960 if (ipsec_opt_present(mp)) { 9961 /* First check if IPsec is loaded. */ 9962 mutex_enter(&ipsec_loader_lock); 9963 if (ipsec_loader_state != IPSEC_LOADER_WAIT) { 9964 mutex_exit(&ipsec_loader_lock); 9965 return (B_FALSE); 9966 } 9967 connp = Q_TO_CONN(q); 9968 mutex_enter(&connp->conn_lock); 9969 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 9970 9971 ASSERT(connp->conn_ipsec_opt_mp == NULL); 9972 connp->conn_ipsec_opt_mp = mp; 9973 mutex_exit(&connp->conn_lock); 9974 mutex_exit(&ipsec_loader_lock); 9975 9976 ipsec_loader_loadnow(); 9977 return (B_TRUE); 9978 } 9979 return (B_FALSE); 9980 } 9981 9982 /* 9983 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 9984 * all of them are copied to the conn_t. If the req is "zero", the policy is 9985 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 9986 * fields. 9987 * We keep only the latest setting of the policy and thus policy setting 9988 * is not incremental/cumulative. 9989 * 9990 * Requests to set policies with multiple alternative actions will 9991 * go through a different API. 9992 */ 9993 int 9994 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 9995 { 9996 uint_t ah_req = 0; 9997 uint_t esp_req = 0; 9998 uint_t se_req = 0; 9999 ipsec_selkey_t sel; 10000 ipsec_act_t *actp = NULL; 10001 uint_t nact; 10002 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10003 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10004 ipsec_policy_root_t *pr; 10005 ipsec_policy_head_t *ph; 10006 int fam; 10007 boolean_t is_pol_reset; 10008 int error = 0; 10009 10010 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10011 10012 /* 10013 * The IP_SEC_OPT option does not allow variable length parameters, 10014 * hence a request cannot be NULL. 10015 */ 10016 if (req == NULL) 10017 return (EINVAL); 10018 10019 ah_req = req->ipsr_ah_req; 10020 esp_req = req->ipsr_esp_req; 10021 se_req = req->ipsr_self_encap_req; 10022 10023 /* 10024 * Are we dealing with a request to reset the policy (i.e. 10025 * zero requests). 10026 */ 10027 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10028 (esp_req & REQ_MASK) == 0 && 10029 (se_req & REQ_MASK) == 0); 10030 10031 if (!is_pol_reset) { 10032 /* 10033 * If we couldn't load IPsec, fail with "protocol 10034 * not supported". 10035 * IPsec may not have been loaded for a request with zero 10036 * policies, so we don't fail in this case. 10037 */ 10038 mutex_enter(&ipsec_loader_lock); 10039 if (ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10040 mutex_exit(&ipsec_loader_lock); 10041 return (EPROTONOSUPPORT); 10042 } 10043 mutex_exit(&ipsec_loader_lock); 10044 10045 /* 10046 * Test for valid requests. Invalid algorithms 10047 * need to be tested by IPSEC code because new 10048 * algorithms can be added dynamically. 10049 */ 10050 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10051 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10052 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10053 return (EINVAL); 10054 } 10055 10056 /* 10057 * Only privileged users can issue these 10058 * requests. 10059 */ 10060 if (((ah_req & IPSEC_PREF_NEVER) || 10061 (esp_req & IPSEC_PREF_NEVER) || 10062 (se_req & IPSEC_PREF_NEVER)) && 10063 secpolicy_net_config(cr, B_FALSE) != 0) { 10064 return (EPERM); 10065 } 10066 10067 /* 10068 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10069 * are mutually exclusive. 10070 */ 10071 if (((ah_req & REQ_MASK) == REQ_MASK) || 10072 ((esp_req & REQ_MASK) == REQ_MASK) || 10073 ((se_req & REQ_MASK) == REQ_MASK)) { 10074 /* Both of them are set */ 10075 return (EINVAL); 10076 } 10077 } 10078 10079 mutex_enter(&connp->conn_lock); 10080 10081 /* 10082 * If we have already cached policies in ip_bind_connected*(), don't 10083 * let them change now. We cache policies for connections 10084 * whose src,dst [addr, port] is known. 10085 */ 10086 if (connp->conn_policy_cached) { 10087 mutex_exit(&connp->conn_lock); 10088 return (EINVAL); 10089 } 10090 10091 /* 10092 * We have a zero policies, reset the connection policy if already 10093 * set. This will cause the connection to inherit the 10094 * global policy, if any. 10095 */ 10096 if (is_pol_reset) { 10097 if (connp->conn_policy != NULL) { 10098 IPPH_REFRELE(connp->conn_policy); 10099 connp->conn_policy = NULL; 10100 } 10101 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10102 connp->conn_in_enforce_policy = B_FALSE; 10103 connp->conn_out_enforce_policy = B_FALSE; 10104 mutex_exit(&connp->conn_lock); 10105 return (0); 10106 } 10107 10108 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy); 10109 if (ph == NULL) 10110 goto enomem; 10111 10112 ipsec_actvec_from_req(req, &actp, &nact); 10113 if (actp == NULL) 10114 goto enomem; 10115 10116 /* 10117 * Always allocate IPv4 policy entries, since they can also 10118 * apply to ipv6 sockets being used in ipv4-compat mode. 10119 */ 10120 bzero(&sel, sizeof (sel)); 10121 sel.ipsl_valid = IPSL_IPV4; 10122 10123 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL); 10124 if (pin4 == NULL) 10125 goto enomem; 10126 10127 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL); 10128 if (pout4 == NULL) 10129 goto enomem; 10130 10131 if (connp->conn_pkt_isv6) { 10132 /* 10133 * We're looking at a v6 socket, also allocate the 10134 * v6-specific entries... 10135 */ 10136 sel.ipsl_valid = IPSL_IPV6; 10137 pin6 = ipsec_policy_create(&sel, actp, nact, 10138 IPSEC_PRIO_SOCKET, NULL); 10139 if (pin6 == NULL) 10140 goto enomem; 10141 10142 pout6 = ipsec_policy_create(&sel, actp, nact, 10143 IPSEC_PRIO_SOCKET, NULL); 10144 if (pout6 == NULL) 10145 goto enomem; 10146 10147 /* 10148 * .. and file them away in the right place. 10149 */ 10150 fam = IPSEC_AF_V6; 10151 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10152 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10153 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10154 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10155 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10156 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10157 } 10158 10159 ipsec_actvec_free(actp, nact); 10160 10161 /* 10162 * File the v4 policies. 10163 */ 10164 fam = IPSEC_AF_V4; 10165 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10166 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10167 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10168 10169 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10170 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10171 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10172 10173 /* 10174 * If the requests need security, set enforce_policy. 10175 * If the requests are IPSEC_PREF_NEVER, one should 10176 * still set conn_out_enforce_policy so that an ipsec_out 10177 * gets attached in ip_wput. This is needed so that 10178 * for connections that we don't cache policy in ip_bind, 10179 * if global policy matches in ip_wput_attach_policy, we 10180 * don't wrongly inherit global policy. Similarly, we need 10181 * to set conn_in_enforce_policy also so that we don't verify 10182 * policy wrongly. 10183 */ 10184 if ((ah_req & REQ_MASK) != 0 || 10185 (esp_req & REQ_MASK) != 0 || 10186 (se_req & REQ_MASK) != 0) { 10187 connp->conn_in_enforce_policy = B_TRUE; 10188 connp->conn_out_enforce_policy = B_TRUE; 10189 connp->conn_flags |= IPCL_CHECK_POLICY; 10190 } 10191 10192 mutex_exit(&connp->conn_lock); 10193 return (error); 10194 #undef REQ_MASK 10195 10196 /* 10197 * Common memory-allocation-failure exit path. 10198 */ 10199 enomem: 10200 mutex_exit(&connp->conn_lock); 10201 if (actp != NULL) 10202 ipsec_actvec_free(actp, nact); 10203 if (pin4 != NULL) 10204 IPPOL_REFRELE(pin4); 10205 if (pout4 != NULL) 10206 IPPOL_REFRELE(pout4); 10207 if (pin6 != NULL) 10208 IPPOL_REFRELE(pin6); 10209 if (pout6 != NULL) 10210 IPPOL_REFRELE(pout6); 10211 return (ENOMEM); 10212 } 10213 10214 /* 10215 * Only for options that pass in an IP addr. Currently only V4 options 10216 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10217 * So this function assumes level is IPPROTO_IP 10218 */ 10219 int 10220 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10221 mblk_t *first_mp) 10222 { 10223 ipif_t *ipif = NULL; 10224 int error; 10225 ill_t *ill; 10226 int zoneid; 10227 10228 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10229 10230 if (addr != INADDR_ANY || checkonly) { 10231 ASSERT(connp != NULL); 10232 zoneid = IPCL_ZONEID(connp); 10233 if (option == IP_NEXTHOP) { 10234 ipif = ipif_lookup_onlink_addr(addr, 10235 connp->conn_zoneid); 10236 } else { 10237 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10238 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10239 &error); 10240 } 10241 if (ipif == NULL) { 10242 if (error == EINPROGRESS) 10243 return (error); 10244 else if ((option == IP_MULTICAST_IF) || 10245 (option == IP_NEXTHOP)) 10246 return (EHOSTUNREACH); 10247 else 10248 return (EINVAL); 10249 } else if (checkonly) { 10250 if (option == IP_MULTICAST_IF) { 10251 ill = ipif->ipif_ill; 10252 /* not supported by the virtual network iface */ 10253 if (IS_VNI(ill)) { 10254 ipif_refrele(ipif); 10255 return (EINVAL); 10256 } 10257 } 10258 ipif_refrele(ipif); 10259 return (0); 10260 } 10261 ill = ipif->ipif_ill; 10262 mutex_enter(&connp->conn_lock); 10263 mutex_enter(&ill->ill_lock); 10264 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10265 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10266 mutex_exit(&ill->ill_lock); 10267 mutex_exit(&connp->conn_lock); 10268 ipif_refrele(ipif); 10269 return (option == IP_MULTICAST_IF ? 10270 EHOSTUNREACH : EINVAL); 10271 } 10272 } else { 10273 mutex_enter(&connp->conn_lock); 10274 } 10275 10276 /* None of the options below are supported on the VNI */ 10277 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10278 mutex_exit(&ill->ill_lock); 10279 mutex_exit(&connp->conn_lock); 10280 ipif_refrele(ipif); 10281 return (EINVAL); 10282 } 10283 10284 switch (option) { 10285 case IP_DONTFAILOVER_IF: 10286 /* 10287 * This option is used by in.mpathd to ensure 10288 * that IPMP probe packets only go out on the 10289 * test interfaces. in.mpathd sets this option 10290 * on the non-failover interfaces. 10291 * For backward compatibility, this option 10292 * implicitly sets IP_MULTICAST_IF, as used 10293 * be done in bind(), so that ip_wput gets 10294 * this ipif to send mcast packets. 10295 */ 10296 if (ipif != NULL) { 10297 ASSERT(addr != INADDR_ANY); 10298 connp->conn_nofailover_ill = ipif->ipif_ill; 10299 connp->conn_multicast_ipif = ipif; 10300 } else { 10301 ASSERT(addr == INADDR_ANY); 10302 connp->conn_nofailover_ill = NULL; 10303 connp->conn_multicast_ipif = NULL; 10304 } 10305 break; 10306 10307 case IP_MULTICAST_IF: 10308 connp->conn_multicast_ipif = ipif; 10309 break; 10310 case IP_NEXTHOP: 10311 connp->conn_nexthop_v4 = addr; 10312 connp->conn_nexthop_set = B_TRUE; 10313 break; 10314 } 10315 10316 if (ipif != NULL) { 10317 mutex_exit(&ill->ill_lock); 10318 mutex_exit(&connp->conn_lock); 10319 ipif_refrele(ipif); 10320 return (0); 10321 } 10322 mutex_exit(&connp->conn_lock); 10323 /* We succeded in cleared the option */ 10324 return (0); 10325 } 10326 10327 /* 10328 * For options that pass in an ifindex specifying the ill. V6 options always 10329 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10330 */ 10331 int 10332 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10333 int level, int option, mblk_t *first_mp) 10334 { 10335 ill_t *ill = NULL; 10336 int error = 0; 10337 10338 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10339 if (ifindex != 0) { 10340 ASSERT(connp != NULL); 10341 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10342 first_mp, ip_restart_optmgmt, &error); 10343 if (ill != NULL) { 10344 if (checkonly) { 10345 /* not supported by the virtual network iface */ 10346 if (IS_VNI(ill)) { 10347 ill_refrele(ill); 10348 return (EINVAL); 10349 } 10350 ill_refrele(ill); 10351 return (0); 10352 } 10353 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10354 0, NULL)) { 10355 ill_refrele(ill); 10356 ill = NULL; 10357 mutex_enter(&connp->conn_lock); 10358 goto setit; 10359 } 10360 mutex_enter(&connp->conn_lock); 10361 mutex_enter(&ill->ill_lock); 10362 if (ill->ill_state_flags & ILL_CONDEMNED) { 10363 mutex_exit(&ill->ill_lock); 10364 mutex_exit(&connp->conn_lock); 10365 ill_refrele(ill); 10366 ill = NULL; 10367 mutex_enter(&connp->conn_lock); 10368 } 10369 goto setit; 10370 } else if (error == EINPROGRESS) { 10371 return (error); 10372 } else { 10373 error = 0; 10374 } 10375 } 10376 mutex_enter(&connp->conn_lock); 10377 setit: 10378 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10379 10380 /* 10381 * The options below assume that the ILL (if any) transmits and/or 10382 * receives traffic. Neither of which is true for the virtual network 10383 * interface, so fail setting these on a VNI. 10384 */ 10385 if (IS_VNI(ill)) { 10386 ASSERT(ill != NULL); 10387 mutex_exit(&ill->ill_lock); 10388 mutex_exit(&connp->conn_lock); 10389 ill_refrele(ill); 10390 return (EINVAL); 10391 } 10392 10393 if (level == IPPROTO_IP) { 10394 switch (option) { 10395 case IP_BOUND_IF: 10396 connp->conn_incoming_ill = ill; 10397 connp->conn_outgoing_ill = ill; 10398 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10399 0 : ifindex; 10400 break; 10401 10402 case IP_XMIT_IF: 10403 /* 10404 * Similar to IP_BOUND_IF, but this only 10405 * determines the outgoing interface for 10406 * unicast packets. Also no IRE_CACHE entry 10407 * is added for the destination of the 10408 * outgoing packets. This feature is needed 10409 * for mobile IP. 10410 */ 10411 connp->conn_xmit_if_ill = ill; 10412 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 10413 0 : ifindex; 10414 break; 10415 10416 case IP_MULTICAST_IF: 10417 /* 10418 * This option is an internal special. The socket 10419 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10420 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10421 * specifies an ifindex and we try first on V6 ill's. 10422 * If we don't find one, we they try using on v4 ill's 10423 * intenally and we come here. 10424 */ 10425 if (!checkonly && ill != NULL) { 10426 ipif_t *ipif; 10427 ipif = ill->ill_ipif; 10428 10429 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10430 mutex_exit(&ill->ill_lock); 10431 mutex_exit(&connp->conn_lock); 10432 ill_refrele(ill); 10433 ill = NULL; 10434 mutex_enter(&connp->conn_lock); 10435 } else { 10436 connp->conn_multicast_ipif = ipif; 10437 } 10438 } 10439 break; 10440 } 10441 } else { 10442 switch (option) { 10443 case IPV6_BOUND_IF: 10444 connp->conn_incoming_ill = ill; 10445 connp->conn_outgoing_ill = ill; 10446 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10447 0 : ifindex; 10448 break; 10449 10450 case IPV6_BOUND_PIF: 10451 /* 10452 * Limit all transmit to this ill. 10453 * Unlike IPV6_BOUND_IF, using this option 10454 * prevents load spreading and failover from 10455 * happening when the interface is part of the 10456 * group. That's why we don't need to remember 10457 * the ifindex in orig_bound_ifindex as in 10458 * IPV6_BOUND_IF. 10459 */ 10460 connp->conn_outgoing_pill = ill; 10461 break; 10462 10463 case IPV6_DONTFAILOVER_IF: 10464 /* 10465 * This option is used by in.mpathd to ensure 10466 * that IPMP probe packets only go out on the 10467 * test interfaces. in.mpathd sets this option 10468 * on the non-failover interfaces. 10469 */ 10470 connp->conn_nofailover_ill = ill; 10471 /* 10472 * For backward compatibility, this option 10473 * implicitly sets ip_multicast_ill as used in 10474 * IP_MULTICAST_IF so that ip_wput gets 10475 * this ipif to send mcast packets. 10476 */ 10477 connp->conn_multicast_ill = ill; 10478 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10479 0 : ifindex; 10480 break; 10481 10482 case IPV6_MULTICAST_IF: 10483 /* 10484 * Set conn_multicast_ill to be the IPv6 ill. 10485 * Set conn_multicast_ipif to be an IPv4 ipif 10486 * for ifindex to make IPv4 mapped addresses 10487 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10488 * Even if no IPv6 ill exists for the ifindex 10489 * we need to check for an IPv4 ifindex in order 10490 * for this to work with mapped addresses. In that 10491 * case only set conn_multicast_ipif. 10492 */ 10493 if (!checkonly) { 10494 if (ifindex == 0) { 10495 connp->conn_multicast_ill = NULL; 10496 connp->conn_orig_multicast_ifindex = 0; 10497 connp->conn_multicast_ipif = NULL; 10498 } else if (ill != NULL) { 10499 connp->conn_multicast_ill = ill; 10500 connp->conn_orig_multicast_ifindex = 10501 ifindex; 10502 } 10503 } 10504 break; 10505 } 10506 } 10507 10508 if (ill != NULL) { 10509 mutex_exit(&ill->ill_lock); 10510 mutex_exit(&connp->conn_lock); 10511 ill_refrele(ill); 10512 return (0); 10513 } 10514 mutex_exit(&connp->conn_lock); 10515 /* 10516 * We succeeded in clearing the option (ifindex == 0) or failed to 10517 * locate the ill and could not set the option (ifindex != 0) 10518 */ 10519 return (ifindex == 0 ? 0 : EINVAL); 10520 } 10521 10522 /* This routine sets socket options. */ 10523 /* ARGSUSED */ 10524 int 10525 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10526 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10527 void *dummy, cred_t *cr, mblk_t *first_mp) 10528 { 10529 int *i1 = (int *)invalp; 10530 conn_t *connp = Q_TO_CONN(q); 10531 int error = 0; 10532 boolean_t checkonly; 10533 ire_t *ire; 10534 boolean_t found; 10535 10536 switch (optset_context) { 10537 10538 case SETFN_OPTCOM_CHECKONLY: 10539 checkonly = B_TRUE; 10540 /* 10541 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10542 * inlen != 0 implies value supplied and 10543 * we have to "pretend" to set it. 10544 * inlen == 0 implies that there is no 10545 * value part in T_CHECK request and just validation 10546 * done elsewhere should be enough, we just return here. 10547 */ 10548 if (inlen == 0) { 10549 *outlenp = 0; 10550 return (0); 10551 } 10552 break; 10553 case SETFN_OPTCOM_NEGOTIATE: 10554 case SETFN_UD_NEGOTIATE: 10555 case SETFN_CONN_NEGOTIATE: 10556 checkonly = B_FALSE; 10557 break; 10558 default: 10559 /* 10560 * We should never get here 10561 */ 10562 *outlenp = 0; 10563 return (EINVAL); 10564 } 10565 10566 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10567 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10568 10569 /* 10570 * For fixed length options, no sanity check 10571 * of passed in length is done. It is assumed *_optcom_req() 10572 * routines do the right thing. 10573 */ 10574 10575 switch (level) { 10576 case SOL_SOCKET: 10577 /* 10578 * conn_lock protects the bitfields, and is used to 10579 * set the fields atomically. 10580 */ 10581 switch (name) { 10582 case SO_BROADCAST: 10583 if (!checkonly) { 10584 /* TODO: use value someplace? */ 10585 mutex_enter(&connp->conn_lock); 10586 connp->conn_broadcast = *i1 ? 1 : 0; 10587 mutex_exit(&connp->conn_lock); 10588 } 10589 break; /* goto sizeof (int) option return */ 10590 case SO_USELOOPBACK: 10591 if (!checkonly) { 10592 /* TODO: use value someplace? */ 10593 mutex_enter(&connp->conn_lock); 10594 connp->conn_loopback = *i1 ? 1 : 0; 10595 mutex_exit(&connp->conn_lock); 10596 } 10597 break; /* goto sizeof (int) option return */ 10598 case SO_DONTROUTE: 10599 if (!checkonly) { 10600 mutex_enter(&connp->conn_lock); 10601 connp->conn_dontroute = *i1 ? 1 : 0; 10602 mutex_exit(&connp->conn_lock); 10603 } 10604 break; /* goto sizeof (int) option return */ 10605 case SO_REUSEADDR: 10606 if (!checkonly) { 10607 mutex_enter(&connp->conn_lock); 10608 connp->conn_reuseaddr = *i1 ? 1 : 0; 10609 mutex_exit(&connp->conn_lock); 10610 } 10611 break; /* goto sizeof (int) option return */ 10612 case SO_PROTOTYPE: 10613 if (!checkonly) { 10614 mutex_enter(&connp->conn_lock); 10615 connp->conn_proto = *i1; 10616 mutex_exit(&connp->conn_lock); 10617 } 10618 break; /* goto sizeof (int) option return */ 10619 case SO_ALLZONES: 10620 if (!checkonly) { 10621 mutex_enter(&connp->conn_lock); 10622 if (IPCL_IS_BOUND(connp)) { 10623 mutex_exit(&connp->conn_lock); 10624 return (EINVAL); 10625 } 10626 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10627 mutex_exit(&connp->conn_lock); 10628 } 10629 break; /* goto sizeof (int) option return */ 10630 case SO_ANON_MLP: 10631 if (!checkonly) { 10632 mutex_enter(&connp->conn_lock); 10633 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10634 mutex_exit(&connp->conn_lock); 10635 } 10636 break; /* goto sizeof (int) option return */ 10637 case SO_MAC_EXEMPT: 10638 if (secpolicy_net_mac_aware(cr) != 0 || 10639 IPCL_IS_BOUND(connp)) 10640 return (EACCES); 10641 if (!checkonly) { 10642 mutex_enter(&connp->conn_lock); 10643 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10644 mutex_exit(&connp->conn_lock); 10645 } 10646 break; /* goto sizeof (int) option return */ 10647 default: 10648 /* 10649 * "soft" error (negative) 10650 * option not handled at this level 10651 * Note: Do not modify *outlenp 10652 */ 10653 return (-EINVAL); 10654 } 10655 break; 10656 case IPPROTO_IP: 10657 switch (name) { 10658 case IP_NEXTHOP: 10659 if (secpolicy_net_config(cr, B_FALSE) != 0) 10660 return (EPERM); 10661 /* FALLTHRU */ 10662 case IP_MULTICAST_IF: 10663 case IP_DONTFAILOVER_IF: { 10664 ipaddr_t addr = *i1; 10665 10666 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10667 first_mp); 10668 if (error != 0) 10669 return (error); 10670 break; /* goto sizeof (int) option return */ 10671 } 10672 10673 case IP_MULTICAST_TTL: 10674 /* Recorded in transport above IP */ 10675 *outvalp = *invalp; 10676 *outlenp = sizeof (uchar_t); 10677 return (0); 10678 case IP_MULTICAST_LOOP: 10679 if (!checkonly) { 10680 mutex_enter(&connp->conn_lock); 10681 connp->conn_multicast_loop = *invalp ? 1 : 0; 10682 mutex_exit(&connp->conn_lock); 10683 } 10684 *outvalp = *invalp; 10685 *outlenp = sizeof (uchar_t); 10686 return (0); 10687 case IP_ADD_MEMBERSHIP: 10688 case MCAST_JOIN_GROUP: 10689 case IP_DROP_MEMBERSHIP: 10690 case MCAST_LEAVE_GROUP: { 10691 struct ip_mreq *mreqp; 10692 struct group_req *greqp; 10693 ire_t *ire; 10694 boolean_t done = B_FALSE; 10695 ipaddr_t group, ifaddr; 10696 struct sockaddr_in *sin; 10697 uint32_t *ifindexp; 10698 boolean_t mcast_opt = B_TRUE; 10699 mcast_record_t fmode; 10700 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10701 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10702 10703 switch (name) { 10704 case IP_ADD_MEMBERSHIP: 10705 mcast_opt = B_FALSE; 10706 /* FALLTHRU */ 10707 case MCAST_JOIN_GROUP: 10708 fmode = MODE_IS_EXCLUDE; 10709 optfn = ip_opt_add_group; 10710 break; 10711 10712 case IP_DROP_MEMBERSHIP: 10713 mcast_opt = B_FALSE; 10714 /* FALLTHRU */ 10715 case MCAST_LEAVE_GROUP: 10716 fmode = MODE_IS_INCLUDE; 10717 optfn = ip_opt_delete_group; 10718 break; 10719 } 10720 10721 if (mcast_opt) { 10722 greqp = (struct group_req *)i1; 10723 sin = (struct sockaddr_in *)&greqp->gr_group; 10724 if (sin->sin_family != AF_INET) { 10725 *outlenp = 0; 10726 return (ENOPROTOOPT); 10727 } 10728 group = (ipaddr_t)sin->sin_addr.s_addr; 10729 ifaddr = INADDR_ANY; 10730 ifindexp = &greqp->gr_interface; 10731 } else { 10732 mreqp = (struct ip_mreq *)i1; 10733 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10734 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10735 ifindexp = NULL; 10736 } 10737 10738 /* 10739 * In the multirouting case, we need to replicate 10740 * the request on all interfaces that will take part 10741 * in replication. We do so because multirouting is 10742 * reflective, thus we will probably receive multi- 10743 * casts on those interfaces. 10744 * The ip_multirt_apply_membership() succeeds if the 10745 * operation succeeds on at least one interface. 10746 */ 10747 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10748 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10749 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10750 if (ire != NULL) { 10751 if (ire->ire_flags & RTF_MULTIRT) { 10752 error = ip_multirt_apply_membership( 10753 optfn, ire, connp, checkonly, group, 10754 fmode, INADDR_ANY, first_mp); 10755 done = B_TRUE; 10756 } 10757 ire_refrele(ire); 10758 } 10759 if (!done) { 10760 error = optfn(connp, checkonly, group, ifaddr, 10761 ifindexp, fmode, INADDR_ANY, first_mp); 10762 } 10763 if (error) { 10764 /* 10765 * EINPROGRESS is a soft error, needs retry 10766 * so don't make *outlenp zero. 10767 */ 10768 if (error != EINPROGRESS) 10769 *outlenp = 0; 10770 return (error); 10771 } 10772 /* OK return - copy input buffer into output buffer */ 10773 if (invalp != outvalp) { 10774 /* don't trust bcopy for identical src/dst */ 10775 bcopy(invalp, outvalp, inlen); 10776 } 10777 *outlenp = inlen; 10778 return (0); 10779 } 10780 case IP_BLOCK_SOURCE: 10781 case IP_UNBLOCK_SOURCE: 10782 case IP_ADD_SOURCE_MEMBERSHIP: 10783 case IP_DROP_SOURCE_MEMBERSHIP: 10784 case MCAST_BLOCK_SOURCE: 10785 case MCAST_UNBLOCK_SOURCE: 10786 case MCAST_JOIN_SOURCE_GROUP: 10787 case MCAST_LEAVE_SOURCE_GROUP: { 10788 struct ip_mreq_source *imreqp; 10789 struct group_source_req *gsreqp; 10790 in_addr_t grp, src, ifaddr = INADDR_ANY; 10791 uint32_t ifindex = 0; 10792 mcast_record_t fmode; 10793 struct sockaddr_in *sin; 10794 ire_t *ire; 10795 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10796 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10797 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10798 10799 switch (name) { 10800 case IP_BLOCK_SOURCE: 10801 mcast_opt = B_FALSE; 10802 /* FALLTHRU */ 10803 case MCAST_BLOCK_SOURCE: 10804 fmode = MODE_IS_EXCLUDE; 10805 optfn = ip_opt_add_group; 10806 break; 10807 10808 case IP_UNBLOCK_SOURCE: 10809 mcast_opt = B_FALSE; 10810 /* FALLTHRU */ 10811 case MCAST_UNBLOCK_SOURCE: 10812 fmode = MODE_IS_EXCLUDE; 10813 optfn = ip_opt_delete_group; 10814 break; 10815 10816 case IP_ADD_SOURCE_MEMBERSHIP: 10817 mcast_opt = B_FALSE; 10818 /* FALLTHRU */ 10819 case MCAST_JOIN_SOURCE_GROUP: 10820 fmode = MODE_IS_INCLUDE; 10821 optfn = ip_opt_add_group; 10822 break; 10823 10824 case IP_DROP_SOURCE_MEMBERSHIP: 10825 mcast_opt = B_FALSE; 10826 /* FALLTHRU */ 10827 case MCAST_LEAVE_SOURCE_GROUP: 10828 fmode = MODE_IS_INCLUDE; 10829 optfn = ip_opt_delete_group; 10830 break; 10831 } 10832 10833 if (mcast_opt) { 10834 gsreqp = (struct group_source_req *)i1; 10835 if (gsreqp->gsr_group.ss_family != AF_INET) { 10836 *outlenp = 0; 10837 return (ENOPROTOOPT); 10838 } 10839 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10840 grp = (ipaddr_t)sin->sin_addr.s_addr; 10841 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10842 src = (ipaddr_t)sin->sin_addr.s_addr; 10843 ifindex = gsreqp->gsr_interface; 10844 } else { 10845 imreqp = (struct ip_mreq_source *)i1; 10846 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10847 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10848 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10849 } 10850 10851 /* 10852 * In the multirouting case, we need to replicate 10853 * the request as noted in the mcast cases above. 10854 */ 10855 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10856 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10857 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10858 if (ire != NULL) { 10859 if (ire->ire_flags & RTF_MULTIRT) { 10860 error = ip_multirt_apply_membership( 10861 optfn, ire, connp, checkonly, grp, 10862 fmode, src, first_mp); 10863 done = B_TRUE; 10864 } 10865 ire_refrele(ire); 10866 } 10867 if (!done) { 10868 error = optfn(connp, checkonly, grp, ifaddr, 10869 &ifindex, fmode, src, first_mp); 10870 } 10871 if (error != 0) { 10872 /* 10873 * EINPROGRESS is a soft error, needs retry 10874 * so don't make *outlenp zero. 10875 */ 10876 if (error != EINPROGRESS) 10877 *outlenp = 0; 10878 return (error); 10879 } 10880 /* OK return - copy input buffer into output buffer */ 10881 if (invalp != outvalp) { 10882 bcopy(invalp, outvalp, inlen); 10883 } 10884 *outlenp = inlen; 10885 return (0); 10886 } 10887 case IP_SEC_OPT: 10888 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10889 if (error != 0) { 10890 *outlenp = 0; 10891 return (error); 10892 } 10893 break; 10894 case IP_HDRINCL: 10895 case IP_OPTIONS: 10896 case T_IP_OPTIONS: 10897 case IP_TOS: 10898 case T_IP_TOS: 10899 case IP_TTL: 10900 case IP_RECVDSTADDR: 10901 case IP_RECVOPTS: 10902 /* OK return - copy input buffer into output buffer */ 10903 if (invalp != outvalp) { 10904 /* don't trust bcopy for identical src/dst */ 10905 bcopy(invalp, outvalp, inlen); 10906 } 10907 *outlenp = inlen; 10908 return (0); 10909 case IP_RECVIF: 10910 /* Retrieve the inbound interface index */ 10911 if (!checkonly) { 10912 mutex_enter(&connp->conn_lock); 10913 connp->conn_recvif = *i1 ? 1 : 0; 10914 mutex_exit(&connp->conn_lock); 10915 } 10916 break; /* goto sizeof (int) option return */ 10917 case IP_RECVSLLA: 10918 /* Retrieve the source link layer address */ 10919 if (!checkonly) { 10920 mutex_enter(&connp->conn_lock); 10921 connp->conn_recvslla = *i1 ? 1 : 0; 10922 mutex_exit(&connp->conn_lock); 10923 } 10924 break; /* goto sizeof (int) option return */ 10925 case MRT_INIT: 10926 case MRT_DONE: 10927 case MRT_ADD_VIF: 10928 case MRT_DEL_VIF: 10929 case MRT_ADD_MFC: 10930 case MRT_DEL_MFC: 10931 case MRT_ASSERT: 10932 if ((error = secpolicy_net_config(cr, B_FALSE)) != 0) { 10933 *outlenp = 0; 10934 return (error); 10935 } 10936 error = ip_mrouter_set((int)name, q, checkonly, 10937 (uchar_t *)invalp, inlen, first_mp); 10938 if (error) { 10939 *outlenp = 0; 10940 return (error); 10941 } 10942 /* OK return - copy input buffer into output buffer */ 10943 if (invalp != outvalp) { 10944 /* don't trust bcopy for identical src/dst */ 10945 bcopy(invalp, outvalp, inlen); 10946 } 10947 *outlenp = inlen; 10948 return (0); 10949 case IP_BOUND_IF: 10950 case IP_XMIT_IF: 10951 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10952 level, name, first_mp); 10953 if (error != 0) 10954 return (error); 10955 break; /* goto sizeof (int) option return */ 10956 10957 case IP_UNSPEC_SRC: 10958 /* Allow sending with a zero source address */ 10959 if (!checkonly) { 10960 mutex_enter(&connp->conn_lock); 10961 connp->conn_unspec_src = *i1 ? 1 : 0; 10962 mutex_exit(&connp->conn_lock); 10963 } 10964 break; /* goto sizeof (int) option return */ 10965 default: 10966 /* 10967 * "soft" error (negative) 10968 * option not handled at this level 10969 * Note: Do not modify *outlenp 10970 */ 10971 return (-EINVAL); 10972 } 10973 break; 10974 case IPPROTO_IPV6: 10975 switch (name) { 10976 case IPV6_BOUND_IF: 10977 case IPV6_BOUND_PIF: 10978 case IPV6_DONTFAILOVER_IF: 10979 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10980 level, name, first_mp); 10981 if (error != 0) 10982 return (error); 10983 break; /* goto sizeof (int) option return */ 10984 10985 case IPV6_MULTICAST_IF: 10986 /* 10987 * The only possible errors are EINPROGRESS and 10988 * EINVAL. EINPROGRESS will be restarted and is not 10989 * a hard error. We call this option on both V4 and V6 10990 * If both return EINVAL, then this call returns 10991 * EINVAL. If at least one of them succeeds we 10992 * return success. 10993 */ 10994 found = B_FALSE; 10995 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10996 level, name, first_mp); 10997 if (error == EINPROGRESS) 10998 return (error); 10999 if (error == 0) 11000 found = B_TRUE; 11001 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11002 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11003 if (error == 0) 11004 found = B_TRUE; 11005 if (!found) 11006 return (error); 11007 break; /* goto sizeof (int) option return */ 11008 11009 case IPV6_MULTICAST_HOPS: 11010 /* Recorded in transport above IP */ 11011 break; /* goto sizeof (int) option return */ 11012 case IPV6_MULTICAST_LOOP: 11013 if (!checkonly) { 11014 mutex_enter(&connp->conn_lock); 11015 connp->conn_multicast_loop = *i1; 11016 mutex_exit(&connp->conn_lock); 11017 } 11018 break; /* goto sizeof (int) option return */ 11019 case IPV6_JOIN_GROUP: 11020 case MCAST_JOIN_GROUP: 11021 case IPV6_LEAVE_GROUP: 11022 case MCAST_LEAVE_GROUP: { 11023 struct ipv6_mreq *ip_mreqp; 11024 struct group_req *greqp; 11025 ire_t *ire; 11026 boolean_t done = B_FALSE; 11027 in6_addr_t groupv6; 11028 uint32_t ifindex; 11029 boolean_t mcast_opt = B_TRUE; 11030 mcast_record_t fmode; 11031 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11032 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11033 11034 switch (name) { 11035 case IPV6_JOIN_GROUP: 11036 mcast_opt = B_FALSE; 11037 /* FALLTHRU */ 11038 case MCAST_JOIN_GROUP: 11039 fmode = MODE_IS_EXCLUDE; 11040 optfn = ip_opt_add_group_v6; 11041 break; 11042 11043 case IPV6_LEAVE_GROUP: 11044 mcast_opt = B_FALSE; 11045 /* FALLTHRU */ 11046 case MCAST_LEAVE_GROUP: 11047 fmode = MODE_IS_INCLUDE; 11048 optfn = ip_opt_delete_group_v6; 11049 break; 11050 } 11051 11052 if (mcast_opt) { 11053 struct sockaddr_in *sin; 11054 struct sockaddr_in6 *sin6; 11055 greqp = (struct group_req *)i1; 11056 if (greqp->gr_group.ss_family == AF_INET) { 11057 sin = (struct sockaddr_in *) 11058 &(greqp->gr_group); 11059 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11060 &groupv6); 11061 } else { 11062 sin6 = (struct sockaddr_in6 *) 11063 &(greqp->gr_group); 11064 groupv6 = sin6->sin6_addr; 11065 } 11066 ifindex = greqp->gr_interface; 11067 } else { 11068 ip_mreqp = (struct ipv6_mreq *)i1; 11069 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11070 ifindex = ip_mreqp->ipv6mr_interface; 11071 } 11072 /* 11073 * In the multirouting case, we need to replicate 11074 * the request on all interfaces that will take part 11075 * in replication. We do so because multirouting is 11076 * reflective, thus we will probably receive multi- 11077 * casts on those interfaces. 11078 * The ip_multirt_apply_membership_v6() succeeds if 11079 * the operation succeeds on at least one interface. 11080 */ 11081 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11082 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11083 MATCH_IRE_MASK | MATCH_IRE_TYPE); 11084 if (ire != NULL) { 11085 if (ire->ire_flags & RTF_MULTIRT) { 11086 error = ip_multirt_apply_membership_v6( 11087 optfn, ire, connp, checkonly, 11088 &groupv6, fmode, &ipv6_all_zeros, 11089 first_mp); 11090 done = B_TRUE; 11091 } 11092 ire_refrele(ire); 11093 } 11094 if (!done) { 11095 error = optfn(connp, checkonly, &groupv6, 11096 ifindex, fmode, &ipv6_all_zeros, first_mp); 11097 } 11098 if (error) { 11099 /* 11100 * EINPROGRESS is a soft error, needs retry 11101 * so don't make *outlenp zero. 11102 */ 11103 if (error != EINPROGRESS) 11104 *outlenp = 0; 11105 return (error); 11106 } 11107 /* OK return - copy input buffer into output buffer */ 11108 if (invalp != outvalp) { 11109 /* don't trust bcopy for identical src/dst */ 11110 bcopy(invalp, outvalp, inlen); 11111 } 11112 *outlenp = inlen; 11113 return (0); 11114 } 11115 case MCAST_BLOCK_SOURCE: 11116 case MCAST_UNBLOCK_SOURCE: 11117 case MCAST_JOIN_SOURCE_GROUP: 11118 case MCAST_LEAVE_SOURCE_GROUP: { 11119 struct group_source_req *gsreqp; 11120 in6_addr_t v6grp, v6src; 11121 uint32_t ifindex; 11122 mcast_record_t fmode; 11123 ire_t *ire; 11124 boolean_t done = B_FALSE; 11125 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11126 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11127 11128 switch (name) { 11129 case MCAST_BLOCK_SOURCE: 11130 fmode = MODE_IS_EXCLUDE; 11131 optfn = ip_opt_add_group_v6; 11132 break; 11133 case MCAST_UNBLOCK_SOURCE: 11134 fmode = MODE_IS_EXCLUDE; 11135 optfn = ip_opt_delete_group_v6; 11136 break; 11137 case MCAST_JOIN_SOURCE_GROUP: 11138 fmode = MODE_IS_INCLUDE; 11139 optfn = ip_opt_add_group_v6; 11140 break; 11141 case MCAST_LEAVE_SOURCE_GROUP: 11142 fmode = MODE_IS_INCLUDE; 11143 optfn = ip_opt_delete_group_v6; 11144 break; 11145 } 11146 11147 gsreqp = (struct group_source_req *)i1; 11148 ifindex = gsreqp->gsr_interface; 11149 if (gsreqp->gsr_group.ss_family == AF_INET) { 11150 struct sockaddr_in *s; 11151 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11152 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11153 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11154 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11155 } else { 11156 struct sockaddr_in6 *s6; 11157 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11158 v6grp = s6->sin6_addr; 11159 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11160 v6src = s6->sin6_addr; 11161 } 11162 11163 /* 11164 * In the multirouting case, we need to replicate 11165 * the request as noted in the mcast cases above. 11166 */ 11167 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11168 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11169 MATCH_IRE_MASK | MATCH_IRE_TYPE); 11170 if (ire != NULL) { 11171 if (ire->ire_flags & RTF_MULTIRT) { 11172 error = ip_multirt_apply_membership_v6( 11173 optfn, ire, connp, checkonly, 11174 &v6grp, fmode, &v6src, first_mp); 11175 done = B_TRUE; 11176 } 11177 ire_refrele(ire); 11178 } 11179 if (!done) { 11180 error = optfn(connp, checkonly, &v6grp, 11181 ifindex, fmode, &v6src, first_mp); 11182 } 11183 if (error != 0) { 11184 /* 11185 * EINPROGRESS is a soft error, needs retry 11186 * so don't make *outlenp zero. 11187 */ 11188 if (error != EINPROGRESS) 11189 *outlenp = 0; 11190 return (error); 11191 } 11192 /* OK return - copy input buffer into output buffer */ 11193 if (invalp != outvalp) { 11194 bcopy(invalp, outvalp, inlen); 11195 } 11196 *outlenp = inlen; 11197 return (0); 11198 } 11199 case IPV6_UNICAST_HOPS: 11200 /* Recorded in transport above IP */ 11201 break; /* goto sizeof (int) option return */ 11202 case IPV6_UNSPEC_SRC: 11203 /* Allow sending with a zero source address */ 11204 if (!checkonly) { 11205 mutex_enter(&connp->conn_lock); 11206 connp->conn_unspec_src = *i1 ? 1 : 0; 11207 mutex_exit(&connp->conn_lock); 11208 } 11209 break; /* goto sizeof (int) option return */ 11210 case IPV6_RECVPKTINFO: 11211 if (!checkonly) { 11212 mutex_enter(&connp->conn_lock); 11213 connp->conn_ipv6_recvpktinfo = *i1 ? 1 : 0; 11214 mutex_exit(&connp->conn_lock); 11215 } 11216 break; /* goto sizeof (int) option return */ 11217 case IPV6_RECVTCLASS: 11218 if (!checkonly) { 11219 if (*i1 < 0 || *i1 > 1) { 11220 return (EINVAL); 11221 } 11222 mutex_enter(&connp->conn_lock); 11223 connp->conn_ipv6_recvtclass = *i1; 11224 mutex_exit(&connp->conn_lock); 11225 } 11226 break; 11227 case IPV6_RECVPATHMTU: 11228 if (!checkonly) { 11229 if (*i1 < 0 || *i1 > 1) { 11230 return (EINVAL); 11231 } 11232 mutex_enter(&connp->conn_lock); 11233 connp->conn_ipv6_recvpathmtu = *i1; 11234 mutex_exit(&connp->conn_lock); 11235 } 11236 break; 11237 case IPV6_RECVHOPLIMIT: 11238 if (!checkonly) { 11239 mutex_enter(&connp->conn_lock); 11240 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11241 mutex_exit(&connp->conn_lock); 11242 } 11243 break; /* goto sizeof (int) option return */ 11244 case IPV6_RECVHOPOPTS: 11245 if (!checkonly) { 11246 mutex_enter(&connp->conn_lock); 11247 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11248 mutex_exit(&connp->conn_lock); 11249 } 11250 break; /* goto sizeof (int) option return */ 11251 case IPV6_RECVDSTOPTS: 11252 if (!checkonly) { 11253 mutex_enter(&connp->conn_lock); 11254 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11255 mutex_exit(&connp->conn_lock); 11256 } 11257 break; /* goto sizeof (int) option return */ 11258 case IPV6_RECVRTHDR: 11259 if (!checkonly) { 11260 mutex_enter(&connp->conn_lock); 11261 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11262 mutex_exit(&connp->conn_lock); 11263 } 11264 break; /* goto sizeof (int) option return */ 11265 case IPV6_RECVRTHDRDSTOPTS: 11266 if (!checkonly) { 11267 mutex_enter(&connp->conn_lock); 11268 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11269 mutex_exit(&connp->conn_lock); 11270 } 11271 break; /* goto sizeof (int) option return */ 11272 case IPV6_PKTINFO: 11273 if (inlen == 0) 11274 return (-EINVAL); /* clearing option */ 11275 error = ip6_set_pktinfo(cr, connp, 11276 (struct in6_pktinfo *)invalp, first_mp); 11277 if (error != 0) 11278 *outlenp = 0; 11279 else 11280 *outlenp = inlen; 11281 return (error); 11282 case IPV6_NEXTHOP: { 11283 struct sockaddr_in6 *sin6; 11284 11285 /* Verify that the nexthop is reachable */ 11286 if (inlen == 0) 11287 return (-EINVAL); /* clearing option */ 11288 11289 sin6 = (struct sockaddr_in6 *)invalp; 11290 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11291 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11292 NULL, MATCH_IRE_DEFAULT); 11293 11294 if (ire == NULL) { 11295 *outlenp = 0; 11296 return (EHOSTUNREACH); 11297 } 11298 ire_refrele(ire); 11299 return (-EINVAL); 11300 } 11301 case IPV6_SEC_OPT: 11302 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11303 if (error != 0) { 11304 *outlenp = 0; 11305 return (error); 11306 } 11307 break; 11308 case IPV6_SRC_PREFERENCES: { 11309 /* 11310 * This is implemented strictly in the ip module 11311 * (here and in tcp_opt_*() to accomodate tcp 11312 * sockets). Modules above ip pass this option 11313 * down here since ip is the only one that needs to 11314 * be aware of source address preferences. 11315 * 11316 * This socket option only affects connected 11317 * sockets that haven't already bound to a specific 11318 * IPv6 address. In other words, sockets that 11319 * don't call bind() with an address other than the 11320 * unspecified address and that call connect(). 11321 * ip_bind_connected_v6() passes these preferences 11322 * to the ipif_select_source_v6() function. 11323 */ 11324 if (inlen != sizeof (uint32_t)) 11325 return (EINVAL); 11326 error = ip6_set_src_preferences(connp, 11327 *(uint32_t *)invalp); 11328 if (error != 0) { 11329 *outlenp = 0; 11330 return (error); 11331 } else { 11332 *outlenp = sizeof (uint32_t); 11333 } 11334 break; 11335 } 11336 case IPV6_V6ONLY: 11337 if (*i1 < 0 || *i1 > 1) { 11338 return (EINVAL); 11339 } 11340 mutex_enter(&connp->conn_lock); 11341 connp->conn_ipv6_v6only = *i1; 11342 mutex_exit(&connp->conn_lock); 11343 break; 11344 default: 11345 return (-EINVAL); 11346 } 11347 break; 11348 default: 11349 /* 11350 * "soft" error (negative) 11351 * option not handled at this level 11352 * Note: Do not modify *outlenp 11353 */ 11354 return (-EINVAL); 11355 } 11356 /* 11357 * Common case of return from an option that is sizeof (int) 11358 */ 11359 *(int *)outvalp = *i1; 11360 *outlenp = sizeof (int); 11361 return (0); 11362 } 11363 11364 /* 11365 * This routine gets default values of certain options whose default 11366 * values are maintained by protocol specific code 11367 */ 11368 /* ARGSUSED */ 11369 int 11370 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11371 { 11372 int *i1 = (int *)ptr; 11373 11374 switch (level) { 11375 case IPPROTO_IP: 11376 switch (name) { 11377 case IP_MULTICAST_TTL: 11378 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11379 return (sizeof (uchar_t)); 11380 case IP_MULTICAST_LOOP: 11381 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11382 return (sizeof (uchar_t)); 11383 default: 11384 return (-1); 11385 } 11386 case IPPROTO_IPV6: 11387 switch (name) { 11388 case IPV6_UNICAST_HOPS: 11389 *i1 = ipv6_def_hops; 11390 return (sizeof (int)); 11391 case IPV6_MULTICAST_HOPS: 11392 *i1 = IP_DEFAULT_MULTICAST_TTL; 11393 return (sizeof (int)); 11394 case IPV6_MULTICAST_LOOP: 11395 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11396 return (sizeof (int)); 11397 case IPV6_V6ONLY: 11398 *i1 = 1; 11399 return (sizeof (int)); 11400 default: 11401 return (-1); 11402 } 11403 default: 11404 return (-1); 11405 } 11406 /* NOTREACHED */ 11407 } 11408 11409 /* 11410 * Given a destination address and a pointer to where to put the information 11411 * this routine fills in the mtuinfo. 11412 */ 11413 int 11414 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11415 struct ip6_mtuinfo *mtuinfo) 11416 { 11417 ire_t *ire; 11418 11419 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11420 return (-1); 11421 11422 bzero(mtuinfo, sizeof (*mtuinfo)); 11423 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11424 mtuinfo->ip6m_addr.sin6_port = port; 11425 mtuinfo->ip6m_addr.sin6_addr = *in6; 11426 11427 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL); 11428 if (ire != NULL) { 11429 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11430 ire_refrele(ire); 11431 } else { 11432 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11433 } 11434 return (sizeof (struct ip6_mtuinfo)); 11435 } 11436 11437 /* 11438 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11439 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11440 * isn't. This doesn't matter as the error checking is done properly for the 11441 * other MRT options coming in through ip_opt_set. 11442 */ 11443 int 11444 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11445 { 11446 conn_t *connp = Q_TO_CONN(q); 11447 ipsec_req_t *req = (ipsec_req_t *)ptr; 11448 11449 switch (level) { 11450 case IPPROTO_IP: 11451 switch (name) { 11452 case MRT_VERSION: 11453 case MRT_ASSERT: 11454 (void) ip_mrouter_get(name, q, ptr); 11455 return (sizeof (int)); 11456 case IP_SEC_OPT: 11457 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11458 case IP_NEXTHOP: 11459 if (connp->conn_nexthop_set) { 11460 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11461 return (sizeof (ipaddr_t)); 11462 } else 11463 return (0); 11464 default: 11465 break; 11466 } 11467 break; 11468 case IPPROTO_IPV6: 11469 switch (name) { 11470 case IPV6_SEC_OPT: 11471 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11472 case IPV6_SRC_PREFERENCES: { 11473 return (ip6_get_src_preferences(connp, 11474 (uint32_t *)ptr)); 11475 } 11476 case IPV6_V6ONLY: 11477 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11478 return (sizeof (int)); 11479 case IPV6_PATHMTU: 11480 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11481 (struct ip6_mtuinfo *)ptr)); 11482 default: 11483 break; 11484 } 11485 break; 11486 default: 11487 break; 11488 } 11489 return (-1); 11490 } 11491 11492 /* Named Dispatch routine to get a current value out of our parameter table. */ 11493 /* ARGSUSED */ 11494 static int 11495 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11496 { 11497 ipparam_t *ippa = (ipparam_t *)cp; 11498 11499 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11500 return (0); 11501 } 11502 11503 /* ARGSUSED */ 11504 static int 11505 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11506 { 11507 11508 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11509 return (0); 11510 } 11511 11512 /* 11513 * Set ip{,6}_forwarding values. This means walking through all of the 11514 * ill's and toggling their forwarding values. 11515 */ 11516 /* ARGSUSED */ 11517 static int 11518 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11519 { 11520 long new_value; 11521 int *forwarding_value = (int *)cp; 11522 ill_t *walker; 11523 boolean_t isv6 = (forwarding_value == &ipv6_forward); 11524 ill_walk_context_t ctx; 11525 11526 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11527 new_value < 0 || new_value > 1) { 11528 return (EINVAL); 11529 } 11530 11531 *forwarding_value = new_value; 11532 11533 /* 11534 * Regardless of the current value of ip_forwarding, set all per-ill 11535 * values of ip_forwarding to the value being set. 11536 * 11537 * Bring all the ill's up to date with the new global value. 11538 */ 11539 rw_enter(&ill_g_lock, RW_READER); 11540 11541 if (isv6) 11542 walker = ILL_START_WALK_V6(&ctx); 11543 else 11544 walker = ILL_START_WALK_V4(&ctx); 11545 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 11546 (void) ill_forward_set(q, mp, (new_value != 0), 11547 (caddr_t)walker); 11548 } 11549 rw_exit(&ill_g_lock); 11550 11551 return (0); 11552 } 11553 11554 /* 11555 * Walk through the param array specified registering each element with the 11556 * Named Dispatch handler. This is called only during init. So it is ok 11557 * not to acquire any locks 11558 */ 11559 static boolean_t 11560 ip_param_register(ipparam_t *ippa, size_t ippa_cnt, 11561 ipndp_t *ipnd, size_t ipnd_cnt) 11562 { 11563 for (; ippa_cnt-- > 0; ippa++) { 11564 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11565 if (!nd_load(&ip_g_nd, ippa->ip_param_name, 11566 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11567 nd_free(&ip_g_nd); 11568 return (B_FALSE); 11569 } 11570 } 11571 } 11572 11573 for (; ipnd_cnt-- > 0; ipnd++) { 11574 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11575 if (!nd_load(&ip_g_nd, ipnd->ip_ndp_name, 11576 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11577 ipnd->ip_ndp_data)) { 11578 nd_free(&ip_g_nd); 11579 return (B_FALSE); 11580 } 11581 } 11582 } 11583 11584 return (B_TRUE); 11585 } 11586 11587 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11588 /* ARGSUSED */ 11589 static int 11590 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11591 { 11592 long new_value; 11593 ipparam_t *ippa = (ipparam_t *)cp; 11594 11595 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11596 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11597 return (EINVAL); 11598 } 11599 ippa->ip_param_value = new_value; 11600 return (0); 11601 } 11602 11603 /* 11604 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11605 * When an ipf is passed here for the first time, if 11606 * we already have in-order fragments on the queue, we convert from the fast- 11607 * path reassembly scheme to the hard-case scheme. From then on, additional 11608 * fragments are reassembled here. We keep track of the start and end offsets 11609 * of each piece, and the number of holes in the chain. When the hole count 11610 * goes to zero, we are done! 11611 * 11612 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11613 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11614 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11615 * after the call to ip_reassemble(). 11616 */ 11617 int 11618 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11619 size_t msg_len) 11620 { 11621 uint_t end; 11622 mblk_t *next_mp; 11623 mblk_t *mp1; 11624 uint_t offset; 11625 boolean_t incr_dups = B_TRUE; 11626 boolean_t offset_zero_seen = B_FALSE; 11627 boolean_t pkt_boundary_checked = B_FALSE; 11628 11629 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11630 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11631 11632 /* Add in byte count */ 11633 ipf->ipf_count += msg_len; 11634 if (ipf->ipf_end) { 11635 /* 11636 * We were part way through in-order reassembly, but now there 11637 * is a hole. We walk through messages already queued, and 11638 * mark them for hard case reassembly. We know that up till 11639 * now they were in order starting from offset zero. 11640 */ 11641 offset = 0; 11642 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11643 IP_REASS_SET_START(mp1, offset); 11644 if (offset == 0) { 11645 ASSERT(ipf->ipf_nf_hdr_len != 0); 11646 offset = -ipf->ipf_nf_hdr_len; 11647 } 11648 offset += mp1->b_wptr - mp1->b_rptr; 11649 IP_REASS_SET_END(mp1, offset); 11650 } 11651 /* One hole at the end. */ 11652 ipf->ipf_hole_cnt = 1; 11653 /* Brand it as a hard case, forever. */ 11654 ipf->ipf_end = 0; 11655 } 11656 /* Walk through all the new pieces. */ 11657 do { 11658 end = start + (mp->b_wptr - mp->b_rptr); 11659 /* 11660 * If start is 0, decrease 'end' only for the first mblk of 11661 * the fragment. Otherwise 'end' can get wrong value in the 11662 * second pass of the loop if first mblk is exactly the 11663 * size of ipf_nf_hdr_len. 11664 */ 11665 if (start == 0 && !offset_zero_seen) { 11666 /* First segment */ 11667 ASSERT(ipf->ipf_nf_hdr_len != 0); 11668 end -= ipf->ipf_nf_hdr_len; 11669 offset_zero_seen = B_TRUE; 11670 } 11671 next_mp = mp->b_cont; 11672 /* 11673 * We are checking to see if there is any interesing data 11674 * to process. If there isn't and the mblk isn't the 11675 * one which carries the unfragmentable header then we 11676 * drop it. It's possible to have just the unfragmentable 11677 * header come through without any data. That needs to be 11678 * saved. 11679 * 11680 * If the assert at the top of this function holds then the 11681 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11682 * is infrequently traveled enough that the test is left in 11683 * to protect against future code changes which break that 11684 * invariant. 11685 */ 11686 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11687 /* Empty. Blast it. */ 11688 IP_REASS_SET_START(mp, 0); 11689 IP_REASS_SET_END(mp, 0); 11690 /* 11691 * If the ipf points to the mblk we are about to free, 11692 * update ipf to point to the next mblk (or NULL 11693 * if none). 11694 */ 11695 if (ipf->ipf_mp->b_cont == mp) 11696 ipf->ipf_mp->b_cont = next_mp; 11697 freeb(mp); 11698 continue; 11699 } 11700 mp->b_cont = NULL; 11701 IP_REASS_SET_START(mp, start); 11702 IP_REASS_SET_END(mp, end); 11703 if (!ipf->ipf_tail_mp) { 11704 ipf->ipf_tail_mp = mp; 11705 ipf->ipf_mp->b_cont = mp; 11706 if (start == 0 || !more) { 11707 ipf->ipf_hole_cnt = 1; 11708 /* 11709 * if the first fragment comes in more than one 11710 * mblk, this loop will be executed for each 11711 * mblk. Need to adjust hole count so exiting 11712 * this routine will leave hole count at 1. 11713 */ 11714 if (next_mp) 11715 ipf->ipf_hole_cnt++; 11716 } else 11717 ipf->ipf_hole_cnt = 2; 11718 continue; 11719 } else if (ipf->ipf_last_frag_seen && !more && 11720 !pkt_boundary_checked) { 11721 /* 11722 * We check datagram boundary only if this fragment 11723 * claims to be the last fragment and we have seen a 11724 * last fragment in the past too. We do this only 11725 * once for a given fragment. 11726 * 11727 * start cannot be 0 here as fragments with start=0 11728 * and MF=0 gets handled as a complete packet. These 11729 * fragments should not reach here. 11730 */ 11731 11732 if (start + msgdsize(mp) != 11733 IP_REASS_END(ipf->ipf_tail_mp)) { 11734 /* 11735 * We have two fragments both of which claim 11736 * to be the last fragment but gives conflicting 11737 * information about the whole datagram size. 11738 * Something fishy is going on. Drop the 11739 * fragment and free up the reassembly list. 11740 */ 11741 return (IP_REASS_FAILED); 11742 } 11743 11744 /* 11745 * We shouldn't come to this code block again for this 11746 * particular fragment. 11747 */ 11748 pkt_boundary_checked = B_TRUE; 11749 } 11750 11751 /* New stuff at or beyond tail? */ 11752 offset = IP_REASS_END(ipf->ipf_tail_mp); 11753 if (start >= offset) { 11754 if (ipf->ipf_last_frag_seen) { 11755 /* current fragment is beyond last fragment */ 11756 return (IP_REASS_FAILED); 11757 } 11758 /* Link it on end. */ 11759 ipf->ipf_tail_mp->b_cont = mp; 11760 ipf->ipf_tail_mp = mp; 11761 if (more) { 11762 if (start != offset) 11763 ipf->ipf_hole_cnt++; 11764 } else if (start == offset && next_mp == NULL) 11765 ipf->ipf_hole_cnt--; 11766 continue; 11767 } 11768 mp1 = ipf->ipf_mp->b_cont; 11769 offset = IP_REASS_START(mp1); 11770 /* New stuff at the front? */ 11771 if (start < offset) { 11772 if (start == 0) { 11773 if (end >= offset) { 11774 /* Nailed the hole at the begining. */ 11775 ipf->ipf_hole_cnt--; 11776 } 11777 } else if (end < offset) { 11778 /* 11779 * A hole, stuff, and a hole where there used 11780 * to be just a hole. 11781 */ 11782 ipf->ipf_hole_cnt++; 11783 } 11784 mp->b_cont = mp1; 11785 /* Check for overlap. */ 11786 while (end > offset) { 11787 if (end < IP_REASS_END(mp1)) { 11788 mp->b_wptr -= end - offset; 11789 IP_REASS_SET_END(mp, offset); 11790 if (ill->ill_isv6) { 11791 BUMP_MIB(ill->ill_ip6_mib, 11792 ipv6ReasmPartDups); 11793 } else { 11794 BUMP_MIB(&ip_mib, 11795 ipReasmPartDups); 11796 } 11797 break; 11798 } 11799 /* Did we cover another hole? */ 11800 if ((mp1->b_cont && 11801 IP_REASS_END(mp1) != 11802 IP_REASS_START(mp1->b_cont) && 11803 end >= IP_REASS_START(mp1->b_cont)) || 11804 (!ipf->ipf_last_frag_seen && !more)) { 11805 ipf->ipf_hole_cnt--; 11806 } 11807 /* Clip out mp1. */ 11808 if ((mp->b_cont = mp1->b_cont) == NULL) { 11809 /* 11810 * After clipping out mp1, this guy 11811 * is now hanging off the end. 11812 */ 11813 ipf->ipf_tail_mp = mp; 11814 } 11815 IP_REASS_SET_START(mp1, 0); 11816 IP_REASS_SET_END(mp1, 0); 11817 /* Subtract byte count */ 11818 ipf->ipf_count -= mp1->b_datap->db_lim - 11819 mp1->b_datap->db_base; 11820 freeb(mp1); 11821 if (ill->ill_isv6) { 11822 BUMP_MIB(ill->ill_ip6_mib, 11823 ipv6ReasmPartDups); 11824 } else { 11825 BUMP_MIB(&ip_mib, ipReasmPartDups); 11826 } 11827 mp1 = mp->b_cont; 11828 if (!mp1) 11829 break; 11830 offset = IP_REASS_START(mp1); 11831 } 11832 ipf->ipf_mp->b_cont = mp; 11833 continue; 11834 } 11835 /* 11836 * The new piece starts somewhere between the start of the head 11837 * and before the end of the tail. 11838 */ 11839 for (; mp1; mp1 = mp1->b_cont) { 11840 offset = IP_REASS_END(mp1); 11841 if (start < offset) { 11842 if (end <= offset) { 11843 /* Nothing new. */ 11844 IP_REASS_SET_START(mp, 0); 11845 IP_REASS_SET_END(mp, 0); 11846 /* Subtract byte count */ 11847 ipf->ipf_count -= mp->b_datap->db_lim - 11848 mp->b_datap->db_base; 11849 if (incr_dups) { 11850 ipf->ipf_num_dups++; 11851 incr_dups = B_FALSE; 11852 } 11853 freeb(mp); 11854 if (ill->ill_isv6) { 11855 BUMP_MIB(ill->ill_ip6_mib, 11856 ipv6ReasmDuplicates); 11857 } else { 11858 BUMP_MIB(&ip_mib, 11859 ipReasmDuplicates); 11860 } 11861 break; 11862 } 11863 /* 11864 * Trim redundant stuff off beginning of new 11865 * piece. 11866 */ 11867 IP_REASS_SET_START(mp, offset); 11868 mp->b_rptr += offset - start; 11869 if (ill->ill_isv6) { 11870 BUMP_MIB(ill->ill_ip6_mib, 11871 ipv6ReasmPartDups); 11872 } else { 11873 BUMP_MIB(&ip_mib, ipReasmPartDups); 11874 } 11875 start = offset; 11876 if (!mp1->b_cont) { 11877 /* 11878 * After trimming, this guy is now 11879 * hanging off the end. 11880 */ 11881 mp1->b_cont = mp; 11882 ipf->ipf_tail_mp = mp; 11883 if (!more) { 11884 ipf->ipf_hole_cnt--; 11885 } 11886 break; 11887 } 11888 } 11889 if (start >= IP_REASS_START(mp1->b_cont)) 11890 continue; 11891 /* Fill a hole */ 11892 if (start > offset) 11893 ipf->ipf_hole_cnt++; 11894 mp->b_cont = mp1->b_cont; 11895 mp1->b_cont = mp; 11896 mp1 = mp->b_cont; 11897 offset = IP_REASS_START(mp1); 11898 if (end >= offset) { 11899 ipf->ipf_hole_cnt--; 11900 /* Check for overlap. */ 11901 while (end > offset) { 11902 if (end < IP_REASS_END(mp1)) { 11903 mp->b_wptr -= end - offset; 11904 IP_REASS_SET_END(mp, offset); 11905 /* 11906 * TODO we might bump 11907 * this up twice if there is 11908 * overlap at both ends. 11909 */ 11910 if (ill->ill_isv6) { 11911 BUMP_MIB( 11912 ill->ill_ip6_mib, 11913 ipv6ReasmPartDups); 11914 } else { 11915 BUMP_MIB(&ip_mib, 11916 ipReasmPartDups); 11917 } 11918 break; 11919 } 11920 /* Did we cover another hole? */ 11921 if ((mp1->b_cont && 11922 IP_REASS_END(mp1) 11923 != IP_REASS_START(mp1->b_cont) && 11924 end >= 11925 IP_REASS_START(mp1->b_cont)) || 11926 (!ipf->ipf_last_frag_seen && 11927 !more)) { 11928 ipf->ipf_hole_cnt--; 11929 } 11930 /* Clip out mp1. */ 11931 if ((mp->b_cont = mp1->b_cont) == 11932 NULL) { 11933 /* 11934 * After clipping out mp1, 11935 * this guy is now hanging 11936 * off the end. 11937 */ 11938 ipf->ipf_tail_mp = mp; 11939 } 11940 IP_REASS_SET_START(mp1, 0); 11941 IP_REASS_SET_END(mp1, 0); 11942 /* Subtract byte count */ 11943 ipf->ipf_count -= 11944 mp1->b_datap->db_lim - 11945 mp1->b_datap->db_base; 11946 freeb(mp1); 11947 if (ill->ill_isv6) { 11948 BUMP_MIB(ill->ill_ip6_mib, 11949 ipv6ReasmPartDups); 11950 } else { 11951 BUMP_MIB(&ip_mib, 11952 ipReasmPartDups); 11953 } 11954 mp1 = mp->b_cont; 11955 if (!mp1) 11956 break; 11957 offset = IP_REASS_START(mp1); 11958 } 11959 } 11960 break; 11961 } 11962 } while (start = end, mp = next_mp); 11963 11964 /* Fragment just processed could be the last one. Remember this fact */ 11965 if (!more) 11966 ipf->ipf_last_frag_seen = B_TRUE; 11967 11968 /* Still got holes? */ 11969 if (ipf->ipf_hole_cnt) 11970 return (IP_REASS_PARTIAL); 11971 /* Clean up overloaded fields to avoid upstream disasters. */ 11972 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11973 IP_REASS_SET_START(mp1, 0); 11974 IP_REASS_SET_END(mp1, 0); 11975 } 11976 return (IP_REASS_COMPLETE); 11977 } 11978 11979 /* 11980 * ipsec processing for the fast path, used for input UDP Packets 11981 */ 11982 static boolean_t 11983 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 11984 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 11985 { 11986 uint32_t ill_index; 11987 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 11988 11989 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11990 /* The ill_index of the incoming ILL */ 11991 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 11992 11993 /* pass packet up to the transport */ 11994 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 11995 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 11996 NULL, mctl_present); 11997 if (*first_mpp == NULL) { 11998 return (B_FALSE); 11999 } 12000 } 12001 12002 /* Initiate IPPF processing for fastpath UDP */ 12003 if (IPP_ENABLED(IPP_LOCAL_IN)) { 12004 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12005 if (*mpp == NULL) { 12006 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12007 "deferred/dropped during IPPF processing\n")); 12008 return (B_FALSE); 12009 } 12010 } 12011 /* 12012 * We make the checks as below since we are in the fast path 12013 * and want to minimize the number of checks if the IP_RECVIF and/or 12014 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12015 */ 12016 if (connp->conn_recvif || connp->conn_recvslla || 12017 connp->conn_ipv6_recvpktinfo) { 12018 if (connp->conn_recvif || 12019 connp->conn_ipv6_recvpktinfo) { 12020 in_flags = IPF_RECVIF; 12021 } 12022 if (connp->conn_recvslla) { 12023 in_flags |= IPF_RECVSLLA; 12024 } 12025 /* 12026 * since in_flags are being set ill will be 12027 * referenced in ip_add_info, so it better not 12028 * be NULL. 12029 */ 12030 /* 12031 * the actual data will be contained in b_cont 12032 * upon successful return of the following call. 12033 * If the call fails then the original mblk is 12034 * returned. 12035 */ 12036 *mpp = ip_add_info(*mpp, ill, in_flags); 12037 } 12038 12039 return (B_TRUE); 12040 } 12041 12042 /* 12043 * Fragmentation reassembly. Each ILL has a hash table for 12044 * queuing packets undergoing reassembly for all IPIFs 12045 * associated with the ILL. The hash is based on the packet 12046 * IP ident field. The ILL frag hash table was allocated 12047 * as a timer block at the time the ILL was created. Whenever 12048 * there is anything on the reassembly queue, the timer will 12049 * be running. Returns B_TRUE if successful else B_FALSE; 12050 * frees mp on failure. 12051 */ 12052 static boolean_t 12053 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12054 uint32_t *cksum_val, uint16_t *cksum_flags) 12055 { 12056 uint32_t frag_offset_flags; 12057 ill_t *ill = (ill_t *)q->q_ptr; 12058 mblk_t *mp = *mpp; 12059 mblk_t *t_mp; 12060 ipaddr_t dst; 12061 uint8_t proto = ipha->ipha_protocol; 12062 uint32_t sum_val; 12063 uint16_t sum_flags; 12064 ipf_t *ipf; 12065 ipf_t **ipfp; 12066 ipfb_t *ipfb; 12067 uint16_t ident; 12068 uint32_t offset; 12069 ipaddr_t src; 12070 uint_t hdr_length; 12071 uint32_t end; 12072 mblk_t *mp1; 12073 mblk_t *tail_mp; 12074 size_t count; 12075 size_t msg_len; 12076 uint8_t ecn_info = 0; 12077 uint32_t packet_size; 12078 boolean_t pruned = B_FALSE; 12079 12080 if (cksum_val != NULL) 12081 *cksum_val = 0; 12082 if (cksum_flags != NULL) 12083 *cksum_flags = 0; 12084 12085 /* 12086 * Drop the fragmented as early as possible, if 12087 * we don't have resource(s) to re-assemble. 12088 */ 12089 if (ip_reass_queue_bytes == 0) { 12090 freemsg(mp); 12091 return (B_FALSE); 12092 } 12093 12094 /* Check for fragmentation offset; return if there's none */ 12095 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12096 (IPH_MF | IPH_OFFSET)) == 0) 12097 return (B_TRUE); 12098 12099 /* 12100 * We utilize hardware computed checksum info only for UDP since 12101 * IP fragmentation is a normal occurence for the protocol. In 12102 * addition, checksum offload support for IP fragments carrying 12103 * UDP payload is commonly implemented across network adapters. 12104 */ 12105 ASSERT(ill != NULL); 12106 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12107 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12108 mblk_t *mp1 = mp->b_cont; 12109 int32_t len; 12110 12111 /* Record checksum information from the packet */ 12112 sum_val = (uint32_t)DB_CKSUM16(mp); 12113 sum_flags = DB_CKSUMFLAGS(mp); 12114 12115 /* IP payload offset from beginning of mblk */ 12116 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12117 12118 if ((sum_flags & HCK_PARTIALCKSUM) && 12119 (mp1 == NULL || mp1->b_cont == NULL) && 12120 offset >= DB_CKSUMSTART(mp) && 12121 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12122 uint32_t adj; 12123 /* 12124 * Partial checksum has been calculated by hardware 12125 * and attached to the packet; in addition, any 12126 * prepended extraneous data is even byte aligned. 12127 * If any such data exists, we adjust the checksum; 12128 * this would also handle any postpended data. 12129 */ 12130 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12131 mp, mp1, len, adj); 12132 12133 /* One's complement subtract extraneous checksum */ 12134 if (adj >= sum_val) 12135 sum_val = ~(adj - sum_val) & 0xFFFF; 12136 else 12137 sum_val -= adj; 12138 } 12139 } else { 12140 sum_val = 0; 12141 sum_flags = 0; 12142 } 12143 12144 /* Clear hardware checksumming flag */ 12145 DB_CKSUMFLAGS(mp) = 0; 12146 12147 ident = ipha->ipha_ident; 12148 offset = (frag_offset_flags << 3) & 0xFFFF; 12149 src = ipha->ipha_src; 12150 dst = ipha->ipha_dst; 12151 hdr_length = IPH_HDR_LENGTH(ipha); 12152 end = ntohs(ipha->ipha_length) - hdr_length; 12153 12154 /* If end == 0 then we have a packet with no data, so just free it */ 12155 if (end == 0) { 12156 freemsg(mp); 12157 return (B_FALSE); 12158 } 12159 12160 /* Record the ECN field info. */ 12161 ecn_info = (ipha->ipha_type_of_service & 0x3); 12162 if (offset != 0) { 12163 /* 12164 * If this isn't the first piece, strip the header, and 12165 * add the offset to the end value. 12166 */ 12167 mp->b_rptr += hdr_length; 12168 end += offset; 12169 } 12170 12171 msg_len = MBLKSIZE(mp); 12172 tail_mp = mp; 12173 while (tail_mp->b_cont != NULL) { 12174 tail_mp = tail_mp->b_cont; 12175 msg_len += MBLKSIZE(tail_mp); 12176 } 12177 12178 /* If the reassembly list for this ILL will get too big, prune it */ 12179 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12180 ip_reass_queue_bytes) { 12181 ill_frag_prune(ill, 12182 (ip_reass_queue_bytes < msg_len) ? 0 : 12183 (ip_reass_queue_bytes - msg_len)); 12184 pruned = B_TRUE; 12185 } 12186 12187 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12188 mutex_enter(&ipfb->ipfb_lock); 12189 12190 ipfp = &ipfb->ipfb_ipf; 12191 /* Try to find an existing fragment queue for this packet. */ 12192 for (;;) { 12193 ipf = ipfp[0]; 12194 if (ipf != NULL) { 12195 /* 12196 * It has to match on ident and src/dst address. 12197 */ 12198 if (ipf->ipf_ident == ident && 12199 ipf->ipf_src == src && 12200 ipf->ipf_dst == dst && 12201 ipf->ipf_protocol == proto) { 12202 /* 12203 * If we have received too many 12204 * duplicate fragments for this packet 12205 * free it. 12206 */ 12207 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12208 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12209 freemsg(mp); 12210 mutex_exit(&ipfb->ipfb_lock); 12211 return (B_FALSE); 12212 } 12213 /* Found it. */ 12214 break; 12215 } 12216 ipfp = &ipf->ipf_hash_next; 12217 continue; 12218 } 12219 12220 /* 12221 * If we pruned the list, do we want to store this new 12222 * fragment?. We apply an optimization here based on the 12223 * fact that most fragments will be received in order. 12224 * So if the offset of this incoming fragment is zero, 12225 * it is the first fragment of a new packet. We will 12226 * keep it. Otherwise drop the fragment, as we have 12227 * probably pruned the packet already (since the 12228 * packet cannot be found). 12229 */ 12230 if (pruned && offset != 0) { 12231 mutex_exit(&ipfb->ipfb_lock); 12232 freemsg(mp); 12233 return (B_FALSE); 12234 } 12235 12236 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS) { 12237 /* 12238 * Too many fragmented packets in this hash 12239 * bucket. Free the oldest. 12240 */ 12241 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12242 } 12243 12244 /* New guy. Allocate a frag message. */ 12245 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12246 if (mp1 == NULL) { 12247 BUMP_MIB(&ip_mib, ipInDiscards); 12248 freemsg(mp); 12249 reass_done: 12250 mutex_exit(&ipfb->ipfb_lock); 12251 return (B_FALSE); 12252 } 12253 12254 12255 BUMP_MIB(&ip_mib, ipReasmReqds); 12256 mp1->b_cont = mp; 12257 12258 /* Initialize the fragment header. */ 12259 ipf = (ipf_t *)mp1->b_rptr; 12260 ipf->ipf_mp = mp1; 12261 ipf->ipf_ptphn = ipfp; 12262 ipfp[0] = ipf; 12263 ipf->ipf_hash_next = NULL; 12264 ipf->ipf_ident = ident; 12265 ipf->ipf_protocol = proto; 12266 ipf->ipf_src = src; 12267 ipf->ipf_dst = dst; 12268 ipf->ipf_nf_hdr_len = 0; 12269 /* Record reassembly start time. */ 12270 ipf->ipf_timestamp = gethrestime_sec(); 12271 /* Record ipf generation and account for frag header */ 12272 ipf->ipf_gen = ill->ill_ipf_gen++; 12273 ipf->ipf_count = MBLKSIZE(mp1); 12274 ipf->ipf_last_frag_seen = B_FALSE; 12275 ipf->ipf_ecn = ecn_info; 12276 ipf->ipf_num_dups = 0; 12277 ipfb->ipfb_frag_pkts++; 12278 ipf->ipf_checksum = 0; 12279 ipf->ipf_checksum_flags = 0; 12280 12281 /* Store checksum value in fragment header */ 12282 if (sum_flags != 0) { 12283 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12284 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12285 ipf->ipf_checksum = sum_val; 12286 ipf->ipf_checksum_flags = sum_flags; 12287 } 12288 12289 /* 12290 * We handle reassembly two ways. In the easy case, 12291 * where all the fragments show up in order, we do 12292 * minimal bookkeeping, and just clip new pieces on 12293 * the end. If we ever see a hole, then we go off 12294 * to ip_reassemble which has to mark the pieces and 12295 * keep track of the number of holes, etc. Obviously, 12296 * the point of having both mechanisms is so we can 12297 * handle the easy case as efficiently as possible. 12298 */ 12299 if (offset == 0) { 12300 /* Easy case, in-order reassembly so far. */ 12301 ipf->ipf_count += msg_len; 12302 ipf->ipf_tail_mp = tail_mp; 12303 /* 12304 * Keep track of next expected offset in 12305 * ipf_end. 12306 */ 12307 ipf->ipf_end = end; 12308 ipf->ipf_nf_hdr_len = hdr_length; 12309 } else { 12310 /* Hard case, hole at the beginning. */ 12311 ipf->ipf_tail_mp = NULL; 12312 /* 12313 * ipf_end == 0 means that we have given up 12314 * on easy reassembly. 12315 */ 12316 ipf->ipf_end = 0; 12317 12318 /* Forget checksum offload from now on */ 12319 ipf->ipf_checksum_flags = 0; 12320 12321 /* 12322 * ipf_hole_cnt is set by ip_reassemble. 12323 * ipf_count is updated by ip_reassemble. 12324 * No need to check for return value here 12325 * as we don't expect reassembly to complete 12326 * or fail for the first fragment itself. 12327 */ 12328 (void) ip_reassemble(mp, ipf, 12329 (frag_offset_flags & IPH_OFFSET) << 3, 12330 (frag_offset_flags & IPH_MF), ill, msg_len); 12331 } 12332 /* Update per ipfb and ill byte counts */ 12333 ipfb->ipfb_count += ipf->ipf_count; 12334 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12335 ill->ill_frag_count += ipf->ipf_count; 12336 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12337 /* If the frag timer wasn't already going, start it. */ 12338 mutex_enter(&ill->ill_lock); 12339 ill_frag_timer_start(ill); 12340 mutex_exit(&ill->ill_lock); 12341 goto reass_done; 12342 } 12343 12344 /* 12345 * If the packet's flag has changed (it could be coming up 12346 * from an interface different than the previous, therefore 12347 * possibly different checksum capability), then forget about 12348 * any stored checksum states. Otherwise add the value to 12349 * the existing one stored in the fragment header. 12350 */ 12351 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12352 sum_val += ipf->ipf_checksum; 12353 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12354 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12355 ipf->ipf_checksum = sum_val; 12356 } else if (ipf->ipf_checksum_flags != 0) { 12357 /* Forget checksum offload from now on */ 12358 ipf->ipf_checksum_flags = 0; 12359 } 12360 12361 /* 12362 * We have a new piece of a datagram which is already being 12363 * reassembled. Update the ECN info if all IP fragments 12364 * are ECN capable. If there is one which is not, clear 12365 * all the info. If there is at least one which has CE 12366 * code point, IP needs to report that up to transport. 12367 */ 12368 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12369 if (ecn_info == IPH_ECN_CE) 12370 ipf->ipf_ecn = IPH_ECN_CE; 12371 } else { 12372 ipf->ipf_ecn = IPH_ECN_NECT; 12373 } 12374 if (offset && ipf->ipf_end == offset) { 12375 /* The new fragment fits at the end */ 12376 ipf->ipf_tail_mp->b_cont = mp; 12377 /* Update the byte count */ 12378 ipf->ipf_count += msg_len; 12379 /* Update per ipfb and ill byte counts */ 12380 ipfb->ipfb_count += msg_len; 12381 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12382 ill->ill_frag_count += msg_len; 12383 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12384 if (frag_offset_flags & IPH_MF) { 12385 /* More to come. */ 12386 ipf->ipf_end = end; 12387 ipf->ipf_tail_mp = tail_mp; 12388 goto reass_done; 12389 } 12390 } else { 12391 /* Go do the hard cases. */ 12392 int ret; 12393 12394 if (offset == 0) 12395 ipf->ipf_nf_hdr_len = hdr_length; 12396 12397 /* Save current byte count */ 12398 count = ipf->ipf_count; 12399 ret = ip_reassemble(mp, ipf, 12400 (frag_offset_flags & IPH_OFFSET) << 3, 12401 (frag_offset_flags & IPH_MF), ill, msg_len); 12402 /* Count of bytes added and subtracted (freeb()ed) */ 12403 count = ipf->ipf_count - count; 12404 if (count) { 12405 /* Update per ipfb and ill byte counts */ 12406 ipfb->ipfb_count += count; 12407 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12408 ill->ill_frag_count += count; 12409 ASSERT(ill->ill_frag_count > 0); 12410 } 12411 if (ret == IP_REASS_PARTIAL) { 12412 goto reass_done; 12413 } else if (ret == IP_REASS_FAILED) { 12414 /* Reassembly failed. Free up all resources */ 12415 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12416 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12417 IP_REASS_SET_START(t_mp, 0); 12418 IP_REASS_SET_END(t_mp, 0); 12419 } 12420 freemsg(mp); 12421 goto reass_done; 12422 } 12423 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12424 } 12425 /* 12426 * We have completed reassembly. Unhook the frag header from 12427 * the reassembly list. 12428 * 12429 * Before we free the frag header, record the ECN info 12430 * to report back to the transport. 12431 */ 12432 ecn_info = ipf->ipf_ecn; 12433 BUMP_MIB(&ip_mib, ipReasmOKs); 12434 ipfp = ipf->ipf_ptphn; 12435 12436 /* We need to supply these to caller */ 12437 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12438 sum_val = ipf->ipf_checksum; 12439 else 12440 sum_val = 0; 12441 12442 mp1 = ipf->ipf_mp; 12443 count = ipf->ipf_count; 12444 ipf = ipf->ipf_hash_next; 12445 if (ipf != NULL) 12446 ipf->ipf_ptphn = ipfp; 12447 ipfp[0] = ipf; 12448 ill->ill_frag_count -= count; 12449 ASSERT(ipfb->ipfb_count >= count); 12450 ipfb->ipfb_count -= count; 12451 ipfb->ipfb_frag_pkts--; 12452 mutex_exit(&ipfb->ipfb_lock); 12453 /* Ditch the frag header. */ 12454 mp = mp1->b_cont; 12455 12456 freeb(mp1); 12457 12458 /* Restore original IP length in header. */ 12459 packet_size = (uint32_t)msgdsize(mp); 12460 if (packet_size > IP_MAXPACKET) { 12461 freemsg(mp); 12462 BUMP_MIB(&ip_mib, ipInHdrErrors); 12463 return (B_FALSE); 12464 } 12465 12466 if (DB_REF(mp) > 1) { 12467 mblk_t *mp2 = copymsg(mp); 12468 12469 freemsg(mp); 12470 if (mp2 == NULL) { 12471 BUMP_MIB(&ip_mib, ipInDiscards); 12472 return (B_FALSE); 12473 } 12474 mp = mp2; 12475 } 12476 ipha = (ipha_t *)mp->b_rptr; 12477 12478 ipha->ipha_length = htons((uint16_t)packet_size); 12479 /* We're now complete, zip the frag state */ 12480 ipha->ipha_fragment_offset_and_flags = 0; 12481 /* Record the ECN info. */ 12482 ipha->ipha_type_of_service &= 0xFC; 12483 ipha->ipha_type_of_service |= ecn_info; 12484 *mpp = mp; 12485 12486 /* Reassembly is successful; return checksum information if needed */ 12487 if (cksum_val != NULL) 12488 *cksum_val = sum_val; 12489 if (cksum_flags != NULL) 12490 *cksum_flags = sum_flags; 12491 12492 return (B_TRUE); 12493 } 12494 12495 /* 12496 * Perform ip header check sum update local options. 12497 * return B_TRUE if all is well, else return B_FALSE and release 12498 * the mp. caller is responsible for decrementing ire ref cnt. 12499 */ 12500 static boolean_t 12501 ip_options_cksum(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 12502 { 12503 mblk_t *first_mp; 12504 boolean_t mctl_present; 12505 uint16_t sum; 12506 12507 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12508 /* 12509 * Don't do the checksum if it has gone through AH/ESP 12510 * processing. 12511 */ 12512 if (!mctl_present) { 12513 sum = ip_csum_hdr(ipha); 12514 if (sum != 0) { 12515 BUMP_MIB(&ip_mib, ipInCksumErrs); 12516 freemsg(first_mp); 12517 return (B_FALSE); 12518 } 12519 } 12520 12521 if (!ip_rput_local_options(q, mp, ipha, ire)) { 12522 if (mctl_present) 12523 freeb(first_mp); 12524 return (B_FALSE); 12525 } 12526 12527 return (B_TRUE); 12528 } 12529 12530 /* 12531 * All udp packet are delivered to the local host via this routine. 12532 */ 12533 void 12534 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12535 ill_t *recv_ill) 12536 { 12537 uint32_t sum; 12538 uint32_t u1; 12539 boolean_t mctl_present; 12540 conn_t *connp; 12541 mblk_t *first_mp; 12542 uint16_t *up; 12543 ill_t *ill = (ill_t *)q->q_ptr; 12544 uint16_t reass_hck_flags = 0; 12545 12546 #define rptr ((uchar_t *)ipha) 12547 12548 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12549 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12550 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12551 12552 /* 12553 * FAST PATH for udp packets 12554 */ 12555 12556 /* u1 is # words of IP options */ 12557 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12558 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12559 12560 /* IP options present */ 12561 if (u1 != 0) 12562 goto ipoptions; 12563 12564 /* Check the IP header checksum. */ 12565 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12566 /* Clear the IP header h/w cksum flag */ 12567 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12568 } else { 12569 #define uph ((uint16_t *)ipha) 12570 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12571 uph[6] + uph[7] + uph[8] + uph[9]; 12572 #undef uph 12573 /* finish doing IP checksum */ 12574 sum = (sum & 0xFFFF) + (sum >> 16); 12575 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12576 /* 12577 * Don't verify header checksum if this packet is coming 12578 * back from AH/ESP as we already did it. 12579 */ 12580 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12581 BUMP_MIB(&ip_mib, ipInCksumErrs); 12582 freemsg(first_mp); 12583 return; 12584 } 12585 } 12586 12587 /* 12588 * Count for SNMP of inbound packets for ire. 12589 * if mctl is present this might be a secure packet and 12590 * has already been counted for in ip_proto_input(). 12591 */ 12592 if (!mctl_present) { 12593 UPDATE_IB_PKT_COUNT(ire); 12594 ire->ire_last_used_time = lbolt; 12595 } 12596 12597 /* packet part of fragmented IP packet? */ 12598 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12599 if (u1 & (IPH_MF | IPH_OFFSET)) { 12600 goto fragmented; 12601 } 12602 12603 /* u1 = IP header length (20 bytes) */ 12604 u1 = IP_SIMPLE_HDR_LENGTH; 12605 12606 /* packet does not contain complete IP & UDP headers */ 12607 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12608 goto udppullup; 12609 12610 /* up points to UDP header */ 12611 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12612 #define iphs ((uint16_t *)ipha) 12613 12614 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12615 if (up[3] != 0) { 12616 mblk_t *mp1 = mp->b_cont; 12617 boolean_t cksum_err; 12618 uint16_t hck_flags = 0; 12619 12620 /* Pseudo-header checksum */ 12621 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12622 iphs[9] + up[2]; 12623 12624 /* 12625 * Revert to software checksum calculation if the interface 12626 * isn't capable of checksum offload or if IPsec is present. 12627 */ 12628 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12629 hck_flags = DB_CKSUMFLAGS(mp); 12630 12631 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12632 IP_STAT(ip_in_sw_cksum); 12633 12634 IP_CKSUM_RECV(hck_flags, u1, 12635 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12636 (int32_t)((uchar_t *)up - rptr), 12637 mp, mp1, cksum_err); 12638 12639 if (cksum_err) { 12640 BUMP_MIB(&ip_mib, udpInCksumErrs); 12641 12642 if (hck_flags & HCK_FULLCKSUM) 12643 IP_STAT(ip_udp_in_full_hw_cksum_err); 12644 else if (hck_flags & HCK_PARTIALCKSUM) 12645 IP_STAT(ip_udp_in_part_hw_cksum_err); 12646 else 12647 IP_STAT(ip_udp_in_sw_cksum_err); 12648 12649 freemsg(first_mp); 12650 return; 12651 } 12652 } 12653 12654 /* Non-fragmented broadcast or multicast packet? */ 12655 if (ire->ire_type == IRE_BROADCAST) 12656 goto udpslowpath; 12657 12658 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12659 ire->ire_zoneid)) != NULL) { 12660 ASSERT(connp->conn_upq != NULL); 12661 IP_STAT(ip_udp_fast_path); 12662 12663 if (CONN_UDP_FLOWCTLD(connp)) { 12664 freemsg(mp); 12665 BUMP_MIB(&ip_mib, udpInOverflows); 12666 } else { 12667 if (!mctl_present) { 12668 BUMP_MIB(&ip_mib, ipInDelivers); 12669 } 12670 /* 12671 * mp and first_mp can change. 12672 */ 12673 if (ip_udp_check(q, connp, recv_ill, 12674 ipha, &mp, &first_mp, mctl_present)) { 12675 /* Send it upstream */ 12676 CONN_UDP_RECV(connp, mp); 12677 } 12678 } 12679 /* 12680 * freeb() cannot deal with null mblk being passed 12681 * in and first_mp can be set to null in the call 12682 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12683 */ 12684 if (mctl_present && first_mp != NULL) { 12685 freeb(first_mp); 12686 } 12687 CONN_DEC_REF(connp); 12688 return; 12689 } 12690 12691 /* 12692 * if we got here we know the packet is not fragmented and 12693 * has no options. The classifier could not find a conn_t and 12694 * most likely its an icmp packet so send it through slow path. 12695 */ 12696 12697 goto udpslowpath; 12698 12699 ipoptions: 12700 if (!ip_options_cksum(q, mp, ipha, ire)) { 12701 goto slow_done; 12702 } 12703 12704 UPDATE_IB_PKT_COUNT(ire); 12705 ire->ire_last_used_time = lbolt; 12706 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12707 if (u1 & (IPH_MF | IPH_OFFSET)) { 12708 fragmented: 12709 /* 12710 * "sum" and "reass_hck_flags" are non-zero if the 12711 * reassembled packet has a valid hardware computed 12712 * checksum information associated with it. 12713 */ 12714 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12715 goto slow_done; 12716 /* 12717 * Make sure that first_mp points back to mp as 12718 * the mp we came in with could have changed in 12719 * ip_rput_fragment(). 12720 */ 12721 ASSERT(!mctl_present); 12722 ipha = (ipha_t *)mp->b_rptr; 12723 first_mp = mp; 12724 } 12725 12726 /* Now we have a complete datagram, destined for this machine. */ 12727 u1 = IPH_HDR_LENGTH(ipha); 12728 /* Pull up the UDP header, if necessary. */ 12729 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12730 udppullup: 12731 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12732 BUMP_MIB(&ip_mib, ipInDiscards); 12733 freemsg(first_mp); 12734 goto slow_done; 12735 } 12736 ipha = (ipha_t *)mp->b_rptr; 12737 } 12738 12739 /* 12740 * Validate the checksum for the reassembled packet; for the 12741 * pullup case we calculate the payload checksum in software. 12742 */ 12743 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12744 if (up[3] != 0) { 12745 boolean_t cksum_err; 12746 12747 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12748 IP_STAT(ip_in_sw_cksum); 12749 12750 IP_CKSUM_RECV_REASS(reass_hck_flags, 12751 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12752 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12753 iphs[9] + up[2], sum, cksum_err); 12754 12755 if (cksum_err) { 12756 BUMP_MIB(&ip_mib, udpInCksumErrs); 12757 12758 if (reass_hck_flags & HCK_FULLCKSUM) 12759 IP_STAT(ip_udp_in_full_hw_cksum_err); 12760 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12761 IP_STAT(ip_udp_in_part_hw_cksum_err); 12762 else 12763 IP_STAT(ip_udp_in_sw_cksum_err); 12764 12765 freemsg(first_mp); 12766 goto slow_done; 12767 } 12768 } 12769 udpslowpath: 12770 12771 /* Clear hardware checksum flag to be safe */ 12772 DB_CKSUMFLAGS(mp) = 0; 12773 12774 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12775 (ire->ire_type == IRE_BROADCAST), 12776 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IP6INFO, 12777 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12778 12779 slow_done: 12780 IP_STAT(ip_udp_slow_path); 12781 return; 12782 12783 #undef iphs 12784 #undef rptr 12785 } 12786 12787 /* ARGSUSED */ 12788 static mblk_t * 12789 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12790 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12791 ill_rx_ring_t *ill_ring) 12792 { 12793 conn_t *connp; 12794 uint32_t sum; 12795 uint32_t u1; 12796 uint16_t *up; 12797 int offset; 12798 ssize_t len; 12799 mblk_t *mp1; 12800 boolean_t syn_present = B_FALSE; 12801 tcph_t *tcph; 12802 uint_t ip_hdr_len; 12803 ill_t *ill = (ill_t *)q->q_ptr; 12804 zoneid_t zoneid = ire->ire_zoneid; 12805 boolean_t cksum_err; 12806 uint16_t hck_flags = 0; 12807 12808 #define rptr ((uchar_t *)ipha) 12809 12810 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12811 12812 /* 12813 * FAST PATH for tcp packets 12814 */ 12815 12816 /* u1 is # words of IP options */ 12817 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12818 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12819 12820 /* IP options present */ 12821 if (u1) { 12822 goto ipoptions; 12823 } else { 12824 /* Check the IP header checksum. */ 12825 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12826 /* Clear the IP header h/w cksum flag */ 12827 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12828 } else { 12829 #define uph ((uint16_t *)ipha) 12830 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12831 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12832 #undef uph 12833 /* finish doing IP checksum */ 12834 sum = (sum & 0xFFFF) + (sum >> 16); 12835 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12836 /* 12837 * Don't verify header checksum if this packet 12838 * is coming back from AH/ESP as we already did it. 12839 */ 12840 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 12841 BUMP_MIB(&ip_mib, ipInCksumErrs); 12842 goto error; 12843 } 12844 } 12845 } 12846 12847 if (!mctl_present) { 12848 UPDATE_IB_PKT_COUNT(ire); 12849 ire->ire_last_used_time = lbolt; 12850 } 12851 12852 /* packet part of fragmented IP packet? */ 12853 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12854 if (u1 & (IPH_MF | IPH_OFFSET)) { 12855 goto fragmented; 12856 } 12857 12858 /* u1 = IP header length (20 bytes) */ 12859 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12860 12861 /* does packet contain IP+TCP headers? */ 12862 len = mp->b_wptr - rptr; 12863 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12864 IP_STAT(ip_tcppullup); 12865 goto tcppullup; 12866 } 12867 12868 /* TCP options present? */ 12869 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12870 12871 /* 12872 * If options need to be pulled up, then goto tcpoptions. 12873 * otherwise we are still in the fast path 12874 */ 12875 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12876 IP_STAT(ip_tcpoptions); 12877 goto tcpoptions; 12878 } 12879 12880 /* multiple mblks of tcp data? */ 12881 if ((mp1 = mp->b_cont) != NULL) { 12882 /* more then two? */ 12883 if (mp1->b_cont != NULL) { 12884 IP_STAT(ip_multipkttcp); 12885 goto multipkttcp; 12886 } 12887 len += mp1->b_wptr - mp1->b_rptr; 12888 } 12889 12890 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12891 12892 /* part of pseudo checksum */ 12893 12894 /* TCP datagram length */ 12895 u1 = len - IP_SIMPLE_HDR_LENGTH; 12896 12897 #define iphs ((uint16_t *)ipha) 12898 12899 #ifdef _BIG_ENDIAN 12900 u1 += IPPROTO_TCP; 12901 #else 12902 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12903 #endif 12904 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12905 12906 /* 12907 * Revert to software checksum calculation if the interface 12908 * isn't capable of checksum offload or if IPsec is present. 12909 */ 12910 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12911 hck_flags = DB_CKSUMFLAGS(mp); 12912 12913 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12914 IP_STAT(ip_in_sw_cksum); 12915 12916 IP_CKSUM_RECV(hck_flags, u1, 12917 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12918 (int32_t)((uchar_t *)up - rptr), 12919 mp, mp1, cksum_err); 12920 12921 if (cksum_err) { 12922 BUMP_MIB(&ip_mib, tcpInErrs); 12923 12924 if (hck_flags & HCK_FULLCKSUM) 12925 IP_STAT(ip_tcp_in_full_hw_cksum_err); 12926 else if (hck_flags & HCK_PARTIALCKSUM) 12927 IP_STAT(ip_tcp_in_part_hw_cksum_err); 12928 else 12929 IP_STAT(ip_tcp_in_sw_cksum_err); 12930 12931 goto error; 12932 } 12933 12934 try_again: 12935 12936 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 12937 NULL) { 12938 /* Send the TH_RST */ 12939 goto no_conn; 12940 } 12941 12942 /* 12943 * TCP FAST PATH for AF_INET socket. 12944 * 12945 * TCP fast path to avoid extra work. An AF_INET socket type 12946 * does not have facility to receive extra information via 12947 * ip_process or ip_add_info. Also, when the connection was 12948 * established, we made a check if this connection is impacted 12949 * by any global IPSec policy or per connection policy (a 12950 * policy that comes in effect later will not apply to this 12951 * connection). Since all this can be determined at the 12952 * connection establishment time, a quick check of flags 12953 * can avoid extra work. 12954 */ 12955 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 12956 !IPP_ENABLED(IPP_LOCAL_IN)) { 12957 ASSERT(first_mp == mp); 12958 SET_SQUEUE(mp, tcp_rput_data, connp); 12959 return (mp); 12960 } 12961 12962 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 12963 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 12964 if (IPCL_IS_TCP(connp)) { 12965 mp->b_datap->db_struioflag |= STRUIO_EAGER; 12966 DB_CKSUMSTART(mp) = 12967 (intptr_t)ip_squeue_get(ill_ring); 12968 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 12969 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12970 SET_SQUEUE(mp, connp->conn_recv, connp); 12971 return (mp); 12972 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 12973 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12974 ip_squeue_enter_unbound++; 12975 SET_SQUEUE(mp, tcp_conn_request_unbound, 12976 connp); 12977 return (mp); 12978 } 12979 syn_present = B_TRUE; 12980 } 12981 12982 } 12983 12984 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 12985 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12986 12987 /* No need to send this packet to TCP */ 12988 if ((flags & TH_RST) || (flags & TH_URG)) { 12989 CONN_DEC_REF(connp); 12990 freemsg(first_mp); 12991 return (NULL); 12992 } 12993 if (flags & TH_ACK) { 12994 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 12995 CONN_DEC_REF(connp); 12996 return (NULL); 12997 } 12998 12999 CONN_DEC_REF(connp); 13000 freemsg(first_mp); 13001 return (NULL); 13002 } 13003 13004 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 13005 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13006 ipha, NULL, mctl_present); 13007 if (first_mp == NULL) { 13008 CONN_DEC_REF(connp); 13009 return (NULL); 13010 } 13011 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13012 ASSERT(syn_present); 13013 if (mctl_present) { 13014 ASSERT(first_mp != mp); 13015 first_mp->b_datap->db_struioflag |= 13016 STRUIO_POLICY; 13017 } else { 13018 ASSERT(first_mp == mp); 13019 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13020 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13021 } 13022 } else { 13023 /* 13024 * Discard first_mp early since we're dealing with a 13025 * fully-connected conn_t and tcp doesn't do policy in 13026 * this case. 13027 */ 13028 if (mctl_present) { 13029 freeb(first_mp); 13030 mctl_present = B_FALSE; 13031 } 13032 first_mp = mp; 13033 } 13034 } 13035 13036 /* Initiate IPPF processing for fastpath */ 13037 if (IPP_ENABLED(IPP_LOCAL_IN)) { 13038 uint32_t ill_index; 13039 13040 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13041 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13042 if (mp == NULL) { 13043 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13044 "deferred/dropped during IPPF processing\n")); 13045 CONN_DEC_REF(connp); 13046 if (mctl_present) 13047 freeb(first_mp); 13048 return (NULL); 13049 } else if (mctl_present) { 13050 /* 13051 * ip_process might return a new mp. 13052 */ 13053 ASSERT(first_mp != mp); 13054 first_mp->b_cont = mp; 13055 } else { 13056 first_mp = mp; 13057 } 13058 13059 } 13060 13061 if (!syn_present && connp->conn_ipv6_recvpktinfo) { 13062 mp = ip_add_info(mp, recv_ill, flags); 13063 if (mp == NULL) { 13064 CONN_DEC_REF(connp); 13065 if (mctl_present) 13066 freeb(first_mp); 13067 return (NULL); 13068 } else if (mctl_present) { 13069 /* 13070 * ip_add_info might return a new mp. 13071 */ 13072 ASSERT(first_mp != mp); 13073 first_mp->b_cont = mp; 13074 } else { 13075 first_mp = mp; 13076 } 13077 } 13078 13079 if (IPCL_IS_TCP(connp)) { 13080 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13081 return (first_mp); 13082 } else { 13083 putnext(connp->conn_rq, first_mp); 13084 CONN_DEC_REF(connp); 13085 return (NULL); 13086 } 13087 13088 no_conn: 13089 /* Initiate IPPf processing, if needed. */ 13090 if (IPP_ENABLED(IPP_LOCAL_IN)) { 13091 uint32_t ill_index; 13092 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13093 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13094 if (first_mp == NULL) { 13095 return (NULL); 13096 } 13097 } 13098 BUMP_MIB(&ip_mib, ipInDelivers); 13099 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid); 13100 return (NULL); 13101 ipoptions: 13102 if (!ip_options_cksum(q, first_mp, ipha, ire)) { 13103 goto slow_done; 13104 } 13105 13106 UPDATE_IB_PKT_COUNT(ire); 13107 ire->ire_last_used_time = lbolt; 13108 13109 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13110 if (u1 & (IPH_MF | IPH_OFFSET)) { 13111 fragmented: 13112 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13113 if (mctl_present) 13114 freeb(first_mp); 13115 goto slow_done; 13116 } 13117 /* 13118 * Make sure that first_mp points back to mp as 13119 * the mp we came in with could have changed in 13120 * ip_rput_fragment(). 13121 */ 13122 ASSERT(!mctl_present); 13123 ipha = (ipha_t *)mp->b_rptr; 13124 first_mp = mp; 13125 } 13126 13127 /* Now we have a complete datagram, destined for this machine. */ 13128 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13129 13130 len = mp->b_wptr - mp->b_rptr; 13131 /* Pull up a minimal TCP header, if necessary. */ 13132 if (len < (u1 + 20)) { 13133 tcppullup: 13134 if (!pullupmsg(mp, u1 + 20)) { 13135 BUMP_MIB(&ip_mib, ipInDiscards); 13136 goto error; 13137 } 13138 ipha = (ipha_t *)mp->b_rptr; 13139 len = mp->b_wptr - mp->b_rptr; 13140 } 13141 13142 /* 13143 * Extract the offset field from the TCP header. As usual, we 13144 * try to help the compiler more than the reader. 13145 */ 13146 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13147 if (offset != 5) { 13148 tcpoptions: 13149 if (offset < 5) { 13150 BUMP_MIB(&ip_mib, ipInDiscards); 13151 goto error; 13152 } 13153 /* 13154 * There must be TCP options. 13155 * Make sure we can grab them. 13156 */ 13157 offset <<= 2; 13158 offset += u1; 13159 if (len < offset) { 13160 if (!pullupmsg(mp, offset)) { 13161 BUMP_MIB(&ip_mib, ipInDiscards); 13162 goto error; 13163 } 13164 ipha = (ipha_t *)mp->b_rptr; 13165 len = mp->b_wptr - rptr; 13166 } 13167 } 13168 13169 /* Get the total packet length in len, including headers. */ 13170 if (mp->b_cont) { 13171 multipkttcp: 13172 len = msgdsize(mp); 13173 } 13174 13175 /* 13176 * Check the TCP checksum by pulling together the pseudo- 13177 * header checksum, and passing it to ip_csum to be added in 13178 * with the TCP datagram. 13179 * 13180 * Since we are not using the hwcksum if available we must 13181 * clear the flag. We may come here via tcppullup or tcpoptions. 13182 * If either of these fails along the way the mblk is freed. 13183 * If this logic ever changes and mblk is reused to say send 13184 * ICMP's back, then this flag may need to be cleared in 13185 * other places as well. 13186 */ 13187 DB_CKSUMFLAGS(mp) = 0; 13188 13189 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13190 13191 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13192 #ifdef _BIG_ENDIAN 13193 u1 += IPPROTO_TCP; 13194 #else 13195 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13196 #endif 13197 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13198 /* 13199 * Not M_DATA mblk or its a dup, so do the checksum now. 13200 */ 13201 IP_STAT(ip_in_sw_cksum); 13202 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13203 BUMP_MIB(&ip_mib, tcpInErrs); 13204 goto error; 13205 } 13206 13207 IP_STAT(ip_tcp_slow_path); 13208 goto try_again; 13209 #undef iphs 13210 #undef rptr 13211 13212 error: 13213 freemsg(first_mp); 13214 slow_done: 13215 return (NULL); 13216 } 13217 13218 /* ARGSUSED */ 13219 static void 13220 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13221 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13222 { 13223 conn_t *connp; 13224 uint32_t sum; 13225 uint32_t u1; 13226 ssize_t len; 13227 sctp_hdr_t *sctph; 13228 zoneid_t zoneid = ire->ire_zoneid; 13229 uint32_t pktsum; 13230 uint32_t calcsum; 13231 uint32_t ports; 13232 uint_t ipif_seqid; 13233 in6_addr_t map_src, map_dst; 13234 ill_t *ill = (ill_t *)q->q_ptr; 13235 13236 #define rptr ((uchar_t *)ipha) 13237 13238 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13239 13240 /* u1 is # words of IP options */ 13241 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13242 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13243 13244 /* IP options present */ 13245 if (u1 > 0) { 13246 goto ipoptions; 13247 } else { 13248 /* Check the IP header checksum. */ 13249 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13250 #define uph ((uint16_t *)ipha) 13251 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13252 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13253 #undef uph 13254 /* finish doing IP checksum */ 13255 sum = (sum & 0xFFFF) + (sum >> 16); 13256 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13257 /* 13258 * Don't verify header checksum if this packet 13259 * is coming back from AH/ESP as we already did it. 13260 */ 13261 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13262 BUMP_MIB(&ip_mib, ipInCksumErrs); 13263 goto error; 13264 } 13265 } 13266 /* 13267 * Since there is no SCTP h/w cksum support yet, just 13268 * clear the flag. 13269 */ 13270 DB_CKSUMFLAGS(mp) = 0; 13271 } 13272 13273 /* 13274 * Don't verify header checksum if this packet is coming 13275 * back from AH/ESP as we already did it. 13276 */ 13277 if (!mctl_present) { 13278 UPDATE_IB_PKT_COUNT(ire); 13279 ire->ire_last_used_time = lbolt; 13280 } 13281 13282 /* packet part of fragmented IP packet? */ 13283 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13284 if (u1 & (IPH_MF | IPH_OFFSET)) 13285 goto fragmented; 13286 13287 /* u1 = IP header length (20 bytes) */ 13288 u1 = IP_SIMPLE_HDR_LENGTH; 13289 13290 find_sctp_client: 13291 /* Pullup if we don't have the sctp common header. */ 13292 len = MBLKL(mp); 13293 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13294 if (mp->b_cont == NULL || 13295 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13296 BUMP_MIB(&ip_mib, ipInDiscards); 13297 goto error; 13298 } 13299 ipha = (ipha_t *)mp->b_rptr; 13300 len = MBLKL(mp); 13301 } 13302 13303 sctph = (sctp_hdr_t *)(rptr + u1); 13304 #ifdef DEBUG 13305 if (!skip_sctp_cksum) { 13306 #endif 13307 pktsum = sctph->sh_chksum; 13308 sctph->sh_chksum = 0; 13309 calcsum = sctp_cksum(mp, u1); 13310 if (calcsum != pktsum) { 13311 BUMP_MIB(&sctp_mib, sctpChecksumError); 13312 goto error; 13313 } 13314 sctph->sh_chksum = pktsum; 13315 #ifdef DEBUG /* skip_sctp_cksum */ 13316 } 13317 #endif 13318 /* get the ports */ 13319 ports = *(uint32_t *)&sctph->sh_sport; 13320 13321 ipif_seqid = ire->ire_ipif->ipif_seqid; 13322 IRE_REFRELE(ire); 13323 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13324 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13325 if ((connp = sctp_fanout(&map_src, &map_dst, ports, ipif_seqid, zoneid, 13326 mp)) == NULL) { 13327 /* Check for raw socket or OOTB handling */ 13328 goto no_conn; 13329 } 13330 13331 /* Found a client; up it goes */ 13332 BUMP_MIB(&ip_mib, ipInDelivers); 13333 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13334 return; 13335 13336 no_conn: 13337 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13338 ports, mctl_present, flags, B_TRUE, ipif_seqid, zoneid); 13339 return; 13340 13341 ipoptions: 13342 DB_CKSUMFLAGS(mp) = 0; 13343 if (!ip_options_cksum(q, first_mp, ipha, ire)) 13344 goto slow_done; 13345 13346 UPDATE_IB_PKT_COUNT(ire); 13347 ire->ire_last_used_time = lbolt; 13348 13349 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13350 if (u1 & (IPH_MF | IPH_OFFSET)) { 13351 fragmented: 13352 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13353 goto slow_done; 13354 /* 13355 * Make sure that first_mp points back to mp as 13356 * the mp we came in with could have changed in 13357 * ip_rput_fragment(). 13358 */ 13359 ASSERT(!mctl_present); 13360 ipha = (ipha_t *)mp->b_rptr; 13361 first_mp = mp; 13362 } 13363 13364 /* Now we have a complete datagram, destined for this machine. */ 13365 u1 = IPH_HDR_LENGTH(ipha); 13366 goto find_sctp_client; 13367 #undef iphs 13368 #undef rptr 13369 13370 error: 13371 freemsg(first_mp); 13372 slow_done: 13373 IRE_REFRELE(ire); 13374 } 13375 13376 #define VER_BITS 0xF0 13377 #define VERSION_6 0x60 13378 13379 static boolean_t 13380 ip_rput_multimblk_ipoptions(queue_t *q, mblk_t *mp, ipha_t **iphapp, 13381 ipaddr_t *dstp) 13382 { 13383 uint_t opt_len; 13384 ipha_t *ipha; 13385 ssize_t len; 13386 uint_t pkt_len; 13387 13388 IP_STAT(ip_ipoptions); 13389 ipha = *iphapp; 13390 13391 #define rptr ((uchar_t *)ipha) 13392 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13393 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13394 BUMP_MIB(&ip_mib, ipInIPv6); 13395 freemsg(mp); 13396 return (B_FALSE); 13397 } 13398 13399 /* multiple mblk or too short */ 13400 pkt_len = ntohs(ipha->ipha_length); 13401 13402 /* Get the number of words of IP options in the IP header. */ 13403 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13404 if (opt_len) { 13405 /* IP Options present! Validate and process. */ 13406 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13407 BUMP_MIB(&ip_mib, ipInHdrErrors); 13408 goto done; 13409 } 13410 /* 13411 * Recompute complete header length and make sure we 13412 * have access to all of it. 13413 */ 13414 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13415 if (len > (mp->b_wptr - rptr)) { 13416 if (len > pkt_len) { 13417 BUMP_MIB(&ip_mib, ipInHdrErrors); 13418 goto done; 13419 } 13420 if (!pullupmsg(mp, len)) { 13421 BUMP_MIB(&ip_mib, ipInDiscards); 13422 goto done; 13423 } 13424 ipha = (ipha_t *)mp->b_rptr; 13425 } 13426 /* 13427 * Go off to ip_rput_options which returns the next hop 13428 * destination address, which may have been affected 13429 * by source routing. 13430 */ 13431 IP_STAT(ip_opt); 13432 if (ip_rput_options(q, mp, ipha, dstp) == -1) { 13433 return (B_FALSE); 13434 } 13435 } 13436 *iphapp = ipha; 13437 return (B_TRUE); 13438 done: 13439 /* clear b_prev - used by ip_mroute_decap */ 13440 mp->b_prev = NULL; 13441 freemsg(mp); 13442 return (B_FALSE); 13443 #undef rptr 13444 } 13445 13446 /* 13447 * Deal with the fact that there is no ire for the destination. 13448 * The incoming ill (in_ill) is passed in to ip_newroute only 13449 * in the case of packets coming from mobile ip forward tunnel. 13450 * It must be null otherwise. 13451 */ 13452 static ire_t * 13453 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 13454 ipaddr_t dst) 13455 { 13456 ipha_t *ipha; 13457 ill_t *ill; 13458 ire_t *ire; 13459 boolean_t check_multirt = B_FALSE; 13460 13461 ipha = (ipha_t *)mp->b_rptr; 13462 ill = (ill_t *)q->q_ptr; 13463 13464 ASSERT(ill != NULL); 13465 /* 13466 * No IRE for this destination, so it can't be for us. 13467 * Unless we are forwarding, drop the packet. 13468 * We have to let source routed packets through 13469 * since we don't yet know if they are 'ping -l' 13470 * packets i.e. if they will go out over the 13471 * same interface as they came in on. 13472 */ 13473 if (ll_multicast) { 13474 freemsg(mp); 13475 return (NULL); 13476 } 13477 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha)) { 13478 BUMP_MIB(&ip_mib, ipForwProhibits); 13479 freemsg(mp); 13480 return (NULL); 13481 } 13482 13483 /* 13484 * Mark this packet as having originated externally. 13485 * 13486 * For non-forwarding code path, ire_send later double 13487 * checks this interface to see if it is still exists 13488 * post-ARP resolution. 13489 * 13490 * Also, IPQOS uses this to differentiate between 13491 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13492 * QOS packet processing in ip_wput_attach_llhdr(). 13493 * The QoS module can mark the b_band for a fastpath message 13494 * or the dl_priority field in a unitdata_req header for 13495 * CoS marking. This info can only be found in 13496 * ip_wput_attach_llhdr(). 13497 */ 13498 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13499 /* 13500 * Clear the indication that this may have a hardware checksum 13501 * as we are not using it 13502 */ 13503 DB_CKSUMFLAGS(mp) = 0; 13504 13505 if (in_ill != NULL) { 13506 /* 13507 * Now hand the packet to ip_newroute. 13508 */ 13509 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID); 13510 return (NULL); 13511 } 13512 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13513 MBLK_GETLABEL(mp)); 13514 13515 if (ire == NULL && check_multirt) { 13516 /* Let ip_newroute handle CGTP */ 13517 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID); 13518 return (NULL); 13519 } 13520 13521 if (ire != NULL) 13522 return (ire); 13523 13524 mp->b_prev = mp->b_next = 0; 13525 /* send icmp unreachable */ 13526 q = WR(q); 13527 /* Sent by forwarding path, and router is global zone */ 13528 if (ip_source_routed(ipha)) { 13529 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13530 GLOBAL_ZONEID); 13531 } else { 13532 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID); 13533 } 13534 13535 return (NULL); 13536 13537 } 13538 13539 /* 13540 * check ip header length and align it. 13541 */ 13542 static boolean_t 13543 ip_check_and_align_header(queue_t *q, mblk_t *mp) 13544 { 13545 ssize_t len; 13546 ill_t *ill; 13547 ipha_t *ipha; 13548 13549 len = MBLKL(mp); 13550 13551 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13552 if (!OK_32PTR(mp->b_rptr)) 13553 IP_STAT(ip_notaligned1); 13554 else 13555 IP_STAT(ip_notaligned2); 13556 /* Guard against bogus device drivers */ 13557 if (len < 0) { 13558 /* clear b_prev - used by ip_mroute_decap */ 13559 mp->b_prev = NULL; 13560 BUMP_MIB(&ip_mib, ipInHdrErrors); 13561 freemsg(mp); 13562 return (B_FALSE); 13563 } 13564 13565 if (ip_rput_pullups++ == 0) { 13566 ill = (ill_t *)q->q_ptr; 13567 ipha = (ipha_t *)mp->b_rptr; 13568 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13569 "ip_check_and_align_header: %s forced us to " 13570 " pullup pkt, hdr len %ld, hdr addr %p", 13571 ill->ill_name, len, ipha); 13572 } 13573 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13574 /* clear b_prev - used by ip_mroute_decap */ 13575 mp->b_prev = NULL; 13576 BUMP_MIB(&ip_mib, ipInDiscards); 13577 freemsg(mp); 13578 return (B_FALSE); 13579 } 13580 } 13581 return (B_TRUE); 13582 } 13583 13584 static boolean_t 13585 ip_rput_notforus(queue_t **qp, mblk_t *mp, ire_t *ire, ill_t *ill) 13586 { 13587 ill_group_t *ill_group; 13588 ill_group_t *ire_group; 13589 queue_t *q; 13590 ill_t *ire_ill; 13591 uint_t ill_ifindex; 13592 13593 q = *qp; 13594 /* 13595 * We need to check to make sure the packet came in 13596 * on the queue associated with the destination IRE. 13597 * Note that for multicast packets and broadcast packets sent to 13598 * a broadcast address which is shared between multiple interfaces 13599 * we should not do this since we just got a random broadcast ire. 13600 */ 13601 if (ire->ire_rfq && ire->ire_type != IRE_BROADCAST) { 13602 boolean_t check_multi = B_TRUE; 13603 13604 /* 13605 * This packet came in on an interface other than the 13606 * one associated with the destination address. 13607 * "Gateway" it to the appropriate interface here. 13608 * As long as the ills belong to the same group, 13609 * we don't consider them to arriving on the wrong 13610 * interface. Thus, when the switch is doing inbound 13611 * load spreading, we won't drop packets when we 13612 * are doing strict multihoming checks. Note, the 13613 * same holds true for 'usesrc groups' where the 13614 * destination address may belong to another interface 13615 * to allow multipathing to happen 13616 */ 13617 ill_group = ill->ill_group; 13618 ire_ill = (ill_t *)(ire->ire_rfq)->q_ptr; 13619 ill_ifindex = ill->ill_usesrc_ifindex; 13620 ire_group = ire_ill->ill_group; 13621 13622 /* 13623 * If it's part of the same IPMP group, or if it's a legal 13624 * address on the 'usesrc' interface, then bypass strict 13625 * checks. 13626 */ 13627 if (ill_group != NULL && ill_group == ire_group) { 13628 check_multi = B_FALSE; 13629 } else if (ill_ifindex != 0 && 13630 ill_ifindex == ire_ill->ill_phyint->phyint_ifindex) { 13631 check_multi = B_FALSE; 13632 } 13633 13634 if (check_multi && 13635 ip_strict_dst_multihoming && 13636 ((ill->ill_flags & 13637 ire->ire_ipif->ipif_ill->ill_flags & 13638 ILLF_ROUTER) == 0)) { 13639 /* Drop packet */ 13640 BUMP_MIB(&ip_mib, ipForwProhibits); 13641 freemsg(mp); 13642 return (B_TRUE); 13643 } 13644 13645 /* 13646 * Change the queue (for non-virtual destination network 13647 * interfaces) and ip_rput_local will be called with the right 13648 * queue 13649 */ 13650 q = ire->ire_rfq; 13651 } 13652 /* Must be broadcast. We'll take it. */ 13653 *qp = q; 13654 return (B_FALSE); 13655 } 13656 13657 ire_t * 13658 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13659 { 13660 ipha_t *ipha; 13661 ipaddr_t ip_dst, ip_src; 13662 ire_t *src_ire = NULL; 13663 ill_t *stq_ill; 13664 uint_t hlen; 13665 uint32_t sum; 13666 queue_t *dev_q; 13667 boolean_t check_multirt = B_FALSE; 13668 13669 13670 ipha = (ipha_t *)mp->b_rptr; 13671 13672 /* 13673 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13674 * The loopback address check for both src and dst has already 13675 * been checked in ip_input 13676 */ 13677 ip_dst = ntohl(dst); 13678 ip_src = ntohl(ipha->ipha_src); 13679 13680 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 13681 IN_CLASSD(ip_src)) { 13682 BUMP_MIB(&ip_mib, ipForwProhibits); 13683 goto drop; 13684 } 13685 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13686 ALL_ZONES, NULL, MATCH_IRE_TYPE); 13687 13688 if (src_ire != NULL) { 13689 BUMP_MIB(&ip_mib, ipForwProhibits); 13690 goto drop; 13691 } 13692 13693 /* No ire cache of nexthop. So first create one */ 13694 if (ire == NULL) { 13695 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL); 13696 /* 13697 * We only come to ip_fast_forward if ip_cgtp_filter is 13698 * is not set. So upon return from ire_forward 13699 * check_multirt should remain as false. 13700 */ 13701 ASSERT(!check_multirt); 13702 if (ire == NULL) { 13703 BUMP_MIB(&ip_mib, ipInDiscards); 13704 mp->b_prev = mp->b_next = 0; 13705 /* send icmp unreachable */ 13706 /* Sent by forwarding path, and router is global zone */ 13707 if (ip_source_routed(ipha)) { 13708 icmp_unreachable(ill->ill_wq, mp, 13709 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID); 13710 } else { 13711 icmp_unreachable(ill->ill_wq, mp, 13712 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID); 13713 } 13714 return (ire); 13715 } 13716 } 13717 13718 /* 13719 * Forwarding fastpath exception case: 13720 * If either of the follwoing case is true, we take 13721 * the slowpath 13722 * o forwarding is not enabled 13723 * o incoming and outgoing interface are the same, or the same 13724 * IPMP group 13725 * o corresponding ire is in incomplete state 13726 * o packet needs fragmentation 13727 * 13728 * The codeflow from here on is thus: 13729 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13730 */ 13731 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13732 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13733 !(ill->ill_flags & ILLF_ROUTER) || 13734 (ill == stq_ill) || 13735 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 13736 (ire->ire_nce == NULL) || 13737 (ire->ire_nce->nce_state != ND_REACHABLE) || 13738 (ntohs(ipha->ipha_length) > ire->ire_max_frag) || 13739 ipha->ipha_ttl <= 1) { 13740 ip_rput_process_forward(ill->ill_rq, mp, ire, 13741 ipha, ill, B_FALSE); 13742 return (ire); 13743 } 13744 13745 DTRACE_PROBE4(ip4__forwarding__start, 13746 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13747 13748 FW_HOOKS(ip4_forwarding_event, ipv4firewall_forwarding, 13749 ill, stq_ill, ipha, mp, mp); 13750 13751 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13752 13753 if (mp == NULL) 13754 goto drop; 13755 13756 mp->b_datap->db_struioun.cksum.flags = 0; 13757 /* Adjust the checksum to reflect the ttl decrement. */ 13758 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13759 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13760 ipha->ipha_ttl--; 13761 13762 dev_q = ire->ire_stq->q_next; 13763 if ((dev_q->q_next != NULL || 13764 dev_q->q_first != NULL) && !canput(dev_q)) { 13765 goto indiscard; 13766 } 13767 13768 hlen = ire->ire_nce->nce_fp_mp != NULL ? 13769 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 13770 13771 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 13772 mblk_t *mpip = mp; 13773 13774 mp = ip_wput_attach_llhdr(mpip, ire, 0, 0); 13775 if (mp != NULL) { 13776 DTRACE_PROBE4(ip4__physical__out__start, 13777 ill_t *, NULL, ill_t *, stq_ill, 13778 ipha_t *, ipha, mblk_t *, mp); 13779 FW_HOOKS(ip4_physical_out_event, 13780 ipv4firewall_physical_out, 13781 NULL, stq_ill, ipha, mp, mpip); 13782 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, 13783 mp); 13784 if (mp == NULL) 13785 goto drop; 13786 13787 UPDATE_IB_PKT_COUNT(ire); 13788 ire->ire_last_used_time = lbolt; 13789 BUMP_MIB(&ip_mib, ipForwDatagrams); 13790 putnext(ire->ire_stq, mp); 13791 return (ire); 13792 } 13793 } 13794 13795 indiscard: 13796 BUMP_MIB(&ip_mib, ipInDiscards); 13797 drop: 13798 if (mp != NULL) 13799 freemsg(mp); 13800 if (src_ire != NULL) 13801 ire_refrele(src_ire); 13802 return (ire); 13803 13804 } 13805 13806 /* 13807 * This function is called in the forwarding slowpath, when 13808 * either the ire lacks the link-layer address, or the packet needs 13809 * further processing(eg. fragmentation), before transmission. 13810 */ 13811 13812 static void 13813 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13814 ill_t *ill, boolean_t ll_multicast) 13815 { 13816 ill_group_t *ill_group; 13817 ill_group_t *ire_group; 13818 queue_t *dev_q; 13819 ire_t *src_ire; 13820 13821 ASSERT(ire->ire_stq != NULL); 13822 13823 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 13824 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 13825 13826 if (ll_multicast != 0) 13827 goto drop_pkt; 13828 13829 /* 13830 * check if ipha_src is a broadcast address. Note that this 13831 * check is redundant when we get here from ip_fast_forward() 13832 * which has already done this check. However, since we can 13833 * also get here from ip_rput_process_broadcast() or, for 13834 * for the slow path through ip_fast_forward(), we perform 13835 * the check again for code-reusability 13836 */ 13837 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13838 ALL_ZONES, NULL, MATCH_IRE_TYPE); 13839 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 13840 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 13841 if (src_ire != NULL) 13842 ire_refrele(src_ire); 13843 BUMP_MIB(&ip_mib, ipForwProhibits); 13844 ip2dbg(("ip_rput_process_forward: Received packet with" 13845 " bad src/dst address on %s\n", ill->ill_name)); 13846 goto drop_pkt; 13847 } 13848 13849 ill_group = ill->ill_group; 13850 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 13851 /* 13852 * Check if we want to forward this one at this time. 13853 * We allow source routed packets on a host provided that 13854 * they go out the same interface or same interface group 13855 * as they came in on. 13856 * 13857 * XXX To be quicker, we may wish to not chase pointers to 13858 * get the ILLF_ROUTER flag and instead store the 13859 * forwarding policy in the ire. An unfortunate 13860 * side-effect of that would be requiring an ire flush 13861 * whenever the ILLF_ROUTER flag changes. 13862 */ 13863 if (((ill->ill_flags & 13864 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 13865 ILLF_ROUTER) == 0) && 13866 !(ip_source_routed(ipha) && (ire->ire_rfq == q || 13867 (ill_group != NULL && ill_group == ire_group)))) { 13868 BUMP_MIB(&ip_mib, ipForwProhibits); 13869 if (ip_source_routed(ipha)) { 13870 q = WR(q); 13871 /* 13872 * Clear the indication that this may have 13873 * hardware checksum as we are not using it. 13874 */ 13875 DB_CKSUMFLAGS(mp) = 0; 13876 /* Sent by forwarding path, and router is global zone */ 13877 icmp_unreachable(q, mp, 13878 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID); 13879 return; 13880 } 13881 goto drop_pkt; 13882 } 13883 13884 /* Packet is being forwarded. Turning off hwcksum flag. */ 13885 DB_CKSUMFLAGS(mp) = 0; 13886 if (ip_g_send_redirects) { 13887 /* 13888 * Check whether the incoming interface and outgoing 13889 * interface is part of the same group. If so, 13890 * send redirects. 13891 * 13892 * Check the source address to see if it originated 13893 * on the same logical subnet it is going back out on. 13894 * If so, we should be able to send it a redirect. 13895 * Avoid sending a redirect if the destination 13896 * is directly connected (i.e., ipha_dst is the same 13897 * as ire_gateway_addr or the ire_addr of the 13898 * nexthop IRE_CACHE ), or if the packet was source 13899 * routed out this interface. 13900 */ 13901 ipaddr_t src, nhop; 13902 mblk_t *mp1; 13903 ire_t *nhop_ire = NULL; 13904 13905 /* 13906 * Check whether ire_rfq and q are from the same ill 13907 * or if they are not same, they at least belong 13908 * to the same group. If so, send redirects. 13909 */ 13910 if ((ire->ire_rfq == q || 13911 (ill_group != NULL && ill_group == ire_group)) && 13912 !ip_source_routed(ipha)) { 13913 13914 nhop = (ire->ire_gateway_addr != 0 ? 13915 ire->ire_gateway_addr : ire->ire_addr); 13916 13917 if (ipha->ipha_dst == nhop) { 13918 /* 13919 * We avoid sending a redirect if the 13920 * destination is directly connected 13921 * because it is possible that multiple 13922 * IP subnets may have been configured on 13923 * the link, and the source may not 13924 * be on the same subnet as ip destination, 13925 * even though they are on the same 13926 * physical link. 13927 */ 13928 goto sendit; 13929 } 13930 13931 src = ipha->ipha_src; 13932 13933 /* 13934 * We look up the interface ire for the nexthop, 13935 * to see if ipha_src is in the same subnet 13936 * as the nexthop. 13937 * 13938 * Note that, if, in the future, IRE_CACHE entries 13939 * are obsoleted, this lookup will not be needed, 13940 * as the ire passed to this function will be the 13941 * same as the nhop_ire computed below. 13942 */ 13943 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 13944 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 13945 0, NULL, MATCH_IRE_TYPE); 13946 13947 if (nhop_ire != NULL) { 13948 if ((src & nhop_ire->ire_mask) == 13949 (nhop & nhop_ire->ire_mask)) { 13950 /* 13951 * The source is directly connected. 13952 * Just copy the ip header (which is 13953 * in the first mblk) 13954 */ 13955 mp1 = copyb(mp); 13956 if (mp1 != NULL) { 13957 icmp_send_redirect(WR(q), mp1, 13958 nhop); 13959 } 13960 } 13961 ire_refrele(nhop_ire); 13962 } 13963 } 13964 } 13965 sendit: 13966 dev_q = ire->ire_stq->q_next; 13967 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 13968 BUMP_MIB(&ip_mib, ipInDiscards); 13969 freemsg(mp); 13970 return; 13971 } 13972 13973 ip_rput_forward(ire, ipha, mp, ill); 13974 return; 13975 13976 drop_pkt: 13977 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 13978 freemsg(mp); 13979 } 13980 13981 ire_t * 13982 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13983 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 13984 { 13985 queue_t *q; 13986 uint16_t hcksumflags; 13987 13988 q = *qp; 13989 13990 /* 13991 * Clear the indication that this may have hardware 13992 * checksum as we are not using it for forwarding. 13993 */ 13994 hcksumflags = DB_CKSUMFLAGS(mp); 13995 DB_CKSUMFLAGS(mp) = 0; 13996 13997 /* 13998 * Directed broadcast forwarding: if the packet came in over a 13999 * different interface then it is routed out over we can forward it. 14000 */ 14001 if (ipha->ipha_protocol == IPPROTO_TCP) { 14002 ire_refrele(ire); 14003 freemsg(mp); 14004 BUMP_MIB(&ip_mib, ipInDiscards); 14005 return (NULL); 14006 } 14007 /* 14008 * For multicast we have set dst to be INADDR_BROADCAST 14009 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14010 * only for broadcast packets. 14011 */ 14012 if (!CLASSD(ipha->ipha_dst)) { 14013 ire_t *new_ire; 14014 ipif_t *ipif; 14015 /* 14016 * For ill groups, as the switch duplicates broadcasts 14017 * across all the ports, we need to filter out and 14018 * send up only one copy. There is one copy for every 14019 * broadcast address on each ill. Thus, we look for a 14020 * specific IRE on this ill and look at IRE_MARK_NORECV 14021 * later to see whether this ill is eligible to receive 14022 * them or not. ill_nominate_bcast_rcv() nominates only 14023 * one set of IREs for receiving. 14024 */ 14025 14026 ipif = ipif_get_next_ipif(NULL, ill); 14027 if (ipif == NULL) { 14028 ire_refrele(ire); 14029 freemsg(mp); 14030 BUMP_MIB(&ip_mib, ipInDiscards); 14031 return (NULL); 14032 } 14033 new_ire = ire_ctable_lookup(dst, 0, 0, 14034 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL); 14035 ipif_refrele(ipif); 14036 14037 if (new_ire != NULL) { 14038 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14039 ire_refrele(ire); 14040 ire_refrele(new_ire); 14041 freemsg(mp); 14042 BUMP_MIB(&ip_mib, ipInDiscards); 14043 return (NULL); 14044 } 14045 /* 14046 * In the special case of multirouted broadcast 14047 * packets, we unconditionally need to "gateway" 14048 * them to the appropriate interface here. 14049 * In the normal case, this cannot happen, because 14050 * there is no broadcast IRE tagged with the 14051 * RTF_MULTIRT flag. 14052 */ 14053 if (new_ire->ire_flags & RTF_MULTIRT) { 14054 ire_refrele(new_ire); 14055 if (ire->ire_rfq != NULL) { 14056 q = ire->ire_rfq; 14057 *qp = q; 14058 } 14059 } else { 14060 ire_refrele(ire); 14061 ire = new_ire; 14062 } 14063 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14064 if (!ip_g_forward_directed_bcast) { 14065 /* 14066 * Free the message if 14067 * ip_g_forward_directed_bcast is turned 14068 * off for non-local broadcast. 14069 */ 14070 ire_refrele(ire); 14071 freemsg(mp); 14072 BUMP_MIB(&ip_mib, ipInDiscards); 14073 return (NULL); 14074 } 14075 } else { 14076 /* 14077 * This CGTP packet successfully passed the 14078 * CGTP filter, but the related CGTP 14079 * broadcast IRE has not been found, 14080 * meaning that the redundant ipif is 14081 * probably down. However, if we discarded 14082 * this packet, its duplicate would be 14083 * filtered out by the CGTP filter so none 14084 * of them would get through. So we keep 14085 * going with this one. 14086 */ 14087 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14088 if (ire->ire_rfq != NULL) { 14089 q = ire->ire_rfq; 14090 *qp = q; 14091 } 14092 } 14093 } 14094 if (ip_g_forward_directed_bcast && ll_multicast == 0) { 14095 /* 14096 * Verify that there are not more then one 14097 * IRE_BROADCAST with this broadcast address which 14098 * has ire_stq set. 14099 * TODO: simplify, loop over all IRE's 14100 */ 14101 ire_t *ire1; 14102 int num_stq = 0; 14103 mblk_t *mp1; 14104 14105 /* Find the first one with ire_stq set */ 14106 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14107 for (ire1 = ire; ire1 && 14108 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14109 ire1 = ire1->ire_next) 14110 ; 14111 if (ire1) { 14112 ire_refrele(ire); 14113 ire = ire1; 14114 IRE_REFHOLD(ire); 14115 } 14116 14117 /* Check if there are additional ones with stq set */ 14118 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14119 if (ire->ire_addr != ire1->ire_addr) 14120 break; 14121 if (ire1->ire_stq) { 14122 num_stq++; 14123 break; 14124 } 14125 } 14126 rw_exit(&ire->ire_bucket->irb_lock); 14127 if (num_stq == 1 && ire->ire_stq != NULL) { 14128 ip1dbg(("ip_rput_process_broadcast: directed " 14129 "broadcast to 0x%x\n", 14130 ntohl(ire->ire_addr))); 14131 mp1 = copymsg(mp); 14132 if (mp1) { 14133 switch (ipha->ipha_protocol) { 14134 case IPPROTO_UDP: 14135 ip_udp_input(q, mp1, ipha, ire, ill); 14136 break; 14137 default: 14138 ip_proto_input(q, mp1, ipha, ire, ill); 14139 break; 14140 } 14141 } 14142 /* 14143 * Adjust ttl to 2 (1+1 - the forward engine 14144 * will decrement it by one. 14145 */ 14146 if (ip_csum_hdr(ipha)) { 14147 BUMP_MIB(&ip_mib, ipInCksumErrs); 14148 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14149 freemsg(mp); 14150 ire_refrele(ire); 14151 return (NULL); 14152 } 14153 ipha->ipha_ttl = ip_broadcast_ttl + 1; 14154 ipha->ipha_hdr_checksum = 0; 14155 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14156 ip_rput_process_forward(q, mp, ire, ipha, 14157 ill, ll_multicast); 14158 ire_refrele(ire); 14159 return (NULL); 14160 } 14161 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14162 ntohl(ire->ire_addr))); 14163 } 14164 14165 14166 /* Restore any hardware checksum flags */ 14167 DB_CKSUMFLAGS(mp) = hcksumflags; 14168 return (ire); 14169 } 14170 14171 /* ARGSUSED */ 14172 static boolean_t 14173 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14174 int *ll_multicast, ipaddr_t *dstp) 14175 { 14176 /* 14177 * Forward packets only if we have joined the allmulti 14178 * group on this interface. 14179 */ 14180 if (ip_g_mrouter && ill->ill_join_allmulti) { 14181 int retval; 14182 14183 /* 14184 * Clear the indication that this may have hardware 14185 * checksum as we are not using it. 14186 */ 14187 DB_CKSUMFLAGS(mp) = 0; 14188 retval = ip_mforward(ill, ipha, mp); 14189 /* ip_mforward updates mib variables if needed */ 14190 /* clear b_prev - used by ip_mroute_decap */ 14191 mp->b_prev = NULL; 14192 14193 switch (retval) { 14194 case 0: 14195 /* 14196 * pkt is okay and arrived on phyint. 14197 * 14198 * If we are running as a multicast router 14199 * we need to see all IGMP and/or PIM packets. 14200 */ 14201 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14202 (ipha->ipha_protocol == IPPROTO_PIM)) { 14203 goto done; 14204 } 14205 break; 14206 case -1: 14207 /* pkt is mal-formed, toss it */ 14208 goto drop_pkt; 14209 case 1: 14210 /* pkt is okay and arrived on a tunnel */ 14211 /* 14212 * If we are running a multicast router 14213 * we need to see all igmp packets. 14214 */ 14215 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14216 *dstp = INADDR_BROADCAST; 14217 *ll_multicast = 1; 14218 return (B_FALSE); 14219 } 14220 14221 goto drop_pkt; 14222 } 14223 } 14224 14225 ILM_WALKER_HOLD(ill); 14226 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14227 /* 14228 * This might just be caused by the fact that 14229 * multiple IP Multicast addresses map to the same 14230 * link layer multicast - no need to increment counter! 14231 */ 14232 ILM_WALKER_RELE(ill); 14233 freemsg(mp); 14234 return (B_TRUE); 14235 } 14236 ILM_WALKER_RELE(ill); 14237 done: 14238 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14239 /* 14240 * This assumes the we deliver to all streams for multicast 14241 * and broadcast packets. 14242 */ 14243 *dstp = INADDR_BROADCAST; 14244 *ll_multicast = 1; 14245 return (B_FALSE); 14246 drop_pkt: 14247 ip2dbg(("ip_rput: drop pkt\n")); 14248 freemsg(mp); 14249 return (B_TRUE); 14250 } 14251 14252 static boolean_t 14253 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14254 int *ll_multicast, mblk_t **mpp) 14255 { 14256 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14257 boolean_t must_copy = B_FALSE; 14258 struct iocblk *iocp; 14259 ipha_t *ipha; 14260 14261 #define rptr ((uchar_t *)ipha) 14262 14263 first_mp = *first_mpp; 14264 mp = *mpp; 14265 14266 ASSERT(first_mp == mp); 14267 14268 /* 14269 * if db_ref > 1 then copymsg and free original. Packet may be 14270 * changed and do not want other entity who has a reference to this 14271 * message to trip over the changes. This is a blind change because 14272 * trying to catch all places that might change packet is too 14273 * difficult (since it may be a module above this one) 14274 * 14275 * This corresponds to the non-fast path case. We walk down the full 14276 * chain in this case, and check the db_ref count of all the dblks, 14277 * and do a copymsg if required. It is possible that the db_ref counts 14278 * of the data blocks in the mblk chain can be different. 14279 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14280 * count of 1, followed by a M_DATA block with a ref count of 2, if 14281 * 'snoop' is running. 14282 */ 14283 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14284 if (mp1->b_datap->db_ref > 1) { 14285 must_copy = B_TRUE; 14286 break; 14287 } 14288 } 14289 14290 if (must_copy) { 14291 mp1 = copymsg(mp); 14292 if (mp1 == NULL) { 14293 for (mp1 = mp; mp1 != NULL; 14294 mp1 = mp1->b_cont) { 14295 mp1->b_next = NULL; 14296 mp1->b_prev = NULL; 14297 } 14298 freemsg(mp); 14299 BUMP_MIB(&ip_mib, ipInDiscards); 14300 return (B_TRUE); 14301 } 14302 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14303 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14304 /* Copy b_prev - used by ip_mroute_decap */ 14305 to_mp->b_prev = from_mp->b_prev; 14306 from_mp->b_prev = NULL; 14307 } 14308 *first_mpp = first_mp = mp1; 14309 freemsg(mp); 14310 mp = mp1; 14311 *mpp = mp1; 14312 } 14313 14314 ipha = (ipha_t *)mp->b_rptr; 14315 14316 /* 14317 * previous code has a case for M_DATA. 14318 * We want to check how that happens. 14319 */ 14320 ASSERT(first_mp->b_datap->db_type != M_DATA); 14321 switch (first_mp->b_datap->db_type) { 14322 case M_PROTO: 14323 case M_PCPROTO: 14324 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14325 DL_UNITDATA_IND) { 14326 /* Go handle anything other than data elsewhere. */ 14327 ip_rput_dlpi(q, mp); 14328 return (B_TRUE); 14329 } 14330 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14331 /* Ditch the DLPI header. */ 14332 mp1 = mp->b_cont; 14333 ASSERT(first_mp == mp); 14334 *first_mpp = mp1; 14335 freeb(mp); 14336 *mpp = mp1; 14337 return (B_FALSE); 14338 case M_IOCACK: 14339 ip1dbg(("got iocack ")); 14340 iocp = (struct iocblk *)mp->b_rptr; 14341 switch (iocp->ioc_cmd) { 14342 case DL_IOC_HDR_INFO: 14343 ill = (ill_t *)q->q_ptr; 14344 ill_fastpath_ack(ill, mp); 14345 return (B_TRUE); 14346 case SIOCSTUNPARAM: 14347 case OSIOCSTUNPARAM: 14348 /* Go through qwriter_ip */ 14349 break; 14350 case SIOCGTUNPARAM: 14351 case OSIOCGTUNPARAM: 14352 ip_rput_other(NULL, q, mp, NULL); 14353 return (B_TRUE); 14354 default: 14355 putnext(q, mp); 14356 return (B_TRUE); 14357 } 14358 /* FALLTHRU */ 14359 case M_ERROR: 14360 case M_HANGUP: 14361 /* 14362 * Since this is on the ill stream we unconditionally 14363 * bump up the refcount 14364 */ 14365 ill_refhold(ill); 14366 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 14367 B_FALSE); 14368 return (B_TRUE); 14369 case M_CTL: 14370 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14371 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14372 IPHADA_M_CTL)) { 14373 /* 14374 * It's an IPsec accelerated packet. 14375 * Make sure that the ill from which we received the 14376 * packet has enabled IPsec hardware acceleration. 14377 */ 14378 if (!(ill->ill_capabilities & 14379 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14380 /* IPsec kstats: bean counter */ 14381 freemsg(mp); 14382 return (B_TRUE); 14383 } 14384 14385 /* 14386 * Make mp point to the mblk following the M_CTL, 14387 * then process according to type of mp. 14388 * After this processing, first_mp will point to 14389 * the data-attributes and mp to the pkt following 14390 * the M_CTL. 14391 */ 14392 mp = first_mp->b_cont; 14393 if (mp == NULL) { 14394 freemsg(first_mp); 14395 return (B_TRUE); 14396 } 14397 /* 14398 * A Hardware Accelerated packet can only be M_DATA 14399 * ESP or AH packet. 14400 */ 14401 if (mp->b_datap->db_type != M_DATA) { 14402 /* non-M_DATA IPsec accelerated packet */ 14403 IPSECHW_DEBUG(IPSECHW_PKT, 14404 ("non-M_DATA IPsec accelerated pkt\n")); 14405 freemsg(first_mp); 14406 return (B_TRUE); 14407 } 14408 ipha = (ipha_t *)mp->b_rptr; 14409 if (ipha->ipha_protocol != IPPROTO_AH && 14410 ipha->ipha_protocol != IPPROTO_ESP) { 14411 IPSECHW_DEBUG(IPSECHW_PKT, 14412 ("non-M_DATA IPsec accelerated pkt\n")); 14413 freemsg(first_mp); 14414 return (B_TRUE); 14415 } 14416 *mpp = mp; 14417 return (B_FALSE); 14418 } 14419 putnext(q, mp); 14420 return (B_TRUE); 14421 case M_FLUSH: 14422 if (*mp->b_rptr & FLUSHW) { 14423 *mp->b_rptr &= ~FLUSHR; 14424 qreply(q, mp); 14425 return (B_TRUE); 14426 } 14427 freemsg(mp); 14428 return (B_TRUE); 14429 case M_IOCNAK: 14430 ip1dbg(("got iocnak ")); 14431 iocp = (struct iocblk *)mp->b_rptr; 14432 switch (iocp->ioc_cmd) { 14433 case DL_IOC_HDR_INFO: 14434 case SIOCSTUNPARAM: 14435 case OSIOCSTUNPARAM: 14436 /* 14437 * Since this is on the ill stream we unconditionally 14438 * bump up the refcount 14439 */ 14440 ill_refhold(ill); 14441 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 14442 CUR_OP, B_FALSE); 14443 return (B_TRUE); 14444 case SIOCGTUNPARAM: 14445 case OSIOCGTUNPARAM: 14446 ip_rput_other(NULL, q, mp, NULL); 14447 return (B_TRUE); 14448 default: 14449 break; 14450 } 14451 /* FALLTHRU */ 14452 default: 14453 putnext(q, mp); 14454 return (B_TRUE); 14455 } 14456 } 14457 14458 /* Read side put procedure. Packets coming from the wire arrive here. */ 14459 void 14460 ip_rput(queue_t *q, mblk_t *mp) 14461 { 14462 ill_t *ill; 14463 mblk_t *dmp = NULL; 14464 14465 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14466 14467 ill = (ill_t *)q->q_ptr; 14468 14469 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14470 union DL_primitives *dl; 14471 14472 /* 14473 * Things are opening or closing. Only accept DLPI control 14474 * messages. In the open case, the ill->ill_ipif has not yet 14475 * been created. In the close case, things hanging off the 14476 * ill could have been freed already. In either case it 14477 * may not be safe to proceed further. 14478 */ 14479 14480 dl = (union DL_primitives *)mp->b_rptr; 14481 if ((mp->b_datap->db_type != M_PCPROTO) || 14482 (dl->dl_primitive == DL_UNITDATA_IND)) { 14483 /* 14484 * Also SIOC[GS]TUN* ioctls can come here. 14485 */ 14486 inet_freemsg(mp); 14487 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14488 "ip_input_end: q %p (%S)", q, "uninit"); 14489 return; 14490 } 14491 } 14492 14493 /* 14494 * if db_ref > 1 then copymsg and free original. Packet may be 14495 * changed and we do not want the other entity who has a reference to 14496 * this message to trip over the changes. This is a blind change because 14497 * trying to catch all places that might change the packet is too 14498 * difficult. 14499 * 14500 * This corresponds to the fast path case, where we have a chain of 14501 * M_DATA mblks. We check the db_ref count of only the 1st data block 14502 * in the mblk chain. There doesn't seem to be a reason why a device 14503 * driver would send up data with varying db_ref counts in the mblk 14504 * chain. In any case the Fast path is a private interface, and our 14505 * drivers don't do such a thing. Given the above assumption, there is 14506 * no need to walk down the entire mblk chain (which could have a 14507 * potential performance problem) 14508 */ 14509 if (mp->b_datap->db_ref > 1) { 14510 mblk_t *mp1; 14511 boolean_t adjusted = B_FALSE; 14512 IP_STAT(ip_db_ref); 14513 14514 /* 14515 * The IP_RECVSLLA option depends on having the link layer 14516 * header. First check that: 14517 * a> the underlying device is of type ether, since this 14518 * option is currently supported only over ethernet. 14519 * b> there is enough room to copy over the link layer header. 14520 * 14521 * Once the checks are done, adjust rptr so that the link layer 14522 * header will be copied via copymsg. Note that, IFT_ETHER may 14523 * be returned by some non-ethernet drivers but in this case the 14524 * second check will fail. 14525 */ 14526 if (ill->ill_type == IFT_ETHER && 14527 (mp->b_rptr - mp->b_datap->db_base) >= 14528 sizeof (struct ether_header)) { 14529 mp->b_rptr -= sizeof (struct ether_header); 14530 adjusted = B_TRUE; 14531 } 14532 mp1 = copymsg(mp); 14533 if (mp1 == NULL) { 14534 mp->b_next = NULL; 14535 /* clear b_prev - used by ip_mroute_decap */ 14536 mp->b_prev = NULL; 14537 freemsg(mp); 14538 BUMP_MIB(&ip_mib, ipInDiscards); 14539 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14540 "ip_rput_end: q %p (%S)", q, "copymsg"); 14541 return; 14542 } 14543 if (adjusted) { 14544 /* 14545 * Copy is done. Restore the pointer in the _new_ mblk 14546 */ 14547 mp1->b_rptr += sizeof (struct ether_header); 14548 } 14549 /* Copy b_prev - used by ip_mroute_decap */ 14550 mp1->b_prev = mp->b_prev; 14551 mp->b_prev = NULL; 14552 freemsg(mp); 14553 mp = mp1; 14554 } 14555 if (DB_TYPE(mp) == M_DATA) { 14556 dmp = mp; 14557 } else if (DB_TYPE(mp) == M_PROTO && 14558 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14559 dmp = mp->b_cont; 14560 } 14561 if (dmp != NULL) { 14562 /* 14563 * IP header ptr not aligned? 14564 * OR IP header not complete in first mblk 14565 */ 14566 if (!OK_32PTR(dmp->b_rptr) || 14567 (dmp->b_wptr - dmp->b_rptr) < IP_SIMPLE_HDR_LENGTH) { 14568 if (!ip_check_and_align_header(q, dmp)) 14569 return; 14570 } 14571 } 14572 14573 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14574 "ip_rput_end: q %p (%S)", q, "end"); 14575 14576 ip_input(ill, NULL, mp, NULL); 14577 } 14578 14579 /* 14580 * Direct read side procedure capable of dealing with chains. GLDv3 based 14581 * drivers call this function directly with mblk chains while STREAMS 14582 * read side procedure ip_rput() calls this for single packet with ip_ring 14583 * set to NULL to process one packet at a time. 14584 * 14585 * The ill will always be valid if this function is called directly from 14586 * the driver. 14587 * 14588 * If ip_input() is called from GLDv3: 14589 * 14590 * - This must be a non-VLAN IP stream. 14591 * - 'mp' is either an untagged or a special priority-tagged packet. 14592 * - Any VLAN tag that was in the MAC header has been stripped. 14593 * 14594 * Thus, there is no need to adjust b_rptr in this function. 14595 */ 14596 /* ARGSUSED */ 14597 void 14598 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14599 struct mac_header_info_s *mhip) 14600 { 14601 ipaddr_t dst = NULL; 14602 ipaddr_t prev_dst; 14603 ire_t *ire = NULL; 14604 ipha_t *ipha; 14605 uint_t pkt_len; 14606 ssize_t len; 14607 uint_t opt_len; 14608 int ll_multicast; 14609 int cgtp_flt_pkt; 14610 queue_t *q = ill->ill_rq; 14611 squeue_t *curr_sqp = NULL; 14612 mblk_t *head = NULL; 14613 mblk_t *tail = NULL; 14614 mblk_t *first_mp; 14615 mblk_t *mp; 14616 int cnt = 0; 14617 14618 ASSERT(mp_chain != NULL); 14619 ASSERT(ill != NULL); 14620 14621 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14622 14623 #define rptr ((uchar_t *)ipha) 14624 14625 while (mp_chain != NULL) { 14626 first_mp = mp = mp_chain; 14627 mp_chain = mp_chain->b_next; 14628 mp->b_next = NULL; 14629 ll_multicast = 0; 14630 14631 /* 14632 * We do ire caching from one iteration to 14633 * another. In the event the packet chain contains 14634 * all packets from the same dst, this caching saves 14635 * an ire_cache_lookup for each of the succeeding 14636 * packets in a packet chain. 14637 */ 14638 prev_dst = dst; 14639 14640 /* 14641 * ip_input fast path 14642 */ 14643 14644 /* mblk type is not M_DATA */ 14645 if (mp->b_datap->db_type != M_DATA) { 14646 if (ip_rput_process_notdata(q, &first_mp, ill, 14647 &ll_multicast, &mp)) 14648 continue; 14649 } 14650 14651 /* Make sure its an M_DATA and that its aligned */ 14652 ASSERT(mp->b_datap->db_type == M_DATA); 14653 ASSERT(mp->b_datap->db_ref == 1 && OK_32PTR(mp->b_rptr)); 14654 14655 ipha = (ipha_t *)mp->b_rptr; 14656 len = mp->b_wptr - rptr; 14657 14658 BUMP_MIB(&ip_mib, ipInReceives); 14659 14660 14661 /* multiple mblk or too short */ 14662 pkt_len = ntohs(ipha->ipha_length); 14663 len -= pkt_len; 14664 if (len != 0) { 14665 /* 14666 * Make sure we have data length consistent 14667 * with the IP header. 14668 */ 14669 if (mp->b_cont == NULL) { 14670 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14671 BUMP_MIB(&ip_mib, ipInHdrErrors); 14672 ip2dbg(("ip_input: drop pkt\n")); 14673 freemsg(mp); 14674 continue; 14675 } 14676 mp->b_wptr = rptr + pkt_len; 14677 } else if (len += msgdsize(mp->b_cont)) { 14678 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14679 BUMP_MIB(&ip_mib, ipInHdrErrors); 14680 ip2dbg(("ip_input: drop pkt\n")); 14681 freemsg(mp); 14682 continue; 14683 } 14684 (void) adjmsg(mp, -len); 14685 IP_STAT(ip_multimblk3); 14686 } 14687 } 14688 14689 /* Obtain the dst of the current packet */ 14690 dst = ipha->ipha_dst; 14691 14692 if (IP_LOOPBACK_ADDR(dst) || 14693 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 14694 BUMP_MIB(&ip_mib, ipInAddrErrors); 14695 cmn_err(CE_CONT, "dst %X src %X\n", 14696 dst, ipha->ipha_src); 14697 freemsg(mp); 14698 continue; 14699 } 14700 14701 /* 14702 * The event for packets being received from a 'physical' 14703 * interface is placed after validation of the source and/or 14704 * destination address as being local so that packets can be 14705 * redirected to loopback addresses using ipnat. 14706 */ 14707 DTRACE_PROBE4(ip4__physical__in__start, 14708 ill_t *, ill, ill_t *, NULL, 14709 ipha_t *, ipha, mblk_t *, first_mp); 14710 14711 FW_HOOKS(ip4_physical_in_event, ipv4firewall_physical_in, 14712 ill, NULL, ipha, first_mp, mp); 14713 14714 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 14715 14716 if (first_mp == NULL) { 14717 continue; 14718 } 14719 dst = ipha->ipha_dst; 14720 14721 /* 14722 * Attach any necessary label information to 14723 * this packet 14724 */ 14725 if (is_system_labeled() && 14726 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 14727 BUMP_MIB(&ip_mib, ipInDiscards); 14728 freemsg(mp); 14729 continue; 14730 } 14731 14732 /* 14733 * Reuse the cached ire only if the ipha_dst of the previous 14734 * packet is the same as the current packet AND it is not 14735 * INADDR_ANY. 14736 */ 14737 if (!(dst == prev_dst && dst != INADDR_ANY) && 14738 (ire != NULL)) { 14739 ire_refrele(ire); 14740 ire = NULL; 14741 } 14742 opt_len = ipha->ipha_version_and_hdr_length - 14743 IP_SIMPLE_HDR_VERSION; 14744 14745 /* 14746 * Check to see if we can take the fastpath. 14747 * That is possible if the following conditions are met 14748 * o Tsol disabled 14749 * o CGTP disabled 14750 * o ipp_action_count is 0 14751 * o Mobile IP not running 14752 * o no options in the packet 14753 * o not a RSVP packet 14754 * o not a multicast packet 14755 */ 14756 if (!is_system_labeled() && 14757 !ip_cgtp_filter && ipp_action_count == 0 && 14758 ill->ill_mrtun_refcnt == 0 && ill->ill_srcif_refcnt == 0 && 14759 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 14760 !ll_multicast && !CLASSD(dst)) { 14761 if (ire == NULL) 14762 ire = ire_cache_lookup(dst, ALL_ZONES, NULL); 14763 14764 /* incoming packet is for forwarding */ 14765 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 14766 ire = ip_fast_forward(ire, dst, ill, mp); 14767 continue; 14768 } 14769 /* incoming packet is for local consumption */ 14770 if (ire->ire_type & IRE_LOCAL) 14771 goto local; 14772 } 14773 14774 /* 14775 * Disable ire caching for anything more complex 14776 * than the simple fast path case we checked for above. 14777 */ 14778 if (ire != NULL) { 14779 ire_refrele(ire); 14780 ire = NULL; 14781 } 14782 14783 /* Full-blown slow path */ 14784 if (opt_len != 0) { 14785 if (len != 0) 14786 IP_STAT(ip_multimblk4); 14787 else 14788 IP_STAT(ip_ipoptions); 14789 if (!ip_rput_multimblk_ipoptions(q, mp, &ipha, &dst)) 14790 continue; 14791 } 14792 14793 /* 14794 * Invoke the CGTP (multirouting) filtering module to process 14795 * the incoming packet. Packets identified as duplicates 14796 * must be discarded. Filtering is active only if the 14797 * the ip_cgtp_filter ndd variable is non-zero. 14798 */ 14799 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 14800 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL)) { 14801 cgtp_flt_pkt = 14802 ip_cgtp_filter_ops->cfo_filter(q, mp); 14803 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 14804 freemsg(first_mp); 14805 continue; 14806 } 14807 } 14808 14809 /* 14810 * If rsvpd is running, let RSVP daemon handle its processing 14811 * and forwarding of RSVP multicast/unicast packets. 14812 * If rsvpd is not running but mrouted is running, RSVP 14813 * multicast packets are forwarded as multicast traffic 14814 * and RSVP unicast packets are forwarded by unicast router. 14815 * If neither rsvpd nor mrouted is running, RSVP multicast 14816 * packets are not forwarded, but the unicast packets are 14817 * forwarded like unicast traffic. 14818 */ 14819 if (ipha->ipha_protocol == IPPROTO_RSVP && 14820 ipcl_proto_search(IPPROTO_RSVP) != NULL) { 14821 /* RSVP packet and rsvpd running. Treat as ours */ 14822 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 14823 /* 14824 * This assumes that we deliver to all streams for 14825 * multicast and broadcast packets. 14826 * We have to force ll_multicast to 1 to handle the 14827 * M_DATA messages passed in from ip_mroute_decap. 14828 */ 14829 dst = INADDR_BROADCAST; 14830 ll_multicast = 1; 14831 } else if (CLASSD(dst)) { 14832 /* packet is multicast */ 14833 mp->b_next = NULL; 14834 if (ip_rput_process_multicast(q, mp, ill, ipha, 14835 &ll_multicast, &dst)) 14836 continue; 14837 } 14838 14839 14840 /* 14841 * Check if the packet is coming from the Mobile IP 14842 * forward tunnel interface 14843 */ 14844 if (ill->ill_srcif_refcnt > 0) { 14845 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 14846 NULL, ill, MATCH_IRE_TYPE); 14847 if (ire != NULL && ire->ire_nce->nce_res_mp == NULL && 14848 ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER) { 14849 14850 /* We need to resolve the link layer info */ 14851 ire_refrele(ire); 14852 ire = NULL; 14853 (void) ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 14854 ll_multicast, dst); 14855 continue; 14856 } 14857 } 14858 14859 if (ire == NULL) { 14860 ire = ire_cache_lookup(dst, ALL_ZONES, 14861 MBLK_GETLABEL(mp)); 14862 } 14863 14864 /* 14865 * If mipagent is running and reverse tunnel is created as per 14866 * mobile node request, then any packet coming through the 14867 * incoming interface from the mobile-node, should be reverse 14868 * tunneled to it's home agent except those that are destined 14869 * to foreign agent only. 14870 * This needs source address based ire lookup. The routing 14871 * entries for source address based lookup are only created by 14872 * mipagent program only when a reverse tunnel is created. 14873 * Reference : RFC2002, RFC2344 14874 */ 14875 if (ill->ill_mrtun_refcnt > 0) { 14876 ipaddr_t srcaddr; 14877 ire_t *tmp_ire; 14878 14879 tmp_ire = ire; /* Save, we might need it later */ 14880 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 14881 ire->ire_type != IRE_BROADCAST)) { 14882 srcaddr = ipha->ipha_src; 14883 ire = ire_mrtun_lookup(srcaddr, ill); 14884 if (ire != NULL) { 14885 /* 14886 * Should not be getting iphada packet 14887 * here. we should only get those for 14888 * IRE_LOCAL traffic, excluded above. 14889 * Fail-safe (drop packet) in the event 14890 * hardware is misbehaving. 14891 */ 14892 if (first_mp != mp) { 14893 /* IPsec KSTATS: beancount me */ 14894 freemsg(first_mp); 14895 } else { 14896 /* 14897 * This packet must be forwarded 14898 * to Reverse Tunnel 14899 */ 14900 ip_mrtun_forward(ire, ill, mp); 14901 } 14902 ire_refrele(ire); 14903 ire = NULL; 14904 if (tmp_ire != NULL) { 14905 ire_refrele(tmp_ire); 14906 tmp_ire = NULL; 14907 } 14908 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14909 "ip_input_end: q %p (%S)", 14910 q, "uninit"); 14911 continue; 14912 } 14913 } 14914 /* 14915 * If this packet is from a non-mobilenode or a 14916 * mobile-node which does not request reverse 14917 * tunnel service 14918 */ 14919 ire = tmp_ire; 14920 } 14921 14922 14923 /* 14924 * If we reach here that means the incoming packet satisfies 14925 * one of the following conditions: 14926 * - packet is from a mobile node which does not request 14927 * reverse tunnel 14928 * - packet is from a non-mobile node, which is the most 14929 * common case 14930 * - packet is from a reverse tunnel enabled mobile node 14931 * and destined to foreign agent only 14932 */ 14933 14934 if (ire == NULL) { 14935 /* 14936 * No IRE for this destination, so it can't be for us. 14937 * Unless we are forwarding, drop the packet. 14938 * We have to let source routed packets through 14939 * since we don't yet know if they are 'ping -l' 14940 * packets i.e. if they will go out over the 14941 * same interface as they came in on. 14942 */ 14943 ire = ip_rput_noire(q, NULL, mp, ll_multicast, dst); 14944 if (ire == NULL) 14945 continue; 14946 } 14947 14948 /* 14949 * Broadcast IRE may indicate either broadcast or 14950 * multicast packet 14951 */ 14952 if (ire->ire_type == IRE_BROADCAST) { 14953 /* 14954 * Skip broadcast checks if packet is UDP multicast; 14955 * we'd rather not enter ip_rput_process_broadcast() 14956 * unless the packet is broadcast for real, since 14957 * that routine is a no-op for multicast. 14958 */ 14959 if (ipha->ipha_protocol != IPPROTO_UDP || 14960 !CLASSD(ipha->ipha_dst)) { 14961 ire = ip_rput_process_broadcast(&q, mp, 14962 ire, ipha, ill, dst, cgtp_flt_pkt, 14963 ll_multicast); 14964 if (ire == NULL) 14965 continue; 14966 } 14967 } else if (ire->ire_stq != NULL) { 14968 /* fowarding? */ 14969 ip_rput_process_forward(q, mp, ire, ipha, ill, 14970 ll_multicast); 14971 /* ip_rput_process_forward consumed the packet */ 14972 continue; 14973 } 14974 14975 local: 14976 /* packet not for us */ 14977 if (ire->ire_rfq != q) { 14978 if (ip_rput_notforus(&q, mp, ire, ill)) 14979 continue; 14980 } 14981 14982 switch (ipha->ipha_protocol) { 14983 case IPPROTO_TCP: 14984 ASSERT(first_mp == mp); 14985 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 14986 mp, 0, q, ip_ring)) != NULL) { 14987 if (curr_sqp == NULL) { 14988 curr_sqp = GET_SQUEUE(mp); 14989 ASSERT(cnt == 0); 14990 cnt++; 14991 head = tail = mp; 14992 } else if (curr_sqp == GET_SQUEUE(mp)) { 14993 ASSERT(tail != NULL); 14994 cnt++; 14995 tail->b_next = mp; 14996 tail = mp; 14997 } else { 14998 /* 14999 * A different squeue. Send the 15000 * chain for the previous squeue on 15001 * its way. This shouldn't happen 15002 * often unless interrupt binding 15003 * changes. 15004 */ 15005 IP_STAT(ip_input_multi_squeue); 15006 squeue_enter_chain(curr_sqp, head, 15007 tail, cnt, SQTAG_IP_INPUT); 15008 curr_sqp = GET_SQUEUE(mp); 15009 head = mp; 15010 tail = mp; 15011 cnt = 1; 15012 } 15013 } 15014 continue; 15015 case IPPROTO_UDP: 15016 ASSERT(first_mp == mp); 15017 ip_udp_input(q, mp, ipha, ire, ill); 15018 continue; 15019 case IPPROTO_SCTP: 15020 ASSERT(first_mp == mp); 15021 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15022 q, dst); 15023 /* ire has been released by ip_sctp_input */ 15024 ire = NULL; 15025 continue; 15026 default: 15027 ip_proto_input(q, first_mp, ipha, ire, ill); 15028 continue; 15029 } 15030 } 15031 15032 if (ire != NULL) 15033 ire_refrele(ire); 15034 15035 if (head != NULL) 15036 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15037 15038 /* 15039 * This code is there just to make netperf/ttcp look good. 15040 * 15041 * Its possible that after being in polling mode (and having cleared 15042 * the backlog), squeues have turned the interrupt frequency higher 15043 * to improve latency at the expense of more CPU utilization (less 15044 * packets per interrupts or more number of interrupts). Workloads 15045 * like ttcp/netperf do manage to tickle polling once in a while 15046 * but for the remaining time, stay in higher interrupt mode since 15047 * their packet arrival rate is pretty uniform and this shows up 15048 * as higher CPU utilization. Since people care about CPU utilization 15049 * while running netperf/ttcp, turn the interrupt frequency back to 15050 * normal/default if polling has not been used in ip_poll_normal_ticks. 15051 */ 15052 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15053 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15054 ip_ring->rr_poll_state &= ~ILL_POLLING; 15055 ip_ring->rr_blank(ip_ring->rr_handle, 15056 ip_ring->rr_normal_blank_time, 15057 ip_ring->rr_normal_pkt_cnt); 15058 } 15059 } 15060 15061 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15062 "ip_input_end: q %p (%S)", q, "end"); 15063 #undef rptr 15064 } 15065 15066 static void 15067 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15068 t_uscalar_t err) 15069 { 15070 if (dl_err == DL_SYSERR) { 15071 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15072 "%s: %s failed: DL_SYSERR (errno %u)\n", 15073 ill->ill_name, dlpi_prim_str(prim), err); 15074 return; 15075 } 15076 15077 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15078 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15079 dlpi_err_str(dl_err)); 15080 } 15081 15082 /* 15083 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15084 * than DL_UNITDATA_IND messages. If we need to process this message 15085 * exclusively, we call qwriter_ip, in which case we also need to call 15086 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15087 */ 15088 void 15089 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15090 { 15091 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15092 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15093 ill_t *ill; 15094 15095 ip1dbg(("ip_rput_dlpi")); 15096 ill = (ill_t *)q->q_ptr; 15097 switch (dloa->dl_primitive) { 15098 case DL_ERROR_ACK: 15099 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15100 "%s (0x%x), unix %u\n", ill->ill_name, 15101 dlpi_prim_str(dlea->dl_error_primitive), 15102 dlea->dl_error_primitive, 15103 dlpi_err_str(dlea->dl_errno), 15104 dlea->dl_errno, 15105 dlea->dl_unix_errno)); 15106 switch (dlea->dl_error_primitive) { 15107 case DL_UNBIND_REQ: 15108 mutex_enter(&ill->ill_lock); 15109 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15110 cv_signal(&ill->ill_cv); 15111 mutex_exit(&ill->ill_lock); 15112 /* FALLTHRU */ 15113 case DL_NOTIFY_REQ: 15114 case DL_ATTACH_REQ: 15115 case DL_DETACH_REQ: 15116 case DL_INFO_REQ: 15117 case DL_BIND_REQ: 15118 case DL_ENABMULTI_REQ: 15119 case DL_PHYS_ADDR_REQ: 15120 case DL_CAPABILITY_REQ: 15121 case DL_CONTROL_REQ: 15122 /* 15123 * Refhold the ill to match qwriter_ip which does a 15124 * refrele. Since this is on the ill stream we 15125 * unconditionally bump up the refcount without 15126 * checking for ILL_CAN_LOOKUP 15127 */ 15128 ill_refhold(ill); 15129 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15130 CUR_OP, B_FALSE); 15131 return; 15132 case DL_DISABMULTI_REQ: 15133 freemsg(mp); /* Don't want to pass this up */ 15134 return; 15135 default: 15136 break; 15137 } 15138 ip_dlpi_error(ill, dlea->dl_error_primitive, 15139 dlea->dl_errno, dlea->dl_unix_errno); 15140 freemsg(mp); 15141 return; 15142 case DL_INFO_ACK: 15143 case DL_BIND_ACK: 15144 case DL_PHYS_ADDR_ACK: 15145 case DL_NOTIFY_ACK: 15146 case DL_CAPABILITY_ACK: 15147 case DL_CONTROL_ACK: 15148 /* 15149 * Refhold the ill to match qwriter_ip which does a refrele 15150 * Since this is on the ill stream we unconditionally 15151 * bump up the refcount without doing ILL_CAN_LOOKUP. 15152 */ 15153 ill_refhold(ill); 15154 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15155 CUR_OP, B_FALSE); 15156 return; 15157 case DL_NOTIFY_IND: 15158 ill_refhold(ill); 15159 /* 15160 * The DL_NOTIFY_IND is an asynchronous message that has no 15161 * relation to the current ioctl in progress (if any). Hence we 15162 * pass in NEW_OP in this case. 15163 */ 15164 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15165 NEW_OP, B_FALSE); 15166 return; 15167 case DL_OK_ACK: 15168 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15169 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15170 switch (dloa->dl_correct_primitive) { 15171 case DL_UNBIND_REQ: 15172 mutex_enter(&ill->ill_lock); 15173 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15174 cv_signal(&ill->ill_cv); 15175 mutex_exit(&ill->ill_lock); 15176 /* FALLTHRU */ 15177 case DL_ATTACH_REQ: 15178 case DL_DETACH_REQ: 15179 /* 15180 * Refhold the ill to match qwriter_ip which does a 15181 * refrele. Since this is on the ill stream we 15182 * unconditionally bump up the refcount 15183 */ 15184 ill_refhold(ill); 15185 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15186 CUR_OP, B_FALSE); 15187 return; 15188 case DL_ENABMULTI_REQ: 15189 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15190 ill->ill_dlpi_multicast_state = IDS_OK; 15191 break; 15192 15193 } 15194 break; 15195 default: 15196 break; 15197 } 15198 freemsg(mp); 15199 } 15200 15201 /* 15202 * Handling of DLPI messages that require exclusive access to the ipsq. 15203 * 15204 * Need to do ill_pending_mp_release on ioctl completion, which could 15205 * happen here. (along with mi_copy_done) 15206 */ 15207 /* ARGSUSED */ 15208 static void 15209 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15210 { 15211 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15212 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15213 int err = 0; 15214 ill_t *ill; 15215 ipif_t *ipif = NULL; 15216 mblk_t *mp1 = NULL; 15217 conn_t *connp = NULL; 15218 t_uscalar_t physaddr_req; 15219 mblk_t *mp_hw; 15220 union DL_primitives *dlp; 15221 boolean_t success; 15222 boolean_t ioctl_aborted = B_FALSE; 15223 boolean_t log = B_TRUE; 15224 hook_nic_event_t *info; 15225 15226 ip1dbg(("ip_rput_dlpi_writer ..")); 15227 ill = (ill_t *)q->q_ptr; 15228 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15229 15230 ASSERT(IAM_WRITER_ILL(ill)); 15231 15232 /* 15233 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15234 * both are null or non-null. However we can assert that only 15235 * after grabbing the ipsq_lock. So we don't make any assertion 15236 * here and in other places in the code. 15237 */ 15238 ipif = ipsq->ipsq_pending_ipif; 15239 /* 15240 * The current ioctl could have been aborted by the user and a new 15241 * ioctl to bring up another ill could have started. We could still 15242 * get a response from the driver later. 15243 */ 15244 if (ipif != NULL && ipif->ipif_ill != ill) 15245 ioctl_aborted = B_TRUE; 15246 15247 switch (dloa->dl_primitive) { 15248 case DL_ERROR_ACK: 15249 switch (dlea->dl_error_primitive) { 15250 case DL_UNBIND_REQ: 15251 case DL_ATTACH_REQ: 15252 case DL_DETACH_REQ: 15253 case DL_INFO_REQ: 15254 ill_dlpi_done(ill, dlea->dl_error_primitive); 15255 break; 15256 case DL_NOTIFY_REQ: 15257 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15258 log = B_FALSE; 15259 break; 15260 case DL_PHYS_ADDR_REQ: 15261 /* 15262 * For IPv6 only, there are two additional 15263 * phys_addr_req's sent to the driver to get the 15264 * IPv6 token and lla. This allows IP to acquire 15265 * the hardware address format for a given interface 15266 * without having built in knowledge of the hardware 15267 * address. ill_phys_addr_pend keeps track of the last 15268 * DL_PAR sent so we know which response we are 15269 * dealing with. ill_dlpi_done will update 15270 * ill_phys_addr_pend when it sends the next req. 15271 * We don't complete the IOCTL until all three DL_PARs 15272 * have been attempted, so set *_len to 0 and break. 15273 */ 15274 physaddr_req = ill->ill_phys_addr_pend; 15275 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15276 if (physaddr_req == DL_IPV6_TOKEN) { 15277 ill->ill_token_length = 0; 15278 log = B_FALSE; 15279 break; 15280 } else if (physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 15281 ill->ill_nd_lla_len = 0; 15282 log = B_FALSE; 15283 break; 15284 } 15285 /* 15286 * Something went wrong with the DL_PHYS_ADDR_REQ. 15287 * We presumably have an IOCTL hanging out waiting 15288 * for completion. Find it and complete the IOCTL 15289 * with the error noted. 15290 * However, ill_dl_phys was called on an ill queue 15291 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15292 * set. But the ioctl is known to be pending on ill_wq. 15293 */ 15294 if (!ill->ill_ifname_pending) 15295 break; 15296 ill->ill_ifname_pending = 0; 15297 if (!ioctl_aborted) 15298 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15299 if (mp1 != NULL) { 15300 /* 15301 * This operation (SIOCSLIFNAME) must have 15302 * happened on the ill. Assert there is no conn 15303 */ 15304 ASSERT(connp == NULL); 15305 q = ill->ill_wq; 15306 } 15307 break; 15308 case DL_BIND_REQ: 15309 ill_dlpi_done(ill, DL_BIND_REQ); 15310 if (ill->ill_ifname_pending) 15311 break; 15312 /* 15313 * Something went wrong with the bind. We presumably 15314 * have an IOCTL hanging out waiting for completion. 15315 * Find it, take down the interface that was coming 15316 * up, and complete the IOCTL with the error noted. 15317 */ 15318 if (!ioctl_aborted) 15319 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15320 if (mp1 != NULL) { 15321 /* 15322 * This operation (SIOCSLIFFLAGS) must have 15323 * happened from a conn. 15324 */ 15325 ASSERT(connp != NULL); 15326 q = CONNP_TO_WQ(connp); 15327 if (ill->ill_move_in_progress) { 15328 ILL_CLEAR_MOVE(ill); 15329 } 15330 (void) ipif_down(ipif, NULL, NULL); 15331 /* error is set below the switch */ 15332 } 15333 break; 15334 case DL_ENABMULTI_REQ: 15335 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 15336 15337 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15338 ill->ill_dlpi_multicast_state = IDS_FAILED; 15339 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15340 ipif_t *ipif; 15341 15342 log = B_FALSE; 15343 printf("ip: joining multicasts failed (%d)" 15344 " on %s - will use link layer " 15345 "broadcasts for multicast\n", 15346 dlea->dl_errno, ill->ill_name); 15347 15348 /* 15349 * Set up the multicast mapping alone. 15350 * writer, so ok to access ill->ill_ipif 15351 * without any lock. 15352 */ 15353 ipif = ill->ill_ipif; 15354 mutex_enter(&ill->ill_phyint->phyint_lock); 15355 ill->ill_phyint->phyint_flags |= 15356 PHYI_MULTI_BCAST; 15357 mutex_exit(&ill->ill_phyint->phyint_lock); 15358 15359 if (!ill->ill_isv6) { 15360 (void) ipif_arp_setup_multicast(ipif, 15361 NULL); 15362 } else { 15363 (void) ipif_ndp_setup_multicast(ipif, 15364 NULL); 15365 } 15366 } 15367 freemsg(mp); /* Don't want to pass this up */ 15368 return; 15369 case DL_CAPABILITY_REQ: 15370 case DL_CONTROL_REQ: 15371 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15372 "DL_CAPABILITY/CONTROL REQ\n")); 15373 ill_dlpi_done(ill, dlea->dl_error_primitive); 15374 ill->ill_dlpi_capab_state = IDS_FAILED; 15375 freemsg(mp); 15376 return; 15377 } 15378 /* 15379 * Note the error for IOCTL completion (mp1 is set when 15380 * ready to complete ioctl). If ill_ifname_pending_err is 15381 * set, an error occured during plumbing (ill_ifname_pending), 15382 * so we want to report that error. 15383 * 15384 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15385 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15386 * expected to get errack'd if the driver doesn't support 15387 * these flags (e.g. ethernet). log will be set to B_FALSE 15388 * if these error conditions are encountered. 15389 */ 15390 if (mp1 != NULL) { 15391 if (ill->ill_ifname_pending_err != 0) { 15392 err = ill->ill_ifname_pending_err; 15393 ill->ill_ifname_pending_err = 0; 15394 } else { 15395 err = dlea->dl_unix_errno ? 15396 dlea->dl_unix_errno : ENXIO; 15397 } 15398 /* 15399 * If we're plumbing an interface and an error hasn't already 15400 * been saved, set ill_ifname_pending_err to the error passed 15401 * up. Ignore the error if log is B_FALSE (see comment above). 15402 */ 15403 } else if (log && ill->ill_ifname_pending && 15404 ill->ill_ifname_pending_err == 0) { 15405 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15406 dlea->dl_unix_errno : ENXIO; 15407 } 15408 15409 if (log) 15410 ip_dlpi_error(ill, dlea->dl_error_primitive, 15411 dlea->dl_errno, dlea->dl_unix_errno); 15412 break; 15413 case DL_CAPABILITY_ACK: { 15414 boolean_t reneg_flag = B_FALSE; 15415 /* Call a routine to handle this one. */ 15416 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15417 /* 15418 * Check if the ACK is due to renegotiation case since we 15419 * will need to send a new CAPABILITY_REQ later. 15420 */ 15421 if (ill->ill_dlpi_capab_state == IDS_RENEG) { 15422 /* This is the ack for a renogiation case */ 15423 reneg_flag = B_TRUE; 15424 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 15425 } 15426 ill_capability_ack(ill, mp); 15427 if (reneg_flag) 15428 ill_capability_probe(ill); 15429 break; 15430 } 15431 case DL_CONTROL_ACK: 15432 /* We treat all of these as "fire and forget" */ 15433 ill_dlpi_done(ill, DL_CONTROL_REQ); 15434 break; 15435 case DL_INFO_ACK: 15436 /* Call a routine to handle this one. */ 15437 ill_dlpi_done(ill, DL_INFO_REQ); 15438 ip_ll_subnet_defaults(ill, mp); 15439 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15440 return; 15441 case DL_BIND_ACK: 15442 /* 15443 * We should have an IOCTL waiting on this unless 15444 * sent by ill_dl_phys, in which case just return 15445 */ 15446 ill_dlpi_done(ill, DL_BIND_REQ); 15447 if (ill->ill_ifname_pending) 15448 break; 15449 15450 if (!ioctl_aborted) 15451 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15452 if (mp1 == NULL) 15453 break; 15454 ASSERT(connp != NULL); 15455 q = CONNP_TO_WQ(connp); 15456 15457 /* 15458 * We are exclusive. So nothing can change even after 15459 * we get the pending mp. If need be we can put it back 15460 * and restart, as in calling ipif_arp_up() below. 15461 */ 15462 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15463 15464 mutex_enter(&ill->ill_lock); 15465 15466 ill->ill_dl_up = 1; 15467 15468 if ((info = ill->ill_nic_event_info) != NULL) { 15469 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15470 "attached for %s\n", info->hne_event, 15471 ill->ill_name)); 15472 if (info->hne_data != NULL) 15473 kmem_free(info->hne_data, info->hne_datalen); 15474 kmem_free(info, sizeof (hook_nic_event_t)); 15475 } 15476 15477 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15478 if (info != NULL) { 15479 info->hne_nic = ill->ill_phyint->phyint_ifindex; 15480 info->hne_lif = 0; 15481 info->hne_event = NE_UP; 15482 info->hne_data = NULL; 15483 info->hne_datalen = 0; 15484 info->hne_family = ill->ill_isv6 ? ipv6 : ipv4; 15485 } else 15486 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15487 "event information for %s (ENOMEM)\n", 15488 ill->ill_name)); 15489 15490 ill->ill_nic_event_info = info; 15491 15492 mutex_exit(&ill->ill_lock); 15493 15494 /* 15495 * Now bring up the resolver; when that is complete, we'll 15496 * create IREs. Note that we intentionally mirror what 15497 * ipif_up() would have done, because we got here by way of 15498 * ill_dl_up(), which stopped ipif_up()'s processing. 15499 */ 15500 if (ill->ill_isv6) { 15501 /* 15502 * v6 interfaces. 15503 * Unlike ARP which has to do another bind 15504 * and attach, once we get here we are 15505 * done with NDP. Except in the case of 15506 * ILLF_XRESOLV, in which case we send an 15507 * AR_INTERFACE_UP to the external resolver. 15508 * If all goes well, the ioctl will complete 15509 * in ip_rput(). If there's an error, we 15510 * complete it here. 15511 */ 15512 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 15513 B_FALSE); 15514 if (err == 0) { 15515 if (ill->ill_flags & ILLF_XRESOLV) { 15516 mutex_enter(&connp->conn_lock); 15517 mutex_enter(&ill->ill_lock); 15518 success = ipsq_pending_mp_add( 15519 connp, ipif, q, mp1, 0); 15520 mutex_exit(&ill->ill_lock); 15521 mutex_exit(&connp->conn_lock); 15522 if (success) { 15523 err = ipif_resolver_up(ipif, 15524 Res_act_initial); 15525 if (err == EINPROGRESS) { 15526 freemsg(mp); 15527 return; 15528 } 15529 ASSERT(err != 0); 15530 mp1 = ipsq_pending_mp_get(ipsq, 15531 &connp); 15532 ASSERT(mp1 != NULL); 15533 } else { 15534 /* conn has started closing */ 15535 err = EINTR; 15536 } 15537 } else { /* Non XRESOLV interface */ 15538 (void) ipif_resolver_up(ipif, 15539 Res_act_initial); 15540 err = ipif_up_done_v6(ipif); 15541 } 15542 } 15543 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15544 /* 15545 * ARP and other v4 external resolvers. 15546 * Leave the pending mblk intact so that 15547 * the ioctl completes in ip_rput(). 15548 */ 15549 mutex_enter(&connp->conn_lock); 15550 mutex_enter(&ill->ill_lock); 15551 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15552 mutex_exit(&ill->ill_lock); 15553 mutex_exit(&connp->conn_lock); 15554 if (success) { 15555 err = ipif_resolver_up(ipif, Res_act_initial); 15556 if (err == EINPROGRESS) { 15557 freemsg(mp); 15558 return; 15559 } 15560 ASSERT(err != 0); 15561 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15562 } else { 15563 /* The conn has started closing */ 15564 err = EINTR; 15565 } 15566 } else { 15567 /* 15568 * This one is complete. Reply to pending ioctl. 15569 */ 15570 (void) ipif_resolver_up(ipif, Res_act_initial); 15571 err = ipif_up_done(ipif); 15572 } 15573 15574 if ((err == 0) && (ill->ill_up_ipifs)) { 15575 err = ill_up_ipifs(ill, q, mp1); 15576 if (err == EINPROGRESS) { 15577 freemsg(mp); 15578 return; 15579 } 15580 } 15581 15582 if (ill->ill_up_ipifs) { 15583 ill_group_cleanup(ill); 15584 } 15585 15586 break; 15587 case DL_NOTIFY_IND: { 15588 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15589 ire_t *ire; 15590 boolean_t need_ire_walk_v4 = B_FALSE; 15591 boolean_t need_ire_walk_v6 = B_FALSE; 15592 15593 /* 15594 * Change the address everywhere we need to. 15595 * What we're getting here is a link-level addr or phys addr. 15596 * The new addr is at notify + notify->dl_addr_offset 15597 * The address length is notify->dl_addr_length; 15598 */ 15599 switch (notify->dl_notification) { 15600 case DL_NOTE_PHYS_ADDR: 15601 mp_hw = copyb(mp); 15602 if (mp_hw == NULL) { 15603 err = ENOMEM; 15604 break; 15605 } 15606 dlp = (union DL_primitives *)mp_hw->b_rptr; 15607 /* 15608 * We currently don't support changing 15609 * the token via DL_NOTIFY_IND. 15610 * When we do support it, we have to consider 15611 * what the implications are with respect to 15612 * the token and the link local address. 15613 */ 15614 mutex_enter(&ill->ill_lock); 15615 if (dlp->notify_ind.dl_data == 15616 DL_IPV6_LINK_LAYER_ADDR) { 15617 if (ill->ill_nd_lla_mp != NULL) 15618 freemsg(ill->ill_nd_lla_mp); 15619 ill->ill_nd_lla_mp = mp_hw; 15620 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 15621 dlp->notify_ind.dl_addr_offset; 15622 ill->ill_nd_lla_len = 15623 dlp->notify_ind.dl_addr_length - 15624 ABS(ill->ill_sap_length); 15625 mutex_exit(&ill->ill_lock); 15626 break; 15627 } else if (dlp->notify_ind.dl_data == 15628 DL_CURR_PHYS_ADDR) { 15629 if (ill->ill_phys_addr_mp != NULL) 15630 freemsg(ill->ill_phys_addr_mp); 15631 ill->ill_phys_addr_mp = mp_hw; 15632 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 15633 dlp->notify_ind.dl_addr_offset; 15634 ill->ill_phys_addr_length = 15635 dlp->notify_ind.dl_addr_length - 15636 ABS(ill->ill_sap_length); 15637 if (ill->ill_isv6 && 15638 !(ill->ill_flags & ILLF_XRESOLV)) { 15639 if (ill->ill_nd_lla_mp != NULL) 15640 freemsg(ill->ill_nd_lla_mp); 15641 ill->ill_nd_lla_mp = copyb(mp_hw); 15642 ill->ill_nd_lla = (uchar_t *) 15643 ill->ill_nd_lla_mp->b_rptr + 15644 dlp->notify_ind.dl_addr_offset; 15645 ill->ill_nd_lla_len = 15646 ill->ill_phys_addr_length; 15647 } 15648 } 15649 mutex_exit(&ill->ill_lock); 15650 /* 15651 * Send out gratuitous arp request for our new 15652 * hardware address. 15653 */ 15654 for (ipif = ill->ill_ipif; ipif != NULL; 15655 ipif = ipif->ipif_next) { 15656 if (!(ipif->ipif_flags & IPIF_UP)) 15657 continue; 15658 if (ill->ill_isv6) { 15659 ipif_ndp_down(ipif); 15660 /* 15661 * Set B_TRUE to enable 15662 * ipif_ndp_up() to send out 15663 * unsolicited advertisements. 15664 */ 15665 err = ipif_ndp_up(ipif, 15666 &ipif->ipif_v6lcl_addr, 15667 B_TRUE); 15668 if (err) { 15669 ip1dbg(( 15670 "ip_rput_dlpi_writer: " 15671 "Failed to update ndp " 15672 "err %d\n", err)); 15673 } 15674 } else { 15675 /* 15676 * IPv4 ARP case 15677 * 15678 * Set Res_act_move, as we only want 15679 * ipif_resolver_up to send an 15680 * AR_ENTRY_ADD request up to 15681 * ARP. 15682 */ 15683 err = ipif_resolver_up(ipif, 15684 Res_act_move); 15685 if (err) { 15686 ip1dbg(( 15687 "ip_rput_dlpi_writer: " 15688 "Failed to update arp " 15689 "err %d\n", err)); 15690 } 15691 } 15692 } 15693 /* 15694 * Allow "fall through" to the DL_NOTE_FASTPATH_FLUSH 15695 * case so that all old fastpath information can be 15696 * purged from IRE caches. 15697 */ 15698 /* FALLTHRU */ 15699 case DL_NOTE_FASTPATH_FLUSH: 15700 /* 15701 * Any fastpath probe sent henceforth will get the 15702 * new fp mp. So we first delete any ires that are 15703 * waiting for the fastpath. Then walk all ires and 15704 * delete the ire or delete the fp mp. In the case of 15705 * IRE_MIPRTUN and IRE_BROADCAST it is difficult to 15706 * recreate the ire's without going through a complex 15707 * ipif up/down dance. So we don't delete the ire 15708 * itself, but just the nce_fp_mp for these 2 ire's 15709 * In the case of the other ire's we delete the ire's 15710 * themselves. Access to nce_fp_mp is completely 15711 * protected by ire_lock for IRE_MIPRTUN and 15712 * IRE_BROADCAST. Deleting the ire is preferable in the 15713 * other cases for performance. 15714 */ 15715 if (ill->ill_isv6) { 15716 nce_fastpath_list_dispatch(ill, NULL, NULL); 15717 ndp_walk(ill, (pfi_t)ndp_fastpath_flush, 15718 NULL); 15719 } else { 15720 ire_fastpath_list_dispatch(ill, NULL, NULL); 15721 ire_walk_ill_v4(MATCH_IRE_WQ | MATCH_IRE_TYPE, 15722 IRE_CACHE | IRE_BROADCAST, 15723 ire_fastpath_flush, NULL, ill); 15724 mutex_enter(&ire_mrtun_lock); 15725 if (ire_mrtun_count != 0) { 15726 mutex_exit(&ire_mrtun_lock); 15727 ire_walk_ill_mrtun(MATCH_IRE_WQ, 15728 IRE_MIPRTUN, ire_fastpath_flush, 15729 NULL, ill); 15730 } else { 15731 mutex_exit(&ire_mrtun_lock); 15732 } 15733 } 15734 break; 15735 case DL_NOTE_SDU_SIZE: 15736 /* 15737 * Change the MTU size of the interface, of all 15738 * attached ipif's, and of all relevant ire's. The 15739 * new value's a uint32_t at notify->dl_data. 15740 * Mtu change Vs. new ire creation - protocol below. 15741 * 15742 * a Mark the ipif as IPIF_CHANGING. 15743 * b Set the new mtu in the ipif. 15744 * c Change the ire_max_frag on all affected ires 15745 * d Unmark the IPIF_CHANGING 15746 * 15747 * To see how the protocol works, assume an interface 15748 * route is also being added simultaneously by 15749 * ip_rt_add and let 'ipif' be the ipif referenced by 15750 * the ire. If the ire is created before step a, 15751 * it will be cleaned up by step c. If the ire is 15752 * created after step d, it will see the new value of 15753 * ipif_mtu. Any attempt to create the ire between 15754 * steps a to d will fail because of the IPIF_CHANGING 15755 * flag. Note that ire_create() is passed a pointer to 15756 * the ipif_mtu, and not the value. During ire_add 15757 * under the bucket lock, the ire_max_frag of the 15758 * new ire being created is set from the ipif/ire from 15759 * which it is being derived. 15760 */ 15761 mutex_enter(&ill->ill_lock); 15762 ill->ill_max_frag = (uint_t)notify->dl_data; 15763 15764 /* 15765 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15766 * leave it alone 15767 */ 15768 if (ill->ill_mtu_userspecified) { 15769 mutex_exit(&ill->ill_lock); 15770 break; 15771 } 15772 ill->ill_max_mtu = ill->ill_max_frag; 15773 if (ill->ill_isv6) { 15774 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15775 ill->ill_max_mtu = IPV6_MIN_MTU; 15776 } else { 15777 if (ill->ill_max_mtu < IP_MIN_MTU) 15778 ill->ill_max_mtu = IP_MIN_MTU; 15779 } 15780 for (ipif = ill->ill_ipif; ipif != NULL; 15781 ipif = ipif->ipif_next) { 15782 /* 15783 * Don't override the mtu if the user 15784 * has explicitly set it. 15785 */ 15786 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15787 continue; 15788 ipif->ipif_mtu = (uint_t)notify->dl_data; 15789 if (ipif->ipif_isv6) 15790 ire = ipif_to_ire_v6(ipif); 15791 else 15792 ire = ipif_to_ire(ipif); 15793 if (ire != NULL) { 15794 ire->ire_max_frag = ipif->ipif_mtu; 15795 ire_refrele(ire); 15796 } 15797 if (ipif->ipif_flags & IPIF_UP) { 15798 if (ill->ill_isv6) 15799 need_ire_walk_v6 = B_TRUE; 15800 else 15801 need_ire_walk_v4 = B_TRUE; 15802 } 15803 } 15804 mutex_exit(&ill->ill_lock); 15805 if (need_ire_walk_v4) 15806 ire_walk_v4(ill_mtu_change, (char *)ill, 15807 ALL_ZONES); 15808 if (need_ire_walk_v6) 15809 ire_walk_v6(ill_mtu_change, (char *)ill, 15810 ALL_ZONES); 15811 break; 15812 case DL_NOTE_LINK_UP: 15813 case DL_NOTE_LINK_DOWN: { 15814 /* 15815 * We are writer. ill / phyint / ipsq assocs stable. 15816 * The RUNNING flag reflects the state of the link. 15817 */ 15818 phyint_t *phyint = ill->ill_phyint; 15819 uint64_t new_phyint_flags; 15820 boolean_t changed = B_FALSE; 15821 boolean_t went_up; 15822 15823 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 15824 mutex_enter(&phyint->phyint_lock); 15825 new_phyint_flags = went_up ? 15826 phyint->phyint_flags | PHYI_RUNNING : 15827 phyint->phyint_flags & ~PHYI_RUNNING; 15828 if (new_phyint_flags != phyint->phyint_flags) { 15829 phyint->phyint_flags = new_phyint_flags; 15830 changed = B_TRUE; 15831 } 15832 mutex_exit(&phyint->phyint_lock); 15833 /* 15834 * ill_restart_dad handles the DAD restart and routing 15835 * socket notification logic. 15836 */ 15837 if (changed) { 15838 ill_restart_dad(phyint->phyint_illv4, went_up); 15839 ill_restart_dad(phyint->phyint_illv6, went_up); 15840 } 15841 break; 15842 } 15843 case DL_NOTE_PROMISC_ON_PHYS: 15844 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15845 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 15846 mutex_enter(&ill->ill_lock); 15847 ill->ill_promisc_on_phys = B_TRUE; 15848 mutex_exit(&ill->ill_lock); 15849 break; 15850 case DL_NOTE_PROMISC_OFF_PHYS: 15851 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15852 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 15853 mutex_enter(&ill->ill_lock); 15854 ill->ill_promisc_on_phys = B_FALSE; 15855 mutex_exit(&ill->ill_lock); 15856 break; 15857 case DL_NOTE_CAPAB_RENEG: 15858 /* 15859 * Something changed on the driver side. 15860 * It wants us to renegotiate the capabilities 15861 * on this ill. The most likely cause is the 15862 * aggregation interface under us where a 15863 * port got added or went away. 15864 * 15865 * We reset the capabilities and set the 15866 * state to IDS_RENG so that when the ack 15867 * comes back, we can start the 15868 * renegotiation process. 15869 */ 15870 ill_capability_reset(ill); 15871 ill->ill_dlpi_capab_state = IDS_RENEG; 15872 break; 15873 default: 15874 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 15875 "type 0x%x for DL_NOTIFY_IND\n", 15876 notify->dl_notification)); 15877 break; 15878 } 15879 15880 /* 15881 * As this is an asynchronous operation, we 15882 * should not call ill_dlpi_done 15883 */ 15884 break; 15885 } 15886 case DL_NOTIFY_ACK: { 15887 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 15888 15889 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 15890 ill->ill_note_link = 1; 15891 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15892 break; 15893 } 15894 case DL_PHYS_ADDR_ACK: { 15895 /* 15896 * We should have an IOCTL waiting on this when request 15897 * sent by ill_dl_phys. 15898 * However, ill_dl_phys was called on an ill queue (from 15899 * SIOCSLIFNAME), thus conn_pending_ill is not set. But the 15900 * ioctl is known to be pending on ill_wq. 15901 * There are two additional phys_addr_req's sent to the 15902 * driver to get the token and lla. ill_phys_addr_pend 15903 * keeps track of the last one sent so we know which 15904 * response we are dealing with. ill_dlpi_done will 15905 * update ill_phys_addr_pend when it sends the next req. 15906 * We don't complete the IOCTL until all three DL_PARs 15907 * have been attempted. 15908 * 15909 * We don't need any lock to update ill_nd_lla* fields, 15910 * since the ill is not yet up, We grab the lock just 15911 * for uniformity with other code that accesses ill_nd_lla. 15912 */ 15913 physaddr_req = ill->ill_phys_addr_pend; 15914 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15915 if (physaddr_req == DL_IPV6_TOKEN || 15916 physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 15917 if (physaddr_req == DL_IPV6_TOKEN) { 15918 /* 15919 * bcopy to low-order bits of ill_token 15920 * 15921 * XXX Temporary hack - currently, 15922 * all known tokens are 64 bits, 15923 * so I'll cheat for the moment. 15924 */ 15925 dlp = (union DL_primitives *)mp->b_rptr; 15926 15927 mutex_enter(&ill->ill_lock); 15928 bcopy((uchar_t *)(mp->b_rptr + 15929 dlp->physaddr_ack.dl_addr_offset), 15930 (void *)&ill->ill_token.s6_addr32[2], 15931 dlp->physaddr_ack.dl_addr_length); 15932 ill->ill_token_length = 15933 dlp->physaddr_ack.dl_addr_length; 15934 mutex_exit(&ill->ill_lock); 15935 } else { 15936 ASSERT(ill->ill_nd_lla_mp == NULL); 15937 mp_hw = copyb(mp); 15938 if (mp_hw == NULL) { 15939 err = ENOMEM; 15940 break; 15941 } 15942 dlp = (union DL_primitives *)mp_hw->b_rptr; 15943 mutex_enter(&ill->ill_lock); 15944 ill->ill_nd_lla_mp = mp_hw; 15945 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 15946 dlp->physaddr_ack.dl_addr_offset; 15947 ill->ill_nd_lla_len = 15948 dlp->physaddr_ack.dl_addr_length; 15949 mutex_exit(&ill->ill_lock); 15950 } 15951 break; 15952 } 15953 ASSERT(physaddr_req == DL_CURR_PHYS_ADDR); 15954 ASSERT(ill->ill_phys_addr_mp == NULL); 15955 if (!ill->ill_ifname_pending) 15956 break; 15957 ill->ill_ifname_pending = 0; 15958 if (!ioctl_aborted) 15959 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15960 if (mp1 != NULL) { 15961 ASSERT(connp == NULL); 15962 q = ill->ill_wq; 15963 } 15964 /* 15965 * If any error acks received during the plumbing sequence, 15966 * ill_ifname_pending_err will be set. Break out and send up 15967 * the error to the pending ioctl. 15968 */ 15969 if (ill->ill_ifname_pending_err != 0) { 15970 err = ill->ill_ifname_pending_err; 15971 ill->ill_ifname_pending_err = 0; 15972 break; 15973 } 15974 /* 15975 * Get the interface token. If the zeroth interface 15976 * address is zero then set the address to the link local 15977 * address 15978 */ 15979 mp_hw = copyb(mp); 15980 if (mp_hw == NULL) { 15981 err = ENOMEM; 15982 break; 15983 } 15984 dlp = (union DL_primitives *)mp_hw->b_rptr; 15985 ill->ill_phys_addr_mp = mp_hw; 15986 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 15987 dlp->physaddr_ack.dl_addr_offset; 15988 if (dlp->physaddr_ack.dl_addr_length == 0 || 15989 ill->ill_phys_addr_length == 0 || 15990 ill->ill_phys_addr_length == IP_ADDR_LEN) { 15991 /* 15992 * Compatibility: atun driver returns a length of 0. 15993 * ipdptp has an ill_phys_addr_length of zero(from 15994 * DL_BIND_ACK) but a non-zero length here. 15995 * ipd has an ill_phys_addr_length of 4(from 15996 * DL_BIND_ACK) but a non-zero length here. 15997 */ 15998 ill->ill_phys_addr = NULL; 15999 } else if (dlp->physaddr_ack.dl_addr_length != 16000 ill->ill_phys_addr_length) { 16001 ip0dbg(("DL_PHYS_ADDR_ACK: " 16002 "Address length mismatch %d %d\n", 16003 dlp->physaddr_ack.dl_addr_length, 16004 ill->ill_phys_addr_length)); 16005 err = EINVAL; 16006 break; 16007 } 16008 mutex_enter(&ill->ill_lock); 16009 if (ill->ill_nd_lla_mp == NULL) { 16010 ill->ill_nd_lla_mp = copyb(mp_hw); 16011 if (ill->ill_nd_lla_mp == NULL) { 16012 err = ENOMEM; 16013 mutex_exit(&ill->ill_lock); 16014 break; 16015 } 16016 ill->ill_nd_lla = 16017 (uchar_t *)ill->ill_nd_lla_mp->b_rptr + 16018 dlp->physaddr_ack.dl_addr_offset; 16019 ill->ill_nd_lla_len = ill->ill_phys_addr_length; 16020 } 16021 mutex_exit(&ill->ill_lock); 16022 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16023 (void) ill_setdefaulttoken(ill); 16024 16025 /* 16026 * If the ill zero interface has a zero address assign 16027 * it the proper link local address. 16028 */ 16029 ASSERT(ill->ill_ipif->ipif_id == 0); 16030 if (ipif != NULL && 16031 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 16032 (void) ipif_setlinklocal(ipif); 16033 break; 16034 } 16035 case DL_OK_ACK: 16036 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16037 dlpi_prim_str((int)dloa->dl_correct_primitive), 16038 dloa->dl_correct_primitive)); 16039 switch (dloa->dl_correct_primitive) { 16040 case DL_UNBIND_REQ: 16041 case DL_ATTACH_REQ: 16042 case DL_DETACH_REQ: 16043 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16044 break; 16045 } 16046 break; 16047 default: 16048 break; 16049 } 16050 16051 freemsg(mp); 16052 if (mp1) { 16053 struct iocblk *iocp; 16054 int mode; 16055 16056 /* 16057 * Complete the waiting IOCTL. For SIOCLIFADDIF or 16058 * SIOCSLIFNAME do a copyout. 16059 */ 16060 iocp = (struct iocblk *)mp1->b_rptr; 16061 16062 if (iocp->ioc_cmd == SIOCLIFADDIF || 16063 iocp->ioc_cmd == SIOCSLIFNAME) 16064 mode = COPYOUT; 16065 else 16066 mode = NO_COPYOUT; 16067 /* 16068 * The ioctl must complete now without EINPROGRESS 16069 * since ipsq_pending_mp_get has removed the ioctl mblk 16070 * from ipsq_pending_mp. Otherwise the ioctl will be 16071 * stuck for ever in the ipsq. 16072 */ 16073 ASSERT(err != EINPROGRESS); 16074 ip_ioctl_finish(q, mp1, err, mode, ipif, ipsq); 16075 16076 } 16077 } 16078 16079 /* 16080 * ip_rput_other is called by ip_rput to handle messages modifying the global 16081 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16082 */ 16083 /* ARGSUSED */ 16084 void 16085 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16086 { 16087 ill_t *ill; 16088 struct iocblk *iocp; 16089 mblk_t *mp1; 16090 conn_t *connp = NULL; 16091 16092 ip1dbg(("ip_rput_other ")); 16093 ill = (ill_t *)q->q_ptr; 16094 /* 16095 * This routine is not a writer in the case of SIOCGTUNPARAM 16096 * in which case ipsq is NULL. 16097 */ 16098 if (ipsq != NULL) { 16099 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16100 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16101 } 16102 16103 switch (mp->b_datap->db_type) { 16104 case M_ERROR: 16105 case M_HANGUP: 16106 /* 16107 * The device has a problem. We force the ILL down. It can 16108 * be brought up again manually using SIOCSIFFLAGS (via 16109 * ifconfig or equivalent). 16110 */ 16111 ASSERT(ipsq != NULL); 16112 if (mp->b_rptr < mp->b_wptr) 16113 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16114 if (ill->ill_error == 0) 16115 ill->ill_error = ENXIO; 16116 if (!ill_down_start(q, mp)) 16117 return; 16118 ipif_all_down_tail(ipsq, q, mp, NULL); 16119 break; 16120 case M_IOCACK: 16121 iocp = (struct iocblk *)mp->b_rptr; 16122 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16123 switch (iocp->ioc_cmd) { 16124 case SIOCSTUNPARAM: 16125 case OSIOCSTUNPARAM: 16126 ASSERT(ipsq != NULL); 16127 /* 16128 * Finish socket ioctl passed through to tun. 16129 * We should have an IOCTL waiting on this. 16130 */ 16131 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16132 if (ill->ill_isv6) { 16133 struct iftun_req *ta; 16134 16135 /* 16136 * if a source or destination is 16137 * being set, try and set the link 16138 * local address for the tunnel 16139 */ 16140 ta = (struct iftun_req *)mp->b_cont-> 16141 b_cont->b_rptr; 16142 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16143 ipif_set_tun_llink(ill, ta); 16144 } 16145 16146 } 16147 if (mp1 != NULL) { 16148 /* 16149 * Now copy back the b_next/b_prev used by 16150 * mi code for the mi_copy* functions. 16151 * See ip_sioctl_tunparam() for the reason. 16152 * Also protect against missing b_cont. 16153 */ 16154 if (mp->b_cont != NULL) { 16155 mp->b_cont->b_next = 16156 mp1->b_cont->b_next; 16157 mp->b_cont->b_prev = 16158 mp1->b_cont->b_prev; 16159 } 16160 inet_freemsg(mp1); 16161 ASSERT(ipsq->ipsq_current_ipif != NULL); 16162 ASSERT(connp != NULL); 16163 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16164 iocp->ioc_error, NO_COPYOUT, 16165 ipsq->ipsq_current_ipif, ipsq); 16166 } else { 16167 ASSERT(connp == NULL); 16168 putnext(q, mp); 16169 } 16170 break; 16171 case SIOCGTUNPARAM: 16172 case OSIOCGTUNPARAM: 16173 /* 16174 * This is really M_IOCDATA from the tunnel driver. 16175 * convert back and complete the ioctl. 16176 * We should have an IOCTL waiting on this. 16177 */ 16178 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16179 if (mp1) { 16180 /* 16181 * Now copy back the b_next/b_prev used by 16182 * mi code for the mi_copy* functions. 16183 * See ip_sioctl_tunparam() for the reason. 16184 * Also protect against missing b_cont. 16185 */ 16186 if (mp->b_cont != NULL) { 16187 mp->b_cont->b_next = 16188 mp1->b_cont->b_next; 16189 mp->b_cont->b_prev = 16190 mp1->b_cont->b_prev; 16191 } 16192 inet_freemsg(mp1); 16193 if (iocp->ioc_error == 0) 16194 mp->b_datap->db_type = M_IOCDATA; 16195 ASSERT(connp != NULL); 16196 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16197 iocp->ioc_error, COPYOUT, NULL, NULL); 16198 } else { 16199 ASSERT(connp == NULL); 16200 putnext(q, mp); 16201 } 16202 break; 16203 default: 16204 break; 16205 } 16206 break; 16207 case M_IOCNAK: 16208 iocp = (struct iocblk *)mp->b_rptr; 16209 16210 switch (iocp->ioc_cmd) { 16211 int mode; 16212 ipif_t *ipif; 16213 16214 case DL_IOC_HDR_INFO: 16215 /* 16216 * If this was the first attempt turn of the 16217 * fastpath probing. 16218 */ 16219 mutex_enter(&ill->ill_lock); 16220 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16221 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16222 mutex_exit(&ill->ill_lock); 16223 ill_fastpath_nack(ill); 16224 ip1dbg(("ip_rput: DLPI fastpath off on " 16225 "interface %s\n", 16226 ill->ill_name)); 16227 } else { 16228 mutex_exit(&ill->ill_lock); 16229 } 16230 freemsg(mp); 16231 break; 16232 case SIOCSTUNPARAM: 16233 case OSIOCSTUNPARAM: 16234 ASSERT(ipsq != NULL); 16235 /* 16236 * Finish socket ioctl passed through to tun 16237 * We should have an IOCTL waiting on this. 16238 */ 16239 /* FALLTHRU */ 16240 case SIOCGTUNPARAM: 16241 case OSIOCGTUNPARAM: 16242 /* 16243 * This is really M_IOCDATA from the tunnel driver. 16244 * convert back and complete the ioctl. 16245 * We should have an IOCTL waiting on this. 16246 */ 16247 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16248 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16249 mp1 = ill_pending_mp_get(ill, &connp, 16250 iocp->ioc_id); 16251 mode = COPYOUT; 16252 ipsq = NULL; 16253 ipif = NULL; 16254 } else { 16255 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16256 mode = NO_COPYOUT; 16257 ASSERT(ipsq->ipsq_current_ipif != NULL); 16258 ipif = ipsq->ipsq_current_ipif; 16259 } 16260 if (mp1 != NULL) { 16261 /* 16262 * Now copy back the b_next/b_prev used by 16263 * mi code for the mi_copy* functions. 16264 * See ip_sioctl_tunparam() for the reason. 16265 * Also protect against missing b_cont. 16266 */ 16267 if (mp->b_cont != NULL) { 16268 mp->b_cont->b_next = 16269 mp1->b_cont->b_next; 16270 mp->b_cont->b_prev = 16271 mp1->b_cont->b_prev; 16272 } 16273 inet_freemsg(mp1); 16274 if (iocp->ioc_error == 0) 16275 iocp->ioc_error = EINVAL; 16276 ASSERT(connp != NULL); 16277 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16278 iocp->ioc_error, mode, ipif, ipsq); 16279 } else { 16280 ASSERT(connp == NULL); 16281 putnext(q, mp); 16282 } 16283 break; 16284 default: 16285 break; 16286 } 16287 default: 16288 break; 16289 } 16290 } 16291 16292 /* 16293 * NOTE : This function does not ire_refrele the ire argument passed in. 16294 * 16295 * IPQoS notes 16296 * IP policy is invoked twice for a forwarded packet, once on the read side 16297 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16298 * enabled. An additional parameter, in_ill, has been added for this purpose. 16299 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16300 * because ip_mroute drops this information. 16301 * 16302 */ 16303 void 16304 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16305 { 16306 uint32_t pkt_len; 16307 queue_t *q; 16308 uint32_t sum; 16309 #define rptr ((uchar_t *)ipha) 16310 uint32_t max_frag; 16311 uint32_t ill_index; 16312 ill_t *out_ill; 16313 16314 /* Get the ill_index of the incoming ILL */ 16315 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16316 16317 /* Initiate Read side IPPF processing */ 16318 if (IPP_ENABLED(IPP_FWD_IN)) { 16319 ip_process(IPP_FWD_IN, &mp, ill_index); 16320 if (mp == NULL) { 16321 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16322 "during IPPF processing\n")); 16323 return; 16324 } 16325 } 16326 16327 pkt_len = ntohs(ipha->ipha_length); 16328 16329 /* Adjust the checksum to reflect the ttl decrement. */ 16330 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16331 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16332 16333 if (ipha->ipha_ttl-- <= 1) { 16334 if (ip_csum_hdr(ipha)) { 16335 BUMP_MIB(&ip_mib, ipInCksumErrs); 16336 goto drop_pkt; 16337 } 16338 /* 16339 * Note: ire_stq this will be NULL for multicast 16340 * datagrams using the long path through arp (the IRE 16341 * is not an IRE_CACHE). This should not cause 16342 * problems since we don't generate ICMP errors for 16343 * multicast packets. 16344 */ 16345 q = ire->ire_stq; 16346 if (q != NULL) { 16347 /* Sent by forwarding path, and router is global zone */ 16348 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16349 GLOBAL_ZONEID); 16350 } else 16351 freemsg(mp); 16352 return; 16353 } 16354 16355 /* 16356 * Don't forward if the interface is down 16357 */ 16358 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16359 BUMP_MIB(&ip_mib, ipInDiscards); 16360 ip2dbg(("ip_rput_forward:interface is down\n")); 16361 goto drop_pkt; 16362 } 16363 16364 /* Get the ill_index of the outgoing ILL */ 16365 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 16366 16367 out_ill = ire->ire_ipif->ipif_ill; 16368 16369 DTRACE_PROBE4(ip4__forwarding__start, 16370 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16371 16372 FW_HOOKS(ip4_forwarding_event, ipv4firewall_forwarding, 16373 in_ill, out_ill, ipha, mp, mp); 16374 16375 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16376 16377 if (mp == NULL) 16378 return; 16379 pkt_len = ntohs(ipha->ipha_length); 16380 16381 if (is_system_labeled()) { 16382 mblk_t *mp1; 16383 16384 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16385 BUMP_MIB(&ip_mib, ipForwProhibits); 16386 goto drop_pkt; 16387 } 16388 /* Size may have changed */ 16389 mp = mp1; 16390 ipha = (ipha_t *)mp->b_rptr; 16391 pkt_len = ntohs(ipha->ipha_length); 16392 } 16393 16394 /* Check if there are options to update */ 16395 if (!IS_SIMPLE_IPH(ipha)) { 16396 if (ip_csum_hdr(ipha)) { 16397 BUMP_MIB(&ip_mib, ipInCksumErrs); 16398 goto drop_pkt; 16399 } 16400 if (ip_rput_forward_options(mp, ipha, ire)) { 16401 return; 16402 } 16403 16404 ipha->ipha_hdr_checksum = 0; 16405 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16406 } 16407 max_frag = ire->ire_max_frag; 16408 if (pkt_len > max_frag) { 16409 /* 16410 * It needs fragging on its way out. We haven't 16411 * verified the header checksum yet. Since we 16412 * are going to put a surely good checksum in the 16413 * outgoing header, we have to make sure that it 16414 * was good coming in. 16415 */ 16416 if (ip_csum_hdr(ipha)) { 16417 BUMP_MIB(&ip_mib, ipInCksumErrs); 16418 goto drop_pkt; 16419 } 16420 /* Initiate Write side IPPF processing */ 16421 if (IPP_ENABLED(IPP_FWD_OUT)) { 16422 ip_process(IPP_FWD_OUT, &mp, ill_index); 16423 if (mp == NULL) { 16424 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16425 " during IPPF processing\n")); 16426 return; 16427 } 16428 } 16429 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID); 16430 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16431 return; 16432 } 16433 16434 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16435 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16436 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 16437 NULL, out_ill, ipha, mp, mp); 16438 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16439 if (mp == NULL) 16440 return; 16441 16442 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16443 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16444 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16445 /* ip_xmit_v4 always consumes the packet */ 16446 return; 16447 16448 drop_pkt:; 16449 ip1dbg(("ip_rput_forward: drop pkt\n")); 16450 freemsg(mp); 16451 #undef rptr 16452 } 16453 16454 void 16455 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16456 { 16457 ire_t *ire; 16458 16459 ASSERT(!ipif->ipif_isv6); 16460 /* 16461 * Find an IRE which matches the destination and the outgoing 16462 * queue in the cache table. All we need is an IRE_CACHE which 16463 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16464 * then it is enough to have some IRE_CACHE in the group. 16465 */ 16466 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16467 dst = ipif->ipif_pp_dst_addr; 16468 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16469 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR); 16470 if (ire == NULL) { 16471 /* 16472 * Mark this packet to make it be delivered to 16473 * ip_rput_forward after the new ire has been 16474 * created. 16475 */ 16476 mp->b_prev = NULL; 16477 mp->b_next = mp; 16478 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16479 NULL, 0, GLOBAL_ZONEID); 16480 } else { 16481 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16482 IRE_REFRELE(ire); 16483 } 16484 } 16485 16486 /* Update any source route, record route or timestamp options */ 16487 static int 16488 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire) 16489 { 16490 ipoptp_t opts; 16491 uchar_t *opt; 16492 uint8_t optval; 16493 uint8_t optlen; 16494 ipaddr_t dst; 16495 uint32_t ts; 16496 ire_t *dst_ire = NULL; 16497 ire_t *tmp_ire = NULL; 16498 timestruc_t now; 16499 16500 ip2dbg(("ip_rput_forward_options\n")); 16501 dst = ipha->ipha_dst; 16502 for (optval = ipoptp_first(&opts, ipha); 16503 optval != IPOPT_EOL; 16504 optval = ipoptp_next(&opts)) { 16505 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16506 opt = opts.ipoptp_cur; 16507 optlen = opts.ipoptp_len; 16508 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16509 optval, opts.ipoptp_len)); 16510 switch (optval) { 16511 uint32_t off; 16512 case IPOPT_SSRR: 16513 case IPOPT_LSRR: 16514 /* Check if adminstratively disabled */ 16515 if (!ip_forward_src_routed) { 16516 BUMP_MIB(&ip_mib, ipForwProhibits); 16517 if (ire->ire_stq != NULL) { 16518 /* 16519 * Sent by forwarding path, and router 16520 * is global zone 16521 */ 16522 icmp_unreachable(ire->ire_stq, mp, 16523 ICMP_SOURCE_ROUTE_FAILED, 16524 GLOBAL_ZONEID); 16525 } else { 16526 ip0dbg(("ip_rput_forward_options: " 16527 "unable to send unreach\n")); 16528 freemsg(mp); 16529 } 16530 return (-1); 16531 } 16532 16533 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16534 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 16535 if (dst_ire == NULL) { 16536 /* 16537 * Must be partial since ip_rput_options 16538 * checked for strict. 16539 */ 16540 break; 16541 } 16542 off = opt[IPOPT_OFFSET]; 16543 off--; 16544 redo_srr: 16545 if (optlen < IP_ADDR_LEN || 16546 off > optlen - IP_ADDR_LEN) { 16547 /* End of source route */ 16548 ip1dbg(( 16549 "ip_rput_forward_options: end of SR\n")); 16550 ire_refrele(dst_ire); 16551 break; 16552 } 16553 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16554 bcopy(&ire->ire_src_addr, (char *)opt + off, 16555 IP_ADDR_LEN); 16556 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16557 ntohl(dst))); 16558 16559 /* 16560 * Check if our address is present more than 16561 * once as consecutive hops in source route. 16562 */ 16563 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16564 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 16565 if (tmp_ire != NULL) { 16566 ire_refrele(tmp_ire); 16567 off += IP_ADDR_LEN; 16568 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16569 goto redo_srr; 16570 } 16571 ipha->ipha_dst = dst; 16572 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16573 ire_refrele(dst_ire); 16574 break; 16575 case IPOPT_RR: 16576 off = opt[IPOPT_OFFSET]; 16577 off--; 16578 if (optlen < IP_ADDR_LEN || 16579 off > optlen - IP_ADDR_LEN) { 16580 /* No more room - ignore */ 16581 ip1dbg(( 16582 "ip_rput_forward_options: end of RR\n")); 16583 break; 16584 } 16585 bcopy(&ire->ire_src_addr, (char *)opt + off, 16586 IP_ADDR_LEN); 16587 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16588 break; 16589 case IPOPT_TS: 16590 /* Insert timestamp if there is room */ 16591 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16592 case IPOPT_TS_TSONLY: 16593 off = IPOPT_TS_TIMELEN; 16594 break; 16595 case IPOPT_TS_PRESPEC: 16596 case IPOPT_TS_PRESPEC_RFC791: 16597 /* Verify that the address matched */ 16598 off = opt[IPOPT_OFFSET] - 1; 16599 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16600 dst_ire = ire_ctable_lookup(dst, 0, 16601 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16602 MATCH_IRE_TYPE); 16603 16604 if (dst_ire == NULL) { 16605 /* Not for us */ 16606 break; 16607 } 16608 ire_refrele(dst_ire); 16609 /* FALLTHRU */ 16610 case IPOPT_TS_TSANDADDR: 16611 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16612 break; 16613 default: 16614 /* 16615 * ip_*put_options should have already 16616 * dropped this packet. 16617 */ 16618 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16619 "unknown IT - bug in ip_rput_options?\n"); 16620 return (0); /* Keep "lint" happy */ 16621 } 16622 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16623 /* Increase overflow counter */ 16624 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16625 opt[IPOPT_POS_OV_FLG] = 16626 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16627 (off << 4)); 16628 break; 16629 } 16630 off = opt[IPOPT_OFFSET] - 1; 16631 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16632 case IPOPT_TS_PRESPEC: 16633 case IPOPT_TS_PRESPEC_RFC791: 16634 case IPOPT_TS_TSANDADDR: 16635 bcopy(&ire->ire_src_addr, 16636 (char *)opt + off, IP_ADDR_LEN); 16637 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16638 /* FALLTHRU */ 16639 case IPOPT_TS_TSONLY: 16640 off = opt[IPOPT_OFFSET] - 1; 16641 /* Compute # of milliseconds since midnight */ 16642 gethrestime(&now); 16643 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16644 now.tv_nsec / (NANOSEC / MILLISEC); 16645 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16646 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16647 break; 16648 } 16649 break; 16650 } 16651 } 16652 return (0); 16653 } 16654 16655 /* 16656 * This is called after processing at least one of AH/ESP headers. 16657 * 16658 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16659 * the actual, physical interface on which the packet was received, 16660 * but, when ip_strict_dst_multihoming is set to 1, could be the 16661 * interface which had the ipha_dst configured when the packet went 16662 * through ip_rput. The ill_index corresponding to the recv_ill 16663 * is saved in ipsec_in_rill_index 16664 */ 16665 void 16666 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16667 { 16668 mblk_t *mp; 16669 ipaddr_t dst; 16670 in6_addr_t *v6dstp; 16671 ipha_t *ipha; 16672 ip6_t *ip6h; 16673 ipsec_in_t *ii; 16674 boolean_t ill_need_rele = B_FALSE; 16675 boolean_t rill_need_rele = B_FALSE; 16676 boolean_t ire_need_rele = B_FALSE; 16677 16678 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16679 ASSERT(ii->ipsec_in_ill_index != 0); 16680 16681 mp = ipsec_mp->b_cont; 16682 ASSERT(mp != NULL); 16683 16684 16685 if (ill == NULL) { 16686 ASSERT(recv_ill == NULL); 16687 /* 16688 * We need to get the original queue on which ip_rput_local 16689 * or ip_rput_data_v6 was called. 16690 */ 16691 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16692 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL); 16693 ill_need_rele = B_TRUE; 16694 16695 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16696 recv_ill = ill_lookup_on_ifindex( 16697 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16698 NULL, NULL, NULL, NULL); 16699 rill_need_rele = B_TRUE; 16700 } else { 16701 recv_ill = ill; 16702 } 16703 16704 if ((ill == NULL) || (recv_ill == NULL)) { 16705 ip0dbg(("ip_fanout_proto_again: interface " 16706 "disappeared\n")); 16707 if (ill != NULL) 16708 ill_refrele(ill); 16709 if (recv_ill != NULL) 16710 ill_refrele(recv_ill); 16711 freemsg(ipsec_mp); 16712 return; 16713 } 16714 } 16715 16716 ASSERT(ill != NULL && recv_ill != NULL); 16717 16718 if (mp->b_datap->db_type == M_CTL) { 16719 /* 16720 * AH/ESP is returning the ICMP message after 16721 * removing their headers. Fanout again till 16722 * it gets to the right protocol. 16723 */ 16724 if (ii->ipsec_in_v4) { 16725 icmph_t *icmph; 16726 int iph_hdr_length; 16727 int hdr_length; 16728 16729 ipha = (ipha_t *)mp->b_rptr; 16730 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16731 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16732 ipha = (ipha_t *)&icmph[1]; 16733 hdr_length = IPH_HDR_LENGTH(ipha); 16734 /* 16735 * icmp_inbound_error_fanout may need to do pullupmsg. 16736 * Reset the type to M_DATA. 16737 */ 16738 mp->b_datap->db_type = M_DATA; 16739 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16740 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16741 B_FALSE, ill, ii->ipsec_in_zoneid); 16742 } else { 16743 icmp6_t *icmp6; 16744 int hdr_length; 16745 16746 ip6h = (ip6_t *)mp->b_rptr; 16747 /* Don't call hdr_length_v6() unless you have to. */ 16748 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16749 hdr_length = ip_hdr_length_v6(mp, ip6h); 16750 else 16751 hdr_length = IPV6_HDR_LEN; 16752 16753 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16754 /* 16755 * icmp_inbound_error_fanout_v6 may need to do 16756 * pullupmsg. Reset the type to M_DATA. 16757 */ 16758 mp->b_datap->db_type = M_DATA; 16759 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16760 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16761 } 16762 if (ill_need_rele) 16763 ill_refrele(ill); 16764 if (rill_need_rele) 16765 ill_refrele(recv_ill); 16766 return; 16767 } 16768 16769 if (ii->ipsec_in_v4) { 16770 ipha = (ipha_t *)mp->b_rptr; 16771 dst = ipha->ipha_dst; 16772 if (CLASSD(dst)) { 16773 /* 16774 * Multicast has to be delivered to all streams. 16775 */ 16776 dst = INADDR_BROADCAST; 16777 } 16778 16779 if (ire == NULL) { 16780 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16781 MBLK_GETLABEL(mp)); 16782 if (ire == NULL) { 16783 if (ill_need_rele) 16784 ill_refrele(ill); 16785 if (rill_need_rele) 16786 ill_refrele(recv_ill); 16787 ip1dbg(("ip_fanout_proto_again: " 16788 "IRE not found")); 16789 freemsg(ipsec_mp); 16790 return; 16791 } 16792 ire_need_rele = B_TRUE; 16793 } 16794 16795 switch (ipha->ipha_protocol) { 16796 case IPPROTO_UDP: 16797 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16798 recv_ill); 16799 if (ire_need_rele) 16800 ire_refrele(ire); 16801 break; 16802 case IPPROTO_TCP: 16803 if (!ire_need_rele) 16804 IRE_REFHOLD(ire); 16805 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 16806 ire, ipsec_mp, 0, ill->ill_rq, NULL); 16807 IRE_REFRELE(ire); 16808 if (mp != NULL) 16809 squeue_enter_chain(GET_SQUEUE(mp), mp, 16810 mp, 1, SQTAG_IP_PROTO_AGAIN); 16811 break; 16812 case IPPROTO_SCTP: 16813 if (!ire_need_rele) 16814 IRE_REFHOLD(ire); 16815 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 16816 ipsec_mp, 0, ill->ill_rq, dst); 16817 break; 16818 default: 16819 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 16820 recv_ill); 16821 if (ire_need_rele) 16822 ire_refrele(ire); 16823 break; 16824 } 16825 } else { 16826 uint32_t rput_flags = 0; 16827 16828 ip6h = (ip6_t *)mp->b_rptr; 16829 v6dstp = &ip6h->ip6_dst; 16830 /* 16831 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 16832 * address. 16833 * 16834 * Currently, we don't store that state in the IPSEC_IN 16835 * message, and we may need to. 16836 */ 16837 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 16838 IP6_IN_LLMCAST : 0); 16839 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 16840 NULL, NULL); 16841 } 16842 if (ill_need_rele) 16843 ill_refrele(ill); 16844 if (rill_need_rele) 16845 ill_refrele(recv_ill); 16846 } 16847 16848 /* 16849 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 16850 * returns 'true' if there are still fragments left on the queue, in 16851 * which case we restart the timer. 16852 */ 16853 void 16854 ill_frag_timer(void *arg) 16855 { 16856 ill_t *ill = (ill_t *)arg; 16857 boolean_t frag_pending; 16858 16859 mutex_enter(&ill->ill_lock); 16860 ASSERT(!ill->ill_fragtimer_executing); 16861 if (ill->ill_state_flags & ILL_CONDEMNED) { 16862 ill->ill_frag_timer_id = 0; 16863 mutex_exit(&ill->ill_lock); 16864 return; 16865 } 16866 ill->ill_fragtimer_executing = 1; 16867 mutex_exit(&ill->ill_lock); 16868 16869 frag_pending = ill_frag_timeout(ill, ip_g_frag_timeout); 16870 16871 /* 16872 * Restart the timer, if we have fragments pending or if someone 16873 * wanted us to be scheduled again. 16874 */ 16875 mutex_enter(&ill->ill_lock); 16876 ill->ill_fragtimer_executing = 0; 16877 ill->ill_frag_timer_id = 0; 16878 if (frag_pending || ill->ill_fragtimer_needrestart) 16879 ill_frag_timer_start(ill); 16880 mutex_exit(&ill->ill_lock); 16881 } 16882 16883 void 16884 ill_frag_timer_start(ill_t *ill) 16885 { 16886 ASSERT(MUTEX_HELD(&ill->ill_lock)); 16887 16888 /* If the ill is closing or opening don't proceed */ 16889 if (ill->ill_state_flags & ILL_CONDEMNED) 16890 return; 16891 16892 if (ill->ill_fragtimer_executing) { 16893 /* 16894 * ill_frag_timer is currently executing. Just record the 16895 * the fact that we want the timer to be restarted. 16896 * ill_frag_timer will post a timeout before it returns, 16897 * ensuring it will be called again. 16898 */ 16899 ill->ill_fragtimer_needrestart = 1; 16900 return; 16901 } 16902 16903 if (ill->ill_frag_timer_id == 0) { 16904 /* 16905 * The timer is neither running nor is the timeout handler 16906 * executing. Post a timeout so that ill_frag_timer will be 16907 * called 16908 */ 16909 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 16910 MSEC_TO_TICK(ip_g_frag_timo_ms >> 1)); 16911 ill->ill_fragtimer_needrestart = 0; 16912 } 16913 } 16914 16915 /* 16916 * This routine is needed for loopback when forwarding multicasts. 16917 * 16918 * IPQoS Notes: 16919 * IPPF processing is done in fanout routines. 16920 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 16921 * processing for IPSec packets is done when it comes back in clear. 16922 * NOTE : The callers of this function need to do the ire_refrele for the 16923 * ire that is being passed in. 16924 */ 16925 void 16926 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 16927 ill_t *recv_ill) 16928 { 16929 ill_t *ill = (ill_t *)q->q_ptr; 16930 uint32_t sum; 16931 uint32_t u1; 16932 uint32_t u2; 16933 int hdr_length; 16934 boolean_t mctl_present; 16935 mblk_t *first_mp = mp; 16936 mblk_t *hada_mp = NULL; 16937 ipha_t *inner_ipha; 16938 16939 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 16940 "ip_rput_locl_start: q %p", q); 16941 16942 ASSERT(ire->ire_ipversion == IPV4_VERSION); 16943 16944 16945 #define rptr ((uchar_t *)ipha) 16946 #define iphs ((uint16_t *)ipha) 16947 16948 /* 16949 * no UDP or TCP packet should come here anymore. 16950 */ 16951 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 16952 (ipha->ipha_protocol != IPPROTO_UDP)); 16953 16954 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 16955 if (mctl_present && 16956 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 16957 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 16958 16959 /* 16960 * It's an IPsec accelerated packet. 16961 * Keep a pointer to the data attributes around until 16962 * we allocate the ipsec_info_t. 16963 */ 16964 IPSECHW_DEBUG(IPSECHW_PKT, 16965 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 16966 hada_mp = first_mp; 16967 hada_mp->b_cont = NULL; 16968 /* 16969 * Since it is accelerated, it comes directly from 16970 * the ill and the data attributes is followed by 16971 * the packet data. 16972 */ 16973 ASSERT(mp->b_datap->db_type != M_CTL); 16974 first_mp = mp; 16975 mctl_present = B_FALSE; 16976 } 16977 16978 /* 16979 * IF M_CTL is not present, then ipsec_in_is_secure 16980 * should return B_TRUE. There is a case where loopback 16981 * packets has an M_CTL in the front with all the 16982 * IPSEC options set to IPSEC_PREF_NEVER - which means 16983 * ipsec_in_is_secure will return B_FALSE. As loopback 16984 * packets never comes here, it is safe to ASSERT the 16985 * following. 16986 */ 16987 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 16988 16989 16990 /* u1 is # words of IP options */ 16991 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 16992 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 16993 16994 if (u1) { 16995 if (!ip_options_cksum(q, mp, ipha, ire)) { 16996 if (hada_mp != NULL) 16997 freemsg(hada_mp); 16998 return; 16999 } 17000 } else { 17001 /* Check the IP header checksum. */ 17002 #define uph ((uint16_t *)ipha) 17003 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 17004 uph[6] + uph[7] + uph[8] + uph[9]; 17005 #undef uph 17006 /* finish doing IP checksum */ 17007 sum = (sum & 0xFFFF) + (sum >> 16); 17008 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17009 /* 17010 * Don't verify header checksum if this packet is coming 17011 * back from AH/ESP as we already did it. 17012 */ 17013 if (!mctl_present && (sum && sum != 0xFFFF)) { 17014 BUMP_MIB(&ip_mib, ipInCksumErrs); 17015 goto drop_pkt; 17016 } 17017 } 17018 17019 /* 17020 * Count for SNMP of inbound packets for ire. As ip_proto_input 17021 * might be called more than once for secure packets, count only 17022 * the first time. 17023 */ 17024 if (!mctl_present) { 17025 UPDATE_IB_PKT_COUNT(ire); 17026 ire->ire_last_used_time = lbolt; 17027 } 17028 17029 /* Check for fragmentation offset. */ 17030 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17031 u1 = u2 & (IPH_MF | IPH_OFFSET); 17032 if (u1) { 17033 /* 17034 * We re-assemble fragments before we do the AH/ESP 17035 * processing. Thus, M_CTL should not be present 17036 * while we are re-assembling. 17037 */ 17038 ASSERT(!mctl_present); 17039 ASSERT(first_mp == mp); 17040 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17041 return; 17042 } 17043 /* 17044 * Make sure that first_mp points back to mp as 17045 * the mp we came in with could have changed in 17046 * ip_rput_fragment(). 17047 */ 17048 ipha = (ipha_t *)mp->b_rptr; 17049 first_mp = mp; 17050 } 17051 17052 /* 17053 * Clear hardware checksumming flag as it is currently only 17054 * used by TCP and UDP. 17055 */ 17056 DB_CKSUMFLAGS(mp) = 0; 17057 17058 /* Now we have a complete datagram, destined for this machine. */ 17059 u1 = IPH_HDR_LENGTH(ipha); 17060 switch (ipha->ipha_protocol) { 17061 case IPPROTO_ICMP: { 17062 ire_t *ire_zone; 17063 ilm_t *ilm; 17064 mblk_t *mp1; 17065 zoneid_t last_zoneid; 17066 17067 if (CLASSD(ipha->ipha_dst) && 17068 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 17069 ASSERT(ire->ire_type == IRE_BROADCAST); 17070 /* 17071 * In the multicast case, applications may have joined 17072 * the group from different zones, so we need to deliver 17073 * the packet to each of them. Loop through the 17074 * multicast memberships structures (ilm) on the receive 17075 * ill and send a copy of the packet up each matching 17076 * one. However, we don't do this for multicasts sent on 17077 * the loopback interface (PHYI_LOOPBACK flag set) as 17078 * they must stay in the sender's zone. 17079 * 17080 * ilm_add_v6() ensures that ilms in the same zone are 17081 * contiguous in the ill_ilm list. We use this property 17082 * to avoid sending duplicates needed when two 17083 * applications in the same zone join the same group on 17084 * different logical interfaces: we ignore the ilm if 17085 * its zoneid is the same as the last matching one. 17086 * In addition, the sending of the packet for 17087 * ire_zoneid is delayed until all of the other ilms 17088 * have been exhausted. 17089 */ 17090 last_zoneid = -1; 17091 ILM_WALKER_HOLD(recv_ill); 17092 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17093 ilm = ilm->ilm_next) { 17094 if ((ilm->ilm_flags & ILM_DELETED) || 17095 ipha->ipha_dst != ilm->ilm_addr || 17096 ilm->ilm_zoneid == last_zoneid || 17097 ilm->ilm_zoneid == ire->ire_zoneid || 17098 ilm->ilm_zoneid == ALL_ZONES || 17099 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17100 continue; 17101 mp1 = ip_copymsg(first_mp); 17102 if (mp1 == NULL) 17103 continue; 17104 icmp_inbound(q, mp1, B_TRUE, ill, 17105 0, sum, mctl_present, B_TRUE, 17106 recv_ill, ilm->ilm_zoneid); 17107 last_zoneid = ilm->ilm_zoneid; 17108 } 17109 ILM_WALKER_RELE(recv_ill); 17110 } else if (ire->ire_type == IRE_BROADCAST) { 17111 /* 17112 * In the broadcast case, there may be many zones 17113 * which need a copy of the packet delivered to them. 17114 * There is one IRE_BROADCAST per broadcast address 17115 * and per zone; we walk those using a helper function. 17116 * In addition, the sending of the packet for ire is 17117 * delayed until all of the other ires have been 17118 * processed. 17119 */ 17120 IRB_REFHOLD(ire->ire_bucket); 17121 ire_zone = NULL; 17122 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17123 ire)) != NULL) { 17124 mp1 = ip_copymsg(first_mp); 17125 if (mp1 == NULL) 17126 continue; 17127 17128 UPDATE_IB_PKT_COUNT(ire_zone); 17129 ire_zone->ire_last_used_time = lbolt; 17130 icmp_inbound(q, mp1, B_TRUE, ill, 17131 0, sum, mctl_present, B_TRUE, 17132 recv_ill, ire_zone->ire_zoneid); 17133 } 17134 IRB_REFRELE(ire->ire_bucket); 17135 } 17136 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17137 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17138 ire->ire_zoneid); 17139 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17140 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17141 return; 17142 } 17143 case IPPROTO_IGMP: 17144 /* 17145 * If we are not willing to accept IGMP packets in clear, 17146 * then check with global policy. 17147 */ 17148 if (igmp_accept_clear_messages == 0) { 17149 first_mp = ipsec_check_global_policy(first_mp, NULL, 17150 ipha, NULL, mctl_present); 17151 if (first_mp == NULL) 17152 return; 17153 } 17154 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17155 freemsg(first_mp); 17156 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17157 BUMP_MIB(&ip_mib, ipInDiscards); 17158 return; 17159 } 17160 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17161 /* Bad packet - discarded by igmp_input */ 17162 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17163 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17164 if (mctl_present) 17165 freeb(first_mp); 17166 return; 17167 } 17168 /* 17169 * igmp_input() may have returned the pulled up message. 17170 * So first_mp and ipha need to be reinitialized. 17171 */ 17172 ipha = (ipha_t *)mp->b_rptr; 17173 if (mctl_present) 17174 first_mp->b_cont = mp; 17175 else 17176 first_mp = mp; 17177 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 17178 /* No user-level listener for IGMP packets */ 17179 goto drop_pkt; 17180 } 17181 /* deliver to local raw users */ 17182 break; 17183 case IPPROTO_PIM: 17184 /* 17185 * If we are not willing to accept PIM packets in clear, 17186 * then check with global policy. 17187 */ 17188 if (pim_accept_clear_messages == 0) { 17189 first_mp = ipsec_check_global_policy(first_mp, NULL, 17190 ipha, NULL, mctl_present); 17191 if (first_mp == NULL) 17192 return; 17193 } 17194 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17195 freemsg(first_mp); 17196 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17197 BUMP_MIB(&ip_mib, ipInDiscards); 17198 return; 17199 } 17200 if (pim_input(q, mp) != 0) { 17201 /* Bad packet - discarded by pim_input */ 17202 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17203 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17204 if (mctl_present) 17205 freeb(first_mp); 17206 return; 17207 } 17208 17209 /* 17210 * pim_input() may have pulled up the message so ipha needs to 17211 * be reinitialized. 17212 */ 17213 ipha = (ipha_t *)mp->b_rptr; 17214 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 17215 /* No user-level listener for PIM packets */ 17216 goto drop_pkt; 17217 } 17218 /* deliver to local raw users */ 17219 break; 17220 case IPPROTO_ENCAP: 17221 /* 17222 * Handle self-encapsulated packets (IP-in-IP where 17223 * the inner addresses == the outer addresses). 17224 */ 17225 hdr_length = IPH_HDR_LENGTH(ipha); 17226 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17227 mp->b_wptr) { 17228 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17229 sizeof (ipha_t) - mp->b_rptr)) { 17230 BUMP_MIB(&ip_mib, ipInDiscards); 17231 freemsg(first_mp); 17232 return; 17233 } 17234 ipha = (ipha_t *)mp->b_rptr; 17235 } 17236 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17237 /* 17238 * Check the sanity of the inner IP header. 17239 */ 17240 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17241 BUMP_MIB(&ip_mib, ipInDiscards); 17242 freemsg(first_mp); 17243 return; 17244 } 17245 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17246 BUMP_MIB(&ip_mib, ipInDiscards); 17247 freemsg(first_mp); 17248 return; 17249 } 17250 if (inner_ipha->ipha_src == ipha->ipha_src && 17251 inner_ipha->ipha_dst == ipha->ipha_dst) { 17252 ipsec_in_t *ii; 17253 17254 /* 17255 * Self-encapsulated tunnel packet. Remove 17256 * the outer IP header and fanout again. 17257 * We also need to make sure that the inner 17258 * header is pulled up until options. 17259 */ 17260 mp->b_rptr = (uchar_t *)inner_ipha; 17261 ipha = inner_ipha; 17262 hdr_length = IPH_HDR_LENGTH(ipha); 17263 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17264 if (!pullupmsg(mp, (uchar_t *)ipha + 17265 + hdr_length - mp->b_rptr)) { 17266 freemsg(first_mp); 17267 return; 17268 } 17269 ipha = (ipha_t *)mp->b_rptr; 17270 } 17271 if (!mctl_present) { 17272 ASSERT(first_mp == mp); 17273 /* 17274 * This means that somebody is sending 17275 * Self-encapsualted packets without AH/ESP. 17276 * If AH/ESP was present, we would have already 17277 * allocated the first_mp. 17278 */ 17279 if ((first_mp = ipsec_in_alloc(B_TRUE)) == 17280 NULL) { 17281 ip1dbg(("ip_proto_input: IPSEC_IN " 17282 "allocation failure.\n")); 17283 BUMP_MIB(&ip_mib, ipInDiscards); 17284 freemsg(mp); 17285 return; 17286 } 17287 first_mp->b_cont = mp; 17288 } 17289 /* 17290 * We generally store the ill_index if we need to 17291 * do IPSEC processing as we lose the ill queue when 17292 * we come back. But in this case, we never should 17293 * have to store the ill_index here as it should have 17294 * been stored previously when we processed the 17295 * AH/ESP header in this routine or for non-ipsec 17296 * cases, we still have the queue. But for some bad 17297 * packets from the wire, we can get to IPSEC after 17298 * this and we better store the index for that case. 17299 */ 17300 ill = (ill_t *)q->q_ptr; 17301 ii = (ipsec_in_t *)first_mp->b_rptr; 17302 ii->ipsec_in_ill_index = 17303 ill->ill_phyint->phyint_ifindex; 17304 ii->ipsec_in_rill_index = 17305 recv_ill->ill_phyint->phyint_ifindex; 17306 if (ii->ipsec_in_decaps) { 17307 /* 17308 * This packet is self-encapsulated multiple 17309 * times. We don't want to recurse infinitely. 17310 * To keep it simple, drop the packet. 17311 */ 17312 BUMP_MIB(&ip_mib, ipInDiscards); 17313 freemsg(first_mp); 17314 return; 17315 } 17316 ii->ipsec_in_decaps = B_TRUE; 17317 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17318 ire); 17319 return; 17320 } 17321 break; 17322 case IPPROTO_AH: 17323 case IPPROTO_ESP: { 17324 /* 17325 * Fast path for AH/ESP. If this is the first time 17326 * we are sending a datagram to AH/ESP, allocate 17327 * a IPSEC_IN message and prepend it. Otherwise, 17328 * just fanout. 17329 */ 17330 17331 int ipsec_rc; 17332 ipsec_in_t *ii; 17333 17334 IP_STAT(ipsec_proto_ahesp); 17335 if (!mctl_present) { 17336 ASSERT(first_mp == mp); 17337 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 17338 ip1dbg(("ip_proto_input: IPSEC_IN " 17339 "allocation failure.\n")); 17340 freemsg(hada_mp); /* okay ifnull */ 17341 BUMP_MIB(&ip_mib, ipInDiscards); 17342 freemsg(mp); 17343 return; 17344 } 17345 /* 17346 * Store the ill_index so that when we come back 17347 * from IPSEC we ride on the same queue. 17348 */ 17349 ill = (ill_t *)q->q_ptr; 17350 ii = (ipsec_in_t *)first_mp->b_rptr; 17351 ii->ipsec_in_ill_index = 17352 ill->ill_phyint->phyint_ifindex; 17353 ii->ipsec_in_rill_index = 17354 recv_ill->ill_phyint->phyint_ifindex; 17355 first_mp->b_cont = mp; 17356 /* 17357 * Cache hardware acceleration info. 17358 */ 17359 if (hada_mp != NULL) { 17360 IPSECHW_DEBUG(IPSECHW_PKT, 17361 ("ip_rput_local: caching data attr.\n")); 17362 ii->ipsec_in_accelerated = B_TRUE; 17363 ii->ipsec_in_da = hada_mp; 17364 hada_mp = NULL; 17365 } 17366 } else { 17367 ii = (ipsec_in_t *)first_mp->b_rptr; 17368 } 17369 17370 if (!ipsec_loaded()) { 17371 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17372 ire->ire_zoneid); 17373 return; 17374 } 17375 17376 /* select inbound SA and have IPsec process the pkt */ 17377 if (ipha->ipha_protocol == IPPROTO_ESP) { 17378 esph_t *esph = ipsec_inbound_esp_sa(first_mp); 17379 if (esph == NULL) 17380 return; 17381 ASSERT(ii->ipsec_in_esp_sa != NULL); 17382 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17383 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17384 first_mp, esph); 17385 } else { 17386 ah_t *ah = ipsec_inbound_ah_sa(first_mp); 17387 if (ah == NULL) 17388 return; 17389 ASSERT(ii->ipsec_in_ah_sa != NULL); 17390 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17391 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17392 first_mp, ah); 17393 } 17394 17395 switch (ipsec_rc) { 17396 case IPSEC_STATUS_SUCCESS: 17397 break; 17398 case IPSEC_STATUS_FAILED: 17399 BUMP_MIB(&ip_mib, ipInDiscards); 17400 /* FALLTHRU */ 17401 case IPSEC_STATUS_PENDING: 17402 return; 17403 } 17404 /* we're done with IPsec processing, send it up */ 17405 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17406 return; 17407 } 17408 default: 17409 break; 17410 } 17411 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17412 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17413 ire->ire_zoneid)); 17414 goto drop_pkt; 17415 } 17416 /* 17417 * Handle protocols with which IP is less intimate. There 17418 * can be more than one stream bound to a particular 17419 * protocol. When this is the case, each one gets a copy 17420 * of any incoming packets. 17421 */ 17422 ip_fanout_proto(q, first_mp, ill, ipha, 17423 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17424 B_TRUE, recv_ill, ire->ire_zoneid); 17425 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17426 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17427 return; 17428 17429 drop_pkt: 17430 freemsg(first_mp); 17431 if (hada_mp != NULL) 17432 freeb(hada_mp); 17433 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17434 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17435 #undef rptr 17436 #undef iphs 17437 17438 } 17439 17440 /* 17441 * Update any source route, record route or timestamp options. 17442 * Check that we are at end of strict source route. 17443 * The options have already been checked for sanity in ip_rput_options(). 17444 */ 17445 static boolean_t 17446 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 17447 { 17448 ipoptp_t opts; 17449 uchar_t *opt; 17450 uint8_t optval; 17451 uint8_t optlen; 17452 ipaddr_t dst; 17453 uint32_t ts; 17454 ire_t *dst_ire; 17455 timestruc_t now; 17456 zoneid_t zoneid; 17457 ill_t *ill; 17458 17459 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17460 17461 ip2dbg(("ip_rput_local_options\n")); 17462 17463 for (optval = ipoptp_first(&opts, ipha); 17464 optval != IPOPT_EOL; 17465 optval = ipoptp_next(&opts)) { 17466 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17467 opt = opts.ipoptp_cur; 17468 optlen = opts.ipoptp_len; 17469 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17470 optval, optlen)); 17471 switch (optval) { 17472 uint32_t off; 17473 case IPOPT_SSRR: 17474 case IPOPT_LSRR: 17475 off = opt[IPOPT_OFFSET]; 17476 off--; 17477 if (optlen < IP_ADDR_LEN || 17478 off > optlen - IP_ADDR_LEN) { 17479 /* End of source route */ 17480 ip1dbg(("ip_rput_local_options: end of SR\n")); 17481 break; 17482 } 17483 /* 17484 * This will only happen if two consecutive entries 17485 * in the source route contains our address or if 17486 * it is a packet with a loose source route which 17487 * reaches us before consuming the whole source route 17488 */ 17489 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17490 if (optval == IPOPT_SSRR) { 17491 goto bad_src_route; 17492 } 17493 /* 17494 * Hack: instead of dropping the packet truncate the 17495 * source route to what has been used by filling the 17496 * rest with IPOPT_NOP. 17497 */ 17498 opt[IPOPT_OLEN] = (uint8_t)off; 17499 while (off < optlen) { 17500 opt[off++] = IPOPT_NOP; 17501 } 17502 break; 17503 case IPOPT_RR: 17504 off = opt[IPOPT_OFFSET]; 17505 off--; 17506 if (optlen < IP_ADDR_LEN || 17507 off > optlen - IP_ADDR_LEN) { 17508 /* No more room - ignore */ 17509 ip1dbg(( 17510 "ip_rput_local_options: end of RR\n")); 17511 break; 17512 } 17513 bcopy(&ire->ire_src_addr, (char *)opt + off, 17514 IP_ADDR_LEN); 17515 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17516 break; 17517 case IPOPT_TS: 17518 /* Insert timestamp if there is romm */ 17519 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17520 case IPOPT_TS_TSONLY: 17521 off = IPOPT_TS_TIMELEN; 17522 break; 17523 case IPOPT_TS_PRESPEC: 17524 case IPOPT_TS_PRESPEC_RFC791: 17525 /* Verify that the address matched */ 17526 off = opt[IPOPT_OFFSET] - 1; 17527 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17528 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17529 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 17530 if (dst_ire == NULL) { 17531 /* Not for us */ 17532 break; 17533 } 17534 ire_refrele(dst_ire); 17535 /* FALLTHRU */ 17536 case IPOPT_TS_TSANDADDR: 17537 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17538 break; 17539 default: 17540 /* 17541 * ip_*put_options should have already 17542 * dropped this packet. 17543 */ 17544 cmn_err(CE_PANIC, "ip_rput_local_options: " 17545 "unknown IT - bug in ip_rput_options?\n"); 17546 return (B_TRUE); /* Keep "lint" happy */ 17547 } 17548 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17549 /* Increase overflow counter */ 17550 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17551 opt[IPOPT_POS_OV_FLG] = 17552 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17553 (off << 4)); 17554 break; 17555 } 17556 off = opt[IPOPT_OFFSET] - 1; 17557 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17558 case IPOPT_TS_PRESPEC: 17559 case IPOPT_TS_PRESPEC_RFC791: 17560 case IPOPT_TS_TSANDADDR: 17561 bcopy(&ire->ire_src_addr, (char *)opt + off, 17562 IP_ADDR_LEN); 17563 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17564 /* FALLTHRU */ 17565 case IPOPT_TS_TSONLY: 17566 off = opt[IPOPT_OFFSET] - 1; 17567 /* Compute # of milliseconds since midnight */ 17568 gethrestime(&now); 17569 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17570 now.tv_nsec / (NANOSEC / MILLISEC); 17571 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17572 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17573 break; 17574 } 17575 break; 17576 } 17577 } 17578 return (B_TRUE); 17579 17580 bad_src_route: 17581 q = WR(q); 17582 if (q->q_next != NULL) 17583 ill = q->q_ptr; 17584 else 17585 ill = NULL; 17586 17587 /* make sure we clear any indication of a hardware checksum */ 17588 DB_CKSUMFLAGS(mp) = 0; 17589 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill); 17590 if (zoneid == ALL_ZONES) 17591 freemsg(mp); 17592 else 17593 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 17594 return (B_FALSE); 17595 17596 } 17597 17598 /* 17599 * Process IP options in an inbound packet. If an option affects the 17600 * effective destination address, return the next hop address via dstp. 17601 * Returns -1 if something fails in which case an ICMP error has been sent 17602 * and mp freed. 17603 */ 17604 static int 17605 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp) 17606 { 17607 ipoptp_t opts; 17608 uchar_t *opt; 17609 uint8_t optval; 17610 uint8_t optlen; 17611 ipaddr_t dst; 17612 intptr_t code = 0; 17613 ire_t *ire = NULL; 17614 zoneid_t zoneid; 17615 ill_t *ill; 17616 17617 ip2dbg(("ip_rput_options\n")); 17618 dst = ipha->ipha_dst; 17619 for (optval = ipoptp_first(&opts, ipha); 17620 optval != IPOPT_EOL; 17621 optval = ipoptp_next(&opts)) { 17622 opt = opts.ipoptp_cur; 17623 optlen = opts.ipoptp_len; 17624 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17625 optval, optlen)); 17626 /* 17627 * Note: we need to verify the checksum before we 17628 * modify anything thus this routine only extracts the next 17629 * hop dst from any source route. 17630 */ 17631 switch (optval) { 17632 uint32_t off; 17633 case IPOPT_SSRR: 17634 case IPOPT_LSRR: 17635 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17636 ALL_ZONES, NULL, MATCH_IRE_TYPE); 17637 if (ire == NULL) { 17638 if (optval == IPOPT_SSRR) { 17639 ip1dbg(("ip_rput_options: not next" 17640 " strict source route 0x%x\n", 17641 ntohl(dst))); 17642 code = (char *)&ipha->ipha_dst - 17643 (char *)ipha; 17644 goto param_prob; /* RouterReq's */ 17645 } 17646 ip2dbg(("ip_rput_options: " 17647 "not next source route 0x%x\n", 17648 ntohl(dst))); 17649 break; 17650 } 17651 ire_refrele(ire); 17652 17653 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17654 ip1dbg(( 17655 "ip_rput_options: bad option offset\n")); 17656 code = (char *)&opt[IPOPT_OLEN] - 17657 (char *)ipha; 17658 goto param_prob; 17659 } 17660 off = opt[IPOPT_OFFSET]; 17661 off--; 17662 redo_srr: 17663 if (optlen < IP_ADDR_LEN || 17664 off > optlen - IP_ADDR_LEN) { 17665 /* End of source route */ 17666 ip1dbg(("ip_rput_options: end of SR\n")); 17667 break; 17668 } 17669 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17670 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17671 ntohl(dst))); 17672 17673 /* 17674 * Check if our address is present more than 17675 * once as consecutive hops in source route. 17676 * XXX verify per-interface ip_forwarding 17677 * for source route? 17678 */ 17679 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17680 ALL_ZONES, NULL, MATCH_IRE_TYPE); 17681 17682 if (ire != NULL) { 17683 ire_refrele(ire); 17684 off += IP_ADDR_LEN; 17685 goto redo_srr; 17686 } 17687 17688 if (dst == htonl(INADDR_LOOPBACK)) { 17689 ip1dbg(("ip_rput_options: loopback addr in " 17690 "source route!\n")); 17691 goto bad_src_route; 17692 } 17693 /* 17694 * For strict: verify that dst is directly 17695 * reachable. 17696 */ 17697 if (optval == IPOPT_SSRR) { 17698 ire = ire_ftable_lookup(dst, 0, 0, 17699 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17700 MBLK_GETLABEL(mp), 17701 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 17702 if (ire == NULL) { 17703 ip1dbg(("ip_rput_options: SSRR not " 17704 "directly reachable: 0x%x\n", 17705 ntohl(dst))); 17706 goto bad_src_route; 17707 } 17708 ire_refrele(ire); 17709 } 17710 /* 17711 * Defer update of the offset and the record route 17712 * until the packet is forwarded. 17713 */ 17714 break; 17715 case IPOPT_RR: 17716 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17717 ip1dbg(( 17718 "ip_rput_options: bad option offset\n")); 17719 code = (char *)&opt[IPOPT_OLEN] - 17720 (char *)ipha; 17721 goto param_prob; 17722 } 17723 break; 17724 case IPOPT_TS: 17725 /* 17726 * Verify that length >= 5 and that there is either 17727 * room for another timestamp or that the overflow 17728 * counter is not maxed out. 17729 */ 17730 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17731 if (optlen < IPOPT_MINLEN_IT) { 17732 goto param_prob; 17733 } 17734 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17735 ip1dbg(( 17736 "ip_rput_options: bad option offset\n")); 17737 code = (char *)&opt[IPOPT_OFFSET] - 17738 (char *)ipha; 17739 goto param_prob; 17740 } 17741 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17742 case IPOPT_TS_TSONLY: 17743 off = IPOPT_TS_TIMELEN; 17744 break; 17745 case IPOPT_TS_TSANDADDR: 17746 case IPOPT_TS_PRESPEC: 17747 case IPOPT_TS_PRESPEC_RFC791: 17748 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17749 break; 17750 default: 17751 code = (char *)&opt[IPOPT_POS_OV_FLG] - 17752 (char *)ipha; 17753 goto param_prob; 17754 } 17755 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 17756 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 17757 /* 17758 * No room and the overflow counter is 15 17759 * already. 17760 */ 17761 goto param_prob; 17762 } 17763 break; 17764 } 17765 } 17766 17767 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 17768 *dstp = dst; 17769 return (0); 17770 } 17771 17772 ip1dbg(("ip_rput_options: error processing IP options.")); 17773 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 17774 17775 param_prob: 17776 q = WR(q); 17777 if (q->q_next != NULL) 17778 ill = q->q_ptr; 17779 else 17780 ill = NULL; 17781 17782 /* make sure we clear any indication of a hardware checksum */ 17783 DB_CKSUMFLAGS(mp) = 0; 17784 /* Don't know whether this is for non-global or global/forwarding */ 17785 zoneid = ipif_lookup_addr_zoneid(dst, ill); 17786 if (zoneid == ALL_ZONES) 17787 freemsg(mp); 17788 else 17789 icmp_param_problem(q, mp, (uint8_t)code, zoneid); 17790 return (-1); 17791 17792 bad_src_route: 17793 q = WR(q); 17794 if (q->q_next != NULL) 17795 ill = q->q_ptr; 17796 else 17797 ill = NULL; 17798 17799 /* make sure we clear any indication of a hardware checksum */ 17800 DB_CKSUMFLAGS(mp) = 0; 17801 zoneid = ipif_lookup_addr_zoneid(dst, ill); 17802 if (zoneid == ALL_ZONES) 17803 freemsg(mp); 17804 else 17805 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 17806 return (-1); 17807 } 17808 17809 /* 17810 * IP & ICMP info in >=14 msg's ... 17811 * - ip fixed part (mib2_ip_t) 17812 * - icmp fixed part (mib2_icmp_t) 17813 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 17814 * - ipRouteEntryTable (ip 21) all IPv4 IREs 17815 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 17816 * - ipRouteAttributeTable (ip 102) labeled routes 17817 * - ip multicast membership (ip_member_t) 17818 * - ip multicast source filtering (ip_grpsrc_t) 17819 * - igmp fixed part (struct igmpstat) 17820 * - multicast routing stats (struct mrtstat) 17821 * - multicast routing vifs (array of struct vifctl) 17822 * - multicast routing routes (array of struct mfcctl) 17823 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 17824 * One per ill plus one generic 17825 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 17826 * One per ill plus one generic 17827 * - ipv6RouteEntry all IPv6 IREs 17828 * - ipv6RouteAttributeTable (ip6 102) labeled routes 17829 * - ipv6NetToMediaEntry all Neighbor Cache entries 17830 * - ipv6AddrEntry all IPv6 ipifs 17831 * - ipv6 multicast membership (ipv6_member_t) 17832 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 17833 * 17834 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 17835 * 17836 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 17837 * already filled in by the caller. 17838 * Return value of 0 indicates that no messages were sent and caller 17839 * should free mpctl. 17840 */ 17841 int 17842 ip_snmp_get(queue_t *q, mblk_t *mpctl) 17843 { 17844 17845 if (mpctl == NULL || mpctl->b_cont == NULL) { 17846 return (0); 17847 } 17848 17849 if ((mpctl = ip_snmp_get_mib2_ip(q, mpctl)) == NULL) { 17850 return (1); 17851 } 17852 17853 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl)) == NULL) { 17854 return (1); 17855 } 17856 17857 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl)) == NULL) { 17858 return (1); 17859 } 17860 17861 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl)) == NULL) { 17862 return (1); 17863 } 17864 17865 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl)) == NULL) { 17866 return (1); 17867 } 17868 17869 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl)) == NULL) { 17870 return (1); 17871 } 17872 17873 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl)) == NULL) { 17874 return (1); 17875 } 17876 17877 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl)) == NULL) { 17878 return (1); 17879 } 17880 17881 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl)) == NULL) { 17882 return (1); 17883 } 17884 17885 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl)) == NULL) { 17886 return (1); 17887 } 17888 17889 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl)) == NULL) { 17890 return (1); 17891 } 17892 17893 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl)) == NULL) { 17894 return (1); 17895 } 17896 17897 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl)) == NULL) { 17898 return (1); 17899 } 17900 17901 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl)) == NULL) { 17902 return (1); 17903 } 17904 17905 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl)) == NULL) { 17906 return (1); 17907 } 17908 17909 if ((mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl)) == NULL) { 17910 return (1); 17911 } 17912 17913 if ((mpctl = sctp_snmp_get_mib2(q, mpctl)) == NULL) { 17914 return (1); 17915 } 17916 freemsg(mpctl); 17917 return (1); 17918 } 17919 17920 17921 /* Get global IPv4 statistics */ 17922 static mblk_t * 17923 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl) 17924 { 17925 struct opthdr *optp; 17926 mblk_t *mp2ctl; 17927 17928 /* 17929 * make a copy of the original message 17930 */ 17931 mp2ctl = copymsg(mpctl); 17932 17933 /* fixed length IP structure... */ 17934 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17935 optp->level = MIB2_IP; 17936 optp->name = 0; 17937 SET_MIB(ip_mib.ipForwarding, 17938 (WE_ARE_FORWARDING ? 1 : 2)); 17939 SET_MIB(ip_mib.ipDefaultTTL, 17940 (uint32_t)ip_def_ttl); 17941 SET_MIB(ip_mib.ipReasmTimeout, 17942 ip_g_frag_timeout); 17943 SET_MIB(ip_mib.ipAddrEntrySize, 17944 sizeof (mib2_ipAddrEntry_t)); 17945 SET_MIB(ip_mib.ipRouteEntrySize, 17946 sizeof (mib2_ipRouteEntry_t)); 17947 SET_MIB(ip_mib.ipNetToMediaEntrySize, 17948 sizeof (mib2_ipNetToMediaEntry_t)); 17949 SET_MIB(ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 17950 SET_MIB(ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 17951 SET_MIB(ip_mib.ipRouteAttributeSize, sizeof (mib2_ipAttributeEntry_t)); 17952 SET_MIB(ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 17953 if (!snmp_append_data(mpctl->b_cont, (char *)&ip_mib, 17954 (int)sizeof (ip_mib))) { 17955 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 17956 (uint_t)sizeof (ip_mib))); 17957 } 17958 17959 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17960 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 17961 (int)optp->level, (int)optp->name, (int)optp->len)); 17962 qreply(q, mpctl); 17963 return (mp2ctl); 17964 } 17965 17966 /* Global IPv4 ICMP statistics */ 17967 static mblk_t * 17968 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl) 17969 { 17970 struct opthdr *optp; 17971 mblk_t *mp2ctl; 17972 17973 /* 17974 * Make a copy of the original message 17975 */ 17976 mp2ctl = copymsg(mpctl); 17977 17978 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17979 optp->level = MIB2_ICMP; 17980 optp->name = 0; 17981 if (!snmp_append_data(mpctl->b_cont, (char *)&icmp_mib, 17982 (int)sizeof (icmp_mib))) { 17983 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 17984 (uint_t)sizeof (icmp_mib))); 17985 } 17986 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17987 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 17988 (int)optp->level, (int)optp->name, (int)optp->len)); 17989 qreply(q, mpctl); 17990 return (mp2ctl); 17991 } 17992 17993 /* Global IPv4 IGMP statistics */ 17994 static mblk_t * 17995 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl) 17996 { 17997 struct opthdr *optp; 17998 mblk_t *mp2ctl; 17999 18000 /* 18001 * make a copy of the original message 18002 */ 18003 mp2ctl = copymsg(mpctl); 18004 18005 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18006 optp->level = EXPER_IGMP; 18007 optp->name = 0; 18008 if (!snmp_append_data(mpctl->b_cont, (char *)&igmpstat, 18009 (int)sizeof (igmpstat))) { 18010 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18011 (uint_t)sizeof (igmpstat))); 18012 } 18013 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18014 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18015 (int)optp->level, (int)optp->name, (int)optp->len)); 18016 qreply(q, mpctl); 18017 return (mp2ctl); 18018 } 18019 18020 /* Global IPv4 Multicast Routing statistics */ 18021 static mblk_t * 18022 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl) 18023 { 18024 struct opthdr *optp; 18025 mblk_t *mp2ctl; 18026 18027 /* 18028 * make a copy of the original message 18029 */ 18030 mp2ctl = copymsg(mpctl); 18031 18032 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18033 optp->level = EXPER_DVMRP; 18034 optp->name = 0; 18035 if (!ip_mroute_stats(mpctl->b_cont)) { 18036 ip0dbg(("ip_mroute_stats: failed\n")); 18037 } 18038 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18039 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18040 (int)optp->level, (int)optp->name, (int)optp->len)); 18041 qreply(q, mpctl); 18042 return (mp2ctl); 18043 } 18044 18045 /* IPv4 address information */ 18046 static mblk_t * 18047 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl) 18048 { 18049 struct opthdr *optp; 18050 mblk_t *mp2ctl; 18051 mblk_t *mp_tail = NULL; 18052 ill_t *ill; 18053 ipif_t *ipif; 18054 uint_t bitval; 18055 mib2_ipAddrEntry_t mae; 18056 zoneid_t zoneid; 18057 ill_walk_context_t ctx; 18058 18059 /* 18060 * make a copy of the original message 18061 */ 18062 mp2ctl = copymsg(mpctl); 18063 18064 /* ipAddrEntryTable */ 18065 18066 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18067 optp->level = MIB2_IP; 18068 optp->name = MIB2_IP_ADDR; 18069 zoneid = Q_TO_CONN(q)->conn_zoneid; 18070 18071 rw_enter(&ill_g_lock, RW_READER); 18072 ill = ILL_START_WALK_V4(&ctx); 18073 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18074 for (ipif = ill->ill_ipif; ipif != NULL; 18075 ipif = ipif->ipif_next) { 18076 if (ipif->ipif_zoneid != zoneid && 18077 ipif->ipif_zoneid != ALL_ZONES) 18078 continue; 18079 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18080 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18081 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18082 18083 (void) ipif_get_name(ipif, 18084 mae.ipAdEntIfIndex.o_bytes, 18085 OCTET_LENGTH); 18086 mae.ipAdEntIfIndex.o_length = 18087 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18088 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18089 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18090 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18091 mae.ipAdEntInfo.ae_subnet_len = 18092 ip_mask_to_plen(ipif->ipif_net_mask); 18093 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18094 for (bitval = 1; 18095 bitval && 18096 !(bitval & ipif->ipif_brd_addr); 18097 bitval <<= 1) 18098 noop; 18099 mae.ipAdEntBcastAddr = bitval; 18100 mae.ipAdEntReasmMaxSize = 65535; 18101 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18102 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18103 mae.ipAdEntInfo.ae_broadcast_addr = 18104 ipif->ipif_brd_addr; 18105 mae.ipAdEntInfo.ae_pp_dst_addr = 18106 ipif->ipif_pp_dst_addr; 18107 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18108 ill->ill_flags | ill->ill_phyint->phyint_flags; 18109 18110 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18111 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18112 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18113 "allocate %u bytes\n", 18114 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18115 } 18116 } 18117 } 18118 rw_exit(&ill_g_lock); 18119 18120 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18121 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18122 (int)optp->level, (int)optp->name, (int)optp->len)); 18123 qreply(q, mpctl); 18124 return (mp2ctl); 18125 } 18126 18127 /* IPv6 address information */ 18128 static mblk_t * 18129 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl) 18130 { 18131 struct opthdr *optp; 18132 mblk_t *mp2ctl; 18133 mblk_t *mp_tail = NULL; 18134 ill_t *ill; 18135 ipif_t *ipif; 18136 mib2_ipv6AddrEntry_t mae6; 18137 zoneid_t zoneid; 18138 ill_walk_context_t ctx; 18139 18140 /* 18141 * make a copy of the original message 18142 */ 18143 mp2ctl = copymsg(mpctl); 18144 18145 /* ipv6AddrEntryTable */ 18146 18147 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18148 optp->level = MIB2_IP6; 18149 optp->name = MIB2_IP6_ADDR; 18150 zoneid = Q_TO_CONN(q)->conn_zoneid; 18151 18152 rw_enter(&ill_g_lock, RW_READER); 18153 ill = ILL_START_WALK_V6(&ctx); 18154 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18155 for (ipif = ill->ill_ipif; ipif != NULL; 18156 ipif = ipif->ipif_next) { 18157 if (ipif->ipif_zoneid != zoneid && 18158 ipif->ipif_zoneid != ALL_ZONES) 18159 continue; 18160 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18161 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18162 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18163 18164 (void) ipif_get_name(ipif, 18165 mae6.ipv6AddrIfIndex.o_bytes, 18166 OCTET_LENGTH); 18167 mae6.ipv6AddrIfIndex.o_length = 18168 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18169 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18170 mae6.ipv6AddrPfxLength = 18171 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18172 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18173 mae6.ipv6AddrInfo.ae_subnet_len = 18174 mae6.ipv6AddrPfxLength; 18175 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18176 18177 /* Type: stateless(1), stateful(2), unknown(3) */ 18178 if (ipif->ipif_flags & IPIF_ADDRCONF) 18179 mae6.ipv6AddrType = 1; 18180 else 18181 mae6.ipv6AddrType = 2; 18182 /* Anycast: true(1), false(2) */ 18183 if (ipif->ipif_flags & IPIF_ANYCAST) 18184 mae6.ipv6AddrAnycastFlag = 1; 18185 else 18186 mae6.ipv6AddrAnycastFlag = 2; 18187 18188 /* 18189 * Address status: preferred(1), deprecated(2), 18190 * invalid(3), inaccessible(4), unknown(5) 18191 */ 18192 if (ipif->ipif_flags & IPIF_NOLOCAL) 18193 mae6.ipv6AddrStatus = 3; 18194 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18195 mae6.ipv6AddrStatus = 2; 18196 else 18197 mae6.ipv6AddrStatus = 1; 18198 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18199 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18200 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18201 ipif->ipif_v6pp_dst_addr; 18202 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18203 ill->ill_flags | ill->ill_phyint->phyint_flags; 18204 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18205 (char *)&mae6, 18206 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18207 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18208 "allocate %u bytes\n", 18209 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18210 } 18211 } 18212 } 18213 rw_exit(&ill_g_lock); 18214 18215 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18216 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18217 (int)optp->level, (int)optp->name, (int)optp->len)); 18218 qreply(q, mpctl); 18219 return (mp2ctl); 18220 } 18221 18222 /* IPv4 multicast group membership. */ 18223 static mblk_t * 18224 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl) 18225 { 18226 struct opthdr *optp; 18227 mblk_t *mp2ctl; 18228 ill_t *ill; 18229 ipif_t *ipif; 18230 ilm_t *ilm; 18231 ip_member_t ipm; 18232 mblk_t *mp_tail = NULL; 18233 ill_walk_context_t ctx; 18234 zoneid_t zoneid; 18235 18236 /* 18237 * make a copy of the original message 18238 */ 18239 mp2ctl = copymsg(mpctl); 18240 zoneid = Q_TO_CONN(q)->conn_zoneid; 18241 18242 /* ipGroupMember table */ 18243 optp = (struct opthdr *)&mpctl->b_rptr[ 18244 sizeof (struct T_optmgmt_ack)]; 18245 optp->level = MIB2_IP; 18246 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18247 18248 rw_enter(&ill_g_lock, RW_READER); 18249 ill = ILL_START_WALK_V4(&ctx); 18250 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18251 ILM_WALKER_HOLD(ill); 18252 for (ipif = ill->ill_ipif; ipif != NULL; 18253 ipif = ipif->ipif_next) { 18254 if (ipif->ipif_zoneid != zoneid && 18255 ipif->ipif_zoneid != ALL_ZONES) 18256 continue; /* not this zone */ 18257 (void) ipif_get_name(ipif, 18258 ipm.ipGroupMemberIfIndex.o_bytes, 18259 OCTET_LENGTH); 18260 ipm.ipGroupMemberIfIndex.o_length = 18261 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18262 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18263 ASSERT(ilm->ilm_ipif != NULL); 18264 ASSERT(ilm->ilm_ill == NULL); 18265 if (ilm->ilm_ipif != ipif) 18266 continue; 18267 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18268 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18269 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18270 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18271 (char *)&ipm, (int)sizeof (ipm))) { 18272 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18273 "failed to allocate %u bytes\n", 18274 (uint_t)sizeof (ipm))); 18275 } 18276 } 18277 } 18278 ILM_WALKER_RELE(ill); 18279 } 18280 rw_exit(&ill_g_lock); 18281 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18282 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18283 (int)optp->level, (int)optp->name, (int)optp->len)); 18284 qreply(q, mpctl); 18285 return (mp2ctl); 18286 } 18287 18288 /* IPv6 multicast group membership. */ 18289 static mblk_t * 18290 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl) 18291 { 18292 struct opthdr *optp; 18293 mblk_t *mp2ctl; 18294 ill_t *ill; 18295 ilm_t *ilm; 18296 ipv6_member_t ipm6; 18297 mblk_t *mp_tail = NULL; 18298 ill_walk_context_t ctx; 18299 zoneid_t zoneid; 18300 18301 /* 18302 * make a copy of the original message 18303 */ 18304 mp2ctl = copymsg(mpctl); 18305 zoneid = Q_TO_CONN(q)->conn_zoneid; 18306 18307 /* ip6GroupMember table */ 18308 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18309 optp->level = MIB2_IP6; 18310 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18311 18312 rw_enter(&ill_g_lock, RW_READER); 18313 ill = ILL_START_WALK_V6(&ctx); 18314 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18315 ILM_WALKER_HOLD(ill); 18316 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18317 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18318 ASSERT(ilm->ilm_ipif == NULL); 18319 ASSERT(ilm->ilm_ill != NULL); 18320 if (ilm->ilm_zoneid != zoneid) 18321 continue; /* not this zone */ 18322 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18323 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18324 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18325 if (!snmp_append_data2(mpctl->b_cont, 18326 &mp_tail, 18327 (char *)&ipm6, (int)sizeof (ipm6))) { 18328 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18329 "failed to allocate %u bytes\n", 18330 (uint_t)sizeof (ipm6))); 18331 } 18332 } 18333 ILM_WALKER_RELE(ill); 18334 } 18335 rw_exit(&ill_g_lock); 18336 18337 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18338 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18339 (int)optp->level, (int)optp->name, (int)optp->len)); 18340 qreply(q, mpctl); 18341 return (mp2ctl); 18342 } 18343 18344 /* IP multicast filtered sources */ 18345 static mblk_t * 18346 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl) 18347 { 18348 struct opthdr *optp; 18349 mblk_t *mp2ctl; 18350 ill_t *ill; 18351 ipif_t *ipif; 18352 ilm_t *ilm; 18353 ip_grpsrc_t ips; 18354 mblk_t *mp_tail = NULL; 18355 ill_walk_context_t ctx; 18356 zoneid_t zoneid; 18357 int i; 18358 slist_t *sl; 18359 18360 /* 18361 * make a copy of the original message 18362 */ 18363 mp2ctl = copymsg(mpctl); 18364 zoneid = Q_TO_CONN(q)->conn_zoneid; 18365 18366 /* ipGroupSource table */ 18367 optp = (struct opthdr *)&mpctl->b_rptr[ 18368 sizeof (struct T_optmgmt_ack)]; 18369 optp->level = MIB2_IP; 18370 optp->name = EXPER_IP_GROUP_SOURCES; 18371 18372 rw_enter(&ill_g_lock, RW_READER); 18373 ill = ILL_START_WALK_V4(&ctx); 18374 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18375 ILM_WALKER_HOLD(ill); 18376 for (ipif = ill->ill_ipif; ipif != NULL; 18377 ipif = ipif->ipif_next) { 18378 if (ipif->ipif_zoneid != zoneid) 18379 continue; /* not this zone */ 18380 (void) ipif_get_name(ipif, 18381 ips.ipGroupSourceIfIndex.o_bytes, 18382 OCTET_LENGTH); 18383 ips.ipGroupSourceIfIndex.o_length = 18384 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18385 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18386 ASSERT(ilm->ilm_ipif != NULL); 18387 ASSERT(ilm->ilm_ill == NULL); 18388 sl = ilm->ilm_filter; 18389 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18390 continue; 18391 ips.ipGroupSourceGroup = ilm->ilm_addr; 18392 for (i = 0; i < sl->sl_numsrc; i++) { 18393 if (!IN6_IS_ADDR_V4MAPPED( 18394 &sl->sl_addr[i])) 18395 continue; 18396 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18397 ips.ipGroupSourceAddress); 18398 if (snmp_append_data2(mpctl->b_cont, 18399 &mp_tail, (char *)&ips, 18400 (int)sizeof (ips)) == 0) { 18401 ip1dbg(("ip_snmp_get_mib2_" 18402 "ip_group_src: failed to " 18403 "allocate %u bytes\n", 18404 (uint_t)sizeof (ips))); 18405 } 18406 } 18407 } 18408 } 18409 ILM_WALKER_RELE(ill); 18410 } 18411 rw_exit(&ill_g_lock); 18412 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18413 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18414 (int)optp->level, (int)optp->name, (int)optp->len)); 18415 qreply(q, mpctl); 18416 return (mp2ctl); 18417 } 18418 18419 /* IPv6 multicast filtered sources. */ 18420 static mblk_t * 18421 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl) 18422 { 18423 struct opthdr *optp; 18424 mblk_t *mp2ctl; 18425 ill_t *ill; 18426 ilm_t *ilm; 18427 ipv6_grpsrc_t ips6; 18428 mblk_t *mp_tail = NULL; 18429 ill_walk_context_t ctx; 18430 zoneid_t zoneid; 18431 int i; 18432 slist_t *sl; 18433 18434 /* 18435 * make a copy of the original message 18436 */ 18437 mp2ctl = copymsg(mpctl); 18438 zoneid = Q_TO_CONN(q)->conn_zoneid; 18439 18440 /* ip6GroupMember table */ 18441 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18442 optp->level = MIB2_IP6; 18443 optp->name = EXPER_IP6_GROUP_SOURCES; 18444 18445 rw_enter(&ill_g_lock, RW_READER); 18446 ill = ILL_START_WALK_V6(&ctx); 18447 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18448 ILM_WALKER_HOLD(ill); 18449 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18450 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18451 ASSERT(ilm->ilm_ipif == NULL); 18452 ASSERT(ilm->ilm_ill != NULL); 18453 sl = ilm->ilm_filter; 18454 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18455 continue; 18456 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18457 for (i = 0; i < sl->sl_numsrc; i++) { 18458 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18459 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18460 (char *)&ips6, (int)sizeof (ips6))) { 18461 ip1dbg(("ip_snmp_get_mib2_ip6_" 18462 "group_src: failed to allocate " 18463 "%u bytes\n", 18464 (uint_t)sizeof (ips6))); 18465 } 18466 } 18467 } 18468 ILM_WALKER_RELE(ill); 18469 } 18470 rw_exit(&ill_g_lock); 18471 18472 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18473 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18474 (int)optp->level, (int)optp->name, (int)optp->len)); 18475 qreply(q, mpctl); 18476 return (mp2ctl); 18477 } 18478 18479 /* Multicast routing virtual interface table. */ 18480 static mblk_t * 18481 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl) 18482 { 18483 struct opthdr *optp; 18484 mblk_t *mp2ctl; 18485 18486 /* 18487 * make a copy of the original message 18488 */ 18489 mp2ctl = copymsg(mpctl); 18490 18491 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18492 optp->level = EXPER_DVMRP; 18493 optp->name = EXPER_DVMRP_VIF; 18494 if (!ip_mroute_vif(mpctl->b_cont)) { 18495 ip0dbg(("ip_mroute_vif: failed\n")); 18496 } 18497 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18498 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18499 (int)optp->level, (int)optp->name, (int)optp->len)); 18500 qreply(q, mpctl); 18501 return (mp2ctl); 18502 } 18503 18504 /* Multicast routing table. */ 18505 static mblk_t * 18506 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl) 18507 { 18508 struct opthdr *optp; 18509 mblk_t *mp2ctl; 18510 18511 /* 18512 * make a copy of the original message 18513 */ 18514 mp2ctl = copymsg(mpctl); 18515 18516 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18517 optp->level = EXPER_DVMRP; 18518 optp->name = EXPER_DVMRP_MRT; 18519 if (!ip_mroute_mrt(mpctl->b_cont)) { 18520 ip0dbg(("ip_mroute_mrt: failed\n")); 18521 } 18522 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18523 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18524 (int)optp->level, (int)optp->name, (int)optp->len)); 18525 qreply(q, mpctl); 18526 return (mp2ctl); 18527 } 18528 18529 /* 18530 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18531 * in one IRE walk. 18532 */ 18533 static mblk_t * 18534 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl) 18535 { 18536 struct opthdr *optp; 18537 mblk_t *mp2ctl; /* Returned */ 18538 mblk_t *mp3ctl; /* nettomedia */ 18539 mblk_t *mp4ctl; /* routeattrs */ 18540 iproutedata_t ird; 18541 zoneid_t zoneid; 18542 18543 /* 18544 * make copies of the original message 18545 * - mp2ctl is returned unchanged to the caller for his use 18546 * - mpctl is sent upstream as ipRouteEntryTable 18547 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18548 * - mp4ctl is sent upstream as ipRouteAttributeTable 18549 */ 18550 mp2ctl = copymsg(mpctl); 18551 mp3ctl = copymsg(mpctl); 18552 mp4ctl = copymsg(mpctl); 18553 if (mp3ctl == NULL || mp4ctl == NULL) { 18554 freemsg(mp4ctl); 18555 freemsg(mp3ctl); 18556 freemsg(mp2ctl); 18557 freemsg(mpctl); 18558 return (NULL); 18559 } 18560 18561 bzero(&ird, sizeof (ird)); 18562 18563 ird.ird_route.lp_head = mpctl->b_cont; 18564 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18565 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18566 18567 zoneid = Q_TO_CONN(q)->conn_zoneid; 18568 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid); 18569 if (zoneid == GLOBAL_ZONEID) { 18570 /* 18571 * Those IREs are used by Mobile-IP; since mipagent(1M) requires 18572 * the sys_net_config privilege, it can only run in the global 18573 * zone, so we don't display these IREs in the other zones. 18574 */ 18575 ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird); 18576 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL); 18577 } 18578 18579 /* ipRouteEntryTable in mpctl */ 18580 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18581 optp->level = MIB2_IP; 18582 optp->name = MIB2_IP_ROUTE; 18583 optp->len = msgdsize(ird.ird_route.lp_head); 18584 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18585 (int)optp->level, (int)optp->name, (int)optp->len)); 18586 qreply(q, mpctl); 18587 18588 /* ipNetToMediaEntryTable in mp3ctl */ 18589 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18590 optp->level = MIB2_IP; 18591 optp->name = MIB2_IP_MEDIA; 18592 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18593 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18594 (int)optp->level, (int)optp->name, (int)optp->len)); 18595 qreply(q, mp3ctl); 18596 18597 /* ipRouteAttributeTable in mp4ctl */ 18598 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18599 optp->level = MIB2_IP; 18600 optp->name = EXPER_IP_RTATTR; 18601 optp->len = msgdsize(ird.ird_attrs.lp_head); 18602 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18603 (int)optp->level, (int)optp->name, (int)optp->len)); 18604 if (optp->len == 0) 18605 freemsg(mp4ctl); 18606 else 18607 qreply(q, mp4ctl); 18608 18609 return (mp2ctl); 18610 } 18611 18612 /* 18613 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 18614 * ipv6NetToMediaEntryTable in an NDP walk. 18615 */ 18616 static mblk_t * 18617 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl) 18618 { 18619 struct opthdr *optp; 18620 mblk_t *mp2ctl; /* Returned */ 18621 mblk_t *mp3ctl; /* nettomedia */ 18622 mblk_t *mp4ctl; /* routeattrs */ 18623 iproutedata_t ird; 18624 zoneid_t zoneid; 18625 18626 /* 18627 * make copies of the original message 18628 * - mp2ctl is returned unchanged to the caller for his use 18629 * - mpctl is sent upstream as ipv6RouteEntryTable 18630 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 18631 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 18632 */ 18633 mp2ctl = copymsg(mpctl); 18634 mp3ctl = copymsg(mpctl); 18635 mp4ctl = copymsg(mpctl); 18636 if (mp3ctl == NULL || mp4ctl == NULL) { 18637 freemsg(mp4ctl); 18638 freemsg(mp3ctl); 18639 freemsg(mp2ctl); 18640 freemsg(mpctl); 18641 return (NULL); 18642 } 18643 18644 bzero(&ird, sizeof (ird)); 18645 18646 ird.ird_route.lp_head = mpctl->b_cont; 18647 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18648 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18649 18650 zoneid = Q_TO_CONN(q)->conn_zoneid; 18651 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid); 18652 18653 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18654 optp->level = MIB2_IP6; 18655 optp->name = MIB2_IP6_ROUTE; 18656 optp->len = msgdsize(ird.ird_route.lp_head); 18657 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18658 (int)optp->level, (int)optp->name, (int)optp->len)); 18659 qreply(q, mpctl); 18660 18661 /* ipv6NetToMediaEntryTable in mp3ctl */ 18662 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird); 18663 18664 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18665 optp->level = MIB2_IP6; 18666 optp->name = MIB2_IP6_MEDIA; 18667 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18668 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18669 (int)optp->level, (int)optp->name, (int)optp->len)); 18670 qreply(q, mp3ctl); 18671 18672 /* ipv6RouteAttributeTable in mp4ctl */ 18673 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18674 optp->level = MIB2_IP6; 18675 optp->name = EXPER_IP_RTATTR; 18676 optp->len = msgdsize(ird.ird_attrs.lp_head); 18677 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18678 (int)optp->level, (int)optp->name, (int)optp->len)); 18679 if (optp->len == 0) 18680 freemsg(mp4ctl); 18681 else 18682 qreply(q, mp4ctl); 18683 18684 return (mp2ctl); 18685 } 18686 18687 /* 18688 * ICMPv6 mib: One per ill 18689 */ 18690 static mblk_t * 18691 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl) 18692 { 18693 struct opthdr *optp; 18694 mblk_t *mp2ctl; 18695 ill_t *ill; 18696 ill_walk_context_t ctx; 18697 mblk_t *mp_tail = NULL; 18698 18699 /* 18700 * Make a copy of the original message 18701 */ 18702 mp2ctl = copymsg(mpctl); 18703 18704 /* fixed length IPv6 structure ... */ 18705 18706 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18707 optp->level = MIB2_IP6; 18708 optp->name = 0; 18709 /* Include "unknown interface" ip6_mib */ 18710 ip6_mib.ipv6IfIndex = 0; /* Flag to netstat */ 18711 SET_MIB(ip6_mib.ipv6Forwarding, ipv6_forward ? 1 : 2); 18712 SET_MIB(ip6_mib.ipv6DefaultHopLimit, ipv6_def_hops); 18713 SET_MIB(ip6_mib.ipv6IfStatsEntrySize, 18714 sizeof (mib2_ipv6IfStatsEntry_t)); 18715 SET_MIB(ip6_mib.ipv6AddrEntrySize, sizeof (mib2_ipv6AddrEntry_t)); 18716 SET_MIB(ip6_mib.ipv6RouteEntrySize, sizeof (mib2_ipv6RouteEntry_t)); 18717 SET_MIB(ip6_mib.ipv6NetToMediaEntrySize, 18718 sizeof (mib2_ipv6NetToMediaEntry_t)); 18719 SET_MIB(ip6_mib.ipv6MemberEntrySize, sizeof (ipv6_member_t)); 18720 SET_MIB(ip6_mib.ipv6GroupSourceEntrySize, sizeof (ipv6_grpsrc_t)); 18721 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip6_mib, 18722 (int)sizeof (ip6_mib))) { 18723 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 18724 (uint_t)sizeof (ip6_mib))); 18725 } 18726 18727 rw_enter(&ill_g_lock, RW_READER); 18728 ill = ILL_START_WALK_V6(&ctx); 18729 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18730 ill->ill_ip6_mib->ipv6IfIndex = 18731 ill->ill_phyint->phyint_ifindex; 18732 SET_MIB(ill->ill_ip6_mib->ipv6Forwarding, 18733 ipv6_forward ? 1 : 2); 18734 SET_MIB(ill->ill_ip6_mib->ipv6DefaultHopLimit, 18735 ill->ill_max_hops); 18736 SET_MIB(ill->ill_ip6_mib->ipv6IfStatsEntrySize, 18737 sizeof (mib2_ipv6IfStatsEntry_t)); 18738 SET_MIB(ill->ill_ip6_mib->ipv6AddrEntrySize, 18739 sizeof (mib2_ipv6AddrEntry_t)); 18740 SET_MIB(ill->ill_ip6_mib->ipv6RouteEntrySize, 18741 sizeof (mib2_ipv6RouteEntry_t)); 18742 SET_MIB(ill->ill_ip6_mib->ipv6NetToMediaEntrySize, 18743 sizeof (mib2_ipv6NetToMediaEntry_t)); 18744 SET_MIB(ill->ill_ip6_mib->ipv6MemberEntrySize, 18745 sizeof (ipv6_member_t)); 18746 18747 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18748 (char *)ill->ill_ip6_mib, 18749 (int)sizeof (*ill->ill_ip6_mib))) { 18750 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 18751 "%u bytes\n", 18752 (uint_t)sizeof (*ill->ill_ip6_mib))); 18753 } 18754 } 18755 rw_exit(&ill_g_lock); 18756 18757 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18758 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 18759 (int)optp->level, (int)optp->name, (int)optp->len)); 18760 qreply(q, mpctl); 18761 return (mp2ctl); 18762 } 18763 18764 /* 18765 * ICMPv6 mib: One per ill 18766 */ 18767 static mblk_t * 18768 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl) 18769 { 18770 struct opthdr *optp; 18771 mblk_t *mp2ctl; 18772 ill_t *ill; 18773 ill_walk_context_t ctx; 18774 mblk_t *mp_tail = NULL; 18775 /* 18776 * Make a copy of the original message 18777 */ 18778 mp2ctl = copymsg(mpctl); 18779 18780 /* fixed length ICMPv6 structure ... */ 18781 18782 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18783 optp->level = MIB2_ICMP6; 18784 optp->name = 0; 18785 /* Include "unknown interface" icmp6_mib */ 18786 icmp6_mib.ipv6IfIcmpIfIndex = 0; /* Flag to netstat */ 18787 icmp6_mib.ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t); 18788 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&icmp6_mib, 18789 (int)sizeof (icmp6_mib))) { 18790 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 18791 (uint_t)sizeof (icmp6_mib))); 18792 } 18793 18794 rw_enter(&ill_g_lock, RW_READER); 18795 ill = ILL_START_WALK_V6(&ctx); 18796 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18797 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 18798 ill->ill_phyint->phyint_ifindex; 18799 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 18800 sizeof (mib2_ipv6IfIcmpEntry_t); 18801 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18802 (char *)ill->ill_icmp6_mib, 18803 (int)sizeof (*ill->ill_icmp6_mib))) { 18804 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 18805 "%u bytes\n", 18806 (uint_t)sizeof (*ill->ill_icmp6_mib))); 18807 } 18808 } 18809 rw_exit(&ill_g_lock); 18810 18811 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18812 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 18813 (int)optp->level, (int)optp->name, (int)optp->len)); 18814 qreply(q, mpctl); 18815 return (mp2ctl); 18816 } 18817 18818 /* 18819 * ire_walk routine to create both ipRouteEntryTable and 18820 * ipRouteAttributeTable in one IRE walk 18821 */ 18822 static void 18823 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 18824 { 18825 ill_t *ill; 18826 ipif_t *ipif; 18827 mib2_ipRouteEntry_t *re; 18828 mib2_ipAttributeEntry_t *iae, *iaeptr; 18829 ipaddr_t gw_addr; 18830 tsol_ire_gw_secattr_t *attrp; 18831 tsol_gc_t *gc = NULL; 18832 tsol_gcgrp_t *gcgrp = NULL; 18833 uint_t sacnt = 0; 18834 int i; 18835 18836 ASSERT(ire->ire_ipversion == IPV4_VERSION); 18837 18838 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 18839 return; 18840 18841 if ((attrp = ire->ire_gw_secattr) != NULL) { 18842 mutex_enter(&attrp->igsa_lock); 18843 if ((gc = attrp->igsa_gc) != NULL) { 18844 gcgrp = gc->gc_grp; 18845 ASSERT(gcgrp != NULL); 18846 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18847 sacnt = 1; 18848 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 18849 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18850 gc = gcgrp->gcgrp_head; 18851 sacnt = gcgrp->gcgrp_count; 18852 } 18853 mutex_exit(&attrp->igsa_lock); 18854 18855 /* do nothing if there's no gc to report */ 18856 if (gc == NULL) { 18857 ASSERT(sacnt == 0); 18858 if (gcgrp != NULL) { 18859 /* we might as well drop the lock now */ 18860 rw_exit(&gcgrp->gcgrp_rwlock); 18861 gcgrp = NULL; 18862 } 18863 attrp = NULL; 18864 } 18865 18866 ASSERT(gc == NULL || (gcgrp != NULL && 18867 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 18868 } 18869 ASSERT(sacnt == 0 || gc != NULL); 18870 18871 if (sacnt != 0 && 18872 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 18873 kmem_free(re, sizeof (*re)); 18874 rw_exit(&gcgrp->gcgrp_rwlock); 18875 return; 18876 } 18877 18878 /* 18879 * Return all IRE types for route table... let caller pick and choose 18880 */ 18881 re->ipRouteDest = ire->ire_addr; 18882 ipif = ire->ire_ipif; 18883 re->ipRouteIfIndex.o_length = 0; 18884 if (ire->ire_type == IRE_CACHE) { 18885 ill = (ill_t *)ire->ire_stq->q_ptr; 18886 re->ipRouteIfIndex.o_length = 18887 ill->ill_name_length == 0 ? 0 : 18888 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18889 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 18890 re->ipRouteIfIndex.o_length); 18891 } else if (ipif != NULL) { 18892 (void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, 18893 OCTET_LENGTH); 18894 re->ipRouteIfIndex.o_length = 18895 mi_strlen(re->ipRouteIfIndex.o_bytes); 18896 } 18897 re->ipRouteMetric1 = -1; 18898 re->ipRouteMetric2 = -1; 18899 re->ipRouteMetric3 = -1; 18900 re->ipRouteMetric4 = -1; 18901 18902 gw_addr = ire->ire_gateway_addr; 18903 18904 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 18905 re->ipRouteNextHop = ire->ire_src_addr; 18906 else 18907 re->ipRouteNextHop = gw_addr; 18908 /* indirect(4), direct(3), or invalid(2) */ 18909 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 18910 re->ipRouteType = 2; 18911 else 18912 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 18913 re->ipRouteProto = -1; 18914 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 18915 re->ipRouteMask = ire->ire_mask; 18916 re->ipRouteMetric5 = -1; 18917 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 18918 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 18919 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 18920 re->ipRouteInfo.re_ref = ire->ire_refcnt; 18921 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 18922 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 18923 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 18924 re->ipRouteInfo.re_flags = ire->ire_flags; 18925 re->ipRouteInfo.re_in_ill.o_length = 0; 18926 18927 if (ire->ire_flags & RTF_DYNAMIC) { 18928 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 18929 } else { 18930 re->ipRouteInfo.re_ire_type = ire->ire_type; 18931 } 18932 18933 if (ire->ire_in_ill != NULL) { 18934 re->ipRouteInfo.re_in_ill.o_length = 18935 ire->ire_in_ill->ill_name_length == 0 ? 0 : 18936 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 18937 bcopy(ire->ire_in_ill->ill_name, 18938 re->ipRouteInfo.re_in_ill.o_bytes, 18939 re->ipRouteInfo.re_in_ill.o_length); 18940 } 18941 re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 18942 18943 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 18944 (char *)re, (int)sizeof (*re))) { 18945 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18946 (uint_t)sizeof (*re))); 18947 } 18948 18949 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 18950 iaeptr->iae_routeidx = ird->ird_idx; 18951 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 18952 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 18953 } 18954 18955 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 18956 (char *)iae, sacnt * sizeof (*iae))) { 18957 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18958 (unsigned)(sacnt * sizeof (*iae)))); 18959 } 18960 18961 /* bump route index for next pass */ 18962 ird->ird_idx++; 18963 18964 kmem_free(re, sizeof (*re)); 18965 if (sacnt != 0) 18966 kmem_free(iae, sacnt * sizeof (*iae)); 18967 18968 if (gcgrp != NULL) 18969 rw_exit(&gcgrp->gcgrp_rwlock); 18970 } 18971 18972 /* 18973 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 18974 */ 18975 static void 18976 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 18977 { 18978 ill_t *ill; 18979 ipif_t *ipif; 18980 mib2_ipv6RouteEntry_t *re; 18981 mib2_ipAttributeEntry_t *iae, *iaeptr; 18982 in6_addr_t gw_addr_v6; 18983 tsol_ire_gw_secattr_t *attrp; 18984 tsol_gc_t *gc = NULL; 18985 tsol_gcgrp_t *gcgrp = NULL; 18986 uint_t sacnt = 0; 18987 int i; 18988 18989 ASSERT(ire->ire_ipversion == IPV6_VERSION); 18990 18991 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 18992 return; 18993 18994 if ((attrp = ire->ire_gw_secattr) != NULL) { 18995 mutex_enter(&attrp->igsa_lock); 18996 if ((gc = attrp->igsa_gc) != NULL) { 18997 gcgrp = gc->gc_grp; 18998 ASSERT(gcgrp != NULL); 18999 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19000 sacnt = 1; 19001 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19002 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19003 gc = gcgrp->gcgrp_head; 19004 sacnt = gcgrp->gcgrp_count; 19005 } 19006 mutex_exit(&attrp->igsa_lock); 19007 19008 /* do nothing if there's no gc to report */ 19009 if (gc == NULL) { 19010 ASSERT(sacnt == 0); 19011 if (gcgrp != NULL) { 19012 /* we might as well drop the lock now */ 19013 rw_exit(&gcgrp->gcgrp_rwlock); 19014 gcgrp = NULL; 19015 } 19016 attrp = NULL; 19017 } 19018 19019 ASSERT(gc == NULL || (gcgrp != NULL && 19020 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19021 } 19022 ASSERT(sacnt == 0 || gc != NULL); 19023 19024 if (sacnt != 0 && 19025 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19026 kmem_free(re, sizeof (*re)); 19027 rw_exit(&gcgrp->gcgrp_rwlock); 19028 return; 19029 } 19030 19031 /* 19032 * Return all IRE types for route table... let caller pick and choose 19033 */ 19034 re->ipv6RouteDest = ire->ire_addr_v6; 19035 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19036 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19037 re->ipv6RouteIfIndex.o_length = 0; 19038 ipif = ire->ire_ipif; 19039 if (ire->ire_type == IRE_CACHE) { 19040 ill = (ill_t *)ire->ire_stq->q_ptr; 19041 re->ipv6RouteIfIndex.o_length = 19042 ill->ill_name_length == 0 ? 0 : 19043 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19044 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19045 re->ipv6RouteIfIndex.o_length); 19046 } else if (ipif != NULL) { 19047 (void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, 19048 OCTET_LENGTH); 19049 re->ipv6RouteIfIndex.o_length = 19050 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19051 } 19052 19053 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19054 19055 mutex_enter(&ire->ire_lock); 19056 gw_addr_v6 = ire->ire_gateway_addr_v6; 19057 mutex_exit(&ire->ire_lock); 19058 19059 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19060 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19061 else 19062 re->ipv6RouteNextHop = gw_addr_v6; 19063 19064 /* remote(4), local(3), or discard(2) */ 19065 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19066 re->ipv6RouteType = 2; 19067 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19068 re->ipv6RouteType = 3; 19069 else 19070 re->ipv6RouteType = 4; 19071 19072 re->ipv6RouteProtocol = -1; 19073 re->ipv6RoutePolicy = 0; 19074 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19075 re->ipv6RouteNextHopRDI = 0; 19076 re->ipv6RouteWeight = 0; 19077 re->ipv6RouteMetric = 0; 19078 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19079 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19080 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19081 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19082 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19083 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19084 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19085 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19086 19087 if (ire->ire_flags & RTF_DYNAMIC) { 19088 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19089 } else { 19090 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19091 } 19092 19093 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19094 (char *)re, (int)sizeof (*re))) { 19095 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19096 (uint_t)sizeof (*re))); 19097 } 19098 19099 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19100 iaeptr->iae_routeidx = ird->ird_idx; 19101 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19102 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19103 } 19104 19105 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19106 (char *)iae, sacnt * sizeof (*iae))) { 19107 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19108 (unsigned)(sacnt * sizeof (*iae)))); 19109 } 19110 19111 /* bump route index for next pass */ 19112 ird->ird_idx++; 19113 19114 kmem_free(re, sizeof (*re)); 19115 if (sacnt != 0) 19116 kmem_free(iae, sacnt * sizeof (*iae)); 19117 19118 if (gcgrp != NULL) 19119 rw_exit(&gcgrp->gcgrp_rwlock); 19120 } 19121 19122 /* 19123 * ndp_walk routine to create ipv6NetToMediaEntryTable 19124 */ 19125 static int 19126 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19127 { 19128 ill_t *ill; 19129 mib2_ipv6NetToMediaEntry_t ntme; 19130 dl_unitdata_req_t *dl; 19131 19132 ill = nce->nce_ill; 19133 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19134 return (0); 19135 19136 /* 19137 * Neighbor cache entry attached to IRE with on-link 19138 * destination. 19139 */ 19140 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19141 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19142 if ((ill->ill_flags & ILLF_XRESOLV) && 19143 (nce->nce_res_mp != NULL)) { 19144 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19145 ntme.ipv6NetToMediaPhysAddress.o_length = 19146 dl->dl_dest_addr_length; 19147 } else { 19148 ntme.ipv6NetToMediaPhysAddress.o_length = 19149 ill->ill_phys_addr_length; 19150 } 19151 if (nce->nce_res_mp != NULL) { 19152 bcopy((char *)nce->nce_res_mp->b_rptr + 19153 NCE_LL_ADDR_OFFSET(ill), 19154 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19155 ntme.ipv6NetToMediaPhysAddress.o_length); 19156 } else { 19157 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19158 ill->ill_phys_addr_length); 19159 } 19160 /* 19161 * Note: Returns ND_* states. Should be: 19162 * reachable(1), stale(2), delay(3), probe(4), 19163 * invalid(5), unknown(6) 19164 */ 19165 ntme.ipv6NetToMediaState = nce->nce_state; 19166 ntme.ipv6NetToMediaLastUpdated = 0; 19167 19168 /* other(1), dynamic(2), static(3), local(4) */ 19169 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19170 ntme.ipv6NetToMediaType = 4; 19171 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19172 ntme.ipv6NetToMediaType = 1; 19173 } else { 19174 ntme.ipv6NetToMediaType = 2; 19175 } 19176 19177 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19178 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19179 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19180 (uint_t)sizeof (ntme))); 19181 } 19182 return (0); 19183 } 19184 19185 /* 19186 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19187 */ 19188 /* ARGSUSED */ 19189 int 19190 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19191 { 19192 switch (level) { 19193 case MIB2_IP: 19194 case MIB2_ICMP: 19195 switch (name) { 19196 default: 19197 break; 19198 } 19199 return (1); 19200 default: 19201 return (1); 19202 } 19203 } 19204 19205 /* 19206 * Called before the options are updated to check if this packet will 19207 * be source routed from here. 19208 * This routine assumes that the options are well formed i.e. that they 19209 * have already been checked. 19210 */ 19211 static boolean_t 19212 ip_source_routed(ipha_t *ipha) 19213 { 19214 ipoptp_t opts; 19215 uchar_t *opt; 19216 uint8_t optval; 19217 uint8_t optlen; 19218 ipaddr_t dst; 19219 ire_t *ire; 19220 19221 if (IS_SIMPLE_IPH(ipha)) { 19222 ip2dbg(("not source routed\n")); 19223 return (B_FALSE); 19224 } 19225 dst = ipha->ipha_dst; 19226 for (optval = ipoptp_first(&opts, ipha); 19227 optval != IPOPT_EOL; 19228 optval = ipoptp_next(&opts)) { 19229 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19230 opt = opts.ipoptp_cur; 19231 optlen = opts.ipoptp_len; 19232 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19233 optval, optlen)); 19234 switch (optval) { 19235 uint32_t off; 19236 case IPOPT_SSRR: 19237 case IPOPT_LSRR: 19238 /* 19239 * If dst is one of our addresses and there are some 19240 * entries left in the source route return (true). 19241 */ 19242 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19243 ALL_ZONES, NULL, MATCH_IRE_TYPE); 19244 if (ire == NULL) { 19245 ip2dbg(("ip_source_routed: not next" 19246 " source route 0x%x\n", 19247 ntohl(dst))); 19248 return (B_FALSE); 19249 } 19250 ire_refrele(ire); 19251 off = opt[IPOPT_OFFSET]; 19252 off--; 19253 if (optlen < IP_ADDR_LEN || 19254 off > optlen - IP_ADDR_LEN) { 19255 /* End of source route */ 19256 ip1dbg(("ip_source_routed: end of SR\n")); 19257 return (B_FALSE); 19258 } 19259 return (B_TRUE); 19260 } 19261 } 19262 ip2dbg(("not source routed\n")); 19263 return (B_FALSE); 19264 } 19265 19266 /* 19267 * Check if the packet contains any source route. 19268 */ 19269 static boolean_t 19270 ip_source_route_included(ipha_t *ipha) 19271 { 19272 ipoptp_t opts; 19273 uint8_t optval; 19274 19275 if (IS_SIMPLE_IPH(ipha)) 19276 return (B_FALSE); 19277 for (optval = ipoptp_first(&opts, ipha); 19278 optval != IPOPT_EOL; 19279 optval = ipoptp_next(&opts)) { 19280 switch (optval) { 19281 case IPOPT_SSRR: 19282 case IPOPT_LSRR: 19283 return (B_TRUE); 19284 } 19285 } 19286 return (B_FALSE); 19287 } 19288 19289 /* 19290 * Called when the IRE expiration timer fires. 19291 */ 19292 /* ARGSUSED */ 19293 void 19294 ip_trash_timer_expire(void *args) 19295 { 19296 int flush_flag = 0; 19297 19298 /* 19299 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19300 * This lock makes sure that a new invocation of this function 19301 * that occurs due to an almost immediate timer firing will not 19302 * progress beyond this point until the current invocation is done 19303 */ 19304 mutex_enter(&ip_trash_timer_lock); 19305 ip_ire_expire_id = 0; 19306 mutex_exit(&ip_trash_timer_lock); 19307 19308 /* Periodic timer */ 19309 if (ip_ire_arp_time_elapsed >= ip_ire_arp_interval) { 19310 /* 19311 * Remove all IRE_CACHE entries since they might 19312 * contain arp information. 19313 */ 19314 flush_flag |= FLUSH_ARP_TIME; 19315 ip_ire_arp_time_elapsed = 0; 19316 IP_STAT(ip_ire_arp_timer_expired); 19317 } 19318 if (ip_ire_rd_time_elapsed >= ip_ire_redir_interval) { 19319 /* Remove all redirects */ 19320 flush_flag |= FLUSH_REDIRECT_TIME; 19321 ip_ire_rd_time_elapsed = 0; 19322 IP_STAT(ip_ire_redirect_timer_expired); 19323 } 19324 if (ip_ire_pmtu_time_elapsed >= ip_ire_pathmtu_interval) { 19325 /* Increase path mtu */ 19326 flush_flag |= FLUSH_MTU_TIME; 19327 ip_ire_pmtu_time_elapsed = 0; 19328 IP_STAT(ip_ire_pmtu_timer_expired); 19329 } 19330 19331 /* 19332 * Optimize for the case when there are no redirects in the 19333 * ftable, that is, no need to walk the ftable in that case. 19334 */ 19335 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19336 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19337 (char *)(uintptr_t)flush_flag, IP_MASK_TABLE_SIZE, 0, NULL, 19338 ip_cache_table_size, ip_cache_table, NULL, ALL_ZONES); 19339 } 19340 if ((flush_flag & FLUSH_REDIRECT_TIME) && ip_redirect_cnt > 0) { 19341 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19342 ire_expire, (char *)(uintptr_t)flush_flag, 19343 IP_MASK_TABLE_SIZE, 0, NULL, 0, NULL, NULL, ALL_ZONES); 19344 } 19345 if (flush_flag & FLUSH_MTU_TIME) { 19346 /* 19347 * Walk all IPv6 IRE's and update them 19348 * Note that ARP and redirect timers are not 19349 * needed since NUD handles stale entries. 19350 */ 19351 flush_flag = FLUSH_MTU_TIME; 19352 ire_walk_v6(ire_expire, (char *)(uintptr_t)flush_flag, 19353 ALL_ZONES); 19354 } 19355 19356 ip_ire_arp_time_elapsed += ip_timer_interval; 19357 ip_ire_rd_time_elapsed += ip_timer_interval; 19358 ip_ire_pmtu_time_elapsed += ip_timer_interval; 19359 19360 /* 19361 * Hold the lock to serialize timeout calls and prevent 19362 * stale values in ip_ire_expire_id. Otherwise it is possible 19363 * for the timer to fire and a new invocation of this function 19364 * to start before the return value of timeout has been stored 19365 * in ip_ire_expire_id by the current invocation. 19366 */ 19367 mutex_enter(&ip_trash_timer_lock); 19368 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 19369 MSEC_TO_TICK(ip_timer_interval)); 19370 mutex_exit(&ip_trash_timer_lock); 19371 } 19372 19373 /* 19374 * Called by the memory allocator subsystem directly, when the system 19375 * is running low on memory. 19376 */ 19377 /* ARGSUSED */ 19378 void 19379 ip_trash_ire_reclaim(void *args) 19380 { 19381 ire_cache_count_t icc; 19382 ire_cache_reclaim_t icr; 19383 ncc_cache_count_t ncc; 19384 nce_cache_reclaim_t ncr; 19385 uint_t delete_cnt; 19386 /* 19387 * Memory reclaim call back. 19388 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19389 * Then, with a target of freeing 1/Nth of IRE_CACHE 19390 * entries, determine what fraction to free for 19391 * each category of IRE_CACHE entries giving absolute priority 19392 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19393 * entry will be freed unless all offlink entries are freed). 19394 */ 19395 icc.icc_total = 0; 19396 icc.icc_unused = 0; 19397 icc.icc_offlink = 0; 19398 icc.icc_pmtu = 0; 19399 icc.icc_onlink = 0; 19400 ire_walk(ire_cache_count, (char *)&icc); 19401 19402 /* 19403 * Free NCEs for IPv6 like the onlink ires. 19404 */ 19405 ncc.ncc_total = 0; 19406 ncc.ncc_host = 0; 19407 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc); 19408 19409 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 19410 icc.icc_pmtu + icc.icc_onlink); 19411 delete_cnt = icc.icc_total/ip_ire_reclaim_fraction; 19412 IP_STAT(ip_trash_ire_reclaim_calls); 19413 if (delete_cnt == 0) 19414 return; 19415 IP_STAT(ip_trash_ire_reclaim_success); 19416 /* Always delete all unused offlink entries */ 19417 icr.icr_unused = 1; 19418 if (delete_cnt <= icc.icc_unused) { 19419 /* 19420 * Only need to free unused entries. In other words, 19421 * there are enough unused entries to free to meet our 19422 * target number of freed ire cache entries. 19423 */ 19424 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 19425 ncr.ncr_host = 0; 19426 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 19427 /* 19428 * Only need to free unused entries, plus a fraction of offlink 19429 * entries. It follows from the first if statement that 19430 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 19431 */ 19432 delete_cnt -= icc.icc_unused; 19433 /* Round up # deleted by truncating fraction */ 19434 icr.icr_offlink = icc.icc_offlink / delete_cnt; 19435 icr.icr_pmtu = icr.icr_onlink = 0; 19436 ncr.ncr_host = 0; 19437 } else if (delete_cnt <= 19438 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 19439 /* 19440 * Free all unused and offlink entries, plus a fraction of 19441 * pmtu entries. It follows from the previous if statement 19442 * that icc_pmtu is non-zero, and that 19443 * delete_cnt != icc_unused + icc_offlink. 19444 */ 19445 icr.icr_offlink = 1; 19446 delete_cnt -= icc.icc_unused + icc.icc_offlink; 19447 /* Round up # deleted by truncating fraction */ 19448 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 19449 icr.icr_onlink = 0; 19450 ncr.ncr_host = 0; 19451 } else { 19452 /* 19453 * Free all unused, offlink, and pmtu entries, plus a fraction 19454 * of onlink entries. If we're here, then we know that 19455 * icc_onlink is non-zero, and that 19456 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 19457 */ 19458 icr.icr_offlink = icr.icr_pmtu = 1; 19459 delete_cnt -= icc.icc_unused + icc.icc_offlink + 19460 icc.icc_pmtu; 19461 /* Round up # deleted by truncating fraction */ 19462 icr.icr_onlink = icc.icc_onlink / delete_cnt; 19463 /* Using the same delete fraction as for onlink IREs */ 19464 ncr.ncr_host = ncc.ncc_host / delete_cnt; 19465 } 19466 #ifdef DEBUG 19467 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 19468 "fractions %d/%d/%d/%d\n", 19469 icc.icc_total/ip_ire_reclaim_fraction, icc.icc_total, 19470 icc.icc_unused, icc.icc_offlink, 19471 icc.icc_pmtu, icc.icc_onlink, 19472 icr.icr_unused, icr.icr_offlink, 19473 icr.icr_pmtu, icr.icr_onlink)); 19474 #endif 19475 ire_walk(ire_cache_reclaim, (char *)&icr); 19476 if (ncr.ncr_host != 0) 19477 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 19478 (uchar_t *)&ncr); 19479 #ifdef DEBUG 19480 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 19481 icc.icc_pmtu = 0; icc.icc_onlink = 0; 19482 ire_walk(ire_cache_count, (char *)&icc); 19483 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 19484 icc.icc_total, icc.icc_unused, icc.icc_offlink, 19485 icc.icc_pmtu, icc.icc_onlink)); 19486 #endif 19487 } 19488 19489 /* 19490 * ip_unbind is called when a copy of an unbind request is received from the 19491 * upper level protocol. We remove this conn from any fanout hash list it is 19492 * on, and zero out the bind information. No reply is expected up above. 19493 */ 19494 mblk_t * 19495 ip_unbind(queue_t *q, mblk_t *mp) 19496 { 19497 conn_t *connp = Q_TO_CONN(q); 19498 19499 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 19500 19501 if (is_system_labeled() && connp->conn_anon_port) { 19502 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 19503 connp->conn_mlp_type, connp->conn_ulp, 19504 ntohs(connp->conn_lport), B_FALSE); 19505 connp->conn_anon_port = 0; 19506 } 19507 connp->conn_mlp_type = mlptSingle; 19508 19509 ipcl_hash_remove(connp); 19510 19511 ASSERT(mp->b_cont == NULL); 19512 /* 19513 * Convert mp into a T_OK_ACK 19514 */ 19515 mp = mi_tpi_ok_ack_alloc(mp); 19516 19517 /* 19518 * should not happen in practice... T_OK_ACK is smaller than the 19519 * original message. 19520 */ 19521 if (mp == NULL) 19522 return (NULL); 19523 19524 /* 19525 * Don't bzero the ports if its TCP since TCP still needs the 19526 * lport to remove it from its own bind hash. TCP will do the 19527 * cleanup. 19528 */ 19529 if (!IPCL_IS_TCP(connp)) 19530 bzero(&connp->u_port, sizeof (connp->u_port)); 19531 19532 return (mp); 19533 } 19534 19535 /* 19536 * Write side put procedure. Outbound data, IOCTLs, responses from 19537 * resolvers, etc, come down through here. 19538 * 19539 * arg2 is always a queue_t *. 19540 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 19541 * the zoneid. 19542 * When that queue is not an ill_t, then arg must be a conn_t pointer. 19543 */ 19544 void 19545 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 19546 { 19547 conn_t *connp = NULL; 19548 queue_t *q = (queue_t *)arg2; 19549 ipha_t *ipha; 19550 #define rptr ((uchar_t *)ipha) 19551 ire_t *ire = NULL; 19552 ire_t *sctp_ire = NULL; 19553 uint32_t v_hlen_tos_len; 19554 ipaddr_t dst; 19555 mblk_t *first_mp = NULL; 19556 boolean_t mctl_present; 19557 ipsec_out_t *io; 19558 int match_flags; 19559 ill_t *attach_ill = NULL; 19560 /* Bind to IPIF_NOFAILOVER ill etc. */ 19561 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 19562 ipif_t *dst_ipif; 19563 boolean_t multirt_need_resolve = B_FALSE; 19564 mblk_t *copy_mp = NULL; 19565 int err; 19566 zoneid_t zoneid; 19567 int adjust; 19568 uint16_t iplen; 19569 boolean_t need_decref = B_FALSE; 19570 boolean_t ignore_dontroute = B_FALSE; 19571 boolean_t ignore_nexthop = B_FALSE; 19572 boolean_t ip_nexthop = B_FALSE; 19573 ipaddr_t nexthop_addr; 19574 19575 #ifdef _BIG_ENDIAN 19576 #define V_HLEN (v_hlen_tos_len >> 24) 19577 #else 19578 #define V_HLEN (v_hlen_tos_len & 0xFF) 19579 #endif 19580 19581 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 19582 "ip_wput_start: q %p", q); 19583 19584 /* 19585 * ip_wput fast path 19586 */ 19587 19588 /* is packet from ARP ? */ 19589 if (q->q_next != NULL) { 19590 zoneid = (zoneid_t)(uintptr_t)arg; 19591 goto qnext; 19592 } 19593 19594 connp = (conn_t *)arg; 19595 ASSERT(connp != NULL); 19596 zoneid = connp->conn_zoneid; 19597 19598 /* is queue flow controlled? */ 19599 if ((q->q_first != NULL || connp->conn_draining) && 19600 (caller == IP_WPUT)) { 19601 ASSERT(!need_decref); 19602 (void) putq(q, mp); 19603 return; 19604 } 19605 19606 /* Multidata transmit? */ 19607 if (DB_TYPE(mp) == M_MULTIDATA) { 19608 /* 19609 * We should never get here, since all Multidata messages 19610 * originating from tcp should have been directed over to 19611 * tcp_multisend() in the first place. 19612 */ 19613 BUMP_MIB(&ip_mib, ipOutDiscards); 19614 freemsg(mp); 19615 return; 19616 } else if (DB_TYPE(mp) != M_DATA) 19617 goto notdata; 19618 19619 if (mp->b_flag & MSGHASREF) { 19620 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 19621 mp->b_flag &= ~MSGHASREF; 19622 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 19623 need_decref = B_TRUE; 19624 } 19625 ipha = (ipha_t *)mp->b_rptr; 19626 19627 /* is IP header non-aligned or mblk smaller than basic IP header */ 19628 #ifndef SAFETY_BEFORE_SPEED 19629 if (!OK_32PTR(rptr) || 19630 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 19631 goto hdrtoosmall; 19632 #endif 19633 19634 ASSERT(OK_32PTR(ipha)); 19635 19636 /* 19637 * This function assumes that mp points to an IPv4 packet. If it's the 19638 * wrong version, we'll catch it again in ip_output_v6. 19639 * 19640 * Note that this is *only* locally-generated output here, and never 19641 * forwarded data, and that we need to deal only with transports that 19642 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 19643 * label.) 19644 */ 19645 if (is_system_labeled() && 19646 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 19647 !connp->conn_ulp_labeled) { 19648 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 19649 connp->conn_mac_exempt); 19650 ipha = (ipha_t *)mp->b_rptr; 19651 if (err != 0) { 19652 first_mp = mp; 19653 if (err == EINVAL) 19654 goto icmp_parameter_problem; 19655 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 19656 goto drop_pkt; 19657 } 19658 iplen = ntohs(ipha->ipha_length) + adjust; 19659 ipha->ipha_length = htons(iplen); 19660 } 19661 19662 /* 19663 * If there is a policy, try to attach an ipsec_out in 19664 * the front. At the end, first_mp either points to a 19665 * M_DATA message or IPSEC_OUT message linked to a 19666 * M_DATA message. We have to do it now as we might 19667 * lose the "conn" if we go through ip_newroute. 19668 */ 19669 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 19670 if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL, 19671 ipha->ipha_protocol)) == NULL)) { 19672 if (need_decref) 19673 CONN_DEC_REF(connp); 19674 return; 19675 } else { 19676 ASSERT(mp->b_datap->db_type == M_CTL); 19677 first_mp = mp; 19678 mp = mp->b_cont; 19679 mctl_present = B_TRUE; 19680 } 19681 } else { 19682 first_mp = mp; 19683 mctl_present = B_FALSE; 19684 } 19685 19686 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19687 19688 /* is wrong version or IP options present */ 19689 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 19690 goto version_hdrlen_check; 19691 dst = ipha->ipha_dst; 19692 19693 if (connp->conn_nofailover_ill != NULL) { 19694 attach_ill = conn_get_held_ill(connp, 19695 &connp->conn_nofailover_ill, &err); 19696 if (err == ILL_LOOKUP_FAILED) { 19697 if (need_decref) 19698 CONN_DEC_REF(connp); 19699 freemsg(first_mp); 19700 return; 19701 } 19702 } 19703 19704 /* is packet multicast? */ 19705 if (CLASSD(dst)) 19706 goto multicast; 19707 19708 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 19709 (connp->conn_nexthop_set)) { 19710 /* 19711 * If the destination is a broadcast or a loopback 19712 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 19713 * through the standard path. But in the case of local 19714 * destination only SO_DONTROUTE and IP_NEXTHOP go through 19715 * the standard path not IP_XMIT_IF. 19716 */ 19717 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19718 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 19719 (ire->ire_type != IRE_LOOPBACK))) { 19720 if ((connp->conn_dontroute || 19721 connp->conn_nexthop_set) && (ire != NULL) && 19722 (ire->ire_type == IRE_LOCAL)) 19723 goto standard_path; 19724 19725 if (ire != NULL) { 19726 ire_refrele(ire); 19727 /* No more access to ire */ 19728 ire = NULL; 19729 } 19730 /* 19731 * bypass routing checks and go directly to 19732 * interface. 19733 */ 19734 if (connp->conn_dontroute) { 19735 goto dontroute; 19736 } else if (connp->conn_nexthop_set) { 19737 ip_nexthop = B_TRUE; 19738 nexthop_addr = connp->conn_nexthop_v4; 19739 goto send_from_ill; 19740 } 19741 19742 /* 19743 * If IP_XMIT_IF socket option is set, 19744 * then we allow unicast and multicast 19745 * packets to go through the ill. It is 19746 * quite possible that the destination 19747 * is not in the ire cache table and we 19748 * do not want to go to ip_newroute() 19749 * instead we call ip_newroute_ipif. 19750 */ 19751 xmit_ill = conn_get_held_ill(connp, 19752 &connp->conn_xmit_if_ill, &err); 19753 if (err == ILL_LOOKUP_FAILED) { 19754 if (attach_ill != NULL) 19755 ill_refrele(attach_ill); 19756 if (need_decref) 19757 CONN_DEC_REF(connp); 19758 freemsg(first_mp); 19759 return; 19760 } 19761 goto send_from_ill; 19762 } 19763 standard_path: 19764 /* Must be a broadcast, a loopback or a local ire */ 19765 if (ire != NULL) { 19766 ire_refrele(ire); 19767 /* No more access to ire */ 19768 ire = NULL; 19769 } 19770 } 19771 19772 if (attach_ill != NULL) 19773 goto send_from_ill; 19774 19775 /* 19776 * We cache IRE_CACHEs to avoid lookups. We don't do 19777 * this for the tcp global queue and listen end point 19778 * as it does not really have a real destination to 19779 * talk to. This is also true for SCTP. 19780 */ 19781 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 19782 !connp->conn_fully_bound) { 19783 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19784 if (ire == NULL) 19785 goto noirefound; 19786 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19787 "ip_wput_end: q %p (%S)", q, "end"); 19788 19789 /* 19790 * Check if the ire has the RTF_MULTIRT flag, inherited 19791 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 19792 */ 19793 if (ire->ire_flags & RTF_MULTIRT) { 19794 19795 /* 19796 * Force the TTL of multirouted packets if required. 19797 * The TTL of such packets is bounded by the 19798 * ip_multirt_ttl ndd variable. 19799 */ 19800 if ((ip_multirt_ttl > 0) && 19801 (ipha->ipha_ttl > ip_multirt_ttl)) { 19802 ip2dbg(("ip_wput: forcing multirt TTL to %d " 19803 "(was %d), dst 0x%08x\n", 19804 ip_multirt_ttl, ipha->ipha_ttl, 19805 ntohl(ire->ire_addr))); 19806 ipha->ipha_ttl = ip_multirt_ttl; 19807 } 19808 /* 19809 * We look at this point if there are pending 19810 * unresolved routes. ire_multirt_resolvable() 19811 * checks in O(n) that all IRE_OFFSUBNET ire 19812 * entries for the packet's destination and 19813 * flagged RTF_MULTIRT are currently resolved. 19814 * If some remain unresolved, we make a copy 19815 * of the current message. It will be used 19816 * to initiate additional route resolutions. 19817 */ 19818 multirt_need_resolve = 19819 ire_multirt_need_resolve(ire->ire_addr, 19820 MBLK_GETLABEL(first_mp)); 19821 ip2dbg(("ip_wput[TCP]: ire %p, " 19822 "multirt_need_resolve %d, first_mp %p\n", 19823 (void *)ire, multirt_need_resolve, 19824 (void *)first_mp)); 19825 if (multirt_need_resolve) { 19826 copy_mp = copymsg(first_mp); 19827 if (copy_mp != NULL) { 19828 MULTIRT_DEBUG_TAG(copy_mp); 19829 } 19830 } 19831 } 19832 19833 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 19834 19835 /* 19836 * Try to resolve another multiroute if 19837 * ire_multirt_need_resolve() deemed it necessary. 19838 */ 19839 if (copy_mp != NULL) { 19840 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 19841 } 19842 if (need_decref) 19843 CONN_DEC_REF(connp); 19844 return; 19845 } 19846 19847 /* 19848 * Access to conn_ire_cache. (protected by conn_lock) 19849 * 19850 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 19851 * the ire bucket lock here to check for CONDEMNED as it is okay to 19852 * send a packet or two with the IRE_CACHE that is going away. 19853 * Access to the ire requires an ire refhold on the ire prior to 19854 * its use since an interface unplumb thread may delete the cached 19855 * ire and release the refhold at any time. 19856 * 19857 * Caching an ire in the conn_ire_cache 19858 * 19859 * o Caching an ire pointer in the conn requires a strict check for 19860 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 19861 * ires before cleaning up the conns. So the caching of an ire pointer 19862 * in the conn is done after making sure under the bucket lock that the 19863 * ire has not yet been marked CONDEMNED. Otherwise we will end up 19864 * caching an ire after the unplumb thread has cleaned up the conn. 19865 * If the conn does not send a packet subsequently the unplumb thread 19866 * will be hanging waiting for the ire count to drop to zero. 19867 * 19868 * o We also need to atomically test for a null conn_ire_cache and 19869 * set the conn_ire_cache under the the protection of the conn_lock 19870 * to avoid races among concurrent threads trying to simultaneously 19871 * cache an ire in the conn_ire_cache. 19872 */ 19873 mutex_enter(&connp->conn_lock); 19874 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 19875 19876 if (ire != NULL && ire->ire_addr == dst && 19877 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19878 19879 IRE_REFHOLD(ire); 19880 mutex_exit(&connp->conn_lock); 19881 19882 } else { 19883 boolean_t cached = B_FALSE; 19884 connp->conn_ire_cache = NULL; 19885 mutex_exit(&connp->conn_lock); 19886 /* Release the old ire */ 19887 if (ire != NULL && sctp_ire == NULL) 19888 IRE_REFRELE_NOTR(ire); 19889 19890 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19891 if (ire == NULL) 19892 goto noirefound; 19893 IRE_REFHOLD_NOTR(ire); 19894 19895 mutex_enter(&connp->conn_lock); 19896 if (!(connp->conn_state_flags & CONN_CLOSING) && 19897 connp->conn_ire_cache == NULL) { 19898 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 19899 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19900 connp->conn_ire_cache = ire; 19901 cached = B_TRUE; 19902 } 19903 rw_exit(&ire->ire_bucket->irb_lock); 19904 } 19905 mutex_exit(&connp->conn_lock); 19906 19907 /* 19908 * We can continue to use the ire but since it was 19909 * not cached, we should drop the extra reference. 19910 */ 19911 if (!cached) 19912 IRE_REFRELE_NOTR(ire); 19913 } 19914 19915 19916 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19917 "ip_wput_end: q %p (%S)", q, "end"); 19918 19919 /* 19920 * Check if the ire has the RTF_MULTIRT flag, inherited 19921 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 19922 */ 19923 if (ire->ire_flags & RTF_MULTIRT) { 19924 19925 /* 19926 * Force the TTL of multirouted packets if required. 19927 * The TTL of such packets is bounded by the 19928 * ip_multirt_ttl ndd variable. 19929 */ 19930 if ((ip_multirt_ttl > 0) && 19931 (ipha->ipha_ttl > ip_multirt_ttl)) { 19932 ip2dbg(("ip_wput: forcing multirt TTL to %d " 19933 "(was %d), dst 0x%08x\n", 19934 ip_multirt_ttl, ipha->ipha_ttl, 19935 ntohl(ire->ire_addr))); 19936 ipha->ipha_ttl = ip_multirt_ttl; 19937 } 19938 19939 /* 19940 * At this point, we check to see if there are any pending 19941 * unresolved routes. ire_multirt_resolvable() 19942 * checks in O(n) that all IRE_OFFSUBNET ire 19943 * entries for the packet's destination and 19944 * flagged RTF_MULTIRT are currently resolved. 19945 * If some remain unresolved, we make a copy 19946 * of the current message. It will be used 19947 * to initiate additional route resolutions. 19948 */ 19949 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 19950 MBLK_GETLABEL(first_mp)); 19951 ip2dbg(("ip_wput[not TCP]: ire %p, " 19952 "multirt_need_resolve %d, first_mp %p\n", 19953 (void *)ire, multirt_need_resolve, (void *)first_mp)); 19954 if (multirt_need_resolve) { 19955 copy_mp = copymsg(first_mp); 19956 if (copy_mp != NULL) { 19957 MULTIRT_DEBUG_TAG(copy_mp); 19958 } 19959 } 19960 } 19961 19962 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 19963 19964 /* 19965 * Try to resolve another multiroute if 19966 * ire_multirt_resolvable() deemed it necessary 19967 */ 19968 if (copy_mp != NULL) { 19969 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 19970 } 19971 if (need_decref) 19972 CONN_DEC_REF(connp); 19973 return; 19974 19975 qnext: 19976 /* 19977 * Upper Level Protocols pass down complete IP datagrams 19978 * as M_DATA messages. Everything else is a sideshow. 19979 * 19980 * 1) We could be re-entering ip_wput because of ip_neworute 19981 * in which case we could have a IPSEC_OUT message. We 19982 * need to pass through ip_wput like other datagrams and 19983 * hence cannot branch to ip_wput_nondata. 19984 * 19985 * 2) ARP, AH, ESP, and other clients who are on the module 19986 * instance of IP stream, give us something to deal with. 19987 * We will handle AH and ESP here and rest in ip_wput_nondata. 19988 * 19989 * 3) ICMP replies also could come here. 19990 */ 19991 if (DB_TYPE(mp) != M_DATA) { 19992 notdata: 19993 if (DB_TYPE(mp) == M_CTL) { 19994 /* 19995 * M_CTL messages are used by ARP, AH and ESP to 19996 * communicate with IP. We deal with IPSEC_IN and 19997 * IPSEC_OUT here. ip_wput_nondata handles other 19998 * cases. 19999 */ 20000 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20001 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20002 first_mp = mp->b_cont; 20003 first_mp->b_flag &= ~MSGHASREF; 20004 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20005 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20006 CONN_DEC_REF(connp); 20007 connp = NULL; 20008 } 20009 if (ii->ipsec_info_type == IPSEC_IN) { 20010 /* 20011 * Either this message goes back to 20012 * IPSEC for further processing or to 20013 * ULP after policy checks. 20014 */ 20015 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20016 return; 20017 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20018 io = (ipsec_out_t *)ii; 20019 if (io->ipsec_out_proc_begin) { 20020 /* 20021 * IPSEC processing has already started. 20022 * Complete it. 20023 * IPQoS notes: We don't care what is 20024 * in ipsec_out_ill_index since this 20025 * won't be processed for IPQoS policies 20026 * in ipsec_out_process. 20027 */ 20028 ipsec_out_process(q, mp, NULL, 20029 io->ipsec_out_ill_index); 20030 return; 20031 } else { 20032 connp = (q->q_next != NULL) ? 20033 NULL : Q_TO_CONN(q); 20034 first_mp = mp; 20035 mp = mp->b_cont; 20036 mctl_present = B_TRUE; 20037 } 20038 zoneid = io->ipsec_out_zoneid; 20039 ASSERT(zoneid != ALL_ZONES); 20040 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20041 /* 20042 * It's an IPsec control message requesting 20043 * an SADB update to be sent to the IPsec 20044 * hardware acceleration capable ills. 20045 */ 20046 ipsec_ctl_t *ipsec_ctl = 20047 (ipsec_ctl_t *)mp->b_rptr; 20048 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20049 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20050 mblk_t *cmp = mp->b_cont; 20051 20052 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20053 ASSERT(cmp != NULL); 20054 20055 freeb(mp); 20056 ill_ipsec_capab_send_all(satype, cmp, sa); 20057 return; 20058 } else { 20059 /* 20060 * This must be ARP or special TSOL signaling. 20061 */ 20062 ip_wput_nondata(NULL, q, mp, NULL); 20063 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20064 "ip_wput_end: q %p (%S)", q, "nondata"); 20065 return; 20066 } 20067 } else { 20068 /* 20069 * This must be non-(ARP/AH/ESP) messages. 20070 */ 20071 ASSERT(!need_decref); 20072 ip_wput_nondata(NULL, q, mp, NULL); 20073 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20074 "ip_wput_end: q %p (%S)", q, "nondata"); 20075 return; 20076 } 20077 } else { 20078 first_mp = mp; 20079 mctl_present = B_FALSE; 20080 } 20081 20082 ASSERT(first_mp != NULL); 20083 /* 20084 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20085 * to make sure that this packet goes out on the same interface it 20086 * came in. We handle that here. 20087 */ 20088 if (mctl_present) { 20089 uint_t ifindex; 20090 20091 io = (ipsec_out_t *)first_mp->b_rptr; 20092 if (io->ipsec_out_attach_if || 20093 io->ipsec_out_xmit_if || 20094 io->ipsec_out_ip_nexthop) { 20095 ill_t *ill; 20096 20097 /* 20098 * We may have lost the conn context if we are 20099 * coming here from ip_newroute(). Copy the 20100 * nexthop information. 20101 */ 20102 if (io->ipsec_out_ip_nexthop) { 20103 ip_nexthop = B_TRUE; 20104 nexthop_addr = io->ipsec_out_nexthop_addr; 20105 20106 ipha = (ipha_t *)mp->b_rptr; 20107 dst = ipha->ipha_dst; 20108 goto send_from_ill; 20109 } else { 20110 ASSERT(io->ipsec_out_ill_index != 0); 20111 ifindex = io->ipsec_out_ill_index; 20112 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 20113 NULL, NULL, NULL, NULL); 20114 /* 20115 * ipsec_out_xmit_if bit is used to tell 20116 * ip_wput to use the ill to send outgoing data 20117 * as we have no conn when data comes from ICMP 20118 * error msg routines. Currently this feature is 20119 * only used by ip_mrtun_forward routine. 20120 */ 20121 if (io->ipsec_out_xmit_if) { 20122 xmit_ill = ill; 20123 if (xmit_ill == NULL) { 20124 ip1dbg(("ip_output:bad ifindex " 20125 "for xmit_ill %d\n", 20126 ifindex)); 20127 freemsg(first_mp); 20128 BUMP_MIB(&ip_mib, 20129 ipOutDiscards); 20130 ASSERT(!need_decref); 20131 return; 20132 } 20133 /* Free up the ipsec_out_t mblk */ 20134 ASSERT(first_mp->b_cont == mp); 20135 first_mp->b_cont = NULL; 20136 freeb(first_mp); 20137 /* Just send the IP header+ICMP+data */ 20138 first_mp = mp; 20139 ipha = (ipha_t *)mp->b_rptr; 20140 dst = ipha->ipha_dst; 20141 goto send_from_ill; 20142 } else { 20143 attach_ill = ill; 20144 } 20145 20146 if (attach_ill == NULL) { 20147 ASSERT(xmit_ill == NULL); 20148 ip1dbg(("ip_output: bad ifindex for " 20149 "(BIND TO IPIF_NOFAILOVER) %d\n", 20150 ifindex)); 20151 freemsg(first_mp); 20152 BUMP_MIB(&ip_mib, ipOutDiscards); 20153 ASSERT(!need_decref); 20154 return; 20155 } 20156 } 20157 } 20158 } 20159 20160 ASSERT(xmit_ill == NULL); 20161 20162 /* We have a complete IP datagram heading outbound. */ 20163 ipha = (ipha_t *)mp->b_rptr; 20164 20165 #ifndef SPEED_BEFORE_SAFETY 20166 /* 20167 * Make sure we have a full-word aligned message and that at least 20168 * a simple IP header is accessible in the first message. If not, 20169 * try a pullup. 20170 */ 20171 if (!OK_32PTR(rptr) || 20172 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20173 hdrtoosmall: 20174 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20175 BUMP_MIB(&ip_mib, ipOutDiscards); 20176 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20177 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20178 if (first_mp == NULL) 20179 first_mp = mp; 20180 goto drop_pkt; 20181 } 20182 20183 /* This function assumes that mp points to an IPv4 packet. */ 20184 if (is_system_labeled() && q->q_next == NULL && 20185 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20186 !connp->conn_ulp_labeled) { 20187 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20188 &adjust, connp->conn_mac_exempt); 20189 ipha = (ipha_t *)mp->b_rptr; 20190 if (first_mp != NULL) 20191 first_mp->b_cont = mp; 20192 if (err != 0) { 20193 if (first_mp == NULL) 20194 first_mp = mp; 20195 if (err == EINVAL) 20196 goto icmp_parameter_problem; 20197 ip2dbg(("ip_wput: label check failed (%d)\n", 20198 err)); 20199 goto drop_pkt; 20200 } 20201 iplen = ntohs(ipha->ipha_length) + adjust; 20202 ipha->ipha_length = htons(iplen); 20203 } 20204 20205 ipha = (ipha_t *)mp->b_rptr; 20206 if (first_mp == NULL) { 20207 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20208 /* 20209 * If we got here because of "goto hdrtoosmall" 20210 * We need to attach a IPSEC_OUT. 20211 */ 20212 if (connp->conn_out_enforce_policy) { 20213 if (((mp = ipsec_attach_ipsec_out(mp, connp, 20214 NULL, ipha->ipha_protocol)) == NULL)) { 20215 if (need_decref) 20216 CONN_DEC_REF(connp); 20217 return; 20218 } else { 20219 ASSERT(mp->b_datap->db_type == M_CTL); 20220 first_mp = mp; 20221 mp = mp->b_cont; 20222 mctl_present = B_TRUE; 20223 } 20224 } else { 20225 first_mp = mp; 20226 mctl_present = B_FALSE; 20227 } 20228 } 20229 } 20230 #endif 20231 20232 /* Most of the code below is written for speed, not readability */ 20233 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20234 20235 /* 20236 * If ip_newroute() fails, we're going to need a full 20237 * header for the icmp wraparound. 20238 */ 20239 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20240 uint_t v_hlen; 20241 version_hdrlen_check: 20242 ASSERT(first_mp != NULL); 20243 v_hlen = V_HLEN; 20244 /* 20245 * siphon off IPv6 packets coming down from transport 20246 * layer modules here. 20247 * Note: high-order bit carries NUD reachability confirmation 20248 */ 20249 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20250 /* 20251 * XXX implement a IPv4 and IPv6 packet counter per 20252 * conn and switch when ratio exceeds e.g. 10:1 20253 */ 20254 #ifdef notyet 20255 if (q->q_next == NULL) /* Avoid ill queue */ 20256 ip_setqinfo(RD(q), B_TRUE, B_TRUE); 20257 #endif 20258 BUMP_MIB(&ip_mib, ipOutIPv6); 20259 ASSERT(xmit_ill == NULL); 20260 if (attach_ill != NULL) 20261 ill_refrele(attach_ill); 20262 if (need_decref) 20263 mp->b_flag |= MSGHASREF; 20264 (void) ip_output_v6(arg, first_mp, arg2, caller); 20265 return; 20266 } 20267 20268 if ((v_hlen >> 4) != IP_VERSION) { 20269 BUMP_MIB(&ip_mib, ipOutDiscards); 20270 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20271 "ip_wput_end: q %p (%S)", q, "badvers"); 20272 goto drop_pkt; 20273 } 20274 /* 20275 * Is the header length at least 20 bytes? 20276 * 20277 * Are there enough bytes accessible in the header? If 20278 * not, try a pullup. 20279 */ 20280 v_hlen &= 0xF; 20281 v_hlen <<= 2; 20282 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20283 BUMP_MIB(&ip_mib, ipOutDiscards); 20284 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20285 "ip_wput_end: q %p (%S)", q, "badlen"); 20286 goto drop_pkt; 20287 } 20288 if (v_hlen > (mp->b_wptr - rptr)) { 20289 if (!pullupmsg(mp, v_hlen)) { 20290 BUMP_MIB(&ip_mib, ipOutDiscards); 20291 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20292 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20293 goto drop_pkt; 20294 } 20295 ipha = (ipha_t *)mp->b_rptr; 20296 } 20297 /* 20298 * Move first entry from any source route into ipha_dst and 20299 * verify the options 20300 */ 20301 if (ip_wput_options(q, first_mp, ipha, mctl_present, zoneid)) { 20302 ASSERT(xmit_ill == NULL); 20303 if (attach_ill != NULL) 20304 ill_refrele(attach_ill); 20305 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20306 "ip_wput_end: q %p (%S)", q, "badopts"); 20307 if (need_decref) 20308 CONN_DEC_REF(connp); 20309 return; 20310 } 20311 } 20312 dst = ipha->ipha_dst; 20313 20314 /* 20315 * Try to get an IRE_CACHE for the destination address. If we can't, 20316 * we have to run the packet through ip_newroute which will take 20317 * the appropriate action to arrange for an IRE_CACHE, such as querying 20318 * a resolver, or assigning a default gateway, etc. 20319 */ 20320 if (CLASSD(dst)) { 20321 ipif_t *ipif; 20322 uint32_t setsrc = 0; 20323 20324 multicast: 20325 ASSERT(first_mp != NULL); 20326 ASSERT(xmit_ill == NULL); 20327 ip2dbg(("ip_wput: CLASSD\n")); 20328 if (connp == NULL) { 20329 /* 20330 * Use the first good ipif on the ill. 20331 * XXX Should this ever happen? (Appears 20332 * to show up with just ppp and no ethernet due 20333 * to in.rdisc.) 20334 * However, ire_send should be able to 20335 * call ip_wput_ire directly. 20336 * 20337 * XXX Also, this can happen for ICMP and other packets 20338 * with multicast source addresses. Perhaps we should 20339 * fix things so that we drop the packet in question, 20340 * but for now, just run with it. 20341 */ 20342 ill_t *ill = (ill_t *)q->q_ptr; 20343 20344 /* 20345 * Don't honor attach_if for this case. If ill 20346 * is part of the group, ipif could belong to 20347 * any ill and we cannot maintain attach_ill 20348 * and ipif_ill same anymore and the assert 20349 * below would fail. 20350 */ 20351 if (mctl_present && io->ipsec_out_attach_if) { 20352 io->ipsec_out_ill_index = 0; 20353 io->ipsec_out_attach_if = B_FALSE; 20354 ASSERT(attach_ill != NULL); 20355 ill_refrele(attach_ill); 20356 attach_ill = NULL; 20357 } 20358 20359 ASSERT(attach_ill == NULL); 20360 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20361 if (ipif == NULL) { 20362 if (need_decref) 20363 CONN_DEC_REF(connp); 20364 freemsg(first_mp); 20365 return; 20366 } 20367 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20368 ntohl(dst), ill->ill_name)); 20369 } else { 20370 /* 20371 * If both IP_MULTICAST_IF and IP_XMIT_IF are set, 20372 * IP_XMIT_IF is honoured. 20373 * Block comment above this function explains the 20374 * locking mechanism used here 20375 */ 20376 xmit_ill = conn_get_held_ill(connp, 20377 &connp->conn_xmit_if_ill, &err); 20378 if (err == ILL_LOOKUP_FAILED) { 20379 ip1dbg(("ip_wput: No ill for IP_XMIT_IF\n")); 20380 goto drop_pkt; 20381 } 20382 if (xmit_ill == NULL) { 20383 ipif = conn_get_held_ipif(connp, 20384 &connp->conn_multicast_ipif, &err); 20385 if (err == IPIF_LOOKUP_FAILED) { 20386 ip1dbg(("ip_wput: No ipif for " 20387 "multicast\n")); 20388 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20389 goto drop_pkt; 20390 } 20391 } 20392 if (xmit_ill != NULL) { 20393 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20394 if (ipif == NULL) { 20395 ip1dbg(("ip_wput: No ipif for " 20396 "IP_XMIT_IF\n")); 20397 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20398 goto drop_pkt; 20399 } 20400 } else if (ipif == NULL || ipif->ipif_isv6) { 20401 /* 20402 * We must do this ipif determination here 20403 * else we could pass through ip_newroute 20404 * and come back here without the conn context. 20405 * 20406 * Note: we do late binding i.e. we bind to 20407 * the interface when the first packet is sent. 20408 * For performance reasons we do not rebind on 20409 * each packet but keep the binding until the 20410 * next IP_MULTICAST_IF option. 20411 * 20412 * conn_multicast_{ipif,ill} are shared between 20413 * IPv4 and IPv6 and AF_INET6 sockets can 20414 * send both IPv4 and IPv6 packets. Hence 20415 * we have to check that "isv6" matches above. 20416 */ 20417 if (ipif != NULL) 20418 ipif_refrele(ipif); 20419 ipif = ipif_lookup_group(dst, zoneid); 20420 if (ipif == NULL) { 20421 ip1dbg(("ip_wput: No ipif for " 20422 "multicast\n")); 20423 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20424 goto drop_pkt; 20425 } 20426 err = conn_set_held_ipif(connp, 20427 &connp->conn_multicast_ipif, ipif); 20428 if (err == IPIF_LOOKUP_FAILED) { 20429 ipif_refrele(ipif); 20430 ip1dbg(("ip_wput: No ipif for " 20431 "multicast\n")); 20432 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20433 goto drop_pkt; 20434 } 20435 } 20436 } 20437 ASSERT(!ipif->ipif_isv6); 20438 /* 20439 * As we may lose the conn by the time we reach ip_wput_ire, 20440 * we copy conn_multicast_loop and conn_dontroute on to an 20441 * ipsec_out. In case if this datagram goes out secure, 20442 * we need the ill_index also. Copy that also into the 20443 * ipsec_out. 20444 */ 20445 if (mctl_present) { 20446 io = (ipsec_out_t *)first_mp->b_rptr; 20447 ASSERT(first_mp->b_datap->db_type == M_CTL); 20448 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20449 } else { 20450 ASSERT(mp == first_mp); 20451 if ((first_mp = allocb(sizeof (ipsec_info_t), 20452 BPRI_HI)) == NULL) { 20453 ipif_refrele(ipif); 20454 first_mp = mp; 20455 goto drop_pkt; 20456 } 20457 first_mp->b_datap->db_type = M_CTL; 20458 first_mp->b_wptr += sizeof (ipsec_info_t); 20459 /* ipsec_out_secure is B_FALSE now */ 20460 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 20461 io = (ipsec_out_t *)first_mp->b_rptr; 20462 io->ipsec_out_type = IPSEC_OUT; 20463 io->ipsec_out_len = sizeof (ipsec_out_t); 20464 io->ipsec_out_use_global_policy = B_TRUE; 20465 first_mp->b_cont = mp; 20466 mctl_present = B_TRUE; 20467 } 20468 if (attach_ill != NULL) { 20469 ASSERT(attach_ill == ipif->ipif_ill); 20470 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20471 20472 /* 20473 * Check if we need an ire that will not be 20474 * looked up by anybody else i.e. HIDDEN. 20475 */ 20476 if (ill_is_probeonly(attach_ill)) { 20477 match_flags |= MATCH_IRE_MARK_HIDDEN; 20478 } 20479 io->ipsec_out_ill_index = 20480 attach_ill->ill_phyint->phyint_ifindex; 20481 io->ipsec_out_attach_if = B_TRUE; 20482 } else { 20483 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 20484 io->ipsec_out_ill_index = 20485 ipif->ipif_ill->ill_phyint->phyint_ifindex; 20486 } 20487 if (connp != NULL) { 20488 io->ipsec_out_multicast_loop = 20489 connp->conn_multicast_loop; 20490 io->ipsec_out_dontroute = connp->conn_dontroute; 20491 io->ipsec_out_zoneid = connp->conn_zoneid; 20492 } 20493 /* 20494 * If the application uses IP_MULTICAST_IF with 20495 * different logical addresses of the same ILL, we 20496 * need to make sure that the soruce address of 20497 * the packet matches the logical IP address used 20498 * in the option. We do it by initializing ipha_src 20499 * here. This should keep IPSEC also happy as 20500 * when we return from IPSEC processing, we don't 20501 * have to worry about getting the right address on 20502 * the packet. Thus it is sufficient to look for 20503 * IRE_CACHE using MATCH_IRE_ILL rathen than 20504 * MATCH_IRE_IPIF. 20505 * 20506 * NOTE : We need to do it for non-secure case also as 20507 * this might go out secure if there is a global policy 20508 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 20509 * address, the source should be initialized already and 20510 * hence we won't be initializing here. 20511 * 20512 * As we do not have the ire yet, it is possible that 20513 * we set the source address here and then later discover 20514 * that the ire implies the source address to be assigned 20515 * through the RTF_SETSRC flag. 20516 * In that case, the setsrc variable will remind us 20517 * that overwritting the source address by the one 20518 * of the RTF_SETSRC-flagged ire is allowed. 20519 */ 20520 if (ipha->ipha_src == INADDR_ANY && 20521 (connp == NULL || !connp->conn_unspec_src)) { 20522 ipha->ipha_src = ipif->ipif_src_addr; 20523 setsrc = RTF_SETSRC; 20524 } 20525 /* 20526 * Find an IRE which matches the destination and the outgoing 20527 * queue (i.e. the outgoing interface.) 20528 * For loopback use a unicast IP address for 20529 * the ire lookup. 20530 */ 20531 if (ipif->ipif_ill->ill_phyint->phyint_flags & 20532 PHYI_LOOPBACK) { 20533 dst = ipif->ipif_lcl_addr; 20534 } 20535 /* 20536 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 20537 * We don't need to lookup ire in ctable as the packet 20538 * needs to be sent to the destination through the specified 20539 * ill irrespective of ires in the cache table. 20540 */ 20541 ire = NULL; 20542 if (xmit_ill == NULL) { 20543 ire = ire_ctable_lookup(dst, 0, 0, ipif, 20544 zoneid, MBLK_GETLABEL(mp), match_flags); 20545 } 20546 20547 /* 20548 * refrele attach_ill as its not needed anymore. 20549 */ 20550 if (attach_ill != NULL) { 20551 ill_refrele(attach_ill); 20552 attach_ill = NULL; 20553 } 20554 20555 if (ire == NULL) { 20556 /* 20557 * Multicast loopback and multicast forwarding is 20558 * done in ip_wput_ire. 20559 * 20560 * Mark this packet to make it be delivered to 20561 * ip_wput_ire after the new ire has been 20562 * created. 20563 * 20564 * The call to ip_newroute_ipif takes into account 20565 * the setsrc reminder. In any case, we take care 20566 * of the RTF_MULTIRT flag. 20567 */ 20568 mp->b_prev = mp->b_next = NULL; 20569 if (xmit_ill == NULL || 20570 xmit_ill->ill_ipif_up_count > 0) { 20571 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 20572 setsrc | RTF_MULTIRT, zoneid); 20573 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20574 "ip_wput_end: q %p (%S)", q, "noire"); 20575 } else { 20576 freemsg(first_mp); 20577 } 20578 ipif_refrele(ipif); 20579 if (xmit_ill != NULL) 20580 ill_refrele(xmit_ill); 20581 if (need_decref) 20582 CONN_DEC_REF(connp); 20583 return; 20584 } 20585 20586 ipif_refrele(ipif); 20587 ipif = NULL; 20588 ASSERT(xmit_ill == NULL); 20589 20590 /* 20591 * Honor the RTF_SETSRC flag for multicast packets, 20592 * if allowed by the setsrc reminder. 20593 */ 20594 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 20595 ipha->ipha_src = ire->ire_src_addr; 20596 } 20597 20598 /* 20599 * Unconditionally force the TTL to 1 for 20600 * multirouted multicast packets: 20601 * multirouted multicast should not cross 20602 * multicast routers. 20603 */ 20604 if (ire->ire_flags & RTF_MULTIRT) { 20605 if (ipha->ipha_ttl > 1) { 20606 ip2dbg(("ip_wput: forcing multicast " 20607 "multirt TTL to 1 (was %d), dst 0x%08x\n", 20608 ipha->ipha_ttl, ntohl(ire->ire_addr))); 20609 ipha->ipha_ttl = 1; 20610 } 20611 } 20612 } else { 20613 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 20614 if ((ire != NULL) && (ire->ire_type & 20615 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 20616 ignore_dontroute = B_TRUE; 20617 ignore_nexthop = B_TRUE; 20618 } 20619 if (ire != NULL) { 20620 ire_refrele(ire); 20621 ire = NULL; 20622 } 20623 /* 20624 * Guard against coming in from arp in which case conn is NULL. 20625 * Also guard against non M_DATA with dontroute set but 20626 * destined to local, loopback or broadcast addresses. 20627 */ 20628 if (connp != NULL && connp->conn_dontroute && 20629 !ignore_dontroute) { 20630 dontroute: 20631 /* 20632 * Set TTL to 1 if SO_DONTROUTE is set to prevent 20633 * routing protocols from seeing false direct 20634 * connectivity. 20635 */ 20636 ipha->ipha_ttl = 1; 20637 /* 20638 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 20639 * along with SO_DONTROUTE, higher precedence is 20640 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 20641 */ 20642 if (connp->conn_xmit_if_ill == NULL) { 20643 /* If suitable ipif not found, drop packet */ 20644 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid); 20645 if (dst_ipif == NULL) { 20646 ip1dbg(("ip_wput: no route for " 20647 "dst using SO_DONTROUTE\n")); 20648 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20649 mp->b_prev = mp->b_next = NULL; 20650 if (first_mp == NULL) 20651 first_mp = mp; 20652 goto drop_pkt; 20653 } else { 20654 /* 20655 * If suitable ipif has been found, set 20656 * xmit_ill to the corresponding 20657 * ipif_ill because we'll be following 20658 * the IP_XMIT_IF logic. 20659 */ 20660 ASSERT(xmit_ill == NULL); 20661 xmit_ill = dst_ipif->ipif_ill; 20662 mutex_enter(&xmit_ill->ill_lock); 20663 if (!ILL_CAN_LOOKUP(xmit_ill)) { 20664 mutex_exit(&xmit_ill->ill_lock); 20665 xmit_ill = NULL; 20666 ipif_refrele(dst_ipif); 20667 ip1dbg(("ip_wput: no route for" 20668 " dst using" 20669 " SO_DONTROUTE\n")); 20670 BUMP_MIB(&ip_mib, 20671 ipOutNoRoutes); 20672 mp->b_prev = mp->b_next = NULL; 20673 if (first_mp == NULL) 20674 first_mp = mp; 20675 goto drop_pkt; 20676 } 20677 ill_refhold_locked(xmit_ill); 20678 mutex_exit(&xmit_ill->ill_lock); 20679 ipif_refrele(dst_ipif); 20680 } 20681 } 20682 20683 } 20684 /* 20685 * If we are bound to IPIF_NOFAILOVER address, look for 20686 * an IRE_CACHE matching the ill. 20687 */ 20688 send_from_ill: 20689 if (attach_ill != NULL) { 20690 ipif_t *attach_ipif; 20691 20692 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20693 20694 /* 20695 * Check if we need an ire that will not be 20696 * looked up by anybody else i.e. HIDDEN. 20697 */ 20698 if (ill_is_probeonly(attach_ill)) { 20699 match_flags |= MATCH_IRE_MARK_HIDDEN; 20700 } 20701 20702 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 20703 if (attach_ipif == NULL) { 20704 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 20705 goto drop_pkt; 20706 } 20707 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 20708 zoneid, MBLK_GETLABEL(mp), match_flags); 20709 ipif_refrele(attach_ipif); 20710 } else if (xmit_ill != NULL || (connp != NULL && 20711 connp->conn_xmit_if_ill != NULL)) { 20712 /* 20713 * Mark this packet as originated locally 20714 */ 20715 mp->b_prev = mp->b_next = NULL; 20716 /* 20717 * xmit_ill could be NULL if SO_DONTROUTE 20718 * is also set. 20719 */ 20720 if (xmit_ill == NULL) { 20721 xmit_ill = conn_get_held_ill(connp, 20722 &connp->conn_xmit_if_ill, &err); 20723 if (err == ILL_LOOKUP_FAILED) { 20724 if (need_decref) 20725 CONN_DEC_REF(connp); 20726 freemsg(first_mp); 20727 return; 20728 } 20729 if (xmit_ill == NULL) { 20730 if (connp->conn_dontroute) 20731 goto dontroute; 20732 goto send_from_ill; 20733 } 20734 } 20735 /* 20736 * could be SO_DONTROUTE case also. 20737 * check at least one interface is UP as 20738 * spcified by this ILL, and then call 20739 * ip_newroute_ipif() 20740 */ 20741 if (xmit_ill->ill_ipif_up_count > 0) { 20742 ipif_t *ipif; 20743 20744 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20745 if (ipif != NULL) { 20746 ip_newroute_ipif(q, first_mp, ipif, 20747 dst, connp, 0, zoneid); 20748 ipif_refrele(ipif); 20749 ip1dbg(("ip_wput: ip_unicast_if\n")); 20750 } 20751 } else { 20752 freemsg(first_mp); 20753 } 20754 ill_refrele(xmit_ill); 20755 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20756 "ip_wput_end: q %p (%S)", q, "unicast_if"); 20757 if (need_decref) 20758 CONN_DEC_REF(connp); 20759 return; 20760 } else if (ip_nexthop || (connp != NULL && 20761 (connp->conn_nexthop_set)) && !ignore_nexthop) { 20762 if (!ip_nexthop) { 20763 ip_nexthop = B_TRUE; 20764 nexthop_addr = connp->conn_nexthop_v4; 20765 } 20766 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 20767 MATCH_IRE_GW; 20768 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 20769 NULL, zoneid, MBLK_GETLABEL(mp), match_flags); 20770 } else { 20771 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 20772 } 20773 if (!ire) { 20774 /* 20775 * Make sure we don't load spread if this 20776 * is IPIF_NOFAILOVER case. 20777 */ 20778 if ((attach_ill != NULL) || 20779 (ip_nexthop && !ignore_nexthop)) { 20780 if (mctl_present) { 20781 io = (ipsec_out_t *)first_mp->b_rptr; 20782 ASSERT(first_mp->b_datap->db_type == 20783 M_CTL); 20784 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20785 } else { 20786 ASSERT(mp == first_mp); 20787 first_mp = allocb( 20788 sizeof (ipsec_info_t), BPRI_HI); 20789 if (first_mp == NULL) { 20790 first_mp = mp; 20791 goto drop_pkt; 20792 } 20793 first_mp->b_datap->db_type = M_CTL; 20794 first_mp->b_wptr += 20795 sizeof (ipsec_info_t); 20796 /* ipsec_out_secure is B_FALSE now */ 20797 bzero(first_mp->b_rptr, 20798 sizeof (ipsec_info_t)); 20799 io = (ipsec_out_t *)first_mp->b_rptr; 20800 io->ipsec_out_type = IPSEC_OUT; 20801 io->ipsec_out_len = 20802 sizeof (ipsec_out_t); 20803 io->ipsec_out_use_global_policy = 20804 B_TRUE; 20805 first_mp->b_cont = mp; 20806 mctl_present = B_TRUE; 20807 } 20808 if (attach_ill != NULL) { 20809 io->ipsec_out_ill_index = attach_ill-> 20810 ill_phyint->phyint_ifindex; 20811 io->ipsec_out_attach_if = B_TRUE; 20812 } else { 20813 io->ipsec_out_ip_nexthop = ip_nexthop; 20814 io->ipsec_out_nexthop_addr = 20815 nexthop_addr; 20816 } 20817 } 20818 noirefound: 20819 /* 20820 * Mark this packet as having originated on 20821 * this machine. This will be noted in 20822 * ire_add_then_send, which needs to know 20823 * whether to run it back through ip_wput or 20824 * ip_rput following successful resolution. 20825 */ 20826 mp->b_prev = NULL; 20827 mp->b_next = NULL; 20828 ip_newroute(q, first_mp, dst, NULL, connp, zoneid); 20829 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20830 "ip_wput_end: q %p (%S)", q, "newroute"); 20831 if (attach_ill != NULL) 20832 ill_refrele(attach_ill); 20833 if (xmit_ill != NULL) 20834 ill_refrele(xmit_ill); 20835 if (need_decref) 20836 CONN_DEC_REF(connp); 20837 return; 20838 } 20839 } 20840 20841 /* We now know where we are going with it. */ 20842 20843 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20844 "ip_wput_end: q %p (%S)", q, "end"); 20845 20846 /* 20847 * Check if the ire has the RTF_MULTIRT flag, inherited 20848 * from an IRE_OFFSUBNET ire entry in ip_newroute. 20849 */ 20850 if (ire->ire_flags & RTF_MULTIRT) { 20851 /* 20852 * Force the TTL of multirouted packets if required. 20853 * The TTL of such packets is bounded by the 20854 * ip_multirt_ttl ndd variable. 20855 */ 20856 if ((ip_multirt_ttl > 0) && 20857 (ipha->ipha_ttl > ip_multirt_ttl)) { 20858 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20859 "(was %d), dst 0x%08x\n", 20860 ip_multirt_ttl, ipha->ipha_ttl, 20861 ntohl(ire->ire_addr))); 20862 ipha->ipha_ttl = ip_multirt_ttl; 20863 } 20864 /* 20865 * At this point, we check to see if there are any pending 20866 * unresolved routes. ire_multirt_resolvable() 20867 * checks in O(n) that all IRE_OFFSUBNET ire 20868 * entries for the packet's destination and 20869 * flagged RTF_MULTIRT are currently resolved. 20870 * If some remain unresolved, we make a copy 20871 * of the current message. It will be used 20872 * to initiate additional route resolutions. 20873 */ 20874 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20875 MBLK_GETLABEL(first_mp)); 20876 ip2dbg(("ip_wput[noirefound]: ire %p, " 20877 "multirt_need_resolve %d, first_mp %p\n", 20878 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20879 if (multirt_need_resolve) { 20880 copy_mp = copymsg(first_mp); 20881 if (copy_mp != NULL) { 20882 MULTIRT_DEBUG_TAG(copy_mp); 20883 } 20884 } 20885 } 20886 20887 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20888 /* 20889 * Try to resolve another multiroute if 20890 * ire_multirt_resolvable() deemed it necessary. 20891 * At this point, we need to distinguish 20892 * multicasts from other packets. For multicasts, 20893 * we call ip_newroute_ipif() and request that both 20894 * multirouting and setsrc flags are checked. 20895 */ 20896 if (copy_mp != NULL) { 20897 if (CLASSD(dst)) { 20898 ipif_t *ipif = ipif_lookup_group(dst, zoneid); 20899 if (ipif) { 20900 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 20901 RTF_SETSRC | RTF_MULTIRT, zoneid); 20902 ipif_refrele(ipif); 20903 } else { 20904 MULTIRT_DEBUG_UNTAG(copy_mp); 20905 freemsg(copy_mp); 20906 copy_mp = NULL; 20907 } 20908 } else { 20909 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 20910 } 20911 } 20912 if (attach_ill != NULL) 20913 ill_refrele(attach_ill); 20914 if (xmit_ill != NULL) 20915 ill_refrele(xmit_ill); 20916 if (need_decref) 20917 CONN_DEC_REF(connp); 20918 return; 20919 20920 icmp_parameter_problem: 20921 /* could not have originated externally */ 20922 ASSERT(mp->b_prev == NULL); 20923 if (ip_hdr_complete(ipha, zoneid) == 0) { 20924 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20925 /* it's the IP header length that's in trouble */ 20926 icmp_param_problem(q, first_mp, 0, zoneid); 20927 first_mp = NULL; 20928 } 20929 20930 drop_pkt: 20931 ip1dbg(("ip_wput: dropped packet\n")); 20932 if (ire != NULL) 20933 ire_refrele(ire); 20934 if (need_decref) 20935 CONN_DEC_REF(connp); 20936 freemsg(first_mp); 20937 if (attach_ill != NULL) 20938 ill_refrele(attach_ill); 20939 if (xmit_ill != NULL) 20940 ill_refrele(xmit_ill); 20941 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20942 "ip_wput_end: q %p (%S)", q, "droppkt"); 20943 } 20944 20945 /* 20946 * If this is a conn_t queue, then we pass in the conn. This includes the 20947 * zoneid. 20948 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 20949 * in which case we use the global zoneid since those are all part of 20950 * the global zone. 20951 */ 20952 void 20953 ip_wput(queue_t *q, mblk_t *mp) 20954 { 20955 if (CONN_Q(q)) 20956 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 20957 else 20958 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 20959 } 20960 20961 /* 20962 * 20963 * The following rules must be observed when accessing any ipif or ill 20964 * that has been cached in the conn. Typically conn_nofailover_ill, 20965 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 20966 * 20967 * Access: The ipif or ill pointed to from the conn can be accessed under 20968 * the protection of the conn_lock or after it has been refheld under the 20969 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 20970 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 20971 * The reason for this is that a concurrent unplumb could actually be 20972 * cleaning up these cached pointers by walking the conns and might have 20973 * finished cleaning up the conn in question. The macros check that an 20974 * unplumb has not yet started on the ipif or ill. 20975 * 20976 * Caching: An ipif or ill pointer may be cached in the conn only after 20977 * making sure that an unplumb has not started. So the caching is done 20978 * while holding both the conn_lock and the ill_lock and after using the 20979 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 20980 * flag before starting the cleanup of conns. 20981 * 20982 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 20983 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 20984 * or a reference to the ipif or a reference to an ire that references the 20985 * ipif. An ipif does not change its ill except for failover/failback. Since 20986 * failover/failback happens only after bringing down the ipif and making sure 20987 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 20988 * the above holds. 20989 */ 20990 ipif_t * 20991 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 20992 { 20993 ipif_t *ipif; 20994 ill_t *ill; 20995 20996 *err = 0; 20997 rw_enter(&ill_g_lock, RW_READER); 20998 mutex_enter(&connp->conn_lock); 20999 ipif = *ipifp; 21000 if (ipif != NULL) { 21001 ill = ipif->ipif_ill; 21002 mutex_enter(&ill->ill_lock); 21003 if (IPIF_CAN_LOOKUP(ipif)) { 21004 ipif_refhold_locked(ipif); 21005 mutex_exit(&ill->ill_lock); 21006 mutex_exit(&connp->conn_lock); 21007 rw_exit(&ill_g_lock); 21008 return (ipif); 21009 } else { 21010 *err = IPIF_LOOKUP_FAILED; 21011 } 21012 mutex_exit(&ill->ill_lock); 21013 } 21014 mutex_exit(&connp->conn_lock); 21015 rw_exit(&ill_g_lock); 21016 return (NULL); 21017 } 21018 21019 ill_t * 21020 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21021 { 21022 ill_t *ill; 21023 21024 *err = 0; 21025 mutex_enter(&connp->conn_lock); 21026 ill = *illp; 21027 if (ill != NULL) { 21028 mutex_enter(&ill->ill_lock); 21029 if (ILL_CAN_LOOKUP(ill)) { 21030 ill_refhold_locked(ill); 21031 mutex_exit(&ill->ill_lock); 21032 mutex_exit(&connp->conn_lock); 21033 return (ill); 21034 } else { 21035 *err = ILL_LOOKUP_FAILED; 21036 } 21037 mutex_exit(&ill->ill_lock); 21038 } 21039 mutex_exit(&connp->conn_lock); 21040 return (NULL); 21041 } 21042 21043 static int 21044 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21045 { 21046 ill_t *ill; 21047 21048 ill = ipif->ipif_ill; 21049 mutex_enter(&connp->conn_lock); 21050 mutex_enter(&ill->ill_lock); 21051 if (IPIF_CAN_LOOKUP(ipif)) { 21052 *ipifp = ipif; 21053 mutex_exit(&ill->ill_lock); 21054 mutex_exit(&connp->conn_lock); 21055 return (0); 21056 } 21057 mutex_exit(&ill->ill_lock); 21058 mutex_exit(&connp->conn_lock); 21059 return (IPIF_LOOKUP_FAILED); 21060 } 21061 21062 /* 21063 * This is called if the outbound datagram needs fragmentation. 21064 * 21065 * NOTE : This function does not ire_refrele the ire argument passed in. 21066 */ 21067 static void 21068 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid) 21069 { 21070 ipha_t *ipha; 21071 mblk_t *mp; 21072 uint32_t v_hlen_tos_len; 21073 uint32_t max_frag; 21074 uint32_t frag_flag; 21075 boolean_t dont_use; 21076 21077 if (ipsec_mp->b_datap->db_type == M_CTL) { 21078 mp = ipsec_mp->b_cont; 21079 } else { 21080 mp = ipsec_mp; 21081 } 21082 21083 ipha = (ipha_t *)mp->b_rptr; 21084 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21085 21086 #ifdef _BIG_ENDIAN 21087 #define V_HLEN (v_hlen_tos_len >> 24) 21088 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21089 #else 21090 #define V_HLEN (v_hlen_tos_len & 0xFF) 21091 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21092 #endif 21093 21094 #ifndef SPEED_BEFORE_SAFETY 21095 /* 21096 * Check that ipha_length is consistent with 21097 * the mblk length 21098 */ 21099 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21100 ip0dbg(("Packet length mismatch: %d, %ld\n", 21101 LENGTH, msgdsize(mp))); 21102 freemsg(ipsec_mp); 21103 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21104 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21105 "packet length mismatch"); 21106 return; 21107 } 21108 #endif 21109 /* 21110 * Don't use frag_flag if pre-built packet or source 21111 * routed or if multicast (since multicast packets do not solicit 21112 * ICMP "packet too big" messages). Get the values of 21113 * max_frag and frag_flag atomically by acquiring the 21114 * ire_lock. 21115 */ 21116 mutex_enter(&ire->ire_lock); 21117 max_frag = ire->ire_max_frag; 21118 frag_flag = ire->ire_frag_flag; 21119 mutex_exit(&ire->ire_lock); 21120 21121 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21122 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21123 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21124 21125 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21126 (dont_use ? 0 : frag_flag), zoneid); 21127 } 21128 21129 /* 21130 * Used for deciding the MSS size for the upper layer. Thus 21131 * we need to check the outbound policy values in the conn. 21132 */ 21133 int 21134 conn_ipsec_length(conn_t *connp) 21135 { 21136 ipsec_latch_t *ipl; 21137 21138 ipl = connp->conn_latch; 21139 if (ipl == NULL) 21140 return (0); 21141 21142 if (ipl->ipl_out_policy == NULL) 21143 return (0); 21144 21145 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21146 } 21147 21148 /* 21149 * Returns an estimate of the IPSEC headers size. This is used if 21150 * we don't want to call into IPSEC to get the exact size. 21151 */ 21152 int 21153 ipsec_out_extra_length(mblk_t *ipsec_mp) 21154 { 21155 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21156 ipsec_action_t *a; 21157 21158 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21159 if (!io->ipsec_out_secure) 21160 return (0); 21161 21162 a = io->ipsec_out_act; 21163 21164 if (a == NULL) { 21165 ASSERT(io->ipsec_out_policy != NULL); 21166 a = io->ipsec_out_policy->ipsp_act; 21167 } 21168 ASSERT(a != NULL); 21169 21170 return (a->ipa_ovhd); 21171 } 21172 21173 /* 21174 * Returns an estimate of the IPSEC headers size. This is used if 21175 * we don't want to call into IPSEC to get the exact size. 21176 */ 21177 int 21178 ipsec_in_extra_length(mblk_t *ipsec_mp) 21179 { 21180 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21181 ipsec_action_t *a; 21182 21183 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21184 21185 a = ii->ipsec_in_action; 21186 return (a == NULL ? 0 : a->ipa_ovhd); 21187 } 21188 21189 /* 21190 * If there are any source route options, return the true final 21191 * destination. Otherwise, return the destination. 21192 */ 21193 ipaddr_t 21194 ip_get_dst(ipha_t *ipha) 21195 { 21196 ipoptp_t opts; 21197 uchar_t *opt; 21198 uint8_t optval; 21199 uint8_t optlen; 21200 ipaddr_t dst; 21201 uint32_t off; 21202 21203 dst = ipha->ipha_dst; 21204 21205 if (IS_SIMPLE_IPH(ipha)) 21206 return (dst); 21207 21208 for (optval = ipoptp_first(&opts, ipha); 21209 optval != IPOPT_EOL; 21210 optval = ipoptp_next(&opts)) { 21211 opt = opts.ipoptp_cur; 21212 optlen = opts.ipoptp_len; 21213 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21214 switch (optval) { 21215 case IPOPT_SSRR: 21216 case IPOPT_LSRR: 21217 off = opt[IPOPT_OFFSET]; 21218 /* 21219 * If one of the conditions is true, it means 21220 * end of options and dst already has the right 21221 * value. 21222 */ 21223 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21224 off = optlen - IP_ADDR_LEN; 21225 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21226 } 21227 return (dst); 21228 default: 21229 break; 21230 } 21231 } 21232 21233 return (dst); 21234 } 21235 21236 mblk_t * 21237 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21238 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21239 { 21240 ipsec_out_t *io; 21241 mblk_t *first_mp; 21242 boolean_t policy_present; 21243 21244 first_mp = mp; 21245 if (mp->b_datap->db_type == M_CTL) { 21246 io = (ipsec_out_t *)first_mp->b_rptr; 21247 /* 21248 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21249 * 21250 * 1) There is per-socket policy (including cached global 21251 * policy) or a policy on the IP-in-IP tunnel. 21252 * 2) There is no per-socket policy, but it is 21253 * a multicast packet that needs to go out 21254 * on a specific interface. This is the case 21255 * where (ip_wput and ip_wput_multicast) attaches 21256 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21257 * 21258 * In case (2) we check with global policy to 21259 * see if there is a match and set the ill_index 21260 * appropriately so that we can lookup the ire 21261 * properly in ip_wput_ipsec_out. 21262 */ 21263 21264 /* 21265 * ipsec_out_use_global_policy is set to B_FALSE 21266 * in ipsec_in_to_out(). Refer to that function for 21267 * details. 21268 */ 21269 if ((io->ipsec_out_latch == NULL) && 21270 (io->ipsec_out_use_global_policy)) { 21271 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21272 ire, connp, unspec_src, zoneid)); 21273 } 21274 if (!io->ipsec_out_secure) { 21275 /* 21276 * If this is not a secure packet, drop 21277 * the IPSEC_OUT mp and treat it as a clear 21278 * packet. This happens when we are sending 21279 * a ICMP reply back to a clear packet. See 21280 * ipsec_in_to_out() for details. 21281 */ 21282 mp = first_mp->b_cont; 21283 freeb(first_mp); 21284 } 21285 return (mp); 21286 } 21287 /* 21288 * See whether we need to attach a global policy here. We 21289 * don't depend on the conn (as it could be null) for deciding 21290 * what policy this datagram should go through because it 21291 * should have happened in ip_wput if there was some 21292 * policy. This normally happens for connections which are not 21293 * fully bound preventing us from caching policies in 21294 * ip_bind. Packets coming from the TCP listener/global queue 21295 * - which are non-hard_bound - could also be affected by 21296 * applying policy here. 21297 * 21298 * If this packet is coming from tcp global queue or listener, 21299 * we will be applying policy here. This may not be *right* 21300 * if these packets are coming from the detached connection as 21301 * it could have gone in clear before. This happens only if a 21302 * TCP connection started when there is no policy and somebody 21303 * added policy before it became detached. Thus packets of the 21304 * detached connection could go out secure and the other end 21305 * would drop it because it will be expecting in clear. The 21306 * converse is not true i.e if somebody starts a TCP 21307 * connection and deletes the policy, all the packets will 21308 * still go out with the policy that existed before deleting 21309 * because ip_unbind sends up policy information which is used 21310 * by TCP on subsequent ip_wputs. The right solution is to fix 21311 * TCP to attach a dummy IPSEC_OUT and set 21312 * ipsec_out_use_global_policy to B_FALSE. As this might 21313 * affect performance for normal cases, we are not doing it. 21314 * Thus, set policy before starting any TCP connections. 21315 * 21316 * NOTE - We might apply policy even for a hard bound connection 21317 * - for which we cached policy in ip_bind - if somebody added 21318 * global policy after we inherited the policy in ip_bind. 21319 * This means that the packets that were going out in clear 21320 * previously would start going secure and hence get dropped 21321 * on the other side. To fix this, TCP attaches a dummy 21322 * ipsec_out and make sure that we don't apply global policy. 21323 */ 21324 if (ipha != NULL) 21325 policy_present = ipsec_outbound_v4_policy_present; 21326 else 21327 policy_present = ipsec_outbound_v6_policy_present; 21328 if (!policy_present) 21329 return (mp); 21330 21331 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21332 zoneid)); 21333 } 21334 21335 ire_t * 21336 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21337 { 21338 ipaddr_t addr; 21339 ire_t *save_ire; 21340 irb_t *irb; 21341 ill_group_t *illgrp; 21342 int err; 21343 21344 save_ire = ire; 21345 addr = ire->ire_addr; 21346 21347 ASSERT(ire->ire_type == IRE_BROADCAST); 21348 21349 illgrp = connp->conn_outgoing_ill->ill_group; 21350 if (illgrp == NULL) { 21351 *conn_outgoing_ill = conn_get_held_ill(connp, 21352 &connp->conn_outgoing_ill, &err); 21353 if (err == ILL_LOOKUP_FAILED) { 21354 ire_refrele(save_ire); 21355 return (NULL); 21356 } 21357 return (save_ire); 21358 } 21359 /* 21360 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21361 * If it is part of the group, we need to send on the ire 21362 * that has been cleared of IRE_MARK_NORECV and that belongs 21363 * to this group. This is okay as IP_BOUND_IF really means 21364 * any ill in the group. We depend on the fact that the 21365 * first ire in the group is always cleared of IRE_MARK_NORECV 21366 * if such an ire exists. This is possible only if you have 21367 * at least one ill in the group that has not failed. 21368 * 21369 * First get to the ire that matches the address and group. 21370 * 21371 * We don't look for an ire with a matching zoneid because a given zone 21372 * won't always have broadcast ires on all ills in the group. 21373 */ 21374 irb = ire->ire_bucket; 21375 rw_enter(&irb->irb_lock, RW_READER); 21376 if (ire->ire_marks & IRE_MARK_NORECV) { 21377 /* 21378 * If the current zone only has an ire broadcast for this 21379 * address marked NORECV, the ire we want is ahead in the 21380 * bucket, so we look it up deliberately ignoring the zoneid. 21381 */ 21382 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21383 if (ire->ire_addr != addr) 21384 continue; 21385 /* skip over deleted ires */ 21386 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21387 continue; 21388 } 21389 } 21390 while (ire != NULL) { 21391 /* 21392 * If a new interface is coming up, we could end up 21393 * seeing the loopback ire and the non-loopback ire 21394 * may not have been added yet. So check for ire_stq 21395 */ 21396 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 21397 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 21398 break; 21399 } 21400 ire = ire->ire_next; 21401 } 21402 if (ire != NULL && ire->ire_addr == addr && 21403 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 21404 IRE_REFHOLD(ire); 21405 rw_exit(&irb->irb_lock); 21406 ire_refrele(save_ire); 21407 *conn_outgoing_ill = ire_to_ill(ire); 21408 /* 21409 * Refhold the ill to make the conn_outgoing_ill 21410 * independent of the ire. ip_wput_ire goes in a loop 21411 * and may refrele the ire. Since we have an ire at this 21412 * point we don't need to use ILL_CAN_LOOKUP on the ill. 21413 */ 21414 ill_refhold(*conn_outgoing_ill); 21415 return (ire); 21416 } 21417 rw_exit(&irb->irb_lock); 21418 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 21419 /* 21420 * If we can't find a suitable ire, return the original ire. 21421 */ 21422 return (save_ire); 21423 } 21424 21425 /* 21426 * This function does the ire_refrele of the ire passed in as the 21427 * argument. As this function looks up more ires i.e broadcast ires, 21428 * it needs to REFRELE them. Currently, for simplicity we don't 21429 * differentiate the one passed in and looked up here. We always 21430 * REFRELE. 21431 * IPQoS Notes: 21432 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21433 * IPSec packets are done in ipsec_out_process. 21434 * 21435 */ 21436 void 21437 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21438 zoneid_t zoneid) 21439 { 21440 ipha_t *ipha; 21441 #define rptr ((uchar_t *)ipha) 21442 queue_t *stq; 21443 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21444 uint32_t v_hlen_tos_len; 21445 uint32_t ttl_protocol; 21446 ipaddr_t src; 21447 ipaddr_t dst; 21448 uint32_t cksum; 21449 ipaddr_t orig_src; 21450 ire_t *ire1; 21451 mblk_t *next_mp; 21452 uint_t hlen; 21453 uint16_t *up; 21454 uint32_t max_frag = ire->ire_max_frag; 21455 ill_t *ill = ire_to_ill(ire); 21456 int clusterwide; 21457 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21458 int ipsec_len; 21459 mblk_t *first_mp; 21460 ipsec_out_t *io; 21461 boolean_t conn_dontroute; /* conn value for multicast */ 21462 boolean_t conn_multicast_loop; /* conn value for multicast */ 21463 boolean_t multicast_forward; /* Should we forward ? */ 21464 boolean_t unspec_src; 21465 ill_t *conn_outgoing_ill = NULL; 21466 ill_t *ire_ill; 21467 ill_t *ire1_ill; 21468 ill_t *out_ill; 21469 uint32_t ill_index = 0; 21470 boolean_t multirt_send = B_FALSE; 21471 int err; 21472 ipxmit_state_t pktxmit_state; 21473 21474 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 21475 "ip_wput_ire_start: q %p", q); 21476 21477 multicast_forward = B_FALSE; 21478 unspec_src = (connp != NULL && connp->conn_unspec_src); 21479 21480 if (ire->ire_flags & RTF_MULTIRT) { 21481 /* 21482 * Multirouting case. The bucket where ire is stored 21483 * probably holds other RTF_MULTIRT flagged ire 21484 * to the destination. In this call to ip_wput_ire, 21485 * we attempt to send the packet through all 21486 * those ires. Thus, we first ensure that ire is the 21487 * first RTF_MULTIRT ire in the bucket, 21488 * before walking the ire list. 21489 */ 21490 ire_t *first_ire; 21491 irb_t *irb = ire->ire_bucket; 21492 ASSERT(irb != NULL); 21493 21494 /* Make sure we do not omit any multiroute ire. */ 21495 IRB_REFHOLD(irb); 21496 for (first_ire = irb->irb_ire; 21497 first_ire != NULL; 21498 first_ire = first_ire->ire_next) { 21499 if ((first_ire->ire_flags & RTF_MULTIRT) && 21500 (first_ire->ire_addr == ire->ire_addr) && 21501 !(first_ire->ire_marks & 21502 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 21503 break; 21504 } 21505 21506 if ((first_ire != NULL) && (first_ire != ire)) { 21507 IRE_REFHOLD(first_ire); 21508 ire_refrele(ire); 21509 ire = first_ire; 21510 ill = ire_to_ill(ire); 21511 } 21512 IRB_REFRELE(irb); 21513 } 21514 21515 /* 21516 * conn_outgoing_ill is used only in the broadcast loop. 21517 * for performance we don't grab the mutexs in the fastpath 21518 */ 21519 if ((connp != NULL) && 21520 (connp->conn_xmit_if_ill == NULL) && 21521 (ire->ire_type == IRE_BROADCAST) && 21522 ((connp->conn_nofailover_ill != NULL) || 21523 (connp->conn_outgoing_ill != NULL))) { 21524 /* 21525 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 21526 * option. So, see if this endpoint is bound to a 21527 * IPIF_NOFAILOVER address. If so, honor it. This implies 21528 * that if the interface is failed, we will still send 21529 * the packet on the same ill which is what we want. 21530 */ 21531 conn_outgoing_ill = conn_get_held_ill(connp, 21532 &connp->conn_nofailover_ill, &err); 21533 if (err == ILL_LOOKUP_FAILED) { 21534 ire_refrele(ire); 21535 freemsg(mp); 21536 return; 21537 } 21538 if (conn_outgoing_ill == NULL) { 21539 /* 21540 * Choose a good ill in the group to send the 21541 * packets on. 21542 */ 21543 ire = conn_set_outgoing_ill(connp, ire, 21544 &conn_outgoing_ill); 21545 if (ire == NULL) { 21546 freemsg(mp); 21547 return; 21548 } 21549 } 21550 } 21551 21552 if (mp->b_datap->db_type != M_CTL) { 21553 ipha = (ipha_t *)mp->b_rptr; 21554 } else { 21555 io = (ipsec_out_t *)mp->b_rptr; 21556 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21557 ASSERT(zoneid == io->ipsec_out_zoneid); 21558 ASSERT(zoneid != ALL_ZONES); 21559 ipha = (ipha_t *)mp->b_cont->b_rptr; 21560 dst = ipha->ipha_dst; 21561 /* 21562 * For the multicast case, ipsec_out carries conn_dontroute and 21563 * conn_multicast_loop as conn may not be available here. We 21564 * need this for multicast loopback and forwarding which is done 21565 * later in the code. 21566 */ 21567 if (CLASSD(dst)) { 21568 conn_dontroute = io->ipsec_out_dontroute; 21569 conn_multicast_loop = io->ipsec_out_multicast_loop; 21570 /* 21571 * If conn_dontroute is not set or conn_multicast_loop 21572 * is set, we need to do forwarding/loopback. For 21573 * datagrams from ip_wput_multicast, conn_dontroute is 21574 * set to B_TRUE and conn_multicast_loop is set to 21575 * B_FALSE so that we neither do forwarding nor 21576 * loopback. 21577 */ 21578 if (!conn_dontroute || conn_multicast_loop) 21579 multicast_forward = B_TRUE; 21580 } 21581 } 21582 21583 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 21584 ire->ire_zoneid != ALL_ZONES) { 21585 /* 21586 * When a zone sends a packet to another zone, we try to deliver 21587 * the packet under the same conditions as if the destination 21588 * was a real node on the network. To do so, we look for a 21589 * matching route in the forwarding table. 21590 * RTF_REJECT and RTF_BLACKHOLE are handled just like 21591 * ip_newroute() does. 21592 * Note that IRE_LOCAL are special, since they are used 21593 * when the zoneid doesn't match in some cases. This means that 21594 * we need to handle ipha_src differently since ire_src_addr 21595 * belongs to the receiving zone instead of the sending zone. 21596 * When ip_restrict_interzone_loopback is set, then 21597 * ire_cache_lookup() ensures that IRE_LOCAL are only used 21598 * for loopback between zones when the logical "Ethernet" would 21599 * have looped them back. 21600 */ 21601 ire_t *src_ire; 21602 21603 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 21604 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 21605 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE)); 21606 if (src_ire != NULL && 21607 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 21608 (!ip_restrict_interzone_loopback || 21609 ire_local_same_ill_group(ire, src_ire))) { 21610 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 21611 ipha->ipha_src = src_ire->ire_src_addr; 21612 ire_refrele(src_ire); 21613 } else { 21614 ire_refrele(ire); 21615 if (conn_outgoing_ill != NULL) 21616 ill_refrele(conn_outgoing_ill); 21617 BUMP_MIB(&ip_mib, ipOutNoRoutes); 21618 if (src_ire != NULL) { 21619 if (src_ire->ire_flags & RTF_BLACKHOLE) { 21620 ire_refrele(src_ire); 21621 freemsg(mp); 21622 return; 21623 } 21624 ire_refrele(src_ire); 21625 } 21626 if (ip_hdr_complete(ipha, zoneid)) { 21627 /* Failed */ 21628 freemsg(mp); 21629 return; 21630 } 21631 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid); 21632 return; 21633 } 21634 } 21635 21636 if (mp->b_datap->db_type == M_CTL || 21637 ipsec_outbound_v4_policy_present) { 21638 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 21639 unspec_src, zoneid); 21640 if (mp == NULL) { 21641 ire_refrele(ire); 21642 if (conn_outgoing_ill != NULL) 21643 ill_refrele(conn_outgoing_ill); 21644 return; 21645 } 21646 } 21647 21648 first_mp = mp; 21649 ipsec_len = 0; 21650 21651 if (first_mp->b_datap->db_type == M_CTL) { 21652 io = (ipsec_out_t *)first_mp->b_rptr; 21653 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21654 mp = first_mp->b_cont; 21655 ipsec_len = ipsec_out_extra_length(first_mp); 21656 ASSERT(ipsec_len >= 0); 21657 /* We already picked up the zoneid from the M_CTL above */ 21658 ASSERT(zoneid == io->ipsec_out_zoneid); 21659 ASSERT(zoneid != ALL_ZONES); 21660 21661 /* 21662 * Drop M_CTL here if IPsec processing is not needed. 21663 * (Non-IPsec use of M_CTL extracted any information it 21664 * needed above). 21665 */ 21666 if (ipsec_len == 0) { 21667 freeb(first_mp); 21668 first_mp = mp; 21669 } 21670 } 21671 21672 /* 21673 * Fast path for ip_wput_ire 21674 */ 21675 21676 ipha = (ipha_t *)mp->b_rptr; 21677 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21678 dst = ipha->ipha_dst; 21679 21680 /* 21681 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 21682 * if the socket is a SOCK_RAW type. The transport checksum should 21683 * be provided in the pre-built packet, so we don't need to compute it. 21684 * Also, other application set flags, like DF, should not be altered. 21685 * Other transport MUST pass down zero. 21686 */ 21687 ip_hdr_included = ipha->ipha_ident; 21688 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 21689 21690 if (CLASSD(dst)) { 21691 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 21692 ntohl(dst), 21693 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 21694 ntohl(ire->ire_addr))); 21695 } 21696 21697 /* Macros to extract header fields from data already in registers */ 21698 #ifdef _BIG_ENDIAN 21699 #define V_HLEN (v_hlen_tos_len >> 24) 21700 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21701 #define PROTO (ttl_protocol & 0xFF) 21702 #else 21703 #define V_HLEN (v_hlen_tos_len & 0xFF) 21704 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21705 #define PROTO (ttl_protocol >> 8) 21706 #endif 21707 21708 21709 orig_src = src = ipha->ipha_src; 21710 /* (The loop back to "another" is explained down below.) */ 21711 another:; 21712 /* 21713 * Assign an ident value for this packet. We assign idents on 21714 * a per destination basis out of the IRE. There could be 21715 * other threads targeting the same destination, so we have to 21716 * arrange for a atomic increment. Note that we use a 32-bit 21717 * atomic add because it has better performance than its 21718 * 16-bit sibling. 21719 * 21720 * If running in cluster mode and if the source address 21721 * belongs to a replicated service then vector through 21722 * cl_inet_ipident vector to allocate ip identifier 21723 * NOTE: This is a contract private interface with the 21724 * clustering group. 21725 */ 21726 clusterwide = 0; 21727 if (cl_inet_ipident) { 21728 ASSERT(cl_inet_isclusterwide); 21729 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 21730 AF_INET, (uint8_t *)(uintptr_t)src)) { 21731 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 21732 AF_INET, (uint8_t *)(uintptr_t)src, 21733 (uint8_t *)(uintptr_t)dst); 21734 clusterwide = 1; 21735 } 21736 } 21737 if (!clusterwide) { 21738 ipha->ipha_ident = 21739 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 21740 } 21741 21742 #ifndef _BIG_ENDIAN 21743 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 21744 #endif 21745 21746 /* 21747 * Set source address unless sent on an ill or conn_unspec_src is set. 21748 * This is needed to obey conn_unspec_src when packets go through 21749 * ip_newroute + arp. 21750 * Assumes ip_newroute{,_multi} sets the source address as well. 21751 */ 21752 if (src == INADDR_ANY && !unspec_src) { 21753 /* 21754 * Assign the appropriate source address from the IRE if none 21755 * was specified. 21756 */ 21757 ASSERT(ire->ire_ipversion == IPV4_VERSION); 21758 21759 /* 21760 * With IP multipathing, broadcast packets are sent on the ire 21761 * that has been cleared of IRE_MARK_NORECV and that belongs to 21762 * the group. However, this ire might not be in the same zone so 21763 * we can't always use its source address. We look for a 21764 * broadcast ire in the same group and in the right zone. 21765 */ 21766 if (ire->ire_type == IRE_BROADCAST && 21767 ire->ire_zoneid != zoneid) { 21768 ire_t *src_ire = ire_ctable_lookup(dst, 0, 21769 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 21770 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 21771 if (src_ire != NULL) { 21772 src = src_ire->ire_src_addr; 21773 ire_refrele(src_ire); 21774 } else { 21775 ire_refrele(ire); 21776 if (conn_outgoing_ill != NULL) 21777 ill_refrele(conn_outgoing_ill); 21778 freemsg(first_mp); 21779 BUMP_MIB(&ip_mib, ipOutDiscards); 21780 return; 21781 } 21782 } else { 21783 src = ire->ire_src_addr; 21784 } 21785 21786 if (connp == NULL) { 21787 ip1dbg(("ip_wput_ire: no connp and no src " 21788 "address for dst 0x%x, using src 0x%x\n", 21789 ntohl(dst), 21790 ntohl(src))); 21791 } 21792 ipha->ipha_src = src; 21793 } 21794 stq = ire->ire_stq; 21795 21796 /* 21797 * We only allow ire chains for broadcasts since there will 21798 * be multiple IRE_CACHE entries for the same multicast 21799 * address (one per ipif). 21800 */ 21801 next_mp = NULL; 21802 21803 /* broadcast packet */ 21804 if (ire->ire_type == IRE_BROADCAST) 21805 goto broadcast; 21806 21807 /* loopback ? */ 21808 if (stq == NULL) 21809 goto nullstq; 21810 21811 /* The ill_index for outbound ILL */ 21812 ill_index = Q_TO_INDEX(stq); 21813 21814 BUMP_MIB(&ip_mib, ipOutRequests); 21815 ttl_protocol = ((uint16_t *)ipha)[4]; 21816 21817 /* pseudo checksum (do it in parts for IP header checksum) */ 21818 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 21819 21820 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 21821 queue_t *dev_q = stq->q_next; 21822 21823 /* flow controlled */ 21824 if ((dev_q->q_next || dev_q->q_first) && 21825 !canput(dev_q)) 21826 goto blocked; 21827 if ((PROTO == IPPROTO_UDP) && 21828 (ip_hdr_included != IP_HDR_INCLUDED)) { 21829 hlen = (V_HLEN & 0xF) << 2; 21830 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 21831 if (*up != 0) { 21832 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 21833 hlen, LENGTH, max_frag, ipsec_len, cksum); 21834 /* Software checksum? */ 21835 if (DB_CKSUMFLAGS(mp) == 0) { 21836 IP_STAT(ip_out_sw_cksum); 21837 IP_STAT_UPDATE( 21838 ip_udp_out_sw_cksum_bytes, 21839 LENGTH - hlen); 21840 } 21841 } 21842 } 21843 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 21844 hlen = (V_HLEN & 0xF) << 2; 21845 if (PROTO == IPPROTO_TCP) { 21846 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 21847 /* 21848 * The packet header is processed once and for all, even 21849 * in the multirouting case. We disable hardware 21850 * checksum if the packet is multirouted, as it will be 21851 * replicated via several interfaces, and not all of 21852 * them may have this capability. 21853 */ 21854 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 21855 LENGTH, max_frag, ipsec_len, cksum); 21856 /* Software checksum? */ 21857 if (DB_CKSUMFLAGS(mp) == 0) { 21858 IP_STAT(ip_out_sw_cksum); 21859 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 21860 LENGTH - hlen); 21861 } 21862 } else { 21863 sctp_hdr_t *sctph; 21864 21865 ASSERT(PROTO == IPPROTO_SCTP); 21866 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 21867 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 21868 /* 21869 * Zero out the checksum field to ensure proper 21870 * checksum calculation. 21871 */ 21872 sctph->sh_chksum = 0; 21873 #ifdef DEBUG 21874 if (!skip_sctp_cksum) 21875 #endif 21876 sctph->sh_chksum = sctp_cksum(mp, hlen); 21877 } 21878 } 21879 21880 /* 21881 * If this is a multicast packet and originated from ip_wput 21882 * we need to do loopback and forwarding checks. If it comes 21883 * from ip_wput_multicast, we SHOULD not do this. 21884 */ 21885 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 21886 21887 /* checksum */ 21888 cksum += ttl_protocol; 21889 21890 /* fragment the packet */ 21891 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 21892 goto fragmentit; 21893 /* 21894 * Don't use frag_flag if packet is pre-built or source 21895 * routed or if multicast (since multicast packets do 21896 * not solicit ICMP "packet too big" messages). 21897 */ 21898 if ((ip_hdr_included != IP_HDR_INCLUDED) && 21899 (V_HLEN == IP_SIMPLE_HDR_VERSION || 21900 !ip_source_route_included(ipha)) && 21901 !CLASSD(ipha->ipha_dst)) 21902 ipha->ipha_fragment_offset_and_flags |= 21903 htons(ire->ire_frag_flag); 21904 21905 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 21906 /* calculate IP header checksum */ 21907 cksum += ipha->ipha_ident; 21908 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 21909 cksum += ipha->ipha_fragment_offset_and_flags; 21910 21911 /* IP options present */ 21912 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 21913 if (hlen) 21914 goto checksumoptions; 21915 21916 /* calculate hdr checksum */ 21917 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 21918 cksum = ~(cksum + (cksum >> 16)); 21919 ipha->ipha_hdr_checksum = (uint16_t)cksum; 21920 } 21921 if (ipsec_len != 0) { 21922 /* 21923 * We will do the rest of the processing after 21924 * we come back from IPSEC in ip_wput_ipsec_out(). 21925 */ 21926 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 21927 21928 io = (ipsec_out_t *)first_mp->b_rptr; 21929 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 21930 ill_phyint->phyint_ifindex; 21931 21932 ipsec_out_process(q, first_mp, ire, ill_index); 21933 ire_refrele(ire); 21934 if (conn_outgoing_ill != NULL) 21935 ill_refrele(conn_outgoing_ill); 21936 return; 21937 } 21938 21939 /* 21940 * In most cases, the emission loop below is entered only 21941 * once. Only in the case where the ire holds the 21942 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 21943 * flagged ires in the bucket, and send the packet 21944 * through all crossed RTF_MULTIRT routes. 21945 */ 21946 if (ire->ire_flags & RTF_MULTIRT) { 21947 multirt_send = B_TRUE; 21948 } 21949 do { 21950 if (multirt_send) { 21951 irb_t *irb; 21952 /* 21953 * We are in a multiple send case, need to get 21954 * the next ire and make a duplicate of the packet. 21955 * ire1 holds here the next ire to process in the 21956 * bucket. If multirouting is expected, 21957 * any non-RTF_MULTIRT ire that has the 21958 * right destination address is ignored. 21959 */ 21960 irb = ire->ire_bucket; 21961 ASSERT(irb != NULL); 21962 21963 IRB_REFHOLD(irb); 21964 for (ire1 = ire->ire_next; 21965 ire1 != NULL; 21966 ire1 = ire1->ire_next) { 21967 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 21968 continue; 21969 if (ire1->ire_addr != ire->ire_addr) 21970 continue; 21971 if (ire1->ire_marks & 21972 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 21973 continue; 21974 21975 /* Got one */ 21976 IRE_REFHOLD(ire1); 21977 break; 21978 } 21979 IRB_REFRELE(irb); 21980 21981 if (ire1 != NULL) { 21982 next_mp = copyb(mp); 21983 if ((next_mp == NULL) || 21984 ((mp->b_cont != NULL) && 21985 ((next_mp->b_cont = 21986 dupmsg(mp->b_cont)) == NULL))) { 21987 freemsg(next_mp); 21988 next_mp = NULL; 21989 ire_refrele(ire1); 21990 ire1 = NULL; 21991 } 21992 } 21993 21994 /* Last multiroute ire; don't loop anymore. */ 21995 if (ire1 == NULL) { 21996 multirt_send = B_FALSE; 21997 } 21998 } 21999 22000 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22001 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22002 mblk_t *, mp); 22003 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 22004 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp); 22005 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22006 if (mp == NULL) 22007 goto release_ire_and_ill; 22008 22009 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22010 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22011 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22012 if ((pktxmit_state == SEND_FAILED) || 22013 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22014 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22015 "- packet dropped\n")); 22016 release_ire_and_ill: 22017 ire_refrele(ire); 22018 if (next_mp != NULL) { 22019 freemsg(next_mp); 22020 ire_refrele(ire1); 22021 } 22022 if (conn_outgoing_ill != NULL) 22023 ill_refrele(conn_outgoing_ill); 22024 return; 22025 } 22026 22027 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22028 "ip_wput_ire_end: q %p (%S)", 22029 q, "last copy out"); 22030 IRE_REFRELE(ire); 22031 22032 if (multirt_send) { 22033 ASSERT(ire1); 22034 /* 22035 * Proceed with the next RTF_MULTIRT ire, 22036 * Also set up the send-to queue accordingly. 22037 */ 22038 ire = ire1; 22039 ire1 = NULL; 22040 stq = ire->ire_stq; 22041 mp = next_mp; 22042 next_mp = NULL; 22043 ipha = (ipha_t *)mp->b_rptr; 22044 ill_index = Q_TO_INDEX(stq); 22045 } 22046 } while (multirt_send); 22047 if (conn_outgoing_ill != NULL) 22048 ill_refrele(conn_outgoing_ill); 22049 return; 22050 22051 /* 22052 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22053 */ 22054 broadcast: 22055 { 22056 /* 22057 * Avoid broadcast storms by setting the ttl to 1 22058 * for broadcasts. This parameter can be set 22059 * via ndd, so make sure that for the SO_DONTROUTE 22060 * case that ipha_ttl is always set to 1. 22061 * In the event that we are replying to incoming 22062 * ICMP packets, conn could be NULL. 22063 */ 22064 if ((connp != NULL) && connp->conn_dontroute) 22065 ipha->ipha_ttl = 1; 22066 else 22067 ipha->ipha_ttl = ip_broadcast_ttl; 22068 22069 /* 22070 * Note that we are not doing a IRB_REFHOLD here. 22071 * Actually we don't care if the list changes i.e 22072 * if somebody deletes an IRE from the list while 22073 * we drop the lock, the next time we come around 22074 * ire_next will be NULL and hence we won't send 22075 * out multiple copies which is fine. 22076 */ 22077 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22078 ire1 = ire->ire_next; 22079 if (conn_outgoing_ill != NULL) { 22080 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22081 ASSERT(ire1 == ire->ire_next); 22082 if (ire1 != NULL && ire1->ire_addr == dst) { 22083 ire_refrele(ire); 22084 ire = ire1; 22085 IRE_REFHOLD(ire); 22086 ire1 = ire->ire_next; 22087 continue; 22088 } 22089 rw_exit(&ire->ire_bucket->irb_lock); 22090 /* Did not find a matching ill */ 22091 ip1dbg(("ip_wput_ire: broadcast with no " 22092 "matching IP_BOUND_IF ill %s\n", 22093 conn_outgoing_ill->ill_name)); 22094 freemsg(first_mp); 22095 if (ire != NULL) 22096 ire_refrele(ire); 22097 ill_refrele(conn_outgoing_ill); 22098 return; 22099 } 22100 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22101 /* 22102 * If the next IRE has the same address and is not one 22103 * of the two copies that we need to send, try to see 22104 * whether this copy should be sent at all. This 22105 * assumes that we insert loopbacks first and then 22106 * non-loopbacks. This is acheived by inserting the 22107 * loopback always before non-loopback. 22108 * This is used to send a single copy of a broadcast 22109 * packet out all physical interfaces that have an 22110 * matching IRE_BROADCAST while also looping 22111 * back one copy (to ip_wput_local) for each 22112 * matching physical interface. However, we avoid 22113 * sending packets out different logical that match by 22114 * having ipif_up/ipif_down supress duplicate 22115 * IRE_BROADCASTS. 22116 * 22117 * This feature is currently used to get broadcasts 22118 * sent to multiple interfaces, when the broadcast 22119 * address being used applies to multiple interfaces. 22120 * For example, a whole net broadcast will be 22121 * replicated on every connected subnet of 22122 * the target net. 22123 * 22124 * Each zone has its own set of IRE_BROADCASTs, so that 22125 * we're able to distribute inbound packets to multiple 22126 * zones who share a broadcast address. We avoid looping 22127 * back outbound packets in different zones but on the 22128 * same ill, as the application would see duplicates. 22129 * 22130 * If the interfaces are part of the same group, 22131 * we would want to send only one copy out for 22132 * whole group. 22133 * 22134 * This logic assumes that ire_add_v4() groups the 22135 * IRE_BROADCAST entries so that those with the same 22136 * ire_addr and ill_group are kept together. 22137 */ 22138 ire_ill = ire->ire_ipif->ipif_ill; 22139 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22140 if (ire_ill->ill_group != NULL && 22141 (ire->ire_marks & IRE_MARK_NORECV)) { 22142 /* 22143 * If the current zone only has an ire 22144 * broadcast for this address marked 22145 * NORECV, the ire we want is ahead in 22146 * the bucket, so we look it up 22147 * deliberately ignoring the zoneid. 22148 */ 22149 for (ire1 = ire->ire_bucket->irb_ire; 22150 ire1 != NULL; 22151 ire1 = ire1->ire_next) { 22152 ire1_ill = 22153 ire1->ire_ipif->ipif_ill; 22154 if (ire1->ire_addr != dst) 22155 continue; 22156 /* skip over the current ire */ 22157 if (ire1 == ire) 22158 continue; 22159 /* skip over deleted ires */ 22160 if (ire1->ire_marks & 22161 IRE_MARK_CONDEMNED) 22162 continue; 22163 /* 22164 * non-loopback ire in our 22165 * group: use it for the next 22166 * pass in the loop 22167 */ 22168 if (ire1->ire_stq != NULL && 22169 ire1_ill->ill_group == 22170 ire_ill->ill_group) 22171 break; 22172 } 22173 } 22174 } else { 22175 while (ire1 != NULL && ire1->ire_addr == dst) { 22176 ire1_ill = ire1->ire_ipif->ipif_ill; 22177 /* 22178 * We can have two broadcast ires on the 22179 * same ill in different zones; here 22180 * we'll send a copy of the packet on 22181 * each ill and the fanout code will 22182 * call conn_wantpacket() to check that 22183 * the zone has the broadcast address 22184 * configured on the ill. If the two 22185 * ires are in the same group we only 22186 * send one copy up. 22187 */ 22188 if (ire1_ill != ire_ill && 22189 (ire1_ill->ill_group == NULL || 22190 ire_ill->ill_group == NULL || 22191 ire1_ill->ill_group != 22192 ire_ill->ill_group)) { 22193 break; 22194 } 22195 ire1 = ire1->ire_next; 22196 } 22197 } 22198 } 22199 ASSERT(multirt_send == B_FALSE); 22200 if (ire1 != NULL && ire1->ire_addr == dst) { 22201 if ((ire->ire_flags & RTF_MULTIRT) && 22202 (ire1->ire_flags & RTF_MULTIRT)) { 22203 /* 22204 * We are in the multirouting case. 22205 * The message must be sent at least 22206 * on both ires. These ires have been 22207 * inserted AFTER the standard ones 22208 * in ip_rt_add(). There are thus no 22209 * other ire entries for the destination 22210 * address in the rest of the bucket 22211 * that do not have the RTF_MULTIRT 22212 * flag. We don't process a copy 22213 * of the message here. This will be 22214 * done in the final sending loop. 22215 */ 22216 multirt_send = B_TRUE; 22217 } else { 22218 next_mp = ip_copymsg(first_mp); 22219 if (next_mp != NULL) 22220 IRE_REFHOLD(ire1); 22221 } 22222 } 22223 rw_exit(&ire->ire_bucket->irb_lock); 22224 } 22225 22226 if (stq) { 22227 /* 22228 * A non-NULL send-to queue means this packet is going 22229 * out of this machine. 22230 */ 22231 22232 BUMP_MIB(&ip_mib, ipOutRequests); 22233 ttl_protocol = ((uint16_t *)ipha)[4]; 22234 /* 22235 * We accumulate the pseudo header checksum in cksum. 22236 * This is pretty hairy code, so watch close. One 22237 * thing to keep in mind is that UDP and TCP have 22238 * stored their respective datagram lengths in their 22239 * checksum fields. This lines things up real nice. 22240 */ 22241 cksum = (dst >> 16) + (dst & 0xFFFF) + 22242 (src >> 16) + (src & 0xFFFF); 22243 /* 22244 * We assume the udp checksum field contains the 22245 * length, so to compute the pseudo header checksum, 22246 * all we need is the protocol number and src/dst. 22247 */ 22248 /* Provide the checksums for UDP and TCP. */ 22249 if ((PROTO == IPPROTO_TCP) && 22250 (ip_hdr_included != IP_HDR_INCLUDED)) { 22251 /* hlen gets the number of uchar_ts in the IP header */ 22252 hlen = (V_HLEN & 0xF) << 2; 22253 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22254 IP_STAT(ip_out_sw_cksum); 22255 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 22256 LENGTH - hlen); 22257 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22258 if (*up == 0) 22259 *up = 0xFFFF; 22260 } else if (PROTO == IPPROTO_SCTP && 22261 (ip_hdr_included != IP_HDR_INCLUDED)) { 22262 sctp_hdr_t *sctph; 22263 22264 hlen = (V_HLEN & 0xF) << 2; 22265 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22266 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22267 sctph->sh_chksum = 0; 22268 #ifdef DEBUG 22269 if (!skip_sctp_cksum) 22270 #endif 22271 sctph->sh_chksum = sctp_cksum(mp, hlen); 22272 } else { 22273 queue_t *dev_q = stq->q_next; 22274 22275 if ((dev_q->q_next || dev_q->q_first) && 22276 !canput(dev_q)) { 22277 blocked: 22278 ipha->ipha_ident = ip_hdr_included; 22279 /* 22280 * If we don't have a conn to apply 22281 * backpressure, free the message. 22282 * In the ire_send path, we don't know 22283 * the position to requeue the packet. Rather 22284 * than reorder packets, we just drop this 22285 * packet. 22286 */ 22287 if (ip_output_queue && connp != NULL && 22288 caller != IRE_SEND) { 22289 if (caller == IP_WSRV) { 22290 connp->conn_did_putbq = 1; 22291 (void) putbq(connp->conn_wq, 22292 first_mp); 22293 conn_drain_insert(connp); 22294 /* 22295 * This is the service thread, 22296 * and the queue is already 22297 * noenabled. The check for 22298 * canput and the putbq is not 22299 * atomic. So we need to check 22300 * again. 22301 */ 22302 if (canput(stq->q_next)) 22303 connp->conn_did_putbq 22304 = 0; 22305 IP_STAT(ip_conn_flputbq); 22306 } else { 22307 /* 22308 * We are not the service proc. 22309 * ip_wsrv will be scheduled or 22310 * is already running. 22311 */ 22312 (void) putq(connp->conn_wq, 22313 first_mp); 22314 } 22315 } else { 22316 BUMP_MIB(&ip_mib, ipOutDiscards); 22317 freemsg(first_mp); 22318 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22319 "ip_wput_ire_end: q %p (%S)", 22320 q, "discard"); 22321 } 22322 ire_refrele(ire); 22323 if (next_mp) { 22324 ire_refrele(ire1); 22325 freemsg(next_mp); 22326 } 22327 if (conn_outgoing_ill != NULL) 22328 ill_refrele(conn_outgoing_ill); 22329 return; 22330 } 22331 if ((PROTO == IPPROTO_UDP) && 22332 (ip_hdr_included != IP_HDR_INCLUDED)) { 22333 /* 22334 * hlen gets the number of uchar_ts in the 22335 * IP header 22336 */ 22337 hlen = (V_HLEN & 0xF) << 2; 22338 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22339 max_frag = ire->ire_max_frag; 22340 if (*up != 0) { 22341 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 22342 up, PROTO, hlen, LENGTH, max_frag, 22343 ipsec_len, cksum); 22344 /* Software checksum? */ 22345 if (DB_CKSUMFLAGS(mp) == 0) { 22346 IP_STAT(ip_out_sw_cksum); 22347 IP_STAT_UPDATE( 22348 ip_udp_out_sw_cksum_bytes, 22349 LENGTH - hlen); 22350 } 22351 } 22352 } 22353 } 22354 /* 22355 * Need to do this even when fragmenting. The local 22356 * loopback can be done without computing checksums 22357 * but forwarding out other interface must be done 22358 * after the IP checksum (and ULP checksums) have been 22359 * computed. 22360 * 22361 * NOTE : multicast_forward is set only if this packet 22362 * originated from ip_wput. For packets originating from 22363 * ip_wput_multicast, it is not set. 22364 */ 22365 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22366 multi_loopback: 22367 ip2dbg(("ip_wput: multicast, loop %d\n", 22368 conn_multicast_loop)); 22369 22370 /* Forget header checksum offload */ 22371 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22372 22373 /* 22374 * Local loopback of multicasts? Check the 22375 * ill. 22376 * 22377 * Note that the loopback function will not come 22378 * in through ip_rput - it will only do the 22379 * client fanout thus we need to do an mforward 22380 * as well. The is different from the BSD 22381 * logic. 22382 */ 22383 if (ill != NULL) { 22384 ilm_t *ilm; 22385 22386 ILM_WALKER_HOLD(ill); 22387 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 22388 ALL_ZONES); 22389 ILM_WALKER_RELE(ill); 22390 if (ilm != NULL) { 22391 /* 22392 * Pass along the virtual output q. 22393 * ip_wput_local() will distribute the 22394 * packet to all the matching zones, 22395 * except the sending zone when 22396 * IP_MULTICAST_LOOP is false. 22397 */ 22398 ip_multicast_loopback(q, ill, first_mp, 22399 conn_multicast_loop ? 0 : 22400 IP_FF_NO_MCAST_LOOP, zoneid); 22401 } 22402 } 22403 if (ipha->ipha_ttl == 0) { 22404 /* 22405 * 0 => only to this host i.e. we are 22406 * done. We are also done if this was the 22407 * loopback interface since it is sufficient 22408 * to loopback one copy of a multicast packet. 22409 */ 22410 freemsg(first_mp); 22411 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22412 "ip_wput_ire_end: q %p (%S)", 22413 q, "loopback"); 22414 ire_refrele(ire); 22415 if (conn_outgoing_ill != NULL) 22416 ill_refrele(conn_outgoing_ill); 22417 return; 22418 } 22419 /* 22420 * ILLF_MULTICAST is checked in ip_newroute 22421 * i.e. we don't need to check it here since 22422 * all IRE_CACHEs come from ip_newroute. 22423 * For multicast traffic, SO_DONTROUTE is interpreted 22424 * to mean only send the packet out the interface 22425 * (optionally specified with IP_MULTICAST_IF) 22426 * and do not forward it out additional interfaces. 22427 * RSVP and the rsvp daemon is an example of a 22428 * protocol and user level process that 22429 * handles it's own routing. Hence, it uses the 22430 * SO_DONTROUTE option to accomplish this. 22431 */ 22432 22433 if (ip_g_mrouter && !conn_dontroute && ill != NULL) { 22434 /* Unconditionally redo the checksum */ 22435 ipha->ipha_hdr_checksum = 0; 22436 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22437 22438 /* 22439 * If this needs to go out secure, we need 22440 * to wait till we finish the IPSEC 22441 * processing. 22442 */ 22443 if (ipsec_len == 0 && 22444 ip_mforward(ill, ipha, mp)) { 22445 freemsg(first_mp); 22446 ip1dbg(("ip_wput: mforward failed\n")); 22447 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22448 "ip_wput_ire_end: q %p (%S)", 22449 q, "mforward failed"); 22450 ire_refrele(ire); 22451 if (conn_outgoing_ill != NULL) 22452 ill_refrele(conn_outgoing_ill); 22453 return; 22454 } 22455 } 22456 } 22457 max_frag = ire->ire_max_frag; 22458 cksum += ttl_protocol; 22459 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 22460 /* No fragmentation required for this one. */ 22461 /* 22462 * Don't use frag_flag if packet is pre-built or source 22463 * routed or if multicast (since multicast packets do 22464 * not solicit ICMP "packet too big" messages). 22465 */ 22466 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22467 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22468 !ip_source_route_included(ipha)) && 22469 !CLASSD(ipha->ipha_dst)) 22470 ipha->ipha_fragment_offset_and_flags |= 22471 htons(ire->ire_frag_flag); 22472 22473 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22474 /* Complete the IP header checksum. */ 22475 cksum += ipha->ipha_ident; 22476 cksum += (v_hlen_tos_len >> 16)+ 22477 (v_hlen_tos_len & 0xFFFF); 22478 cksum += ipha->ipha_fragment_offset_and_flags; 22479 hlen = (V_HLEN & 0xF) - 22480 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22481 if (hlen) { 22482 checksumoptions: 22483 /* 22484 * Account for the IP Options in the IP 22485 * header checksum. 22486 */ 22487 up = (uint16_t *)(rptr+ 22488 IP_SIMPLE_HDR_LENGTH); 22489 do { 22490 cksum += up[0]; 22491 cksum += up[1]; 22492 up += 2; 22493 } while (--hlen); 22494 } 22495 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22496 cksum = ~(cksum + (cksum >> 16)); 22497 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22498 } 22499 if (ipsec_len != 0) { 22500 ipsec_out_process(q, first_mp, ire, ill_index); 22501 if (!next_mp) { 22502 ire_refrele(ire); 22503 if (conn_outgoing_ill != NULL) 22504 ill_refrele(conn_outgoing_ill); 22505 return; 22506 } 22507 goto next; 22508 } 22509 22510 /* 22511 * multirt_send has already been handled 22512 * for broadcast, but not yet for multicast 22513 * or IP options. 22514 */ 22515 if (next_mp == NULL) { 22516 if (ire->ire_flags & RTF_MULTIRT) { 22517 multirt_send = B_TRUE; 22518 } 22519 } 22520 22521 /* 22522 * In most cases, the emission loop below is 22523 * entered only once. Only in the case where 22524 * the ire holds the RTF_MULTIRT flag, do we loop 22525 * to process all RTF_MULTIRT ires in the bucket, 22526 * and send the packet through all crossed 22527 * RTF_MULTIRT routes. 22528 */ 22529 do { 22530 if (multirt_send) { 22531 irb_t *irb; 22532 22533 irb = ire->ire_bucket; 22534 ASSERT(irb != NULL); 22535 /* 22536 * We are in a multiple send case, 22537 * need to get the next IRE and make 22538 * a duplicate of the packet. 22539 */ 22540 IRB_REFHOLD(irb); 22541 for (ire1 = ire->ire_next; 22542 ire1 != NULL; 22543 ire1 = ire1->ire_next) { 22544 if (!(ire1->ire_flags & 22545 RTF_MULTIRT)) 22546 continue; 22547 if (ire1->ire_addr != 22548 ire->ire_addr) 22549 continue; 22550 if (ire1->ire_marks & 22551 (IRE_MARK_CONDEMNED| 22552 IRE_MARK_HIDDEN)) 22553 continue; 22554 22555 /* Got one */ 22556 IRE_REFHOLD(ire1); 22557 break; 22558 } 22559 IRB_REFRELE(irb); 22560 22561 if (ire1 != NULL) { 22562 next_mp = copyb(mp); 22563 if ((next_mp == NULL) || 22564 ((mp->b_cont != NULL) && 22565 ((next_mp->b_cont = 22566 dupmsg(mp->b_cont)) 22567 == NULL))) { 22568 freemsg(next_mp); 22569 next_mp = NULL; 22570 ire_refrele(ire1); 22571 ire1 = NULL; 22572 } 22573 } 22574 22575 /* 22576 * Last multiroute ire; don't loop 22577 * anymore. The emission is over 22578 * and next_mp is NULL. 22579 */ 22580 if (ire1 == NULL) { 22581 multirt_send = B_FALSE; 22582 } 22583 } 22584 22585 out_ill = ire->ire_ipif->ipif_ill; 22586 DTRACE_PROBE4(ip4__physical__out__start, 22587 ill_t *, NULL, 22588 ill_t *, out_ill, 22589 ipha_t *, ipha, mblk_t *, mp); 22590 FW_HOOKS(ip4_physical_out_event, 22591 ipv4firewall_physical_out, 22592 NULL, out_ill, ipha, mp, mp); 22593 DTRACE_PROBE1(ip4__physical__out__end, 22594 mblk_t *, mp); 22595 if (mp == NULL) 22596 goto release_ire_and_ill_2; 22597 22598 ASSERT(ipsec_len == 0); 22599 mp->b_prev = 22600 SET_BPREV_FLAG(IPP_LOCAL_OUT); 22601 DTRACE_PROBE2(ip__xmit__2, 22602 mblk_t *, mp, ire_t *, ire); 22603 pktxmit_state = ip_xmit_v4(mp, ire, 22604 NULL, B_TRUE); 22605 if ((pktxmit_state == SEND_FAILED) || 22606 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22607 release_ire_and_ill_2: 22608 if (next_mp) { 22609 freemsg(next_mp); 22610 ire_refrele(ire1); 22611 } 22612 ire_refrele(ire); 22613 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22614 "ip_wput_ire_end: q %p (%S)", 22615 q, "discard MDATA"); 22616 if (conn_outgoing_ill != NULL) 22617 ill_refrele(conn_outgoing_ill); 22618 return; 22619 } 22620 22621 if (multirt_send) { 22622 /* 22623 * We are in a multiple send case, 22624 * need to re-enter the sending loop 22625 * using the next ire. 22626 */ 22627 ire_refrele(ire); 22628 ire = ire1; 22629 stq = ire->ire_stq; 22630 mp = next_mp; 22631 next_mp = NULL; 22632 ipha = (ipha_t *)mp->b_rptr; 22633 ill_index = Q_TO_INDEX(stq); 22634 } 22635 } while (multirt_send); 22636 22637 if (!next_mp) { 22638 /* 22639 * Last copy going out (the ultra-common 22640 * case). Note that we intentionally replicate 22641 * the putnext rather than calling it before 22642 * the next_mp check in hopes of a little 22643 * tail-call action out of the compiler. 22644 */ 22645 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22646 "ip_wput_ire_end: q %p (%S)", 22647 q, "last copy out(1)"); 22648 ire_refrele(ire); 22649 if (conn_outgoing_ill != NULL) 22650 ill_refrele(conn_outgoing_ill); 22651 return; 22652 } 22653 /* More copies going out below. */ 22654 } else { 22655 int offset; 22656 fragmentit: 22657 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 22658 /* 22659 * If this would generate a icmp_frag_needed message, 22660 * we need to handle it before we do the IPSEC 22661 * processing. Otherwise, we need to strip the IPSEC 22662 * headers before we send up the message to the ULPs 22663 * which becomes messy and difficult. 22664 */ 22665 if (ipsec_len != 0) { 22666 if ((max_frag < (unsigned int)(LENGTH + 22667 ipsec_len)) && (offset & IPH_DF)) { 22668 22669 BUMP_MIB(&ip_mib, ipFragFails); 22670 ipha->ipha_hdr_checksum = 0; 22671 ipha->ipha_hdr_checksum = 22672 (uint16_t)ip_csum_hdr(ipha); 22673 icmp_frag_needed(ire->ire_stq, first_mp, 22674 max_frag, zoneid); 22675 if (!next_mp) { 22676 ire_refrele(ire); 22677 if (conn_outgoing_ill != NULL) { 22678 ill_refrele( 22679 conn_outgoing_ill); 22680 } 22681 return; 22682 } 22683 } else { 22684 /* 22685 * This won't cause a icmp_frag_needed 22686 * message. to be gnerated. Send it on 22687 * the wire. Note that this could still 22688 * cause fragmentation and all we 22689 * do is the generation of the message 22690 * to the ULP if needed before IPSEC. 22691 */ 22692 if (!next_mp) { 22693 ipsec_out_process(q, first_mp, 22694 ire, ill_index); 22695 TRACE_2(TR_FAC_IP, 22696 TR_IP_WPUT_IRE_END, 22697 "ip_wput_ire_end: q %p " 22698 "(%S)", q, 22699 "last ipsec_out_process"); 22700 ire_refrele(ire); 22701 if (conn_outgoing_ill != NULL) { 22702 ill_refrele( 22703 conn_outgoing_ill); 22704 } 22705 return; 22706 } 22707 ipsec_out_process(q, first_mp, 22708 ire, ill_index); 22709 } 22710 } else { 22711 /* 22712 * Initiate IPPF processing. For 22713 * fragmentable packets we finish 22714 * all QOS packet processing before 22715 * calling: 22716 * ip_wput_ire_fragmentit->ip_wput_frag 22717 */ 22718 22719 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 22720 ip_process(IPP_LOCAL_OUT, &mp, 22721 ill_index); 22722 if (mp == NULL) { 22723 BUMP_MIB(&ip_mib, 22724 ipOutDiscards); 22725 if (next_mp != NULL) { 22726 freemsg(next_mp); 22727 ire_refrele(ire1); 22728 } 22729 ire_refrele(ire); 22730 TRACE_2(TR_FAC_IP, 22731 TR_IP_WPUT_IRE_END, 22732 "ip_wput_ire: q %p (%S)", 22733 q, "discard MDATA"); 22734 if (conn_outgoing_ill != NULL) { 22735 ill_refrele( 22736 conn_outgoing_ill); 22737 } 22738 return; 22739 } 22740 } 22741 if (!next_mp) { 22742 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22743 "ip_wput_ire_end: q %p (%S)", 22744 q, "last fragmentation"); 22745 ip_wput_ire_fragmentit(mp, ire, 22746 zoneid); 22747 ire_refrele(ire); 22748 if (conn_outgoing_ill != NULL) 22749 ill_refrele(conn_outgoing_ill); 22750 return; 22751 } 22752 ip_wput_ire_fragmentit(mp, ire, zoneid); 22753 } 22754 } 22755 } else { 22756 nullstq: 22757 /* A NULL stq means the destination address is local. */ 22758 UPDATE_OB_PKT_COUNT(ire); 22759 ire->ire_last_used_time = lbolt; 22760 ASSERT(ire->ire_ipif != NULL); 22761 if (!next_mp) { 22762 /* 22763 * Is there an "in" and "out" for traffic local 22764 * to a host (loopback)? The code in Solaris doesn't 22765 * explicitly draw a line in its code for in vs out, 22766 * so we've had to draw a line in the sand: ip_wput_ire 22767 * is considered to be the "output" side and 22768 * ip_wput_local to be the "input" side. 22769 */ 22770 out_ill = ire->ire_ipif->ipif_ill; 22771 22772 DTRACE_PROBE4(ip4__loopback__out__start, 22773 ill_t *, NULL, ill_t *, out_ill, 22774 ipha_t *, ipha, mblk_t *, first_mp); 22775 22776 FW_HOOKS(ip4_loopback_out_event, 22777 ipv4firewall_loopback_out, 22778 NULL, out_ill, ipha, first_mp, mp); 22779 22780 DTRACE_PROBE1(ip4__loopback__out_end, 22781 mblk_t *, first_mp); 22782 22783 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22784 "ip_wput_ire_end: q %p (%S)", 22785 q, "local address"); 22786 22787 if (first_mp != NULL) 22788 ip_wput_local(q, out_ill, ipha, 22789 first_mp, ire, 0, ire->ire_zoneid); 22790 ire_refrele(ire); 22791 if (conn_outgoing_ill != NULL) 22792 ill_refrele(conn_outgoing_ill); 22793 return; 22794 } 22795 22796 out_ill = ire->ire_ipif->ipif_ill; 22797 22798 DTRACE_PROBE4(ip4__loopback__out__start, 22799 ill_t *, NULL, ill_t *, out_ill, 22800 ipha_t *, ipha, mblk_t *, first_mp); 22801 22802 FW_HOOKS(ip4_loopback_out_event, ipv4firewall_loopback_out, 22803 NULL, out_ill, ipha, first_mp, mp); 22804 22805 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 22806 22807 if (first_mp != NULL) 22808 ip_wput_local(q, out_ill, ipha, 22809 first_mp, ire, 0, ire->ire_zoneid); 22810 } 22811 next: 22812 /* 22813 * More copies going out to additional interfaces. 22814 * ire1 has already been held. We don't need the 22815 * "ire" anymore. 22816 */ 22817 ire_refrele(ire); 22818 ire = ire1; 22819 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 22820 mp = next_mp; 22821 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22822 ill = ire_to_ill(ire); 22823 first_mp = mp; 22824 if (ipsec_len != 0) { 22825 ASSERT(first_mp->b_datap->db_type == M_CTL); 22826 mp = mp->b_cont; 22827 } 22828 dst = ire->ire_addr; 22829 ipha = (ipha_t *)mp->b_rptr; 22830 /* 22831 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 22832 * Restore ipha_ident "no checksum" flag. 22833 */ 22834 src = orig_src; 22835 ipha->ipha_ident = ip_hdr_included; 22836 goto another; 22837 22838 #undef rptr 22839 #undef Q_TO_INDEX 22840 } 22841 22842 /* 22843 * Routine to allocate a message that is used to notify the ULP about MDT. 22844 * The caller may provide a pointer to the link-layer MDT capabilities, 22845 * or NULL if MDT is to be disabled on the stream. 22846 */ 22847 mblk_t * 22848 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 22849 { 22850 mblk_t *mp; 22851 ip_mdt_info_t *mdti; 22852 ill_mdt_capab_t *idst; 22853 22854 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 22855 DB_TYPE(mp) = M_CTL; 22856 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 22857 mdti = (ip_mdt_info_t *)mp->b_rptr; 22858 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 22859 idst = &(mdti->mdt_capab); 22860 22861 /* 22862 * If the caller provides us with the capability, copy 22863 * it over into our notification message; otherwise 22864 * we zero out the capability portion. 22865 */ 22866 if (isrc != NULL) 22867 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 22868 else 22869 bzero((caddr_t)idst, sizeof (*idst)); 22870 } 22871 return (mp); 22872 } 22873 22874 /* 22875 * Routine which determines whether MDT can be enabled on the destination 22876 * IRE and IPC combination, and if so, allocates and returns the MDT 22877 * notification mblk that may be used by ULP. We also check if we need to 22878 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 22879 * MDT usage in the past have been lifted. This gets called during IP 22880 * and ULP binding. 22881 */ 22882 mblk_t * 22883 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 22884 ill_mdt_capab_t *mdt_cap) 22885 { 22886 mblk_t *mp; 22887 boolean_t rc = B_FALSE; 22888 22889 ASSERT(dst_ire != NULL); 22890 ASSERT(connp != NULL); 22891 ASSERT(mdt_cap != NULL); 22892 22893 /* 22894 * Currently, we only support simple TCP/{IPv4,IPv6} with 22895 * Multidata, which is handled in tcp_multisend(). This 22896 * is the reason why we do all these checks here, to ensure 22897 * that we don't enable Multidata for the cases which we 22898 * can't handle at the moment. 22899 */ 22900 do { 22901 /* Only do TCP at the moment */ 22902 if (connp->conn_ulp != IPPROTO_TCP) 22903 break; 22904 22905 /* 22906 * IPSEC outbound policy present? Note that we get here 22907 * after calling ipsec_conn_cache_policy() where the global 22908 * policy checking is performed. conn_latch will be 22909 * non-NULL as long as there's a policy defined, 22910 * i.e. conn_out_enforce_policy may be NULL in such case 22911 * when the connection is non-secure, and hence we check 22912 * further if the latch refers to an outbound policy. 22913 */ 22914 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 22915 break; 22916 22917 /* CGTP (multiroute) is enabled? */ 22918 if (dst_ire->ire_flags & RTF_MULTIRT) 22919 break; 22920 22921 /* Outbound IPQoS enabled? */ 22922 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 22923 /* 22924 * In this case, we disable MDT for this and all 22925 * future connections going over the interface. 22926 */ 22927 mdt_cap->ill_mdt_on = 0; 22928 break; 22929 } 22930 22931 /* socket option(s) present? */ 22932 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 22933 break; 22934 22935 rc = B_TRUE; 22936 /* CONSTCOND */ 22937 } while (0); 22938 22939 /* Remember the result */ 22940 connp->conn_mdt_ok = rc; 22941 22942 if (!rc) 22943 return (NULL); 22944 else if (!mdt_cap->ill_mdt_on) { 22945 /* 22946 * If MDT has been previously turned off in the past, and we 22947 * currently can do MDT (due to IPQoS policy removal, etc.) 22948 * then enable it for this interface. 22949 */ 22950 mdt_cap->ill_mdt_on = 1; 22951 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 22952 "interface %s\n", ill_name)); 22953 } 22954 22955 /* Allocate the MDT info mblk */ 22956 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 22957 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 22958 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 22959 return (NULL); 22960 } 22961 return (mp); 22962 } 22963 22964 /* 22965 * Routine to allocate a message that is used to notify the ULP about LSO. 22966 * The caller may provide a pointer to the link-layer LSO capabilities, 22967 * or NULL if LSO is to be disabled on the stream. 22968 */ 22969 mblk_t * 22970 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 22971 { 22972 mblk_t *mp; 22973 ip_lso_info_t *lsoi; 22974 ill_lso_capab_t *idst; 22975 22976 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 22977 DB_TYPE(mp) = M_CTL; 22978 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 22979 lsoi = (ip_lso_info_t *)mp->b_rptr; 22980 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 22981 idst = &(lsoi->lso_capab); 22982 22983 /* 22984 * If the caller provides us with the capability, copy 22985 * it over into our notification message; otherwise 22986 * we zero out the capability portion. 22987 */ 22988 if (isrc != NULL) 22989 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 22990 else 22991 bzero((caddr_t)idst, sizeof (*idst)); 22992 } 22993 return (mp); 22994 } 22995 22996 /* 22997 * Routine which determines whether LSO can be enabled on the destination 22998 * IRE and IPC combination, and if so, allocates and returns the LSO 22999 * notification mblk that may be used by ULP. We also check if we need to 23000 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23001 * LSO usage in the past have been lifted. This gets called during IP 23002 * and ULP binding. 23003 */ 23004 mblk_t * 23005 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23006 ill_lso_capab_t *lso_cap) 23007 { 23008 mblk_t *mp; 23009 23010 ASSERT(dst_ire != NULL); 23011 ASSERT(connp != NULL); 23012 ASSERT(lso_cap != NULL); 23013 23014 connp->conn_lso_ok = B_TRUE; 23015 23016 if ((connp->conn_ulp != IPPROTO_TCP) || 23017 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23018 (dst_ire->ire_flags & RTF_MULTIRT) || 23019 !CONN_IS_LSO_MD_FASTPATH(connp) || 23020 (IPP_ENABLED(IPP_LOCAL_OUT))) { 23021 connp->conn_lso_ok = B_FALSE; 23022 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 23023 /* 23024 * Disable LSO for this and all future connections going 23025 * over the interface. 23026 */ 23027 lso_cap->ill_lso_on = 0; 23028 } 23029 } 23030 23031 if (!connp->conn_lso_ok) 23032 return (NULL); 23033 else if (!lso_cap->ill_lso_on) { 23034 /* 23035 * If LSO has been previously turned off in the past, and we 23036 * currently can do LSO (due to IPQoS policy removal, etc.) 23037 * then enable it for this interface. 23038 */ 23039 lso_cap->ill_lso_on = 1; 23040 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23041 ill_name)); 23042 } 23043 23044 /* Allocate the LSO info mblk */ 23045 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23046 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23047 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23048 23049 return (mp); 23050 } 23051 23052 /* 23053 * Create destination address attribute, and fill it with the physical 23054 * destination address and SAP taken from the template DL_UNITDATA_REQ 23055 * message block. 23056 */ 23057 boolean_t 23058 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23059 { 23060 dl_unitdata_req_t *dlurp; 23061 pattr_t *pa; 23062 pattrinfo_t pa_info; 23063 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23064 uint_t das_len, das_off; 23065 23066 ASSERT(dlmp != NULL); 23067 23068 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23069 das_len = dlurp->dl_dest_addr_length; 23070 das_off = dlurp->dl_dest_addr_offset; 23071 23072 pa_info.type = PATTR_DSTADDRSAP; 23073 pa_info.len = sizeof (**das) + das_len - 1; 23074 23075 /* create and associate the attribute */ 23076 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23077 if (pa != NULL) { 23078 ASSERT(*das != NULL); 23079 (*das)->addr_is_group = 0; 23080 (*das)->addr_len = (uint8_t)das_len; 23081 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23082 } 23083 23084 return (pa != NULL); 23085 } 23086 23087 /* 23088 * Create hardware checksum attribute and fill it with the values passed. 23089 */ 23090 boolean_t 23091 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23092 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23093 { 23094 pattr_t *pa; 23095 pattrinfo_t pa_info; 23096 23097 ASSERT(mmd != NULL); 23098 23099 pa_info.type = PATTR_HCKSUM; 23100 pa_info.len = sizeof (pattr_hcksum_t); 23101 23102 /* create and associate the attribute */ 23103 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23104 if (pa != NULL) { 23105 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23106 23107 hck->hcksum_start_offset = start_offset; 23108 hck->hcksum_stuff_offset = stuff_offset; 23109 hck->hcksum_end_offset = end_offset; 23110 hck->hcksum_flags = flags; 23111 } 23112 return (pa != NULL); 23113 } 23114 23115 /* 23116 * Create zerocopy attribute and fill it with the specified flags 23117 */ 23118 boolean_t 23119 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23120 { 23121 pattr_t *pa; 23122 pattrinfo_t pa_info; 23123 23124 ASSERT(mmd != NULL); 23125 pa_info.type = PATTR_ZCOPY; 23126 pa_info.len = sizeof (pattr_zcopy_t); 23127 23128 /* create and associate the attribute */ 23129 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23130 if (pa != NULL) { 23131 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23132 23133 zcopy->zcopy_flags = flags; 23134 } 23135 return (pa != NULL); 23136 } 23137 23138 /* 23139 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23140 * block chain. We could rewrite to handle arbitrary message block chains but 23141 * that would make the code complicated and slow. Right now there three 23142 * restrictions: 23143 * 23144 * 1. The first message block must contain the complete IP header and 23145 * at least 1 byte of payload data. 23146 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23147 * so that we can use a single Multidata message. 23148 * 3. No frag must be distributed over two or more message blocks so 23149 * that we don't need more than two packet descriptors per frag. 23150 * 23151 * The above restrictions allow us to support userland applications (which 23152 * will send down a single message block) and NFS over UDP (which will 23153 * send down a chain of at most three message blocks). 23154 * 23155 * We also don't use MDT for payloads with less than or equal to 23156 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23157 */ 23158 boolean_t 23159 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23160 { 23161 int blocks; 23162 ssize_t total, missing, size; 23163 23164 ASSERT(mp != NULL); 23165 ASSERT(hdr_len > 0); 23166 23167 size = MBLKL(mp) - hdr_len; 23168 if (size <= 0) 23169 return (B_FALSE); 23170 23171 /* The first mblk contains the header and some payload. */ 23172 blocks = 1; 23173 total = size; 23174 size %= len; 23175 missing = (size == 0) ? 0 : (len - size); 23176 mp = mp->b_cont; 23177 23178 while (mp != NULL) { 23179 /* 23180 * Give up if we encounter a zero length message block. 23181 * In practice, this should rarely happen and therefore 23182 * not worth the trouble of freeing and re-linking the 23183 * mblk from the chain to handle such case. 23184 */ 23185 if ((size = MBLKL(mp)) == 0) 23186 return (B_FALSE); 23187 23188 /* Too many payload buffers for a single Multidata message? */ 23189 if (++blocks > MULTIDATA_MAX_PBUFS) 23190 return (B_FALSE); 23191 23192 total += size; 23193 /* Is a frag distributed over two or more message blocks? */ 23194 if (missing > size) 23195 return (B_FALSE); 23196 size -= missing; 23197 23198 size %= len; 23199 missing = (size == 0) ? 0 : (len - size); 23200 23201 mp = mp->b_cont; 23202 } 23203 23204 return (total > ip_wput_frag_mdt_min); 23205 } 23206 23207 /* 23208 * Outbound IPv4 fragmentation routine using MDT. 23209 */ 23210 static void 23211 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23212 uint32_t frag_flag, int offset) 23213 { 23214 ipha_t *ipha_orig; 23215 int i1, ip_data_end; 23216 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23217 mblk_t *hdr_mp, *md_mp = NULL; 23218 unsigned char *hdr_ptr, *pld_ptr; 23219 multidata_t *mmd; 23220 ip_pdescinfo_t pdi; 23221 23222 ASSERT(DB_TYPE(mp) == M_DATA); 23223 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23224 23225 ipha_orig = (ipha_t *)mp->b_rptr; 23226 mp->b_rptr += sizeof (ipha_t); 23227 23228 /* Calculate how many packets we will send out */ 23229 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23230 pkts = (i1 + len - 1) / len; 23231 ASSERT(pkts > 1); 23232 23233 /* Allocate a message block which will hold all the IP Headers. */ 23234 wroff = ip_wroff_extra; 23235 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23236 23237 i1 = pkts * hdr_chunk_len; 23238 /* 23239 * Create the header buffer, Multidata and destination address 23240 * and SAP attribute that should be associated with it. 23241 */ 23242 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23243 ((hdr_mp->b_wptr += i1), 23244 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23245 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23246 freemsg(mp); 23247 if (md_mp == NULL) { 23248 freemsg(hdr_mp); 23249 } else { 23250 free_mmd: IP_STAT(ip_frag_mdt_discarded); 23251 freemsg(md_mp); 23252 } 23253 IP_STAT(ip_frag_mdt_allocfail); 23254 UPDATE_MIB(&ip_mib, ipOutDiscards, pkts); 23255 return; 23256 } 23257 IP_STAT(ip_frag_mdt_allocd); 23258 23259 /* 23260 * Add a payload buffer to the Multidata; this operation must not 23261 * fail, or otherwise our logic in this routine is broken. There 23262 * is no memory allocation done by the routine, so any returned 23263 * failure simply tells us that we've done something wrong. 23264 * 23265 * A failure tells us that either we're adding the same payload 23266 * buffer more than once, or we're trying to add more buffers than 23267 * allowed. None of the above cases should happen, and we panic 23268 * because either there's horrible heap corruption, and/or 23269 * programming mistake. 23270 */ 23271 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23272 goto pbuf_panic; 23273 23274 hdr_ptr = hdr_mp->b_rptr; 23275 pld_ptr = mp->b_rptr; 23276 23277 /* Establish the ending byte offset, based on the starting offset. */ 23278 offset <<= 3; 23279 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23280 IP_SIMPLE_HDR_LENGTH; 23281 23282 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23283 23284 while (pld_ptr < mp->b_wptr) { 23285 ipha_t *ipha; 23286 uint16_t offset_and_flags; 23287 uint16_t ip_len; 23288 int error; 23289 23290 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23291 ipha = (ipha_t *)(hdr_ptr + wroff); 23292 ASSERT(OK_32PTR(ipha)); 23293 *ipha = *ipha_orig; 23294 23295 if (ip_data_end - offset > len) { 23296 offset_and_flags = IPH_MF; 23297 } else { 23298 /* 23299 * Last frag. Set len to the length of this last piece. 23300 */ 23301 len = ip_data_end - offset; 23302 /* A frag of a frag might have IPH_MF non-zero */ 23303 offset_and_flags = 23304 ntohs(ipha->ipha_fragment_offset_and_flags) & 23305 IPH_MF; 23306 } 23307 offset_and_flags |= (uint16_t)(offset >> 3); 23308 offset_and_flags |= (uint16_t)frag_flag; 23309 /* Store the offset and flags in the IP header. */ 23310 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23311 23312 /* Store the length in the IP header. */ 23313 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23314 ipha->ipha_length = htons(ip_len); 23315 23316 /* 23317 * Set the IP header checksum. Note that mp is just 23318 * the header, so this is easy to pass to ip_csum. 23319 */ 23320 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23321 23322 /* 23323 * Record offset and size of header and data of the next packet 23324 * in the multidata message. 23325 */ 23326 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23327 PDESC_PLD_INIT(&pdi); 23328 i1 = MIN(mp->b_wptr - pld_ptr, len); 23329 ASSERT(i1 > 0); 23330 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23331 if (i1 == len) { 23332 pld_ptr += len; 23333 } else { 23334 i1 = len - i1; 23335 mp = mp->b_cont; 23336 ASSERT(mp != NULL); 23337 ASSERT(MBLKL(mp) >= i1); 23338 /* 23339 * Attach the next payload message block to the 23340 * multidata message. 23341 */ 23342 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23343 goto pbuf_panic; 23344 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23345 pld_ptr = mp->b_rptr + i1; 23346 } 23347 23348 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23349 KM_NOSLEEP)) == NULL) { 23350 /* 23351 * Any failure other than ENOMEM indicates that we 23352 * have passed in invalid pdesc info or parameters 23353 * to mmd_addpdesc, which must not happen. 23354 * 23355 * EINVAL is a result of failure on boundary checks 23356 * against the pdesc info contents. It should not 23357 * happen, and we panic because either there's 23358 * horrible heap corruption, and/or programming 23359 * mistake. 23360 */ 23361 if (error != ENOMEM) { 23362 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23363 "pdesc logic error detected for " 23364 "mmd %p pinfo %p (%d)\n", 23365 (void *)mmd, (void *)&pdi, error); 23366 /* NOTREACHED */ 23367 } 23368 IP_STAT(ip_frag_mdt_addpdescfail); 23369 /* Free unattached payload message blocks as well */ 23370 md_mp->b_cont = mp->b_cont; 23371 goto free_mmd; 23372 } 23373 23374 /* Advance fragment offset. */ 23375 offset += len; 23376 23377 /* Advance to location for next header in the buffer. */ 23378 hdr_ptr += hdr_chunk_len; 23379 23380 /* Did we reach the next payload message block? */ 23381 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23382 mp = mp->b_cont; 23383 /* 23384 * Attach the next message block with payload 23385 * data to the multidata message. 23386 */ 23387 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23388 goto pbuf_panic; 23389 pld_ptr = mp->b_rptr; 23390 } 23391 } 23392 23393 ASSERT(hdr_mp->b_wptr == hdr_ptr); 23394 ASSERT(mp->b_wptr == pld_ptr); 23395 23396 /* Update IP statistics */ 23397 UPDATE_MIB(&ip_mib, ipFragCreates, pkts); 23398 BUMP_MIB(&ip_mib, ipFragOKs); 23399 IP_STAT_UPDATE(ip_frag_mdt_pkt_out, pkts); 23400 23401 if (pkt_type == OB_PKT) { 23402 ire->ire_ob_pkt_count += pkts; 23403 if (ire->ire_ipif != NULL) 23404 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 23405 } else { 23406 /* 23407 * The type is IB_PKT in the forwarding path and in 23408 * the mobile IP case when the packet is being reverse- 23409 * tunneled to the home agent. 23410 */ 23411 ire->ire_ib_pkt_count += pkts; 23412 ASSERT(!IRE_IS_LOCAL(ire)); 23413 if (ire->ire_type & IRE_BROADCAST) 23414 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 23415 else 23416 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 23417 } 23418 ire->ire_last_used_time = lbolt; 23419 /* Send it down */ 23420 putnext(ire->ire_stq, md_mp); 23421 return; 23422 23423 pbuf_panic: 23424 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 23425 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 23426 pbuf_idx); 23427 /* NOTREACHED */ 23428 } 23429 23430 /* 23431 * Outbound IP fragmentation routine. 23432 * 23433 * NOTE : This routine does not ire_refrele the ire that is passed in 23434 * as the argument. 23435 */ 23436 static void 23437 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 23438 uint32_t frag_flag, zoneid_t zoneid) 23439 { 23440 int i1; 23441 mblk_t *ll_hdr_mp; 23442 int ll_hdr_len; 23443 int hdr_len; 23444 mblk_t *hdr_mp; 23445 ipha_t *ipha; 23446 int ip_data_end; 23447 int len; 23448 mblk_t *mp = mp_orig, *mp1; 23449 int offset; 23450 queue_t *q; 23451 uint32_t v_hlen_tos_len; 23452 mblk_t *first_mp; 23453 boolean_t mctl_present; 23454 ill_t *ill; 23455 ill_t *out_ill; 23456 mblk_t *xmit_mp; 23457 mblk_t *carve_mp; 23458 ire_t *ire1 = NULL; 23459 ire_t *save_ire = NULL; 23460 mblk_t *next_mp = NULL; 23461 boolean_t last_frag = B_FALSE; 23462 boolean_t multirt_send = B_FALSE; 23463 ire_t *first_ire = NULL; 23464 irb_t *irb = NULL; 23465 23466 /* 23467 * IPSEC does not allow hw accelerated packets to be fragmented 23468 * This check is made in ip_wput_ipsec_out prior to coming here 23469 * via ip_wput_ire_fragmentit. 23470 * 23471 * If at this point we have an ire whose ARP request has not 23472 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 23473 * sending of ARP query and change ire's state to ND_INCOMPLETE. 23474 * This packet and all fragmentable packets for this ire will 23475 * continue to get dropped while ire_nce->nce_state remains in 23476 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 23477 * ND_REACHABLE, all subsquent large packets for this ire will 23478 * get fragemented and sent out by this function. 23479 */ 23480 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 23481 /* If nce_state is ND_INITIAL, trigger ARP query */ 23482 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 23483 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 23484 " - dropping packet\n")); 23485 BUMP_MIB(&ip_mib, ipFragFails); 23486 freemsg(mp); 23487 return; 23488 } 23489 23490 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 23491 "ip_wput_frag_start:"); 23492 23493 if (mp->b_datap->db_type == M_CTL) { 23494 first_mp = mp; 23495 mp_orig = mp = mp->b_cont; 23496 mctl_present = B_TRUE; 23497 } else { 23498 first_mp = mp; 23499 mctl_present = B_FALSE; 23500 } 23501 23502 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 23503 ipha = (ipha_t *)mp->b_rptr; 23504 23505 /* 23506 * If the Don't Fragment flag is on, generate an ICMP destination 23507 * unreachable, fragmentation needed. 23508 */ 23509 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23510 if (offset & IPH_DF) { 23511 BUMP_MIB(&ip_mib, ipFragFails); 23512 /* 23513 * Need to compute hdr checksum if called from ip_wput_ire. 23514 * Note that ip_rput_forward verifies the checksum before 23515 * calling this routine so in that case this is a noop. 23516 */ 23517 ipha->ipha_hdr_checksum = 0; 23518 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23519 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid); 23520 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23521 "ip_wput_frag_end:(%S)", 23522 "don't fragment"); 23523 return; 23524 } 23525 if (mctl_present) 23526 freeb(first_mp); 23527 /* 23528 * Establish the starting offset. May not be zero if we are fragging 23529 * a fragment that is being forwarded. 23530 */ 23531 offset = offset & IPH_OFFSET; 23532 23533 /* TODO why is this test needed? */ 23534 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 23535 if (((max_frag - LENGTH) & ~7) < 8) { 23536 /* TODO: notify ulp somehow */ 23537 BUMP_MIB(&ip_mib, ipFragFails); 23538 freemsg(mp); 23539 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23540 "ip_wput_frag_end:(%S)", 23541 "len < 8"); 23542 return; 23543 } 23544 23545 hdr_len = (V_HLEN & 0xF) << 2; 23546 23547 ipha->ipha_hdr_checksum = 0; 23548 23549 /* 23550 * Establish the number of bytes maximum per frag, after putting 23551 * in the header. 23552 */ 23553 len = (max_frag - hdr_len) & ~7; 23554 23555 /* Check if we can use MDT to send out the frags. */ 23556 ASSERT(!IRE_IS_LOCAL(ire)); 23557 if (hdr_len == IP_SIMPLE_HDR_LENGTH && ip_multidata_outbound && 23558 !(ire->ire_flags & RTF_MULTIRT) && !IPP_ENABLED(IPP_LOCAL_OUT) && 23559 (ill = ire_to_ill(ire)) != NULL && ILL_MDT_CAPABLE(ill) && 23560 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 23561 ASSERT(ill->ill_mdt_capab != NULL); 23562 if (!ill->ill_mdt_capab->ill_mdt_on) { 23563 /* 23564 * If MDT has been previously turned off in the past, 23565 * and we currently can do MDT (due to IPQoS policy 23566 * removal, etc.) then enable it for this interface. 23567 */ 23568 ill->ill_mdt_capab->ill_mdt_on = 1; 23569 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 23570 ill->ill_name)); 23571 } 23572 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 23573 offset); 23574 return; 23575 } 23576 23577 /* Get a copy of the header for the trailing frags */ 23578 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset); 23579 if (!hdr_mp) { 23580 BUMP_MIB(&ip_mib, ipOutDiscards); 23581 freemsg(mp); 23582 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23583 "ip_wput_frag_end:(%S)", 23584 "couldn't copy hdr"); 23585 return; 23586 } 23587 if (DB_CRED(mp) != NULL) 23588 mblk_setcred(hdr_mp, DB_CRED(mp)); 23589 23590 /* Store the starting offset, with the MoreFrags flag. */ 23591 i1 = offset | IPH_MF | frag_flag; 23592 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 23593 23594 /* Establish the ending byte offset, based on the starting offset. */ 23595 offset <<= 3; 23596 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 23597 23598 /* Store the length of the first fragment in the IP header. */ 23599 i1 = len + hdr_len; 23600 ASSERT(i1 <= IP_MAXPACKET); 23601 ipha->ipha_length = htons((uint16_t)i1); 23602 23603 /* 23604 * Compute the IP header checksum for the first frag. We have to 23605 * watch out that we stop at the end of the header. 23606 */ 23607 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23608 23609 /* 23610 * Now carve off the first frag. Note that this will include the 23611 * original IP header. 23612 */ 23613 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 23614 BUMP_MIB(&ip_mib, ipOutDiscards); 23615 freeb(hdr_mp); 23616 freemsg(mp_orig); 23617 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23618 "ip_wput_frag_end:(%S)", 23619 "couldn't carve first"); 23620 return; 23621 } 23622 23623 /* 23624 * Multirouting case. Each fragment is replicated 23625 * via all non-condemned RTF_MULTIRT routes 23626 * currently resolved. 23627 * We ensure that first_ire is the first RTF_MULTIRT 23628 * ire in the bucket. 23629 */ 23630 if (ire->ire_flags & RTF_MULTIRT) { 23631 irb = ire->ire_bucket; 23632 ASSERT(irb != NULL); 23633 23634 multirt_send = B_TRUE; 23635 23636 /* Make sure we do not omit any multiroute ire. */ 23637 IRB_REFHOLD(irb); 23638 for (first_ire = irb->irb_ire; 23639 first_ire != NULL; 23640 first_ire = first_ire->ire_next) { 23641 if ((first_ire->ire_flags & RTF_MULTIRT) && 23642 (first_ire->ire_addr == ire->ire_addr) && 23643 !(first_ire->ire_marks & 23644 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 23645 break; 23646 } 23647 23648 if (first_ire != NULL) { 23649 if (first_ire != ire) { 23650 IRE_REFHOLD(first_ire); 23651 /* 23652 * Do not release the ire passed in 23653 * as the argument. 23654 */ 23655 ire = first_ire; 23656 } else { 23657 first_ire = NULL; 23658 } 23659 } 23660 IRB_REFRELE(irb); 23661 23662 /* 23663 * Save the first ire; we will need to restore it 23664 * for the trailing frags. 23665 * We REFHOLD save_ire, as each iterated ire will be 23666 * REFRELEd. 23667 */ 23668 save_ire = ire; 23669 IRE_REFHOLD(save_ire); 23670 } 23671 23672 /* 23673 * First fragment emission loop. 23674 * In most cases, the emission loop below is entered only 23675 * once. Only in the case where the ire holds the RTF_MULTIRT 23676 * flag, do we loop to process all RTF_MULTIRT ires in the 23677 * bucket, and send the fragment through all crossed 23678 * RTF_MULTIRT routes. 23679 */ 23680 do { 23681 if (ire->ire_flags & RTF_MULTIRT) { 23682 /* 23683 * We are in a multiple send case, need to get 23684 * the next ire and make a copy of the packet. 23685 * ire1 holds here the next ire to process in the 23686 * bucket. If multirouting is expected, 23687 * any non-RTF_MULTIRT ire that has the 23688 * right destination address is ignored. 23689 * 23690 * We have to take into account the MTU of 23691 * each walked ire. max_frag is set by the 23692 * the caller and generally refers to 23693 * the primary ire entry. Here we ensure that 23694 * no route with a lower MTU will be used, as 23695 * fragments are carved once for all ires, 23696 * then replicated. 23697 */ 23698 ASSERT(irb != NULL); 23699 IRB_REFHOLD(irb); 23700 for (ire1 = ire->ire_next; 23701 ire1 != NULL; 23702 ire1 = ire1->ire_next) { 23703 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 23704 continue; 23705 if (ire1->ire_addr != ire->ire_addr) 23706 continue; 23707 if (ire1->ire_marks & 23708 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 23709 continue; 23710 /* 23711 * Ensure we do not exceed the MTU 23712 * of the next route. 23713 */ 23714 if (ire1->ire_max_frag < max_frag) { 23715 ip_multirt_bad_mtu(ire1, max_frag); 23716 continue; 23717 } 23718 23719 /* Got one. */ 23720 IRE_REFHOLD(ire1); 23721 break; 23722 } 23723 IRB_REFRELE(irb); 23724 23725 if (ire1 != NULL) { 23726 next_mp = copyb(mp); 23727 if ((next_mp == NULL) || 23728 ((mp->b_cont != NULL) && 23729 ((next_mp->b_cont = 23730 dupmsg(mp->b_cont)) == NULL))) { 23731 freemsg(next_mp); 23732 next_mp = NULL; 23733 ire_refrele(ire1); 23734 ire1 = NULL; 23735 } 23736 } 23737 23738 /* Last multiroute ire; don't loop anymore. */ 23739 if (ire1 == NULL) { 23740 multirt_send = B_FALSE; 23741 } 23742 } 23743 23744 ll_hdr_len = 0; 23745 LOCK_IRE_FP_MP(ire); 23746 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 23747 if (ll_hdr_mp != NULL) { 23748 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 23749 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 23750 } else { 23751 ll_hdr_mp = ire->ire_nce->nce_res_mp; 23752 } 23753 23754 /* If there is a transmit header, get a copy for this frag. */ 23755 /* 23756 * TODO: should check db_ref before calling ip_carve_mp since 23757 * it might give us a dup. 23758 */ 23759 if (!ll_hdr_mp) { 23760 /* No xmit header. */ 23761 xmit_mp = mp; 23762 23763 /* We have a link-layer header that can fit in our mblk. */ 23764 } else if (mp->b_datap->db_ref == 1 && 23765 ll_hdr_len != 0 && 23766 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 23767 /* M_DATA fastpath */ 23768 mp->b_rptr -= ll_hdr_len; 23769 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 23770 xmit_mp = mp; 23771 23772 /* Corner case if copyb has failed */ 23773 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 23774 UNLOCK_IRE_FP_MP(ire); 23775 BUMP_MIB(&ip_mib, ipOutDiscards); 23776 freeb(hdr_mp); 23777 freemsg(mp); 23778 freemsg(mp_orig); 23779 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23780 "ip_wput_frag_end:(%S)", 23781 "discard"); 23782 23783 if (multirt_send) { 23784 ASSERT(ire1); 23785 ASSERT(next_mp); 23786 23787 freemsg(next_mp); 23788 ire_refrele(ire1); 23789 } 23790 if (save_ire != NULL) 23791 IRE_REFRELE(save_ire); 23792 23793 if (first_ire != NULL) 23794 ire_refrele(first_ire); 23795 return; 23796 23797 /* 23798 * Case of res_mp OR the fastpath mp can't fit 23799 * in the mblk 23800 */ 23801 } else { 23802 xmit_mp->b_cont = mp; 23803 if (DB_CRED(mp) != NULL) 23804 mblk_setcred(xmit_mp, DB_CRED(mp)); 23805 /* 23806 * Get priority marking, if any. 23807 * We propagate the CoS marking from the 23808 * original packet that went to QoS processing 23809 * in ip_wput_ire to the newly carved mp. 23810 */ 23811 if (DB_TYPE(xmit_mp) == M_DATA) 23812 xmit_mp->b_band = mp->b_band; 23813 } 23814 UNLOCK_IRE_FP_MP(ire); 23815 q = ire->ire_stq; 23816 BUMP_MIB(&ip_mib, ipFragCreates); 23817 23818 out_ill = (ill_t *)q->q_ptr; 23819 23820 DTRACE_PROBE4(ip4__physical__out__start, 23821 ill_t *, NULL, ill_t *, out_ill, 23822 ipha_t *, ipha, mblk_t *, xmit_mp); 23823 23824 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 23825 NULL, out_ill, ipha, xmit_mp, mp); 23826 23827 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 23828 23829 if (xmit_mp != NULL) { 23830 putnext(q, xmit_mp); 23831 if (pkt_type != OB_PKT) { 23832 /* 23833 * Update the packet count of trailing 23834 * RTF_MULTIRT ires. 23835 */ 23836 UPDATE_OB_PKT_COUNT(ire); 23837 } 23838 } 23839 23840 if (multirt_send) { 23841 /* 23842 * We are in a multiple send case; look for 23843 * the next ire and re-enter the loop. 23844 */ 23845 ASSERT(ire1); 23846 ASSERT(next_mp); 23847 /* REFRELE the current ire before looping */ 23848 ire_refrele(ire); 23849 ire = ire1; 23850 ire1 = NULL; 23851 mp = next_mp; 23852 next_mp = NULL; 23853 } 23854 } while (multirt_send); 23855 23856 ASSERT(ire1 == NULL); 23857 23858 /* Restore the original ire; we need it for the trailing frags */ 23859 if (save_ire != NULL) { 23860 /* REFRELE the last iterated ire */ 23861 ire_refrele(ire); 23862 /* save_ire has been REFHOLDed */ 23863 ire = save_ire; 23864 save_ire = NULL; 23865 q = ire->ire_stq; 23866 } 23867 23868 if (pkt_type == OB_PKT) { 23869 UPDATE_OB_PKT_COUNT(ire); 23870 } else { 23871 UPDATE_IB_PKT_COUNT(ire); 23872 } 23873 23874 /* Advance the offset to the second frag starting point. */ 23875 offset += len; 23876 /* 23877 * Update hdr_len from the copied header - there might be less options 23878 * in the later fragments. 23879 */ 23880 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 23881 /* Loop until done. */ 23882 for (;;) { 23883 uint16_t offset_and_flags; 23884 uint16_t ip_len; 23885 23886 if (ip_data_end - offset > len) { 23887 /* 23888 * Carve off the appropriate amount from the original 23889 * datagram. 23890 */ 23891 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 23892 mp = NULL; 23893 break; 23894 } 23895 /* 23896 * More frags after this one. Get another copy 23897 * of the header. 23898 */ 23899 if (carve_mp->b_datap->db_ref == 1 && 23900 hdr_mp->b_wptr - hdr_mp->b_rptr < 23901 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 23902 /* Inline IP header */ 23903 carve_mp->b_rptr -= hdr_mp->b_wptr - 23904 hdr_mp->b_rptr; 23905 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 23906 hdr_mp->b_wptr - hdr_mp->b_rptr); 23907 mp = carve_mp; 23908 } else { 23909 if (!(mp = copyb(hdr_mp))) { 23910 freemsg(carve_mp); 23911 break; 23912 } 23913 /* Get priority marking, if any. */ 23914 mp->b_band = carve_mp->b_band; 23915 mp->b_cont = carve_mp; 23916 } 23917 ipha = (ipha_t *)mp->b_rptr; 23918 offset_and_flags = IPH_MF; 23919 } else { 23920 /* 23921 * Last frag. Consume the header. Set len to 23922 * the length of this last piece. 23923 */ 23924 len = ip_data_end - offset; 23925 23926 /* 23927 * Carve off the appropriate amount from the original 23928 * datagram. 23929 */ 23930 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 23931 mp = NULL; 23932 break; 23933 } 23934 if (carve_mp->b_datap->db_ref == 1 && 23935 hdr_mp->b_wptr - hdr_mp->b_rptr < 23936 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 23937 /* Inline IP header */ 23938 carve_mp->b_rptr -= hdr_mp->b_wptr - 23939 hdr_mp->b_rptr; 23940 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 23941 hdr_mp->b_wptr - hdr_mp->b_rptr); 23942 mp = carve_mp; 23943 freeb(hdr_mp); 23944 hdr_mp = mp; 23945 } else { 23946 mp = hdr_mp; 23947 /* Get priority marking, if any. */ 23948 mp->b_band = carve_mp->b_band; 23949 mp->b_cont = carve_mp; 23950 } 23951 ipha = (ipha_t *)mp->b_rptr; 23952 /* A frag of a frag might have IPH_MF non-zero */ 23953 offset_and_flags = 23954 ntohs(ipha->ipha_fragment_offset_and_flags) & 23955 IPH_MF; 23956 } 23957 offset_and_flags |= (uint16_t)(offset >> 3); 23958 offset_and_flags |= (uint16_t)frag_flag; 23959 /* Store the offset and flags in the IP header. */ 23960 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23961 23962 /* Store the length in the IP header. */ 23963 ip_len = (uint16_t)(len + hdr_len); 23964 ipha->ipha_length = htons(ip_len); 23965 23966 /* 23967 * Set the IP header checksum. Note that mp is just 23968 * the header, so this is easy to pass to ip_csum. 23969 */ 23970 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23971 23972 /* Attach a transmit header, if any, and ship it. */ 23973 if (pkt_type == OB_PKT) { 23974 UPDATE_OB_PKT_COUNT(ire); 23975 } else { 23976 UPDATE_IB_PKT_COUNT(ire); 23977 } 23978 23979 if (ire->ire_flags & RTF_MULTIRT) { 23980 irb = ire->ire_bucket; 23981 ASSERT(irb != NULL); 23982 23983 multirt_send = B_TRUE; 23984 23985 /* 23986 * Save the original ire; we will need to restore it 23987 * for the tailing frags. 23988 */ 23989 save_ire = ire; 23990 IRE_REFHOLD(save_ire); 23991 } 23992 /* 23993 * Emission loop for this fragment, similar 23994 * to what is done for the first fragment. 23995 */ 23996 do { 23997 if (multirt_send) { 23998 /* 23999 * We are in a multiple send case, need to get 24000 * the next ire and make a copy of the packet. 24001 */ 24002 ASSERT(irb != NULL); 24003 IRB_REFHOLD(irb); 24004 for (ire1 = ire->ire_next; 24005 ire1 != NULL; 24006 ire1 = ire1->ire_next) { 24007 if (!(ire1->ire_flags & RTF_MULTIRT)) 24008 continue; 24009 if (ire1->ire_addr != ire->ire_addr) 24010 continue; 24011 if (ire1->ire_marks & 24012 (IRE_MARK_CONDEMNED| 24013 IRE_MARK_HIDDEN)) 24014 continue; 24015 /* 24016 * Ensure we do not exceed the MTU 24017 * of the next route. 24018 */ 24019 if (ire1->ire_max_frag < max_frag) { 24020 ip_multirt_bad_mtu(ire1, 24021 max_frag); 24022 continue; 24023 } 24024 24025 /* Got one. */ 24026 IRE_REFHOLD(ire1); 24027 break; 24028 } 24029 IRB_REFRELE(irb); 24030 24031 if (ire1 != NULL) { 24032 next_mp = copyb(mp); 24033 if ((next_mp == NULL) || 24034 ((mp->b_cont != NULL) && 24035 ((next_mp->b_cont = 24036 dupmsg(mp->b_cont)) == NULL))) { 24037 freemsg(next_mp); 24038 next_mp = NULL; 24039 ire_refrele(ire1); 24040 ire1 = NULL; 24041 } 24042 } 24043 24044 /* Last multiroute ire; don't loop anymore. */ 24045 if (ire1 == NULL) { 24046 multirt_send = B_FALSE; 24047 } 24048 } 24049 24050 /* Update transmit header */ 24051 ll_hdr_len = 0; 24052 LOCK_IRE_FP_MP(ire); 24053 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24054 if (ll_hdr_mp != NULL) { 24055 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24056 ll_hdr_len = MBLKL(ll_hdr_mp); 24057 } else { 24058 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24059 } 24060 24061 if (!ll_hdr_mp) { 24062 xmit_mp = mp; 24063 24064 /* 24065 * We have link-layer header that can fit in 24066 * our mblk. 24067 */ 24068 } else if (mp->b_datap->db_ref == 1 && 24069 ll_hdr_len != 0 && 24070 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24071 /* M_DATA fastpath */ 24072 mp->b_rptr -= ll_hdr_len; 24073 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24074 ll_hdr_len); 24075 xmit_mp = mp; 24076 24077 /* 24078 * Case of res_mp OR the fastpath mp can't fit 24079 * in the mblk 24080 */ 24081 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24082 xmit_mp->b_cont = mp; 24083 if (DB_CRED(mp) != NULL) 24084 mblk_setcred(xmit_mp, DB_CRED(mp)); 24085 /* Get priority marking, if any. */ 24086 if (DB_TYPE(xmit_mp) == M_DATA) 24087 xmit_mp->b_band = mp->b_band; 24088 24089 /* Corner case if copyb failed */ 24090 } else { 24091 /* 24092 * Exit both the replication and 24093 * fragmentation loops. 24094 */ 24095 UNLOCK_IRE_FP_MP(ire); 24096 goto drop_pkt; 24097 } 24098 UNLOCK_IRE_FP_MP(ire); 24099 BUMP_MIB(&ip_mib, ipFragCreates); 24100 24101 mp1 = mp; 24102 out_ill = (ill_t *)q->q_ptr; 24103 24104 DTRACE_PROBE4(ip4__physical__out__start, 24105 ill_t *, NULL, ill_t *, out_ill, 24106 ipha_t *, ipha, mblk_t *, xmit_mp); 24107 24108 FW_HOOKS(ip4_physical_out_event, 24109 ipv4firewall_physical_out, 24110 NULL, out_ill, ipha, xmit_mp, mp); 24111 24112 DTRACE_PROBE1(ip4__physical__out__end, 24113 mblk_t *, xmit_mp); 24114 24115 if (mp != mp1 && hdr_mp == mp1) 24116 hdr_mp = mp; 24117 if (mp != mp1 && mp_orig == mp1) 24118 mp_orig = mp; 24119 24120 if (xmit_mp != NULL) { 24121 putnext(q, xmit_mp); 24122 24123 if (pkt_type != OB_PKT) { 24124 /* 24125 * Update the packet count of trailing 24126 * RTF_MULTIRT ires. 24127 */ 24128 UPDATE_OB_PKT_COUNT(ire); 24129 } 24130 } 24131 24132 /* All done if we just consumed the hdr_mp. */ 24133 if (mp == hdr_mp) { 24134 last_frag = B_TRUE; 24135 } 24136 24137 if (multirt_send) { 24138 /* 24139 * We are in a multiple send case; look for 24140 * the next ire and re-enter the loop. 24141 */ 24142 ASSERT(ire1); 24143 ASSERT(next_mp); 24144 /* REFRELE the current ire before looping */ 24145 ire_refrele(ire); 24146 ire = ire1; 24147 ire1 = NULL; 24148 q = ire->ire_stq; 24149 mp = next_mp; 24150 next_mp = NULL; 24151 } 24152 } while (multirt_send); 24153 /* 24154 * Restore the original ire; we need it for the 24155 * trailing frags 24156 */ 24157 if (save_ire != NULL) { 24158 ASSERT(ire1 == NULL); 24159 /* REFRELE the last iterated ire */ 24160 ire_refrele(ire); 24161 /* save_ire has been REFHOLDed */ 24162 ire = save_ire; 24163 q = ire->ire_stq; 24164 save_ire = NULL; 24165 } 24166 24167 if (last_frag) { 24168 BUMP_MIB(&ip_mib, ipFragOKs); 24169 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24170 "ip_wput_frag_end:(%S)", 24171 "consumed hdr_mp"); 24172 24173 if (first_ire != NULL) 24174 ire_refrele(first_ire); 24175 return; 24176 } 24177 /* Otherwise, advance and loop. */ 24178 offset += len; 24179 } 24180 24181 drop_pkt: 24182 /* Clean up following allocation failure. */ 24183 BUMP_MIB(&ip_mib, ipOutDiscards); 24184 freemsg(mp); 24185 if (mp != hdr_mp) 24186 freeb(hdr_mp); 24187 if (mp != mp_orig) 24188 freemsg(mp_orig); 24189 24190 if (save_ire != NULL) 24191 IRE_REFRELE(save_ire); 24192 if (first_ire != NULL) 24193 ire_refrele(first_ire); 24194 24195 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24196 "ip_wput_frag_end:(%S)", 24197 "end--alloc failure"); 24198 } 24199 24200 /* 24201 * Copy the header plus those options which have the copy bit set 24202 */ 24203 static mblk_t * 24204 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset) 24205 { 24206 mblk_t *mp; 24207 uchar_t *up; 24208 24209 /* 24210 * Quick check if we need to look for options without the copy bit 24211 * set 24212 */ 24213 mp = allocb(ip_wroff_extra + hdr_len, BPRI_HI); 24214 if (!mp) 24215 return (mp); 24216 mp->b_rptr += ip_wroff_extra; 24217 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24218 bcopy(rptr, mp->b_rptr, hdr_len); 24219 mp->b_wptr += hdr_len + ip_wroff_extra; 24220 return (mp); 24221 } 24222 up = mp->b_rptr; 24223 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24224 up += IP_SIMPLE_HDR_LENGTH; 24225 rptr += IP_SIMPLE_HDR_LENGTH; 24226 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24227 while (hdr_len > 0) { 24228 uint32_t optval; 24229 uint32_t optlen; 24230 24231 optval = *rptr; 24232 if (optval == IPOPT_EOL) 24233 break; 24234 if (optval == IPOPT_NOP) 24235 optlen = 1; 24236 else 24237 optlen = rptr[1]; 24238 if (optval & IPOPT_COPY) { 24239 bcopy(rptr, up, optlen); 24240 up += optlen; 24241 } 24242 rptr += optlen; 24243 hdr_len -= optlen; 24244 } 24245 /* 24246 * Make sure that we drop an even number of words by filling 24247 * with EOL to the next word boundary. 24248 */ 24249 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24250 hdr_len & 0x3; hdr_len++) 24251 *up++ = IPOPT_EOL; 24252 mp->b_wptr = up; 24253 /* Update header length */ 24254 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24255 return (mp); 24256 } 24257 24258 /* 24259 * Delivery to local recipients including fanout to multiple recipients. 24260 * Does not do checksumming of UDP/TCP. 24261 * Note: q should be the read side queue for either the ill or conn. 24262 * Note: rq should be the read side q for the lower (ill) stream. 24263 * We don't send packets to IPPF processing, thus the last argument 24264 * to all the fanout calls are B_FALSE. 24265 */ 24266 void 24267 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24268 int fanout_flags, zoneid_t zoneid) 24269 { 24270 uint32_t protocol; 24271 mblk_t *first_mp; 24272 boolean_t mctl_present; 24273 int ire_type; 24274 #define rptr ((uchar_t *)ipha) 24275 24276 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24277 "ip_wput_local_start: q %p", q); 24278 24279 if (ire != NULL) { 24280 ire_type = ire->ire_type; 24281 } else { 24282 /* 24283 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24284 * packet is not multicast, we can't tell the ire type. 24285 */ 24286 ASSERT(CLASSD(ipha->ipha_dst)); 24287 ire_type = IRE_BROADCAST; 24288 } 24289 24290 first_mp = mp; 24291 if (first_mp->b_datap->db_type == M_CTL) { 24292 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24293 if (!io->ipsec_out_secure) { 24294 /* 24295 * This ipsec_out_t was allocated in ip_wput 24296 * for multicast packets to store the ill_index. 24297 * As this is being delivered locally, we don't 24298 * need this anymore. 24299 */ 24300 mp = first_mp->b_cont; 24301 freeb(first_mp); 24302 first_mp = mp; 24303 mctl_present = B_FALSE; 24304 } else { 24305 /* 24306 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24307 * security properties for the looped-back packet. 24308 */ 24309 mctl_present = B_TRUE; 24310 mp = first_mp->b_cont; 24311 ASSERT(mp != NULL); 24312 ipsec_out_to_in(first_mp); 24313 } 24314 } else { 24315 mctl_present = B_FALSE; 24316 } 24317 24318 DTRACE_PROBE4(ip4__loopback__in__start, 24319 ill_t *, ill, ill_t *, NULL, 24320 ipha_t *, ipha, mblk_t *, first_mp); 24321 24322 FW_HOOKS(ip4_loopback_in_event, ipv4firewall_loopback_in, 24323 ill, NULL, ipha, first_mp, mp); 24324 24325 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24326 24327 if (first_mp == NULL) 24328 return; 24329 24330 loopback_packets++; 24331 24332 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 24333 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 24334 if (!IS_SIMPLE_IPH(ipha)) { 24335 ip_wput_local_options(ipha); 24336 } 24337 24338 protocol = ipha->ipha_protocol; 24339 switch (protocol) { 24340 case IPPROTO_ICMP: { 24341 ire_t *ire_zone; 24342 ilm_t *ilm; 24343 mblk_t *mp1; 24344 zoneid_t last_zoneid; 24345 24346 if (CLASSD(ipha->ipha_dst) && 24347 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 24348 ASSERT(ire_type == IRE_BROADCAST); 24349 /* 24350 * In the multicast case, applications may have joined 24351 * the group from different zones, so we need to deliver 24352 * the packet to each of them. Loop through the 24353 * multicast memberships structures (ilm) on the receive 24354 * ill and send a copy of the packet up each matching 24355 * one. However, we don't do this for multicasts sent on 24356 * the loopback interface (PHYI_LOOPBACK flag set) as 24357 * they must stay in the sender's zone. 24358 * 24359 * ilm_add_v6() ensures that ilms in the same zone are 24360 * contiguous in the ill_ilm list. We use this property 24361 * to avoid sending duplicates needed when two 24362 * applications in the same zone join the same group on 24363 * different logical interfaces: we ignore the ilm if 24364 * it's zoneid is the same as the last matching one. 24365 * In addition, the sending of the packet for 24366 * ire_zoneid is delayed until all of the other ilms 24367 * have been exhausted. 24368 */ 24369 last_zoneid = -1; 24370 ILM_WALKER_HOLD(ill); 24371 for (ilm = ill->ill_ilm; ilm != NULL; 24372 ilm = ilm->ilm_next) { 24373 if ((ilm->ilm_flags & ILM_DELETED) || 24374 ipha->ipha_dst != ilm->ilm_addr || 24375 ilm->ilm_zoneid == last_zoneid || 24376 ilm->ilm_zoneid == zoneid || 24377 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 24378 continue; 24379 mp1 = ip_copymsg(first_mp); 24380 if (mp1 == NULL) 24381 continue; 24382 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 24383 mctl_present, B_FALSE, ill, 24384 ilm->ilm_zoneid); 24385 last_zoneid = ilm->ilm_zoneid; 24386 } 24387 ILM_WALKER_RELE(ill); 24388 /* 24389 * Loopback case: the sending endpoint has 24390 * IP_MULTICAST_LOOP disabled, therefore we don't 24391 * dispatch the multicast packet to the sending zone. 24392 */ 24393 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 24394 freemsg(first_mp); 24395 return; 24396 } 24397 } else if (ire_type == IRE_BROADCAST) { 24398 /* 24399 * In the broadcast case, there may be many zones 24400 * which need a copy of the packet delivered to them. 24401 * There is one IRE_BROADCAST per broadcast address 24402 * and per zone; we walk those using a helper function. 24403 * In addition, the sending of the packet for zoneid is 24404 * delayed until all of the other ires have been 24405 * processed. 24406 */ 24407 IRB_REFHOLD(ire->ire_bucket); 24408 ire_zone = NULL; 24409 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 24410 ire)) != NULL) { 24411 mp1 = ip_copymsg(first_mp); 24412 if (mp1 == NULL) 24413 continue; 24414 24415 UPDATE_IB_PKT_COUNT(ire_zone); 24416 ire_zone->ire_last_used_time = lbolt; 24417 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 24418 mctl_present, B_FALSE, ill, 24419 ire_zone->ire_zoneid); 24420 } 24421 IRB_REFRELE(ire->ire_bucket); 24422 } 24423 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 24424 0, mctl_present, B_FALSE, ill, zoneid); 24425 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24426 "ip_wput_local_end: q %p (%S)", 24427 q, "icmp"); 24428 return; 24429 } 24430 case IPPROTO_IGMP: 24431 if ((mp = igmp_input(q, mp, ill)) == NULL) { 24432 /* Bad packet - discarded by igmp_input */ 24433 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24434 "ip_wput_local_end: q %p (%S)", 24435 q, "igmp_input--bad packet"); 24436 if (mctl_present) 24437 freeb(first_mp); 24438 return; 24439 } 24440 /* 24441 * igmp_input() may have returned the pulled up message. 24442 * So first_mp and ipha need to be reinitialized. 24443 */ 24444 ipha = (ipha_t *)mp->b_rptr; 24445 if (mctl_present) 24446 first_mp->b_cont = mp; 24447 else 24448 first_mp = mp; 24449 /* deliver to local raw users */ 24450 break; 24451 case IPPROTO_ENCAP: 24452 /* 24453 * This case is covered by either ip_fanout_proto, or by 24454 * the above security processing for self-tunneled packets. 24455 */ 24456 break; 24457 case IPPROTO_UDP: { 24458 uint16_t *up; 24459 uint32_t ports; 24460 24461 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 24462 UDP_PORTS_OFFSET); 24463 /* Force a 'valid' checksum. */ 24464 up[3] = 0; 24465 24466 ports = *(uint32_t *)up; 24467 ip_fanout_udp(q, first_mp, ill, ipha, ports, 24468 (ire_type == IRE_BROADCAST), 24469 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24470 IP_FF_SEND_SLLA | IP_FF_IP6INFO, mctl_present, B_FALSE, 24471 ill, zoneid); 24472 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24473 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 24474 return; 24475 } 24476 case IPPROTO_TCP: { 24477 24478 /* 24479 * For TCP, discard broadcast packets. 24480 */ 24481 if ((ushort_t)ire_type == IRE_BROADCAST) { 24482 freemsg(first_mp); 24483 BUMP_MIB(&ip_mib, ipInDiscards); 24484 ip2dbg(("ip_wput_local: discard broadcast\n")); 24485 return; 24486 } 24487 24488 if (mp->b_datap->db_type == M_DATA) { 24489 /* 24490 * M_DATA mblk, so init mblk (chain) for no struio(). 24491 */ 24492 mblk_t *mp1 = mp; 24493 24494 do 24495 mp1->b_datap->db_struioflag = 0; 24496 while ((mp1 = mp1->b_cont) != NULL); 24497 } 24498 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 24499 <= mp->b_wptr); 24500 ip_fanout_tcp(q, first_mp, ill, ipha, 24501 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24502 IP_FF_SYN_ADDIRE | IP_FF_IP6INFO, 24503 mctl_present, B_FALSE, zoneid); 24504 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24505 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 24506 return; 24507 } 24508 case IPPROTO_SCTP: 24509 { 24510 uint32_t ports; 24511 24512 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 24513 ip_fanout_sctp(first_mp, ill, ipha, ports, 24514 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24515 IP_FF_IP6INFO, 24516 mctl_present, B_FALSE, 0, zoneid); 24517 return; 24518 } 24519 24520 default: 24521 break; 24522 } 24523 /* 24524 * Find a client for some other protocol. We give 24525 * copies to multiple clients, if more than one is 24526 * bound. 24527 */ 24528 ip_fanout_proto(q, first_mp, ill, ipha, 24529 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 24530 mctl_present, B_FALSE, ill, zoneid); 24531 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24532 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 24533 #undef rptr 24534 } 24535 24536 /* 24537 * Update any source route, record route, or timestamp options. 24538 * Check that we are at end of strict source route. 24539 * The options have been sanity checked by ip_wput_options(). 24540 */ 24541 static void 24542 ip_wput_local_options(ipha_t *ipha) 24543 { 24544 ipoptp_t opts; 24545 uchar_t *opt; 24546 uint8_t optval; 24547 uint8_t optlen; 24548 ipaddr_t dst; 24549 uint32_t ts; 24550 ire_t *ire; 24551 timestruc_t now; 24552 24553 ip2dbg(("ip_wput_local_options\n")); 24554 for (optval = ipoptp_first(&opts, ipha); 24555 optval != IPOPT_EOL; 24556 optval = ipoptp_next(&opts)) { 24557 opt = opts.ipoptp_cur; 24558 optlen = opts.ipoptp_len; 24559 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 24560 switch (optval) { 24561 uint32_t off; 24562 case IPOPT_SSRR: 24563 case IPOPT_LSRR: 24564 off = opt[IPOPT_OFFSET]; 24565 off--; 24566 if (optlen < IP_ADDR_LEN || 24567 off > optlen - IP_ADDR_LEN) { 24568 /* End of source route */ 24569 break; 24570 } 24571 /* 24572 * This will only happen if two consecutive entries 24573 * in the source route contains our address or if 24574 * it is a packet with a loose source route which 24575 * reaches us before consuming the whole source route 24576 */ 24577 ip1dbg(("ip_wput_local_options: not end of SR\n")); 24578 if (optval == IPOPT_SSRR) { 24579 return; 24580 } 24581 /* 24582 * Hack: instead of dropping the packet truncate the 24583 * source route to what has been used by filling the 24584 * rest with IPOPT_NOP. 24585 */ 24586 opt[IPOPT_OLEN] = (uint8_t)off; 24587 while (off < optlen) { 24588 opt[off++] = IPOPT_NOP; 24589 } 24590 break; 24591 case IPOPT_RR: 24592 off = opt[IPOPT_OFFSET]; 24593 off--; 24594 if (optlen < IP_ADDR_LEN || 24595 off > optlen - IP_ADDR_LEN) { 24596 /* No more room - ignore */ 24597 ip1dbg(( 24598 "ip_wput_forward_options: end of RR\n")); 24599 break; 24600 } 24601 dst = htonl(INADDR_LOOPBACK); 24602 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 24603 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 24604 break; 24605 case IPOPT_TS: 24606 /* Insert timestamp if there is romm */ 24607 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 24608 case IPOPT_TS_TSONLY: 24609 off = IPOPT_TS_TIMELEN; 24610 break; 24611 case IPOPT_TS_PRESPEC: 24612 case IPOPT_TS_PRESPEC_RFC791: 24613 /* Verify that the address matched */ 24614 off = opt[IPOPT_OFFSET] - 1; 24615 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 24616 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 24617 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 24618 if (ire == NULL) { 24619 /* Not for us */ 24620 break; 24621 } 24622 ire_refrele(ire); 24623 /* FALLTHRU */ 24624 case IPOPT_TS_TSANDADDR: 24625 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 24626 break; 24627 default: 24628 /* 24629 * ip_*put_options should have already 24630 * dropped this packet. 24631 */ 24632 cmn_err(CE_PANIC, "ip_wput_local_options: " 24633 "unknown IT - bug in ip_wput_options?\n"); 24634 return; /* Keep "lint" happy */ 24635 } 24636 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 24637 /* Increase overflow counter */ 24638 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 24639 opt[IPOPT_POS_OV_FLG] = (uint8_t) 24640 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 24641 (off << 4); 24642 break; 24643 } 24644 off = opt[IPOPT_OFFSET] - 1; 24645 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 24646 case IPOPT_TS_PRESPEC: 24647 case IPOPT_TS_PRESPEC_RFC791: 24648 case IPOPT_TS_TSANDADDR: 24649 dst = htonl(INADDR_LOOPBACK); 24650 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 24651 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 24652 /* FALLTHRU */ 24653 case IPOPT_TS_TSONLY: 24654 off = opt[IPOPT_OFFSET] - 1; 24655 /* Compute # of milliseconds since midnight */ 24656 gethrestime(&now); 24657 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 24658 now.tv_nsec / (NANOSEC / MILLISEC); 24659 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 24660 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 24661 break; 24662 } 24663 break; 24664 } 24665 } 24666 } 24667 24668 /* 24669 * Send out a multicast packet on interface ipif. 24670 * The sender does not have an conn. 24671 * Caller verifies that this isn't a PHYI_LOOPBACK. 24672 */ 24673 void 24674 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 24675 { 24676 ipha_t *ipha; 24677 ire_t *ire; 24678 ipaddr_t dst; 24679 mblk_t *first_mp; 24680 24681 /* igmp_sendpkt always allocates a ipsec_out_t */ 24682 ASSERT(mp->b_datap->db_type == M_CTL); 24683 ASSERT(!ipif->ipif_isv6); 24684 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 24685 24686 first_mp = mp; 24687 mp = first_mp->b_cont; 24688 ASSERT(mp->b_datap->db_type == M_DATA); 24689 ipha = (ipha_t *)mp->b_rptr; 24690 24691 /* 24692 * Find an IRE which matches the destination and the outgoing 24693 * queue (i.e. the outgoing interface.) 24694 */ 24695 if (ipif->ipif_flags & IPIF_POINTOPOINT) 24696 dst = ipif->ipif_pp_dst_addr; 24697 else 24698 dst = ipha->ipha_dst; 24699 /* 24700 * The source address has already been initialized by the 24701 * caller and hence matching on ILL (MATCH_IRE_ILL) would 24702 * be sufficient rather than MATCH_IRE_IPIF. 24703 * 24704 * This function is used for sending IGMP packets. We need 24705 * to make sure that we send the packet out of the interface 24706 * (ipif->ipif_ill) where we joined the group. This is to 24707 * prevent from switches doing IGMP snooping to send us multicast 24708 * packets for a given group on the interface we have joined. 24709 * If we can't find an ire, igmp_sendpkt has already initialized 24710 * ipsec_out_attach_if so that this will not be load spread in 24711 * ip_newroute_ipif. 24712 */ 24713 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 24714 MATCH_IRE_ILL); 24715 if (!ire) { 24716 /* 24717 * Mark this packet to make it be delivered to 24718 * ip_wput_ire after the new ire has been 24719 * created. 24720 */ 24721 mp->b_prev = NULL; 24722 mp->b_next = NULL; 24723 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 24724 zoneid); 24725 return; 24726 } 24727 24728 /* 24729 * Honor the RTF_SETSRC flag; this is the only case 24730 * where we force this addr whatever the current src addr is, 24731 * because this address is set by igmp_sendpkt(), and 24732 * cannot be specified by any user. 24733 */ 24734 if (ire->ire_flags & RTF_SETSRC) { 24735 ipha->ipha_src = ire->ire_src_addr; 24736 } 24737 24738 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 24739 } 24740 24741 /* 24742 * NOTE : This function does not ire_refrele the ire argument passed in. 24743 * 24744 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 24745 * failure. The nce_fp_mp can vanish any time in the case of IRE_MIPRTUN 24746 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 24747 * the ire_lock to access the nce_fp_mp in this case. 24748 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 24749 * prepending a fastpath message IPQoS processing must precede it, we also set 24750 * the b_band of the fastpath message to that of the mblk returned by IPQoS 24751 * (IPQoS might have set the b_band for CoS marking). 24752 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 24753 * must follow it so that IPQoS can mark the dl_priority field for CoS 24754 * marking, if needed. 24755 */ 24756 static mblk_t * 24757 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 24758 { 24759 uint_t hlen; 24760 ipha_t *ipha; 24761 mblk_t *mp1; 24762 boolean_t qos_done = B_FALSE; 24763 uchar_t *ll_hdr; 24764 24765 #define rptr ((uchar_t *)ipha) 24766 24767 ipha = (ipha_t *)mp->b_rptr; 24768 hlen = 0; 24769 LOCK_IRE_FP_MP(ire); 24770 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 24771 ASSERT(DB_TYPE(mp1) == M_DATA); 24772 /* Initiate IPPF processing */ 24773 if ((proc != 0) && IPP_ENABLED(proc)) { 24774 UNLOCK_IRE_FP_MP(ire); 24775 ip_process(proc, &mp, ill_index); 24776 if (mp == NULL) 24777 return (NULL); 24778 24779 ipha = (ipha_t *)mp->b_rptr; 24780 LOCK_IRE_FP_MP(ire); 24781 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 24782 qos_done = B_TRUE; 24783 goto no_fp_mp; 24784 } 24785 ASSERT(DB_TYPE(mp1) == M_DATA); 24786 } 24787 hlen = MBLKL(mp1); 24788 /* 24789 * Check if we have enough room to prepend fastpath 24790 * header 24791 */ 24792 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 24793 ll_hdr = rptr - hlen; 24794 bcopy(mp1->b_rptr, ll_hdr, hlen); 24795 /* 24796 * Set the b_rptr to the start of the link layer 24797 * header 24798 */ 24799 mp->b_rptr = ll_hdr; 24800 mp1 = mp; 24801 } else { 24802 mp1 = copyb(mp1); 24803 if (mp1 == NULL) 24804 goto unlock_err; 24805 mp1->b_band = mp->b_band; 24806 mp1->b_cont = mp; 24807 /* 24808 * certain system generated traffic may not 24809 * have cred/label in ip header block. This 24810 * is true even for a labeled system. But for 24811 * labeled traffic, inherit the label in the 24812 * new header. 24813 */ 24814 if (DB_CRED(mp) != NULL) 24815 mblk_setcred(mp1, DB_CRED(mp)); 24816 /* 24817 * XXX disable ICK_VALID and compute checksum 24818 * here; can happen if nce_fp_mp changes and 24819 * it can't be copied now due to insufficient 24820 * space. (unlikely, fp mp can change, but it 24821 * does not increase in length) 24822 */ 24823 } 24824 UNLOCK_IRE_FP_MP(ire); 24825 } else { 24826 no_fp_mp: 24827 mp1 = copyb(ire->ire_nce->nce_res_mp); 24828 if (mp1 == NULL) { 24829 unlock_err: 24830 UNLOCK_IRE_FP_MP(ire); 24831 freemsg(mp); 24832 return (NULL); 24833 } 24834 UNLOCK_IRE_FP_MP(ire); 24835 mp1->b_cont = mp; 24836 /* 24837 * certain system generated traffic may not 24838 * have cred/label in ip header block. This 24839 * is true even for a labeled system. But for 24840 * labeled traffic, inherit the label in the 24841 * new header. 24842 */ 24843 if (DB_CRED(mp) != NULL) 24844 mblk_setcred(mp1, DB_CRED(mp)); 24845 if (!qos_done && (proc != 0) && IPP_ENABLED(proc)) { 24846 ip_process(proc, &mp1, ill_index); 24847 if (mp1 == NULL) 24848 return (NULL); 24849 } 24850 } 24851 return (mp1); 24852 #undef rptr 24853 } 24854 24855 /* 24856 * Finish the outbound IPsec processing for an IPv6 packet. This function 24857 * is called from ipsec_out_process() if the IPsec packet was processed 24858 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 24859 * asynchronously. 24860 */ 24861 void 24862 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 24863 ire_t *ire_arg) 24864 { 24865 in6_addr_t *v6dstp; 24866 ire_t *ire; 24867 mblk_t *mp; 24868 ip6_t *ip6h1; 24869 uint_t ill_index; 24870 ipsec_out_t *io; 24871 boolean_t attach_if, hwaccel; 24872 uint32_t flags = IP6_NO_IPPOLICY; 24873 int match_flags; 24874 zoneid_t zoneid; 24875 boolean_t ill_need_rele = B_FALSE; 24876 boolean_t ire_need_rele = B_FALSE; 24877 24878 mp = ipsec_mp->b_cont; 24879 ip6h1 = (ip6_t *)mp->b_rptr; 24880 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24881 ill_index = io->ipsec_out_ill_index; 24882 if (io->ipsec_out_reachable) { 24883 flags |= IPV6_REACHABILITY_CONFIRMATION; 24884 } 24885 attach_if = io->ipsec_out_attach_if; 24886 hwaccel = io->ipsec_out_accelerated; 24887 zoneid = io->ipsec_out_zoneid; 24888 ASSERT(zoneid != ALL_ZONES); 24889 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 24890 /* Multicast addresses should have non-zero ill_index. */ 24891 v6dstp = &ip6h->ip6_dst; 24892 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 24893 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 24894 ASSERT(!attach_if || ill_index != 0); 24895 if (ill_index != 0) { 24896 if (ill == NULL) { 24897 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 24898 B_TRUE); 24899 24900 /* Failure case frees things for us. */ 24901 if (ill == NULL) 24902 return; 24903 24904 ill_need_rele = B_TRUE; 24905 } 24906 /* 24907 * If this packet needs to go out on a particular interface 24908 * honor it. 24909 */ 24910 if (attach_if) { 24911 match_flags = MATCH_IRE_ILL; 24912 24913 /* 24914 * Check if we need an ire that will not be 24915 * looked up by anybody else i.e. HIDDEN. 24916 */ 24917 if (ill_is_probeonly(ill)) { 24918 match_flags |= MATCH_IRE_MARK_HIDDEN; 24919 } 24920 } 24921 } 24922 ASSERT(mp != NULL); 24923 24924 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 24925 boolean_t unspec_src; 24926 ipif_t *ipif; 24927 24928 /* 24929 * Use the ill_index to get the right ill. 24930 */ 24931 unspec_src = io->ipsec_out_unspec_src; 24932 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 24933 if (ipif == NULL) { 24934 if (ill_need_rele) 24935 ill_refrele(ill); 24936 freemsg(ipsec_mp); 24937 return; 24938 } 24939 24940 if (ire_arg != NULL) { 24941 ire = ire_arg; 24942 } else { 24943 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 24944 zoneid, MBLK_GETLABEL(mp), match_flags); 24945 ire_need_rele = B_TRUE; 24946 } 24947 if (ire != NULL) { 24948 ipif_refrele(ipif); 24949 /* 24950 * XXX Do the multicast forwarding now, as the IPSEC 24951 * processing has been done. 24952 */ 24953 goto send; 24954 } 24955 24956 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 24957 mp->b_prev = NULL; 24958 mp->b_next = NULL; 24959 24960 /* 24961 * If the IPsec packet was processed asynchronously, 24962 * drop it now. 24963 */ 24964 if (q == NULL) { 24965 if (ill_need_rele) 24966 ill_refrele(ill); 24967 freemsg(ipsec_mp); 24968 return; 24969 } 24970 24971 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 24972 unspec_src, zoneid); 24973 ipif_refrele(ipif); 24974 } else { 24975 if (attach_if) { 24976 ipif_t *ipif; 24977 24978 ipif = ipif_get_next_ipif(NULL, ill); 24979 if (ipif == NULL) { 24980 if (ill_need_rele) 24981 ill_refrele(ill); 24982 freemsg(ipsec_mp); 24983 return; 24984 } 24985 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 24986 zoneid, MBLK_GETLABEL(mp), match_flags); 24987 ire_need_rele = B_TRUE; 24988 ipif_refrele(ipif); 24989 } else { 24990 if (ire_arg != NULL) { 24991 ire = ire_arg; 24992 } else { 24993 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL); 24994 ire_need_rele = B_TRUE; 24995 } 24996 } 24997 if (ire != NULL) 24998 goto send; 24999 /* 25000 * ire disappeared underneath. 25001 * 25002 * What we need to do here is the ip_newroute 25003 * logic to get the ire without doing the IPSEC 25004 * processing. Follow the same old path. But this 25005 * time, ip_wput or ire_add_then_send will call us 25006 * directly as all the IPSEC operations are done. 25007 */ 25008 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25009 mp->b_prev = NULL; 25010 mp->b_next = NULL; 25011 25012 /* 25013 * If the IPsec packet was processed asynchronously, 25014 * drop it now. 25015 */ 25016 if (q == NULL) { 25017 if (ill_need_rele) 25018 ill_refrele(ill); 25019 freemsg(ipsec_mp); 25020 return; 25021 } 25022 25023 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25024 zoneid); 25025 } 25026 if (ill != NULL && ill_need_rele) 25027 ill_refrele(ill); 25028 return; 25029 send: 25030 if (ill != NULL && ill_need_rele) 25031 ill_refrele(ill); 25032 25033 /* Local delivery */ 25034 if (ire->ire_stq == NULL) { 25035 ill_t *out_ill; 25036 ASSERT(q != NULL); 25037 25038 /* PFHooks: LOOPBACK_OUT */ 25039 out_ill = ire->ire_ipif->ipif_ill; 25040 25041 DTRACE_PROBE4(ip6__loopback__out__start, 25042 ill_t *, NULL, ill_t *, out_ill, 25043 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25044 25045 FW_HOOKS6(ip6_loopback_out_event, ipv6firewall_loopback_out, 25046 NULL, out_ill, ip6h1, ipsec_mp, mp); 25047 25048 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25049 25050 if (ipsec_mp != NULL) 25051 ip_wput_local_v6(RD(q), out_ill, 25052 ip6h, ipsec_mp, ire, 0); 25053 if (ire_need_rele) 25054 ire_refrele(ire); 25055 return; 25056 } 25057 /* 25058 * Everything is done. Send it out on the wire. 25059 * We force the insertion of a fragment header using the 25060 * IPH_FRAG_HDR flag in two cases: 25061 * - after reception of an ICMPv6 "packet too big" message 25062 * with a MTU < 1280 (cf. RFC 2460 section 5) 25063 * - for multirouted IPv6 packets, so that the receiver can 25064 * discard duplicates according to their fragment identifier 25065 */ 25066 /* XXX fix flow control problems. */ 25067 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25068 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25069 if (hwaccel) { 25070 /* 25071 * hardware acceleration does not handle these 25072 * "slow path" cases. 25073 */ 25074 /* IPsec KSTATS: should bump bean counter here. */ 25075 if (ire_need_rele) 25076 ire_refrele(ire); 25077 freemsg(ipsec_mp); 25078 return; 25079 } 25080 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25081 (mp->b_cont ? msgdsize(mp) : 25082 mp->b_wptr - (uchar_t *)ip6h)) { 25083 /* IPsec KSTATS: should bump bean counter here. */ 25084 ip0dbg(("Packet length mismatch: %d, %ld\n", 25085 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25086 msgdsize(mp))); 25087 if (ire_need_rele) 25088 ire_refrele(ire); 25089 freemsg(ipsec_mp); 25090 return; 25091 } 25092 ASSERT(mp->b_prev == NULL); 25093 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25094 ntohs(ip6h->ip6_plen) + 25095 IPV6_HDR_LEN, ire->ire_max_frag)); 25096 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25097 ire->ire_max_frag); 25098 } else { 25099 UPDATE_OB_PKT_COUNT(ire); 25100 ire->ire_last_used_time = lbolt; 25101 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25102 } 25103 if (ire_need_rele) 25104 ire_refrele(ire); 25105 freeb(ipsec_mp); 25106 } 25107 25108 void 25109 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25110 { 25111 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25112 da_ipsec_t *hada; /* data attributes */ 25113 ill_t *ill = (ill_t *)q->q_ptr; 25114 25115 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25116 25117 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25118 /* IPsec KSTATS: Bump lose counter here! */ 25119 freemsg(mp); 25120 return; 25121 } 25122 25123 /* 25124 * It's an IPsec packet that must be 25125 * accelerated by the Provider, and the 25126 * outbound ill is IPsec acceleration capable. 25127 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25128 * to the ill. 25129 * IPsec KSTATS: should bump packet counter here. 25130 */ 25131 25132 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25133 if (hada_mp == NULL) { 25134 /* IPsec KSTATS: should bump packet counter here. */ 25135 freemsg(mp); 25136 return; 25137 } 25138 25139 hada_mp->b_datap->db_type = M_CTL; 25140 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25141 hada_mp->b_cont = mp; 25142 25143 hada = (da_ipsec_t *)hada_mp->b_rptr; 25144 bzero(hada, sizeof (da_ipsec_t)); 25145 hada->da_type = IPHADA_M_CTL; 25146 25147 putnext(q, hada_mp); 25148 } 25149 25150 /* 25151 * Finish the outbound IPsec processing. This function is called from 25152 * ipsec_out_process() if the IPsec packet was processed 25153 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25154 * asynchronously. 25155 */ 25156 void 25157 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25158 ire_t *ire_arg) 25159 { 25160 uint32_t v_hlen_tos_len; 25161 ipaddr_t dst; 25162 ipif_t *ipif = NULL; 25163 ire_t *ire; 25164 ire_t *ire1 = NULL; 25165 mblk_t *next_mp = NULL; 25166 uint32_t max_frag; 25167 boolean_t multirt_send = B_FALSE; 25168 mblk_t *mp; 25169 mblk_t *mp1; 25170 ipha_t *ipha1; 25171 uint_t ill_index; 25172 ipsec_out_t *io; 25173 boolean_t attach_if; 25174 int match_flags, offset; 25175 irb_t *irb = NULL; 25176 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25177 zoneid_t zoneid; 25178 uint32_t cksum; 25179 uint16_t *up; 25180 ipxmit_state_t pktxmit_state; 25181 #ifdef _BIG_ENDIAN 25182 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25183 #else 25184 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25185 #endif 25186 25187 mp = ipsec_mp->b_cont; 25188 ipha1 = (ipha_t *)mp->b_rptr; 25189 ASSERT(mp != NULL); 25190 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25191 dst = ipha->ipha_dst; 25192 25193 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25194 ill_index = io->ipsec_out_ill_index; 25195 attach_if = io->ipsec_out_attach_if; 25196 zoneid = io->ipsec_out_zoneid; 25197 ASSERT(zoneid != ALL_ZONES); 25198 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25199 if (ill_index != 0) { 25200 if (ill == NULL) { 25201 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25202 ill_index, B_FALSE); 25203 25204 /* Failure case frees things for us. */ 25205 if (ill == NULL) 25206 return; 25207 25208 ill_need_rele = B_TRUE; 25209 } 25210 /* 25211 * If this packet needs to go out on a particular interface 25212 * honor it. 25213 */ 25214 if (attach_if) { 25215 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25216 25217 /* 25218 * Check if we need an ire that will not be 25219 * looked up by anybody else i.e. HIDDEN. 25220 */ 25221 if (ill_is_probeonly(ill)) { 25222 match_flags |= MATCH_IRE_MARK_HIDDEN; 25223 } 25224 } 25225 } 25226 25227 if (CLASSD(dst)) { 25228 boolean_t conn_dontroute; 25229 /* 25230 * Use the ill_index to get the right ipif. 25231 */ 25232 conn_dontroute = io->ipsec_out_dontroute; 25233 if (ill_index == 0) 25234 ipif = ipif_lookup_group(dst, zoneid); 25235 else 25236 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25237 if (ipif == NULL) { 25238 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25239 " multicast\n")); 25240 BUMP_MIB(&ip_mib, ipOutNoRoutes); 25241 freemsg(ipsec_mp); 25242 goto done; 25243 } 25244 /* 25245 * ipha_src has already been intialized with the 25246 * value of the ipif in ip_wput. All we need now is 25247 * an ire to send this downstream. 25248 */ 25249 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25250 MBLK_GETLABEL(mp), match_flags); 25251 if (ire != NULL) { 25252 ill_t *ill1; 25253 /* 25254 * Do the multicast forwarding now, as the IPSEC 25255 * processing has been done. 25256 */ 25257 if (ip_g_mrouter && !conn_dontroute && 25258 (ill1 = ire_to_ill(ire))) { 25259 if (ip_mforward(ill1, ipha, mp)) { 25260 freemsg(ipsec_mp); 25261 ip1dbg(("ip_wput_ipsec_out: mforward " 25262 "failed\n")); 25263 ire_refrele(ire); 25264 goto done; 25265 } 25266 } 25267 goto send; 25268 } 25269 25270 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25271 mp->b_prev = NULL; 25272 mp->b_next = NULL; 25273 25274 /* 25275 * If the IPsec packet was processed asynchronously, 25276 * drop it now. 25277 */ 25278 if (q == NULL) { 25279 freemsg(ipsec_mp); 25280 goto done; 25281 } 25282 25283 /* 25284 * We may be using a wrong ipif to create the ire. 25285 * But it is okay as the source address is assigned 25286 * for the packet already. Next outbound packet would 25287 * create the IRE with the right IPIF in ip_wput. 25288 * 25289 * Also handle RTF_MULTIRT routes. 25290 */ 25291 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25292 zoneid); 25293 } else { 25294 if (attach_if) { 25295 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 25296 zoneid, MBLK_GETLABEL(mp), match_flags); 25297 } else { 25298 if (ire_arg != NULL) { 25299 ire = ire_arg; 25300 ire_need_rele = B_FALSE; 25301 } else { 25302 ire = ire_cache_lookup(dst, zoneid, 25303 MBLK_GETLABEL(mp)); 25304 } 25305 } 25306 if (ire != NULL) { 25307 goto send; 25308 } 25309 25310 /* 25311 * ire disappeared underneath. 25312 * 25313 * What we need to do here is the ip_newroute 25314 * logic to get the ire without doing the IPSEC 25315 * processing. Follow the same old path. But this 25316 * time, ip_wput or ire_add_then_put will call us 25317 * directly as all the IPSEC operations are done. 25318 */ 25319 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25320 mp->b_prev = NULL; 25321 mp->b_next = NULL; 25322 25323 /* 25324 * If the IPsec packet was processed asynchronously, 25325 * drop it now. 25326 */ 25327 if (q == NULL) { 25328 freemsg(ipsec_mp); 25329 goto done; 25330 } 25331 25332 /* 25333 * Since we're going through ip_newroute() again, we 25334 * need to make sure we don't: 25335 * 25336 * 1.) Trigger the ASSERT() with the ipha_ident 25337 * overloading. 25338 * 2.) Redo transport-layer checksumming, since we've 25339 * already done all that to get this far. 25340 * 25341 * The easiest way not do either of the above is to set 25342 * the ipha_ident field to IP_HDR_INCLUDED. 25343 */ 25344 ipha->ipha_ident = IP_HDR_INCLUDED; 25345 ip_newroute(q, ipsec_mp, dst, NULL, 25346 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), zoneid); 25347 } 25348 goto done; 25349 send: 25350 if (ipha->ipha_protocol == IPPROTO_UDP && udp_compute_checksum()) { 25351 /* 25352 * ESP NAT-Traversal packet. 25353 * 25354 * Just do software checksum for now. 25355 */ 25356 25357 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 25358 IP_STAT(ip_out_sw_cksum); 25359 IP_STAT_UPDATE(ip_udp_out_sw_cksum_bytes, 25360 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 25361 #define iphs ((uint16_t *)ipha) 25362 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 25363 iphs[9] + ntohs(htons(ipha->ipha_length) - 25364 IP_SIMPLE_HDR_LENGTH); 25365 #undef iphs 25366 if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0) 25367 cksum = 0xFFFF; 25368 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 25369 if (mp1->b_wptr - mp1->b_rptr >= 25370 offset + sizeof (uint16_t)) { 25371 up = (uint16_t *)(mp1->b_rptr + offset); 25372 *up = cksum; 25373 break; /* out of for loop */ 25374 } else { 25375 offset -= (mp->b_wptr - mp->b_rptr); 25376 } 25377 } /* Otherwise, just keep the all-zero checksum. */ 25378 25379 if (ire->ire_stq == NULL) { 25380 ill_t *out_ill; 25381 /* 25382 * Loopbacks go through ip_wput_local except for one case. 25383 * We come here if we generate a icmp_frag_needed message 25384 * after IPSEC processing is over. When this function calls 25385 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 25386 * icmp_frag_needed. The message generated comes back here 25387 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 25388 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 25389 * source address as it is usually set in ip_wput_ire. As 25390 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 25391 * and we end up here. We can't enter ip_wput_ire once the 25392 * IPSEC processing is over and hence we need to do it here. 25393 */ 25394 ASSERT(q != NULL); 25395 UPDATE_OB_PKT_COUNT(ire); 25396 ire->ire_last_used_time = lbolt; 25397 if (ipha->ipha_src == 0) 25398 ipha->ipha_src = ire->ire_src_addr; 25399 25400 /* PFHooks: LOOPBACK_OUT */ 25401 out_ill = ire->ire_ipif->ipif_ill; 25402 25403 DTRACE_PROBE4(ip4__loopback__out__start, 25404 ill_t *, NULL, ill_t *, out_ill, 25405 ipha_t *, ipha1, mblk_t *, ipsec_mp); 25406 25407 FW_HOOKS(ip4_loopback_out_event, ipv4firewall_loopback_out, 25408 NULL, out_ill, ipha1, ipsec_mp, mp); 25409 25410 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 25411 25412 if (ipsec_mp != NULL) 25413 ip_wput_local(RD(q), out_ill, 25414 ipha, ipsec_mp, ire, 0, zoneid); 25415 if (ire_need_rele) 25416 ire_refrele(ire); 25417 goto done; 25418 } 25419 25420 if (ire->ire_max_frag < (unsigned int)LENGTH) { 25421 /* 25422 * We are through with IPSEC processing. 25423 * Fragment this and send it on the wire. 25424 */ 25425 if (io->ipsec_out_accelerated) { 25426 /* 25427 * The packet has been accelerated but must 25428 * be fragmented. This should not happen 25429 * since AH and ESP must not accelerate 25430 * packets that need fragmentation, however 25431 * the configuration could have changed 25432 * since the AH or ESP processing. 25433 * Drop packet. 25434 * IPsec KSTATS: bump bean counter here. 25435 */ 25436 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 25437 "fragmented accelerated packet!\n")); 25438 freemsg(ipsec_mp); 25439 } else { 25440 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid); 25441 } 25442 if (ire_need_rele) 25443 ire_refrele(ire); 25444 goto done; 25445 } 25446 25447 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 25448 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 25449 (void *)ire->ire_ipif, (void *)ipif)); 25450 25451 /* 25452 * Multiroute the secured packet, unless IPsec really 25453 * requires the packet to go out only through a particular 25454 * interface. 25455 */ 25456 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 25457 ire_t *first_ire; 25458 irb = ire->ire_bucket; 25459 ASSERT(irb != NULL); 25460 /* 25461 * This ire has been looked up as the one that 25462 * goes through the given ipif; 25463 * make sure we do not omit any other multiroute ire 25464 * that may be present in the bucket before this one. 25465 */ 25466 IRB_REFHOLD(irb); 25467 for (first_ire = irb->irb_ire; 25468 first_ire != NULL; 25469 first_ire = first_ire->ire_next) { 25470 if ((first_ire->ire_flags & RTF_MULTIRT) && 25471 (first_ire->ire_addr == ire->ire_addr) && 25472 !(first_ire->ire_marks & 25473 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 25474 break; 25475 } 25476 25477 if ((first_ire != NULL) && (first_ire != ire)) { 25478 /* 25479 * Don't change the ire if the packet must 25480 * be fragmented if sent via this new one. 25481 */ 25482 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 25483 IRE_REFHOLD(first_ire); 25484 if (ire_need_rele) 25485 ire_refrele(ire); 25486 else 25487 ire_need_rele = B_TRUE; 25488 ire = first_ire; 25489 } 25490 } 25491 IRB_REFRELE(irb); 25492 25493 multirt_send = B_TRUE; 25494 max_frag = ire->ire_max_frag; 25495 } else { 25496 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 25497 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 25498 "flag, attach_if %d\n", attach_if)); 25499 } 25500 } 25501 25502 /* 25503 * In most cases, the emission loop below is entered only once. 25504 * Only in the case where the ire holds the RTF_MULTIRT 25505 * flag, we loop to process all RTF_MULTIRT ires in the 25506 * bucket, and send the packet through all crossed 25507 * RTF_MULTIRT routes. 25508 */ 25509 do { 25510 if (multirt_send) { 25511 /* 25512 * ire1 holds here the next ire to process in the 25513 * bucket. If multirouting is expected, 25514 * any non-RTF_MULTIRT ire that has the 25515 * right destination address is ignored. 25516 */ 25517 ASSERT(irb != NULL); 25518 IRB_REFHOLD(irb); 25519 for (ire1 = ire->ire_next; 25520 ire1 != NULL; 25521 ire1 = ire1->ire_next) { 25522 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 25523 continue; 25524 if (ire1->ire_addr != ire->ire_addr) 25525 continue; 25526 if (ire1->ire_marks & 25527 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 25528 continue; 25529 /* No loopback here */ 25530 if (ire1->ire_stq == NULL) 25531 continue; 25532 /* 25533 * Ensure we do not exceed the MTU 25534 * of the next route. 25535 */ 25536 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 25537 ip_multirt_bad_mtu(ire1, max_frag); 25538 continue; 25539 } 25540 25541 IRE_REFHOLD(ire1); 25542 break; 25543 } 25544 IRB_REFRELE(irb); 25545 if (ire1 != NULL) { 25546 /* 25547 * We are in a multiple send case, need to 25548 * make a copy of the packet. 25549 */ 25550 next_mp = copymsg(ipsec_mp); 25551 if (next_mp == NULL) { 25552 ire_refrele(ire1); 25553 ire1 = NULL; 25554 } 25555 } 25556 } 25557 /* 25558 * Everything is done. Send it out on the wire 25559 * 25560 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 25561 * either send it on the wire or, in the case of 25562 * HW acceleration, call ipsec_hw_putnext. 25563 */ 25564 if (ire->ire_nce && 25565 ire->ire_nce->nce_state != ND_REACHABLE) { 25566 DTRACE_PROBE2(ip__wput__ipsec__bail, 25567 (ire_t *), ire, (mblk_t *), ipsec_mp); 25568 /* 25569 * If ire's link-layer is unresolved (this 25570 * would only happen if the incomplete ire 25571 * was added to cachetable via forwarding path) 25572 * don't bother going to ip_xmit_v4. Just drop the 25573 * packet. 25574 * There is a slight risk here, in that, if we 25575 * have the forwarding path create an incomplete 25576 * IRE, then until the IRE is completed, any 25577 * transmitted IPSEC packets will be dropped 25578 * instead of being queued waiting for resolution. 25579 * 25580 * But the likelihood of a forwarding packet and a wput 25581 * packet sending to the same dst at the same time 25582 * and there not yet be an ARP entry for it is small. 25583 * Furthermore, if this actually happens, it might 25584 * be likely that wput would generate multiple 25585 * packets (and forwarding would also have a train 25586 * of packets) for that destination. If this is 25587 * the case, some of them would have been dropped 25588 * anyway, since ARP only queues a few packets while 25589 * waiting for resolution 25590 * 25591 * NOTE: We should really call ip_xmit_v4, 25592 * and let it queue the packet and send the 25593 * ARP query and have ARP come back thus: 25594 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 25595 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 25596 * hw accel work. But it's too complex to get 25597 * the IPsec hw acceleration approach to fit 25598 * well with ip_xmit_v4 doing ARP without 25599 * doing IPSEC simplification. For now, we just 25600 * poke ip_xmit_v4 to trigger the arp resolve, so 25601 * that we can continue with the send on the next 25602 * attempt. 25603 * 25604 * XXX THis should be revisited, when 25605 * the IPsec/IP interaction is cleaned up 25606 */ 25607 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 25608 " - dropping packet\n")); 25609 freemsg(ipsec_mp); 25610 /* 25611 * Call ip_xmit_v4() to trigger ARP query 25612 * in case the nce_state is ND_INITIAL 25613 */ 25614 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 25615 goto drop_pkt; 25616 } 25617 25618 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 25619 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 25620 mblk_t *, mp); 25621 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 25622 NULL, ire->ire_ipif->ipif_ill, ipha1, mp, mp); 25623 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 25624 if (mp == NULL) 25625 goto drop_pkt; 25626 25627 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 25628 pktxmit_state = ip_xmit_v4(mp, ire, 25629 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 25630 25631 if ((pktxmit_state == SEND_FAILED) || 25632 (pktxmit_state == LLHDR_RESLV_FAILED)) { 25633 25634 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 25635 drop_pkt: 25636 BUMP_MIB(&ip_mib, ipOutDiscards); 25637 if (ire_need_rele) 25638 ire_refrele(ire); 25639 if (ire1 != NULL) { 25640 ire_refrele(ire1); 25641 freemsg(next_mp); 25642 } 25643 goto done; 25644 } 25645 25646 freeb(ipsec_mp); 25647 if (ire_need_rele) 25648 ire_refrele(ire); 25649 25650 if (ire1 != NULL) { 25651 ire = ire1; 25652 ire_need_rele = B_TRUE; 25653 ASSERT(next_mp); 25654 ipsec_mp = next_mp; 25655 mp = ipsec_mp->b_cont; 25656 ire1 = NULL; 25657 next_mp = NULL; 25658 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25659 } else { 25660 multirt_send = B_FALSE; 25661 } 25662 } while (multirt_send); 25663 done: 25664 if (ill != NULL && ill_need_rele) 25665 ill_refrele(ill); 25666 if (ipif != NULL) 25667 ipif_refrele(ipif); 25668 } 25669 25670 /* 25671 * Get the ill corresponding to the specified ire, and compare its 25672 * capabilities with the protocol and algorithms specified by the 25673 * the SA obtained from ipsec_out. If they match, annotate the 25674 * ipsec_out structure to indicate that the packet needs acceleration. 25675 * 25676 * 25677 * A packet is eligible for outbound hardware acceleration if the 25678 * following conditions are satisfied: 25679 * 25680 * 1. the packet will not be fragmented 25681 * 2. the provider supports the algorithm 25682 * 3. there is no pending control message being exchanged 25683 * 4. snoop is not attached 25684 * 5. the destination address is not a broadcast or multicast address. 25685 * 25686 * Rationale: 25687 * - Hardware drivers do not support fragmentation with 25688 * the current interface. 25689 * - snoop, multicast, and broadcast may result in exposure of 25690 * a cleartext datagram. 25691 * We check all five of these conditions here. 25692 * 25693 * XXX would like to nuke "ire_t *" parameter here; problem is that 25694 * IRE is only way to figure out if a v4 address is a broadcast and 25695 * thus ineligible for acceleration... 25696 */ 25697 static void 25698 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 25699 { 25700 ipsec_out_t *io; 25701 mblk_t *data_mp; 25702 uint_t plen, overhead; 25703 25704 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 25705 return; 25706 25707 if (ill == NULL) 25708 return; 25709 25710 /* 25711 * Destination address is a broadcast or multicast. Punt. 25712 */ 25713 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 25714 IRE_LOCAL))) 25715 return; 25716 25717 data_mp = ipsec_mp->b_cont; 25718 25719 if (ill->ill_isv6) { 25720 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 25721 25722 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 25723 return; 25724 25725 plen = ip6h->ip6_plen; 25726 } else { 25727 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 25728 25729 if (CLASSD(ipha->ipha_dst)) 25730 return; 25731 25732 plen = ipha->ipha_length; 25733 } 25734 /* 25735 * Is there a pending DLPI control message being exchanged 25736 * between IP/IPsec and the DLS Provider? If there is, it 25737 * could be a SADB update, and the state of the DLS Provider 25738 * SADB might not be in sync with the SADB maintained by 25739 * IPsec. To avoid dropping packets or using the wrong keying 25740 * material, we do not accelerate this packet. 25741 */ 25742 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 25743 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 25744 "ill_dlpi_pending! don't accelerate packet\n")); 25745 return; 25746 } 25747 25748 /* 25749 * Is the Provider in promiscous mode? If it does, we don't 25750 * accelerate the packet since it will bounce back up to the 25751 * listeners in the clear. 25752 */ 25753 if (ill->ill_promisc_on_phys) { 25754 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 25755 "ill in promiscous mode, don't accelerate packet\n")); 25756 return; 25757 } 25758 25759 /* 25760 * Will the packet require fragmentation? 25761 */ 25762 25763 /* 25764 * IPsec ESP note: this is a pessimistic estimate, but the same 25765 * as is used elsewhere. 25766 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 25767 * + 2-byte trailer 25768 */ 25769 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 25770 IPSEC_BASE_ESP_HDR_SIZE(sa); 25771 25772 if ((plen + overhead) > ill->ill_max_mtu) 25773 return; 25774 25775 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25776 25777 /* 25778 * Can the ill accelerate this IPsec protocol and algorithm 25779 * specified by the SA? 25780 */ 25781 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 25782 ill->ill_isv6, sa)) { 25783 return; 25784 } 25785 25786 /* 25787 * Tell AH or ESP that the outbound ill is capable of 25788 * accelerating this packet. 25789 */ 25790 io->ipsec_out_is_capab_ill = B_TRUE; 25791 } 25792 25793 /* 25794 * Select which AH & ESP SA's to use (if any) for the outbound packet. 25795 * 25796 * If this function returns B_TRUE, the requested SA's have been filled 25797 * into the ipsec_out_*_sa pointers. 25798 * 25799 * If the function returns B_FALSE, the packet has been "consumed", most 25800 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 25801 * 25802 * The SA references created by the protocol-specific "select" 25803 * function will be released when the ipsec_mp is freed, thanks to the 25804 * ipsec_out_free destructor -- see spd.c. 25805 */ 25806 static boolean_t 25807 ipsec_out_select_sa(mblk_t *ipsec_mp) 25808 { 25809 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 25810 ipsec_out_t *io; 25811 ipsec_policy_t *pp; 25812 ipsec_action_t *ap; 25813 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25814 ASSERT(io->ipsec_out_type == IPSEC_OUT); 25815 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 25816 25817 if (!io->ipsec_out_secure) { 25818 /* 25819 * We came here by mistake. 25820 * Don't bother with ipsec processing 25821 * We should "discourage" this path in the future. 25822 */ 25823 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 25824 return (B_FALSE); 25825 } 25826 ASSERT(io->ipsec_out_need_policy == B_FALSE); 25827 ASSERT((io->ipsec_out_policy != NULL) || 25828 (io->ipsec_out_act != NULL)); 25829 25830 ASSERT(io->ipsec_out_failed == B_FALSE); 25831 25832 /* 25833 * IPSEC processing has started. 25834 */ 25835 io->ipsec_out_proc_begin = B_TRUE; 25836 ap = io->ipsec_out_act; 25837 if (ap == NULL) { 25838 pp = io->ipsec_out_policy; 25839 ASSERT(pp != NULL); 25840 ap = pp->ipsp_act; 25841 ASSERT(ap != NULL); 25842 } 25843 25844 /* 25845 * We have an action. now, let's select SA's. 25846 * (In the future, we can cache this in the conn_t..) 25847 */ 25848 if (ap->ipa_want_esp) { 25849 if (io->ipsec_out_esp_sa == NULL) { 25850 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 25851 IPPROTO_ESP); 25852 } 25853 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 25854 } 25855 25856 if (ap->ipa_want_ah) { 25857 if (io->ipsec_out_ah_sa == NULL) { 25858 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 25859 IPPROTO_AH); 25860 } 25861 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 25862 /* 25863 * The ESP and AH processing order needs to be preserved 25864 * when both protocols are required (ESP should be applied 25865 * before AH for an outbound packet). Force an ESP ACQUIRE 25866 * when both ESP and AH are required, and an AH ACQUIRE 25867 * is needed. 25868 */ 25869 if (ap->ipa_want_esp && need_ah_acquire) 25870 need_esp_acquire = B_TRUE; 25871 } 25872 25873 /* 25874 * Send an ACQUIRE (extended, regular, or both) if we need one. 25875 * Release SAs that got referenced, but will not be used until we 25876 * acquire _all_ of the SAs we need. 25877 */ 25878 if (need_ah_acquire || need_esp_acquire) { 25879 if (io->ipsec_out_ah_sa != NULL) { 25880 IPSA_REFRELE(io->ipsec_out_ah_sa); 25881 io->ipsec_out_ah_sa = NULL; 25882 } 25883 if (io->ipsec_out_esp_sa != NULL) { 25884 IPSA_REFRELE(io->ipsec_out_esp_sa); 25885 io->ipsec_out_esp_sa = NULL; 25886 } 25887 25888 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 25889 return (B_FALSE); 25890 } 25891 25892 return (B_TRUE); 25893 } 25894 25895 /* 25896 * Process an IPSEC_OUT message and see what you can 25897 * do with it. 25898 * IPQoS Notes: 25899 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 25900 * IPSec. 25901 * XXX would like to nuke ire_t. 25902 * XXX ill_index better be "real" 25903 */ 25904 void 25905 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 25906 { 25907 ipsec_out_t *io; 25908 ipsec_policy_t *pp; 25909 ipsec_action_t *ap; 25910 ipha_t *ipha; 25911 ip6_t *ip6h; 25912 mblk_t *mp; 25913 ill_t *ill; 25914 zoneid_t zoneid; 25915 ipsec_status_t ipsec_rc; 25916 boolean_t ill_need_rele = B_FALSE; 25917 25918 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25919 ASSERT(io->ipsec_out_type == IPSEC_OUT); 25920 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 25921 mp = ipsec_mp->b_cont; 25922 25923 /* 25924 * Initiate IPPF processing. We do it here to account for packets 25925 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 25926 * We can check for ipsec_out_proc_begin even for such packets, as 25927 * they will always be false (asserted below). 25928 */ 25929 if (IPP_ENABLED(IPP_LOCAL_OUT) && !io->ipsec_out_proc_begin) { 25930 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 25931 io->ipsec_out_ill_index : ill_index); 25932 if (mp == NULL) { 25933 ip2dbg(("ipsec_out_process: packet dropped "\ 25934 "during IPPF processing\n")); 25935 freeb(ipsec_mp); 25936 BUMP_MIB(&ip_mib, ipOutDiscards); 25937 return; 25938 } 25939 } 25940 25941 if (!io->ipsec_out_secure) { 25942 /* 25943 * We came here by mistake. 25944 * Don't bother with ipsec processing 25945 * Should "discourage" this path in the future. 25946 */ 25947 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 25948 goto done; 25949 } 25950 ASSERT(io->ipsec_out_need_policy == B_FALSE); 25951 ASSERT((io->ipsec_out_policy != NULL) || 25952 (io->ipsec_out_act != NULL)); 25953 ASSERT(io->ipsec_out_failed == B_FALSE); 25954 25955 if (!ipsec_loaded()) { 25956 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 25957 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 25958 BUMP_MIB(&ip_mib, ipOutDiscards); 25959 } else { 25960 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 25961 } 25962 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 25963 &ipdrops_ip_ipsec_not_loaded, &ip_dropper); 25964 return; 25965 } 25966 25967 /* 25968 * IPSEC processing has started. 25969 */ 25970 io->ipsec_out_proc_begin = B_TRUE; 25971 ap = io->ipsec_out_act; 25972 if (ap == NULL) { 25973 pp = io->ipsec_out_policy; 25974 ASSERT(pp != NULL); 25975 ap = pp->ipsp_act; 25976 ASSERT(ap != NULL); 25977 } 25978 25979 /* 25980 * Save the outbound ill index. When the packet comes back 25981 * from IPsec, we make sure the ill hasn't changed or disappeared 25982 * before sending it the accelerated packet. 25983 */ 25984 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 25985 int ifindex; 25986 ill = ire_to_ill(ire); 25987 ifindex = ill->ill_phyint->phyint_ifindex; 25988 io->ipsec_out_capab_ill_index = ifindex; 25989 } 25990 25991 /* 25992 * The order of processing is first insert a IP header if needed. 25993 * Then insert the ESP header and then the AH header. 25994 */ 25995 if ((io->ipsec_out_se_done == B_FALSE) && 25996 (ap->ipa_want_se)) { 25997 /* 25998 * First get the outer IP header before sending 25999 * it to ESP. 26000 */ 26001 ipha_t *oipha, *iipha; 26002 mblk_t *outer_mp, *inner_mp; 26003 26004 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26005 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26006 "ipsec_out_process: " 26007 "Self-Encapsulation failed: Out of memory\n"); 26008 freemsg(ipsec_mp); 26009 BUMP_MIB(&ip_mib, ipOutDiscards); 26010 return; 26011 } 26012 inner_mp = ipsec_mp->b_cont; 26013 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26014 oipha = (ipha_t *)outer_mp->b_rptr; 26015 iipha = (ipha_t *)inner_mp->b_rptr; 26016 *oipha = *iipha; 26017 outer_mp->b_wptr += sizeof (ipha_t); 26018 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26019 sizeof (ipha_t)); 26020 oipha->ipha_protocol = IPPROTO_ENCAP; 26021 oipha->ipha_version_and_hdr_length = 26022 IP_SIMPLE_HDR_VERSION; 26023 oipha->ipha_hdr_checksum = 0; 26024 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26025 outer_mp->b_cont = inner_mp; 26026 ipsec_mp->b_cont = outer_mp; 26027 26028 io->ipsec_out_se_done = B_TRUE; 26029 io->ipsec_out_tunnel = B_TRUE; 26030 } 26031 26032 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26033 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26034 !ipsec_out_select_sa(ipsec_mp)) 26035 return; 26036 26037 /* 26038 * By now, we know what SA's to use. Toss over to ESP & AH 26039 * to do the heavy lifting. 26040 */ 26041 zoneid = io->ipsec_out_zoneid; 26042 ASSERT(zoneid != ALL_ZONES); 26043 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26044 ASSERT(io->ipsec_out_esp_sa != NULL); 26045 io->ipsec_out_esp_done = B_TRUE; 26046 /* 26047 * Note that since hw accel can only apply one transform, 26048 * not two, we skip hw accel for ESP if we also have AH 26049 * This is an design limitation of the interface 26050 * which should be revisited. 26051 */ 26052 ASSERT(ire != NULL); 26053 if (io->ipsec_out_ah_sa == NULL) { 26054 ill = (ill_t *)ire->ire_stq->q_ptr; 26055 ipsec_out_is_accelerated(ipsec_mp, 26056 io->ipsec_out_esp_sa, ill, ire); 26057 } 26058 26059 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26060 switch (ipsec_rc) { 26061 case IPSEC_STATUS_SUCCESS: 26062 break; 26063 case IPSEC_STATUS_FAILED: 26064 BUMP_MIB(&ip_mib, ipOutDiscards); 26065 /* FALLTHRU */ 26066 case IPSEC_STATUS_PENDING: 26067 return; 26068 } 26069 } 26070 26071 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26072 ASSERT(io->ipsec_out_ah_sa != NULL); 26073 io->ipsec_out_ah_done = B_TRUE; 26074 if (ire == NULL) { 26075 int idx = io->ipsec_out_capab_ill_index; 26076 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26077 NULL, NULL, NULL, NULL); 26078 ill_need_rele = B_TRUE; 26079 } else { 26080 ill = (ill_t *)ire->ire_stq->q_ptr; 26081 } 26082 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26083 ire); 26084 26085 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26086 switch (ipsec_rc) { 26087 case IPSEC_STATUS_SUCCESS: 26088 break; 26089 case IPSEC_STATUS_FAILED: 26090 BUMP_MIB(&ip_mib, ipOutDiscards); 26091 /* FALLTHRU */ 26092 case IPSEC_STATUS_PENDING: 26093 if (ill != NULL && ill_need_rele) 26094 ill_refrele(ill); 26095 return; 26096 } 26097 } 26098 /* 26099 * We are done with IPSEC processing. Send it over 26100 * the wire. 26101 */ 26102 done: 26103 mp = ipsec_mp->b_cont; 26104 ipha = (ipha_t *)mp->b_rptr; 26105 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26106 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26107 } else { 26108 ip6h = (ip6_t *)ipha; 26109 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26110 } 26111 if (ill != NULL && ill_need_rele) 26112 ill_refrele(ill); 26113 } 26114 26115 /* ARGSUSED */ 26116 void 26117 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26118 { 26119 opt_restart_t *or; 26120 int err; 26121 conn_t *connp; 26122 26123 ASSERT(CONN_Q(q)); 26124 connp = Q_TO_CONN(q); 26125 26126 ASSERT(first_mp->b_datap->db_type == M_CTL); 26127 or = (opt_restart_t *)first_mp->b_rptr; 26128 /* 26129 * We don't need to pass any credentials here since this is just 26130 * a restart. The credentials are passed in when svr4_optcom_req 26131 * is called the first time (from ip_wput_nondata). 26132 */ 26133 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26134 err = svr4_optcom_req(q, first_mp, NULL, 26135 &ip_opt_obj); 26136 } else { 26137 ASSERT(or->or_type == T_OPTMGMT_REQ); 26138 err = tpi_optcom_req(q, first_mp, NULL, 26139 &ip_opt_obj); 26140 } 26141 if (err != EINPROGRESS) { 26142 /* operation is done */ 26143 CONN_OPER_PENDING_DONE(connp); 26144 } 26145 } 26146 26147 /* 26148 * ioctls that go through a down/up sequence may need to wait for the down 26149 * to complete. This involves waiting for the ire and ipif refcnts to go down 26150 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26151 */ 26152 /* ARGSUSED */ 26153 void 26154 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26155 { 26156 struct iocblk *iocp; 26157 mblk_t *mp1; 26158 ipif_t *ipif; 26159 ip_ioctl_cmd_t *ipip; 26160 int err; 26161 sin_t *sin; 26162 struct lifreq *lifr; 26163 struct ifreq *ifr; 26164 26165 iocp = (struct iocblk *)mp->b_rptr; 26166 ASSERT(ipsq != NULL); 26167 /* Existence of mp1 verified in ip_wput_nondata */ 26168 mp1 = mp->b_cont->b_cont; 26169 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26170 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26171 ill_t *ill; 26172 /* 26173 * Special case where ipsq_current_ipif may not be set. 26174 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26175 * ill could also have become part of a ipmp group in the 26176 * process, we are here as were not able to complete the 26177 * operation in ipif_set_values because we could not become 26178 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26179 * will not be set so we need to set it. 26180 */ 26181 ill = (ill_t *)q->q_ptr; 26182 ipsq->ipsq_current_ipif = ill->ill_ipif; 26183 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 26184 } 26185 26186 ipif = ipsq->ipsq_current_ipif; 26187 ASSERT(ipif != NULL); 26188 if (ipip->ipi_cmd_type == IF_CMD) { 26189 /* This a old style SIOC[GS]IF* command */ 26190 ifr = (struct ifreq *)mp1->b_rptr; 26191 sin = (sin_t *)&ifr->ifr_addr; 26192 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26193 /* This a new style SIOC[GS]LIF* command */ 26194 lifr = (struct lifreq *)mp1->b_rptr; 26195 sin = (sin_t *)&lifr->lifr_addr; 26196 } else { 26197 sin = NULL; 26198 } 26199 26200 err = (*ipip->ipi_func_restart)(ipif, sin, q, mp, ipip, 26201 (void *)mp1->b_rptr); 26202 26203 /* SIOCLIFREMOVEIF could have removed the ipif */ 26204 ip_ioctl_finish(q, mp, err, 26205 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 26206 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ipif, ipsq); 26207 } 26208 26209 /* 26210 * ioctl processing 26211 * 26212 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 26213 * the ioctl command in the ioctl tables and determines the copyin data size 26214 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 26215 * size. 26216 * 26217 * ioctl processing then continues when the M_IOCDATA makes its way down. 26218 * Now the ioctl is looked up again in the ioctl table, and its properties are 26219 * extracted. The associated 'conn' is then refheld till the end of the ioctl 26220 * and the general ioctl processing function ip_process_ioctl is called. 26221 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26222 * so goes thru the serialization primitive ipsq_try_enter. Then the 26223 * appropriate function to handle the ioctl is called based on the entry in 26224 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26225 * which also refreleases the 'conn' that was refheld at the start of the 26226 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26227 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 26228 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 26229 * 26230 * Many exclusive ioctls go thru an internal down up sequence as part of 26231 * the operation. For example an attempt to change the IP address of an 26232 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26233 * does all the cleanup such as deleting all ires that use this address. 26234 * Then we need to wait till all references to the interface go away. 26235 */ 26236 void 26237 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26238 { 26239 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26240 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 26241 cmd_info_t ci; 26242 int err; 26243 boolean_t entered_ipsq = B_FALSE; 26244 26245 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26246 26247 if (ipip == NULL) 26248 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26249 26250 /* 26251 * SIOCLIFADDIF needs to go thru a special path since the 26252 * ill may not exist yet. This happens in the case of lo0 26253 * which is created using this ioctl. 26254 */ 26255 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26256 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26257 ip_ioctl_finish(q, mp, err, 26258 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 26259 NULL, NULL); 26260 return; 26261 } 26262 26263 ci.ci_ipif = NULL; 26264 switch (ipip->ipi_cmd_type) { 26265 case IF_CMD: 26266 case LIF_CMD: 26267 /* 26268 * ioctls that pass in a [l]ifreq appear here. 26269 * ip_extract_lifreq_cmn returns a refheld ipif in 26270 * ci.ci_ipif 26271 */ 26272 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 26273 ipip->ipi_flags, &ci, ip_process_ioctl); 26274 if (err != 0) { 26275 ip_ioctl_finish(q, mp, err, 26276 ipip->ipi_flags & IPI_GET_CMD ? 26277 COPYOUT : NO_COPYOUT, NULL, NULL); 26278 return; 26279 } 26280 ASSERT(ci.ci_ipif != NULL); 26281 break; 26282 26283 case TUN_CMD: 26284 /* 26285 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 26286 * a refheld ipif in ci.ci_ipif 26287 */ 26288 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 26289 if (err != 0) { 26290 ip_ioctl_finish(q, mp, err, 26291 ipip->ipi_flags & IPI_GET_CMD ? 26292 COPYOUT : NO_COPYOUT, NULL, NULL); 26293 return; 26294 } 26295 ASSERT(ci.ci_ipif != NULL); 26296 break; 26297 26298 case MISC_CMD: 26299 /* 26300 * ioctls that neither pass in [l]ifreq or iftun_req come here 26301 * For eg. SIOCGLIFCONF will appear here. 26302 */ 26303 switch (ipip->ipi_cmd) { 26304 case IF_UNITSEL: 26305 /* ioctl comes down the ill */ 26306 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26307 ipif_refhold(ci.ci_ipif); 26308 break; 26309 case SIOCGMSFILTER: 26310 case SIOCSMSFILTER: 26311 case SIOCGIPMSFILTER: 26312 case SIOCSIPMSFILTER: 26313 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 26314 ip_process_ioctl); 26315 if (err != 0) { 26316 ip_ioctl_finish(q, mp, err, 26317 ipip->ipi_flags & IPI_GET_CMD ? 26318 COPYOUT : NO_COPYOUT, NULL, NULL); 26319 return; 26320 } 26321 break; 26322 } 26323 err = 0; 26324 ci.ci_sin = NULL; 26325 ci.ci_sin6 = NULL; 26326 ci.ci_lifr = NULL; 26327 break; 26328 } 26329 26330 /* 26331 * If ipsq is non-null, we are already being called exclusively 26332 */ 26333 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26334 if (!(ipip->ipi_flags & IPI_WR)) { 26335 /* 26336 * A return value of EINPROGRESS means the ioctl is 26337 * either queued and waiting for some reason or has 26338 * already completed. 26339 */ 26340 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26341 ci.ci_lifr); 26342 if (ci.ci_ipif != NULL) 26343 ipif_refrele(ci.ci_ipif); 26344 ip_ioctl_finish(q, mp, err, 26345 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 26346 NULL, NULL); 26347 return; 26348 } 26349 26350 ASSERT(ci.ci_ipif != NULL); 26351 26352 if (ipsq == NULL) { 26353 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 26354 ip_process_ioctl, NEW_OP, B_TRUE); 26355 entered_ipsq = B_TRUE; 26356 } 26357 /* 26358 * Release the ipif so that ipif_down and friends that wait for 26359 * references to go away are not misled about the current ipif_refcnt 26360 * values. We are writer so we can access the ipif even after releasing 26361 * the ipif. 26362 */ 26363 ipif_refrele(ci.ci_ipif); 26364 if (ipsq == NULL) 26365 return; 26366 26367 mutex_enter(&ipsq->ipsq_lock); 26368 ASSERT(ipsq->ipsq_current_ipif == NULL); 26369 ipsq->ipsq_current_ipif = ci.ci_ipif; 26370 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 26371 mutex_exit(&ipsq->ipsq_lock); 26372 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 26373 /* 26374 * For most set ioctls that come here, this serves as a single point 26375 * where we set the IPIF_CHANGING flag. This ensures that there won't 26376 * be any new references to the ipif. This helps functions that go 26377 * through this path and end up trying to wait for the refcnts 26378 * associated with the ipif to go down to zero. Some exceptions are 26379 * Failover, Failback, and Groupname commands that operate on more than 26380 * just the ci.ci_ipif. These commands internally determine the 26381 * set of ipif's they operate on and set and clear the IPIF_CHANGING 26382 * flags on that set. Another exception is the Removeif command that 26383 * sets the IPIF_CONDEMNED flag internally after identifying the right 26384 * ipif to operate on. 26385 */ 26386 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 26387 ipip->ipi_cmd != SIOCLIFFAILOVER && 26388 ipip->ipi_cmd != SIOCLIFFAILBACK && 26389 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 26390 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 26391 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 26392 26393 /* 26394 * A return value of EINPROGRESS means the ioctl is 26395 * either queued and waiting for some reason or has 26396 * already completed. 26397 */ 26398 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26399 ci.ci_lifr); 26400 26401 /* SIOCLIFREMOVEIF could have removed the ipif */ 26402 ip_ioctl_finish(q, mp, err, 26403 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 26404 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ci.ci_ipif, ipsq); 26405 26406 if (entered_ipsq) 26407 ipsq_exit(ipsq, B_TRUE, B_TRUE); 26408 } 26409 26410 /* 26411 * Complete the ioctl. Typically ioctls use the mi package and need to 26412 * do mi_copyout/mi_copy_done. 26413 */ 26414 void 26415 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, 26416 ipif_t *ipif, ipsq_t *ipsq) 26417 { 26418 conn_t *connp = NULL; 26419 hook_nic_event_t *info; 26420 26421 if (err == EINPROGRESS) 26422 return; 26423 26424 if (CONN_Q(q)) { 26425 connp = Q_TO_CONN(q); 26426 ASSERT(connp->conn_ref >= 2); 26427 } 26428 26429 switch (mode) { 26430 case COPYOUT: 26431 if (err == 0) 26432 mi_copyout(q, mp); 26433 else 26434 mi_copy_done(q, mp, err); 26435 break; 26436 26437 case NO_COPYOUT: 26438 mi_copy_done(q, mp, err); 26439 break; 26440 26441 default: 26442 /* An ioctl aborted through a conn close would take this path */ 26443 break; 26444 } 26445 26446 /* 26447 * The refhold placed at the start of the ioctl is released here. 26448 */ 26449 if (connp != NULL) 26450 CONN_OPER_PENDING_DONE(connp); 26451 26452 /* 26453 * If the ioctl were an exclusive ioctl it would have set 26454 * IPIF_CHANGING at the start of the ioctl which is undone here. 26455 */ 26456 if (ipif != NULL) { 26457 mutex_enter(&(ipif)->ipif_ill->ill_lock); 26458 ipif->ipif_state_flags &= ~IPIF_CHANGING; 26459 26460 /* 26461 * Unhook the nic event message from the ill and enqueue it into 26462 * the nic event taskq. 26463 */ 26464 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 26465 if (ddi_taskq_dispatch(eventq_queue_nic, 26466 ip_ne_queue_func, (void *)info, DDI_SLEEP) 26467 == DDI_FAILURE) { 26468 ip2dbg(("ip_ioctl_finish: ddi_taskq_dispatch" 26469 "failed\n")); 26470 if (info->hne_data != NULL) 26471 kmem_free(info->hne_data, 26472 info->hne_datalen); 26473 kmem_free(info, sizeof (hook_nic_event_t)); 26474 } 26475 26476 ipif->ipif_ill->ill_nic_event_info = NULL; 26477 } 26478 26479 mutex_exit(&(ipif)->ipif_ill->ill_lock); 26480 } 26481 26482 /* 26483 * Clear the current ipif in the ipsq at the completion of the ioctl. 26484 * Note that a non-null ipsq_current_ipif prevents new ioctls from 26485 * entering the ipsq 26486 */ 26487 if (ipsq != NULL) { 26488 mutex_enter(&ipsq->ipsq_lock); 26489 ipsq->ipsq_current_ipif = NULL; 26490 mutex_exit(&ipsq->ipsq_lock); 26491 } 26492 } 26493 26494 /* 26495 * This is called from ip_wput_nondata to resume a deferred TCP bind. 26496 */ 26497 /* ARGSUSED */ 26498 void 26499 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 26500 { 26501 conn_t *connp = arg; 26502 tcp_t *tcp; 26503 26504 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 26505 tcp = connp->conn_tcp; 26506 26507 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 26508 freemsg(mp); 26509 else 26510 tcp_rput_other(tcp, mp); 26511 CONN_OPER_PENDING_DONE(connp); 26512 } 26513 26514 /* Called from ip_wput for all non data messages */ 26515 /* ARGSUSED */ 26516 void 26517 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26518 { 26519 mblk_t *mp1; 26520 ire_t *ire, *fake_ire; 26521 ill_t *ill; 26522 struct iocblk *iocp; 26523 ip_ioctl_cmd_t *ipip; 26524 cred_t *cr; 26525 conn_t *connp = NULL; 26526 int cmd, err; 26527 nce_t *nce; 26528 ipif_t *ipif; 26529 26530 if (CONN_Q(q)) 26531 connp = Q_TO_CONN(q); 26532 26533 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 26534 26535 /* Check if it is a queue to /dev/sctp. */ 26536 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 26537 connp->conn_rq == NULL) { 26538 sctp_wput(q, mp); 26539 return; 26540 } 26541 26542 switch (DB_TYPE(mp)) { 26543 case M_IOCTL: 26544 /* 26545 * IOCTL processing begins in ip_sioctl_copyin_setup which 26546 * will arrange to copy in associated control structures. 26547 */ 26548 ip_sioctl_copyin_setup(q, mp); 26549 return; 26550 case M_IOCDATA: 26551 /* 26552 * Ensure that this is associated with one of our trans- 26553 * parent ioctls. If it's not ours, discard it if we're 26554 * running as a driver, or pass it on if we're a module. 26555 */ 26556 iocp = (struct iocblk *)mp->b_rptr; 26557 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26558 if (ipip == NULL) { 26559 if (q->q_next == NULL) { 26560 goto nak; 26561 } else { 26562 putnext(q, mp); 26563 } 26564 return; 26565 } else if ((q->q_next != NULL) && 26566 !(ipip->ipi_flags & IPI_MODOK)) { 26567 /* 26568 * the ioctl is one we recognise, but is not 26569 * consumed by IP as a module, pass M_IOCDATA 26570 * for processing downstream, but only for 26571 * common Streams ioctls. 26572 */ 26573 if (ipip->ipi_flags & IPI_PASS_DOWN) { 26574 putnext(q, mp); 26575 return; 26576 } else { 26577 goto nak; 26578 } 26579 } 26580 26581 /* IOCTL continuation following copyin or copyout. */ 26582 if (mi_copy_state(q, mp, NULL) == -1) { 26583 /* 26584 * The copy operation failed. mi_copy_state already 26585 * cleaned up, so we're out of here. 26586 */ 26587 return; 26588 } 26589 /* 26590 * If we just completed a copy in, we become writer and 26591 * continue processing in ip_sioctl_copyin_done. If it 26592 * was a copy out, we call mi_copyout again. If there is 26593 * nothing more to copy out, it will complete the IOCTL. 26594 */ 26595 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 26596 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 26597 mi_copy_done(q, mp, EPROTO); 26598 return; 26599 } 26600 /* 26601 * Check for cases that need more copying. A return 26602 * value of 0 means a second copyin has been started, 26603 * so we return; a return value of 1 means no more 26604 * copying is needed, so we continue. 26605 */ 26606 cmd = iocp->ioc_cmd; 26607 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 26608 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 26609 MI_COPY_COUNT(mp) == 1) { 26610 if (ip_copyin_msfilter(q, mp) == 0) 26611 return; 26612 } 26613 /* 26614 * Refhold the conn, till the ioctl completes. This is 26615 * needed in case the ioctl ends up in the pending mp 26616 * list. Every mp in the ill_pending_mp list and 26617 * the ipsq_pending_mp must have a refhold on the conn 26618 * to resume processing. The refhold is released when 26619 * the ioctl completes. (normally or abnormally) 26620 * In all cases ip_ioctl_finish is called to finish 26621 * the ioctl. 26622 */ 26623 if (connp != NULL) { 26624 /* This is not a reentry */ 26625 ASSERT(ipsq == NULL); 26626 CONN_INC_REF(connp); 26627 } else { 26628 if (!(ipip->ipi_flags & IPI_MODOK)) { 26629 mi_copy_done(q, mp, EINVAL); 26630 return; 26631 } 26632 } 26633 26634 ip_process_ioctl(ipsq, q, mp, ipip); 26635 26636 } else { 26637 mi_copyout(q, mp); 26638 } 26639 return; 26640 nak: 26641 iocp->ioc_error = EINVAL; 26642 mp->b_datap->db_type = M_IOCNAK; 26643 iocp->ioc_count = 0; 26644 qreply(q, mp); 26645 return; 26646 26647 case M_IOCNAK: 26648 /* 26649 * The only way we could get here is if a resolver didn't like 26650 * an IOCTL we sent it. This shouldn't happen. 26651 */ 26652 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 26653 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 26654 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 26655 freemsg(mp); 26656 return; 26657 case M_IOCACK: 26658 /* Finish socket ioctls passed through to ARP. */ 26659 ip_sioctl_iocack(q, mp); 26660 return; 26661 case M_FLUSH: 26662 if (*mp->b_rptr & FLUSHW) 26663 flushq(q, FLUSHALL); 26664 if (q->q_next) { 26665 /* 26666 * M_FLUSH is sent up to IP by some drivers during 26667 * unbind. ip_rput has already replied to it. We are 26668 * here for the M_FLUSH that we originated in IP 26669 * before sending the unbind request to the driver. 26670 * Just free it as we don't queue packets in IP 26671 * on the write side of the device instance. 26672 */ 26673 freemsg(mp); 26674 return; 26675 } 26676 if (*mp->b_rptr & FLUSHR) { 26677 *mp->b_rptr &= ~FLUSHW; 26678 qreply(q, mp); 26679 return; 26680 } 26681 freemsg(mp); 26682 return; 26683 case IRE_DB_REQ_TYPE: 26684 /* An Upper Level Protocol wants a copy of an IRE. */ 26685 ip_ire_req(q, mp); 26686 return; 26687 case M_CTL: 26688 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 26689 break; 26690 26691 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 26692 TUN_HELLO) { 26693 ASSERT(connp != NULL); 26694 connp->conn_flags |= IPCL_IPTUN; 26695 freeb(mp); 26696 return; 26697 } 26698 26699 if (connp != NULL && *(uint32_t *)mp->b_rptr == 26700 IP_ULP_OUT_LABELED) { 26701 out_labeled_t *olp; 26702 26703 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 26704 break; 26705 olp = (out_labeled_t *)mp->b_rptr; 26706 connp->conn_ulp_labeled = olp->out_qnext == q; 26707 freemsg(mp); 26708 return; 26709 } 26710 26711 /* M_CTL messages are used by ARP to tell us things. */ 26712 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 26713 break; 26714 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 26715 case AR_ENTRY_SQUERY: 26716 ip_wput_ctl(q, mp); 26717 return; 26718 case AR_CLIENT_NOTIFY: 26719 ip_arp_news(q, mp); 26720 return; 26721 case AR_DLPIOP_DONE: 26722 ASSERT(q->q_next != NULL); 26723 ill = (ill_t *)q->q_ptr; 26724 /* qwriter_ip releases the refhold */ 26725 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 26726 ill_refhold(ill); 26727 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 26728 CUR_OP, B_FALSE); 26729 return; 26730 case AR_ARP_CLOSING: 26731 /* 26732 * ARP (above us) is closing. If no ARP bringup is 26733 * currently pending, ack the message so that ARP 26734 * can complete its close. Also mark ill_arp_closing 26735 * so that new ARP bringups will fail. If any 26736 * ARP bringup is currently in progress, we will 26737 * ack this when the current ARP bringup completes. 26738 */ 26739 ASSERT(q->q_next != NULL); 26740 ill = (ill_t *)q->q_ptr; 26741 mutex_enter(&ill->ill_lock); 26742 ill->ill_arp_closing = 1; 26743 if (!ill->ill_arp_bringup_pending) { 26744 mutex_exit(&ill->ill_lock); 26745 qreply(q, mp); 26746 } else { 26747 mutex_exit(&ill->ill_lock); 26748 freemsg(mp); 26749 } 26750 return; 26751 case AR_ARP_EXTEND: 26752 /* 26753 * The ARP module above us is capable of duplicate 26754 * address detection. Old ATM drivers will not send 26755 * this message. 26756 */ 26757 ASSERT(q->q_next != NULL); 26758 ill = (ill_t *)q->q_ptr; 26759 ill->ill_arp_extend = B_TRUE; 26760 freemsg(mp); 26761 return; 26762 default: 26763 break; 26764 } 26765 break; 26766 case M_PROTO: 26767 case M_PCPROTO: 26768 /* 26769 * The only PROTO messages we expect are ULP binds and 26770 * copies of option negotiation acknowledgements. 26771 */ 26772 switch (((union T_primitives *)mp->b_rptr)->type) { 26773 case O_T_BIND_REQ: 26774 case T_BIND_REQ: { 26775 /* Request can get queued in bind */ 26776 ASSERT(connp != NULL); 26777 /* 26778 * Both TCP and UDP call ip_bind_{v4,v6}() directly 26779 * instead of going through this path. We only get 26780 * here in the following cases: 26781 * 26782 * a. Bind retries, where ipsq is non-NULL. 26783 * b. T_BIND_REQ is issued from non TCP/UDP 26784 * transport, e.g. icmp for raw socket, 26785 * in which case ipsq will be NULL. 26786 */ 26787 ASSERT(ipsq != NULL || 26788 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 26789 26790 /* Don't increment refcnt if this is a re-entry */ 26791 if (ipsq == NULL) 26792 CONN_INC_REF(connp); 26793 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 26794 connp, NULL) : ip_bind_v4(q, mp, connp); 26795 if (mp == NULL) 26796 return; 26797 if (IPCL_IS_TCP(connp)) { 26798 /* 26799 * In the case of TCP endpoint we 26800 * come here only for bind retries 26801 */ 26802 ASSERT(ipsq != NULL); 26803 CONN_INC_REF(connp); 26804 squeue_fill(connp->conn_sqp, mp, 26805 ip_resume_tcp_bind, connp, 26806 SQTAG_BIND_RETRY); 26807 return; 26808 } else if (IPCL_IS_UDP(connp)) { 26809 /* 26810 * In the case of UDP endpoint we 26811 * come here only for bind retries 26812 */ 26813 ASSERT(ipsq != NULL); 26814 udp_resume_bind(connp, mp); 26815 return; 26816 } 26817 qreply(q, mp); 26818 CONN_OPER_PENDING_DONE(connp); 26819 return; 26820 } 26821 case T_SVR4_OPTMGMT_REQ: 26822 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 26823 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 26824 26825 ASSERT(connp != NULL); 26826 if (!snmpcom_req(q, mp, ip_snmp_set, 26827 ip_snmp_get, cr)) { 26828 /* 26829 * Call svr4_optcom_req so that it can 26830 * generate the ack. We don't come here 26831 * if this operation is being restarted. 26832 * ip_restart_optmgmt will drop the conn ref. 26833 * In the case of ipsec option after the ipsec 26834 * load is complete conn_restart_ipsec_waiter 26835 * drops the conn ref. 26836 */ 26837 ASSERT(ipsq == NULL); 26838 CONN_INC_REF(connp); 26839 if (ip_check_for_ipsec_opt(q, mp)) 26840 return; 26841 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 26842 if (err != EINPROGRESS) { 26843 /* Operation is done */ 26844 CONN_OPER_PENDING_DONE(connp); 26845 } 26846 } 26847 return; 26848 case T_OPTMGMT_REQ: 26849 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 26850 /* 26851 * Note: No snmpcom_req support through new 26852 * T_OPTMGMT_REQ. 26853 * Call tpi_optcom_req so that it can 26854 * generate the ack. 26855 */ 26856 ASSERT(connp != NULL); 26857 ASSERT(ipsq == NULL); 26858 /* 26859 * We don't come here for restart. ip_restart_optmgmt 26860 * will drop the conn ref. In the case of ipsec option 26861 * after the ipsec load is complete 26862 * conn_restart_ipsec_waiter drops the conn ref. 26863 */ 26864 CONN_INC_REF(connp); 26865 if (ip_check_for_ipsec_opt(q, mp)) 26866 return; 26867 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 26868 if (err != EINPROGRESS) { 26869 /* Operation is done */ 26870 CONN_OPER_PENDING_DONE(connp); 26871 } 26872 return; 26873 case T_UNBIND_REQ: 26874 mp = ip_unbind(q, mp); 26875 qreply(q, mp); 26876 return; 26877 default: 26878 /* 26879 * Have to drop any DLPI messages coming down from 26880 * arp (such as an info_req which would cause ip 26881 * to receive an extra info_ack if it was passed 26882 * through. 26883 */ 26884 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 26885 (int)*(uint_t *)mp->b_rptr)); 26886 freemsg(mp); 26887 return; 26888 } 26889 /* NOTREACHED */ 26890 case IRE_DB_TYPE: { 26891 nce_t *nce; 26892 ill_t *ill; 26893 in6_addr_t gw_addr_v6; 26894 26895 26896 /* 26897 * This is a response back from a resolver. It 26898 * consists of a message chain containing: 26899 * IRE_MBLK-->LL_HDR_MBLK->pkt 26900 * The IRE_MBLK is the one we allocated in ip_newroute. 26901 * The LL_HDR_MBLK is the DLPI header to use to get 26902 * the attached packet, and subsequent ones for the 26903 * same destination, transmitted. 26904 */ 26905 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 26906 break; 26907 /* 26908 * First, check to make sure the resolution succeeded. 26909 * If it failed, the second mblk will be empty. 26910 * If it is, free the chain, dropping the packet. 26911 * (We must ire_delete the ire; that frees the ire mblk) 26912 * We're doing this now to support PVCs for ATM; it's 26913 * a partial xresolv implementation. When we fully implement 26914 * xresolv interfaces, instead of freeing everything here 26915 * we'll initiate neighbor discovery. 26916 * 26917 * For v4 (ARP and other external resolvers) the resolver 26918 * frees the message, so no check is needed. This check 26919 * is required, though, for a full xresolve implementation. 26920 * Including this code here now both shows how external 26921 * resolvers can NACK a resolution request using an 26922 * existing design that has no specific provisions for NACKs, 26923 * and also takes into account that the current non-ARP 26924 * external resolver has been coded to use this method of 26925 * NACKing for all IPv6 (xresolv) cases, 26926 * whether our xresolv implementation is complete or not. 26927 * 26928 */ 26929 ire = (ire_t *)mp->b_rptr; 26930 ill = ire_to_ill(ire); 26931 mp1 = mp->b_cont; /* dl_unitdata_req */ 26932 if (mp1->b_rptr == mp1->b_wptr) { 26933 if (ire->ire_ipversion == IPV6_VERSION) { 26934 /* 26935 * XRESOLV interface. 26936 */ 26937 ASSERT(ill->ill_flags & ILLF_XRESOLV); 26938 mutex_enter(&ire->ire_lock); 26939 gw_addr_v6 = ire->ire_gateway_addr_v6; 26940 mutex_exit(&ire->ire_lock); 26941 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 26942 nce = ndp_lookup_v6(ill, 26943 &ire->ire_addr_v6, B_FALSE); 26944 } else { 26945 nce = ndp_lookup_v6(ill, &gw_addr_v6, 26946 B_FALSE); 26947 } 26948 if (nce != NULL) { 26949 nce_resolv_failed(nce); 26950 ndp_delete(nce); 26951 NCE_REFRELE(nce); 26952 } 26953 } 26954 mp->b_cont = NULL; 26955 freemsg(mp1); /* frees the pkt as well */ 26956 ASSERT(ire->ire_nce == NULL); 26957 ire_delete((ire_t *)mp->b_rptr); 26958 return; 26959 } 26960 26961 /* 26962 * Split them into IRE_MBLK and pkt and feed it into 26963 * ire_add_then_send. Then in ire_add_then_send 26964 * the IRE will be added, and then the packet will be 26965 * run back through ip_wput. This time it will make 26966 * it to the wire. 26967 */ 26968 mp->b_cont = NULL; 26969 mp = mp1->b_cont; /* now, mp points to pkt */ 26970 mp1->b_cont = NULL; 26971 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 26972 if (ire->ire_ipversion == IPV6_VERSION) { 26973 /* 26974 * XRESOLV interface. Find the nce and put a copy 26975 * of the dl_unitdata_req in nce_res_mp 26976 */ 26977 ASSERT(ill->ill_flags & ILLF_XRESOLV); 26978 mutex_enter(&ire->ire_lock); 26979 gw_addr_v6 = ire->ire_gateway_addr_v6; 26980 mutex_exit(&ire->ire_lock); 26981 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 26982 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 26983 B_FALSE); 26984 } else { 26985 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 26986 } 26987 if (nce != NULL) { 26988 /* 26989 * We have to protect nce_res_mp here 26990 * from being accessed by other threads 26991 * while we change the mblk pointer. 26992 * Other functions will also lock the nce when 26993 * accessing nce_res_mp. 26994 * 26995 * The reason we change the mblk pointer 26996 * here rather than copying the resolved address 26997 * into the template is that, unlike with 26998 * ethernet, we have no guarantee that the 26999 * resolved address length will be 27000 * smaller than or equal to the lla length 27001 * with which the template was allocated, 27002 * (for ethernet, they're equal) 27003 * so we have to use the actual resolved 27004 * address mblk - which holds the real 27005 * dl_unitdata_req with the resolved address. 27006 * 27007 * Doing this is the same behavior as was 27008 * previously used in the v4 ARP case. 27009 */ 27010 mutex_enter(&nce->nce_lock); 27011 if (nce->nce_res_mp != NULL) 27012 freemsg(nce->nce_res_mp); 27013 nce->nce_res_mp = mp1; 27014 mutex_exit(&nce->nce_lock); 27015 /* 27016 * We do a fastpath probe here because 27017 * we have resolved the address without 27018 * using Neighbor Discovery. 27019 * In the non-XRESOLV v6 case, the fastpath 27020 * probe is done right after neighbor 27021 * discovery completes. 27022 */ 27023 if (nce->nce_res_mp != NULL) { 27024 int res; 27025 nce_fastpath_list_add(nce); 27026 res = ill_fastpath_probe(ill, 27027 nce->nce_res_mp); 27028 if (res != 0 && res != EAGAIN) 27029 nce_fastpath_list_delete(nce); 27030 } 27031 27032 ire_add_then_send(q, ire, mp); 27033 /* 27034 * Now we have to clean out any packets 27035 * that may have been queued on the nce 27036 * while it was waiting for address resolution 27037 * to complete. 27038 */ 27039 mutex_enter(&nce->nce_lock); 27040 mp1 = nce->nce_qd_mp; 27041 nce->nce_qd_mp = NULL; 27042 mutex_exit(&nce->nce_lock); 27043 while (mp1 != NULL) { 27044 mblk_t *nxt_mp; 27045 queue_t *fwdq = NULL; 27046 ill_t *inbound_ill; 27047 uint_t ifindex; 27048 27049 nxt_mp = mp1->b_next; 27050 mp1->b_next = NULL; 27051 /* 27052 * Retrieve ifindex stored in 27053 * ip_rput_data_v6() 27054 */ 27055 ifindex = 27056 (uint_t)(uintptr_t)mp1->b_prev; 27057 inbound_ill = 27058 ill_lookup_on_ifindex(ifindex, 27059 B_TRUE, NULL, NULL, NULL, 27060 NULL); 27061 mp1->b_prev = NULL; 27062 if (inbound_ill != NULL) 27063 fwdq = inbound_ill->ill_rq; 27064 27065 if (fwdq != NULL) { 27066 put(fwdq, mp1); 27067 ill_refrele(inbound_ill); 27068 } else 27069 put(WR(ill->ill_rq), mp1); 27070 mp1 = nxt_mp; 27071 } 27072 NCE_REFRELE(nce); 27073 } else { /* nce is NULL; clean up */ 27074 ire_delete(ire); 27075 freemsg(mp); 27076 freemsg(mp1); 27077 return; 27078 } 27079 } else { 27080 nce_t *arpce; 27081 /* 27082 * Link layer resolution succeeded. Recompute the 27083 * ire_nce. 27084 */ 27085 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27086 if ((arpce = ndp_lookup_v4(ill, 27087 (ire->ire_gateway_addr != INADDR_ANY ? 27088 &ire->ire_gateway_addr : &ire->ire_addr), 27089 B_FALSE)) == NULL) { 27090 freeb(ire->ire_mp); 27091 freeb(mp1); 27092 freemsg(mp); 27093 return; 27094 } 27095 mutex_enter(&arpce->nce_lock); 27096 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27097 if (arpce->nce_state == ND_REACHABLE) { 27098 /* 27099 * Someone resolved this before us; 27100 * cleanup the res_mp. Since ire has 27101 * not been added yet, the call to ire_add_v4 27102 * from ire_add_then_send (when a dup is 27103 * detected) will clean up the ire. 27104 */ 27105 freeb(mp1); 27106 } else { 27107 if (arpce->nce_res_mp != NULL) 27108 freemsg(arpce->nce_res_mp); 27109 arpce->nce_res_mp = mp1; 27110 arpce->nce_state = ND_REACHABLE; 27111 } 27112 mutex_exit(&arpce->nce_lock); 27113 if (ire->ire_marks & IRE_MARK_NOADD) { 27114 /* 27115 * this ire will not be added to the ire 27116 * cache table, so we can set the ire_nce 27117 * here, as there are no atomicity constraints. 27118 */ 27119 ire->ire_nce = arpce; 27120 /* 27121 * We are associating this nce with the ire 27122 * so change the nce ref taken in 27123 * ndp_lookup_v4() from 27124 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27125 */ 27126 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27127 } else { 27128 NCE_REFRELE(arpce); 27129 } 27130 ire_add_then_send(q, ire, mp); 27131 } 27132 return; /* All is well, the packet has been sent. */ 27133 } 27134 case IRE_ARPRESOLVE_TYPE: { 27135 27136 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27137 break; 27138 mp1 = mp->b_cont; /* dl_unitdata_req */ 27139 mp->b_cont = NULL; 27140 /* 27141 * First, check to make sure the resolution succeeded. 27142 * If it failed, the second mblk will be empty. 27143 */ 27144 if (mp1->b_rptr == mp1->b_wptr) { 27145 /* cleanup the incomplete ire, free queued packets */ 27146 freemsg(mp); /* fake ire */ 27147 freeb(mp1); /* dl_unitdata response */ 27148 return; 27149 } 27150 27151 /* 27152 * update any incomplete nce_t found. we lookup the ctable 27153 * and find the nce from the ire->ire_nce because we need 27154 * to pass the ire to ip_xmit_v4 later, and can find both 27155 * ire and nce in one lookup from the ctable. 27156 */ 27157 fake_ire = (ire_t *)mp->b_rptr; 27158 /* 27159 * By the time we come back here from ARP 27160 * the logical outgoing interface of the incomplete ire 27161 * we added in ire_forward could have disappeared, 27162 * causing the incomplete ire to also have 27163 * dissapeared. So we need to retreive the 27164 * proper ipif for the ire before looking 27165 * in ctable; do the ctablelookup based on ire_ipif_seqid 27166 */ 27167 ill = q->q_ptr; 27168 27169 /* Get the outgoing ipif */ 27170 mutex_enter(&ill->ill_lock); 27171 if (ill->ill_state_flags & ILL_CONDEMNED) { 27172 mutex_exit(&ill->ill_lock); 27173 freemsg(mp); /* fake ire */ 27174 freeb(mp1); /* dl_unitdata response */ 27175 return; 27176 } 27177 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27178 27179 if (ipif == NULL) { 27180 mutex_exit(&ill->ill_lock); 27181 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27182 freemsg(mp); 27183 freeb(mp1); 27184 return; 27185 } 27186 ipif_refhold_locked(ipif); 27187 mutex_exit(&ill->ill_lock); 27188 ire = ire_ctable_lookup(fake_ire->ire_addr, 27189 fake_ire->ire_gateway_addr, IRE_CACHE, 27190 ipif, fake_ire->ire_zoneid, NULL, 27191 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY)); 27192 ipif_refrele(ipif); 27193 if (ire == NULL) { 27194 /* 27195 * no ire was found; check if there is an nce 27196 * for this lookup; if it has no ire's pointing at it 27197 * cleanup. 27198 */ 27199 if ((nce = ndp_lookup_v4(ill, 27200 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27201 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27202 B_FALSE)) != NULL) { 27203 /* 27204 * cleanup: just reset nce. 27205 * We check for refcnt 2 (one for the nce 27206 * hash list + 1 for the ref taken by 27207 * ndp_lookup_v4) to ensure that there are 27208 * no ire's pointing at the nce. 27209 */ 27210 if (nce->nce_refcnt == 2) { 27211 nce = nce_reinit(nce); 27212 } 27213 if (nce != NULL) 27214 NCE_REFRELE(nce); 27215 } 27216 freeb(mp1); /* dl_unitdata response */ 27217 freemsg(mp); /* fake ire */ 27218 return; 27219 } 27220 nce = ire->ire_nce; 27221 DTRACE_PROBE2(ire__arpresolve__type, 27222 ire_t *, ire, nce_t *, nce); 27223 ASSERT(nce->nce_state != ND_INITIAL); 27224 mutex_enter(&nce->nce_lock); 27225 nce->nce_last = TICK_TO_MSEC(lbolt64); 27226 if (nce->nce_state == ND_REACHABLE) { 27227 /* 27228 * Someone resolved this before us; 27229 * our response is not needed any more. 27230 */ 27231 mutex_exit(&nce->nce_lock); 27232 freeb(mp1); /* dl_unitdata response */ 27233 } else { 27234 if (nce->nce_res_mp != NULL) { 27235 freemsg(nce->nce_res_mp); 27236 /* existing dl_unitdata template */ 27237 } 27238 nce->nce_res_mp = mp1; 27239 nce->nce_state = ND_REACHABLE; 27240 mutex_exit(&nce->nce_lock); 27241 ire_fastpath(ire); 27242 } 27243 /* 27244 * The cached nce_t has been updated to be reachable; 27245 * Set the IRE_MARK_UNCACHED flag and free the fake_ire. 27246 */ 27247 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27248 freemsg(mp); 27249 /* 27250 * send out queued packets. 27251 */ 27252 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27253 27254 IRE_REFRELE(ire); 27255 return; 27256 } 27257 default: 27258 break; 27259 } 27260 if (q->q_next) { 27261 putnext(q, mp); 27262 } else 27263 freemsg(mp); 27264 } 27265 27266 /* 27267 * Process IP options in an outbound packet. Modify the destination if there 27268 * is a source route option. 27269 * Returns non-zero if something fails in which case an ICMP error has been 27270 * sent and mp freed. 27271 */ 27272 static int 27273 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27274 boolean_t mctl_present, zoneid_t zoneid) 27275 { 27276 ipoptp_t opts; 27277 uchar_t *opt; 27278 uint8_t optval; 27279 uint8_t optlen; 27280 ipaddr_t dst; 27281 intptr_t code = 0; 27282 mblk_t *mp; 27283 ire_t *ire = NULL; 27284 27285 ip2dbg(("ip_wput_options\n")); 27286 mp = ipsec_mp; 27287 if (mctl_present) { 27288 mp = ipsec_mp->b_cont; 27289 } 27290 27291 dst = ipha->ipha_dst; 27292 for (optval = ipoptp_first(&opts, ipha); 27293 optval != IPOPT_EOL; 27294 optval = ipoptp_next(&opts)) { 27295 opt = opts.ipoptp_cur; 27296 optlen = opts.ipoptp_len; 27297 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27298 optval, optlen)); 27299 switch (optval) { 27300 uint32_t off; 27301 case IPOPT_SSRR: 27302 case IPOPT_LSRR: 27303 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27304 ip1dbg(( 27305 "ip_wput_options: bad option offset\n")); 27306 code = (char *)&opt[IPOPT_OLEN] - 27307 (char *)ipha; 27308 goto param_prob; 27309 } 27310 off = opt[IPOPT_OFFSET]; 27311 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27312 ntohl(dst))); 27313 /* 27314 * For strict: verify that dst is directly 27315 * reachable. 27316 */ 27317 if (optval == IPOPT_SSRR) { 27318 ire = ire_ftable_lookup(dst, 0, 0, 27319 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27320 MBLK_GETLABEL(mp), 27321 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 27322 if (ire == NULL) { 27323 ip1dbg(("ip_wput_options: SSRR not" 27324 " directly reachable: 0x%x\n", 27325 ntohl(dst))); 27326 goto bad_src_route; 27327 } 27328 ire_refrele(ire); 27329 } 27330 break; 27331 case IPOPT_RR: 27332 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27333 ip1dbg(( 27334 "ip_wput_options: bad option offset\n")); 27335 code = (char *)&opt[IPOPT_OLEN] - 27336 (char *)ipha; 27337 goto param_prob; 27338 } 27339 break; 27340 case IPOPT_TS: 27341 /* 27342 * Verify that length >=5 and that there is either 27343 * room for another timestamp or that the overflow 27344 * counter is not maxed out. 27345 */ 27346 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27347 if (optlen < IPOPT_MINLEN_IT) { 27348 goto param_prob; 27349 } 27350 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27351 ip1dbg(( 27352 "ip_wput_options: bad option offset\n")); 27353 code = (char *)&opt[IPOPT_OFFSET] - 27354 (char *)ipha; 27355 goto param_prob; 27356 } 27357 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27358 case IPOPT_TS_TSONLY: 27359 off = IPOPT_TS_TIMELEN; 27360 break; 27361 case IPOPT_TS_TSANDADDR: 27362 case IPOPT_TS_PRESPEC: 27363 case IPOPT_TS_PRESPEC_RFC791: 27364 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27365 break; 27366 default: 27367 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27368 (char *)ipha; 27369 goto param_prob; 27370 } 27371 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27372 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27373 /* 27374 * No room and the overflow counter is 15 27375 * already. 27376 */ 27377 goto param_prob; 27378 } 27379 break; 27380 } 27381 } 27382 27383 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27384 return (0); 27385 27386 ip1dbg(("ip_wput_options: error processing IP options.")); 27387 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27388 27389 param_prob: 27390 /* 27391 * Since ip_wput() isn't close to finished, we fill 27392 * in enough of the header for credible error reporting. 27393 */ 27394 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 27395 /* Failed */ 27396 freemsg(ipsec_mp); 27397 return (-1); 27398 } 27399 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid); 27400 return (-1); 27401 27402 bad_src_route: 27403 /* 27404 * Since ip_wput() isn't close to finished, we fill 27405 * in enough of the header for credible error reporting. 27406 */ 27407 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 27408 /* Failed */ 27409 freemsg(ipsec_mp); 27410 return (-1); 27411 } 27412 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 27413 return (-1); 27414 } 27415 27416 /* 27417 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 27418 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 27419 * thru /etc/system. 27420 */ 27421 #define CONN_MAXDRAINCNT 64 27422 27423 static void 27424 conn_drain_init(void) 27425 { 27426 int i; 27427 27428 conn_drain_list_cnt = conn_drain_nthreads; 27429 27430 if ((conn_drain_list_cnt == 0) || 27431 (conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 27432 /* 27433 * Default value of the number of drainers is the 27434 * number of cpus, subject to maximum of 8 drainers. 27435 */ 27436 if (boot_max_ncpus != -1) 27437 conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 27438 else 27439 conn_drain_list_cnt = MIN(max_ncpus, 8); 27440 } 27441 27442 conn_drain_list = kmem_zalloc(conn_drain_list_cnt * sizeof (idl_t), 27443 KM_SLEEP); 27444 27445 for (i = 0; i < conn_drain_list_cnt; i++) { 27446 mutex_init(&conn_drain_list[i].idl_lock, NULL, 27447 MUTEX_DEFAULT, NULL); 27448 } 27449 } 27450 27451 static void 27452 conn_drain_fini(void) 27453 { 27454 int i; 27455 27456 for (i = 0; i < conn_drain_list_cnt; i++) 27457 mutex_destroy(&conn_drain_list[i].idl_lock); 27458 kmem_free(conn_drain_list, conn_drain_list_cnt * sizeof (idl_t)); 27459 conn_drain_list = NULL; 27460 } 27461 27462 /* 27463 * Note: For an overview of how flowcontrol is handled in IP please see the 27464 * IP Flowcontrol notes at the top of this file. 27465 * 27466 * Flow control has blocked us from proceeding. Insert the given conn in one 27467 * of the conn drain lists. These conn wq's will be qenabled later on when 27468 * STREAMS flow control does a backenable. conn_walk_drain will enable 27469 * the first conn in each of these drain lists. Each of these qenabled conns 27470 * in turn enables the next in the list, after it runs, or when it closes, 27471 * thus sustaining the drain process. 27472 * 27473 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 27474 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 27475 * running at any time, on a given conn, since there can be only 1 service proc 27476 * running on a queue at any time. 27477 */ 27478 void 27479 conn_drain_insert(conn_t *connp) 27480 { 27481 idl_t *idl; 27482 uint_t index; 27483 27484 mutex_enter(&connp->conn_lock); 27485 if (connp->conn_state_flags & CONN_CLOSING) { 27486 /* 27487 * The conn is closing as a result of which CONN_CLOSING 27488 * is set. Return. 27489 */ 27490 mutex_exit(&connp->conn_lock); 27491 return; 27492 } else if (connp->conn_idl == NULL) { 27493 /* 27494 * Assign the next drain list round robin. We dont' use 27495 * a lock, and thus it may not be strictly round robin. 27496 * Atomicity of load/stores is enough to make sure that 27497 * conn_drain_list_index is always within bounds. 27498 */ 27499 index = conn_drain_list_index; 27500 ASSERT(index < conn_drain_list_cnt); 27501 connp->conn_idl = &conn_drain_list[index]; 27502 index++; 27503 if (index == conn_drain_list_cnt) 27504 index = 0; 27505 conn_drain_list_index = index; 27506 } 27507 mutex_exit(&connp->conn_lock); 27508 27509 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 27510 if ((connp->conn_drain_prev != NULL) || 27511 (connp->conn_state_flags & CONN_CLOSING)) { 27512 /* 27513 * The conn is already in the drain list, OR 27514 * the conn is closing. We need to check again for 27515 * the closing case again since close can happen 27516 * after we drop the conn_lock, and before we 27517 * acquire the CONN_DRAIN_LIST_LOCK. 27518 */ 27519 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27520 return; 27521 } else { 27522 idl = connp->conn_idl; 27523 } 27524 27525 /* 27526 * The conn is not in the drain list. Insert it at the 27527 * tail of the drain list. The drain list is circular 27528 * and doubly linked. idl_conn points to the 1st element 27529 * in the list. 27530 */ 27531 if (idl->idl_conn == NULL) { 27532 idl->idl_conn = connp; 27533 connp->conn_drain_next = connp; 27534 connp->conn_drain_prev = connp; 27535 } else { 27536 conn_t *head = idl->idl_conn; 27537 27538 connp->conn_drain_next = head; 27539 connp->conn_drain_prev = head->conn_drain_prev; 27540 head->conn_drain_prev->conn_drain_next = connp; 27541 head->conn_drain_prev = connp; 27542 } 27543 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27544 } 27545 27546 /* 27547 * This conn is closing, and we are called from ip_close. OR 27548 * This conn has been serviced by ip_wsrv, and we need to do the tail 27549 * processing. 27550 * If this conn is part of the drain list, we may need to sustain the drain 27551 * process by qenabling the next conn in the drain list. We may also need to 27552 * remove this conn from the list, if it is done. 27553 */ 27554 static void 27555 conn_drain_tail(conn_t *connp, boolean_t closing) 27556 { 27557 idl_t *idl; 27558 27559 /* 27560 * connp->conn_idl is stable at this point, and no lock is needed 27561 * to check it. If we are called from ip_close, close has already 27562 * set CONN_CLOSING, thus freezing the value of conn_idl, and 27563 * called us only because conn_idl is non-null. If we are called thru 27564 * service, conn_idl could be null, but it cannot change because 27565 * service is single-threaded per queue, and there cannot be another 27566 * instance of service trying to call conn_drain_insert on this conn 27567 * now. 27568 */ 27569 ASSERT(!closing || (connp->conn_idl != NULL)); 27570 27571 /* 27572 * If connp->conn_idl is null, the conn has not been inserted into any 27573 * drain list even once since creation of the conn. Just return. 27574 */ 27575 if (connp->conn_idl == NULL) 27576 return; 27577 27578 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 27579 27580 if (connp->conn_drain_prev == NULL) { 27581 /* This conn is currently not in the drain list. */ 27582 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27583 return; 27584 } 27585 idl = connp->conn_idl; 27586 if (idl->idl_conn_draining == connp) { 27587 /* 27588 * This conn is the current drainer. If this is the last conn 27589 * in the drain list, we need to do more checks, in the 'if' 27590 * below. Otherwwise we need to just qenable the next conn, 27591 * to sustain the draining, and is handled in the 'else' 27592 * below. 27593 */ 27594 if (connp->conn_drain_next == idl->idl_conn) { 27595 /* 27596 * This conn is the last in this list. This round 27597 * of draining is complete. If idl_repeat is set, 27598 * it means another flow enabling has happened from 27599 * the driver/streams and we need to another round 27600 * of draining. 27601 * If there are more than 2 conns in the drain list, 27602 * do a left rotate by 1, so that all conns except the 27603 * conn at the head move towards the head by 1, and the 27604 * the conn at the head goes to the tail. This attempts 27605 * a more even share for all queues that are being 27606 * drained. 27607 */ 27608 if ((connp->conn_drain_next != connp) && 27609 (idl->idl_conn->conn_drain_next != connp)) { 27610 idl->idl_conn = idl->idl_conn->conn_drain_next; 27611 } 27612 if (idl->idl_repeat) { 27613 qenable(idl->idl_conn->conn_wq); 27614 idl->idl_conn_draining = idl->idl_conn; 27615 idl->idl_repeat = 0; 27616 } else { 27617 idl->idl_conn_draining = NULL; 27618 } 27619 } else { 27620 /* 27621 * If the next queue that we are now qenable'ing, 27622 * is closing, it will remove itself from this list 27623 * and qenable the subsequent queue in ip_close(). 27624 * Serialization is acheived thru idl_lock. 27625 */ 27626 qenable(connp->conn_drain_next->conn_wq); 27627 idl->idl_conn_draining = connp->conn_drain_next; 27628 } 27629 } 27630 if (!connp->conn_did_putbq || closing) { 27631 /* 27632 * Remove ourself from the drain list, if we did not do 27633 * a putbq, or if the conn is closing. 27634 * Note: It is possible that q->q_first is non-null. It means 27635 * that these messages landed after we did a enableok() in 27636 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 27637 * service them. 27638 */ 27639 if (connp->conn_drain_next == connp) { 27640 /* Singleton in the list */ 27641 ASSERT(connp->conn_drain_prev == connp); 27642 idl->idl_conn = NULL; 27643 idl->idl_conn_draining = NULL; 27644 } else { 27645 connp->conn_drain_prev->conn_drain_next = 27646 connp->conn_drain_next; 27647 connp->conn_drain_next->conn_drain_prev = 27648 connp->conn_drain_prev; 27649 if (idl->idl_conn == connp) 27650 idl->idl_conn = connp->conn_drain_next; 27651 ASSERT(idl->idl_conn_draining != connp); 27652 27653 } 27654 connp->conn_drain_next = NULL; 27655 connp->conn_drain_prev = NULL; 27656 } 27657 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27658 } 27659 27660 /* 27661 * Write service routine. Shared perimeter entry point. 27662 * ip_wsrv can be called in any of the following ways. 27663 * 1. The device queue's messages has fallen below the low water mark 27664 * and STREAMS has backenabled the ill_wq. We walk thru all the 27665 * the drain lists and backenable the first conn in each list. 27666 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 27667 * qenabled non-tcp upper layers. We start dequeing messages and call 27668 * ip_wput for each message. 27669 */ 27670 27671 void 27672 ip_wsrv(queue_t *q) 27673 { 27674 conn_t *connp; 27675 ill_t *ill; 27676 mblk_t *mp; 27677 27678 if (q->q_next) { 27679 ill = (ill_t *)q->q_ptr; 27680 if (ill->ill_state_flags == 0) { 27681 /* 27682 * The device flow control has opened up. 27683 * Walk through conn drain lists and qenable the 27684 * first conn in each list. This makes sense only 27685 * if the stream is fully plumbed and setup. 27686 * Hence the if check above. 27687 */ 27688 ip1dbg(("ip_wsrv: walking\n")); 27689 conn_walk_drain(); 27690 } 27691 return; 27692 } 27693 27694 connp = Q_TO_CONN(q); 27695 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 27696 27697 /* 27698 * 1. Set conn_draining flag to signal that service is active. 27699 * 27700 * 2. ip_output determines whether it has been called from service, 27701 * based on the last parameter. If it is IP_WSRV it concludes it 27702 * has been called from service. 27703 * 27704 * 3. Message ordering is preserved by the following logic. 27705 * i. A directly called ip_output (i.e. not thru service) will queue 27706 * the message at the tail, if conn_draining is set (i.e. service 27707 * is running) or if q->q_first is non-null. 27708 * 27709 * ii. If ip_output is called from service, and if ip_output cannot 27710 * putnext due to flow control, it does a putbq. 27711 * 27712 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 27713 * (causing an infinite loop). 27714 */ 27715 ASSERT(!connp->conn_did_putbq); 27716 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 27717 connp->conn_draining = 1; 27718 noenable(q); 27719 while ((mp = getq(q)) != NULL) { 27720 ASSERT(CONN_Q(q)); 27721 27722 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 27723 if (connp->conn_did_putbq) { 27724 /* ip_wput did a putbq */ 27725 break; 27726 } 27727 } 27728 /* 27729 * At this point, a thread coming down from top, calling 27730 * ip_wput, may end up queueing the message. We have not yet 27731 * enabled the queue, so ip_wsrv won't be called again. 27732 * To avoid this race, check q->q_first again (in the loop) 27733 * If the other thread queued the message before we call 27734 * enableok(), we will catch it in the q->q_first check. 27735 * If the other thread queues the message after we call 27736 * enableok(), ip_wsrv will be called again by STREAMS. 27737 */ 27738 connp->conn_draining = 0; 27739 enableok(q); 27740 } 27741 27742 /* Enable the next conn for draining */ 27743 conn_drain_tail(connp, B_FALSE); 27744 27745 connp->conn_did_putbq = 0; 27746 } 27747 27748 /* 27749 * Walk the list of all conn's calling the function provided with the 27750 * specified argument for each. Note that this only walks conn's that 27751 * have been bound. 27752 * Applies to both IPv4 and IPv6. 27753 */ 27754 static void 27755 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid) 27756 { 27757 conn_walk_fanout_table(ipcl_udp_fanout, ipcl_udp_fanout_size, 27758 func, arg, zoneid); 27759 conn_walk_fanout_table(ipcl_conn_fanout, ipcl_conn_fanout_size, 27760 func, arg, zoneid); 27761 conn_walk_fanout_table(ipcl_bind_fanout, ipcl_bind_fanout_size, 27762 func, arg, zoneid); 27763 conn_walk_fanout_table(ipcl_proto_fanout, 27764 A_CNT(ipcl_proto_fanout), func, arg, zoneid); 27765 conn_walk_fanout_table(ipcl_proto_fanout_v6, 27766 A_CNT(ipcl_proto_fanout_v6), func, arg, zoneid); 27767 } 27768 27769 /* 27770 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 27771 * of conns that need to be drained, check if drain is already in progress. 27772 * If so set the idl_repeat bit, indicating that the last conn in the list 27773 * needs to reinitiate the drain once again, for the list. If drain is not 27774 * in progress for the list, initiate the draining, by qenabling the 1st 27775 * conn in the list. The drain is self-sustaining, each qenabled conn will 27776 * in turn qenable the next conn, when it is done/blocked/closing. 27777 */ 27778 static void 27779 conn_walk_drain(void) 27780 { 27781 int i; 27782 idl_t *idl; 27783 27784 IP_STAT(ip_conn_walk_drain); 27785 27786 for (i = 0; i < conn_drain_list_cnt; i++) { 27787 idl = &conn_drain_list[i]; 27788 mutex_enter(&idl->idl_lock); 27789 if (idl->idl_conn == NULL) { 27790 mutex_exit(&idl->idl_lock); 27791 continue; 27792 } 27793 /* 27794 * If this list is not being drained currently by 27795 * an ip_wsrv thread, start the process. 27796 */ 27797 if (idl->idl_conn_draining == NULL) { 27798 ASSERT(idl->idl_repeat == 0); 27799 qenable(idl->idl_conn->conn_wq); 27800 idl->idl_conn_draining = idl->idl_conn; 27801 } else { 27802 idl->idl_repeat = 1; 27803 } 27804 mutex_exit(&idl->idl_lock); 27805 } 27806 } 27807 27808 /* 27809 * Walk an conn hash table of `count' buckets, calling func for each entry. 27810 */ 27811 static void 27812 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 27813 zoneid_t zoneid) 27814 { 27815 conn_t *connp; 27816 27817 while (count-- > 0) { 27818 mutex_enter(&connfp->connf_lock); 27819 for (connp = connfp->connf_head; connp != NULL; 27820 connp = connp->conn_next) { 27821 if (zoneid == GLOBAL_ZONEID || 27822 zoneid == connp->conn_zoneid) { 27823 CONN_INC_REF(connp); 27824 mutex_exit(&connfp->connf_lock); 27825 (*func)(connp, arg); 27826 mutex_enter(&connfp->connf_lock); 27827 CONN_DEC_REF(connp); 27828 } 27829 } 27830 mutex_exit(&connfp->connf_lock); 27831 connfp++; 27832 } 27833 } 27834 27835 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 27836 static void 27837 conn_report1(conn_t *connp, void *mp) 27838 { 27839 char buf1[INET6_ADDRSTRLEN]; 27840 char buf2[INET6_ADDRSTRLEN]; 27841 uint_t print_len, buf_len; 27842 27843 ASSERT(connp != NULL); 27844 27845 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 27846 if (buf_len <= 0) 27847 return; 27848 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 27849 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 27850 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 27851 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 27852 "%5d %s/%05d %s/%05d\n", 27853 (void *)connp, (void *)CONNP_TO_RQ(connp), 27854 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 27855 buf1, connp->conn_lport, 27856 buf2, connp->conn_fport); 27857 if (print_len < buf_len) { 27858 ((mblk_t *)mp)->b_wptr += print_len; 27859 } else { 27860 ((mblk_t *)mp)->b_wptr += buf_len; 27861 } 27862 } 27863 27864 /* 27865 * Named Dispatch routine to produce a formatted report on all conns 27866 * that are listed in one of the fanout tables. 27867 * This report is accessed by using the ndd utility to "get" ND variable 27868 * "ip_conn_status". 27869 */ 27870 /* ARGSUSED */ 27871 static int 27872 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 27873 { 27874 (void) mi_mpprintf(mp, 27875 "CONN " MI_COL_HDRPAD_STR 27876 "rfq " MI_COL_HDRPAD_STR 27877 "stq " MI_COL_HDRPAD_STR 27878 " zone local remote"); 27879 27880 /* 27881 * Because of the ndd constraint, at most we can have 64K buffer 27882 * to put in all conn info. So to be more efficient, just 27883 * allocate a 64K buffer here, assuming we need that large buffer. 27884 * This should be OK as only privileged processes can do ndd /dev/ip. 27885 */ 27886 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 27887 /* The following may work even if we cannot get a large buf. */ 27888 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 27889 return (0); 27890 } 27891 27892 conn_walk_fanout(conn_report1, mp->b_cont, Q_TO_CONN(q)->conn_zoneid); 27893 return (0); 27894 } 27895 27896 /* 27897 * Determine if the ill and multicast aspects of that packets 27898 * "matches" the conn. 27899 */ 27900 boolean_t 27901 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 27902 zoneid_t zoneid) 27903 { 27904 ill_t *in_ill; 27905 boolean_t found; 27906 ipif_t *ipif; 27907 ire_t *ire; 27908 ipaddr_t dst, src; 27909 27910 dst = ipha->ipha_dst; 27911 src = ipha->ipha_src; 27912 27913 /* 27914 * conn_incoming_ill is set by IP_BOUND_IF which limits 27915 * unicast, broadcast and multicast reception to 27916 * conn_incoming_ill. conn_wantpacket itself is called 27917 * only for BROADCAST and multicast. 27918 * 27919 * 1) ip_rput supresses duplicate broadcasts if the ill 27920 * is part of a group. Hence, we should be receiving 27921 * just one copy of broadcast for the whole group. 27922 * Thus, if it is part of the group the packet could 27923 * come on any ill of the group and hence we need a 27924 * match on the group. Otherwise, match on ill should 27925 * be sufficient. 27926 * 27927 * 2) ip_rput does not suppress duplicate multicast packets. 27928 * If there are two interfaces in a ill group and we have 27929 * 2 applications (conns) joined a multicast group G on 27930 * both the interfaces, ilm_lookup_ill filter in ip_rput 27931 * will give us two packets because we join G on both the 27932 * interfaces rather than nominating just one interface 27933 * for receiving multicast like broadcast above. So, 27934 * we have to call ilg_lookup_ill to filter out duplicate 27935 * copies, if ill is part of a group. 27936 */ 27937 in_ill = connp->conn_incoming_ill; 27938 if (in_ill != NULL) { 27939 if (in_ill->ill_group == NULL) { 27940 if (in_ill != ill) 27941 return (B_FALSE); 27942 } else if (in_ill->ill_group != ill->ill_group) { 27943 return (B_FALSE); 27944 } 27945 } 27946 27947 if (!CLASSD(dst)) { 27948 if (IPCL_ZONE_MATCH(connp, zoneid)) 27949 return (B_TRUE); 27950 /* 27951 * The conn is in a different zone; we need to check that this 27952 * broadcast address is configured in the application's zone and 27953 * on one ill in the group. 27954 */ 27955 ipif = ipif_get_next_ipif(NULL, ill); 27956 if (ipif == NULL) 27957 return (B_FALSE); 27958 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 27959 connp->conn_zoneid, NULL, 27960 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 27961 ipif_refrele(ipif); 27962 if (ire != NULL) { 27963 ire_refrele(ire); 27964 return (B_TRUE); 27965 } else { 27966 return (B_FALSE); 27967 } 27968 } 27969 27970 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 27971 connp->conn_zoneid == zoneid) { 27972 /* 27973 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 27974 * disabled, therefore we don't dispatch the multicast packet to 27975 * the sending zone. 27976 */ 27977 return (B_FALSE); 27978 } 27979 27980 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 27981 connp->conn_zoneid != zoneid) { 27982 /* 27983 * Multicast packet on the loopback interface: we only match 27984 * conns who joined the group in the specified zone. 27985 */ 27986 return (B_FALSE); 27987 } 27988 27989 if (connp->conn_multi_router) { 27990 /* multicast packet and multicast router socket: send up */ 27991 return (B_TRUE); 27992 } 27993 27994 mutex_enter(&connp->conn_lock); 27995 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 27996 mutex_exit(&connp->conn_lock); 27997 return (found); 27998 } 27999 28000 /* 28001 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28002 */ 28003 /* ARGSUSED */ 28004 static void 28005 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28006 { 28007 ill_t *ill = (ill_t *)q->q_ptr; 28008 mblk_t *mp1, *mp2; 28009 ipif_t *ipif; 28010 int err = 0; 28011 conn_t *connp = NULL; 28012 ipsq_t *ipsq; 28013 arc_t *arc; 28014 28015 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28016 28017 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28018 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28019 28020 ASSERT(IAM_WRITER_ILL(ill)); 28021 mp2 = mp->b_cont; 28022 mp->b_cont = NULL; 28023 28024 /* 28025 * We have now received the arp bringup completion message 28026 * from ARP. Mark the arp bringup as done. Also if the arp 28027 * stream has already started closing, send up the AR_ARP_CLOSING 28028 * ack now since ARP is waiting in close for this ack. 28029 */ 28030 mutex_enter(&ill->ill_lock); 28031 ill->ill_arp_bringup_pending = 0; 28032 if (ill->ill_arp_closing) { 28033 mutex_exit(&ill->ill_lock); 28034 /* Let's reuse the mp for sending the ack */ 28035 arc = (arc_t *)mp->b_rptr; 28036 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28037 arc->arc_cmd = AR_ARP_CLOSING; 28038 qreply(q, mp); 28039 } else { 28040 mutex_exit(&ill->ill_lock); 28041 freeb(mp); 28042 } 28043 28044 /* We should have an IOCTL waiting on this. */ 28045 ipsq = ill->ill_phyint->phyint_ipsq; 28046 ipif = ipsq->ipsq_pending_ipif; 28047 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28048 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28049 if (mp1 == NULL) { 28050 /* bringup was aborted by the user */ 28051 freemsg(mp2); 28052 return; 28053 } 28054 ASSERT(connp != NULL); 28055 q = CONNP_TO_WQ(connp); 28056 /* 28057 * If the DL_BIND_REQ fails, it is noted 28058 * in arc_name_offset. 28059 */ 28060 err = *((int *)mp2->b_rptr); 28061 if (err == 0) { 28062 if (ipif->ipif_isv6) { 28063 if ((err = ipif_up_done_v6(ipif)) != 0) 28064 ip0dbg(("ip_arp_done: init failed\n")); 28065 } else { 28066 if ((err = ipif_up_done(ipif)) != 0) 28067 ip0dbg(("ip_arp_done: init failed\n")); 28068 } 28069 } else { 28070 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28071 } 28072 28073 freemsg(mp2); 28074 28075 if ((err == 0) && (ill->ill_up_ipifs)) { 28076 err = ill_up_ipifs(ill, q, mp1); 28077 if (err == EINPROGRESS) 28078 return; 28079 } 28080 28081 if (ill->ill_up_ipifs) { 28082 ill_group_cleanup(ill); 28083 } 28084 28085 /* 28086 * The ioctl must complete now without EINPROGRESS 28087 * since ipsq_pending_mp_get has removed the ioctl mblk 28088 * from ipsq_pending_mp. Otherwise the ioctl will be 28089 * stuck for ever in the ipsq. 28090 */ 28091 ASSERT(err != EINPROGRESS); 28092 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipif, ipsq); 28093 } 28094 28095 /* Allocate the private structure */ 28096 static int 28097 ip_priv_alloc(void **bufp) 28098 { 28099 void *buf; 28100 28101 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28102 return (ENOMEM); 28103 28104 *bufp = buf; 28105 return (0); 28106 } 28107 28108 /* Function to delete the private structure */ 28109 void 28110 ip_priv_free(void *buf) 28111 { 28112 ASSERT(buf != NULL); 28113 kmem_free(buf, sizeof (ip_priv_t)); 28114 } 28115 28116 /* 28117 * The entry point for IPPF processing. 28118 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28119 * routine just returns. 28120 * 28121 * When called, ip_process generates an ipp_packet_t structure 28122 * which holds the state information for this packet and invokes the 28123 * the classifier (via ipp_packet_process). The classification, depending on 28124 * configured filters, results in a list of actions for this packet. Invoking 28125 * an action may cause the packet to be dropped, in which case the resulting 28126 * mblk (*mpp) is NULL. proc indicates the callout position for 28127 * this packet and ill_index is the interface this packet on or will leave 28128 * on (inbound and outbound resp.). 28129 */ 28130 void 28131 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28132 { 28133 mblk_t *mp; 28134 ip_priv_t *priv; 28135 ipp_action_id_t aid; 28136 int rc = 0; 28137 ipp_packet_t *pp; 28138 #define IP_CLASS "ip" 28139 28140 /* If the classifier is not loaded, return */ 28141 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28142 return; 28143 } 28144 28145 mp = *mpp; 28146 ASSERT(mp != NULL); 28147 28148 /* Allocate the packet structure */ 28149 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28150 if (rc != 0) { 28151 *mpp = NULL; 28152 freemsg(mp); 28153 return; 28154 } 28155 28156 /* Allocate the private structure */ 28157 rc = ip_priv_alloc((void **)&priv); 28158 if (rc != 0) { 28159 *mpp = NULL; 28160 freemsg(mp); 28161 ipp_packet_free(pp); 28162 return; 28163 } 28164 priv->proc = proc; 28165 priv->ill_index = ill_index; 28166 ipp_packet_set_private(pp, priv, ip_priv_free); 28167 ipp_packet_set_data(pp, mp); 28168 28169 /* Invoke the classifier */ 28170 rc = ipp_packet_process(&pp); 28171 if (pp != NULL) { 28172 mp = ipp_packet_get_data(pp); 28173 ipp_packet_free(pp); 28174 if (rc != 0) { 28175 freemsg(mp); 28176 *mpp = NULL; 28177 } 28178 } else { 28179 *mpp = NULL; 28180 } 28181 #undef IP_CLASS 28182 } 28183 28184 /* 28185 * Propagate a multicast group membership operation (add/drop) on 28186 * all the interfaces crossed by the related multirt routes. 28187 * The call is considered successful if the operation succeeds 28188 * on at least one interface. 28189 */ 28190 static int 28191 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28192 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28193 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28194 mblk_t *first_mp) 28195 { 28196 ire_t *ire_gw; 28197 irb_t *irb; 28198 int error = 0; 28199 opt_restart_t *or; 28200 28201 irb = ire->ire_bucket; 28202 ASSERT(irb != NULL); 28203 28204 ASSERT(DB_TYPE(first_mp) == M_CTL); 28205 28206 or = (opt_restart_t *)first_mp->b_rptr; 28207 IRB_REFHOLD(irb); 28208 for (; ire != NULL; ire = ire->ire_next) { 28209 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28210 continue; 28211 if (ire->ire_addr != group) 28212 continue; 28213 28214 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28215 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28216 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE); 28217 /* No resolver exists for the gateway; skip this ire. */ 28218 if (ire_gw == NULL) 28219 continue; 28220 28221 /* 28222 * This function can return EINPROGRESS. If so the operation 28223 * will be restarted from ip_restart_optmgmt which will 28224 * call ip_opt_set and option processing will restart for 28225 * this option. So we may end up calling 'fn' more than once. 28226 * This requires that 'fn' is idempotent except for the 28227 * return value. The operation is considered a success if 28228 * it succeeds at least once on any one interface. 28229 */ 28230 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28231 NULL, fmode, src, first_mp); 28232 if (error == 0) 28233 or->or_private = CGTP_MCAST_SUCCESS; 28234 28235 if (ip_debug > 0) { 28236 ulong_t off; 28237 char *ksym; 28238 ksym = kobj_getsymname((uintptr_t)fn, &off); 28239 ip2dbg(("ip_multirt_apply_membership: " 28240 "called %s, multirt group 0x%08x via itf 0x%08x, " 28241 "error %d [success %u]\n", 28242 ksym ? ksym : "?", 28243 ntohl(group), ntohl(ire_gw->ire_src_addr), 28244 error, or->or_private)); 28245 } 28246 28247 ire_refrele(ire_gw); 28248 if (error == EINPROGRESS) { 28249 IRB_REFRELE(irb); 28250 return (error); 28251 } 28252 } 28253 IRB_REFRELE(irb); 28254 /* 28255 * Consider the call as successful if we succeeded on at least 28256 * one interface. Otherwise, return the last encountered error. 28257 */ 28258 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28259 } 28260 28261 28262 /* 28263 * Issue a warning regarding a route crossing an interface with an 28264 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28265 * amount of time is logged. 28266 */ 28267 static void 28268 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28269 { 28270 hrtime_t current = gethrtime(); 28271 char buf[INET_ADDRSTRLEN]; 28272 28273 /* Convert interval in ms to hrtime in ns */ 28274 if (multirt_bad_mtu_last_time + 28275 ((hrtime_t)ip_multirt_log_interval * (hrtime_t)1000000) <= 28276 current) { 28277 cmn_err(CE_WARN, "ip: ignoring multiroute " 28278 "to %s, incorrect MTU %u (expected %u)\n", 28279 ip_dot_addr(ire->ire_addr, buf), 28280 ire->ire_max_frag, max_frag); 28281 28282 multirt_bad_mtu_last_time = current; 28283 } 28284 } 28285 28286 28287 /* 28288 * Get the CGTP (multirouting) filtering status. 28289 * If 0, the CGTP hooks are transparent. 28290 */ 28291 /* ARGSUSED */ 28292 static int 28293 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28294 { 28295 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28296 28297 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28298 return (0); 28299 } 28300 28301 28302 /* 28303 * Set the CGTP (multirouting) filtering status. 28304 * If the status is changed from active to transparent 28305 * or from transparent to active, forward the new status 28306 * to the filtering module (if loaded). 28307 */ 28308 /* ARGSUSED */ 28309 static int 28310 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28311 cred_t *ioc_cr) 28312 { 28313 long new_value; 28314 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28315 28316 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28317 new_value < 0 || new_value > 1) { 28318 return (EINVAL); 28319 } 28320 28321 /* 28322 * Do not enable CGTP filtering - thus preventing the hooks 28323 * from being invoked - if the version number of the 28324 * filtering module hooks does not match. 28325 */ 28326 if ((ip_cgtp_filter_ops != NULL) && 28327 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 28328 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 28329 "(module hooks version %d, expecting %d)\n", 28330 ip_cgtp_filter_ops->cfo_filter_rev, CGTP_FILTER_REV); 28331 return (ENOTSUP); 28332 } 28333 28334 if ((!*ip_cgtp_filter_value) && new_value) { 28335 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28336 ip_cgtp_filter_ops == NULL ? 28337 " (module not loaded)" : ""); 28338 } 28339 if (*ip_cgtp_filter_value && (!new_value)) { 28340 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28341 ip_cgtp_filter_ops == NULL ? 28342 " (module not loaded)" : ""); 28343 } 28344 28345 if (ip_cgtp_filter_ops != NULL) { 28346 int res; 28347 if ((res = ip_cgtp_filter_ops->cfo_change_state(new_value))) { 28348 return (res); 28349 } 28350 } 28351 28352 *ip_cgtp_filter_value = (boolean_t)new_value; 28353 28354 return (0); 28355 } 28356 28357 28358 /* 28359 * Return the expected CGTP hooks version number. 28360 */ 28361 int 28362 ip_cgtp_filter_supported(void) 28363 { 28364 return (ip_cgtp_filter_rev); 28365 } 28366 28367 28368 /* 28369 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 28370 * or by invoking this function. In the first case, the version number 28371 * of the registered structure is checked at hooks activation time 28372 * in ip_cgtp_filter_set(). 28373 */ 28374 int 28375 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 28376 { 28377 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 28378 return (ENOTSUP); 28379 28380 ip_cgtp_filter_ops = ops; 28381 return (0); 28382 } 28383 28384 static squeue_func_t 28385 ip_squeue_switch(int val) 28386 { 28387 squeue_func_t rval = squeue_fill; 28388 28389 switch (val) { 28390 case IP_SQUEUE_ENTER_NODRAIN: 28391 rval = squeue_enter_nodrain; 28392 break; 28393 case IP_SQUEUE_ENTER: 28394 rval = squeue_enter; 28395 break; 28396 default: 28397 break; 28398 } 28399 return (rval); 28400 } 28401 28402 /* ARGSUSED */ 28403 static int 28404 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 28405 caddr_t addr, cred_t *cr) 28406 { 28407 int *v = (int *)addr; 28408 long new_value; 28409 28410 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28411 return (EINVAL); 28412 28413 ip_input_proc = ip_squeue_switch(new_value); 28414 *v = new_value; 28415 return (0); 28416 } 28417 28418 /* ARGSUSED */ 28419 static int 28420 ip_int_set(queue_t *q, mblk_t *mp, char *value, 28421 caddr_t addr, cred_t *cr) 28422 { 28423 int *v = (int *)addr; 28424 long new_value; 28425 28426 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28427 return (EINVAL); 28428 28429 *v = new_value; 28430 return (0); 28431 } 28432 28433 static void 28434 ip_kstat_init(void) 28435 { 28436 ip_named_kstat_t template = { 28437 { "forwarding", KSTAT_DATA_UINT32, 0 }, 28438 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 28439 { "inReceives", KSTAT_DATA_UINT32, 0 }, 28440 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 28441 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 28442 { "forwDatagrams", KSTAT_DATA_UINT32, 0 }, 28443 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 28444 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 28445 { "inDelivers", KSTAT_DATA_UINT32, 0 }, 28446 { "outRequests", KSTAT_DATA_UINT32, 0 }, 28447 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 28448 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 28449 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 28450 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 28451 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 28452 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 28453 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 28454 { "fragFails", KSTAT_DATA_UINT32, 0 }, 28455 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 28456 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 28457 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 28458 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 28459 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 28460 { "inErrs", KSTAT_DATA_UINT32, 0 }, 28461 { "noPorts", KSTAT_DATA_UINT32, 0 }, 28462 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 28463 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 28464 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 28465 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 28466 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 28467 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 28468 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 28469 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 28470 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 28471 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 28472 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 28473 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 28474 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 28475 }; 28476 28477 ip_mibkp = kstat_create("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 28478 NUM_OF_FIELDS(ip_named_kstat_t), 28479 0); 28480 if (!ip_mibkp) 28481 return; 28482 28483 template.forwarding.value.ui32 = WE_ARE_FORWARDING ? 1:2; 28484 template.defaultTTL.value.ui32 = (uint32_t)ip_def_ttl; 28485 template.reasmTimeout.value.ui32 = ip_g_frag_timeout; 28486 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 28487 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 28488 28489 template.netToMediaEntrySize.value.i32 = 28490 sizeof (mib2_ipNetToMediaEntry_t); 28491 28492 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 28493 28494 bcopy(&template, ip_mibkp->ks_data, sizeof (template)); 28495 28496 ip_mibkp->ks_update = ip_kstat_update; 28497 28498 kstat_install(ip_mibkp); 28499 } 28500 28501 static void 28502 ip_kstat_fini(void) 28503 { 28504 28505 if (ip_mibkp != NULL) { 28506 kstat_delete(ip_mibkp); 28507 ip_mibkp = NULL; 28508 } 28509 } 28510 28511 static int 28512 ip_kstat_update(kstat_t *kp, int rw) 28513 { 28514 ip_named_kstat_t *ipkp; 28515 28516 if (!kp || !kp->ks_data) 28517 return (EIO); 28518 28519 if (rw == KSTAT_WRITE) 28520 return (EACCES); 28521 28522 ipkp = (ip_named_kstat_t *)kp->ks_data; 28523 28524 ipkp->forwarding.value.ui32 = ip_mib.ipForwarding; 28525 ipkp->defaultTTL.value.ui32 = ip_mib.ipDefaultTTL; 28526 ipkp->inReceives.value.ui32 = ip_mib.ipInReceives; 28527 ipkp->inHdrErrors.value.ui32 = ip_mib.ipInHdrErrors; 28528 ipkp->inAddrErrors.value.ui32 = ip_mib.ipInAddrErrors; 28529 ipkp->forwDatagrams.value.ui32 = ip_mib.ipForwDatagrams; 28530 ipkp->inUnknownProtos.value.ui32 = ip_mib.ipInUnknownProtos; 28531 ipkp->inDiscards.value.ui32 = ip_mib.ipInDiscards; 28532 ipkp->inDelivers.value.ui32 = ip_mib.ipInDelivers; 28533 ipkp->outRequests.value.ui32 = ip_mib.ipOutRequests; 28534 ipkp->outDiscards.value.ui32 = ip_mib.ipOutDiscards; 28535 ipkp->outNoRoutes.value.ui32 = ip_mib.ipOutNoRoutes; 28536 ipkp->reasmTimeout.value.ui32 = ip_mib.ipReasmTimeout; 28537 ipkp->reasmReqds.value.ui32 = ip_mib.ipReasmReqds; 28538 ipkp->reasmOKs.value.ui32 = ip_mib.ipReasmOKs; 28539 ipkp->reasmFails.value.ui32 = ip_mib.ipReasmFails; 28540 ipkp->fragOKs.value.ui32 = ip_mib.ipFragOKs; 28541 ipkp->fragFails.value.ui32 = ip_mib.ipFragFails; 28542 ipkp->fragCreates.value.ui32 = ip_mib.ipFragCreates; 28543 28544 ipkp->routingDiscards.value.ui32 = ip_mib.ipRoutingDiscards; 28545 ipkp->inErrs.value.ui32 = ip_mib.tcpInErrs; 28546 ipkp->noPorts.value.ui32 = ip_mib.udpNoPorts; 28547 ipkp->inCksumErrs.value.ui32 = ip_mib.ipInCksumErrs; 28548 ipkp->reasmDuplicates.value.ui32 = ip_mib.ipReasmDuplicates; 28549 ipkp->reasmPartDups.value.ui32 = ip_mib.ipReasmPartDups; 28550 ipkp->forwProhibits.value.ui32 = ip_mib.ipForwProhibits; 28551 ipkp->udpInCksumErrs.value.ui32 = ip_mib.udpInCksumErrs; 28552 ipkp->udpInOverflows.value.ui32 = ip_mib.udpInOverflows; 28553 ipkp->rawipInOverflows.value.ui32 = ip_mib.rawipInOverflows; 28554 ipkp->ipsecInSucceeded.value.ui32 = ip_mib.ipsecInSucceeded; 28555 ipkp->ipsecInFailed.value.i32 = ip_mib.ipsecInFailed; 28556 28557 ipkp->inIPv6.value.ui32 = ip_mib.ipInIPv6; 28558 ipkp->outIPv6.value.ui32 = ip_mib.ipOutIPv6; 28559 ipkp->outSwitchIPv6.value.ui32 = ip_mib.ipOutSwitchIPv6; 28560 28561 return (0); 28562 } 28563 28564 static void 28565 icmp_kstat_init(void) 28566 { 28567 icmp_named_kstat_t template = { 28568 { "inMsgs", KSTAT_DATA_UINT32 }, 28569 { "inErrors", KSTAT_DATA_UINT32 }, 28570 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 28571 { "inTimeExcds", KSTAT_DATA_UINT32 }, 28572 { "inParmProbs", KSTAT_DATA_UINT32 }, 28573 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 28574 { "inRedirects", KSTAT_DATA_UINT32 }, 28575 { "inEchos", KSTAT_DATA_UINT32 }, 28576 { "inEchoReps", KSTAT_DATA_UINT32 }, 28577 { "inTimestamps", KSTAT_DATA_UINT32 }, 28578 { "inTimestampReps", KSTAT_DATA_UINT32 }, 28579 { "inAddrMasks", KSTAT_DATA_UINT32 }, 28580 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 28581 { "outMsgs", KSTAT_DATA_UINT32 }, 28582 { "outErrors", KSTAT_DATA_UINT32 }, 28583 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 28584 { "outTimeExcds", KSTAT_DATA_UINT32 }, 28585 { "outParmProbs", KSTAT_DATA_UINT32 }, 28586 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 28587 { "outRedirects", KSTAT_DATA_UINT32 }, 28588 { "outEchos", KSTAT_DATA_UINT32 }, 28589 { "outEchoReps", KSTAT_DATA_UINT32 }, 28590 { "outTimestamps", KSTAT_DATA_UINT32 }, 28591 { "outTimestampReps", KSTAT_DATA_UINT32 }, 28592 { "outAddrMasks", KSTAT_DATA_UINT32 }, 28593 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 28594 { "inChksumErrs", KSTAT_DATA_UINT32 }, 28595 { "inUnknowns", KSTAT_DATA_UINT32 }, 28596 { "inFragNeeded", KSTAT_DATA_UINT32 }, 28597 { "outFragNeeded", KSTAT_DATA_UINT32 }, 28598 { "outDrops", KSTAT_DATA_UINT32 }, 28599 { "inOverFlows", KSTAT_DATA_UINT32 }, 28600 { "inBadRedirects", KSTAT_DATA_UINT32 }, 28601 }; 28602 28603 icmp_mibkp = kstat_create("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 28604 NUM_OF_FIELDS(icmp_named_kstat_t), 28605 0); 28606 if (icmp_mibkp == NULL) 28607 return; 28608 28609 bcopy(&template, icmp_mibkp->ks_data, sizeof (template)); 28610 28611 icmp_mibkp->ks_update = icmp_kstat_update; 28612 28613 kstat_install(icmp_mibkp); 28614 } 28615 28616 static void 28617 icmp_kstat_fini(void) 28618 { 28619 28620 if (icmp_mibkp != NULL) { 28621 kstat_delete(icmp_mibkp); 28622 icmp_mibkp = NULL; 28623 } 28624 } 28625 28626 static int 28627 icmp_kstat_update(kstat_t *kp, int rw) 28628 { 28629 icmp_named_kstat_t *icmpkp; 28630 28631 if ((kp == NULL) || (kp->ks_data == NULL)) 28632 return (EIO); 28633 28634 if (rw == KSTAT_WRITE) 28635 return (EACCES); 28636 28637 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 28638 28639 icmpkp->inMsgs.value.ui32 = icmp_mib.icmpInMsgs; 28640 icmpkp->inErrors.value.ui32 = icmp_mib.icmpInErrors; 28641 icmpkp->inDestUnreachs.value.ui32 = icmp_mib.icmpInDestUnreachs; 28642 icmpkp->inTimeExcds.value.ui32 = icmp_mib.icmpInTimeExcds; 28643 icmpkp->inParmProbs.value.ui32 = icmp_mib.icmpInParmProbs; 28644 icmpkp->inSrcQuenchs.value.ui32 = icmp_mib.icmpInSrcQuenchs; 28645 icmpkp->inRedirects.value.ui32 = icmp_mib.icmpInRedirects; 28646 icmpkp->inEchos.value.ui32 = icmp_mib.icmpInEchos; 28647 icmpkp->inEchoReps.value.ui32 = icmp_mib.icmpInEchoReps; 28648 icmpkp->inTimestamps.value.ui32 = icmp_mib.icmpInTimestamps; 28649 icmpkp->inTimestampReps.value.ui32 = icmp_mib.icmpInTimestampReps; 28650 icmpkp->inAddrMasks.value.ui32 = icmp_mib.icmpInAddrMasks; 28651 icmpkp->inAddrMaskReps.value.ui32 = icmp_mib.icmpInAddrMaskReps; 28652 icmpkp->outMsgs.value.ui32 = icmp_mib.icmpOutMsgs; 28653 icmpkp->outErrors.value.ui32 = icmp_mib.icmpOutErrors; 28654 icmpkp->outDestUnreachs.value.ui32 = icmp_mib.icmpOutDestUnreachs; 28655 icmpkp->outTimeExcds.value.ui32 = icmp_mib.icmpOutTimeExcds; 28656 icmpkp->outParmProbs.value.ui32 = icmp_mib.icmpOutParmProbs; 28657 icmpkp->outSrcQuenchs.value.ui32 = icmp_mib.icmpOutSrcQuenchs; 28658 icmpkp->outRedirects.value.ui32 = icmp_mib.icmpOutRedirects; 28659 icmpkp->outEchos.value.ui32 = icmp_mib.icmpOutEchos; 28660 icmpkp->outEchoReps.value.ui32 = icmp_mib.icmpOutEchoReps; 28661 icmpkp->outTimestamps.value.ui32 = icmp_mib.icmpOutTimestamps; 28662 icmpkp->outTimestampReps.value.ui32 = icmp_mib.icmpOutTimestampReps; 28663 icmpkp->outAddrMasks.value.ui32 = icmp_mib.icmpOutAddrMasks; 28664 icmpkp->outAddrMaskReps.value.ui32 = icmp_mib.icmpOutAddrMaskReps; 28665 icmpkp->inCksumErrs.value.ui32 = icmp_mib.icmpInCksumErrs; 28666 icmpkp->inUnknowns.value.ui32 = icmp_mib.icmpInUnknowns; 28667 icmpkp->inFragNeeded.value.ui32 = icmp_mib.icmpInFragNeeded; 28668 icmpkp->outFragNeeded.value.ui32 = icmp_mib.icmpOutFragNeeded; 28669 icmpkp->outDrops.value.ui32 = icmp_mib.icmpOutDrops; 28670 icmpkp->inOverflows.value.ui32 = icmp_mib.icmpInOverflows; 28671 icmpkp->inBadRedirects.value.ui32 = icmp_mib.icmpInBadRedirects; 28672 28673 return (0); 28674 } 28675 28676 /* 28677 * This is the fanout function for raw socket opened for SCTP. Note 28678 * that it is called after SCTP checks that there is no socket which 28679 * wants a packet. Then before SCTP handles this out of the blue packet, 28680 * this function is called to see if there is any raw socket for SCTP. 28681 * If there is and it is bound to the correct address, the packet will 28682 * be sent to that socket. Note that only one raw socket can be bound to 28683 * a port. This is assured in ipcl_sctp_hash_insert(); 28684 */ 28685 void 28686 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 28687 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 28688 uint_t ipif_seqid, zoneid_t zoneid) 28689 { 28690 conn_t *connp; 28691 queue_t *rq; 28692 mblk_t *first_mp; 28693 boolean_t secure; 28694 ip6_t *ip6h; 28695 28696 first_mp = mp; 28697 if (mctl_present) { 28698 mp = first_mp->b_cont; 28699 secure = ipsec_in_is_secure(first_mp); 28700 ASSERT(mp != NULL); 28701 } else { 28702 secure = B_FALSE; 28703 } 28704 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 28705 28706 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha); 28707 if (connp == NULL) { 28708 sctp_ootb_input(first_mp, recv_ill, ipif_seqid, zoneid, 28709 mctl_present); 28710 return; 28711 } 28712 rq = connp->conn_rq; 28713 if (!canputnext(rq)) { 28714 CONN_DEC_REF(connp); 28715 BUMP_MIB(&ip_mib, rawipInOverflows); 28716 freemsg(first_mp); 28717 return; 28718 } 28719 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp) : 28720 CONN_INBOUND_POLICY_PRESENT_V6(connp)) || secure) { 28721 first_mp = ipsec_check_inbound_policy(first_mp, connp, 28722 (isv4 ? ipha : NULL), ip6h, mctl_present); 28723 if (first_mp == NULL) { 28724 CONN_DEC_REF(connp); 28725 return; 28726 } 28727 } 28728 /* 28729 * We probably should not send M_CTL message up to 28730 * raw socket. 28731 */ 28732 if (mctl_present) 28733 freeb(first_mp); 28734 28735 /* Initiate IPPF processing here if needed. */ 28736 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) || 28737 (!isv4 && IP6_IN_IPP(flags))) { 28738 ip_process(IPP_LOCAL_IN, &mp, 28739 recv_ill->ill_phyint->phyint_ifindex); 28740 if (mp == NULL) { 28741 CONN_DEC_REF(connp); 28742 return; 28743 } 28744 } 28745 28746 if (connp->conn_recvif || connp->conn_recvslla || 28747 ((connp->conn_ipv6_recvpktinfo || 28748 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 28749 (flags & IP_FF_IP6INFO))) { 28750 int in_flags = 0; 28751 28752 if (connp->conn_recvif || connp->conn_ipv6_recvpktinfo) { 28753 in_flags = IPF_RECVIF; 28754 } 28755 if (connp->conn_recvslla) { 28756 in_flags |= IPF_RECVSLLA; 28757 } 28758 if (isv4) { 28759 mp = ip_add_info(mp, recv_ill, in_flags); 28760 } else { 28761 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 28762 if (mp == NULL) { 28763 CONN_DEC_REF(connp); 28764 return; 28765 } 28766 } 28767 } 28768 28769 BUMP_MIB(&ip_mib, ipInDelivers); 28770 /* 28771 * We are sending the IPSEC_IN message also up. Refer 28772 * to comments above this function. 28773 */ 28774 putnext(rq, mp); 28775 CONN_DEC_REF(connp); 28776 } 28777 28778 /* 28779 * This function should be called only if all packet processing 28780 * including fragmentation is complete. Callers of this function 28781 * must set mp->b_prev to one of these values: 28782 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 28783 * prior to handing over the mp as first argument to this function. 28784 * 28785 * If the ire passed by caller is incomplete, this function 28786 * queues the packet and if necessary, sends ARP request and bails. 28787 * If the ire passed is fully resolved, we simply prepend 28788 * the link-layer header to the packet, do ipsec hw acceleration 28789 * work if necessary, and send the packet out on the wire. 28790 * 28791 * NOTE: IPSEC will only call this function with fully resolved 28792 * ires if hw acceleration is involved. 28793 * TODO list : 28794 * a Handle M_MULTIDATA so that 28795 * tcp_multisend->tcp_multisend_data can 28796 * call ip_xmit_v4 directly 28797 * b Handle post-ARP work for fragments so that 28798 * ip_wput_frag can call this function. 28799 */ 28800 ipxmit_state_t 28801 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 28802 { 28803 nce_t *arpce; 28804 queue_t *q; 28805 int ill_index; 28806 mblk_t *nxt_mp, *first_mp; 28807 boolean_t xmit_drop = B_FALSE; 28808 ip_proc_t proc; 28809 ill_t *out_ill; 28810 28811 arpce = ire->ire_nce; 28812 ASSERT(arpce != NULL); 28813 28814 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 28815 28816 mutex_enter(&arpce->nce_lock); 28817 switch (arpce->nce_state) { 28818 case ND_REACHABLE: 28819 /* If there are other queued packets, queue this packet */ 28820 if (arpce->nce_qd_mp != NULL) { 28821 if (mp != NULL) 28822 nce_queue_mp_common(arpce, mp, B_FALSE); 28823 mp = arpce->nce_qd_mp; 28824 } 28825 arpce->nce_qd_mp = NULL; 28826 mutex_exit(&arpce->nce_lock); 28827 28828 /* 28829 * Flush the queue. In the common case, where the 28830 * ARP is already resolved, it will go through the 28831 * while loop only once. 28832 */ 28833 while (mp != NULL) { 28834 28835 nxt_mp = mp->b_next; 28836 mp->b_next = NULL; 28837 /* 28838 * This info is needed for IPQOS to do COS marking 28839 * in ip_wput_attach_llhdr->ip_process. 28840 */ 28841 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 28842 mp->b_prev = NULL; 28843 28844 /* set up ill index for outbound qos processing */ 28845 out_ill = ire->ire_ipif->ipif_ill; 28846 ill_index = out_ill->ill_phyint->phyint_ifindex; 28847 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 28848 ill_index); 28849 if (first_mp == NULL) { 28850 xmit_drop = B_TRUE; 28851 if (proc == IPP_FWD_OUT) { 28852 BUMP_MIB(&ip_mib, ipInDiscards); 28853 } else { 28854 BUMP_MIB(&ip_mib, ipOutDiscards); 28855 } 28856 goto next_mp; 28857 } 28858 /* non-ipsec hw accel case */ 28859 if (io == NULL || !io->ipsec_out_accelerated) { 28860 /* send it */ 28861 q = ire->ire_stq; 28862 if (proc == IPP_FWD_OUT) { 28863 UPDATE_IB_PKT_COUNT(ire); 28864 } else { 28865 UPDATE_OB_PKT_COUNT(ire); 28866 } 28867 ire->ire_last_used_time = lbolt; 28868 28869 if (flow_ctl_enabled || canputnext(q)) { 28870 if (proc == IPP_FWD_OUT) { 28871 BUMP_MIB(&ip_mib, 28872 ipForwDatagrams); 28873 } 28874 28875 if (mp == NULL) 28876 goto next_mp; 28877 putnext(q, first_mp); 28878 } else { 28879 BUMP_MIB(&ip_mib, 28880 ipOutDiscards); 28881 xmit_drop = B_TRUE; 28882 freemsg(first_mp); 28883 } 28884 } else { 28885 /* 28886 * Safety Pup says: make sure this 28887 * is going to the right interface! 28888 */ 28889 ill_t *ill1 = 28890 (ill_t *)ire->ire_stq->q_ptr; 28891 int ifindex = 28892 ill1->ill_phyint->phyint_ifindex; 28893 if (ifindex != 28894 io->ipsec_out_capab_ill_index) { 28895 xmit_drop = B_TRUE; 28896 freemsg(mp); 28897 } else { 28898 ipsec_hw_putnext(ire->ire_stq, 28899 mp); 28900 } 28901 } 28902 next_mp: 28903 mp = nxt_mp; 28904 } /* while (mp != NULL) */ 28905 if (xmit_drop) 28906 return (SEND_FAILED); 28907 else 28908 return (SEND_PASSED); 28909 28910 case ND_INITIAL: 28911 case ND_INCOMPLETE: 28912 28913 /* 28914 * While we do send off packets to dests that 28915 * use fully-resolved CGTP routes, we do not 28916 * handle unresolved CGTP routes. 28917 */ 28918 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 28919 ASSERT(io == NULL || !io->ipsec_out_accelerated); 28920 28921 if (mp != NULL) { 28922 /* queue the packet */ 28923 nce_queue_mp_common(arpce, mp, B_FALSE); 28924 } 28925 28926 if (arpce->nce_state == ND_INCOMPLETE) { 28927 mutex_exit(&arpce->nce_lock); 28928 DTRACE_PROBE3(ip__xmit__incomplete, 28929 (ire_t *), ire, (mblk_t *), mp, 28930 (ipsec_out_t *), io); 28931 return (LOOKUP_IN_PROGRESS); 28932 } 28933 28934 arpce->nce_state = ND_INCOMPLETE; 28935 mutex_exit(&arpce->nce_lock); 28936 /* 28937 * Note that ire_add() (called from ire_forward()) 28938 * holds a ref on the ire until ARP is completed. 28939 */ 28940 28941 ire_arpresolve(ire, ire_to_ill(ire)); 28942 return (LOOKUP_IN_PROGRESS); 28943 default: 28944 ASSERT(0); 28945 mutex_exit(&arpce->nce_lock); 28946 return (LLHDR_RESLV_FAILED); 28947 } 28948 } 28949 28950 /* 28951 * Return B_TRUE if the buffers differ in length or content. 28952 * This is used for comparing extension header buffers. 28953 * Note that an extension header would be declared different 28954 * even if all that changed was the next header value in that header i.e. 28955 * what really changed is the next extension header. 28956 */ 28957 boolean_t 28958 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 28959 uint_t blen) 28960 { 28961 if (!b_valid) 28962 blen = 0; 28963 28964 if (alen != blen) 28965 return (B_TRUE); 28966 if (alen == 0) 28967 return (B_FALSE); /* Both zero length */ 28968 return (bcmp(abuf, bbuf, alen)); 28969 } 28970 28971 /* 28972 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 28973 * Return B_FALSE if memory allocation fails - don't change any state! 28974 */ 28975 boolean_t 28976 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 28977 const void *src, uint_t srclen) 28978 { 28979 void *dst; 28980 28981 if (!src_valid) 28982 srclen = 0; 28983 28984 ASSERT(*dstlenp == 0); 28985 if (src != NULL && srclen != 0) { 28986 dst = mi_alloc(srclen, BPRI_MED); 28987 if (dst == NULL) 28988 return (B_FALSE); 28989 } else { 28990 dst = NULL; 28991 } 28992 if (*dstp != NULL) 28993 mi_free(*dstp); 28994 *dstp = dst; 28995 *dstlenp = dst == NULL ? 0 : srclen; 28996 return (B_TRUE); 28997 } 28998 28999 /* 29000 * Replace what is in *dst, *dstlen with the source. 29001 * Assumes ip_allocbuf has already been called. 29002 */ 29003 void 29004 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29005 const void *src, uint_t srclen) 29006 { 29007 if (!src_valid) 29008 srclen = 0; 29009 29010 ASSERT(*dstlenp == srclen); 29011 if (src != NULL && srclen != 0) 29012 bcopy(src, *dstp, srclen); 29013 } 29014 29015 /* 29016 * Free the storage pointed to by the members of an ip6_pkt_t. 29017 */ 29018 void 29019 ip6_pkt_free(ip6_pkt_t *ipp) 29020 { 29021 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 29022 29023 if (ipp->ipp_fields & IPPF_HOPOPTS) { 29024 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 29025 ipp->ipp_hopopts = NULL; 29026 ipp->ipp_hopoptslen = 0; 29027 } 29028 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 29029 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 29030 ipp->ipp_rtdstopts = NULL; 29031 ipp->ipp_rtdstoptslen = 0; 29032 } 29033 if (ipp->ipp_fields & IPPF_DSTOPTS) { 29034 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 29035 ipp->ipp_dstopts = NULL; 29036 ipp->ipp_dstoptslen = 0; 29037 } 29038 if (ipp->ipp_fields & IPPF_RTHDR) { 29039 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 29040 ipp->ipp_rthdr = NULL; 29041 ipp->ipp_rthdrlen = 0; 29042 } 29043 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 29044 IPPF_RTHDR); 29045 } 29046