1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/optcom.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/ipsec_info.h> 99 #include <inet/sadb.h> 100 #include <inet/ipsec_impl.h> 101 #include <sys/iphada.h> 102 #include <inet/tun.h> 103 #include <inet/ipdrop.h> 104 #include <inet/ip_netinfo.h> 105 106 #include <sys/ethernet.h> 107 #include <net/if_types.h> 108 #include <sys/cpuvar.h> 109 110 #include <ipp/ipp.h> 111 #include <ipp/ipp_impl.h> 112 #include <ipp/ipgpc/ipgpc.h> 113 114 #include <sys/multidata.h> 115 #include <sys/pattr.h> 116 117 #include <inet/ipclassifier.h> 118 #include <inet/sctp_ip.h> 119 #include <inet/sctp/sctp_impl.h> 120 #include <inet/udp_impl.h> 121 #include <sys/sunddi.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 128 /* 129 * Values for squeue switch: 130 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 131 * IP_SQUEUE_ENTER: squeue_enter 132 * IP_SQUEUE_FILL: squeue_fill 133 */ 134 int ip_squeue_enter = 2; /* Setable in /etc/system */ 135 136 squeue_func_t ip_input_proc; 137 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 138 139 #define TCP6 "tcp6" 140 #define TCP "tcp" 141 #define SCTP "sctp" 142 #define SCTP6 "sctp6" 143 144 major_t TCP6_MAJ; 145 major_t TCP_MAJ; 146 major_t SCTP_MAJ; 147 major_t SCTP6_MAJ; 148 149 /* 150 * Setable in /etc/system 151 */ 152 int ip_poll_normal_ms = 100; 153 int ip_poll_normal_ticks = 0; 154 int ip_modclose_ackwait_ms = 3000; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 listptr_t ird_route; /* ipRouteEntryTable */ 174 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 175 listptr_t ird_attrs; /* ipRouteAttributeTable */ 176 } iproutedata_t; 177 178 /* 179 * Cluster specific hooks. These should be NULL when booted as a non-cluster 180 */ 181 182 /* 183 * Hook functions to enable cluster networking 184 * On non-clustered systems these vectors must always be NULL. 185 * 186 * Hook function to Check ip specified ip address is a shared ip address 187 * in the cluster 188 * 189 */ 190 int (*cl_inet_isclusterwide)(uint8_t protocol, 191 sa_family_t addr_family, uint8_t *laddrp) = NULL; 192 193 /* 194 * Hook function to generate cluster wide ip fragment identifier 195 */ 196 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 197 uint8_t *laddrp, uint8_t *faddrp) = NULL; 198 199 /* 200 * Synchronization notes: 201 * 202 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 203 * MT level protection given by STREAMS. IP uses a combination of its own 204 * internal serialization mechanism and standard Solaris locking techniques. 205 * The internal serialization is per phyint (no IPMP) or per IPMP group. 206 * This is used to serialize plumbing operations, IPMP operations, certain 207 * multicast operations, most set ioctls, igmp/mld timers etc. 208 * 209 * Plumbing is a long sequence of operations involving message 210 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 211 * involved in plumbing operations. A natural model is to serialize these 212 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 213 * parallel without any interference. But various set ioctls on hme0 are best 214 * serialized. However if the system uses IPMP, the operations are easier if 215 * they are serialized on a per IPMP group basis since IPMP operations 216 * happen across ill's of a group. Thus the lowest common denominator is to 217 * serialize most set ioctls, multicast join/leave operations, IPMP operations 218 * igmp/mld timer operations, and processing of DLPI control messages received 219 * from drivers on a per IPMP group basis. If the system does not employ 220 * IPMP the serialization is on a per phyint basis. This serialization is 221 * provided by the ipsq_t and primitives operating on this. Details can 222 * be found in ip_if.c above the core primitives operating on ipsq_t. 223 * 224 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 225 * Simiarly lookup of an ire by a thread also returns a refheld ire. 226 * In addition ipif's and ill's referenced by the ire are also indirectly 227 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 228 * the ipif's address or netmask change as long as an ipif is refheld 229 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 230 * address of an ipif has to go through the ipsq_t. This ensures that only 231 * 1 such exclusive operation proceeds at any time on the ipif. It then 232 * deletes all ires associated with this ipif, and waits for all refcnts 233 * associated with this ipif to come down to zero. The address is changed 234 * only after the ipif has been quiesced. Then the ipif is brought up again. 235 * More details are described above the comment in ip_sioctl_flags. 236 * 237 * Packet processing is based mostly on IREs and are fully multi-threaded 238 * using standard Solaris MT techniques. 239 * 240 * There are explicit locks in IP to handle: 241 * - The ip_g_head list maintained by mi_open_link() and friends. 242 * 243 * - The reassembly data structures (one lock per hash bucket) 244 * 245 * - conn_lock is meant to protect conn_t fields. The fields actually 246 * protected by conn_lock are documented in the conn_t definition. 247 * 248 * - ire_lock to protect some of the fields of the ire, IRE tables 249 * (one lock per hash bucket). Refer to ip_ire.c for details. 250 * 251 * - ndp_g_lock and nce_lock for protecting NCEs. 252 * 253 * - ill_lock protects fields of the ill and ipif. Details in ip.h 254 * 255 * - ill_g_lock: This is a global reader/writer lock. Protects the following 256 * * The AVL tree based global multi list of all ills. 257 * * The linked list of all ipifs of an ill 258 * * The <ill-ipsq> mapping 259 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 260 * * The illgroup list threaded by ill_group_next. 261 * * <ill-phyint> association 262 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 263 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 264 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 265 * will all have to hold the ill_g_lock as writer for the actual duration 266 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 267 * may be found in the IPMP section. 268 * 269 * - ill_lock: This is a per ill mutex. 270 * It protects some members of the ill and is documented below. 271 * It also protects the <ill-ipsq> mapping 272 * It also protects the illgroup list threaded by ill_group_next. 273 * It also protects the <ill-phyint> assoc. 274 * It also protects the list of ipifs hanging off the ill. 275 * 276 * - ipsq_lock: This is a per ipsq_t mutex lock. 277 * This protects all the other members of the ipsq struct except 278 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 279 * 280 * - illgrp_lock: This is a per ill_group mutex lock. 281 * The only thing it protects is the illgrp_ill_schednext member of ill_group 282 * which dictates which is the next ill in an ill_group that is to be chosen 283 * for sending outgoing packets, through creation of an IRE_CACHE that 284 * references this ill. 285 * 286 * - phyint_lock: This is a per phyint mutex lock. Protects just the 287 * phyint_flags 288 * 289 * - ip_g_nd_lock: This is a global reader/writer lock. 290 * Any call to nd_load to load a new parameter to the ND table must hold the 291 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 292 * as reader. 293 * 294 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 295 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 296 * uniqueness check also done atomically. 297 * 298 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 299 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 300 * as a writer when adding or deleting elements from these lists, and 301 * as a reader when walking these lists to send a SADB update to the 302 * IPsec capable ills. 303 * 304 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 305 * group list linked by ill_usesrc_grp_next. It also protects the 306 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 307 * group is being added or deleted. This lock is taken as a reader when 308 * walking the list/group(eg: to get the number of members in a usesrc group). 309 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 310 * field is changing state i.e from NULL to non-NULL or vice-versa. For 311 * example, it is not necessary to take this lock in the initial portion 312 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 313 * ip_sioctl_flags since the these operations are executed exclusively and 314 * that ensures that the "usesrc group state" cannot change. The "usesrc 315 * group state" change can happen only in the latter part of 316 * ip_sioctl_slifusesrc and in ill_delete. 317 * 318 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 319 * 320 * To change the <ill-phyint> association, the ill_g_lock must be held 321 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 322 * must be held. 323 * 324 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 325 * and the ill_lock of the ill in question must be held. 326 * 327 * To change the <ill-illgroup> association the ill_g_lock must be held as 328 * writer and the ill_lock of the ill in question must be held. 329 * 330 * To add or delete an ipif from the list of ipifs hanging off the ill, 331 * ill_g_lock (writer) and ill_lock must be held and the thread must be 332 * a writer on the associated ipsq,. 333 * 334 * To add or delete an ill to the system, the ill_g_lock must be held as 335 * writer and the thread must be a writer on the associated ipsq. 336 * 337 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 338 * must be a writer on the associated ipsq. 339 * 340 * Lock hierarchy 341 * 342 * Some lock hierarchy scenarios are listed below. 343 * 344 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 345 * ill_g_lock -> illgrp_lock -> ill_lock 346 * ill_g_lock -> ill_lock(s) -> phyint_lock 347 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 348 * ill_g_lock -> ip_addr_avail_lock 349 * conn_lock -> irb_lock -> ill_lock -> ire_lock 350 * ill_g_lock -> ip_g_nd_lock 351 * 352 * When more than 1 ill lock is needed to be held, all ill lock addresses 353 * are sorted on address and locked starting from highest addressed lock 354 * downward. 355 * 356 * Mobile-IP scenarios 357 * 358 * irb_lock -> ill_lock -> ire_mrtun_lock 359 * irb_lock -> ill_lock -> ire_srcif_table_lock 360 * 361 * IPsec scenarios 362 * 363 * ipsa_lock -> ill_g_lock -> ill_lock 364 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 365 * ipsec_capab_ills_lock -> ipsa_lock 366 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 367 * 368 * Trusted Solaris scenarios 369 * 370 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 371 * igsa_lock -> gcdb_lock 372 * gcgrp_rwlock -> ire_lock 373 * gcgrp_rwlock -> gcdb_lock 374 * 375 * 376 * Routing/forwarding table locking notes: 377 * 378 * Lock acquisition order: Radix tree lock, irb_lock. 379 * Requirements: 380 * i. Walker must not hold any locks during the walker callback. 381 * ii Walker must not see a truncated tree during the walk because of any node 382 * deletion. 383 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 384 * in many places in the code to walk the irb list. Thus even if all the 385 * ires in a bucket have been deleted, we still can't free the radix node 386 * until the ires have actually been inactive'd (freed). 387 * 388 * Tree traversal - Need to hold the global tree lock in read mode. 389 * Before dropping the global tree lock, need to either increment the ire_refcnt 390 * to ensure that the radix node can't be deleted. 391 * 392 * Tree add - Need to hold the global tree lock in write mode to add a 393 * radix node. To prevent the node from being deleted, increment the 394 * irb_refcnt, after the node is added to the tree. The ire itself is 395 * added later while holding the irb_lock, but not the tree lock. 396 * 397 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 398 * All associated ires must be inactive (i.e. freed), and irb_refcnt 399 * must be zero. 400 * 401 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 402 * global tree lock (read mode) for traversal. 403 * 404 * IPSEC notes : 405 * 406 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 407 * in front of the actual packet. For outbound datagrams, the M_CTL 408 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 409 * information used by the IPSEC code for applying the right level of 410 * protection. The information initialized by IP in the ipsec_out_t 411 * is determined by the per-socket policy or global policy in the system. 412 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 413 * ipsec_info.h) which starts out with nothing in it. It gets filled 414 * with the right information if it goes through the AH/ESP code, which 415 * happens if the incoming packet is secure. The information initialized 416 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 417 * the policy requirements needed by per-socket policy or global policy 418 * is met or not. 419 * 420 * If there is both per-socket policy (set using setsockopt) and there 421 * is also global policy match for the 5 tuples of the socket, 422 * ipsec_override_policy() makes the decision of which one to use. 423 * 424 * For fully connected sockets i.e dst, src [addr, port] is known, 425 * conn_policy_cached is set indicating that policy has been cached. 426 * conn_in_enforce_policy may or may not be set depending on whether 427 * there is a global policy match or per-socket policy match. 428 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 429 * Once the right policy is set on the conn_t, policy cannot change for 430 * this socket. This makes life simpler for TCP (UDP ?) where 431 * re-transmissions go out with the same policy. For symmetry, policy 432 * is cached for fully connected UDP sockets also. Thus if policy is cached, 433 * it also implies that policy is latched i.e policy cannot change 434 * on these sockets. As we have the right policy on the conn, we don't 435 * have to lookup global policy for every outbound and inbound datagram 436 * and thus serving as an optimization. Note that a global policy change 437 * does not affect fully connected sockets if they have policy. If fully 438 * connected sockets did not have any policy associated with it, global 439 * policy change may affect them. 440 * 441 * IP Flow control notes: 442 * 443 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 444 * cannot be sent down to the driver by IP, because of a canput failure, IP 445 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 446 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 447 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 448 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 449 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 450 * the queued messages, and removes the conn from the drain list, if all 451 * messages were drained. It also qenables the next conn in the drain list to 452 * continue the drain process. 453 * 454 * In reality the drain list is not a single list, but a configurable number 455 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 456 * list. If the ip_wsrv of the next qenabled conn does not run, because the 457 * stream closes, ip_close takes responsibility to qenable the next conn in 458 * the drain list. The directly called ip_wput path always does a putq, if 459 * it cannot putnext. Thus synchronization problems are handled between 460 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 461 * functions that manipulate this drain list. Furthermore conn_drain_insert 462 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 463 * running on a queue at any time. conn_drain_tail can be simultaneously called 464 * from both ip_wsrv and ip_close. 465 * 466 * IPQOS notes: 467 * 468 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 469 * and IPQoS modules. IPPF includes hooks in IP at different control points 470 * (callout positions) which direct packets to IPQoS modules for policy 471 * processing. Policies, if present, are global. 472 * 473 * The callout positions are located in the following paths: 474 * o local_in (packets destined for this host) 475 * o local_out (packets orginating from this host ) 476 * o fwd_in (packets forwarded by this m/c - inbound) 477 * o fwd_out (packets forwarded by this m/c - outbound) 478 * Hooks at these callout points can be enabled/disabled using the ndd variable 479 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 480 * By default all the callout positions are enabled. 481 * 482 * Outbound (local_out) 483 * Hooks are placed in ip_wput_ire and ipsec_out_process. 484 * 485 * Inbound (local_in) 486 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 487 * TCP and UDP fanout routines. 488 * 489 * Forwarding (in and out) 490 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 491 * 492 * IP Policy Framework processing (IPPF processing) 493 * Policy processing for a packet is initiated by ip_process, which ascertains 494 * that the classifier (ipgpc) is loaded and configured, failing which the 495 * packet resumes normal processing in IP. If the clasifier is present, the 496 * packet is acted upon by one or more IPQoS modules (action instances), per 497 * filters configured in ipgpc and resumes normal IP processing thereafter. 498 * An action instance can drop a packet in course of its processing. 499 * 500 * A boolean variable, ip_policy, is used in all the fanout routines that can 501 * invoke ip_process for a packet. This variable indicates if the packet should 502 * to be sent for policy processing. The variable is set to B_TRUE by default, 503 * i.e. when the routines are invoked in the normal ip procesing path for a 504 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 505 * ip_policy is set to B_FALSE for all the routines called in these two 506 * functions because, in the former case, we don't process loopback traffic 507 * currently while in the latter, the packets have already been processed in 508 * icmp_inbound. 509 * 510 * Zones notes: 511 * 512 * The partitioning rules for networking are as follows: 513 * 1) Packets coming from a zone must have a source address belonging to that 514 * zone. 515 * 2) Packets coming from a zone can only be sent on a physical interface on 516 * which the zone has an IP address. 517 * 3) Between two zones on the same machine, packet delivery is only allowed if 518 * there's a matching route for the destination and zone in the forwarding 519 * table. 520 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 521 * different zones can bind to the same port with the wildcard address 522 * (INADDR_ANY). 523 * 524 * The granularity of interface partitioning is at the logical interface level. 525 * Therefore, every zone has its own IP addresses, and incoming packets can be 526 * attributed to a zone unambiguously. A logical interface is placed into a zone 527 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 528 * structure. Rule (1) is implemented by modifying the source address selection 529 * algorithm so that the list of eligible addresses is filtered based on the 530 * sending process zone. 531 * 532 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 533 * across all zones, depending on their type. Here is the break-up: 534 * 535 * IRE type Shared/exclusive 536 * -------- ---------------- 537 * IRE_BROADCAST Exclusive 538 * IRE_DEFAULT (default routes) Shared (*) 539 * IRE_LOCAL Exclusive (x) 540 * IRE_LOOPBACK Exclusive 541 * IRE_PREFIX (net routes) Shared (*) 542 * IRE_CACHE Exclusive 543 * IRE_IF_NORESOLVER (interface routes) Exclusive 544 * IRE_IF_RESOLVER (interface routes) Exclusive 545 * IRE_HOST (host routes) Shared (*) 546 * 547 * (*) A zone can only use a default or off-subnet route if the gateway is 548 * directly reachable from the zone, that is, if the gateway's address matches 549 * one of the zone's logical interfaces. 550 * 551 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 552 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 553 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 554 * address of the zone itself (the destination). Since IRE_LOCAL is used 555 * for communication between zones, ip_wput_ire has special logic to set 556 * the right source address when sending using an IRE_LOCAL. 557 * 558 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 559 * ire_cache_lookup restricts loopback using an IRE_LOCAL 560 * between zone to the case when L2 would have conceptually looped the packet 561 * back, i.e. the loopback which is required since neither Ethernet drivers 562 * nor Ethernet hardware loops them back. This is the case when the normal 563 * routes (ignoring IREs with different zoneids) would send out the packet on 564 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 565 * associated. 566 * 567 * Multiple zones can share a common broadcast address; typically all zones 568 * share the 255.255.255.255 address. Incoming as well as locally originated 569 * broadcast packets must be dispatched to all the zones on the broadcast 570 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 571 * since some zones may not be on the 10.16.72/24 network. To handle this, each 572 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 573 * sent to every zone that has an IRE_BROADCAST entry for the destination 574 * address on the input ill, see conn_wantpacket(). 575 * 576 * Applications in different zones can join the same multicast group address. 577 * For IPv4, group memberships are per-logical interface, so they're already 578 * inherently part of a zone. For IPv6, group memberships are per-physical 579 * interface, so we distinguish IPv6 group memberships based on group address, 580 * interface and zoneid. In both cases, received multicast packets are sent to 581 * every zone for which a group membership entry exists. On IPv6 we need to 582 * check that the target zone still has an address on the receiving physical 583 * interface; it could have been removed since the application issued the 584 * IPV6_JOIN_GROUP. 585 */ 586 587 /* 588 * Squeue Fanout flags: 589 * 0: No fanout. 590 * 1: Fanout across all squeues 591 */ 592 boolean_t ip_squeue_fanout = 0; 593 594 /* 595 * Maximum dups allowed per packet. 596 */ 597 uint_t ip_max_frag_dups = 10; 598 599 #define IS_SIMPLE_IPH(ipha) \ 600 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 601 602 /* RFC1122 Conformance */ 603 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 604 605 #define ILL_MAX_NAMELEN LIFNAMSIZ 606 607 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 608 609 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 610 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 611 612 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 613 ip_stack_t *); 614 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 615 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 616 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 617 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 618 mblk_t *, int, ip_stack_t *); 619 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 620 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 621 ill_t *, zoneid_t); 622 static void icmp_options_update(ipha_t *); 623 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 624 ip_stack_t *); 625 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 626 zoneid_t zoneid, ip_stack_t *); 627 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 628 static void icmp_redirect(ill_t *, mblk_t *); 629 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 630 ip_stack_t *); 631 632 static void ip_arp_news(queue_t *, mblk_t *); 633 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 634 ip_stack_t *); 635 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 636 char *ip_dot_addr(ipaddr_t, char *); 637 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 638 int ip_close(queue_t *, int); 639 static char *ip_dot_saddr(uchar_t *, char *); 640 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 641 boolean_t, boolean_t, ill_t *, zoneid_t); 642 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 643 boolean_t, boolean_t, zoneid_t); 644 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 645 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 646 static void ip_lrput(queue_t *, mblk_t *); 647 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 648 ipaddr_t ip_net_mask(ipaddr_t); 649 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *, 650 zoneid_t, ip_stack_t *); 651 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 652 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 653 char *ip_nv_lookup(nv_t *, int); 654 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 655 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 656 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 657 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 658 ipndp_t *, size_t); 659 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 660 void ip_rput(queue_t *, mblk_t *); 661 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 662 void *dummy_arg); 663 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 664 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 665 ip_stack_t *); 666 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 667 ire_t *, ip_stack_t *); 668 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 669 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 670 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 671 ip_stack_t *); 672 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 673 uint16_t *); 674 int ip_snmp_get(queue_t *, mblk_t *); 675 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 676 mib2_ipIfStatsEntry_t *, ip_stack_t *); 677 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 678 ip_stack_t *); 679 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 680 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 681 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 683 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 701 ip_stack_t *ipst); 702 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 703 ip_stack_t *ipst); 704 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 705 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 706 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 707 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 708 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 709 static boolean_t ip_source_route_included(ipha_t *); 710 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 711 712 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 713 zoneid_t, ip_stack_t *); 714 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 715 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 716 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 717 zoneid_t, ip_stack_t *); 718 719 static void conn_drain_init(ip_stack_t *); 720 static void conn_drain_fini(ip_stack_t *); 721 static void conn_drain_tail(conn_t *connp, boolean_t closing); 722 723 static void conn_walk_drain(ip_stack_t *); 724 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 725 zoneid_t); 726 727 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 728 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 729 static void ip_stack_fini(netstackid_t stackid, void *arg); 730 731 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 732 zoneid_t); 733 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 734 void *dummy_arg); 735 736 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 737 738 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 739 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 740 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 741 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 742 743 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 744 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 745 caddr_t, cred_t *); 746 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 747 caddr_t cp, cred_t *cr); 748 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 749 cred_t *); 750 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 751 caddr_t cp, cred_t *cr); 752 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 753 cred_t *); 754 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 755 cred_t *); 756 static squeue_func_t ip_squeue_switch(int); 757 758 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 759 static void ip_kstat_fini(netstackid_t, kstat_t *); 760 static int ip_kstat_update(kstat_t *kp, int rw); 761 static void *icmp_kstat_init(netstackid_t); 762 static void icmp_kstat_fini(netstackid_t, kstat_t *); 763 static int icmp_kstat_update(kstat_t *kp, int rw); 764 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 765 static void ip_kstat2_fini(netstackid_t, kstat_t *); 766 767 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 768 769 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 770 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 771 772 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 773 ipha_t *, ill_t *, boolean_t); 774 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 775 776 /* How long, in seconds, we allow frags to hang around. */ 777 #define IP_FRAG_TIMEOUT 60 778 779 /* 780 * Threshold which determines whether MDT should be used when 781 * generating IP fragments; payload size must be greater than 782 * this threshold for MDT to take place. 783 */ 784 #define IP_WPUT_FRAG_MDT_MIN 32768 785 786 /* Setable in /etc/system only */ 787 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 788 789 static long ip_rput_pullups; 790 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 791 792 vmem_t *ip_minor_arena; 793 794 int ip_debug; 795 796 #ifdef DEBUG 797 uint32_t ipsechw_debug = 0; 798 #endif 799 800 /* 801 * Multirouting/CGTP stuff 802 */ 803 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 804 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 805 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 806 807 /* 808 * XXX following really should only be in a header. Would need more 809 * header and .c clean up first. 810 */ 811 extern optdb_obj_t ip_opt_obj; 812 813 ulong_t ip_squeue_enter_unbound = 0; 814 815 /* 816 * Named Dispatch Parameter Table. 817 * All of these are alterable, within the min/max values given, at run time. 818 */ 819 static ipparam_t lcl_param_arr[] = { 820 /* min max value name */ 821 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 822 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 823 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 824 { 0, 1, 0, "ip_respond_to_timestamp"}, 825 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 826 { 0, 1, 1, "ip_send_redirects"}, 827 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 828 { 0, 10, 0, "ip_debug"}, 829 { 0, 10, 0, "ip_mrtdebug"}, 830 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 831 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 832 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 833 { 1, 255, 255, "ip_def_ttl" }, 834 { 0, 1, 0, "ip_forward_src_routed"}, 835 { 0, 256, 32, "ip_wroff_extra" }, 836 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 837 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 838 { 0, 1, 1, "ip_path_mtu_discovery" }, 839 { 0, 240, 30, "ip_ignore_delete_time" }, 840 { 0, 1, 0, "ip_ignore_redirect" }, 841 { 0, 1, 1, "ip_output_queue" }, 842 { 1, 254, 1, "ip_broadcast_ttl" }, 843 { 0, 99999, 100, "ip_icmp_err_interval" }, 844 { 1, 99999, 10, "ip_icmp_err_burst" }, 845 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 846 { 0, 1, 0, "ip_strict_dst_multihoming" }, 847 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 848 { 0, 1, 0, "ipsec_override_persocket_policy" }, 849 { 0, 1, 1, "icmp_accept_clear_messages" }, 850 { 0, 1, 1, "igmp_accept_clear_messages" }, 851 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 852 "ip_ndp_delay_first_probe_time"}, 853 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 854 "ip_ndp_max_unicast_solicit"}, 855 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 856 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 857 { 0, 1, 0, "ip6_forward_src_routed"}, 858 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 859 { 0, 1, 1, "ip6_send_redirects"}, 860 { 0, 1, 0, "ip6_ignore_redirect" }, 861 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 862 863 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 864 865 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 866 867 { 0, 1, 1, "pim_accept_clear_messages" }, 868 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 869 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 870 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 871 { 0, 15, 0, "ip_policy_mask" }, 872 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 873 { 0, 255, 1, "ip_multirt_ttl" }, 874 { 0, 1, 1, "ip_multidata_outbound" }, 875 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 876 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 877 { 0, 1000, 1, "ip_max_temp_defend" }, 878 { 0, 1000, 3, "ip_max_defend" }, 879 { 0, 999999, 30, "ip_defend_interval" }, 880 { 0, 3600000, 300000, "ip_dup_recovery" }, 881 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 882 { 0, 1, 1, "ip_lso_outbound" }, 883 #ifdef DEBUG 884 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 885 #else 886 { 0, 0, 0, "" }, 887 #endif 888 }; 889 890 /* 891 * Extended NDP table 892 * The addresses for the first two are filled in to be ips_ip_g_forward 893 * and ips_ipv6_forward at init time. 894 */ 895 static ipndp_t lcl_ndp_arr[] = { 896 /* getf setf data name */ 897 #define IPNDP_IP_FORWARDING_OFFSET 0 898 { ip_param_generic_get, ip_forward_set, NULL, 899 "ip_forwarding" }, 900 #define IPNDP_IP6_FORWARDING_OFFSET 1 901 { ip_param_generic_get, ip_forward_set, NULL, 902 "ip6_forwarding" }, 903 { ip_ill_report, NULL, NULL, 904 "ip_ill_status" }, 905 { ip_ipif_report, NULL, NULL, 906 "ip_ipif_status" }, 907 { ip_ire_report, NULL, NULL, 908 "ipv4_ire_status" }, 909 { ip_ire_report_mrtun, NULL, NULL, 910 "ipv4_mrtun_ire_status" }, 911 { ip_ire_report_srcif, NULL, NULL, 912 "ipv4_srcif_ire_status" }, 913 { ip_ire_report_v6, NULL, NULL, 914 "ipv6_ire_status" }, 915 { ip_conn_report, NULL, NULL, 916 "ip_conn_status" }, 917 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 918 "ip_rput_pullups" }, 919 { ndp_report, NULL, NULL, 920 "ip_ndp_cache_report" }, 921 { ip_srcid_report, NULL, NULL, 922 "ip_srcid_status" }, 923 { ip_param_generic_get, ip_squeue_profile_set, 924 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 925 { ip_param_generic_get, ip_squeue_bind_set, 926 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 927 { ip_param_generic_get, ip_input_proc_set, 928 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 929 { ip_param_generic_get, ip_int_set, 930 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 931 #define IPNDP_CGTP_FILTER_OFFSET 16 932 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 933 "ip_cgtp_filter" }, 934 { ip_param_generic_get, ip_int_set, 935 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 936 #define IPNDP_IPMP_HOOK_OFFSET 18 937 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 938 "ipmp_hook_emulation" }, 939 }; 940 941 /* 942 * Table of IP ioctls encoding the various properties of the ioctl and 943 * indexed based on the last byte of the ioctl command. Occasionally there 944 * is a clash, and there is more than 1 ioctl with the same last byte. 945 * In such a case 1 ioctl is encoded in the ndx table and the remaining 946 * ioctls are encoded in the misc table. An entry in the ndx table is 947 * retrieved by indexing on the last byte of the ioctl command and comparing 948 * the ioctl command with the value in the ndx table. In the event of a 949 * mismatch the misc table is then searched sequentially for the desired 950 * ioctl command. 951 * 952 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 953 */ 954 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 955 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 956 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 957 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 958 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 959 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 960 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 961 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 962 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 963 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 964 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 965 966 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 967 MISC_CMD, ip_siocaddrt, NULL }, 968 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 969 MISC_CMD, ip_siocdelrt, NULL }, 970 971 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 972 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 973 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 974 IF_CMD, ip_sioctl_get_addr, NULL }, 975 976 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 977 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 978 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 979 IPI_GET_CMD | IPI_REPL, 980 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 981 982 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 983 IPI_PRIV | IPI_WR | IPI_REPL, 984 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 985 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 986 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 987 IF_CMD, ip_sioctl_get_flags, NULL }, 988 989 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 990 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 991 992 /* copyin size cannot be coded for SIOCGIFCONF */ 993 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 994 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 995 996 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 997 IF_CMD, ip_sioctl_mtu, NULL }, 998 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 999 IF_CMD, ip_sioctl_get_mtu, NULL }, 1000 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1001 IPI_GET_CMD | IPI_REPL, 1002 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1003 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1004 IF_CMD, ip_sioctl_brdaddr, NULL }, 1005 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1006 IPI_GET_CMD | IPI_REPL, 1007 IF_CMD, ip_sioctl_get_netmask, NULL }, 1008 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1009 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1010 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1011 IPI_GET_CMD | IPI_REPL, 1012 IF_CMD, ip_sioctl_get_metric, NULL }, 1013 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1014 IF_CMD, ip_sioctl_metric, NULL }, 1015 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1016 1017 /* See 166-168 below for extended SIOC*XARP ioctls */ 1018 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1019 MISC_CMD, ip_sioctl_arp, NULL }, 1020 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1021 MISC_CMD, ip_sioctl_arp, NULL }, 1022 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1023 MISC_CMD, ip_sioctl_arp, NULL }, 1024 1025 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 1047 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1048 MISC_CMD, if_unitsel, if_unitsel_restart }, 1049 1050 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1061 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1062 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1063 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1064 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 1069 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1070 IPI_PRIV | IPI_WR | IPI_MODOK, 1071 IF_CMD, ip_sioctl_sifname, NULL }, 1072 1073 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1083 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1084 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1085 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1086 1087 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1088 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1089 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1090 IF_CMD, ip_sioctl_get_muxid, NULL }, 1091 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1092 IPI_PRIV | IPI_WR | IPI_REPL, 1093 IF_CMD, ip_sioctl_muxid, NULL }, 1094 1095 /* Both if and lif variants share same func */ 1096 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1097 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1098 /* Both if and lif variants share same func */ 1099 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1100 IPI_PRIV | IPI_WR | IPI_REPL, 1101 IF_CMD, ip_sioctl_slifindex, NULL }, 1102 1103 /* copyin size cannot be coded for SIOCGIFCONF */ 1104 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1105 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1106 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 1124 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1125 IPI_PRIV | IPI_WR | IPI_REPL, 1126 LIF_CMD, ip_sioctl_removeif, 1127 ip_sioctl_removeif_restart }, 1128 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1129 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1130 LIF_CMD, ip_sioctl_addif, NULL }, 1131 #define SIOCLIFADDR_NDX 112 1132 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1133 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1134 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1135 IPI_GET_CMD | IPI_REPL, 1136 LIF_CMD, ip_sioctl_get_addr, NULL }, 1137 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1138 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1139 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1140 IPI_GET_CMD | IPI_REPL, 1141 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1142 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1143 IPI_PRIV | IPI_WR | IPI_REPL, 1144 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1145 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1146 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1147 LIF_CMD, ip_sioctl_get_flags, NULL }, 1148 1149 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 1152 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1153 ip_sioctl_get_lifconf, NULL }, 1154 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1155 LIF_CMD, ip_sioctl_mtu, NULL }, 1156 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1157 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1158 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1159 IPI_GET_CMD | IPI_REPL, 1160 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1161 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1162 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1163 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1164 IPI_GET_CMD | IPI_REPL, 1165 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1166 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1167 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1168 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1169 IPI_GET_CMD | IPI_REPL, 1170 LIF_CMD, ip_sioctl_get_metric, NULL }, 1171 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1172 LIF_CMD, ip_sioctl_metric, NULL }, 1173 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1174 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1175 LIF_CMD, ip_sioctl_slifname, 1176 ip_sioctl_slifname_restart }, 1177 1178 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1179 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1180 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1181 IPI_GET_CMD | IPI_REPL, 1182 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1183 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1184 IPI_PRIV | IPI_WR | IPI_REPL, 1185 LIF_CMD, ip_sioctl_muxid, NULL }, 1186 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1187 IPI_GET_CMD | IPI_REPL, 1188 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1189 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1190 IPI_PRIV | IPI_WR | IPI_REPL, 1191 LIF_CMD, ip_sioctl_slifindex, 0 }, 1192 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1193 LIF_CMD, ip_sioctl_token, NULL }, 1194 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1195 IPI_GET_CMD | IPI_REPL, 1196 LIF_CMD, ip_sioctl_get_token, NULL }, 1197 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1198 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1199 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1200 IPI_GET_CMD | IPI_REPL, 1201 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1202 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1203 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1204 1205 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1206 IPI_GET_CMD | IPI_REPL, 1207 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1208 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1209 LIF_CMD, ip_siocdelndp_v6, NULL }, 1210 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1211 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1212 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1213 LIF_CMD, ip_siocsetndp_v6, NULL }, 1214 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1215 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1216 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1217 MISC_CMD, ip_sioctl_tonlink, NULL }, 1218 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1219 MISC_CMD, ip_sioctl_tmysite, NULL }, 1220 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1221 TUN_CMD, ip_sioctl_tunparam, NULL }, 1222 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1223 IPI_PRIV | IPI_WR, 1224 TUN_CMD, ip_sioctl_tunparam, NULL }, 1225 1226 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1227 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1228 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1229 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1230 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1231 1232 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1233 IPI_PRIV | IPI_WR | IPI_REPL, 1234 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1235 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1236 IPI_PRIV | IPI_WR | IPI_REPL, 1237 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1238 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1239 IPI_PRIV | IPI_WR, 1240 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1241 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1242 IPI_GET_CMD | IPI_REPL, 1243 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1244 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1245 IPI_GET_CMD | IPI_REPL, 1246 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1247 1248 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1249 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1250 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1251 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1252 1253 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1254 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1255 1256 /* These are handled in ip_sioctl_copyin_setup itself */ 1257 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1258 MISC_CMD, NULL, NULL }, 1259 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1260 MISC_CMD, NULL, NULL }, 1261 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1262 1263 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1264 ip_sioctl_get_lifconf, NULL }, 1265 1266 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1267 MISC_CMD, ip_sioctl_xarp, NULL }, 1268 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1269 MISC_CMD, ip_sioctl_xarp, NULL }, 1270 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1271 MISC_CMD, ip_sioctl_xarp, NULL }, 1272 1273 /* SIOCPOPSOCKFS is not handled by IP */ 1274 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1275 1276 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1277 IPI_GET_CMD | IPI_REPL, 1278 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1279 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1280 IPI_PRIV | IPI_WR | IPI_REPL, 1281 LIF_CMD, ip_sioctl_slifzone, 1282 ip_sioctl_slifzone_restart }, 1283 /* 172-174 are SCTP ioctls and not handled by IP */ 1284 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1285 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1286 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1287 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1288 IPI_GET_CMD, LIF_CMD, 1289 ip_sioctl_get_lifusesrc, 0 }, 1290 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1291 IPI_PRIV | IPI_WR, 1292 LIF_CMD, ip_sioctl_slifusesrc, 1293 NULL }, 1294 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1295 ip_sioctl_get_lifsrcof, NULL }, 1296 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1297 MISC_CMD, ip_sioctl_msfilter, NULL }, 1298 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1299 MISC_CMD, ip_sioctl_msfilter, NULL }, 1300 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1301 MISC_CMD, ip_sioctl_msfilter, NULL }, 1302 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1303 MISC_CMD, ip_sioctl_msfilter, NULL }, 1304 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1305 ip_sioctl_set_ipmpfailback, NULL } 1306 }; 1307 1308 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1309 1310 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1311 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1312 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1313 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1314 TUN_CMD, ip_sioctl_tunparam, NULL }, 1315 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1316 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1317 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1318 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1319 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1320 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1321 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1322 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1323 MISC_CMD, mrt_ioctl}, 1324 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1325 MISC_CMD, mrt_ioctl}, 1326 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1327 MISC_CMD, mrt_ioctl} 1328 }; 1329 1330 int ip_misc_ioctl_count = 1331 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1332 1333 int conn_drain_nthreads; /* Number of drainers reqd. */ 1334 /* Settable in /etc/system */ 1335 /* Defined in ip_ire.c */ 1336 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1337 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1338 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1339 1340 static nv_t ire_nv_arr[] = { 1341 { IRE_BROADCAST, "BROADCAST" }, 1342 { IRE_LOCAL, "LOCAL" }, 1343 { IRE_LOOPBACK, "LOOPBACK" }, 1344 { IRE_CACHE, "CACHE" }, 1345 { IRE_DEFAULT, "DEFAULT" }, 1346 { IRE_PREFIX, "PREFIX" }, 1347 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1348 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1349 { IRE_HOST, "HOST" }, 1350 { 0 } 1351 }; 1352 1353 nv_t *ire_nv_tbl = ire_nv_arr; 1354 1355 /* Defined in ip_netinfo.c */ 1356 extern ddi_taskq_t *eventq_queue_nic; 1357 1358 /* Simple ICMP IP Header Template */ 1359 static ipha_t icmp_ipha = { 1360 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1361 }; 1362 1363 struct module_info ip_mod_info = { 1364 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1365 }; 1366 1367 /* 1368 * Duplicate static symbols within a module confuses mdb; so we avoid the 1369 * problem by making the symbols here distinct from those in udp.c. 1370 */ 1371 1372 static struct qinit iprinit = { 1373 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1374 &ip_mod_info 1375 }; 1376 1377 static struct qinit ipwinit = { 1378 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1379 &ip_mod_info 1380 }; 1381 1382 static struct qinit iplrinit = { 1383 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1384 &ip_mod_info 1385 }; 1386 1387 static struct qinit iplwinit = { 1388 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1389 &ip_mod_info 1390 }; 1391 1392 struct streamtab ipinfo = { 1393 &iprinit, &ipwinit, &iplrinit, &iplwinit 1394 }; 1395 1396 #ifdef DEBUG 1397 static boolean_t skip_sctp_cksum = B_FALSE; 1398 #endif 1399 1400 /* 1401 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1402 * ip_rput_v6(), ip_output(), etc. If the message 1403 * block already has a M_CTL at the front of it, then simply set the zoneid 1404 * appropriately. 1405 */ 1406 mblk_t * 1407 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1408 { 1409 mblk_t *first_mp; 1410 ipsec_out_t *io; 1411 1412 ASSERT(zoneid != ALL_ZONES); 1413 if (mp->b_datap->db_type == M_CTL) { 1414 io = (ipsec_out_t *)mp->b_rptr; 1415 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1416 io->ipsec_out_zoneid = zoneid; 1417 return (mp); 1418 } 1419 1420 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1421 if (first_mp == NULL) 1422 return (NULL); 1423 io = (ipsec_out_t *)first_mp->b_rptr; 1424 /* This is not a secure packet */ 1425 io->ipsec_out_secure = B_FALSE; 1426 io->ipsec_out_zoneid = zoneid; 1427 first_mp->b_cont = mp; 1428 return (first_mp); 1429 } 1430 1431 /* 1432 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1433 */ 1434 mblk_t * 1435 ip_copymsg(mblk_t *mp) 1436 { 1437 mblk_t *nmp; 1438 ipsec_info_t *in; 1439 1440 if (mp->b_datap->db_type != M_CTL) 1441 return (copymsg(mp)); 1442 1443 in = (ipsec_info_t *)mp->b_rptr; 1444 1445 /* 1446 * Note that M_CTL is also used for delivering ICMP error messages 1447 * upstream to transport layers. 1448 */ 1449 if (in->ipsec_info_type != IPSEC_OUT && 1450 in->ipsec_info_type != IPSEC_IN) 1451 return (copymsg(mp)); 1452 1453 nmp = copymsg(mp->b_cont); 1454 1455 if (in->ipsec_info_type == IPSEC_OUT) { 1456 return (ipsec_out_tag(mp, nmp, 1457 ((ipsec_out_t *)in)->ipsec_out_ns)); 1458 } else { 1459 return (ipsec_in_tag(mp, nmp, 1460 ((ipsec_in_t *)in)->ipsec_in_ns)); 1461 } 1462 } 1463 1464 /* Generate an ICMP fragmentation needed message. */ 1465 static void 1466 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1467 ip_stack_t *ipst) 1468 { 1469 icmph_t icmph; 1470 mblk_t *first_mp; 1471 boolean_t mctl_present; 1472 1473 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1474 1475 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1476 if (mctl_present) 1477 freeb(first_mp); 1478 return; 1479 } 1480 1481 bzero(&icmph, sizeof (icmph_t)); 1482 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1483 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1484 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1485 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1486 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1487 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1488 ipst); 1489 } 1490 1491 /* 1492 * icmp_inbound deals with ICMP messages in the following ways. 1493 * 1494 * 1) It needs to send a reply back and possibly delivering it 1495 * to the "interested" upper clients. 1496 * 2) It needs to send it to the upper clients only. 1497 * 3) It needs to change some values in IP only. 1498 * 4) It needs to change some values in IP and upper layers e.g TCP. 1499 * 1500 * We need to accomodate icmp messages coming in clear until we get 1501 * everything secure from the wire. If icmp_accept_clear_messages 1502 * is zero we check with the global policy and act accordingly. If 1503 * it is non-zero, we accept the message without any checks. But 1504 * *this does not mean* that this will be delivered to the upper 1505 * clients. By accepting we might send replies back, change our MTU 1506 * value etc. but delivery to the ULP/clients depends on their policy 1507 * dispositions. 1508 * 1509 * We handle the above 4 cases in the context of IPSEC in the 1510 * following way : 1511 * 1512 * 1) Send the reply back in the same way as the request came in. 1513 * If it came in encrypted, it goes out encrypted. If it came in 1514 * clear, it goes out in clear. Thus, this will prevent chosen 1515 * plain text attack. 1516 * 2) The client may or may not expect things to come in secure. 1517 * If it comes in secure, the policy constraints are checked 1518 * before delivering it to the upper layers. If it comes in 1519 * clear, ipsec_inbound_accept_clear will decide whether to 1520 * accept this in clear or not. In both the cases, if the returned 1521 * message (IP header + 8 bytes) that caused the icmp message has 1522 * AH/ESP headers, it is sent up to AH/ESP for validation before 1523 * sending up. If there are only 8 bytes of returned message, then 1524 * upper client will not be notified. 1525 * 3) Check with global policy to see whether it matches the constaints. 1526 * But this will be done only if icmp_accept_messages_in_clear is 1527 * zero. 1528 * 4) If we need to change both in IP and ULP, then the decision taken 1529 * while affecting the values in IP and while delivering up to TCP 1530 * should be the same. 1531 * 1532 * There are two cases. 1533 * 1534 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1535 * failed), we will not deliver it to the ULP, even though they 1536 * are *willing* to accept in *clear*. This is fine as our global 1537 * disposition to icmp messages asks us reject the datagram. 1538 * 1539 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1540 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1541 * to deliver it to ULP (policy failed), it can lead to 1542 * consistency problems. The cases known at this time are 1543 * ICMP_DESTINATION_UNREACHABLE messages with following code 1544 * values : 1545 * 1546 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1547 * and Upper layer rejects. Then the communication will 1548 * come to a stop. This is solved by making similar decisions 1549 * at both levels. Currently, when we are unable to deliver 1550 * to the Upper Layer (due to policy failures) while IP has 1551 * adjusted ire_max_frag, the next outbound datagram would 1552 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1553 * will be with the right level of protection. Thus the right 1554 * value will be communicated even if we are not able to 1555 * communicate when we get from the wire initially. But this 1556 * assumes there would be at least one outbound datagram after 1557 * IP has adjusted its ire_max_frag value. To make things 1558 * simpler, we accept in clear after the validation of 1559 * AH/ESP headers. 1560 * 1561 * - Other ICMP ERRORS : We may not be able to deliver it to the 1562 * upper layer depending on the level of protection the upper 1563 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1564 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1565 * should be accepted in clear when the Upper layer expects secure. 1566 * Thus the communication may get aborted by some bad ICMP 1567 * packets. 1568 * 1569 * IPQoS Notes: 1570 * The only instance when a packet is sent for processing is when there 1571 * isn't an ICMP client and if we are interested in it. 1572 * If there is a client, IPPF processing will take place in the 1573 * ip_fanout_proto routine. 1574 * 1575 * Zones notes: 1576 * The packet is only processed in the context of the specified zone: typically 1577 * only this zone will reply to an echo request, and only interested clients in 1578 * this zone will receive a copy of the packet. This means that the caller must 1579 * call icmp_inbound() for each relevant zone. 1580 */ 1581 static void 1582 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1583 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1584 ill_t *recv_ill, zoneid_t zoneid) 1585 { 1586 icmph_t *icmph; 1587 ipha_t *ipha; 1588 int iph_hdr_length; 1589 int hdr_length; 1590 boolean_t interested; 1591 uint32_t ts; 1592 uchar_t *wptr; 1593 ipif_t *ipif; 1594 mblk_t *first_mp; 1595 ipsec_in_t *ii; 1596 ire_t *src_ire; 1597 boolean_t onlink; 1598 timestruc_t now; 1599 uint32_t ill_index; 1600 ip_stack_t *ipst; 1601 1602 ASSERT(ill != NULL); 1603 ipst = ill->ill_ipst; 1604 1605 first_mp = mp; 1606 if (mctl_present) { 1607 mp = first_mp->b_cont; 1608 ASSERT(mp != NULL); 1609 } 1610 1611 ipha = (ipha_t *)mp->b_rptr; 1612 if (ipst->ips_icmp_accept_clear_messages == 0) { 1613 first_mp = ipsec_check_global_policy(first_mp, NULL, 1614 ipha, NULL, mctl_present, ipst->ips_netstack); 1615 if (first_mp == NULL) 1616 return; 1617 } 1618 1619 /* 1620 * On a labeled system, we have to check whether the zone itself is 1621 * permitted to receive raw traffic. 1622 */ 1623 if (is_system_labeled()) { 1624 if (zoneid == ALL_ZONES) 1625 zoneid = tsol_packet_to_zoneid(mp); 1626 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1627 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1628 zoneid)); 1629 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1630 freemsg(first_mp); 1631 return; 1632 } 1633 } 1634 1635 /* 1636 * We have accepted the ICMP message. It means that we will 1637 * respond to the packet if needed. It may not be delivered 1638 * to the upper client depending on the policy constraints 1639 * and the disposition in ipsec_inbound_accept_clear. 1640 */ 1641 1642 ASSERT(ill != NULL); 1643 1644 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1645 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1646 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1647 /* Last chance to get real. */ 1648 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1649 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1650 freemsg(first_mp); 1651 return; 1652 } 1653 /* Refresh iph following the pullup. */ 1654 ipha = (ipha_t *)mp->b_rptr; 1655 } 1656 /* ICMP header checksum, including checksum field, should be zero. */ 1657 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1658 IP_CSUM(mp, iph_hdr_length, 0)) { 1659 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1660 freemsg(first_mp); 1661 return; 1662 } 1663 /* The IP header will always be a multiple of four bytes */ 1664 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1665 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1666 icmph->icmph_code)); 1667 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1668 /* We will set "interested" to "true" if we want a copy */ 1669 interested = B_FALSE; 1670 switch (icmph->icmph_type) { 1671 case ICMP_ECHO_REPLY: 1672 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1673 break; 1674 case ICMP_DEST_UNREACHABLE: 1675 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1676 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1677 interested = B_TRUE; /* Pass up to transport */ 1678 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1679 break; 1680 case ICMP_SOURCE_QUENCH: 1681 interested = B_TRUE; /* Pass up to transport */ 1682 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1683 break; 1684 case ICMP_REDIRECT: 1685 if (!ipst->ips_ip_ignore_redirect) 1686 interested = B_TRUE; 1687 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1688 break; 1689 case ICMP_ECHO_REQUEST: 1690 /* 1691 * Whether to respond to echo requests that come in as IP 1692 * broadcasts or as IP multicast is subject to debate 1693 * (what isn't?). We aim to please, you pick it. 1694 * Default is do it. 1695 */ 1696 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1697 /* unicast: always respond */ 1698 interested = B_TRUE; 1699 } else if (CLASSD(ipha->ipha_dst)) { 1700 /* multicast: respond based on tunable */ 1701 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1702 } else if (broadcast) { 1703 /* broadcast: respond based on tunable */ 1704 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1705 } 1706 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1707 break; 1708 case ICMP_ROUTER_ADVERTISEMENT: 1709 case ICMP_ROUTER_SOLICITATION: 1710 break; 1711 case ICMP_TIME_EXCEEDED: 1712 interested = B_TRUE; /* Pass up to transport */ 1713 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1714 break; 1715 case ICMP_PARAM_PROBLEM: 1716 interested = B_TRUE; /* Pass up to transport */ 1717 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1718 break; 1719 case ICMP_TIME_STAMP_REQUEST: 1720 /* Response to Time Stamp Requests is local policy. */ 1721 if (ipst->ips_ip_g_resp_to_timestamp && 1722 /* So is whether to respond if it was an IP broadcast. */ 1723 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1724 int tstamp_len = 3 * sizeof (uint32_t); 1725 1726 if (wptr + tstamp_len > mp->b_wptr) { 1727 if (!pullupmsg(mp, wptr + tstamp_len - 1728 mp->b_rptr)) { 1729 BUMP_MIB(ill->ill_ip_mib, 1730 ipIfStatsInDiscards); 1731 freemsg(first_mp); 1732 return; 1733 } 1734 /* Refresh ipha following the pullup. */ 1735 ipha = (ipha_t *)mp->b_rptr; 1736 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1737 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1738 } 1739 interested = B_TRUE; 1740 } 1741 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1742 break; 1743 case ICMP_TIME_STAMP_REPLY: 1744 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1745 break; 1746 case ICMP_INFO_REQUEST: 1747 /* Per RFC 1122 3.2.2.7, ignore this. */ 1748 case ICMP_INFO_REPLY: 1749 break; 1750 case ICMP_ADDRESS_MASK_REQUEST: 1751 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1752 !broadcast) && 1753 /* TODO m_pullup of complete header? */ 1754 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1755 interested = B_TRUE; 1756 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1757 break; 1758 case ICMP_ADDRESS_MASK_REPLY: 1759 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1760 break; 1761 default: 1762 interested = B_TRUE; /* Pass up to transport */ 1763 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1764 break; 1765 } 1766 /* See if there is an ICMP client. */ 1767 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1768 /* If there is an ICMP client and we want one too, copy it. */ 1769 mblk_t *first_mp1; 1770 1771 if (!interested) { 1772 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1773 ip_policy, recv_ill, zoneid); 1774 return; 1775 } 1776 first_mp1 = ip_copymsg(first_mp); 1777 if (first_mp1 != NULL) { 1778 ip_fanout_proto(q, first_mp1, ill, ipha, 1779 0, mctl_present, ip_policy, recv_ill, zoneid); 1780 } 1781 } else if (!interested) { 1782 freemsg(first_mp); 1783 return; 1784 } else { 1785 /* 1786 * Initiate policy processing for this packet if ip_policy 1787 * is true. 1788 */ 1789 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1790 ill_index = ill->ill_phyint->phyint_ifindex; 1791 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1792 if (mp == NULL) { 1793 if (mctl_present) { 1794 freeb(first_mp); 1795 } 1796 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1797 return; 1798 } 1799 } 1800 } 1801 /* We want to do something with it. */ 1802 /* Check db_ref to make sure we can modify the packet. */ 1803 if (mp->b_datap->db_ref > 1) { 1804 mblk_t *first_mp1; 1805 1806 first_mp1 = ip_copymsg(first_mp); 1807 freemsg(first_mp); 1808 if (!first_mp1) { 1809 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1810 return; 1811 } 1812 first_mp = first_mp1; 1813 if (mctl_present) { 1814 mp = first_mp->b_cont; 1815 ASSERT(mp != NULL); 1816 } else { 1817 mp = first_mp; 1818 } 1819 ipha = (ipha_t *)mp->b_rptr; 1820 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1821 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1822 } 1823 switch (icmph->icmph_type) { 1824 case ICMP_ADDRESS_MASK_REQUEST: 1825 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1826 if (ipif == NULL) { 1827 freemsg(first_mp); 1828 return; 1829 } 1830 /* 1831 * outging interface must be IPv4 1832 */ 1833 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1834 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1835 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1836 ipif_refrele(ipif); 1837 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1838 break; 1839 case ICMP_ECHO_REQUEST: 1840 icmph->icmph_type = ICMP_ECHO_REPLY; 1841 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1842 break; 1843 case ICMP_TIME_STAMP_REQUEST: { 1844 uint32_t *tsp; 1845 1846 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1847 tsp = (uint32_t *)wptr; 1848 tsp++; /* Skip past 'originate time' */ 1849 /* Compute # of milliseconds since midnight */ 1850 gethrestime(&now); 1851 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1852 now.tv_nsec / (NANOSEC / MILLISEC); 1853 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1854 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1855 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1856 break; 1857 } 1858 default: 1859 ipha = (ipha_t *)&icmph[1]; 1860 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1861 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1862 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1863 freemsg(first_mp); 1864 return; 1865 } 1866 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1867 ipha = (ipha_t *)&icmph[1]; 1868 } 1869 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1870 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1871 freemsg(first_mp); 1872 return; 1873 } 1874 hdr_length = IPH_HDR_LENGTH(ipha); 1875 if (hdr_length < sizeof (ipha_t)) { 1876 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1877 freemsg(first_mp); 1878 return; 1879 } 1880 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1881 if (!pullupmsg(mp, 1882 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1883 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1884 freemsg(first_mp); 1885 return; 1886 } 1887 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1888 ipha = (ipha_t *)&icmph[1]; 1889 } 1890 switch (icmph->icmph_type) { 1891 case ICMP_REDIRECT: 1892 /* 1893 * As there is no upper client to deliver, we don't 1894 * need the first_mp any more. 1895 */ 1896 if (mctl_present) { 1897 freeb(first_mp); 1898 } 1899 icmp_redirect(ill, mp); 1900 return; 1901 case ICMP_DEST_UNREACHABLE: 1902 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1903 if (!icmp_inbound_too_big(icmph, ipha, ill, 1904 zoneid, mp, iph_hdr_length, ipst)) { 1905 freemsg(first_mp); 1906 return; 1907 } 1908 /* 1909 * icmp_inbound_too_big() may alter mp. 1910 * Resynch ipha and icmph accordingly. 1911 */ 1912 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1913 ipha = (ipha_t *)&icmph[1]; 1914 } 1915 /* FALLTHRU */ 1916 default : 1917 /* 1918 * IPQoS notes: Since we have already done IPQoS 1919 * processing we don't want to do it again in 1920 * the fanout routines called by 1921 * icmp_inbound_error_fanout, hence the last 1922 * argument, ip_policy, is B_FALSE. 1923 */ 1924 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1925 ipha, iph_hdr_length, hdr_length, mctl_present, 1926 B_FALSE, recv_ill, zoneid); 1927 } 1928 return; 1929 } 1930 /* Send out an ICMP packet */ 1931 icmph->icmph_checksum = 0; 1932 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1933 if (icmph->icmph_checksum == 0) 1934 icmph->icmph_checksum = 0xFFFF; 1935 if (broadcast || CLASSD(ipha->ipha_dst)) { 1936 ipif_t *ipif_chosen; 1937 /* 1938 * Make it look like it was directed to us, so we don't look 1939 * like a fool with a broadcast or multicast source address. 1940 */ 1941 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1942 /* 1943 * Make sure that we haven't grabbed an interface that's DOWN. 1944 */ 1945 if (ipif != NULL) { 1946 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1947 ipha->ipha_src, zoneid); 1948 if (ipif_chosen != NULL) { 1949 ipif_refrele(ipif); 1950 ipif = ipif_chosen; 1951 } 1952 } 1953 if (ipif == NULL) { 1954 ip0dbg(("icmp_inbound: " 1955 "No source for broadcast/multicast:\n" 1956 "\tsrc 0x%x dst 0x%x ill %p " 1957 "ipif_lcl_addr 0x%x\n", 1958 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1959 (void *)ill, 1960 ill->ill_ipif->ipif_lcl_addr)); 1961 freemsg(first_mp); 1962 return; 1963 } 1964 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1965 ipha->ipha_dst = ipif->ipif_src_addr; 1966 ipif_refrele(ipif); 1967 } 1968 /* Reset time to live. */ 1969 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1970 { 1971 /* Swap source and destination addresses */ 1972 ipaddr_t tmp; 1973 1974 tmp = ipha->ipha_src; 1975 ipha->ipha_src = ipha->ipha_dst; 1976 ipha->ipha_dst = tmp; 1977 } 1978 ipha->ipha_ident = 0; 1979 if (!IS_SIMPLE_IPH(ipha)) 1980 icmp_options_update(ipha); 1981 1982 /* 1983 * ICMP echo replies should go out on the same interface 1984 * the request came on as probes used by in.mpathd for detecting 1985 * NIC failures are ECHO packets. We turn-off load spreading 1986 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1987 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 1988 * function. This is in turn handled by ip_wput and ip_newroute 1989 * to make sure that the packet goes out on the interface it came 1990 * in on. If we don't turnoff load spreading, the packets might get 1991 * dropped if there are no non-FAILED/INACTIVE interfaces for it 1992 * to go out and in.mpathd would wrongly detect a failure or 1993 * mis-detect a NIC failure for link failure. As load spreading 1994 * can happen only if ill_group is not NULL, we do only for 1995 * that case and this does not affect the normal case. 1996 * 1997 * We turn off load spreading only on echo packets that came from 1998 * on-link hosts. If the interface route has been deleted, this will 1999 * not be enforced as we can't do much. For off-link hosts, as the 2000 * default routes in IPv4 does not typically have an ire_ipif 2001 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2002 * Moreover, expecting a default route through this interface may 2003 * not be correct. We use ipha_dst because of the swap above. 2004 */ 2005 onlink = B_FALSE; 2006 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2007 /* 2008 * First, we need to make sure that it is not one of our 2009 * local addresses. If we set onlink when it is one of 2010 * our local addresses, we will end up creating IRE_CACHES 2011 * for one of our local addresses. Then, we will never 2012 * accept packets for them afterwards. 2013 */ 2014 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2015 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2016 if (src_ire == NULL) { 2017 ipif = ipif_get_next_ipif(NULL, ill); 2018 if (ipif == NULL) { 2019 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2020 freemsg(mp); 2021 return; 2022 } 2023 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2024 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2025 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2026 ipif_refrele(ipif); 2027 if (src_ire != NULL) { 2028 onlink = B_TRUE; 2029 ire_refrele(src_ire); 2030 } 2031 } else { 2032 ire_refrele(src_ire); 2033 } 2034 } 2035 if (!mctl_present) { 2036 /* 2037 * This packet should go out the same way as it 2038 * came in i.e in clear. To make sure that global 2039 * policy will not be applied to this in ip_wput_ire, 2040 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2041 */ 2042 ASSERT(first_mp == mp); 2043 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2044 if (first_mp == NULL) { 2045 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2046 freemsg(mp); 2047 return; 2048 } 2049 ii = (ipsec_in_t *)first_mp->b_rptr; 2050 2051 /* This is not a secure packet */ 2052 ii->ipsec_in_secure = B_FALSE; 2053 if (onlink) { 2054 ii->ipsec_in_attach_if = B_TRUE; 2055 ii->ipsec_in_ill_index = 2056 ill->ill_phyint->phyint_ifindex; 2057 ii->ipsec_in_rill_index = 2058 recv_ill->ill_phyint->phyint_ifindex; 2059 } 2060 first_mp->b_cont = mp; 2061 } else if (onlink) { 2062 ii = (ipsec_in_t *)first_mp->b_rptr; 2063 ii->ipsec_in_attach_if = B_TRUE; 2064 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2065 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2066 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2067 } else { 2068 ii = (ipsec_in_t *)first_mp->b_rptr; 2069 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2070 } 2071 ii->ipsec_in_zoneid = zoneid; 2072 ASSERT(zoneid != ALL_ZONES); 2073 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2074 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2075 return; 2076 } 2077 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2078 put(WR(q), first_mp); 2079 } 2080 2081 static ipaddr_t 2082 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2083 { 2084 conn_t *connp; 2085 connf_t *connfp; 2086 ipaddr_t nexthop_addr = INADDR_ANY; 2087 int hdr_length = IPH_HDR_LENGTH(ipha); 2088 uint16_t *up; 2089 uint32_t ports; 2090 ip_stack_t *ipst = ill->ill_ipst; 2091 2092 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2093 switch (ipha->ipha_protocol) { 2094 case IPPROTO_TCP: 2095 { 2096 tcph_t *tcph; 2097 2098 /* do a reverse lookup */ 2099 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2100 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2101 TCPS_LISTEN, ipst); 2102 break; 2103 } 2104 case IPPROTO_UDP: 2105 { 2106 uint32_t dstport, srcport; 2107 2108 ((uint16_t *)&ports)[0] = up[1]; 2109 ((uint16_t *)&ports)[1] = up[0]; 2110 2111 /* Extract ports in net byte order */ 2112 dstport = htons(ntohl(ports) & 0xFFFF); 2113 srcport = htons(ntohl(ports) >> 16); 2114 2115 connfp = &ipst->ips_ipcl_udp_fanout[ 2116 IPCL_UDP_HASH(dstport, ipst)]; 2117 mutex_enter(&connfp->connf_lock); 2118 connp = connfp->connf_head; 2119 2120 /* do a reverse lookup */ 2121 while ((connp != NULL) && 2122 (!IPCL_UDP_MATCH(connp, dstport, 2123 ipha->ipha_src, srcport, ipha->ipha_dst) || 2124 !IPCL_ZONE_MATCH(connp, zoneid))) { 2125 connp = connp->conn_next; 2126 } 2127 if (connp != NULL) 2128 CONN_INC_REF(connp); 2129 mutex_exit(&connfp->connf_lock); 2130 break; 2131 } 2132 case IPPROTO_SCTP: 2133 { 2134 in6_addr_t map_src, map_dst; 2135 2136 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2137 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2138 ((uint16_t *)&ports)[0] = up[1]; 2139 ((uint16_t *)&ports)[1] = up[0]; 2140 2141 connp = sctp_find_conn(&map_src, &map_dst, ports, 2142 zoneid, ipst->ips_netstack->netstack_sctp); 2143 if (connp == NULL) { 2144 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2145 zoneid, ports, ipha, ipst); 2146 } else { 2147 CONN_INC_REF(connp); 2148 SCTP_REFRELE(CONN2SCTP(connp)); 2149 } 2150 break; 2151 } 2152 default: 2153 { 2154 ipha_t ripha; 2155 2156 ripha.ipha_src = ipha->ipha_dst; 2157 ripha.ipha_dst = ipha->ipha_src; 2158 ripha.ipha_protocol = ipha->ipha_protocol; 2159 2160 connfp = &ipst->ips_ipcl_proto_fanout[ 2161 ipha->ipha_protocol]; 2162 mutex_enter(&connfp->connf_lock); 2163 connp = connfp->connf_head; 2164 for (connp = connfp->connf_head; connp != NULL; 2165 connp = connp->conn_next) { 2166 if (IPCL_PROTO_MATCH(connp, 2167 ipha->ipha_protocol, &ripha, ill, 2168 0, zoneid)) { 2169 CONN_INC_REF(connp); 2170 break; 2171 } 2172 } 2173 mutex_exit(&connfp->connf_lock); 2174 } 2175 } 2176 if (connp != NULL) { 2177 if (connp->conn_nexthop_set) 2178 nexthop_addr = connp->conn_nexthop_v4; 2179 CONN_DEC_REF(connp); 2180 } 2181 return (nexthop_addr); 2182 } 2183 2184 /* Table from RFC 1191 */ 2185 static int icmp_frag_size_table[] = 2186 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2187 2188 /* 2189 * Process received ICMP Packet too big. 2190 * After updating any IRE it does the fanout to any matching transport streams. 2191 * Assumes the message has been pulled up till the IP header that caused 2192 * the error. 2193 * 2194 * Returns B_FALSE on failure and B_TRUE on success. 2195 */ 2196 static boolean_t 2197 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2198 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2199 ip_stack_t *ipst) 2200 { 2201 ire_t *ire, *first_ire; 2202 int mtu; 2203 int hdr_length; 2204 ipaddr_t nexthop_addr; 2205 2206 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2207 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2208 ASSERT(ill != NULL); 2209 2210 hdr_length = IPH_HDR_LENGTH(ipha); 2211 2212 /* Drop if the original packet contained a source route */ 2213 if (ip_source_route_included(ipha)) { 2214 return (B_FALSE); 2215 } 2216 /* 2217 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2218 * header. 2219 */ 2220 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2221 mp->b_wptr) { 2222 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2223 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2224 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2225 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2226 return (B_FALSE); 2227 } 2228 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2229 ipha = (ipha_t *)&icmph[1]; 2230 } 2231 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2232 if (nexthop_addr != INADDR_ANY) { 2233 /* nexthop set */ 2234 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2235 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2236 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2237 } else { 2238 /* nexthop not set */ 2239 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2240 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2241 } 2242 2243 if (!first_ire) { 2244 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2245 ntohl(ipha->ipha_dst))); 2246 return (B_FALSE); 2247 } 2248 /* Check for MTU discovery advice as described in RFC 1191 */ 2249 mtu = ntohs(icmph->icmph_du_mtu); 2250 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2251 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2252 ire = ire->ire_next) { 2253 /* 2254 * Look for the connection to which this ICMP message is 2255 * directed. If it has the IP_NEXTHOP option set, then the 2256 * search is limited to IREs with the MATCH_IRE_PRIVATE 2257 * option. Else the search is limited to regular IREs. 2258 */ 2259 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2260 (nexthop_addr != ire->ire_gateway_addr)) || 2261 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2262 (nexthop_addr != INADDR_ANY))) 2263 continue; 2264 2265 mutex_enter(&ire->ire_lock); 2266 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2267 /* Reduce the IRE max frag value as advised. */ 2268 ip1dbg(("Received mtu from router: %d (was %d)\n", 2269 mtu, ire->ire_max_frag)); 2270 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2271 } else { 2272 uint32_t length; 2273 int i; 2274 2275 /* 2276 * Use the table from RFC 1191 to figure out 2277 * the next "plateau" based on the length in 2278 * the original IP packet. 2279 */ 2280 length = ntohs(ipha->ipha_length); 2281 if (ire->ire_max_frag <= length && 2282 ire->ire_max_frag >= length - hdr_length) { 2283 /* 2284 * Handle broken BSD 4.2 systems that 2285 * return the wrong iph_length in ICMP 2286 * errors. 2287 */ 2288 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2289 length, ire->ire_max_frag)); 2290 length -= hdr_length; 2291 } 2292 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2293 if (length > icmp_frag_size_table[i]) 2294 break; 2295 } 2296 if (i == A_CNT(icmp_frag_size_table)) { 2297 /* Smaller than 68! */ 2298 ip1dbg(("Too big for packet size %d\n", 2299 length)); 2300 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2301 ire->ire_frag_flag = 0; 2302 } else { 2303 mtu = icmp_frag_size_table[i]; 2304 ip1dbg(("Calculated mtu %d, packet size %d, " 2305 "before %d", mtu, length, 2306 ire->ire_max_frag)); 2307 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2308 ip1dbg((", after %d\n", ire->ire_max_frag)); 2309 } 2310 /* Record the new max frag size for the ULP. */ 2311 icmph->icmph_du_zero = 0; 2312 icmph->icmph_du_mtu = 2313 htons((uint16_t)ire->ire_max_frag); 2314 } 2315 mutex_exit(&ire->ire_lock); 2316 } 2317 rw_exit(&first_ire->ire_bucket->irb_lock); 2318 ire_refrele(first_ire); 2319 return (B_TRUE); 2320 } 2321 2322 /* 2323 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2324 * calls this function. 2325 */ 2326 static mblk_t * 2327 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2328 { 2329 ipha_t *ipha; 2330 icmph_t *icmph; 2331 ipha_t *in_ipha; 2332 int length; 2333 2334 ASSERT(mp->b_datap->db_type == M_DATA); 2335 2336 /* 2337 * For Self-encapsulated packets, we added an extra IP header 2338 * without the options. Inner IP header is the one from which 2339 * the outer IP header was formed. Thus, we need to remove the 2340 * outer IP header. To do this, we pullup the whole message 2341 * and overlay whatever follows the outer IP header over the 2342 * outer IP header. 2343 */ 2344 2345 if (!pullupmsg(mp, -1)) 2346 return (NULL); 2347 2348 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2349 ipha = (ipha_t *)&icmph[1]; 2350 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2351 2352 /* 2353 * The length that we want to overlay is following the inner 2354 * IP header. Subtracting the IP header + icmp header + outer 2355 * IP header's length should give us the length that we want to 2356 * overlay. 2357 */ 2358 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2359 hdr_length; 2360 /* 2361 * Overlay whatever follows the inner header over the 2362 * outer header. 2363 */ 2364 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2365 2366 /* Set the wptr to account for the outer header */ 2367 mp->b_wptr -= hdr_length; 2368 return (mp); 2369 } 2370 2371 /* 2372 * Try to pass the ICMP message upstream in case the ULP cares. 2373 * 2374 * If the packet that caused the ICMP error is secure, we send 2375 * it to AH/ESP to make sure that the attached packet has a 2376 * valid association. ipha in the code below points to the 2377 * IP header of the packet that caused the error. 2378 * 2379 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2380 * in the context of IPSEC. Normally we tell the upper layer 2381 * whenever we send the ire (including ip_bind), the IPSEC header 2382 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2383 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2384 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2385 * same thing. As TCP has the IPSEC options size that needs to be 2386 * adjusted, we just pass the MTU unchanged. 2387 * 2388 * IFN could have been generated locally or by some router. 2389 * 2390 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2391 * This happens because IP adjusted its value of MTU on an 2392 * earlier IFN message and could not tell the upper layer, 2393 * the new adjusted value of MTU e.g. Packet was encrypted 2394 * or there was not enough information to fanout to upper 2395 * layers. Thus on the next outbound datagram, ip_wput_ire 2396 * generates the IFN, where IPSEC processing has *not* been 2397 * done. 2398 * 2399 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2400 * could have generated this. This happens because ire_max_frag 2401 * value in IP was set to a new value, while the IPSEC processing 2402 * was being done and after we made the fragmentation check in 2403 * ip_wput_ire. Thus on return from IPSEC processing, 2404 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2405 * and generates the IFN. As IPSEC processing is over, we fanout 2406 * to AH/ESP to remove the header. 2407 * 2408 * In both these cases, ipsec_in_loopback will be set indicating 2409 * that IFN was generated locally. 2410 * 2411 * ROUTER : IFN could be secure or non-secure. 2412 * 2413 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2414 * packet in error has AH/ESP headers to validate the AH/ESP 2415 * headers. AH/ESP will verify whether there is a valid SA or 2416 * not and send it back. We will fanout again if we have more 2417 * data in the packet. 2418 * 2419 * If the packet in error does not have AH/ESP, we handle it 2420 * like any other case. 2421 * 2422 * * NON_SECURE : If the packet in error has AH/ESP headers, 2423 * we attach a dummy ipsec_in and send it up to AH/ESP 2424 * for validation. AH/ESP will verify whether there is a 2425 * valid SA or not and send it back. We will fanout again if 2426 * we have more data in the packet. 2427 * 2428 * If the packet in error does not have AH/ESP, we handle it 2429 * like any other case. 2430 */ 2431 static void 2432 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2433 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2434 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2435 zoneid_t zoneid) 2436 { 2437 uint16_t *up; /* Pointer to ports in ULP header */ 2438 uint32_t ports; /* reversed ports for fanout */ 2439 ipha_t ripha; /* With reversed addresses */ 2440 mblk_t *first_mp; 2441 ipsec_in_t *ii; 2442 tcph_t *tcph; 2443 conn_t *connp; 2444 ip_stack_t *ipst; 2445 2446 ASSERT(ill != NULL); 2447 2448 ASSERT(recv_ill != NULL); 2449 ipst = recv_ill->ill_ipst; 2450 2451 first_mp = mp; 2452 if (mctl_present) { 2453 mp = first_mp->b_cont; 2454 ASSERT(mp != NULL); 2455 2456 ii = (ipsec_in_t *)first_mp->b_rptr; 2457 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2458 } else { 2459 ii = NULL; 2460 } 2461 2462 switch (ipha->ipha_protocol) { 2463 case IPPROTO_UDP: 2464 /* 2465 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2466 * transport header. 2467 */ 2468 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2469 mp->b_wptr) { 2470 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2471 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2472 goto discard_pkt; 2473 } 2474 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2475 ipha = (ipha_t *)&icmph[1]; 2476 } 2477 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2478 2479 /* 2480 * Attempt to find a client stream based on port. 2481 * Note that we do a reverse lookup since the header is 2482 * in the form we sent it out. 2483 * The ripha header is only used for the IP_UDP_MATCH and we 2484 * only set the src and dst addresses and protocol. 2485 */ 2486 ripha.ipha_src = ipha->ipha_dst; 2487 ripha.ipha_dst = ipha->ipha_src; 2488 ripha.ipha_protocol = ipha->ipha_protocol; 2489 ((uint16_t *)&ports)[0] = up[1]; 2490 ((uint16_t *)&ports)[1] = up[0]; 2491 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2492 ntohl(ipha->ipha_src), ntohs(up[0]), 2493 ntohl(ipha->ipha_dst), ntohs(up[1]), 2494 icmph->icmph_type, icmph->icmph_code)); 2495 2496 /* Have to change db_type after any pullupmsg */ 2497 DB_TYPE(mp) = M_CTL; 2498 2499 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2500 mctl_present, ip_policy, recv_ill, zoneid); 2501 return; 2502 2503 case IPPROTO_TCP: 2504 /* 2505 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2506 * transport header. 2507 */ 2508 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2509 mp->b_wptr) { 2510 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2511 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2512 goto discard_pkt; 2513 } 2514 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2515 ipha = (ipha_t *)&icmph[1]; 2516 } 2517 /* 2518 * Find a TCP client stream for this packet. 2519 * Note that we do a reverse lookup since the header is 2520 * in the form we sent it out. 2521 */ 2522 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2523 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2524 ipst); 2525 if (connp == NULL) 2526 goto discard_pkt; 2527 2528 /* Have to change db_type after any pullupmsg */ 2529 DB_TYPE(mp) = M_CTL; 2530 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2531 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2532 return; 2533 2534 case IPPROTO_SCTP: 2535 /* 2536 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2537 * transport header. 2538 */ 2539 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2540 mp->b_wptr) { 2541 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2542 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2543 goto discard_pkt; 2544 } 2545 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2546 ipha = (ipha_t *)&icmph[1]; 2547 } 2548 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2549 /* 2550 * Find a SCTP client stream for this packet. 2551 * Note that we do a reverse lookup since the header is 2552 * in the form we sent it out. 2553 * The ripha header is only used for the matching and we 2554 * only set the src and dst addresses, protocol, and version. 2555 */ 2556 ripha.ipha_src = ipha->ipha_dst; 2557 ripha.ipha_dst = ipha->ipha_src; 2558 ripha.ipha_protocol = ipha->ipha_protocol; 2559 ripha.ipha_version_and_hdr_length = 2560 ipha->ipha_version_and_hdr_length; 2561 ((uint16_t *)&ports)[0] = up[1]; 2562 ((uint16_t *)&ports)[1] = up[0]; 2563 2564 /* Have to change db_type after any pullupmsg */ 2565 DB_TYPE(mp) = M_CTL; 2566 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2567 mctl_present, ip_policy, zoneid); 2568 return; 2569 2570 case IPPROTO_ESP: 2571 case IPPROTO_AH: { 2572 int ipsec_rc; 2573 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2574 2575 /* 2576 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2577 * We will re-use the IPSEC_IN if it is already present as 2578 * AH/ESP will not affect any fields in the IPSEC_IN for 2579 * ICMP errors. If there is no IPSEC_IN, allocate a new 2580 * one and attach it in the front. 2581 */ 2582 if (ii != NULL) { 2583 /* 2584 * ip_fanout_proto_again converts the ICMP errors 2585 * that come back from AH/ESP to M_DATA so that 2586 * if it is non-AH/ESP and we do a pullupmsg in 2587 * this function, it would work. Convert it back 2588 * to M_CTL before we send up as this is a ICMP 2589 * error. This could have been generated locally or 2590 * by some router. Validate the inner IPSEC 2591 * headers. 2592 * 2593 * NOTE : ill_index is used by ip_fanout_proto_again 2594 * to locate the ill. 2595 */ 2596 ASSERT(ill != NULL); 2597 ii->ipsec_in_ill_index = 2598 ill->ill_phyint->phyint_ifindex; 2599 ii->ipsec_in_rill_index = 2600 recv_ill->ill_phyint->phyint_ifindex; 2601 DB_TYPE(first_mp->b_cont) = M_CTL; 2602 } else { 2603 /* 2604 * IPSEC_IN is not present. We attach a ipsec_in 2605 * message and send up to IPSEC for validating 2606 * and removing the IPSEC headers. Clear 2607 * ipsec_in_secure so that when we return 2608 * from IPSEC, we don't mistakenly think that this 2609 * is a secure packet came from the network. 2610 * 2611 * NOTE : ill_index is used by ip_fanout_proto_again 2612 * to locate the ill. 2613 */ 2614 ASSERT(first_mp == mp); 2615 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2616 if (first_mp == NULL) { 2617 freemsg(mp); 2618 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2619 return; 2620 } 2621 ii = (ipsec_in_t *)first_mp->b_rptr; 2622 2623 /* This is not a secure packet */ 2624 ii->ipsec_in_secure = B_FALSE; 2625 first_mp->b_cont = mp; 2626 DB_TYPE(mp) = M_CTL; 2627 ASSERT(ill != NULL); 2628 ii->ipsec_in_ill_index = 2629 ill->ill_phyint->phyint_ifindex; 2630 ii->ipsec_in_rill_index = 2631 recv_ill->ill_phyint->phyint_ifindex; 2632 } 2633 ip2dbg(("icmp_inbound_error: ipsec\n")); 2634 2635 if (!ipsec_loaded(ipss)) { 2636 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2637 return; 2638 } 2639 2640 if (ipha->ipha_protocol == IPPROTO_ESP) 2641 ipsec_rc = ipsecesp_icmp_error(first_mp); 2642 else 2643 ipsec_rc = ipsecah_icmp_error(first_mp); 2644 if (ipsec_rc == IPSEC_STATUS_FAILED) 2645 return; 2646 2647 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2648 return; 2649 } 2650 default: 2651 /* 2652 * The ripha header is only used for the lookup and we 2653 * only set the src and dst addresses and protocol. 2654 */ 2655 ripha.ipha_src = ipha->ipha_dst; 2656 ripha.ipha_dst = ipha->ipha_src; 2657 ripha.ipha_protocol = ipha->ipha_protocol; 2658 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2659 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2660 ntohl(ipha->ipha_dst), 2661 icmph->icmph_type, icmph->icmph_code)); 2662 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2663 ipha_t *in_ipha; 2664 2665 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2666 mp->b_wptr) { 2667 if (!pullupmsg(mp, (uchar_t *)ipha + 2668 hdr_length + sizeof (ipha_t) - 2669 mp->b_rptr)) { 2670 goto discard_pkt; 2671 } 2672 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2673 ipha = (ipha_t *)&icmph[1]; 2674 } 2675 /* 2676 * Caller has verified that length has to be 2677 * at least the size of IP header. 2678 */ 2679 ASSERT(hdr_length >= sizeof (ipha_t)); 2680 /* 2681 * Check the sanity of the inner IP header like 2682 * we did for the outer header. 2683 */ 2684 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2685 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2686 goto discard_pkt; 2687 } 2688 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2689 goto discard_pkt; 2690 } 2691 /* Check for Self-encapsulated tunnels */ 2692 if (in_ipha->ipha_src == ipha->ipha_src && 2693 in_ipha->ipha_dst == ipha->ipha_dst) { 2694 2695 mp = icmp_inbound_self_encap_error(mp, 2696 iph_hdr_length, hdr_length); 2697 if (mp == NULL) 2698 goto discard_pkt; 2699 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2700 ipha = (ipha_t *)&icmph[1]; 2701 hdr_length = IPH_HDR_LENGTH(ipha); 2702 /* 2703 * The packet in error is self-encapsualted. 2704 * And we are finding it further encapsulated 2705 * which we could not have possibly generated. 2706 */ 2707 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2708 goto discard_pkt; 2709 } 2710 icmp_inbound_error_fanout(q, ill, first_mp, 2711 icmph, ipha, iph_hdr_length, hdr_length, 2712 mctl_present, ip_policy, recv_ill, zoneid); 2713 return; 2714 } 2715 } 2716 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2717 ipha->ipha_protocol == IPPROTO_IPV6) && 2718 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2719 ii != NULL && 2720 ii->ipsec_in_loopback && 2721 ii->ipsec_in_secure) { 2722 /* 2723 * For IP tunnels that get a looped-back 2724 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2725 * reported new MTU to take into account the IPsec 2726 * headers protecting this configured tunnel. 2727 * 2728 * This allows the tunnel module (tun.c) to blindly 2729 * accept the MTU reported in an ICMP "too big" 2730 * message. 2731 * 2732 * Non-looped back ICMP messages will just be 2733 * handled by the security protocols (if needed), 2734 * and the first subsequent packet will hit this 2735 * path. 2736 */ 2737 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2738 ipsec_in_extra_length(first_mp)); 2739 } 2740 /* Have to change db_type after any pullupmsg */ 2741 DB_TYPE(mp) = M_CTL; 2742 2743 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2744 ip_policy, recv_ill, zoneid); 2745 return; 2746 } 2747 /* NOTREACHED */ 2748 discard_pkt: 2749 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2750 drop_pkt:; 2751 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2752 freemsg(first_mp); 2753 } 2754 2755 /* 2756 * Common IP options parser. 2757 * 2758 * Setup routine: fill in *optp with options-parsing state, then 2759 * tail-call ipoptp_next to return the first option. 2760 */ 2761 uint8_t 2762 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2763 { 2764 uint32_t totallen; /* total length of all options */ 2765 2766 totallen = ipha->ipha_version_and_hdr_length - 2767 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2768 totallen <<= 2; 2769 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2770 optp->ipoptp_end = optp->ipoptp_next + totallen; 2771 optp->ipoptp_flags = 0; 2772 return (ipoptp_next(optp)); 2773 } 2774 2775 /* 2776 * Common IP options parser: extract next option. 2777 */ 2778 uint8_t 2779 ipoptp_next(ipoptp_t *optp) 2780 { 2781 uint8_t *end = optp->ipoptp_end; 2782 uint8_t *cur = optp->ipoptp_next; 2783 uint8_t opt, len, pointer; 2784 2785 /* 2786 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2787 * has been corrupted. 2788 */ 2789 ASSERT(cur <= end); 2790 2791 if (cur == end) 2792 return (IPOPT_EOL); 2793 2794 opt = cur[IPOPT_OPTVAL]; 2795 2796 /* 2797 * Skip any NOP options. 2798 */ 2799 while (opt == IPOPT_NOP) { 2800 cur++; 2801 if (cur == end) 2802 return (IPOPT_EOL); 2803 opt = cur[IPOPT_OPTVAL]; 2804 } 2805 2806 if (opt == IPOPT_EOL) 2807 return (IPOPT_EOL); 2808 2809 /* 2810 * Option requiring a length. 2811 */ 2812 if ((cur + 1) >= end) { 2813 optp->ipoptp_flags |= IPOPTP_ERROR; 2814 return (IPOPT_EOL); 2815 } 2816 len = cur[IPOPT_OLEN]; 2817 if (len < 2) { 2818 optp->ipoptp_flags |= IPOPTP_ERROR; 2819 return (IPOPT_EOL); 2820 } 2821 optp->ipoptp_cur = cur; 2822 optp->ipoptp_len = len; 2823 optp->ipoptp_next = cur + len; 2824 if (cur + len > end) { 2825 optp->ipoptp_flags |= IPOPTP_ERROR; 2826 return (IPOPT_EOL); 2827 } 2828 2829 /* 2830 * For the options which require a pointer field, make sure 2831 * its there, and make sure it points to either something 2832 * inside this option, or the end of the option. 2833 */ 2834 switch (opt) { 2835 case IPOPT_RR: 2836 case IPOPT_TS: 2837 case IPOPT_LSRR: 2838 case IPOPT_SSRR: 2839 if (len <= IPOPT_OFFSET) { 2840 optp->ipoptp_flags |= IPOPTP_ERROR; 2841 return (opt); 2842 } 2843 pointer = cur[IPOPT_OFFSET]; 2844 if (pointer - 1 > len) { 2845 optp->ipoptp_flags |= IPOPTP_ERROR; 2846 return (opt); 2847 } 2848 break; 2849 } 2850 2851 /* 2852 * Sanity check the pointer field based on the type of the 2853 * option. 2854 */ 2855 switch (opt) { 2856 case IPOPT_RR: 2857 case IPOPT_SSRR: 2858 case IPOPT_LSRR: 2859 if (pointer < IPOPT_MINOFF_SR) 2860 optp->ipoptp_flags |= IPOPTP_ERROR; 2861 break; 2862 case IPOPT_TS: 2863 if (pointer < IPOPT_MINOFF_IT) 2864 optp->ipoptp_flags |= IPOPTP_ERROR; 2865 /* 2866 * Note that the Internet Timestamp option also 2867 * contains two four bit fields (the Overflow field, 2868 * and the Flag field), which follow the pointer 2869 * field. We don't need to check that these fields 2870 * fall within the length of the option because this 2871 * was implicitely done above. We've checked that the 2872 * pointer value is at least IPOPT_MINOFF_IT, and that 2873 * it falls within the option. Since IPOPT_MINOFF_IT > 2874 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2875 */ 2876 ASSERT(len > IPOPT_POS_OV_FLG); 2877 break; 2878 } 2879 2880 return (opt); 2881 } 2882 2883 /* 2884 * Use the outgoing IP header to create an IP_OPTIONS option the way 2885 * it was passed down from the application. 2886 */ 2887 int 2888 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2889 { 2890 ipoptp_t opts; 2891 const uchar_t *opt; 2892 uint8_t optval; 2893 uint8_t optlen; 2894 uint32_t len = 0; 2895 uchar_t *buf1 = buf; 2896 2897 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2898 len += IP_ADDR_LEN; 2899 bzero(buf1, IP_ADDR_LEN); 2900 2901 /* 2902 * OK to cast away const here, as we don't store through the returned 2903 * opts.ipoptp_cur pointer. 2904 */ 2905 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2906 optval != IPOPT_EOL; 2907 optval = ipoptp_next(&opts)) { 2908 int off; 2909 2910 opt = opts.ipoptp_cur; 2911 optlen = opts.ipoptp_len; 2912 switch (optval) { 2913 case IPOPT_SSRR: 2914 case IPOPT_LSRR: 2915 2916 /* 2917 * Insert ipha_dst as the first entry in the source 2918 * route and move down the entries on step. 2919 * The last entry gets placed at buf1. 2920 */ 2921 buf[IPOPT_OPTVAL] = optval; 2922 buf[IPOPT_OLEN] = optlen; 2923 buf[IPOPT_OFFSET] = optlen; 2924 2925 off = optlen - IP_ADDR_LEN; 2926 if (off < 0) { 2927 /* No entries in source route */ 2928 break; 2929 } 2930 /* Last entry in source route */ 2931 bcopy(opt + off, buf1, IP_ADDR_LEN); 2932 off -= IP_ADDR_LEN; 2933 2934 while (off > 0) { 2935 bcopy(opt + off, 2936 buf + off + IP_ADDR_LEN, 2937 IP_ADDR_LEN); 2938 off -= IP_ADDR_LEN; 2939 } 2940 /* ipha_dst into first slot */ 2941 bcopy(&ipha->ipha_dst, 2942 buf + off + IP_ADDR_LEN, 2943 IP_ADDR_LEN); 2944 buf += optlen; 2945 len += optlen; 2946 break; 2947 2948 case IPOPT_COMSEC: 2949 case IPOPT_SECURITY: 2950 /* if passing up a label is not ok, then remove */ 2951 if (is_system_labeled()) 2952 break; 2953 /* FALLTHROUGH */ 2954 default: 2955 bcopy(opt, buf, optlen); 2956 buf += optlen; 2957 len += optlen; 2958 break; 2959 } 2960 } 2961 done: 2962 /* Pad the resulting options */ 2963 while (len & 0x3) { 2964 *buf++ = IPOPT_EOL; 2965 len++; 2966 } 2967 return (len); 2968 } 2969 2970 /* 2971 * Update any record route or timestamp options to include this host. 2972 * Reverse any source route option. 2973 * This routine assumes that the options are well formed i.e. that they 2974 * have already been checked. 2975 */ 2976 static void 2977 icmp_options_update(ipha_t *ipha) 2978 { 2979 ipoptp_t opts; 2980 uchar_t *opt; 2981 uint8_t optval; 2982 ipaddr_t src; /* Our local address */ 2983 ipaddr_t dst; 2984 2985 ip2dbg(("icmp_options_update\n")); 2986 src = ipha->ipha_src; 2987 dst = ipha->ipha_dst; 2988 2989 for (optval = ipoptp_first(&opts, ipha); 2990 optval != IPOPT_EOL; 2991 optval = ipoptp_next(&opts)) { 2992 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2993 opt = opts.ipoptp_cur; 2994 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2995 optval, opts.ipoptp_len)); 2996 switch (optval) { 2997 int off1, off2; 2998 case IPOPT_SSRR: 2999 case IPOPT_LSRR: 3000 /* 3001 * Reverse the source route. The first entry 3002 * should be the next to last one in the current 3003 * source route (the last entry is our address). 3004 * The last entry should be the final destination. 3005 */ 3006 off1 = IPOPT_MINOFF_SR - 1; 3007 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3008 if (off2 < 0) { 3009 /* No entries in source route */ 3010 ip1dbg(( 3011 "icmp_options_update: bad src route\n")); 3012 break; 3013 } 3014 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3015 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3016 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3017 off2 -= IP_ADDR_LEN; 3018 3019 while (off1 < off2) { 3020 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3021 bcopy((char *)opt + off2, (char *)opt + off1, 3022 IP_ADDR_LEN); 3023 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3024 off1 += IP_ADDR_LEN; 3025 off2 -= IP_ADDR_LEN; 3026 } 3027 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3028 break; 3029 } 3030 } 3031 } 3032 3033 /* 3034 * Process received ICMP Redirect messages. 3035 */ 3036 static void 3037 icmp_redirect(ill_t *ill, mblk_t *mp) 3038 { 3039 ipha_t *ipha; 3040 int iph_hdr_length; 3041 icmph_t *icmph; 3042 ipha_t *ipha_err; 3043 ire_t *ire; 3044 ire_t *prev_ire; 3045 ire_t *save_ire; 3046 ipaddr_t src, dst, gateway; 3047 iulp_t ulp_info = { 0 }; 3048 int error; 3049 ip_stack_t *ipst; 3050 3051 ASSERT(ill != NULL); 3052 ipst = ill->ill_ipst; 3053 3054 ipha = (ipha_t *)mp->b_rptr; 3055 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3056 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3057 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3058 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3059 freemsg(mp); 3060 return; 3061 } 3062 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3063 ipha_err = (ipha_t *)&icmph[1]; 3064 src = ipha->ipha_src; 3065 dst = ipha_err->ipha_dst; 3066 gateway = icmph->icmph_rd_gateway; 3067 /* Make sure the new gateway is reachable somehow. */ 3068 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3069 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3070 /* 3071 * Make sure we had a route for the dest in question and that 3072 * that route was pointing to the old gateway (the source of the 3073 * redirect packet.) 3074 */ 3075 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3076 NULL, MATCH_IRE_GW, ipst); 3077 /* 3078 * Check that 3079 * the redirect was not from ourselves 3080 * the new gateway and the old gateway are directly reachable 3081 */ 3082 if (!prev_ire || 3083 !ire || 3084 ire->ire_type == IRE_LOCAL) { 3085 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3086 freemsg(mp); 3087 if (ire != NULL) 3088 ire_refrele(ire); 3089 if (prev_ire != NULL) 3090 ire_refrele(prev_ire); 3091 return; 3092 } 3093 3094 /* 3095 * Should we use the old ULP info to create the new gateway? From 3096 * a user's perspective, we should inherit the info so that it 3097 * is a "smooth" transition. If we do not do that, then new 3098 * connections going thru the new gateway will have no route metrics, 3099 * which is counter-intuitive to user. From a network point of 3100 * view, this may or may not make sense even though the new gateway 3101 * is still directly connected to us so the route metrics should not 3102 * change much. 3103 * 3104 * But if the old ire_uinfo is not initialized, we do another 3105 * recursive lookup on the dest using the new gateway. There may 3106 * be a route to that. If so, use it to initialize the redirect 3107 * route. 3108 */ 3109 if (prev_ire->ire_uinfo.iulp_set) { 3110 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3111 } else { 3112 ire_t *tmp_ire; 3113 ire_t *sire; 3114 3115 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3116 ALL_ZONES, 0, NULL, 3117 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3118 ipst); 3119 if (sire != NULL) { 3120 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3121 /* 3122 * If sire != NULL, ire_ftable_lookup() should not 3123 * return a NULL value. 3124 */ 3125 ASSERT(tmp_ire != NULL); 3126 ire_refrele(tmp_ire); 3127 ire_refrele(sire); 3128 } else if (tmp_ire != NULL) { 3129 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3130 sizeof (iulp_t)); 3131 ire_refrele(tmp_ire); 3132 } 3133 } 3134 if (prev_ire->ire_type == IRE_CACHE) 3135 ire_delete(prev_ire); 3136 ire_refrele(prev_ire); 3137 /* 3138 * TODO: more precise handling for cases 0, 2, 3, the latter two 3139 * require TOS routing 3140 */ 3141 switch (icmph->icmph_code) { 3142 case 0: 3143 case 1: 3144 /* TODO: TOS specificity for cases 2 and 3 */ 3145 case 2: 3146 case 3: 3147 break; 3148 default: 3149 freemsg(mp); 3150 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3151 ire_refrele(ire); 3152 return; 3153 } 3154 /* 3155 * Create a Route Association. This will allow us to remember that 3156 * someone we believe told us to use the particular gateway. 3157 */ 3158 save_ire = ire; 3159 ire = ire_create( 3160 (uchar_t *)&dst, /* dest addr */ 3161 (uchar_t *)&ip_g_all_ones, /* mask */ 3162 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3163 (uchar_t *)&gateway, /* gateway addr */ 3164 NULL, /* no in_srcaddr */ 3165 &save_ire->ire_max_frag, /* max frag */ 3166 NULL, /* Fast Path header */ 3167 NULL, /* no rfq */ 3168 NULL, /* no stq */ 3169 IRE_HOST, 3170 NULL, 3171 NULL, 3172 NULL, 3173 0, 3174 0, 3175 0, 3176 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3177 &ulp_info, 3178 NULL, 3179 NULL, 3180 ipst); 3181 3182 if (ire == NULL) { 3183 freemsg(mp); 3184 ire_refrele(save_ire); 3185 return; 3186 } 3187 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3188 ire_refrele(save_ire); 3189 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3190 3191 if (error == 0) { 3192 ire_refrele(ire); /* Held in ire_add_v4 */ 3193 /* tell routing sockets that we received a redirect */ 3194 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3195 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3196 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3197 } 3198 3199 /* 3200 * Delete any existing IRE_HOST type redirect ires for this destination. 3201 * This together with the added IRE has the effect of 3202 * modifying an existing redirect. 3203 */ 3204 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3205 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3206 if (prev_ire != NULL) { 3207 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3208 ire_delete(prev_ire); 3209 ire_refrele(prev_ire); 3210 } 3211 3212 freemsg(mp); 3213 } 3214 3215 /* 3216 * Generate an ICMP parameter problem message. 3217 */ 3218 static void 3219 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3220 ip_stack_t *ipst) 3221 { 3222 icmph_t icmph; 3223 boolean_t mctl_present; 3224 mblk_t *first_mp; 3225 3226 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3227 3228 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3229 if (mctl_present) 3230 freeb(first_mp); 3231 return; 3232 } 3233 3234 bzero(&icmph, sizeof (icmph_t)); 3235 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3236 icmph.icmph_pp_ptr = ptr; 3237 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3238 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3239 ipst); 3240 } 3241 3242 /* 3243 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3244 * the ICMP header pointed to by "stuff". (May be called as writer.) 3245 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3246 * an icmp error packet can be sent. 3247 * Assigns an appropriate source address to the packet. If ipha_dst is 3248 * one of our addresses use it for source. Otherwise pick a source based 3249 * on a route lookup back to ipha_src. 3250 * Note that ipha_src must be set here since the 3251 * packet is likely to arrive on an ill queue in ip_wput() which will 3252 * not set a source address. 3253 */ 3254 static void 3255 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3256 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3257 { 3258 ipaddr_t dst; 3259 icmph_t *icmph; 3260 ipha_t *ipha; 3261 uint_t len_needed; 3262 size_t msg_len; 3263 mblk_t *mp1; 3264 ipaddr_t src; 3265 ire_t *ire; 3266 mblk_t *ipsec_mp; 3267 ipsec_out_t *io = NULL; 3268 boolean_t xmit_if_on = B_FALSE; 3269 3270 if (mctl_present) { 3271 /* 3272 * If it is : 3273 * 3274 * 1) a IPSEC_OUT, then this is caused by outbound 3275 * datagram originating on this host. IPSEC processing 3276 * may or may not have been done. Refer to comments above 3277 * icmp_inbound_error_fanout for details. 3278 * 3279 * 2) a IPSEC_IN if we are generating a icmp_message 3280 * for an incoming datagram destined for us i.e called 3281 * from ip_fanout_send_icmp. 3282 */ 3283 ipsec_info_t *in; 3284 ipsec_mp = mp; 3285 mp = ipsec_mp->b_cont; 3286 3287 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3288 ipha = (ipha_t *)mp->b_rptr; 3289 3290 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3291 in->ipsec_info_type == IPSEC_IN); 3292 3293 if (in->ipsec_info_type == IPSEC_IN) { 3294 /* 3295 * Convert the IPSEC_IN to IPSEC_OUT. 3296 */ 3297 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3298 BUMP_MIB(&ipst->ips_ip_mib, 3299 ipIfStatsOutDiscards); 3300 return; 3301 } 3302 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3303 } else { 3304 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3305 io = (ipsec_out_t *)in; 3306 if (io->ipsec_out_xmit_if) 3307 xmit_if_on = B_TRUE; 3308 /* 3309 * Clear out ipsec_out_proc_begin, so we do a fresh 3310 * ire lookup. 3311 */ 3312 io->ipsec_out_proc_begin = B_FALSE; 3313 } 3314 ASSERT(zoneid == io->ipsec_out_zoneid); 3315 ASSERT(zoneid != ALL_ZONES); 3316 } else { 3317 /* 3318 * This is in clear. The icmp message we are building 3319 * here should go out in clear. 3320 * 3321 * Pardon the convolution of it all, but it's easier to 3322 * allocate a "use cleartext" IPSEC_IN message and convert 3323 * it than it is to allocate a new one. 3324 */ 3325 ipsec_in_t *ii; 3326 ASSERT(DB_TYPE(mp) == M_DATA); 3327 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3328 if (ipsec_mp == NULL) { 3329 freemsg(mp); 3330 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3331 return; 3332 } 3333 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3334 3335 /* This is not a secure packet */ 3336 ii->ipsec_in_secure = B_FALSE; 3337 /* 3338 * For trusted extensions using a shared IP address we can 3339 * send using any zoneid. 3340 */ 3341 if (zoneid == ALL_ZONES) 3342 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3343 else 3344 ii->ipsec_in_zoneid = zoneid; 3345 ipsec_mp->b_cont = mp; 3346 ipha = (ipha_t *)mp->b_rptr; 3347 /* 3348 * Convert the IPSEC_IN to IPSEC_OUT. 3349 */ 3350 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3351 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3352 return; 3353 } 3354 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3355 } 3356 3357 /* Remember our eventual destination */ 3358 dst = ipha->ipha_src; 3359 3360 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3361 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3362 if (ire != NULL && 3363 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3364 src = ipha->ipha_dst; 3365 } else if (!xmit_if_on) { 3366 if (ire != NULL) 3367 ire_refrele(ire); 3368 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3369 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3370 ipst); 3371 if (ire == NULL) { 3372 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3373 freemsg(ipsec_mp); 3374 return; 3375 } 3376 src = ire->ire_src_addr; 3377 } else { 3378 ipif_t *ipif = NULL; 3379 ill_t *ill; 3380 /* 3381 * This must be an ICMP error coming from 3382 * ip_mrtun_forward(). The src addr should 3383 * be equal to the IP-addr of the outgoing 3384 * interface. 3385 */ 3386 if (io == NULL) { 3387 /* This is not a IPSEC_OUT type control msg */ 3388 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3389 freemsg(ipsec_mp); 3390 return; 3391 } 3392 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3393 NULL, NULL, NULL, NULL, ipst); 3394 if (ill != NULL) { 3395 ipif = ipif_get_next_ipif(NULL, ill); 3396 ill_refrele(ill); 3397 } 3398 if (ipif == NULL) { 3399 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3400 freemsg(ipsec_mp); 3401 return; 3402 } 3403 src = ipif->ipif_src_addr; 3404 ipif_refrele(ipif); 3405 } 3406 3407 if (ire != NULL) 3408 ire_refrele(ire); 3409 3410 /* 3411 * Check if we can send back more then 8 bytes in addition 3412 * to the IP header. We will include as much as 64 bytes. 3413 */ 3414 len_needed = IPH_HDR_LENGTH(ipha); 3415 if (ipha->ipha_protocol == IPPROTO_ENCAP && 3416 (uchar_t *)ipha + len_needed + 1 <= mp->b_wptr) { 3417 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + len_needed)); 3418 } 3419 len_needed += ipst->ips_ip_icmp_return; 3420 msg_len = msgdsize(mp); 3421 if (msg_len > len_needed) { 3422 (void) adjmsg(mp, len_needed - msg_len); 3423 msg_len = len_needed; 3424 } 3425 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3426 if (mp1 == NULL) { 3427 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3428 freemsg(ipsec_mp); 3429 return; 3430 } 3431 /* 3432 * On an unlabeled system, dblks don't necessarily have creds. 3433 */ 3434 ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL); 3435 if (DB_CRED(mp) != NULL) 3436 mblk_setcred(mp1, DB_CRED(mp)); 3437 mp1->b_cont = mp; 3438 mp = mp1; 3439 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3440 ipsec_mp->b_rptr == (uint8_t *)io && 3441 io->ipsec_out_type == IPSEC_OUT); 3442 ipsec_mp->b_cont = mp; 3443 3444 /* 3445 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3446 * node generates be accepted in peace by all on-host destinations. 3447 * If we do NOT assume that all on-host destinations trust 3448 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3449 * (Look for ipsec_out_icmp_loopback). 3450 */ 3451 io->ipsec_out_icmp_loopback = B_TRUE; 3452 3453 ipha = (ipha_t *)mp->b_rptr; 3454 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3455 *ipha = icmp_ipha; 3456 ipha->ipha_src = src; 3457 ipha->ipha_dst = dst; 3458 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3459 msg_len += sizeof (icmp_ipha) + len; 3460 if (msg_len > IP_MAXPACKET) { 3461 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3462 msg_len = IP_MAXPACKET; 3463 } 3464 ipha->ipha_length = htons((uint16_t)msg_len); 3465 icmph = (icmph_t *)&ipha[1]; 3466 bcopy(stuff, icmph, len); 3467 icmph->icmph_checksum = 0; 3468 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3469 if (icmph->icmph_checksum == 0) 3470 icmph->icmph_checksum = 0xFFFF; 3471 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3472 put(q, ipsec_mp); 3473 } 3474 3475 /* 3476 * Determine if an ICMP error packet can be sent given the rate limit. 3477 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3478 * in milliseconds) and a burst size. Burst size number of packets can 3479 * be sent arbitrarely closely spaced. 3480 * The state is tracked using two variables to implement an approximate 3481 * token bucket filter: 3482 * icmp_pkt_err_last - lbolt value when the last burst started 3483 * icmp_pkt_err_sent - number of packets sent in current burst 3484 */ 3485 boolean_t 3486 icmp_err_rate_limit(ip_stack_t *ipst) 3487 { 3488 clock_t now = TICK_TO_MSEC(lbolt); 3489 uint_t refilled; /* Number of packets refilled in tbf since last */ 3490 /* Guard against changes by loading into local variable */ 3491 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3492 3493 if (err_interval == 0) 3494 return (B_FALSE); 3495 3496 if (ipst->ips_icmp_pkt_err_last > now) { 3497 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3498 ipst->ips_icmp_pkt_err_last = 0; 3499 ipst->ips_icmp_pkt_err_sent = 0; 3500 } 3501 /* 3502 * If we are in a burst update the token bucket filter. 3503 * Update the "last" time to be close to "now" but make sure 3504 * we don't loose precision. 3505 */ 3506 if (ipst->ips_icmp_pkt_err_sent != 0) { 3507 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3508 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3509 ipst->ips_icmp_pkt_err_sent = 0; 3510 } else { 3511 ipst->ips_icmp_pkt_err_sent -= refilled; 3512 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3513 } 3514 } 3515 if (ipst->ips_icmp_pkt_err_sent == 0) { 3516 /* Start of new burst */ 3517 ipst->ips_icmp_pkt_err_last = now; 3518 } 3519 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3520 ipst->ips_icmp_pkt_err_sent++; 3521 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3522 ipst->ips_icmp_pkt_err_sent)); 3523 return (B_FALSE); 3524 } 3525 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3526 return (B_TRUE); 3527 } 3528 3529 /* 3530 * Check if it is ok to send an IPv4 ICMP error packet in 3531 * response to the IPv4 packet in mp. 3532 * Free the message and return null if no 3533 * ICMP error packet should be sent. 3534 */ 3535 static mblk_t * 3536 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3537 { 3538 icmph_t *icmph; 3539 ipha_t *ipha; 3540 uint_t len_needed; 3541 ire_t *src_ire; 3542 ire_t *dst_ire; 3543 3544 if (!mp) 3545 return (NULL); 3546 ipha = (ipha_t *)mp->b_rptr; 3547 if (ip_csum_hdr(ipha)) { 3548 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3549 freemsg(mp); 3550 return (NULL); 3551 } 3552 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3553 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3554 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3555 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3556 if (src_ire != NULL || dst_ire != NULL || 3557 CLASSD(ipha->ipha_dst) || 3558 CLASSD(ipha->ipha_src) || 3559 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3560 /* Note: only errors to the fragment with offset 0 */ 3561 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3562 freemsg(mp); 3563 if (src_ire != NULL) 3564 ire_refrele(src_ire); 3565 if (dst_ire != NULL) 3566 ire_refrele(dst_ire); 3567 return (NULL); 3568 } 3569 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3570 /* 3571 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3572 * errors in response to any ICMP errors. 3573 */ 3574 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3575 if (mp->b_wptr - mp->b_rptr < len_needed) { 3576 if (!pullupmsg(mp, len_needed)) { 3577 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3578 freemsg(mp); 3579 return (NULL); 3580 } 3581 ipha = (ipha_t *)mp->b_rptr; 3582 } 3583 icmph = (icmph_t *) 3584 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3585 switch (icmph->icmph_type) { 3586 case ICMP_DEST_UNREACHABLE: 3587 case ICMP_SOURCE_QUENCH: 3588 case ICMP_TIME_EXCEEDED: 3589 case ICMP_PARAM_PROBLEM: 3590 case ICMP_REDIRECT: 3591 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3592 freemsg(mp); 3593 return (NULL); 3594 default: 3595 break; 3596 } 3597 } 3598 /* 3599 * If this is a labeled system, then check to see if we're allowed to 3600 * send a response to this particular sender. If not, then just drop. 3601 */ 3602 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3603 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3604 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3605 freemsg(mp); 3606 return (NULL); 3607 } 3608 if (icmp_err_rate_limit(ipst)) { 3609 /* 3610 * Only send ICMP error packets every so often. 3611 * This should be done on a per port/source basis, 3612 * but for now this will suffice. 3613 */ 3614 freemsg(mp); 3615 return (NULL); 3616 } 3617 return (mp); 3618 } 3619 3620 /* 3621 * Generate an ICMP redirect message. 3622 */ 3623 static void 3624 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3625 { 3626 icmph_t icmph; 3627 3628 /* 3629 * We are called from ip_rput where we could 3630 * not have attached an IPSEC_IN. 3631 */ 3632 ASSERT(mp->b_datap->db_type == M_DATA); 3633 3634 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3635 return; 3636 } 3637 3638 bzero(&icmph, sizeof (icmph_t)); 3639 icmph.icmph_type = ICMP_REDIRECT; 3640 icmph.icmph_code = 1; 3641 icmph.icmph_rd_gateway = gateway; 3642 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3643 /* Redirects sent by router, and router is global zone */ 3644 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3645 } 3646 3647 /* 3648 * Generate an ICMP time exceeded message. 3649 */ 3650 void 3651 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3652 ip_stack_t *ipst) 3653 { 3654 icmph_t icmph; 3655 boolean_t mctl_present; 3656 mblk_t *first_mp; 3657 3658 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3659 3660 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3661 if (mctl_present) 3662 freeb(first_mp); 3663 return; 3664 } 3665 3666 bzero(&icmph, sizeof (icmph_t)); 3667 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3668 icmph.icmph_code = code; 3669 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3670 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3671 ipst); 3672 } 3673 3674 /* 3675 * Generate an ICMP unreachable message. 3676 */ 3677 void 3678 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3679 ip_stack_t *ipst) 3680 { 3681 icmph_t icmph; 3682 mblk_t *first_mp; 3683 boolean_t mctl_present; 3684 3685 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3686 3687 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3688 if (mctl_present) 3689 freeb(first_mp); 3690 return; 3691 } 3692 3693 bzero(&icmph, sizeof (icmph_t)); 3694 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3695 icmph.icmph_code = code; 3696 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3697 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3698 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3699 zoneid, ipst); 3700 } 3701 3702 /* 3703 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3704 * duplicate. As long as someone else holds the address, the interface will 3705 * stay down. When that conflict goes away, the interface is brought back up. 3706 * This is done so that accidental shutdowns of addresses aren't made 3707 * permanent. Your server will recover from a failure. 3708 * 3709 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3710 * user space process (dhcpagent). 3711 * 3712 * Recovery completes if ARP reports that the address is now ours (via 3713 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3714 * 3715 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3716 */ 3717 static void 3718 ipif_dup_recovery(void *arg) 3719 { 3720 ipif_t *ipif = arg; 3721 ill_t *ill = ipif->ipif_ill; 3722 mblk_t *arp_add_mp; 3723 mblk_t *arp_del_mp; 3724 area_t *area; 3725 ip_stack_t *ipst = ill->ill_ipst; 3726 3727 ipif->ipif_recovery_id = 0; 3728 3729 /* 3730 * No lock needed for moving or condemned check, as this is just an 3731 * optimization. 3732 */ 3733 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3734 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3735 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3736 /* No reason to try to bring this address back. */ 3737 return; 3738 } 3739 3740 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3741 goto alloc_fail; 3742 3743 if (ipif->ipif_arp_del_mp == NULL) { 3744 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3745 goto alloc_fail; 3746 ipif->ipif_arp_del_mp = arp_del_mp; 3747 } 3748 3749 /* Setting the 'unverified' flag restarts DAD */ 3750 area = (area_t *)arp_add_mp->b_rptr; 3751 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3752 ACE_F_UNVERIFIED; 3753 putnext(ill->ill_rq, arp_add_mp); 3754 return; 3755 3756 alloc_fail: 3757 /* 3758 * On allocation failure, just restart the timer. Note that the ipif 3759 * is down here, so no other thread could be trying to start a recovery 3760 * timer. The ill_lock protects the condemned flag and the recovery 3761 * timer ID. 3762 */ 3763 freemsg(arp_add_mp); 3764 mutex_enter(&ill->ill_lock); 3765 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3766 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3767 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3768 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3769 } 3770 mutex_exit(&ill->ill_lock); 3771 } 3772 3773 /* 3774 * This is for exclusive changes due to ARP. Either tear down an interface due 3775 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3776 */ 3777 /* ARGSUSED */ 3778 static void 3779 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3780 { 3781 ill_t *ill = rq->q_ptr; 3782 arh_t *arh; 3783 ipaddr_t src; 3784 ipif_t *ipif; 3785 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3786 char hbuf[MAC_STR_LEN]; 3787 char sbuf[INET_ADDRSTRLEN]; 3788 const char *failtype; 3789 boolean_t bring_up; 3790 ip_stack_t *ipst = ill->ill_ipst; 3791 3792 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3793 case AR_CN_READY: 3794 failtype = NULL; 3795 bring_up = B_TRUE; 3796 break; 3797 case AR_CN_FAILED: 3798 failtype = "in use"; 3799 bring_up = B_FALSE; 3800 break; 3801 default: 3802 failtype = "claimed"; 3803 bring_up = B_FALSE; 3804 break; 3805 } 3806 3807 arh = (arh_t *)mp->b_cont->b_rptr; 3808 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3809 3810 /* Handle failures due to probes */ 3811 if (src == 0) { 3812 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3813 IP_ADDR_LEN); 3814 } 3815 3816 (void) strlcpy(ibuf, ill->ill_name, sizeof (ibuf)); 3817 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3818 sizeof (hbuf)); 3819 (void) ip_dot_addr(src, sbuf); 3820 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3821 3822 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3823 ipif->ipif_lcl_addr != src) { 3824 continue; 3825 } 3826 3827 /* 3828 * If we failed on a recovery probe, then restart the timer to 3829 * try again later. 3830 */ 3831 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3832 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3833 ill->ill_net_type == IRE_IF_RESOLVER && 3834 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3835 ipst->ips_ip_dup_recovery > 0 && 3836 ipif->ipif_recovery_id == 0) { 3837 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3838 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3839 continue; 3840 } 3841 3842 /* 3843 * If what we're trying to do has already been done, then do 3844 * nothing. 3845 */ 3846 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3847 continue; 3848 3849 if (ipif->ipif_id != 0) { 3850 (void) snprintf(ibuf + ill->ill_name_length - 1, 3851 sizeof (ibuf) - ill->ill_name_length + 1, ":%d", 3852 ipif->ipif_id); 3853 } 3854 if (failtype == NULL) { 3855 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3856 ibuf); 3857 } else { 3858 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3859 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3860 } 3861 3862 if (bring_up) { 3863 ASSERT(ill->ill_dl_up); 3864 /* 3865 * Free up the ARP delete message so we can allocate 3866 * a fresh one through the normal path. 3867 */ 3868 freemsg(ipif->ipif_arp_del_mp); 3869 ipif->ipif_arp_del_mp = NULL; 3870 if (ipif_resolver_up(ipif, Res_act_initial) != 3871 EINPROGRESS) { 3872 ipif->ipif_addr_ready = 1; 3873 (void) ipif_up_done(ipif); 3874 } 3875 continue; 3876 } 3877 3878 mutex_enter(&ill->ill_lock); 3879 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3880 ipif->ipif_flags |= IPIF_DUPLICATE; 3881 ill->ill_ipif_dup_count++; 3882 mutex_exit(&ill->ill_lock); 3883 /* 3884 * Already exclusive on the ill; no need to handle deferred 3885 * processing here. 3886 */ 3887 (void) ipif_down(ipif, NULL, NULL); 3888 ipif_down_tail(ipif); 3889 mutex_enter(&ill->ill_lock); 3890 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3891 ill->ill_net_type == IRE_IF_RESOLVER && 3892 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3893 ipst->ips_ip_dup_recovery > 0) { 3894 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3895 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3896 } 3897 mutex_exit(&ill->ill_lock); 3898 } 3899 freemsg(mp); 3900 } 3901 3902 /* ARGSUSED */ 3903 static void 3904 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3905 { 3906 ill_t *ill = rq->q_ptr; 3907 arh_t *arh; 3908 ipaddr_t src; 3909 ipif_t *ipif; 3910 3911 arh = (arh_t *)mp->b_cont->b_rptr; 3912 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3913 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3914 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3915 (void) ipif_resolver_up(ipif, Res_act_defend); 3916 } 3917 freemsg(mp); 3918 } 3919 3920 /* 3921 * News from ARP. ARP sends notification of interesting events down 3922 * to its clients using M_CTL messages with the interesting ARP packet 3923 * attached via b_cont. 3924 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3925 * queue as opposed to ARP sending the message to all the clients, i.e. all 3926 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3927 * table if a cache IRE is found to delete all the entries for the address in 3928 * the packet. 3929 */ 3930 static void 3931 ip_arp_news(queue_t *q, mblk_t *mp) 3932 { 3933 arcn_t *arcn; 3934 arh_t *arh; 3935 ire_t *ire = NULL; 3936 char hbuf[MAC_STR_LEN]; 3937 char sbuf[INET_ADDRSTRLEN]; 3938 ipaddr_t src; 3939 in6_addr_t v6src; 3940 boolean_t isv6 = B_FALSE; 3941 ipif_t *ipif; 3942 ill_t *ill; 3943 ip_stack_t *ipst; 3944 3945 if (CONN_Q(q)) { 3946 conn_t *connp = Q_TO_CONN(q); 3947 3948 ipst = connp->conn_netstack->netstack_ip; 3949 } else { 3950 ill_t *ill = (ill_t *)q->q_ptr; 3951 3952 ipst = ill->ill_ipst; 3953 } 3954 3955 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3956 if (q->q_next) { 3957 putnext(q, mp); 3958 } else 3959 freemsg(mp); 3960 return; 3961 } 3962 arh = (arh_t *)mp->b_cont->b_rptr; 3963 /* Is it one we are interested in? */ 3964 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3965 isv6 = B_TRUE; 3966 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3967 IPV6_ADDR_LEN); 3968 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3969 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3970 IP_ADDR_LEN); 3971 } else { 3972 freemsg(mp); 3973 return; 3974 } 3975 3976 ill = q->q_ptr; 3977 3978 arcn = (arcn_t *)mp->b_rptr; 3979 switch (arcn->arcn_code) { 3980 case AR_CN_BOGON: 3981 /* 3982 * Someone is sending ARP packets with a source protocol 3983 * address that we have published and for which we believe our 3984 * entry is authoritative and (when ill_arp_extend is set) 3985 * verified to be unique on the network. 3986 * 3987 * The ARP module internally handles the cases where the sender 3988 * is just probing (for DAD) and where the hardware address of 3989 * a non-authoritative entry has changed. Thus, these are the 3990 * real conflicts, and we have to do resolution. 3991 * 3992 * We back away quickly from the address if it's from DHCP or 3993 * otherwise temporary and hasn't been used recently (or at 3994 * all). We'd like to include "deprecated" addresses here as 3995 * well (as there's no real reason to defend something we're 3996 * discarding), but IPMP "reuses" this flag to mean something 3997 * other than the standard meaning. 3998 * 3999 * If the ARP module above is not extended (meaning that it 4000 * doesn't know how to defend the address), then we just log 4001 * the problem as we always did and continue on. It's not 4002 * right, but there's little else we can do, and those old ATM 4003 * users are going away anyway. 4004 */ 4005 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 4006 hbuf, sizeof (hbuf)); 4007 (void) ip_dot_addr(src, sbuf); 4008 if (isv6) { 4009 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 4010 ipst); 4011 } else { 4012 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 4013 } 4014 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4015 uint32_t now; 4016 uint32_t maxage; 4017 clock_t lused; 4018 uint_t maxdefense; 4019 uint_t defs; 4020 4021 /* 4022 * First, figure out if this address hasn't been used 4023 * in a while. If it hasn't, then it's a better 4024 * candidate for abandoning. 4025 */ 4026 ipif = ire->ire_ipif; 4027 ASSERT(ipif != NULL); 4028 now = gethrestime_sec(); 4029 maxage = now - ire->ire_create_time; 4030 if (maxage > ipst->ips_ip_max_temp_idle) 4031 maxage = ipst->ips_ip_max_temp_idle; 4032 lused = drv_hztousec(ddi_get_lbolt() - 4033 ire->ire_last_used_time) / MICROSEC + 1; 4034 if (lused >= maxage && (ipif->ipif_flags & 4035 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4036 maxdefense = ipst->ips_ip_max_temp_defend; 4037 else 4038 maxdefense = ipst->ips_ip_max_defend; 4039 4040 /* 4041 * Now figure out how many times we've defended 4042 * ourselves. Ignore defenses that happened long in 4043 * the past. 4044 */ 4045 mutex_enter(&ire->ire_lock); 4046 if ((defs = ire->ire_defense_count) > 0 && 4047 now - ire->ire_defense_time > 4048 ipst->ips_ip_defend_interval) { 4049 ire->ire_defense_count = defs = 0; 4050 } 4051 ire->ire_defense_count++; 4052 ire->ire_defense_time = now; 4053 mutex_exit(&ire->ire_lock); 4054 ill_refhold(ill); 4055 ire_refrele(ire); 4056 4057 /* 4058 * If we've defended ourselves too many times already, 4059 * then give up and tear down the interface(s) using 4060 * this address. Otherwise, defend by sending out a 4061 * gratuitous ARP. 4062 */ 4063 if (defs >= maxdefense && ill->ill_arp_extend) { 4064 (void) qwriter_ip(NULL, ill, q, mp, 4065 ip_arp_excl, CUR_OP, B_FALSE); 4066 } else { 4067 cmn_err(CE_WARN, 4068 "node %s is using our IP address %s on %s", 4069 hbuf, sbuf, ill->ill_name); 4070 /* 4071 * If this is an old (ATM) ARP module, then 4072 * don't try to defend the address. Remain 4073 * compatible with the old behavior. Defend 4074 * only with new ARP. 4075 */ 4076 if (ill->ill_arp_extend) { 4077 (void) qwriter_ip(NULL, ill, q, mp, 4078 ip_arp_defend, CUR_OP, B_FALSE); 4079 } else { 4080 ill_refrele(ill); 4081 } 4082 } 4083 return; 4084 } 4085 cmn_err(CE_WARN, 4086 "proxy ARP problem? Node '%s' is using %s on %s", 4087 hbuf, sbuf, ill->ill_name); 4088 if (ire != NULL) 4089 ire_refrele(ire); 4090 break; 4091 case AR_CN_ANNOUNCE: 4092 if (isv6) { 4093 /* 4094 * For XRESOLV interfaces. 4095 * Delete the IRE cache entry and NCE for this 4096 * v6 address 4097 */ 4098 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4099 /* 4100 * If v6src is a non-zero, it's a router address 4101 * as below. Do the same sort of thing to clean 4102 * out off-net IRE_CACHE entries that go through 4103 * the router. 4104 */ 4105 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4106 ire_walk_v6(ire_delete_cache_gw_v6, 4107 (char *)&v6src, ALL_ZONES, ipst); 4108 } 4109 } else { 4110 nce_hw_map_t hwm; 4111 4112 /* 4113 * ARP gives us a copy of any packet where it thinks 4114 * the address has changed, so that we can update our 4115 * caches. We're responsible for caching known answers 4116 * in the current design. We check whether the 4117 * hardware address really has changed in all of our 4118 * entries that have cached this mapping, and if so, we 4119 * blow them away. This way we will immediately pick 4120 * up the rare case of a host changing hardware 4121 * address. 4122 */ 4123 if (src == 0) 4124 break; 4125 hwm.hwm_addr = src; 4126 hwm.hwm_hwlen = arh->arh_hlen; 4127 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4128 ndp_walk_common(ipst->ips_ndp4, NULL, 4129 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4130 } 4131 break; 4132 case AR_CN_READY: 4133 /* No external v6 resolver has a contract to use this */ 4134 if (isv6) 4135 break; 4136 /* If the link is down, we'll retry this later */ 4137 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4138 break; 4139 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4140 NULL, NULL, ipst); 4141 if (ipif != NULL) { 4142 /* 4143 * If this is a duplicate recovery, then we now need to 4144 * go exclusive to bring this thing back up. 4145 */ 4146 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4147 IPIF_DUPLICATE) { 4148 ipif_refrele(ipif); 4149 ill_refhold(ill); 4150 (void) qwriter_ip(NULL, ill, q, mp, 4151 ip_arp_excl, CUR_OP, B_FALSE); 4152 return; 4153 } 4154 /* 4155 * If this is the first notice that this address is 4156 * ready, then let the user know now. 4157 */ 4158 if ((ipif->ipif_flags & IPIF_UP) && 4159 !ipif->ipif_addr_ready) { 4160 ipif_mask_reply(ipif); 4161 ip_rts_ifmsg(ipif); 4162 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4163 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4164 } 4165 ipif->ipif_addr_ready = 1; 4166 ipif_refrele(ipif); 4167 } 4168 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4169 if (ire != NULL) { 4170 ire->ire_defense_count = 0; 4171 ire_refrele(ire); 4172 } 4173 break; 4174 case AR_CN_FAILED: 4175 /* No external v6 resolver has a contract to use this */ 4176 if (isv6) 4177 break; 4178 ill_refhold(ill); 4179 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_excl, CUR_OP, 4180 B_FALSE); 4181 return; 4182 } 4183 freemsg(mp); 4184 } 4185 4186 /* 4187 * Create a mblk suitable for carrying the interface index and/or source link 4188 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4189 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4190 * application. 4191 */ 4192 mblk_t * 4193 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4194 ip_stack_t *ipst) 4195 { 4196 mblk_t *mp; 4197 ip_pktinfo_t *pinfo; 4198 ipha_t *ipha; 4199 struct ether_header *pether; 4200 4201 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4202 if (mp == NULL) { 4203 ip1dbg(("ip_add_info: allocation failure.\n")); 4204 return (data_mp); 4205 } 4206 4207 ipha = (ipha_t *)data_mp->b_rptr; 4208 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4209 bzero(pinfo, sizeof (ip_pktinfo_t)); 4210 pinfo->ip_pkt_flags = (uchar_t)flags; 4211 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4212 4213 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4214 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4215 if (flags & IPF_RECVADDR) { 4216 ipif_t *ipif; 4217 ire_t *ire; 4218 4219 /* 4220 * Only valid for V4 4221 */ 4222 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4223 (IPV4_VERSION << 4)); 4224 4225 ipif = ipif_get_next_ipif(NULL, ill); 4226 if (ipif != NULL) { 4227 /* 4228 * Since a decision has already been made to deliver the 4229 * packet, there is no need to test for SECATTR and 4230 * ZONEONLY. 4231 */ 4232 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 0, ipif, 4233 zoneid, NULL, MATCH_IRE_ILL_GROUP, ipst); 4234 if (ire == NULL) { 4235 /* 4236 * packet must have come on a different 4237 * interface. 4238 * Since a decision has already been made to 4239 * deliver the packet, there is no need to test 4240 * for SECATTR and ZONEONLY. 4241 */ 4242 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 0, 4243 ipif, zoneid, NULL, NULL, ipst); 4244 } 4245 4246 if (ire == NULL) { 4247 /* 4248 * This is either a multicast packet or 4249 * the address has been removed since 4250 * the packet was received. 4251 * Return INADDR_ANY so that normal source 4252 * selection occurs for the response. 4253 */ 4254 4255 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4256 } else { 4257 ASSERT(ire->ire_type != IRE_CACHE); 4258 pinfo->ip_pkt_match_addr.s_addr = 4259 ire->ire_src_addr; 4260 ire_refrele(ire); 4261 } 4262 ipif_refrele(ipif); 4263 } else { 4264 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4265 } 4266 } 4267 4268 pether = (struct ether_header *)((char *)ipha 4269 - sizeof (struct ether_header)); 4270 /* 4271 * Make sure the interface is an ethernet type, since this option 4272 * is currently supported only on this type of interface. Also make 4273 * sure we are pointing correctly above db_base. 4274 */ 4275 4276 if ((flags & IPF_RECVSLLA) && 4277 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4278 (ill->ill_type == IFT_ETHER) && 4279 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4280 4281 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4282 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4283 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4284 } else { 4285 /* 4286 * Clear the bit. Indicate to upper layer that IP is not 4287 * sending this ancillary info. 4288 */ 4289 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4290 } 4291 4292 mp->b_datap->db_type = M_CTL; 4293 mp->b_wptr += sizeof (ip_pktinfo_t); 4294 mp->b_cont = data_mp; 4295 4296 return (mp); 4297 } 4298 4299 /* 4300 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4301 * part of the bind request. 4302 */ 4303 4304 boolean_t 4305 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4306 { 4307 ipsec_in_t *ii; 4308 4309 ASSERT(policy_mp != NULL); 4310 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4311 4312 ii = (ipsec_in_t *)policy_mp->b_rptr; 4313 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4314 4315 connp->conn_policy = ii->ipsec_in_policy; 4316 ii->ipsec_in_policy = NULL; 4317 4318 if (ii->ipsec_in_action != NULL) { 4319 if (connp->conn_latch == NULL) { 4320 connp->conn_latch = iplatch_create(); 4321 if (connp->conn_latch == NULL) 4322 return (B_FALSE); 4323 } 4324 ipsec_latch_inbound(connp->conn_latch, ii); 4325 } 4326 return (B_TRUE); 4327 } 4328 4329 /* 4330 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4331 * and to arrange for power-fanout assist. The ULP is identified by 4332 * adding a single byte at the end of the original bind message. 4333 * A ULP other than UDP or TCP that wishes to be recognized passes 4334 * down a bind with a zero length address. 4335 * 4336 * The binding works as follows: 4337 * - A zero byte address means just bind to the protocol. 4338 * - A four byte address is treated as a request to validate 4339 * that the address is a valid local address, appropriate for 4340 * an application to bind to. This does not affect any fanout 4341 * information in IP. 4342 * - A sizeof sin_t byte address is used to bind to only the local address 4343 * and port. 4344 * - A sizeof ipa_conn_t byte address contains complete fanout information 4345 * consisting of local and remote addresses and ports. In 4346 * this case, the addresses are both validated as appropriate 4347 * for this operation, and, if so, the information is retained 4348 * for use in the inbound fanout. 4349 * 4350 * The ULP (except in the zero-length bind) can append an 4351 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4352 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4353 * a copy of the source or destination IRE (source for local bind; 4354 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4355 * policy information contained should be copied on to the conn. 4356 * 4357 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4358 */ 4359 mblk_t * 4360 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4361 { 4362 ssize_t len; 4363 struct T_bind_req *tbr; 4364 sin_t *sin; 4365 ipa_conn_t *ac; 4366 uchar_t *ucp; 4367 mblk_t *mp1; 4368 boolean_t ire_requested; 4369 boolean_t ipsec_policy_set = B_FALSE; 4370 int error = 0; 4371 int protocol; 4372 ipa_conn_x_t *acx; 4373 4374 ASSERT(!connp->conn_af_isv6); 4375 connp->conn_pkt_isv6 = B_FALSE; 4376 4377 len = MBLKL(mp); 4378 if (len < (sizeof (*tbr) + 1)) { 4379 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4380 "ip_bind: bogus msg, len %ld", len); 4381 /* XXX: Need to return something better */ 4382 goto bad_addr; 4383 } 4384 /* Back up and extract the protocol identifier. */ 4385 mp->b_wptr--; 4386 protocol = *mp->b_wptr & 0xFF; 4387 tbr = (struct T_bind_req *)mp->b_rptr; 4388 /* Reset the message type in preparation for shipping it back. */ 4389 DB_TYPE(mp) = M_PCPROTO; 4390 4391 connp->conn_ulp = (uint8_t)protocol; 4392 4393 /* 4394 * Check for a zero length address. This is from a protocol that 4395 * wants to register to receive all packets of its type. 4396 */ 4397 if (tbr->ADDR_length == 0) { 4398 /* 4399 * These protocols are now intercepted in ip_bind_v6(). 4400 * Reject protocol-level binds here for now. 4401 * 4402 * For SCTP raw socket, ICMP sends down a bind with sin_t 4403 * so that the protocol type cannot be SCTP. 4404 */ 4405 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4406 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4407 goto bad_addr; 4408 } 4409 4410 /* 4411 * 4412 * The udp module never sends down a zero-length address, 4413 * and allowing this on a labeled system will break MLP 4414 * functionality. 4415 */ 4416 if (is_system_labeled() && protocol == IPPROTO_UDP) 4417 goto bad_addr; 4418 4419 if (connp->conn_mac_exempt) 4420 goto bad_addr; 4421 4422 /* No hash here really. The table is big enough. */ 4423 connp->conn_srcv6 = ipv6_all_zeros; 4424 4425 ipcl_proto_insert(connp, protocol); 4426 4427 tbr->PRIM_type = T_BIND_ACK; 4428 return (mp); 4429 } 4430 4431 /* Extract the address pointer from the message. */ 4432 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4433 tbr->ADDR_length); 4434 if (ucp == NULL) { 4435 ip1dbg(("ip_bind: no address\n")); 4436 goto bad_addr; 4437 } 4438 if (!OK_32PTR(ucp)) { 4439 ip1dbg(("ip_bind: unaligned address\n")); 4440 goto bad_addr; 4441 } 4442 /* 4443 * Check for trailing mps. 4444 */ 4445 4446 mp1 = mp->b_cont; 4447 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4448 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4449 4450 switch (tbr->ADDR_length) { 4451 default: 4452 ip1dbg(("ip_bind: bad address length %d\n", 4453 (int)tbr->ADDR_length)); 4454 goto bad_addr; 4455 4456 case IP_ADDR_LEN: 4457 /* Verification of local address only */ 4458 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4459 ire_requested, ipsec_policy_set, B_FALSE); 4460 break; 4461 4462 case sizeof (sin_t): 4463 sin = (sin_t *)ucp; 4464 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4465 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4466 break; 4467 4468 case sizeof (ipa_conn_t): 4469 ac = (ipa_conn_t *)ucp; 4470 /* For raw socket, the local port is not set. */ 4471 if (ac->ac_lport == 0) 4472 ac->ac_lport = connp->conn_lport; 4473 /* Always verify destination reachability. */ 4474 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4475 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4476 ipsec_policy_set, B_TRUE, B_TRUE); 4477 break; 4478 4479 case sizeof (ipa_conn_x_t): 4480 acx = (ipa_conn_x_t *)ucp; 4481 /* 4482 * Whether or not to verify destination reachability depends 4483 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4484 */ 4485 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4486 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4487 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4488 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4489 break; 4490 } 4491 if (error == EINPROGRESS) 4492 return (NULL); 4493 else if (error != 0) 4494 goto bad_addr; 4495 /* 4496 * Pass the IPSEC headers size in ire_ipsec_overhead. 4497 * We can't do this in ip_bind_insert_ire because the policy 4498 * may not have been inherited at that point in time and hence 4499 * conn_out_enforce_policy may not be set. 4500 */ 4501 mp1 = mp->b_cont; 4502 if (ire_requested && connp->conn_out_enforce_policy && 4503 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4504 ire_t *ire = (ire_t *)mp1->b_rptr; 4505 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4506 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4507 } 4508 4509 /* Send it home. */ 4510 mp->b_datap->db_type = M_PCPROTO; 4511 tbr->PRIM_type = T_BIND_ACK; 4512 return (mp); 4513 4514 bad_addr: 4515 /* 4516 * If error = -1 then we generate a TBADADDR - otherwise error is 4517 * a unix errno. 4518 */ 4519 if (error > 0) 4520 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4521 else 4522 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4523 return (mp); 4524 } 4525 4526 /* 4527 * Here address is verified to be a valid local address. 4528 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4529 * address is also considered a valid local address. 4530 * In the case of a broadcast/multicast address, however, the 4531 * upper protocol is expected to reset the src address 4532 * to 0 if it sees a IRE_BROADCAST type returned so that 4533 * no packets are emitted with broadcast/multicast address as 4534 * source address (that violates hosts requirements RFC1122) 4535 * The addresses valid for bind are: 4536 * (1) - INADDR_ANY (0) 4537 * (2) - IP address of an UP interface 4538 * (3) - IP address of a DOWN interface 4539 * (4) - valid local IP broadcast addresses. In this case 4540 * the conn will only receive packets destined to 4541 * the specified broadcast address. 4542 * (5) - a multicast address. In this case 4543 * the conn will only receive packets destined to 4544 * the specified multicast address. Note: the 4545 * application still has to issue an 4546 * IP_ADD_MEMBERSHIP socket option. 4547 * 4548 * On error, return -1 for TBADADDR otherwise pass the 4549 * errno with TSYSERR reply. 4550 * 4551 * In all the above cases, the bound address must be valid in the current zone. 4552 * When the address is loopback, multicast or broadcast, there might be many 4553 * matching IREs so bind has to look up based on the zone. 4554 * 4555 * Note: lport is in network byte order. 4556 */ 4557 int 4558 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4559 boolean_t ire_requested, boolean_t ipsec_policy_set, 4560 boolean_t fanout_insert) 4561 { 4562 int error = 0; 4563 ire_t *src_ire; 4564 mblk_t *policy_mp; 4565 ipif_t *ipif; 4566 zoneid_t zoneid; 4567 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4568 4569 if (ipsec_policy_set) { 4570 policy_mp = mp->b_cont; 4571 } 4572 4573 /* 4574 * If it was previously connected, conn_fully_bound would have 4575 * been set. 4576 */ 4577 connp->conn_fully_bound = B_FALSE; 4578 4579 src_ire = NULL; 4580 ipif = NULL; 4581 4582 zoneid = IPCL_ZONEID(connp); 4583 4584 if (src_addr) { 4585 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4586 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4587 /* 4588 * If an address other than 0.0.0.0 is requested, 4589 * we verify that it is a valid address for bind 4590 * Note: Following code is in if-else-if form for 4591 * readability compared to a condition check. 4592 */ 4593 /* LINTED - statement has no consequent */ 4594 if (IRE_IS_LOCAL(src_ire)) { 4595 /* 4596 * (2) Bind to address of local UP interface 4597 */ 4598 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4599 /* 4600 * (4) Bind to broadcast address 4601 * Note: permitted only from transports that 4602 * request IRE 4603 */ 4604 if (!ire_requested) 4605 error = EADDRNOTAVAIL; 4606 } else { 4607 /* 4608 * (3) Bind to address of local DOWN interface 4609 * (ipif_lookup_addr() looks up all interfaces 4610 * but we do not get here for UP interfaces 4611 * - case (2) above) 4612 * We put the protocol byte back into the mblk 4613 * since we may come back via ip_wput_nondata() 4614 * later with this mblk if ipif_lookup_addr chooses 4615 * to defer processing. 4616 */ 4617 *mp->b_wptr++ = (char)connp->conn_ulp; 4618 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4619 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4620 &error, ipst)) != NULL) { 4621 ipif_refrele(ipif); 4622 } else if (error == EINPROGRESS) { 4623 if (src_ire != NULL) 4624 ire_refrele(src_ire); 4625 return (EINPROGRESS); 4626 } else if (CLASSD(src_addr)) { 4627 error = 0; 4628 if (src_ire != NULL) 4629 ire_refrele(src_ire); 4630 /* 4631 * (5) bind to multicast address. 4632 * Fake out the IRE returned to upper 4633 * layer to be a broadcast IRE. 4634 */ 4635 src_ire = ire_ctable_lookup( 4636 INADDR_BROADCAST, INADDR_ANY, 4637 IRE_BROADCAST, NULL, zoneid, NULL, 4638 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4639 ipst); 4640 if (src_ire == NULL || !ire_requested) 4641 error = EADDRNOTAVAIL; 4642 } else { 4643 /* 4644 * Not a valid address for bind 4645 */ 4646 error = EADDRNOTAVAIL; 4647 } 4648 /* 4649 * Just to keep it consistent with the processing in 4650 * ip_bind_v4() 4651 */ 4652 mp->b_wptr--; 4653 } 4654 if (error) { 4655 /* Red Alert! Attempting to be a bogon! */ 4656 ip1dbg(("ip_bind: bad src address 0x%x\n", 4657 ntohl(src_addr))); 4658 goto bad_addr; 4659 } 4660 } 4661 4662 /* 4663 * Allow setting new policies. For example, disconnects come 4664 * down as ipa_t bind. As we would have set conn_policy_cached 4665 * to B_TRUE before, we should set it to B_FALSE, so that policy 4666 * can change after the disconnect. 4667 */ 4668 connp->conn_policy_cached = B_FALSE; 4669 4670 /* 4671 * If not fanout_insert this was just an address verification 4672 */ 4673 if (fanout_insert) { 4674 /* 4675 * The addresses have been verified. Time to insert in 4676 * the correct fanout list. 4677 */ 4678 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4679 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4680 connp->conn_lport = lport; 4681 connp->conn_fport = 0; 4682 /* 4683 * Do we need to add a check to reject Multicast packets 4684 * 4685 * We need to make sure that the conn_recv is set to a non-null 4686 * value before we insert the conn into the classifier table. 4687 * This is to avoid a race with an incoming packet which does an 4688 * ipcl_classify(). 4689 */ 4690 if (*mp->b_wptr == IPPROTO_TCP) 4691 connp->conn_recv = tcp_conn_request; 4692 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4693 } 4694 4695 if (error == 0) { 4696 if (ire_requested) { 4697 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4698 error = -1; 4699 /* Falls through to bad_addr */ 4700 } 4701 } else if (ipsec_policy_set) { 4702 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4703 error = -1; 4704 /* Falls through to bad_addr */ 4705 } 4706 } 4707 } else if (connp->conn_ulp == IPPROTO_TCP) { 4708 connp->conn_recv = tcp_input; 4709 } 4710 bad_addr: 4711 if (error != 0) { 4712 if (connp->conn_anon_port) { 4713 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4714 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4715 B_FALSE); 4716 } 4717 connp->conn_mlp_type = mlptSingle; 4718 } 4719 if (src_ire != NULL) 4720 IRE_REFRELE(src_ire); 4721 if (ipsec_policy_set) { 4722 ASSERT(policy_mp == mp->b_cont); 4723 ASSERT(policy_mp != NULL); 4724 freeb(policy_mp); 4725 /* 4726 * As of now assume that nothing else accompanies 4727 * IPSEC_POLICY_SET. 4728 */ 4729 mp->b_cont = NULL; 4730 } 4731 return (error); 4732 } 4733 4734 /* 4735 * Verify that both the source and destination addresses 4736 * are valid. If verify_dst is false, then the destination address may be 4737 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4738 * destination reachability, while tunnels do not. 4739 * Note that we allow connect to broadcast and multicast 4740 * addresses when ire_requested is set. Thus the ULP 4741 * has to check for IRE_BROADCAST and multicast. 4742 * 4743 * Returns zero if ok. 4744 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4745 * (for use with TSYSERR reply). 4746 * 4747 * Note: lport and fport are in network byte order. 4748 */ 4749 int 4750 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4751 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4752 boolean_t ire_requested, boolean_t ipsec_policy_set, 4753 boolean_t fanout_insert, boolean_t verify_dst) 4754 { 4755 ire_t *src_ire; 4756 ire_t *dst_ire; 4757 int error = 0; 4758 int protocol; 4759 mblk_t *policy_mp; 4760 ire_t *sire = NULL; 4761 ire_t *md_dst_ire = NULL; 4762 ire_t *lso_dst_ire = NULL; 4763 ill_t *ill = NULL; 4764 zoneid_t zoneid; 4765 ipaddr_t src_addr = *src_addrp; 4766 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4767 4768 src_ire = dst_ire = NULL; 4769 protocol = *mp->b_wptr & 0xFF; 4770 4771 /* 4772 * If we never got a disconnect before, clear it now. 4773 */ 4774 connp->conn_fully_bound = B_FALSE; 4775 4776 if (ipsec_policy_set) { 4777 policy_mp = mp->b_cont; 4778 } 4779 4780 zoneid = IPCL_ZONEID(connp); 4781 4782 if (CLASSD(dst_addr)) { 4783 /* Pick up an IRE_BROADCAST */ 4784 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4785 NULL, zoneid, MBLK_GETLABEL(mp), 4786 (MATCH_IRE_RECURSIVE | 4787 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4788 MATCH_IRE_SECATTR), ipst); 4789 } else { 4790 /* 4791 * If conn_dontroute is set or if conn_nexthop_set is set, 4792 * and onlink ipif is not found set ENETUNREACH error. 4793 */ 4794 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4795 ipif_t *ipif; 4796 4797 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4798 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4799 if (ipif == NULL) { 4800 error = ENETUNREACH; 4801 goto bad_addr; 4802 } 4803 ipif_refrele(ipif); 4804 } 4805 4806 if (connp->conn_nexthop_set) { 4807 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4808 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4809 MATCH_IRE_SECATTR, ipst); 4810 } else { 4811 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4812 &sire, zoneid, MBLK_GETLABEL(mp), 4813 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4814 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4815 MATCH_IRE_SECATTR), ipst); 4816 } 4817 } 4818 /* 4819 * dst_ire can't be a broadcast when not ire_requested. 4820 * We also prevent ire's with src address INADDR_ANY to 4821 * be used, which are created temporarily for 4822 * sending out packets from endpoints that have 4823 * conn_unspec_src set. If verify_dst is true, the destination must be 4824 * reachable. If verify_dst is false, the destination needn't be 4825 * reachable. 4826 * 4827 * If we match on a reject or black hole, then we've got a 4828 * local failure. May as well fail out the connect() attempt, 4829 * since it's never going to succeed. 4830 */ 4831 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4832 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4833 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4834 /* 4835 * If we're verifying destination reachability, we always want 4836 * to complain here. 4837 * 4838 * If we're not verifying destination reachability but the 4839 * destination has a route, we still want to fail on the 4840 * temporary address and broadcast address tests. 4841 */ 4842 if (verify_dst || (dst_ire != NULL)) { 4843 if (ip_debug > 2) { 4844 pr_addr_dbg("ip_bind_connected: bad connected " 4845 "dst %s\n", AF_INET, &dst_addr); 4846 } 4847 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4848 error = ENETUNREACH; 4849 else 4850 error = EHOSTUNREACH; 4851 goto bad_addr; 4852 } 4853 } 4854 4855 /* 4856 * We now know that routing will allow us to reach the destination. 4857 * Check whether Trusted Solaris policy allows communication with this 4858 * host, and pretend that the destination is unreachable if not. 4859 * 4860 * This is never a problem for TCP, since that transport is known to 4861 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4862 * handling. If the remote is unreachable, it will be detected at that 4863 * point, so there's no reason to check it here. 4864 * 4865 * Note that for sendto (and other datagram-oriented friends), this 4866 * check is done as part of the data path label computation instead. 4867 * The check here is just to make non-TCP connect() report the right 4868 * error. 4869 */ 4870 if (dst_ire != NULL && is_system_labeled() && 4871 !IPCL_IS_TCP(connp) && 4872 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4873 connp->conn_mac_exempt, ipst) != 0) { 4874 error = EHOSTUNREACH; 4875 if (ip_debug > 2) { 4876 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4877 AF_INET, &dst_addr); 4878 } 4879 goto bad_addr; 4880 } 4881 4882 /* 4883 * If the app does a connect(), it means that it will most likely 4884 * send more than 1 packet to the destination. It makes sense 4885 * to clear the temporary flag. 4886 */ 4887 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4888 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4889 irb_t *irb = dst_ire->ire_bucket; 4890 4891 rw_enter(&irb->irb_lock, RW_WRITER); 4892 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4893 irb->irb_tmp_ire_cnt--; 4894 rw_exit(&irb->irb_lock); 4895 } 4896 4897 /* 4898 * See if we should notify ULP about LSO/MDT; we do this whether or not 4899 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4900 * eligibility tests for passive connects are handled separately 4901 * through tcp_adapt_ire(). We do this before the source address 4902 * selection, because dst_ire may change after a call to 4903 * ipif_select_source(). This is a best-effort check, as the 4904 * packet for this connection may not actually go through 4905 * dst_ire->ire_stq, and the exact IRE can only be known after 4906 * calling ip_newroute(). This is why we further check on the 4907 * IRE during LSO/Multidata packet transmission in 4908 * tcp_lsosend()/tcp_multisend(). 4909 */ 4910 if (!ipsec_policy_set && dst_ire != NULL && 4911 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4912 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4913 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4914 lso_dst_ire = dst_ire; 4915 IRE_REFHOLD(lso_dst_ire); 4916 } else if (ipst->ips_ip_multidata_outbound && 4917 ILL_MDT_CAPABLE(ill)) { 4918 md_dst_ire = dst_ire; 4919 IRE_REFHOLD(md_dst_ire); 4920 } 4921 } 4922 4923 if (dst_ire != NULL && 4924 dst_ire->ire_type == IRE_LOCAL && 4925 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4926 /* 4927 * If the IRE belongs to a different zone, look for a matching 4928 * route in the forwarding table and use the source address from 4929 * that route. 4930 */ 4931 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4932 zoneid, 0, NULL, 4933 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4934 MATCH_IRE_RJ_BHOLE, ipst); 4935 if (src_ire == NULL) { 4936 error = EHOSTUNREACH; 4937 goto bad_addr; 4938 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4939 if (!(src_ire->ire_type & IRE_HOST)) 4940 error = ENETUNREACH; 4941 else 4942 error = EHOSTUNREACH; 4943 goto bad_addr; 4944 } 4945 if (src_addr == INADDR_ANY) 4946 src_addr = src_ire->ire_src_addr; 4947 ire_refrele(src_ire); 4948 src_ire = NULL; 4949 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4950 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4951 src_addr = sire->ire_src_addr; 4952 ire_refrele(dst_ire); 4953 dst_ire = sire; 4954 sire = NULL; 4955 } else { 4956 /* 4957 * Pick a source address so that a proper inbound 4958 * load spreading would happen. 4959 */ 4960 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4961 ipif_t *src_ipif = NULL; 4962 ire_t *ipif_ire; 4963 4964 /* 4965 * Supply a local source address such that inbound 4966 * load spreading happens. 4967 * 4968 * Determine the best source address on this ill for 4969 * the destination. 4970 * 4971 * 1) For broadcast, we should return a broadcast ire 4972 * found above so that upper layers know that the 4973 * destination address is a broadcast address. 4974 * 4975 * 2) If this is part of a group, select a better 4976 * source address so that better inbound load 4977 * balancing happens. Do the same if the ipif 4978 * is DEPRECATED. 4979 * 4980 * 3) If the outgoing interface is part of a usesrc 4981 * group, then try selecting a source address from 4982 * the usesrc ILL. 4983 */ 4984 if ((dst_ire->ire_zoneid != zoneid && 4985 dst_ire->ire_zoneid != ALL_ZONES) || 4986 (!(dst_ire->ire_type & IRE_BROADCAST) && 4987 ((dst_ill->ill_group != NULL) || 4988 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4989 (dst_ill->ill_usesrc_ifindex != 0)))) { 4990 /* 4991 * If the destination is reachable via a 4992 * given gateway, the selected source address 4993 * should be in the same subnet as the gateway. 4994 * Otherwise, the destination is not reachable. 4995 * 4996 * If there are no interfaces on the same subnet 4997 * as the destination, ipif_select_source gives 4998 * first non-deprecated interface which might be 4999 * on a different subnet than the gateway. 5000 * This is not desirable. Hence pass the dst_ire 5001 * source address to ipif_select_source. 5002 * It is sure that the destination is reachable 5003 * with the dst_ire source address subnet. 5004 * So passing dst_ire source address to 5005 * ipif_select_source will make sure that the 5006 * selected source will be on the same subnet 5007 * as dst_ire source address. 5008 */ 5009 ipaddr_t saddr = 5010 dst_ire->ire_ipif->ipif_src_addr; 5011 src_ipif = ipif_select_source(dst_ill, 5012 saddr, zoneid); 5013 if (src_ipif != NULL) { 5014 if (IS_VNI(src_ipif->ipif_ill)) { 5015 /* 5016 * For VNI there is no 5017 * interface route 5018 */ 5019 src_addr = 5020 src_ipif->ipif_src_addr; 5021 } else { 5022 ipif_ire = 5023 ipif_to_ire(src_ipif); 5024 if (ipif_ire != NULL) { 5025 IRE_REFRELE(dst_ire); 5026 dst_ire = ipif_ire; 5027 } 5028 src_addr = 5029 dst_ire->ire_src_addr; 5030 } 5031 ipif_refrele(src_ipif); 5032 } else { 5033 src_addr = dst_ire->ire_src_addr; 5034 } 5035 } else { 5036 src_addr = dst_ire->ire_src_addr; 5037 } 5038 } 5039 } 5040 5041 /* 5042 * We do ire_route_lookup() here (and not 5043 * interface lookup as we assert that 5044 * src_addr should only come from an 5045 * UP interface for hard binding. 5046 */ 5047 ASSERT(src_ire == NULL); 5048 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5049 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5050 /* src_ire must be a local|loopback */ 5051 if (!IRE_IS_LOCAL(src_ire)) { 5052 if (ip_debug > 2) { 5053 pr_addr_dbg("ip_bind_connected: bad connected " 5054 "src %s\n", AF_INET, &src_addr); 5055 } 5056 error = EADDRNOTAVAIL; 5057 goto bad_addr; 5058 } 5059 5060 /* 5061 * If the source address is a loopback address, the 5062 * destination had best be local or multicast. 5063 * The transports that can't handle multicast will reject 5064 * those addresses. 5065 */ 5066 if (src_ire->ire_type == IRE_LOOPBACK && 5067 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5068 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5069 error = -1; 5070 goto bad_addr; 5071 } 5072 5073 /* 5074 * Allow setting new policies. For example, disconnects come 5075 * down as ipa_t bind. As we would have set conn_policy_cached 5076 * to B_TRUE before, we should set it to B_FALSE, so that policy 5077 * can change after the disconnect. 5078 */ 5079 connp->conn_policy_cached = B_FALSE; 5080 5081 /* 5082 * Set the conn addresses/ports immediately, so the IPsec policy calls 5083 * can handle their passed-in conn's. 5084 */ 5085 5086 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5087 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5088 connp->conn_lport = lport; 5089 connp->conn_fport = fport; 5090 *src_addrp = src_addr; 5091 5092 ASSERT(!(ipsec_policy_set && ire_requested)); 5093 if (ire_requested) { 5094 iulp_t *ulp_info = NULL; 5095 5096 /* 5097 * Note that sire will not be NULL if this is an off-link 5098 * connection and there is not cache for that dest yet. 5099 * 5100 * XXX Because of an existing bug, if there are multiple 5101 * default routes, the IRE returned now may not be the actual 5102 * default route used (default routes are chosen in a 5103 * round robin fashion). So if the metrics for different 5104 * default routes are different, we may return the wrong 5105 * metrics. This will not be a problem if the existing 5106 * bug is fixed. 5107 */ 5108 if (sire != NULL) { 5109 ulp_info = &(sire->ire_uinfo); 5110 } 5111 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5112 error = -1; 5113 goto bad_addr; 5114 } 5115 } else if (ipsec_policy_set) { 5116 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5117 error = -1; 5118 goto bad_addr; 5119 } 5120 } 5121 5122 /* 5123 * Cache IPsec policy in this conn. If we have per-socket policy, 5124 * we'll cache that. If we don't, we'll inherit global policy. 5125 * 5126 * We can't insert until the conn reflects the policy. Note that 5127 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5128 * connections where we don't have a policy. This is to prevent 5129 * global policy lookups in the inbound path. 5130 * 5131 * If we insert before we set conn_policy_cached, 5132 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5133 * because global policy cound be non-empty. We normally call 5134 * ipsec_check_policy() for conn_policy_cached connections only if 5135 * ipc_in_enforce_policy is set. But in this case, 5136 * conn_policy_cached can get set anytime since we made the 5137 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5138 * called, which will make the above assumption false. Thus, we 5139 * need to insert after we set conn_policy_cached. 5140 */ 5141 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5142 goto bad_addr; 5143 5144 if (fanout_insert) { 5145 /* 5146 * The addresses have been verified. Time to insert in 5147 * the correct fanout list. 5148 * We need to make sure that the conn_recv is set to a non-null 5149 * value before we insert into the classifier table to avoid a 5150 * race with an incoming packet which does an ipcl_classify(). 5151 */ 5152 if (protocol == IPPROTO_TCP) 5153 connp->conn_recv = tcp_input; 5154 error = ipcl_conn_insert(connp, protocol, src_addr, 5155 dst_addr, connp->conn_ports); 5156 } 5157 5158 if (error == 0) { 5159 connp->conn_fully_bound = B_TRUE; 5160 /* 5161 * Our initial checks for LSO/MDT have passed; the IRE is not 5162 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5163 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5164 * ip_xxinfo_return(), which performs further checks 5165 * against them and upon success, returns the LSO/MDT info 5166 * mblk which we will attach to the bind acknowledgment. 5167 */ 5168 if (lso_dst_ire != NULL) { 5169 mblk_t *lsoinfo_mp; 5170 5171 ASSERT(ill->ill_lso_capab != NULL); 5172 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5173 ill->ill_name, ill->ill_lso_capab)) != NULL) 5174 linkb(mp, lsoinfo_mp); 5175 } else if (md_dst_ire != NULL) { 5176 mblk_t *mdinfo_mp; 5177 5178 ASSERT(ill->ill_mdt_capab != NULL); 5179 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5180 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5181 linkb(mp, mdinfo_mp); 5182 } 5183 } 5184 bad_addr: 5185 if (ipsec_policy_set) { 5186 ASSERT(policy_mp == mp->b_cont); 5187 ASSERT(policy_mp != NULL); 5188 freeb(policy_mp); 5189 /* 5190 * As of now assume that nothing else accompanies 5191 * IPSEC_POLICY_SET. 5192 */ 5193 mp->b_cont = NULL; 5194 } 5195 if (src_ire != NULL) 5196 IRE_REFRELE(src_ire); 5197 if (dst_ire != NULL) 5198 IRE_REFRELE(dst_ire); 5199 if (sire != NULL) 5200 IRE_REFRELE(sire); 5201 if (md_dst_ire != NULL) 5202 IRE_REFRELE(md_dst_ire); 5203 if (lso_dst_ire != NULL) 5204 IRE_REFRELE(lso_dst_ire); 5205 return (error); 5206 } 5207 5208 /* 5209 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5210 * Prefers dst_ire over src_ire. 5211 */ 5212 static boolean_t 5213 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5214 { 5215 mblk_t *mp1; 5216 ire_t *ret_ire = NULL; 5217 5218 mp1 = mp->b_cont; 5219 ASSERT(mp1 != NULL); 5220 5221 if (ire != NULL) { 5222 /* 5223 * mp1 initialized above to IRE_DB_REQ_TYPE 5224 * appended mblk. Its <upper protocol>'s 5225 * job to make sure there is room. 5226 */ 5227 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5228 return (0); 5229 5230 mp1->b_datap->db_type = IRE_DB_TYPE; 5231 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5232 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5233 ret_ire = (ire_t *)mp1->b_rptr; 5234 /* 5235 * Pass the latest setting of the ip_path_mtu_discovery and 5236 * copy the ulp info if any. 5237 */ 5238 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5239 IPH_DF : 0; 5240 if (ulp_info != NULL) { 5241 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5242 sizeof (iulp_t)); 5243 } 5244 ret_ire->ire_mp = mp1; 5245 } else { 5246 /* 5247 * No IRE was found. Remove IRE mblk. 5248 */ 5249 mp->b_cont = mp1->b_cont; 5250 freeb(mp1); 5251 } 5252 5253 return (1); 5254 } 5255 5256 /* 5257 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5258 * the final piece where we don't. Return a pointer to the first mblk in the 5259 * result, and update the pointer to the next mblk to chew on. If anything 5260 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5261 * NULL pointer. 5262 */ 5263 mblk_t * 5264 ip_carve_mp(mblk_t **mpp, ssize_t len) 5265 { 5266 mblk_t *mp0; 5267 mblk_t *mp1; 5268 mblk_t *mp2; 5269 5270 if (!len || !mpp || !(mp0 = *mpp)) 5271 return (NULL); 5272 /* If we aren't going to consume the first mblk, we need a dup. */ 5273 if (mp0->b_wptr - mp0->b_rptr > len) { 5274 mp1 = dupb(mp0); 5275 if (mp1) { 5276 /* Partition the data between the two mblks. */ 5277 mp1->b_wptr = mp1->b_rptr + len; 5278 mp0->b_rptr = mp1->b_wptr; 5279 /* 5280 * after adjustments if mblk not consumed is now 5281 * unaligned, try to align it. If this fails free 5282 * all messages and let upper layer recover. 5283 */ 5284 if (!OK_32PTR(mp0->b_rptr)) { 5285 if (!pullupmsg(mp0, -1)) { 5286 freemsg(mp0); 5287 freemsg(mp1); 5288 *mpp = NULL; 5289 return (NULL); 5290 } 5291 } 5292 } 5293 return (mp1); 5294 } 5295 /* Eat through as many mblks as we need to get len bytes. */ 5296 len -= mp0->b_wptr - mp0->b_rptr; 5297 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5298 if (mp2->b_wptr - mp2->b_rptr > len) { 5299 /* 5300 * We won't consume the entire last mblk. Like 5301 * above, dup and partition it. 5302 */ 5303 mp1->b_cont = dupb(mp2); 5304 mp1 = mp1->b_cont; 5305 if (!mp1) { 5306 /* 5307 * Trouble. Rather than go to a lot of 5308 * trouble to clean up, we free the messages. 5309 * This won't be any worse than losing it on 5310 * the wire. 5311 */ 5312 freemsg(mp0); 5313 freemsg(mp2); 5314 *mpp = NULL; 5315 return (NULL); 5316 } 5317 mp1->b_wptr = mp1->b_rptr + len; 5318 mp2->b_rptr = mp1->b_wptr; 5319 /* 5320 * after adjustments if mblk not consumed is now 5321 * unaligned, try to align it. If this fails free 5322 * all messages and let upper layer recover. 5323 */ 5324 if (!OK_32PTR(mp2->b_rptr)) { 5325 if (!pullupmsg(mp2, -1)) { 5326 freemsg(mp0); 5327 freemsg(mp2); 5328 *mpp = NULL; 5329 return (NULL); 5330 } 5331 } 5332 *mpp = mp2; 5333 return (mp0); 5334 } 5335 /* Decrement len by the amount we just got. */ 5336 len -= mp2->b_wptr - mp2->b_rptr; 5337 } 5338 /* 5339 * len should be reduced to zero now. If not our caller has 5340 * screwed up. 5341 */ 5342 if (len) { 5343 /* Shouldn't happen! */ 5344 freemsg(mp0); 5345 *mpp = NULL; 5346 return (NULL); 5347 } 5348 /* 5349 * We consumed up to exactly the end of an mblk. Detach the part 5350 * we are returning from the rest of the chain. 5351 */ 5352 mp1->b_cont = NULL; 5353 *mpp = mp2; 5354 return (mp0); 5355 } 5356 5357 /* The ill stream is being unplumbed. Called from ip_close */ 5358 int 5359 ip_modclose(ill_t *ill) 5360 { 5361 5362 boolean_t success; 5363 ipsq_t *ipsq; 5364 ipif_t *ipif; 5365 queue_t *q = ill->ill_rq; 5366 ip_stack_t *ipst = ill->ill_ipst; 5367 clock_t timeout; 5368 5369 /* 5370 * Wait for the ACKs of all deferred control messages to be processed. 5371 * In particular, we wait for a potential capability reset initiated 5372 * in ip_sioctl_plink() to complete before proceeding. 5373 * 5374 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5375 * in case the driver never replies. 5376 */ 5377 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5378 mutex_enter(&ill->ill_lock); 5379 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5380 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5381 /* Timeout */ 5382 break; 5383 } 5384 } 5385 mutex_exit(&ill->ill_lock); 5386 5387 /* 5388 * Forcibly enter the ipsq after some delay. This is to take 5389 * care of the case when some ioctl does not complete because 5390 * we sent a control message to the driver and it did not 5391 * send us a reply. We want to be able to at least unplumb 5392 * and replumb rather than force the user to reboot the system. 5393 */ 5394 success = ipsq_enter(ill, B_FALSE); 5395 5396 /* 5397 * Open/close/push/pop is guaranteed to be single threaded 5398 * per stream by STREAMS. FS guarantees that all references 5399 * from top are gone before close is called. So there can't 5400 * be another close thread that has set CONDEMNED on this ill. 5401 * and cause ipsq_enter to return failure. 5402 */ 5403 ASSERT(success); 5404 ipsq = ill->ill_phyint->phyint_ipsq; 5405 5406 /* 5407 * Mark it condemned. No new reference will be made to this ill. 5408 * Lookup functions will return an error. Threads that try to 5409 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5410 * that the refcnt will drop down to zero. 5411 */ 5412 mutex_enter(&ill->ill_lock); 5413 ill->ill_state_flags |= ILL_CONDEMNED; 5414 for (ipif = ill->ill_ipif; ipif != NULL; 5415 ipif = ipif->ipif_next) { 5416 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5417 } 5418 /* 5419 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5420 * returns error if ILL_CONDEMNED is set 5421 */ 5422 cv_broadcast(&ill->ill_cv); 5423 mutex_exit(&ill->ill_lock); 5424 5425 /* 5426 * Send all the deferred control messages downstream which came in 5427 * during the small window right before ipsq_enter(). We do this 5428 * without waiting for the ACKs because all the ACKs for M_PROTO 5429 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5430 */ 5431 ill_send_all_deferred_mp(ill); 5432 5433 /* 5434 * Shut down fragmentation reassembly. 5435 * ill_frag_timer won't start a timer again. 5436 * Now cancel any existing timer 5437 */ 5438 (void) untimeout(ill->ill_frag_timer_id); 5439 (void) ill_frag_timeout(ill, 0); 5440 5441 /* 5442 * If MOVE was in progress, clear the 5443 * move_in_progress fields also. 5444 */ 5445 if (ill->ill_move_in_progress) { 5446 ILL_CLEAR_MOVE(ill); 5447 } 5448 5449 /* 5450 * Call ill_delete to bring down the ipifs, ilms and ill on 5451 * this ill. Then wait for the refcnts to drop to zero. 5452 * ill_is_quiescent checks whether the ill is really quiescent. 5453 * Then make sure that threads that are waiting to enter the 5454 * ipsq have seen the error returned by ipsq_enter and have 5455 * gone away. Then we call ill_delete_tail which does the 5456 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 5457 */ 5458 ill_delete(ill); 5459 mutex_enter(&ill->ill_lock); 5460 while (!ill_is_quiescent(ill)) 5461 cv_wait(&ill->ill_cv, &ill->ill_lock); 5462 while (ill->ill_waiters) 5463 cv_wait(&ill->ill_cv, &ill->ill_lock); 5464 5465 mutex_exit(&ill->ill_lock); 5466 5467 /* 5468 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5469 * it held until the end of the function since the cleanup 5470 * below needs to be able to use the ip_stack_t. 5471 */ 5472 netstack_hold(ipst->ips_netstack); 5473 5474 /* qprocsoff is called in ill_delete_tail */ 5475 ill_delete_tail(ill); 5476 ASSERT(ill->ill_ipst == NULL); 5477 5478 /* 5479 * Walk through all upper (conn) streams and qenable 5480 * those that have queued data. 5481 * close synchronization needs this to 5482 * be done to ensure that all upper layers blocked 5483 * due to flow control to the closing device 5484 * get unblocked. 5485 */ 5486 ip1dbg(("ip_wsrv: walking\n")); 5487 conn_walk_drain(ipst); 5488 5489 mutex_enter(&ipst->ips_ip_mi_lock); 5490 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5491 mutex_exit(&ipst->ips_ip_mi_lock); 5492 5493 /* 5494 * credp could be null if the open didn't succeed and ip_modopen 5495 * itself calls ip_close. 5496 */ 5497 if (ill->ill_credp != NULL) 5498 crfree(ill->ill_credp); 5499 5500 mutex_enter(&ill->ill_lock); 5501 ill_nic_info_dispatch(ill); 5502 mutex_exit(&ill->ill_lock); 5503 5504 /* 5505 * Now we are done with the module close pieces that 5506 * need the netstack_t. 5507 */ 5508 netstack_rele(ipst->ips_netstack); 5509 5510 mi_close_free((IDP)ill); 5511 q->q_ptr = WR(q)->q_ptr = NULL; 5512 5513 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5514 5515 return (0); 5516 } 5517 5518 /* 5519 * This is called as part of close() for both IP and UDP 5520 * in order to quiesce the conn. 5521 */ 5522 void 5523 ip_quiesce_conn(conn_t *connp) 5524 { 5525 boolean_t drain_cleanup_reqd = B_FALSE; 5526 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5527 boolean_t ilg_cleanup_reqd = B_FALSE; 5528 ip_stack_t *ipst; 5529 5530 ASSERT(!IPCL_IS_TCP(connp)); 5531 ipst = connp->conn_netstack->netstack_ip; 5532 5533 /* 5534 * Mark the conn as closing, and this conn must not be 5535 * inserted in future into any list. Eg. conn_drain_insert(), 5536 * won't insert this conn into the conn_drain_list. 5537 * Similarly ill_pending_mp_add() will not add any mp to 5538 * the pending mp list, after this conn has started closing. 5539 * 5540 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5541 * cannot get set henceforth. 5542 */ 5543 mutex_enter(&connp->conn_lock); 5544 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5545 connp->conn_state_flags |= CONN_CLOSING; 5546 if (connp->conn_idl != NULL) 5547 drain_cleanup_reqd = B_TRUE; 5548 if (connp->conn_oper_pending_ill != NULL) 5549 conn_ioctl_cleanup_reqd = B_TRUE; 5550 if (connp->conn_ilg_inuse != 0) 5551 ilg_cleanup_reqd = B_TRUE; 5552 mutex_exit(&connp->conn_lock); 5553 5554 if (IPCL_IS_UDP(connp)) 5555 udp_quiesce_conn(connp); 5556 5557 if (conn_ioctl_cleanup_reqd) 5558 conn_ioctl_cleanup(connp); 5559 5560 if (is_system_labeled() && connp->conn_anon_port) { 5561 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5562 connp->conn_mlp_type, connp->conn_ulp, 5563 ntohs(connp->conn_lport), B_FALSE); 5564 connp->conn_anon_port = 0; 5565 } 5566 connp->conn_mlp_type = mlptSingle; 5567 5568 /* 5569 * Remove this conn from any fanout list it is on. 5570 * and then wait for any threads currently operating 5571 * on this endpoint to finish 5572 */ 5573 ipcl_hash_remove(connp); 5574 5575 /* 5576 * Remove this conn from the drain list, and do 5577 * any other cleanup that may be required. 5578 * (Only non-tcp streams may have a non-null conn_idl. 5579 * TCP streams are never flow controlled, and 5580 * conn_idl will be null) 5581 */ 5582 if (drain_cleanup_reqd) 5583 conn_drain_tail(connp, B_TRUE); 5584 5585 if (connp->conn_rq == ipst->ips_ip_g_mrouter || 5586 connp->conn_wq == ipst->ips_ip_g_mrouter) 5587 (void) ip_mrouter_done(NULL, ipst); 5588 5589 if (ilg_cleanup_reqd) 5590 ilg_delete_all(connp); 5591 5592 conn_delete_ire(connp, NULL); 5593 5594 /* 5595 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5596 * callers from write side can't be there now because close 5597 * is in progress. The only other caller is ipcl_walk 5598 * which checks for the condemned flag. 5599 */ 5600 mutex_enter(&connp->conn_lock); 5601 connp->conn_state_flags |= CONN_CONDEMNED; 5602 while (connp->conn_ref != 1) 5603 cv_wait(&connp->conn_cv, &connp->conn_lock); 5604 connp->conn_state_flags |= CONN_QUIESCED; 5605 mutex_exit(&connp->conn_lock); 5606 } 5607 5608 /* ARGSUSED */ 5609 int 5610 ip_close(queue_t *q, int flags) 5611 { 5612 conn_t *connp; 5613 5614 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5615 5616 /* 5617 * Call the appropriate delete routine depending on whether this is 5618 * a module or device. 5619 */ 5620 if (WR(q)->q_next != NULL) { 5621 /* This is a module close */ 5622 return (ip_modclose((ill_t *)q->q_ptr)); 5623 } 5624 5625 connp = q->q_ptr; 5626 ip_quiesce_conn(connp); 5627 5628 qprocsoff(q); 5629 5630 /* 5631 * Now we are truly single threaded on this stream, and can 5632 * delete the things hanging off the connp, and finally the connp. 5633 * We removed this connp from the fanout list, it cannot be 5634 * accessed thru the fanouts, and we already waited for the 5635 * conn_ref to drop to 0. We are already in close, so 5636 * there cannot be any other thread from the top. qprocsoff 5637 * has completed, and service has completed or won't run in 5638 * future. 5639 */ 5640 ASSERT(connp->conn_ref == 1); 5641 5642 /* 5643 * A conn which was previously marked as IPCL_UDP cannot 5644 * retain the flag because it would have been cleared by 5645 * udp_close(). 5646 */ 5647 ASSERT(!IPCL_IS_UDP(connp)); 5648 5649 if (connp->conn_latch != NULL) { 5650 IPLATCH_REFRELE(connp->conn_latch, connp->conn_netstack); 5651 connp->conn_latch = NULL; 5652 } 5653 if (connp->conn_policy != NULL) { 5654 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 5655 connp->conn_policy = NULL; 5656 } 5657 if (connp->conn_ipsec_opt_mp != NULL) { 5658 freemsg(connp->conn_ipsec_opt_mp); 5659 connp->conn_ipsec_opt_mp = NULL; 5660 } 5661 5662 inet_minor_free(ip_minor_arena, connp->conn_dev); 5663 5664 connp->conn_ref--; 5665 ipcl_conn_destroy(connp); 5666 5667 q->q_ptr = WR(q)->q_ptr = NULL; 5668 return (0); 5669 } 5670 5671 int 5672 ip_snmpmod_close(queue_t *q) 5673 { 5674 conn_t *connp = Q_TO_CONN(q); 5675 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5676 5677 qprocsoff(q); 5678 5679 if (connp->conn_flags & IPCL_UDPMOD) 5680 udp_close_free(connp); 5681 5682 if (connp->conn_cred != NULL) { 5683 crfree(connp->conn_cred); 5684 connp->conn_cred = NULL; 5685 } 5686 CONN_DEC_REF(connp); 5687 q->q_ptr = WR(q)->q_ptr = NULL; 5688 return (0); 5689 } 5690 5691 /* 5692 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5693 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5694 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5695 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5696 * queues as we never enqueue messages there and we don't handle any ioctls. 5697 * Everything else is freed. 5698 */ 5699 void 5700 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5701 { 5702 conn_t *connp = q->q_ptr; 5703 pfi_t setfn; 5704 pfi_t getfn; 5705 5706 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5707 5708 switch (DB_TYPE(mp)) { 5709 case M_PROTO: 5710 case M_PCPROTO: 5711 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5712 ((((union T_primitives *)mp->b_rptr)->type == 5713 T_SVR4_OPTMGMT_REQ) || 5714 (((union T_primitives *)mp->b_rptr)->type == 5715 T_OPTMGMT_REQ))) { 5716 /* 5717 * This is the only TPI primitive supported. Its 5718 * handling does not require tcp_t, but it does require 5719 * conn_t to check permissions. 5720 */ 5721 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5722 5723 if (connp->conn_flags & IPCL_TCPMOD) { 5724 setfn = tcp_snmp_set; 5725 getfn = tcp_snmp_get; 5726 } else { 5727 setfn = udp_snmp_set; 5728 getfn = udp_snmp_get; 5729 } 5730 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5731 freemsg(mp); 5732 return; 5733 } 5734 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5735 != NULL) 5736 qreply(q, mp); 5737 break; 5738 case M_FLUSH: 5739 case M_IOCTL: 5740 putnext(q, mp); 5741 break; 5742 default: 5743 freemsg(mp); 5744 break; 5745 } 5746 } 5747 5748 /* Return the IP checksum for the IP header at "iph". */ 5749 uint16_t 5750 ip_csum_hdr(ipha_t *ipha) 5751 { 5752 uint16_t *uph; 5753 uint32_t sum; 5754 int opt_len; 5755 5756 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5757 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5758 uph = (uint16_t *)ipha; 5759 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5760 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5761 if (opt_len > 0) { 5762 do { 5763 sum += uph[10]; 5764 sum += uph[11]; 5765 uph += 2; 5766 } while (--opt_len); 5767 } 5768 sum = (sum & 0xFFFF) + (sum >> 16); 5769 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5770 if (sum == 0xffff) 5771 sum = 0; 5772 return ((uint16_t)sum); 5773 } 5774 5775 /* 5776 * Called when the module is about to be unloaded 5777 */ 5778 void 5779 ip_ddi_destroy(void) 5780 { 5781 tnet_fini(); 5782 5783 sctp_ddi_g_destroy(); 5784 tcp_ddi_g_destroy(); 5785 ipsec_policy_g_destroy(); 5786 ipcl_g_destroy(); 5787 ip_net_g_destroy(); 5788 ip_ire_g_fini(); 5789 inet_minor_destroy(ip_minor_arena); 5790 5791 netstack_unregister(NS_IP); 5792 } 5793 5794 /* 5795 * First step in cleanup. 5796 */ 5797 /* ARGSUSED */ 5798 static void 5799 ip_stack_shutdown(netstackid_t stackid, void *arg) 5800 { 5801 ip_stack_t *ipst = (ip_stack_t *)arg; 5802 5803 #ifdef NS_DEBUG 5804 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5805 #endif 5806 5807 /* Get rid of loopback interfaces and their IREs */ 5808 ip_loopback_cleanup(ipst); 5809 } 5810 5811 /* 5812 * Free the IP stack instance. 5813 */ 5814 static void 5815 ip_stack_fini(netstackid_t stackid, void *arg) 5816 { 5817 ip_stack_t *ipst = (ip_stack_t *)arg; 5818 int ret; 5819 5820 #ifdef NS_DEBUG 5821 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5822 #endif 5823 ipv4_hook_destroy(ipst); 5824 ipv6_hook_destroy(ipst); 5825 ip_net_destroy(ipst); 5826 5827 rw_destroy(&ipst->ips_srcid_lock); 5828 5829 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5830 ipst->ips_ip_mibkp = NULL; 5831 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5832 ipst->ips_icmp_mibkp = NULL; 5833 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5834 ipst->ips_ip_kstat = NULL; 5835 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5836 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5837 ipst->ips_ip6_kstat = NULL; 5838 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5839 5840 nd_free(&ipst->ips_ip_g_nd); 5841 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5842 ipst->ips_param_arr = NULL; 5843 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5844 ipst->ips_ndp_arr = NULL; 5845 5846 ip_mrouter_stack_destroy(ipst); 5847 5848 mutex_destroy(&ipst->ips_ip_mi_lock); 5849 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5850 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5851 rw_destroy(&ipst->ips_ip_g_nd_lock); 5852 5853 ret = untimeout(ipst->ips_igmp_timeout_id); 5854 if (ret == -1) { 5855 ASSERT(ipst->ips_igmp_timeout_id == 0); 5856 } else { 5857 ASSERT(ipst->ips_igmp_timeout_id != 0); 5858 ipst->ips_igmp_timeout_id = 0; 5859 } 5860 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5861 if (ret == -1) { 5862 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5863 } else { 5864 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5865 ipst->ips_igmp_slowtimeout_id = 0; 5866 } 5867 ret = untimeout(ipst->ips_mld_timeout_id); 5868 if (ret == -1) { 5869 ASSERT(ipst->ips_mld_timeout_id == 0); 5870 } else { 5871 ASSERT(ipst->ips_mld_timeout_id != 0); 5872 ipst->ips_mld_timeout_id = 0; 5873 } 5874 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5875 if (ret == -1) { 5876 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5877 } else { 5878 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5879 ipst->ips_mld_slowtimeout_id = 0; 5880 } 5881 ret = untimeout(ipst->ips_ip_ire_expire_id); 5882 if (ret == -1) { 5883 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5884 } else { 5885 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5886 ipst->ips_ip_ire_expire_id = 0; 5887 } 5888 5889 mutex_destroy(&ipst->ips_igmp_timer_lock); 5890 mutex_destroy(&ipst->ips_mld_timer_lock); 5891 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5892 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5893 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5894 rw_destroy(&ipst->ips_ill_g_lock); 5895 5896 ip_ire_fini(ipst); 5897 ip6_asp_free(ipst); 5898 conn_drain_fini(ipst); 5899 ipcl_destroy(ipst); 5900 5901 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5902 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5903 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5904 ipst->ips_ndp4 = NULL; 5905 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5906 ipst->ips_ndp6 = NULL; 5907 5908 if (ipst->ips_loopback_ksp != NULL) { 5909 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5910 ipst->ips_loopback_ksp = NULL; 5911 } 5912 5913 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5914 ipst->ips_phyint_g_list = NULL; 5915 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5916 ipst->ips_ill_g_heads = NULL; 5917 5918 kmem_free(ipst, sizeof (*ipst)); 5919 } 5920 5921 /* 5922 * Called when the IP kernel module is loaded into the kernel 5923 */ 5924 void 5925 ip_ddi_init(void) 5926 { 5927 TCP6_MAJ = ddi_name_to_major(TCP6); 5928 TCP_MAJ = ddi_name_to_major(TCP); 5929 SCTP_MAJ = ddi_name_to_major(SCTP); 5930 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5931 5932 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5933 5934 /* 5935 * For IP and TCP the minor numbers should start from 2 since we have 4 5936 * initial devices: ip, ip6, tcp, tcp6. 5937 */ 5938 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5939 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5940 cmn_err(CE_PANIC, 5941 "ip_ddi_init: ip_minor_arena creation failed\n"); 5942 } 5943 5944 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5945 5946 ipcl_g_init(); 5947 ip_ire_g_init(); 5948 ip_net_g_init(); 5949 5950 /* 5951 * We want to be informed each time a stack is created or 5952 * destroyed in the kernel, so we can maintain the 5953 * set of udp_stack_t's. 5954 */ 5955 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5956 ip_stack_fini); 5957 5958 ipsec_policy_g_init(); 5959 tcp_ddi_g_init(); 5960 sctp_ddi_g_init(); 5961 5962 tnet_init(); 5963 } 5964 5965 /* 5966 * Initialize the IP stack instance. 5967 */ 5968 static void * 5969 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5970 { 5971 ip_stack_t *ipst; 5972 ipparam_t *pa; 5973 ipndp_t *na; 5974 5975 #ifdef NS_DEBUG 5976 printf("ip_stack_init(stack %d)\n", stackid); 5977 #endif 5978 5979 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5980 ipst->ips_netstack = ns; 5981 5982 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5983 KM_SLEEP); 5984 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5985 KM_SLEEP); 5986 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5987 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5988 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5989 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5990 5991 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5992 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5993 ipst->ips_igmp_deferred_next = INFINITY; 5994 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5995 ipst->ips_mld_deferred_next = INFINITY; 5996 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5997 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5998 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5999 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 6000 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 6001 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 6002 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 6003 6004 ipcl_init(ipst); 6005 ip_ire_init(ipst); 6006 ip6_asp_init(ipst); 6007 ipif_init(ipst); 6008 conn_drain_init(ipst); 6009 ip_mrouter_stack_init(ipst); 6010 6011 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 6012 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 6013 6014 ipst->ips_ip_multirt_log_interval = 1000; 6015 6016 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 6017 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 6018 ipst->ips_ill_index = 1; 6019 6020 ipst->ips_saved_ip_g_forward = -1; 6021 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6022 6023 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6024 ipst->ips_param_arr = pa; 6025 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6026 6027 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6028 ipst->ips_ndp_arr = na; 6029 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6030 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6031 (caddr_t)&ipst->ips_ip_g_forward; 6032 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6033 (caddr_t)&ipst->ips_ipv6_forward; 6034 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6035 "ip_cgtp_filter") == 0); 6036 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6037 (caddr_t)&ip_cgtp_filter; 6038 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 6039 "ipmp_hook_emulation") == 0); 6040 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 6041 (caddr_t)&ipst->ips_ipmp_hook_emulation; 6042 6043 (void) ip_param_register(&ipst->ips_ip_g_nd, 6044 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6045 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6046 6047 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6048 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6049 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6050 ipst->ips_ip6_kstat = 6051 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6052 6053 ipst->ips_ipmp_enable_failback = B_TRUE; 6054 6055 ipst->ips_ip_src_id = 1; 6056 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6057 6058 ip_net_init(ipst, ns); 6059 ipv4_hook_init(ipst); 6060 ipv6_hook_init(ipst); 6061 6062 return (ipst); 6063 } 6064 6065 /* 6066 * Allocate and initialize a DLPI template of the specified length. (May be 6067 * called as writer.) 6068 */ 6069 mblk_t * 6070 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6071 { 6072 mblk_t *mp; 6073 6074 mp = allocb(len, BPRI_MED); 6075 if (!mp) 6076 return (NULL); 6077 6078 /* 6079 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6080 * of which we don't seem to use) are sent with M_PCPROTO, and 6081 * that other DLPI are M_PROTO. 6082 */ 6083 if (prim == DL_INFO_REQ) { 6084 mp->b_datap->db_type = M_PCPROTO; 6085 } else { 6086 mp->b_datap->db_type = M_PROTO; 6087 } 6088 6089 mp->b_wptr = mp->b_rptr + len; 6090 bzero(mp->b_rptr, len); 6091 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6092 return (mp); 6093 } 6094 6095 const char * 6096 dlpi_prim_str(int prim) 6097 { 6098 switch (prim) { 6099 case DL_INFO_REQ: return ("DL_INFO_REQ"); 6100 case DL_INFO_ACK: return ("DL_INFO_ACK"); 6101 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 6102 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 6103 case DL_BIND_REQ: return ("DL_BIND_REQ"); 6104 case DL_BIND_ACK: return ("DL_BIND_ACK"); 6105 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 6106 case DL_OK_ACK: return ("DL_OK_ACK"); 6107 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 6108 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 6109 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 6110 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 6111 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 6112 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 6113 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 6114 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 6115 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 6116 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 6117 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 6118 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 6119 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 6120 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 6121 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 6122 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 6123 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 6124 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 6125 default: return ("<unknown primitive>"); 6126 } 6127 } 6128 6129 const char * 6130 dlpi_err_str(int err) 6131 { 6132 switch (err) { 6133 case DL_ACCESS: return ("DL_ACCESS"); 6134 case DL_BADADDR: return ("DL_BADADDR"); 6135 case DL_BADCORR: return ("DL_BADCORR"); 6136 case DL_BADDATA: return ("DL_BADDATA"); 6137 case DL_BADPPA: return ("DL_BADPPA"); 6138 case DL_BADPRIM: return ("DL_BADPRIM"); 6139 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 6140 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 6141 case DL_BADSAP: return ("DL_BADSAP"); 6142 case DL_BADTOKEN: return ("DL_BADTOKEN"); 6143 case DL_BOUND: return ("DL_BOUND"); 6144 case DL_INITFAILED: return ("DL_INITFAILED"); 6145 case DL_NOADDR: return ("DL_NOADDR"); 6146 case DL_NOTINIT: return ("DL_NOTINIT"); 6147 case DL_OUTSTATE: return ("DL_OUTSTATE"); 6148 case DL_SYSERR: return ("DL_SYSERR"); 6149 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 6150 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 6151 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 6152 case DL_TOOMANY: return ("DL_TOOMANY"); 6153 case DL_NOTENAB: return ("DL_NOTENAB"); 6154 case DL_BUSY: return ("DL_BUSY"); 6155 case DL_NOAUTO: return ("DL_NOAUTO"); 6156 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 6157 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 6158 case DL_XIDAUTO: return ("DL_XIDAUTO"); 6159 case DL_TESTAUTO: return ("DL_TESTAUTO"); 6160 case DL_PENDING: return ("DL_PENDING"); 6161 default: return ("<unknown error>"); 6162 } 6163 } 6164 6165 /* 6166 * Debug formatting routine. Returns a character string representation of the 6167 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6168 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6169 * 6170 * Once the ndd table-printing interfaces are removed, this can be changed to 6171 * standard dotted-decimal form. 6172 */ 6173 char * 6174 ip_dot_addr(ipaddr_t addr, char *buf) 6175 { 6176 uint8_t *ap = (uint8_t *)&addr; 6177 6178 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6179 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6180 return (buf); 6181 } 6182 6183 /* 6184 * Write the given MAC address as a printable string in the usual colon- 6185 * separated format. 6186 */ 6187 const char * 6188 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6189 { 6190 char *bp; 6191 6192 if (alen == 0 || buflen < 4) 6193 return ("?"); 6194 bp = buf; 6195 for (;;) { 6196 /* 6197 * If there are more MAC address bytes available, but we won't 6198 * have any room to print them, then add "..." to the string 6199 * instead. See below for the 'magic number' explanation. 6200 */ 6201 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6202 (void) strcpy(bp, "..."); 6203 break; 6204 } 6205 (void) sprintf(bp, "%02x", *addr++); 6206 bp += 2; 6207 if (--alen == 0) 6208 break; 6209 *bp++ = ':'; 6210 buflen -= 3; 6211 /* 6212 * At this point, based on the first 'if' statement above, 6213 * either alen == 1 and buflen >= 3, or alen > 1 and 6214 * buflen >= 4. The first case leaves room for the final "xx" 6215 * number and trailing NUL byte. The second leaves room for at 6216 * least "...". Thus the apparently 'magic' numbers chosen for 6217 * that statement. 6218 */ 6219 } 6220 return (buf); 6221 } 6222 6223 /* 6224 * Send an ICMP error after patching up the packet appropriately. Returns 6225 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6226 */ 6227 static boolean_t 6228 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6229 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6230 zoneid_t zoneid, ip_stack_t *ipst) 6231 { 6232 ipha_t *ipha; 6233 mblk_t *first_mp; 6234 boolean_t secure; 6235 unsigned char db_type; 6236 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6237 6238 first_mp = mp; 6239 if (mctl_present) { 6240 mp = mp->b_cont; 6241 secure = ipsec_in_is_secure(first_mp); 6242 ASSERT(mp != NULL); 6243 } else { 6244 /* 6245 * If this is an ICMP error being reported - which goes 6246 * up as M_CTLs, we need to convert them to M_DATA till 6247 * we finish checking with global policy because 6248 * ipsec_check_global_policy() assumes M_DATA as clear 6249 * and M_CTL as secure. 6250 */ 6251 db_type = DB_TYPE(mp); 6252 DB_TYPE(mp) = M_DATA; 6253 secure = B_FALSE; 6254 } 6255 /* 6256 * We are generating an icmp error for some inbound packet. 6257 * Called from all ip_fanout_(udp, tcp, proto) functions. 6258 * Before we generate an error, check with global policy 6259 * to see whether this is allowed to enter the system. As 6260 * there is no "conn", we are checking with global policy. 6261 */ 6262 ipha = (ipha_t *)mp->b_rptr; 6263 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6264 first_mp = ipsec_check_global_policy(first_mp, NULL, 6265 ipha, NULL, mctl_present, ipst->ips_netstack); 6266 if (first_mp == NULL) 6267 return (B_FALSE); 6268 } 6269 6270 if (!mctl_present) 6271 DB_TYPE(mp) = db_type; 6272 6273 if (flags & IP_FF_SEND_ICMP) { 6274 if (flags & IP_FF_HDR_COMPLETE) { 6275 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6276 freemsg(first_mp); 6277 return (B_TRUE); 6278 } 6279 } 6280 if (flags & IP_FF_CKSUM) { 6281 /* 6282 * Have to correct checksum since 6283 * the packet might have been 6284 * fragmented and the reassembly code in ip_rput 6285 * does not restore the IP checksum. 6286 */ 6287 ipha->ipha_hdr_checksum = 0; 6288 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6289 } 6290 switch (icmp_type) { 6291 case ICMP_DEST_UNREACHABLE: 6292 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6293 ipst); 6294 break; 6295 default: 6296 freemsg(first_mp); 6297 break; 6298 } 6299 } else { 6300 freemsg(first_mp); 6301 return (B_FALSE); 6302 } 6303 6304 return (B_TRUE); 6305 } 6306 6307 /* 6308 * Used to send an ICMP error message when a packet is received for 6309 * a protocol that is not supported. The mblk passed as argument 6310 * is consumed by this function. 6311 */ 6312 void 6313 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6314 ip_stack_t *ipst) 6315 { 6316 mblk_t *mp; 6317 ipha_t *ipha; 6318 ill_t *ill; 6319 ipsec_in_t *ii; 6320 6321 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6322 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6323 6324 mp = ipsec_mp->b_cont; 6325 ipsec_mp->b_cont = NULL; 6326 ipha = (ipha_t *)mp->b_rptr; 6327 /* Get ill from index in ipsec_in_t. */ 6328 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6329 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6330 ipst); 6331 if (ill != NULL) { 6332 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6333 if (ip_fanout_send_icmp(q, mp, flags, 6334 ICMP_DEST_UNREACHABLE, 6335 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6336 BUMP_MIB(ill->ill_ip_mib, 6337 ipIfStatsInUnknownProtos); 6338 } 6339 } else { 6340 if (ip_fanout_send_icmp_v6(q, mp, flags, 6341 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6342 0, B_FALSE, zoneid, ipst)) { 6343 BUMP_MIB(ill->ill_ip_mib, 6344 ipIfStatsInUnknownProtos); 6345 } 6346 } 6347 ill_refrele(ill); 6348 } else { /* re-link for the freemsg() below. */ 6349 ipsec_mp->b_cont = mp; 6350 } 6351 6352 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6353 freemsg(ipsec_mp); 6354 } 6355 6356 /* 6357 * See if the inbound datagram has had IPsec processing applied to it. 6358 */ 6359 boolean_t 6360 ipsec_in_is_secure(mblk_t *ipsec_mp) 6361 { 6362 ipsec_in_t *ii; 6363 6364 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6365 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6366 6367 if (ii->ipsec_in_loopback) { 6368 return (ii->ipsec_in_secure); 6369 } else { 6370 return (ii->ipsec_in_ah_sa != NULL || 6371 ii->ipsec_in_esp_sa != NULL || 6372 ii->ipsec_in_decaps); 6373 } 6374 } 6375 6376 /* 6377 * Handle protocols with which IP is less intimate. There 6378 * can be more than one stream bound to a particular 6379 * protocol. When this is the case, normally each one gets a copy 6380 * of any incoming packets. 6381 * 6382 * IPSEC NOTE : 6383 * 6384 * Don't allow a secure packet going up a non-secure connection. 6385 * We don't allow this because 6386 * 6387 * 1) Reply might go out in clear which will be dropped at 6388 * the sending side. 6389 * 2) If the reply goes out in clear it will give the 6390 * adversary enough information for getting the key in 6391 * most of the cases. 6392 * 6393 * Moreover getting a secure packet when we expect clear 6394 * implies that SA's were added without checking for 6395 * policy on both ends. This should not happen once ISAKMP 6396 * is used to negotiate SAs as SAs will be added only after 6397 * verifying the policy. 6398 * 6399 * NOTE : If the packet was tunneled and not multicast we only send 6400 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6401 * back to delivering packets to AF_INET6 raw sockets. 6402 * 6403 * IPQoS Notes: 6404 * Once we have determined the client, invoke IPPF processing. 6405 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6406 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6407 * ip_policy will be false. 6408 * 6409 * Zones notes: 6410 * Currently only applications in the global zone can create raw sockets for 6411 * protocols other than ICMP. So unlike the broadcast / multicast case of 6412 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6413 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6414 */ 6415 static void 6416 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6417 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6418 zoneid_t zoneid) 6419 { 6420 queue_t *rq; 6421 mblk_t *mp1, *first_mp1; 6422 uint_t protocol = ipha->ipha_protocol; 6423 ipaddr_t dst; 6424 boolean_t one_only; 6425 mblk_t *first_mp = mp; 6426 boolean_t secure; 6427 uint32_t ill_index; 6428 conn_t *connp, *first_connp, *next_connp; 6429 connf_t *connfp; 6430 boolean_t shared_addr; 6431 mib2_ipIfStatsEntry_t *mibptr; 6432 ip_stack_t *ipst = recv_ill->ill_ipst; 6433 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6434 6435 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6436 if (mctl_present) { 6437 mp = first_mp->b_cont; 6438 secure = ipsec_in_is_secure(first_mp); 6439 ASSERT(mp != NULL); 6440 } else { 6441 secure = B_FALSE; 6442 } 6443 dst = ipha->ipha_dst; 6444 /* 6445 * If the packet was tunneled and not multicast we only send to it 6446 * the first match. 6447 */ 6448 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6449 !CLASSD(dst)); 6450 6451 shared_addr = (zoneid == ALL_ZONES); 6452 if (shared_addr) { 6453 /* 6454 * We don't allow multilevel ports for raw IP, so no need to 6455 * check for that here. 6456 */ 6457 zoneid = tsol_packet_to_zoneid(mp); 6458 } 6459 6460 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6461 mutex_enter(&connfp->connf_lock); 6462 connp = connfp->connf_head; 6463 for (connp = connfp->connf_head; connp != NULL; 6464 connp = connp->conn_next) { 6465 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6466 zoneid) && 6467 (!is_system_labeled() || 6468 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6469 connp))) 6470 break; 6471 } 6472 6473 if (connp == NULL || connp->conn_upq == NULL) { 6474 /* 6475 * No one bound to these addresses. Is 6476 * there a client that wants all 6477 * unclaimed datagrams? 6478 */ 6479 mutex_exit(&connfp->connf_lock); 6480 /* 6481 * Check for IPPROTO_ENCAP... 6482 */ 6483 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6484 /* 6485 * If an IPsec mblk is here on a multicast 6486 * tunnel (using ip_mroute stuff), check policy here, 6487 * THEN ship off to ip_mroute_decap(). 6488 * 6489 * BTW, If I match a configured IP-in-IP 6490 * tunnel, this path will not be reached, and 6491 * ip_mroute_decap will never be called. 6492 */ 6493 first_mp = ipsec_check_global_policy(first_mp, connp, 6494 ipha, NULL, mctl_present, ipst->ips_netstack); 6495 if (first_mp != NULL) { 6496 if (mctl_present) 6497 freeb(first_mp); 6498 ip_mroute_decap(q, mp, ill); 6499 } /* Else we already freed everything! */ 6500 } else { 6501 /* 6502 * Otherwise send an ICMP protocol unreachable. 6503 */ 6504 if (ip_fanout_send_icmp(q, first_mp, flags, 6505 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6506 mctl_present, zoneid, ipst)) { 6507 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6508 } 6509 } 6510 return; 6511 } 6512 CONN_INC_REF(connp); 6513 first_connp = connp; 6514 6515 /* 6516 * Only send message to one tunnel driver by immediately 6517 * terminating the loop. 6518 */ 6519 connp = one_only ? NULL : connp->conn_next; 6520 6521 for (;;) { 6522 while (connp != NULL) { 6523 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6524 flags, zoneid) && 6525 (!is_system_labeled() || 6526 tsol_receive_local(mp, &dst, IPV4_VERSION, 6527 shared_addr, connp))) 6528 break; 6529 connp = connp->conn_next; 6530 } 6531 6532 /* 6533 * Copy the packet. 6534 */ 6535 if (connp == NULL || connp->conn_upq == NULL || 6536 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6537 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6538 /* 6539 * No more interested clients or memory 6540 * allocation failed 6541 */ 6542 connp = first_connp; 6543 break; 6544 } 6545 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6546 CONN_INC_REF(connp); 6547 mutex_exit(&connfp->connf_lock); 6548 rq = connp->conn_rq; 6549 if (!canputnext(rq)) { 6550 if (flags & IP_FF_RAWIP) { 6551 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6552 } else { 6553 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6554 } 6555 6556 freemsg(first_mp1); 6557 } else { 6558 /* 6559 * Don't enforce here if we're an actual tunnel - 6560 * let "tun" do it instead. 6561 */ 6562 if (!IPCL_IS_IPTUN(connp) && 6563 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6564 secure)) { 6565 first_mp1 = ipsec_check_inbound_policy 6566 (first_mp1, connp, ipha, NULL, 6567 mctl_present); 6568 } 6569 if (first_mp1 != NULL) { 6570 int in_flags = 0; 6571 /* 6572 * ip_fanout_proto also gets called from 6573 * icmp_inbound_error_fanout, in which case 6574 * the msg type is M_CTL. Don't add info 6575 * in this case for the time being. In future 6576 * when there is a need for knowing the 6577 * inbound iface index for ICMP error msgs, 6578 * then this can be changed. 6579 */ 6580 if (connp->conn_recvif) 6581 in_flags = IPF_RECVIF; 6582 /* 6583 * The ULP may support IP_RECVPKTINFO for both 6584 * IP v4 and v6 so pass the appropriate argument 6585 * based on conn IP version. 6586 */ 6587 if (connp->conn_ip_recvpktinfo) { 6588 if (connp->conn_af_isv6) { 6589 /* 6590 * V6 only needs index 6591 */ 6592 in_flags |= IPF_RECVIF; 6593 } else { 6594 /* 6595 * V4 needs index + 6596 * matching address. 6597 */ 6598 in_flags |= IPF_RECVADDR; 6599 } 6600 } 6601 if ((in_flags != 0) && 6602 (mp->b_datap->db_type != M_CTL)) { 6603 /* 6604 * the actual data will be 6605 * contained in b_cont upon 6606 * successful return of the 6607 * following call else 6608 * original mblk is returned 6609 */ 6610 ASSERT(recv_ill != NULL); 6611 mp1 = ip_add_info(mp1, recv_ill, 6612 in_flags, IPCL_ZONEID(connp), ipst); 6613 } 6614 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6615 if (mctl_present) 6616 freeb(first_mp1); 6617 putnext(rq, mp1); 6618 } 6619 } 6620 mutex_enter(&connfp->connf_lock); 6621 /* Follow the next pointer before releasing the conn. */ 6622 next_connp = connp->conn_next; 6623 CONN_DEC_REF(connp); 6624 connp = next_connp; 6625 } 6626 6627 /* Last one. Send it upstream. */ 6628 mutex_exit(&connfp->connf_lock); 6629 6630 /* 6631 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6632 * will be set to false. 6633 */ 6634 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6635 ill_index = ill->ill_phyint->phyint_ifindex; 6636 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6637 if (mp == NULL) { 6638 CONN_DEC_REF(connp); 6639 if (mctl_present) { 6640 freeb(first_mp); 6641 } 6642 return; 6643 } 6644 } 6645 6646 rq = connp->conn_rq; 6647 if (!canputnext(rq)) { 6648 if (flags & IP_FF_RAWIP) { 6649 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6650 } else { 6651 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6652 } 6653 6654 freemsg(first_mp); 6655 } else { 6656 if (IPCL_IS_IPTUN(connp)) { 6657 /* 6658 * Tunneled packet. We enforce policy in the tunnel 6659 * module itself. 6660 * 6661 * Send the WHOLE packet up (incl. IPSEC_IN) without 6662 * a policy check. 6663 */ 6664 putnext(rq, first_mp); 6665 CONN_DEC_REF(connp); 6666 return; 6667 } 6668 6669 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6670 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6671 ipha, NULL, mctl_present); 6672 } 6673 6674 if (first_mp != NULL) { 6675 int in_flags = 0; 6676 6677 /* 6678 * ip_fanout_proto also gets called 6679 * from icmp_inbound_error_fanout, in 6680 * which case the msg type is M_CTL. 6681 * Don't add info in this case for time 6682 * being. In future when there is a 6683 * need for knowing the inbound iface 6684 * index for ICMP error msgs, then this 6685 * can be changed 6686 */ 6687 if (connp->conn_recvif) 6688 in_flags = IPF_RECVIF; 6689 if (connp->conn_ip_recvpktinfo) { 6690 if (connp->conn_af_isv6) { 6691 /* 6692 * V6 only needs index 6693 */ 6694 in_flags |= IPF_RECVIF; 6695 } else { 6696 /* 6697 * V4 needs index + 6698 * matching address. 6699 */ 6700 in_flags |= IPF_RECVADDR; 6701 } 6702 } 6703 if ((in_flags != 0) && 6704 (mp->b_datap->db_type != M_CTL)) { 6705 6706 /* 6707 * the actual data will be contained in 6708 * b_cont upon successful return 6709 * of the following call else original 6710 * mblk is returned 6711 */ 6712 ASSERT(recv_ill != NULL); 6713 mp = ip_add_info(mp, recv_ill, 6714 in_flags, IPCL_ZONEID(connp), ipst); 6715 } 6716 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6717 putnext(rq, mp); 6718 if (mctl_present) 6719 freeb(first_mp); 6720 } 6721 } 6722 CONN_DEC_REF(connp); 6723 } 6724 6725 /* 6726 * Fanout for TCP packets 6727 * The caller puts <fport, lport> in the ports parameter. 6728 * 6729 * IPQoS Notes 6730 * Before sending it to the client, invoke IPPF processing. 6731 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6732 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6733 * ip_policy is false. 6734 */ 6735 static void 6736 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6737 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6738 { 6739 mblk_t *first_mp; 6740 boolean_t secure; 6741 uint32_t ill_index; 6742 int ip_hdr_len; 6743 tcph_t *tcph; 6744 boolean_t syn_present = B_FALSE; 6745 conn_t *connp; 6746 ip_stack_t *ipst = recv_ill->ill_ipst; 6747 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6748 6749 ASSERT(recv_ill != NULL); 6750 6751 first_mp = mp; 6752 if (mctl_present) { 6753 ASSERT(first_mp->b_datap->db_type == M_CTL); 6754 mp = first_mp->b_cont; 6755 secure = ipsec_in_is_secure(first_mp); 6756 ASSERT(mp != NULL); 6757 } else { 6758 secure = B_FALSE; 6759 } 6760 6761 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6762 6763 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6764 zoneid, ipst)) == NULL) { 6765 /* 6766 * No connected connection or listener. Send a 6767 * TH_RST via tcp_xmit_listeners_reset. 6768 */ 6769 6770 /* Initiate IPPf processing, if needed. */ 6771 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6772 uint32_t ill_index; 6773 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6774 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6775 if (first_mp == NULL) 6776 return; 6777 } 6778 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6779 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6780 zoneid)); 6781 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6782 ipst->ips_netstack->netstack_tcp); 6783 return; 6784 } 6785 6786 /* 6787 * Allocate the SYN for the TCP connection here itself 6788 */ 6789 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6790 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6791 if (IPCL_IS_TCP(connp)) { 6792 squeue_t *sqp; 6793 6794 /* 6795 * For fused tcp loopback, assign the eager's 6796 * squeue to be that of the active connect's. 6797 * Note that we don't check for IP_FF_LOOPBACK 6798 * here since this routine gets called only 6799 * for loopback (unlike the IPv6 counterpart). 6800 */ 6801 ASSERT(Q_TO_CONN(q) != NULL); 6802 if (do_tcp_fusion && 6803 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6804 !secure && 6805 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6806 IPCL_IS_TCP(Q_TO_CONN(q))) { 6807 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6808 sqp = Q_TO_CONN(q)->conn_sqp; 6809 } else { 6810 sqp = IP_SQUEUE_GET(lbolt); 6811 } 6812 6813 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6814 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6815 syn_present = B_TRUE; 6816 } 6817 } 6818 6819 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6820 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6821 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6822 if ((flags & TH_RST) || (flags & TH_URG)) { 6823 CONN_DEC_REF(connp); 6824 freemsg(first_mp); 6825 return; 6826 } 6827 if (flags & TH_ACK) { 6828 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6829 ipst->ips_netstack->netstack_tcp); 6830 CONN_DEC_REF(connp); 6831 return; 6832 } 6833 6834 CONN_DEC_REF(connp); 6835 freemsg(first_mp); 6836 return; 6837 } 6838 6839 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6840 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6841 NULL, mctl_present); 6842 if (first_mp == NULL) { 6843 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6844 CONN_DEC_REF(connp); 6845 return; 6846 } 6847 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6848 ASSERT(syn_present); 6849 if (mctl_present) { 6850 ASSERT(first_mp != mp); 6851 first_mp->b_datap->db_struioflag |= 6852 STRUIO_POLICY; 6853 } else { 6854 ASSERT(first_mp == mp); 6855 mp->b_datap->db_struioflag &= 6856 ~STRUIO_EAGER; 6857 mp->b_datap->db_struioflag |= 6858 STRUIO_POLICY; 6859 } 6860 } else { 6861 /* 6862 * Discard first_mp early since we're dealing with a 6863 * fully-connected conn_t and tcp doesn't do policy in 6864 * this case. 6865 */ 6866 if (mctl_present) { 6867 freeb(first_mp); 6868 mctl_present = B_FALSE; 6869 } 6870 first_mp = mp; 6871 } 6872 } 6873 6874 /* 6875 * Initiate policy processing here if needed. If we get here from 6876 * icmp_inbound_error_fanout, ip_policy is false. 6877 */ 6878 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6879 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6880 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6881 if (mp == NULL) { 6882 CONN_DEC_REF(connp); 6883 if (mctl_present) 6884 freeb(first_mp); 6885 return; 6886 } else if (mctl_present) { 6887 ASSERT(first_mp != mp); 6888 first_mp->b_cont = mp; 6889 } else { 6890 first_mp = mp; 6891 } 6892 } 6893 6894 6895 6896 /* Handle socket options. */ 6897 if (!syn_present && 6898 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6899 /* Add header */ 6900 ASSERT(recv_ill != NULL); 6901 /* 6902 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6903 * IPF_RECVIF. 6904 */ 6905 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6906 ipst); 6907 if (mp == NULL) { 6908 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6909 CONN_DEC_REF(connp); 6910 if (mctl_present) 6911 freeb(first_mp); 6912 return; 6913 } else if (mctl_present) { 6914 /* 6915 * ip_add_info might return a new mp. 6916 */ 6917 ASSERT(first_mp != mp); 6918 first_mp->b_cont = mp; 6919 } else { 6920 first_mp = mp; 6921 } 6922 } 6923 6924 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6925 if (IPCL_IS_TCP(connp)) { 6926 (*ip_input_proc)(connp->conn_sqp, first_mp, 6927 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6928 } else { 6929 putnext(connp->conn_rq, first_mp); 6930 CONN_DEC_REF(connp); 6931 } 6932 } 6933 6934 /* 6935 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6936 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6937 * Caller is responsible for dropping references to the conn, and freeing 6938 * first_mp. 6939 * 6940 * IPQoS Notes 6941 * Before sending it to the client, invoke IPPF processing. Policy processing 6942 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6943 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6944 * ip_wput_local, ip_policy is false. 6945 */ 6946 static void 6947 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6948 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6949 boolean_t ip_policy) 6950 { 6951 boolean_t mctl_present = (first_mp != NULL); 6952 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6953 uint32_t ill_index; 6954 ip_stack_t *ipst = recv_ill->ill_ipst; 6955 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6956 6957 ASSERT(ill != NULL); 6958 6959 if (mctl_present) 6960 first_mp->b_cont = mp; 6961 else 6962 first_mp = mp; 6963 6964 if (CONN_UDP_FLOWCTLD(connp)) { 6965 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 6966 freemsg(first_mp); 6967 return; 6968 } 6969 6970 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6971 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6972 NULL, mctl_present); 6973 if (first_mp == NULL) { 6974 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 6975 return; /* Freed by ipsec_check_inbound_policy(). */ 6976 } 6977 } 6978 if (mctl_present) 6979 freeb(first_mp); 6980 6981 /* Handle options. */ 6982 if (connp->conn_recvif) 6983 in_flags = IPF_RECVIF; 6984 /* 6985 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 6986 * passed to ip_add_info is based on IP version of connp. 6987 */ 6988 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6989 if (connp->conn_af_isv6) { 6990 /* 6991 * V6 only needs index 6992 */ 6993 in_flags |= IPF_RECVIF; 6994 } else { 6995 /* 6996 * V4 needs index + matching address. 6997 */ 6998 in_flags |= IPF_RECVADDR; 6999 } 7000 } 7001 7002 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7003 in_flags |= IPF_RECVSLLA; 7004 7005 /* 7006 * Initiate IPPF processing here, if needed. Note first_mp won't be 7007 * freed if the packet is dropped. The caller will do so. 7008 */ 7009 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7010 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7011 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7012 if (mp == NULL) { 7013 return; 7014 } 7015 } 7016 if ((in_flags != 0) && 7017 (mp->b_datap->db_type != M_CTL)) { 7018 /* 7019 * The actual data will be contained in b_cont 7020 * upon successful return of the following call 7021 * else original mblk is returned 7022 */ 7023 ASSERT(recv_ill != NULL); 7024 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7025 ipst); 7026 } 7027 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7028 /* Send it upstream */ 7029 CONN_UDP_RECV(connp, mp); 7030 } 7031 7032 /* 7033 * Fanout for UDP packets. 7034 * The caller puts <fport, lport> in the ports parameter. 7035 * 7036 * If SO_REUSEADDR is set all multicast and broadcast packets 7037 * will be delivered to all streams bound to the same port. 7038 * 7039 * Zones notes: 7040 * Multicast and broadcast packets will be distributed to streams in all zones. 7041 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7042 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7043 * packets. To maintain this behavior with multiple zones, the conns are grouped 7044 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7045 * each zone. If unset, all the following conns in the same zone are skipped. 7046 */ 7047 static void 7048 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7049 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7050 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7051 { 7052 uint32_t dstport, srcport; 7053 ipaddr_t dst; 7054 mblk_t *first_mp; 7055 boolean_t secure; 7056 in6_addr_t v6src; 7057 conn_t *connp; 7058 connf_t *connfp; 7059 conn_t *first_connp; 7060 conn_t *next_connp; 7061 mblk_t *mp1, *first_mp1; 7062 ipaddr_t src; 7063 zoneid_t last_zoneid; 7064 boolean_t reuseaddr; 7065 boolean_t shared_addr; 7066 ip_stack_t *ipst; 7067 7068 ASSERT(recv_ill != NULL); 7069 ipst = recv_ill->ill_ipst; 7070 7071 first_mp = mp; 7072 if (mctl_present) { 7073 mp = first_mp->b_cont; 7074 first_mp->b_cont = NULL; 7075 secure = ipsec_in_is_secure(first_mp); 7076 ASSERT(mp != NULL); 7077 } else { 7078 first_mp = NULL; 7079 secure = B_FALSE; 7080 } 7081 7082 /* Extract ports in net byte order */ 7083 dstport = htons(ntohl(ports) & 0xFFFF); 7084 srcport = htons(ntohl(ports) >> 16); 7085 dst = ipha->ipha_dst; 7086 src = ipha->ipha_src; 7087 7088 shared_addr = (zoneid == ALL_ZONES); 7089 if (shared_addr) { 7090 /* 7091 * No need to handle exclusive-stack zones since ALL_ZONES 7092 * only applies to the shared stack. 7093 */ 7094 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7095 if (zoneid == ALL_ZONES) 7096 zoneid = tsol_packet_to_zoneid(mp); 7097 } 7098 7099 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7100 mutex_enter(&connfp->connf_lock); 7101 connp = connfp->connf_head; 7102 if (!broadcast && !CLASSD(dst)) { 7103 /* 7104 * Not broadcast or multicast. Send to the one (first) 7105 * client we find. No need to check conn_wantpacket() 7106 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7107 * IPv4 unicast packets. 7108 */ 7109 while ((connp != NULL) && 7110 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7111 !IPCL_ZONE_MATCH(connp, zoneid))) { 7112 connp = connp->conn_next; 7113 } 7114 7115 if (connp == NULL || connp->conn_upq == NULL) 7116 goto notfound; 7117 7118 if (is_system_labeled() && 7119 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7120 connp)) 7121 goto notfound; 7122 7123 CONN_INC_REF(connp); 7124 mutex_exit(&connfp->connf_lock); 7125 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7126 flags, recv_ill, ip_policy); 7127 IP_STAT(ipst, ip_udp_fannorm); 7128 CONN_DEC_REF(connp); 7129 return; 7130 } 7131 7132 /* 7133 * Broadcast and multicast case 7134 * 7135 * Need to check conn_wantpacket(). 7136 * If SO_REUSEADDR has been set on the first we send the 7137 * packet to all clients that have joined the group and 7138 * match the port. 7139 */ 7140 7141 while (connp != NULL) { 7142 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7143 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7144 (!is_system_labeled() || 7145 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7146 connp))) 7147 break; 7148 connp = connp->conn_next; 7149 } 7150 7151 if (connp == NULL || connp->conn_upq == NULL) 7152 goto notfound; 7153 7154 first_connp = connp; 7155 /* 7156 * When SO_REUSEADDR is not set, send the packet only to the first 7157 * matching connection in its zone by keeping track of the zoneid. 7158 */ 7159 reuseaddr = first_connp->conn_reuseaddr; 7160 last_zoneid = first_connp->conn_zoneid; 7161 7162 CONN_INC_REF(connp); 7163 connp = connp->conn_next; 7164 for (;;) { 7165 while (connp != NULL) { 7166 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7167 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7168 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7169 (!is_system_labeled() || 7170 tsol_receive_local(mp, &dst, IPV4_VERSION, 7171 shared_addr, connp))) 7172 break; 7173 connp = connp->conn_next; 7174 } 7175 /* 7176 * Just copy the data part alone. The mctl part is 7177 * needed just for verifying policy and it is never 7178 * sent up. 7179 */ 7180 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7181 ((mp1 = copymsg(mp)) == NULL))) { 7182 /* 7183 * No more interested clients or memory 7184 * allocation failed 7185 */ 7186 connp = first_connp; 7187 break; 7188 } 7189 if (connp->conn_zoneid != last_zoneid) { 7190 /* 7191 * Update the zoneid so that the packet isn't sent to 7192 * any more conns in the same zone unless SO_REUSEADDR 7193 * is set. 7194 */ 7195 reuseaddr = connp->conn_reuseaddr; 7196 last_zoneid = connp->conn_zoneid; 7197 } 7198 if (first_mp != NULL) { 7199 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7200 ipsec_info_type == IPSEC_IN); 7201 first_mp1 = ipsec_in_tag(first_mp, NULL, 7202 ipst->ips_netstack); 7203 if (first_mp1 == NULL) { 7204 freemsg(mp1); 7205 connp = first_connp; 7206 break; 7207 } 7208 } else { 7209 first_mp1 = NULL; 7210 } 7211 CONN_INC_REF(connp); 7212 mutex_exit(&connfp->connf_lock); 7213 /* 7214 * IPQoS notes: We don't send the packet for policy 7215 * processing here, will do it for the last one (below). 7216 * i.e. we do it per-packet now, but if we do policy 7217 * processing per-conn, then we would need to do it 7218 * here too. 7219 */ 7220 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7221 ipha, flags, recv_ill, B_FALSE); 7222 mutex_enter(&connfp->connf_lock); 7223 /* Follow the next pointer before releasing the conn. */ 7224 next_connp = connp->conn_next; 7225 IP_STAT(ipst, ip_udp_fanmb); 7226 CONN_DEC_REF(connp); 7227 connp = next_connp; 7228 } 7229 7230 /* Last one. Send it upstream. */ 7231 mutex_exit(&connfp->connf_lock); 7232 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7233 recv_ill, ip_policy); 7234 IP_STAT(ipst, ip_udp_fanmb); 7235 CONN_DEC_REF(connp); 7236 return; 7237 7238 notfound: 7239 7240 mutex_exit(&connfp->connf_lock); 7241 IP_STAT(ipst, ip_udp_fanothers); 7242 /* 7243 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7244 * have already been matched above, since they live in the IPv4 7245 * fanout tables. This implies we only need to 7246 * check for IPv6 in6addr_any endpoints here. 7247 * Thus we compare using ipv6_all_zeros instead of the destination 7248 * address, except for the multicast group membership lookup which 7249 * uses the IPv4 destination. 7250 */ 7251 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7252 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7253 mutex_enter(&connfp->connf_lock); 7254 connp = connfp->connf_head; 7255 if (!broadcast && !CLASSD(dst)) { 7256 while (connp != NULL) { 7257 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7258 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7259 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7260 !connp->conn_ipv6_v6only) 7261 break; 7262 connp = connp->conn_next; 7263 } 7264 7265 if (connp != NULL && is_system_labeled() && 7266 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7267 connp)) 7268 connp = NULL; 7269 7270 if (connp == NULL || connp->conn_upq == NULL) { 7271 /* 7272 * No one bound to this port. Is 7273 * there a client that wants all 7274 * unclaimed datagrams? 7275 */ 7276 mutex_exit(&connfp->connf_lock); 7277 7278 if (mctl_present) 7279 first_mp->b_cont = mp; 7280 else 7281 first_mp = mp; 7282 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7283 connf_head != NULL) { 7284 ip_fanout_proto(q, first_mp, ill, ipha, 7285 flags | IP_FF_RAWIP, mctl_present, 7286 ip_policy, recv_ill, zoneid); 7287 } else { 7288 if (ip_fanout_send_icmp(q, first_mp, flags, 7289 ICMP_DEST_UNREACHABLE, 7290 ICMP_PORT_UNREACHABLE, 7291 mctl_present, zoneid, ipst)) { 7292 BUMP_MIB(ill->ill_ip_mib, 7293 udpIfStatsNoPorts); 7294 } 7295 } 7296 return; 7297 } 7298 7299 CONN_INC_REF(connp); 7300 mutex_exit(&connfp->connf_lock); 7301 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7302 flags, recv_ill, ip_policy); 7303 CONN_DEC_REF(connp); 7304 return; 7305 } 7306 /* 7307 * IPv4 multicast packet being delivered to an AF_INET6 7308 * in6addr_any endpoint. 7309 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7310 * and not conn_wantpacket_v6() since any multicast membership is 7311 * for an IPv4-mapped multicast address. 7312 * The packet is sent to all clients in all zones that have joined the 7313 * group and match the port. 7314 */ 7315 while (connp != NULL) { 7316 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7317 srcport, v6src) && 7318 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7319 (!is_system_labeled() || 7320 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7321 connp))) 7322 break; 7323 connp = connp->conn_next; 7324 } 7325 7326 if (connp == NULL || connp->conn_upq == NULL) { 7327 /* 7328 * No one bound to this port. Is 7329 * there a client that wants all 7330 * unclaimed datagrams? 7331 */ 7332 mutex_exit(&connfp->connf_lock); 7333 7334 if (mctl_present) 7335 first_mp->b_cont = mp; 7336 else 7337 first_mp = mp; 7338 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7339 NULL) { 7340 ip_fanout_proto(q, first_mp, ill, ipha, 7341 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7342 recv_ill, zoneid); 7343 } else { 7344 /* 7345 * We used to attempt to send an icmp error here, but 7346 * since this is known to be a multicast packet 7347 * and we don't send icmp errors in response to 7348 * multicast, just drop the packet and give up sooner. 7349 */ 7350 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7351 freemsg(first_mp); 7352 } 7353 return; 7354 } 7355 7356 first_connp = connp; 7357 7358 CONN_INC_REF(connp); 7359 connp = connp->conn_next; 7360 for (;;) { 7361 while (connp != NULL) { 7362 if (IPCL_UDP_MATCH_V6(connp, dstport, 7363 ipv6_all_zeros, srcport, v6src) && 7364 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7365 (!is_system_labeled() || 7366 tsol_receive_local(mp, &dst, IPV4_VERSION, 7367 shared_addr, connp))) 7368 break; 7369 connp = connp->conn_next; 7370 } 7371 /* 7372 * Just copy the data part alone. The mctl part is 7373 * needed just for verifying policy and it is never 7374 * sent up. 7375 */ 7376 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7377 ((mp1 = copymsg(mp)) == NULL))) { 7378 /* 7379 * No more intested clients or memory 7380 * allocation failed 7381 */ 7382 connp = first_connp; 7383 break; 7384 } 7385 if (first_mp != NULL) { 7386 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7387 ipsec_info_type == IPSEC_IN); 7388 first_mp1 = ipsec_in_tag(first_mp, NULL, 7389 ipst->ips_netstack); 7390 if (first_mp1 == NULL) { 7391 freemsg(mp1); 7392 connp = first_connp; 7393 break; 7394 } 7395 } else { 7396 first_mp1 = NULL; 7397 } 7398 CONN_INC_REF(connp); 7399 mutex_exit(&connfp->connf_lock); 7400 /* 7401 * IPQoS notes: We don't send the packet for policy 7402 * processing here, will do it for the last one (below). 7403 * i.e. we do it per-packet now, but if we do policy 7404 * processing per-conn, then we would need to do it 7405 * here too. 7406 */ 7407 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7408 ipha, flags, recv_ill, B_FALSE); 7409 mutex_enter(&connfp->connf_lock); 7410 /* Follow the next pointer before releasing the conn. */ 7411 next_connp = connp->conn_next; 7412 CONN_DEC_REF(connp); 7413 connp = next_connp; 7414 } 7415 7416 /* Last one. Send it upstream. */ 7417 mutex_exit(&connfp->connf_lock); 7418 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7419 recv_ill, ip_policy); 7420 CONN_DEC_REF(connp); 7421 } 7422 7423 /* 7424 * Complete the ip_wput header so that it 7425 * is possible to generate ICMP 7426 * errors. 7427 */ 7428 int 7429 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7430 { 7431 ire_t *ire; 7432 7433 if (ipha->ipha_src == INADDR_ANY) { 7434 ire = ire_lookup_local(zoneid, ipst); 7435 if (ire == NULL) { 7436 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7437 return (1); 7438 } 7439 ipha->ipha_src = ire->ire_addr; 7440 ire_refrele(ire); 7441 } 7442 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7443 ipha->ipha_hdr_checksum = 0; 7444 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7445 return (0); 7446 } 7447 7448 /* 7449 * Nobody should be sending 7450 * packets up this stream 7451 */ 7452 static void 7453 ip_lrput(queue_t *q, mblk_t *mp) 7454 { 7455 mblk_t *mp1; 7456 7457 switch (mp->b_datap->db_type) { 7458 case M_FLUSH: 7459 /* Turn around */ 7460 if (*mp->b_rptr & FLUSHW) { 7461 *mp->b_rptr &= ~FLUSHR; 7462 qreply(q, mp); 7463 return; 7464 } 7465 break; 7466 } 7467 /* Could receive messages that passed through ar_rput */ 7468 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7469 mp1->b_prev = mp1->b_next = NULL; 7470 freemsg(mp); 7471 } 7472 7473 /* Nobody should be sending packets down this stream */ 7474 /* ARGSUSED */ 7475 void 7476 ip_lwput(queue_t *q, mblk_t *mp) 7477 { 7478 freemsg(mp); 7479 } 7480 7481 /* 7482 * Move the first hop in any source route to ipha_dst and remove that part of 7483 * the source route. Called by other protocols. Errors in option formatting 7484 * are ignored - will be handled by ip_wput_options Return the final 7485 * destination (either ipha_dst or the last entry in a source route.) 7486 */ 7487 ipaddr_t 7488 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7489 { 7490 ipoptp_t opts; 7491 uchar_t *opt; 7492 uint8_t optval; 7493 uint8_t optlen; 7494 ipaddr_t dst; 7495 int i; 7496 ire_t *ire; 7497 ip_stack_t *ipst = ns->netstack_ip; 7498 7499 ip2dbg(("ip_massage_options\n")); 7500 dst = ipha->ipha_dst; 7501 for (optval = ipoptp_first(&opts, ipha); 7502 optval != IPOPT_EOL; 7503 optval = ipoptp_next(&opts)) { 7504 opt = opts.ipoptp_cur; 7505 switch (optval) { 7506 uint8_t off; 7507 case IPOPT_SSRR: 7508 case IPOPT_LSRR: 7509 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7510 ip1dbg(("ip_massage_options: bad src route\n")); 7511 break; 7512 } 7513 optlen = opts.ipoptp_len; 7514 off = opt[IPOPT_OFFSET]; 7515 off--; 7516 redo_srr: 7517 if (optlen < IP_ADDR_LEN || 7518 off > optlen - IP_ADDR_LEN) { 7519 /* End of source route */ 7520 ip1dbg(("ip_massage_options: end of SR\n")); 7521 break; 7522 } 7523 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7524 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7525 ntohl(dst))); 7526 /* 7527 * Check if our address is present more than 7528 * once as consecutive hops in source route. 7529 * XXX verify per-interface ip_forwarding 7530 * for source route? 7531 */ 7532 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7533 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7534 if (ire != NULL) { 7535 ire_refrele(ire); 7536 off += IP_ADDR_LEN; 7537 goto redo_srr; 7538 } 7539 if (dst == htonl(INADDR_LOOPBACK)) { 7540 ip1dbg(("ip_massage_options: loopback addr in " 7541 "source route!\n")); 7542 break; 7543 } 7544 /* 7545 * Update ipha_dst to be the first hop and remove the 7546 * first hop from the source route (by overwriting 7547 * part of the option with NOP options). 7548 */ 7549 ipha->ipha_dst = dst; 7550 /* Put the last entry in dst */ 7551 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7552 3; 7553 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7554 7555 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7556 ntohl(dst))); 7557 /* Move down and overwrite */ 7558 opt[IP_ADDR_LEN] = opt[0]; 7559 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7560 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7561 for (i = 0; i < IP_ADDR_LEN; i++) 7562 opt[i] = IPOPT_NOP; 7563 break; 7564 } 7565 } 7566 return (dst); 7567 } 7568 7569 /* 7570 * This function's job is to forward data to the reverse tunnel (FA->HA) 7571 * after doing a few checks. It is assumed that the incoming interface 7572 * of the packet is always different than the outgoing interface and the 7573 * ire_type of the found ire has to be a non-resolver type. 7574 * 7575 * IPQoS notes 7576 * IP policy is invoked twice for a forwarded packet, once on the read side 7577 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 7578 * enabled. 7579 */ 7580 static void 7581 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 7582 { 7583 ipha_t *ipha; 7584 queue_t *q; 7585 uint32_t pkt_len; 7586 #define rptr ((uchar_t *)ipha) 7587 uint32_t sum; 7588 uint32_t max_frag; 7589 mblk_t *first_mp; 7590 uint32_t ill_index; 7591 ipxmit_state_t pktxmit_state; 7592 ill_t *out_ill; 7593 ip_stack_t *ipst = in_ill->ill_ipst; 7594 7595 ASSERT(ire != NULL); 7596 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 7597 ASSERT(ire->ire_stq != NULL); 7598 7599 /* Initiate read side IPPF processing */ 7600 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 7601 ill_index = in_ill->ill_phyint->phyint_ifindex; 7602 ip_process(IPP_FWD_IN, &mp, ill_index); 7603 if (mp == NULL) { 7604 ip2dbg(("ip_mrtun_forward: inbound pkt " 7605 "dropped during IPPF processing\n")); 7606 return; 7607 } 7608 } 7609 7610 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 7611 ILLF_ROUTER) == 0) || 7612 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 7613 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsForwProhibits); 7614 ip0dbg(("ip_mrtun_forward: Can't forward :" 7615 "forwarding is not turned on\n")); 7616 goto drop_pkt; 7617 } 7618 7619 /* 7620 * Don't forward if the interface is down 7621 */ 7622 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 7623 goto discard_pkt; 7624 } 7625 7626 ipha = (ipha_t *)mp->b_rptr; 7627 pkt_len = ntohs(ipha->ipha_length); 7628 /* Adjust the checksum to reflect the ttl decrement. */ 7629 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 7630 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 7631 if (ipha->ipha_ttl-- <= 1) { 7632 if (ip_csum_hdr(ipha)) { 7633 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInCksumErrs); 7634 goto drop_pkt; 7635 } 7636 q = ire->ire_stq; 7637 if ((first_mp = allocb(sizeof (ipsec_info_t), 7638 BPRI_HI)) == NULL) { 7639 goto discard_pkt; 7640 } 7641 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsForwProhibits); 7642 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7643 /* Sent by forwarding path, and router is global zone */ 7644 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED, 7645 GLOBAL_ZONEID, ipst); 7646 return; 7647 } 7648 7649 /* Get the ill_index of the ILL */ 7650 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 7651 7652 /* 7653 * This location is chosen for the placement of the forwarding hook 7654 * because at this point we know that we have a path out for the 7655 * packet but haven't yet applied any logic (such as fragmenting) 7656 * that happen as part of transmitting the packet out. 7657 */ 7658 out_ill = ire->ire_ipif->ipif_ill; 7659 7660 DTRACE_PROBE4(ip4__forwarding__start, 7661 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7662 7663 FW_HOOKS(ipst->ips_ip4_forwarding_event, 7664 ipst->ips_ipv4firewall_forwarding, 7665 in_ill, out_ill, ipha, mp, mp, ipst); 7666 7667 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 7668 7669 if (mp == NULL) 7670 return; 7671 pkt_len = ntohs(ipha->ipha_length); 7672 7673 /* 7674 * ip_mrtun_forward is only used by foreign agent to reverse 7675 * tunnel the incoming packet. So it does not do any option 7676 * processing for source routing. 7677 */ 7678 max_frag = ire->ire_max_frag; 7679 if (pkt_len > max_frag) { 7680 /* 7681 * It needs fragging on its way out. We haven't 7682 * verified the header checksum yet. Since we 7683 * are going to put a surely good checksum in the 7684 * outgoing header, we have to make sure that it 7685 * was good coming in. 7686 */ 7687 if (ip_csum_hdr(ipha)) { 7688 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInCksumErrs); 7689 goto drop_pkt; 7690 } 7691 7692 /* Initiate write side IPPF processing */ 7693 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 7694 ip_process(IPP_FWD_OUT, &mp, ill_index); 7695 if (mp == NULL) { 7696 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 7697 "dropped/deferred during ip policy "\ 7698 "processing\n")); 7699 return; 7700 } 7701 } 7702 if ((first_mp = allocb(sizeof (ipsec_info_t), 7703 BPRI_HI)) == NULL) { 7704 goto discard_pkt; 7705 } 7706 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7707 mp = first_mp; 7708 7709 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 7710 return; 7711 } 7712 7713 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 7714 7715 ASSERT(ire->ire_ipif != NULL); 7716 7717 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 7718 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7719 FW_HOOKS(ipst->ips_ip4_physical_out_event, 7720 ipst->ips_ipv4firewall_physical_out, 7721 NULL, out_ill, ipha, mp, mp, ipst); 7722 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 7723 if (mp == NULL) 7724 return; 7725 7726 /* Now send the packet to the tunnel interface */ 7727 mp->b_prev = SET_BPREV_FLAG(IPP_FWD_OUT); 7728 q = ire->ire_stq; 7729 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_FALSE); 7730 if ((pktxmit_state == SEND_FAILED) || 7731 (pktxmit_state == LLHDR_RESLV_FAILED)) { 7732 ip2dbg(("ip_mrtun_forward: failed to send packet to ill %p\n", 7733 q->q_ptr)); 7734 } 7735 7736 return; 7737 discard_pkt: 7738 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInDiscards); 7739 drop_pkt:; 7740 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 7741 freemsg(mp); 7742 #undef rptr 7743 } 7744 7745 /* 7746 * Fills the ipsec_out_t data structure with appropriate fields and 7747 * prepends it to mp which contains the IP hdr + data that was meant 7748 * to be forwarded. Please note that ipsec_out_info data structure 7749 * is used here to communicate the outgoing ill path at ip_wput() 7750 * for the ICMP error packet. This has nothing to do with ipsec IP 7751 * security. ipsec_out_t is really used to pass the info to the module 7752 * IP where this information cannot be extracted from conn. 7753 * This functions is called by ip_mrtun_forward(). 7754 */ 7755 void 7756 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 7757 { 7758 ipsec_out_t *io; 7759 7760 ASSERT(xmit_ill != NULL); 7761 first_mp->b_datap->db_type = M_CTL; 7762 first_mp->b_wptr += sizeof (ipsec_info_t); 7763 /* 7764 * This is to pass info to ip_wput in absence of conn. 7765 * ipsec_out_secure will be B_FALSE because of this. 7766 * Thus ipsec_out_secure being B_FALSE indicates that 7767 * this is not IPSEC security related information. 7768 */ 7769 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 7770 io = (ipsec_out_t *)first_mp->b_rptr; 7771 io->ipsec_out_type = IPSEC_OUT; 7772 io->ipsec_out_len = sizeof (ipsec_out_t); 7773 first_mp->b_cont = mp; 7774 io->ipsec_out_ill_index = 7775 xmit_ill->ill_phyint->phyint_ifindex; 7776 io->ipsec_out_xmit_if = B_TRUE; 7777 io->ipsec_out_ns = xmit_ill->ill_ipst->ips_netstack; 7778 } 7779 7780 /* 7781 * Return the network mask 7782 * associated with the specified address. 7783 */ 7784 ipaddr_t 7785 ip_net_mask(ipaddr_t addr) 7786 { 7787 uchar_t *up = (uchar_t *)&addr; 7788 ipaddr_t mask = 0; 7789 uchar_t *maskp = (uchar_t *)&mask; 7790 7791 #if defined(__i386) || defined(__amd64) 7792 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7793 #endif 7794 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7795 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7796 #endif 7797 if (CLASSD(addr)) { 7798 maskp[0] = 0xF0; 7799 return (mask); 7800 } 7801 if (addr == 0) 7802 return (0); 7803 maskp[0] = 0xFF; 7804 if ((up[0] & 0x80) == 0) 7805 return (mask); 7806 7807 maskp[1] = 0xFF; 7808 if ((up[0] & 0xC0) == 0x80) 7809 return (mask); 7810 7811 maskp[2] = 0xFF; 7812 if ((up[0] & 0xE0) == 0xC0) 7813 return (mask); 7814 7815 /* Must be experimental or multicast, indicate as much */ 7816 return ((ipaddr_t)0); 7817 } 7818 7819 /* 7820 * Select an ill for the packet by considering load spreading across 7821 * a different ill in the group if dst_ill is part of some group. 7822 */ 7823 ill_t * 7824 ip_newroute_get_dst_ill(ill_t *dst_ill) 7825 { 7826 ill_t *ill; 7827 7828 /* 7829 * We schedule irrespective of whether the source address is 7830 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7831 */ 7832 ill = illgrp_scheduler(dst_ill); 7833 if (ill == NULL) 7834 return (NULL); 7835 7836 /* 7837 * For groups with names ip_sioctl_groupname ensures that all 7838 * ills are of same type. For groups without names, ifgrp_insert 7839 * ensures this. 7840 */ 7841 ASSERT(dst_ill->ill_type == ill->ill_type); 7842 7843 return (ill); 7844 } 7845 7846 /* 7847 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7848 */ 7849 ill_t * 7850 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7851 ip_stack_t *ipst) 7852 { 7853 ill_t *ret_ill; 7854 7855 ASSERT(ifindex != 0); 7856 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7857 ipst); 7858 if (ret_ill == NULL || 7859 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7860 if (isv6) { 7861 if (ill != NULL) { 7862 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7863 } else { 7864 BUMP_MIB(&ipst->ips_ip6_mib, 7865 ipIfStatsOutDiscards); 7866 } 7867 ip1dbg(("ip_grab_attach_ill (IPv6): " 7868 "bad ifindex %d.\n", ifindex)); 7869 } else { 7870 if (ill != NULL) { 7871 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7872 } else { 7873 BUMP_MIB(&ipst->ips_ip_mib, 7874 ipIfStatsOutDiscards); 7875 } 7876 ip1dbg(("ip_grab_attach_ill (IPv4): " 7877 "bad ifindex %d.\n", ifindex)); 7878 } 7879 if (ret_ill != NULL) 7880 ill_refrele(ret_ill); 7881 freemsg(first_mp); 7882 return (NULL); 7883 } 7884 7885 return (ret_ill); 7886 } 7887 7888 /* 7889 * IPv4 - 7890 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7891 * out a packet to a destination address for which we do not have specific 7892 * (or sufficient) routing information. 7893 * 7894 * NOTE : These are the scopes of some of the variables that point at IRE, 7895 * which needs to be followed while making any future modifications 7896 * to avoid memory leaks. 7897 * 7898 * - ire and sire are the entries looked up initially by 7899 * ire_ftable_lookup. 7900 * - ipif_ire is used to hold the interface ire associated with 7901 * the new cache ire. But it's scope is limited, so we always REFRELE 7902 * it before branching out to error paths. 7903 * - save_ire is initialized before ire_create, so that ire returned 7904 * by ire_create will not over-write the ire. We REFRELE save_ire 7905 * before breaking out of the switch. 7906 * 7907 * Thus on failures, we have to REFRELE only ire and sire, if they 7908 * are not NULL. 7909 */ 7910 void 7911 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp, 7912 zoneid_t zoneid, ip_stack_t *ipst) 7913 { 7914 areq_t *areq; 7915 ipaddr_t gw = 0; 7916 ire_t *ire = NULL; 7917 mblk_t *res_mp; 7918 ipaddr_t *addrp; 7919 ipaddr_t nexthop_addr; 7920 ipif_t *src_ipif = NULL; 7921 ill_t *dst_ill = NULL; 7922 ipha_t *ipha; 7923 ire_t *sire = NULL; 7924 mblk_t *first_mp; 7925 ire_t *save_ire; 7926 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7927 ushort_t ire_marks = 0; 7928 boolean_t mctl_present; 7929 ipsec_out_t *io; 7930 mblk_t *saved_mp; 7931 ire_t *first_sire = NULL; 7932 mblk_t *copy_mp = NULL; 7933 mblk_t *xmit_mp = NULL; 7934 ipaddr_t save_dst; 7935 uint32_t multirt_flags = 7936 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7937 boolean_t multirt_is_resolvable; 7938 boolean_t multirt_resolve_next; 7939 boolean_t do_attach_ill = B_FALSE; 7940 boolean_t ip_nexthop = B_FALSE; 7941 tsol_ire_gw_secattr_t *attrp = NULL; 7942 tsol_gcgrp_t *gcgrp = NULL; 7943 tsol_gcgrp_addr_t ga; 7944 7945 if (ip_debug > 2) { 7946 /* ip1dbg */ 7947 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7948 } 7949 7950 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7951 if (mctl_present) { 7952 io = (ipsec_out_t *)first_mp->b_rptr; 7953 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7954 ASSERT(zoneid == io->ipsec_out_zoneid); 7955 ASSERT(zoneid != ALL_ZONES); 7956 } 7957 7958 ipha = (ipha_t *)mp->b_rptr; 7959 7960 /* All multicast lookups come through ip_newroute_ipif() */ 7961 if (CLASSD(dst)) { 7962 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7963 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7964 freemsg(first_mp); 7965 return; 7966 } 7967 7968 if (mctl_present && io->ipsec_out_attach_if) { 7969 /* ip_grab_attach_ill returns a held ill */ 7970 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7971 io->ipsec_out_ill_index, B_FALSE, ipst); 7972 7973 /* Failure case frees things for us. */ 7974 if (attach_ill == NULL) 7975 return; 7976 7977 /* 7978 * Check if we need an ire that will not be 7979 * looked up by anybody else i.e. HIDDEN. 7980 */ 7981 if (ill_is_probeonly(attach_ill)) 7982 ire_marks = IRE_MARK_HIDDEN; 7983 } 7984 if (mctl_present && io->ipsec_out_ip_nexthop) { 7985 ip_nexthop = B_TRUE; 7986 nexthop_addr = io->ipsec_out_nexthop_addr; 7987 } 7988 /* 7989 * If this IRE is created for forwarding or it is not for 7990 * traffic for congestion controlled protocols, mark it as temporary. 7991 */ 7992 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7993 ire_marks |= IRE_MARK_TEMPORARY; 7994 7995 /* 7996 * Get what we can from ire_ftable_lookup which will follow an IRE 7997 * chain until it gets the most specific information available. 7998 * For example, we know that there is no IRE_CACHE for this dest, 7999 * but there may be an IRE_OFFSUBNET which specifies a gateway. 8000 * ire_ftable_lookup will look up the gateway, etc. 8001 * Check if in_ill != NULL. If it is true, the packet must be 8002 * from an incoming interface where RTA_SRCIFP is set. 8003 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 8004 * to the destination, of equal netmask length in the forward table, 8005 * will be recursively explored. If no information is available 8006 * for the final gateway of that route, we force the returned ire 8007 * to be equal to sire using MATCH_IRE_PARENT. 8008 * At least, in this case we have a starting point (in the buckets) 8009 * to look for other routes to the destination in the forward table. 8010 * This is actually used only for multirouting, where a list 8011 * of routes has to be processed in sequence. 8012 * 8013 * In the process of coming up with the most specific information, 8014 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 8015 * for the gateway (i.e., one for which the ire_nce->nce_state is 8016 * not yet ND_REACHABLE, and is in the middle of arp resolution). 8017 * Two caveats when handling incomplete ire's in ip_newroute: 8018 * - we should be careful when accessing its ire_nce (specifically 8019 * the nce_res_mp) ast it might change underneath our feet, and, 8020 * - not all legacy code path callers are prepared to handle 8021 * incomplete ire's, so we should not create/add incomplete 8022 * ire_cache entries here. (See discussion about temporary solution 8023 * further below). 8024 * 8025 * In order to minimize packet dropping, and to preserve existing 8026 * behavior, we treat this case as if there were no IRE_CACHE for the 8027 * gateway, and instead use the IF_RESOLVER ire to send out 8028 * another request to ARP (this is achieved by passing the 8029 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 8030 * arp response comes back in ip_wput_nondata, we will create 8031 * a per-dst ire_cache that has an ND_COMPLETE ire. 8032 * 8033 * Note that this is a temporary solution; the correct solution is 8034 * to create an incomplete per-dst ire_cache entry, and send the 8035 * packet out when the gw's nce is resolved. In order to achieve this, 8036 * all packet processing must have been completed prior to calling 8037 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 8038 * to be modified to accomodate this solution. 8039 */ 8040 if (in_ill != NULL) { 8041 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 8042 in_ill, MATCH_IRE_TYPE); 8043 } else if (ip_nexthop) { 8044 /* 8045 * The first time we come here, we look for an IRE_INTERFACE 8046 * entry for the specified nexthop, set the dst to be the 8047 * nexthop address and create an IRE_CACHE entry for the 8048 * nexthop. The next time around, we are able to find an 8049 * IRE_CACHE entry for the nexthop, set the gateway to be the 8050 * nexthop address and create an IRE_CACHE entry for the 8051 * destination address via the specified nexthop. 8052 */ 8053 ire = ire_cache_lookup(nexthop_addr, zoneid, 8054 MBLK_GETLABEL(mp), ipst); 8055 if (ire != NULL) { 8056 gw = nexthop_addr; 8057 ire_marks |= IRE_MARK_PRIVATE_ADDR; 8058 } else { 8059 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 8060 IRE_INTERFACE, NULL, NULL, zoneid, 0, 8061 MBLK_GETLABEL(mp), 8062 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 8063 ipst); 8064 if (ire != NULL) { 8065 dst = nexthop_addr; 8066 } 8067 } 8068 } else if (attach_ill == NULL) { 8069 ire = ire_ftable_lookup(dst, 0, 0, 0, 8070 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 8071 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 8072 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 8073 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 8074 ipst); 8075 } else { 8076 /* 8077 * attach_ill is set only for communicating with 8078 * on-link hosts. So, don't look for DEFAULT. 8079 */ 8080 ipif_t *attach_ipif; 8081 8082 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 8083 if (attach_ipif == NULL) { 8084 ill_refrele(attach_ill); 8085 goto icmp_err_ret; 8086 } 8087 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 8088 &sire, zoneid, 0, MBLK_GETLABEL(mp), 8089 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 8090 MATCH_IRE_SECATTR, ipst); 8091 ipif_refrele(attach_ipif); 8092 } 8093 ip3dbg(("ip_newroute: ire_ftable_lookup() " 8094 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 8095 8096 /* 8097 * This loop is run only once in most cases. 8098 * We loop to resolve further routes only when the destination 8099 * can be reached through multiple RTF_MULTIRT-flagged ires. 8100 */ 8101 do { 8102 /* Clear the previous iteration's values */ 8103 if (src_ipif != NULL) { 8104 ipif_refrele(src_ipif); 8105 src_ipif = NULL; 8106 } 8107 if (dst_ill != NULL) { 8108 ill_refrele(dst_ill); 8109 dst_ill = NULL; 8110 } 8111 8112 multirt_resolve_next = B_FALSE; 8113 /* 8114 * We check if packets have to be multirouted. 8115 * In this case, given the current <ire, sire> couple, 8116 * we look for the next suitable <ire, sire>. 8117 * This check is done in ire_multirt_lookup(), 8118 * which applies various criteria to find the next route 8119 * to resolve. ire_multirt_lookup() leaves <ire, sire> 8120 * unchanged if it detects it has not been tried yet. 8121 */ 8122 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8123 ip3dbg(("ip_newroute: starting next_resolution " 8124 "with first_mp %p, tag %d\n", 8125 (void *)first_mp, 8126 MULTIRT_DEBUG_TAGGED(first_mp))); 8127 8128 ASSERT(sire != NULL); 8129 multirt_is_resolvable = 8130 ire_multirt_lookup(&ire, &sire, multirt_flags, 8131 MBLK_GETLABEL(mp), ipst); 8132 8133 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8134 "ire %p, sire %p\n", 8135 multirt_is_resolvable, 8136 (void *)ire, (void *)sire)); 8137 8138 if (!multirt_is_resolvable) { 8139 /* 8140 * No more multirt route to resolve; give up 8141 * (all routes resolved or no more 8142 * resolvable routes). 8143 */ 8144 if (ire != NULL) { 8145 ire_refrele(ire); 8146 ire = NULL; 8147 } 8148 } else { 8149 ASSERT(sire != NULL); 8150 ASSERT(ire != NULL); 8151 /* 8152 * We simply use first_sire as a flag that 8153 * indicates if a resolvable multirt route 8154 * has already been found. 8155 * If it is not the case, we may have to send 8156 * an ICMP error to report that the 8157 * destination is unreachable. 8158 * We do not IRE_REFHOLD first_sire. 8159 */ 8160 if (first_sire == NULL) { 8161 first_sire = sire; 8162 } 8163 } 8164 } 8165 if (ire == NULL) { 8166 if (ip_debug > 3) { 8167 /* ip2dbg */ 8168 pr_addr_dbg("ip_newroute: " 8169 "can't resolve %s\n", AF_INET, &dst); 8170 } 8171 ip3dbg(("ip_newroute: " 8172 "ire %p, sire %p, first_sire %p\n", 8173 (void *)ire, (void *)sire, (void *)first_sire)); 8174 8175 if (sire != NULL) { 8176 ire_refrele(sire); 8177 sire = NULL; 8178 } 8179 8180 if (first_sire != NULL) { 8181 /* 8182 * At least one multirt route has been found 8183 * in the same call to ip_newroute(); 8184 * there is no need to report an ICMP error. 8185 * first_sire was not IRE_REFHOLDed. 8186 */ 8187 MULTIRT_DEBUG_UNTAG(first_mp); 8188 freemsg(first_mp); 8189 return; 8190 } 8191 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8192 RTA_DST, ipst); 8193 if (attach_ill != NULL) 8194 ill_refrele(attach_ill); 8195 goto icmp_err_ret; 8196 } 8197 8198 /* 8199 * When RTA_SRCIFP is used to add a route, then an interface 8200 * route is added in the source interface's routing table. 8201 * If the outgoing interface of this route is of type 8202 * IRE_IF_RESOLVER, then upon creation of the ire, 8203 * ire_nce->nce_res_mp is set to NULL. 8204 * Later, when this route is first used for forwarding 8205 * a packet, ip_newroute() is called 8206 * to resolve the hardware address of the outgoing ipif. 8207 * We do not come here for IRE_IF_NORESOLVER entries in the 8208 * source interface based table. We only come here if the 8209 * outgoing interface is a resolver interface and we don't 8210 * have the ire_nce->nce_res_mp information yet. 8211 * If in_ill is not null that means it is called from 8212 * ip_rput. 8213 */ 8214 8215 ASSERT(ire->ire_in_ill == NULL || 8216 (ire->ire_type == IRE_IF_RESOLVER && 8217 ire->ire_nce != NULL && ire->ire_nce->nce_res_mp == NULL)); 8218 8219 /* 8220 * Verify that the returned IRE does not have either 8221 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8222 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8223 */ 8224 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8225 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8226 if (attach_ill != NULL) 8227 ill_refrele(attach_ill); 8228 goto icmp_err_ret; 8229 } 8230 /* 8231 * Increment the ire_ob_pkt_count field for ire if it is an 8232 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8233 * increment the same for the parent IRE, sire, if it is some 8234 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 8235 * and HOST_REDIRECT). 8236 */ 8237 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8238 UPDATE_OB_PKT_COUNT(ire); 8239 ire->ire_last_used_time = lbolt; 8240 } 8241 8242 if (sire != NULL) { 8243 gw = sire->ire_gateway_addr; 8244 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8245 IRE_INTERFACE)) == 0); 8246 UPDATE_OB_PKT_COUNT(sire); 8247 sire->ire_last_used_time = lbolt; 8248 } 8249 /* 8250 * We have a route to reach the destination. 8251 * 8252 * 1) If the interface is part of ill group, try to get a new 8253 * ill taking load spreading into account. 8254 * 8255 * 2) After selecting the ill, get a source address that 8256 * might create good inbound load spreading. 8257 * ipif_select_source does this for us. 8258 * 8259 * If the application specified the ill (ifindex), we still 8260 * load spread. Only if the packets needs to go out 8261 * specifically on a given ill e.g. binding to 8262 * IPIF_NOFAILOVER address, then we don't try to use a 8263 * different ill for load spreading. 8264 */ 8265 if (attach_ill == NULL) { 8266 /* 8267 * Don't perform outbound load spreading in the 8268 * case of an RTF_MULTIRT route, as we actually 8269 * typically want to replicate outgoing packets 8270 * through particular interfaces. 8271 */ 8272 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8273 dst_ill = ire->ire_ipif->ipif_ill; 8274 /* for uniformity */ 8275 ill_refhold(dst_ill); 8276 } else { 8277 /* 8278 * If we are here trying to create an IRE_CACHE 8279 * for an offlink destination and have the 8280 * IRE_CACHE for the next hop and the latter is 8281 * using virtual IP source address selection i.e 8282 * it's ire->ire_ipif is pointing to a virtual 8283 * network interface (vni) then 8284 * ip_newroute_get_dst_ll() will return the vni 8285 * interface as the dst_ill. Since the vni is 8286 * virtual i.e not associated with any physical 8287 * interface, it cannot be the dst_ill, hence 8288 * in such a case call ip_newroute_get_dst_ll() 8289 * with the stq_ill instead of the ire_ipif ILL. 8290 * The function returns a refheld ill. 8291 */ 8292 if ((ire->ire_type == IRE_CACHE) && 8293 IS_VNI(ire->ire_ipif->ipif_ill)) 8294 dst_ill = ip_newroute_get_dst_ill( 8295 ire->ire_stq->q_ptr); 8296 else 8297 dst_ill = ip_newroute_get_dst_ill( 8298 ire->ire_ipif->ipif_ill); 8299 } 8300 if (dst_ill == NULL) { 8301 if (ip_debug > 2) { 8302 pr_addr_dbg("ip_newroute: " 8303 "no dst ill for dst" 8304 " %s\n", AF_INET, &dst); 8305 } 8306 goto icmp_err_ret; 8307 } 8308 } else { 8309 dst_ill = ire->ire_ipif->ipif_ill; 8310 /* for uniformity */ 8311 ill_refhold(dst_ill); 8312 /* 8313 * We should have found a route matching ill as we 8314 * called ire_ftable_lookup with MATCH_IRE_ILL. 8315 * Rather than asserting, when there is a mismatch, 8316 * we just drop the packet. 8317 */ 8318 if (dst_ill != attach_ill) { 8319 ip0dbg(("ip_newroute: Packet dropped as " 8320 "IPIF_NOFAILOVER ill is %s, " 8321 "ire->ire_ipif->ipif_ill is %s\n", 8322 attach_ill->ill_name, 8323 dst_ill->ill_name)); 8324 ill_refrele(attach_ill); 8325 goto icmp_err_ret; 8326 } 8327 } 8328 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8329 if (attach_ill != NULL) { 8330 ill_refrele(attach_ill); 8331 attach_ill = NULL; 8332 do_attach_ill = B_TRUE; 8333 } 8334 ASSERT(dst_ill != NULL); 8335 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8336 8337 /* 8338 * Pick the best source address from dst_ill. 8339 * 8340 * 1) If it is part of a multipathing group, we would 8341 * like to spread the inbound packets across different 8342 * interfaces. ipif_select_source picks a random source 8343 * across the different ills in the group. 8344 * 8345 * 2) If it is not part of a multipathing group, we try 8346 * to pick the source address from the destination 8347 * route. Clustering assumes that when we have multiple 8348 * prefixes hosted on an interface, the prefix of the 8349 * source address matches the prefix of the destination 8350 * route. We do this only if the address is not 8351 * DEPRECATED. 8352 * 8353 * 3) If the conn is in a different zone than the ire, we 8354 * need to pick a source address from the right zone. 8355 * 8356 * NOTE : If we hit case (1) above, the prefix of the source 8357 * address picked may not match the prefix of the 8358 * destination routes prefix as ipif_select_source 8359 * does not look at "dst" while picking a source 8360 * address. 8361 * If we want the same behavior as (2), we will need 8362 * to change the behavior of ipif_select_source. 8363 */ 8364 ASSERT(src_ipif == NULL); 8365 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8366 /* 8367 * The RTF_SETSRC flag is set in the parent ire (sire). 8368 * Check that the ipif matching the requested source 8369 * address still exists. 8370 */ 8371 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8372 zoneid, NULL, NULL, NULL, NULL, ipst); 8373 } 8374 if (src_ipif == NULL) { 8375 ire_marks |= IRE_MARK_USESRC_CHECK; 8376 if ((dst_ill->ill_group != NULL) || 8377 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8378 (connp != NULL && ire->ire_zoneid != zoneid && 8379 ire->ire_zoneid != ALL_ZONES) || 8380 (dst_ill->ill_usesrc_ifindex != 0)) { 8381 /* 8382 * If the destination is reachable via a 8383 * given gateway, the selected source address 8384 * should be in the same subnet as the gateway. 8385 * Otherwise, the destination is not reachable. 8386 * 8387 * If there are no interfaces on the same subnet 8388 * as the destination, ipif_select_source gives 8389 * first non-deprecated interface which might be 8390 * on a different subnet than the gateway. 8391 * This is not desirable. Hence pass the dst_ire 8392 * source address to ipif_select_source. 8393 * It is sure that the destination is reachable 8394 * with the dst_ire source address subnet. 8395 * So passing dst_ire source address to 8396 * ipif_select_source will make sure that the 8397 * selected source will be on the same subnet 8398 * as dst_ire source address. 8399 */ 8400 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8401 src_ipif = ipif_select_source(dst_ill, saddr, 8402 zoneid); 8403 if (src_ipif == NULL) { 8404 if (ip_debug > 2) { 8405 pr_addr_dbg("ip_newroute: " 8406 "no src for dst %s ", 8407 AF_INET, &dst); 8408 printf("through interface %s\n", 8409 dst_ill->ill_name); 8410 } 8411 goto icmp_err_ret; 8412 } 8413 } else { 8414 src_ipif = ire->ire_ipif; 8415 ASSERT(src_ipif != NULL); 8416 /* hold src_ipif for uniformity */ 8417 ipif_refhold(src_ipif); 8418 } 8419 } 8420 8421 /* 8422 * Assign a source address while we have the conn. 8423 * We can't have ip_wput_ire pick a source address when the 8424 * packet returns from arp since we need to look at 8425 * conn_unspec_src and conn_zoneid, and we lose the conn when 8426 * going through arp. 8427 * 8428 * NOTE : ip_newroute_v6 does not have this piece of code as 8429 * it uses ip6i to store this information. 8430 */ 8431 if (ipha->ipha_src == INADDR_ANY && 8432 (connp == NULL || !connp->conn_unspec_src)) { 8433 ipha->ipha_src = src_ipif->ipif_src_addr; 8434 } 8435 if (ip_debug > 3) { 8436 /* ip2dbg */ 8437 pr_addr_dbg("ip_newroute: first hop %s\n", 8438 AF_INET, &gw); 8439 } 8440 ip2dbg(("\tire type %s (%d)\n", 8441 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8442 8443 /* 8444 * The TTL of multirouted packets is bounded by the 8445 * ip_multirt_ttl ndd variable. 8446 */ 8447 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8448 /* Force TTL of multirouted packets */ 8449 if ((ipst->ips_ip_multirt_ttl > 0) && 8450 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8451 ip2dbg(("ip_newroute: forcing multirt TTL " 8452 "to %d (was %d), dst 0x%08x\n", 8453 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8454 ntohl(sire->ire_addr))); 8455 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8456 } 8457 } 8458 /* 8459 * At this point in ip_newroute(), ire is either the 8460 * IRE_CACHE of the next-hop gateway for an off-subnet 8461 * destination or an IRE_INTERFACE type that should be used 8462 * to resolve an on-subnet destination or an on-subnet 8463 * next-hop gateway. 8464 * 8465 * In the IRE_CACHE case, we have the following : 8466 * 8467 * 1) src_ipif - used for getting a source address. 8468 * 8469 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8470 * means packets using this IRE_CACHE will go out on 8471 * dst_ill. 8472 * 8473 * 3) The IRE sire will point to the prefix that is the 8474 * longest matching route for the destination. These 8475 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8476 * 8477 * The newly created IRE_CACHE entry for the off-subnet 8478 * destination is tied to both the prefix route and the 8479 * interface route used to resolve the next-hop gateway 8480 * via the ire_phandle and ire_ihandle fields, 8481 * respectively. 8482 * 8483 * In the IRE_INTERFACE case, we have the following : 8484 * 8485 * 1) src_ipif - used for getting a source address. 8486 * 8487 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8488 * means packets using the IRE_CACHE that we will build 8489 * here will go out on dst_ill. 8490 * 8491 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8492 * to be created will only be tied to the IRE_INTERFACE 8493 * that was derived from the ire_ihandle field. 8494 * 8495 * If sire is non-NULL, it means the destination is 8496 * off-link and we will first create the IRE_CACHE for the 8497 * gateway. Next time through ip_newroute, we will create 8498 * the IRE_CACHE for the final destination as described 8499 * above. 8500 * 8501 * In both cases, after the current resolution has been 8502 * completed (or possibly initialised, in the IRE_INTERFACE 8503 * case), the loop may be re-entered to attempt the resolution 8504 * of another RTF_MULTIRT route. 8505 * 8506 * When an IRE_CACHE entry for the off-subnet destination is 8507 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8508 * for further processing in emission loops. 8509 */ 8510 save_ire = ire; 8511 switch (ire->ire_type) { 8512 case IRE_CACHE: { 8513 ire_t *ipif_ire; 8514 mblk_t *ire_fp_mp; 8515 8516 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8517 if (gw == 0) 8518 gw = ire->ire_gateway_addr; 8519 /* 8520 * We need 3 ire's to create a new cache ire for an 8521 * off-link destination from the cache ire of the 8522 * gateway. 8523 * 8524 * 1. The prefix ire 'sire' (Note that this does 8525 * not apply to the conn_nexthop_set case) 8526 * 2. The cache ire of the gateway 'ire' 8527 * 3. The interface ire 'ipif_ire' 8528 * 8529 * We have (1) and (2). We lookup (3) below. 8530 * 8531 * If there is no interface route to the gateway, 8532 * it is a race condition, where we found the cache 8533 * but the interface route has been deleted. 8534 */ 8535 if (ip_nexthop) { 8536 ipif_ire = ire_ihandle_lookup_onlink(ire); 8537 } else { 8538 ipif_ire = 8539 ire_ihandle_lookup_offlink(ire, sire); 8540 } 8541 if (ipif_ire == NULL) { 8542 ip1dbg(("ip_newroute: " 8543 "ire_ihandle_lookup_offlink failed\n")); 8544 goto icmp_err_ret; 8545 } 8546 /* 8547 * XXX We are using the same res_mp 8548 * (DL_UNITDATA_REQ) though the save_ire is not 8549 * pointing at the same ill. 8550 * This is incorrect. We need to send it up to the 8551 * resolver to get the right res_mp. For ethernets 8552 * this may be okay (ill_type == DL_ETHER). 8553 */ 8554 res_mp = save_ire->ire_nce->nce_res_mp; 8555 ire_fp_mp = NULL; 8556 8557 /* 8558 * Check cached gateway IRE for any security 8559 * attributes; if found, associate the gateway 8560 * credentials group to the destination IRE. 8561 */ 8562 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8563 mutex_enter(&attrp->igsa_lock); 8564 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8565 GCGRP_REFHOLD(gcgrp); 8566 mutex_exit(&attrp->igsa_lock); 8567 } 8568 8569 ire = ire_create( 8570 (uchar_t *)&dst, /* dest address */ 8571 (uchar_t *)&ip_g_all_ones, /* mask */ 8572 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8573 (uchar_t *)&gw, /* gateway address */ 8574 NULL, 8575 &save_ire->ire_max_frag, 8576 ire_fp_mp, /* Fast Path header */ 8577 dst_ill->ill_rq, /* recv-from queue */ 8578 dst_ill->ill_wq, /* send-to queue */ 8579 IRE_CACHE, /* IRE type */ 8580 res_mp, 8581 src_ipif, 8582 in_ill, /* incoming ill */ 8583 (sire != NULL) ? 8584 sire->ire_mask : 0, /* Parent mask */ 8585 (sire != NULL) ? 8586 sire->ire_phandle : 0, /* Parent handle */ 8587 ipif_ire->ire_ihandle, /* Interface handle */ 8588 (sire != NULL) ? (sire->ire_flags & 8589 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8590 (sire != NULL) ? 8591 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8592 NULL, 8593 gcgrp, 8594 ipst); 8595 8596 if (ire == NULL) { 8597 if (gcgrp != NULL) { 8598 GCGRP_REFRELE(gcgrp); 8599 gcgrp = NULL; 8600 } 8601 ire_refrele(ipif_ire); 8602 ire_refrele(save_ire); 8603 break; 8604 } 8605 8606 /* reference now held by IRE */ 8607 gcgrp = NULL; 8608 8609 ire->ire_marks |= ire_marks; 8610 8611 /* 8612 * Prevent sire and ipif_ire from getting deleted. 8613 * The newly created ire is tied to both of them via 8614 * the phandle and ihandle respectively. 8615 */ 8616 if (sire != NULL) { 8617 IRB_REFHOLD(sire->ire_bucket); 8618 /* Has it been removed already ? */ 8619 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8620 IRB_REFRELE(sire->ire_bucket); 8621 ire_refrele(ipif_ire); 8622 ire_refrele(save_ire); 8623 break; 8624 } 8625 } 8626 8627 IRB_REFHOLD(ipif_ire->ire_bucket); 8628 /* Has it been removed already ? */ 8629 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8630 IRB_REFRELE(ipif_ire->ire_bucket); 8631 if (sire != NULL) 8632 IRB_REFRELE(sire->ire_bucket); 8633 ire_refrele(ipif_ire); 8634 ire_refrele(save_ire); 8635 break; 8636 } 8637 8638 xmit_mp = first_mp; 8639 /* 8640 * In the case of multirouting, a copy 8641 * of the packet is done before its sending. 8642 * The copy is used to attempt another 8643 * route resolution, in a next loop. 8644 */ 8645 if (ire->ire_flags & RTF_MULTIRT) { 8646 copy_mp = copymsg(first_mp); 8647 if (copy_mp != NULL) { 8648 xmit_mp = copy_mp; 8649 MULTIRT_DEBUG_TAG(first_mp); 8650 } 8651 } 8652 ire_add_then_send(q, ire, xmit_mp); 8653 ire_refrele(save_ire); 8654 8655 /* Assert that sire is not deleted yet. */ 8656 if (sire != NULL) { 8657 ASSERT(sire->ire_ptpn != NULL); 8658 IRB_REFRELE(sire->ire_bucket); 8659 } 8660 8661 /* Assert that ipif_ire is not deleted yet. */ 8662 ASSERT(ipif_ire->ire_ptpn != NULL); 8663 IRB_REFRELE(ipif_ire->ire_bucket); 8664 ire_refrele(ipif_ire); 8665 8666 /* 8667 * If copy_mp is not NULL, multirouting was 8668 * requested. We loop to initiate a next 8669 * route resolution attempt, starting from sire. 8670 */ 8671 if (copy_mp != NULL) { 8672 /* 8673 * Search for the next unresolved 8674 * multirt route. 8675 */ 8676 copy_mp = NULL; 8677 ipif_ire = NULL; 8678 ire = NULL; 8679 multirt_resolve_next = B_TRUE; 8680 continue; 8681 } 8682 if (sire != NULL) 8683 ire_refrele(sire); 8684 ipif_refrele(src_ipif); 8685 ill_refrele(dst_ill); 8686 return; 8687 } 8688 case IRE_IF_NORESOLVER: { 8689 /* 8690 * We have what we need to build an IRE_CACHE. 8691 * 8692 * Create a new res_mp with the IP gateway address 8693 * in destination address in the DLPI hdr if the 8694 * physical length is exactly 4 bytes. 8695 */ 8696 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8697 uchar_t *addr; 8698 8699 if (gw) 8700 addr = (uchar_t *)&gw; 8701 else 8702 addr = (uchar_t *)&dst; 8703 8704 res_mp = ill_dlur_gen(addr, 8705 dst_ill->ill_phys_addr_length, 8706 dst_ill->ill_sap, 8707 dst_ill->ill_sap_length); 8708 8709 if (res_mp == NULL) { 8710 ip1dbg(("ip_newroute: res_mp NULL\n")); 8711 break; 8712 } 8713 } else if (dst_ill->ill_resolver_mp == NULL) { 8714 ip1dbg(("ip_newroute: dst_ill %p " 8715 "for IF_NORESOLV ire %p has " 8716 "no ill_resolver_mp\n", 8717 (void *)dst_ill, (void *)ire)); 8718 break; 8719 } else { 8720 res_mp = NULL; 8721 } 8722 8723 /* 8724 * TSol note: We are creating the ire cache for the 8725 * destination 'dst'. If 'dst' is offlink, going 8726 * through the first hop 'gw', the security attributes 8727 * of 'dst' must be set to point to the gateway 8728 * credentials of gateway 'gw'. If 'dst' is onlink, it 8729 * is possible that 'dst' is a potential gateway that is 8730 * referenced by some route that has some security 8731 * attributes. Thus in the former case, we need to do a 8732 * gcgrp_lookup of 'gw' while in the latter case we 8733 * need to do gcgrp_lookup of 'dst' itself. 8734 */ 8735 ga.ga_af = AF_INET; 8736 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8737 &ga.ga_addr); 8738 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8739 8740 ire = ire_create( 8741 (uchar_t *)&dst, /* dest address */ 8742 (uchar_t *)&ip_g_all_ones, /* mask */ 8743 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8744 (uchar_t *)&gw, /* gateway address */ 8745 NULL, 8746 &save_ire->ire_max_frag, 8747 NULL, /* Fast Path header */ 8748 dst_ill->ill_rq, /* recv-from queue */ 8749 dst_ill->ill_wq, /* send-to queue */ 8750 IRE_CACHE, 8751 res_mp, 8752 src_ipif, 8753 in_ill, /* Incoming ill */ 8754 save_ire->ire_mask, /* Parent mask */ 8755 (sire != NULL) ? /* Parent handle */ 8756 sire->ire_phandle : 0, 8757 save_ire->ire_ihandle, /* Interface handle */ 8758 (sire != NULL) ? sire->ire_flags & 8759 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8760 &(save_ire->ire_uinfo), 8761 NULL, 8762 gcgrp, 8763 ipst); 8764 8765 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 8766 freeb(res_mp); 8767 8768 if (ire == NULL) { 8769 if (gcgrp != NULL) { 8770 GCGRP_REFRELE(gcgrp); 8771 gcgrp = NULL; 8772 } 8773 ire_refrele(save_ire); 8774 break; 8775 } 8776 8777 /* reference now held by IRE */ 8778 gcgrp = NULL; 8779 8780 ire->ire_marks |= ire_marks; 8781 8782 /* Prevent save_ire from getting deleted */ 8783 IRB_REFHOLD(save_ire->ire_bucket); 8784 /* Has it been removed already ? */ 8785 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8786 IRB_REFRELE(save_ire->ire_bucket); 8787 ire_refrele(save_ire); 8788 break; 8789 } 8790 8791 /* 8792 * In the case of multirouting, a copy 8793 * of the packet is made before it is sent. 8794 * The copy is used in the next 8795 * loop to attempt another resolution. 8796 */ 8797 xmit_mp = first_mp; 8798 if ((sire != NULL) && 8799 (sire->ire_flags & RTF_MULTIRT)) { 8800 copy_mp = copymsg(first_mp); 8801 if (copy_mp != NULL) { 8802 xmit_mp = copy_mp; 8803 MULTIRT_DEBUG_TAG(first_mp); 8804 } 8805 } 8806 ire_add_then_send(q, ire, xmit_mp); 8807 8808 /* Assert that it is not deleted yet. */ 8809 ASSERT(save_ire->ire_ptpn != NULL); 8810 IRB_REFRELE(save_ire->ire_bucket); 8811 ire_refrele(save_ire); 8812 8813 if (copy_mp != NULL) { 8814 /* 8815 * If we found a (no)resolver, we ignore any 8816 * trailing top priority IRE_CACHE in further 8817 * loops. This ensures that we do not omit any 8818 * (no)resolver. 8819 * This IRE_CACHE, if any, will be processed 8820 * by another thread entering ip_newroute(). 8821 * IRE_CACHE entries, if any, will be processed 8822 * by another thread entering ip_newroute(), 8823 * (upon resolver response, for instance). 8824 * This aims to force parallel multirt 8825 * resolutions as soon as a packet must be sent. 8826 * In the best case, after the tx of only one 8827 * packet, all reachable routes are resolved. 8828 * Otherwise, the resolution of all RTF_MULTIRT 8829 * routes would require several emissions. 8830 */ 8831 multirt_flags &= ~MULTIRT_CACHEGW; 8832 8833 /* 8834 * Search for the next unresolved multirt 8835 * route. 8836 */ 8837 copy_mp = NULL; 8838 save_ire = NULL; 8839 ire = NULL; 8840 multirt_resolve_next = B_TRUE; 8841 continue; 8842 } 8843 8844 /* 8845 * Don't need sire anymore 8846 */ 8847 if (sire != NULL) 8848 ire_refrele(sire); 8849 8850 ipif_refrele(src_ipif); 8851 ill_refrele(dst_ill); 8852 return; 8853 } 8854 case IRE_IF_RESOLVER: 8855 /* 8856 * We can't build an IRE_CACHE yet, but at least we 8857 * found a resolver that can help. 8858 */ 8859 res_mp = dst_ill->ill_resolver_mp; 8860 if (!OK_RESOLVER_MP(res_mp)) 8861 break; 8862 8863 /* 8864 * To be at this point in the code with a non-zero gw 8865 * means that dst is reachable through a gateway that 8866 * we have never resolved. By changing dst to the gw 8867 * addr we resolve the gateway first. 8868 * When ire_add_then_send() tries to put the IP dg 8869 * to dst, it will reenter ip_newroute() at which 8870 * time we will find the IRE_CACHE for the gw and 8871 * create another IRE_CACHE in case IRE_CACHE above. 8872 */ 8873 if (gw != INADDR_ANY) { 8874 /* 8875 * The source ipif that was determined above was 8876 * relative to the destination address, not the 8877 * gateway's. If src_ipif was not taken out of 8878 * the IRE_IF_RESOLVER entry, we'll need to call 8879 * ipif_select_source() again. 8880 */ 8881 if (src_ipif != ire->ire_ipif) { 8882 ipif_refrele(src_ipif); 8883 src_ipif = ipif_select_source(dst_ill, 8884 gw, zoneid); 8885 if (src_ipif == NULL) { 8886 if (ip_debug > 2) { 8887 pr_addr_dbg( 8888 "ip_newroute: no " 8889 "src for gw %s ", 8890 AF_INET, &gw); 8891 printf("through " 8892 "interface %s\n", 8893 dst_ill->ill_name); 8894 } 8895 goto icmp_err_ret; 8896 } 8897 } 8898 save_dst = dst; 8899 dst = gw; 8900 gw = INADDR_ANY; 8901 } 8902 8903 /* 8904 * We obtain a partial IRE_CACHE which we will pass 8905 * along with the resolver query. When the response 8906 * comes back it will be there ready for us to add. 8907 * The ire_max_frag is atomically set under the 8908 * irebucket lock in ire_add_v[46]. 8909 */ 8910 8911 ire = ire_create_mp( 8912 (uchar_t *)&dst, /* dest address */ 8913 (uchar_t *)&ip_g_all_ones, /* mask */ 8914 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8915 (uchar_t *)&gw, /* gateway address */ 8916 NULL, /* no in_src_addr */ 8917 NULL, /* ire_max_frag */ 8918 NULL, /* Fast Path header */ 8919 dst_ill->ill_rq, /* recv-from queue */ 8920 dst_ill->ill_wq, /* send-to queue */ 8921 IRE_CACHE, 8922 NULL, 8923 src_ipif, /* Interface ipif */ 8924 in_ill, /* Incoming ILL */ 8925 save_ire->ire_mask, /* Parent mask */ 8926 0, 8927 save_ire->ire_ihandle, /* Interface handle */ 8928 0, /* flags if any */ 8929 &(save_ire->ire_uinfo), 8930 NULL, 8931 NULL, 8932 ipst); 8933 8934 if (ire == NULL) { 8935 ire_refrele(save_ire); 8936 break; 8937 } 8938 8939 if ((sire != NULL) && 8940 (sire->ire_flags & RTF_MULTIRT)) { 8941 copy_mp = copymsg(first_mp); 8942 if (copy_mp != NULL) 8943 MULTIRT_DEBUG_TAG(copy_mp); 8944 } 8945 8946 ire->ire_marks |= ire_marks; 8947 8948 /* 8949 * Construct message chain for the resolver 8950 * of the form: 8951 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8952 * Packet could contain a IPSEC_OUT mp. 8953 * 8954 * NOTE : ire will be added later when the response 8955 * comes back from ARP. If the response does not 8956 * come back, ARP frees the packet. For this reason, 8957 * we can't REFHOLD the bucket of save_ire to prevent 8958 * deletions. We may not be able to REFRELE the bucket 8959 * if the response never comes back. Thus, before 8960 * adding the ire, ire_add_v4 will make sure that the 8961 * interface route does not get deleted. This is the 8962 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8963 * where we can always prevent deletions because of 8964 * the synchronous nature of adding IRES i.e 8965 * ire_add_then_send is called after creating the IRE. 8966 */ 8967 ASSERT(ire->ire_mp != NULL); 8968 ire->ire_mp->b_cont = first_mp; 8969 /* Have saved_mp handy, for cleanup if canput fails */ 8970 saved_mp = mp; 8971 mp = copyb(res_mp); 8972 if (mp == NULL) { 8973 /* Prepare for cleanup */ 8974 mp = saved_mp; /* pkt */ 8975 ire_delete(ire); /* ire_mp */ 8976 ire = NULL; 8977 ire_refrele(save_ire); 8978 if (copy_mp != NULL) { 8979 MULTIRT_DEBUG_UNTAG(copy_mp); 8980 freemsg(copy_mp); 8981 copy_mp = NULL; 8982 } 8983 break; 8984 } 8985 linkb(mp, ire->ire_mp); 8986 8987 /* 8988 * Fill in the source and dest addrs for the resolver. 8989 * NOTE: this depends on memory layouts imposed by 8990 * ill_init(). 8991 */ 8992 areq = (areq_t *)mp->b_rptr; 8993 addrp = (ipaddr_t *)((char *)areq + 8994 areq->areq_sender_addr_offset); 8995 if (do_attach_ill) { 8996 /* 8997 * This is bind to no failover case. 8998 * arp packet also must go out on attach_ill. 8999 */ 9000 ASSERT(ipha->ipha_src != NULL); 9001 *addrp = ipha->ipha_src; 9002 } else { 9003 *addrp = save_ire->ire_src_addr; 9004 } 9005 9006 ire_refrele(save_ire); 9007 addrp = (ipaddr_t *)((char *)areq + 9008 areq->areq_target_addr_offset); 9009 *addrp = dst; 9010 /* Up to the resolver. */ 9011 if (canputnext(dst_ill->ill_rq) && 9012 !(dst_ill->ill_arp_closing)) { 9013 putnext(dst_ill->ill_rq, mp); 9014 ire = NULL; 9015 if (copy_mp != NULL) { 9016 /* 9017 * If we found a resolver, we ignore 9018 * any trailing top priority IRE_CACHE 9019 * in the further loops. This ensures 9020 * that we do not omit any resolver. 9021 * IRE_CACHE entries, if any, will be 9022 * processed next time we enter 9023 * ip_newroute(). 9024 */ 9025 multirt_flags &= ~MULTIRT_CACHEGW; 9026 /* 9027 * Search for the next unresolved 9028 * multirt route. 9029 */ 9030 first_mp = copy_mp; 9031 copy_mp = NULL; 9032 /* Prepare the next resolution loop. */ 9033 mp = first_mp; 9034 EXTRACT_PKT_MP(mp, first_mp, 9035 mctl_present); 9036 if (mctl_present) 9037 io = (ipsec_out_t *) 9038 first_mp->b_rptr; 9039 ipha = (ipha_t *)mp->b_rptr; 9040 9041 ASSERT(sire != NULL); 9042 9043 dst = save_dst; 9044 multirt_resolve_next = B_TRUE; 9045 continue; 9046 } 9047 9048 if (sire != NULL) 9049 ire_refrele(sire); 9050 9051 /* 9052 * The response will come back in ip_wput 9053 * with db_type IRE_DB_TYPE. 9054 */ 9055 ipif_refrele(src_ipif); 9056 ill_refrele(dst_ill); 9057 return; 9058 } else { 9059 /* Prepare for cleanup */ 9060 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 9061 mp); 9062 mp->b_cont = NULL; 9063 freeb(mp); /* areq */ 9064 /* 9065 * this is an ire that is not added to the 9066 * cache. ire_freemblk will handle the release 9067 * of any resources associated with the ire. 9068 */ 9069 ire_delete(ire); /* ire_mp */ 9070 mp = saved_mp; /* pkt */ 9071 ire = NULL; 9072 if (copy_mp != NULL) { 9073 MULTIRT_DEBUG_UNTAG(copy_mp); 9074 freemsg(copy_mp); 9075 copy_mp = NULL; 9076 } 9077 break; 9078 } 9079 default: 9080 break; 9081 } 9082 } while (multirt_resolve_next); 9083 9084 ip1dbg(("ip_newroute: dropped\n")); 9085 /* Did this packet originate externally? */ 9086 if (mp->b_prev) { 9087 mp->b_next = NULL; 9088 mp->b_prev = NULL; 9089 if (in_ill != NULL) { 9090 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInDiscards); 9091 } else { 9092 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 9093 } 9094 } else { 9095 if (dst_ill != NULL) { 9096 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 9097 } else { 9098 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 9099 } 9100 } 9101 ASSERT(copy_mp == NULL); 9102 MULTIRT_DEBUG_UNTAG(first_mp); 9103 freemsg(first_mp); 9104 if (ire != NULL) 9105 ire_refrele(ire); 9106 if (sire != NULL) 9107 ire_refrele(sire); 9108 if (src_ipif != NULL) 9109 ipif_refrele(src_ipif); 9110 if (dst_ill != NULL) 9111 ill_refrele(dst_ill); 9112 return; 9113 9114 icmp_err_ret: 9115 ip1dbg(("ip_newroute: no route\n")); 9116 if (src_ipif != NULL) 9117 ipif_refrele(src_ipif); 9118 if (dst_ill != NULL) 9119 ill_refrele(dst_ill); 9120 if (sire != NULL) 9121 ire_refrele(sire); 9122 /* Did this packet originate externally? */ 9123 if (mp->b_prev) { 9124 mp->b_next = NULL; 9125 mp->b_prev = NULL; 9126 if (in_ill != NULL) { 9127 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInNoRoutes); 9128 } else { 9129 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 9130 } 9131 q = WR(q); 9132 } else { 9133 /* 9134 * There is no outgoing ill, so just increment the 9135 * system MIB. 9136 */ 9137 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 9138 /* 9139 * Since ip_wput() isn't close to finished, we fill 9140 * in enough of the header for credible error reporting. 9141 */ 9142 if (ip_hdr_complete(ipha, zoneid, ipst)) { 9143 /* Failed */ 9144 MULTIRT_DEBUG_UNTAG(first_mp); 9145 freemsg(first_mp); 9146 if (ire != NULL) 9147 ire_refrele(ire); 9148 return; 9149 } 9150 } 9151 9152 /* 9153 * At this point we will have ire only if RTF_BLACKHOLE 9154 * or RTF_REJECT flags are set on the IRE. It will not 9155 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9156 */ 9157 if (ire != NULL) { 9158 if (ire->ire_flags & RTF_BLACKHOLE) { 9159 ire_refrele(ire); 9160 MULTIRT_DEBUG_UNTAG(first_mp); 9161 freemsg(first_mp); 9162 return; 9163 } 9164 ire_refrele(ire); 9165 } 9166 if (ip_source_routed(ipha, ipst)) { 9167 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 9168 zoneid, ipst); 9169 return; 9170 } 9171 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9172 } 9173 9174 ip_opt_info_t zero_info; 9175 9176 /* 9177 * IPv4 - 9178 * ip_newroute_ipif is called by ip_wput_multicast and 9179 * ip_rput_forward_multicast whenever we need to send 9180 * out a packet to a destination address for which we do not have specific 9181 * routing information. It is used when the packet will be sent out 9182 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 9183 * socket option is set or icmp error message wants to go out on a particular 9184 * interface for a unicast packet. 9185 * 9186 * In most cases, the destination address is resolved thanks to the ipif 9187 * intrinsic resolver. However, there are some cases where the call to 9188 * ip_newroute_ipif must take into account the potential presence of 9189 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 9190 * that uses the interface. This is specified through flags, 9191 * which can be a combination of: 9192 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 9193 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9194 * and flags. Additionally, the packet source address has to be set to 9195 * the specified address. The caller is thus expected to set this flag 9196 * if the packet has no specific source address yet. 9197 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9198 * flag, the resulting ire will inherit the flag. All unresolved routes 9199 * to the destination must be explored in the same call to 9200 * ip_newroute_ipif(). 9201 */ 9202 static void 9203 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9204 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9205 { 9206 areq_t *areq; 9207 ire_t *ire = NULL; 9208 mblk_t *res_mp; 9209 ipaddr_t *addrp; 9210 mblk_t *first_mp; 9211 ire_t *save_ire = NULL; 9212 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 9213 ipif_t *src_ipif = NULL; 9214 ushort_t ire_marks = 0; 9215 ill_t *dst_ill = NULL; 9216 boolean_t mctl_present; 9217 ipsec_out_t *io; 9218 ipha_t *ipha; 9219 int ihandle = 0; 9220 mblk_t *saved_mp; 9221 ire_t *fire = NULL; 9222 mblk_t *copy_mp = NULL; 9223 boolean_t multirt_resolve_next; 9224 ipaddr_t ipha_dst; 9225 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9226 9227 /* 9228 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9229 * here for uniformity 9230 */ 9231 ipif_refhold(ipif); 9232 9233 /* 9234 * This loop is run only once in most cases. 9235 * We loop to resolve further routes only when the destination 9236 * can be reached through multiple RTF_MULTIRT-flagged ires. 9237 */ 9238 do { 9239 if (dst_ill != NULL) { 9240 ill_refrele(dst_ill); 9241 dst_ill = NULL; 9242 } 9243 if (src_ipif != NULL) { 9244 ipif_refrele(src_ipif); 9245 src_ipif = NULL; 9246 } 9247 multirt_resolve_next = B_FALSE; 9248 9249 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9250 ipif->ipif_ill->ill_name)); 9251 9252 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9253 if (mctl_present) 9254 io = (ipsec_out_t *)first_mp->b_rptr; 9255 9256 ipha = (ipha_t *)mp->b_rptr; 9257 9258 /* 9259 * Save the packet destination address, we may need it after 9260 * the packet has been consumed. 9261 */ 9262 ipha_dst = ipha->ipha_dst; 9263 9264 /* 9265 * If the interface is a pt-pt interface we look for an 9266 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9267 * local_address and the pt-pt destination address. Otherwise 9268 * we just match the local address. 9269 * NOTE: dst could be different than ipha->ipha_dst in case 9270 * of sending igmp multicast packets over a point-to-point 9271 * connection. 9272 * Thus we must be careful enough to check ipha_dst to be a 9273 * multicast address, otherwise it will take xmit_if path for 9274 * multicast packets resulting into kernel stack overflow by 9275 * repeated calls to ip_newroute_ipif from ire_send(). 9276 */ 9277 if (CLASSD(ipha_dst) && 9278 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9279 goto err_ret; 9280 } 9281 9282 /* 9283 * We check if an IRE_OFFSUBNET for the addr that goes through 9284 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9285 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9286 * propagate its flags to the new ire. 9287 */ 9288 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9289 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9290 ip2dbg(("ip_newroute_ipif: " 9291 "ipif_lookup_multi_ire(" 9292 "ipif %p, dst %08x) = fire %p\n", 9293 (void *)ipif, ntohl(dst), (void *)fire)); 9294 } 9295 9296 if (mctl_present && io->ipsec_out_attach_if) { 9297 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9298 io->ipsec_out_ill_index, B_FALSE, ipst); 9299 9300 /* Failure case frees things for us. */ 9301 if (attach_ill == NULL) { 9302 ipif_refrele(ipif); 9303 if (fire != NULL) 9304 ire_refrele(fire); 9305 return; 9306 } 9307 9308 /* 9309 * Check if we need an ire that will not be 9310 * looked up by anybody else i.e. HIDDEN. 9311 */ 9312 if (ill_is_probeonly(attach_ill)) { 9313 ire_marks = IRE_MARK_HIDDEN; 9314 } 9315 /* 9316 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9317 * case. 9318 */ 9319 dst_ill = ipif->ipif_ill; 9320 /* attach_ill has been refheld by ip_grab_attach_ill */ 9321 ASSERT(dst_ill == attach_ill); 9322 } else { 9323 /* 9324 * If this is set by IP_XMIT_IF, then make sure that 9325 * ipif is pointing to the same ill as the IP_XMIT_IF 9326 * specified ill. 9327 */ 9328 ASSERT((connp == NULL) || 9329 (connp->conn_xmit_if_ill == NULL) || 9330 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 9331 /* 9332 * If the interface belongs to an interface group, 9333 * make sure the next possible interface in the group 9334 * is used. This encourages load spreading among 9335 * peers in an interface group. 9336 * Note: load spreading is disabled for RTF_MULTIRT 9337 * routes. 9338 */ 9339 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9340 (fire->ire_flags & RTF_MULTIRT)) { 9341 /* 9342 * Don't perform outbound load spreading 9343 * in the case of an RTF_MULTIRT issued route, 9344 * we actually typically want to replicate 9345 * outgoing packets through particular 9346 * interfaces. 9347 */ 9348 dst_ill = ipif->ipif_ill; 9349 ill_refhold(dst_ill); 9350 } else { 9351 dst_ill = ip_newroute_get_dst_ill( 9352 ipif->ipif_ill); 9353 } 9354 if (dst_ill == NULL) { 9355 if (ip_debug > 2) { 9356 pr_addr_dbg("ip_newroute_ipif: " 9357 "no dst ill for dst %s\n", 9358 AF_INET, &dst); 9359 } 9360 goto err_ret; 9361 } 9362 } 9363 9364 /* 9365 * Pick a source address preferring non-deprecated ones. 9366 * Unlike ip_newroute, we don't do any source address 9367 * selection here since for multicast it really does not help 9368 * in inbound load spreading as in the unicast case. 9369 */ 9370 if ((flags & RTF_SETSRC) && (fire != NULL) && 9371 (fire->ire_flags & RTF_SETSRC)) { 9372 /* 9373 * As requested by flags, an IRE_OFFSUBNET was looked up 9374 * on that interface. This ire has RTF_SETSRC flag, so 9375 * the source address of the packet must be changed. 9376 * Check that the ipif matching the requested source 9377 * address still exists. 9378 */ 9379 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9380 zoneid, NULL, NULL, NULL, NULL, ipst); 9381 } 9382 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 9383 (connp != NULL && ipif->ipif_zoneid != zoneid && 9384 ipif->ipif_zoneid != ALL_ZONES)) && 9385 (src_ipif == NULL)) { 9386 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9387 if (src_ipif == NULL) { 9388 if (ip_debug > 2) { 9389 /* ip1dbg */ 9390 pr_addr_dbg("ip_newroute_ipif: " 9391 "no src for dst %s", 9392 AF_INET, &dst); 9393 } 9394 ip1dbg((" through interface %s\n", 9395 dst_ill->ill_name)); 9396 goto err_ret; 9397 } 9398 ipif_refrele(ipif); 9399 ipif = src_ipif; 9400 ipif_refhold(ipif); 9401 } 9402 if (src_ipif == NULL) { 9403 src_ipif = ipif; 9404 ipif_refhold(src_ipif); 9405 } 9406 9407 /* 9408 * Assign a source address while we have the conn. 9409 * We can't have ip_wput_ire pick a source address when the 9410 * packet returns from arp since conn_unspec_src might be set 9411 * and we loose the conn when going through arp. 9412 */ 9413 if (ipha->ipha_src == INADDR_ANY && 9414 (connp == NULL || !connp->conn_unspec_src)) { 9415 ipha->ipha_src = src_ipif->ipif_src_addr; 9416 } 9417 9418 /* 9419 * In case of IP_XMIT_IF, it is possible that the outgoing 9420 * interface does not have an interface ire. 9421 * Example: Thousands of mobileip PPP interfaces to mobile 9422 * nodes. We don't want to create interface ires because 9423 * packets from other mobile nodes must not take the route 9424 * via interface ires to the visiting mobile node without 9425 * going through the home agent, in absence of mobileip 9426 * route optimization. 9427 */ 9428 if (CLASSD(ipha_dst) && (connp == NULL || 9429 connp->conn_xmit_if_ill == NULL) && 9430 infop->ip_opt_ill_index == 0) { 9431 /* ipif_to_ire returns an held ire */ 9432 ire = ipif_to_ire(ipif); 9433 if (ire == NULL) 9434 goto err_ret; 9435 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9436 goto err_ret; 9437 /* 9438 * ihandle is needed when the ire is added to 9439 * cache table. 9440 */ 9441 save_ire = ire; 9442 ihandle = save_ire->ire_ihandle; 9443 9444 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9445 "flags %04x\n", 9446 (void *)ire, (void *)ipif, flags)); 9447 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9448 (fire->ire_flags & RTF_MULTIRT)) { 9449 /* 9450 * As requested by flags, an IRE_OFFSUBNET was 9451 * looked up on that interface. This ire has 9452 * RTF_MULTIRT flag, so the resolution loop will 9453 * be re-entered to resolve additional routes on 9454 * other interfaces. For that purpose, a copy of 9455 * the packet is performed at this point. 9456 */ 9457 fire->ire_last_used_time = lbolt; 9458 copy_mp = copymsg(first_mp); 9459 if (copy_mp) { 9460 MULTIRT_DEBUG_TAG(copy_mp); 9461 } 9462 } 9463 if ((flags & RTF_SETSRC) && (fire != NULL) && 9464 (fire->ire_flags & RTF_SETSRC)) { 9465 /* 9466 * As requested by flags, an IRE_OFFSUBET was 9467 * looked up on that interface. This ire has 9468 * RTF_SETSRC flag, so the source address of the 9469 * packet must be changed. 9470 */ 9471 ipha->ipha_src = fire->ire_src_addr; 9472 } 9473 } else { 9474 ASSERT((connp == NULL) || 9475 (connp->conn_xmit_if_ill != NULL) || 9476 (connp->conn_dontroute) || 9477 infop->ip_opt_ill_index != 0); 9478 /* 9479 * The only ways we can come here are: 9480 * 1) IP_XMIT_IF socket option is set 9481 * 2) ICMP error message generated from 9482 * ip_mrtun_forward() routine and it needs 9483 * to go through the specified ill. 9484 * 3) SO_DONTROUTE socket option is set 9485 * 4) IP_PKTINFO option is passed in as ancillary data. 9486 * In all cases, the new ire will not be added 9487 * into cache table. 9488 */ 9489 ire_marks |= IRE_MARK_NOADD; 9490 } 9491 9492 switch (ipif->ipif_net_type) { 9493 case IRE_IF_NORESOLVER: { 9494 /* We have what we need to build an IRE_CACHE. */ 9495 mblk_t *res_mp; 9496 9497 /* 9498 * Create a new res_mp with the 9499 * IP gateway address as destination address in the 9500 * DLPI hdr if the physical length is exactly 4 bytes. 9501 */ 9502 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 9503 res_mp = ill_dlur_gen((uchar_t *)&dst, 9504 dst_ill->ill_phys_addr_length, 9505 dst_ill->ill_sap, 9506 dst_ill->ill_sap_length); 9507 } else if (dst_ill->ill_resolver_mp == NULL) { 9508 ip1dbg(("ip_newroute: dst_ill %p " 9509 "for IF_NORESOLV ire %p has " 9510 "no ill_resolver_mp\n", 9511 (void *)dst_ill, (void *)ire)); 9512 break; 9513 } else { 9514 /* use the value set in ip_ll_subnet_defaults */ 9515 res_mp = ill_dlur_gen(NULL, 9516 dst_ill->ill_phys_addr_length, 9517 dst_ill->ill_sap, 9518 dst_ill->ill_sap_length); 9519 } 9520 9521 if (res_mp == NULL) 9522 break; 9523 /* 9524 * The new ire inherits the IRE_OFFSUBNET flags 9525 * and source address, if this was requested. 9526 */ 9527 ire = ire_create( 9528 (uchar_t *)&dst, /* dest address */ 9529 (uchar_t *)&ip_g_all_ones, /* mask */ 9530 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9531 NULL, /* gateway address */ 9532 NULL, 9533 &ipif->ipif_mtu, 9534 NULL, /* Fast Path header */ 9535 dst_ill->ill_rq, /* recv-from queue */ 9536 dst_ill->ill_wq, /* send-to queue */ 9537 IRE_CACHE, 9538 res_mp, 9539 src_ipif, 9540 NULL, 9541 (save_ire != NULL ? save_ire->ire_mask : 0), 9542 (fire != NULL) ? /* Parent handle */ 9543 fire->ire_phandle : 0, 9544 ihandle, /* Interface handle */ 9545 (fire != NULL) ? 9546 (fire->ire_flags & 9547 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9548 (save_ire == NULL ? &ire_uinfo_null : 9549 &save_ire->ire_uinfo), 9550 NULL, 9551 NULL, 9552 ipst); 9553 9554 freeb(res_mp); 9555 9556 if (ire == NULL) { 9557 if (save_ire != NULL) 9558 ire_refrele(save_ire); 9559 break; 9560 } 9561 9562 ire->ire_marks |= ire_marks; 9563 9564 /* 9565 * If IRE_MARK_NOADD is set then we need to convert 9566 * the max_fragp to a useable value now. This is 9567 * normally done in ire_add_v[46]. We also need to 9568 * associate the ire with an nce (normally would be 9569 * done in ip_wput_nondata()). 9570 * 9571 * Note that IRE_MARK_NOADD packets created here 9572 * do not have a non-null ire_mp pointer. The null 9573 * value of ire_bucket indicates that they were 9574 * never added. 9575 */ 9576 if (ire->ire_marks & IRE_MARK_NOADD) { 9577 uint_t max_frag; 9578 9579 max_frag = *ire->ire_max_fragp; 9580 ire->ire_max_fragp = NULL; 9581 ire->ire_max_frag = max_frag; 9582 9583 if ((ire->ire_nce = ndp_lookup_v4( 9584 ire_to_ill(ire), 9585 (ire->ire_gateway_addr != INADDR_ANY ? 9586 &ire->ire_gateway_addr : &ire->ire_addr), 9587 B_FALSE)) == NULL) { 9588 if (save_ire != NULL) 9589 ire_refrele(save_ire); 9590 break; 9591 } 9592 ASSERT(ire->ire_nce->nce_state == 9593 ND_REACHABLE); 9594 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9595 } 9596 9597 /* Prevent save_ire from getting deleted */ 9598 if (save_ire != NULL) { 9599 IRB_REFHOLD(save_ire->ire_bucket); 9600 /* Has it been removed already ? */ 9601 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9602 IRB_REFRELE(save_ire->ire_bucket); 9603 ire_refrele(save_ire); 9604 break; 9605 } 9606 } 9607 9608 ire_add_then_send(q, ire, first_mp); 9609 9610 /* Assert that save_ire is not deleted yet. */ 9611 if (save_ire != NULL) { 9612 ASSERT(save_ire->ire_ptpn != NULL); 9613 IRB_REFRELE(save_ire->ire_bucket); 9614 ire_refrele(save_ire); 9615 save_ire = NULL; 9616 } 9617 if (fire != NULL) { 9618 ire_refrele(fire); 9619 fire = NULL; 9620 } 9621 9622 /* 9623 * the resolution loop is re-entered if this 9624 * was requested through flags and if we 9625 * actually are in a multirouting case. 9626 */ 9627 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9628 boolean_t need_resolve = 9629 ire_multirt_need_resolve(ipha_dst, 9630 MBLK_GETLABEL(copy_mp), ipst); 9631 if (!need_resolve) { 9632 MULTIRT_DEBUG_UNTAG(copy_mp); 9633 freemsg(copy_mp); 9634 copy_mp = NULL; 9635 } else { 9636 /* 9637 * ipif_lookup_group() calls 9638 * ire_lookup_multi() that uses 9639 * ire_ftable_lookup() to find 9640 * an IRE_INTERFACE for the group. 9641 * In the multirt case, 9642 * ire_lookup_multi() then invokes 9643 * ire_multirt_lookup() to find 9644 * the next resolvable ire. 9645 * As a result, we obtain an new 9646 * interface, derived from the 9647 * next ire. 9648 */ 9649 ipif_refrele(ipif); 9650 ipif = ipif_lookup_group(ipha_dst, 9651 zoneid, ipst); 9652 ip2dbg(("ip_newroute_ipif: " 9653 "multirt dst %08x, ipif %p\n", 9654 htonl(dst), (void *)ipif)); 9655 if (ipif != NULL) { 9656 mp = copy_mp; 9657 copy_mp = NULL; 9658 multirt_resolve_next = B_TRUE; 9659 continue; 9660 } else { 9661 freemsg(copy_mp); 9662 } 9663 } 9664 } 9665 if (ipif != NULL) 9666 ipif_refrele(ipif); 9667 ill_refrele(dst_ill); 9668 ipif_refrele(src_ipif); 9669 return; 9670 } 9671 case IRE_IF_RESOLVER: 9672 /* 9673 * We can't build an IRE_CACHE yet, but at least 9674 * we found a resolver that can help. 9675 */ 9676 res_mp = dst_ill->ill_resolver_mp; 9677 if (!OK_RESOLVER_MP(res_mp)) 9678 break; 9679 9680 /* 9681 * We obtain a partial IRE_CACHE which we will pass 9682 * along with the resolver query. When the response 9683 * comes back it will be there ready for us to add. 9684 * The new ire inherits the IRE_OFFSUBNET flags 9685 * and source address, if this was requested. 9686 * The ire_max_frag is atomically set under the 9687 * irebucket lock in ire_add_v[46]. Only in the 9688 * case of IRE_MARK_NOADD, we set it here itself. 9689 */ 9690 ire = ire_create_mp( 9691 (uchar_t *)&dst, /* dest address */ 9692 (uchar_t *)&ip_g_all_ones, /* mask */ 9693 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9694 NULL, /* gateway address */ 9695 NULL, /* no in_src_addr */ 9696 (ire_marks & IRE_MARK_NOADD) ? 9697 ipif->ipif_mtu : 0, /* max_frag */ 9698 NULL, /* Fast path header */ 9699 dst_ill->ill_rq, /* recv-from queue */ 9700 dst_ill->ill_wq, /* send-to queue */ 9701 IRE_CACHE, 9702 NULL, /* let ire_nce_init figure res_mp out */ 9703 src_ipif, 9704 NULL, 9705 (save_ire != NULL ? save_ire->ire_mask : 0), 9706 (fire != NULL) ? /* Parent handle */ 9707 fire->ire_phandle : 0, 9708 ihandle, /* Interface handle */ 9709 (fire != NULL) ? /* flags if any */ 9710 (fire->ire_flags & 9711 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9712 (save_ire == NULL ? &ire_uinfo_null : 9713 &save_ire->ire_uinfo), 9714 NULL, 9715 NULL, 9716 ipst); 9717 9718 if (save_ire != NULL) { 9719 ire_refrele(save_ire); 9720 save_ire = NULL; 9721 } 9722 if (ire == NULL) 9723 break; 9724 9725 ire->ire_marks |= ire_marks; 9726 /* 9727 * Construct message chain for the resolver of the 9728 * form: 9729 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9730 * 9731 * NOTE : ire will be added later when the response 9732 * comes back from ARP. If the response does not 9733 * come back, ARP frees the packet. For this reason, 9734 * we can't REFHOLD the bucket of save_ire to prevent 9735 * deletions. We may not be able to REFRELE the 9736 * bucket if the response never comes back. 9737 * Thus, before adding the ire, ire_add_v4 will make 9738 * sure that the interface route does not get deleted. 9739 * This is the only case unlike ip_newroute_v6, 9740 * ip_newroute_ipif_v6 where we can always prevent 9741 * deletions because ire_add_then_send is called after 9742 * creating the IRE. 9743 * If IRE_MARK_NOADD is set, then ire_add_then_send 9744 * does not add this IRE into the IRE CACHE. 9745 */ 9746 ASSERT(ire->ire_mp != NULL); 9747 ire->ire_mp->b_cont = first_mp; 9748 /* Have saved_mp handy, for cleanup if canput fails */ 9749 saved_mp = mp; 9750 mp = copyb(res_mp); 9751 if (mp == NULL) { 9752 /* Prepare for cleanup */ 9753 mp = saved_mp; /* pkt */ 9754 ire_delete(ire); /* ire_mp */ 9755 ire = NULL; 9756 if (copy_mp != NULL) { 9757 MULTIRT_DEBUG_UNTAG(copy_mp); 9758 freemsg(copy_mp); 9759 copy_mp = NULL; 9760 } 9761 break; 9762 } 9763 linkb(mp, ire->ire_mp); 9764 9765 /* 9766 * Fill in the source and dest addrs for the resolver. 9767 * NOTE: this depends on memory layouts imposed by 9768 * ill_init(). 9769 */ 9770 areq = (areq_t *)mp->b_rptr; 9771 addrp = (ipaddr_t *)((char *)areq + 9772 areq->areq_sender_addr_offset); 9773 *addrp = ire->ire_src_addr; 9774 addrp = (ipaddr_t *)((char *)areq + 9775 areq->areq_target_addr_offset); 9776 *addrp = dst; 9777 /* Up to the resolver. */ 9778 if (canputnext(dst_ill->ill_rq) && 9779 !(dst_ill->ill_arp_closing)) { 9780 putnext(dst_ill->ill_rq, mp); 9781 /* 9782 * The response will come back in ip_wput 9783 * with db_type IRE_DB_TYPE. 9784 */ 9785 } else { 9786 mp->b_cont = NULL; 9787 freeb(mp); /* areq */ 9788 ire_delete(ire); /* ire_mp */ 9789 saved_mp->b_next = NULL; 9790 saved_mp->b_prev = NULL; 9791 freemsg(first_mp); /* pkt */ 9792 ip2dbg(("ip_newroute_ipif: dropped\n")); 9793 } 9794 9795 if (fire != NULL) { 9796 ire_refrele(fire); 9797 fire = NULL; 9798 } 9799 9800 9801 /* 9802 * The resolution loop is re-entered if this was 9803 * requested through flags and we actually are 9804 * in a multirouting case. 9805 */ 9806 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9807 boolean_t need_resolve = 9808 ire_multirt_need_resolve(ipha_dst, 9809 MBLK_GETLABEL(copy_mp), ipst); 9810 if (!need_resolve) { 9811 MULTIRT_DEBUG_UNTAG(copy_mp); 9812 freemsg(copy_mp); 9813 copy_mp = NULL; 9814 } else { 9815 /* 9816 * ipif_lookup_group() calls 9817 * ire_lookup_multi() that uses 9818 * ire_ftable_lookup() to find 9819 * an IRE_INTERFACE for the group. 9820 * In the multirt case, 9821 * ire_lookup_multi() then invokes 9822 * ire_multirt_lookup() to find 9823 * the next resolvable ire. 9824 * As a result, we obtain an new 9825 * interface, derived from the 9826 * next ire. 9827 */ 9828 ipif_refrele(ipif); 9829 ipif = ipif_lookup_group(ipha_dst, 9830 zoneid, ipst); 9831 if (ipif != NULL) { 9832 mp = copy_mp; 9833 copy_mp = NULL; 9834 multirt_resolve_next = B_TRUE; 9835 continue; 9836 } else { 9837 freemsg(copy_mp); 9838 } 9839 } 9840 } 9841 if (ipif != NULL) 9842 ipif_refrele(ipif); 9843 ill_refrele(dst_ill); 9844 ipif_refrele(src_ipif); 9845 return; 9846 default: 9847 break; 9848 } 9849 } while (multirt_resolve_next); 9850 9851 err_ret: 9852 ip2dbg(("ip_newroute_ipif: dropped\n")); 9853 if (fire != NULL) 9854 ire_refrele(fire); 9855 ipif_refrele(ipif); 9856 /* Did this packet originate externally? */ 9857 if (dst_ill != NULL) 9858 ill_refrele(dst_ill); 9859 if (src_ipif != NULL) 9860 ipif_refrele(src_ipif); 9861 if (mp->b_prev || mp->b_next) { 9862 mp->b_next = NULL; 9863 mp->b_prev = NULL; 9864 } else { 9865 /* 9866 * Since ip_wput() isn't close to finished, we fill 9867 * in enough of the header for credible error reporting. 9868 */ 9869 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9870 /* Failed */ 9871 freemsg(first_mp); 9872 if (ire != NULL) 9873 ire_refrele(ire); 9874 return; 9875 } 9876 } 9877 /* 9878 * At this point we will have ire only if RTF_BLACKHOLE 9879 * or RTF_REJECT flags are set on the IRE. It will not 9880 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9881 */ 9882 if (ire != NULL) { 9883 if (ire->ire_flags & RTF_BLACKHOLE) { 9884 ire_refrele(ire); 9885 freemsg(first_mp); 9886 return; 9887 } 9888 ire_refrele(ire); 9889 } 9890 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9891 } 9892 9893 /* Name/Value Table Lookup Routine */ 9894 char * 9895 ip_nv_lookup(nv_t *nv, int value) 9896 { 9897 if (!nv) 9898 return (NULL); 9899 for (; nv->nv_name; nv++) { 9900 if (nv->nv_value == value) 9901 return (nv->nv_name); 9902 } 9903 return ("unknown"); 9904 } 9905 9906 /* 9907 * This is a module open, i.e. this is a control stream for access 9908 * to a DLPI device. We allocate an ill_t as the instance data in 9909 * this case. 9910 */ 9911 int 9912 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9913 { 9914 ill_t *ill; 9915 int err; 9916 zoneid_t zoneid; 9917 netstack_t *ns; 9918 ip_stack_t *ipst; 9919 9920 /* 9921 * Prevent unprivileged processes from pushing IP so that 9922 * they can't send raw IP. 9923 */ 9924 if (secpolicy_net_rawaccess(credp) != 0) 9925 return (EPERM); 9926 9927 ns = netstack_find_by_cred(credp); 9928 ASSERT(ns != NULL); 9929 ipst = ns->netstack_ip; 9930 ASSERT(ipst != NULL); 9931 9932 /* 9933 * For exclusive stacks we set the zoneid to zero 9934 * to make IP operate as if in the global zone. 9935 */ 9936 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9937 zoneid = GLOBAL_ZONEID; 9938 else 9939 zoneid = crgetzoneid(credp); 9940 9941 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9942 q->q_ptr = WR(q)->q_ptr = ill; 9943 ill->ill_ipst = ipst; 9944 ill->ill_zoneid = zoneid; 9945 9946 /* 9947 * ill_init initializes the ill fields and then sends down 9948 * down a DL_INFO_REQ after calling qprocson. 9949 */ 9950 err = ill_init(q, ill); 9951 if (err != 0) { 9952 mi_free(ill); 9953 netstack_rele(ipst->ips_netstack); 9954 q->q_ptr = NULL; 9955 WR(q)->q_ptr = NULL; 9956 return (err); 9957 } 9958 9959 /* ill_init initializes the ipsq marking this thread as writer */ 9960 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9961 /* Wait for the DL_INFO_ACK */ 9962 mutex_enter(&ill->ill_lock); 9963 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9964 /* 9965 * Return value of 0 indicates a pending signal. 9966 */ 9967 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9968 if (err == 0) { 9969 mutex_exit(&ill->ill_lock); 9970 (void) ip_close(q, 0); 9971 return (EINTR); 9972 } 9973 } 9974 mutex_exit(&ill->ill_lock); 9975 9976 /* 9977 * ip_rput_other could have set an error in ill_error on 9978 * receipt of M_ERROR. 9979 */ 9980 9981 err = ill->ill_error; 9982 if (err != 0) { 9983 (void) ip_close(q, 0); 9984 return (err); 9985 } 9986 9987 ill->ill_credp = credp; 9988 crhold(credp); 9989 9990 mutex_enter(&ipst->ips_ip_mi_lock); 9991 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9992 credp); 9993 mutex_exit(&ipst->ips_ip_mi_lock); 9994 if (err) { 9995 (void) ip_close(q, 0); 9996 return (err); 9997 } 9998 return (0); 9999 } 10000 10001 /* IP open routine. */ 10002 int 10003 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 10004 { 10005 conn_t *connp; 10006 major_t maj; 10007 zoneid_t zoneid; 10008 netstack_t *ns; 10009 ip_stack_t *ipst; 10010 10011 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 10012 10013 /* Allow reopen. */ 10014 if (q->q_ptr != NULL) 10015 return (0); 10016 10017 if (sflag & MODOPEN) { 10018 /* This is a module open */ 10019 return (ip_modopen(q, devp, flag, sflag, credp)); 10020 } 10021 10022 ns = netstack_find_by_cred(credp); 10023 ASSERT(ns != NULL); 10024 ipst = ns->netstack_ip; 10025 ASSERT(ipst != NULL); 10026 10027 /* 10028 * For exclusive stacks we set the zoneid to zero 10029 * to make IP operate as if in the global zone. 10030 */ 10031 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 10032 zoneid = GLOBAL_ZONEID; 10033 else 10034 zoneid = crgetzoneid(credp); 10035 10036 /* 10037 * We are opening as a device. This is an IP client stream, and we 10038 * allocate an conn_t as the instance data. 10039 */ 10040 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 10041 10042 /* 10043 * ipcl_conn_create did a netstack_hold. Undo the hold that was 10044 * done by netstack_find_by_cred() 10045 */ 10046 netstack_rele(ipst->ips_netstack); 10047 10048 connp->conn_zoneid = zoneid; 10049 10050 connp->conn_upq = q; 10051 q->q_ptr = WR(q)->q_ptr = connp; 10052 10053 if (flag & SO_SOCKSTR) 10054 connp->conn_flags |= IPCL_SOCKET; 10055 10056 /* Minor tells us which /dev entry was opened */ 10057 if (geteminor(*devp) == IPV6_MINOR) { 10058 connp->conn_flags |= IPCL_ISV6; 10059 connp->conn_af_isv6 = B_TRUE; 10060 ip_setqinfo(q, geteminor(*devp), B_FALSE, ipst); 10061 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 10062 } else { 10063 connp->conn_af_isv6 = B_FALSE; 10064 connp->conn_pkt_isv6 = B_FALSE; 10065 } 10066 10067 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 10068 /* CONN_DEC_REF takes care of netstack_rele() */ 10069 q->q_ptr = WR(q)->q_ptr = NULL; 10070 CONN_DEC_REF(connp); 10071 return (EBUSY); 10072 } 10073 10074 maj = getemajor(*devp); 10075 *devp = makedevice(maj, (minor_t)connp->conn_dev); 10076 10077 /* 10078 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 10079 */ 10080 connp->conn_cred = credp; 10081 crhold(connp->conn_cred); 10082 10083 /* 10084 * If the caller has the process-wide flag set, then default to MAC 10085 * exempt mode. This allows read-down to unlabeled hosts. 10086 */ 10087 if (getpflags(NET_MAC_AWARE, credp) != 0) 10088 connp->conn_mac_exempt = B_TRUE; 10089 10090 /* 10091 * This should only happen for ndd, netstat, raw socket or other SCTP 10092 * administrative ops. In these cases, we just need a normal conn_t 10093 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 10094 * an error will be returned. 10095 */ 10096 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 10097 connp->conn_rq = q; 10098 connp->conn_wq = WR(q); 10099 } else { 10100 connp->conn_ulp = IPPROTO_SCTP; 10101 connp->conn_rq = connp->conn_wq = NULL; 10102 } 10103 /* Non-zero default values */ 10104 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 10105 10106 /* 10107 * Make the conn globally visible to walkers 10108 */ 10109 mutex_enter(&connp->conn_lock); 10110 connp->conn_state_flags &= ~CONN_INCIPIENT; 10111 mutex_exit(&connp->conn_lock); 10112 ASSERT(connp->conn_ref == 1); 10113 10114 qprocson(q); 10115 10116 return (0); 10117 } 10118 10119 /* 10120 * Change q_qinfo based on the value of isv6. 10121 * This can not called on an ill queue. 10122 * Note that there is no race since either q_qinfo works for conn queues - it 10123 * is just an optimization to enter the best wput routine directly. 10124 */ 10125 void 10126 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib, ip_stack_t *ipst) 10127 { 10128 ASSERT(q->q_flag & QREADR); 10129 ASSERT(WR(q)->q_next == NULL); 10130 ASSERT(q->q_ptr != NULL); 10131 10132 if (minor == IPV6_MINOR) { 10133 if (bump_mib) { 10134 BUMP_MIB(&ipst->ips_ip6_mib, 10135 ipIfStatsOutSwitchIPVersion); 10136 } 10137 q->q_qinfo = &rinit_ipv6; 10138 WR(q)->q_qinfo = &winit_ipv6; 10139 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 10140 } else { 10141 if (bump_mib) { 10142 BUMP_MIB(&ipst->ips_ip_mib, 10143 ipIfStatsOutSwitchIPVersion); 10144 } 10145 q->q_qinfo = &iprinit; 10146 WR(q)->q_qinfo = &ipwinit; 10147 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 10148 } 10149 10150 } 10151 10152 /* 10153 * See if IPsec needs loading because of the options in mp. 10154 */ 10155 static boolean_t 10156 ipsec_opt_present(mblk_t *mp) 10157 { 10158 uint8_t *optcp, *next_optcp, *opt_endcp; 10159 struct opthdr *opt; 10160 struct T_opthdr *topt; 10161 int opthdr_len; 10162 t_uscalar_t optname, optlevel; 10163 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 10164 ipsec_req_t *ipsr; 10165 10166 /* 10167 * Walk through the mess, and find IP_SEC_OPT. If it's there, 10168 * return TRUE. 10169 */ 10170 10171 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 10172 opt_endcp = optcp + tor->OPT_length; 10173 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10174 opthdr_len = sizeof (struct T_opthdr); 10175 } else { /* O_OPTMGMT_REQ */ 10176 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 10177 opthdr_len = sizeof (struct opthdr); 10178 } 10179 for (; optcp < opt_endcp; optcp = next_optcp) { 10180 if (optcp + opthdr_len > opt_endcp) 10181 return (B_FALSE); /* Not enough option header. */ 10182 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10183 topt = (struct T_opthdr *)optcp; 10184 optlevel = topt->level; 10185 optname = topt->name; 10186 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 10187 } else { 10188 opt = (struct opthdr *)optcp; 10189 optlevel = opt->level; 10190 optname = opt->name; 10191 next_optcp = optcp + opthdr_len + 10192 _TPI_ALIGN_OPT(opt->len); 10193 } 10194 if ((next_optcp < optcp) || /* wraparound pointer space */ 10195 ((next_optcp >= opt_endcp) && /* last option bad len */ 10196 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 10197 return (B_FALSE); /* bad option buffer */ 10198 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 10199 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 10200 /* 10201 * Check to see if it's an all-bypass or all-zeroes 10202 * IPsec request. Don't bother loading IPsec if 10203 * the socket doesn't want to use it. (A good example 10204 * is a bypass request.) 10205 * 10206 * Basically, if any of the non-NEVER bits are set, 10207 * load IPsec. 10208 */ 10209 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 10210 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 10211 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 10212 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 10213 != 0) 10214 return (B_TRUE); 10215 } 10216 } 10217 return (B_FALSE); 10218 } 10219 10220 /* 10221 * If conn is is waiting for ipsec to finish loading, kick it. 10222 */ 10223 /* ARGSUSED */ 10224 static void 10225 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 10226 { 10227 t_scalar_t optreq_prim; 10228 mblk_t *mp; 10229 cred_t *cr; 10230 int err = 0; 10231 10232 /* 10233 * This function is called, after ipsec loading is complete. 10234 * Since IP checks exclusively and atomically (i.e it prevents 10235 * ipsec load from completing until ip_optcom_req completes) 10236 * whether ipsec load is complete, there cannot be a race with IP 10237 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10238 */ 10239 mutex_enter(&connp->conn_lock); 10240 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10241 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10242 mp = connp->conn_ipsec_opt_mp; 10243 connp->conn_ipsec_opt_mp = NULL; 10244 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10245 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10246 mutex_exit(&connp->conn_lock); 10247 10248 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10249 10250 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10251 if (optreq_prim == T_OPTMGMT_REQ) { 10252 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10253 &ip_opt_obj); 10254 } else { 10255 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10256 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10257 &ip_opt_obj); 10258 } 10259 if (err != EINPROGRESS) 10260 CONN_OPER_PENDING_DONE(connp); 10261 return; 10262 } 10263 mutex_exit(&connp->conn_lock); 10264 } 10265 10266 /* 10267 * Called from the ipsec_loader thread, outside any perimeter, to tell 10268 * ip qenable any of the queues waiting for the ipsec loader to 10269 * complete. 10270 */ 10271 void 10272 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10273 { 10274 netstack_t *ns = ipss->ipsec_netstack; 10275 10276 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10277 } 10278 10279 /* 10280 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10281 * determines the grp on which it has to become exclusive, queues the mp 10282 * and sq draining restarts the optmgmt 10283 */ 10284 static boolean_t 10285 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10286 { 10287 conn_t *connp = Q_TO_CONN(q); 10288 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10289 10290 /* 10291 * Take IPsec requests and treat them special. 10292 */ 10293 if (ipsec_opt_present(mp)) { 10294 /* First check if IPsec is loaded. */ 10295 mutex_enter(&ipss->ipsec_loader_lock); 10296 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10297 mutex_exit(&ipss->ipsec_loader_lock); 10298 return (B_FALSE); 10299 } 10300 mutex_enter(&connp->conn_lock); 10301 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10302 10303 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10304 connp->conn_ipsec_opt_mp = mp; 10305 mutex_exit(&connp->conn_lock); 10306 mutex_exit(&ipss->ipsec_loader_lock); 10307 10308 ipsec_loader_loadnow(ipss); 10309 return (B_TRUE); 10310 } 10311 return (B_FALSE); 10312 } 10313 10314 /* 10315 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10316 * all of them are copied to the conn_t. If the req is "zero", the policy is 10317 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10318 * fields. 10319 * We keep only the latest setting of the policy and thus policy setting 10320 * is not incremental/cumulative. 10321 * 10322 * Requests to set policies with multiple alternative actions will 10323 * go through a different API. 10324 */ 10325 int 10326 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10327 { 10328 uint_t ah_req = 0; 10329 uint_t esp_req = 0; 10330 uint_t se_req = 0; 10331 ipsec_selkey_t sel; 10332 ipsec_act_t *actp = NULL; 10333 uint_t nact; 10334 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10335 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10336 ipsec_policy_root_t *pr; 10337 ipsec_policy_head_t *ph; 10338 int fam; 10339 boolean_t is_pol_reset; 10340 int error = 0; 10341 netstack_t *ns = connp->conn_netstack; 10342 ip_stack_t *ipst = ns->netstack_ip; 10343 ipsec_stack_t *ipss = ns->netstack_ipsec; 10344 10345 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10346 10347 /* 10348 * The IP_SEC_OPT option does not allow variable length parameters, 10349 * hence a request cannot be NULL. 10350 */ 10351 if (req == NULL) 10352 return (EINVAL); 10353 10354 ah_req = req->ipsr_ah_req; 10355 esp_req = req->ipsr_esp_req; 10356 se_req = req->ipsr_self_encap_req; 10357 10358 /* 10359 * Are we dealing with a request to reset the policy (i.e. 10360 * zero requests). 10361 */ 10362 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10363 (esp_req & REQ_MASK) == 0 && 10364 (se_req & REQ_MASK) == 0); 10365 10366 if (!is_pol_reset) { 10367 /* 10368 * If we couldn't load IPsec, fail with "protocol 10369 * not supported". 10370 * IPsec may not have been loaded for a request with zero 10371 * policies, so we don't fail in this case. 10372 */ 10373 mutex_enter(&ipss->ipsec_loader_lock); 10374 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10375 mutex_exit(&ipss->ipsec_loader_lock); 10376 return (EPROTONOSUPPORT); 10377 } 10378 mutex_exit(&ipss->ipsec_loader_lock); 10379 10380 /* 10381 * Test for valid requests. Invalid algorithms 10382 * need to be tested by IPSEC code because new 10383 * algorithms can be added dynamically. 10384 */ 10385 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10386 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10387 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10388 return (EINVAL); 10389 } 10390 10391 /* 10392 * Only privileged users can issue these 10393 * requests. 10394 */ 10395 if (((ah_req & IPSEC_PREF_NEVER) || 10396 (esp_req & IPSEC_PREF_NEVER) || 10397 (se_req & IPSEC_PREF_NEVER)) && 10398 secpolicy_ip_config(cr, B_FALSE) != 0) { 10399 return (EPERM); 10400 } 10401 10402 /* 10403 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10404 * are mutually exclusive. 10405 */ 10406 if (((ah_req & REQ_MASK) == REQ_MASK) || 10407 ((esp_req & REQ_MASK) == REQ_MASK) || 10408 ((se_req & REQ_MASK) == REQ_MASK)) { 10409 /* Both of them are set */ 10410 return (EINVAL); 10411 } 10412 } 10413 10414 mutex_enter(&connp->conn_lock); 10415 10416 /* 10417 * If we have already cached policies in ip_bind_connected*(), don't 10418 * let them change now. We cache policies for connections 10419 * whose src,dst [addr, port] is known. 10420 */ 10421 if (connp->conn_policy_cached) { 10422 mutex_exit(&connp->conn_lock); 10423 return (EINVAL); 10424 } 10425 10426 /* 10427 * We have a zero policies, reset the connection policy if already 10428 * set. This will cause the connection to inherit the 10429 * global policy, if any. 10430 */ 10431 if (is_pol_reset) { 10432 if (connp->conn_policy != NULL) { 10433 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10434 connp->conn_policy = NULL; 10435 } 10436 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10437 connp->conn_in_enforce_policy = B_FALSE; 10438 connp->conn_out_enforce_policy = B_FALSE; 10439 mutex_exit(&connp->conn_lock); 10440 return (0); 10441 } 10442 10443 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10444 ipst->ips_netstack); 10445 if (ph == NULL) 10446 goto enomem; 10447 10448 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10449 if (actp == NULL) 10450 goto enomem; 10451 10452 /* 10453 * Always allocate IPv4 policy entries, since they can also 10454 * apply to ipv6 sockets being used in ipv4-compat mode. 10455 */ 10456 bzero(&sel, sizeof (sel)); 10457 sel.ipsl_valid = IPSL_IPV4; 10458 10459 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10460 ipst->ips_netstack); 10461 if (pin4 == NULL) 10462 goto enomem; 10463 10464 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10465 ipst->ips_netstack); 10466 if (pout4 == NULL) 10467 goto enomem; 10468 10469 if (connp->conn_pkt_isv6) { 10470 /* 10471 * We're looking at a v6 socket, also allocate the 10472 * v6-specific entries... 10473 */ 10474 sel.ipsl_valid = IPSL_IPV6; 10475 pin6 = ipsec_policy_create(&sel, actp, nact, 10476 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10477 if (pin6 == NULL) 10478 goto enomem; 10479 10480 pout6 = ipsec_policy_create(&sel, actp, nact, 10481 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10482 if (pout6 == NULL) 10483 goto enomem; 10484 10485 /* 10486 * .. and file them away in the right place. 10487 */ 10488 fam = IPSEC_AF_V6; 10489 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10490 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10491 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10492 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10493 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10494 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10495 } 10496 10497 ipsec_actvec_free(actp, nact); 10498 10499 /* 10500 * File the v4 policies. 10501 */ 10502 fam = IPSEC_AF_V4; 10503 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10504 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10505 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10506 10507 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10508 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10509 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10510 10511 /* 10512 * If the requests need security, set enforce_policy. 10513 * If the requests are IPSEC_PREF_NEVER, one should 10514 * still set conn_out_enforce_policy so that an ipsec_out 10515 * gets attached in ip_wput. This is needed so that 10516 * for connections that we don't cache policy in ip_bind, 10517 * if global policy matches in ip_wput_attach_policy, we 10518 * don't wrongly inherit global policy. Similarly, we need 10519 * to set conn_in_enforce_policy also so that we don't verify 10520 * policy wrongly. 10521 */ 10522 if ((ah_req & REQ_MASK) != 0 || 10523 (esp_req & REQ_MASK) != 0 || 10524 (se_req & REQ_MASK) != 0) { 10525 connp->conn_in_enforce_policy = B_TRUE; 10526 connp->conn_out_enforce_policy = B_TRUE; 10527 connp->conn_flags |= IPCL_CHECK_POLICY; 10528 } 10529 10530 mutex_exit(&connp->conn_lock); 10531 return (error); 10532 #undef REQ_MASK 10533 10534 /* 10535 * Common memory-allocation-failure exit path. 10536 */ 10537 enomem: 10538 mutex_exit(&connp->conn_lock); 10539 if (actp != NULL) 10540 ipsec_actvec_free(actp, nact); 10541 if (pin4 != NULL) 10542 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10543 if (pout4 != NULL) 10544 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10545 if (pin6 != NULL) 10546 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10547 if (pout6 != NULL) 10548 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10549 return (ENOMEM); 10550 } 10551 10552 /* 10553 * Only for options that pass in an IP addr. Currently only V4 options 10554 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10555 * So this function assumes level is IPPROTO_IP 10556 */ 10557 int 10558 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10559 mblk_t *first_mp) 10560 { 10561 ipif_t *ipif = NULL; 10562 int error; 10563 ill_t *ill; 10564 int zoneid; 10565 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10566 10567 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10568 10569 if (addr != INADDR_ANY || checkonly) { 10570 ASSERT(connp != NULL); 10571 zoneid = IPCL_ZONEID(connp); 10572 if (option == IP_NEXTHOP) { 10573 ipif = ipif_lookup_onlink_addr(addr, 10574 connp->conn_zoneid, ipst); 10575 } else { 10576 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10577 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10578 &error, ipst); 10579 } 10580 if (ipif == NULL) { 10581 if (error == EINPROGRESS) 10582 return (error); 10583 else if ((option == IP_MULTICAST_IF) || 10584 (option == IP_NEXTHOP)) 10585 return (EHOSTUNREACH); 10586 else 10587 return (EINVAL); 10588 } else if (checkonly) { 10589 if (option == IP_MULTICAST_IF) { 10590 ill = ipif->ipif_ill; 10591 /* not supported by the virtual network iface */ 10592 if (IS_VNI(ill)) { 10593 ipif_refrele(ipif); 10594 return (EINVAL); 10595 } 10596 } 10597 ipif_refrele(ipif); 10598 return (0); 10599 } 10600 ill = ipif->ipif_ill; 10601 mutex_enter(&connp->conn_lock); 10602 mutex_enter(&ill->ill_lock); 10603 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10604 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10605 mutex_exit(&ill->ill_lock); 10606 mutex_exit(&connp->conn_lock); 10607 ipif_refrele(ipif); 10608 return (option == IP_MULTICAST_IF ? 10609 EHOSTUNREACH : EINVAL); 10610 } 10611 } else { 10612 mutex_enter(&connp->conn_lock); 10613 } 10614 10615 /* None of the options below are supported on the VNI */ 10616 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10617 mutex_exit(&ill->ill_lock); 10618 mutex_exit(&connp->conn_lock); 10619 ipif_refrele(ipif); 10620 return (EINVAL); 10621 } 10622 10623 switch (option) { 10624 case IP_DONTFAILOVER_IF: 10625 /* 10626 * This option is used by in.mpathd to ensure 10627 * that IPMP probe packets only go out on the 10628 * test interfaces. in.mpathd sets this option 10629 * on the non-failover interfaces. 10630 * For backward compatibility, this option 10631 * implicitly sets IP_MULTICAST_IF, as used 10632 * be done in bind(), so that ip_wput gets 10633 * this ipif to send mcast packets. 10634 */ 10635 if (ipif != NULL) { 10636 ASSERT(addr != INADDR_ANY); 10637 connp->conn_nofailover_ill = ipif->ipif_ill; 10638 connp->conn_multicast_ipif = ipif; 10639 } else { 10640 ASSERT(addr == INADDR_ANY); 10641 connp->conn_nofailover_ill = NULL; 10642 connp->conn_multicast_ipif = NULL; 10643 } 10644 break; 10645 10646 case IP_MULTICAST_IF: 10647 connp->conn_multicast_ipif = ipif; 10648 break; 10649 case IP_NEXTHOP: 10650 connp->conn_nexthop_v4 = addr; 10651 connp->conn_nexthop_set = B_TRUE; 10652 break; 10653 } 10654 10655 if (ipif != NULL) { 10656 mutex_exit(&ill->ill_lock); 10657 mutex_exit(&connp->conn_lock); 10658 ipif_refrele(ipif); 10659 return (0); 10660 } 10661 mutex_exit(&connp->conn_lock); 10662 /* We succeded in cleared the option */ 10663 return (0); 10664 } 10665 10666 /* 10667 * For options that pass in an ifindex specifying the ill. V6 options always 10668 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10669 */ 10670 int 10671 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10672 int level, int option, mblk_t *first_mp) 10673 { 10674 ill_t *ill = NULL; 10675 int error = 0; 10676 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10677 10678 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10679 if (ifindex != 0) { 10680 ASSERT(connp != NULL); 10681 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10682 first_mp, ip_restart_optmgmt, &error, ipst); 10683 if (ill != NULL) { 10684 if (checkonly) { 10685 /* not supported by the virtual network iface */ 10686 if (IS_VNI(ill)) { 10687 ill_refrele(ill); 10688 return (EINVAL); 10689 } 10690 ill_refrele(ill); 10691 return (0); 10692 } 10693 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10694 0, NULL)) { 10695 ill_refrele(ill); 10696 ill = NULL; 10697 mutex_enter(&connp->conn_lock); 10698 goto setit; 10699 } 10700 mutex_enter(&connp->conn_lock); 10701 mutex_enter(&ill->ill_lock); 10702 if (ill->ill_state_flags & ILL_CONDEMNED) { 10703 mutex_exit(&ill->ill_lock); 10704 mutex_exit(&connp->conn_lock); 10705 ill_refrele(ill); 10706 ill = NULL; 10707 mutex_enter(&connp->conn_lock); 10708 } 10709 goto setit; 10710 } else if (error == EINPROGRESS) { 10711 return (error); 10712 } else { 10713 error = 0; 10714 } 10715 } 10716 mutex_enter(&connp->conn_lock); 10717 setit: 10718 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10719 10720 /* 10721 * The options below assume that the ILL (if any) transmits and/or 10722 * receives traffic. Neither of which is true for the virtual network 10723 * interface, so fail setting these on a VNI. 10724 */ 10725 if (IS_VNI(ill)) { 10726 ASSERT(ill != NULL); 10727 mutex_exit(&ill->ill_lock); 10728 mutex_exit(&connp->conn_lock); 10729 ill_refrele(ill); 10730 return (EINVAL); 10731 } 10732 10733 if (level == IPPROTO_IP) { 10734 switch (option) { 10735 case IP_BOUND_IF: 10736 connp->conn_incoming_ill = ill; 10737 connp->conn_outgoing_ill = ill; 10738 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10739 0 : ifindex; 10740 break; 10741 10742 case IP_XMIT_IF: 10743 /* 10744 * Similar to IP_BOUND_IF, but this only 10745 * determines the outgoing interface for 10746 * unicast packets. Also no IRE_CACHE entry 10747 * is added for the destination of the 10748 * outgoing packets. This feature is needed 10749 * for mobile IP. 10750 */ 10751 connp->conn_xmit_if_ill = ill; 10752 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 10753 0 : ifindex; 10754 break; 10755 10756 case IP_MULTICAST_IF: 10757 /* 10758 * This option is an internal special. The socket 10759 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10760 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10761 * specifies an ifindex and we try first on V6 ill's. 10762 * If we don't find one, we they try using on v4 ill's 10763 * intenally and we come here. 10764 */ 10765 if (!checkonly && ill != NULL) { 10766 ipif_t *ipif; 10767 ipif = ill->ill_ipif; 10768 10769 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10770 mutex_exit(&ill->ill_lock); 10771 mutex_exit(&connp->conn_lock); 10772 ill_refrele(ill); 10773 ill = NULL; 10774 mutex_enter(&connp->conn_lock); 10775 } else { 10776 connp->conn_multicast_ipif = ipif; 10777 } 10778 } 10779 break; 10780 } 10781 } else { 10782 switch (option) { 10783 case IPV6_BOUND_IF: 10784 connp->conn_incoming_ill = ill; 10785 connp->conn_outgoing_ill = ill; 10786 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10787 0 : ifindex; 10788 break; 10789 10790 case IPV6_BOUND_PIF: 10791 /* 10792 * Limit all transmit to this ill. 10793 * Unlike IPV6_BOUND_IF, using this option 10794 * prevents load spreading and failover from 10795 * happening when the interface is part of the 10796 * group. That's why we don't need to remember 10797 * the ifindex in orig_bound_ifindex as in 10798 * IPV6_BOUND_IF. 10799 */ 10800 connp->conn_outgoing_pill = ill; 10801 break; 10802 10803 case IPV6_DONTFAILOVER_IF: 10804 /* 10805 * This option is used by in.mpathd to ensure 10806 * that IPMP probe packets only go out on the 10807 * test interfaces. in.mpathd sets this option 10808 * on the non-failover interfaces. 10809 */ 10810 connp->conn_nofailover_ill = ill; 10811 /* 10812 * For backward compatibility, this option 10813 * implicitly sets ip_multicast_ill as used in 10814 * IP_MULTICAST_IF so that ip_wput gets 10815 * this ipif to send mcast packets. 10816 */ 10817 connp->conn_multicast_ill = ill; 10818 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10819 0 : ifindex; 10820 break; 10821 10822 case IPV6_MULTICAST_IF: 10823 /* 10824 * Set conn_multicast_ill to be the IPv6 ill. 10825 * Set conn_multicast_ipif to be an IPv4 ipif 10826 * for ifindex to make IPv4 mapped addresses 10827 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10828 * Even if no IPv6 ill exists for the ifindex 10829 * we need to check for an IPv4 ifindex in order 10830 * for this to work with mapped addresses. In that 10831 * case only set conn_multicast_ipif. 10832 */ 10833 if (!checkonly) { 10834 if (ifindex == 0) { 10835 connp->conn_multicast_ill = NULL; 10836 connp->conn_orig_multicast_ifindex = 0; 10837 connp->conn_multicast_ipif = NULL; 10838 } else if (ill != NULL) { 10839 connp->conn_multicast_ill = ill; 10840 connp->conn_orig_multicast_ifindex = 10841 ifindex; 10842 } 10843 } 10844 break; 10845 } 10846 } 10847 10848 if (ill != NULL) { 10849 mutex_exit(&ill->ill_lock); 10850 mutex_exit(&connp->conn_lock); 10851 ill_refrele(ill); 10852 return (0); 10853 } 10854 mutex_exit(&connp->conn_lock); 10855 /* 10856 * We succeeded in clearing the option (ifindex == 0) or failed to 10857 * locate the ill and could not set the option (ifindex != 0) 10858 */ 10859 return (ifindex == 0 ? 0 : EINVAL); 10860 } 10861 10862 /* This routine sets socket options. */ 10863 /* ARGSUSED */ 10864 int 10865 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10866 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10867 void *dummy, cred_t *cr, mblk_t *first_mp) 10868 { 10869 int *i1 = (int *)invalp; 10870 conn_t *connp = Q_TO_CONN(q); 10871 int error = 0; 10872 boolean_t checkonly; 10873 ire_t *ire; 10874 boolean_t found; 10875 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10876 10877 switch (optset_context) { 10878 10879 case SETFN_OPTCOM_CHECKONLY: 10880 checkonly = B_TRUE; 10881 /* 10882 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10883 * inlen != 0 implies value supplied and 10884 * we have to "pretend" to set it. 10885 * inlen == 0 implies that there is no 10886 * value part in T_CHECK request and just validation 10887 * done elsewhere should be enough, we just return here. 10888 */ 10889 if (inlen == 0) { 10890 *outlenp = 0; 10891 return (0); 10892 } 10893 break; 10894 case SETFN_OPTCOM_NEGOTIATE: 10895 case SETFN_UD_NEGOTIATE: 10896 case SETFN_CONN_NEGOTIATE: 10897 checkonly = B_FALSE; 10898 break; 10899 default: 10900 /* 10901 * We should never get here 10902 */ 10903 *outlenp = 0; 10904 return (EINVAL); 10905 } 10906 10907 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10908 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10909 10910 /* 10911 * For fixed length options, no sanity check 10912 * of passed in length is done. It is assumed *_optcom_req() 10913 * routines do the right thing. 10914 */ 10915 10916 switch (level) { 10917 case SOL_SOCKET: 10918 /* 10919 * conn_lock protects the bitfields, and is used to 10920 * set the fields atomically. 10921 */ 10922 switch (name) { 10923 case SO_BROADCAST: 10924 if (!checkonly) { 10925 /* TODO: use value someplace? */ 10926 mutex_enter(&connp->conn_lock); 10927 connp->conn_broadcast = *i1 ? 1 : 0; 10928 mutex_exit(&connp->conn_lock); 10929 } 10930 break; /* goto sizeof (int) option return */ 10931 case SO_USELOOPBACK: 10932 if (!checkonly) { 10933 /* TODO: use value someplace? */ 10934 mutex_enter(&connp->conn_lock); 10935 connp->conn_loopback = *i1 ? 1 : 0; 10936 mutex_exit(&connp->conn_lock); 10937 } 10938 break; /* goto sizeof (int) option return */ 10939 case SO_DONTROUTE: 10940 if (!checkonly) { 10941 mutex_enter(&connp->conn_lock); 10942 connp->conn_dontroute = *i1 ? 1 : 0; 10943 mutex_exit(&connp->conn_lock); 10944 } 10945 break; /* goto sizeof (int) option return */ 10946 case SO_REUSEADDR: 10947 if (!checkonly) { 10948 mutex_enter(&connp->conn_lock); 10949 connp->conn_reuseaddr = *i1 ? 1 : 0; 10950 mutex_exit(&connp->conn_lock); 10951 } 10952 break; /* goto sizeof (int) option return */ 10953 case SO_PROTOTYPE: 10954 if (!checkonly) { 10955 mutex_enter(&connp->conn_lock); 10956 connp->conn_proto = *i1; 10957 mutex_exit(&connp->conn_lock); 10958 } 10959 break; /* goto sizeof (int) option return */ 10960 case SO_ALLZONES: 10961 if (!checkonly) { 10962 mutex_enter(&connp->conn_lock); 10963 if (IPCL_IS_BOUND(connp)) { 10964 mutex_exit(&connp->conn_lock); 10965 return (EINVAL); 10966 } 10967 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10968 mutex_exit(&connp->conn_lock); 10969 } 10970 break; /* goto sizeof (int) option return */ 10971 case SO_ANON_MLP: 10972 if (!checkonly) { 10973 mutex_enter(&connp->conn_lock); 10974 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10975 mutex_exit(&connp->conn_lock); 10976 } 10977 break; /* goto sizeof (int) option return */ 10978 case SO_MAC_EXEMPT: 10979 if (secpolicy_net_mac_aware(cr) != 0 || 10980 IPCL_IS_BOUND(connp)) 10981 return (EACCES); 10982 if (!checkonly) { 10983 mutex_enter(&connp->conn_lock); 10984 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10985 mutex_exit(&connp->conn_lock); 10986 } 10987 break; /* goto sizeof (int) option return */ 10988 default: 10989 /* 10990 * "soft" error (negative) 10991 * option not handled at this level 10992 * Note: Do not modify *outlenp 10993 */ 10994 return (-EINVAL); 10995 } 10996 break; 10997 case IPPROTO_IP: 10998 switch (name) { 10999 case IP_NEXTHOP: 11000 if (secpolicy_ip_config(cr, B_FALSE) != 0) 11001 return (EPERM); 11002 /* FALLTHRU */ 11003 case IP_MULTICAST_IF: 11004 case IP_DONTFAILOVER_IF: { 11005 ipaddr_t addr = *i1; 11006 11007 error = ip_opt_set_ipif(connp, addr, checkonly, name, 11008 first_mp); 11009 if (error != 0) 11010 return (error); 11011 break; /* goto sizeof (int) option return */ 11012 } 11013 11014 case IP_MULTICAST_TTL: 11015 /* Recorded in transport above IP */ 11016 *outvalp = *invalp; 11017 *outlenp = sizeof (uchar_t); 11018 return (0); 11019 case IP_MULTICAST_LOOP: 11020 if (!checkonly) { 11021 mutex_enter(&connp->conn_lock); 11022 connp->conn_multicast_loop = *invalp ? 1 : 0; 11023 mutex_exit(&connp->conn_lock); 11024 } 11025 *outvalp = *invalp; 11026 *outlenp = sizeof (uchar_t); 11027 return (0); 11028 case IP_ADD_MEMBERSHIP: 11029 case MCAST_JOIN_GROUP: 11030 case IP_DROP_MEMBERSHIP: 11031 case MCAST_LEAVE_GROUP: { 11032 struct ip_mreq *mreqp; 11033 struct group_req *greqp; 11034 ire_t *ire; 11035 boolean_t done = B_FALSE; 11036 ipaddr_t group, ifaddr; 11037 struct sockaddr_in *sin; 11038 uint32_t *ifindexp; 11039 boolean_t mcast_opt = B_TRUE; 11040 mcast_record_t fmode; 11041 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 11042 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 11043 11044 switch (name) { 11045 case IP_ADD_MEMBERSHIP: 11046 mcast_opt = B_FALSE; 11047 /* FALLTHRU */ 11048 case MCAST_JOIN_GROUP: 11049 fmode = MODE_IS_EXCLUDE; 11050 optfn = ip_opt_add_group; 11051 break; 11052 11053 case IP_DROP_MEMBERSHIP: 11054 mcast_opt = B_FALSE; 11055 /* FALLTHRU */ 11056 case MCAST_LEAVE_GROUP: 11057 fmode = MODE_IS_INCLUDE; 11058 optfn = ip_opt_delete_group; 11059 break; 11060 } 11061 11062 if (mcast_opt) { 11063 greqp = (struct group_req *)i1; 11064 sin = (struct sockaddr_in *)&greqp->gr_group; 11065 if (sin->sin_family != AF_INET) { 11066 *outlenp = 0; 11067 return (ENOPROTOOPT); 11068 } 11069 group = (ipaddr_t)sin->sin_addr.s_addr; 11070 ifaddr = INADDR_ANY; 11071 ifindexp = &greqp->gr_interface; 11072 } else { 11073 mreqp = (struct ip_mreq *)i1; 11074 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 11075 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 11076 ifindexp = NULL; 11077 } 11078 11079 /* 11080 * In the multirouting case, we need to replicate 11081 * the request on all interfaces that will take part 11082 * in replication. We do so because multirouting is 11083 * reflective, thus we will probably receive multi- 11084 * casts on those interfaces. 11085 * The ip_multirt_apply_membership() succeeds if the 11086 * operation succeeds on at least one interface. 11087 */ 11088 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 11089 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11090 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11091 if (ire != NULL) { 11092 if (ire->ire_flags & RTF_MULTIRT) { 11093 error = ip_multirt_apply_membership( 11094 optfn, ire, connp, checkonly, group, 11095 fmode, INADDR_ANY, first_mp); 11096 done = B_TRUE; 11097 } 11098 ire_refrele(ire); 11099 } 11100 if (!done) { 11101 error = optfn(connp, checkonly, group, ifaddr, 11102 ifindexp, fmode, INADDR_ANY, first_mp); 11103 } 11104 if (error) { 11105 /* 11106 * EINPROGRESS is a soft error, needs retry 11107 * so don't make *outlenp zero. 11108 */ 11109 if (error != EINPROGRESS) 11110 *outlenp = 0; 11111 return (error); 11112 } 11113 /* OK return - copy input buffer into output buffer */ 11114 if (invalp != outvalp) { 11115 /* don't trust bcopy for identical src/dst */ 11116 bcopy(invalp, outvalp, inlen); 11117 } 11118 *outlenp = inlen; 11119 return (0); 11120 } 11121 case IP_BLOCK_SOURCE: 11122 case IP_UNBLOCK_SOURCE: 11123 case IP_ADD_SOURCE_MEMBERSHIP: 11124 case IP_DROP_SOURCE_MEMBERSHIP: 11125 case MCAST_BLOCK_SOURCE: 11126 case MCAST_UNBLOCK_SOURCE: 11127 case MCAST_JOIN_SOURCE_GROUP: 11128 case MCAST_LEAVE_SOURCE_GROUP: { 11129 struct ip_mreq_source *imreqp; 11130 struct group_source_req *gsreqp; 11131 in_addr_t grp, src, ifaddr = INADDR_ANY; 11132 uint32_t ifindex = 0; 11133 mcast_record_t fmode; 11134 struct sockaddr_in *sin; 11135 ire_t *ire; 11136 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 11137 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 11138 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 11139 11140 switch (name) { 11141 case IP_BLOCK_SOURCE: 11142 mcast_opt = B_FALSE; 11143 /* FALLTHRU */ 11144 case MCAST_BLOCK_SOURCE: 11145 fmode = MODE_IS_EXCLUDE; 11146 optfn = ip_opt_add_group; 11147 break; 11148 11149 case IP_UNBLOCK_SOURCE: 11150 mcast_opt = B_FALSE; 11151 /* FALLTHRU */ 11152 case MCAST_UNBLOCK_SOURCE: 11153 fmode = MODE_IS_EXCLUDE; 11154 optfn = ip_opt_delete_group; 11155 break; 11156 11157 case IP_ADD_SOURCE_MEMBERSHIP: 11158 mcast_opt = B_FALSE; 11159 /* FALLTHRU */ 11160 case MCAST_JOIN_SOURCE_GROUP: 11161 fmode = MODE_IS_INCLUDE; 11162 optfn = ip_opt_add_group; 11163 break; 11164 11165 case IP_DROP_SOURCE_MEMBERSHIP: 11166 mcast_opt = B_FALSE; 11167 /* FALLTHRU */ 11168 case MCAST_LEAVE_SOURCE_GROUP: 11169 fmode = MODE_IS_INCLUDE; 11170 optfn = ip_opt_delete_group; 11171 break; 11172 } 11173 11174 if (mcast_opt) { 11175 gsreqp = (struct group_source_req *)i1; 11176 if (gsreqp->gsr_group.ss_family != AF_INET) { 11177 *outlenp = 0; 11178 return (ENOPROTOOPT); 11179 } 11180 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 11181 grp = (ipaddr_t)sin->sin_addr.s_addr; 11182 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 11183 src = (ipaddr_t)sin->sin_addr.s_addr; 11184 ifindex = gsreqp->gsr_interface; 11185 } else { 11186 imreqp = (struct ip_mreq_source *)i1; 11187 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 11188 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 11189 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 11190 } 11191 11192 /* 11193 * In the multirouting case, we need to replicate 11194 * the request as noted in the mcast cases above. 11195 */ 11196 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 11197 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11198 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11199 if (ire != NULL) { 11200 if (ire->ire_flags & RTF_MULTIRT) { 11201 error = ip_multirt_apply_membership( 11202 optfn, ire, connp, checkonly, grp, 11203 fmode, src, first_mp); 11204 done = B_TRUE; 11205 } 11206 ire_refrele(ire); 11207 } 11208 if (!done) { 11209 error = optfn(connp, checkonly, grp, ifaddr, 11210 &ifindex, fmode, src, first_mp); 11211 } 11212 if (error != 0) { 11213 /* 11214 * EINPROGRESS is a soft error, needs retry 11215 * so don't make *outlenp zero. 11216 */ 11217 if (error != EINPROGRESS) 11218 *outlenp = 0; 11219 return (error); 11220 } 11221 /* OK return - copy input buffer into output buffer */ 11222 if (invalp != outvalp) { 11223 bcopy(invalp, outvalp, inlen); 11224 } 11225 *outlenp = inlen; 11226 return (0); 11227 } 11228 case IP_SEC_OPT: 11229 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11230 if (error != 0) { 11231 *outlenp = 0; 11232 return (error); 11233 } 11234 break; 11235 case IP_HDRINCL: 11236 case IP_OPTIONS: 11237 case T_IP_OPTIONS: 11238 case IP_TOS: 11239 case T_IP_TOS: 11240 case IP_TTL: 11241 case IP_RECVDSTADDR: 11242 case IP_RECVOPTS: 11243 /* OK return - copy input buffer into output buffer */ 11244 if (invalp != outvalp) { 11245 /* don't trust bcopy for identical src/dst */ 11246 bcopy(invalp, outvalp, inlen); 11247 } 11248 *outlenp = inlen; 11249 return (0); 11250 case IP_RECVIF: 11251 /* Retrieve the inbound interface index */ 11252 if (!checkonly) { 11253 mutex_enter(&connp->conn_lock); 11254 connp->conn_recvif = *i1 ? 1 : 0; 11255 mutex_exit(&connp->conn_lock); 11256 } 11257 break; /* goto sizeof (int) option return */ 11258 case IP_RECVPKTINFO: 11259 if (!checkonly) { 11260 mutex_enter(&connp->conn_lock); 11261 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11262 mutex_exit(&connp->conn_lock); 11263 } 11264 break; /* goto sizeof (int) option return */ 11265 case IP_RECVSLLA: 11266 /* Retrieve the source link layer address */ 11267 if (!checkonly) { 11268 mutex_enter(&connp->conn_lock); 11269 connp->conn_recvslla = *i1 ? 1 : 0; 11270 mutex_exit(&connp->conn_lock); 11271 } 11272 break; /* goto sizeof (int) option return */ 11273 case MRT_INIT: 11274 case MRT_DONE: 11275 case MRT_ADD_VIF: 11276 case MRT_DEL_VIF: 11277 case MRT_ADD_MFC: 11278 case MRT_DEL_MFC: 11279 case MRT_ASSERT: 11280 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11281 *outlenp = 0; 11282 return (error); 11283 } 11284 error = ip_mrouter_set((int)name, q, checkonly, 11285 (uchar_t *)invalp, inlen, first_mp); 11286 if (error) { 11287 *outlenp = 0; 11288 return (error); 11289 } 11290 /* OK return - copy input buffer into output buffer */ 11291 if (invalp != outvalp) { 11292 /* don't trust bcopy for identical src/dst */ 11293 bcopy(invalp, outvalp, inlen); 11294 } 11295 *outlenp = inlen; 11296 return (0); 11297 case IP_BOUND_IF: 11298 case IP_XMIT_IF: 11299 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11300 level, name, first_mp); 11301 if (error != 0) 11302 return (error); 11303 break; /* goto sizeof (int) option return */ 11304 11305 case IP_UNSPEC_SRC: 11306 /* Allow sending with a zero source address */ 11307 if (!checkonly) { 11308 mutex_enter(&connp->conn_lock); 11309 connp->conn_unspec_src = *i1 ? 1 : 0; 11310 mutex_exit(&connp->conn_lock); 11311 } 11312 break; /* goto sizeof (int) option return */ 11313 default: 11314 /* 11315 * "soft" error (negative) 11316 * option not handled at this level 11317 * Note: Do not modify *outlenp 11318 */ 11319 return (-EINVAL); 11320 } 11321 break; 11322 case IPPROTO_IPV6: 11323 switch (name) { 11324 case IPV6_BOUND_IF: 11325 case IPV6_BOUND_PIF: 11326 case IPV6_DONTFAILOVER_IF: 11327 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11328 level, name, first_mp); 11329 if (error != 0) 11330 return (error); 11331 break; /* goto sizeof (int) option return */ 11332 11333 case IPV6_MULTICAST_IF: 11334 /* 11335 * The only possible errors are EINPROGRESS and 11336 * EINVAL. EINPROGRESS will be restarted and is not 11337 * a hard error. We call this option on both V4 and V6 11338 * If both return EINVAL, then this call returns 11339 * EINVAL. If at least one of them succeeds we 11340 * return success. 11341 */ 11342 found = B_FALSE; 11343 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11344 level, name, first_mp); 11345 if (error == EINPROGRESS) 11346 return (error); 11347 if (error == 0) 11348 found = B_TRUE; 11349 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11350 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11351 if (error == 0) 11352 found = B_TRUE; 11353 if (!found) 11354 return (error); 11355 break; /* goto sizeof (int) option return */ 11356 11357 case IPV6_MULTICAST_HOPS: 11358 /* Recorded in transport above IP */ 11359 break; /* goto sizeof (int) option return */ 11360 case IPV6_MULTICAST_LOOP: 11361 if (!checkonly) { 11362 mutex_enter(&connp->conn_lock); 11363 connp->conn_multicast_loop = *i1; 11364 mutex_exit(&connp->conn_lock); 11365 } 11366 break; /* goto sizeof (int) option return */ 11367 case IPV6_JOIN_GROUP: 11368 case MCAST_JOIN_GROUP: 11369 case IPV6_LEAVE_GROUP: 11370 case MCAST_LEAVE_GROUP: { 11371 struct ipv6_mreq *ip_mreqp; 11372 struct group_req *greqp; 11373 ire_t *ire; 11374 boolean_t done = B_FALSE; 11375 in6_addr_t groupv6; 11376 uint32_t ifindex; 11377 boolean_t mcast_opt = B_TRUE; 11378 mcast_record_t fmode; 11379 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11380 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11381 11382 switch (name) { 11383 case IPV6_JOIN_GROUP: 11384 mcast_opt = B_FALSE; 11385 /* FALLTHRU */ 11386 case MCAST_JOIN_GROUP: 11387 fmode = MODE_IS_EXCLUDE; 11388 optfn = ip_opt_add_group_v6; 11389 break; 11390 11391 case IPV6_LEAVE_GROUP: 11392 mcast_opt = B_FALSE; 11393 /* FALLTHRU */ 11394 case MCAST_LEAVE_GROUP: 11395 fmode = MODE_IS_INCLUDE; 11396 optfn = ip_opt_delete_group_v6; 11397 break; 11398 } 11399 11400 if (mcast_opt) { 11401 struct sockaddr_in *sin; 11402 struct sockaddr_in6 *sin6; 11403 greqp = (struct group_req *)i1; 11404 if (greqp->gr_group.ss_family == AF_INET) { 11405 sin = (struct sockaddr_in *) 11406 &(greqp->gr_group); 11407 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11408 &groupv6); 11409 } else { 11410 sin6 = (struct sockaddr_in6 *) 11411 &(greqp->gr_group); 11412 groupv6 = sin6->sin6_addr; 11413 } 11414 ifindex = greqp->gr_interface; 11415 } else { 11416 ip_mreqp = (struct ipv6_mreq *)i1; 11417 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11418 ifindex = ip_mreqp->ipv6mr_interface; 11419 } 11420 /* 11421 * In the multirouting case, we need to replicate 11422 * the request on all interfaces that will take part 11423 * in replication. We do so because multirouting is 11424 * reflective, thus we will probably receive multi- 11425 * casts on those interfaces. 11426 * The ip_multirt_apply_membership_v6() succeeds if 11427 * the operation succeeds on at least one interface. 11428 */ 11429 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11430 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11431 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11432 if (ire != NULL) { 11433 if (ire->ire_flags & RTF_MULTIRT) { 11434 error = ip_multirt_apply_membership_v6( 11435 optfn, ire, connp, checkonly, 11436 &groupv6, fmode, &ipv6_all_zeros, 11437 first_mp); 11438 done = B_TRUE; 11439 } 11440 ire_refrele(ire); 11441 } 11442 if (!done) { 11443 error = optfn(connp, checkonly, &groupv6, 11444 ifindex, fmode, &ipv6_all_zeros, first_mp); 11445 } 11446 if (error) { 11447 /* 11448 * EINPROGRESS is a soft error, needs retry 11449 * so don't make *outlenp zero. 11450 */ 11451 if (error != EINPROGRESS) 11452 *outlenp = 0; 11453 return (error); 11454 } 11455 /* OK return - copy input buffer into output buffer */ 11456 if (invalp != outvalp) { 11457 /* don't trust bcopy for identical src/dst */ 11458 bcopy(invalp, outvalp, inlen); 11459 } 11460 *outlenp = inlen; 11461 return (0); 11462 } 11463 case MCAST_BLOCK_SOURCE: 11464 case MCAST_UNBLOCK_SOURCE: 11465 case MCAST_JOIN_SOURCE_GROUP: 11466 case MCAST_LEAVE_SOURCE_GROUP: { 11467 struct group_source_req *gsreqp; 11468 in6_addr_t v6grp, v6src; 11469 uint32_t ifindex; 11470 mcast_record_t fmode; 11471 ire_t *ire; 11472 boolean_t done = B_FALSE; 11473 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11474 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11475 11476 switch (name) { 11477 case MCAST_BLOCK_SOURCE: 11478 fmode = MODE_IS_EXCLUDE; 11479 optfn = ip_opt_add_group_v6; 11480 break; 11481 case MCAST_UNBLOCK_SOURCE: 11482 fmode = MODE_IS_EXCLUDE; 11483 optfn = ip_opt_delete_group_v6; 11484 break; 11485 case MCAST_JOIN_SOURCE_GROUP: 11486 fmode = MODE_IS_INCLUDE; 11487 optfn = ip_opt_add_group_v6; 11488 break; 11489 case MCAST_LEAVE_SOURCE_GROUP: 11490 fmode = MODE_IS_INCLUDE; 11491 optfn = ip_opt_delete_group_v6; 11492 break; 11493 } 11494 11495 gsreqp = (struct group_source_req *)i1; 11496 ifindex = gsreqp->gsr_interface; 11497 if (gsreqp->gsr_group.ss_family == AF_INET) { 11498 struct sockaddr_in *s; 11499 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11500 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11501 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11502 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11503 } else { 11504 struct sockaddr_in6 *s6; 11505 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11506 v6grp = s6->sin6_addr; 11507 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11508 v6src = s6->sin6_addr; 11509 } 11510 11511 /* 11512 * In the multirouting case, we need to replicate 11513 * the request as noted in the mcast cases above. 11514 */ 11515 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11516 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11517 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11518 if (ire != NULL) { 11519 if (ire->ire_flags & RTF_MULTIRT) { 11520 error = ip_multirt_apply_membership_v6( 11521 optfn, ire, connp, checkonly, 11522 &v6grp, fmode, &v6src, first_mp); 11523 done = B_TRUE; 11524 } 11525 ire_refrele(ire); 11526 } 11527 if (!done) { 11528 error = optfn(connp, checkonly, &v6grp, 11529 ifindex, fmode, &v6src, first_mp); 11530 } 11531 if (error != 0) { 11532 /* 11533 * EINPROGRESS is a soft error, needs retry 11534 * so don't make *outlenp zero. 11535 */ 11536 if (error != EINPROGRESS) 11537 *outlenp = 0; 11538 return (error); 11539 } 11540 /* OK return - copy input buffer into output buffer */ 11541 if (invalp != outvalp) { 11542 bcopy(invalp, outvalp, inlen); 11543 } 11544 *outlenp = inlen; 11545 return (0); 11546 } 11547 case IPV6_UNICAST_HOPS: 11548 /* Recorded in transport above IP */ 11549 break; /* goto sizeof (int) option return */ 11550 case IPV6_UNSPEC_SRC: 11551 /* Allow sending with a zero source address */ 11552 if (!checkonly) { 11553 mutex_enter(&connp->conn_lock); 11554 connp->conn_unspec_src = *i1 ? 1 : 0; 11555 mutex_exit(&connp->conn_lock); 11556 } 11557 break; /* goto sizeof (int) option return */ 11558 case IPV6_RECVPKTINFO: 11559 if (!checkonly) { 11560 mutex_enter(&connp->conn_lock); 11561 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11562 mutex_exit(&connp->conn_lock); 11563 } 11564 break; /* goto sizeof (int) option return */ 11565 case IPV6_RECVTCLASS: 11566 if (!checkonly) { 11567 if (*i1 < 0 || *i1 > 1) { 11568 return (EINVAL); 11569 } 11570 mutex_enter(&connp->conn_lock); 11571 connp->conn_ipv6_recvtclass = *i1; 11572 mutex_exit(&connp->conn_lock); 11573 } 11574 break; 11575 case IPV6_RECVPATHMTU: 11576 if (!checkonly) { 11577 if (*i1 < 0 || *i1 > 1) { 11578 return (EINVAL); 11579 } 11580 mutex_enter(&connp->conn_lock); 11581 connp->conn_ipv6_recvpathmtu = *i1; 11582 mutex_exit(&connp->conn_lock); 11583 } 11584 break; 11585 case IPV6_RECVHOPLIMIT: 11586 if (!checkonly) { 11587 mutex_enter(&connp->conn_lock); 11588 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11589 mutex_exit(&connp->conn_lock); 11590 } 11591 break; /* goto sizeof (int) option return */ 11592 case IPV6_RECVHOPOPTS: 11593 if (!checkonly) { 11594 mutex_enter(&connp->conn_lock); 11595 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11596 mutex_exit(&connp->conn_lock); 11597 } 11598 break; /* goto sizeof (int) option return */ 11599 case IPV6_RECVDSTOPTS: 11600 if (!checkonly) { 11601 mutex_enter(&connp->conn_lock); 11602 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11603 mutex_exit(&connp->conn_lock); 11604 } 11605 break; /* goto sizeof (int) option return */ 11606 case IPV6_RECVRTHDR: 11607 if (!checkonly) { 11608 mutex_enter(&connp->conn_lock); 11609 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11610 mutex_exit(&connp->conn_lock); 11611 } 11612 break; /* goto sizeof (int) option return */ 11613 case IPV6_RECVRTHDRDSTOPTS: 11614 if (!checkonly) { 11615 mutex_enter(&connp->conn_lock); 11616 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11617 mutex_exit(&connp->conn_lock); 11618 } 11619 break; /* goto sizeof (int) option return */ 11620 case IPV6_PKTINFO: 11621 if (inlen == 0) 11622 return (-EINVAL); /* clearing option */ 11623 error = ip6_set_pktinfo(cr, connp, 11624 (struct in6_pktinfo *)invalp, first_mp); 11625 if (error != 0) 11626 *outlenp = 0; 11627 else 11628 *outlenp = inlen; 11629 return (error); 11630 case IPV6_NEXTHOP: { 11631 struct sockaddr_in6 *sin6; 11632 11633 /* Verify that the nexthop is reachable */ 11634 if (inlen == 0) 11635 return (-EINVAL); /* clearing option */ 11636 11637 sin6 = (struct sockaddr_in6 *)invalp; 11638 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11639 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11640 NULL, MATCH_IRE_DEFAULT, ipst); 11641 11642 if (ire == NULL) { 11643 *outlenp = 0; 11644 return (EHOSTUNREACH); 11645 } 11646 ire_refrele(ire); 11647 return (-EINVAL); 11648 } 11649 case IPV6_SEC_OPT: 11650 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11651 if (error != 0) { 11652 *outlenp = 0; 11653 return (error); 11654 } 11655 break; 11656 case IPV6_SRC_PREFERENCES: { 11657 /* 11658 * This is implemented strictly in the ip module 11659 * (here and in tcp_opt_*() to accomodate tcp 11660 * sockets). Modules above ip pass this option 11661 * down here since ip is the only one that needs to 11662 * be aware of source address preferences. 11663 * 11664 * This socket option only affects connected 11665 * sockets that haven't already bound to a specific 11666 * IPv6 address. In other words, sockets that 11667 * don't call bind() with an address other than the 11668 * unspecified address and that call connect(). 11669 * ip_bind_connected_v6() passes these preferences 11670 * to the ipif_select_source_v6() function. 11671 */ 11672 if (inlen != sizeof (uint32_t)) 11673 return (EINVAL); 11674 error = ip6_set_src_preferences(connp, 11675 *(uint32_t *)invalp); 11676 if (error != 0) { 11677 *outlenp = 0; 11678 return (error); 11679 } else { 11680 *outlenp = sizeof (uint32_t); 11681 } 11682 break; 11683 } 11684 case IPV6_V6ONLY: 11685 if (*i1 < 0 || *i1 > 1) { 11686 return (EINVAL); 11687 } 11688 mutex_enter(&connp->conn_lock); 11689 connp->conn_ipv6_v6only = *i1; 11690 mutex_exit(&connp->conn_lock); 11691 break; 11692 default: 11693 return (-EINVAL); 11694 } 11695 break; 11696 default: 11697 /* 11698 * "soft" error (negative) 11699 * option not handled at this level 11700 * Note: Do not modify *outlenp 11701 */ 11702 return (-EINVAL); 11703 } 11704 /* 11705 * Common case of return from an option that is sizeof (int) 11706 */ 11707 *(int *)outvalp = *i1; 11708 *outlenp = sizeof (int); 11709 return (0); 11710 } 11711 11712 /* 11713 * This routine gets default values of certain options whose default 11714 * values are maintained by protocol specific code 11715 */ 11716 /* ARGSUSED */ 11717 int 11718 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11719 { 11720 int *i1 = (int *)ptr; 11721 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11722 11723 switch (level) { 11724 case IPPROTO_IP: 11725 switch (name) { 11726 case IP_MULTICAST_TTL: 11727 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11728 return (sizeof (uchar_t)); 11729 case IP_MULTICAST_LOOP: 11730 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11731 return (sizeof (uchar_t)); 11732 default: 11733 return (-1); 11734 } 11735 case IPPROTO_IPV6: 11736 switch (name) { 11737 case IPV6_UNICAST_HOPS: 11738 *i1 = ipst->ips_ipv6_def_hops; 11739 return (sizeof (int)); 11740 case IPV6_MULTICAST_HOPS: 11741 *i1 = IP_DEFAULT_MULTICAST_TTL; 11742 return (sizeof (int)); 11743 case IPV6_MULTICAST_LOOP: 11744 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11745 return (sizeof (int)); 11746 case IPV6_V6ONLY: 11747 *i1 = 1; 11748 return (sizeof (int)); 11749 default: 11750 return (-1); 11751 } 11752 default: 11753 return (-1); 11754 } 11755 /* NOTREACHED */ 11756 } 11757 11758 /* 11759 * Given a destination address and a pointer to where to put the information 11760 * this routine fills in the mtuinfo. 11761 */ 11762 int 11763 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11764 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11765 { 11766 ire_t *ire; 11767 ip_stack_t *ipst = ns->netstack_ip; 11768 11769 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11770 return (-1); 11771 11772 bzero(mtuinfo, sizeof (*mtuinfo)); 11773 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11774 mtuinfo->ip6m_addr.sin6_port = port; 11775 mtuinfo->ip6m_addr.sin6_addr = *in6; 11776 11777 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11778 if (ire != NULL) { 11779 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11780 ire_refrele(ire); 11781 } else { 11782 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11783 } 11784 return (sizeof (struct ip6_mtuinfo)); 11785 } 11786 11787 /* 11788 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11789 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11790 * isn't. This doesn't matter as the error checking is done properly for the 11791 * other MRT options coming in through ip_opt_set. 11792 */ 11793 int 11794 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11795 { 11796 conn_t *connp = Q_TO_CONN(q); 11797 ipsec_req_t *req = (ipsec_req_t *)ptr; 11798 11799 switch (level) { 11800 case IPPROTO_IP: 11801 switch (name) { 11802 case MRT_VERSION: 11803 case MRT_ASSERT: 11804 (void) ip_mrouter_get(name, q, ptr); 11805 return (sizeof (int)); 11806 case IP_SEC_OPT: 11807 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11808 case IP_NEXTHOP: 11809 if (connp->conn_nexthop_set) { 11810 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11811 return (sizeof (ipaddr_t)); 11812 } else 11813 return (0); 11814 case IP_RECVPKTINFO: 11815 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11816 return (sizeof (int)); 11817 default: 11818 break; 11819 } 11820 break; 11821 case IPPROTO_IPV6: 11822 switch (name) { 11823 case IPV6_SEC_OPT: 11824 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11825 case IPV6_SRC_PREFERENCES: { 11826 return (ip6_get_src_preferences(connp, 11827 (uint32_t *)ptr)); 11828 } 11829 case IPV6_V6ONLY: 11830 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11831 return (sizeof (int)); 11832 case IPV6_PATHMTU: 11833 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11834 (struct ip6_mtuinfo *)ptr, 11835 connp->conn_netstack)); 11836 default: 11837 break; 11838 } 11839 break; 11840 default: 11841 break; 11842 } 11843 return (-1); 11844 } 11845 11846 /* Named Dispatch routine to get a current value out of our parameter table. */ 11847 /* ARGSUSED */ 11848 static int 11849 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11850 { 11851 ipparam_t *ippa = (ipparam_t *)cp; 11852 11853 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11854 return (0); 11855 } 11856 11857 /* ARGSUSED */ 11858 static int 11859 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11860 { 11861 11862 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11863 return (0); 11864 } 11865 11866 /* 11867 * Set ip{,6}_forwarding values. This means walking through all of the 11868 * ill's and toggling their forwarding values. 11869 */ 11870 /* ARGSUSED */ 11871 static int 11872 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11873 { 11874 long new_value; 11875 int *forwarding_value = (int *)cp; 11876 ill_t *walker; 11877 boolean_t isv6; 11878 ill_walk_context_t ctx; 11879 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11880 11881 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11882 11883 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11884 new_value < 0 || new_value > 1) { 11885 return (EINVAL); 11886 } 11887 11888 *forwarding_value = new_value; 11889 11890 /* 11891 * Regardless of the current value of ip_forwarding, set all per-ill 11892 * values of ip_forwarding to the value being set. 11893 * 11894 * Bring all the ill's up to date with the new global value. 11895 */ 11896 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11897 11898 if (isv6) 11899 walker = ILL_START_WALK_V6(&ctx, ipst); 11900 else 11901 walker = ILL_START_WALK_V4(&ctx, ipst); 11902 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 11903 (void) ill_forward_set(q, mp, (new_value != 0), 11904 (caddr_t)walker); 11905 } 11906 rw_exit(&ipst->ips_ill_g_lock); 11907 11908 return (0); 11909 } 11910 11911 /* 11912 * Walk through the param array specified registering each element with the 11913 * Named Dispatch handler. This is called only during init. So it is ok 11914 * not to acquire any locks 11915 */ 11916 static boolean_t 11917 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11918 ipndp_t *ipnd, size_t ipnd_cnt) 11919 { 11920 for (; ippa_cnt-- > 0; ippa++) { 11921 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11922 if (!nd_load(ndp, ippa->ip_param_name, 11923 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11924 nd_free(ndp); 11925 return (B_FALSE); 11926 } 11927 } 11928 } 11929 11930 for (; ipnd_cnt-- > 0; ipnd++) { 11931 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11932 if (!nd_load(ndp, ipnd->ip_ndp_name, 11933 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11934 ipnd->ip_ndp_data)) { 11935 nd_free(ndp); 11936 return (B_FALSE); 11937 } 11938 } 11939 } 11940 11941 return (B_TRUE); 11942 } 11943 11944 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11945 /* ARGSUSED */ 11946 static int 11947 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11948 { 11949 long new_value; 11950 ipparam_t *ippa = (ipparam_t *)cp; 11951 11952 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11953 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11954 return (EINVAL); 11955 } 11956 ippa->ip_param_value = new_value; 11957 return (0); 11958 } 11959 11960 /* 11961 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11962 * When an ipf is passed here for the first time, if 11963 * we already have in-order fragments on the queue, we convert from the fast- 11964 * path reassembly scheme to the hard-case scheme. From then on, additional 11965 * fragments are reassembled here. We keep track of the start and end offsets 11966 * of each piece, and the number of holes in the chain. When the hole count 11967 * goes to zero, we are done! 11968 * 11969 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11970 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11971 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11972 * after the call to ip_reassemble(). 11973 */ 11974 int 11975 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11976 size_t msg_len) 11977 { 11978 uint_t end; 11979 mblk_t *next_mp; 11980 mblk_t *mp1; 11981 uint_t offset; 11982 boolean_t incr_dups = B_TRUE; 11983 boolean_t offset_zero_seen = B_FALSE; 11984 boolean_t pkt_boundary_checked = B_FALSE; 11985 11986 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11987 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11988 11989 /* Add in byte count */ 11990 ipf->ipf_count += msg_len; 11991 if (ipf->ipf_end) { 11992 /* 11993 * We were part way through in-order reassembly, but now there 11994 * is a hole. We walk through messages already queued, and 11995 * mark them for hard case reassembly. We know that up till 11996 * now they were in order starting from offset zero. 11997 */ 11998 offset = 0; 11999 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12000 IP_REASS_SET_START(mp1, offset); 12001 if (offset == 0) { 12002 ASSERT(ipf->ipf_nf_hdr_len != 0); 12003 offset = -ipf->ipf_nf_hdr_len; 12004 } 12005 offset += mp1->b_wptr - mp1->b_rptr; 12006 IP_REASS_SET_END(mp1, offset); 12007 } 12008 /* One hole at the end. */ 12009 ipf->ipf_hole_cnt = 1; 12010 /* Brand it as a hard case, forever. */ 12011 ipf->ipf_end = 0; 12012 } 12013 /* Walk through all the new pieces. */ 12014 do { 12015 end = start + (mp->b_wptr - mp->b_rptr); 12016 /* 12017 * If start is 0, decrease 'end' only for the first mblk of 12018 * the fragment. Otherwise 'end' can get wrong value in the 12019 * second pass of the loop if first mblk is exactly the 12020 * size of ipf_nf_hdr_len. 12021 */ 12022 if (start == 0 && !offset_zero_seen) { 12023 /* First segment */ 12024 ASSERT(ipf->ipf_nf_hdr_len != 0); 12025 end -= ipf->ipf_nf_hdr_len; 12026 offset_zero_seen = B_TRUE; 12027 } 12028 next_mp = mp->b_cont; 12029 /* 12030 * We are checking to see if there is any interesing data 12031 * to process. If there isn't and the mblk isn't the 12032 * one which carries the unfragmentable header then we 12033 * drop it. It's possible to have just the unfragmentable 12034 * header come through without any data. That needs to be 12035 * saved. 12036 * 12037 * If the assert at the top of this function holds then the 12038 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 12039 * is infrequently traveled enough that the test is left in 12040 * to protect against future code changes which break that 12041 * invariant. 12042 */ 12043 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 12044 /* Empty. Blast it. */ 12045 IP_REASS_SET_START(mp, 0); 12046 IP_REASS_SET_END(mp, 0); 12047 /* 12048 * If the ipf points to the mblk we are about to free, 12049 * update ipf to point to the next mblk (or NULL 12050 * if none). 12051 */ 12052 if (ipf->ipf_mp->b_cont == mp) 12053 ipf->ipf_mp->b_cont = next_mp; 12054 freeb(mp); 12055 continue; 12056 } 12057 mp->b_cont = NULL; 12058 IP_REASS_SET_START(mp, start); 12059 IP_REASS_SET_END(mp, end); 12060 if (!ipf->ipf_tail_mp) { 12061 ipf->ipf_tail_mp = mp; 12062 ipf->ipf_mp->b_cont = mp; 12063 if (start == 0 || !more) { 12064 ipf->ipf_hole_cnt = 1; 12065 /* 12066 * if the first fragment comes in more than one 12067 * mblk, this loop will be executed for each 12068 * mblk. Need to adjust hole count so exiting 12069 * this routine will leave hole count at 1. 12070 */ 12071 if (next_mp) 12072 ipf->ipf_hole_cnt++; 12073 } else 12074 ipf->ipf_hole_cnt = 2; 12075 continue; 12076 } else if (ipf->ipf_last_frag_seen && !more && 12077 !pkt_boundary_checked) { 12078 /* 12079 * We check datagram boundary only if this fragment 12080 * claims to be the last fragment and we have seen a 12081 * last fragment in the past too. We do this only 12082 * once for a given fragment. 12083 * 12084 * start cannot be 0 here as fragments with start=0 12085 * and MF=0 gets handled as a complete packet. These 12086 * fragments should not reach here. 12087 */ 12088 12089 if (start + msgdsize(mp) != 12090 IP_REASS_END(ipf->ipf_tail_mp)) { 12091 /* 12092 * We have two fragments both of which claim 12093 * to be the last fragment but gives conflicting 12094 * information about the whole datagram size. 12095 * Something fishy is going on. Drop the 12096 * fragment and free up the reassembly list. 12097 */ 12098 return (IP_REASS_FAILED); 12099 } 12100 12101 /* 12102 * We shouldn't come to this code block again for this 12103 * particular fragment. 12104 */ 12105 pkt_boundary_checked = B_TRUE; 12106 } 12107 12108 /* New stuff at or beyond tail? */ 12109 offset = IP_REASS_END(ipf->ipf_tail_mp); 12110 if (start >= offset) { 12111 if (ipf->ipf_last_frag_seen) { 12112 /* current fragment is beyond last fragment */ 12113 return (IP_REASS_FAILED); 12114 } 12115 /* Link it on end. */ 12116 ipf->ipf_tail_mp->b_cont = mp; 12117 ipf->ipf_tail_mp = mp; 12118 if (more) { 12119 if (start != offset) 12120 ipf->ipf_hole_cnt++; 12121 } else if (start == offset && next_mp == NULL) 12122 ipf->ipf_hole_cnt--; 12123 continue; 12124 } 12125 mp1 = ipf->ipf_mp->b_cont; 12126 offset = IP_REASS_START(mp1); 12127 /* New stuff at the front? */ 12128 if (start < offset) { 12129 if (start == 0) { 12130 if (end >= offset) { 12131 /* Nailed the hole at the begining. */ 12132 ipf->ipf_hole_cnt--; 12133 } 12134 } else if (end < offset) { 12135 /* 12136 * A hole, stuff, and a hole where there used 12137 * to be just a hole. 12138 */ 12139 ipf->ipf_hole_cnt++; 12140 } 12141 mp->b_cont = mp1; 12142 /* Check for overlap. */ 12143 while (end > offset) { 12144 if (end < IP_REASS_END(mp1)) { 12145 mp->b_wptr -= end - offset; 12146 IP_REASS_SET_END(mp, offset); 12147 BUMP_MIB(ill->ill_ip_mib, 12148 ipIfStatsReasmPartDups); 12149 break; 12150 } 12151 /* Did we cover another hole? */ 12152 if ((mp1->b_cont && 12153 IP_REASS_END(mp1) != 12154 IP_REASS_START(mp1->b_cont) && 12155 end >= IP_REASS_START(mp1->b_cont)) || 12156 (!ipf->ipf_last_frag_seen && !more)) { 12157 ipf->ipf_hole_cnt--; 12158 } 12159 /* Clip out mp1. */ 12160 if ((mp->b_cont = mp1->b_cont) == NULL) { 12161 /* 12162 * After clipping out mp1, this guy 12163 * is now hanging off the end. 12164 */ 12165 ipf->ipf_tail_mp = mp; 12166 } 12167 IP_REASS_SET_START(mp1, 0); 12168 IP_REASS_SET_END(mp1, 0); 12169 /* Subtract byte count */ 12170 ipf->ipf_count -= mp1->b_datap->db_lim - 12171 mp1->b_datap->db_base; 12172 freeb(mp1); 12173 BUMP_MIB(ill->ill_ip_mib, 12174 ipIfStatsReasmPartDups); 12175 mp1 = mp->b_cont; 12176 if (!mp1) 12177 break; 12178 offset = IP_REASS_START(mp1); 12179 } 12180 ipf->ipf_mp->b_cont = mp; 12181 continue; 12182 } 12183 /* 12184 * The new piece starts somewhere between the start of the head 12185 * and before the end of the tail. 12186 */ 12187 for (; mp1; mp1 = mp1->b_cont) { 12188 offset = IP_REASS_END(mp1); 12189 if (start < offset) { 12190 if (end <= offset) { 12191 /* Nothing new. */ 12192 IP_REASS_SET_START(mp, 0); 12193 IP_REASS_SET_END(mp, 0); 12194 /* Subtract byte count */ 12195 ipf->ipf_count -= mp->b_datap->db_lim - 12196 mp->b_datap->db_base; 12197 if (incr_dups) { 12198 ipf->ipf_num_dups++; 12199 incr_dups = B_FALSE; 12200 } 12201 freeb(mp); 12202 BUMP_MIB(ill->ill_ip_mib, 12203 ipIfStatsReasmDuplicates); 12204 break; 12205 } 12206 /* 12207 * Trim redundant stuff off beginning of new 12208 * piece. 12209 */ 12210 IP_REASS_SET_START(mp, offset); 12211 mp->b_rptr += offset - start; 12212 BUMP_MIB(ill->ill_ip_mib, 12213 ipIfStatsReasmPartDups); 12214 start = offset; 12215 if (!mp1->b_cont) { 12216 /* 12217 * After trimming, this guy is now 12218 * hanging off the end. 12219 */ 12220 mp1->b_cont = mp; 12221 ipf->ipf_tail_mp = mp; 12222 if (!more) { 12223 ipf->ipf_hole_cnt--; 12224 } 12225 break; 12226 } 12227 } 12228 if (start >= IP_REASS_START(mp1->b_cont)) 12229 continue; 12230 /* Fill a hole */ 12231 if (start > offset) 12232 ipf->ipf_hole_cnt++; 12233 mp->b_cont = mp1->b_cont; 12234 mp1->b_cont = mp; 12235 mp1 = mp->b_cont; 12236 offset = IP_REASS_START(mp1); 12237 if (end >= offset) { 12238 ipf->ipf_hole_cnt--; 12239 /* Check for overlap. */ 12240 while (end > offset) { 12241 if (end < IP_REASS_END(mp1)) { 12242 mp->b_wptr -= end - offset; 12243 IP_REASS_SET_END(mp, offset); 12244 /* 12245 * TODO we might bump 12246 * this up twice if there is 12247 * overlap at both ends. 12248 */ 12249 BUMP_MIB(ill->ill_ip_mib, 12250 ipIfStatsReasmPartDups); 12251 break; 12252 } 12253 /* Did we cover another hole? */ 12254 if ((mp1->b_cont && 12255 IP_REASS_END(mp1) 12256 != IP_REASS_START(mp1->b_cont) && 12257 end >= 12258 IP_REASS_START(mp1->b_cont)) || 12259 (!ipf->ipf_last_frag_seen && 12260 !more)) { 12261 ipf->ipf_hole_cnt--; 12262 } 12263 /* Clip out mp1. */ 12264 if ((mp->b_cont = mp1->b_cont) == 12265 NULL) { 12266 /* 12267 * After clipping out mp1, 12268 * this guy is now hanging 12269 * off the end. 12270 */ 12271 ipf->ipf_tail_mp = mp; 12272 } 12273 IP_REASS_SET_START(mp1, 0); 12274 IP_REASS_SET_END(mp1, 0); 12275 /* Subtract byte count */ 12276 ipf->ipf_count -= 12277 mp1->b_datap->db_lim - 12278 mp1->b_datap->db_base; 12279 freeb(mp1); 12280 BUMP_MIB(ill->ill_ip_mib, 12281 ipIfStatsReasmPartDups); 12282 mp1 = mp->b_cont; 12283 if (!mp1) 12284 break; 12285 offset = IP_REASS_START(mp1); 12286 } 12287 } 12288 break; 12289 } 12290 } while (start = end, mp = next_mp); 12291 12292 /* Fragment just processed could be the last one. Remember this fact */ 12293 if (!more) 12294 ipf->ipf_last_frag_seen = B_TRUE; 12295 12296 /* Still got holes? */ 12297 if (ipf->ipf_hole_cnt) 12298 return (IP_REASS_PARTIAL); 12299 /* Clean up overloaded fields to avoid upstream disasters. */ 12300 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12301 IP_REASS_SET_START(mp1, 0); 12302 IP_REASS_SET_END(mp1, 0); 12303 } 12304 return (IP_REASS_COMPLETE); 12305 } 12306 12307 /* 12308 * ipsec processing for the fast path, used for input UDP Packets 12309 */ 12310 static boolean_t 12311 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12312 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 12313 { 12314 uint32_t ill_index; 12315 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12316 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12317 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12318 12319 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12320 /* The ill_index of the incoming ILL */ 12321 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12322 12323 /* pass packet up to the transport */ 12324 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12325 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12326 NULL, mctl_present); 12327 if (*first_mpp == NULL) { 12328 return (B_FALSE); 12329 } 12330 } 12331 12332 /* Initiate IPPF processing for fastpath UDP */ 12333 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12334 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12335 if (*mpp == NULL) { 12336 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12337 "deferred/dropped during IPPF processing\n")); 12338 return (B_FALSE); 12339 } 12340 } 12341 /* 12342 * We make the checks as below since we are in the fast path 12343 * and want to minimize the number of checks if the IP_RECVIF and/or 12344 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12345 */ 12346 if (connp->conn_recvif || connp->conn_recvslla || 12347 connp->conn_ip_recvpktinfo) { 12348 if (connp->conn_recvif) { 12349 in_flags = IPF_RECVIF; 12350 } 12351 /* 12352 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12353 * so the flag passed to ip_add_info is based on IP version 12354 * of connp. 12355 */ 12356 if (connp->conn_ip_recvpktinfo) { 12357 if (connp->conn_af_isv6) { 12358 /* 12359 * V6 only needs index 12360 */ 12361 in_flags |= IPF_RECVIF; 12362 } else { 12363 /* 12364 * V4 needs index + matching address. 12365 */ 12366 in_flags |= IPF_RECVADDR; 12367 } 12368 } 12369 if (connp->conn_recvslla) { 12370 in_flags |= IPF_RECVSLLA; 12371 } 12372 /* 12373 * since in_flags are being set ill will be 12374 * referenced in ip_add_info, so it better not 12375 * be NULL. 12376 */ 12377 /* 12378 * the actual data will be contained in b_cont 12379 * upon successful return of the following call. 12380 * If the call fails then the original mblk is 12381 * returned. 12382 */ 12383 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12384 ipst); 12385 } 12386 12387 return (B_TRUE); 12388 } 12389 12390 /* 12391 * Fragmentation reassembly. Each ILL has a hash table for 12392 * queuing packets undergoing reassembly for all IPIFs 12393 * associated with the ILL. The hash is based on the packet 12394 * IP ident field. The ILL frag hash table was allocated 12395 * as a timer block at the time the ILL was created. Whenever 12396 * there is anything on the reassembly queue, the timer will 12397 * be running. Returns B_TRUE if successful else B_FALSE; 12398 * frees mp on failure. 12399 */ 12400 static boolean_t 12401 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12402 uint32_t *cksum_val, uint16_t *cksum_flags) 12403 { 12404 uint32_t frag_offset_flags; 12405 ill_t *ill = (ill_t *)q->q_ptr; 12406 mblk_t *mp = *mpp; 12407 mblk_t *t_mp; 12408 ipaddr_t dst; 12409 uint8_t proto = ipha->ipha_protocol; 12410 uint32_t sum_val; 12411 uint16_t sum_flags; 12412 ipf_t *ipf; 12413 ipf_t **ipfp; 12414 ipfb_t *ipfb; 12415 uint16_t ident; 12416 uint32_t offset; 12417 ipaddr_t src; 12418 uint_t hdr_length; 12419 uint32_t end; 12420 mblk_t *mp1; 12421 mblk_t *tail_mp; 12422 size_t count; 12423 size_t msg_len; 12424 uint8_t ecn_info = 0; 12425 uint32_t packet_size; 12426 boolean_t pruned = B_FALSE; 12427 ip_stack_t *ipst = ill->ill_ipst; 12428 12429 if (cksum_val != NULL) 12430 *cksum_val = 0; 12431 if (cksum_flags != NULL) 12432 *cksum_flags = 0; 12433 12434 /* 12435 * Drop the fragmented as early as possible, if 12436 * we don't have resource(s) to re-assemble. 12437 */ 12438 if (ipst->ips_ip_reass_queue_bytes == 0) { 12439 freemsg(mp); 12440 return (B_FALSE); 12441 } 12442 12443 /* Check for fragmentation offset; return if there's none */ 12444 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12445 (IPH_MF | IPH_OFFSET)) == 0) 12446 return (B_TRUE); 12447 12448 /* 12449 * We utilize hardware computed checksum info only for UDP since 12450 * IP fragmentation is a normal occurence for the protocol. In 12451 * addition, checksum offload support for IP fragments carrying 12452 * UDP payload is commonly implemented across network adapters. 12453 */ 12454 ASSERT(ill != NULL); 12455 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12456 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12457 mblk_t *mp1 = mp->b_cont; 12458 int32_t len; 12459 12460 /* Record checksum information from the packet */ 12461 sum_val = (uint32_t)DB_CKSUM16(mp); 12462 sum_flags = DB_CKSUMFLAGS(mp); 12463 12464 /* IP payload offset from beginning of mblk */ 12465 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12466 12467 if ((sum_flags & HCK_PARTIALCKSUM) && 12468 (mp1 == NULL || mp1->b_cont == NULL) && 12469 offset >= DB_CKSUMSTART(mp) && 12470 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12471 uint32_t adj; 12472 /* 12473 * Partial checksum has been calculated by hardware 12474 * and attached to the packet; in addition, any 12475 * prepended extraneous data is even byte aligned. 12476 * If any such data exists, we adjust the checksum; 12477 * this would also handle any postpended data. 12478 */ 12479 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12480 mp, mp1, len, adj); 12481 12482 /* One's complement subtract extraneous checksum */ 12483 if (adj >= sum_val) 12484 sum_val = ~(adj - sum_val) & 0xFFFF; 12485 else 12486 sum_val -= adj; 12487 } 12488 } else { 12489 sum_val = 0; 12490 sum_flags = 0; 12491 } 12492 12493 /* Clear hardware checksumming flag */ 12494 DB_CKSUMFLAGS(mp) = 0; 12495 12496 ident = ipha->ipha_ident; 12497 offset = (frag_offset_flags << 3) & 0xFFFF; 12498 src = ipha->ipha_src; 12499 dst = ipha->ipha_dst; 12500 hdr_length = IPH_HDR_LENGTH(ipha); 12501 end = ntohs(ipha->ipha_length) - hdr_length; 12502 12503 /* If end == 0 then we have a packet with no data, so just free it */ 12504 if (end == 0) { 12505 freemsg(mp); 12506 return (B_FALSE); 12507 } 12508 12509 /* Record the ECN field info. */ 12510 ecn_info = (ipha->ipha_type_of_service & 0x3); 12511 if (offset != 0) { 12512 /* 12513 * If this isn't the first piece, strip the header, and 12514 * add the offset to the end value. 12515 */ 12516 mp->b_rptr += hdr_length; 12517 end += offset; 12518 } 12519 12520 msg_len = MBLKSIZE(mp); 12521 tail_mp = mp; 12522 while (tail_mp->b_cont != NULL) { 12523 tail_mp = tail_mp->b_cont; 12524 msg_len += MBLKSIZE(tail_mp); 12525 } 12526 12527 /* If the reassembly list for this ILL will get too big, prune it */ 12528 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12529 ipst->ips_ip_reass_queue_bytes) { 12530 ill_frag_prune(ill, 12531 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12532 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12533 pruned = B_TRUE; 12534 } 12535 12536 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12537 mutex_enter(&ipfb->ipfb_lock); 12538 12539 ipfp = &ipfb->ipfb_ipf; 12540 /* Try to find an existing fragment queue for this packet. */ 12541 for (;;) { 12542 ipf = ipfp[0]; 12543 if (ipf != NULL) { 12544 /* 12545 * It has to match on ident and src/dst address. 12546 */ 12547 if (ipf->ipf_ident == ident && 12548 ipf->ipf_src == src && 12549 ipf->ipf_dst == dst && 12550 ipf->ipf_protocol == proto) { 12551 /* 12552 * If we have received too many 12553 * duplicate fragments for this packet 12554 * free it. 12555 */ 12556 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12557 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12558 freemsg(mp); 12559 mutex_exit(&ipfb->ipfb_lock); 12560 return (B_FALSE); 12561 } 12562 /* Found it. */ 12563 break; 12564 } 12565 ipfp = &ipf->ipf_hash_next; 12566 continue; 12567 } 12568 12569 /* 12570 * If we pruned the list, do we want to store this new 12571 * fragment?. We apply an optimization here based on the 12572 * fact that most fragments will be received in order. 12573 * So if the offset of this incoming fragment is zero, 12574 * it is the first fragment of a new packet. We will 12575 * keep it. Otherwise drop the fragment, as we have 12576 * probably pruned the packet already (since the 12577 * packet cannot be found). 12578 */ 12579 if (pruned && offset != 0) { 12580 mutex_exit(&ipfb->ipfb_lock); 12581 freemsg(mp); 12582 return (B_FALSE); 12583 } 12584 12585 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12586 /* 12587 * Too many fragmented packets in this hash 12588 * bucket. Free the oldest. 12589 */ 12590 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12591 } 12592 12593 /* New guy. Allocate a frag message. */ 12594 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12595 if (mp1 == NULL) { 12596 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12597 freemsg(mp); 12598 reass_done: 12599 mutex_exit(&ipfb->ipfb_lock); 12600 return (B_FALSE); 12601 } 12602 12603 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12604 mp1->b_cont = mp; 12605 12606 /* Initialize the fragment header. */ 12607 ipf = (ipf_t *)mp1->b_rptr; 12608 ipf->ipf_mp = mp1; 12609 ipf->ipf_ptphn = ipfp; 12610 ipfp[0] = ipf; 12611 ipf->ipf_hash_next = NULL; 12612 ipf->ipf_ident = ident; 12613 ipf->ipf_protocol = proto; 12614 ipf->ipf_src = src; 12615 ipf->ipf_dst = dst; 12616 ipf->ipf_nf_hdr_len = 0; 12617 /* Record reassembly start time. */ 12618 ipf->ipf_timestamp = gethrestime_sec(); 12619 /* Record ipf generation and account for frag header */ 12620 ipf->ipf_gen = ill->ill_ipf_gen++; 12621 ipf->ipf_count = MBLKSIZE(mp1); 12622 ipf->ipf_last_frag_seen = B_FALSE; 12623 ipf->ipf_ecn = ecn_info; 12624 ipf->ipf_num_dups = 0; 12625 ipfb->ipfb_frag_pkts++; 12626 ipf->ipf_checksum = 0; 12627 ipf->ipf_checksum_flags = 0; 12628 12629 /* Store checksum value in fragment header */ 12630 if (sum_flags != 0) { 12631 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12632 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12633 ipf->ipf_checksum = sum_val; 12634 ipf->ipf_checksum_flags = sum_flags; 12635 } 12636 12637 /* 12638 * We handle reassembly two ways. In the easy case, 12639 * where all the fragments show up in order, we do 12640 * minimal bookkeeping, and just clip new pieces on 12641 * the end. If we ever see a hole, then we go off 12642 * to ip_reassemble which has to mark the pieces and 12643 * keep track of the number of holes, etc. Obviously, 12644 * the point of having both mechanisms is so we can 12645 * handle the easy case as efficiently as possible. 12646 */ 12647 if (offset == 0) { 12648 /* Easy case, in-order reassembly so far. */ 12649 ipf->ipf_count += msg_len; 12650 ipf->ipf_tail_mp = tail_mp; 12651 /* 12652 * Keep track of next expected offset in 12653 * ipf_end. 12654 */ 12655 ipf->ipf_end = end; 12656 ipf->ipf_nf_hdr_len = hdr_length; 12657 } else { 12658 /* Hard case, hole at the beginning. */ 12659 ipf->ipf_tail_mp = NULL; 12660 /* 12661 * ipf_end == 0 means that we have given up 12662 * on easy reassembly. 12663 */ 12664 ipf->ipf_end = 0; 12665 12666 /* Forget checksum offload from now on */ 12667 ipf->ipf_checksum_flags = 0; 12668 12669 /* 12670 * ipf_hole_cnt is set by ip_reassemble. 12671 * ipf_count is updated by ip_reassemble. 12672 * No need to check for return value here 12673 * as we don't expect reassembly to complete 12674 * or fail for the first fragment itself. 12675 */ 12676 (void) ip_reassemble(mp, ipf, 12677 (frag_offset_flags & IPH_OFFSET) << 3, 12678 (frag_offset_flags & IPH_MF), ill, msg_len); 12679 } 12680 /* Update per ipfb and ill byte counts */ 12681 ipfb->ipfb_count += ipf->ipf_count; 12682 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12683 ill->ill_frag_count += ipf->ipf_count; 12684 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12685 /* If the frag timer wasn't already going, start it. */ 12686 mutex_enter(&ill->ill_lock); 12687 ill_frag_timer_start(ill); 12688 mutex_exit(&ill->ill_lock); 12689 goto reass_done; 12690 } 12691 12692 /* 12693 * If the packet's flag has changed (it could be coming up 12694 * from an interface different than the previous, therefore 12695 * possibly different checksum capability), then forget about 12696 * any stored checksum states. Otherwise add the value to 12697 * the existing one stored in the fragment header. 12698 */ 12699 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12700 sum_val += ipf->ipf_checksum; 12701 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12702 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12703 ipf->ipf_checksum = sum_val; 12704 } else if (ipf->ipf_checksum_flags != 0) { 12705 /* Forget checksum offload from now on */ 12706 ipf->ipf_checksum_flags = 0; 12707 } 12708 12709 /* 12710 * We have a new piece of a datagram which is already being 12711 * reassembled. Update the ECN info if all IP fragments 12712 * are ECN capable. If there is one which is not, clear 12713 * all the info. If there is at least one which has CE 12714 * code point, IP needs to report that up to transport. 12715 */ 12716 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12717 if (ecn_info == IPH_ECN_CE) 12718 ipf->ipf_ecn = IPH_ECN_CE; 12719 } else { 12720 ipf->ipf_ecn = IPH_ECN_NECT; 12721 } 12722 if (offset && ipf->ipf_end == offset) { 12723 /* The new fragment fits at the end */ 12724 ipf->ipf_tail_mp->b_cont = mp; 12725 /* Update the byte count */ 12726 ipf->ipf_count += msg_len; 12727 /* Update per ipfb and ill byte counts */ 12728 ipfb->ipfb_count += msg_len; 12729 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12730 ill->ill_frag_count += msg_len; 12731 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12732 if (frag_offset_flags & IPH_MF) { 12733 /* More to come. */ 12734 ipf->ipf_end = end; 12735 ipf->ipf_tail_mp = tail_mp; 12736 goto reass_done; 12737 } 12738 } else { 12739 /* Go do the hard cases. */ 12740 int ret; 12741 12742 if (offset == 0) 12743 ipf->ipf_nf_hdr_len = hdr_length; 12744 12745 /* Save current byte count */ 12746 count = ipf->ipf_count; 12747 ret = ip_reassemble(mp, ipf, 12748 (frag_offset_flags & IPH_OFFSET) << 3, 12749 (frag_offset_flags & IPH_MF), ill, msg_len); 12750 /* Count of bytes added and subtracted (freeb()ed) */ 12751 count = ipf->ipf_count - count; 12752 if (count) { 12753 /* Update per ipfb and ill byte counts */ 12754 ipfb->ipfb_count += count; 12755 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12756 ill->ill_frag_count += count; 12757 ASSERT(ill->ill_frag_count > 0); 12758 } 12759 if (ret == IP_REASS_PARTIAL) { 12760 goto reass_done; 12761 } else if (ret == IP_REASS_FAILED) { 12762 /* Reassembly failed. Free up all resources */ 12763 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12764 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12765 IP_REASS_SET_START(t_mp, 0); 12766 IP_REASS_SET_END(t_mp, 0); 12767 } 12768 freemsg(mp); 12769 goto reass_done; 12770 } 12771 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12772 } 12773 /* 12774 * We have completed reassembly. Unhook the frag header from 12775 * the reassembly list. 12776 * 12777 * Before we free the frag header, record the ECN info 12778 * to report back to the transport. 12779 */ 12780 ecn_info = ipf->ipf_ecn; 12781 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12782 ipfp = ipf->ipf_ptphn; 12783 12784 /* We need to supply these to caller */ 12785 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12786 sum_val = ipf->ipf_checksum; 12787 else 12788 sum_val = 0; 12789 12790 mp1 = ipf->ipf_mp; 12791 count = ipf->ipf_count; 12792 ipf = ipf->ipf_hash_next; 12793 if (ipf != NULL) 12794 ipf->ipf_ptphn = ipfp; 12795 ipfp[0] = ipf; 12796 ill->ill_frag_count -= count; 12797 ASSERT(ipfb->ipfb_count >= count); 12798 ipfb->ipfb_count -= count; 12799 ipfb->ipfb_frag_pkts--; 12800 mutex_exit(&ipfb->ipfb_lock); 12801 /* Ditch the frag header. */ 12802 mp = mp1->b_cont; 12803 12804 freeb(mp1); 12805 12806 /* Restore original IP length in header. */ 12807 packet_size = (uint32_t)msgdsize(mp); 12808 if (packet_size > IP_MAXPACKET) { 12809 freemsg(mp); 12810 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12811 return (B_FALSE); 12812 } 12813 12814 if (DB_REF(mp) > 1) { 12815 mblk_t *mp2 = copymsg(mp); 12816 12817 freemsg(mp); 12818 if (mp2 == NULL) { 12819 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12820 return (B_FALSE); 12821 } 12822 mp = mp2; 12823 } 12824 ipha = (ipha_t *)mp->b_rptr; 12825 12826 ipha->ipha_length = htons((uint16_t)packet_size); 12827 /* We're now complete, zip the frag state */ 12828 ipha->ipha_fragment_offset_and_flags = 0; 12829 /* Record the ECN info. */ 12830 ipha->ipha_type_of_service &= 0xFC; 12831 ipha->ipha_type_of_service |= ecn_info; 12832 *mpp = mp; 12833 12834 /* Reassembly is successful; return checksum information if needed */ 12835 if (cksum_val != NULL) 12836 *cksum_val = sum_val; 12837 if (cksum_flags != NULL) 12838 *cksum_flags = sum_flags; 12839 12840 return (B_TRUE); 12841 } 12842 12843 /* 12844 * Perform ip header check sum update local options. 12845 * return B_TRUE if all is well, else return B_FALSE and release 12846 * the mp. caller is responsible for decrementing ire ref cnt. 12847 */ 12848 static boolean_t 12849 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12850 ip_stack_t *ipst) 12851 { 12852 mblk_t *first_mp; 12853 boolean_t mctl_present; 12854 uint16_t sum; 12855 12856 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12857 /* 12858 * Don't do the checksum if it has gone through AH/ESP 12859 * processing. 12860 */ 12861 if (!mctl_present) { 12862 sum = ip_csum_hdr(ipha); 12863 if (sum != 0) { 12864 if (ill != NULL) { 12865 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12866 } else { 12867 BUMP_MIB(&ipst->ips_ip_mib, 12868 ipIfStatsInCksumErrs); 12869 } 12870 freemsg(first_mp); 12871 return (B_FALSE); 12872 } 12873 } 12874 12875 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12876 if (mctl_present) 12877 freeb(first_mp); 12878 return (B_FALSE); 12879 } 12880 12881 return (B_TRUE); 12882 } 12883 12884 /* 12885 * All udp packet are delivered to the local host via this routine. 12886 */ 12887 void 12888 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12889 ill_t *recv_ill) 12890 { 12891 uint32_t sum; 12892 uint32_t u1; 12893 boolean_t mctl_present; 12894 conn_t *connp; 12895 mblk_t *first_mp; 12896 uint16_t *up; 12897 ill_t *ill = (ill_t *)q->q_ptr; 12898 uint16_t reass_hck_flags = 0; 12899 ip_stack_t *ipst; 12900 12901 ASSERT(recv_ill != NULL); 12902 ipst = recv_ill->ill_ipst; 12903 12904 #define rptr ((uchar_t *)ipha) 12905 12906 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12907 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12908 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12909 ASSERT(ill != NULL); 12910 12911 /* 12912 * FAST PATH for udp packets 12913 */ 12914 12915 /* u1 is # words of IP options */ 12916 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12917 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12918 12919 /* IP options present */ 12920 if (u1 != 0) 12921 goto ipoptions; 12922 12923 /* Check the IP header checksum. */ 12924 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12925 /* Clear the IP header h/w cksum flag */ 12926 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12927 } else { 12928 #define uph ((uint16_t *)ipha) 12929 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12930 uph[6] + uph[7] + uph[8] + uph[9]; 12931 #undef uph 12932 /* finish doing IP checksum */ 12933 sum = (sum & 0xFFFF) + (sum >> 16); 12934 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12935 /* 12936 * Don't verify header checksum if this packet is coming 12937 * back from AH/ESP as we already did it. 12938 */ 12939 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12940 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12941 freemsg(first_mp); 12942 return; 12943 } 12944 } 12945 12946 /* 12947 * Count for SNMP of inbound packets for ire. 12948 * if mctl is present this might be a secure packet and 12949 * has already been counted for in ip_proto_input(). 12950 */ 12951 if (!mctl_present) { 12952 UPDATE_IB_PKT_COUNT(ire); 12953 ire->ire_last_used_time = lbolt; 12954 } 12955 12956 /* packet part of fragmented IP packet? */ 12957 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12958 if (u1 & (IPH_MF | IPH_OFFSET)) { 12959 goto fragmented; 12960 } 12961 12962 /* u1 = IP header length (20 bytes) */ 12963 u1 = IP_SIMPLE_HDR_LENGTH; 12964 12965 /* packet does not contain complete IP & UDP headers */ 12966 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12967 goto udppullup; 12968 12969 /* up points to UDP header */ 12970 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12971 #define iphs ((uint16_t *)ipha) 12972 12973 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12974 if (up[3] != 0) { 12975 mblk_t *mp1 = mp->b_cont; 12976 boolean_t cksum_err; 12977 uint16_t hck_flags = 0; 12978 12979 /* Pseudo-header checksum */ 12980 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12981 iphs[9] + up[2]; 12982 12983 /* 12984 * Revert to software checksum calculation if the interface 12985 * isn't capable of checksum offload or if IPsec is present. 12986 */ 12987 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12988 hck_flags = DB_CKSUMFLAGS(mp); 12989 12990 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12991 IP_STAT(ipst, ip_in_sw_cksum); 12992 12993 IP_CKSUM_RECV(hck_flags, u1, 12994 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12995 (int32_t)((uchar_t *)up - rptr), 12996 mp, mp1, cksum_err); 12997 12998 if (cksum_err) { 12999 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 13000 if (hck_flags & HCK_FULLCKSUM) 13001 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 13002 else if (hck_flags & HCK_PARTIALCKSUM) 13003 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 13004 else 13005 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 13006 13007 freemsg(first_mp); 13008 return; 13009 } 13010 } 13011 13012 /* Non-fragmented broadcast or multicast packet? */ 13013 if (ire->ire_type == IRE_BROADCAST) 13014 goto udpslowpath; 13015 13016 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 13017 ire->ire_zoneid, ipst)) != NULL) { 13018 ASSERT(connp->conn_upq != NULL); 13019 IP_STAT(ipst, ip_udp_fast_path); 13020 13021 if (CONN_UDP_FLOWCTLD(connp)) { 13022 freemsg(mp); 13023 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 13024 } else { 13025 if (!mctl_present) { 13026 BUMP_MIB(ill->ill_ip_mib, 13027 ipIfStatsHCInDelivers); 13028 } 13029 /* 13030 * mp and first_mp can change. 13031 */ 13032 if (ip_udp_check(q, connp, recv_ill, 13033 ipha, &mp, &first_mp, mctl_present)) { 13034 /* Send it upstream */ 13035 CONN_UDP_RECV(connp, mp); 13036 } 13037 } 13038 /* 13039 * freeb() cannot deal with null mblk being passed 13040 * in and first_mp can be set to null in the call 13041 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 13042 */ 13043 if (mctl_present && first_mp != NULL) { 13044 freeb(first_mp); 13045 } 13046 CONN_DEC_REF(connp); 13047 return; 13048 } 13049 13050 /* 13051 * if we got here we know the packet is not fragmented and 13052 * has no options. The classifier could not find a conn_t and 13053 * most likely its an icmp packet so send it through slow path. 13054 */ 13055 13056 goto udpslowpath; 13057 13058 ipoptions: 13059 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 13060 goto slow_done; 13061 } 13062 13063 UPDATE_IB_PKT_COUNT(ire); 13064 ire->ire_last_used_time = lbolt; 13065 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13066 if (u1 & (IPH_MF | IPH_OFFSET)) { 13067 fragmented: 13068 /* 13069 * "sum" and "reass_hck_flags" are non-zero if the 13070 * reassembled packet has a valid hardware computed 13071 * checksum information associated with it. 13072 */ 13073 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 13074 goto slow_done; 13075 /* 13076 * Make sure that first_mp points back to mp as 13077 * the mp we came in with could have changed in 13078 * ip_rput_fragment(). 13079 */ 13080 ASSERT(!mctl_present); 13081 ipha = (ipha_t *)mp->b_rptr; 13082 first_mp = mp; 13083 } 13084 13085 /* Now we have a complete datagram, destined for this machine. */ 13086 u1 = IPH_HDR_LENGTH(ipha); 13087 /* Pull up the UDP header, if necessary. */ 13088 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 13089 udppullup: 13090 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 13091 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13092 freemsg(first_mp); 13093 goto slow_done; 13094 } 13095 ipha = (ipha_t *)mp->b_rptr; 13096 } 13097 13098 /* 13099 * Validate the checksum for the reassembled packet; for the 13100 * pullup case we calculate the payload checksum in software. 13101 */ 13102 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 13103 if (up[3] != 0) { 13104 boolean_t cksum_err; 13105 13106 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13107 IP_STAT(ipst, ip_in_sw_cksum); 13108 13109 IP_CKSUM_RECV_REASS(reass_hck_flags, 13110 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 13111 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 13112 iphs[9] + up[2], sum, cksum_err); 13113 13114 if (cksum_err) { 13115 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 13116 13117 if (reass_hck_flags & HCK_FULLCKSUM) 13118 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 13119 else if (reass_hck_flags & HCK_PARTIALCKSUM) 13120 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 13121 else 13122 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 13123 13124 freemsg(first_mp); 13125 goto slow_done; 13126 } 13127 } 13128 udpslowpath: 13129 13130 /* Clear hardware checksum flag to be safe */ 13131 DB_CKSUMFLAGS(mp) = 0; 13132 13133 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 13134 (ire->ire_type == IRE_BROADCAST), 13135 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 13136 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 13137 13138 slow_done: 13139 IP_STAT(ipst, ip_udp_slow_path); 13140 return; 13141 13142 #undef iphs 13143 #undef rptr 13144 } 13145 13146 /* ARGSUSED */ 13147 static mblk_t * 13148 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13149 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 13150 ill_rx_ring_t *ill_ring) 13151 { 13152 conn_t *connp; 13153 uint32_t sum; 13154 uint32_t u1; 13155 uint16_t *up; 13156 int offset; 13157 ssize_t len; 13158 mblk_t *mp1; 13159 boolean_t syn_present = B_FALSE; 13160 tcph_t *tcph; 13161 uint_t ip_hdr_len; 13162 ill_t *ill = (ill_t *)q->q_ptr; 13163 zoneid_t zoneid = ire->ire_zoneid; 13164 boolean_t cksum_err; 13165 uint16_t hck_flags = 0; 13166 ip_stack_t *ipst = recv_ill->ill_ipst; 13167 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 13168 13169 #define rptr ((uchar_t *)ipha) 13170 13171 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 13172 ASSERT(ill != NULL); 13173 13174 /* 13175 * FAST PATH for tcp packets 13176 */ 13177 13178 /* u1 is # words of IP options */ 13179 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13180 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13181 13182 /* IP options present */ 13183 if (u1) { 13184 goto ipoptions; 13185 } else { 13186 /* Check the IP header checksum. */ 13187 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13188 /* Clear the IP header h/w cksum flag */ 13189 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 13190 } else { 13191 #define uph ((uint16_t *)ipha) 13192 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13193 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13194 #undef uph 13195 /* finish doing IP checksum */ 13196 sum = (sum & 0xFFFF) + (sum >> 16); 13197 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13198 /* 13199 * Don't verify header checksum if this packet 13200 * is coming back from AH/ESP as we already did it. 13201 */ 13202 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13203 BUMP_MIB(ill->ill_ip_mib, 13204 ipIfStatsInCksumErrs); 13205 goto error; 13206 } 13207 } 13208 } 13209 13210 if (!mctl_present) { 13211 UPDATE_IB_PKT_COUNT(ire); 13212 ire->ire_last_used_time = lbolt; 13213 } 13214 13215 /* packet part of fragmented IP packet? */ 13216 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13217 if (u1 & (IPH_MF | IPH_OFFSET)) { 13218 goto fragmented; 13219 } 13220 13221 /* u1 = IP header length (20 bytes) */ 13222 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13223 13224 /* does packet contain IP+TCP headers? */ 13225 len = mp->b_wptr - rptr; 13226 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13227 IP_STAT(ipst, ip_tcppullup); 13228 goto tcppullup; 13229 } 13230 13231 /* TCP options present? */ 13232 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13233 13234 /* 13235 * If options need to be pulled up, then goto tcpoptions. 13236 * otherwise we are still in the fast path 13237 */ 13238 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13239 IP_STAT(ipst, ip_tcpoptions); 13240 goto tcpoptions; 13241 } 13242 13243 /* multiple mblks of tcp data? */ 13244 if ((mp1 = mp->b_cont) != NULL) { 13245 /* more then two? */ 13246 if (mp1->b_cont != NULL) { 13247 IP_STAT(ipst, ip_multipkttcp); 13248 goto multipkttcp; 13249 } 13250 len += mp1->b_wptr - mp1->b_rptr; 13251 } 13252 13253 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13254 13255 /* part of pseudo checksum */ 13256 13257 /* TCP datagram length */ 13258 u1 = len - IP_SIMPLE_HDR_LENGTH; 13259 13260 #define iphs ((uint16_t *)ipha) 13261 13262 #ifdef _BIG_ENDIAN 13263 u1 += IPPROTO_TCP; 13264 #else 13265 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13266 #endif 13267 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13268 13269 /* 13270 * Revert to software checksum calculation if the interface 13271 * isn't capable of checksum offload or if IPsec is present. 13272 */ 13273 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13274 hck_flags = DB_CKSUMFLAGS(mp); 13275 13276 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13277 IP_STAT(ipst, ip_in_sw_cksum); 13278 13279 IP_CKSUM_RECV(hck_flags, u1, 13280 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13281 (int32_t)((uchar_t *)up - rptr), 13282 mp, mp1, cksum_err); 13283 13284 if (cksum_err) { 13285 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13286 13287 if (hck_flags & HCK_FULLCKSUM) 13288 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13289 else if (hck_flags & HCK_PARTIALCKSUM) 13290 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13291 else 13292 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13293 13294 goto error; 13295 } 13296 13297 try_again: 13298 13299 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13300 zoneid, ipst)) == NULL) { 13301 /* Send the TH_RST */ 13302 goto no_conn; 13303 } 13304 13305 /* 13306 * TCP FAST PATH for AF_INET socket. 13307 * 13308 * TCP fast path to avoid extra work. An AF_INET socket type 13309 * does not have facility to receive extra information via 13310 * ip_process or ip_add_info. Also, when the connection was 13311 * established, we made a check if this connection is impacted 13312 * by any global IPSec policy or per connection policy (a 13313 * policy that comes in effect later will not apply to this 13314 * connection). Since all this can be determined at the 13315 * connection establishment time, a quick check of flags 13316 * can avoid extra work. 13317 */ 13318 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13319 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13320 ASSERT(first_mp == mp); 13321 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13322 SET_SQUEUE(mp, tcp_rput_data, connp); 13323 return (mp); 13324 } 13325 13326 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13327 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13328 if (IPCL_IS_TCP(connp)) { 13329 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13330 DB_CKSUMSTART(mp) = 13331 (intptr_t)ip_squeue_get(ill_ring); 13332 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13333 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13334 BUMP_MIB(ill->ill_ip_mib, 13335 ipIfStatsHCInDelivers); 13336 SET_SQUEUE(mp, connp->conn_recv, connp); 13337 return (mp); 13338 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13339 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13340 BUMP_MIB(ill->ill_ip_mib, 13341 ipIfStatsHCInDelivers); 13342 ip_squeue_enter_unbound++; 13343 SET_SQUEUE(mp, tcp_conn_request_unbound, 13344 connp); 13345 return (mp); 13346 } 13347 syn_present = B_TRUE; 13348 } 13349 13350 } 13351 13352 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13353 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13354 13355 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13356 /* No need to send this packet to TCP */ 13357 if ((flags & TH_RST) || (flags & TH_URG)) { 13358 CONN_DEC_REF(connp); 13359 freemsg(first_mp); 13360 return (NULL); 13361 } 13362 if (flags & TH_ACK) { 13363 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13364 ipst->ips_netstack->netstack_tcp); 13365 CONN_DEC_REF(connp); 13366 return (NULL); 13367 } 13368 13369 CONN_DEC_REF(connp); 13370 freemsg(first_mp); 13371 return (NULL); 13372 } 13373 13374 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13375 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13376 ipha, NULL, mctl_present); 13377 if (first_mp == NULL) { 13378 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13379 CONN_DEC_REF(connp); 13380 return (NULL); 13381 } 13382 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13383 ASSERT(syn_present); 13384 if (mctl_present) { 13385 ASSERT(first_mp != mp); 13386 first_mp->b_datap->db_struioflag |= 13387 STRUIO_POLICY; 13388 } else { 13389 ASSERT(first_mp == mp); 13390 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13391 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13392 } 13393 } else { 13394 /* 13395 * Discard first_mp early since we're dealing with a 13396 * fully-connected conn_t and tcp doesn't do policy in 13397 * this case. 13398 */ 13399 if (mctl_present) { 13400 freeb(first_mp); 13401 mctl_present = B_FALSE; 13402 } 13403 first_mp = mp; 13404 } 13405 } 13406 13407 /* Initiate IPPF processing for fastpath */ 13408 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13409 uint32_t ill_index; 13410 13411 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13412 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13413 if (mp == NULL) { 13414 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13415 "deferred/dropped during IPPF processing\n")); 13416 CONN_DEC_REF(connp); 13417 if (mctl_present) 13418 freeb(first_mp); 13419 return (NULL); 13420 } else if (mctl_present) { 13421 /* 13422 * ip_process might return a new mp. 13423 */ 13424 ASSERT(first_mp != mp); 13425 first_mp->b_cont = mp; 13426 } else { 13427 first_mp = mp; 13428 } 13429 13430 } 13431 13432 if (!syn_present && connp->conn_ip_recvpktinfo) { 13433 /* 13434 * TCP does not support IP_RECVPKTINFO for v4 so lets 13435 * make sure IPF_RECVIF is passed to ip_add_info. 13436 */ 13437 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13438 IPCL_ZONEID(connp), ipst); 13439 if (mp == NULL) { 13440 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13441 CONN_DEC_REF(connp); 13442 if (mctl_present) 13443 freeb(first_mp); 13444 return (NULL); 13445 } else if (mctl_present) { 13446 /* 13447 * ip_add_info might return a new mp. 13448 */ 13449 ASSERT(first_mp != mp); 13450 first_mp->b_cont = mp; 13451 } else { 13452 first_mp = mp; 13453 } 13454 } 13455 13456 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13457 if (IPCL_IS_TCP(connp)) { 13458 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13459 return (first_mp); 13460 } else { 13461 putnext(connp->conn_rq, first_mp); 13462 CONN_DEC_REF(connp); 13463 return (NULL); 13464 } 13465 13466 no_conn: 13467 /* Initiate IPPf processing, if needed. */ 13468 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13469 uint32_t ill_index; 13470 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13471 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13472 if (first_mp == NULL) { 13473 return (NULL); 13474 } 13475 } 13476 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13477 13478 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13479 ipst->ips_netstack->netstack_tcp); 13480 return (NULL); 13481 ipoptions: 13482 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13483 goto slow_done; 13484 } 13485 13486 UPDATE_IB_PKT_COUNT(ire); 13487 ire->ire_last_used_time = lbolt; 13488 13489 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13490 if (u1 & (IPH_MF | IPH_OFFSET)) { 13491 fragmented: 13492 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13493 if (mctl_present) 13494 freeb(first_mp); 13495 goto slow_done; 13496 } 13497 /* 13498 * Make sure that first_mp points back to mp as 13499 * the mp we came in with could have changed in 13500 * ip_rput_fragment(). 13501 */ 13502 ASSERT(!mctl_present); 13503 ipha = (ipha_t *)mp->b_rptr; 13504 first_mp = mp; 13505 } 13506 13507 /* Now we have a complete datagram, destined for this machine. */ 13508 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13509 13510 len = mp->b_wptr - mp->b_rptr; 13511 /* Pull up a minimal TCP header, if necessary. */ 13512 if (len < (u1 + 20)) { 13513 tcppullup: 13514 if (!pullupmsg(mp, u1 + 20)) { 13515 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13516 goto error; 13517 } 13518 ipha = (ipha_t *)mp->b_rptr; 13519 len = mp->b_wptr - mp->b_rptr; 13520 } 13521 13522 /* 13523 * Extract the offset field from the TCP header. As usual, we 13524 * try to help the compiler more than the reader. 13525 */ 13526 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13527 if (offset != 5) { 13528 tcpoptions: 13529 if (offset < 5) { 13530 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13531 goto error; 13532 } 13533 /* 13534 * There must be TCP options. 13535 * Make sure we can grab them. 13536 */ 13537 offset <<= 2; 13538 offset += u1; 13539 if (len < offset) { 13540 if (!pullupmsg(mp, offset)) { 13541 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13542 goto error; 13543 } 13544 ipha = (ipha_t *)mp->b_rptr; 13545 len = mp->b_wptr - rptr; 13546 } 13547 } 13548 13549 /* Get the total packet length in len, including headers. */ 13550 if (mp->b_cont) { 13551 multipkttcp: 13552 len = msgdsize(mp); 13553 } 13554 13555 /* 13556 * Check the TCP checksum by pulling together the pseudo- 13557 * header checksum, and passing it to ip_csum to be added in 13558 * with the TCP datagram. 13559 * 13560 * Since we are not using the hwcksum if available we must 13561 * clear the flag. We may come here via tcppullup or tcpoptions. 13562 * If either of these fails along the way the mblk is freed. 13563 * If this logic ever changes and mblk is reused to say send 13564 * ICMP's back, then this flag may need to be cleared in 13565 * other places as well. 13566 */ 13567 DB_CKSUMFLAGS(mp) = 0; 13568 13569 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13570 13571 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13572 #ifdef _BIG_ENDIAN 13573 u1 += IPPROTO_TCP; 13574 #else 13575 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13576 #endif 13577 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13578 /* 13579 * Not M_DATA mblk or its a dup, so do the checksum now. 13580 */ 13581 IP_STAT(ipst, ip_in_sw_cksum); 13582 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13583 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13584 goto error; 13585 } 13586 13587 IP_STAT(ipst, ip_tcp_slow_path); 13588 goto try_again; 13589 #undef iphs 13590 #undef rptr 13591 13592 error: 13593 freemsg(first_mp); 13594 slow_done: 13595 return (NULL); 13596 } 13597 13598 /* ARGSUSED */ 13599 static void 13600 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13601 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13602 { 13603 conn_t *connp; 13604 uint32_t sum; 13605 uint32_t u1; 13606 ssize_t len; 13607 sctp_hdr_t *sctph; 13608 zoneid_t zoneid = ire->ire_zoneid; 13609 uint32_t pktsum; 13610 uint32_t calcsum; 13611 uint32_t ports; 13612 in6_addr_t map_src, map_dst; 13613 ill_t *ill = (ill_t *)q->q_ptr; 13614 ip_stack_t *ipst; 13615 sctp_stack_t *sctps; 13616 13617 ASSERT(recv_ill != NULL); 13618 ipst = recv_ill->ill_ipst; 13619 sctps = ipst->ips_netstack->netstack_sctp; 13620 13621 #define rptr ((uchar_t *)ipha) 13622 13623 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13624 ASSERT(ill != NULL); 13625 13626 /* u1 is # words of IP options */ 13627 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13628 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13629 13630 /* IP options present */ 13631 if (u1 > 0) { 13632 goto ipoptions; 13633 } else { 13634 /* Check the IP header checksum. */ 13635 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13636 #define uph ((uint16_t *)ipha) 13637 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13638 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13639 #undef uph 13640 /* finish doing IP checksum */ 13641 sum = (sum & 0xFFFF) + (sum >> 16); 13642 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13643 /* 13644 * Don't verify header checksum if this packet 13645 * is coming back from AH/ESP as we already did it. 13646 */ 13647 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13648 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13649 goto error; 13650 } 13651 } 13652 /* 13653 * Since there is no SCTP h/w cksum support yet, just 13654 * clear the flag. 13655 */ 13656 DB_CKSUMFLAGS(mp) = 0; 13657 } 13658 13659 /* 13660 * Don't verify header checksum if this packet is coming 13661 * back from AH/ESP as we already did it. 13662 */ 13663 if (!mctl_present) { 13664 UPDATE_IB_PKT_COUNT(ire); 13665 ire->ire_last_used_time = lbolt; 13666 } 13667 13668 /* packet part of fragmented IP packet? */ 13669 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13670 if (u1 & (IPH_MF | IPH_OFFSET)) 13671 goto fragmented; 13672 13673 /* u1 = IP header length (20 bytes) */ 13674 u1 = IP_SIMPLE_HDR_LENGTH; 13675 13676 find_sctp_client: 13677 /* Pullup if we don't have the sctp common header. */ 13678 len = MBLKL(mp); 13679 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13680 if (mp->b_cont == NULL || 13681 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13682 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13683 goto error; 13684 } 13685 ipha = (ipha_t *)mp->b_rptr; 13686 len = MBLKL(mp); 13687 } 13688 13689 sctph = (sctp_hdr_t *)(rptr + u1); 13690 #ifdef DEBUG 13691 if (!skip_sctp_cksum) { 13692 #endif 13693 pktsum = sctph->sh_chksum; 13694 sctph->sh_chksum = 0; 13695 calcsum = sctp_cksum(mp, u1); 13696 if (calcsum != pktsum) { 13697 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 13698 goto error; 13699 } 13700 sctph->sh_chksum = pktsum; 13701 #ifdef DEBUG /* skip_sctp_cksum */ 13702 } 13703 #endif 13704 /* get the ports */ 13705 ports = *(uint32_t *)&sctph->sh_sport; 13706 13707 IRE_REFRELE(ire); 13708 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13709 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13710 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13711 sctps)) == NULL) { 13712 /* Check for raw socket or OOTB handling */ 13713 goto no_conn; 13714 } 13715 13716 /* Found a client; up it goes */ 13717 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13718 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13719 return; 13720 13721 no_conn: 13722 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13723 ports, mctl_present, flags, B_TRUE, zoneid); 13724 return; 13725 13726 ipoptions: 13727 DB_CKSUMFLAGS(mp) = 0; 13728 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13729 goto slow_done; 13730 13731 UPDATE_IB_PKT_COUNT(ire); 13732 ire->ire_last_used_time = lbolt; 13733 13734 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13735 if (u1 & (IPH_MF | IPH_OFFSET)) { 13736 fragmented: 13737 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13738 goto slow_done; 13739 /* 13740 * Make sure that first_mp points back to mp as 13741 * the mp we came in with could have changed in 13742 * ip_rput_fragment(). 13743 */ 13744 ASSERT(!mctl_present); 13745 ipha = (ipha_t *)mp->b_rptr; 13746 first_mp = mp; 13747 } 13748 13749 /* Now we have a complete datagram, destined for this machine. */ 13750 u1 = IPH_HDR_LENGTH(ipha); 13751 goto find_sctp_client; 13752 #undef iphs 13753 #undef rptr 13754 13755 error: 13756 freemsg(first_mp); 13757 slow_done: 13758 IRE_REFRELE(ire); 13759 } 13760 13761 #define VER_BITS 0xF0 13762 #define VERSION_6 0x60 13763 13764 static boolean_t 13765 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13766 ipaddr_t *dstp, ip_stack_t *ipst) 13767 { 13768 uint_t opt_len; 13769 ipha_t *ipha; 13770 ssize_t len; 13771 uint_t pkt_len; 13772 13773 ASSERT(ill != NULL); 13774 IP_STAT(ipst, ip_ipoptions); 13775 ipha = *iphapp; 13776 13777 #define rptr ((uchar_t *)ipha) 13778 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13779 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13780 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13781 freemsg(mp); 13782 return (B_FALSE); 13783 } 13784 13785 /* multiple mblk or too short */ 13786 pkt_len = ntohs(ipha->ipha_length); 13787 13788 /* Get the number of words of IP options in the IP header. */ 13789 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13790 if (opt_len) { 13791 /* IP Options present! Validate and process. */ 13792 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13793 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13794 goto done; 13795 } 13796 /* 13797 * Recompute complete header length and make sure we 13798 * have access to all of it. 13799 */ 13800 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13801 if (len > (mp->b_wptr - rptr)) { 13802 if (len > pkt_len) { 13803 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13804 goto done; 13805 } 13806 if (!pullupmsg(mp, len)) { 13807 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13808 goto done; 13809 } 13810 ipha = (ipha_t *)mp->b_rptr; 13811 } 13812 /* 13813 * Go off to ip_rput_options which returns the next hop 13814 * destination address, which may have been affected 13815 * by source routing. 13816 */ 13817 IP_STAT(ipst, ip_opt); 13818 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13819 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13820 return (B_FALSE); 13821 } 13822 } 13823 *iphapp = ipha; 13824 return (B_TRUE); 13825 done: 13826 /* clear b_prev - used by ip_mroute_decap */ 13827 mp->b_prev = NULL; 13828 freemsg(mp); 13829 return (B_FALSE); 13830 #undef rptr 13831 } 13832 13833 /* 13834 * Deal with the fact that there is no ire for the destination. 13835 * The incoming ill (in_ill) is passed in to ip_newroute only 13836 * in the case of packets coming from mobile ip forward tunnel. 13837 * It must be null otherwise. 13838 */ 13839 static ire_t * 13840 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 13841 ipaddr_t dst) 13842 { 13843 ipha_t *ipha; 13844 ill_t *ill; 13845 ire_t *ire; 13846 boolean_t check_multirt = B_FALSE; 13847 ip_stack_t *ipst; 13848 13849 ipha = (ipha_t *)mp->b_rptr; 13850 ill = (ill_t *)q->q_ptr; 13851 13852 ASSERT(ill != NULL); 13853 ipst = ill->ill_ipst; 13854 13855 /* 13856 * No IRE for this destination, so it can't be for us. 13857 * Unless we are forwarding, drop the packet. 13858 * We have to let source routed packets through 13859 * since we don't yet know if they are 'ping -l' 13860 * packets i.e. if they will go out over the 13861 * same interface as they came in on. 13862 */ 13863 if (ll_multicast) { 13864 freemsg(mp); 13865 return (NULL); 13866 } 13867 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13868 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13869 freemsg(mp); 13870 return (NULL); 13871 } 13872 13873 /* 13874 * Mark this packet as having originated externally. 13875 * 13876 * For non-forwarding code path, ire_send later double 13877 * checks this interface to see if it is still exists 13878 * post-ARP resolution. 13879 * 13880 * Also, IPQOS uses this to differentiate between 13881 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13882 * QOS packet processing in ip_wput_attach_llhdr(). 13883 * The QoS module can mark the b_band for a fastpath message 13884 * or the dl_priority field in a unitdata_req header for 13885 * CoS marking. This info can only be found in 13886 * ip_wput_attach_llhdr(). 13887 */ 13888 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13889 /* 13890 * Clear the indication that this may have a hardware checksum 13891 * as we are not using it 13892 */ 13893 DB_CKSUMFLAGS(mp) = 0; 13894 13895 if (in_ill != NULL) { 13896 /* 13897 * Now hand the packet to ip_newroute. 13898 */ 13899 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID, ipst); 13900 return (NULL); 13901 } 13902 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13903 MBLK_GETLABEL(mp), ipst); 13904 13905 if (ire == NULL && check_multirt) { 13906 /* Let ip_newroute handle CGTP */ 13907 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID, ipst); 13908 return (NULL); 13909 } 13910 13911 if (ire != NULL) 13912 return (ire); 13913 13914 mp->b_prev = mp->b_next = 0; 13915 /* send icmp unreachable */ 13916 q = WR(q); 13917 /* Sent by forwarding path, and router is global zone */ 13918 if (ip_source_routed(ipha, ipst)) { 13919 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13920 GLOBAL_ZONEID, ipst); 13921 } else { 13922 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13923 ipst); 13924 } 13925 13926 return (NULL); 13927 13928 } 13929 13930 /* 13931 * check ip header length and align it. 13932 */ 13933 static boolean_t 13934 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13935 { 13936 ssize_t len; 13937 ill_t *ill; 13938 ipha_t *ipha; 13939 13940 len = MBLKL(mp); 13941 13942 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13943 ill = (ill_t *)q->q_ptr; 13944 13945 if (!OK_32PTR(mp->b_rptr)) 13946 IP_STAT(ipst, ip_notaligned1); 13947 else 13948 IP_STAT(ipst, ip_notaligned2); 13949 /* Guard against bogus device drivers */ 13950 if (len < 0) { 13951 /* clear b_prev - used by ip_mroute_decap */ 13952 mp->b_prev = NULL; 13953 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13954 freemsg(mp); 13955 return (B_FALSE); 13956 } 13957 13958 if (ip_rput_pullups++ == 0) { 13959 ipha = (ipha_t *)mp->b_rptr; 13960 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13961 "ip_check_and_align_header: %s forced us to " 13962 " pullup pkt, hdr len %ld, hdr addr %p", 13963 ill->ill_name, len, ipha); 13964 } 13965 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13966 /* clear b_prev - used by ip_mroute_decap */ 13967 mp->b_prev = NULL; 13968 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13969 freemsg(mp); 13970 return (B_FALSE); 13971 } 13972 } 13973 return (B_TRUE); 13974 } 13975 13976 ire_t * 13977 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13978 { 13979 ire_t *new_ire; 13980 ill_t *ire_ill; 13981 uint_t ifindex; 13982 ip_stack_t *ipst = ill->ill_ipst; 13983 boolean_t strict_check = B_FALSE; 13984 13985 /* 13986 * This packet came in on an interface other than the one associated 13987 * with the first ire we found for the destination address. We do 13988 * another ire lookup here, using the ingress ill, to see if the 13989 * interface is in an interface group. 13990 * As long as the ills belong to the same group, we don't consider 13991 * them to be arriving on the wrong interface. Thus, if the switch 13992 * is doing inbound load spreading, we won't drop packets when the 13993 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13994 * for 'usesrc groups' where the destination address may belong to 13995 * another interface to allow multipathing to happen. 13996 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13997 * where the local address may not be unique. In this case we were 13998 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13999 * actually returned. The new lookup, which is more specific, should 14000 * only find the IRE_LOCAL associated with the ingress ill if one 14001 * exists. 14002 */ 14003 14004 if (ire->ire_ipversion == IPV4_VERSION) { 14005 if (ipst->ips_ip_strict_dst_multihoming) 14006 strict_check = B_TRUE; 14007 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 14008 ill->ill_ipif, ALL_ZONES, NULL, 14009 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 14010 } else { 14011 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 14012 if (ipst->ips_ipv6_strict_dst_multihoming) 14013 strict_check = B_TRUE; 14014 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 14015 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 14016 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 14017 } 14018 /* 14019 * If the same ire that was returned in ip_input() is found then this 14020 * is an indication that interface groups are in use. The packet 14021 * arrived on a different ill in the group than the one associated with 14022 * the destination address. If a different ire was found then the same 14023 * IP address must be hosted on multiple ills. This is possible with 14024 * unnumbered point2point interfaces. We switch to use this new ire in 14025 * order to have accurate interface statistics. 14026 */ 14027 if (new_ire != NULL) { 14028 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 14029 ire_refrele(ire); 14030 ire = new_ire; 14031 } else { 14032 ire_refrele(new_ire); 14033 } 14034 return (ire); 14035 } else if ((ire->ire_rfq == NULL) && 14036 (ire->ire_ipversion == IPV4_VERSION)) { 14037 /* 14038 * The best match could have been the original ire which 14039 * was created against an IRE_LOCAL on lo0. In the IPv4 case 14040 * the strict multihoming checks are irrelevant as we consider 14041 * local addresses hosted on lo0 to be interface agnostic. We 14042 * only expect a null ire_rfq on IREs which are associated with 14043 * lo0 hence we can return now. 14044 */ 14045 return (ire); 14046 } 14047 14048 /* 14049 * Chase pointers once and store locally. 14050 */ 14051 ire_ill = (ire->ire_rfq == NULL) ? NULL : 14052 (ill_t *)(ire->ire_rfq->q_ptr); 14053 ifindex = ill->ill_usesrc_ifindex; 14054 14055 /* 14056 * Check if it's a legal address on the 'usesrc' interface. 14057 */ 14058 if ((ifindex != 0) && (ire_ill != NULL) && 14059 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 14060 return (ire); 14061 } 14062 14063 /* 14064 * If the ip*_strict_dst_multihoming switch is on then we can 14065 * only accept this packet if the interface is marked as routing. 14066 */ 14067 if (!(strict_check)) 14068 return (ire); 14069 14070 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 14071 ILLF_ROUTER) != 0) { 14072 return (ire); 14073 } 14074 14075 ire_refrele(ire); 14076 return (NULL); 14077 } 14078 14079 ire_t * 14080 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 14081 { 14082 ipha_t *ipha; 14083 ipaddr_t ip_dst, ip_src; 14084 ire_t *src_ire = NULL; 14085 ill_t *stq_ill; 14086 uint_t hlen; 14087 uint_t pkt_len; 14088 uint32_t sum; 14089 queue_t *dev_q; 14090 boolean_t check_multirt = B_FALSE; 14091 ip_stack_t *ipst = ill->ill_ipst; 14092 14093 ipha = (ipha_t *)mp->b_rptr; 14094 14095 /* 14096 * Martian Address Filtering [RFC 1812, Section 5.3.7] 14097 * The loopback address check for both src and dst has already 14098 * been checked in ip_input 14099 */ 14100 ip_dst = ntohl(dst); 14101 ip_src = ntohl(ipha->ipha_src); 14102 14103 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 14104 IN_CLASSD(ip_src)) { 14105 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14106 goto drop; 14107 } 14108 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14109 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14110 14111 if (src_ire != NULL) { 14112 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14113 goto drop; 14114 } 14115 14116 14117 /* No ire cache of nexthop. So first create one */ 14118 if (ire == NULL) { 14119 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL, ipst); 14120 /* 14121 * We only come to ip_fast_forward if ip_cgtp_filter is 14122 * is not set. So upon return from ire_forward 14123 * check_multirt should remain as false. 14124 */ 14125 ASSERT(!check_multirt); 14126 if (ire == NULL) { 14127 /* An attempt was made to forward the packet */ 14128 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14129 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14130 mp->b_prev = mp->b_next = 0; 14131 /* send icmp unreachable */ 14132 /* Sent by forwarding path, and router is global zone */ 14133 if (ip_source_routed(ipha, ipst)) { 14134 icmp_unreachable(ill->ill_wq, mp, 14135 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, 14136 ipst); 14137 } else { 14138 icmp_unreachable(ill->ill_wq, mp, 14139 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 14140 ipst); 14141 } 14142 return (ire); 14143 } 14144 } 14145 14146 /* 14147 * Forwarding fastpath exception case: 14148 * If either of the follwoing case is true, we take 14149 * the slowpath 14150 * o forwarding is not enabled 14151 * o incoming and outgoing interface are the same, or the same 14152 * IPMP group 14153 * o corresponding ire is in incomplete state 14154 * o packet needs fragmentation 14155 * 14156 * The codeflow from here on is thus: 14157 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 14158 */ 14159 pkt_len = ntohs(ipha->ipha_length); 14160 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 14161 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 14162 !(ill->ill_flags & ILLF_ROUTER) || 14163 (ill == stq_ill) || 14164 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 14165 (ire->ire_nce == NULL) || 14166 (ire->ire_nce->nce_state != ND_REACHABLE) || 14167 (pkt_len > ire->ire_max_frag) || 14168 ipha->ipha_ttl <= 1) { 14169 ip_rput_process_forward(ill->ill_rq, mp, ire, 14170 ipha, ill, B_FALSE); 14171 return (ire); 14172 } 14173 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14174 14175 DTRACE_PROBE4(ip4__forwarding__start, 14176 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14177 14178 FW_HOOKS(ipst->ips_ip4_forwarding_event, 14179 ipst->ips_ipv4firewall_forwarding, 14180 ill, stq_ill, ipha, mp, mp, ipst); 14181 14182 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 14183 14184 if (mp == NULL) 14185 goto drop; 14186 14187 mp->b_datap->db_struioun.cksum.flags = 0; 14188 /* Adjust the checksum to reflect the ttl decrement. */ 14189 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14190 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14191 ipha->ipha_ttl--; 14192 14193 dev_q = ire->ire_stq->q_next; 14194 if ((dev_q->q_next != NULL || 14195 dev_q->q_first != NULL) && !canput(dev_q)) { 14196 goto indiscard; 14197 } 14198 14199 hlen = ire->ire_nce->nce_fp_mp != NULL ? 14200 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 14201 14202 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 14203 mblk_t *mpip = mp; 14204 14205 mp = ip_wput_attach_llhdr(mpip, ire, 0, 0); 14206 if (mp != NULL) { 14207 DTRACE_PROBE4(ip4__physical__out__start, 14208 ill_t *, NULL, ill_t *, stq_ill, 14209 ipha_t *, ipha, mblk_t *, mp); 14210 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14211 ipst->ips_ipv4firewall_physical_out, 14212 NULL, stq_ill, ipha, mp, mpip, ipst); 14213 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, 14214 mp); 14215 if (mp == NULL) 14216 goto drop; 14217 14218 UPDATE_IB_PKT_COUNT(ire); 14219 ire->ire_last_used_time = lbolt; 14220 BUMP_MIB(stq_ill->ill_ip_mib, 14221 ipIfStatsHCOutForwDatagrams); 14222 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14223 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, 14224 pkt_len); 14225 putnext(ire->ire_stq, mp); 14226 return (ire); 14227 } 14228 } 14229 14230 indiscard: 14231 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14232 drop: 14233 if (mp != NULL) 14234 freemsg(mp); 14235 if (src_ire != NULL) 14236 ire_refrele(src_ire); 14237 return (ire); 14238 14239 } 14240 14241 /* 14242 * This function is called in the forwarding slowpath, when 14243 * either the ire lacks the link-layer address, or the packet needs 14244 * further processing(eg. fragmentation), before transmission. 14245 */ 14246 14247 static void 14248 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14249 ill_t *ill, boolean_t ll_multicast) 14250 { 14251 ill_group_t *ill_group; 14252 ill_group_t *ire_group; 14253 queue_t *dev_q; 14254 ire_t *src_ire; 14255 ip_stack_t *ipst = ill->ill_ipst; 14256 14257 ASSERT(ire->ire_stq != NULL); 14258 14259 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14260 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14261 14262 if (ll_multicast != 0) { 14263 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14264 goto drop_pkt; 14265 } 14266 14267 /* 14268 * check if ipha_src is a broadcast address. Note that this 14269 * check is redundant when we get here from ip_fast_forward() 14270 * which has already done this check. However, since we can 14271 * also get here from ip_rput_process_broadcast() or, for 14272 * for the slow path through ip_fast_forward(), we perform 14273 * the check again for code-reusability 14274 */ 14275 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14276 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14277 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 14278 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 14279 if (src_ire != NULL) 14280 ire_refrele(src_ire); 14281 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14282 ip2dbg(("ip_rput_process_forward: Received packet with" 14283 " bad src/dst address on %s\n", ill->ill_name)); 14284 goto drop_pkt; 14285 } 14286 14287 ill_group = ill->ill_group; 14288 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14289 /* 14290 * Check if we want to forward this one at this time. 14291 * We allow source routed packets on a host provided that 14292 * they go out the same interface or same interface group 14293 * as they came in on. 14294 * 14295 * XXX To be quicker, we may wish to not chase pointers to 14296 * get the ILLF_ROUTER flag and instead store the 14297 * forwarding policy in the ire. An unfortunate 14298 * side-effect of that would be requiring an ire flush 14299 * whenever the ILLF_ROUTER flag changes. 14300 */ 14301 if (((ill->ill_flags & 14302 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14303 ILLF_ROUTER) == 0) && 14304 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14305 (ill_group != NULL && ill_group == ire_group)))) { 14306 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14307 if (ip_source_routed(ipha, ipst)) { 14308 q = WR(q); 14309 /* 14310 * Clear the indication that this may have 14311 * hardware checksum as we are not using it. 14312 */ 14313 DB_CKSUMFLAGS(mp) = 0; 14314 /* Sent by forwarding path, and router is global zone */ 14315 icmp_unreachable(q, mp, 14316 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14317 return; 14318 } 14319 goto drop_pkt; 14320 } 14321 14322 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14323 14324 /* Packet is being forwarded. Turning off hwcksum flag. */ 14325 DB_CKSUMFLAGS(mp) = 0; 14326 if (ipst->ips_ip_g_send_redirects) { 14327 /* 14328 * Check whether the incoming interface and outgoing 14329 * interface is part of the same group. If so, 14330 * send redirects. 14331 * 14332 * Check the source address to see if it originated 14333 * on the same logical subnet it is going back out on. 14334 * If so, we should be able to send it a redirect. 14335 * Avoid sending a redirect if the destination 14336 * is directly connected (i.e., ipha_dst is the same 14337 * as ire_gateway_addr or the ire_addr of the 14338 * nexthop IRE_CACHE ), or if the packet was source 14339 * routed out this interface. 14340 */ 14341 ipaddr_t src, nhop; 14342 mblk_t *mp1; 14343 ire_t *nhop_ire = NULL; 14344 14345 /* 14346 * Check whether ire_rfq and q are from the same ill 14347 * or if they are not same, they at least belong 14348 * to the same group. If so, send redirects. 14349 */ 14350 if ((ire->ire_rfq == q || 14351 (ill_group != NULL && ill_group == ire_group)) && 14352 !ip_source_routed(ipha, ipst)) { 14353 14354 nhop = (ire->ire_gateway_addr != 0 ? 14355 ire->ire_gateway_addr : ire->ire_addr); 14356 14357 if (ipha->ipha_dst == nhop) { 14358 /* 14359 * We avoid sending a redirect if the 14360 * destination is directly connected 14361 * because it is possible that multiple 14362 * IP subnets may have been configured on 14363 * the link, and the source may not 14364 * be on the same subnet as ip destination, 14365 * even though they are on the same 14366 * physical link. 14367 */ 14368 goto sendit; 14369 } 14370 14371 src = ipha->ipha_src; 14372 14373 /* 14374 * We look up the interface ire for the nexthop, 14375 * to see if ipha_src is in the same subnet 14376 * as the nexthop. 14377 * 14378 * Note that, if, in the future, IRE_CACHE entries 14379 * are obsoleted, this lookup will not be needed, 14380 * as the ire passed to this function will be the 14381 * same as the nhop_ire computed below. 14382 */ 14383 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14384 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14385 0, NULL, MATCH_IRE_TYPE, ipst); 14386 14387 if (nhop_ire != NULL) { 14388 if ((src & nhop_ire->ire_mask) == 14389 (nhop & nhop_ire->ire_mask)) { 14390 /* 14391 * The source is directly connected. 14392 * Just copy the ip header (which is 14393 * in the first mblk) 14394 */ 14395 mp1 = copyb(mp); 14396 if (mp1 != NULL) { 14397 icmp_send_redirect(WR(q), mp1, 14398 nhop, ipst); 14399 } 14400 } 14401 ire_refrele(nhop_ire); 14402 } 14403 } 14404 } 14405 sendit: 14406 dev_q = ire->ire_stq->q_next; 14407 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14408 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14409 freemsg(mp); 14410 return; 14411 } 14412 14413 ip_rput_forward(ire, ipha, mp, ill); 14414 return; 14415 14416 drop_pkt: 14417 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14418 freemsg(mp); 14419 } 14420 14421 ire_t * 14422 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14423 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14424 { 14425 queue_t *q; 14426 uint16_t hcksumflags; 14427 ip_stack_t *ipst = ill->ill_ipst; 14428 14429 q = *qp; 14430 14431 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14432 14433 /* 14434 * Clear the indication that this may have hardware 14435 * checksum as we are not using it for forwarding. 14436 */ 14437 hcksumflags = DB_CKSUMFLAGS(mp); 14438 DB_CKSUMFLAGS(mp) = 0; 14439 14440 /* 14441 * Directed broadcast forwarding: if the packet came in over a 14442 * different interface then it is routed out over we can forward it. 14443 */ 14444 if (ipha->ipha_protocol == IPPROTO_TCP) { 14445 ire_refrele(ire); 14446 freemsg(mp); 14447 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14448 return (NULL); 14449 } 14450 /* 14451 * For multicast we have set dst to be INADDR_BROADCAST 14452 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14453 * only for broadcast packets. 14454 */ 14455 if (!CLASSD(ipha->ipha_dst)) { 14456 ire_t *new_ire; 14457 ipif_t *ipif; 14458 /* 14459 * For ill groups, as the switch duplicates broadcasts 14460 * across all the ports, we need to filter out and 14461 * send up only one copy. There is one copy for every 14462 * broadcast address on each ill. Thus, we look for a 14463 * specific IRE on this ill and look at IRE_MARK_NORECV 14464 * later to see whether this ill is eligible to receive 14465 * them or not. ill_nominate_bcast_rcv() nominates only 14466 * one set of IREs for receiving. 14467 */ 14468 14469 ipif = ipif_get_next_ipif(NULL, ill); 14470 if (ipif == NULL) { 14471 ire_refrele(ire); 14472 freemsg(mp); 14473 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14474 return (NULL); 14475 } 14476 new_ire = ire_ctable_lookup(dst, 0, 0, 14477 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14478 ipif_refrele(ipif); 14479 14480 if (new_ire != NULL) { 14481 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14482 ire_refrele(ire); 14483 ire_refrele(new_ire); 14484 freemsg(mp); 14485 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14486 return (NULL); 14487 } 14488 /* 14489 * In the special case of multirouted broadcast 14490 * packets, we unconditionally need to "gateway" 14491 * them to the appropriate interface here. 14492 * In the normal case, this cannot happen, because 14493 * there is no broadcast IRE tagged with the 14494 * RTF_MULTIRT flag. 14495 */ 14496 if (new_ire->ire_flags & RTF_MULTIRT) { 14497 ire_refrele(new_ire); 14498 if (ire->ire_rfq != NULL) { 14499 q = ire->ire_rfq; 14500 *qp = q; 14501 } 14502 } else { 14503 ire_refrele(ire); 14504 ire = new_ire; 14505 } 14506 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14507 if (!ipst->ips_ip_g_forward_directed_bcast) { 14508 /* 14509 * Free the message if 14510 * ip_g_forward_directed_bcast is turned 14511 * off for non-local broadcast. 14512 */ 14513 ire_refrele(ire); 14514 freemsg(mp); 14515 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14516 return (NULL); 14517 } 14518 } else { 14519 /* 14520 * This CGTP packet successfully passed the 14521 * CGTP filter, but the related CGTP 14522 * broadcast IRE has not been found, 14523 * meaning that the redundant ipif is 14524 * probably down. However, if we discarded 14525 * this packet, its duplicate would be 14526 * filtered out by the CGTP filter so none 14527 * of them would get through. So we keep 14528 * going with this one. 14529 */ 14530 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14531 if (ire->ire_rfq != NULL) { 14532 q = ire->ire_rfq; 14533 *qp = q; 14534 } 14535 } 14536 } 14537 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14538 /* 14539 * Verify that there are not more then one 14540 * IRE_BROADCAST with this broadcast address which 14541 * has ire_stq set. 14542 * TODO: simplify, loop over all IRE's 14543 */ 14544 ire_t *ire1; 14545 int num_stq = 0; 14546 mblk_t *mp1; 14547 14548 /* Find the first one with ire_stq set */ 14549 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14550 for (ire1 = ire; ire1 && 14551 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14552 ire1 = ire1->ire_next) 14553 ; 14554 if (ire1) { 14555 ire_refrele(ire); 14556 ire = ire1; 14557 IRE_REFHOLD(ire); 14558 } 14559 14560 /* Check if there are additional ones with stq set */ 14561 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14562 if (ire->ire_addr != ire1->ire_addr) 14563 break; 14564 if (ire1->ire_stq) { 14565 num_stq++; 14566 break; 14567 } 14568 } 14569 rw_exit(&ire->ire_bucket->irb_lock); 14570 if (num_stq == 1 && ire->ire_stq != NULL) { 14571 ip1dbg(("ip_rput_process_broadcast: directed " 14572 "broadcast to 0x%x\n", 14573 ntohl(ire->ire_addr))); 14574 mp1 = copymsg(mp); 14575 if (mp1) { 14576 switch (ipha->ipha_protocol) { 14577 case IPPROTO_UDP: 14578 ip_udp_input(q, mp1, ipha, ire, ill); 14579 break; 14580 default: 14581 ip_proto_input(q, mp1, ipha, ire, ill); 14582 break; 14583 } 14584 } 14585 /* 14586 * Adjust ttl to 2 (1+1 - the forward engine 14587 * will decrement it by one. 14588 */ 14589 if (ip_csum_hdr(ipha)) { 14590 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14591 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14592 freemsg(mp); 14593 ire_refrele(ire); 14594 return (NULL); 14595 } 14596 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14597 ipha->ipha_hdr_checksum = 0; 14598 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14599 ip_rput_process_forward(q, mp, ire, ipha, 14600 ill, ll_multicast); 14601 ire_refrele(ire); 14602 return (NULL); 14603 } 14604 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14605 ntohl(ire->ire_addr))); 14606 } 14607 14608 14609 /* Restore any hardware checksum flags */ 14610 DB_CKSUMFLAGS(mp) = hcksumflags; 14611 return (ire); 14612 } 14613 14614 /* ARGSUSED */ 14615 static boolean_t 14616 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14617 int *ll_multicast, ipaddr_t *dstp) 14618 { 14619 ip_stack_t *ipst = ill->ill_ipst; 14620 14621 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14622 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14623 ntohs(ipha->ipha_length)); 14624 14625 /* 14626 * Forward packets only if we have joined the allmulti 14627 * group on this interface. 14628 */ 14629 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14630 int retval; 14631 14632 /* 14633 * Clear the indication that this may have hardware 14634 * checksum as we are not using it. 14635 */ 14636 DB_CKSUMFLAGS(mp) = 0; 14637 retval = ip_mforward(ill, ipha, mp); 14638 /* ip_mforward updates mib variables if needed */ 14639 /* clear b_prev - used by ip_mroute_decap */ 14640 mp->b_prev = NULL; 14641 14642 switch (retval) { 14643 case 0: 14644 /* 14645 * pkt is okay and arrived on phyint. 14646 * 14647 * If we are running as a multicast router 14648 * we need to see all IGMP and/or PIM packets. 14649 */ 14650 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14651 (ipha->ipha_protocol == IPPROTO_PIM)) { 14652 goto done; 14653 } 14654 break; 14655 case -1: 14656 /* pkt is mal-formed, toss it */ 14657 goto drop_pkt; 14658 case 1: 14659 /* pkt is okay and arrived on a tunnel */ 14660 /* 14661 * If we are running a multicast router 14662 * we need to see all igmp packets. 14663 */ 14664 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14665 *dstp = INADDR_BROADCAST; 14666 *ll_multicast = 1; 14667 return (B_FALSE); 14668 } 14669 14670 goto drop_pkt; 14671 } 14672 } 14673 14674 ILM_WALKER_HOLD(ill); 14675 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14676 /* 14677 * This might just be caused by the fact that 14678 * multiple IP Multicast addresses map to the same 14679 * link layer multicast - no need to increment counter! 14680 */ 14681 ILM_WALKER_RELE(ill); 14682 freemsg(mp); 14683 return (B_TRUE); 14684 } 14685 ILM_WALKER_RELE(ill); 14686 done: 14687 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14688 /* 14689 * This assumes the we deliver to all streams for multicast 14690 * and broadcast packets. 14691 */ 14692 *dstp = INADDR_BROADCAST; 14693 *ll_multicast = 1; 14694 return (B_FALSE); 14695 drop_pkt: 14696 ip2dbg(("ip_rput: drop pkt\n")); 14697 freemsg(mp); 14698 return (B_TRUE); 14699 } 14700 14701 static boolean_t 14702 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14703 int *ll_multicast, mblk_t **mpp) 14704 { 14705 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14706 boolean_t must_copy = B_FALSE; 14707 struct iocblk *iocp; 14708 ipha_t *ipha; 14709 ip_stack_t *ipst = ill->ill_ipst; 14710 14711 #define rptr ((uchar_t *)ipha) 14712 14713 first_mp = *first_mpp; 14714 mp = *mpp; 14715 14716 ASSERT(first_mp == mp); 14717 14718 /* 14719 * if db_ref > 1 then copymsg and free original. Packet may be 14720 * changed and do not want other entity who has a reference to this 14721 * message to trip over the changes. This is a blind change because 14722 * trying to catch all places that might change packet is too 14723 * difficult (since it may be a module above this one) 14724 * 14725 * This corresponds to the non-fast path case. We walk down the full 14726 * chain in this case, and check the db_ref count of all the dblks, 14727 * and do a copymsg if required. It is possible that the db_ref counts 14728 * of the data blocks in the mblk chain can be different. 14729 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14730 * count of 1, followed by a M_DATA block with a ref count of 2, if 14731 * 'snoop' is running. 14732 */ 14733 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14734 if (mp1->b_datap->db_ref > 1) { 14735 must_copy = B_TRUE; 14736 break; 14737 } 14738 } 14739 14740 if (must_copy) { 14741 mp1 = copymsg(mp); 14742 if (mp1 == NULL) { 14743 for (mp1 = mp; mp1 != NULL; 14744 mp1 = mp1->b_cont) { 14745 mp1->b_next = NULL; 14746 mp1->b_prev = NULL; 14747 } 14748 freemsg(mp); 14749 if (ill != NULL) { 14750 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14751 } else { 14752 BUMP_MIB(&ipst->ips_ip_mib, 14753 ipIfStatsInDiscards); 14754 } 14755 return (B_TRUE); 14756 } 14757 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14758 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14759 /* Copy b_prev - used by ip_mroute_decap */ 14760 to_mp->b_prev = from_mp->b_prev; 14761 from_mp->b_prev = NULL; 14762 } 14763 *first_mpp = first_mp = mp1; 14764 freemsg(mp); 14765 mp = mp1; 14766 *mpp = mp1; 14767 } 14768 14769 ipha = (ipha_t *)mp->b_rptr; 14770 14771 /* 14772 * previous code has a case for M_DATA. 14773 * We want to check how that happens. 14774 */ 14775 ASSERT(first_mp->b_datap->db_type != M_DATA); 14776 switch (first_mp->b_datap->db_type) { 14777 case M_PROTO: 14778 case M_PCPROTO: 14779 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14780 DL_UNITDATA_IND) { 14781 /* Go handle anything other than data elsewhere. */ 14782 ip_rput_dlpi(q, mp); 14783 return (B_TRUE); 14784 } 14785 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14786 /* Ditch the DLPI header. */ 14787 mp1 = mp->b_cont; 14788 ASSERT(first_mp == mp); 14789 *first_mpp = mp1; 14790 freeb(mp); 14791 *mpp = mp1; 14792 return (B_FALSE); 14793 case M_IOCACK: 14794 ip1dbg(("got iocack ")); 14795 iocp = (struct iocblk *)mp->b_rptr; 14796 switch (iocp->ioc_cmd) { 14797 case DL_IOC_HDR_INFO: 14798 ill = (ill_t *)q->q_ptr; 14799 ill_fastpath_ack(ill, mp); 14800 return (B_TRUE); 14801 case SIOCSTUNPARAM: 14802 case OSIOCSTUNPARAM: 14803 /* Go through qwriter_ip */ 14804 break; 14805 case SIOCGTUNPARAM: 14806 case OSIOCGTUNPARAM: 14807 ip_rput_other(NULL, q, mp, NULL); 14808 return (B_TRUE); 14809 default: 14810 putnext(q, mp); 14811 return (B_TRUE); 14812 } 14813 /* FALLTHRU */ 14814 case M_ERROR: 14815 case M_HANGUP: 14816 /* 14817 * Since this is on the ill stream we unconditionally 14818 * bump up the refcount 14819 */ 14820 ill_refhold(ill); 14821 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 14822 B_FALSE); 14823 return (B_TRUE); 14824 case M_CTL: 14825 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14826 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14827 IPHADA_M_CTL)) { 14828 /* 14829 * It's an IPsec accelerated packet. 14830 * Make sure that the ill from which we received the 14831 * packet has enabled IPsec hardware acceleration. 14832 */ 14833 if (!(ill->ill_capabilities & 14834 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14835 /* IPsec kstats: bean counter */ 14836 freemsg(mp); 14837 return (B_TRUE); 14838 } 14839 14840 /* 14841 * Make mp point to the mblk following the M_CTL, 14842 * then process according to type of mp. 14843 * After this processing, first_mp will point to 14844 * the data-attributes and mp to the pkt following 14845 * the M_CTL. 14846 */ 14847 mp = first_mp->b_cont; 14848 if (mp == NULL) { 14849 freemsg(first_mp); 14850 return (B_TRUE); 14851 } 14852 /* 14853 * A Hardware Accelerated packet can only be M_DATA 14854 * ESP or AH packet. 14855 */ 14856 if (mp->b_datap->db_type != M_DATA) { 14857 /* non-M_DATA IPsec accelerated packet */ 14858 IPSECHW_DEBUG(IPSECHW_PKT, 14859 ("non-M_DATA IPsec accelerated pkt\n")); 14860 freemsg(first_mp); 14861 return (B_TRUE); 14862 } 14863 ipha = (ipha_t *)mp->b_rptr; 14864 if (ipha->ipha_protocol != IPPROTO_AH && 14865 ipha->ipha_protocol != IPPROTO_ESP) { 14866 IPSECHW_DEBUG(IPSECHW_PKT, 14867 ("non-M_DATA IPsec accelerated pkt\n")); 14868 freemsg(first_mp); 14869 return (B_TRUE); 14870 } 14871 *mpp = mp; 14872 return (B_FALSE); 14873 } 14874 putnext(q, mp); 14875 return (B_TRUE); 14876 case M_FLUSH: 14877 if (*mp->b_rptr & FLUSHW) { 14878 *mp->b_rptr &= ~FLUSHR; 14879 qreply(q, mp); 14880 return (B_TRUE); 14881 } 14882 freemsg(mp); 14883 return (B_TRUE); 14884 case M_IOCNAK: 14885 ip1dbg(("got iocnak ")); 14886 iocp = (struct iocblk *)mp->b_rptr; 14887 switch (iocp->ioc_cmd) { 14888 case DL_IOC_HDR_INFO: 14889 case SIOCSTUNPARAM: 14890 case OSIOCSTUNPARAM: 14891 /* 14892 * Since this is on the ill stream we unconditionally 14893 * bump up the refcount 14894 */ 14895 ill_refhold(ill); 14896 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 14897 CUR_OP, B_FALSE); 14898 return (B_TRUE); 14899 case SIOCGTUNPARAM: 14900 case OSIOCGTUNPARAM: 14901 ip_rput_other(NULL, q, mp, NULL); 14902 return (B_TRUE); 14903 default: 14904 break; 14905 } 14906 /* FALLTHRU */ 14907 default: 14908 putnext(q, mp); 14909 return (B_TRUE); 14910 } 14911 } 14912 14913 /* Read side put procedure. Packets coming from the wire arrive here. */ 14914 void 14915 ip_rput(queue_t *q, mblk_t *mp) 14916 { 14917 ill_t *ill; 14918 ip_stack_t *ipst; 14919 14920 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14921 14922 ill = (ill_t *)q->q_ptr; 14923 ipst = ill->ill_ipst; 14924 14925 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14926 union DL_primitives *dl; 14927 14928 /* 14929 * Things are opening or closing. Only accept DLPI control 14930 * messages. In the open case, the ill->ill_ipif has not yet 14931 * been created. In the close case, things hanging off the 14932 * ill could have been freed already. In either case it 14933 * may not be safe to proceed further. 14934 */ 14935 14936 dl = (union DL_primitives *)mp->b_rptr; 14937 if ((mp->b_datap->db_type != M_PCPROTO) || 14938 (dl->dl_primitive == DL_UNITDATA_IND)) { 14939 /* 14940 * Also SIOC[GS]TUN* ioctls can come here. 14941 */ 14942 inet_freemsg(mp); 14943 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14944 "ip_input_end: q %p (%S)", q, "uninit"); 14945 return; 14946 } 14947 } 14948 14949 /* 14950 * if db_ref > 1 then copymsg and free original. Packet may be 14951 * changed and we do not want the other entity who has a reference to 14952 * this message to trip over the changes. This is a blind change because 14953 * trying to catch all places that might change the packet is too 14954 * difficult. 14955 * 14956 * This corresponds to the fast path case, where we have a chain of 14957 * M_DATA mblks. We check the db_ref count of only the 1st data block 14958 * in the mblk chain. There doesn't seem to be a reason why a device 14959 * driver would send up data with varying db_ref counts in the mblk 14960 * chain. In any case the Fast path is a private interface, and our 14961 * drivers don't do such a thing. Given the above assumption, there is 14962 * no need to walk down the entire mblk chain (which could have a 14963 * potential performance problem) 14964 */ 14965 if (mp->b_datap->db_ref > 1) { 14966 mblk_t *mp1; 14967 boolean_t adjusted = B_FALSE; 14968 IP_STAT(ipst, ip_db_ref); 14969 14970 /* 14971 * The IP_RECVSLLA option depends on having the link layer 14972 * header. First check that: 14973 * a> the underlying device is of type ether, since this 14974 * option is currently supported only over ethernet. 14975 * b> there is enough room to copy over the link layer header. 14976 * 14977 * Once the checks are done, adjust rptr so that the link layer 14978 * header will be copied via copymsg. Note that, IFT_ETHER may 14979 * be returned by some non-ethernet drivers but in this case the 14980 * second check will fail. 14981 */ 14982 if (ill->ill_type == IFT_ETHER && 14983 (mp->b_rptr - mp->b_datap->db_base) >= 14984 sizeof (struct ether_header)) { 14985 mp->b_rptr -= sizeof (struct ether_header); 14986 adjusted = B_TRUE; 14987 } 14988 mp1 = copymsg(mp); 14989 if (mp1 == NULL) { 14990 mp->b_next = NULL; 14991 /* clear b_prev - used by ip_mroute_decap */ 14992 mp->b_prev = NULL; 14993 freemsg(mp); 14994 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14995 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14996 "ip_rput_end: q %p (%S)", q, "copymsg"); 14997 return; 14998 } 14999 if (adjusted) { 15000 /* 15001 * Copy is done. Restore the pointer in the _new_ mblk 15002 */ 15003 mp1->b_rptr += sizeof (struct ether_header); 15004 } 15005 /* Copy b_prev - used by ip_mroute_decap */ 15006 mp1->b_prev = mp->b_prev; 15007 mp->b_prev = NULL; 15008 freemsg(mp); 15009 mp = mp1; 15010 } 15011 15012 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15013 "ip_rput_end: q %p (%S)", q, "end"); 15014 15015 ip_input(ill, NULL, mp, NULL); 15016 } 15017 15018 /* 15019 * Direct read side procedure capable of dealing with chains. GLDv3 based 15020 * drivers call this function directly with mblk chains while STREAMS 15021 * read side procedure ip_rput() calls this for single packet with ip_ring 15022 * set to NULL to process one packet at a time. 15023 * 15024 * The ill will always be valid if this function is called directly from 15025 * the driver. 15026 * 15027 * If ip_input() is called from GLDv3: 15028 * 15029 * - This must be a non-VLAN IP stream. 15030 * - 'mp' is either an untagged or a special priority-tagged packet. 15031 * - Any VLAN tag that was in the MAC header has been stripped. 15032 * 15033 * If the IP header in packet is not 32-bit aligned, every message in the 15034 * chain will be aligned before further operations. This is required on SPARC 15035 * platform. 15036 */ 15037 /* ARGSUSED */ 15038 void 15039 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 15040 struct mac_header_info_s *mhip) 15041 { 15042 ipaddr_t dst = NULL; 15043 ipaddr_t prev_dst; 15044 ire_t *ire = NULL; 15045 ipha_t *ipha; 15046 uint_t pkt_len; 15047 ssize_t len; 15048 uint_t opt_len; 15049 int ll_multicast; 15050 int cgtp_flt_pkt; 15051 queue_t *q = ill->ill_rq; 15052 squeue_t *curr_sqp = NULL; 15053 mblk_t *head = NULL; 15054 mblk_t *tail = NULL; 15055 mblk_t *first_mp; 15056 mblk_t *mp; 15057 mblk_t *dmp; 15058 int cnt = 0; 15059 ip_stack_t *ipst = ill->ill_ipst; 15060 15061 ASSERT(mp_chain != NULL); 15062 ASSERT(ill != NULL); 15063 15064 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 15065 15066 #define rptr ((uchar_t *)ipha) 15067 15068 while (mp_chain != NULL) { 15069 first_mp = mp = mp_chain; 15070 mp_chain = mp_chain->b_next; 15071 mp->b_next = NULL; 15072 ll_multicast = 0; 15073 15074 /* 15075 * We do ire caching from one iteration to 15076 * another. In the event the packet chain contains 15077 * all packets from the same dst, this caching saves 15078 * an ire_cache_lookup for each of the succeeding 15079 * packets in a packet chain. 15080 */ 15081 prev_dst = dst; 15082 15083 /* 15084 * Check and align the IP header. 15085 */ 15086 if (DB_TYPE(mp) == M_DATA) { 15087 dmp = mp; 15088 } else if (DB_TYPE(mp) == M_PROTO && 15089 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 15090 dmp = mp->b_cont; 15091 } else { 15092 dmp = NULL; 15093 } 15094 if (dmp != NULL) { 15095 /* 15096 * IP header ptr not aligned? 15097 * OR IP header not complete in first mblk 15098 */ 15099 if (!OK_32PTR(dmp->b_rptr) || 15100 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 15101 if (!ip_check_and_align_header(q, dmp, ipst)) 15102 continue; 15103 } 15104 } 15105 15106 /* 15107 * ip_input fast path 15108 */ 15109 15110 /* mblk type is not M_DATA */ 15111 if (DB_TYPE(mp) != M_DATA) { 15112 if (ip_rput_process_notdata(q, &first_mp, ill, 15113 &ll_multicast, &mp)) 15114 continue; 15115 } 15116 15117 /* Make sure its an M_DATA and that its aligned */ 15118 ASSERT(DB_TYPE(mp) == M_DATA); 15119 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15120 15121 ipha = (ipha_t *)mp->b_rptr; 15122 len = mp->b_wptr - rptr; 15123 pkt_len = ntohs(ipha->ipha_length); 15124 15125 /* 15126 * We must count all incoming packets, even if they end 15127 * up being dropped later on. 15128 */ 15129 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15130 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15131 15132 /* multiple mblk or too short */ 15133 len -= pkt_len; 15134 if (len != 0) { 15135 /* 15136 * Make sure we have data length consistent 15137 * with the IP header. 15138 */ 15139 if (mp->b_cont == NULL) { 15140 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15141 BUMP_MIB(ill->ill_ip_mib, 15142 ipIfStatsInHdrErrors); 15143 ip2dbg(("ip_input: drop pkt\n")); 15144 freemsg(mp); 15145 continue; 15146 } 15147 mp->b_wptr = rptr + pkt_len; 15148 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15149 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15150 BUMP_MIB(ill->ill_ip_mib, 15151 ipIfStatsInHdrErrors); 15152 ip2dbg(("ip_input: drop pkt\n")); 15153 freemsg(mp); 15154 continue; 15155 } 15156 (void) adjmsg(mp, -len); 15157 IP_STAT(ipst, ip_multimblk3); 15158 } 15159 } 15160 15161 /* Obtain the dst of the current packet */ 15162 dst = ipha->ipha_dst; 15163 15164 if (IP_LOOPBACK_ADDR(dst) || 15165 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 15166 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15167 cmn_err(CE_CONT, "dst %X src %X\n", 15168 dst, ipha->ipha_src); 15169 freemsg(mp); 15170 continue; 15171 } 15172 15173 /* 15174 * The event for packets being received from a 'physical' 15175 * interface is placed after validation of the source and/or 15176 * destination address as being local so that packets can be 15177 * redirected to loopback addresses using ipnat. 15178 */ 15179 DTRACE_PROBE4(ip4__physical__in__start, 15180 ill_t *, ill, ill_t *, NULL, 15181 ipha_t *, ipha, mblk_t *, first_mp); 15182 15183 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15184 ipst->ips_ipv4firewall_physical_in, 15185 ill, NULL, ipha, first_mp, mp, ipst); 15186 15187 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15188 15189 if (first_mp == NULL) { 15190 continue; 15191 } 15192 dst = ipha->ipha_dst; 15193 15194 /* 15195 * Attach any necessary label information to 15196 * this packet 15197 */ 15198 if (is_system_labeled() && 15199 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15200 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15201 freemsg(mp); 15202 continue; 15203 } 15204 15205 /* 15206 * Reuse the cached ire only if the ipha_dst of the previous 15207 * packet is the same as the current packet AND it is not 15208 * INADDR_ANY. 15209 */ 15210 if (!(dst == prev_dst && dst != INADDR_ANY) && 15211 (ire != NULL)) { 15212 ire_refrele(ire); 15213 ire = NULL; 15214 } 15215 opt_len = ipha->ipha_version_and_hdr_length - 15216 IP_SIMPLE_HDR_VERSION; 15217 15218 /* 15219 * Check to see if we can take the fastpath. 15220 * That is possible if the following conditions are met 15221 * o Tsol disabled 15222 * o CGTP disabled 15223 * o ipp_action_count is 0 15224 * o Mobile IP not running 15225 * o no options in the packet 15226 * o not a RSVP packet 15227 * o not a multicast packet 15228 */ 15229 if (!is_system_labeled() && 15230 !ip_cgtp_filter && ipp_action_count == 0 && 15231 ill->ill_mrtun_refcnt == 0 && ill->ill_srcif_refcnt == 0 && 15232 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15233 !ll_multicast && !CLASSD(dst)) { 15234 if (ire == NULL) 15235 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15236 ipst); 15237 15238 /* incoming packet is for forwarding */ 15239 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15240 ire = ip_fast_forward(ire, dst, ill, mp); 15241 continue; 15242 } 15243 /* incoming packet is for local consumption */ 15244 if (ire->ire_type & IRE_LOCAL) 15245 goto local; 15246 } 15247 15248 /* 15249 * Disable ire caching for anything more complex 15250 * than the simple fast path case we checked for above. 15251 */ 15252 if (ire != NULL) { 15253 ire_refrele(ire); 15254 ire = NULL; 15255 } 15256 15257 /* Full-blown slow path */ 15258 if (opt_len != 0) { 15259 if (len != 0) 15260 IP_STAT(ipst, ip_multimblk4); 15261 else 15262 IP_STAT(ipst, ip_ipoptions); 15263 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15264 &dst, ipst)) 15265 continue; 15266 } 15267 15268 /* 15269 * Invoke the CGTP (multirouting) filtering module to process 15270 * the incoming packet. Packets identified as duplicates 15271 * must be discarded. Filtering is active only if the 15272 * the ip_cgtp_filter ndd variable is non-zero. 15273 * 15274 * Only applies to the shared stack since the filter_ops 15275 * do not carry an ip_stack_t or zoneid. 15276 */ 15277 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15278 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL) && 15279 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 15280 cgtp_flt_pkt = 15281 ip_cgtp_filter_ops->cfo_filter(q, mp); 15282 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15283 freemsg(first_mp); 15284 continue; 15285 } 15286 } 15287 15288 /* 15289 * If rsvpd is running, let RSVP daemon handle its processing 15290 * and forwarding of RSVP multicast/unicast packets. 15291 * If rsvpd is not running but mrouted is running, RSVP 15292 * multicast packets are forwarded as multicast traffic 15293 * and RSVP unicast packets are forwarded by unicast router. 15294 * If neither rsvpd nor mrouted is running, RSVP multicast 15295 * packets are not forwarded, but the unicast packets are 15296 * forwarded like unicast traffic. 15297 */ 15298 if (ipha->ipha_protocol == IPPROTO_RSVP && 15299 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15300 NULL) { 15301 /* RSVP packet and rsvpd running. Treat as ours */ 15302 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15303 /* 15304 * This assumes that we deliver to all streams for 15305 * multicast and broadcast packets. 15306 * We have to force ll_multicast to 1 to handle the 15307 * M_DATA messages passed in from ip_mroute_decap. 15308 */ 15309 dst = INADDR_BROADCAST; 15310 ll_multicast = 1; 15311 } else if (CLASSD(dst)) { 15312 /* packet is multicast */ 15313 mp->b_next = NULL; 15314 if (ip_rput_process_multicast(q, mp, ill, ipha, 15315 &ll_multicast, &dst)) 15316 continue; 15317 } 15318 15319 15320 /* 15321 * Check if the packet is coming from the Mobile IP 15322 * forward tunnel interface 15323 */ 15324 if (ill->ill_srcif_refcnt > 0) { 15325 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 15326 NULL, ill, MATCH_IRE_TYPE); 15327 if (ire != NULL && ire->ire_nce->nce_res_mp == NULL && 15328 ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER) { 15329 15330 /* We need to resolve the link layer info */ 15331 ire_refrele(ire); 15332 ire = NULL; 15333 (void) ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 15334 ll_multicast, dst); 15335 continue; 15336 } 15337 } 15338 15339 if (ire == NULL) { 15340 ire = ire_cache_lookup(dst, ALL_ZONES, 15341 MBLK_GETLABEL(mp), ipst); 15342 } 15343 15344 /* 15345 * If mipagent is running and reverse tunnel is created as per 15346 * mobile node request, then any packet coming through the 15347 * incoming interface from the mobile-node, should be reverse 15348 * tunneled to it's home agent except those that are destined 15349 * to foreign agent only. 15350 * This needs source address based ire lookup. The routing 15351 * entries for source address based lookup are only created by 15352 * mipagent program only when a reverse tunnel is created. 15353 * Reference : RFC2002, RFC2344 15354 */ 15355 if (ill->ill_mrtun_refcnt > 0) { 15356 ipaddr_t srcaddr; 15357 ire_t *tmp_ire; 15358 15359 tmp_ire = ire; /* Save, we might need it later */ 15360 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 15361 ire->ire_type != IRE_BROADCAST)) { 15362 srcaddr = ipha->ipha_src; 15363 ire = ire_mrtun_lookup(srcaddr, ill); 15364 if (ire != NULL) { 15365 /* 15366 * Should not be getting iphada packet 15367 * here. we should only get those for 15368 * IRE_LOCAL traffic, excluded above. 15369 * Fail-safe (drop packet) in the event 15370 * hardware is misbehaving. 15371 */ 15372 if (first_mp != mp) { 15373 /* IPsec KSTATS: beancount me */ 15374 freemsg(first_mp); 15375 } else { 15376 /* 15377 * This packet must be forwarded 15378 * to Reverse Tunnel 15379 */ 15380 ip_mrtun_forward(ire, ill, mp); 15381 } 15382 ire_refrele(ire); 15383 ire = NULL; 15384 if (tmp_ire != NULL) { 15385 ire_refrele(tmp_ire); 15386 tmp_ire = NULL; 15387 } 15388 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15389 "ip_input_end: q %p (%S)", 15390 q, "uninit"); 15391 continue; 15392 } 15393 } 15394 /* 15395 * If this packet is from a non-mobilenode or a 15396 * mobile-node which does not request reverse 15397 * tunnel service 15398 */ 15399 ire = tmp_ire; 15400 } 15401 15402 15403 /* 15404 * If we reach here that means the incoming packet satisfies 15405 * one of the following conditions: 15406 * - packet is from a mobile node which does not request 15407 * reverse tunnel 15408 * - packet is from a non-mobile node, which is the most 15409 * common case 15410 * - packet is from a reverse tunnel enabled mobile node 15411 * and destined to foreign agent only 15412 */ 15413 15414 if (ire == NULL) { 15415 /* 15416 * No IRE for this destination, so it can't be for us. 15417 * Unless we are forwarding, drop the packet. 15418 * We have to let source routed packets through 15419 * since we don't yet know if they are 'ping -l' 15420 * packets i.e. if they will go out over the 15421 * same interface as they came in on. 15422 */ 15423 ire = ip_rput_noire(q, NULL, mp, ll_multicast, dst); 15424 if (ire == NULL) 15425 continue; 15426 } 15427 15428 /* 15429 * Broadcast IRE may indicate either broadcast or 15430 * multicast packet 15431 */ 15432 if (ire->ire_type == IRE_BROADCAST) { 15433 /* 15434 * Skip broadcast checks if packet is UDP multicast; 15435 * we'd rather not enter ip_rput_process_broadcast() 15436 * unless the packet is broadcast for real, since 15437 * that routine is a no-op for multicast. 15438 */ 15439 if (ipha->ipha_protocol != IPPROTO_UDP || 15440 !CLASSD(ipha->ipha_dst)) { 15441 ire = ip_rput_process_broadcast(&q, mp, 15442 ire, ipha, ill, dst, cgtp_flt_pkt, 15443 ll_multicast); 15444 if (ire == NULL) 15445 continue; 15446 } 15447 } else if (ire->ire_stq != NULL) { 15448 /* fowarding? */ 15449 ip_rput_process_forward(q, mp, ire, ipha, ill, 15450 ll_multicast); 15451 /* ip_rput_process_forward consumed the packet */ 15452 continue; 15453 } 15454 15455 local: 15456 /* 15457 * If the queue in the ire is different to the ingress queue 15458 * then we need to check to see if we can accept the packet. 15459 * Note that for multicast packets and broadcast packets sent 15460 * to a broadcast address which is shared between multiple 15461 * interfaces we should not do this since we just got a random 15462 * broadcast ire. 15463 */ 15464 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15465 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15466 ill)) == NULL) { 15467 /* Drop packet */ 15468 BUMP_MIB(ill->ill_ip_mib, 15469 ipIfStatsForwProhibits); 15470 freemsg(mp); 15471 continue; 15472 } 15473 if (ire->ire_rfq != NULL) 15474 q = ire->ire_rfq; 15475 } 15476 15477 switch (ipha->ipha_protocol) { 15478 case IPPROTO_TCP: 15479 ASSERT(first_mp == mp); 15480 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15481 mp, 0, q, ip_ring)) != NULL) { 15482 if (curr_sqp == NULL) { 15483 curr_sqp = GET_SQUEUE(mp); 15484 ASSERT(cnt == 0); 15485 cnt++; 15486 head = tail = mp; 15487 } else if (curr_sqp == GET_SQUEUE(mp)) { 15488 ASSERT(tail != NULL); 15489 cnt++; 15490 tail->b_next = mp; 15491 tail = mp; 15492 } else { 15493 /* 15494 * A different squeue. Send the 15495 * chain for the previous squeue on 15496 * its way. This shouldn't happen 15497 * often unless interrupt binding 15498 * changes. 15499 */ 15500 IP_STAT(ipst, ip_input_multi_squeue); 15501 squeue_enter_chain(curr_sqp, head, 15502 tail, cnt, SQTAG_IP_INPUT); 15503 curr_sqp = GET_SQUEUE(mp); 15504 head = mp; 15505 tail = mp; 15506 cnt = 1; 15507 } 15508 } 15509 continue; 15510 case IPPROTO_UDP: 15511 ASSERT(first_mp == mp); 15512 ip_udp_input(q, mp, ipha, ire, ill); 15513 continue; 15514 case IPPROTO_SCTP: 15515 ASSERT(first_mp == mp); 15516 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15517 q, dst); 15518 /* ire has been released by ip_sctp_input */ 15519 ire = NULL; 15520 continue; 15521 default: 15522 ip_proto_input(q, first_mp, ipha, ire, ill); 15523 continue; 15524 } 15525 } 15526 15527 if (ire != NULL) 15528 ire_refrele(ire); 15529 15530 if (head != NULL) 15531 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15532 15533 /* 15534 * This code is there just to make netperf/ttcp look good. 15535 * 15536 * Its possible that after being in polling mode (and having cleared 15537 * the backlog), squeues have turned the interrupt frequency higher 15538 * to improve latency at the expense of more CPU utilization (less 15539 * packets per interrupts or more number of interrupts). Workloads 15540 * like ttcp/netperf do manage to tickle polling once in a while 15541 * but for the remaining time, stay in higher interrupt mode since 15542 * their packet arrival rate is pretty uniform and this shows up 15543 * as higher CPU utilization. Since people care about CPU utilization 15544 * while running netperf/ttcp, turn the interrupt frequency back to 15545 * normal/default if polling has not been used in ip_poll_normal_ticks. 15546 */ 15547 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15548 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15549 ip_ring->rr_poll_state &= ~ILL_POLLING; 15550 ip_ring->rr_blank(ip_ring->rr_handle, 15551 ip_ring->rr_normal_blank_time, 15552 ip_ring->rr_normal_pkt_cnt); 15553 } 15554 } 15555 15556 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15557 "ip_input_end: q %p (%S)", q, "end"); 15558 #undef rptr 15559 } 15560 15561 static void 15562 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15563 t_uscalar_t err) 15564 { 15565 if (dl_err == DL_SYSERR) { 15566 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15567 "%s: %s failed: DL_SYSERR (errno %u)\n", 15568 ill->ill_name, dlpi_prim_str(prim), err); 15569 return; 15570 } 15571 15572 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15573 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15574 dlpi_err_str(dl_err)); 15575 } 15576 15577 /* 15578 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15579 * than DL_UNITDATA_IND messages. If we need to process this message 15580 * exclusively, we call qwriter_ip, in which case we also need to call 15581 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15582 */ 15583 void 15584 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15585 { 15586 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15587 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15588 ill_t *ill; 15589 15590 ip1dbg(("ip_rput_dlpi")); 15591 ill = (ill_t *)q->q_ptr; 15592 switch (dloa->dl_primitive) { 15593 case DL_ERROR_ACK: 15594 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15595 "%s (0x%x), unix %u\n", ill->ill_name, 15596 dlpi_prim_str(dlea->dl_error_primitive), 15597 dlea->dl_error_primitive, 15598 dlpi_err_str(dlea->dl_errno), 15599 dlea->dl_errno, 15600 dlea->dl_unix_errno)); 15601 switch (dlea->dl_error_primitive) { 15602 case DL_UNBIND_REQ: 15603 mutex_enter(&ill->ill_lock); 15604 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15605 cv_signal(&ill->ill_cv); 15606 mutex_exit(&ill->ill_lock); 15607 /* FALLTHRU */ 15608 case DL_NOTIFY_REQ: 15609 case DL_ATTACH_REQ: 15610 case DL_DETACH_REQ: 15611 case DL_INFO_REQ: 15612 case DL_BIND_REQ: 15613 case DL_ENABMULTI_REQ: 15614 case DL_PHYS_ADDR_REQ: 15615 case DL_CAPABILITY_REQ: 15616 case DL_CONTROL_REQ: 15617 /* 15618 * Refhold the ill to match qwriter_ip which does a 15619 * refrele. Since this is on the ill stream we 15620 * unconditionally bump up the refcount without 15621 * checking for ILL_CAN_LOOKUP 15622 */ 15623 ill_refhold(ill); 15624 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15625 CUR_OP, B_FALSE); 15626 return; 15627 case DL_DISABMULTI_REQ: 15628 freemsg(mp); /* Don't want to pass this up */ 15629 return; 15630 default: 15631 break; 15632 } 15633 ip_dlpi_error(ill, dlea->dl_error_primitive, 15634 dlea->dl_errno, dlea->dl_unix_errno); 15635 freemsg(mp); 15636 return; 15637 case DL_INFO_ACK: 15638 case DL_BIND_ACK: 15639 case DL_PHYS_ADDR_ACK: 15640 case DL_NOTIFY_ACK: 15641 case DL_CAPABILITY_ACK: 15642 case DL_CONTROL_ACK: 15643 /* 15644 * Refhold the ill to match qwriter_ip which does a refrele 15645 * Since this is on the ill stream we unconditionally 15646 * bump up the refcount without doing ILL_CAN_LOOKUP. 15647 */ 15648 ill_refhold(ill); 15649 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15650 CUR_OP, B_FALSE); 15651 return; 15652 case DL_NOTIFY_IND: 15653 ill_refhold(ill); 15654 /* 15655 * The DL_NOTIFY_IND is an asynchronous message that has no 15656 * relation to the current ioctl in progress (if any). Hence we 15657 * pass in NEW_OP in this case. 15658 */ 15659 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15660 NEW_OP, B_FALSE); 15661 return; 15662 case DL_OK_ACK: 15663 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15664 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15665 switch (dloa->dl_correct_primitive) { 15666 case DL_UNBIND_REQ: 15667 mutex_enter(&ill->ill_lock); 15668 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15669 cv_signal(&ill->ill_cv); 15670 mutex_exit(&ill->ill_lock); 15671 /* FALLTHRU */ 15672 case DL_ATTACH_REQ: 15673 case DL_DETACH_REQ: 15674 /* 15675 * Refhold the ill to match qwriter_ip which does a 15676 * refrele. Since this is on the ill stream we 15677 * unconditionally bump up the refcount 15678 */ 15679 ill_refhold(ill); 15680 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15681 CUR_OP, B_FALSE); 15682 return; 15683 case DL_ENABMULTI_REQ: 15684 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15685 ill->ill_dlpi_multicast_state = IDS_OK; 15686 break; 15687 15688 } 15689 break; 15690 default: 15691 break; 15692 } 15693 freemsg(mp); 15694 } 15695 15696 /* 15697 * Handling of DLPI messages that require exclusive access to the ipsq. 15698 * 15699 * Need to do ill_pending_mp_release on ioctl completion, which could 15700 * happen here. (along with mi_copy_done) 15701 */ 15702 /* ARGSUSED */ 15703 static void 15704 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15705 { 15706 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15707 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15708 int err = 0; 15709 ill_t *ill; 15710 ipif_t *ipif = NULL; 15711 mblk_t *mp1 = NULL; 15712 conn_t *connp = NULL; 15713 t_uscalar_t paddrreq; 15714 mblk_t *mp_hw; 15715 boolean_t success; 15716 boolean_t ioctl_aborted = B_FALSE; 15717 boolean_t log = B_TRUE; 15718 hook_nic_event_t *info; 15719 ip_stack_t *ipst; 15720 15721 ip1dbg(("ip_rput_dlpi_writer ..")); 15722 ill = (ill_t *)q->q_ptr; 15723 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15724 15725 ASSERT(IAM_WRITER_ILL(ill)); 15726 15727 ipst = ill->ill_ipst; 15728 15729 /* 15730 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15731 * both are null or non-null. However we can assert that only 15732 * after grabbing the ipsq_lock. So we don't make any assertion 15733 * here and in other places in the code. 15734 */ 15735 ipif = ipsq->ipsq_pending_ipif; 15736 /* 15737 * The current ioctl could have been aborted by the user and a new 15738 * ioctl to bring up another ill could have started. We could still 15739 * get a response from the driver later. 15740 */ 15741 if (ipif != NULL && ipif->ipif_ill != ill) 15742 ioctl_aborted = B_TRUE; 15743 15744 switch (dloa->dl_primitive) { 15745 case DL_ERROR_ACK: 15746 switch (dlea->dl_error_primitive) { 15747 case DL_UNBIND_REQ: 15748 case DL_ATTACH_REQ: 15749 case DL_DETACH_REQ: 15750 case DL_INFO_REQ: 15751 ill_dlpi_done(ill, dlea->dl_error_primitive); 15752 break; 15753 case DL_NOTIFY_REQ: 15754 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15755 log = B_FALSE; 15756 break; 15757 case DL_PHYS_ADDR_REQ: 15758 /* 15759 * For IPv6 only, there are two additional 15760 * phys_addr_req's sent to the driver to get the 15761 * IPv6 token and lla. This allows IP to acquire 15762 * the hardware address format for a given interface 15763 * without having built in knowledge of the hardware 15764 * address. ill_phys_addr_pend keeps track of the last 15765 * DL_PAR sent so we know which response we are 15766 * dealing with. ill_dlpi_done will update 15767 * ill_phys_addr_pend when it sends the next req. 15768 * We don't complete the IOCTL until all three DL_PARs 15769 * have been attempted, so set *_len to 0 and break. 15770 */ 15771 paddrreq = ill->ill_phys_addr_pend; 15772 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15773 if (paddrreq == DL_IPV6_TOKEN) { 15774 ill->ill_token_length = 0; 15775 log = B_FALSE; 15776 break; 15777 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15778 ill->ill_nd_lla_len = 0; 15779 log = B_FALSE; 15780 break; 15781 } 15782 /* 15783 * Something went wrong with the DL_PHYS_ADDR_REQ. 15784 * We presumably have an IOCTL hanging out waiting 15785 * for completion. Find it and complete the IOCTL 15786 * with the error noted. 15787 * However, ill_dl_phys was called on an ill queue 15788 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15789 * set. But the ioctl is known to be pending on ill_wq. 15790 */ 15791 if (!ill->ill_ifname_pending) 15792 break; 15793 ill->ill_ifname_pending = 0; 15794 if (!ioctl_aborted) 15795 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15796 if (mp1 != NULL) { 15797 /* 15798 * This operation (SIOCSLIFNAME) must have 15799 * happened on the ill. Assert there is no conn 15800 */ 15801 ASSERT(connp == NULL); 15802 q = ill->ill_wq; 15803 } 15804 break; 15805 case DL_BIND_REQ: 15806 ill_dlpi_done(ill, DL_BIND_REQ); 15807 if (ill->ill_ifname_pending) 15808 break; 15809 /* 15810 * Something went wrong with the bind. We presumably 15811 * have an IOCTL hanging out waiting for completion. 15812 * Find it, take down the interface that was coming 15813 * up, and complete the IOCTL with the error noted. 15814 */ 15815 if (!ioctl_aborted) 15816 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15817 if (mp1 != NULL) { 15818 /* 15819 * This operation (SIOCSLIFFLAGS) must have 15820 * happened from a conn. 15821 */ 15822 ASSERT(connp != NULL); 15823 q = CONNP_TO_WQ(connp); 15824 if (ill->ill_move_in_progress) { 15825 ILL_CLEAR_MOVE(ill); 15826 } 15827 (void) ipif_down(ipif, NULL, NULL); 15828 /* error is set below the switch */ 15829 } 15830 break; 15831 case DL_ENABMULTI_REQ: 15832 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 15833 15834 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15835 ill->ill_dlpi_multicast_state = IDS_FAILED; 15836 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15837 ipif_t *ipif; 15838 15839 log = B_FALSE; 15840 printf("ip: joining multicasts failed (%d)" 15841 " on %s - will use link layer " 15842 "broadcasts for multicast\n", 15843 dlea->dl_errno, ill->ill_name); 15844 15845 /* 15846 * Set up the multicast mapping alone. 15847 * writer, so ok to access ill->ill_ipif 15848 * without any lock. 15849 */ 15850 ipif = ill->ill_ipif; 15851 mutex_enter(&ill->ill_phyint->phyint_lock); 15852 ill->ill_phyint->phyint_flags |= 15853 PHYI_MULTI_BCAST; 15854 mutex_exit(&ill->ill_phyint->phyint_lock); 15855 15856 if (!ill->ill_isv6) { 15857 (void) ipif_arp_setup_multicast(ipif, 15858 NULL); 15859 } else { 15860 (void) ipif_ndp_setup_multicast(ipif, 15861 NULL); 15862 } 15863 } 15864 freemsg(mp); /* Don't want to pass this up */ 15865 return; 15866 case DL_CAPABILITY_REQ: 15867 case DL_CONTROL_REQ: 15868 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15869 "DL_CAPABILITY/CONTROL REQ\n")); 15870 ill_dlpi_done(ill, dlea->dl_error_primitive); 15871 ill->ill_dlpi_capab_state = IDS_FAILED; 15872 freemsg(mp); 15873 return; 15874 } 15875 /* 15876 * Note the error for IOCTL completion (mp1 is set when 15877 * ready to complete ioctl). If ill_ifname_pending_err is 15878 * set, an error occured during plumbing (ill_ifname_pending), 15879 * so we want to report that error. 15880 * 15881 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15882 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15883 * expected to get errack'd if the driver doesn't support 15884 * these flags (e.g. ethernet). log will be set to B_FALSE 15885 * if these error conditions are encountered. 15886 */ 15887 if (mp1 != NULL) { 15888 if (ill->ill_ifname_pending_err != 0) { 15889 err = ill->ill_ifname_pending_err; 15890 ill->ill_ifname_pending_err = 0; 15891 } else { 15892 err = dlea->dl_unix_errno ? 15893 dlea->dl_unix_errno : ENXIO; 15894 } 15895 /* 15896 * If we're plumbing an interface and an error hasn't already 15897 * been saved, set ill_ifname_pending_err to the error passed 15898 * up. Ignore the error if log is B_FALSE (see comment above). 15899 */ 15900 } else if (log && ill->ill_ifname_pending && 15901 ill->ill_ifname_pending_err == 0) { 15902 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15903 dlea->dl_unix_errno : ENXIO; 15904 } 15905 15906 if (log) 15907 ip_dlpi_error(ill, dlea->dl_error_primitive, 15908 dlea->dl_errno, dlea->dl_unix_errno); 15909 break; 15910 case DL_CAPABILITY_ACK: { 15911 boolean_t reneg_flag = B_FALSE; 15912 /* Call a routine to handle this one. */ 15913 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15914 /* 15915 * Check if the ACK is due to renegotiation case since we 15916 * will need to send a new CAPABILITY_REQ later. 15917 */ 15918 if (ill->ill_dlpi_capab_state == IDS_RENEG) { 15919 /* This is the ack for a renogiation case */ 15920 reneg_flag = B_TRUE; 15921 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 15922 } 15923 ill_capability_ack(ill, mp); 15924 if (reneg_flag) 15925 ill_capability_probe(ill); 15926 break; 15927 } 15928 case DL_CONTROL_ACK: 15929 /* We treat all of these as "fire and forget" */ 15930 ill_dlpi_done(ill, DL_CONTROL_REQ); 15931 break; 15932 case DL_INFO_ACK: 15933 /* Call a routine to handle this one. */ 15934 ill_dlpi_done(ill, DL_INFO_REQ); 15935 ip_ll_subnet_defaults(ill, mp); 15936 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15937 return; 15938 case DL_BIND_ACK: 15939 /* 15940 * We should have an IOCTL waiting on this unless 15941 * sent by ill_dl_phys, in which case just return 15942 */ 15943 ill_dlpi_done(ill, DL_BIND_REQ); 15944 if (ill->ill_ifname_pending) 15945 break; 15946 15947 if (!ioctl_aborted) 15948 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15949 if (mp1 == NULL) 15950 break; 15951 /* 15952 * Because mp1 was added by ill_dl_up(), and it always 15953 * passes a valid connp, connp must be valid here. 15954 */ 15955 ASSERT(connp != NULL); 15956 q = CONNP_TO_WQ(connp); 15957 15958 /* 15959 * We are exclusive. So nothing can change even after 15960 * we get the pending mp. If need be we can put it back 15961 * and restart, as in calling ipif_arp_up() below. 15962 */ 15963 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15964 15965 mutex_enter(&ill->ill_lock); 15966 15967 ill->ill_dl_up = 1; 15968 15969 if ((info = ill->ill_nic_event_info) != NULL) { 15970 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15971 "attached for %s\n", info->hne_event, 15972 ill->ill_name)); 15973 if (info->hne_data != NULL) 15974 kmem_free(info->hne_data, info->hne_datalen); 15975 kmem_free(info, sizeof (hook_nic_event_t)); 15976 } 15977 15978 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15979 if (info != NULL) { 15980 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 15981 info->hne_lif = 0; 15982 info->hne_event = NE_UP; 15983 info->hne_data = NULL; 15984 info->hne_datalen = 0; 15985 info->hne_family = ill->ill_isv6 ? 15986 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 15987 } else 15988 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15989 "event information for %s (ENOMEM)\n", 15990 ill->ill_name)); 15991 15992 ill->ill_nic_event_info = info; 15993 15994 mutex_exit(&ill->ill_lock); 15995 15996 /* 15997 * Now bring up the resolver; when that is complete, we'll 15998 * create IREs. Note that we intentionally mirror what 15999 * ipif_up() would have done, because we got here by way of 16000 * ill_dl_up(), which stopped ipif_up()'s processing. 16001 */ 16002 if (ill->ill_isv6) { 16003 /* 16004 * v6 interfaces. 16005 * Unlike ARP which has to do another bind 16006 * and attach, once we get here we are 16007 * done with NDP. Except in the case of 16008 * ILLF_XRESOLV, in which case we send an 16009 * AR_INTERFACE_UP to the external resolver. 16010 * If all goes well, the ioctl will complete 16011 * in ip_rput(). If there's an error, we 16012 * complete it here. 16013 */ 16014 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr); 16015 if (err == 0) { 16016 if (ill->ill_flags & ILLF_XRESOLV) { 16017 mutex_enter(&connp->conn_lock); 16018 mutex_enter(&ill->ill_lock); 16019 success = ipsq_pending_mp_add( 16020 connp, ipif, q, mp1, 0); 16021 mutex_exit(&ill->ill_lock); 16022 mutex_exit(&connp->conn_lock); 16023 if (success) { 16024 err = ipif_resolver_up(ipif, 16025 Res_act_initial); 16026 if (err == EINPROGRESS) { 16027 freemsg(mp); 16028 return; 16029 } 16030 ASSERT(err != 0); 16031 mp1 = ipsq_pending_mp_get(ipsq, 16032 &connp); 16033 ASSERT(mp1 != NULL); 16034 } else { 16035 /* conn has started closing */ 16036 err = EINTR; 16037 } 16038 } else { /* Non XRESOLV interface */ 16039 (void) ipif_resolver_up(ipif, 16040 Res_act_initial); 16041 err = ipif_up_done_v6(ipif); 16042 } 16043 } 16044 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 16045 /* 16046 * ARP and other v4 external resolvers. 16047 * Leave the pending mblk intact so that 16048 * the ioctl completes in ip_rput(). 16049 */ 16050 mutex_enter(&connp->conn_lock); 16051 mutex_enter(&ill->ill_lock); 16052 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 16053 mutex_exit(&ill->ill_lock); 16054 mutex_exit(&connp->conn_lock); 16055 if (success) { 16056 err = ipif_resolver_up(ipif, Res_act_initial); 16057 if (err == EINPROGRESS) { 16058 freemsg(mp); 16059 return; 16060 } 16061 ASSERT(err != 0); 16062 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16063 } else { 16064 /* The conn has started closing */ 16065 err = EINTR; 16066 } 16067 } else { 16068 /* 16069 * This one is complete. Reply to pending ioctl. 16070 */ 16071 (void) ipif_resolver_up(ipif, Res_act_initial); 16072 err = ipif_up_done(ipif); 16073 } 16074 16075 if ((err == 0) && (ill->ill_up_ipifs)) { 16076 err = ill_up_ipifs(ill, q, mp1); 16077 if (err == EINPROGRESS) { 16078 freemsg(mp); 16079 return; 16080 } 16081 } 16082 16083 if (ill->ill_up_ipifs) { 16084 ill_group_cleanup(ill); 16085 } 16086 16087 break; 16088 case DL_NOTIFY_IND: { 16089 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16090 ire_t *ire; 16091 boolean_t need_ire_walk_v4 = B_FALSE; 16092 boolean_t need_ire_walk_v6 = B_FALSE; 16093 16094 switch (notify->dl_notification) { 16095 case DL_NOTE_PHYS_ADDR: 16096 err = ill_set_phys_addr(ill, mp); 16097 break; 16098 16099 case DL_NOTE_FASTPATH_FLUSH: 16100 ill_fastpath_flush(ill); 16101 break; 16102 16103 case DL_NOTE_SDU_SIZE: 16104 /* 16105 * Change the MTU size of the interface, of all 16106 * attached ipif's, and of all relevant ire's. The 16107 * new value's a uint32_t at notify->dl_data. 16108 * Mtu change Vs. new ire creation - protocol below. 16109 * 16110 * a Mark the ipif as IPIF_CHANGING. 16111 * b Set the new mtu in the ipif. 16112 * c Change the ire_max_frag on all affected ires 16113 * d Unmark the IPIF_CHANGING 16114 * 16115 * To see how the protocol works, assume an interface 16116 * route is also being added simultaneously by 16117 * ip_rt_add and let 'ipif' be the ipif referenced by 16118 * the ire. If the ire is created before step a, 16119 * it will be cleaned up by step c. If the ire is 16120 * created after step d, it will see the new value of 16121 * ipif_mtu. Any attempt to create the ire between 16122 * steps a to d will fail because of the IPIF_CHANGING 16123 * flag. Note that ire_create() is passed a pointer to 16124 * the ipif_mtu, and not the value. During ire_add 16125 * under the bucket lock, the ire_max_frag of the 16126 * new ire being created is set from the ipif/ire from 16127 * which it is being derived. 16128 */ 16129 mutex_enter(&ill->ill_lock); 16130 ill->ill_max_frag = (uint_t)notify->dl_data; 16131 16132 /* 16133 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 16134 * leave it alone 16135 */ 16136 if (ill->ill_mtu_userspecified) { 16137 mutex_exit(&ill->ill_lock); 16138 break; 16139 } 16140 ill->ill_max_mtu = ill->ill_max_frag; 16141 if (ill->ill_isv6) { 16142 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16143 ill->ill_max_mtu = IPV6_MIN_MTU; 16144 } else { 16145 if (ill->ill_max_mtu < IP_MIN_MTU) 16146 ill->ill_max_mtu = IP_MIN_MTU; 16147 } 16148 for (ipif = ill->ill_ipif; ipif != NULL; 16149 ipif = ipif->ipif_next) { 16150 /* 16151 * Don't override the mtu if the user 16152 * has explicitly set it. 16153 */ 16154 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16155 continue; 16156 ipif->ipif_mtu = (uint_t)notify->dl_data; 16157 if (ipif->ipif_isv6) 16158 ire = ipif_to_ire_v6(ipif); 16159 else 16160 ire = ipif_to_ire(ipif); 16161 if (ire != NULL) { 16162 ire->ire_max_frag = ipif->ipif_mtu; 16163 ire_refrele(ire); 16164 } 16165 if (ipif->ipif_flags & IPIF_UP) { 16166 if (ill->ill_isv6) 16167 need_ire_walk_v6 = B_TRUE; 16168 else 16169 need_ire_walk_v4 = B_TRUE; 16170 } 16171 } 16172 mutex_exit(&ill->ill_lock); 16173 if (need_ire_walk_v4) 16174 ire_walk_v4(ill_mtu_change, (char *)ill, 16175 ALL_ZONES, ipst); 16176 if (need_ire_walk_v6) 16177 ire_walk_v6(ill_mtu_change, (char *)ill, 16178 ALL_ZONES, ipst); 16179 break; 16180 case DL_NOTE_LINK_UP: 16181 case DL_NOTE_LINK_DOWN: { 16182 /* 16183 * We are writer. ill / phyint / ipsq assocs stable. 16184 * The RUNNING flag reflects the state of the link. 16185 */ 16186 phyint_t *phyint = ill->ill_phyint; 16187 uint64_t new_phyint_flags; 16188 boolean_t changed = B_FALSE; 16189 boolean_t went_up; 16190 16191 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16192 mutex_enter(&phyint->phyint_lock); 16193 new_phyint_flags = went_up ? 16194 phyint->phyint_flags | PHYI_RUNNING : 16195 phyint->phyint_flags & ~PHYI_RUNNING; 16196 if (new_phyint_flags != phyint->phyint_flags) { 16197 phyint->phyint_flags = new_phyint_flags; 16198 changed = B_TRUE; 16199 } 16200 mutex_exit(&phyint->phyint_lock); 16201 /* 16202 * ill_restart_dad handles the DAD restart and routing 16203 * socket notification logic. 16204 */ 16205 if (changed) { 16206 ill_restart_dad(phyint->phyint_illv4, went_up); 16207 ill_restart_dad(phyint->phyint_illv6, went_up); 16208 } 16209 break; 16210 } 16211 case DL_NOTE_PROMISC_ON_PHYS: 16212 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16213 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16214 mutex_enter(&ill->ill_lock); 16215 ill->ill_promisc_on_phys = B_TRUE; 16216 mutex_exit(&ill->ill_lock); 16217 break; 16218 case DL_NOTE_PROMISC_OFF_PHYS: 16219 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16220 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16221 mutex_enter(&ill->ill_lock); 16222 ill->ill_promisc_on_phys = B_FALSE; 16223 mutex_exit(&ill->ill_lock); 16224 break; 16225 case DL_NOTE_CAPAB_RENEG: 16226 /* 16227 * Something changed on the driver side. 16228 * It wants us to renegotiate the capabilities 16229 * on this ill. The most likely cause is the 16230 * aggregation interface under us where a 16231 * port got added or went away. 16232 * 16233 * We reset the capabilities and set the 16234 * state to IDS_RENG so that when the ack 16235 * comes back, we can start the 16236 * renegotiation process. 16237 */ 16238 ill_capability_reset(ill); 16239 ill->ill_dlpi_capab_state = IDS_RENEG; 16240 break; 16241 default: 16242 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16243 "type 0x%x for DL_NOTIFY_IND\n", 16244 notify->dl_notification)); 16245 break; 16246 } 16247 16248 /* 16249 * As this is an asynchronous operation, we 16250 * should not call ill_dlpi_done 16251 */ 16252 break; 16253 } 16254 case DL_NOTIFY_ACK: { 16255 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16256 16257 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16258 ill->ill_note_link = 1; 16259 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16260 break; 16261 } 16262 case DL_PHYS_ADDR_ACK: { 16263 /* 16264 * As part of plumbing the interface via SIOCSLIFNAME, 16265 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16266 * whose answers we receive here. As each answer is received, 16267 * we call ill_dlpi_done() to dispatch the next request as 16268 * we're processing the current one. Once all answers have 16269 * been received, we use ipsq_pending_mp_get() to dequeue the 16270 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16271 * is invoked from an ill queue, conn_oper_pending_ill is not 16272 * available, but we know the ioctl is pending on ill_wq.) 16273 */ 16274 uint_t paddrlen, paddroff; 16275 16276 paddrreq = ill->ill_phys_addr_pend; 16277 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16278 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16279 16280 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16281 if (paddrreq == DL_IPV6_TOKEN) { 16282 /* 16283 * bcopy to low-order bits of ill_token 16284 * 16285 * XXX Temporary hack - currently, all known tokens 16286 * are 64 bits, so I'll cheat for the moment. 16287 */ 16288 bcopy(mp->b_rptr + paddroff, 16289 &ill->ill_token.s6_addr32[2], paddrlen); 16290 ill->ill_token_length = paddrlen; 16291 break; 16292 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16293 ASSERT(ill->ill_nd_lla_mp == NULL); 16294 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16295 mp = NULL; 16296 break; 16297 } 16298 16299 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16300 ASSERT(ill->ill_phys_addr_mp == NULL); 16301 if (!ill->ill_ifname_pending) 16302 break; 16303 ill->ill_ifname_pending = 0; 16304 if (!ioctl_aborted) 16305 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16306 if (mp1 != NULL) { 16307 ASSERT(connp == NULL); 16308 q = ill->ill_wq; 16309 } 16310 /* 16311 * If any error acks received during the plumbing sequence, 16312 * ill_ifname_pending_err will be set. Break out and send up 16313 * the error to the pending ioctl. 16314 */ 16315 if (ill->ill_ifname_pending_err != 0) { 16316 err = ill->ill_ifname_pending_err; 16317 ill->ill_ifname_pending_err = 0; 16318 break; 16319 } 16320 16321 ill->ill_phys_addr_mp = mp; 16322 ill->ill_phys_addr = mp->b_rptr + paddroff; 16323 mp = NULL; 16324 16325 /* 16326 * If paddrlen is zero, the DLPI provider doesn't support 16327 * physical addresses. The other two tests were historical 16328 * workarounds for bugs in our former PPP implementation, but 16329 * now other things have grown dependencies on them -- e.g., 16330 * the tun module specifies a dl_addr_length of zero in its 16331 * DL_BIND_ACK, but then specifies an incorrect value in its 16332 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16333 * but only after careful testing ensures that all dependent 16334 * broken DLPI providers have been fixed. 16335 */ 16336 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16337 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16338 ill->ill_phys_addr = NULL; 16339 } else if (paddrlen != ill->ill_phys_addr_length) { 16340 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16341 paddrlen, ill->ill_phys_addr_length)); 16342 err = EINVAL; 16343 break; 16344 } 16345 16346 if (ill->ill_nd_lla_mp == NULL) { 16347 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16348 err = ENOMEM; 16349 break; 16350 } 16351 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16352 } 16353 16354 /* 16355 * Set the interface token. If the zeroth interface address 16356 * is unspecified, then set it to the link local address. 16357 */ 16358 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16359 (void) ill_setdefaulttoken(ill); 16360 16361 ASSERT(ill->ill_ipif->ipif_id == 0); 16362 if (ipif != NULL && 16363 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16364 (void) ipif_setlinklocal(ipif); 16365 } 16366 break; 16367 } 16368 case DL_OK_ACK: 16369 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16370 dlpi_prim_str((int)dloa->dl_correct_primitive), 16371 dloa->dl_correct_primitive)); 16372 switch (dloa->dl_correct_primitive) { 16373 case DL_UNBIND_REQ: 16374 case DL_ATTACH_REQ: 16375 case DL_DETACH_REQ: 16376 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16377 break; 16378 } 16379 break; 16380 default: 16381 break; 16382 } 16383 16384 freemsg(mp); 16385 if (mp1 != NULL) { 16386 /* 16387 * The operation must complete without EINPROGRESS 16388 * since ipsq_pending_mp_get() has removed the mblk 16389 * from ipsq_pending_mp. Otherwise, the operation 16390 * will be stuck forever in the ipsq. 16391 */ 16392 ASSERT(err != EINPROGRESS); 16393 16394 switch (ipsq->ipsq_current_ioctl) { 16395 case 0: 16396 ipsq_current_finish(ipsq); 16397 break; 16398 16399 case SIOCLIFADDIF: 16400 case SIOCSLIFNAME: 16401 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16402 break; 16403 16404 default: 16405 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16406 break; 16407 } 16408 } 16409 } 16410 16411 /* 16412 * ip_rput_other is called by ip_rput to handle messages modifying the global 16413 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16414 */ 16415 /* ARGSUSED */ 16416 void 16417 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16418 { 16419 ill_t *ill; 16420 struct iocblk *iocp; 16421 mblk_t *mp1; 16422 conn_t *connp = NULL; 16423 16424 ip1dbg(("ip_rput_other ")); 16425 ill = (ill_t *)q->q_ptr; 16426 /* 16427 * This routine is not a writer in the case of SIOCGTUNPARAM 16428 * in which case ipsq is NULL. 16429 */ 16430 if (ipsq != NULL) { 16431 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16432 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16433 } 16434 16435 switch (mp->b_datap->db_type) { 16436 case M_ERROR: 16437 case M_HANGUP: 16438 /* 16439 * The device has a problem. We force the ILL down. It can 16440 * be brought up again manually using SIOCSIFFLAGS (via 16441 * ifconfig or equivalent). 16442 */ 16443 ASSERT(ipsq != NULL); 16444 if (mp->b_rptr < mp->b_wptr) 16445 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16446 if (ill->ill_error == 0) 16447 ill->ill_error = ENXIO; 16448 if (!ill_down_start(q, mp)) 16449 return; 16450 ipif_all_down_tail(ipsq, q, mp, NULL); 16451 break; 16452 case M_IOCACK: 16453 iocp = (struct iocblk *)mp->b_rptr; 16454 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16455 switch (iocp->ioc_cmd) { 16456 case SIOCSTUNPARAM: 16457 case OSIOCSTUNPARAM: 16458 ASSERT(ipsq != NULL); 16459 /* 16460 * Finish socket ioctl passed through to tun. 16461 * We should have an IOCTL waiting on this. 16462 */ 16463 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16464 if (ill->ill_isv6) { 16465 struct iftun_req *ta; 16466 16467 /* 16468 * if a source or destination is 16469 * being set, try and set the link 16470 * local address for the tunnel 16471 */ 16472 ta = (struct iftun_req *)mp->b_cont-> 16473 b_cont->b_rptr; 16474 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16475 ipif_set_tun_llink(ill, ta); 16476 } 16477 16478 } 16479 if (mp1 != NULL) { 16480 /* 16481 * Now copy back the b_next/b_prev used by 16482 * mi code for the mi_copy* functions. 16483 * See ip_sioctl_tunparam() for the reason. 16484 * Also protect against missing b_cont. 16485 */ 16486 if (mp->b_cont != NULL) { 16487 mp->b_cont->b_next = 16488 mp1->b_cont->b_next; 16489 mp->b_cont->b_prev = 16490 mp1->b_cont->b_prev; 16491 } 16492 inet_freemsg(mp1); 16493 ASSERT(connp != NULL); 16494 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16495 iocp->ioc_error, NO_COPYOUT, ipsq); 16496 } else { 16497 ASSERT(connp == NULL); 16498 putnext(q, mp); 16499 } 16500 break; 16501 case SIOCGTUNPARAM: 16502 case OSIOCGTUNPARAM: 16503 /* 16504 * This is really M_IOCDATA from the tunnel driver. 16505 * convert back and complete the ioctl. 16506 * We should have an IOCTL waiting on this. 16507 */ 16508 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16509 if (mp1) { 16510 /* 16511 * Now copy back the b_next/b_prev used by 16512 * mi code for the mi_copy* functions. 16513 * See ip_sioctl_tunparam() for the reason. 16514 * Also protect against missing b_cont. 16515 */ 16516 if (mp->b_cont != NULL) { 16517 mp->b_cont->b_next = 16518 mp1->b_cont->b_next; 16519 mp->b_cont->b_prev = 16520 mp1->b_cont->b_prev; 16521 } 16522 inet_freemsg(mp1); 16523 if (iocp->ioc_error == 0) 16524 mp->b_datap->db_type = M_IOCDATA; 16525 ASSERT(connp != NULL); 16526 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16527 iocp->ioc_error, COPYOUT, NULL); 16528 } else { 16529 ASSERT(connp == NULL); 16530 putnext(q, mp); 16531 } 16532 break; 16533 default: 16534 break; 16535 } 16536 break; 16537 case M_IOCNAK: 16538 iocp = (struct iocblk *)mp->b_rptr; 16539 16540 switch (iocp->ioc_cmd) { 16541 int mode; 16542 16543 case DL_IOC_HDR_INFO: 16544 /* 16545 * If this was the first attempt turn of the 16546 * fastpath probing. 16547 */ 16548 mutex_enter(&ill->ill_lock); 16549 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16550 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16551 mutex_exit(&ill->ill_lock); 16552 ill_fastpath_nack(ill); 16553 ip1dbg(("ip_rput: DLPI fastpath off on " 16554 "interface %s\n", 16555 ill->ill_name)); 16556 } else { 16557 mutex_exit(&ill->ill_lock); 16558 } 16559 freemsg(mp); 16560 break; 16561 case SIOCSTUNPARAM: 16562 case OSIOCSTUNPARAM: 16563 ASSERT(ipsq != NULL); 16564 /* 16565 * Finish socket ioctl passed through to tun 16566 * We should have an IOCTL waiting on this. 16567 */ 16568 /* FALLTHRU */ 16569 case SIOCGTUNPARAM: 16570 case OSIOCGTUNPARAM: 16571 /* 16572 * This is really M_IOCDATA from the tunnel driver. 16573 * convert back and complete the ioctl. 16574 * We should have an IOCTL waiting on this. 16575 */ 16576 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16577 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16578 mp1 = ill_pending_mp_get(ill, &connp, 16579 iocp->ioc_id); 16580 mode = COPYOUT; 16581 ipsq = NULL; 16582 } else { 16583 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16584 mode = NO_COPYOUT; 16585 } 16586 if (mp1 != NULL) { 16587 /* 16588 * Now copy back the b_next/b_prev used by 16589 * mi code for the mi_copy* functions. 16590 * See ip_sioctl_tunparam() for the reason. 16591 * Also protect against missing b_cont. 16592 */ 16593 if (mp->b_cont != NULL) { 16594 mp->b_cont->b_next = 16595 mp1->b_cont->b_next; 16596 mp->b_cont->b_prev = 16597 mp1->b_cont->b_prev; 16598 } 16599 inet_freemsg(mp1); 16600 if (iocp->ioc_error == 0) 16601 iocp->ioc_error = EINVAL; 16602 ASSERT(connp != NULL); 16603 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16604 iocp->ioc_error, mode, ipsq); 16605 } else { 16606 ASSERT(connp == NULL); 16607 putnext(q, mp); 16608 } 16609 break; 16610 default: 16611 break; 16612 } 16613 default: 16614 break; 16615 } 16616 } 16617 16618 /* 16619 * NOTE : This function does not ire_refrele the ire argument passed in. 16620 * 16621 * IPQoS notes 16622 * IP policy is invoked twice for a forwarded packet, once on the read side 16623 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16624 * enabled. An additional parameter, in_ill, has been added for this purpose. 16625 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16626 * because ip_mroute drops this information. 16627 * 16628 */ 16629 void 16630 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16631 { 16632 uint32_t pkt_len; 16633 queue_t *q; 16634 uint32_t sum; 16635 #define rptr ((uchar_t *)ipha) 16636 uint32_t max_frag; 16637 uint32_t ill_index; 16638 ill_t *out_ill; 16639 mib2_ipIfStatsEntry_t *mibptr; 16640 ip_stack_t *ipst = in_ill->ill_ipst; 16641 16642 /* Get the ill_index of the incoming ILL */ 16643 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16644 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16645 16646 /* Initiate Read side IPPF processing */ 16647 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16648 ip_process(IPP_FWD_IN, &mp, ill_index); 16649 if (mp == NULL) { 16650 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16651 "during IPPF processing\n")); 16652 return; 16653 } 16654 } 16655 16656 pkt_len = ntohs(ipha->ipha_length); 16657 16658 /* Adjust the checksum to reflect the ttl decrement. */ 16659 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16660 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16661 16662 if (ipha->ipha_ttl-- <= 1) { 16663 if (ip_csum_hdr(ipha)) { 16664 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16665 goto drop_pkt; 16666 } 16667 /* 16668 * Note: ire_stq this will be NULL for multicast 16669 * datagrams using the long path through arp (the IRE 16670 * is not an IRE_CACHE). This should not cause 16671 * problems since we don't generate ICMP errors for 16672 * multicast packets. 16673 */ 16674 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16675 q = ire->ire_stq; 16676 if (q != NULL) { 16677 /* Sent by forwarding path, and router is global zone */ 16678 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16679 GLOBAL_ZONEID, ipst); 16680 } else 16681 freemsg(mp); 16682 return; 16683 } 16684 16685 /* 16686 * Don't forward if the interface is down 16687 */ 16688 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16689 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16690 ip2dbg(("ip_rput_forward:interface is down\n")); 16691 goto drop_pkt; 16692 } 16693 16694 /* Get the ill_index of the outgoing ILL */ 16695 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 16696 16697 out_ill = ire->ire_ipif->ipif_ill; 16698 16699 DTRACE_PROBE4(ip4__forwarding__start, 16700 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16701 16702 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16703 ipst->ips_ipv4firewall_forwarding, 16704 in_ill, out_ill, ipha, mp, mp, ipst); 16705 16706 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16707 16708 if (mp == NULL) 16709 return; 16710 pkt_len = ntohs(ipha->ipha_length); 16711 16712 if (is_system_labeled()) { 16713 mblk_t *mp1; 16714 16715 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16716 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16717 goto drop_pkt; 16718 } 16719 /* Size may have changed */ 16720 mp = mp1; 16721 ipha = (ipha_t *)mp->b_rptr; 16722 pkt_len = ntohs(ipha->ipha_length); 16723 } 16724 16725 /* Check if there are options to update */ 16726 if (!IS_SIMPLE_IPH(ipha)) { 16727 if (ip_csum_hdr(ipha)) { 16728 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16729 goto drop_pkt; 16730 } 16731 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16732 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16733 return; 16734 } 16735 16736 ipha->ipha_hdr_checksum = 0; 16737 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16738 } 16739 max_frag = ire->ire_max_frag; 16740 if (pkt_len > max_frag) { 16741 /* 16742 * It needs fragging on its way out. We haven't 16743 * verified the header checksum yet. Since we 16744 * are going to put a surely good checksum in the 16745 * outgoing header, we have to make sure that it 16746 * was good coming in. 16747 */ 16748 if (ip_csum_hdr(ipha)) { 16749 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16750 goto drop_pkt; 16751 } 16752 /* Initiate Write side IPPF processing */ 16753 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16754 ip_process(IPP_FWD_OUT, &mp, ill_index); 16755 if (mp == NULL) { 16756 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16757 " during IPPF processing\n")); 16758 return; 16759 } 16760 } 16761 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16762 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16763 return; 16764 } 16765 16766 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16767 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16768 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16769 ipst->ips_ipv4firewall_physical_out, 16770 NULL, out_ill, ipha, mp, mp, ipst); 16771 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16772 if (mp == NULL) 16773 return; 16774 16775 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16776 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16777 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16778 /* ip_xmit_v4 always consumes the packet */ 16779 return; 16780 16781 drop_pkt:; 16782 ip1dbg(("ip_rput_forward: drop pkt\n")); 16783 freemsg(mp); 16784 #undef rptr 16785 } 16786 16787 void 16788 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16789 { 16790 ire_t *ire; 16791 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16792 16793 ASSERT(!ipif->ipif_isv6); 16794 /* 16795 * Find an IRE which matches the destination and the outgoing 16796 * queue in the cache table. All we need is an IRE_CACHE which 16797 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16798 * then it is enough to have some IRE_CACHE in the group. 16799 */ 16800 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16801 dst = ipif->ipif_pp_dst_addr; 16802 16803 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16804 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16805 if (ire == NULL) { 16806 /* 16807 * Mark this packet to make it be delivered to 16808 * ip_rput_forward after the new ire has been 16809 * created. 16810 */ 16811 mp->b_prev = NULL; 16812 mp->b_next = mp; 16813 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16814 NULL, 0, GLOBAL_ZONEID, &zero_info); 16815 } else { 16816 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16817 IRE_REFRELE(ire); 16818 } 16819 } 16820 16821 /* Update any source route, record route or timestamp options */ 16822 static int 16823 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16824 { 16825 ipoptp_t opts; 16826 uchar_t *opt; 16827 uint8_t optval; 16828 uint8_t optlen; 16829 ipaddr_t dst; 16830 uint32_t ts; 16831 ire_t *dst_ire = NULL; 16832 ire_t *tmp_ire = NULL; 16833 timestruc_t now; 16834 16835 ip2dbg(("ip_rput_forward_options\n")); 16836 dst = ipha->ipha_dst; 16837 for (optval = ipoptp_first(&opts, ipha); 16838 optval != IPOPT_EOL; 16839 optval = ipoptp_next(&opts)) { 16840 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16841 opt = opts.ipoptp_cur; 16842 optlen = opts.ipoptp_len; 16843 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16844 optval, opts.ipoptp_len)); 16845 switch (optval) { 16846 uint32_t off; 16847 case IPOPT_SSRR: 16848 case IPOPT_LSRR: 16849 /* Check if adminstratively disabled */ 16850 if (!ipst->ips_ip_forward_src_routed) { 16851 if (ire->ire_stq != NULL) { 16852 /* 16853 * Sent by forwarding path, and router 16854 * is global zone 16855 */ 16856 icmp_unreachable(ire->ire_stq, mp, 16857 ICMP_SOURCE_ROUTE_FAILED, 16858 GLOBAL_ZONEID, ipst); 16859 } else { 16860 ip0dbg(("ip_rput_forward_options: " 16861 "unable to send unreach\n")); 16862 freemsg(mp); 16863 } 16864 return (-1); 16865 } 16866 16867 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16868 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16869 if (dst_ire == NULL) { 16870 /* 16871 * Must be partial since ip_rput_options 16872 * checked for strict. 16873 */ 16874 break; 16875 } 16876 off = opt[IPOPT_OFFSET]; 16877 off--; 16878 redo_srr: 16879 if (optlen < IP_ADDR_LEN || 16880 off > optlen - IP_ADDR_LEN) { 16881 /* End of source route */ 16882 ip1dbg(( 16883 "ip_rput_forward_options: end of SR\n")); 16884 ire_refrele(dst_ire); 16885 break; 16886 } 16887 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16888 bcopy(&ire->ire_src_addr, (char *)opt + off, 16889 IP_ADDR_LEN); 16890 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16891 ntohl(dst))); 16892 16893 /* 16894 * Check if our address is present more than 16895 * once as consecutive hops in source route. 16896 */ 16897 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16898 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16899 if (tmp_ire != NULL) { 16900 ire_refrele(tmp_ire); 16901 off += IP_ADDR_LEN; 16902 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16903 goto redo_srr; 16904 } 16905 ipha->ipha_dst = dst; 16906 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16907 ire_refrele(dst_ire); 16908 break; 16909 case IPOPT_RR: 16910 off = opt[IPOPT_OFFSET]; 16911 off--; 16912 if (optlen < IP_ADDR_LEN || 16913 off > optlen - IP_ADDR_LEN) { 16914 /* No more room - ignore */ 16915 ip1dbg(( 16916 "ip_rput_forward_options: end of RR\n")); 16917 break; 16918 } 16919 bcopy(&ire->ire_src_addr, (char *)opt + off, 16920 IP_ADDR_LEN); 16921 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16922 break; 16923 case IPOPT_TS: 16924 /* Insert timestamp if there is room */ 16925 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16926 case IPOPT_TS_TSONLY: 16927 off = IPOPT_TS_TIMELEN; 16928 break; 16929 case IPOPT_TS_PRESPEC: 16930 case IPOPT_TS_PRESPEC_RFC791: 16931 /* Verify that the address matched */ 16932 off = opt[IPOPT_OFFSET] - 1; 16933 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16934 dst_ire = ire_ctable_lookup(dst, 0, 16935 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16936 MATCH_IRE_TYPE, ipst); 16937 if (dst_ire == NULL) { 16938 /* Not for us */ 16939 break; 16940 } 16941 ire_refrele(dst_ire); 16942 /* FALLTHRU */ 16943 case IPOPT_TS_TSANDADDR: 16944 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16945 break; 16946 default: 16947 /* 16948 * ip_*put_options should have already 16949 * dropped this packet. 16950 */ 16951 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16952 "unknown IT - bug in ip_rput_options?\n"); 16953 return (0); /* Keep "lint" happy */ 16954 } 16955 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16956 /* Increase overflow counter */ 16957 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16958 opt[IPOPT_POS_OV_FLG] = 16959 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16960 (off << 4)); 16961 break; 16962 } 16963 off = opt[IPOPT_OFFSET] - 1; 16964 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16965 case IPOPT_TS_PRESPEC: 16966 case IPOPT_TS_PRESPEC_RFC791: 16967 case IPOPT_TS_TSANDADDR: 16968 bcopy(&ire->ire_src_addr, 16969 (char *)opt + off, IP_ADDR_LEN); 16970 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16971 /* FALLTHRU */ 16972 case IPOPT_TS_TSONLY: 16973 off = opt[IPOPT_OFFSET] - 1; 16974 /* Compute # of milliseconds since midnight */ 16975 gethrestime(&now); 16976 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16977 now.tv_nsec / (NANOSEC / MILLISEC); 16978 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16979 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16980 break; 16981 } 16982 break; 16983 } 16984 } 16985 return (0); 16986 } 16987 16988 /* 16989 * This is called after processing at least one of AH/ESP headers. 16990 * 16991 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16992 * the actual, physical interface on which the packet was received, 16993 * but, when ip_strict_dst_multihoming is set to 1, could be the 16994 * interface which had the ipha_dst configured when the packet went 16995 * through ip_rput. The ill_index corresponding to the recv_ill 16996 * is saved in ipsec_in_rill_index 16997 */ 16998 void 16999 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 17000 { 17001 mblk_t *mp; 17002 ipaddr_t dst; 17003 in6_addr_t *v6dstp; 17004 ipha_t *ipha; 17005 ip6_t *ip6h; 17006 ipsec_in_t *ii; 17007 boolean_t ill_need_rele = B_FALSE; 17008 boolean_t rill_need_rele = B_FALSE; 17009 boolean_t ire_need_rele = B_FALSE; 17010 netstack_t *ns; 17011 ip_stack_t *ipst; 17012 17013 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 17014 ASSERT(ii->ipsec_in_ill_index != 0); 17015 ns = ii->ipsec_in_ns; 17016 ASSERT(ii->ipsec_in_ns != NULL); 17017 ipst = ns->netstack_ip; 17018 17019 mp = ipsec_mp->b_cont; 17020 ASSERT(mp != NULL); 17021 17022 17023 if (ill == NULL) { 17024 ASSERT(recv_ill == NULL); 17025 /* 17026 * We need to get the original queue on which ip_rput_local 17027 * or ip_rput_data_v6 was called. 17028 */ 17029 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 17030 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 17031 ill_need_rele = B_TRUE; 17032 17033 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 17034 recv_ill = ill_lookup_on_ifindex( 17035 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 17036 NULL, NULL, NULL, NULL, ipst); 17037 rill_need_rele = B_TRUE; 17038 } else { 17039 recv_ill = ill; 17040 } 17041 17042 if ((ill == NULL) || (recv_ill == NULL)) { 17043 ip0dbg(("ip_fanout_proto_again: interface " 17044 "disappeared\n")); 17045 if (ill != NULL) 17046 ill_refrele(ill); 17047 if (recv_ill != NULL) 17048 ill_refrele(recv_ill); 17049 freemsg(ipsec_mp); 17050 return; 17051 } 17052 } 17053 17054 ASSERT(ill != NULL && recv_ill != NULL); 17055 17056 if (mp->b_datap->db_type == M_CTL) { 17057 /* 17058 * AH/ESP is returning the ICMP message after 17059 * removing their headers. Fanout again till 17060 * it gets to the right protocol. 17061 */ 17062 if (ii->ipsec_in_v4) { 17063 icmph_t *icmph; 17064 int iph_hdr_length; 17065 int hdr_length; 17066 17067 ipha = (ipha_t *)mp->b_rptr; 17068 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17069 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17070 ipha = (ipha_t *)&icmph[1]; 17071 hdr_length = IPH_HDR_LENGTH(ipha); 17072 /* 17073 * icmp_inbound_error_fanout may need to do pullupmsg. 17074 * Reset the type to M_DATA. 17075 */ 17076 mp->b_datap->db_type = M_DATA; 17077 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17078 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17079 B_FALSE, ill, ii->ipsec_in_zoneid); 17080 } else { 17081 icmp6_t *icmp6; 17082 int hdr_length; 17083 17084 ip6h = (ip6_t *)mp->b_rptr; 17085 /* Don't call hdr_length_v6() unless you have to. */ 17086 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17087 hdr_length = ip_hdr_length_v6(mp, ip6h); 17088 else 17089 hdr_length = IPV6_HDR_LEN; 17090 17091 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17092 /* 17093 * icmp_inbound_error_fanout_v6 may need to do 17094 * pullupmsg. Reset the type to M_DATA. 17095 */ 17096 mp->b_datap->db_type = M_DATA; 17097 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17098 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 17099 } 17100 if (ill_need_rele) 17101 ill_refrele(ill); 17102 if (rill_need_rele) 17103 ill_refrele(recv_ill); 17104 return; 17105 } 17106 17107 if (ii->ipsec_in_v4) { 17108 ipha = (ipha_t *)mp->b_rptr; 17109 dst = ipha->ipha_dst; 17110 if (CLASSD(dst)) { 17111 /* 17112 * Multicast has to be delivered to all streams. 17113 */ 17114 dst = INADDR_BROADCAST; 17115 } 17116 17117 if (ire == NULL) { 17118 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17119 MBLK_GETLABEL(mp), ipst); 17120 if (ire == NULL) { 17121 if (ill_need_rele) 17122 ill_refrele(ill); 17123 if (rill_need_rele) 17124 ill_refrele(recv_ill); 17125 ip1dbg(("ip_fanout_proto_again: " 17126 "IRE not found")); 17127 freemsg(ipsec_mp); 17128 return; 17129 } 17130 ire_need_rele = B_TRUE; 17131 } 17132 17133 switch (ipha->ipha_protocol) { 17134 case IPPROTO_UDP: 17135 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17136 recv_ill); 17137 if (ire_need_rele) 17138 ire_refrele(ire); 17139 break; 17140 case IPPROTO_TCP: 17141 if (!ire_need_rele) 17142 IRE_REFHOLD(ire); 17143 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17144 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17145 IRE_REFRELE(ire); 17146 if (mp != NULL) 17147 squeue_enter_chain(GET_SQUEUE(mp), mp, 17148 mp, 1, SQTAG_IP_PROTO_AGAIN); 17149 break; 17150 case IPPROTO_SCTP: 17151 if (!ire_need_rele) 17152 IRE_REFHOLD(ire); 17153 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17154 ipsec_mp, 0, ill->ill_rq, dst); 17155 break; 17156 default: 17157 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17158 recv_ill); 17159 if (ire_need_rele) 17160 ire_refrele(ire); 17161 break; 17162 } 17163 } else { 17164 uint32_t rput_flags = 0; 17165 17166 ip6h = (ip6_t *)mp->b_rptr; 17167 v6dstp = &ip6h->ip6_dst; 17168 /* 17169 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17170 * address. 17171 * 17172 * Currently, we don't store that state in the IPSEC_IN 17173 * message, and we may need to. 17174 */ 17175 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17176 IP6_IN_LLMCAST : 0); 17177 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17178 NULL, NULL); 17179 } 17180 if (ill_need_rele) 17181 ill_refrele(ill); 17182 if (rill_need_rele) 17183 ill_refrele(recv_ill); 17184 } 17185 17186 /* 17187 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17188 * returns 'true' if there are still fragments left on the queue, in 17189 * which case we restart the timer. 17190 */ 17191 void 17192 ill_frag_timer(void *arg) 17193 { 17194 ill_t *ill = (ill_t *)arg; 17195 boolean_t frag_pending; 17196 ip_stack_t *ipst = ill->ill_ipst; 17197 17198 mutex_enter(&ill->ill_lock); 17199 ASSERT(!ill->ill_fragtimer_executing); 17200 if (ill->ill_state_flags & ILL_CONDEMNED) { 17201 ill->ill_frag_timer_id = 0; 17202 mutex_exit(&ill->ill_lock); 17203 return; 17204 } 17205 ill->ill_fragtimer_executing = 1; 17206 mutex_exit(&ill->ill_lock); 17207 17208 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17209 17210 /* 17211 * Restart the timer, if we have fragments pending or if someone 17212 * wanted us to be scheduled again. 17213 */ 17214 mutex_enter(&ill->ill_lock); 17215 ill->ill_fragtimer_executing = 0; 17216 ill->ill_frag_timer_id = 0; 17217 if (frag_pending || ill->ill_fragtimer_needrestart) 17218 ill_frag_timer_start(ill); 17219 mutex_exit(&ill->ill_lock); 17220 } 17221 17222 void 17223 ill_frag_timer_start(ill_t *ill) 17224 { 17225 ip_stack_t *ipst = ill->ill_ipst; 17226 17227 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17228 17229 /* If the ill is closing or opening don't proceed */ 17230 if (ill->ill_state_flags & ILL_CONDEMNED) 17231 return; 17232 17233 if (ill->ill_fragtimer_executing) { 17234 /* 17235 * ill_frag_timer is currently executing. Just record the 17236 * the fact that we want the timer to be restarted. 17237 * ill_frag_timer will post a timeout before it returns, 17238 * ensuring it will be called again. 17239 */ 17240 ill->ill_fragtimer_needrestart = 1; 17241 return; 17242 } 17243 17244 if (ill->ill_frag_timer_id == 0) { 17245 /* 17246 * The timer is neither running nor is the timeout handler 17247 * executing. Post a timeout so that ill_frag_timer will be 17248 * called 17249 */ 17250 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17251 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17252 ill->ill_fragtimer_needrestart = 0; 17253 } 17254 } 17255 17256 /* 17257 * This routine is needed for loopback when forwarding multicasts. 17258 * 17259 * IPQoS Notes: 17260 * IPPF processing is done in fanout routines. 17261 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17262 * processing for IPSec packets is done when it comes back in clear. 17263 * NOTE : The callers of this function need to do the ire_refrele for the 17264 * ire that is being passed in. 17265 */ 17266 void 17267 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17268 ill_t *recv_ill) 17269 { 17270 ill_t *ill = (ill_t *)q->q_ptr; 17271 uint32_t sum; 17272 uint32_t u1; 17273 uint32_t u2; 17274 int hdr_length; 17275 boolean_t mctl_present; 17276 mblk_t *first_mp = mp; 17277 mblk_t *hada_mp = NULL; 17278 ipha_t *inner_ipha; 17279 ip_stack_t *ipst; 17280 17281 ASSERT(recv_ill != NULL); 17282 ipst = recv_ill->ill_ipst; 17283 17284 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17285 "ip_rput_locl_start: q %p", q); 17286 17287 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17288 ASSERT(ill != NULL); 17289 17290 17291 #define rptr ((uchar_t *)ipha) 17292 #define iphs ((uint16_t *)ipha) 17293 17294 /* 17295 * no UDP or TCP packet should come here anymore. 17296 */ 17297 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 17298 (ipha->ipha_protocol != IPPROTO_UDP)); 17299 17300 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17301 if (mctl_present && 17302 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17303 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17304 17305 /* 17306 * It's an IPsec accelerated packet. 17307 * Keep a pointer to the data attributes around until 17308 * we allocate the ipsec_info_t. 17309 */ 17310 IPSECHW_DEBUG(IPSECHW_PKT, 17311 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17312 hada_mp = first_mp; 17313 hada_mp->b_cont = NULL; 17314 /* 17315 * Since it is accelerated, it comes directly from 17316 * the ill and the data attributes is followed by 17317 * the packet data. 17318 */ 17319 ASSERT(mp->b_datap->db_type != M_CTL); 17320 first_mp = mp; 17321 mctl_present = B_FALSE; 17322 } 17323 17324 /* 17325 * IF M_CTL is not present, then ipsec_in_is_secure 17326 * should return B_TRUE. There is a case where loopback 17327 * packets has an M_CTL in the front with all the 17328 * IPSEC options set to IPSEC_PREF_NEVER - which means 17329 * ipsec_in_is_secure will return B_FALSE. As loopback 17330 * packets never comes here, it is safe to ASSERT the 17331 * following. 17332 */ 17333 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17334 17335 17336 /* u1 is # words of IP options */ 17337 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 17338 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17339 17340 if (u1) { 17341 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17342 if (hada_mp != NULL) 17343 freemsg(hada_mp); 17344 return; 17345 } 17346 } else { 17347 /* Check the IP header checksum. */ 17348 #define uph ((uint16_t *)ipha) 17349 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 17350 uph[6] + uph[7] + uph[8] + uph[9]; 17351 #undef uph 17352 /* finish doing IP checksum */ 17353 sum = (sum & 0xFFFF) + (sum >> 16); 17354 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17355 /* 17356 * Don't verify header checksum if this packet is coming 17357 * back from AH/ESP as we already did it. 17358 */ 17359 if (!mctl_present && (sum && sum != 0xFFFF)) { 17360 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17361 goto drop_pkt; 17362 } 17363 } 17364 17365 /* 17366 * Count for SNMP of inbound packets for ire. As ip_proto_input 17367 * might be called more than once for secure packets, count only 17368 * the first time. 17369 */ 17370 if (!mctl_present) { 17371 UPDATE_IB_PKT_COUNT(ire); 17372 ire->ire_last_used_time = lbolt; 17373 } 17374 17375 /* Check for fragmentation offset. */ 17376 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17377 u1 = u2 & (IPH_MF | IPH_OFFSET); 17378 if (u1) { 17379 /* 17380 * We re-assemble fragments before we do the AH/ESP 17381 * processing. Thus, M_CTL should not be present 17382 * while we are re-assembling. 17383 */ 17384 ASSERT(!mctl_present); 17385 ASSERT(first_mp == mp); 17386 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17387 return; 17388 } 17389 /* 17390 * Make sure that first_mp points back to mp as 17391 * the mp we came in with could have changed in 17392 * ip_rput_fragment(). 17393 */ 17394 ipha = (ipha_t *)mp->b_rptr; 17395 first_mp = mp; 17396 } 17397 17398 /* 17399 * Clear hardware checksumming flag as it is currently only 17400 * used by TCP and UDP. 17401 */ 17402 DB_CKSUMFLAGS(mp) = 0; 17403 17404 /* Now we have a complete datagram, destined for this machine. */ 17405 u1 = IPH_HDR_LENGTH(ipha); 17406 switch (ipha->ipha_protocol) { 17407 case IPPROTO_ICMP: { 17408 ire_t *ire_zone; 17409 ilm_t *ilm; 17410 mblk_t *mp1; 17411 zoneid_t last_zoneid; 17412 17413 if (CLASSD(ipha->ipha_dst) && 17414 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 17415 ASSERT(ire->ire_type == IRE_BROADCAST); 17416 /* 17417 * In the multicast case, applications may have joined 17418 * the group from different zones, so we need to deliver 17419 * the packet to each of them. Loop through the 17420 * multicast memberships structures (ilm) on the receive 17421 * ill and send a copy of the packet up each matching 17422 * one. However, we don't do this for multicasts sent on 17423 * the loopback interface (PHYI_LOOPBACK flag set) as 17424 * they must stay in the sender's zone. 17425 * 17426 * ilm_add_v6() ensures that ilms in the same zone are 17427 * contiguous in the ill_ilm list. We use this property 17428 * to avoid sending duplicates needed when two 17429 * applications in the same zone join the same group on 17430 * different logical interfaces: we ignore the ilm if 17431 * its zoneid is the same as the last matching one. 17432 * In addition, the sending of the packet for 17433 * ire_zoneid is delayed until all of the other ilms 17434 * have been exhausted. 17435 */ 17436 last_zoneid = -1; 17437 ILM_WALKER_HOLD(recv_ill); 17438 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17439 ilm = ilm->ilm_next) { 17440 if ((ilm->ilm_flags & ILM_DELETED) || 17441 ipha->ipha_dst != ilm->ilm_addr || 17442 ilm->ilm_zoneid == last_zoneid || 17443 ilm->ilm_zoneid == ire->ire_zoneid || 17444 ilm->ilm_zoneid == ALL_ZONES || 17445 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17446 continue; 17447 mp1 = ip_copymsg(first_mp); 17448 if (mp1 == NULL) 17449 continue; 17450 icmp_inbound(q, mp1, B_TRUE, ill, 17451 0, sum, mctl_present, B_TRUE, 17452 recv_ill, ilm->ilm_zoneid); 17453 last_zoneid = ilm->ilm_zoneid; 17454 } 17455 ILM_WALKER_RELE(recv_ill); 17456 } else if (ire->ire_type == IRE_BROADCAST) { 17457 /* 17458 * In the broadcast case, there may be many zones 17459 * which need a copy of the packet delivered to them. 17460 * There is one IRE_BROADCAST per broadcast address 17461 * and per zone; we walk those using a helper function. 17462 * In addition, the sending of the packet for ire is 17463 * delayed until all of the other ires have been 17464 * processed. 17465 */ 17466 IRB_REFHOLD(ire->ire_bucket); 17467 ire_zone = NULL; 17468 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17469 ire)) != NULL) { 17470 mp1 = ip_copymsg(first_mp); 17471 if (mp1 == NULL) 17472 continue; 17473 17474 UPDATE_IB_PKT_COUNT(ire_zone); 17475 ire_zone->ire_last_used_time = lbolt; 17476 icmp_inbound(q, mp1, B_TRUE, ill, 17477 0, sum, mctl_present, B_TRUE, 17478 recv_ill, ire_zone->ire_zoneid); 17479 } 17480 IRB_REFRELE(ire->ire_bucket); 17481 } 17482 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17483 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17484 ire->ire_zoneid); 17485 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17486 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17487 return; 17488 } 17489 case IPPROTO_IGMP: 17490 /* 17491 * If we are not willing to accept IGMP packets in clear, 17492 * then check with global policy. 17493 */ 17494 if (ipst->ips_igmp_accept_clear_messages == 0) { 17495 first_mp = ipsec_check_global_policy(first_mp, NULL, 17496 ipha, NULL, mctl_present, ipst->ips_netstack); 17497 if (first_mp == NULL) 17498 return; 17499 } 17500 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17501 freemsg(first_mp); 17502 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17503 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17504 return; 17505 } 17506 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17507 /* Bad packet - discarded by igmp_input */ 17508 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17509 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17510 if (mctl_present) 17511 freeb(first_mp); 17512 return; 17513 } 17514 /* 17515 * igmp_input() may have returned the pulled up message. 17516 * So first_mp and ipha need to be reinitialized. 17517 */ 17518 ipha = (ipha_t *)mp->b_rptr; 17519 if (mctl_present) 17520 first_mp->b_cont = mp; 17521 else 17522 first_mp = mp; 17523 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17524 connf_head != NULL) { 17525 /* No user-level listener for IGMP packets */ 17526 goto drop_pkt; 17527 } 17528 /* deliver to local raw users */ 17529 break; 17530 case IPPROTO_PIM: 17531 /* 17532 * If we are not willing to accept PIM packets in clear, 17533 * then check with global policy. 17534 */ 17535 if (ipst->ips_pim_accept_clear_messages == 0) { 17536 first_mp = ipsec_check_global_policy(first_mp, NULL, 17537 ipha, NULL, mctl_present, ipst->ips_netstack); 17538 if (first_mp == NULL) 17539 return; 17540 } 17541 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17542 freemsg(first_mp); 17543 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17544 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17545 return; 17546 } 17547 if (pim_input(q, mp, ill) != 0) { 17548 /* Bad packet - discarded by pim_input */ 17549 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17550 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17551 if (mctl_present) 17552 freeb(first_mp); 17553 return; 17554 } 17555 17556 /* 17557 * pim_input() may have pulled up the message so ipha needs to 17558 * be reinitialized. 17559 */ 17560 ipha = (ipha_t *)mp->b_rptr; 17561 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17562 connf_head != NULL) { 17563 /* No user-level listener for PIM packets */ 17564 goto drop_pkt; 17565 } 17566 /* deliver to local raw users */ 17567 break; 17568 case IPPROTO_ENCAP: 17569 /* 17570 * Handle self-encapsulated packets (IP-in-IP where 17571 * the inner addresses == the outer addresses). 17572 */ 17573 hdr_length = IPH_HDR_LENGTH(ipha); 17574 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17575 mp->b_wptr) { 17576 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17577 sizeof (ipha_t) - mp->b_rptr)) { 17578 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17579 freemsg(first_mp); 17580 return; 17581 } 17582 ipha = (ipha_t *)mp->b_rptr; 17583 } 17584 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17585 /* 17586 * Check the sanity of the inner IP header. 17587 */ 17588 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17589 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17590 freemsg(first_mp); 17591 return; 17592 } 17593 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17594 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17595 freemsg(first_mp); 17596 return; 17597 } 17598 if (inner_ipha->ipha_src == ipha->ipha_src && 17599 inner_ipha->ipha_dst == ipha->ipha_dst) { 17600 ipsec_in_t *ii; 17601 17602 /* 17603 * Self-encapsulated tunnel packet. Remove 17604 * the outer IP header and fanout again. 17605 * We also need to make sure that the inner 17606 * header is pulled up until options. 17607 */ 17608 mp->b_rptr = (uchar_t *)inner_ipha; 17609 ipha = inner_ipha; 17610 hdr_length = IPH_HDR_LENGTH(ipha); 17611 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17612 if (!pullupmsg(mp, (uchar_t *)ipha + 17613 + hdr_length - mp->b_rptr)) { 17614 freemsg(first_mp); 17615 return; 17616 } 17617 ipha = (ipha_t *)mp->b_rptr; 17618 } 17619 if (!mctl_present) { 17620 ASSERT(first_mp == mp); 17621 /* 17622 * This means that somebody is sending 17623 * Self-encapsualted packets without AH/ESP. 17624 * If AH/ESP was present, we would have already 17625 * allocated the first_mp. 17626 */ 17627 first_mp = ipsec_in_alloc(B_TRUE, 17628 ipst->ips_netstack); 17629 if (first_mp == NULL) { 17630 ip1dbg(("ip_proto_input: IPSEC_IN " 17631 "allocation failure.\n")); 17632 BUMP_MIB(ill->ill_ip_mib, 17633 ipIfStatsInDiscards); 17634 freemsg(mp); 17635 return; 17636 } 17637 first_mp->b_cont = mp; 17638 } 17639 /* 17640 * We generally store the ill_index if we need to 17641 * do IPSEC processing as we lose the ill queue when 17642 * we come back. But in this case, we never should 17643 * have to store the ill_index here as it should have 17644 * been stored previously when we processed the 17645 * AH/ESP header in this routine or for non-ipsec 17646 * cases, we still have the queue. But for some bad 17647 * packets from the wire, we can get to IPSEC after 17648 * this and we better store the index for that case. 17649 */ 17650 ill = (ill_t *)q->q_ptr; 17651 ii = (ipsec_in_t *)first_mp->b_rptr; 17652 ii->ipsec_in_ill_index = 17653 ill->ill_phyint->phyint_ifindex; 17654 ii->ipsec_in_rill_index = 17655 recv_ill->ill_phyint->phyint_ifindex; 17656 if (ii->ipsec_in_decaps) { 17657 /* 17658 * This packet is self-encapsulated multiple 17659 * times. We don't want to recurse infinitely. 17660 * To keep it simple, drop the packet. 17661 */ 17662 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17663 freemsg(first_mp); 17664 return; 17665 } 17666 ii->ipsec_in_decaps = B_TRUE; 17667 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17668 ire); 17669 return; 17670 } 17671 break; 17672 case IPPROTO_AH: 17673 case IPPROTO_ESP: { 17674 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17675 17676 /* 17677 * Fast path for AH/ESP. If this is the first time 17678 * we are sending a datagram to AH/ESP, allocate 17679 * a IPSEC_IN message and prepend it. Otherwise, 17680 * just fanout. 17681 */ 17682 17683 int ipsec_rc; 17684 ipsec_in_t *ii; 17685 netstack_t *ns = ipst->ips_netstack; 17686 17687 IP_STAT(ipst, ipsec_proto_ahesp); 17688 if (!mctl_present) { 17689 ASSERT(first_mp == mp); 17690 first_mp = ipsec_in_alloc(B_TRUE, ns); 17691 if (first_mp == NULL) { 17692 ip1dbg(("ip_proto_input: IPSEC_IN " 17693 "allocation failure.\n")); 17694 freemsg(hada_mp); /* okay ifnull */ 17695 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17696 freemsg(mp); 17697 return; 17698 } 17699 /* 17700 * Store the ill_index so that when we come back 17701 * from IPSEC we ride on the same queue. 17702 */ 17703 ill = (ill_t *)q->q_ptr; 17704 ii = (ipsec_in_t *)first_mp->b_rptr; 17705 ii->ipsec_in_ill_index = 17706 ill->ill_phyint->phyint_ifindex; 17707 ii->ipsec_in_rill_index = 17708 recv_ill->ill_phyint->phyint_ifindex; 17709 first_mp->b_cont = mp; 17710 /* 17711 * Cache hardware acceleration info. 17712 */ 17713 if (hada_mp != NULL) { 17714 IPSECHW_DEBUG(IPSECHW_PKT, 17715 ("ip_rput_local: caching data attr.\n")); 17716 ii->ipsec_in_accelerated = B_TRUE; 17717 ii->ipsec_in_da = hada_mp; 17718 hada_mp = NULL; 17719 } 17720 } else { 17721 ii = (ipsec_in_t *)first_mp->b_rptr; 17722 } 17723 17724 if (!ipsec_loaded(ipss)) { 17725 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17726 ire->ire_zoneid, ipst); 17727 return; 17728 } 17729 17730 ns = ipst->ips_netstack; 17731 /* select inbound SA and have IPsec process the pkt */ 17732 if (ipha->ipha_protocol == IPPROTO_ESP) { 17733 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17734 if (esph == NULL) 17735 return; 17736 ASSERT(ii->ipsec_in_esp_sa != NULL); 17737 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17738 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17739 first_mp, esph); 17740 } else { 17741 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17742 if (ah == NULL) 17743 return; 17744 ASSERT(ii->ipsec_in_ah_sa != NULL); 17745 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17746 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17747 first_mp, ah); 17748 } 17749 17750 switch (ipsec_rc) { 17751 case IPSEC_STATUS_SUCCESS: 17752 break; 17753 case IPSEC_STATUS_FAILED: 17754 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17755 /* FALLTHRU */ 17756 case IPSEC_STATUS_PENDING: 17757 return; 17758 } 17759 /* we're done with IPsec processing, send it up */ 17760 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17761 return; 17762 } 17763 default: 17764 break; 17765 } 17766 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17767 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17768 ire->ire_zoneid)); 17769 goto drop_pkt; 17770 } 17771 /* 17772 * Handle protocols with which IP is less intimate. There 17773 * can be more than one stream bound to a particular 17774 * protocol. When this is the case, each one gets a copy 17775 * of any incoming packets. 17776 */ 17777 ip_fanout_proto(q, first_mp, ill, ipha, 17778 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17779 B_TRUE, recv_ill, ire->ire_zoneid); 17780 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17781 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17782 return; 17783 17784 drop_pkt: 17785 freemsg(first_mp); 17786 if (hada_mp != NULL) 17787 freeb(hada_mp); 17788 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17789 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17790 #undef rptr 17791 #undef iphs 17792 17793 } 17794 17795 /* 17796 * Update any source route, record route or timestamp options. 17797 * Check that we are at end of strict source route. 17798 * The options have already been checked for sanity in ip_rput_options(). 17799 */ 17800 static boolean_t 17801 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17802 ip_stack_t *ipst) 17803 { 17804 ipoptp_t opts; 17805 uchar_t *opt; 17806 uint8_t optval; 17807 uint8_t optlen; 17808 ipaddr_t dst; 17809 uint32_t ts; 17810 ire_t *dst_ire; 17811 timestruc_t now; 17812 zoneid_t zoneid; 17813 ill_t *ill; 17814 17815 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17816 17817 ip2dbg(("ip_rput_local_options\n")); 17818 17819 for (optval = ipoptp_first(&opts, ipha); 17820 optval != IPOPT_EOL; 17821 optval = ipoptp_next(&opts)) { 17822 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17823 opt = opts.ipoptp_cur; 17824 optlen = opts.ipoptp_len; 17825 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17826 optval, optlen)); 17827 switch (optval) { 17828 uint32_t off; 17829 case IPOPT_SSRR: 17830 case IPOPT_LSRR: 17831 off = opt[IPOPT_OFFSET]; 17832 off--; 17833 if (optlen < IP_ADDR_LEN || 17834 off > optlen - IP_ADDR_LEN) { 17835 /* End of source route */ 17836 ip1dbg(("ip_rput_local_options: end of SR\n")); 17837 break; 17838 } 17839 /* 17840 * This will only happen if two consecutive entries 17841 * in the source route contains our address or if 17842 * it is a packet with a loose source route which 17843 * reaches us before consuming the whole source route 17844 */ 17845 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17846 if (optval == IPOPT_SSRR) { 17847 goto bad_src_route; 17848 } 17849 /* 17850 * Hack: instead of dropping the packet truncate the 17851 * source route to what has been used by filling the 17852 * rest with IPOPT_NOP. 17853 */ 17854 opt[IPOPT_OLEN] = (uint8_t)off; 17855 while (off < optlen) { 17856 opt[off++] = IPOPT_NOP; 17857 } 17858 break; 17859 case IPOPT_RR: 17860 off = opt[IPOPT_OFFSET]; 17861 off--; 17862 if (optlen < IP_ADDR_LEN || 17863 off > optlen - IP_ADDR_LEN) { 17864 /* No more room - ignore */ 17865 ip1dbg(( 17866 "ip_rput_local_options: end of RR\n")); 17867 break; 17868 } 17869 bcopy(&ire->ire_src_addr, (char *)opt + off, 17870 IP_ADDR_LEN); 17871 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17872 break; 17873 case IPOPT_TS: 17874 /* Insert timestamp if there is romm */ 17875 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17876 case IPOPT_TS_TSONLY: 17877 off = IPOPT_TS_TIMELEN; 17878 break; 17879 case IPOPT_TS_PRESPEC: 17880 case IPOPT_TS_PRESPEC_RFC791: 17881 /* Verify that the address matched */ 17882 off = opt[IPOPT_OFFSET] - 1; 17883 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17884 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17885 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17886 ipst); 17887 if (dst_ire == NULL) { 17888 /* Not for us */ 17889 break; 17890 } 17891 ire_refrele(dst_ire); 17892 /* FALLTHRU */ 17893 case IPOPT_TS_TSANDADDR: 17894 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17895 break; 17896 default: 17897 /* 17898 * ip_*put_options should have already 17899 * dropped this packet. 17900 */ 17901 cmn_err(CE_PANIC, "ip_rput_local_options: " 17902 "unknown IT - bug in ip_rput_options?\n"); 17903 return (B_TRUE); /* Keep "lint" happy */ 17904 } 17905 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17906 /* Increase overflow counter */ 17907 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17908 opt[IPOPT_POS_OV_FLG] = 17909 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17910 (off << 4)); 17911 break; 17912 } 17913 off = opt[IPOPT_OFFSET] - 1; 17914 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17915 case IPOPT_TS_PRESPEC: 17916 case IPOPT_TS_PRESPEC_RFC791: 17917 case IPOPT_TS_TSANDADDR: 17918 bcopy(&ire->ire_src_addr, (char *)opt + off, 17919 IP_ADDR_LEN); 17920 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17921 /* FALLTHRU */ 17922 case IPOPT_TS_TSONLY: 17923 off = opt[IPOPT_OFFSET] - 1; 17924 /* Compute # of milliseconds since midnight */ 17925 gethrestime(&now); 17926 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17927 now.tv_nsec / (NANOSEC / MILLISEC); 17928 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17929 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17930 break; 17931 } 17932 break; 17933 } 17934 } 17935 return (B_TRUE); 17936 17937 bad_src_route: 17938 q = WR(q); 17939 if (q->q_next != NULL) 17940 ill = q->q_ptr; 17941 else 17942 ill = NULL; 17943 17944 /* make sure we clear any indication of a hardware checksum */ 17945 DB_CKSUMFLAGS(mp) = 0; 17946 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17947 if (zoneid == ALL_ZONES) 17948 freemsg(mp); 17949 else 17950 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17951 return (B_FALSE); 17952 17953 } 17954 17955 /* 17956 * Process IP options in an inbound packet. If an option affects the 17957 * effective destination address, return the next hop address via dstp. 17958 * Returns -1 if something fails in which case an ICMP error has been sent 17959 * and mp freed. 17960 */ 17961 static int 17962 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17963 ip_stack_t *ipst) 17964 { 17965 ipoptp_t opts; 17966 uchar_t *opt; 17967 uint8_t optval; 17968 uint8_t optlen; 17969 ipaddr_t dst; 17970 intptr_t code = 0; 17971 ire_t *ire = NULL; 17972 zoneid_t zoneid; 17973 ill_t *ill; 17974 17975 ip2dbg(("ip_rput_options\n")); 17976 dst = ipha->ipha_dst; 17977 for (optval = ipoptp_first(&opts, ipha); 17978 optval != IPOPT_EOL; 17979 optval = ipoptp_next(&opts)) { 17980 opt = opts.ipoptp_cur; 17981 optlen = opts.ipoptp_len; 17982 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17983 optval, optlen)); 17984 /* 17985 * Note: we need to verify the checksum before we 17986 * modify anything thus this routine only extracts the next 17987 * hop dst from any source route. 17988 */ 17989 switch (optval) { 17990 uint32_t off; 17991 case IPOPT_SSRR: 17992 case IPOPT_LSRR: 17993 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17994 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17995 if (ire == NULL) { 17996 if (optval == IPOPT_SSRR) { 17997 ip1dbg(("ip_rput_options: not next" 17998 " strict source route 0x%x\n", 17999 ntohl(dst))); 18000 code = (char *)&ipha->ipha_dst - 18001 (char *)ipha; 18002 goto param_prob; /* RouterReq's */ 18003 } 18004 ip2dbg(("ip_rput_options: " 18005 "not next source route 0x%x\n", 18006 ntohl(dst))); 18007 break; 18008 } 18009 ire_refrele(ire); 18010 18011 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18012 ip1dbg(( 18013 "ip_rput_options: bad option offset\n")); 18014 code = (char *)&opt[IPOPT_OLEN] - 18015 (char *)ipha; 18016 goto param_prob; 18017 } 18018 off = opt[IPOPT_OFFSET]; 18019 off--; 18020 redo_srr: 18021 if (optlen < IP_ADDR_LEN || 18022 off > optlen - IP_ADDR_LEN) { 18023 /* End of source route */ 18024 ip1dbg(("ip_rput_options: end of SR\n")); 18025 break; 18026 } 18027 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18028 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18029 ntohl(dst))); 18030 18031 /* 18032 * Check if our address is present more than 18033 * once as consecutive hops in source route. 18034 * XXX verify per-interface ip_forwarding 18035 * for source route? 18036 */ 18037 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18038 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18039 18040 if (ire != NULL) { 18041 ire_refrele(ire); 18042 off += IP_ADDR_LEN; 18043 goto redo_srr; 18044 } 18045 18046 if (dst == htonl(INADDR_LOOPBACK)) { 18047 ip1dbg(("ip_rput_options: loopback addr in " 18048 "source route!\n")); 18049 goto bad_src_route; 18050 } 18051 /* 18052 * For strict: verify that dst is directly 18053 * reachable. 18054 */ 18055 if (optval == IPOPT_SSRR) { 18056 ire = ire_ftable_lookup(dst, 0, 0, 18057 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18058 MBLK_GETLABEL(mp), 18059 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18060 if (ire == NULL) { 18061 ip1dbg(("ip_rput_options: SSRR not " 18062 "directly reachable: 0x%x\n", 18063 ntohl(dst))); 18064 goto bad_src_route; 18065 } 18066 ire_refrele(ire); 18067 } 18068 /* 18069 * Defer update of the offset and the record route 18070 * until the packet is forwarded. 18071 */ 18072 break; 18073 case IPOPT_RR: 18074 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18075 ip1dbg(( 18076 "ip_rput_options: bad option offset\n")); 18077 code = (char *)&opt[IPOPT_OLEN] - 18078 (char *)ipha; 18079 goto param_prob; 18080 } 18081 break; 18082 case IPOPT_TS: 18083 /* 18084 * Verify that length >= 5 and that there is either 18085 * room for another timestamp or that the overflow 18086 * counter is not maxed out. 18087 */ 18088 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18089 if (optlen < IPOPT_MINLEN_IT) { 18090 goto param_prob; 18091 } 18092 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18093 ip1dbg(( 18094 "ip_rput_options: bad option offset\n")); 18095 code = (char *)&opt[IPOPT_OFFSET] - 18096 (char *)ipha; 18097 goto param_prob; 18098 } 18099 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18100 case IPOPT_TS_TSONLY: 18101 off = IPOPT_TS_TIMELEN; 18102 break; 18103 case IPOPT_TS_TSANDADDR: 18104 case IPOPT_TS_PRESPEC: 18105 case IPOPT_TS_PRESPEC_RFC791: 18106 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18107 break; 18108 default: 18109 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18110 (char *)ipha; 18111 goto param_prob; 18112 } 18113 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18114 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18115 /* 18116 * No room and the overflow counter is 15 18117 * already. 18118 */ 18119 goto param_prob; 18120 } 18121 break; 18122 } 18123 } 18124 18125 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18126 *dstp = dst; 18127 return (0); 18128 } 18129 18130 ip1dbg(("ip_rput_options: error processing IP options.")); 18131 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18132 18133 param_prob: 18134 q = WR(q); 18135 if (q->q_next != NULL) 18136 ill = q->q_ptr; 18137 else 18138 ill = NULL; 18139 18140 /* make sure we clear any indication of a hardware checksum */ 18141 DB_CKSUMFLAGS(mp) = 0; 18142 /* Don't know whether this is for non-global or global/forwarding */ 18143 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18144 if (zoneid == ALL_ZONES) 18145 freemsg(mp); 18146 else 18147 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18148 return (-1); 18149 18150 bad_src_route: 18151 q = WR(q); 18152 if (q->q_next != NULL) 18153 ill = q->q_ptr; 18154 else 18155 ill = NULL; 18156 18157 /* make sure we clear any indication of a hardware checksum */ 18158 DB_CKSUMFLAGS(mp) = 0; 18159 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18160 if (zoneid == ALL_ZONES) 18161 freemsg(mp); 18162 else 18163 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18164 return (-1); 18165 } 18166 18167 /* 18168 * IP & ICMP info in >=14 msg's ... 18169 * - ip fixed part (mib2_ip_t) 18170 * - icmp fixed part (mib2_icmp_t) 18171 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18172 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18173 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18174 * - ipRouteAttributeTable (ip 102) labeled routes 18175 * - ip multicast membership (ip_member_t) 18176 * - ip multicast source filtering (ip_grpsrc_t) 18177 * - igmp fixed part (struct igmpstat) 18178 * - multicast routing stats (struct mrtstat) 18179 * - multicast routing vifs (array of struct vifctl) 18180 * - multicast routing routes (array of struct mfcctl) 18181 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18182 * One per ill plus one generic 18183 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18184 * One per ill plus one generic 18185 * - ipv6RouteEntry all IPv6 IREs 18186 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18187 * - ipv6NetToMediaEntry all Neighbor Cache entries 18188 * - ipv6AddrEntry all IPv6 ipifs 18189 * - ipv6 multicast membership (ipv6_member_t) 18190 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18191 * 18192 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18193 * 18194 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18195 * already filled in by the caller. 18196 * Return value of 0 indicates that no messages were sent and caller 18197 * should free mpctl. 18198 */ 18199 int 18200 ip_snmp_get(queue_t *q, mblk_t *mpctl) 18201 { 18202 ip_stack_t *ipst; 18203 sctp_stack_t *sctps; 18204 18205 18206 if (q->q_next != NULL) { 18207 ipst = ILLQ_TO_IPST(q); 18208 } else { 18209 ipst = CONNQ_TO_IPST(q); 18210 } 18211 ASSERT(ipst != NULL); 18212 sctps = ipst->ips_netstack->netstack_sctp; 18213 18214 if (mpctl == NULL || mpctl->b_cont == NULL) { 18215 return (0); 18216 } 18217 18218 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18219 ipst)) == NULL) { 18220 return (1); 18221 } 18222 18223 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18224 return (1); 18225 } 18226 18227 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18228 return (1); 18229 } 18230 18231 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18232 return (1); 18233 } 18234 18235 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18236 return (1); 18237 } 18238 18239 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18240 return (1); 18241 } 18242 18243 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18244 return (1); 18245 } 18246 18247 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18248 return (1); 18249 } 18250 18251 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18252 return (1); 18253 } 18254 18255 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18256 return (1); 18257 } 18258 18259 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18260 return (1); 18261 } 18262 18263 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18264 return (1); 18265 } 18266 18267 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18268 return (1); 18269 } 18270 18271 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18272 return (1); 18273 } 18274 18275 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18276 return (1); 18277 } 18278 18279 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18280 if (mpctl == NULL) { 18281 return (1); 18282 } 18283 18284 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18285 return (1); 18286 } 18287 freemsg(mpctl); 18288 return (1); 18289 } 18290 18291 18292 /* Get global (legacy) IPv4 statistics */ 18293 static mblk_t * 18294 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18295 ip_stack_t *ipst) 18296 { 18297 mib2_ip_t old_ip_mib; 18298 struct opthdr *optp; 18299 mblk_t *mp2ctl; 18300 18301 /* 18302 * make a copy of the original message 18303 */ 18304 mp2ctl = copymsg(mpctl); 18305 18306 /* fixed length IP structure... */ 18307 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18308 optp->level = MIB2_IP; 18309 optp->name = 0; 18310 SET_MIB(old_ip_mib.ipForwarding, 18311 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18312 SET_MIB(old_ip_mib.ipDefaultTTL, 18313 (uint32_t)ipst->ips_ip_def_ttl); 18314 SET_MIB(old_ip_mib.ipReasmTimeout, 18315 ipst->ips_ip_g_frag_timeout); 18316 SET_MIB(old_ip_mib.ipAddrEntrySize, 18317 sizeof (mib2_ipAddrEntry_t)); 18318 SET_MIB(old_ip_mib.ipRouteEntrySize, 18319 sizeof (mib2_ipRouteEntry_t)); 18320 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18321 sizeof (mib2_ipNetToMediaEntry_t)); 18322 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18323 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18324 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18325 sizeof (mib2_ipAttributeEntry_t)); 18326 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18327 18328 /* 18329 * Grab the statistics from the new IP MIB 18330 */ 18331 SET_MIB(old_ip_mib.ipInReceives, 18332 (uint32_t)ipmib->ipIfStatsHCInReceives); 18333 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18334 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18335 SET_MIB(old_ip_mib.ipForwDatagrams, 18336 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18337 SET_MIB(old_ip_mib.ipInUnknownProtos, 18338 ipmib->ipIfStatsInUnknownProtos); 18339 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18340 SET_MIB(old_ip_mib.ipInDelivers, 18341 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18342 SET_MIB(old_ip_mib.ipOutRequests, 18343 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18344 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18345 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18346 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18347 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18348 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18349 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18350 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18351 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18352 18353 /* ipRoutingDiscards is not being used */ 18354 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18355 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18356 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18357 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18358 SET_MIB(old_ip_mib.ipReasmDuplicates, 18359 ipmib->ipIfStatsReasmDuplicates); 18360 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18361 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18362 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18363 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18364 SET_MIB(old_ip_mib.rawipInOverflows, 18365 ipmib->rawipIfStatsInOverflows); 18366 18367 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18368 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18369 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18370 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18371 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18372 ipmib->ipIfStatsOutSwitchIPVersion); 18373 18374 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18375 (int)sizeof (old_ip_mib))) { 18376 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18377 (uint_t)sizeof (old_ip_mib))); 18378 } 18379 18380 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18381 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18382 (int)optp->level, (int)optp->name, (int)optp->len)); 18383 qreply(q, mpctl); 18384 return (mp2ctl); 18385 } 18386 18387 /* Per interface IPv4 statistics */ 18388 static mblk_t * 18389 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18390 { 18391 struct opthdr *optp; 18392 mblk_t *mp2ctl; 18393 ill_t *ill; 18394 ill_walk_context_t ctx; 18395 mblk_t *mp_tail = NULL; 18396 mib2_ipIfStatsEntry_t global_ip_mib; 18397 18398 /* 18399 * Make a copy of the original message 18400 */ 18401 mp2ctl = copymsg(mpctl); 18402 18403 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18404 optp->level = MIB2_IP; 18405 optp->name = MIB2_IP_TRAFFIC_STATS; 18406 /* Include "unknown interface" ip_mib */ 18407 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18408 ipst->ips_ip_mib.ipIfStatsIfIndex = 18409 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18410 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18411 (ipst->ips_ip_g_forward ? 1 : 2)); 18412 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18413 (uint32_t)ipst->ips_ip_def_ttl); 18414 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18415 sizeof (mib2_ipIfStatsEntry_t)); 18416 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18417 sizeof (mib2_ipAddrEntry_t)); 18418 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18419 sizeof (mib2_ipRouteEntry_t)); 18420 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18421 sizeof (mib2_ipNetToMediaEntry_t)); 18422 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18423 sizeof (ip_member_t)); 18424 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18425 sizeof (ip_grpsrc_t)); 18426 18427 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18428 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18429 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18430 "failed to allocate %u bytes\n", 18431 (uint_t)sizeof (ipst->ips_ip_mib))); 18432 } 18433 18434 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18435 18436 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18437 ill = ILL_START_WALK_V4(&ctx, ipst); 18438 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18439 ill->ill_ip_mib->ipIfStatsIfIndex = 18440 ill->ill_phyint->phyint_ifindex; 18441 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18442 (ipst->ips_ip_g_forward ? 1 : 2)); 18443 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18444 (uint32_t)ipst->ips_ip_def_ttl); 18445 18446 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18447 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18448 (char *)ill->ill_ip_mib, 18449 (int)sizeof (*ill->ill_ip_mib))) { 18450 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18451 "failed to allocate %u bytes\n", 18452 (uint_t)sizeof (*ill->ill_ip_mib))); 18453 } 18454 } 18455 rw_exit(&ipst->ips_ill_g_lock); 18456 18457 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18458 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18459 "level %d, name %d, len %d\n", 18460 (int)optp->level, (int)optp->name, (int)optp->len)); 18461 qreply(q, mpctl); 18462 18463 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18464 } 18465 18466 /* Global IPv4 ICMP statistics */ 18467 static mblk_t * 18468 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18469 { 18470 struct opthdr *optp; 18471 mblk_t *mp2ctl; 18472 18473 /* 18474 * Make a copy of the original message 18475 */ 18476 mp2ctl = copymsg(mpctl); 18477 18478 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18479 optp->level = MIB2_ICMP; 18480 optp->name = 0; 18481 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18482 (int)sizeof (ipst->ips_icmp_mib))) { 18483 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18484 (uint_t)sizeof (ipst->ips_icmp_mib))); 18485 } 18486 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18487 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18488 (int)optp->level, (int)optp->name, (int)optp->len)); 18489 qreply(q, mpctl); 18490 return (mp2ctl); 18491 } 18492 18493 /* Global IPv4 IGMP statistics */ 18494 static mblk_t * 18495 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18496 { 18497 struct opthdr *optp; 18498 mblk_t *mp2ctl; 18499 18500 /* 18501 * make a copy of the original message 18502 */ 18503 mp2ctl = copymsg(mpctl); 18504 18505 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18506 optp->level = EXPER_IGMP; 18507 optp->name = 0; 18508 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18509 (int)sizeof (ipst->ips_igmpstat))) { 18510 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18511 (uint_t)sizeof (ipst->ips_igmpstat))); 18512 } 18513 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18514 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18515 (int)optp->level, (int)optp->name, (int)optp->len)); 18516 qreply(q, mpctl); 18517 return (mp2ctl); 18518 } 18519 18520 /* Global IPv4 Multicast Routing statistics */ 18521 static mblk_t * 18522 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18523 { 18524 struct opthdr *optp; 18525 mblk_t *mp2ctl; 18526 18527 /* 18528 * make a copy of the original message 18529 */ 18530 mp2ctl = copymsg(mpctl); 18531 18532 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18533 optp->level = EXPER_DVMRP; 18534 optp->name = 0; 18535 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18536 ip0dbg(("ip_mroute_stats: failed\n")); 18537 } 18538 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18539 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18540 (int)optp->level, (int)optp->name, (int)optp->len)); 18541 qreply(q, mpctl); 18542 return (mp2ctl); 18543 } 18544 18545 /* IPv4 address information */ 18546 static mblk_t * 18547 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18548 { 18549 struct opthdr *optp; 18550 mblk_t *mp2ctl; 18551 mblk_t *mp_tail = NULL; 18552 ill_t *ill; 18553 ipif_t *ipif; 18554 uint_t bitval; 18555 mib2_ipAddrEntry_t mae; 18556 zoneid_t zoneid; 18557 ill_walk_context_t ctx; 18558 18559 /* 18560 * make a copy of the original message 18561 */ 18562 mp2ctl = copymsg(mpctl); 18563 18564 /* ipAddrEntryTable */ 18565 18566 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18567 optp->level = MIB2_IP; 18568 optp->name = MIB2_IP_ADDR; 18569 zoneid = Q_TO_CONN(q)->conn_zoneid; 18570 18571 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18572 ill = ILL_START_WALK_V4(&ctx, ipst); 18573 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18574 for (ipif = ill->ill_ipif; ipif != NULL; 18575 ipif = ipif->ipif_next) { 18576 if (ipif->ipif_zoneid != zoneid && 18577 ipif->ipif_zoneid != ALL_ZONES) 18578 continue; 18579 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18580 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18581 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18582 18583 (void) ipif_get_name(ipif, 18584 mae.ipAdEntIfIndex.o_bytes, 18585 OCTET_LENGTH); 18586 mae.ipAdEntIfIndex.o_length = 18587 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18588 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18589 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18590 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18591 mae.ipAdEntInfo.ae_subnet_len = 18592 ip_mask_to_plen(ipif->ipif_net_mask); 18593 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18594 for (bitval = 1; 18595 bitval && 18596 !(bitval & ipif->ipif_brd_addr); 18597 bitval <<= 1) 18598 noop; 18599 mae.ipAdEntBcastAddr = bitval; 18600 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18601 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18602 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18603 mae.ipAdEntInfo.ae_broadcast_addr = 18604 ipif->ipif_brd_addr; 18605 mae.ipAdEntInfo.ae_pp_dst_addr = 18606 ipif->ipif_pp_dst_addr; 18607 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18608 ill->ill_flags | ill->ill_phyint->phyint_flags; 18609 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18610 18611 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18612 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18613 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18614 "allocate %u bytes\n", 18615 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18616 } 18617 } 18618 } 18619 rw_exit(&ipst->ips_ill_g_lock); 18620 18621 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18622 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18623 (int)optp->level, (int)optp->name, (int)optp->len)); 18624 qreply(q, mpctl); 18625 return (mp2ctl); 18626 } 18627 18628 /* IPv6 address information */ 18629 static mblk_t * 18630 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18631 { 18632 struct opthdr *optp; 18633 mblk_t *mp2ctl; 18634 mblk_t *mp_tail = NULL; 18635 ill_t *ill; 18636 ipif_t *ipif; 18637 mib2_ipv6AddrEntry_t mae6; 18638 zoneid_t zoneid; 18639 ill_walk_context_t ctx; 18640 18641 /* 18642 * make a copy of the original message 18643 */ 18644 mp2ctl = copymsg(mpctl); 18645 18646 /* ipv6AddrEntryTable */ 18647 18648 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18649 optp->level = MIB2_IP6; 18650 optp->name = MIB2_IP6_ADDR; 18651 zoneid = Q_TO_CONN(q)->conn_zoneid; 18652 18653 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18654 ill = ILL_START_WALK_V6(&ctx, ipst); 18655 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18656 for (ipif = ill->ill_ipif; ipif != NULL; 18657 ipif = ipif->ipif_next) { 18658 if (ipif->ipif_zoneid != zoneid && 18659 ipif->ipif_zoneid != ALL_ZONES) 18660 continue; 18661 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18662 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18663 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18664 18665 (void) ipif_get_name(ipif, 18666 mae6.ipv6AddrIfIndex.o_bytes, 18667 OCTET_LENGTH); 18668 mae6.ipv6AddrIfIndex.o_length = 18669 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18670 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18671 mae6.ipv6AddrPfxLength = 18672 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18673 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18674 mae6.ipv6AddrInfo.ae_subnet_len = 18675 mae6.ipv6AddrPfxLength; 18676 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18677 18678 /* Type: stateless(1), stateful(2), unknown(3) */ 18679 if (ipif->ipif_flags & IPIF_ADDRCONF) 18680 mae6.ipv6AddrType = 1; 18681 else 18682 mae6.ipv6AddrType = 2; 18683 /* Anycast: true(1), false(2) */ 18684 if (ipif->ipif_flags & IPIF_ANYCAST) 18685 mae6.ipv6AddrAnycastFlag = 1; 18686 else 18687 mae6.ipv6AddrAnycastFlag = 2; 18688 18689 /* 18690 * Address status: preferred(1), deprecated(2), 18691 * invalid(3), inaccessible(4), unknown(5) 18692 */ 18693 if (ipif->ipif_flags & IPIF_NOLOCAL) 18694 mae6.ipv6AddrStatus = 3; 18695 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18696 mae6.ipv6AddrStatus = 2; 18697 else 18698 mae6.ipv6AddrStatus = 1; 18699 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18700 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18701 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18702 ipif->ipif_v6pp_dst_addr; 18703 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18704 ill->ill_flags | ill->ill_phyint->phyint_flags; 18705 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18706 mae6.ipv6AddrIdentifier = ill->ill_token; 18707 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18708 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18709 mae6.ipv6AddrRetransmitTime = 18710 ill->ill_reachable_retrans_time; 18711 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18712 (char *)&mae6, 18713 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18714 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18715 "allocate %u bytes\n", 18716 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18717 } 18718 } 18719 } 18720 rw_exit(&ipst->ips_ill_g_lock); 18721 18722 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18723 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18724 (int)optp->level, (int)optp->name, (int)optp->len)); 18725 qreply(q, mpctl); 18726 return (mp2ctl); 18727 } 18728 18729 /* IPv4 multicast group membership. */ 18730 static mblk_t * 18731 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18732 { 18733 struct opthdr *optp; 18734 mblk_t *mp2ctl; 18735 ill_t *ill; 18736 ipif_t *ipif; 18737 ilm_t *ilm; 18738 ip_member_t ipm; 18739 mblk_t *mp_tail = NULL; 18740 ill_walk_context_t ctx; 18741 zoneid_t zoneid; 18742 18743 /* 18744 * make a copy of the original message 18745 */ 18746 mp2ctl = copymsg(mpctl); 18747 zoneid = Q_TO_CONN(q)->conn_zoneid; 18748 18749 /* ipGroupMember table */ 18750 optp = (struct opthdr *)&mpctl->b_rptr[ 18751 sizeof (struct T_optmgmt_ack)]; 18752 optp->level = MIB2_IP; 18753 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18754 18755 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18756 ill = ILL_START_WALK_V4(&ctx, ipst); 18757 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18758 ILM_WALKER_HOLD(ill); 18759 for (ipif = ill->ill_ipif; ipif != NULL; 18760 ipif = ipif->ipif_next) { 18761 if (ipif->ipif_zoneid != zoneid && 18762 ipif->ipif_zoneid != ALL_ZONES) 18763 continue; /* not this zone */ 18764 (void) ipif_get_name(ipif, 18765 ipm.ipGroupMemberIfIndex.o_bytes, 18766 OCTET_LENGTH); 18767 ipm.ipGroupMemberIfIndex.o_length = 18768 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18769 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18770 ASSERT(ilm->ilm_ipif != NULL); 18771 ASSERT(ilm->ilm_ill == NULL); 18772 if (ilm->ilm_ipif != ipif) 18773 continue; 18774 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18775 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18776 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18777 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18778 (char *)&ipm, (int)sizeof (ipm))) { 18779 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18780 "failed to allocate %u bytes\n", 18781 (uint_t)sizeof (ipm))); 18782 } 18783 } 18784 } 18785 ILM_WALKER_RELE(ill); 18786 } 18787 rw_exit(&ipst->ips_ill_g_lock); 18788 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18789 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18790 (int)optp->level, (int)optp->name, (int)optp->len)); 18791 qreply(q, mpctl); 18792 return (mp2ctl); 18793 } 18794 18795 /* IPv6 multicast group membership. */ 18796 static mblk_t * 18797 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18798 { 18799 struct opthdr *optp; 18800 mblk_t *mp2ctl; 18801 ill_t *ill; 18802 ilm_t *ilm; 18803 ipv6_member_t ipm6; 18804 mblk_t *mp_tail = NULL; 18805 ill_walk_context_t ctx; 18806 zoneid_t zoneid; 18807 18808 /* 18809 * make a copy of the original message 18810 */ 18811 mp2ctl = copymsg(mpctl); 18812 zoneid = Q_TO_CONN(q)->conn_zoneid; 18813 18814 /* ip6GroupMember table */ 18815 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18816 optp->level = MIB2_IP6; 18817 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18818 18819 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18820 ill = ILL_START_WALK_V6(&ctx, ipst); 18821 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18822 ILM_WALKER_HOLD(ill); 18823 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18824 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18825 ASSERT(ilm->ilm_ipif == NULL); 18826 ASSERT(ilm->ilm_ill != NULL); 18827 if (ilm->ilm_zoneid != zoneid) 18828 continue; /* not this zone */ 18829 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18830 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18831 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18832 if (!snmp_append_data2(mpctl->b_cont, 18833 &mp_tail, 18834 (char *)&ipm6, (int)sizeof (ipm6))) { 18835 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18836 "failed to allocate %u bytes\n", 18837 (uint_t)sizeof (ipm6))); 18838 } 18839 } 18840 ILM_WALKER_RELE(ill); 18841 } 18842 rw_exit(&ipst->ips_ill_g_lock); 18843 18844 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18845 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18846 (int)optp->level, (int)optp->name, (int)optp->len)); 18847 qreply(q, mpctl); 18848 return (mp2ctl); 18849 } 18850 18851 /* IP multicast filtered sources */ 18852 static mblk_t * 18853 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18854 { 18855 struct opthdr *optp; 18856 mblk_t *mp2ctl; 18857 ill_t *ill; 18858 ipif_t *ipif; 18859 ilm_t *ilm; 18860 ip_grpsrc_t ips; 18861 mblk_t *mp_tail = NULL; 18862 ill_walk_context_t ctx; 18863 zoneid_t zoneid; 18864 int i; 18865 slist_t *sl; 18866 18867 /* 18868 * make a copy of the original message 18869 */ 18870 mp2ctl = copymsg(mpctl); 18871 zoneid = Q_TO_CONN(q)->conn_zoneid; 18872 18873 /* ipGroupSource table */ 18874 optp = (struct opthdr *)&mpctl->b_rptr[ 18875 sizeof (struct T_optmgmt_ack)]; 18876 optp->level = MIB2_IP; 18877 optp->name = EXPER_IP_GROUP_SOURCES; 18878 18879 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18880 ill = ILL_START_WALK_V4(&ctx, ipst); 18881 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18882 ILM_WALKER_HOLD(ill); 18883 for (ipif = ill->ill_ipif; ipif != NULL; 18884 ipif = ipif->ipif_next) { 18885 if (ipif->ipif_zoneid != zoneid) 18886 continue; /* not this zone */ 18887 (void) ipif_get_name(ipif, 18888 ips.ipGroupSourceIfIndex.o_bytes, 18889 OCTET_LENGTH); 18890 ips.ipGroupSourceIfIndex.o_length = 18891 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18892 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18893 ASSERT(ilm->ilm_ipif != NULL); 18894 ASSERT(ilm->ilm_ill == NULL); 18895 sl = ilm->ilm_filter; 18896 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18897 continue; 18898 ips.ipGroupSourceGroup = ilm->ilm_addr; 18899 for (i = 0; i < sl->sl_numsrc; i++) { 18900 if (!IN6_IS_ADDR_V4MAPPED( 18901 &sl->sl_addr[i])) 18902 continue; 18903 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18904 ips.ipGroupSourceAddress); 18905 if (snmp_append_data2(mpctl->b_cont, 18906 &mp_tail, (char *)&ips, 18907 (int)sizeof (ips)) == 0) { 18908 ip1dbg(("ip_snmp_get_mib2_" 18909 "ip_group_src: failed to " 18910 "allocate %u bytes\n", 18911 (uint_t)sizeof (ips))); 18912 } 18913 } 18914 } 18915 } 18916 ILM_WALKER_RELE(ill); 18917 } 18918 rw_exit(&ipst->ips_ill_g_lock); 18919 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18920 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18921 (int)optp->level, (int)optp->name, (int)optp->len)); 18922 qreply(q, mpctl); 18923 return (mp2ctl); 18924 } 18925 18926 /* IPv6 multicast filtered sources. */ 18927 static mblk_t * 18928 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18929 { 18930 struct opthdr *optp; 18931 mblk_t *mp2ctl; 18932 ill_t *ill; 18933 ilm_t *ilm; 18934 ipv6_grpsrc_t ips6; 18935 mblk_t *mp_tail = NULL; 18936 ill_walk_context_t ctx; 18937 zoneid_t zoneid; 18938 int i; 18939 slist_t *sl; 18940 18941 /* 18942 * make a copy of the original message 18943 */ 18944 mp2ctl = copymsg(mpctl); 18945 zoneid = Q_TO_CONN(q)->conn_zoneid; 18946 18947 /* ip6GroupMember table */ 18948 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18949 optp->level = MIB2_IP6; 18950 optp->name = EXPER_IP6_GROUP_SOURCES; 18951 18952 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18953 ill = ILL_START_WALK_V6(&ctx, ipst); 18954 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18955 ILM_WALKER_HOLD(ill); 18956 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18957 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18958 ASSERT(ilm->ilm_ipif == NULL); 18959 ASSERT(ilm->ilm_ill != NULL); 18960 sl = ilm->ilm_filter; 18961 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18962 continue; 18963 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18964 for (i = 0; i < sl->sl_numsrc; i++) { 18965 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18966 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18967 (char *)&ips6, (int)sizeof (ips6))) { 18968 ip1dbg(("ip_snmp_get_mib2_ip6_" 18969 "group_src: failed to allocate " 18970 "%u bytes\n", 18971 (uint_t)sizeof (ips6))); 18972 } 18973 } 18974 } 18975 ILM_WALKER_RELE(ill); 18976 } 18977 rw_exit(&ipst->ips_ill_g_lock); 18978 18979 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18980 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18981 (int)optp->level, (int)optp->name, (int)optp->len)); 18982 qreply(q, mpctl); 18983 return (mp2ctl); 18984 } 18985 18986 /* Multicast routing virtual interface table. */ 18987 static mblk_t * 18988 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18989 { 18990 struct opthdr *optp; 18991 mblk_t *mp2ctl; 18992 18993 /* 18994 * make a copy of the original message 18995 */ 18996 mp2ctl = copymsg(mpctl); 18997 18998 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18999 optp->level = EXPER_DVMRP; 19000 optp->name = EXPER_DVMRP_VIF; 19001 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 19002 ip0dbg(("ip_mroute_vif: failed\n")); 19003 } 19004 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19005 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 19006 (int)optp->level, (int)optp->name, (int)optp->len)); 19007 qreply(q, mpctl); 19008 return (mp2ctl); 19009 } 19010 19011 /* Multicast routing table. */ 19012 static mblk_t * 19013 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19014 { 19015 struct opthdr *optp; 19016 mblk_t *mp2ctl; 19017 19018 /* 19019 * make a copy of the original message 19020 */ 19021 mp2ctl = copymsg(mpctl); 19022 19023 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19024 optp->level = EXPER_DVMRP; 19025 optp->name = EXPER_DVMRP_MRT; 19026 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19027 ip0dbg(("ip_mroute_mrt: failed\n")); 19028 } 19029 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19030 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19031 (int)optp->level, (int)optp->name, (int)optp->len)); 19032 qreply(q, mpctl); 19033 return (mp2ctl); 19034 } 19035 19036 /* 19037 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19038 * in one IRE walk. 19039 */ 19040 static mblk_t * 19041 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19042 { 19043 struct opthdr *optp; 19044 mblk_t *mp2ctl; /* Returned */ 19045 mblk_t *mp3ctl; /* nettomedia */ 19046 mblk_t *mp4ctl; /* routeattrs */ 19047 iproutedata_t ird; 19048 zoneid_t zoneid; 19049 19050 /* 19051 * make copies of the original message 19052 * - mp2ctl is returned unchanged to the caller for his use 19053 * - mpctl is sent upstream as ipRouteEntryTable 19054 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19055 * - mp4ctl is sent upstream as ipRouteAttributeTable 19056 */ 19057 mp2ctl = copymsg(mpctl); 19058 mp3ctl = copymsg(mpctl); 19059 mp4ctl = copymsg(mpctl); 19060 if (mp3ctl == NULL || mp4ctl == NULL) { 19061 freemsg(mp4ctl); 19062 freemsg(mp3ctl); 19063 freemsg(mp2ctl); 19064 freemsg(mpctl); 19065 return (NULL); 19066 } 19067 19068 bzero(&ird, sizeof (ird)); 19069 19070 ird.ird_route.lp_head = mpctl->b_cont; 19071 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19072 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19073 19074 zoneid = Q_TO_CONN(q)->conn_zoneid; 19075 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19076 if (zoneid == GLOBAL_ZONEID) { 19077 /* 19078 * Those IREs are used by Mobile-IP; since mipagent(1M) 19079 * requires the sys_net_config or sys_ip_config privilege, 19080 * it can only run in the global zone or an exclusive-IP zone, 19081 * and both those have a conn_zoneid == GLOBAL_ZONEID. 19082 */ 19083 ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird, ipst); 19084 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL, ipst); 19085 } 19086 19087 /* ipRouteEntryTable in mpctl */ 19088 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19089 optp->level = MIB2_IP; 19090 optp->name = MIB2_IP_ROUTE; 19091 optp->len = msgdsize(ird.ird_route.lp_head); 19092 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19093 (int)optp->level, (int)optp->name, (int)optp->len)); 19094 qreply(q, mpctl); 19095 19096 /* ipNetToMediaEntryTable in mp3ctl */ 19097 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19098 optp->level = MIB2_IP; 19099 optp->name = MIB2_IP_MEDIA; 19100 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19101 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19102 (int)optp->level, (int)optp->name, (int)optp->len)); 19103 qreply(q, mp3ctl); 19104 19105 /* ipRouteAttributeTable in mp4ctl */ 19106 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19107 optp->level = MIB2_IP; 19108 optp->name = EXPER_IP_RTATTR; 19109 optp->len = msgdsize(ird.ird_attrs.lp_head); 19110 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19111 (int)optp->level, (int)optp->name, (int)optp->len)); 19112 if (optp->len == 0) 19113 freemsg(mp4ctl); 19114 else 19115 qreply(q, mp4ctl); 19116 19117 return (mp2ctl); 19118 } 19119 19120 /* 19121 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19122 * ipv6NetToMediaEntryTable in an NDP walk. 19123 */ 19124 static mblk_t * 19125 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19126 { 19127 struct opthdr *optp; 19128 mblk_t *mp2ctl; /* Returned */ 19129 mblk_t *mp3ctl; /* nettomedia */ 19130 mblk_t *mp4ctl; /* routeattrs */ 19131 iproutedata_t ird; 19132 zoneid_t zoneid; 19133 19134 /* 19135 * make copies of the original message 19136 * - mp2ctl is returned unchanged to the caller for his use 19137 * - mpctl is sent upstream as ipv6RouteEntryTable 19138 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19139 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19140 */ 19141 mp2ctl = copymsg(mpctl); 19142 mp3ctl = copymsg(mpctl); 19143 mp4ctl = copymsg(mpctl); 19144 if (mp3ctl == NULL || mp4ctl == NULL) { 19145 freemsg(mp4ctl); 19146 freemsg(mp3ctl); 19147 freemsg(mp2ctl); 19148 freemsg(mpctl); 19149 return (NULL); 19150 } 19151 19152 bzero(&ird, sizeof (ird)); 19153 19154 ird.ird_route.lp_head = mpctl->b_cont; 19155 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19156 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19157 19158 zoneid = Q_TO_CONN(q)->conn_zoneid; 19159 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19160 19161 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19162 optp->level = MIB2_IP6; 19163 optp->name = MIB2_IP6_ROUTE; 19164 optp->len = msgdsize(ird.ird_route.lp_head); 19165 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19166 (int)optp->level, (int)optp->name, (int)optp->len)); 19167 qreply(q, mpctl); 19168 19169 /* ipv6NetToMediaEntryTable in mp3ctl */ 19170 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19171 19172 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19173 optp->level = MIB2_IP6; 19174 optp->name = MIB2_IP6_MEDIA; 19175 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19176 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19177 (int)optp->level, (int)optp->name, (int)optp->len)); 19178 qreply(q, mp3ctl); 19179 19180 /* ipv6RouteAttributeTable in mp4ctl */ 19181 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19182 optp->level = MIB2_IP6; 19183 optp->name = EXPER_IP_RTATTR; 19184 optp->len = msgdsize(ird.ird_attrs.lp_head); 19185 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19186 (int)optp->level, (int)optp->name, (int)optp->len)); 19187 if (optp->len == 0) 19188 freemsg(mp4ctl); 19189 else 19190 qreply(q, mp4ctl); 19191 19192 return (mp2ctl); 19193 } 19194 19195 /* 19196 * IPv6 mib: One per ill 19197 */ 19198 static mblk_t * 19199 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19200 { 19201 struct opthdr *optp; 19202 mblk_t *mp2ctl; 19203 ill_t *ill; 19204 ill_walk_context_t ctx; 19205 mblk_t *mp_tail = NULL; 19206 19207 /* 19208 * Make a copy of the original message 19209 */ 19210 mp2ctl = copymsg(mpctl); 19211 19212 /* fixed length IPv6 structure ... */ 19213 19214 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19215 optp->level = MIB2_IP6; 19216 optp->name = 0; 19217 /* Include "unknown interface" ip6_mib */ 19218 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19219 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19220 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19221 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19222 ipst->ips_ipv6_forward ? 1 : 2); 19223 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19224 ipst->ips_ipv6_def_hops); 19225 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19226 sizeof (mib2_ipIfStatsEntry_t)); 19227 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19228 sizeof (mib2_ipv6AddrEntry_t)); 19229 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19230 sizeof (mib2_ipv6RouteEntry_t)); 19231 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19232 sizeof (mib2_ipv6NetToMediaEntry_t)); 19233 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19234 sizeof (ipv6_member_t)); 19235 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19236 sizeof (ipv6_grpsrc_t)); 19237 19238 /* 19239 * Synchronize 64- and 32-bit counters 19240 */ 19241 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19242 ipIfStatsHCInReceives); 19243 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19244 ipIfStatsHCInDelivers); 19245 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19246 ipIfStatsHCOutRequests); 19247 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19248 ipIfStatsHCOutForwDatagrams); 19249 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19250 ipIfStatsHCOutMcastPkts); 19251 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19252 ipIfStatsHCInMcastPkts); 19253 19254 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19255 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19256 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19257 (uint_t)sizeof (ipst->ips_ip6_mib))); 19258 } 19259 19260 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19261 ill = ILL_START_WALK_V6(&ctx, ipst); 19262 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19263 ill->ill_ip_mib->ipIfStatsIfIndex = 19264 ill->ill_phyint->phyint_ifindex; 19265 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19266 ipst->ips_ipv6_forward ? 1 : 2); 19267 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19268 ill->ill_max_hops); 19269 19270 /* 19271 * Synchronize 64- and 32-bit counters 19272 */ 19273 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19274 ipIfStatsHCInReceives); 19275 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19276 ipIfStatsHCInDelivers); 19277 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19278 ipIfStatsHCOutRequests); 19279 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19280 ipIfStatsHCOutForwDatagrams); 19281 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19282 ipIfStatsHCOutMcastPkts); 19283 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19284 ipIfStatsHCInMcastPkts); 19285 19286 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19287 (char *)ill->ill_ip_mib, 19288 (int)sizeof (*ill->ill_ip_mib))) { 19289 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19290 "%u bytes\n", 19291 (uint_t)sizeof (*ill->ill_ip_mib))); 19292 } 19293 } 19294 rw_exit(&ipst->ips_ill_g_lock); 19295 19296 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19297 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19298 (int)optp->level, (int)optp->name, (int)optp->len)); 19299 qreply(q, mpctl); 19300 return (mp2ctl); 19301 } 19302 19303 /* 19304 * ICMPv6 mib: One per ill 19305 */ 19306 static mblk_t * 19307 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19308 { 19309 struct opthdr *optp; 19310 mblk_t *mp2ctl; 19311 ill_t *ill; 19312 ill_walk_context_t ctx; 19313 mblk_t *mp_tail = NULL; 19314 /* 19315 * Make a copy of the original message 19316 */ 19317 mp2ctl = copymsg(mpctl); 19318 19319 /* fixed length ICMPv6 structure ... */ 19320 19321 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19322 optp->level = MIB2_ICMP6; 19323 optp->name = 0; 19324 /* Include "unknown interface" icmp6_mib */ 19325 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19326 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19327 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19328 sizeof (mib2_ipv6IfIcmpEntry_t); 19329 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19330 (char *)&ipst->ips_icmp6_mib, 19331 (int)sizeof (ipst->ips_icmp6_mib))) { 19332 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19333 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19334 } 19335 19336 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19337 ill = ILL_START_WALK_V6(&ctx, ipst); 19338 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19339 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19340 ill->ill_phyint->phyint_ifindex; 19341 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19342 (char *)ill->ill_icmp6_mib, 19343 (int)sizeof (*ill->ill_icmp6_mib))) { 19344 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19345 "%u bytes\n", 19346 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19347 } 19348 } 19349 rw_exit(&ipst->ips_ill_g_lock); 19350 19351 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19352 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19353 (int)optp->level, (int)optp->name, (int)optp->len)); 19354 qreply(q, mpctl); 19355 return (mp2ctl); 19356 } 19357 19358 /* 19359 * ire_walk routine to create both ipRouteEntryTable and 19360 * ipRouteAttributeTable in one IRE walk 19361 */ 19362 static void 19363 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19364 { 19365 ill_t *ill; 19366 ipif_t *ipif; 19367 mib2_ipRouteEntry_t *re; 19368 mib2_ipAttributeEntry_t *iae, *iaeptr; 19369 ipaddr_t gw_addr; 19370 tsol_ire_gw_secattr_t *attrp; 19371 tsol_gc_t *gc = NULL; 19372 tsol_gcgrp_t *gcgrp = NULL; 19373 uint_t sacnt = 0; 19374 int i; 19375 19376 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19377 19378 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19379 return; 19380 19381 if ((attrp = ire->ire_gw_secattr) != NULL) { 19382 mutex_enter(&attrp->igsa_lock); 19383 if ((gc = attrp->igsa_gc) != NULL) { 19384 gcgrp = gc->gc_grp; 19385 ASSERT(gcgrp != NULL); 19386 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19387 sacnt = 1; 19388 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19389 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19390 gc = gcgrp->gcgrp_head; 19391 sacnt = gcgrp->gcgrp_count; 19392 } 19393 mutex_exit(&attrp->igsa_lock); 19394 19395 /* do nothing if there's no gc to report */ 19396 if (gc == NULL) { 19397 ASSERT(sacnt == 0); 19398 if (gcgrp != NULL) { 19399 /* we might as well drop the lock now */ 19400 rw_exit(&gcgrp->gcgrp_rwlock); 19401 gcgrp = NULL; 19402 } 19403 attrp = NULL; 19404 } 19405 19406 ASSERT(gc == NULL || (gcgrp != NULL && 19407 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19408 } 19409 ASSERT(sacnt == 0 || gc != NULL); 19410 19411 if (sacnt != 0 && 19412 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19413 kmem_free(re, sizeof (*re)); 19414 rw_exit(&gcgrp->gcgrp_rwlock); 19415 return; 19416 } 19417 19418 /* 19419 * Return all IRE types for route table... let caller pick and choose 19420 */ 19421 re->ipRouteDest = ire->ire_addr; 19422 ipif = ire->ire_ipif; 19423 re->ipRouteIfIndex.o_length = 0; 19424 if (ire->ire_type == IRE_CACHE) { 19425 ill = (ill_t *)ire->ire_stq->q_ptr; 19426 re->ipRouteIfIndex.o_length = 19427 ill->ill_name_length == 0 ? 0 : 19428 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19429 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19430 re->ipRouteIfIndex.o_length); 19431 } else if (ipif != NULL) { 19432 (void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, 19433 OCTET_LENGTH); 19434 re->ipRouteIfIndex.o_length = 19435 mi_strlen(re->ipRouteIfIndex.o_bytes); 19436 } 19437 re->ipRouteMetric1 = -1; 19438 re->ipRouteMetric2 = -1; 19439 re->ipRouteMetric3 = -1; 19440 re->ipRouteMetric4 = -1; 19441 19442 gw_addr = ire->ire_gateway_addr; 19443 19444 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19445 re->ipRouteNextHop = ire->ire_src_addr; 19446 else 19447 re->ipRouteNextHop = gw_addr; 19448 /* indirect(4), direct(3), or invalid(2) */ 19449 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19450 re->ipRouteType = 2; 19451 else 19452 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19453 re->ipRouteProto = -1; 19454 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19455 re->ipRouteMask = ire->ire_mask; 19456 re->ipRouteMetric5 = -1; 19457 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19458 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19459 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19460 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19461 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19462 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19463 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19464 re->ipRouteInfo.re_flags = ire->ire_flags; 19465 re->ipRouteInfo.re_in_ill.o_length = 0; 19466 19467 if (ire->ire_flags & RTF_DYNAMIC) { 19468 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19469 } else { 19470 re->ipRouteInfo.re_ire_type = ire->ire_type; 19471 } 19472 19473 if (ire->ire_in_ill != NULL) { 19474 re->ipRouteInfo.re_in_ill.o_length = 19475 ire->ire_in_ill->ill_name_length == 0 ? 0 : 19476 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 19477 bcopy(ire->ire_in_ill->ill_name, 19478 re->ipRouteInfo.re_in_ill.o_bytes, 19479 re->ipRouteInfo.re_in_ill.o_length); 19480 } 19481 re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 19482 19483 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19484 (char *)re, (int)sizeof (*re))) { 19485 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19486 (uint_t)sizeof (*re))); 19487 } 19488 19489 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19490 iaeptr->iae_routeidx = ird->ird_idx; 19491 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19492 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19493 } 19494 19495 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19496 (char *)iae, sacnt * sizeof (*iae))) { 19497 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19498 (unsigned)(sacnt * sizeof (*iae)))); 19499 } 19500 19501 /* bump route index for next pass */ 19502 ird->ird_idx++; 19503 19504 kmem_free(re, sizeof (*re)); 19505 if (sacnt != 0) 19506 kmem_free(iae, sacnt * sizeof (*iae)); 19507 19508 if (gcgrp != NULL) 19509 rw_exit(&gcgrp->gcgrp_rwlock); 19510 } 19511 19512 /* 19513 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19514 */ 19515 static void 19516 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19517 { 19518 ill_t *ill; 19519 ipif_t *ipif; 19520 mib2_ipv6RouteEntry_t *re; 19521 mib2_ipAttributeEntry_t *iae, *iaeptr; 19522 in6_addr_t gw_addr_v6; 19523 tsol_ire_gw_secattr_t *attrp; 19524 tsol_gc_t *gc = NULL; 19525 tsol_gcgrp_t *gcgrp = NULL; 19526 uint_t sacnt = 0; 19527 int i; 19528 19529 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19530 19531 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19532 return; 19533 19534 if ((attrp = ire->ire_gw_secattr) != NULL) { 19535 mutex_enter(&attrp->igsa_lock); 19536 if ((gc = attrp->igsa_gc) != NULL) { 19537 gcgrp = gc->gc_grp; 19538 ASSERT(gcgrp != NULL); 19539 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19540 sacnt = 1; 19541 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19542 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19543 gc = gcgrp->gcgrp_head; 19544 sacnt = gcgrp->gcgrp_count; 19545 } 19546 mutex_exit(&attrp->igsa_lock); 19547 19548 /* do nothing if there's no gc to report */ 19549 if (gc == NULL) { 19550 ASSERT(sacnt == 0); 19551 if (gcgrp != NULL) { 19552 /* we might as well drop the lock now */ 19553 rw_exit(&gcgrp->gcgrp_rwlock); 19554 gcgrp = NULL; 19555 } 19556 attrp = NULL; 19557 } 19558 19559 ASSERT(gc == NULL || (gcgrp != NULL && 19560 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19561 } 19562 ASSERT(sacnt == 0 || gc != NULL); 19563 19564 if (sacnt != 0 && 19565 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19566 kmem_free(re, sizeof (*re)); 19567 rw_exit(&gcgrp->gcgrp_rwlock); 19568 return; 19569 } 19570 19571 /* 19572 * Return all IRE types for route table... let caller pick and choose 19573 */ 19574 re->ipv6RouteDest = ire->ire_addr_v6; 19575 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19576 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19577 re->ipv6RouteIfIndex.o_length = 0; 19578 ipif = ire->ire_ipif; 19579 if (ire->ire_type == IRE_CACHE) { 19580 ill = (ill_t *)ire->ire_stq->q_ptr; 19581 re->ipv6RouteIfIndex.o_length = 19582 ill->ill_name_length == 0 ? 0 : 19583 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19584 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19585 re->ipv6RouteIfIndex.o_length); 19586 } else if (ipif != NULL) { 19587 (void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, 19588 OCTET_LENGTH); 19589 re->ipv6RouteIfIndex.o_length = 19590 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19591 } 19592 19593 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19594 19595 mutex_enter(&ire->ire_lock); 19596 gw_addr_v6 = ire->ire_gateway_addr_v6; 19597 mutex_exit(&ire->ire_lock); 19598 19599 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19600 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19601 else 19602 re->ipv6RouteNextHop = gw_addr_v6; 19603 19604 /* remote(4), local(3), or discard(2) */ 19605 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19606 re->ipv6RouteType = 2; 19607 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19608 re->ipv6RouteType = 3; 19609 else 19610 re->ipv6RouteType = 4; 19611 19612 re->ipv6RouteProtocol = -1; 19613 re->ipv6RoutePolicy = 0; 19614 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19615 re->ipv6RouteNextHopRDI = 0; 19616 re->ipv6RouteWeight = 0; 19617 re->ipv6RouteMetric = 0; 19618 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19619 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19620 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19621 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19622 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19623 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19624 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19625 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19626 19627 if (ire->ire_flags & RTF_DYNAMIC) { 19628 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19629 } else { 19630 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19631 } 19632 19633 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19634 (char *)re, (int)sizeof (*re))) { 19635 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19636 (uint_t)sizeof (*re))); 19637 } 19638 19639 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19640 iaeptr->iae_routeidx = ird->ird_idx; 19641 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19642 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19643 } 19644 19645 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19646 (char *)iae, sacnt * sizeof (*iae))) { 19647 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19648 (unsigned)(sacnt * sizeof (*iae)))); 19649 } 19650 19651 /* bump route index for next pass */ 19652 ird->ird_idx++; 19653 19654 kmem_free(re, sizeof (*re)); 19655 if (sacnt != 0) 19656 kmem_free(iae, sacnt * sizeof (*iae)); 19657 19658 if (gcgrp != NULL) 19659 rw_exit(&gcgrp->gcgrp_rwlock); 19660 } 19661 19662 /* 19663 * ndp_walk routine to create ipv6NetToMediaEntryTable 19664 */ 19665 static int 19666 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19667 { 19668 ill_t *ill; 19669 mib2_ipv6NetToMediaEntry_t ntme; 19670 dl_unitdata_req_t *dl; 19671 19672 ill = nce->nce_ill; 19673 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19674 return (0); 19675 19676 /* 19677 * Neighbor cache entry attached to IRE with on-link 19678 * destination. 19679 */ 19680 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19681 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19682 if ((ill->ill_flags & ILLF_XRESOLV) && 19683 (nce->nce_res_mp != NULL)) { 19684 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19685 ntme.ipv6NetToMediaPhysAddress.o_length = 19686 dl->dl_dest_addr_length; 19687 } else { 19688 ntme.ipv6NetToMediaPhysAddress.o_length = 19689 ill->ill_phys_addr_length; 19690 } 19691 if (nce->nce_res_mp != NULL) { 19692 bcopy((char *)nce->nce_res_mp->b_rptr + 19693 NCE_LL_ADDR_OFFSET(ill), 19694 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19695 ntme.ipv6NetToMediaPhysAddress.o_length); 19696 } else { 19697 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19698 ill->ill_phys_addr_length); 19699 } 19700 /* 19701 * Note: Returns ND_* states. Should be: 19702 * reachable(1), stale(2), delay(3), probe(4), 19703 * invalid(5), unknown(6) 19704 */ 19705 ntme.ipv6NetToMediaState = nce->nce_state; 19706 ntme.ipv6NetToMediaLastUpdated = 0; 19707 19708 /* other(1), dynamic(2), static(3), local(4) */ 19709 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19710 ntme.ipv6NetToMediaType = 4; 19711 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19712 ntme.ipv6NetToMediaType = 1; 19713 } else { 19714 ntme.ipv6NetToMediaType = 2; 19715 } 19716 19717 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19718 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19719 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19720 (uint_t)sizeof (ntme))); 19721 } 19722 return (0); 19723 } 19724 19725 /* 19726 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19727 */ 19728 /* ARGSUSED */ 19729 int 19730 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19731 { 19732 switch (level) { 19733 case MIB2_IP: 19734 case MIB2_ICMP: 19735 switch (name) { 19736 default: 19737 break; 19738 } 19739 return (1); 19740 default: 19741 return (1); 19742 } 19743 } 19744 19745 /* 19746 * When there exists both a 64- and 32-bit counter of a particular type 19747 * (i.e., InReceives), only the 64-bit counters are added. 19748 */ 19749 void 19750 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19751 { 19752 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19753 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19754 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19755 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19756 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19757 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19758 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19759 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19760 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19761 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19762 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19763 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19764 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19765 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19766 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19767 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19768 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19769 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19770 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19771 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19772 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19773 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19774 o2->ipIfStatsInWrongIPVersion); 19775 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19776 o2->ipIfStatsInWrongIPVersion); 19777 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19778 o2->ipIfStatsOutSwitchIPVersion); 19779 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19780 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19781 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19782 o2->ipIfStatsHCInForwDatagrams); 19783 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19784 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19785 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19786 o2->ipIfStatsHCOutForwDatagrams); 19787 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19788 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19789 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19790 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19791 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19792 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19793 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19794 o2->ipIfStatsHCOutMcastOctets); 19795 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19796 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19797 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19798 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19799 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19800 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19801 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19802 } 19803 19804 void 19805 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19806 { 19807 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19808 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19809 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19810 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19811 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19812 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19813 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19814 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19815 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19816 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19817 o2->ipv6IfIcmpInRouterSolicits); 19818 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19819 o2->ipv6IfIcmpInRouterAdvertisements); 19820 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19821 o2->ipv6IfIcmpInNeighborSolicits); 19822 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19823 o2->ipv6IfIcmpInNeighborAdvertisements); 19824 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19825 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19826 o2->ipv6IfIcmpInGroupMembQueries); 19827 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19828 o2->ipv6IfIcmpInGroupMembResponses); 19829 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19830 o2->ipv6IfIcmpInGroupMembReductions); 19831 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19832 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19833 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19834 o2->ipv6IfIcmpOutDestUnreachs); 19835 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19836 o2->ipv6IfIcmpOutAdminProhibs); 19837 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19838 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19839 o2->ipv6IfIcmpOutParmProblems); 19840 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19841 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19842 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19843 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19844 o2->ipv6IfIcmpOutRouterSolicits); 19845 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19846 o2->ipv6IfIcmpOutRouterAdvertisements); 19847 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19848 o2->ipv6IfIcmpOutNeighborSolicits); 19849 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19850 o2->ipv6IfIcmpOutNeighborAdvertisements); 19851 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19852 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19853 o2->ipv6IfIcmpOutGroupMembQueries); 19854 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19855 o2->ipv6IfIcmpOutGroupMembResponses); 19856 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19857 o2->ipv6IfIcmpOutGroupMembReductions); 19858 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19859 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19860 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19861 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19862 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19863 o2->ipv6IfIcmpInBadNeighborSolicitations); 19864 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19865 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19866 o2->ipv6IfIcmpInGroupMembTotal); 19867 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19868 o2->ipv6IfIcmpInGroupMembBadQueries); 19869 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19870 o2->ipv6IfIcmpInGroupMembBadReports); 19871 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19872 o2->ipv6IfIcmpInGroupMembOurReports); 19873 } 19874 19875 /* 19876 * Called before the options are updated to check if this packet will 19877 * be source routed from here. 19878 * This routine assumes that the options are well formed i.e. that they 19879 * have already been checked. 19880 */ 19881 static boolean_t 19882 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19883 { 19884 ipoptp_t opts; 19885 uchar_t *opt; 19886 uint8_t optval; 19887 uint8_t optlen; 19888 ipaddr_t dst; 19889 ire_t *ire; 19890 19891 if (IS_SIMPLE_IPH(ipha)) { 19892 ip2dbg(("not source routed\n")); 19893 return (B_FALSE); 19894 } 19895 dst = ipha->ipha_dst; 19896 for (optval = ipoptp_first(&opts, ipha); 19897 optval != IPOPT_EOL; 19898 optval = ipoptp_next(&opts)) { 19899 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19900 opt = opts.ipoptp_cur; 19901 optlen = opts.ipoptp_len; 19902 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19903 optval, optlen)); 19904 switch (optval) { 19905 uint32_t off; 19906 case IPOPT_SSRR: 19907 case IPOPT_LSRR: 19908 /* 19909 * If dst is one of our addresses and there are some 19910 * entries left in the source route return (true). 19911 */ 19912 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19913 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19914 if (ire == NULL) { 19915 ip2dbg(("ip_source_routed: not next" 19916 " source route 0x%x\n", 19917 ntohl(dst))); 19918 return (B_FALSE); 19919 } 19920 ire_refrele(ire); 19921 off = opt[IPOPT_OFFSET]; 19922 off--; 19923 if (optlen < IP_ADDR_LEN || 19924 off > optlen - IP_ADDR_LEN) { 19925 /* End of source route */ 19926 ip1dbg(("ip_source_routed: end of SR\n")); 19927 return (B_FALSE); 19928 } 19929 return (B_TRUE); 19930 } 19931 } 19932 ip2dbg(("not source routed\n")); 19933 return (B_FALSE); 19934 } 19935 19936 /* 19937 * Check if the packet contains any source route. 19938 */ 19939 static boolean_t 19940 ip_source_route_included(ipha_t *ipha) 19941 { 19942 ipoptp_t opts; 19943 uint8_t optval; 19944 19945 if (IS_SIMPLE_IPH(ipha)) 19946 return (B_FALSE); 19947 for (optval = ipoptp_first(&opts, ipha); 19948 optval != IPOPT_EOL; 19949 optval = ipoptp_next(&opts)) { 19950 switch (optval) { 19951 case IPOPT_SSRR: 19952 case IPOPT_LSRR: 19953 return (B_TRUE); 19954 } 19955 } 19956 return (B_FALSE); 19957 } 19958 19959 /* 19960 * Called when the IRE expiration timer fires. 19961 */ 19962 void 19963 ip_trash_timer_expire(void *args) 19964 { 19965 int flush_flag = 0; 19966 ire_expire_arg_t iea; 19967 ip_stack_t *ipst = (ip_stack_t *)args; 19968 19969 iea.iea_ipst = ipst; /* No netstack_hold */ 19970 19971 /* 19972 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19973 * This lock makes sure that a new invocation of this function 19974 * that occurs due to an almost immediate timer firing will not 19975 * progress beyond this point until the current invocation is done 19976 */ 19977 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19978 ipst->ips_ip_ire_expire_id = 0; 19979 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19980 19981 /* Periodic timer */ 19982 if (ipst->ips_ip_ire_arp_time_elapsed >= 19983 ipst->ips_ip_ire_arp_interval) { 19984 /* 19985 * Remove all IRE_CACHE entries since they might 19986 * contain arp information. 19987 */ 19988 flush_flag |= FLUSH_ARP_TIME; 19989 ipst->ips_ip_ire_arp_time_elapsed = 0; 19990 IP_STAT(ipst, ip_ire_arp_timer_expired); 19991 } 19992 if (ipst->ips_ip_ire_rd_time_elapsed >= 19993 ipst->ips_ip_ire_redir_interval) { 19994 /* Remove all redirects */ 19995 flush_flag |= FLUSH_REDIRECT_TIME; 19996 ipst->ips_ip_ire_rd_time_elapsed = 0; 19997 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19998 } 19999 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 20000 ipst->ips_ip_ire_pathmtu_interval) { 20001 /* Increase path mtu */ 20002 flush_flag |= FLUSH_MTU_TIME; 20003 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 20004 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 20005 } 20006 20007 /* 20008 * Optimize for the case when there are no redirects in the 20009 * ftable, that is, no need to walk the ftable in that case. 20010 */ 20011 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20012 iea.iea_flush_flag = flush_flag; 20013 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20014 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20015 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20016 NULL, ALL_ZONES, ipst); 20017 } 20018 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20019 ipst->ips_ip_redirect_cnt > 0) { 20020 iea.iea_flush_flag = flush_flag; 20021 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20022 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20023 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20024 } 20025 if (flush_flag & FLUSH_MTU_TIME) { 20026 /* 20027 * Walk all IPv6 IRE's and update them 20028 * Note that ARP and redirect timers are not 20029 * needed since NUD handles stale entries. 20030 */ 20031 flush_flag = FLUSH_MTU_TIME; 20032 iea.iea_flush_flag = flush_flag; 20033 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20034 ALL_ZONES, ipst); 20035 } 20036 20037 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20038 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20039 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20040 20041 /* 20042 * Hold the lock to serialize timeout calls and prevent 20043 * stale values in ip_ire_expire_id. Otherwise it is possible 20044 * for the timer to fire and a new invocation of this function 20045 * to start before the return value of timeout has been stored 20046 * in ip_ire_expire_id by the current invocation. 20047 */ 20048 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20049 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20050 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20051 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20052 } 20053 20054 /* 20055 * Called by the memory allocator subsystem directly, when the system 20056 * is running low on memory. 20057 */ 20058 /* ARGSUSED */ 20059 void 20060 ip_trash_ire_reclaim(void *args) 20061 { 20062 netstack_handle_t nh; 20063 netstack_t *ns; 20064 20065 netstack_next_init(&nh); 20066 while ((ns = netstack_next(&nh)) != NULL) { 20067 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20068 netstack_rele(ns); 20069 } 20070 netstack_next_fini(&nh); 20071 } 20072 20073 static void 20074 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20075 { 20076 ire_cache_count_t icc; 20077 ire_cache_reclaim_t icr; 20078 ncc_cache_count_t ncc; 20079 nce_cache_reclaim_t ncr; 20080 uint_t delete_cnt; 20081 /* 20082 * Memory reclaim call back. 20083 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20084 * Then, with a target of freeing 1/Nth of IRE_CACHE 20085 * entries, determine what fraction to free for 20086 * each category of IRE_CACHE entries giving absolute priority 20087 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20088 * entry will be freed unless all offlink entries are freed). 20089 */ 20090 icc.icc_total = 0; 20091 icc.icc_unused = 0; 20092 icc.icc_offlink = 0; 20093 icc.icc_pmtu = 0; 20094 icc.icc_onlink = 0; 20095 ire_walk(ire_cache_count, (char *)&icc, ipst); 20096 20097 /* 20098 * Free NCEs for IPv6 like the onlink ires. 20099 */ 20100 ncc.ncc_total = 0; 20101 ncc.ncc_host = 0; 20102 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20103 20104 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20105 icc.icc_pmtu + icc.icc_onlink); 20106 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20107 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20108 if (delete_cnt == 0) 20109 return; 20110 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20111 /* Always delete all unused offlink entries */ 20112 icr.icr_ipst = ipst; 20113 icr.icr_unused = 1; 20114 if (delete_cnt <= icc.icc_unused) { 20115 /* 20116 * Only need to free unused entries. In other words, 20117 * there are enough unused entries to free to meet our 20118 * target number of freed ire cache entries. 20119 */ 20120 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20121 ncr.ncr_host = 0; 20122 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20123 /* 20124 * Only need to free unused entries, plus a fraction of offlink 20125 * entries. It follows from the first if statement that 20126 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20127 */ 20128 delete_cnt -= icc.icc_unused; 20129 /* Round up # deleted by truncating fraction */ 20130 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20131 icr.icr_pmtu = icr.icr_onlink = 0; 20132 ncr.ncr_host = 0; 20133 } else if (delete_cnt <= 20134 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20135 /* 20136 * Free all unused and offlink entries, plus a fraction of 20137 * pmtu entries. It follows from the previous if statement 20138 * that icc_pmtu is non-zero, and that 20139 * delete_cnt != icc_unused + icc_offlink. 20140 */ 20141 icr.icr_offlink = 1; 20142 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20143 /* Round up # deleted by truncating fraction */ 20144 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20145 icr.icr_onlink = 0; 20146 ncr.ncr_host = 0; 20147 } else { 20148 /* 20149 * Free all unused, offlink, and pmtu entries, plus a fraction 20150 * of onlink entries. If we're here, then we know that 20151 * icc_onlink is non-zero, and that 20152 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20153 */ 20154 icr.icr_offlink = icr.icr_pmtu = 1; 20155 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20156 icc.icc_pmtu; 20157 /* Round up # deleted by truncating fraction */ 20158 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20159 /* Using the same delete fraction as for onlink IREs */ 20160 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20161 } 20162 #ifdef DEBUG 20163 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20164 "fractions %d/%d/%d/%d\n", 20165 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20166 icc.icc_unused, icc.icc_offlink, 20167 icc.icc_pmtu, icc.icc_onlink, 20168 icr.icr_unused, icr.icr_offlink, 20169 icr.icr_pmtu, icr.icr_onlink)); 20170 #endif 20171 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20172 if (ncr.ncr_host != 0) 20173 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20174 (uchar_t *)&ncr, ipst); 20175 #ifdef DEBUG 20176 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20177 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20178 ire_walk(ire_cache_count, (char *)&icc, ipst); 20179 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20180 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20181 icc.icc_pmtu, icc.icc_onlink)); 20182 #endif 20183 } 20184 20185 /* 20186 * ip_unbind is called when a copy of an unbind request is received from the 20187 * upper level protocol. We remove this conn from any fanout hash list it is 20188 * on, and zero out the bind information. No reply is expected up above. 20189 */ 20190 mblk_t * 20191 ip_unbind(queue_t *q, mblk_t *mp) 20192 { 20193 conn_t *connp = Q_TO_CONN(q); 20194 20195 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20196 20197 if (is_system_labeled() && connp->conn_anon_port) { 20198 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20199 connp->conn_mlp_type, connp->conn_ulp, 20200 ntohs(connp->conn_lport), B_FALSE); 20201 connp->conn_anon_port = 0; 20202 } 20203 connp->conn_mlp_type = mlptSingle; 20204 20205 ipcl_hash_remove(connp); 20206 20207 ASSERT(mp->b_cont == NULL); 20208 /* 20209 * Convert mp into a T_OK_ACK 20210 */ 20211 mp = mi_tpi_ok_ack_alloc(mp); 20212 20213 /* 20214 * should not happen in practice... T_OK_ACK is smaller than the 20215 * original message. 20216 */ 20217 if (mp == NULL) 20218 return (NULL); 20219 20220 /* 20221 * Don't bzero the ports if its TCP since TCP still needs the 20222 * lport to remove it from its own bind hash. TCP will do the 20223 * cleanup. 20224 */ 20225 if (!IPCL_IS_TCP(connp)) 20226 bzero(&connp->u_port, sizeof (connp->u_port)); 20227 20228 return (mp); 20229 } 20230 20231 /* 20232 * Write side put procedure. Outbound data, IOCTLs, responses from 20233 * resolvers, etc, come down through here. 20234 * 20235 * arg2 is always a queue_t *. 20236 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20237 * the zoneid. 20238 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20239 */ 20240 void 20241 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20242 { 20243 ip_output_options(arg, mp, arg2, caller, &zero_info); 20244 } 20245 20246 void 20247 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20248 ip_opt_info_t *infop) 20249 { 20250 conn_t *connp = NULL; 20251 queue_t *q = (queue_t *)arg2; 20252 ipha_t *ipha; 20253 #define rptr ((uchar_t *)ipha) 20254 ire_t *ire = NULL; 20255 ire_t *sctp_ire = NULL; 20256 uint32_t v_hlen_tos_len; 20257 ipaddr_t dst; 20258 mblk_t *first_mp = NULL; 20259 boolean_t mctl_present; 20260 ipsec_out_t *io; 20261 int match_flags; 20262 ill_t *attach_ill = NULL; 20263 /* Bind to IPIF_NOFAILOVER ill etc. */ 20264 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 20265 ipif_t *dst_ipif; 20266 boolean_t multirt_need_resolve = B_FALSE; 20267 mblk_t *copy_mp = NULL; 20268 int err; 20269 zoneid_t zoneid; 20270 int adjust; 20271 uint16_t iplen; 20272 boolean_t need_decref = B_FALSE; 20273 boolean_t ignore_dontroute = B_FALSE; 20274 boolean_t ignore_nexthop = B_FALSE; 20275 boolean_t ip_nexthop = B_FALSE; 20276 ipaddr_t nexthop_addr; 20277 ip_stack_t *ipst; 20278 20279 #ifdef _BIG_ENDIAN 20280 #define V_HLEN (v_hlen_tos_len >> 24) 20281 #else 20282 #define V_HLEN (v_hlen_tos_len & 0xFF) 20283 #endif 20284 20285 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20286 "ip_wput_start: q %p", q); 20287 20288 /* 20289 * ip_wput fast path 20290 */ 20291 20292 /* is packet from ARP ? */ 20293 if (q->q_next != NULL) { 20294 zoneid = (zoneid_t)(uintptr_t)arg; 20295 goto qnext; 20296 } 20297 20298 connp = (conn_t *)arg; 20299 ASSERT(connp != NULL); 20300 zoneid = connp->conn_zoneid; 20301 ipst = connp->conn_netstack->netstack_ip; 20302 20303 /* is queue flow controlled? */ 20304 if ((q->q_first != NULL || connp->conn_draining) && 20305 (caller == IP_WPUT)) { 20306 ASSERT(!need_decref); 20307 (void) putq(q, mp); 20308 return; 20309 } 20310 20311 /* Multidata transmit? */ 20312 if (DB_TYPE(mp) == M_MULTIDATA) { 20313 /* 20314 * We should never get here, since all Multidata messages 20315 * originating from tcp should have been directed over to 20316 * tcp_multisend() in the first place. 20317 */ 20318 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20319 freemsg(mp); 20320 return; 20321 } else if (DB_TYPE(mp) != M_DATA) 20322 goto notdata; 20323 20324 if (mp->b_flag & MSGHASREF) { 20325 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20326 mp->b_flag &= ~MSGHASREF; 20327 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20328 need_decref = B_TRUE; 20329 } 20330 ipha = (ipha_t *)mp->b_rptr; 20331 20332 /* is IP header non-aligned or mblk smaller than basic IP header */ 20333 #ifndef SAFETY_BEFORE_SPEED 20334 if (!OK_32PTR(rptr) || 20335 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20336 goto hdrtoosmall; 20337 #endif 20338 20339 ASSERT(OK_32PTR(ipha)); 20340 20341 /* 20342 * This function assumes that mp points to an IPv4 packet. If it's the 20343 * wrong version, we'll catch it again in ip_output_v6. 20344 * 20345 * Note that this is *only* locally-generated output here, and never 20346 * forwarded data, and that we need to deal only with transports that 20347 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20348 * label.) 20349 */ 20350 if (is_system_labeled() && 20351 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20352 !connp->conn_ulp_labeled) { 20353 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 20354 connp->conn_mac_exempt, ipst); 20355 ipha = (ipha_t *)mp->b_rptr; 20356 if (err != 0) { 20357 first_mp = mp; 20358 if (err == EINVAL) 20359 goto icmp_parameter_problem; 20360 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20361 goto discard_pkt; 20362 } 20363 iplen = ntohs(ipha->ipha_length) + adjust; 20364 ipha->ipha_length = htons(iplen); 20365 } 20366 20367 ASSERT(infop != NULL); 20368 20369 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20370 /* 20371 * IP_PKTINFO ancillary option is present. 20372 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20373 * allows using address of any zone as the source address. 20374 */ 20375 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20376 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20377 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20378 if (ire == NULL) 20379 goto drop_pkt; 20380 ire_refrele(ire); 20381 ire = NULL; 20382 } 20383 20384 /* 20385 * IP_DONTFAILOVER_IF and IP_XMIT_IF have precedence over 20386 * ill index passed in IP_PKTINFO. 20387 */ 20388 if (infop->ip_opt_ill_index != 0 && 20389 connp->conn_xmit_if_ill == NULL && 20390 connp->conn_nofailover_ill == NULL) { 20391 20392 xmit_ill = ill_lookup_on_ifindex( 20393 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20394 ipst); 20395 20396 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20397 goto drop_pkt; 20398 /* 20399 * check that there is an ipif belonging 20400 * to our zone. IPCL_ZONEID is not used because 20401 * IP_ALLZONES option is valid only when the ill is 20402 * accessible from all zones i.e has a valid ipif in 20403 * all zones. 20404 */ 20405 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20406 goto drop_pkt; 20407 } 20408 } 20409 20410 /* 20411 * If there is a policy, try to attach an ipsec_out in 20412 * the front. At the end, first_mp either points to a 20413 * M_DATA message or IPSEC_OUT message linked to a 20414 * M_DATA message. We have to do it now as we might 20415 * lose the "conn" if we go through ip_newroute. 20416 */ 20417 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20418 if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL, 20419 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20420 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20421 if (need_decref) 20422 CONN_DEC_REF(connp); 20423 return; 20424 } else { 20425 ASSERT(mp->b_datap->db_type == M_CTL); 20426 first_mp = mp; 20427 mp = mp->b_cont; 20428 mctl_present = B_TRUE; 20429 } 20430 } else { 20431 first_mp = mp; 20432 mctl_present = B_FALSE; 20433 } 20434 20435 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20436 20437 /* is wrong version or IP options present */ 20438 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20439 goto version_hdrlen_check; 20440 dst = ipha->ipha_dst; 20441 20442 if (connp->conn_nofailover_ill != NULL) { 20443 attach_ill = conn_get_held_ill(connp, 20444 &connp->conn_nofailover_ill, &err); 20445 if (err == ILL_LOOKUP_FAILED) { 20446 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20447 if (need_decref) 20448 CONN_DEC_REF(connp); 20449 freemsg(first_mp); 20450 return; 20451 } 20452 } 20453 20454 20455 /* is packet multicast? */ 20456 if (CLASSD(dst)) 20457 goto multicast; 20458 20459 /* 20460 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20461 * takes precedence over conn_dontroute and conn_nexthop_set 20462 */ 20463 if (xmit_ill != NULL) { 20464 goto send_from_ill; 20465 } 20466 20467 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 20468 (connp->conn_nexthop_set)) { 20469 /* 20470 * If the destination is a broadcast or a loopback 20471 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 20472 * through the standard path. But in the case of local 20473 * destination only SO_DONTROUTE and IP_NEXTHOP go through 20474 * the standard path not IP_XMIT_IF. 20475 */ 20476 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20477 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 20478 (ire->ire_type != IRE_LOOPBACK))) { 20479 if ((connp->conn_dontroute || 20480 connp->conn_nexthop_set) && (ire != NULL) && 20481 (ire->ire_type == IRE_LOCAL)) 20482 goto standard_path; 20483 20484 if (ire != NULL) { 20485 ire_refrele(ire); 20486 /* No more access to ire */ 20487 ire = NULL; 20488 } 20489 /* 20490 * bypass routing checks and go directly to 20491 * interface. 20492 */ 20493 if (connp->conn_dontroute) { 20494 goto dontroute; 20495 } else if (connp->conn_nexthop_set) { 20496 ip_nexthop = B_TRUE; 20497 nexthop_addr = connp->conn_nexthop_v4; 20498 goto send_from_ill; 20499 } 20500 20501 /* 20502 * If IP_XMIT_IF socket option is set, 20503 * then we allow unicast and multicast 20504 * packets to go through the ill. It is 20505 * quite possible that the destination 20506 * is not in the ire cache table and we 20507 * do not want to go to ip_newroute() 20508 * instead we call ip_newroute_ipif. 20509 */ 20510 xmit_ill = conn_get_held_ill(connp, 20511 &connp->conn_xmit_if_ill, &err); 20512 if (err == ILL_LOOKUP_FAILED) { 20513 BUMP_MIB(&ipst->ips_ip_mib, 20514 ipIfStatsOutDiscards); 20515 if (attach_ill != NULL) 20516 ill_refrele(attach_ill); 20517 if (need_decref) 20518 CONN_DEC_REF(connp); 20519 freemsg(first_mp); 20520 return; 20521 } 20522 goto send_from_ill; 20523 } 20524 standard_path: 20525 /* Must be a broadcast, a loopback or a local ire */ 20526 if (ire != NULL) { 20527 ire_refrele(ire); 20528 /* No more access to ire */ 20529 ire = NULL; 20530 } 20531 } 20532 20533 if (attach_ill != NULL) 20534 goto send_from_ill; 20535 20536 /* 20537 * We cache IRE_CACHEs to avoid lookups. We don't do 20538 * this for the tcp global queue and listen end point 20539 * as it does not really have a real destination to 20540 * talk to. This is also true for SCTP. 20541 */ 20542 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20543 !connp->conn_fully_bound) { 20544 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20545 if (ire == NULL) 20546 goto noirefound; 20547 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20548 "ip_wput_end: q %p (%S)", q, "end"); 20549 20550 /* 20551 * Check if the ire has the RTF_MULTIRT flag, inherited 20552 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20553 */ 20554 if (ire->ire_flags & RTF_MULTIRT) { 20555 20556 /* 20557 * Force the TTL of multirouted packets if required. 20558 * The TTL of such packets is bounded by the 20559 * ip_multirt_ttl ndd variable. 20560 */ 20561 if ((ipst->ips_ip_multirt_ttl > 0) && 20562 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20563 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20564 "(was %d), dst 0x%08x\n", 20565 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20566 ntohl(ire->ire_addr))); 20567 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20568 } 20569 /* 20570 * We look at this point if there are pending 20571 * unresolved routes. ire_multirt_resolvable() 20572 * checks in O(n) that all IRE_OFFSUBNET ire 20573 * entries for the packet's destination and 20574 * flagged RTF_MULTIRT are currently resolved. 20575 * If some remain unresolved, we make a copy 20576 * of the current message. It will be used 20577 * to initiate additional route resolutions. 20578 */ 20579 multirt_need_resolve = 20580 ire_multirt_need_resolve(ire->ire_addr, 20581 MBLK_GETLABEL(first_mp), ipst); 20582 ip2dbg(("ip_wput[TCP]: ire %p, " 20583 "multirt_need_resolve %d, first_mp %p\n", 20584 (void *)ire, multirt_need_resolve, 20585 (void *)first_mp)); 20586 if (multirt_need_resolve) { 20587 copy_mp = copymsg(first_mp); 20588 if (copy_mp != NULL) { 20589 MULTIRT_DEBUG_TAG(copy_mp); 20590 } 20591 } 20592 } 20593 20594 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20595 20596 /* 20597 * Try to resolve another multiroute if 20598 * ire_multirt_need_resolve() deemed it necessary. 20599 */ 20600 if (copy_mp != NULL) { 20601 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 20602 } 20603 if (need_decref) 20604 CONN_DEC_REF(connp); 20605 return; 20606 } 20607 20608 /* 20609 * Access to conn_ire_cache. (protected by conn_lock) 20610 * 20611 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20612 * the ire bucket lock here to check for CONDEMNED as it is okay to 20613 * send a packet or two with the IRE_CACHE that is going away. 20614 * Access to the ire requires an ire refhold on the ire prior to 20615 * its use since an interface unplumb thread may delete the cached 20616 * ire and release the refhold at any time. 20617 * 20618 * Caching an ire in the conn_ire_cache 20619 * 20620 * o Caching an ire pointer in the conn requires a strict check for 20621 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20622 * ires before cleaning up the conns. So the caching of an ire pointer 20623 * in the conn is done after making sure under the bucket lock that the 20624 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20625 * caching an ire after the unplumb thread has cleaned up the conn. 20626 * If the conn does not send a packet subsequently the unplumb thread 20627 * will be hanging waiting for the ire count to drop to zero. 20628 * 20629 * o We also need to atomically test for a null conn_ire_cache and 20630 * set the conn_ire_cache under the the protection of the conn_lock 20631 * to avoid races among concurrent threads trying to simultaneously 20632 * cache an ire in the conn_ire_cache. 20633 */ 20634 mutex_enter(&connp->conn_lock); 20635 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20636 20637 if (ire != NULL && ire->ire_addr == dst && 20638 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20639 20640 IRE_REFHOLD(ire); 20641 mutex_exit(&connp->conn_lock); 20642 20643 } else { 20644 boolean_t cached = B_FALSE; 20645 connp->conn_ire_cache = NULL; 20646 mutex_exit(&connp->conn_lock); 20647 /* Release the old ire */ 20648 if (ire != NULL && sctp_ire == NULL) 20649 IRE_REFRELE_NOTR(ire); 20650 20651 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20652 if (ire == NULL) 20653 goto noirefound; 20654 IRE_REFHOLD_NOTR(ire); 20655 20656 mutex_enter(&connp->conn_lock); 20657 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20658 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20659 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20660 connp->conn_ire_cache = ire; 20661 cached = B_TRUE; 20662 } 20663 rw_exit(&ire->ire_bucket->irb_lock); 20664 } 20665 mutex_exit(&connp->conn_lock); 20666 20667 /* 20668 * We can continue to use the ire but since it was 20669 * not cached, we should drop the extra reference. 20670 */ 20671 if (!cached) 20672 IRE_REFRELE_NOTR(ire); 20673 } 20674 20675 20676 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20677 "ip_wput_end: q %p (%S)", q, "end"); 20678 20679 /* 20680 * Check if the ire has the RTF_MULTIRT flag, inherited 20681 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20682 */ 20683 if (ire->ire_flags & RTF_MULTIRT) { 20684 20685 /* 20686 * Force the TTL of multirouted packets if required. 20687 * The TTL of such packets is bounded by the 20688 * ip_multirt_ttl ndd variable. 20689 */ 20690 if ((ipst->ips_ip_multirt_ttl > 0) && 20691 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20692 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20693 "(was %d), dst 0x%08x\n", 20694 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20695 ntohl(ire->ire_addr))); 20696 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20697 } 20698 20699 /* 20700 * At this point, we check to see if there are any pending 20701 * unresolved routes. ire_multirt_resolvable() 20702 * checks in O(n) that all IRE_OFFSUBNET ire 20703 * entries for the packet's destination and 20704 * flagged RTF_MULTIRT are currently resolved. 20705 * If some remain unresolved, we make a copy 20706 * of the current message. It will be used 20707 * to initiate additional route resolutions. 20708 */ 20709 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20710 MBLK_GETLABEL(first_mp), ipst); 20711 ip2dbg(("ip_wput[not TCP]: ire %p, " 20712 "multirt_need_resolve %d, first_mp %p\n", 20713 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20714 if (multirt_need_resolve) { 20715 copy_mp = copymsg(first_mp); 20716 if (copy_mp != NULL) { 20717 MULTIRT_DEBUG_TAG(copy_mp); 20718 } 20719 } 20720 } 20721 20722 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20723 20724 /* 20725 * Try to resolve another multiroute if 20726 * ire_multirt_resolvable() deemed it necessary 20727 */ 20728 if (copy_mp != NULL) { 20729 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 20730 } 20731 if (need_decref) 20732 CONN_DEC_REF(connp); 20733 return; 20734 20735 qnext: 20736 /* 20737 * Upper Level Protocols pass down complete IP datagrams 20738 * as M_DATA messages. Everything else is a sideshow. 20739 * 20740 * 1) We could be re-entering ip_wput because of ip_neworute 20741 * in which case we could have a IPSEC_OUT message. We 20742 * need to pass through ip_wput like other datagrams and 20743 * hence cannot branch to ip_wput_nondata. 20744 * 20745 * 2) ARP, AH, ESP, and other clients who are on the module 20746 * instance of IP stream, give us something to deal with. 20747 * We will handle AH and ESP here and rest in ip_wput_nondata. 20748 * 20749 * 3) ICMP replies also could come here. 20750 */ 20751 ipst = ILLQ_TO_IPST(q); 20752 20753 if (DB_TYPE(mp) != M_DATA) { 20754 notdata: 20755 if (DB_TYPE(mp) == M_CTL) { 20756 /* 20757 * M_CTL messages are used by ARP, AH and ESP to 20758 * communicate with IP. We deal with IPSEC_IN and 20759 * IPSEC_OUT here. ip_wput_nondata handles other 20760 * cases. 20761 */ 20762 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20763 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20764 first_mp = mp->b_cont; 20765 first_mp->b_flag &= ~MSGHASREF; 20766 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20767 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20768 CONN_DEC_REF(connp); 20769 connp = NULL; 20770 } 20771 if (ii->ipsec_info_type == IPSEC_IN) { 20772 /* 20773 * Either this message goes back to 20774 * IPSEC for further processing or to 20775 * ULP after policy checks. 20776 */ 20777 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20778 return; 20779 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20780 io = (ipsec_out_t *)ii; 20781 if (io->ipsec_out_proc_begin) { 20782 /* 20783 * IPSEC processing has already started. 20784 * Complete it. 20785 * IPQoS notes: We don't care what is 20786 * in ipsec_out_ill_index since this 20787 * won't be processed for IPQoS policies 20788 * in ipsec_out_process. 20789 */ 20790 ipsec_out_process(q, mp, NULL, 20791 io->ipsec_out_ill_index); 20792 return; 20793 } else { 20794 connp = (q->q_next != NULL) ? 20795 NULL : Q_TO_CONN(q); 20796 first_mp = mp; 20797 mp = mp->b_cont; 20798 mctl_present = B_TRUE; 20799 } 20800 zoneid = io->ipsec_out_zoneid; 20801 ASSERT(zoneid != ALL_ZONES); 20802 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20803 /* 20804 * It's an IPsec control message requesting 20805 * an SADB update to be sent to the IPsec 20806 * hardware acceleration capable ills. 20807 */ 20808 ipsec_ctl_t *ipsec_ctl = 20809 (ipsec_ctl_t *)mp->b_rptr; 20810 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20811 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20812 mblk_t *cmp = mp->b_cont; 20813 20814 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20815 ASSERT(cmp != NULL); 20816 20817 freeb(mp); 20818 ill_ipsec_capab_send_all(satype, cmp, sa, 20819 ipst->ips_netstack); 20820 return; 20821 } else { 20822 /* 20823 * This must be ARP or special TSOL signaling. 20824 */ 20825 ip_wput_nondata(NULL, q, mp, NULL); 20826 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20827 "ip_wput_end: q %p (%S)", q, "nondata"); 20828 return; 20829 } 20830 } else { 20831 /* 20832 * This must be non-(ARP/AH/ESP) messages. 20833 */ 20834 ASSERT(!need_decref); 20835 ip_wput_nondata(NULL, q, mp, NULL); 20836 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20837 "ip_wput_end: q %p (%S)", q, "nondata"); 20838 return; 20839 } 20840 } else { 20841 first_mp = mp; 20842 mctl_present = B_FALSE; 20843 } 20844 20845 ASSERT(first_mp != NULL); 20846 /* 20847 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20848 * to make sure that this packet goes out on the same interface it 20849 * came in. We handle that here. 20850 */ 20851 if (mctl_present) { 20852 uint_t ifindex; 20853 20854 io = (ipsec_out_t *)first_mp->b_rptr; 20855 if (io->ipsec_out_attach_if || 20856 io->ipsec_out_xmit_if || 20857 io->ipsec_out_ip_nexthop) { 20858 ill_t *ill; 20859 20860 /* 20861 * We may have lost the conn context if we are 20862 * coming here from ip_newroute(). Copy the 20863 * nexthop information. 20864 */ 20865 if (io->ipsec_out_ip_nexthop) { 20866 ip_nexthop = B_TRUE; 20867 nexthop_addr = io->ipsec_out_nexthop_addr; 20868 20869 ipha = (ipha_t *)mp->b_rptr; 20870 dst = ipha->ipha_dst; 20871 goto send_from_ill; 20872 } else { 20873 ASSERT(io->ipsec_out_ill_index != 0); 20874 ifindex = io->ipsec_out_ill_index; 20875 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 20876 NULL, NULL, NULL, NULL, ipst); 20877 /* 20878 * ipsec_out_xmit_if bit is used to tell 20879 * ip_wput to use the ill to send outgoing data 20880 * as we have no conn when data comes from ICMP 20881 * error msg routines. Currently this feature is 20882 * only used by ip_mrtun_forward routine. 20883 */ 20884 if (io->ipsec_out_xmit_if) { 20885 xmit_ill = ill; 20886 if (xmit_ill == NULL) { 20887 ip1dbg(("ip_output:bad ifindex " 20888 "for xmit_ill %d\n", 20889 ifindex)); 20890 freemsg(first_mp); 20891 BUMP_MIB(&ipst->ips_ip_mib, 20892 ipIfStatsOutDiscards); 20893 ASSERT(!need_decref); 20894 return; 20895 } 20896 /* Free up the ipsec_out_t mblk */ 20897 ASSERT(first_mp->b_cont == mp); 20898 first_mp->b_cont = NULL; 20899 freeb(first_mp); 20900 /* Just send the IP header+ICMP+data */ 20901 first_mp = mp; 20902 ipha = (ipha_t *)mp->b_rptr; 20903 dst = ipha->ipha_dst; 20904 goto send_from_ill; 20905 } else { 20906 attach_ill = ill; 20907 } 20908 20909 if (attach_ill == NULL) { 20910 ASSERT(xmit_ill == NULL); 20911 ip1dbg(("ip_output: bad ifindex for " 20912 "(BIND TO IPIF_NOFAILOVER) %d\n", 20913 ifindex)); 20914 freemsg(first_mp); 20915 BUMP_MIB(&ipst->ips_ip_mib, 20916 ipIfStatsOutDiscards); 20917 ASSERT(!need_decref); 20918 return; 20919 } 20920 } 20921 } 20922 } 20923 20924 ASSERT(xmit_ill == NULL); 20925 20926 /* We have a complete IP datagram heading outbound. */ 20927 ipha = (ipha_t *)mp->b_rptr; 20928 20929 #ifndef SPEED_BEFORE_SAFETY 20930 /* 20931 * Make sure we have a full-word aligned message and that at least 20932 * a simple IP header is accessible in the first message. If not, 20933 * try a pullup. 20934 */ 20935 if (!OK_32PTR(rptr) || 20936 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20937 hdrtoosmall: 20938 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20939 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20940 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20941 if (first_mp == NULL) 20942 first_mp = mp; 20943 goto discard_pkt; 20944 } 20945 20946 /* This function assumes that mp points to an IPv4 packet. */ 20947 if (is_system_labeled() && q->q_next == NULL && 20948 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20949 !connp->conn_ulp_labeled) { 20950 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20951 &adjust, connp->conn_mac_exempt, ipst); 20952 ipha = (ipha_t *)mp->b_rptr; 20953 if (first_mp != NULL) 20954 first_mp->b_cont = mp; 20955 if (err != 0) { 20956 if (first_mp == NULL) 20957 first_mp = mp; 20958 if (err == EINVAL) 20959 goto icmp_parameter_problem; 20960 ip2dbg(("ip_wput: label check failed (%d)\n", 20961 err)); 20962 goto discard_pkt; 20963 } 20964 iplen = ntohs(ipha->ipha_length) + adjust; 20965 ipha->ipha_length = htons(iplen); 20966 } 20967 20968 ipha = (ipha_t *)mp->b_rptr; 20969 if (first_mp == NULL) { 20970 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20971 /* 20972 * If we got here because of "goto hdrtoosmall" 20973 * We need to attach a IPSEC_OUT. 20974 */ 20975 if (connp->conn_out_enforce_policy) { 20976 if (((mp = ipsec_attach_ipsec_out(mp, connp, 20977 NULL, ipha->ipha_protocol, 20978 ipst->ips_netstack)) == NULL)) { 20979 BUMP_MIB(&ipst->ips_ip_mib, 20980 ipIfStatsOutDiscards); 20981 if (need_decref) 20982 CONN_DEC_REF(connp); 20983 return; 20984 } else { 20985 ASSERT(mp->b_datap->db_type == M_CTL); 20986 first_mp = mp; 20987 mp = mp->b_cont; 20988 mctl_present = B_TRUE; 20989 } 20990 } else { 20991 first_mp = mp; 20992 mctl_present = B_FALSE; 20993 } 20994 } 20995 } 20996 #endif 20997 20998 /* Most of the code below is written for speed, not readability */ 20999 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21000 21001 /* 21002 * If ip_newroute() fails, we're going to need a full 21003 * header for the icmp wraparound. 21004 */ 21005 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 21006 uint_t v_hlen; 21007 version_hdrlen_check: 21008 ASSERT(first_mp != NULL); 21009 v_hlen = V_HLEN; 21010 /* 21011 * siphon off IPv6 packets coming down from transport 21012 * layer modules here. 21013 * Note: high-order bit carries NUD reachability confirmation 21014 */ 21015 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 21016 /* 21017 * XXX implement a IPv4 and IPv6 packet counter per 21018 * conn and switch when ratio exceeds e.g. 10:1 21019 */ 21020 #ifdef notyet 21021 if (q->q_next == NULL) /* Avoid ill queue */ 21022 ip_setqinfo(RD(q), B_TRUE, B_TRUE, ipst); 21023 #endif 21024 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 21025 ASSERT(xmit_ill == NULL); 21026 if (attach_ill != NULL) 21027 ill_refrele(attach_ill); 21028 if (need_decref) 21029 mp->b_flag |= MSGHASREF; 21030 (void) ip_output_v6(arg, first_mp, arg2, caller); 21031 return; 21032 } 21033 21034 if ((v_hlen >> 4) != IP_VERSION) { 21035 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21036 "ip_wput_end: q %p (%S)", q, "badvers"); 21037 goto discard_pkt; 21038 } 21039 /* 21040 * Is the header length at least 20 bytes? 21041 * 21042 * Are there enough bytes accessible in the header? If 21043 * not, try a pullup. 21044 */ 21045 v_hlen &= 0xF; 21046 v_hlen <<= 2; 21047 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 21048 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21049 "ip_wput_end: q %p (%S)", q, "badlen"); 21050 goto discard_pkt; 21051 } 21052 if (v_hlen > (mp->b_wptr - rptr)) { 21053 if (!pullupmsg(mp, v_hlen)) { 21054 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21055 "ip_wput_end: q %p (%S)", q, "badpullup2"); 21056 goto discard_pkt; 21057 } 21058 ipha = (ipha_t *)mp->b_rptr; 21059 } 21060 /* 21061 * Move first entry from any source route into ipha_dst and 21062 * verify the options 21063 */ 21064 if (ip_wput_options(q, first_mp, ipha, mctl_present, 21065 zoneid, ipst)) { 21066 ASSERT(xmit_ill == NULL); 21067 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21068 if (attach_ill != NULL) 21069 ill_refrele(attach_ill); 21070 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21071 "ip_wput_end: q %p (%S)", q, "badopts"); 21072 if (need_decref) 21073 CONN_DEC_REF(connp); 21074 return; 21075 } 21076 } 21077 dst = ipha->ipha_dst; 21078 21079 /* 21080 * Try to get an IRE_CACHE for the destination address. If we can't, 21081 * we have to run the packet through ip_newroute which will take 21082 * the appropriate action to arrange for an IRE_CACHE, such as querying 21083 * a resolver, or assigning a default gateway, etc. 21084 */ 21085 if (CLASSD(dst)) { 21086 ipif_t *ipif; 21087 uint32_t setsrc = 0; 21088 21089 multicast: 21090 ASSERT(first_mp != NULL); 21091 ip2dbg(("ip_wput: CLASSD\n")); 21092 if (connp == NULL) { 21093 /* 21094 * Use the first good ipif on the ill. 21095 * XXX Should this ever happen? (Appears 21096 * to show up with just ppp and no ethernet due 21097 * to in.rdisc.) 21098 * However, ire_send should be able to 21099 * call ip_wput_ire directly. 21100 * 21101 * XXX Also, this can happen for ICMP and other packets 21102 * with multicast source addresses. Perhaps we should 21103 * fix things so that we drop the packet in question, 21104 * but for now, just run with it. 21105 */ 21106 ill_t *ill = (ill_t *)q->q_ptr; 21107 21108 /* 21109 * Don't honor attach_if for this case. If ill 21110 * is part of the group, ipif could belong to 21111 * any ill and we cannot maintain attach_ill 21112 * and ipif_ill same anymore and the assert 21113 * below would fail. 21114 */ 21115 if (mctl_present && io->ipsec_out_attach_if) { 21116 io->ipsec_out_ill_index = 0; 21117 io->ipsec_out_attach_if = B_FALSE; 21118 ASSERT(attach_ill != NULL); 21119 ill_refrele(attach_ill); 21120 attach_ill = NULL; 21121 } 21122 21123 ASSERT(attach_ill == NULL); 21124 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21125 if (ipif == NULL) { 21126 if (need_decref) 21127 CONN_DEC_REF(connp); 21128 freemsg(first_mp); 21129 return; 21130 } 21131 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21132 ntohl(dst), ill->ill_name)); 21133 } else { 21134 /* 21135 * The order of precedence is IP_XMIT_IF, IP_PKTINFO 21136 * and IP_MULTICAST_IF. 21137 * Block comment above this function explains the 21138 * locking mechanism used here 21139 */ 21140 if (xmit_ill == NULL) { 21141 xmit_ill = conn_get_held_ill(connp, 21142 &connp->conn_xmit_if_ill, &err); 21143 if (err == ILL_LOOKUP_FAILED) { 21144 ip1dbg(("ip_wput: No ill for " 21145 "IP_XMIT_IF\n")); 21146 BUMP_MIB(&ipst->ips_ip_mib, 21147 ipIfStatsOutNoRoutes); 21148 goto drop_pkt; 21149 } 21150 } 21151 21152 if (xmit_ill == NULL) { 21153 ipif = conn_get_held_ipif(connp, 21154 &connp->conn_multicast_ipif, &err); 21155 if (err == IPIF_LOOKUP_FAILED) { 21156 ip1dbg(("ip_wput: No ipif for " 21157 "multicast\n")); 21158 BUMP_MIB(&ipst->ips_ip_mib, 21159 ipIfStatsOutNoRoutes); 21160 goto drop_pkt; 21161 } 21162 } 21163 if (xmit_ill != NULL) { 21164 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21165 if (ipif == NULL) { 21166 ip1dbg(("ip_wput: No ipif for " 21167 "IP_XMIT_IF\n")); 21168 BUMP_MIB(&ipst->ips_ip_mib, 21169 ipIfStatsOutNoRoutes); 21170 goto drop_pkt; 21171 } 21172 } else if (ipif == NULL || ipif->ipif_isv6) { 21173 /* 21174 * We must do this ipif determination here 21175 * else we could pass through ip_newroute 21176 * and come back here without the conn context. 21177 * 21178 * Note: we do late binding i.e. we bind to 21179 * the interface when the first packet is sent. 21180 * For performance reasons we do not rebind on 21181 * each packet but keep the binding until the 21182 * next IP_MULTICAST_IF option. 21183 * 21184 * conn_multicast_{ipif,ill} are shared between 21185 * IPv4 and IPv6 and AF_INET6 sockets can 21186 * send both IPv4 and IPv6 packets. Hence 21187 * we have to check that "isv6" matches above. 21188 */ 21189 if (ipif != NULL) 21190 ipif_refrele(ipif); 21191 ipif = ipif_lookup_group(dst, zoneid, ipst); 21192 if (ipif == NULL) { 21193 ip1dbg(("ip_wput: No ipif for " 21194 "multicast\n")); 21195 BUMP_MIB(&ipst->ips_ip_mib, 21196 ipIfStatsOutNoRoutes); 21197 goto drop_pkt; 21198 } 21199 err = conn_set_held_ipif(connp, 21200 &connp->conn_multicast_ipif, ipif); 21201 if (err == IPIF_LOOKUP_FAILED) { 21202 ipif_refrele(ipif); 21203 ip1dbg(("ip_wput: No ipif for " 21204 "multicast\n")); 21205 BUMP_MIB(&ipst->ips_ip_mib, 21206 ipIfStatsOutNoRoutes); 21207 goto drop_pkt; 21208 } 21209 } 21210 } 21211 ASSERT(!ipif->ipif_isv6); 21212 /* 21213 * As we may lose the conn by the time we reach ip_wput_ire, 21214 * we copy conn_multicast_loop and conn_dontroute on to an 21215 * ipsec_out. In case if this datagram goes out secure, 21216 * we need the ill_index also. Copy that also into the 21217 * ipsec_out. 21218 */ 21219 if (mctl_present) { 21220 io = (ipsec_out_t *)first_mp->b_rptr; 21221 ASSERT(first_mp->b_datap->db_type == M_CTL); 21222 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21223 } else { 21224 ASSERT(mp == first_mp); 21225 if ((first_mp = allocb(sizeof (ipsec_info_t), 21226 BPRI_HI)) == NULL) { 21227 ipif_refrele(ipif); 21228 first_mp = mp; 21229 goto discard_pkt; 21230 } 21231 first_mp->b_datap->db_type = M_CTL; 21232 first_mp->b_wptr += sizeof (ipsec_info_t); 21233 /* ipsec_out_secure is B_FALSE now */ 21234 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21235 io = (ipsec_out_t *)first_mp->b_rptr; 21236 io->ipsec_out_type = IPSEC_OUT; 21237 io->ipsec_out_len = sizeof (ipsec_out_t); 21238 io->ipsec_out_use_global_policy = B_TRUE; 21239 io->ipsec_out_ns = ipst->ips_netstack; 21240 first_mp->b_cont = mp; 21241 mctl_present = B_TRUE; 21242 } 21243 if (attach_ill != NULL) { 21244 ASSERT(attach_ill == ipif->ipif_ill); 21245 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21246 21247 /* 21248 * Check if we need an ire that will not be 21249 * looked up by anybody else i.e. HIDDEN. 21250 */ 21251 if (ill_is_probeonly(attach_ill)) { 21252 match_flags |= MATCH_IRE_MARK_HIDDEN; 21253 } 21254 io->ipsec_out_ill_index = 21255 attach_ill->ill_phyint->phyint_ifindex; 21256 io->ipsec_out_attach_if = B_TRUE; 21257 } else { 21258 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21259 io->ipsec_out_ill_index = 21260 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21261 } 21262 if (connp != NULL) { 21263 io->ipsec_out_multicast_loop = 21264 connp->conn_multicast_loop; 21265 io->ipsec_out_dontroute = connp->conn_dontroute; 21266 io->ipsec_out_zoneid = connp->conn_zoneid; 21267 } 21268 /* 21269 * If the application uses IP_MULTICAST_IF with 21270 * different logical addresses of the same ILL, we 21271 * need to make sure that the soruce address of 21272 * the packet matches the logical IP address used 21273 * in the option. We do it by initializing ipha_src 21274 * here. This should keep IPSEC also happy as 21275 * when we return from IPSEC processing, we don't 21276 * have to worry about getting the right address on 21277 * the packet. Thus it is sufficient to look for 21278 * IRE_CACHE using MATCH_IRE_ILL rathen than 21279 * MATCH_IRE_IPIF. 21280 * 21281 * NOTE : We need to do it for non-secure case also as 21282 * this might go out secure if there is a global policy 21283 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21284 * address, the source should be initialized already and 21285 * hence we won't be initializing here. 21286 * 21287 * As we do not have the ire yet, it is possible that 21288 * we set the source address here and then later discover 21289 * that the ire implies the source address to be assigned 21290 * through the RTF_SETSRC flag. 21291 * In that case, the setsrc variable will remind us 21292 * that overwritting the source address by the one 21293 * of the RTF_SETSRC-flagged ire is allowed. 21294 */ 21295 if (ipha->ipha_src == INADDR_ANY && 21296 (connp == NULL || !connp->conn_unspec_src)) { 21297 ipha->ipha_src = ipif->ipif_src_addr; 21298 setsrc = RTF_SETSRC; 21299 } 21300 /* 21301 * Find an IRE which matches the destination and the outgoing 21302 * queue (i.e. the outgoing interface.) 21303 * For loopback use a unicast IP address for 21304 * the ire lookup. 21305 */ 21306 if (ipif->ipif_ill->ill_phyint->phyint_flags & 21307 PHYI_LOOPBACK) { 21308 dst = ipif->ipif_lcl_addr; 21309 } 21310 /* 21311 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 21312 * We don't need to lookup ire in ctable as the packet 21313 * needs to be sent to the destination through the specified 21314 * ill irrespective of ires in the cache table. 21315 */ 21316 ire = NULL; 21317 if (xmit_ill == NULL) { 21318 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21319 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21320 } 21321 21322 /* 21323 * refrele attach_ill as its not needed anymore. 21324 */ 21325 if (attach_ill != NULL) { 21326 ill_refrele(attach_ill); 21327 attach_ill = NULL; 21328 } 21329 21330 if (ire == NULL) { 21331 /* 21332 * Multicast loopback and multicast forwarding is 21333 * done in ip_wput_ire. 21334 * 21335 * Mark this packet to make it be delivered to 21336 * ip_wput_ire after the new ire has been 21337 * created. 21338 * 21339 * The call to ip_newroute_ipif takes into account 21340 * the setsrc reminder. In any case, we take care 21341 * of the RTF_MULTIRT flag. 21342 */ 21343 mp->b_prev = mp->b_next = NULL; 21344 if (xmit_ill == NULL || 21345 xmit_ill->ill_ipif_up_count > 0) { 21346 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21347 setsrc | RTF_MULTIRT, zoneid, infop); 21348 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21349 "ip_wput_end: q %p (%S)", q, "noire"); 21350 } else { 21351 freemsg(first_mp); 21352 } 21353 ipif_refrele(ipif); 21354 if (xmit_ill != NULL) 21355 ill_refrele(xmit_ill); 21356 if (need_decref) 21357 CONN_DEC_REF(connp); 21358 return; 21359 } 21360 21361 ipif_refrele(ipif); 21362 ipif = NULL; 21363 ASSERT(xmit_ill == NULL); 21364 21365 /* 21366 * Honor the RTF_SETSRC flag for multicast packets, 21367 * if allowed by the setsrc reminder. 21368 */ 21369 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21370 ipha->ipha_src = ire->ire_src_addr; 21371 } 21372 21373 /* 21374 * Unconditionally force the TTL to 1 for 21375 * multirouted multicast packets: 21376 * multirouted multicast should not cross 21377 * multicast routers. 21378 */ 21379 if (ire->ire_flags & RTF_MULTIRT) { 21380 if (ipha->ipha_ttl > 1) { 21381 ip2dbg(("ip_wput: forcing multicast " 21382 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21383 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21384 ipha->ipha_ttl = 1; 21385 } 21386 } 21387 } else { 21388 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21389 if ((ire != NULL) && (ire->ire_type & 21390 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21391 ignore_dontroute = B_TRUE; 21392 ignore_nexthop = B_TRUE; 21393 } 21394 if (ire != NULL) { 21395 ire_refrele(ire); 21396 ire = NULL; 21397 } 21398 /* 21399 * Guard against coming in from arp in which case conn is NULL. 21400 * Also guard against non M_DATA with dontroute set but 21401 * destined to local, loopback or broadcast addresses. 21402 */ 21403 if (connp != NULL && connp->conn_dontroute && 21404 !ignore_dontroute) { 21405 dontroute: 21406 /* 21407 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21408 * routing protocols from seeing false direct 21409 * connectivity. 21410 */ 21411 ipha->ipha_ttl = 1; 21412 /* 21413 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 21414 * along with SO_DONTROUTE, higher precedence is 21415 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 21416 */ 21417 if (connp->conn_xmit_if_ill == NULL) { 21418 /* If suitable ipif not found, drop packet */ 21419 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, 21420 ipst); 21421 if (dst_ipif == NULL) { 21422 ip1dbg(("ip_wput: no route for " 21423 "dst using SO_DONTROUTE\n")); 21424 BUMP_MIB(&ipst->ips_ip_mib, 21425 ipIfStatsOutNoRoutes); 21426 mp->b_prev = mp->b_next = NULL; 21427 if (first_mp == NULL) 21428 first_mp = mp; 21429 goto drop_pkt; 21430 } else { 21431 /* 21432 * If suitable ipif has been found, set 21433 * xmit_ill to the corresponding 21434 * ipif_ill because we'll be following 21435 * the IP_XMIT_IF logic. 21436 */ 21437 ASSERT(xmit_ill == NULL); 21438 xmit_ill = dst_ipif->ipif_ill; 21439 mutex_enter(&xmit_ill->ill_lock); 21440 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21441 mutex_exit(&xmit_ill->ill_lock); 21442 xmit_ill = NULL; 21443 ipif_refrele(dst_ipif); 21444 ip1dbg(("ip_wput: no route for" 21445 " dst using" 21446 " SO_DONTROUTE\n")); 21447 BUMP_MIB(&ipst->ips_ip_mib, 21448 ipIfStatsOutNoRoutes); 21449 mp->b_prev = mp->b_next = NULL; 21450 if (first_mp == NULL) 21451 first_mp = mp; 21452 goto drop_pkt; 21453 } 21454 ill_refhold_locked(xmit_ill); 21455 mutex_exit(&xmit_ill->ill_lock); 21456 ipif_refrele(dst_ipif); 21457 } 21458 } 21459 21460 } 21461 /* 21462 * If we are bound to IPIF_NOFAILOVER address, look for 21463 * an IRE_CACHE matching the ill. 21464 */ 21465 send_from_ill: 21466 if (attach_ill != NULL) { 21467 ipif_t *attach_ipif; 21468 21469 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21470 21471 /* 21472 * Check if we need an ire that will not be 21473 * looked up by anybody else i.e. HIDDEN. 21474 */ 21475 if (ill_is_probeonly(attach_ill)) { 21476 match_flags |= MATCH_IRE_MARK_HIDDEN; 21477 } 21478 21479 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21480 if (attach_ipif == NULL) { 21481 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21482 goto discard_pkt; 21483 } 21484 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21485 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21486 ipif_refrele(attach_ipif); 21487 } else if (xmit_ill != NULL || (connp != NULL && 21488 connp->conn_xmit_if_ill != NULL)) { 21489 /* 21490 * Mark this packet as originated locally 21491 */ 21492 mp->b_prev = mp->b_next = NULL; 21493 /* 21494 * xmit_ill could be NULL if SO_DONTROUTE 21495 * is also set. 21496 */ 21497 if (xmit_ill == NULL) { 21498 xmit_ill = conn_get_held_ill(connp, 21499 &connp->conn_xmit_if_ill, &err); 21500 if (err == ILL_LOOKUP_FAILED) { 21501 BUMP_MIB(&ipst->ips_ip_mib, 21502 ipIfStatsOutDiscards); 21503 if (need_decref) 21504 CONN_DEC_REF(connp); 21505 freemsg(first_mp); 21506 return; 21507 } 21508 if (xmit_ill == NULL) { 21509 if (connp->conn_dontroute) 21510 goto dontroute; 21511 goto send_from_ill; 21512 } 21513 } 21514 /* 21515 * Could be SO_DONTROUTE case also. 21516 * check at least one interface is UP as 21517 * specified by this ILL 21518 */ 21519 if (xmit_ill->ill_ipif_up_count > 0) { 21520 ipif_t *ipif; 21521 21522 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21523 if (ipif == NULL) { 21524 ip1dbg(("ip_output: " 21525 "xmit_ill NULL ipif\n")); 21526 goto drop_pkt; 21527 } 21528 /* 21529 * Look for a ire that is part of the group, 21530 * if found use it else call ip_newroute_ipif. 21531 * IPCL_ZONEID is not used for matching because 21532 * IP_ALLZONES option is valid only when the 21533 * ill is accessible from all zones i.e has a 21534 * valid ipif in all zones. 21535 */ 21536 match_flags = MATCH_IRE_ILL_GROUP | 21537 MATCH_IRE_SECATTR; 21538 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21539 MBLK_GETLABEL(mp), match_flags, ipst); 21540 /* 21541 * If an ire exists use it or else create 21542 * an ire but don't add it to the cache. 21543 * Adding an ire may cause issues with 21544 * asymmetric routing. 21545 * In case of multiroute always act as if 21546 * ire does not exist. 21547 */ 21548 if (ire == NULL || 21549 ire->ire_flags & RTF_MULTIRT) { 21550 if (ire != NULL) 21551 ire_refrele(ire); 21552 ip_newroute_ipif(q, first_mp, ipif, 21553 dst, connp, 0, zoneid, infop); 21554 ipif_refrele(ipif); 21555 ip1dbg(("ip_wput: ip_unicast_if\n")); 21556 ill_refrele(xmit_ill); 21557 if (need_decref) 21558 CONN_DEC_REF(connp); 21559 return; 21560 } 21561 ipif_refrele(ipif); 21562 } else { 21563 goto drop_pkt; 21564 } 21565 } else if (ip_nexthop || (connp != NULL && 21566 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21567 if (!ip_nexthop) { 21568 ip_nexthop = B_TRUE; 21569 nexthop_addr = connp->conn_nexthop_v4; 21570 } 21571 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21572 MATCH_IRE_GW; 21573 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21574 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21575 } else { 21576 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21577 ipst); 21578 } 21579 if (!ire) { 21580 /* 21581 * Make sure we don't load spread if this 21582 * is IPIF_NOFAILOVER case. 21583 */ 21584 if ((attach_ill != NULL) || 21585 (ip_nexthop && !ignore_nexthop)) { 21586 if (mctl_present) { 21587 io = (ipsec_out_t *)first_mp->b_rptr; 21588 ASSERT(first_mp->b_datap->db_type == 21589 M_CTL); 21590 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21591 } else { 21592 ASSERT(mp == first_mp); 21593 first_mp = allocb( 21594 sizeof (ipsec_info_t), BPRI_HI); 21595 if (first_mp == NULL) { 21596 first_mp = mp; 21597 goto discard_pkt; 21598 } 21599 first_mp->b_datap->db_type = M_CTL; 21600 first_mp->b_wptr += 21601 sizeof (ipsec_info_t); 21602 /* ipsec_out_secure is B_FALSE now */ 21603 bzero(first_mp->b_rptr, 21604 sizeof (ipsec_info_t)); 21605 io = (ipsec_out_t *)first_mp->b_rptr; 21606 io->ipsec_out_type = IPSEC_OUT; 21607 io->ipsec_out_len = 21608 sizeof (ipsec_out_t); 21609 io->ipsec_out_use_global_policy = 21610 B_TRUE; 21611 io->ipsec_out_ns = ipst->ips_netstack; 21612 first_mp->b_cont = mp; 21613 mctl_present = B_TRUE; 21614 } 21615 if (attach_ill != NULL) { 21616 io->ipsec_out_ill_index = attach_ill-> 21617 ill_phyint->phyint_ifindex; 21618 io->ipsec_out_attach_if = B_TRUE; 21619 } else { 21620 io->ipsec_out_ip_nexthop = ip_nexthop; 21621 io->ipsec_out_nexthop_addr = 21622 nexthop_addr; 21623 } 21624 } 21625 noirefound: 21626 /* 21627 * Mark this packet as having originated on 21628 * this machine. This will be noted in 21629 * ire_add_then_send, which needs to know 21630 * whether to run it back through ip_wput or 21631 * ip_rput following successful resolution. 21632 */ 21633 mp->b_prev = NULL; 21634 mp->b_next = NULL; 21635 ip_newroute(q, first_mp, dst, NULL, connp, zoneid, 21636 ipst); 21637 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21638 "ip_wput_end: q %p (%S)", q, "newroute"); 21639 if (attach_ill != NULL) 21640 ill_refrele(attach_ill); 21641 if (xmit_ill != NULL) 21642 ill_refrele(xmit_ill); 21643 if (need_decref) 21644 CONN_DEC_REF(connp); 21645 return; 21646 } 21647 } 21648 21649 /* We now know where we are going with it. */ 21650 21651 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21652 "ip_wput_end: q %p (%S)", q, "end"); 21653 21654 /* 21655 * Check if the ire has the RTF_MULTIRT flag, inherited 21656 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21657 */ 21658 if (ire->ire_flags & RTF_MULTIRT) { 21659 /* 21660 * Force the TTL of multirouted packets if required. 21661 * The TTL of such packets is bounded by the 21662 * ip_multirt_ttl ndd variable. 21663 */ 21664 if ((ipst->ips_ip_multirt_ttl > 0) && 21665 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21666 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21667 "(was %d), dst 0x%08x\n", 21668 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21669 ntohl(ire->ire_addr))); 21670 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21671 } 21672 /* 21673 * At this point, we check to see if there are any pending 21674 * unresolved routes. ire_multirt_resolvable() 21675 * checks in O(n) that all IRE_OFFSUBNET ire 21676 * entries for the packet's destination and 21677 * flagged RTF_MULTIRT are currently resolved. 21678 * If some remain unresolved, we make a copy 21679 * of the current message. It will be used 21680 * to initiate additional route resolutions. 21681 */ 21682 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21683 MBLK_GETLABEL(first_mp), ipst); 21684 ip2dbg(("ip_wput[noirefound]: ire %p, " 21685 "multirt_need_resolve %d, first_mp %p\n", 21686 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21687 if (multirt_need_resolve) { 21688 copy_mp = copymsg(first_mp); 21689 if (copy_mp != NULL) { 21690 MULTIRT_DEBUG_TAG(copy_mp); 21691 } 21692 } 21693 } 21694 21695 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21696 /* 21697 * Try to resolve another multiroute if 21698 * ire_multirt_resolvable() deemed it necessary. 21699 * At this point, we need to distinguish 21700 * multicasts from other packets. For multicasts, 21701 * we call ip_newroute_ipif() and request that both 21702 * multirouting and setsrc flags are checked. 21703 */ 21704 if (copy_mp != NULL) { 21705 if (CLASSD(dst)) { 21706 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21707 if (ipif) { 21708 ASSERT(infop->ip_opt_ill_index == 0); 21709 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21710 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21711 ipif_refrele(ipif); 21712 } else { 21713 MULTIRT_DEBUG_UNTAG(copy_mp); 21714 freemsg(copy_mp); 21715 copy_mp = NULL; 21716 } 21717 } else { 21718 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 21719 } 21720 } 21721 if (attach_ill != NULL) 21722 ill_refrele(attach_ill); 21723 if (xmit_ill != NULL) 21724 ill_refrele(xmit_ill); 21725 if (need_decref) 21726 CONN_DEC_REF(connp); 21727 return; 21728 21729 icmp_parameter_problem: 21730 /* could not have originated externally */ 21731 ASSERT(mp->b_prev == NULL); 21732 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21733 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21734 /* it's the IP header length that's in trouble */ 21735 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21736 first_mp = NULL; 21737 } 21738 21739 discard_pkt: 21740 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21741 drop_pkt: 21742 ip1dbg(("ip_wput: dropped packet\n")); 21743 if (ire != NULL) 21744 ire_refrele(ire); 21745 if (need_decref) 21746 CONN_DEC_REF(connp); 21747 freemsg(first_mp); 21748 if (attach_ill != NULL) 21749 ill_refrele(attach_ill); 21750 if (xmit_ill != NULL) 21751 ill_refrele(xmit_ill); 21752 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21753 "ip_wput_end: q %p (%S)", q, "droppkt"); 21754 } 21755 21756 /* 21757 * If this is a conn_t queue, then we pass in the conn. This includes the 21758 * zoneid. 21759 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21760 * in which case we use the global zoneid since those are all part of 21761 * the global zone. 21762 */ 21763 void 21764 ip_wput(queue_t *q, mblk_t *mp) 21765 { 21766 if (CONN_Q(q)) 21767 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21768 else 21769 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21770 } 21771 21772 /* 21773 * 21774 * The following rules must be observed when accessing any ipif or ill 21775 * that has been cached in the conn. Typically conn_nofailover_ill, 21776 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 21777 * 21778 * Access: The ipif or ill pointed to from the conn can be accessed under 21779 * the protection of the conn_lock or after it has been refheld under the 21780 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21781 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21782 * The reason for this is that a concurrent unplumb could actually be 21783 * cleaning up these cached pointers by walking the conns and might have 21784 * finished cleaning up the conn in question. The macros check that an 21785 * unplumb has not yet started on the ipif or ill. 21786 * 21787 * Caching: An ipif or ill pointer may be cached in the conn only after 21788 * making sure that an unplumb has not started. So the caching is done 21789 * while holding both the conn_lock and the ill_lock and after using the 21790 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21791 * flag before starting the cleanup of conns. 21792 * 21793 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21794 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21795 * or a reference to the ipif or a reference to an ire that references the 21796 * ipif. An ipif does not change its ill except for failover/failback. Since 21797 * failover/failback happens only after bringing down the ipif and making sure 21798 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21799 * the above holds. 21800 */ 21801 ipif_t * 21802 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21803 { 21804 ipif_t *ipif; 21805 ill_t *ill; 21806 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21807 21808 *err = 0; 21809 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21810 mutex_enter(&connp->conn_lock); 21811 ipif = *ipifp; 21812 if (ipif != NULL) { 21813 ill = ipif->ipif_ill; 21814 mutex_enter(&ill->ill_lock); 21815 if (IPIF_CAN_LOOKUP(ipif)) { 21816 ipif_refhold_locked(ipif); 21817 mutex_exit(&ill->ill_lock); 21818 mutex_exit(&connp->conn_lock); 21819 rw_exit(&ipst->ips_ill_g_lock); 21820 return (ipif); 21821 } else { 21822 *err = IPIF_LOOKUP_FAILED; 21823 } 21824 mutex_exit(&ill->ill_lock); 21825 } 21826 mutex_exit(&connp->conn_lock); 21827 rw_exit(&ipst->ips_ill_g_lock); 21828 return (NULL); 21829 } 21830 21831 ill_t * 21832 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21833 { 21834 ill_t *ill; 21835 21836 *err = 0; 21837 mutex_enter(&connp->conn_lock); 21838 ill = *illp; 21839 if (ill != NULL) { 21840 mutex_enter(&ill->ill_lock); 21841 if (ILL_CAN_LOOKUP(ill)) { 21842 ill_refhold_locked(ill); 21843 mutex_exit(&ill->ill_lock); 21844 mutex_exit(&connp->conn_lock); 21845 return (ill); 21846 } else { 21847 *err = ILL_LOOKUP_FAILED; 21848 } 21849 mutex_exit(&ill->ill_lock); 21850 } 21851 mutex_exit(&connp->conn_lock); 21852 return (NULL); 21853 } 21854 21855 static int 21856 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21857 { 21858 ill_t *ill; 21859 21860 ill = ipif->ipif_ill; 21861 mutex_enter(&connp->conn_lock); 21862 mutex_enter(&ill->ill_lock); 21863 if (IPIF_CAN_LOOKUP(ipif)) { 21864 *ipifp = ipif; 21865 mutex_exit(&ill->ill_lock); 21866 mutex_exit(&connp->conn_lock); 21867 return (0); 21868 } 21869 mutex_exit(&ill->ill_lock); 21870 mutex_exit(&connp->conn_lock); 21871 return (IPIF_LOOKUP_FAILED); 21872 } 21873 21874 /* 21875 * This is called if the outbound datagram needs fragmentation. 21876 * 21877 * NOTE : This function does not ire_refrele the ire argument passed in. 21878 */ 21879 static void 21880 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21881 ip_stack_t *ipst) 21882 { 21883 ipha_t *ipha; 21884 mblk_t *mp; 21885 uint32_t v_hlen_tos_len; 21886 uint32_t max_frag; 21887 uint32_t frag_flag; 21888 boolean_t dont_use; 21889 21890 if (ipsec_mp->b_datap->db_type == M_CTL) { 21891 mp = ipsec_mp->b_cont; 21892 } else { 21893 mp = ipsec_mp; 21894 } 21895 21896 ipha = (ipha_t *)mp->b_rptr; 21897 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21898 21899 #ifdef _BIG_ENDIAN 21900 #define V_HLEN (v_hlen_tos_len >> 24) 21901 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21902 #else 21903 #define V_HLEN (v_hlen_tos_len & 0xFF) 21904 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21905 #endif 21906 21907 #ifndef SPEED_BEFORE_SAFETY 21908 /* 21909 * Check that ipha_length is consistent with 21910 * the mblk length 21911 */ 21912 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21913 ip0dbg(("Packet length mismatch: %d, %ld\n", 21914 LENGTH, msgdsize(mp))); 21915 freemsg(ipsec_mp); 21916 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21917 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21918 "packet length mismatch"); 21919 return; 21920 } 21921 #endif 21922 /* 21923 * Don't use frag_flag if pre-built packet or source 21924 * routed or if multicast (since multicast packets do not solicit 21925 * ICMP "packet too big" messages). Get the values of 21926 * max_frag and frag_flag atomically by acquiring the 21927 * ire_lock. 21928 */ 21929 mutex_enter(&ire->ire_lock); 21930 max_frag = ire->ire_max_frag; 21931 frag_flag = ire->ire_frag_flag; 21932 mutex_exit(&ire->ire_lock); 21933 21934 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21935 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21936 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21937 21938 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21939 (dont_use ? 0 : frag_flag), zoneid, ipst); 21940 } 21941 21942 /* 21943 * Used for deciding the MSS size for the upper layer. Thus 21944 * we need to check the outbound policy values in the conn. 21945 */ 21946 int 21947 conn_ipsec_length(conn_t *connp) 21948 { 21949 ipsec_latch_t *ipl; 21950 21951 ipl = connp->conn_latch; 21952 if (ipl == NULL) 21953 return (0); 21954 21955 if (ipl->ipl_out_policy == NULL) 21956 return (0); 21957 21958 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21959 } 21960 21961 /* 21962 * Returns an estimate of the IPSEC headers size. This is used if 21963 * we don't want to call into IPSEC to get the exact size. 21964 */ 21965 int 21966 ipsec_out_extra_length(mblk_t *ipsec_mp) 21967 { 21968 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21969 ipsec_action_t *a; 21970 21971 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21972 if (!io->ipsec_out_secure) 21973 return (0); 21974 21975 a = io->ipsec_out_act; 21976 21977 if (a == NULL) { 21978 ASSERT(io->ipsec_out_policy != NULL); 21979 a = io->ipsec_out_policy->ipsp_act; 21980 } 21981 ASSERT(a != NULL); 21982 21983 return (a->ipa_ovhd); 21984 } 21985 21986 /* 21987 * Returns an estimate of the IPSEC headers size. This is used if 21988 * we don't want to call into IPSEC to get the exact size. 21989 */ 21990 int 21991 ipsec_in_extra_length(mblk_t *ipsec_mp) 21992 { 21993 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21994 ipsec_action_t *a; 21995 21996 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21997 21998 a = ii->ipsec_in_action; 21999 return (a == NULL ? 0 : a->ipa_ovhd); 22000 } 22001 22002 /* 22003 * If there are any source route options, return the true final 22004 * destination. Otherwise, return the destination. 22005 */ 22006 ipaddr_t 22007 ip_get_dst(ipha_t *ipha) 22008 { 22009 ipoptp_t opts; 22010 uchar_t *opt; 22011 uint8_t optval; 22012 uint8_t optlen; 22013 ipaddr_t dst; 22014 uint32_t off; 22015 22016 dst = ipha->ipha_dst; 22017 22018 if (IS_SIMPLE_IPH(ipha)) 22019 return (dst); 22020 22021 for (optval = ipoptp_first(&opts, ipha); 22022 optval != IPOPT_EOL; 22023 optval = ipoptp_next(&opts)) { 22024 opt = opts.ipoptp_cur; 22025 optlen = opts.ipoptp_len; 22026 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 22027 switch (optval) { 22028 case IPOPT_SSRR: 22029 case IPOPT_LSRR: 22030 off = opt[IPOPT_OFFSET]; 22031 /* 22032 * If one of the conditions is true, it means 22033 * end of options and dst already has the right 22034 * value. 22035 */ 22036 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 22037 off = optlen - IP_ADDR_LEN; 22038 bcopy(&opt[off], &dst, IP_ADDR_LEN); 22039 } 22040 return (dst); 22041 default: 22042 break; 22043 } 22044 } 22045 22046 return (dst); 22047 } 22048 22049 mblk_t * 22050 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 22051 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 22052 { 22053 ipsec_out_t *io; 22054 mblk_t *first_mp; 22055 boolean_t policy_present; 22056 ip_stack_t *ipst; 22057 ipsec_stack_t *ipss; 22058 22059 ASSERT(ire != NULL); 22060 ipst = ire->ire_ipst; 22061 ipss = ipst->ips_netstack->netstack_ipsec; 22062 22063 first_mp = mp; 22064 if (mp->b_datap->db_type == M_CTL) { 22065 io = (ipsec_out_t *)first_mp->b_rptr; 22066 /* 22067 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 22068 * 22069 * 1) There is per-socket policy (including cached global 22070 * policy) or a policy on the IP-in-IP tunnel. 22071 * 2) There is no per-socket policy, but it is 22072 * a multicast packet that needs to go out 22073 * on a specific interface. This is the case 22074 * where (ip_wput and ip_wput_multicast) attaches 22075 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 22076 * 22077 * In case (2) we check with global policy to 22078 * see if there is a match and set the ill_index 22079 * appropriately so that we can lookup the ire 22080 * properly in ip_wput_ipsec_out. 22081 */ 22082 22083 /* 22084 * ipsec_out_use_global_policy is set to B_FALSE 22085 * in ipsec_in_to_out(). Refer to that function for 22086 * details. 22087 */ 22088 if ((io->ipsec_out_latch == NULL) && 22089 (io->ipsec_out_use_global_policy)) { 22090 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 22091 ire, connp, unspec_src, zoneid)); 22092 } 22093 if (!io->ipsec_out_secure) { 22094 /* 22095 * If this is not a secure packet, drop 22096 * the IPSEC_OUT mp and treat it as a clear 22097 * packet. This happens when we are sending 22098 * a ICMP reply back to a clear packet. See 22099 * ipsec_in_to_out() for details. 22100 */ 22101 mp = first_mp->b_cont; 22102 freeb(first_mp); 22103 } 22104 return (mp); 22105 } 22106 /* 22107 * See whether we need to attach a global policy here. We 22108 * don't depend on the conn (as it could be null) for deciding 22109 * what policy this datagram should go through because it 22110 * should have happened in ip_wput if there was some 22111 * policy. This normally happens for connections which are not 22112 * fully bound preventing us from caching policies in 22113 * ip_bind. Packets coming from the TCP listener/global queue 22114 * - which are non-hard_bound - could also be affected by 22115 * applying policy here. 22116 * 22117 * If this packet is coming from tcp global queue or listener, 22118 * we will be applying policy here. This may not be *right* 22119 * if these packets are coming from the detached connection as 22120 * it could have gone in clear before. This happens only if a 22121 * TCP connection started when there is no policy and somebody 22122 * added policy before it became detached. Thus packets of the 22123 * detached connection could go out secure and the other end 22124 * would drop it because it will be expecting in clear. The 22125 * converse is not true i.e if somebody starts a TCP 22126 * connection and deletes the policy, all the packets will 22127 * still go out with the policy that existed before deleting 22128 * because ip_unbind sends up policy information which is used 22129 * by TCP on subsequent ip_wputs. The right solution is to fix 22130 * TCP to attach a dummy IPSEC_OUT and set 22131 * ipsec_out_use_global_policy to B_FALSE. As this might 22132 * affect performance for normal cases, we are not doing it. 22133 * Thus, set policy before starting any TCP connections. 22134 * 22135 * NOTE - We might apply policy even for a hard bound connection 22136 * - for which we cached policy in ip_bind - if somebody added 22137 * global policy after we inherited the policy in ip_bind. 22138 * This means that the packets that were going out in clear 22139 * previously would start going secure and hence get dropped 22140 * on the other side. To fix this, TCP attaches a dummy 22141 * ipsec_out and make sure that we don't apply global policy. 22142 */ 22143 if (ipha != NULL) 22144 policy_present = ipss->ipsec_outbound_v4_policy_present; 22145 else 22146 policy_present = ipss->ipsec_outbound_v6_policy_present; 22147 if (!policy_present) 22148 return (mp); 22149 22150 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 22151 zoneid)); 22152 } 22153 22154 ire_t * 22155 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 22156 { 22157 ipaddr_t addr; 22158 ire_t *save_ire; 22159 irb_t *irb; 22160 ill_group_t *illgrp; 22161 int err; 22162 22163 save_ire = ire; 22164 addr = ire->ire_addr; 22165 22166 ASSERT(ire->ire_type == IRE_BROADCAST); 22167 22168 illgrp = connp->conn_outgoing_ill->ill_group; 22169 if (illgrp == NULL) { 22170 *conn_outgoing_ill = conn_get_held_ill(connp, 22171 &connp->conn_outgoing_ill, &err); 22172 if (err == ILL_LOOKUP_FAILED) { 22173 ire_refrele(save_ire); 22174 return (NULL); 22175 } 22176 return (save_ire); 22177 } 22178 /* 22179 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 22180 * If it is part of the group, we need to send on the ire 22181 * that has been cleared of IRE_MARK_NORECV and that belongs 22182 * to this group. This is okay as IP_BOUND_IF really means 22183 * any ill in the group. We depend on the fact that the 22184 * first ire in the group is always cleared of IRE_MARK_NORECV 22185 * if such an ire exists. This is possible only if you have 22186 * at least one ill in the group that has not failed. 22187 * 22188 * First get to the ire that matches the address and group. 22189 * 22190 * We don't look for an ire with a matching zoneid because a given zone 22191 * won't always have broadcast ires on all ills in the group. 22192 */ 22193 irb = ire->ire_bucket; 22194 rw_enter(&irb->irb_lock, RW_READER); 22195 if (ire->ire_marks & IRE_MARK_NORECV) { 22196 /* 22197 * If the current zone only has an ire broadcast for this 22198 * address marked NORECV, the ire we want is ahead in the 22199 * bucket, so we look it up deliberately ignoring the zoneid. 22200 */ 22201 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 22202 if (ire->ire_addr != addr) 22203 continue; 22204 /* skip over deleted ires */ 22205 if (ire->ire_marks & IRE_MARK_CONDEMNED) 22206 continue; 22207 } 22208 } 22209 while (ire != NULL) { 22210 /* 22211 * If a new interface is coming up, we could end up 22212 * seeing the loopback ire and the non-loopback ire 22213 * may not have been added yet. So check for ire_stq 22214 */ 22215 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 22216 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 22217 break; 22218 } 22219 ire = ire->ire_next; 22220 } 22221 if (ire != NULL && ire->ire_addr == addr && 22222 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 22223 IRE_REFHOLD(ire); 22224 rw_exit(&irb->irb_lock); 22225 ire_refrele(save_ire); 22226 *conn_outgoing_ill = ire_to_ill(ire); 22227 /* 22228 * Refhold the ill to make the conn_outgoing_ill 22229 * independent of the ire. ip_wput_ire goes in a loop 22230 * and may refrele the ire. Since we have an ire at this 22231 * point we don't need to use ILL_CAN_LOOKUP on the ill. 22232 */ 22233 ill_refhold(*conn_outgoing_ill); 22234 return (ire); 22235 } 22236 rw_exit(&irb->irb_lock); 22237 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 22238 /* 22239 * If we can't find a suitable ire, return the original ire. 22240 */ 22241 return (save_ire); 22242 } 22243 22244 /* 22245 * This function does the ire_refrele of the ire passed in as the 22246 * argument. As this function looks up more ires i.e broadcast ires, 22247 * it needs to REFRELE them. Currently, for simplicity we don't 22248 * differentiate the one passed in and looked up here. We always 22249 * REFRELE. 22250 * IPQoS Notes: 22251 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22252 * IPSec packets are done in ipsec_out_process. 22253 * 22254 */ 22255 void 22256 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22257 zoneid_t zoneid) 22258 { 22259 ipha_t *ipha; 22260 #define rptr ((uchar_t *)ipha) 22261 queue_t *stq; 22262 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22263 uint32_t v_hlen_tos_len; 22264 uint32_t ttl_protocol; 22265 ipaddr_t src; 22266 ipaddr_t dst; 22267 uint32_t cksum; 22268 ipaddr_t orig_src; 22269 ire_t *ire1; 22270 mblk_t *next_mp; 22271 uint_t hlen; 22272 uint16_t *up; 22273 uint32_t max_frag = ire->ire_max_frag; 22274 ill_t *ill = ire_to_ill(ire); 22275 int clusterwide; 22276 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22277 int ipsec_len; 22278 mblk_t *first_mp; 22279 ipsec_out_t *io; 22280 boolean_t conn_dontroute; /* conn value for multicast */ 22281 boolean_t conn_multicast_loop; /* conn value for multicast */ 22282 boolean_t multicast_forward; /* Should we forward ? */ 22283 boolean_t unspec_src; 22284 ill_t *conn_outgoing_ill = NULL; 22285 ill_t *ire_ill; 22286 ill_t *ire1_ill; 22287 ill_t *out_ill; 22288 uint32_t ill_index = 0; 22289 boolean_t multirt_send = B_FALSE; 22290 int err; 22291 ipxmit_state_t pktxmit_state; 22292 ip_stack_t *ipst = ire->ire_ipst; 22293 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22294 22295 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22296 "ip_wput_ire_start: q %p", q); 22297 22298 multicast_forward = B_FALSE; 22299 unspec_src = (connp != NULL && connp->conn_unspec_src); 22300 22301 if (ire->ire_flags & RTF_MULTIRT) { 22302 /* 22303 * Multirouting case. The bucket where ire is stored 22304 * probably holds other RTF_MULTIRT flagged ire 22305 * to the destination. In this call to ip_wput_ire, 22306 * we attempt to send the packet through all 22307 * those ires. Thus, we first ensure that ire is the 22308 * first RTF_MULTIRT ire in the bucket, 22309 * before walking the ire list. 22310 */ 22311 ire_t *first_ire; 22312 irb_t *irb = ire->ire_bucket; 22313 ASSERT(irb != NULL); 22314 22315 /* Make sure we do not omit any multiroute ire. */ 22316 IRB_REFHOLD(irb); 22317 for (first_ire = irb->irb_ire; 22318 first_ire != NULL; 22319 first_ire = first_ire->ire_next) { 22320 if ((first_ire->ire_flags & RTF_MULTIRT) && 22321 (first_ire->ire_addr == ire->ire_addr) && 22322 !(first_ire->ire_marks & 22323 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 22324 break; 22325 } 22326 22327 if ((first_ire != NULL) && (first_ire != ire)) { 22328 IRE_REFHOLD(first_ire); 22329 ire_refrele(ire); 22330 ire = first_ire; 22331 ill = ire_to_ill(ire); 22332 } 22333 IRB_REFRELE(irb); 22334 } 22335 22336 /* 22337 * conn_outgoing_ill is used only in the broadcast loop. 22338 * for performance we don't grab the mutexs in the fastpath 22339 */ 22340 if ((connp != NULL) && 22341 (connp->conn_xmit_if_ill == NULL) && 22342 (ire->ire_type == IRE_BROADCAST) && 22343 ((connp->conn_nofailover_ill != NULL) || 22344 (connp->conn_outgoing_ill != NULL))) { 22345 /* 22346 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22347 * option. So, see if this endpoint is bound to a 22348 * IPIF_NOFAILOVER address. If so, honor it. This implies 22349 * that if the interface is failed, we will still send 22350 * the packet on the same ill which is what we want. 22351 */ 22352 conn_outgoing_ill = conn_get_held_ill(connp, 22353 &connp->conn_nofailover_ill, &err); 22354 if (err == ILL_LOOKUP_FAILED) { 22355 ire_refrele(ire); 22356 freemsg(mp); 22357 return; 22358 } 22359 if (conn_outgoing_ill == NULL) { 22360 /* 22361 * Choose a good ill in the group to send the 22362 * packets on. 22363 */ 22364 ire = conn_set_outgoing_ill(connp, ire, 22365 &conn_outgoing_ill); 22366 if (ire == NULL) { 22367 freemsg(mp); 22368 return; 22369 } 22370 } 22371 } 22372 22373 if (mp->b_datap->db_type != M_CTL) { 22374 ipha = (ipha_t *)mp->b_rptr; 22375 } else { 22376 io = (ipsec_out_t *)mp->b_rptr; 22377 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22378 ASSERT(zoneid == io->ipsec_out_zoneid); 22379 ASSERT(zoneid != ALL_ZONES); 22380 ipha = (ipha_t *)mp->b_cont->b_rptr; 22381 dst = ipha->ipha_dst; 22382 /* 22383 * For the multicast case, ipsec_out carries conn_dontroute and 22384 * conn_multicast_loop as conn may not be available here. We 22385 * need this for multicast loopback and forwarding which is done 22386 * later in the code. 22387 */ 22388 if (CLASSD(dst)) { 22389 conn_dontroute = io->ipsec_out_dontroute; 22390 conn_multicast_loop = io->ipsec_out_multicast_loop; 22391 /* 22392 * If conn_dontroute is not set or conn_multicast_loop 22393 * is set, we need to do forwarding/loopback. For 22394 * datagrams from ip_wput_multicast, conn_dontroute is 22395 * set to B_TRUE and conn_multicast_loop is set to 22396 * B_FALSE so that we neither do forwarding nor 22397 * loopback. 22398 */ 22399 if (!conn_dontroute || conn_multicast_loop) 22400 multicast_forward = B_TRUE; 22401 } 22402 } 22403 22404 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22405 ire->ire_zoneid != ALL_ZONES) { 22406 /* 22407 * When a zone sends a packet to another zone, we try to deliver 22408 * the packet under the same conditions as if the destination 22409 * was a real node on the network. To do so, we look for a 22410 * matching route in the forwarding table. 22411 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22412 * ip_newroute() does. 22413 * Note that IRE_LOCAL are special, since they are used 22414 * when the zoneid doesn't match in some cases. This means that 22415 * we need to handle ipha_src differently since ire_src_addr 22416 * belongs to the receiving zone instead of the sending zone. 22417 * When ip_restrict_interzone_loopback is set, then 22418 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22419 * for loopback between zones when the logical "Ethernet" would 22420 * have looped them back. 22421 */ 22422 ire_t *src_ire; 22423 22424 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22425 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22426 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22427 if (src_ire != NULL && 22428 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22429 (!ipst->ips_ip_restrict_interzone_loopback || 22430 ire_local_same_ill_group(ire, src_ire))) { 22431 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22432 ipha->ipha_src = src_ire->ire_src_addr; 22433 ire_refrele(src_ire); 22434 } else { 22435 ire_refrele(ire); 22436 if (conn_outgoing_ill != NULL) 22437 ill_refrele(conn_outgoing_ill); 22438 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22439 if (src_ire != NULL) { 22440 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22441 ire_refrele(src_ire); 22442 freemsg(mp); 22443 return; 22444 } 22445 ire_refrele(src_ire); 22446 } 22447 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22448 /* Failed */ 22449 freemsg(mp); 22450 return; 22451 } 22452 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22453 ipst); 22454 return; 22455 } 22456 } 22457 22458 if (mp->b_datap->db_type == M_CTL || 22459 ipss->ipsec_outbound_v4_policy_present) { 22460 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22461 unspec_src, zoneid); 22462 if (mp == NULL) { 22463 ire_refrele(ire); 22464 if (conn_outgoing_ill != NULL) 22465 ill_refrele(conn_outgoing_ill); 22466 return; 22467 } 22468 } 22469 22470 first_mp = mp; 22471 ipsec_len = 0; 22472 22473 if (first_mp->b_datap->db_type == M_CTL) { 22474 io = (ipsec_out_t *)first_mp->b_rptr; 22475 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22476 mp = first_mp->b_cont; 22477 ipsec_len = ipsec_out_extra_length(first_mp); 22478 ASSERT(ipsec_len >= 0); 22479 /* We already picked up the zoneid from the M_CTL above */ 22480 ASSERT(zoneid == io->ipsec_out_zoneid); 22481 ASSERT(zoneid != ALL_ZONES); 22482 22483 /* 22484 * Drop M_CTL here if IPsec processing is not needed. 22485 * (Non-IPsec use of M_CTL extracted any information it 22486 * needed above). 22487 */ 22488 if (ipsec_len == 0) { 22489 freeb(first_mp); 22490 first_mp = mp; 22491 } 22492 } 22493 22494 /* 22495 * Fast path for ip_wput_ire 22496 */ 22497 22498 ipha = (ipha_t *)mp->b_rptr; 22499 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22500 dst = ipha->ipha_dst; 22501 22502 /* 22503 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22504 * if the socket is a SOCK_RAW type. The transport checksum should 22505 * be provided in the pre-built packet, so we don't need to compute it. 22506 * Also, other application set flags, like DF, should not be altered. 22507 * Other transport MUST pass down zero. 22508 */ 22509 ip_hdr_included = ipha->ipha_ident; 22510 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22511 22512 if (CLASSD(dst)) { 22513 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22514 ntohl(dst), 22515 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22516 ntohl(ire->ire_addr))); 22517 } 22518 22519 /* Macros to extract header fields from data already in registers */ 22520 #ifdef _BIG_ENDIAN 22521 #define V_HLEN (v_hlen_tos_len >> 24) 22522 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22523 #define PROTO (ttl_protocol & 0xFF) 22524 #else 22525 #define V_HLEN (v_hlen_tos_len & 0xFF) 22526 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22527 #define PROTO (ttl_protocol >> 8) 22528 #endif 22529 22530 22531 orig_src = src = ipha->ipha_src; 22532 /* (The loop back to "another" is explained down below.) */ 22533 another:; 22534 /* 22535 * Assign an ident value for this packet. We assign idents on 22536 * a per destination basis out of the IRE. There could be 22537 * other threads targeting the same destination, so we have to 22538 * arrange for a atomic increment. Note that we use a 32-bit 22539 * atomic add because it has better performance than its 22540 * 16-bit sibling. 22541 * 22542 * If running in cluster mode and if the source address 22543 * belongs to a replicated service then vector through 22544 * cl_inet_ipident vector to allocate ip identifier 22545 * NOTE: This is a contract private interface with the 22546 * clustering group. 22547 */ 22548 clusterwide = 0; 22549 if (cl_inet_ipident) { 22550 ASSERT(cl_inet_isclusterwide); 22551 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22552 AF_INET, (uint8_t *)(uintptr_t)src)) { 22553 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22554 AF_INET, (uint8_t *)(uintptr_t)src, 22555 (uint8_t *)(uintptr_t)dst); 22556 clusterwide = 1; 22557 } 22558 } 22559 if (!clusterwide) { 22560 ipha->ipha_ident = 22561 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22562 } 22563 22564 #ifndef _BIG_ENDIAN 22565 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22566 #endif 22567 22568 /* 22569 * Set source address unless sent on an ill or conn_unspec_src is set. 22570 * This is needed to obey conn_unspec_src when packets go through 22571 * ip_newroute + arp. 22572 * Assumes ip_newroute{,_multi} sets the source address as well. 22573 */ 22574 if (src == INADDR_ANY && !unspec_src) { 22575 /* 22576 * Assign the appropriate source address from the IRE if none 22577 * was specified. 22578 */ 22579 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22580 22581 /* 22582 * With IP multipathing, broadcast packets are sent on the ire 22583 * that has been cleared of IRE_MARK_NORECV and that belongs to 22584 * the group. However, this ire might not be in the same zone so 22585 * we can't always use its source address. We look for a 22586 * broadcast ire in the same group and in the right zone. 22587 */ 22588 if (ire->ire_type == IRE_BROADCAST && 22589 ire->ire_zoneid != zoneid) { 22590 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22591 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22592 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22593 if (src_ire != NULL) { 22594 src = src_ire->ire_src_addr; 22595 ire_refrele(src_ire); 22596 } else { 22597 ire_refrele(ire); 22598 if (conn_outgoing_ill != NULL) 22599 ill_refrele(conn_outgoing_ill); 22600 freemsg(first_mp); 22601 if (ill != NULL) { 22602 BUMP_MIB(ill->ill_ip_mib, 22603 ipIfStatsOutDiscards); 22604 } else { 22605 BUMP_MIB(&ipst->ips_ip_mib, 22606 ipIfStatsOutDiscards); 22607 } 22608 return; 22609 } 22610 } else { 22611 src = ire->ire_src_addr; 22612 } 22613 22614 if (connp == NULL) { 22615 ip1dbg(("ip_wput_ire: no connp and no src " 22616 "address for dst 0x%x, using src 0x%x\n", 22617 ntohl(dst), 22618 ntohl(src))); 22619 } 22620 ipha->ipha_src = src; 22621 } 22622 stq = ire->ire_stq; 22623 22624 /* 22625 * We only allow ire chains for broadcasts since there will 22626 * be multiple IRE_CACHE entries for the same multicast 22627 * address (one per ipif). 22628 */ 22629 next_mp = NULL; 22630 22631 /* broadcast packet */ 22632 if (ire->ire_type == IRE_BROADCAST) 22633 goto broadcast; 22634 22635 /* loopback ? */ 22636 if (stq == NULL) 22637 goto nullstq; 22638 22639 /* The ill_index for outbound ILL */ 22640 ill_index = Q_TO_INDEX(stq); 22641 22642 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22643 ttl_protocol = ((uint16_t *)ipha)[4]; 22644 22645 /* pseudo checksum (do it in parts for IP header checksum) */ 22646 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22647 22648 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22649 queue_t *dev_q = stq->q_next; 22650 22651 /* flow controlled */ 22652 if ((dev_q->q_next || dev_q->q_first) && 22653 !canput(dev_q)) 22654 goto blocked; 22655 if ((PROTO == IPPROTO_UDP) && 22656 (ip_hdr_included != IP_HDR_INCLUDED)) { 22657 hlen = (V_HLEN & 0xF) << 2; 22658 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22659 if (*up != 0) { 22660 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22661 hlen, LENGTH, max_frag, ipsec_len, cksum); 22662 /* Software checksum? */ 22663 if (DB_CKSUMFLAGS(mp) == 0) { 22664 IP_STAT(ipst, ip_out_sw_cksum); 22665 IP_STAT_UPDATE(ipst, 22666 ip_udp_out_sw_cksum_bytes, 22667 LENGTH - hlen); 22668 } 22669 } 22670 } 22671 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22672 hlen = (V_HLEN & 0xF) << 2; 22673 if (PROTO == IPPROTO_TCP) { 22674 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22675 /* 22676 * The packet header is processed once and for all, even 22677 * in the multirouting case. We disable hardware 22678 * checksum if the packet is multirouted, as it will be 22679 * replicated via several interfaces, and not all of 22680 * them may have this capability. 22681 */ 22682 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22683 LENGTH, max_frag, ipsec_len, cksum); 22684 /* Software checksum? */ 22685 if (DB_CKSUMFLAGS(mp) == 0) { 22686 IP_STAT(ipst, ip_out_sw_cksum); 22687 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22688 LENGTH - hlen); 22689 } 22690 } else { 22691 sctp_hdr_t *sctph; 22692 22693 ASSERT(PROTO == IPPROTO_SCTP); 22694 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22695 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22696 /* 22697 * Zero out the checksum field to ensure proper 22698 * checksum calculation. 22699 */ 22700 sctph->sh_chksum = 0; 22701 #ifdef DEBUG 22702 if (!skip_sctp_cksum) 22703 #endif 22704 sctph->sh_chksum = sctp_cksum(mp, hlen); 22705 } 22706 } 22707 22708 /* 22709 * If this is a multicast packet and originated from ip_wput 22710 * we need to do loopback and forwarding checks. If it comes 22711 * from ip_wput_multicast, we SHOULD not do this. 22712 */ 22713 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22714 22715 /* checksum */ 22716 cksum += ttl_protocol; 22717 22718 /* fragment the packet */ 22719 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22720 goto fragmentit; 22721 /* 22722 * Don't use frag_flag if packet is pre-built or source 22723 * routed or if multicast (since multicast packets do 22724 * not solicit ICMP "packet too big" messages). 22725 */ 22726 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22727 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22728 !ip_source_route_included(ipha)) && 22729 !CLASSD(ipha->ipha_dst)) 22730 ipha->ipha_fragment_offset_and_flags |= 22731 htons(ire->ire_frag_flag); 22732 22733 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22734 /* calculate IP header checksum */ 22735 cksum += ipha->ipha_ident; 22736 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22737 cksum += ipha->ipha_fragment_offset_and_flags; 22738 22739 /* IP options present */ 22740 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22741 if (hlen) 22742 goto checksumoptions; 22743 22744 /* calculate hdr checksum */ 22745 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22746 cksum = ~(cksum + (cksum >> 16)); 22747 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22748 } 22749 if (ipsec_len != 0) { 22750 /* 22751 * We will do the rest of the processing after 22752 * we come back from IPSEC in ip_wput_ipsec_out(). 22753 */ 22754 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22755 22756 io = (ipsec_out_t *)first_mp->b_rptr; 22757 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22758 ill_phyint->phyint_ifindex; 22759 22760 ipsec_out_process(q, first_mp, ire, ill_index); 22761 ire_refrele(ire); 22762 if (conn_outgoing_ill != NULL) 22763 ill_refrele(conn_outgoing_ill); 22764 return; 22765 } 22766 22767 /* 22768 * In most cases, the emission loop below is entered only 22769 * once. Only in the case where the ire holds the 22770 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22771 * flagged ires in the bucket, and send the packet 22772 * through all crossed RTF_MULTIRT routes. 22773 */ 22774 if (ire->ire_flags & RTF_MULTIRT) { 22775 multirt_send = B_TRUE; 22776 } 22777 do { 22778 if (multirt_send) { 22779 irb_t *irb; 22780 /* 22781 * We are in a multiple send case, need to get 22782 * the next ire and make a duplicate of the packet. 22783 * ire1 holds here the next ire to process in the 22784 * bucket. If multirouting is expected, 22785 * any non-RTF_MULTIRT ire that has the 22786 * right destination address is ignored. 22787 */ 22788 irb = ire->ire_bucket; 22789 ASSERT(irb != NULL); 22790 22791 IRB_REFHOLD(irb); 22792 for (ire1 = ire->ire_next; 22793 ire1 != NULL; 22794 ire1 = ire1->ire_next) { 22795 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22796 continue; 22797 if (ire1->ire_addr != ire->ire_addr) 22798 continue; 22799 if (ire1->ire_marks & 22800 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22801 continue; 22802 22803 /* Got one */ 22804 IRE_REFHOLD(ire1); 22805 break; 22806 } 22807 IRB_REFRELE(irb); 22808 22809 if (ire1 != NULL) { 22810 next_mp = copyb(mp); 22811 if ((next_mp == NULL) || 22812 ((mp->b_cont != NULL) && 22813 ((next_mp->b_cont = 22814 dupmsg(mp->b_cont)) == NULL))) { 22815 freemsg(next_mp); 22816 next_mp = NULL; 22817 ire_refrele(ire1); 22818 ire1 = NULL; 22819 } 22820 } 22821 22822 /* Last multiroute ire; don't loop anymore. */ 22823 if (ire1 == NULL) { 22824 multirt_send = B_FALSE; 22825 } 22826 } 22827 22828 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22829 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22830 mblk_t *, mp); 22831 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22832 ipst->ips_ipv4firewall_physical_out, 22833 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, ipst); 22834 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22835 if (mp == NULL) 22836 goto release_ire_and_ill; 22837 22838 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22839 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22840 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22841 if ((pktxmit_state == SEND_FAILED) || 22842 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22843 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22844 "- packet dropped\n")); 22845 release_ire_and_ill: 22846 ire_refrele(ire); 22847 if (next_mp != NULL) { 22848 freemsg(next_mp); 22849 ire_refrele(ire1); 22850 } 22851 if (conn_outgoing_ill != NULL) 22852 ill_refrele(conn_outgoing_ill); 22853 return; 22854 } 22855 22856 if (CLASSD(dst)) { 22857 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22858 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22859 LENGTH); 22860 } 22861 22862 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22863 "ip_wput_ire_end: q %p (%S)", 22864 q, "last copy out"); 22865 IRE_REFRELE(ire); 22866 22867 if (multirt_send) { 22868 ASSERT(ire1); 22869 /* 22870 * Proceed with the next RTF_MULTIRT ire, 22871 * Also set up the send-to queue accordingly. 22872 */ 22873 ire = ire1; 22874 ire1 = NULL; 22875 stq = ire->ire_stq; 22876 mp = next_mp; 22877 next_mp = NULL; 22878 ipha = (ipha_t *)mp->b_rptr; 22879 ill_index = Q_TO_INDEX(stq); 22880 ill = (ill_t *)stq->q_ptr; 22881 } 22882 } while (multirt_send); 22883 if (conn_outgoing_ill != NULL) 22884 ill_refrele(conn_outgoing_ill); 22885 return; 22886 22887 /* 22888 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22889 */ 22890 broadcast: 22891 { 22892 /* 22893 * Avoid broadcast storms by setting the ttl to 1 22894 * for broadcasts. This parameter can be set 22895 * via ndd, so make sure that for the SO_DONTROUTE 22896 * case that ipha_ttl is always set to 1. 22897 * In the event that we are replying to incoming 22898 * ICMP packets, conn could be NULL. 22899 */ 22900 if ((connp != NULL) && connp->conn_dontroute) 22901 ipha->ipha_ttl = 1; 22902 else 22903 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22904 22905 /* 22906 * Note that we are not doing a IRB_REFHOLD here. 22907 * Actually we don't care if the list changes i.e 22908 * if somebody deletes an IRE from the list while 22909 * we drop the lock, the next time we come around 22910 * ire_next will be NULL and hence we won't send 22911 * out multiple copies which is fine. 22912 */ 22913 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22914 ire1 = ire->ire_next; 22915 if (conn_outgoing_ill != NULL) { 22916 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22917 ASSERT(ire1 == ire->ire_next); 22918 if (ire1 != NULL && ire1->ire_addr == dst) { 22919 ire_refrele(ire); 22920 ire = ire1; 22921 IRE_REFHOLD(ire); 22922 ire1 = ire->ire_next; 22923 continue; 22924 } 22925 rw_exit(&ire->ire_bucket->irb_lock); 22926 /* Did not find a matching ill */ 22927 ip1dbg(("ip_wput_ire: broadcast with no " 22928 "matching IP_BOUND_IF ill %s\n", 22929 conn_outgoing_ill->ill_name)); 22930 freemsg(first_mp); 22931 if (ire != NULL) 22932 ire_refrele(ire); 22933 ill_refrele(conn_outgoing_ill); 22934 return; 22935 } 22936 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22937 /* 22938 * If the next IRE has the same address and is not one 22939 * of the two copies that we need to send, try to see 22940 * whether this copy should be sent at all. This 22941 * assumes that we insert loopbacks first and then 22942 * non-loopbacks. This is acheived by inserting the 22943 * loopback always before non-loopback. 22944 * This is used to send a single copy of a broadcast 22945 * packet out all physical interfaces that have an 22946 * matching IRE_BROADCAST while also looping 22947 * back one copy (to ip_wput_local) for each 22948 * matching physical interface. However, we avoid 22949 * sending packets out different logical that match by 22950 * having ipif_up/ipif_down supress duplicate 22951 * IRE_BROADCASTS. 22952 * 22953 * This feature is currently used to get broadcasts 22954 * sent to multiple interfaces, when the broadcast 22955 * address being used applies to multiple interfaces. 22956 * For example, a whole net broadcast will be 22957 * replicated on every connected subnet of 22958 * the target net. 22959 * 22960 * Each zone has its own set of IRE_BROADCASTs, so that 22961 * we're able to distribute inbound packets to multiple 22962 * zones who share a broadcast address. We avoid looping 22963 * back outbound packets in different zones but on the 22964 * same ill, as the application would see duplicates. 22965 * 22966 * If the interfaces are part of the same group, 22967 * we would want to send only one copy out for 22968 * whole group. 22969 * 22970 * This logic assumes that ire_add_v4() groups the 22971 * IRE_BROADCAST entries so that those with the same 22972 * ire_addr and ill_group are kept together. 22973 */ 22974 ire_ill = ire->ire_ipif->ipif_ill; 22975 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22976 if (ire_ill->ill_group != NULL && 22977 (ire->ire_marks & IRE_MARK_NORECV)) { 22978 /* 22979 * If the current zone only has an ire 22980 * broadcast for this address marked 22981 * NORECV, the ire we want is ahead in 22982 * the bucket, so we look it up 22983 * deliberately ignoring the zoneid. 22984 */ 22985 for (ire1 = ire->ire_bucket->irb_ire; 22986 ire1 != NULL; 22987 ire1 = ire1->ire_next) { 22988 ire1_ill = 22989 ire1->ire_ipif->ipif_ill; 22990 if (ire1->ire_addr != dst) 22991 continue; 22992 /* skip over the current ire */ 22993 if (ire1 == ire) 22994 continue; 22995 /* skip over deleted ires */ 22996 if (ire1->ire_marks & 22997 IRE_MARK_CONDEMNED) 22998 continue; 22999 /* 23000 * non-loopback ire in our 23001 * group: use it for the next 23002 * pass in the loop 23003 */ 23004 if (ire1->ire_stq != NULL && 23005 ire1_ill->ill_group == 23006 ire_ill->ill_group) 23007 break; 23008 } 23009 } 23010 } else { 23011 while (ire1 != NULL && ire1->ire_addr == dst) { 23012 ire1_ill = ire1->ire_ipif->ipif_ill; 23013 /* 23014 * We can have two broadcast ires on the 23015 * same ill in different zones; here 23016 * we'll send a copy of the packet on 23017 * each ill and the fanout code will 23018 * call conn_wantpacket() to check that 23019 * the zone has the broadcast address 23020 * configured on the ill. If the two 23021 * ires are in the same group we only 23022 * send one copy up. 23023 */ 23024 if (ire1_ill != ire_ill && 23025 (ire1_ill->ill_group == NULL || 23026 ire_ill->ill_group == NULL || 23027 ire1_ill->ill_group != 23028 ire_ill->ill_group)) { 23029 break; 23030 } 23031 ire1 = ire1->ire_next; 23032 } 23033 } 23034 } 23035 ASSERT(multirt_send == B_FALSE); 23036 if (ire1 != NULL && ire1->ire_addr == dst) { 23037 if ((ire->ire_flags & RTF_MULTIRT) && 23038 (ire1->ire_flags & RTF_MULTIRT)) { 23039 /* 23040 * We are in the multirouting case. 23041 * The message must be sent at least 23042 * on both ires. These ires have been 23043 * inserted AFTER the standard ones 23044 * in ip_rt_add(). There are thus no 23045 * other ire entries for the destination 23046 * address in the rest of the bucket 23047 * that do not have the RTF_MULTIRT 23048 * flag. We don't process a copy 23049 * of the message here. This will be 23050 * done in the final sending loop. 23051 */ 23052 multirt_send = B_TRUE; 23053 } else { 23054 next_mp = ip_copymsg(first_mp); 23055 if (next_mp != NULL) 23056 IRE_REFHOLD(ire1); 23057 } 23058 } 23059 rw_exit(&ire->ire_bucket->irb_lock); 23060 } 23061 23062 if (stq) { 23063 /* 23064 * A non-NULL send-to queue means this packet is going 23065 * out of this machine. 23066 */ 23067 out_ill = (ill_t *)stq->q_ptr; 23068 23069 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 23070 ttl_protocol = ((uint16_t *)ipha)[4]; 23071 /* 23072 * We accumulate the pseudo header checksum in cksum. 23073 * This is pretty hairy code, so watch close. One 23074 * thing to keep in mind is that UDP and TCP have 23075 * stored their respective datagram lengths in their 23076 * checksum fields. This lines things up real nice. 23077 */ 23078 cksum = (dst >> 16) + (dst & 0xFFFF) + 23079 (src >> 16) + (src & 0xFFFF); 23080 /* 23081 * We assume the udp checksum field contains the 23082 * length, so to compute the pseudo header checksum, 23083 * all we need is the protocol number and src/dst. 23084 */ 23085 /* Provide the checksums for UDP and TCP. */ 23086 if ((PROTO == IPPROTO_TCP) && 23087 (ip_hdr_included != IP_HDR_INCLUDED)) { 23088 /* hlen gets the number of uchar_ts in the IP header */ 23089 hlen = (V_HLEN & 0xF) << 2; 23090 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 23091 IP_STAT(ipst, ip_out_sw_cksum); 23092 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 23093 LENGTH - hlen); 23094 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 23095 if (*up == 0) 23096 *up = 0xFFFF; 23097 } else if (PROTO == IPPROTO_SCTP && 23098 (ip_hdr_included != IP_HDR_INCLUDED)) { 23099 sctp_hdr_t *sctph; 23100 23101 hlen = (V_HLEN & 0xF) << 2; 23102 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 23103 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 23104 sctph->sh_chksum = 0; 23105 #ifdef DEBUG 23106 if (!skip_sctp_cksum) 23107 #endif 23108 sctph->sh_chksum = sctp_cksum(mp, hlen); 23109 } else { 23110 queue_t *dev_q = stq->q_next; 23111 23112 if ((dev_q->q_next || dev_q->q_first) && 23113 !canput(dev_q)) { 23114 blocked: 23115 ipha->ipha_ident = ip_hdr_included; 23116 /* 23117 * If we don't have a conn to apply 23118 * backpressure, free the message. 23119 * In the ire_send path, we don't know 23120 * the position to requeue the packet. Rather 23121 * than reorder packets, we just drop this 23122 * packet. 23123 */ 23124 if (ipst->ips_ip_output_queue && 23125 connp != NULL && 23126 caller != IRE_SEND) { 23127 if (caller == IP_WSRV) { 23128 connp->conn_did_putbq = 1; 23129 (void) putbq(connp->conn_wq, 23130 first_mp); 23131 conn_drain_insert(connp); 23132 /* 23133 * This is the service thread, 23134 * and the queue is already 23135 * noenabled. The check for 23136 * canput and the putbq is not 23137 * atomic. So we need to check 23138 * again. 23139 */ 23140 if (canput(stq->q_next)) 23141 connp->conn_did_putbq 23142 = 0; 23143 IP_STAT(ipst, ip_conn_flputbq); 23144 } else { 23145 /* 23146 * We are not the service proc. 23147 * ip_wsrv will be scheduled or 23148 * is already running. 23149 */ 23150 (void) putq(connp->conn_wq, 23151 first_mp); 23152 } 23153 } else { 23154 out_ill = (ill_t *)stq->q_ptr; 23155 BUMP_MIB(out_ill->ill_ip_mib, 23156 ipIfStatsOutDiscards); 23157 freemsg(first_mp); 23158 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23159 "ip_wput_ire_end: q %p (%S)", 23160 q, "discard"); 23161 } 23162 ire_refrele(ire); 23163 if (next_mp) { 23164 ire_refrele(ire1); 23165 freemsg(next_mp); 23166 } 23167 if (conn_outgoing_ill != NULL) 23168 ill_refrele(conn_outgoing_ill); 23169 return; 23170 } 23171 if ((PROTO == IPPROTO_UDP) && 23172 (ip_hdr_included != IP_HDR_INCLUDED)) { 23173 /* 23174 * hlen gets the number of uchar_ts in the 23175 * IP header 23176 */ 23177 hlen = (V_HLEN & 0xF) << 2; 23178 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 23179 max_frag = ire->ire_max_frag; 23180 if (*up != 0) { 23181 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 23182 up, PROTO, hlen, LENGTH, max_frag, 23183 ipsec_len, cksum); 23184 /* Software checksum? */ 23185 if (DB_CKSUMFLAGS(mp) == 0) { 23186 IP_STAT(ipst, ip_out_sw_cksum); 23187 IP_STAT_UPDATE(ipst, 23188 ip_udp_out_sw_cksum_bytes, 23189 LENGTH - hlen); 23190 } 23191 } 23192 } 23193 } 23194 /* 23195 * Need to do this even when fragmenting. The local 23196 * loopback can be done without computing checksums 23197 * but forwarding out other interface must be done 23198 * after the IP checksum (and ULP checksums) have been 23199 * computed. 23200 * 23201 * NOTE : multicast_forward is set only if this packet 23202 * originated from ip_wput. For packets originating from 23203 * ip_wput_multicast, it is not set. 23204 */ 23205 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23206 multi_loopback: 23207 ip2dbg(("ip_wput: multicast, loop %d\n", 23208 conn_multicast_loop)); 23209 23210 /* Forget header checksum offload */ 23211 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23212 23213 /* 23214 * Local loopback of multicasts? Check the 23215 * ill. 23216 * 23217 * Note that the loopback function will not come 23218 * in through ip_rput - it will only do the 23219 * client fanout thus we need to do an mforward 23220 * as well. The is different from the BSD 23221 * logic. 23222 */ 23223 if (ill != NULL) { 23224 ilm_t *ilm; 23225 23226 ILM_WALKER_HOLD(ill); 23227 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 23228 ALL_ZONES); 23229 ILM_WALKER_RELE(ill); 23230 if (ilm != NULL) { 23231 /* 23232 * Pass along the virtual output q. 23233 * ip_wput_local() will distribute the 23234 * packet to all the matching zones, 23235 * except the sending zone when 23236 * IP_MULTICAST_LOOP is false. 23237 */ 23238 ip_multicast_loopback(q, ill, first_mp, 23239 conn_multicast_loop ? 0 : 23240 IP_FF_NO_MCAST_LOOP, zoneid); 23241 } 23242 } 23243 if (ipha->ipha_ttl == 0) { 23244 /* 23245 * 0 => only to this host i.e. we are 23246 * done. We are also done if this was the 23247 * loopback interface since it is sufficient 23248 * to loopback one copy of a multicast packet. 23249 */ 23250 freemsg(first_mp); 23251 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23252 "ip_wput_ire_end: q %p (%S)", 23253 q, "loopback"); 23254 ire_refrele(ire); 23255 if (conn_outgoing_ill != NULL) 23256 ill_refrele(conn_outgoing_ill); 23257 return; 23258 } 23259 /* 23260 * ILLF_MULTICAST is checked in ip_newroute 23261 * i.e. we don't need to check it here since 23262 * all IRE_CACHEs come from ip_newroute. 23263 * For multicast traffic, SO_DONTROUTE is interpreted 23264 * to mean only send the packet out the interface 23265 * (optionally specified with IP_MULTICAST_IF) 23266 * and do not forward it out additional interfaces. 23267 * RSVP and the rsvp daemon is an example of a 23268 * protocol and user level process that 23269 * handles it's own routing. Hence, it uses the 23270 * SO_DONTROUTE option to accomplish this. 23271 */ 23272 23273 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23274 ill != NULL) { 23275 /* Unconditionally redo the checksum */ 23276 ipha->ipha_hdr_checksum = 0; 23277 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23278 23279 /* 23280 * If this needs to go out secure, we need 23281 * to wait till we finish the IPSEC 23282 * processing. 23283 */ 23284 if (ipsec_len == 0 && 23285 ip_mforward(ill, ipha, mp)) { 23286 freemsg(first_mp); 23287 ip1dbg(("ip_wput: mforward failed\n")); 23288 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23289 "ip_wput_ire_end: q %p (%S)", 23290 q, "mforward failed"); 23291 ire_refrele(ire); 23292 if (conn_outgoing_ill != NULL) 23293 ill_refrele(conn_outgoing_ill); 23294 return; 23295 } 23296 } 23297 } 23298 max_frag = ire->ire_max_frag; 23299 cksum += ttl_protocol; 23300 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23301 /* No fragmentation required for this one. */ 23302 /* 23303 * Don't use frag_flag if packet is pre-built or source 23304 * routed or if multicast (since multicast packets do 23305 * not solicit ICMP "packet too big" messages). 23306 */ 23307 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23308 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23309 !ip_source_route_included(ipha)) && 23310 !CLASSD(ipha->ipha_dst)) 23311 ipha->ipha_fragment_offset_and_flags |= 23312 htons(ire->ire_frag_flag); 23313 23314 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23315 /* Complete the IP header checksum. */ 23316 cksum += ipha->ipha_ident; 23317 cksum += (v_hlen_tos_len >> 16)+ 23318 (v_hlen_tos_len & 0xFFFF); 23319 cksum += ipha->ipha_fragment_offset_and_flags; 23320 hlen = (V_HLEN & 0xF) - 23321 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23322 if (hlen) { 23323 checksumoptions: 23324 /* 23325 * Account for the IP Options in the IP 23326 * header checksum. 23327 */ 23328 up = (uint16_t *)(rptr+ 23329 IP_SIMPLE_HDR_LENGTH); 23330 do { 23331 cksum += up[0]; 23332 cksum += up[1]; 23333 up += 2; 23334 } while (--hlen); 23335 } 23336 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23337 cksum = ~(cksum + (cksum >> 16)); 23338 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23339 } 23340 if (ipsec_len != 0) { 23341 ipsec_out_process(q, first_mp, ire, ill_index); 23342 if (!next_mp) { 23343 ire_refrele(ire); 23344 if (conn_outgoing_ill != NULL) 23345 ill_refrele(conn_outgoing_ill); 23346 return; 23347 } 23348 goto next; 23349 } 23350 23351 /* 23352 * multirt_send has already been handled 23353 * for broadcast, but not yet for multicast 23354 * or IP options. 23355 */ 23356 if (next_mp == NULL) { 23357 if (ire->ire_flags & RTF_MULTIRT) { 23358 multirt_send = B_TRUE; 23359 } 23360 } 23361 23362 /* 23363 * In most cases, the emission loop below is 23364 * entered only once. Only in the case where 23365 * the ire holds the RTF_MULTIRT flag, do we loop 23366 * to process all RTF_MULTIRT ires in the bucket, 23367 * and send the packet through all crossed 23368 * RTF_MULTIRT routes. 23369 */ 23370 do { 23371 if (multirt_send) { 23372 irb_t *irb; 23373 23374 irb = ire->ire_bucket; 23375 ASSERT(irb != NULL); 23376 /* 23377 * We are in a multiple send case, 23378 * need to get the next IRE and make 23379 * a duplicate of the packet. 23380 */ 23381 IRB_REFHOLD(irb); 23382 for (ire1 = ire->ire_next; 23383 ire1 != NULL; 23384 ire1 = ire1->ire_next) { 23385 if (!(ire1->ire_flags & 23386 RTF_MULTIRT)) 23387 continue; 23388 if (ire1->ire_addr != 23389 ire->ire_addr) 23390 continue; 23391 if (ire1->ire_marks & 23392 (IRE_MARK_CONDEMNED| 23393 IRE_MARK_HIDDEN)) 23394 continue; 23395 23396 /* Got one */ 23397 IRE_REFHOLD(ire1); 23398 break; 23399 } 23400 IRB_REFRELE(irb); 23401 23402 if (ire1 != NULL) { 23403 next_mp = copyb(mp); 23404 if ((next_mp == NULL) || 23405 ((mp->b_cont != NULL) && 23406 ((next_mp->b_cont = 23407 dupmsg(mp->b_cont)) 23408 == NULL))) { 23409 freemsg(next_mp); 23410 next_mp = NULL; 23411 ire_refrele(ire1); 23412 ire1 = NULL; 23413 } 23414 } 23415 23416 /* 23417 * Last multiroute ire; don't loop 23418 * anymore. The emission is over 23419 * and next_mp is NULL. 23420 */ 23421 if (ire1 == NULL) { 23422 multirt_send = B_FALSE; 23423 } 23424 } 23425 23426 out_ill = ire->ire_ipif->ipif_ill; 23427 DTRACE_PROBE4(ip4__physical__out__start, 23428 ill_t *, NULL, 23429 ill_t *, out_ill, 23430 ipha_t *, ipha, mblk_t *, mp); 23431 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23432 ipst->ips_ipv4firewall_physical_out, 23433 NULL, out_ill, ipha, mp, mp, ipst); 23434 DTRACE_PROBE1(ip4__physical__out__end, 23435 mblk_t *, mp); 23436 if (mp == NULL) 23437 goto release_ire_and_ill_2; 23438 23439 ASSERT(ipsec_len == 0); 23440 mp->b_prev = 23441 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23442 DTRACE_PROBE2(ip__xmit__2, 23443 mblk_t *, mp, ire_t *, ire); 23444 pktxmit_state = ip_xmit_v4(mp, ire, 23445 NULL, B_TRUE); 23446 if ((pktxmit_state == SEND_FAILED) || 23447 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23448 release_ire_and_ill_2: 23449 if (next_mp) { 23450 freemsg(next_mp); 23451 ire_refrele(ire1); 23452 } 23453 ire_refrele(ire); 23454 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23455 "ip_wput_ire_end: q %p (%S)", 23456 q, "discard MDATA"); 23457 if (conn_outgoing_ill != NULL) 23458 ill_refrele(conn_outgoing_ill); 23459 return; 23460 } 23461 23462 if (CLASSD(dst)) { 23463 BUMP_MIB(out_ill->ill_ip_mib, 23464 ipIfStatsHCOutMcastPkts); 23465 UPDATE_MIB(out_ill->ill_ip_mib, 23466 ipIfStatsHCOutMcastOctets, 23467 LENGTH); 23468 } else if (ire->ire_type == IRE_BROADCAST) { 23469 BUMP_MIB(out_ill->ill_ip_mib, 23470 ipIfStatsHCOutBcastPkts); 23471 } 23472 23473 if (multirt_send) { 23474 /* 23475 * We are in a multiple send case, 23476 * need to re-enter the sending loop 23477 * using the next ire. 23478 */ 23479 ire_refrele(ire); 23480 ire = ire1; 23481 stq = ire->ire_stq; 23482 mp = next_mp; 23483 next_mp = NULL; 23484 ipha = (ipha_t *)mp->b_rptr; 23485 ill_index = Q_TO_INDEX(stq); 23486 } 23487 } while (multirt_send); 23488 23489 if (!next_mp) { 23490 /* 23491 * Last copy going out (the ultra-common 23492 * case). Note that we intentionally replicate 23493 * the putnext rather than calling it before 23494 * the next_mp check in hopes of a little 23495 * tail-call action out of the compiler. 23496 */ 23497 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23498 "ip_wput_ire_end: q %p (%S)", 23499 q, "last copy out(1)"); 23500 ire_refrele(ire); 23501 if (conn_outgoing_ill != NULL) 23502 ill_refrele(conn_outgoing_ill); 23503 return; 23504 } 23505 /* More copies going out below. */ 23506 } else { 23507 int offset; 23508 fragmentit: 23509 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23510 /* 23511 * If this would generate a icmp_frag_needed message, 23512 * we need to handle it before we do the IPSEC 23513 * processing. Otherwise, we need to strip the IPSEC 23514 * headers before we send up the message to the ULPs 23515 * which becomes messy and difficult. 23516 */ 23517 if (ipsec_len != 0) { 23518 if ((max_frag < (unsigned int)(LENGTH + 23519 ipsec_len)) && (offset & IPH_DF)) { 23520 out_ill = (ill_t *)stq->q_ptr; 23521 BUMP_MIB(out_ill->ill_ip_mib, 23522 ipIfStatsOutFragFails); 23523 BUMP_MIB(out_ill->ill_ip_mib, 23524 ipIfStatsOutFragReqds); 23525 ipha->ipha_hdr_checksum = 0; 23526 ipha->ipha_hdr_checksum = 23527 (uint16_t)ip_csum_hdr(ipha); 23528 icmp_frag_needed(ire->ire_stq, first_mp, 23529 max_frag, zoneid, ipst); 23530 if (!next_mp) { 23531 ire_refrele(ire); 23532 if (conn_outgoing_ill != NULL) { 23533 ill_refrele( 23534 conn_outgoing_ill); 23535 } 23536 return; 23537 } 23538 } else { 23539 /* 23540 * This won't cause a icmp_frag_needed 23541 * message. to be generated. Send it on 23542 * the wire. Note that this could still 23543 * cause fragmentation and all we 23544 * do is the generation of the message 23545 * to the ULP if needed before IPSEC. 23546 */ 23547 if (!next_mp) { 23548 ipsec_out_process(q, first_mp, 23549 ire, ill_index); 23550 TRACE_2(TR_FAC_IP, 23551 TR_IP_WPUT_IRE_END, 23552 "ip_wput_ire_end: q %p " 23553 "(%S)", q, 23554 "last ipsec_out_process"); 23555 ire_refrele(ire); 23556 if (conn_outgoing_ill != NULL) { 23557 ill_refrele( 23558 conn_outgoing_ill); 23559 } 23560 return; 23561 } 23562 ipsec_out_process(q, first_mp, 23563 ire, ill_index); 23564 } 23565 } else { 23566 /* 23567 * Initiate IPPF processing. For 23568 * fragmentable packets we finish 23569 * all QOS packet processing before 23570 * calling: 23571 * ip_wput_ire_fragmentit->ip_wput_frag 23572 */ 23573 23574 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23575 ip_process(IPP_LOCAL_OUT, &mp, 23576 ill_index); 23577 if (mp == NULL) { 23578 out_ill = (ill_t *)stq->q_ptr; 23579 BUMP_MIB(out_ill->ill_ip_mib, 23580 ipIfStatsOutDiscards); 23581 if (next_mp != NULL) { 23582 freemsg(next_mp); 23583 ire_refrele(ire1); 23584 } 23585 ire_refrele(ire); 23586 TRACE_2(TR_FAC_IP, 23587 TR_IP_WPUT_IRE_END, 23588 "ip_wput_ire: q %p (%S)", 23589 q, "discard MDATA"); 23590 if (conn_outgoing_ill != NULL) { 23591 ill_refrele( 23592 conn_outgoing_ill); 23593 } 23594 return; 23595 } 23596 } 23597 if (!next_mp) { 23598 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23599 "ip_wput_ire_end: q %p (%S)", 23600 q, "last fragmentation"); 23601 ip_wput_ire_fragmentit(mp, ire, 23602 zoneid, ipst); 23603 ire_refrele(ire); 23604 if (conn_outgoing_ill != NULL) 23605 ill_refrele(conn_outgoing_ill); 23606 return; 23607 } 23608 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23609 } 23610 } 23611 } else { 23612 nullstq: 23613 /* A NULL stq means the destination address is local. */ 23614 UPDATE_OB_PKT_COUNT(ire); 23615 ire->ire_last_used_time = lbolt; 23616 ASSERT(ire->ire_ipif != NULL); 23617 if (!next_mp) { 23618 /* 23619 * Is there an "in" and "out" for traffic local 23620 * to a host (loopback)? The code in Solaris doesn't 23621 * explicitly draw a line in its code for in vs out, 23622 * so we've had to draw a line in the sand: ip_wput_ire 23623 * is considered to be the "output" side and 23624 * ip_wput_local to be the "input" side. 23625 */ 23626 out_ill = ire->ire_ipif->ipif_ill; 23627 23628 DTRACE_PROBE4(ip4__loopback__out__start, 23629 ill_t *, NULL, ill_t *, out_ill, 23630 ipha_t *, ipha, mblk_t *, first_mp); 23631 23632 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23633 ipst->ips_ipv4firewall_loopback_out, 23634 NULL, out_ill, ipha, first_mp, mp, ipst); 23635 23636 DTRACE_PROBE1(ip4__loopback__out_end, 23637 mblk_t *, first_mp); 23638 23639 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23640 "ip_wput_ire_end: q %p (%S)", 23641 q, "local address"); 23642 23643 if (first_mp != NULL) 23644 ip_wput_local(q, out_ill, ipha, 23645 first_mp, ire, 0, ire->ire_zoneid); 23646 ire_refrele(ire); 23647 if (conn_outgoing_ill != NULL) 23648 ill_refrele(conn_outgoing_ill); 23649 return; 23650 } 23651 23652 out_ill = ire->ire_ipif->ipif_ill; 23653 23654 DTRACE_PROBE4(ip4__loopback__out__start, 23655 ill_t *, NULL, ill_t *, out_ill, 23656 ipha_t *, ipha, mblk_t *, first_mp); 23657 23658 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23659 ipst->ips_ipv4firewall_loopback_out, 23660 NULL, out_ill, ipha, first_mp, mp, ipst); 23661 23662 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23663 23664 if (first_mp != NULL) 23665 ip_wput_local(q, out_ill, ipha, 23666 first_mp, ire, 0, ire->ire_zoneid); 23667 } 23668 next: 23669 /* 23670 * More copies going out to additional interfaces. 23671 * ire1 has already been held. We don't need the 23672 * "ire" anymore. 23673 */ 23674 ire_refrele(ire); 23675 ire = ire1; 23676 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23677 mp = next_mp; 23678 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23679 ill = ire_to_ill(ire); 23680 first_mp = mp; 23681 if (ipsec_len != 0) { 23682 ASSERT(first_mp->b_datap->db_type == M_CTL); 23683 mp = mp->b_cont; 23684 } 23685 dst = ire->ire_addr; 23686 ipha = (ipha_t *)mp->b_rptr; 23687 /* 23688 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23689 * Restore ipha_ident "no checksum" flag. 23690 */ 23691 src = orig_src; 23692 ipha->ipha_ident = ip_hdr_included; 23693 goto another; 23694 23695 #undef rptr 23696 #undef Q_TO_INDEX 23697 } 23698 23699 /* 23700 * Routine to allocate a message that is used to notify the ULP about MDT. 23701 * The caller may provide a pointer to the link-layer MDT capabilities, 23702 * or NULL if MDT is to be disabled on the stream. 23703 */ 23704 mblk_t * 23705 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23706 { 23707 mblk_t *mp; 23708 ip_mdt_info_t *mdti; 23709 ill_mdt_capab_t *idst; 23710 23711 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23712 DB_TYPE(mp) = M_CTL; 23713 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23714 mdti = (ip_mdt_info_t *)mp->b_rptr; 23715 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23716 idst = &(mdti->mdt_capab); 23717 23718 /* 23719 * If the caller provides us with the capability, copy 23720 * it over into our notification message; otherwise 23721 * we zero out the capability portion. 23722 */ 23723 if (isrc != NULL) 23724 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23725 else 23726 bzero((caddr_t)idst, sizeof (*idst)); 23727 } 23728 return (mp); 23729 } 23730 23731 /* 23732 * Routine which determines whether MDT can be enabled on the destination 23733 * IRE and IPC combination, and if so, allocates and returns the MDT 23734 * notification mblk that may be used by ULP. We also check if we need to 23735 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23736 * MDT usage in the past have been lifted. This gets called during IP 23737 * and ULP binding. 23738 */ 23739 mblk_t * 23740 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23741 ill_mdt_capab_t *mdt_cap) 23742 { 23743 mblk_t *mp; 23744 boolean_t rc = B_FALSE; 23745 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23746 23747 ASSERT(dst_ire != NULL); 23748 ASSERT(connp != NULL); 23749 ASSERT(mdt_cap != NULL); 23750 23751 /* 23752 * Currently, we only support simple TCP/{IPv4,IPv6} with 23753 * Multidata, which is handled in tcp_multisend(). This 23754 * is the reason why we do all these checks here, to ensure 23755 * that we don't enable Multidata for the cases which we 23756 * can't handle at the moment. 23757 */ 23758 do { 23759 /* Only do TCP at the moment */ 23760 if (connp->conn_ulp != IPPROTO_TCP) 23761 break; 23762 23763 /* 23764 * IPSEC outbound policy present? Note that we get here 23765 * after calling ipsec_conn_cache_policy() where the global 23766 * policy checking is performed. conn_latch will be 23767 * non-NULL as long as there's a policy defined, 23768 * i.e. conn_out_enforce_policy may be NULL in such case 23769 * when the connection is non-secure, and hence we check 23770 * further if the latch refers to an outbound policy. 23771 */ 23772 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23773 break; 23774 23775 /* CGTP (multiroute) is enabled? */ 23776 if (dst_ire->ire_flags & RTF_MULTIRT) 23777 break; 23778 23779 /* Outbound IPQoS enabled? */ 23780 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23781 /* 23782 * In this case, we disable MDT for this and all 23783 * future connections going over the interface. 23784 */ 23785 mdt_cap->ill_mdt_on = 0; 23786 break; 23787 } 23788 23789 /* socket option(s) present? */ 23790 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23791 break; 23792 23793 rc = B_TRUE; 23794 /* CONSTCOND */ 23795 } while (0); 23796 23797 /* Remember the result */ 23798 connp->conn_mdt_ok = rc; 23799 23800 if (!rc) 23801 return (NULL); 23802 else if (!mdt_cap->ill_mdt_on) { 23803 /* 23804 * If MDT has been previously turned off in the past, and we 23805 * currently can do MDT (due to IPQoS policy removal, etc.) 23806 * then enable it for this interface. 23807 */ 23808 mdt_cap->ill_mdt_on = 1; 23809 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23810 "interface %s\n", ill_name)); 23811 } 23812 23813 /* Allocate the MDT info mblk */ 23814 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23815 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23816 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23817 return (NULL); 23818 } 23819 return (mp); 23820 } 23821 23822 /* 23823 * Routine to allocate a message that is used to notify the ULP about LSO. 23824 * The caller may provide a pointer to the link-layer LSO capabilities, 23825 * or NULL if LSO is to be disabled on the stream. 23826 */ 23827 mblk_t * 23828 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23829 { 23830 mblk_t *mp; 23831 ip_lso_info_t *lsoi; 23832 ill_lso_capab_t *idst; 23833 23834 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23835 DB_TYPE(mp) = M_CTL; 23836 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23837 lsoi = (ip_lso_info_t *)mp->b_rptr; 23838 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23839 idst = &(lsoi->lso_capab); 23840 23841 /* 23842 * If the caller provides us with the capability, copy 23843 * it over into our notification message; otherwise 23844 * we zero out the capability portion. 23845 */ 23846 if (isrc != NULL) 23847 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23848 else 23849 bzero((caddr_t)idst, sizeof (*idst)); 23850 } 23851 return (mp); 23852 } 23853 23854 /* 23855 * Routine which determines whether LSO can be enabled on the destination 23856 * IRE and IPC combination, and if so, allocates and returns the LSO 23857 * notification mblk that may be used by ULP. We also check if we need to 23858 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23859 * LSO usage in the past have been lifted. This gets called during IP 23860 * and ULP binding. 23861 */ 23862 mblk_t * 23863 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23864 ill_lso_capab_t *lso_cap) 23865 { 23866 mblk_t *mp; 23867 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23868 23869 ASSERT(dst_ire != NULL); 23870 ASSERT(connp != NULL); 23871 ASSERT(lso_cap != NULL); 23872 23873 connp->conn_lso_ok = B_TRUE; 23874 23875 if ((connp->conn_ulp != IPPROTO_TCP) || 23876 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23877 (dst_ire->ire_flags & RTF_MULTIRT) || 23878 !CONN_IS_LSO_MD_FASTPATH(connp) || 23879 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23880 connp->conn_lso_ok = B_FALSE; 23881 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23882 /* 23883 * Disable LSO for this and all future connections going 23884 * over the interface. 23885 */ 23886 lso_cap->ill_lso_on = 0; 23887 } 23888 } 23889 23890 if (!connp->conn_lso_ok) 23891 return (NULL); 23892 else if (!lso_cap->ill_lso_on) { 23893 /* 23894 * If LSO has been previously turned off in the past, and we 23895 * currently can do LSO (due to IPQoS policy removal, etc.) 23896 * then enable it for this interface. 23897 */ 23898 lso_cap->ill_lso_on = 1; 23899 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23900 ill_name)); 23901 } 23902 23903 /* Allocate the LSO info mblk */ 23904 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23905 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23906 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23907 23908 return (mp); 23909 } 23910 23911 /* 23912 * Create destination address attribute, and fill it with the physical 23913 * destination address and SAP taken from the template DL_UNITDATA_REQ 23914 * message block. 23915 */ 23916 boolean_t 23917 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23918 { 23919 dl_unitdata_req_t *dlurp; 23920 pattr_t *pa; 23921 pattrinfo_t pa_info; 23922 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23923 uint_t das_len, das_off; 23924 23925 ASSERT(dlmp != NULL); 23926 23927 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23928 das_len = dlurp->dl_dest_addr_length; 23929 das_off = dlurp->dl_dest_addr_offset; 23930 23931 pa_info.type = PATTR_DSTADDRSAP; 23932 pa_info.len = sizeof (**das) + das_len - 1; 23933 23934 /* create and associate the attribute */ 23935 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23936 if (pa != NULL) { 23937 ASSERT(*das != NULL); 23938 (*das)->addr_is_group = 0; 23939 (*das)->addr_len = (uint8_t)das_len; 23940 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23941 } 23942 23943 return (pa != NULL); 23944 } 23945 23946 /* 23947 * Create hardware checksum attribute and fill it with the values passed. 23948 */ 23949 boolean_t 23950 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23951 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23952 { 23953 pattr_t *pa; 23954 pattrinfo_t pa_info; 23955 23956 ASSERT(mmd != NULL); 23957 23958 pa_info.type = PATTR_HCKSUM; 23959 pa_info.len = sizeof (pattr_hcksum_t); 23960 23961 /* create and associate the attribute */ 23962 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23963 if (pa != NULL) { 23964 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23965 23966 hck->hcksum_start_offset = start_offset; 23967 hck->hcksum_stuff_offset = stuff_offset; 23968 hck->hcksum_end_offset = end_offset; 23969 hck->hcksum_flags = flags; 23970 } 23971 return (pa != NULL); 23972 } 23973 23974 /* 23975 * Create zerocopy attribute and fill it with the specified flags 23976 */ 23977 boolean_t 23978 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23979 { 23980 pattr_t *pa; 23981 pattrinfo_t pa_info; 23982 23983 ASSERT(mmd != NULL); 23984 pa_info.type = PATTR_ZCOPY; 23985 pa_info.len = sizeof (pattr_zcopy_t); 23986 23987 /* create and associate the attribute */ 23988 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23989 if (pa != NULL) { 23990 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23991 23992 zcopy->zcopy_flags = flags; 23993 } 23994 return (pa != NULL); 23995 } 23996 23997 /* 23998 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23999 * block chain. We could rewrite to handle arbitrary message block chains but 24000 * that would make the code complicated and slow. Right now there three 24001 * restrictions: 24002 * 24003 * 1. The first message block must contain the complete IP header and 24004 * at least 1 byte of payload data. 24005 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 24006 * so that we can use a single Multidata message. 24007 * 3. No frag must be distributed over two or more message blocks so 24008 * that we don't need more than two packet descriptors per frag. 24009 * 24010 * The above restrictions allow us to support userland applications (which 24011 * will send down a single message block) and NFS over UDP (which will 24012 * send down a chain of at most three message blocks). 24013 * 24014 * We also don't use MDT for payloads with less than or equal to 24015 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 24016 */ 24017 boolean_t 24018 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 24019 { 24020 int blocks; 24021 ssize_t total, missing, size; 24022 24023 ASSERT(mp != NULL); 24024 ASSERT(hdr_len > 0); 24025 24026 size = MBLKL(mp) - hdr_len; 24027 if (size <= 0) 24028 return (B_FALSE); 24029 24030 /* The first mblk contains the header and some payload. */ 24031 blocks = 1; 24032 total = size; 24033 size %= len; 24034 missing = (size == 0) ? 0 : (len - size); 24035 mp = mp->b_cont; 24036 24037 while (mp != NULL) { 24038 /* 24039 * Give up if we encounter a zero length message block. 24040 * In practice, this should rarely happen and therefore 24041 * not worth the trouble of freeing and re-linking the 24042 * mblk from the chain to handle such case. 24043 */ 24044 if ((size = MBLKL(mp)) == 0) 24045 return (B_FALSE); 24046 24047 /* Too many payload buffers for a single Multidata message? */ 24048 if (++blocks > MULTIDATA_MAX_PBUFS) 24049 return (B_FALSE); 24050 24051 total += size; 24052 /* Is a frag distributed over two or more message blocks? */ 24053 if (missing > size) 24054 return (B_FALSE); 24055 size -= missing; 24056 24057 size %= len; 24058 missing = (size == 0) ? 0 : (len - size); 24059 24060 mp = mp->b_cont; 24061 } 24062 24063 return (total > ip_wput_frag_mdt_min); 24064 } 24065 24066 /* 24067 * Outbound IPv4 fragmentation routine using MDT. 24068 */ 24069 static void 24070 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 24071 uint32_t frag_flag, int offset) 24072 { 24073 ipha_t *ipha_orig; 24074 int i1, ip_data_end; 24075 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 24076 mblk_t *hdr_mp, *md_mp = NULL; 24077 unsigned char *hdr_ptr, *pld_ptr; 24078 multidata_t *mmd; 24079 ip_pdescinfo_t pdi; 24080 ill_t *ill; 24081 ip_stack_t *ipst = ire->ire_ipst; 24082 24083 ASSERT(DB_TYPE(mp) == M_DATA); 24084 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 24085 24086 ill = ire_to_ill(ire); 24087 ASSERT(ill != NULL); 24088 24089 ipha_orig = (ipha_t *)mp->b_rptr; 24090 mp->b_rptr += sizeof (ipha_t); 24091 24092 /* Calculate how many packets we will send out */ 24093 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 24094 pkts = (i1 + len - 1) / len; 24095 ASSERT(pkts > 1); 24096 24097 /* Allocate a message block which will hold all the IP Headers. */ 24098 wroff = ipst->ips_ip_wroff_extra; 24099 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 24100 24101 i1 = pkts * hdr_chunk_len; 24102 /* 24103 * Create the header buffer, Multidata and destination address 24104 * and SAP attribute that should be associated with it. 24105 */ 24106 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 24107 ((hdr_mp->b_wptr += i1), 24108 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 24109 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 24110 freemsg(mp); 24111 if (md_mp == NULL) { 24112 freemsg(hdr_mp); 24113 } else { 24114 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 24115 freemsg(md_mp); 24116 } 24117 IP_STAT(ipst, ip_frag_mdt_allocfail); 24118 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 24119 return; 24120 } 24121 IP_STAT(ipst, ip_frag_mdt_allocd); 24122 24123 /* 24124 * Add a payload buffer to the Multidata; this operation must not 24125 * fail, or otherwise our logic in this routine is broken. There 24126 * is no memory allocation done by the routine, so any returned 24127 * failure simply tells us that we've done something wrong. 24128 * 24129 * A failure tells us that either we're adding the same payload 24130 * buffer more than once, or we're trying to add more buffers than 24131 * allowed. None of the above cases should happen, and we panic 24132 * because either there's horrible heap corruption, and/or 24133 * programming mistake. 24134 */ 24135 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24136 goto pbuf_panic; 24137 24138 hdr_ptr = hdr_mp->b_rptr; 24139 pld_ptr = mp->b_rptr; 24140 24141 /* Establish the ending byte offset, based on the starting offset. */ 24142 offset <<= 3; 24143 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 24144 IP_SIMPLE_HDR_LENGTH; 24145 24146 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 24147 24148 while (pld_ptr < mp->b_wptr) { 24149 ipha_t *ipha; 24150 uint16_t offset_and_flags; 24151 uint16_t ip_len; 24152 int error; 24153 24154 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 24155 ipha = (ipha_t *)(hdr_ptr + wroff); 24156 ASSERT(OK_32PTR(ipha)); 24157 *ipha = *ipha_orig; 24158 24159 if (ip_data_end - offset > len) { 24160 offset_and_flags = IPH_MF; 24161 } else { 24162 /* 24163 * Last frag. Set len to the length of this last piece. 24164 */ 24165 len = ip_data_end - offset; 24166 /* A frag of a frag might have IPH_MF non-zero */ 24167 offset_and_flags = 24168 ntohs(ipha->ipha_fragment_offset_and_flags) & 24169 IPH_MF; 24170 } 24171 offset_and_flags |= (uint16_t)(offset >> 3); 24172 offset_and_flags |= (uint16_t)frag_flag; 24173 /* Store the offset and flags in the IP header. */ 24174 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24175 24176 /* Store the length in the IP header. */ 24177 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 24178 ipha->ipha_length = htons(ip_len); 24179 24180 /* 24181 * Set the IP header checksum. Note that mp is just 24182 * the header, so this is easy to pass to ip_csum. 24183 */ 24184 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24185 24186 /* 24187 * Record offset and size of header and data of the next packet 24188 * in the multidata message. 24189 */ 24190 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24191 PDESC_PLD_INIT(&pdi); 24192 i1 = MIN(mp->b_wptr - pld_ptr, len); 24193 ASSERT(i1 > 0); 24194 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24195 if (i1 == len) { 24196 pld_ptr += len; 24197 } else { 24198 i1 = len - i1; 24199 mp = mp->b_cont; 24200 ASSERT(mp != NULL); 24201 ASSERT(MBLKL(mp) >= i1); 24202 /* 24203 * Attach the next payload message block to the 24204 * multidata message. 24205 */ 24206 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24207 goto pbuf_panic; 24208 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24209 pld_ptr = mp->b_rptr + i1; 24210 } 24211 24212 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24213 KM_NOSLEEP)) == NULL) { 24214 /* 24215 * Any failure other than ENOMEM indicates that we 24216 * have passed in invalid pdesc info or parameters 24217 * to mmd_addpdesc, which must not happen. 24218 * 24219 * EINVAL is a result of failure on boundary checks 24220 * against the pdesc info contents. It should not 24221 * happen, and we panic because either there's 24222 * horrible heap corruption, and/or programming 24223 * mistake. 24224 */ 24225 if (error != ENOMEM) { 24226 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24227 "pdesc logic error detected for " 24228 "mmd %p pinfo %p (%d)\n", 24229 (void *)mmd, (void *)&pdi, error); 24230 /* NOTREACHED */ 24231 } 24232 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24233 /* Free unattached payload message blocks as well */ 24234 md_mp->b_cont = mp->b_cont; 24235 goto free_mmd; 24236 } 24237 24238 /* Advance fragment offset. */ 24239 offset += len; 24240 24241 /* Advance to location for next header in the buffer. */ 24242 hdr_ptr += hdr_chunk_len; 24243 24244 /* Did we reach the next payload message block? */ 24245 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24246 mp = mp->b_cont; 24247 /* 24248 * Attach the next message block with payload 24249 * data to the multidata message. 24250 */ 24251 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24252 goto pbuf_panic; 24253 pld_ptr = mp->b_rptr; 24254 } 24255 } 24256 24257 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24258 ASSERT(mp->b_wptr == pld_ptr); 24259 24260 /* Update IP statistics */ 24261 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24262 24263 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24264 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24265 24266 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24267 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24268 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24269 24270 if (pkt_type == OB_PKT) { 24271 ire->ire_ob_pkt_count += pkts; 24272 if (ire->ire_ipif != NULL) 24273 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24274 } else { 24275 /* 24276 * The type is IB_PKT in the forwarding path and in 24277 * the mobile IP case when the packet is being reverse- 24278 * tunneled to the home agent. 24279 */ 24280 ire->ire_ib_pkt_count += pkts; 24281 ASSERT(!IRE_IS_LOCAL(ire)); 24282 if (ire->ire_type & IRE_BROADCAST) { 24283 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24284 } else { 24285 UPDATE_MIB(ill->ill_ip_mib, 24286 ipIfStatsHCOutForwDatagrams, pkts); 24287 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24288 } 24289 } 24290 ire->ire_last_used_time = lbolt; 24291 /* Send it down */ 24292 putnext(ire->ire_stq, md_mp); 24293 return; 24294 24295 pbuf_panic: 24296 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24297 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24298 pbuf_idx); 24299 /* NOTREACHED */ 24300 } 24301 24302 /* 24303 * Outbound IP fragmentation routine. 24304 * 24305 * NOTE : This routine does not ire_refrele the ire that is passed in 24306 * as the argument. 24307 */ 24308 static void 24309 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24310 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 24311 { 24312 int i1; 24313 mblk_t *ll_hdr_mp; 24314 int ll_hdr_len; 24315 int hdr_len; 24316 mblk_t *hdr_mp; 24317 ipha_t *ipha; 24318 int ip_data_end; 24319 int len; 24320 mblk_t *mp = mp_orig, *mp1; 24321 int offset; 24322 queue_t *q; 24323 uint32_t v_hlen_tos_len; 24324 mblk_t *first_mp; 24325 boolean_t mctl_present; 24326 ill_t *ill; 24327 ill_t *out_ill; 24328 mblk_t *xmit_mp; 24329 mblk_t *carve_mp; 24330 ire_t *ire1 = NULL; 24331 ire_t *save_ire = NULL; 24332 mblk_t *next_mp = NULL; 24333 boolean_t last_frag = B_FALSE; 24334 boolean_t multirt_send = B_FALSE; 24335 ire_t *first_ire = NULL; 24336 irb_t *irb = NULL; 24337 mib2_ipIfStatsEntry_t *mibptr = NULL; 24338 24339 ill = ire_to_ill(ire); 24340 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24341 24342 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24343 24344 /* 24345 * IPSEC does not allow hw accelerated packets to be fragmented 24346 * This check is made in ip_wput_ipsec_out prior to coming here 24347 * via ip_wput_ire_fragmentit. 24348 * 24349 * If at this point we have an ire whose ARP request has not 24350 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24351 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24352 * This packet and all fragmentable packets for this ire will 24353 * continue to get dropped while ire_nce->nce_state remains in 24354 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24355 * ND_REACHABLE, all subsquent large packets for this ire will 24356 * get fragemented and sent out by this function. 24357 */ 24358 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24359 /* If nce_state is ND_INITIAL, trigger ARP query */ 24360 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24361 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24362 " - dropping packet\n")); 24363 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24364 freemsg(mp); 24365 return; 24366 } 24367 24368 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24369 "ip_wput_frag_start:"); 24370 24371 if (mp->b_datap->db_type == M_CTL) { 24372 first_mp = mp; 24373 mp_orig = mp = mp->b_cont; 24374 mctl_present = B_TRUE; 24375 } else { 24376 first_mp = mp; 24377 mctl_present = B_FALSE; 24378 } 24379 24380 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24381 ipha = (ipha_t *)mp->b_rptr; 24382 24383 /* 24384 * If the Don't Fragment flag is on, generate an ICMP destination 24385 * unreachable, fragmentation needed. 24386 */ 24387 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24388 if (offset & IPH_DF) { 24389 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24390 /* 24391 * Need to compute hdr checksum if called from ip_wput_ire. 24392 * Note that ip_rput_forward verifies the checksum before 24393 * calling this routine so in that case this is a noop. 24394 */ 24395 ipha->ipha_hdr_checksum = 0; 24396 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24397 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24398 ipst); 24399 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24400 "ip_wput_frag_end:(%S)", 24401 "don't fragment"); 24402 return; 24403 } 24404 if (mctl_present) 24405 freeb(first_mp); 24406 /* 24407 * Establish the starting offset. May not be zero if we are fragging 24408 * a fragment that is being forwarded. 24409 */ 24410 offset = offset & IPH_OFFSET; 24411 24412 /* TODO why is this test needed? */ 24413 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24414 if (((max_frag - LENGTH) & ~7) < 8) { 24415 /* TODO: notify ulp somehow */ 24416 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24417 freemsg(mp); 24418 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24419 "ip_wput_frag_end:(%S)", 24420 "len < 8"); 24421 return; 24422 } 24423 24424 hdr_len = (V_HLEN & 0xF) << 2; 24425 24426 ipha->ipha_hdr_checksum = 0; 24427 24428 /* 24429 * Establish the number of bytes maximum per frag, after putting 24430 * in the header. 24431 */ 24432 len = (max_frag - hdr_len) & ~7; 24433 24434 /* Check if we can use MDT to send out the frags. */ 24435 ASSERT(!IRE_IS_LOCAL(ire)); 24436 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24437 ipst->ips_ip_multidata_outbound && 24438 !(ire->ire_flags & RTF_MULTIRT) && 24439 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24440 ill != NULL && ILL_MDT_CAPABLE(ill) && 24441 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24442 ASSERT(ill->ill_mdt_capab != NULL); 24443 if (!ill->ill_mdt_capab->ill_mdt_on) { 24444 /* 24445 * If MDT has been previously turned off in the past, 24446 * and we currently can do MDT (due to IPQoS policy 24447 * removal, etc.) then enable it for this interface. 24448 */ 24449 ill->ill_mdt_capab->ill_mdt_on = 1; 24450 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24451 ill->ill_name)); 24452 } 24453 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24454 offset); 24455 return; 24456 } 24457 24458 /* Get a copy of the header for the trailing frags */ 24459 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24460 if (!hdr_mp) { 24461 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24462 freemsg(mp); 24463 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24464 "ip_wput_frag_end:(%S)", 24465 "couldn't copy hdr"); 24466 return; 24467 } 24468 if (DB_CRED(mp) != NULL) 24469 mblk_setcred(hdr_mp, DB_CRED(mp)); 24470 24471 /* Store the starting offset, with the MoreFrags flag. */ 24472 i1 = offset | IPH_MF | frag_flag; 24473 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24474 24475 /* Establish the ending byte offset, based on the starting offset. */ 24476 offset <<= 3; 24477 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24478 24479 /* Store the length of the first fragment in the IP header. */ 24480 i1 = len + hdr_len; 24481 ASSERT(i1 <= IP_MAXPACKET); 24482 ipha->ipha_length = htons((uint16_t)i1); 24483 24484 /* 24485 * Compute the IP header checksum for the first frag. We have to 24486 * watch out that we stop at the end of the header. 24487 */ 24488 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24489 24490 /* 24491 * Now carve off the first frag. Note that this will include the 24492 * original IP header. 24493 */ 24494 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24495 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24496 freeb(hdr_mp); 24497 freemsg(mp_orig); 24498 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24499 "ip_wput_frag_end:(%S)", 24500 "couldn't carve first"); 24501 return; 24502 } 24503 24504 /* 24505 * Multirouting case. Each fragment is replicated 24506 * via all non-condemned RTF_MULTIRT routes 24507 * currently resolved. 24508 * We ensure that first_ire is the first RTF_MULTIRT 24509 * ire in the bucket. 24510 */ 24511 if (ire->ire_flags & RTF_MULTIRT) { 24512 irb = ire->ire_bucket; 24513 ASSERT(irb != NULL); 24514 24515 multirt_send = B_TRUE; 24516 24517 /* Make sure we do not omit any multiroute ire. */ 24518 IRB_REFHOLD(irb); 24519 for (first_ire = irb->irb_ire; 24520 first_ire != NULL; 24521 first_ire = first_ire->ire_next) { 24522 if ((first_ire->ire_flags & RTF_MULTIRT) && 24523 (first_ire->ire_addr == ire->ire_addr) && 24524 !(first_ire->ire_marks & 24525 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 24526 break; 24527 } 24528 24529 if (first_ire != NULL) { 24530 if (first_ire != ire) { 24531 IRE_REFHOLD(first_ire); 24532 /* 24533 * Do not release the ire passed in 24534 * as the argument. 24535 */ 24536 ire = first_ire; 24537 } else { 24538 first_ire = NULL; 24539 } 24540 } 24541 IRB_REFRELE(irb); 24542 24543 /* 24544 * Save the first ire; we will need to restore it 24545 * for the trailing frags. 24546 * We REFHOLD save_ire, as each iterated ire will be 24547 * REFRELEd. 24548 */ 24549 save_ire = ire; 24550 IRE_REFHOLD(save_ire); 24551 } 24552 24553 /* 24554 * First fragment emission loop. 24555 * In most cases, the emission loop below is entered only 24556 * once. Only in the case where the ire holds the RTF_MULTIRT 24557 * flag, do we loop to process all RTF_MULTIRT ires in the 24558 * bucket, and send the fragment through all crossed 24559 * RTF_MULTIRT routes. 24560 */ 24561 do { 24562 if (ire->ire_flags & RTF_MULTIRT) { 24563 /* 24564 * We are in a multiple send case, need to get 24565 * the next ire and make a copy of the packet. 24566 * ire1 holds here the next ire to process in the 24567 * bucket. If multirouting is expected, 24568 * any non-RTF_MULTIRT ire that has the 24569 * right destination address is ignored. 24570 * 24571 * We have to take into account the MTU of 24572 * each walked ire. max_frag is set by the 24573 * the caller and generally refers to 24574 * the primary ire entry. Here we ensure that 24575 * no route with a lower MTU will be used, as 24576 * fragments are carved once for all ires, 24577 * then replicated. 24578 */ 24579 ASSERT(irb != NULL); 24580 IRB_REFHOLD(irb); 24581 for (ire1 = ire->ire_next; 24582 ire1 != NULL; 24583 ire1 = ire1->ire_next) { 24584 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24585 continue; 24586 if (ire1->ire_addr != ire->ire_addr) 24587 continue; 24588 if (ire1->ire_marks & 24589 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24590 continue; 24591 /* 24592 * Ensure we do not exceed the MTU 24593 * of the next route. 24594 */ 24595 if (ire1->ire_max_frag < max_frag) { 24596 ip_multirt_bad_mtu(ire1, max_frag); 24597 continue; 24598 } 24599 24600 /* Got one. */ 24601 IRE_REFHOLD(ire1); 24602 break; 24603 } 24604 IRB_REFRELE(irb); 24605 24606 if (ire1 != NULL) { 24607 next_mp = copyb(mp); 24608 if ((next_mp == NULL) || 24609 ((mp->b_cont != NULL) && 24610 ((next_mp->b_cont = 24611 dupmsg(mp->b_cont)) == NULL))) { 24612 freemsg(next_mp); 24613 next_mp = NULL; 24614 ire_refrele(ire1); 24615 ire1 = NULL; 24616 } 24617 } 24618 24619 /* Last multiroute ire; don't loop anymore. */ 24620 if (ire1 == NULL) { 24621 multirt_send = B_FALSE; 24622 } 24623 } 24624 24625 ll_hdr_len = 0; 24626 LOCK_IRE_FP_MP(ire); 24627 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24628 if (ll_hdr_mp != NULL) { 24629 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24630 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24631 } else { 24632 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24633 } 24634 24635 /* If there is a transmit header, get a copy for this frag. */ 24636 /* 24637 * TODO: should check db_ref before calling ip_carve_mp since 24638 * it might give us a dup. 24639 */ 24640 if (!ll_hdr_mp) { 24641 /* No xmit header. */ 24642 xmit_mp = mp; 24643 24644 /* We have a link-layer header that can fit in our mblk. */ 24645 } else if (mp->b_datap->db_ref == 1 && 24646 ll_hdr_len != 0 && 24647 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24648 /* M_DATA fastpath */ 24649 mp->b_rptr -= ll_hdr_len; 24650 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24651 xmit_mp = mp; 24652 24653 /* Corner case if copyb has failed */ 24654 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24655 UNLOCK_IRE_FP_MP(ire); 24656 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24657 freeb(hdr_mp); 24658 freemsg(mp); 24659 freemsg(mp_orig); 24660 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24661 "ip_wput_frag_end:(%S)", 24662 "discard"); 24663 24664 if (multirt_send) { 24665 ASSERT(ire1); 24666 ASSERT(next_mp); 24667 24668 freemsg(next_mp); 24669 ire_refrele(ire1); 24670 } 24671 if (save_ire != NULL) 24672 IRE_REFRELE(save_ire); 24673 24674 if (first_ire != NULL) 24675 ire_refrele(first_ire); 24676 return; 24677 24678 /* 24679 * Case of res_mp OR the fastpath mp can't fit 24680 * in the mblk 24681 */ 24682 } else { 24683 xmit_mp->b_cont = mp; 24684 if (DB_CRED(mp) != NULL) 24685 mblk_setcred(xmit_mp, DB_CRED(mp)); 24686 /* 24687 * Get priority marking, if any. 24688 * We propagate the CoS marking from the 24689 * original packet that went to QoS processing 24690 * in ip_wput_ire to the newly carved mp. 24691 */ 24692 if (DB_TYPE(xmit_mp) == M_DATA) 24693 xmit_mp->b_band = mp->b_band; 24694 } 24695 UNLOCK_IRE_FP_MP(ire); 24696 24697 q = ire->ire_stq; 24698 out_ill = (ill_t *)q->q_ptr; 24699 24700 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24701 24702 DTRACE_PROBE4(ip4__physical__out__start, 24703 ill_t *, NULL, ill_t *, out_ill, 24704 ipha_t *, ipha, mblk_t *, xmit_mp); 24705 24706 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24707 ipst->ips_ipv4firewall_physical_out, 24708 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24709 24710 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24711 24712 if (xmit_mp != NULL) { 24713 putnext(q, xmit_mp); 24714 24715 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24716 UPDATE_MIB(out_ill->ill_ip_mib, 24717 ipIfStatsHCOutOctets, i1); 24718 24719 if (pkt_type != OB_PKT) { 24720 /* 24721 * Update the packet count and MIB stats 24722 * of trailing RTF_MULTIRT ires. 24723 */ 24724 UPDATE_OB_PKT_COUNT(ire); 24725 BUMP_MIB(out_ill->ill_ip_mib, 24726 ipIfStatsOutFragReqds); 24727 } 24728 } 24729 24730 if (multirt_send) { 24731 /* 24732 * We are in a multiple send case; look for 24733 * the next ire and re-enter the loop. 24734 */ 24735 ASSERT(ire1); 24736 ASSERT(next_mp); 24737 /* REFRELE the current ire before looping */ 24738 ire_refrele(ire); 24739 ire = ire1; 24740 ire1 = NULL; 24741 mp = next_mp; 24742 next_mp = NULL; 24743 } 24744 } while (multirt_send); 24745 24746 ASSERT(ire1 == NULL); 24747 24748 /* Restore the original ire; we need it for the trailing frags */ 24749 if (save_ire != NULL) { 24750 /* REFRELE the last iterated ire */ 24751 ire_refrele(ire); 24752 /* save_ire has been REFHOLDed */ 24753 ire = save_ire; 24754 save_ire = NULL; 24755 q = ire->ire_stq; 24756 } 24757 24758 if (pkt_type == OB_PKT) { 24759 UPDATE_OB_PKT_COUNT(ire); 24760 } else { 24761 out_ill = (ill_t *)q->q_ptr; 24762 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24763 UPDATE_IB_PKT_COUNT(ire); 24764 } 24765 24766 /* Advance the offset to the second frag starting point. */ 24767 offset += len; 24768 /* 24769 * Update hdr_len from the copied header - there might be less options 24770 * in the later fragments. 24771 */ 24772 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24773 /* Loop until done. */ 24774 for (;;) { 24775 uint16_t offset_and_flags; 24776 uint16_t ip_len; 24777 24778 if (ip_data_end - offset > len) { 24779 /* 24780 * Carve off the appropriate amount from the original 24781 * datagram. 24782 */ 24783 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24784 mp = NULL; 24785 break; 24786 } 24787 /* 24788 * More frags after this one. Get another copy 24789 * of the header. 24790 */ 24791 if (carve_mp->b_datap->db_ref == 1 && 24792 hdr_mp->b_wptr - hdr_mp->b_rptr < 24793 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24794 /* Inline IP header */ 24795 carve_mp->b_rptr -= hdr_mp->b_wptr - 24796 hdr_mp->b_rptr; 24797 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24798 hdr_mp->b_wptr - hdr_mp->b_rptr); 24799 mp = carve_mp; 24800 } else { 24801 if (!(mp = copyb(hdr_mp))) { 24802 freemsg(carve_mp); 24803 break; 24804 } 24805 /* Get priority marking, if any. */ 24806 mp->b_band = carve_mp->b_band; 24807 mp->b_cont = carve_mp; 24808 } 24809 ipha = (ipha_t *)mp->b_rptr; 24810 offset_and_flags = IPH_MF; 24811 } else { 24812 /* 24813 * Last frag. Consume the header. Set len to 24814 * the length of this last piece. 24815 */ 24816 len = ip_data_end - offset; 24817 24818 /* 24819 * Carve off the appropriate amount from the original 24820 * datagram. 24821 */ 24822 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24823 mp = NULL; 24824 break; 24825 } 24826 if (carve_mp->b_datap->db_ref == 1 && 24827 hdr_mp->b_wptr - hdr_mp->b_rptr < 24828 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24829 /* Inline IP header */ 24830 carve_mp->b_rptr -= hdr_mp->b_wptr - 24831 hdr_mp->b_rptr; 24832 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24833 hdr_mp->b_wptr - hdr_mp->b_rptr); 24834 mp = carve_mp; 24835 freeb(hdr_mp); 24836 hdr_mp = mp; 24837 } else { 24838 mp = hdr_mp; 24839 /* Get priority marking, if any. */ 24840 mp->b_band = carve_mp->b_band; 24841 mp->b_cont = carve_mp; 24842 } 24843 ipha = (ipha_t *)mp->b_rptr; 24844 /* A frag of a frag might have IPH_MF non-zero */ 24845 offset_and_flags = 24846 ntohs(ipha->ipha_fragment_offset_and_flags) & 24847 IPH_MF; 24848 } 24849 offset_and_flags |= (uint16_t)(offset >> 3); 24850 offset_and_flags |= (uint16_t)frag_flag; 24851 /* Store the offset and flags in the IP header. */ 24852 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24853 24854 /* Store the length in the IP header. */ 24855 ip_len = (uint16_t)(len + hdr_len); 24856 ipha->ipha_length = htons(ip_len); 24857 24858 /* 24859 * Set the IP header checksum. Note that mp is just 24860 * the header, so this is easy to pass to ip_csum. 24861 */ 24862 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24863 24864 /* Attach a transmit header, if any, and ship it. */ 24865 if (pkt_type == OB_PKT) { 24866 UPDATE_OB_PKT_COUNT(ire); 24867 } else { 24868 out_ill = (ill_t *)q->q_ptr; 24869 BUMP_MIB(out_ill->ill_ip_mib, 24870 ipIfStatsHCOutForwDatagrams); 24871 UPDATE_IB_PKT_COUNT(ire); 24872 } 24873 24874 if (ire->ire_flags & RTF_MULTIRT) { 24875 irb = ire->ire_bucket; 24876 ASSERT(irb != NULL); 24877 24878 multirt_send = B_TRUE; 24879 24880 /* 24881 * Save the original ire; we will need to restore it 24882 * for the tailing frags. 24883 */ 24884 save_ire = ire; 24885 IRE_REFHOLD(save_ire); 24886 } 24887 /* 24888 * Emission loop for this fragment, similar 24889 * to what is done for the first fragment. 24890 */ 24891 do { 24892 if (multirt_send) { 24893 /* 24894 * We are in a multiple send case, need to get 24895 * the next ire and make a copy of the packet. 24896 */ 24897 ASSERT(irb != NULL); 24898 IRB_REFHOLD(irb); 24899 for (ire1 = ire->ire_next; 24900 ire1 != NULL; 24901 ire1 = ire1->ire_next) { 24902 if (!(ire1->ire_flags & RTF_MULTIRT)) 24903 continue; 24904 if (ire1->ire_addr != ire->ire_addr) 24905 continue; 24906 if (ire1->ire_marks & 24907 (IRE_MARK_CONDEMNED| 24908 IRE_MARK_HIDDEN)) 24909 continue; 24910 /* 24911 * Ensure we do not exceed the MTU 24912 * of the next route. 24913 */ 24914 if (ire1->ire_max_frag < max_frag) { 24915 ip_multirt_bad_mtu(ire1, 24916 max_frag); 24917 continue; 24918 } 24919 24920 /* Got one. */ 24921 IRE_REFHOLD(ire1); 24922 break; 24923 } 24924 IRB_REFRELE(irb); 24925 24926 if (ire1 != NULL) { 24927 next_mp = copyb(mp); 24928 if ((next_mp == NULL) || 24929 ((mp->b_cont != NULL) && 24930 ((next_mp->b_cont = 24931 dupmsg(mp->b_cont)) == NULL))) { 24932 freemsg(next_mp); 24933 next_mp = NULL; 24934 ire_refrele(ire1); 24935 ire1 = NULL; 24936 } 24937 } 24938 24939 /* Last multiroute ire; don't loop anymore. */ 24940 if (ire1 == NULL) { 24941 multirt_send = B_FALSE; 24942 } 24943 } 24944 24945 /* Update transmit header */ 24946 ll_hdr_len = 0; 24947 LOCK_IRE_FP_MP(ire); 24948 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24949 if (ll_hdr_mp != NULL) { 24950 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24951 ll_hdr_len = MBLKL(ll_hdr_mp); 24952 } else { 24953 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24954 } 24955 24956 if (!ll_hdr_mp) { 24957 xmit_mp = mp; 24958 24959 /* 24960 * We have link-layer header that can fit in 24961 * our mblk. 24962 */ 24963 } else if (mp->b_datap->db_ref == 1 && 24964 ll_hdr_len != 0 && 24965 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24966 /* M_DATA fastpath */ 24967 mp->b_rptr -= ll_hdr_len; 24968 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24969 ll_hdr_len); 24970 xmit_mp = mp; 24971 24972 /* 24973 * Case of res_mp OR the fastpath mp can't fit 24974 * in the mblk 24975 */ 24976 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24977 xmit_mp->b_cont = mp; 24978 if (DB_CRED(mp) != NULL) 24979 mblk_setcred(xmit_mp, DB_CRED(mp)); 24980 /* Get priority marking, if any. */ 24981 if (DB_TYPE(xmit_mp) == M_DATA) 24982 xmit_mp->b_band = mp->b_band; 24983 24984 /* Corner case if copyb failed */ 24985 } else { 24986 /* 24987 * Exit both the replication and 24988 * fragmentation loops. 24989 */ 24990 UNLOCK_IRE_FP_MP(ire); 24991 goto drop_pkt; 24992 } 24993 UNLOCK_IRE_FP_MP(ire); 24994 24995 mp1 = mp; 24996 out_ill = (ill_t *)q->q_ptr; 24997 24998 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24999 25000 DTRACE_PROBE4(ip4__physical__out__start, 25001 ill_t *, NULL, ill_t *, out_ill, 25002 ipha_t *, ipha, mblk_t *, xmit_mp); 25003 25004 FW_HOOKS(ipst->ips_ip4_physical_out_event, 25005 ipst->ips_ipv4firewall_physical_out, 25006 NULL, out_ill, ipha, xmit_mp, mp, ipst); 25007 25008 DTRACE_PROBE1(ip4__physical__out__end, 25009 mblk_t *, xmit_mp); 25010 25011 if (mp != mp1 && hdr_mp == mp1) 25012 hdr_mp = mp; 25013 if (mp != mp1 && mp_orig == mp1) 25014 mp_orig = mp; 25015 25016 if (xmit_mp != NULL) { 25017 putnext(q, xmit_mp); 25018 25019 BUMP_MIB(out_ill->ill_ip_mib, 25020 ipIfStatsHCOutTransmits); 25021 UPDATE_MIB(out_ill->ill_ip_mib, 25022 ipIfStatsHCOutOctets, ip_len); 25023 25024 if (pkt_type != OB_PKT) { 25025 /* 25026 * Update the packet count of trailing 25027 * RTF_MULTIRT ires. 25028 */ 25029 UPDATE_OB_PKT_COUNT(ire); 25030 } 25031 } 25032 25033 /* All done if we just consumed the hdr_mp. */ 25034 if (mp == hdr_mp) { 25035 last_frag = B_TRUE; 25036 BUMP_MIB(out_ill->ill_ip_mib, 25037 ipIfStatsOutFragOKs); 25038 } 25039 25040 if (multirt_send) { 25041 /* 25042 * We are in a multiple send case; look for 25043 * the next ire and re-enter the loop. 25044 */ 25045 ASSERT(ire1); 25046 ASSERT(next_mp); 25047 /* REFRELE the current ire before looping */ 25048 ire_refrele(ire); 25049 ire = ire1; 25050 ire1 = NULL; 25051 q = ire->ire_stq; 25052 mp = next_mp; 25053 next_mp = NULL; 25054 } 25055 } while (multirt_send); 25056 /* 25057 * Restore the original ire; we need it for the 25058 * trailing frags 25059 */ 25060 if (save_ire != NULL) { 25061 ASSERT(ire1 == NULL); 25062 /* REFRELE the last iterated ire */ 25063 ire_refrele(ire); 25064 /* save_ire has been REFHOLDed */ 25065 ire = save_ire; 25066 q = ire->ire_stq; 25067 save_ire = NULL; 25068 } 25069 25070 if (last_frag) { 25071 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25072 "ip_wput_frag_end:(%S)", 25073 "consumed hdr_mp"); 25074 25075 if (first_ire != NULL) 25076 ire_refrele(first_ire); 25077 return; 25078 } 25079 /* Otherwise, advance and loop. */ 25080 offset += len; 25081 } 25082 25083 drop_pkt: 25084 /* Clean up following allocation failure. */ 25085 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 25086 freemsg(mp); 25087 if (mp != hdr_mp) 25088 freeb(hdr_mp); 25089 if (mp != mp_orig) 25090 freemsg(mp_orig); 25091 25092 if (save_ire != NULL) 25093 IRE_REFRELE(save_ire); 25094 if (first_ire != NULL) 25095 ire_refrele(first_ire); 25096 25097 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25098 "ip_wput_frag_end:(%S)", 25099 "end--alloc failure"); 25100 } 25101 25102 /* 25103 * Copy the header plus those options which have the copy bit set 25104 */ 25105 static mblk_t * 25106 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 25107 { 25108 mblk_t *mp; 25109 uchar_t *up; 25110 25111 /* 25112 * Quick check if we need to look for options without the copy bit 25113 * set 25114 */ 25115 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 25116 if (!mp) 25117 return (mp); 25118 mp->b_rptr += ipst->ips_ip_wroff_extra; 25119 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 25120 bcopy(rptr, mp->b_rptr, hdr_len); 25121 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 25122 return (mp); 25123 } 25124 up = mp->b_rptr; 25125 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 25126 up += IP_SIMPLE_HDR_LENGTH; 25127 rptr += IP_SIMPLE_HDR_LENGTH; 25128 hdr_len -= IP_SIMPLE_HDR_LENGTH; 25129 while (hdr_len > 0) { 25130 uint32_t optval; 25131 uint32_t optlen; 25132 25133 optval = *rptr; 25134 if (optval == IPOPT_EOL) 25135 break; 25136 if (optval == IPOPT_NOP) 25137 optlen = 1; 25138 else 25139 optlen = rptr[1]; 25140 if (optval & IPOPT_COPY) { 25141 bcopy(rptr, up, optlen); 25142 up += optlen; 25143 } 25144 rptr += optlen; 25145 hdr_len -= optlen; 25146 } 25147 /* 25148 * Make sure that we drop an even number of words by filling 25149 * with EOL to the next word boundary. 25150 */ 25151 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 25152 hdr_len & 0x3; hdr_len++) 25153 *up++ = IPOPT_EOL; 25154 mp->b_wptr = up; 25155 /* Update header length */ 25156 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 25157 return (mp); 25158 } 25159 25160 /* 25161 * Delivery to local recipients including fanout to multiple recipients. 25162 * Does not do checksumming of UDP/TCP. 25163 * Note: q should be the read side queue for either the ill or conn. 25164 * Note: rq should be the read side q for the lower (ill) stream. 25165 * We don't send packets to IPPF processing, thus the last argument 25166 * to all the fanout calls are B_FALSE. 25167 */ 25168 void 25169 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25170 int fanout_flags, zoneid_t zoneid) 25171 { 25172 uint32_t protocol; 25173 mblk_t *first_mp; 25174 boolean_t mctl_present; 25175 int ire_type; 25176 #define rptr ((uchar_t *)ipha) 25177 ip_stack_t *ipst = ill->ill_ipst; 25178 25179 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25180 "ip_wput_local_start: q %p", q); 25181 25182 if (ire != NULL) { 25183 ire_type = ire->ire_type; 25184 } else { 25185 /* 25186 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25187 * packet is not multicast, we can't tell the ire type. 25188 */ 25189 ASSERT(CLASSD(ipha->ipha_dst)); 25190 ire_type = IRE_BROADCAST; 25191 } 25192 25193 first_mp = mp; 25194 if (first_mp->b_datap->db_type == M_CTL) { 25195 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25196 if (!io->ipsec_out_secure) { 25197 /* 25198 * This ipsec_out_t was allocated in ip_wput 25199 * for multicast packets to store the ill_index. 25200 * As this is being delivered locally, we don't 25201 * need this anymore. 25202 */ 25203 mp = first_mp->b_cont; 25204 freeb(first_mp); 25205 first_mp = mp; 25206 mctl_present = B_FALSE; 25207 } else { 25208 /* 25209 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25210 * security properties for the looped-back packet. 25211 */ 25212 mctl_present = B_TRUE; 25213 mp = first_mp->b_cont; 25214 ASSERT(mp != NULL); 25215 ipsec_out_to_in(first_mp); 25216 } 25217 } else { 25218 mctl_present = B_FALSE; 25219 } 25220 25221 DTRACE_PROBE4(ip4__loopback__in__start, 25222 ill_t *, ill, ill_t *, NULL, 25223 ipha_t *, ipha, mblk_t *, first_mp); 25224 25225 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25226 ipst->ips_ipv4firewall_loopback_in, 25227 ill, NULL, ipha, first_mp, mp, ipst); 25228 25229 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25230 25231 if (first_mp == NULL) 25232 return; 25233 25234 ipst->ips_loopback_packets++; 25235 25236 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25237 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25238 if (!IS_SIMPLE_IPH(ipha)) { 25239 ip_wput_local_options(ipha, ipst); 25240 } 25241 25242 protocol = ipha->ipha_protocol; 25243 switch (protocol) { 25244 case IPPROTO_ICMP: { 25245 ire_t *ire_zone; 25246 ilm_t *ilm; 25247 mblk_t *mp1; 25248 zoneid_t last_zoneid; 25249 25250 if (CLASSD(ipha->ipha_dst) && 25251 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 25252 ASSERT(ire_type == IRE_BROADCAST); 25253 /* 25254 * In the multicast case, applications may have joined 25255 * the group from different zones, so we need to deliver 25256 * the packet to each of them. Loop through the 25257 * multicast memberships structures (ilm) on the receive 25258 * ill and send a copy of the packet up each matching 25259 * one. However, we don't do this for multicasts sent on 25260 * the loopback interface (PHYI_LOOPBACK flag set) as 25261 * they must stay in the sender's zone. 25262 * 25263 * ilm_add_v6() ensures that ilms in the same zone are 25264 * contiguous in the ill_ilm list. We use this property 25265 * to avoid sending duplicates needed when two 25266 * applications in the same zone join the same group on 25267 * different logical interfaces: we ignore the ilm if 25268 * it's zoneid is the same as the last matching one. 25269 * In addition, the sending of the packet for 25270 * ire_zoneid is delayed until all of the other ilms 25271 * have been exhausted. 25272 */ 25273 last_zoneid = -1; 25274 ILM_WALKER_HOLD(ill); 25275 for (ilm = ill->ill_ilm; ilm != NULL; 25276 ilm = ilm->ilm_next) { 25277 if ((ilm->ilm_flags & ILM_DELETED) || 25278 ipha->ipha_dst != ilm->ilm_addr || 25279 ilm->ilm_zoneid == last_zoneid || 25280 ilm->ilm_zoneid == zoneid || 25281 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25282 continue; 25283 mp1 = ip_copymsg(first_mp); 25284 if (mp1 == NULL) 25285 continue; 25286 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25287 mctl_present, B_FALSE, ill, 25288 ilm->ilm_zoneid); 25289 last_zoneid = ilm->ilm_zoneid; 25290 } 25291 ILM_WALKER_RELE(ill); 25292 /* 25293 * Loopback case: the sending endpoint has 25294 * IP_MULTICAST_LOOP disabled, therefore we don't 25295 * dispatch the multicast packet to the sending zone. 25296 */ 25297 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25298 freemsg(first_mp); 25299 return; 25300 } 25301 } else if (ire_type == IRE_BROADCAST) { 25302 /* 25303 * In the broadcast case, there may be many zones 25304 * which need a copy of the packet delivered to them. 25305 * There is one IRE_BROADCAST per broadcast address 25306 * and per zone; we walk those using a helper function. 25307 * In addition, the sending of the packet for zoneid is 25308 * delayed until all of the other ires have been 25309 * processed. 25310 */ 25311 IRB_REFHOLD(ire->ire_bucket); 25312 ire_zone = NULL; 25313 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25314 ire)) != NULL) { 25315 mp1 = ip_copymsg(first_mp); 25316 if (mp1 == NULL) 25317 continue; 25318 25319 UPDATE_IB_PKT_COUNT(ire_zone); 25320 ire_zone->ire_last_used_time = lbolt; 25321 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25322 mctl_present, B_FALSE, ill, 25323 ire_zone->ire_zoneid); 25324 } 25325 IRB_REFRELE(ire->ire_bucket); 25326 } 25327 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25328 0, mctl_present, B_FALSE, ill, zoneid); 25329 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25330 "ip_wput_local_end: q %p (%S)", 25331 q, "icmp"); 25332 return; 25333 } 25334 case IPPROTO_IGMP: 25335 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25336 /* Bad packet - discarded by igmp_input */ 25337 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25338 "ip_wput_local_end: q %p (%S)", 25339 q, "igmp_input--bad packet"); 25340 if (mctl_present) 25341 freeb(first_mp); 25342 return; 25343 } 25344 /* 25345 * igmp_input() may have returned the pulled up message. 25346 * So first_mp and ipha need to be reinitialized. 25347 */ 25348 ipha = (ipha_t *)mp->b_rptr; 25349 if (mctl_present) 25350 first_mp->b_cont = mp; 25351 else 25352 first_mp = mp; 25353 /* deliver to local raw users */ 25354 break; 25355 case IPPROTO_ENCAP: 25356 /* 25357 * This case is covered by either ip_fanout_proto, or by 25358 * the above security processing for self-tunneled packets. 25359 */ 25360 break; 25361 case IPPROTO_UDP: { 25362 uint16_t *up; 25363 uint32_t ports; 25364 25365 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25366 UDP_PORTS_OFFSET); 25367 /* Force a 'valid' checksum. */ 25368 up[3] = 0; 25369 25370 ports = *(uint32_t *)up; 25371 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25372 (ire_type == IRE_BROADCAST), 25373 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25374 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25375 ill, zoneid); 25376 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25377 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25378 return; 25379 } 25380 case IPPROTO_TCP: { 25381 25382 /* 25383 * For TCP, discard broadcast packets. 25384 */ 25385 if ((ushort_t)ire_type == IRE_BROADCAST) { 25386 freemsg(first_mp); 25387 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25388 ip2dbg(("ip_wput_local: discard broadcast\n")); 25389 return; 25390 } 25391 25392 if (mp->b_datap->db_type == M_DATA) { 25393 /* 25394 * M_DATA mblk, so init mblk (chain) for no struio(). 25395 */ 25396 mblk_t *mp1 = mp; 25397 25398 do 25399 mp1->b_datap->db_struioflag = 0; 25400 while ((mp1 = mp1->b_cont) != NULL); 25401 } 25402 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25403 <= mp->b_wptr); 25404 ip_fanout_tcp(q, first_mp, ill, ipha, 25405 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25406 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25407 mctl_present, B_FALSE, zoneid); 25408 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25409 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25410 return; 25411 } 25412 case IPPROTO_SCTP: 25413 { 25414 uint32_t ports; 25415 25416 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25417 ip_fanout_sctp(first_mp, ill, ipha, ports, 25418 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25419 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25420 return; 25421 } 25422 25423 default: 25424 break; 25425 } 25426 /* 25427 * Find a client for some other protocol. We give 25428 * copies to multiple clients, if more than one is 25429 * bound. 25430 */ 25431 ip_fanout_proto(q, first_mp, ill, ipha, 25432 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25433 mctl_present, B_FALSE, ill, zoneid); 25434 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25435 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25436 #undef rptr 25437 } 25438 25439 /* 25440 * Update any source route, record route, or timestamp options. 25441 * Check that we are at end of strict source route. 25442 * The options have been sanity checked by ip_wput_options(). 25443 */ 25444 static void 25445 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25446 { 25447 ipoptp_t opts; 25448 uchar_t *opt; 25449 uint8_t optval; 25450 uint8_t optlen; 25451 ipaddr_t dst; 25452 uint32_t ts; 25453 ire_t *ire; 25454 timestruc_t now; 25455 25456 ip2dbg(("ip_wput_local_options\n")); 25457 for (optval = ipoptp_first(&opts, ipha); 25458 optval != IPOPT_EOL; 25459 optval = ipoptp_next(&opts)) { 25460 opt = opts.ipoptp_cur; 25461 optlen = opts.ipoptp_len; 25462 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25463 switch (optval) { 25464 uint32_t off; 25465 case IPOPT_SSRR: 25466 case IPOPT_LSRR: 25467 off = opt[IPOPT_OFFSET]; 25468 off--; 25469 if (optlen < IP_ADDR_LEN || 25470 off > optlen - IP_ADDR_LEN) { 25471 /* End of source route */ 25472 break; 25473 } 25474 /* 25475 * This will only happen if two consecutive entries 25476 * in the source route contains our address or if 25477 * it is a packet with a loose source route which 25478 * reaches us before consuming the whole source route 25479 */ 25480 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25481 if (optval == IPOPT_SSRR) { 25482 return; 25483 } 25484 /* 25485 * Hack: instead of dropping the packet truncate the 25486 * source route to what has been used by filling the 25487 * rest with IPOPT_NOP. 25488 */ 25489 opt[IPOPT_OLEN] = (uint8_t)off; 25490 while (off < optlen) { 25491 opt[off++] = IPOPT_NOP; 25492 } 25493 break; 25494 case IPOPT_RR: 25495 off = opt[IPOPT_OFFSET]; 25496 off--; 25497 if (optlen < IP_ADDR_LEN || 25498 off > optlen - IP_ADDR_LEN) { 25499 /* No more room - ignore */ 25500 ip1dbg(( 25501 "ip_wput_forward_options: end of RR\n")); 25502 break; 25503 } 25504 dst = htonl(INADDR_LOOPBACK); 25505 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25506 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25507 break; 25508 case IPOPT_TS: 25509 /* Insert timestamp if there is romm */ 25510 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25511 case IPOPT_TS_TSONLY: 25512 off = IPOPT_TS_TIMELEN; 25513 break; 25514 case IPOPT_TS_PRESPEC: 25515 case IPOPT_TS_PRESPEC_RFC791: 25516 /* Verify that the address matched */ 25517 off = opt[IPOPT_OFFSET] - 1; 25518 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25519 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25520 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25521 ipst); 25522 if (ire == NULL) { 25523 /* Not for us */ 25524 break; 25525 } 25526 ire_refrele(ire); 25527 /* FALLTHRU */ 25528 case IPOPT_TS_TSANDADDR: 25529 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25530 break; 25531 default: 25532 /* 25533 * ip_*put_options should have already 25534 * dropped this packet. 25535 */ 25536 cmn_err(CE_PANIC, "ip_wput_local_options: " 25537 "unknown IT - bug in ip_wput_options?\n"); 25538 return; /* Keep "lint" happy */ 25539 } 25540 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25541 /* Increase overflow counter */ 25542 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25543 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25544 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25545 (off << 4); 25546 break; 25547 } 25548 off = opt[IPOPT_OFFSET] - 1; 25549 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25550 case IPOPT_TS_PRESPEC: 25551 case IPOPT_TS_PRESPEC_RFC791: 25552 case IPOPT_TS_TSANDADDR: 25553 dst = htonl(INADDR_LOOPBACK); 25554 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25555 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25556 /* FALLTHRU */ 25557 case IPOPT_TS_TSONLY: 25558 off = opt[IPOPT_OFFSET] - 1; 25559 /* Compute # of milliseconds since midnight */ 25560 gethrestime(&now); 25561 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25562 now.tv_nsec / (NANOSEC / MILLISEC); 25563 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25564 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25565 break; 25566 } 25567 break; 25568 } 25569 } 25570 } 25571 25572 /* 25573 * Send out a multicast packet on interface ipif. 25574 * The sender does not have an conn. 25575 * Caller verifies that this isn't a PHYI_LOOPBACK. 25576 */ 25577 void 25578 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25579 { 25580 ipha_t *ipha; 25581 ire_t *ire; 25582 ipaddr_t dst; 25583 mblk_t *first_mp; 25584 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25585 25586 /* igmp_sendpkt always allocates a ipsec_out_t */ 25587 ASSERT(mp->b_datap->db_type == M_CTL); 25588 ASSERT(!ipif->ipif_isv6); 25589 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 25590 25591 first_mp = mp; 25592 mp = first_mp->b_cont; 25593 ASSERT(mp->b_datap->db_type == M_DATA); 25594 ipha = (ipha_t *)mp->b_rptr; 25595 25596 /* 25597 * Find an IRE which matches the destination and the outgoing 25598 * queue (i.e. the outgoing interface.) 25599 */ 25600 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25601 dst = ipif->ipif_pp_dst_addr; 25602 else 25603 dst = ipha->ipha_dst; 25604 /* 25605 * The source address has already been initialized by the 25606 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25607 * be sufficient rather than MATCH_IRE_IPIF. 25608 * 25609 * This function is used for sending IGMP packets. We need 25610 * to make sure that we send the packet out of the interface 25611 * (ipif->ipif_ill) where we joined the group. This is to 25612 * prevent from switches doing IGMP snooping to send us multicast 25613 * packets for a given group on the interface we have joined. 25614 * If we can't find an ire, igmp_sendpkt has already initialized 25615 * ipsec_out_attach_if so that this will not be load spread in 25616 * ip_newroute_ipif. 25617 */ 25618 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25619 MATCH_IRE_ILL, ipst); 25620 if (!ire) { 25621 /* 25622 * Mark this packet to make it be delivered to 25623 * ip_wput_ire after the new ire has been 25624 * created. 25625 */ 25626 mp->b_prev = NULL; 25627 mp->b_next = NULL; 25628 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25629 zoneid, &zero_info); 25630 return; 25631 } 25632 25633 /* 25634 * Honor the RTF_SETSRC flag; this is the only case 25635 * where we force this addr whatever the current src addr is, 25636 * because this address is set by igmp_sendpkt(), and 25637 * cannot be specified by any user. 25638 */ 25639 if (ire->ire_flags & RTF_SETSRC) { 25640 ipha->ipha_src = ire->ire_src_addr; 25641 } 25642 25643 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25644 } 25645 25646 /* 25647 * NOTE : This function does not ire_refrele the ire argument passed in. 25648 * 25649 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25650 * failure. The nce_fp_mp can vanish any time in the case of IRE_MIPRTUN 25651 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25652 * the ire_lock to access the nce_fp_mp in this case. 25653 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25654 * prepending a fastpath message IPQoS processing must precede it, we also set 25655 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25656 * (IPQoS might have set the b_band for CoS marking). 25657 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25658 * must follow it so that IPQoS can mark the dl_priority field for CoS 25659 * marking, if needed. 25660 */ 25661 static mblk_t * 25662 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25663 { 25664 uint_t hlen; 25665 ipha_t *ipha; 25666 mblk_t *mp1; 25667 boolean_t qos_done = B_FALSE; 25668 uchar_t *ll_hdr; 25669 ip_stack_t *ipst = ire->ire_ipst; 25670 25671 #define rptr ((uchar_t *)ipha) 25672 25673 ipha = (ipha_t *)mp->b_rptr; 25674 hlen = 0; 25675 LOCK_IRE_FP_MP(ire); 25676 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25677 ASSERT(DB_TYPE(mp1) == M_DATA); 25678 /* Initiate IPPF processing */ 25679 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25680 UNLOCK_IRE_FP_MP(ire); 25681 ip_process(proc, &mp, ill_index); 25682 if (mp == NULL) 25683 return (NULL); 25684 25685 ipha = (ipha_t *)mp->b_rptr; 25686 LOCK_IRE_FP_MP(ire); 25687 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25688 qos_done = B_TRUE; 25689 goto no_fp_mp; 25690 } 25691 ASSERT(DB_TYPE(mp1) == M_DATA); 25692 } 25693 hlen = MBLKL(mp1); 25694 /* 25695 * Check if we have enough room to prepend fastpath 25696 * header 25697 */ 25698 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25699 ll_hdr = rptr - hlen; 25700 bcopy(mp1->b_rptr, ll_hdr, hlen); 25701 /* 25702 * Set the b_rptr to the start of the link layer 25703 * header 25704 */ 25705 mp->b_rptr = ll_hdr; 25706 mp1 = mp; 25707 } else { 25708 mp1 = copyb(mp1); 25709 if (mp1 == NULL) 25710 goto unlock_err; 25711 mp1->b_band = mp->b_band; 25712 mp1->b_cont = mp; 25713 /* 25714 * certain system generated traffic may not 25715 * have cred/label in ip header block. This 25716 * is true even for a labeled system. But for 25717 * labeled traffic, inherit the label in the 25718 * new header. 25719 */ 25720 if (DB_CRED(mp) != NULL) 25721 mblk_setcred(mp1, DB_CRED(mp)); 25722 /* 25723 * XXX disable ICK_VALID and compute checksum 25724 * here; can happen if nce_fp_mp changes and 25725 * it can't be copied now due to insufficient 25726 * space. (unlikely, fp mp can change, but it 25727 * does not increase in length) 25728 */ 25729 } 25730 UNLOCK_IRE_FP_MP(ire); 25731 } else { 25732 no_fp_mp: 25733 mp1 = copyb(ire->ire_nce->nce_res_mp); 25734 if (mp1 == NULL) { 25735 unlock_err: 25736 UNLOCK_IRE_FP_MP(ire); 25737 freemsg(mp); 25738 return (NULL); 25739 } 25740 UNLOCK_IRE_FP_MP(ire); 25741 mp1->b_cont = mp; 25742 /* 25743 * certain system generated traffic may not 25744 * have cred/label in ip header block. This 25745 * is true even for a labeled system. But for 25746 * labeled traffic, inherit the label in the 25747 * new header. 25748 */ 25749 if (DB_CRED(mp) != NULL) 25750 mblk_setcred(mp1, DB_CRED(mp)); 25751 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25752 ip_process(proc, &mp1, ill_index); 25753 if (mp1 == NULL) 25754 return (NULL); 25755 } 25756 } 25757 return (mp1); 25758 #undef rptr 25759 } 25760 25761 /* 25762 * Finish the outbound IPsec processing for an IPv6 packet. This function 25763 * is called from ipsec_out_process() if the IPsec packet was processed 25764 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25765 * asynchronously. 25766 */ 25767 void 25768 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25769 ire_t *ire_arg) 25770 { 25771 in6_addr_t *v6dstp; 25772 ire_t *ire; 25773 mblk_t *mp; 25774 ip6_t *ip6h1; 25775 uint_t ill_index; 25776 ipsec_out_t *io; 25777 boolean_t attach_if, hwaccel; 25778 uint32_t flags = IP6_NO_IPPOLICY; 25779 int match_flags; 25780 zoneid_t zoneid; 25781 boolean_t ill_need_rele = B_FALSE; 25782 boolean_t ire_need_rele = B_FALSE; 25783 ip_stack_t *ipst; 25784 25785 mp = ipsec_mp->b_cont; 25786 ip6h1 = (ip6_t *)mp->b_rptr; 25787 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25788 ASSERT(io->ipsec_out_ns != NULL); 25789 ipst = io->ipsec_out_ns->netstack_ip; 25790 ill_index = io->ipsec_out_ill_index; 25791 if (io->ipsec_out_reachable) { 25792 flags |= IPV6_REACHABILITY_CONFIRMATION; 25793 } 25794 attach_if = io->ipsec_out_attach_if; 25795 hwaccel = io->ipsec_out_accelerated; 25796 zoneid = io->ipsec_out_zoneid; 25797 ASSERT(zoneid != ALL_ZONES); 25798 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25799 /* Multicast addresses should have non-zero ill_index. */ 25800 v6dstp = &ip6h->ip6_dst; 25801 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25802 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25803 ASSERT(!attach_if || ill_index != 0); 25804 if (ill_index != 0) { 25805 if (ill == NULL) { 25806 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25807 B_TRUE, ipst); 25808 25809 /* Failure case frees things for us. */ 25810 if (ill == NULL) 25811 return; 25812 25813 ill_need_rele = B_TRUE; 25814 } 25815 /* 25816 * If this packet needs to go out on a particular interface 25817 * honor it. 25818 */ 25819 if (attach_if) { 25820 match_flags = MATCH_IRE_ILL; 25821 25822 /* 25823 * Check if we need an ire that will not be 25824 * looked up by anybody else i.e. HIDDEN. 25825 */ 25826 if (ill_is_probeonly(ill)) { 25827 match_flags |= MATCH_IRE_MARK_HIDDEN; 25828 } 25829 } 25830 } 25831 ASSERT(mp != NULL); 25832 25833 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25834 boolean_t unspec_src; 25835 ipif_t *ipif; 25836 25837 /* 25838 * Use the ill_index to get the right ill. 25839 */ 25840 unspec_src = io->ipsec_out_unspec_src; 25841 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25842 if (ipif == NULL) { 25843 if (ill_need_rele) 25844 ill_refrele(ill); 25845 freemsg(ipsec_mp); 25846 return; 25847 } 25848 25849 if (ire_arg != NULL) { 25850 ire = ire_arg; 25851 } else { 25852 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25853 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25854 ire_need_rele = B_TRUE; 25855 } 25856 if (ire != NULL) { 25857 ipif_refrele(ipif); 25858 /* 25859 * XXX Do the multicast forwarding now, as the IPSEC 25860 * processing has been done. 25861 */ 25862 goto send; 25863 } 25864 25865 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25866 mp->b_prev = NULL; 25867 mp->b_next = NULL; 25868 25869 /* 25870 * If the IPsec packet was processed asynchronously, 25871 * drop it now. 25872 */ 25873 if (q == NULL) { 25874 if (ill_need_rele) 25875 ill_refrele(ill); 25876 freemsg(ipsec_mp); 25877 return; 25878 } 25879 25880 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25881 unspec_src, zoneid); 25882 ipif_refrele(ipif); 25883 } else { 25884 if (attach_if) { 25885 ipif_t *ipif; 25886 25887 ipif = ipif_get_next_ipif(NULL, ill); 25888 if (ipif == NULL) { 25889 if (ill_need_rele) 25890 ill_refrele(ill); 25891 freemsg(ipsec_mp); 25892 return; 25893 } 25894 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25895 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25896 ire_need_rele = B_TRUE; 25897 ipif_refrele(ipif); 25898 } else { 25899 if (ire_arg != NULL) { 25900 ire = ire_arg; 25901 } else { 25902 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25903 ipst); 25904 ire_need_rele = B_TRUE; 25905 } 25906 } 25907 if (ire != NULL) 25908 goto send; 25909 /* 25910 * ire disappeared underneath. 25911 * 25912 * What we need to do here is the ip_newroute 25913 * logic to get the ire without doing the IPSEC 25914 * processing. Follow the same old path. But this 25915 * time, ip_wput or ire_add_then_send will call us 25916 * directly as all the IPSEC operations are done. 25917 */ 25918 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25919 mp->b_prev = NULL; 25920 mp->b_next = NULL; 25921 25922 /* 25923 * If the IPsec packet was processed asynchronously, 25924 * drop it now. 25925 */ 25926 if (q == NULL) { 25927 if (ill_need_rele) 25928 ill_refrele(ill); 25929 freemsg(ipsec_mp); 25930 return; 25931 } 25932 25933 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25934 zoneid, ipst); 25935 } 25936 if (ill != NULL && ill_need_rele) 25937 ill_refrele(ill); 25938 return; 25939 send: 25940 if (ill != NULL && ill_need_rele) 25941 ill_refrele(ill); 25942 25943 /* Local delivery */ 25944 if (ire->ire_stq == NULL) { 25945 ill_t *out_ill; 25946 ASSERT(q != NULL); 25947 25948 /* PFHooks: LOOPBACK_OUT */ 25949 out_ill = ire->ire_ipif->ipif_ill; 25950 25951 DTRACE_PROBE4(ip6__loopback__out__start, 25952 ill_t *, NULL, ill_t *, out_ill, 25953 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25954 25955 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25956 ipst->ips_ipv6firewall_loopback_out, 25957 NULL, out_ill, ip6h1, ipsec_mp, mp, ipst); 25958 25959 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25960 25961 if (ipsec_mp != NULL) 25962 ip_wput_local_v6(RD(q), out_ill, 25963 ip6h, ipsec_mp, ire, 0); 25964 if (ire_need_rele) 25965 ire_refrele(ire); 25966 return; 25967 } 25968 /* 25969 * Everything is done. Send it out on the wire. 25970 * We force the insertion of a fragment header using the 25971 * IPH_FRAG_HDR flag in two cases: 25972 * - after reception of an ICMPv6 "packet too big" message 25973 * with a MTU < 1280 (cf. RFC 2460 section 5) 25974 * - for multirouted IPv6 packets, so that the receiver can 25975 * discard duplicates according to their fragment identifier 25976 */ 25977 /* XXX fix flow control problems. */ 25978 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25979 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25980 if (hwaccel) { 25981 /* 25982 * hardware acceleration does not handle these 25983 * "slow path" cases. 25984 */ 25985 /* IPsec KSTATS: should bump bean counter here. */ 25986 if (ire_need_rele) 25987 ire_refrele(ire); 25988 freemsg(ipsec_mp); 25989 return; 25990 } 25991 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25992 (mp->b_cont ? msgdsize(mp) : 25993 mp->b_wptr - (uchar_t *)ip6h)) { 25994 /* IPsec KSTATS: should bump bean counter here. */ 25995 ip0dbg(("Packet length mismatch: %d, %ld\n", 25996 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25997 msgdsize(mp))); 25998 if (ire_need_rele) 25999 ire_refrele(ire); 26000 freemsg(ipsec_mp); 26001 return; 26002 } 26003 ASSERT(mp->b_prev == NULL); 26004 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 26005 ntohs(ip6h->ip6_plen) + 26006 IPV6_HDR_LEN, ire->ire_max_frag)); 26007 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 26008 ire->ire_max_frag); 26009 } else { 26010 UPDATE_OB_PKT_COUNT(ire); 26011 ire->ire_last_used_time = lbolt; 26012 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 26013 } 26014 if (ire_need_rele) 26015 ire_refrele(ire); 26016 freeb(ipsec_mp); 26017 } 26018 26019 void 26020 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 26021 { 26022 mblk_t *hada_mp; /* attributes M_CTL mblk */ 26023 da_ipsec_t *hada; /* data attributes */ 26024 ill_t *ill = (ill_t *)q->q_ptr; 26025 26026 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 26027 26028 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 26029 /* IPsec KSTATS: Bump lose counter here! */ 26030 freemsg(mp); 26031 return; 26032 } 26033 26034 /* 26035 * It's an IPsec packet that must be 26036 * accelerated by the Provider, and the 26037 * outbound ill is IPsec acceleration capable. 26038 * Prepends the mblk with an IPHADA_M_CTL, and ship it 26039 * to the ill. 26040 * IPsec KSTATS: should bump packet counter here. 26041 */ 26042 26043 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 26044 if (hada_mp == NULL) { 26045 /* IPsec KSTATS: should bump packet counter here. */ 26046 freemsg(mp); 26047 return; 26048 } 26049 26050 hada_mp->b_datap->db_type = M_CTL; 26051 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 26052 hada_mp->b_cont = mp; 26053 26054 hada = (da_ipsec_t *)hada_mp->b_rptr; 26055 bzero(hada, sizeof (da_ipsec_t)); 26056 hada->da_type = IPHADA_M_CTL; 26057 26058 putnext(q, hada_mp); 26059 } 26060 26061 /* 26062 * Finish the outbound IPsec processing. This function is called from 26063 * ipsec_out_process() if the IPsec packet was processed 26064 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 26065 * asynchronously. 26066 */ 26067 void 26068 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 26069 ire_t *ire_arg) 26070 { 26071 uint32_t v_hlen_tos_len; 26072 ipaddr_t dst; 26073 ipif_t *ipif = NULL; 26074 ire_t *ire; 26075 ire_t *ire1 = NULL; 26076 mblk_t *next_mp = NULL; 26077 uint32_t max_frag; 26078 boolean_t multirt_send = B_FALSE; 26079 mblk_t *mp; 26080 mblk_t *mp1; 26081 ipha_t *ipha1; 26082 uint_t ill_index; 26083 ipsec_out_t *io; 26084 boolean_t attach_if; 26085 int match_flags, offset; 26086 irb_t *irb = NULL; 26087 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 26088 zoneid_t zoneid; 26089 uint32_t cksum; 26090 uint16_t *up; 26091 ipxmit_state_t pktxmit_state; 26092 ip_stack_t *ipst; 26093 26094 #ifdef _BIG_ENDIAN 26095 #define LENGTH (v_hlen_tos_len & 0xFFFF) 26096 #else 26097 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 26098 #endif 26099 26100 mp = ipsec_mp->b_cont; 26101 ipha1 = (ipha_t *)mp->b_rptr; 26102 ASSERT(mp != NULL); 26103 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 26104 dst = ipha->ipha_dst; 26105 26106 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26107 ill_index = io->ipsec_out_ill_index; 26108 attach_if = io->ipsec_out_attach_if; 26109 zoneid = io->ipsec_out_zoneid; 26110 ASSERT(zoneid != ALL_ZONES); 26111 ipst = io->ipsec_out_ns->netstack_ip; 26112 ASSERT(io->ipsec_out_ns != NULL); 26113 26114 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 26115 if (ill_index != 0) { 26116 if (ill == NULL) { 26117 ill = ip_grab_attach_ill(NULL, ipsec_mp, 26118 ill_index, B_FALSE, ipst); 26119 26120 /* Failure case frees things for us. */ 26121 if (ill == NULL) 26122 return; 26123 26124 ill_need_rele = B_TRUE; 26125 } 26126 /* 26127 * If this packet needs to go out on a particular interface 26128 * honor it. 26129 */ 26130 if (attach_if) { 26131 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 26132 26133 /* 26134 * Check if we need an ire that will not be 26135 * looked up by anybody else i.e. HIDDEN. 26136 */ 26137 if (ill_is_probeonly(ill)) { 26138 match_flags |= MATCH_IRE_MARK_HIDDEN; 26139 } 26140 } 26141 } 26142 26143 if (CLASSD(dst)) { 26144 boolean_t conn_dontroute; 26145 /* 26146 * Use the ill_index to get the right ipif. 26147 */ 26148 conn_dontroute = io->ipsec_out_dontroute; 26149 if (ill_index == 0) 26150 ipif = ipif_lookup_group(dst, zoneid, ipst); 26151 else 26152 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 26153 if (ipif == NULL) { 26154 ip1dbg(("ip_wput_ipsec_out: No ipif for" 26155 " multicast\n")); 26156 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 26157 freemsg(ipsec_mp); 26158 goto done; 26159 } 26160 /* 26161 * ipha_src has already been intialized with the 26162 * value of the ipif in ip_wput. All we need now is 26163 * an ire to send this downstream. 26164 */ 26165 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 26166 MBLK_GETLABEL(mp), match_flags, ipst); 26167 if (ire != NULL) { 26168 ill_t *ill1; 26169 /* 26170 * Do the multicast forwarding now, as the IPSEC 26171 * processing has been done. 26172 */ 26173 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 26174 (ill1 = ire_to_ill(ire))) { 26175 if (ip_mforward(ill1, ipha, mp)) { 26176 freemsg(ipsec_mp); 26177 ip1dbg(("ip_wput_ipsec_out: mforward " 26178 "failed\n")); 26179 ire_refrele(ire); 26180 goto done; 26181 } 26182 } 26183 goto send; 26184 } 26185 26186 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 26187 mp->b_prev = NULL; 26188 mp->b_next = NULL; 26189 26190 /* 26191 * If the IPsec packet was processed asynchronously, 26192 * drop it now. 26193 */ 26194 if (q == NULL) { 26195 freemsg(ipsec_mp); 26196 goto done; 26197 } 26198 26199 /* 26200 * We may be using a wrong ipif to create the ire. 26201 * But it is okay as the source address is assigned 26202 * for the packet already. Next outbound packet would 26203 * create the IRE with the right IPIF in ip_wput. 26204 * 26205 * Also handle RTF_MULTIRT routes. 26206 */ 26207 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26208 zoneid, &zero_info); 26209 } else { 26210 if (attach_if) { 26211 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 26212 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26213 } else { 26214 if (ire_arg != NULL) { 26215 ire = ire_arg; 26216 ire_need_rele = B_FALSE; 26217 } else { 26218 ire = ire_cache_lookup(dst, zoneid, 26219 MBLK_GETLABEL(mp), ipst); 26220 } 26221 } 26222 if (ire != NULL) { 26223 goto send; 26224 } 26225 26226 /* 26227 * ire disappeared underneath. 26228 * 26229 * What we need to do here is the ip_newroute 26230 * logic to get the ire without doing the IPSEC 26231 * processing. Follow the same old path. But this 26232 * time, ip_wput or ire_add_then_put will call us 26233 * directly as all the IPSEC operations are done. 26234 */ 26235 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26236 mp->b_prev = NULL; 26237 mp->b_next = NULL; 26238 26239 /* 26240 * If the IPsec packet was processed asynchronously, 26241 * drop it now. 26242 */ 26243 if (q == NULL) { 26244 freemsg(ipsec_mp); 26245 goto done; 26246 } 26247 26248 /* 26249 * Since we're going through ip_newroute() again, we 26250 * need to make sure we don't: 26251 * 26252 * 1.) Trigger the ASSERT() with the ipha_ident 26253 * overloading. 26254 * 2.) Redo transport-layer checksumming, since we've 26255 * already done all that to get this far. 26256 * 26257 * The easiest way not do either of the above is to set 26258 * the ipha_ident field to IP_HDR_INCLUDED. 26259 */ 26260 ipha->ipha_ident = IP_HDR_INCLUDED; 26261 ip_newroute(q, ipsec_mp, dst, NULL, 26262 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), zoneid, ipst); 26263 } 26264 goto done; 26265 send: 26266 if (ipha->ipha_protocol == IPPROTO_UDP && 26267 udp_compute_checksum(ipst->ips_netstack)) { 26268 /* 26269 * ESP NAT-Traversal packet. 26270 * 26271 * Just do software checksum for now. 26272 */ 26273 26274 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 26275 IP_STAT(ipst, ip_out_sw_cksum); 26276 IP_STAT_UPDATE(ipst, ip_udp_out_sw_cksum_bytes, 26277 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 26278 #define iphs ((uint16_t *)ipha) 26279 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 26280 iphs[9] + ntohs(htons(ipha->ipha_length) - 26281 IP_SIMPLE_HDR_LENGTH); 26282 #undef iphs 26283 if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0) 26284 cksum = 0xFFFF; 26285 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 26286 if (mp1->b_wptr - mp1->b_rptr >= 26287 offset + sizeof (uint16_t)) { 26288 up = (uint16_t *)(mp1->b_rptr + offset); 26289 *up = cksum; 26290 break; /* out of for loop */ 26291 } else { 26292 offset -= (mp->b_wptr - mp->b_rptr); 26293 } 26294 } /* Otherwise, just keep the all-zero checksum. */ 26295 26296 if (ire->ire_stq == NULL) { 26297 ill_t *out_ill; 26298 /* 26299 * Loopbacks go through ip_wput_local except for one case. 26300 * We come here if we generate a icmp_frag_needed message 26301 * after IPSEC processing is over. When this function calls 26302 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26303 * icmp_frag_needed. The message generated comes back here 26304 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26305 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26306 * source address as it is usually set in ip_wput_ire. As 26307 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26308 * and we end up here. We can't enter ip_wput_ire once the 26309 * IPSEC processing is over and hence we need to do it here. 26310 */ 26311 ASSERT(q != NULL); 26312 UPDATE_OB_PKT_COUNT(ire); 26313 ire->ire_last_used_time = lbolt; 26314 if (ipha->ipha_src == 0) 26315 ipha->ipha_src = ire->ire_src_addr; 26316 26317 /* PFHooks: LOOPBACK_OUT */ 26318 out_ill = ire->ire_ipif->ipif_ill; 26319 26320 DTRACE_PROBE4(ip4__loopback__out__start, 26321 ill_t *, NULL, ill_t *, out_ill, 26322 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26323 26324 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26325 ipst->ips_ipv4firewall_loopback_out, 26326 NULL, out_ill, ipha1, ipsec_mp, mp, ipst); 26327 26328 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26329 26330 if (ipsec_mp != NULL) 26331 ip_wput_local(RD(q), out_ill, 26332 ipha, ipsec_mp, ire, 0, zoneid); 26333 if (ire_need_rele) 26334 ire_refrele(ire); 26335 goto done; 26336 } 26337 26338 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26339 /* 26340 * We are through with IPSEC processing. 26341 * Fragment this and send it on the wire. 26342 */ 26343 if (io->ipsec_out_accelerated) { 26344 /* 26345 * The packet has been accelerated but must 26346 * be fragmented. This should not happen 26347 * since AH and ESP must not accelerate 26348 * packets that need fragmentation, however 26349 * the configuration could have changed 26350 * since the AH or ESP processing. 26351 * Drop packet. 26352 * IPsec KSTATS: bump bean counter here. 26353 */ 26354 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26355 "fragmented accelerated packet!\n")); 26356 freemsg(ipsec_mp); 26357 } else { 26358 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26359 } 26360 if (ire_need_rele) 26361 ire_refrele(ire); 26362 goto done; 26363 } 26364 26365 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26366 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26367 (void *)ire->ire_ipif, (void *)ipif)); 26368 26369 /* 26370 * Multiroute the secured packet, unless IPsec really 26371 * requires the packet to go out only through a particular 26372 * interface. 26373 */ 26374 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26375 ire_t *first_ire; 26376 irb = ire->ire_bucket; 26377 ASSERT(irb != NULL); 26378 /* 26379 * This ire has been looked up as the one that 26380 * goes through the given ipif; 26381 * make sure we do not omit any other multiroute ire 26382 * that may be present in the bucket before this one. 26383 */ 26384 IRB_REFHOLD(irb); 26385 for (first_ire = irb->irb_ire; 26386 first_ire != NULL; 26387 first_ire = first_ire->ire_next) { 26388 if ((first_ire->ire_flags & RTF_MULTIRT) && 26389 (first_ire->ire_addr == ire->ire_addr) && 26390 !(first_ire->ire_marks & 26391 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 26392 break; 26393 } 26394 26395 if ((first_ire != NULL) && (first_ire != ire)) { 26396 /* 26397 * Don't change the ire if the packet must 26398 * be fragmented if sent via this new one. 26399 */ 26400 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26401 IRE_REFHOLD(first_ire); 26402 if (ire_need_rele) 26403 ire_refrele(ire); 26404 else 26405 ire_need_rele = B_TRUE; 26406 ire = first_ire; 26407 } 26408 } 26409 IRB_REFRELE(irb); 26410 26411 multirt_send = B_TRUE; 26412 max_frag = ire->ire_max_frag; 26413 } else { 26414 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26415 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26416 "flag, attach_if %d\n", attach_if)); 26417 } 26418 } 26419 26420 /* 26421 * In most cases, the emission loop below is entered only once. 26422 * Only in the case where the ire holds the RTF_MULTIRT 26423 * flag, we loop to process all RTF_MULTIRT ires in the 26424 * bucket, and send the packet through all crossed 26425 * RTF_MULTIRT routes. 26426 */ 26427 do { 26428 if (multirt_send) { 26429 /* 26430 * ire1 holds here the next ire to process in the 26431 * bucket. If multirouting is expected, 26432 * any non-RTF_MULTIRT ire that has the 26433 * right destination address is ignored. 26434 */ 26435 ASSERT(irb != NULL); 26436 IRB_REFHOLD(irb); 26437 for (ire1 = ire->ire_next; 26438 ire1 != NULL; 26439 ire1 = ire1->ire_next) { 26440 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26441 continue; 26442 if (ire1->ire_addr != ire->ire_addr) 26443 continue; 26444 if (ire1->ire_marks & 26445 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26446 continue; 26447 /* No loopback here */ 26448 if (ire1->ire_stq == NULL) 26449 continue; 26450 /* 26451 * Ensure we do not exceed the MTU 26452 * of the next route. 26453 */ 26454 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26455 ip_multirt_bad_mtu(ire1, max_frag); 26456 continue; 26457 } 26458 26459 IRE_REFHOLD(ire1); 26460 break; 26461 } 26462 IRB_REFRELE(irb); 26463 if (ire1 != NULL) { 26464 /* 26465 * We are in a multiple send case, need to 26466 * make a copy of the packet. 26467 */ 26468 next_mp = copymsg(ipsec_mp); 26469 if (next_mp == NULL) { 26470 ire_refrele(ire1); 26471 ire1 = NULL; 26472 } 26473 } 26474 } 26475 /* 26476 * Everything is done. Send it out on the wire 26477 * 26478 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26479 * either send it on the wire or, in the case of 26480 * HW acceleration, call ipsec_hw_putnext. 26481 */ 26482 if (ire->ire_nce && 26483 ire->ire_nce->nce_state != ND_REACHABLE) { 26484 DTRACE_PROBE2(ip__wput__ipsec__bail, 26485 (ire_t *), ire, (mblk_t *), ipsec_mp); 26486 /* 26487 * If ire's link-layer is unresolved (this 26488 * would only happen if the incomplete ire 26489 * was added to cachetable via forwarding path) 26490 * don't bother going to ip_xmit_v4. Just drop the 26491 * packet. 26492 * There is a slight risk here, in that, if we 26493 * have the forwarding path create an incomplete 26494 * IRE, then until the IRE is completed, any 26495 * transmitted IPSEC packets will be dropped 26496 * instead of being queued waiting for resolution. 26497 * 26498 * But the likelihood of a forwarding packet and a wput 26499 * packet sending to the same dst at the same time 26500 * and there not yet be an ARP entry for it is small. 26501 * Furthermore, if this actually happens, it might 26502 * be likely that wput would generate multiple 26503 * packets (and forwarding would also have a train 26504 * of packets) for that destination. If this is 26505 * the case, some of them would have been dropped 26506 * anyway, since ARP only queues a few packets while 26507 * waiting for resolution 26508 * 26509 * NOTE: We should really call ip_xmit_v4, 26510 * and let it queue the packet and send the 26511 * ARP query and have ARP come back thus: 26512 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26513 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26514 * hw accel work. But it's too complex to get 26515 * the IPsec hw acceleration approach to fit 26516 * well with ip_xmit_v4 doing ARP without 26517 * doing IPSEC simplification. For now, we just 26518 * poke ip_xmit_v4 to trigger the arp resolve, so 26519 * that we can continue with the send on the next 26520 * attempt. 26521 * 26522 * XXX THis should be revisited, when 26523 * the IPsec/IP interaction is cleaned up 26524 */ 26525 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26526 " - dropping packet\n")); 26527 freemsg(ipsec_mp); 26528 /* 26529 * Call ip_xmit_v4() to trigger ARP query 26530 * in case the nce_state is ND_INITIAL 26531 */ 26532 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26533 goto drop_pkt; 26534 } 26535 26536 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26537 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26538 mblk_t *, mp); 26539 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26540 ipst->ips_ipv4firewall_physical_out, 26541 NULL, ire->ire_ipif->ipif_ill, ipha1, mp, mp, ipst); 26542 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 26543 if (mp == NULL) 26544 goto drop_pkt; 26545 26546 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26547 pktxmit_state = ip_xmit_v4(mp, ire, 26548 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26549 26550 if ((pktxmit_state == SEND_FAILED) || 26551 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26552 26553 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26554 drop_pkt: 26555 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26556 ipIfStatsOutDiscards); 26557 if (ire_need_rele) 26558 ire_refrele(ire); 26559 if (ire1 != NULL) { 26560 ire_refrele(ire1); 26561 freemsg(next_mp); 26562 } 26563 goto done; 26564 } 26565 26566 freeb(ipsec_mp); 26567 if (ire_need_rele) 26568 ire_refrele(ire); 26569 26570 if (ire1 != NULL) { 26571 ire = ire1; 26572 ire_need_rele = B_TRUE; 26573 ASSERT(next_mp); 26574 ipsec_mp = next_mp; 26575 mp = ipsec_mp->b_cont; 26576 ire1 = NULL; 26577 next_mp = NULL; 26578 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26579 } else { 26580 multirt_send = B_FALSE; 26581 } 26582 } while (multirt_send); 26583 done: 26584 if (ill != NULL && ill_need_rele) 26585 ill_refrele(ill); 26586 if (ipif != NULL) 26587 ipif_refrele(ipif); 26588 } 26589 26590 /* 26591 * Get the ill corresponding to the specified ire, and compare its 26592 * capabilities with the protocol and algorithms specified by the 26593 * the SA obtained from ipsec_out. If they match, annotate the 26594 * ipsec_out structure to indicate that the packet needs acceleration. 26595 * 26596 * 26597 * A packet is eligible for outbound hardware acceleration if the 26598 * following conditions are satisfied: 26599 * 26600 * 1. the packet will not be fragmented 26601 * 2. the provider supports the algorithm 26602 * 3. there is no pending control message being exchanged 26603 * 4. snoop is not attached 26604 * 5. the destination address is not a broadcast or multicast address. 26605 * 26606 * Rationale: 26607 * - Hardware drivers do not support fragmentation with 26608 * the current interface. 26609 * - snoop, multicast, and broadcast may result in exposure of 26610 * a cleartext datagram. 26611 * We check all five of these conditions here. 26612 * 26613 * XXX would like to nuke "ire_t *" parameter here; problem is that 26614 * IRE is only way to figure out if a v4 address is a broadcast and 26615 * thus ineligible for acceleration... 26616 */ 26617 static void 26618 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26619 { 26620 ipsec_out_t *io; 26621 mblk_t *data_mp; 26622 uint_t plen, overhead; 26623 ip_stack_t *ipst; 26624 26625 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26626 return; 26627 26628 if (ill == NULL) 26629 return; 26630 ipst = ill->ill_ipst; 26631 /* 26632 * Destination address is a broadcast or multicast. Punt. 26633 */ 26634 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26635 IRE_LOCAL))) 26636 return; 26637 26638 data_mp = ipsec_mp->b_cont; 26639 26640 if (ill->ill_isv6) { 26641 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26642 26643 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26644 return; 26645 26646 plen = ip6h->ip6_plen; 26647 } else { 26648 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26649 26650 if (CLASSD(ipha->ipha_dst)) 26651 return; 26652 26653 plen = ipha->ipha_length; 26654 } 26655 /* 26656 * Is there a pending DLPI control message being exchanged 26657 * between IP/IPsec and the DLS Provider? If there is, it 26658 * could be a SADB update, and the state of the DLS Provider 26659 * SADB might not be in sync with the SADB maintained by 26660 * IPsec. To avoid dropping packets or using the wrong keying 26661 * material, we do not accelerate this packet. 26662 */ 26663 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26664 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26665 "ill_dlpi_pending! don't accelerate packet\n")); 26666 return; 26667 } 26668 26669 /* 26670 * Is the Provider in promiscous mode? If it does, we don't 26671 * accelerate the packet since it will bounce back up to the 26672 * listeners in the clear. 26673 */ 26674 if (ill->ill_promisc_on_phys) { 26675 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26676 "ill in promiscous mode, don't accelerate packet\n")); 26677 return; 26678 } 26679 26680 /* 26681 * Will the packet require fragmentation? 26682 */ 26683 26684 /* 26685 * IPsec ESP note: this is a pessimistic estimate, but the same 26686 * as is used elsewhere. 26687 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26688 * + 2-byte trailer 26689 */ 26690 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26691 IPSEC_BASE_ESP_HDR_SIZE(sa); 26692 26693 if ((plen + overhead) > ill->ill_max_mtu) 26694 return; 26695 26696 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26697 26698 /* 26699 * Can the ill accelerate this IPsec protocol and algorithm 26700 * specified by the SA? 26701 */ 26702 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26703 ill->ill_isv6, sa, ipst->ips_netstack)) { 26704 return; 26705 } 26706 26707 /* 26708 * Tell AH or ESP that the outbound ill is capable of 26709 * accelerating this packet. 26710 */ 26711 io->ipsec_out_is_capab_ill = B_TRUE; 26712 } 26713 26714 /* 26715 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26716 * 26717 * If this function returns B_TRUE, the requested SA's have been filled 26718 * into the ipsec_out_*_sa pointers. 26719 * 26720 * If the function returns B_FALSE, the packet has been "consumed", most 26721 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26722 * 26723 * The SA references created by the protocol-specific "select" 26724 * function will be released when the ipsec_mp is freed, thanks to the 26725 * ipsec_out_free destructor -- see spd.c. 26726 */ 26727 static boolean_t 26728 ipsec_out_select_sa(mblk_t *ipsec_mp) 26729 { 26730 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26731 ipsec_out_t *io; 26732 ipsec_policy_t *pp; 26733 ipsec_action_t *ap; 26734 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26735 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26736 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26737 26738 if (!io->ipsec_out_secure) { 26739 /* 26740 * We came here by mistake. 26741 * Don't bother with ipsec processing 26742 * We should "discourage" this path in the future. 26743 */ 26744 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26745 return (B_FALSE); 26746 } 26747 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26748 ASSERT((io->ipsec_out_policy != NULL) || 26749 (io->ipsec_out_act != NULL)); 26750 26751 ASSERT(io->ipsec_out_failed == B_FALSE); 26752 26753 /* 26754 * IPSEC processing has started. 26755 */ 26756 io->ipsec_out_proc_begin = B_TRUE; 26757 ap = io->ipsec_out_act; 26758 if (ap == NULL) { 26759 pp = io->ipsec_out_policy; 26760 ASSERT(pp != NULL); 26761 ap = pp->ipsp_act; 26762 ASSERT(ap != NULL); 26763 } 26764 26765 /* 26766 * We have an action. now, let's select SA's. 26767 * (In the future, we can cache this in the conn_t..) 26768 */ 26769 if (ap->ipa_want_esp) { 26770 if (io->ipsec_out_esp_sa == NULL) { 26771 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26772 IPPROTO_ESP); 26773 } 26774 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26775 } 26776 26777 if (ap->ipa_want_ah) { 26778 if (io->ipsec_out_ah_sa == NULL) { 26779 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26780 IPPROTO_AH); 26781 } 26782 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26783 /* 26784 * The ESP and AH processing order needs to be preserved 26785 * when both protocols are required (ESP should be applied 26786 * before AH for an outbound packet). Force an ESP ACQUIRE 26787 * when both ESP and AH are required, and an AH ACQUIRE 26788 * is needed. 26789 */ 26790 if (ap->ipa_want_esp && need_ah_acquire) 26791 need_esp_acquire = B_TRUE; 26792 } 26793 26794 /* 26795 * Send an ACQUIRE (extended, regular, or both) if we need one. 26796 * Release SAs that got referenced, but will not be used until we 26797 * acquire _all_ of the SAs we need. 26798 */ 26799 if (need_ah_acquire || need_esp_acquire) { 26800 if (io->ipsec_out_ah_sa != NULL) { 26801 IPSA_REFRELE(io->ipsec_out_ah_sa); 26802 io->ipsec_out_ah_sa = NULL; 26803 } 26804 if (io->ipsec_out_esp_sa != NULL) { 26805 IPSA_REFRELE(io->ipsec_out_esp_sa); 26806 io->ipsec_out_esp_sa = NULL; 26807 } 26808 26809 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26810 return (B_FALSE); 26811 } 26812 26813 return (B_TRUE); 26814 } 26815 26816 /* 26817 * Process an IPSEC_OUT message and see what you can 26818 * do with it. 26819 * IPQoS Notes: 26820 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26821 * IPSec. 26822 * XXX would like to nuke ire_t. 26823 * XXX ill_index better be "real" 26824 */ 26825 void 26826 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26827 { 26828 ipsec_out_t *io; 26829 ipsec_policy_t *pp; 26830 ipsec_action_t *ap; 26831 ipha_t *ipha; 26832 ip6_t *ip6h; 26833 mblk_t *mp; 26834 ill_t *ill; 26835 zoneid_t zoneid; 26836 ipsec_status_t ipsec_rc; 26837 boolean_t ill_need_rele = B_FALSE; 26838 ip_stack_t *ipst; 26839 ipsec_stack_t *ipss; 26840 26841 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26842 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26843 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26844 ipst = io->ipsec_out_ns->netstack_ip; 26845 mp = ipsec_mp->b_cont; 26846 26847 /* 26848 * Initiate IPPF processing. We do it here to account for packets 26849 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26850 * We can check for ipsec_out_proc_begin even for such packets, as 26851 * they will always be false (asserted below). 26852 */ 26853 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26854 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26855 io->ipsec_out_ill_index : ill_index); 26856 if (mp == NULL) { 26857 ip2dbg(("ipsec_out_process: packet dropped "\ 26858 "during IPPF processing\n")); 26859 freeb(ipsec_mp); 26860 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26861 return; 26862 } 26863 } 26864 26865 if (!io->ipsec_out_secure) { 26866 /* 26867 * We came here by mistake. 26868 * Don't bother with ipsec processing 26869 * Should "discourage" this path in the future. 26870 */ 26871 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26872 goto done; 26873 } 26874 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26875 ASSERT((io->ipsec_out_policy != NULL) || 26876 (io->ipsec_out_act != NULL)); 26877 ASSERT(io->ipsec_out_failed == B_FALSE); 26878 26879 ipss = ipst->ips_netstack->netstack_ipsec; 26880 if (!ipsec_loaded(ipss)) { 26881 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26882 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26883 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26884 } else { 26885 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26886 } 26887 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26888 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26889 &ipss->ipsec_dropper); 26890 return; 26891 } 26892 26893 /* 26894 * IPSEC processing has started. 26895 */ 26896 io->ipsec_out_proc_begin = B_TRUE; 26897 ap = io->ipsec_out_act; 26898 if (ap == NULL) { 26899 pp = io->ipsec_out_policy; 26900 ASSERT(pp != NULL); 26901 ap = pp->ipsp_act; 26902 ASSERT(ap != NULL); 26903 } 26904 26905 /* 26906 * Save the outbound ill index. When the packet comes back 26907 * from IPsec, we make sure the ill hasn't changed or disappeared 26908 * before sending it the accelerated packet. 26909 */ 26910 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26911 int ifindex; 26912 ill = ire_to_ill(ire); 26913 ifindex = ill->ill_phyint->phyint_ifindex; 26914 io->ipsec_out_capab_ill_index = ifindex; 26915 } 26916 26917 /* 26918 * The order of processing is first insert a IP header if needed. 26919 * Then insert the ESP header and then the AH header. 26920 */ 26921 if ((io->ipsec_out_se_done == B_FALSE) && 26922 (ap->ipa_want_se)) { 26923 /* 26924 * First get the outer IP header before sending 26925 * it to ESP. 26926 */ 26927 ipha_t *oipha, *iipha; 26928 mblk_t *outer_mp, *inner_mp; 26929 26930 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26931 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26932 "ipsec_out_process: " 26933 "Self-Encapsulation failed: Out of memory\n"); 26934 freemsg(ipsec_mp); 26935 if (ill != NULL) { 26936 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26937 } else { 26938 BUMP_MIB(&ipst->ips_ip_mib, 26939 ipIfStatsOutDiscards); 26940 } 26941 return; 26942 } 26943 inner_mp = ipsec_mp->b_cont; 26944 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26945 oipha = (ipha_t *)outer_mp->b_rptr; 26946 iipha = (ipha_t *)inner_mp->b_rptr; 26947 *oipha = *iipha; 26948 outer_mp->b_wptr += sizeof (ipha_t); 26949 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26950 sizeof (ipha_t)); 26951 oipha->ipha_protocol = IPPROTO_ENCAP; 26952 oipha->ipha_version_and_hdr_length = 26953 IP_SIMPLE_HDR_VERSION; 26954 oipha->ipha_hdr_checksum = 0; 26955 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26956 outer_mp->b_cont = inner_mp; 26957 ipsec_mp->b_cont = outer_mp; 26958 26959 io->ipsec_out_se_done = B_TRUE; 26960 io->ipsec_out_tunnel = B_TRUE; 26961 } 26962 26963 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26964 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26965 !ipsec_out_select_sa(ipsec_mp)) 26966 return; 26967 26968 /* 26969 * By now, we know what SA's to use. Toss over to ESP & AH 26970 * to do the heavy lifting. 26971 */ 26972 zoneid = io->ipsec_out_zoneid; 26973 ASSERT(zoneid != ALL_ZONES); 26974 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26975 ASSERT(io->ipsec_out_esp_sa != NULL); 26976 io->ipsec_out_esp_done = B_TRUE; 26977 /* 26978 * Note that since hw accel can only apply one transform, 26979 * not two, we skip hw accel for ESP if we also have AH 26980 * This is an design limitation of the interface 26981 * which should be revisited. 26982 */ 26983 ASSERT(ire != NULL); 26984 if (io->ipsec_out_ah_sa == NULL) { 26985 ill = (ill_t *)ire->ire_stq->q_ptr; 26986 ipsec_out_is_accelerated(ipsec_mp, 26987 io->ipsec_out_esp_sa, ill, ire); 26988 } 26989 26990 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26991 switch (ipsec_rc) { 26992 case IPSEC_STATUS_SUCCESS: 26993 break; 26994 case IPSEC_STATUS_FAILED: 26995 if (ill != NULL) { 26996 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26997 } else { 26998 BUMP_MIB(&ipst->ips_ip_mib, 26999 ipIfStatsOutDiscards); 27000 } 27001 /* FALLTHRU */ 27002 case IPSEC_STATUS_PENDING: 27003 return; 27004 } 27005 } 27006 27007 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 27008 ASSERT(io->ipsec_out_ah_sa != NULL); 27009 io->ipsec_out_ah_done = B_TRUE; 27010 if (ire == NULL) { 27011 int idx = io->ipsec_out_capab_ill_index; 27012 ill = ill_lookup_on_ifindex(idx, B_FALSE, 27013 NULL, NULL, NULL, NULL, ipst); 27014 ill_need_rele = B_TRUE; 27015 } else { 27016 ill = (ill_t *)ire->ire_stq->q_ptr; 27017 } 27018 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 27019 ire); 27020 27021 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 27022 switch (ipsec_rc) { 27023 case IPSEC_STATUS_SUCCESS: 27024 break; 27025 case IPSEC_STATUS_FAILED: 27026 if (ill != NULL) { 27027 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 27028 } else { 27029 BUMP_MIB(&ipst->ips_ip_mib, 27030 ipIfStatsOutDiscards); 27031 } 27032 /* FALLTHRU */ 27033 case IPSEC_STATUS_PENDING: 27034 if (ill != NULL && ill_need_rele) 27035 ill_refrele(ill); 27036 return; 27037 } 27038 } 27039 /* 27040 * We are done with IPSEC processing. Send it over 27041 * the wire. 27042 */ 27043 done: 27044 mp = ipsec_mp->b_cont; 27045 ipha = (ipha_t *)mp->b_rptr; 27046 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 27047 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 27048 } else { 27049 ip6h = (ip6_t *)ipha; 27050 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 27051 } 27052 if (ill != NULL && ill_need_rele) 27053 ill_refrele(ill); 27054 } 27055 27056 /* ARGSUSED */ 27057 void 27058 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 27059 { 27060 opt_restart_t *or; 27061 int err; 27062 conn_t *connp; 27063 27064 ASSERT(CONN_Q(q)); 27065 connp = Q_TO_CONN(q); 27066 27067 ASSERT(first_mp->b_datap->db_type == M_CTL); 27068 or = (opt_restart_t *)first_mp->b_rptr; 27069 /* 27070 * We don't need to pass any credentials here since this is just 27071 * a restart. The credentials are passed in when svr4_optcom_req 27072 * is called the first time (from ip_wput_nondata). 27073 */ 27074 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 27075 err = svr4_optcom_req(q, first_mp, NULL, 27076 &ip_opt_obj); 27077 } else { 27078 ASSERT(or->or_type == T_OPTMGMT_REQ); 27079 err = tpi_optcom_req(q, first_mp, NULL, 27080 &ip_opt_obj); 27081 } 27082 if (err != EINPROGRESS) { 27083 /* operation is done */ 27084 CONN_OPER_PENDING_DONE(connp); 27085 } 27086 } 27087 27088 /* 27089 * ioctls that go through a down/up sequence may need to wait for the down 27090 * to complete. This involves waiting for the ire and ipif refcnts to go down 27091 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 27092 */ 27093 /* ARGSUSED */ 27094 void 27095 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27096 { 27097 struct iocblk *iocp; 27098 mblk_t *mp1; 27099 ip_ioctl_cmd_t *ipip; 27100 int err; 27101 sin_t *sin; 27102 struct lifreq *lifr; 27103 struct ifreq *ifr; 27104 27105 iocp = (struct iocblk *)mp->b_rptr; 27106 ASSERT(ipsq != NULL); 27107 /* Existence of mp1 verified in ip_wput_nondata */ 27108 mp1 = mp->b_cont->b_cont; 27109 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27110 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 27111 /* 27112 * Special case where ipsq_current_ipif is not set: 27113 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 27114 * ill could also have become part of a ipmp group in the 27115 * process, we are here as were not able to complete the 27116 * operation in ipif_set_values because we could not become 27117 * exclusive on the new ipsq, In such a case ipsq_current_ipif 27118 * will not be set so we need to set it. 27119 */ 27120 ill_t *ill = q->q_ptr; 27121 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 27122 } 27123 ASSERT(ipsq->ipsq_current_ipif != NULL); 27124 27125 if (ipip->ipi_cmd_type == IF_CMD) { 27126 /* This a old style SIOC[GS]IF* command */ 27127 ifr = (struct ifreq *)mp1->b_rptr; 27128 sin = (sin_t *)&ifr->ifr_addr; 27129 } else if (ipip->ipi_cmd_type == LIF_CMD) { 27130 /* This a new style SIOC[GS]LIF* command */ 27131 lifr = (struct lifreq *)mp1->b_rptr; 27132 sin = (sin_t *)&lifr->lifr_addr; 27133 } else { 27134 sin = NULL; 27135 } 27136 27137 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 27138 ipip, mp1->b_rptr); 27139 27140 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27141 } 27142 27143 /* 27144 * ioctl processing 27145 * 27146 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 27147 * the ioctl command in the ioctl tables and determines the copyin data size 27148 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 27149 * size. 27150 * 27151 * ioctl processing then continues when the M_IOCDATA makes its way down. 27152 * Now the ioctl is looked up again in the ioctl table, and its properties are 27153 * extracted. The associated 'conn' is then refheld till the end of the ioctl 27154 * and the general ioctl processing function ip_process_ioctl is called. 27155 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 27156 * so goes thru the serialization primitive ipsq_try_enter. Then the 27157 * appropriate function to handle the ioctl is called based on the entry in 27158 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 27159 * which also refreleases the 'conn' that was refheld at the start of the 27160 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 27161 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 27162 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 27163 * 27164 * Many exclusive ioctls go thru an internal down up sequence as part of 27165 * the operation. For example an attempt to change the IP address of an 27166 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 27167 * does all the cleanup such as deleting all ires that use this address. 27168 * Then we need to wait till all references to the interface go away. 27169 */ 27170 void 27171 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 27172 { 27173 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 27174 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 27175 cmd_info_t ci; 27176 int err; 27177 boolean_t entered_ipsq = B_FALSE; 27178 27179 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 27180 27181 if (ipip == NULL) 27182 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27183 27184 /* 27185 * SIOCLIFADDIF needs to go thru a special path since the 27186 * ill may not exist yet. This happens in the case of lo0 27187 * which is created using this ioctl. 27188 */ 27189 if (ipip->ipi_cmd == SIOCLIFADDIF) { 27190 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 27191 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27192 return; 27193 } 27194 27195 ci.ci_ipif = NULL; 27196 switch (ipip->ipi_cmd_type) { 27197 case IF_CMD: 27198 case LIF_CMD: 27199 /* 27200 * ioctls that pass in a [l]ifreq appear here. 27201 * ip_extract_lifreq_cmn returns a refheld ipif in 27202 * ci.ci_ipif 27203 */ 27204 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 27205 ipip->ipi_flags, &ci, ip_process_ioctl); 27206 if (err != 0) { 27207 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27208 return; 27209 } 27210 ASSERT(ci.ci_ipif != NULL); 27211 break; 27212 27213 case TUN_CMD: 27214 /* 27215 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 27216 * a refheld ipif in ci.ci_ipif 27217 */ 27218 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 27219 if (err != 0) { 27220 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27221 return; 27222 } 27223 ASSERT(ci.ci_ipif != NULL); 27224 break; 27225 27226 case MISC_CMD: 27227 /* 27228 * ioctls that neither pass in [l]ifreq or iftun_req come here 27229 * For eg. SIOCGLIFCONF will appear here. 27230 */ 27231 switch (ipip->ipi_cmd) { 27232 case IF_UNITSEL: 27233 /* ioctl comes down the ill */ 27234 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 27235 ipif_refhold(ci.ci_ipif); 27236 break; 27237 case SIOCGMSFILTER: 27238 case SIOCSMSFILTER: 27239 case SIOCGIPMSFILTER: 27240 case SIOCSIPMSFILTER: 27241 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 27242 ip_process_ioctl); 27243 if (err != 0) { 27244 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), 27245 NULL); 27246 } 27247 break; 27248 } 27249 err = 0; 27250 ci.ci_sin = NULL; 27251 ci.ci_sin6 = NULL; 27252 ci.ci_lifr = NULL; 27253 break; 27254 } 27255 27256 /* 27257 * If ipsq is non-null, we are already being called exclusively 27258 */ 27259 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27260 if (!(ipip->ipi_flags & IPI_WR)) { 27261 /* 27262 * A return value of EINPROGRESS means the ioctl is 27263 * either queued and waiting for some reason or has 27264 * already completed. 27265 */ 27266 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27267 ci.ci_lifr); 27268 if (ci.ci_ipif != NULL) 27269 ipif_refrele(ci.ci_ipif); 27270 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27271 return; 27272 } 27273 27274 ASSERT(ci.ci_ipif != NULL); 27275 27276 if (ipsq == NULL) { 27277 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 27278 ip_process_ioctl, NEW_OP, B_TRUE); 27279 entered_ipsq = B_TRUE; 27280 } 27281 /* 27282 * Release the ipif so that ipif_down and friends that wait for 27283 * references to go away are not misled about the current ipif_refcnt 27284 * values. We are writer so we can access the ipif even after releasing 27285 * the ipif. 27286 */ 27287 ipif_refrele(ci.ci_ipif); 27288 if (ipsq == NULL) 27289 return; 27290 27291 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27292 27293 /* 27294 * For most set ioctls that come here, this serves as a single point 27295 * where we set the IPIF_CHANGING flag. This ensures that there won't 27296 * be any new references to the ipif. This helps functions that go 27297 * through this path and end up trying to wait for the refcnts 27298 * associated with the ipif to go down to zero. Some exceptions are 27299 * Failover, Failback, and Groupname commands that operate on more than 27300 * just the ci.ci_ipif. These commands internally determine the 27301 * set of ipif's they operate on and set and clear the IPIF_CHANGING 27302 * flags on that set. Another exception is the Removeif command that 27303 * sets the IPIF_CONDEMNED flag internally after identifying the right 27304 * ipif to operate on. 27305 */ 27306 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27307 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 27308 ipip->ipi_cmd != SIOCLIFFAILOVER && 27309 ipip->ipi_cmd != SIOCLIFFAILBACK && 27310 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27311 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27312 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27313 27314 /* 27315 * A return value of EINPROGRESS means the ioctl is 27316 * either queued and waiting for some reason or has 27317 * already completed. 27318 */ 27319 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27320 27321 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27322 27323 if (entered_ipsq) 27324 ipsq_exit(ipsq, B_TRUE, B_TRUE); 27325 } 27326 27327 /* 27328 * Complete the ioctl. Typically ioctls use the mi package and need to 27329 * do mi_copyout/mi_copy_done. 27330 */ 27331 void 27332 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27333 { 27334 conn_t *connp = NULL; 27335 27336 if (err == EINPROGRESS) 27337 return; 27338 27339 if (CONN_Q(q)) { 27340 connp = Q_TO_CONN(q); 27341 ASSERT(connp->conn_ref >= 2); 27342 } 27343 27344 switch (mode) { 27345 case COPYOUT: 27346 if (err == 0) 27347 mi_copyout(q, mp); 27348 else 27349 mi_copy_done(q, mp, err); 27350 break; 27351 27352 case NO_COPYOUT: 27353 mi_copy_done(q, mp, err); 27354 break; 27355 27356 default: 27357 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27358 break; 27359 } 27360 27361 /* 27362 * The refhold placed at the start of the ioctl is released here. 27363 */ 27364 if (connp != NULL) 27365 CONN_OPER_PENDING_DONE(connp); 27366 27367 if (ipsq != NULL) 27368 ipsq_current_finish(ipsq); 27369 } 27370 27371 /* 27372 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27373 */ 27374 /* ARGSUSED */ 27375 void 27376 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27377 { 27378 conn_t *connp = arg; 27379 tcp_t *tcp; 27380 27381 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27382 tcp = connp->conn_tcp; 27383 27384 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27385 freemsg(mp); 27386 else 27387 tcp_rput_other(tcp, mp); 27388 CONN_OPER_PENDING_DONE(connp); 27389 } 27390 27391 /* Called from ip_wput for all non data messages */ 27392 /* ARGSUSED */ 27393 void 27394 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27395 { 27396 mblk_t *mp1; 27397 ire_t *ire, *fake_ire; 27398 ill_t *ill; 27399 struct iocblk *iocp; 27400 ip_ioctl_cmd_t *ipip; 27401 cred_t *cr; 27402 conn_t *connp; 27403 int cmd, err; 27404 nce_t *nce; 27405 ipif_t *ipif; 27406 ip_stack_t *ipst; 27407 char *proto_str; 27408 27409 if (CONN_Q(q)) { 27410 connp = Q_TO_CONN(q); 27411 ipst = connp->conn_netstack->netstack_ip; 27412 } else { 27413 connp = NULL; 27414 ipst = ILLQ_TO_IPST(q); 27415 } 27416 27417 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27418 27419 /* Check if it is a queue to /dev/sctp. */ 27420 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 27421 connp->conn_rq == NULL) { 27422 sctp_wput(q, mp); 27423 return; 27424 } 27425 27426 switch (DB_TYPE(mp)) { 27427 case M_IOCTL: 27428 /* 27429 * IOCTL processing begins in ip_sioctl_copyin_setup which 27430 * will arrange to copy in associated control structures. 27431 */ 27432 ip_sioctl_copyin_setup(q, mp); 27433 return; 27434 case M_IOCDATA: 27435 /* 27436 * Ensure that this is associated with one of our trans- 27437 * parent ioctls. If it's not ours, discard it if we're 27438 * running as a driver, or pass it on if we're a module. 27439 */ 27440 iocp = (struct iocblk *)mp->b_rptr; 27441 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27442 if (ipip == NULL) { 27443 if (q->q_next == NULL) { 27444 goto nak; 27445 } else { 27446 putnext(q, mp); 27447 } 27448 return; 27449 } else if ((q->q_next != NULL) && 27450 !(ipip->ipi_flags & IPI_MODOK)) { 27451 /* 27452 * the ioctl is one we recognise, but is not 27453 * consumed by IP as a module, pass M_IOCDATA 27454 * for processing downstream, but only for 27455 * common Streams ioctls. 27456 */ 27457 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27458 putnext(q, mp); 27459 return; 27460 } else { 27461 goto nak; 27462 } 27463 } 27464 27465 /* IOCTL continuation following copyin or copyout. */ 27466 if (mi_copy_state(q, mp, NULL) == -1) { 27467 /* 27468 * The copy operation failed. mi_copy_state already 27469 * cleaned up, so we're out of here. 27470 */ 27471 return; 27472 } 27473 /* 27474 * If we just completed a copy in, we become writer and 27475 * continue processing in ip_sioctl_copyin_done. If it 27476 * was a copy out, we call mi_copyout again. If there is 27477 * nothing more to copy out, it will complete the IOCTL. 27478 */ 27479 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27480 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27481 mi_copy_done(q, mp, EPROTO); 27482 return; 27483 } 27484 /* 27485 * Check for cases that need more copying. A return 27486 * value of 0 means a second copyin has been started, 27487 * so we return; a return value of 1 means no more 27488 * copying is needed, so we continue. 27489 */ 27490 cmd = iocp->ioc_cmd; 27491 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 27492 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 27493 MI_COPY_COUNT(mp) == 1) { 27494 if (ip_copyin_msfilter(q, mp) == 0) 27495 return; 27496 } 27497 /* 27498 * Refhold the conn, till the ioctl completes. This is 27499 * needed in case the ioctl ends up in the pending mp 27500 * list. Every mp in the ill_pending_mp list and 27501 * the ipsq_pending_mp must have a refhold on the conn 27502 * to resume processing. The refhold is released when 27503 * the ioctl completes. (normally or abnormally) 27504 * In all cases ip_ioctl_finish is called to finish 27505 * the ioctl. 27506 */ 27507 if (connp != NULL) { 27508 /* This is not a reentry */ 27509 ASSERT(ipsq == NULL); 27510 CONN_INC_REF(connp); 27511 } else { 27512 if (!(ipip->ipi_flags & IPI_MODOK)) { 27513 mi_copy_done(q, mp, EINVAL); 27514 return; 27515 } 27516 } 27517 27518 ip_process_ioctl(ipsq, q, mp, ipip); 27519 27520 } else { 27521 mi_copyout(q, mp); 27522 } 27523 return; 27524 nak: 27525 iocp->ioc_error = EINVAL; 27526 mp->b_datap->db_type = M_IOCNAK; 27527 iocp->ioc_count = 0; 27528 qreply(q, mp); 27529 return; 27530 27531 case M_IOCNAK: 27532 /* 27533 * The only way we could get here is if a resolver didn't like 27534 * an IOCTL we sent it. This shouldn't happen. 27535 */ 27536 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27537 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27538 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27539 freemsg(mp); 27540 return; 27541 case M_IOCACK: 27542 /* /dev/ip shouldn't see this */ 27543 if (CONN_Q(q)) 27544 goto nak; 27545 27546 /* Finish socket ioctls passed through to ARP. */ 27547 ip_sioctl_iocack(q, mp); 27548 return; 27549 case M_FLUSH: 27550 if (*mp->b_rptr & FLUSHW) 27551 flushq(q, FLUSHALL); 27552 if (q->q_next) { 27553 /* 27554 * M_FLUSH is sent up to IP by some drivers during 27555 * unbind. ip_rput has already replied to it. We are 27556 * here for the M_FLUSH that we originated in IP 27557 * before sending the unbind request to the driver. 27558 * Just free it as we don't queue packets in IP 27559 * on the write side of the device instance. 27560 */ 27561 freemsg(mp); 27562 return; 27563 } 27564 if (*mp->b_rptr & FLUSHR) { 27565 *mp->b_rptr &= ~FLUSHW; 27566 qreply(q, mp); 27567 return; 27568 } 27569 freemsg(mp); 27570 return; 27571 case IRE_DB_REQ_TYPE: 27572 if (connp == NULL) { 27573 proto_str = "IRE_DB_REQ_TYPE"; 27574 goto protonak; 27575 } 27576 /* An Upper Level Protocol wants a copy of an IRE. */ 27577 ip_ire_req(q, mp); 27578 return; 27579 case M_CTL: 27580 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27581 break; 27582 27583 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27584 TUN_HELLO) { 27585 ASSERT(connp != NULL); 27586 connp->conn_flags |= IPCL_IPTUN; 27587 freeb(mp); 27588 return; 27589 } 27590 27591 if (connp != NULL && *(uint32_t *)mp->b_rptr == 27592 IP_ULP_OUT_LABELED) { 27593 out_labeled_t *olp; 27594 27595 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 27596 break; 27597 olp = (out_labeled_t *)mp->b_rptr; 27598 connp->conn_ulp_labeled = olp->out_qnext == q; 27599 freemsg(mp); 27600 return; 27601 } 27602 27603 /* M_CTL messages are used by ARP to tell us things. */ 27604 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27605 break; 27606 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27607 case AR_ENTRY_SQUERY: 27608 ip_wput_ctl(q, mp); 27609 return; 27610 case AR_CLIENT_NOTIFY: 27611 ip_arp_news(q, mp); 27612 return; 27613 case AR_DLPIOP_DONE: 27614 ASSERT(q->q_next != NULL); 27615 ill = (ill_t *)q->q_ptr; 27616 /* qwriter_ip releases the refhold */ 27617 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27618 ill_refhold(ill); 27619 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 27620 CUR_OP, B_FALSE); 27621 return; 27622 case AR_ARP_CLOSING: 27623 /* 27624 * ARP (above us) is closing. If no ARP bringup is 27625 * currently pending, ack the message so that ARP 27626 * can complete its close. Also mark ill_arp_closing 27627 * so that new ARP bringups will fail. If any 27628 * ARP bringup is currently in progress, we will 27629 * ack this when the current ARP bringup completes. 27630 */ 27631 ASSERT(q->q_next != NULL); 27632 ill = (ill_t *)q->q_ptr; 27633 mutex_enter(&ill->ill_lock); 27634 ill->ill_arp_closing = 1; 27635 if (!ill->ill_arp_bringup_pending) { 27636 mutex_exit(&ill->ill_lock); 27637 qreply(q, mp); 27638 } else { 27639 mutex_exit(&ill->ill_lock); 27640 freemsg(mp); 27641 } 27642 return; 27643 case AR_ARP_EXTEND: 27644 /* 27645 * The ARP module above us is capable of duplicate 27646 * address detection. Old ATM drivers will not send 27647 * this message. 27648 */ 27649 ASSERT(q->q_next != NULL); 27650 ill = (ill_t *)q->q_ptr; 27651 ill->ill_arp_extend = B_TRUE; 27652 freemsg(mp); 27653 return; 27654 default: 27655 break; 27656 } 27657 break; 27658 case M_PROTO: 27659 case M_PCPROTO: 27660 /* 27661 * The only PROTO messages we expect are ULP binds and 27662 * copies of option negotiation acknowledgements. 27663 */ 27664 switch (((union T_primitives *)mp->b_rptr)->type) { 27665 case O_T_BIND_REQ: 27666 case T_BIND_REQ: { 27667 /* Request can get queued in bind */ 27668 if (connp == NULL) { 27669 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27670 goto protonak; 27671 } 27672 /* 27673 * Both TCP and UDP call ip_bind_{v4,v6}() directly 27674 * instead of going through this path. We only get 27675 * here in the following cases: 27676 * 27677 * a. Bind retries, where ipsq is non-NULL. 27678 * b. T_BIND_REQ is issued from non TCP/UDP 27679 * transport, e.g. icmp for raw socket, 27680 * in which case ipsq will be NULL. 27681 */ 27682 ASSERT(ipsq != NULL || 27683 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 27684 27685 /* Don't increment refcnt if this is a re-entry */ 27686 if (ipsq == NULL) 27687 CONN_INC_REF(connp); 27688 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27689 connp, NULL) : ip_bind_v4(q, mp, connp); 27690 if (mp == NULL) 27691 return; 27692 if (IPCL_IS_TCP(connp)) { 27693 /* 27694 * In the case of TCP endpoint we 27695 * come here only for bind retries 27696 */ 27697 ASSERT(ipsq != NULL); 27698 CONN_INC_REF(connp); 27699 squeue_fill(connp->conn_sqp, mp, 27700 ip_resume_tcp_bind, connp, 27701 SQTAG_BIND_RETRY); 27702 return; 27703 } else if (IPCL_IS_UDP(connp)) { 27704 /* 27705 * In the case of UDP endpoint we 27706 * come here only for bind retries 27707 */ 27708 ASSERT(ipsq != NULL); 27709 udp_resume_bind(connp, mp); 27710 return; 27711 } 27712 qreply(q, mp); 27713 CONN_OPER_PENDING_DONE(connp); 27714 return; 27715 } 27716 case T_SVR4_OPTMGMT_REQ: 27717 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27718 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27719 27720 if (connp == NULL) { 27721 proto_str = "T_SVR4_OPTMGMT_REQ"; 27722 goto protonak; 27723 } 27724 27725 if (!snmpcom_req(q, mp, ip_snmp_set, 27726 ip_snmp_get, cr)) { 27727 /* 27728 * Call svr4_optcom_req so that it can 27729 * generate the ack. We don't come here 27730 * if this operation is being restarted. 27731 * ip_restart_optmgmt will drop the conn ref. 27732 * In the case of ipsec option after the ipsec 27733 * load is complete conn_restart_ipsec_waiter 27734 * drops the conn ref. 27735 */ 27736 ASSERT(ipsq == NULL); 27737 CONN_INC_REF(connp); 27738 if (ip_check_for_ipsec_opt(q, mp)) 27739 return; 27740 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 27741 if (err != EINPROGRESS) { 27742 /* Operation is done */ 27743 CONN_OPER_PENDING_DONE(connp); 27744 } 27745 } 27746 return; 27747 case T_OPTMGMT_REQ: 27748 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27749 /* 27750 * Note: No snmpcom_req support through new 27751 * T_OPTMGMT_REQ. 27752 * Call tpi_optcom_req so that it can 27753 * generate the ack. 27754 */ 27755 if (connp == NULL) { 27756 proto_str = "T_OPTMGMT_REQ"; 27757 goto protonak; 27758 } 27759 27760 ASSERT(ipsq == NULL); 27761 /* 27762 * We don't come here for restart. ip_restart_optmgmt 27763 * will drop the conn ref. In the case of ipsec option 27764 * after the ipsec load is complete 27765 * conn_restart_ipsec_waiter drops the conn ref. 27766 */ 27767 CONN_INC_REF(connp); 27768 if (ip_check_for_ipsec_opt(q, mp)) 27769 return; 27770 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 27771 if (err != EINPROGRESS) { 27772 /* Operation is done */ 27773 CONN_OPER_PENDING_DONE(connp); 27774 } 27775 return; 27776 case T_UNBIND_REQ: 27777 if (connp == NULL) { 27778 proto_str = "T_UNBIND_REQ"; 27779 goto protonak; 27780 } 27781 mp = ip_unbind(q, mp); 27782 qreply(q, mp); 27783 return; 27784 default: 27785 /* 27786 * Have to drop any DLPI messages coming down from 27787 * arp (such as an info_req which would cause ip 27788 * to receive an extra info_ack if it was passed 27789 * through. 27790 */ 27791 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27792 (int)*(uint_t *)mp->b_rptr)); 27793 freemsg(mp); 27794 return; 27795 } 27796 /* NOTREACHED */ 27797 case IRE_DB_TYPE: { 27798 nce_t *nce; 27799 ill_t *ill; 27800 in6_addr_t gw_addr_v6; 27801 27802 27803 /* 27804 * This is a response back from a resolver. It 27805 * consists of a message chain containing: 27806 * IRE_MBLK-->LL_HDR_MBLK->pkt 27807 * The IRE_MBLK is the one we allocated in ip_newroute. 27808 * The LL_HDR_MBLK is the DLPI header to use to get 27809 * the attached packet, and subsequent ones for the 27810 * same destination, transmitted. 27811 */ 27812 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27813 break; 27814 /* 27815 * First, check to make sure the resolution succeeded. 27816 * If it failed, the second mblk will be empty. 27817 * If it is, free the chain, dropping the packet. 27818 * (We must ire_delete the ire; that frees the ire mblk) 27819 * We're doing this now to support PVCs for ATM; it's 27820 * a partial xresolv implementation. When we fully implement 27821 * xresolv interfaces, instead of freeing everything here 27822 * we'll initiate neighbor discovery. 27823 * 27824 * For v4 (ARP and other external resolvers) the resolver 27825 * frees the message, so no check is needed. This check 27826 * is required, though, for a full xresolve implementation. 27827 * Including this code here now both shows how external 27828 * resolvers can NACK a resolution request using an 27829 * existing design that has no specific provisions for NACKs, 27830 * and also takes into account that the current non-ARP 27831 * external resolver has been coded to use this method of 27832 * NACKing for all IPv6 (xresolv) cases, 27833 * whether our xresolv implementation is complete or not. 27834 * 27835 */ 27836 ire = (ire_t *)mp->b_rptr; 27837 ill = ire_to_ill(ire); 27838 mp1 = mp->b_cont; /* dl_unitdata_req */ 27839 if (mp1->b_rptr == mp1->b_wptr) { 27840 if (ire->ire_ipversion == IPV6_VERSION) { 27841 /* 27842 * XRESOLV interface. 27843 */ 27844 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27845 mutex_enter(&ire->ire_lock); 27846 gw_addr_v6 = ire->ire_gateway_addr_v6; 27847 mutex_exit(&ire->ire_lock); 27848 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27849 nce = ndp_lookup_v6(ill, 27850 &ire->ire_addr_v6, B_FALSE); 27851 } else { 27852 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27853 B_FALSE); 27854 } 27855 if (nce != NULL) { 27856 nce_resolv_failed(nce); 27857 ndp_delete(nce); 27858 NCE_REFRELE(nce); 27859 } 27860 } 27861 mp->b_cont = NULL; 27862 freemsg(mp1); /* frees the pkt as well */ 27863 ASSERT(ire->ire_nce == NULL); 27864 ire_delete((ire_t *)mp->b_rptr); 27865 return; 27866 } 27867 27868 /* 27869 * Split them into IRE_MBLK and pkt and feed it into 27870 * ire_add_then_send. Then in ire_add_then_send 27871 * the IRE will be added, and then the packet will be 27872 * run back through ip_wput. This time it will make 27873 * it to the wire. 27874 */ 27875 mp->b_cont = NULL; 27876 mp = mp1->b_cont; /* now, mp points to pkt */ 27877 mp1->b_cont = NULL; 27878 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27879 if (ire->ire_ipversion == IPV6_VERSION) { 27880 /* 27881 * XRESOLV interface. Find the nce and put a copy 27882 * of the dl_unitdata_req in nce_res_mp 27883 */ 27884 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27885 mutex_enter(&ire->ire_lock); 27886 gw_addr_v6 = ire->ire_gateway_addr_v6; 27887 mutex_exit(&ire->ire_lock); 27888 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27889 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27890 B_FALSE); 27891 } else { 27892 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27893 } 27894 if (nce != NULL) { 27895 /* 27896 * We have to protect nce_res_mp here 27897 * from being accessed by other threads 27898 * while we change the mblk pointer. 27899 * Other functions will also lock the nce when 27900 * accessing nce_res_mp. 27901 * 27902 * The reason we change the mblk pointer 27903 * here rather than copying the resolved address 27904 * into the template is that, unlike with 27905 * ethernet, we have no guarantee that the 27906 * resolved address length will be 27907 * smaller than or equal to the lla length 27908 * with which the template was allocated, 27909 * (for ethernet, they're equal) 27910 * so we have to use the actual resolved 27911 * address mblk - which holds the real 27912 * dl_unitdata_req with the resolved address. 27913 * 27914 * Doing this is the same behavior as was 27915 * previously used in the v4 ARP case. 27916 */ 27917 mutex_enter(&nce->nce_lock); 27918 if (nce->nce_res_mp != NULL) 27919 freemsg(nce->nce_res_mp); 27920 nce->nce_res_mp = mp1; 27921 mutex_exit(&nce->nce_lock); 27922 /* 27923 * We do a fastpath probe here because 27924 * we have resolved the address without 27925 * using Neighbor Discovery. 27926 * In the non-XRESOLV v6 case, the fastpath 27927 * probe is done right after neighbor 27928 * discovery completes. 27929 */ 27930 if (nce->nce_res_mp != NULL) { 27931 int res; 27932 nce_fastpath_list_add(nce); 27933 res = ill_fastpath_probe(ill, 27934 nce->nce_res_mp); 27935 if (res != 0 && res != EAGAIN) 27936 nce_fastpath_list_delete(nce); 27937 } 27938 27939 ire_add_then_send(q, ire, mp); 27940 /* 27941 * Now we have to clean out any packets 27942 * that may have been queued on the nce 27943 * while it was waiting for address resolution 27944 * to complete. 27945 */ 27946 mutex_enter(&nce->nce_lock); 27947 mp1 = nce->nce_qd_mp; 27948 nce->nce_qd_mp = NULL; 27949 mutex_exit(&nce->nce_lock); 27950 while (mp1 != NULL) { 27951 mblk_t *nxt_mp; 27952 queue_t *fwdq = NULL; 27953 ill_t *inbound_ill; 27954 uint_t ifindex; 27955 27956 nxt_mp = mp1->b_next; 27957 mp1->b_next = NULL; 27958 /* 27959 * Retrieve ifindex stored in 27960 * ip_rput_data_v6() 27961 */ 27962 ifindex = 27963 (uint_t)(uintptr_t)mp1->b_prev; 27964 inbound_ill = 27965 ill_lookup_on_ifindex(ifindex, 27966 B_TRUE, NULL, NULL, NULL, 27967 NULL, ipst); 27968 mp1->b_prev = NULL; 27969 if (inbound_ill != NULL) 27970 fwdq = inbound_ill->ill_rq; 27971 27972 if (fwdq != NULL) { 27973 put(fwdq, mp1); 27974 ill_refrele(inbound_ill); 27975 } else 27976 put(WR(ill->ill_rq), mp1); 27977 mp1 = nxt_mp; 27978 } 27979 NCE_REFRELE(nce); 27980 } else { /* nce is NULL; clean up */ 27981 ire_delete(ire); 27982 freemsg(mp); 27983 freemsg(mp1); 27984 return; 27985 } 27986 } else { 27987 nce_t *arpce; 27988 /* 27989 * Link layer resolution succeeded. Recompute the 27990 * ire_nce. 27991 */ 27992 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27993 if ((arpce = ndp_lookup_v4(ill, 27994 (ire->ire_gateway_addr != INADDR_ANY ? 27995 &ire->ire_gateway_addr : &ire->ire_addr), 27996 B_FALSE)) == NULL) { 27997 freeb(ire->ire_mp); 27998 freeb(mp1); 27999 freemsg(mp); 28000 return; 28001 } 28002 mutex_enter(&arpce->nce_lock); 28003 arpce->nce_last = TICK_TO_MSEC(lbolt64); 28004 if (arpce->nce_state == ND_REACHABLE) { 28005 /* 28006 * Someone resolved this before us; 28007 * cleanup the res_mp. Since ire has 28008 * not been added yet, the call to ire_add_v4 28009 * from ire_add_then_send (when a dup is 28010 * detected) will clean up the ire. 28011 */ 28012 freeb(mp1); 28013 } else { 28014 if (arpce->nce_res_mp != NULL) 28015 freemsg(arpce->nce_res_mp); 28016 arpce->nce_res_mp = mp1; 28017 arpce->nce_state = ND_REACHABLE; 28018 } 28019 mutex_exit(&arpce->nce_lock); 28020 if (ire->ire_marks & IRE_MARK_NOADD) { 28021 /* 28022 * this ire will not be added to the ire 28023 * cache table, so we can set the ire_nce 28024 * here, as there are no atomicity constraints. 28025 */ 28026 ire->ire_nce = arpce; 28027 /* 28028 * We are associating this nce with the ire 28029 * so change the nce ref taken in 28030 * ndp_lookup_v4() from 28031 * NCE_REFHOLD to NCE_REFHOLD_NOTR 28032 */ 28033 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 28034 } else { 28035 NCE_REFRELE(arpce); 28036 } 28037 ire_add_then_send(q, ire, mp); 28038 } 28039 return; /* All is well, the packet has been sent. */ 28040 } 28041 case IRE_ARPRESOLVE_TYPE: { 28042 28043 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 28044 break; 28045 mp1 = mp->b_cont; /* dl_unitdata_req */ 28046 mp->b_cont = NULL; 28047 /* 28048 * First, check to make sure the resolution succeeded. 28049 * If it failed, the second mblk will be empty. 28050 */ 28051 if (mp1->b_rptr == mp1->b_wptr) { 28052 /* cleanup the incomplete ire, free queued packets */ 28053 freemsg(mp); /* fake ire */ 28054 freeb(mp1); /* dl_unitdata response */ 28055 return; 28056 } 28057 28058 /* 28059 * update any incomplete nce_t found. we lookup the ctable 28060 * and find the nce from the ire->ire_nce because we need 28061 * to pass the ire to ip_xmit_v4 later, and can find both 28062 * ire and nce in one lookup from the ctable. 28063 */ 28064 fake_ire = (ire_t *)mp->b_rptr; 28065 /* 28066 * By the time we come back here from ARP 28067 * the logical outgoing interface of the incomplete ire 28068 * we added in ire_forward could have disappeared, 28069 * causing the incomplete ire to also have 28070 * dissapeared. So we need to retreive the 28071 * proper ipif for the ire before looking 28072 * in ctable; do the ctablelookup based on ire_ipif_seqid 28073 */ 28074 ill = q->q_ptr; 28075 28076 /* Get the outgoing ipif */ 28077 mutex_enter(&ill->ill_lock); 28078 if (ill->ill_state_flags & ILL_CONDEMNED) { 28079 mutex_exit(&ill->ill_lock); 28080 freemsg(mp); /* fake ire */ 28081 freeb(mp1); /* dl_unitdata response */ 28082 return; 28083 } 28084 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 28085 28086 if (ipif == NULL) { 28087 mutex_exit(&ill->ill_lock); 28088 ip1dbg(("logical intrf to incomplete ire vanished\n")); 28089 freemsg(mp); 28090 freeb(mp1); 28091 return; 28092 } 28093 ipif_refhold_locked(ipif); 28094 mutex_exit(&ill->ill_lock); 28095 ire = ire_ctable_lookup(fake_ire->ire_addr, 28096 fake_ire->ire_gateway_addr, IRE_CACHE, 28097 ipif, fake_ire->ire_zoneid, NULL, 28098 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY), ipst); 28099 ipif_refrele(ipif); 28100 if (ire == NULL) { 28101 /* 28102 * no ire was found; check if there is an nce 28103 * for this lookup; if it has no ire's pointing at it 28104 * cleanup. 28105 */ 28106 if ((nce = ndp_lookup_v4(ill, 28107 (fake_ire->ire_gateway_addr != INADDR_ANY ? 28108 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 28109 B_FALSE)) != NULL) { 28110 /* 28111 * cleanup: 28112 * We check for refcnt 2 (one for the nce 28113 * hash list + 1 for the ref taken by 28114 * ndp_lookup_v4) to check that there are 28115 * no ire's pointing at the nce. 28116 */ 28117 if (nce->nce_refcnt == 2) 28118 ndp_delete(nce); 28119 NCE_REFRELE(nce); 28120 } 28121 freeb(mp1); /* dl_unitdata response */ 28122 freemsg(mp); /* fake ire */ 28123 return; 28124 } 28125 nce = ire->ire_nce; 28126 DTRACE_PROBE2(ire__arpresolve__type, 28127 ire_t *, ire, nce_t *, nce); 28128 ASSERT(nce->nce_state != ND_INITIAL); 28129 mutex_enter(&nce->nce_lock); 28130 nce->nce_last = TICK_TO_MSEC(lbolt64); 28131 if (nce->nce_state == ND_REACHABLE) { 28132 /* 28133 * Someone resolved this before us; 28134 * our response is not needed any more. 28135 */ 28136 mutex_exit(&nce->nce_lock); 28137 freeb(mp1); /* dl_unitdata response */ 28138 } else { 28139 if (nce->nce_res_mp != NULL) { 28140 freemsg(nce->nce_res_mp); 28141 /* existing dl_unitdata template */ 28142 } 28143 nce->nce_res_mp = mp1; 28144 nce->nce_state = ND_REACHABLE; 28145 mutex_exit(&nce->nce_lock); 28146 nce_fastpath(nce); 28147 } 28148 /* 28149 * The cached nce_t has been updated to be reachable; 28150 * Set the IRE_MARK_UNCACHED flag and free the fake_ire. 28151 */ 28152 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 28153 freemsg(mp); 28154 /* 28155 * send out queued packets. 28156 */ 28157 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 28158 28159 IRE_REFRELE(ire); 28160 return; 28161 } 28162 default: 28163 break; 28164 } 28165 if (q->q_next) { 28166 putnext(q, mp); 28167 } else 28168 freemsg(mp); 28169 return; 28170 28171 protonak: 28172 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 28173 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 28174 qreply(q, mp); 28175 } 28176 28177 /* 28178 * Process IP options in an outbound packet. Modify the destination if there 28179 * is a source route option. 28180 * Returns non-zero if something fails in which case an ICMP error has been 28181 * sent and mp freed. 28182 */ 28183 static int 28184 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 28185 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 28186 { 28187 ipoptp_t opts; 28188 uchar_t *opt; 28189 uint8_t optval; 28190 uint8_t optlen; 28191 ipaddr_t dst; 28192 intptr_t code = 0; 28193 mblk_t *mp; 28194 ire_t *ire = NULL; 28195 28196 ip2dbg(("ip_wput_options\n")); 28197 mp = ipsec_mp; 28198 if (mctl_present) { 28199 mp = ipsec_mp->b_cont; 28200 } 28201 28202 dst = ipha->ipha_dst; 28203 for (optval = ipoptp_first(&opts, ipha); 28204 optval != IPOPT_EOL; 28205 optval = ipoptp_next(&opts)) { 28206 opt = opts.ipoptp_cur; 28207 optlen = opts.ipoptp_len; 28208 ip2dbg(("ip_wput_options: opt %d, len %d\n", 28209 optval, optlen)); 28210 switch (optval) { 28211 uint32_t off; 28212 case IPOPT_SSRR: 28213 case IPOPT_LSRR: 28214 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28215 ip1dbg(( 28216 "ip_wput_options: bad option offset\n")); 28217 code = (char *)&opt[IPOPT_OLEN] - 28218 (char *)ipha; 28219 goto param_prob; 28220 } 28221 off = opt[IPOPT_OFFSET]; 28222 ip1dbg(("ip_wput_options: next hop 0x%x\n", 28223 ntohl(dst))); 28224 /* 28225 * For strict: verify that dst is directly 28226 * reachable. 28227 */ 28228 if (optval == IPOPT_SSRR) { 28229 ire = ire_ftable_lookup(dst, 0, 0, 28230 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 28231 MBLK_GETLABEL(mp), 28232 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 28233 if (ire == NULL) { 28234 ip1dbg(("ip_wput_options: SSRR not" 28235 " directly reachable: 0x%x\n", 28236 ntohl(dst))); 28237 goto bad_src_route; 28238 } 28239 ire_refrele(ire); 28240 } 28241 break; 28242 case IPOPT_RR: 28243 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28244 ip1dbg(( 28245 "ip_wput_options: bad option offset\n")); 28246 code = (char *)&opt[IPOPT_OLEN] - 28247 (char *)ipha; 28248 goto param_prob; 28249 } 28250 break; 28251 case IPOPT_TS: 28252 /* 28253 * Verify that length >=5 and that there is either 28254 * room for another timestamp or that the overflow 28255 * counter is not maxed out. 28256 */ 28257 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 28258 if (optlen < IPOPT_MINLEN_IT) { 28259 goto param_prob; 28260 } 28261 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28262 ip1dbg(( 28263 "ip_wput_options: bad option offset\n")); 28264 code = (char *)&opt[IPOPT_OFFSET] - 28265 (char *)ipha; 28266 goto param_prob; 28267 } 28268 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 28269 case IPOPT_TS_TSONLY: 28270 off = IPOPT_TS_TIMELEN; 28271 break; 28272 case IPOPT_TS_TSANDADDR: 28273 case IPOPT_TS_PRESPEC: 28274 case IPOPT_TS_PRESPEC_RFC791: 28275 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28276 break; 28277 default: 28278 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28279 (char *)ipha; 28280 goto param_prob; 28281 } 28282 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28283 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28284 /* 28285 * No room and the overflow counter is 15 28286 * already. 28287 */ 28288 goto param_prob; 28289 } 28290 break; 28291 } 28292 } 28293 28294 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28295 return (0); 28296 28297 ip1dbg(("ip_wput_options: error processing IP options.")); 28298 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28299 28300 param_prob: 28301 /* 28302 * Since ip_wput() isn't close to finished, we fill 28303 * in enough of the header for credible error reporting. 28304 */ 28305 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28306 /* Failed */ 28307 freemsg(ipsec_mp); 28308 return (-1); 28309 } 28310 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28311 return (-1); 28312 28313 bad_src_route: 28314 /* 28315 * Since ip_wput() isn't close to finished, we fill 28316 * in enough of the header for credible error reporting. 28317 */ 28318 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28319 /* Failed */ 28320 freemsg(ipsec_mp); 28321 return (-1); 28322 } 28323 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28324 return (-1); 28325 } 28326 28327 /* 28328 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28329 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28330 * thru /etc/system. 28331 */ 28332 #define CONN_MAXDRAINCNT 64 28333 28334 static void 28335 conn_drain_init(ip_stack_t *ipst) 28336 { 28337 int i; 28338 28339 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28340 28341 if ((ipst->ips_conn_drain_list_cnt == 0) || 28342 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28343 /* 28344 * Default value of the number of drainers is the 28345 * number of cpus, subject to maximum of 8 drainers. 28346 */ 28347 if (boot_max_ncpus != -1) 28348 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28349 else 28350 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28351 } 28352 28353 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28354 sizeof (idl_t), KM_SLEEP); 28355 28356 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28357 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28358 MUTEX_DEFAULT, NULL); 28359 } 28360 } 28361 28362 static void 28363 conn_drain_fini(ip_stack_t *ipst) 28364 { 28365 int i; 28366 28367 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28368 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28369 kmem_free(ipst->ips_conn_drain_list, 28370 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28371 ipst->ips_conn_drain_list = NULL; 28372 } 28373 28374 /* 28375 * Note: For an overview of how flowcontrol is handled in IP please see the 28376 * IP Flowcontrol notes at the top of this file. 28377 * 28378 * Flow control has blocked us from proceeding. Insert the given conn in one 28379 * of the conn drain lists. These conn wq's will be qenabled later on when 28380 * STREAMS flow control does a backenable. conn_walk_drain will enable 28381 * the first conn in each of these drain lists. Each of these qenabled conns 28382 * in turn enables the next in the list, after it runs, or when it closes, 28383 * thus sustaining the drain process. 28384 * 28385 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28386 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28387 * running at any time, on a given conn, since there can be only 1 service proc 28388 * running on a queue at any time. 28389 */ 28390 void 28391 conn_drain_insert(conn_t *connp) 28392 { 28393 idl_t *idl; 28394 uint_t index; 28395 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28396 28397 mutex_enter(&connp->conn_lock); 28398 if (connp->conn_state_flags & CONN_CLOSING) { 28399 /* 28400 * The conn is closing as a result of which CONN_CLOSING 28401 * is set. Return. 28402 */ 28403 mutex_exit(&connp->conn_lock); 28404 return; 28405 } else if (connp->conn_idl == NULL) { 28406 /* 28407 * Assign the next drain list round robin. We dont' use 28408 * a lock, and thus it may not be strictly round robin. 28409 * Atomicity of load/stores is enough to make sure that 28410 * conn_drain_list_index is always within bounds. 28411 */ 28412 index = ipst->ips_conn_drain_list_index; 28413 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28414 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28415 index++; 28416 if (index == ipst->ips_conn_drain_list_cnt) 28417 index = 0; 28418 ipst->ips_conn_drain_list_index = index; 28419 } 28420 mutex_exit(&connp->conn_lock); 28421 28422 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28423 if ((connp->conn_drain_prev != NULL) || 28424 (connp->conn_state_flags & CONN_CLOSING)) { 28425 /* 28426 * The conn is already in the drain list, OR 28427 * the conn is closing. We need to check again for 28428 * the closing case again since close can happen 28429 * after we drop the conn_lock, and before we 28430 * acquire the CONN_DRAIN_LIST_LOCK. 28431 */ 28432 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28433 return; 28434 } else { 28435 idl = connp->conn_idl; 28436 } 28437 28438 /* 28439 * The conn is not in the drain list. Insert it at the 28440 * tail of the drain list. The drain list is circular 28441 * and doubly linked. idl_conn points to the 1st element 28442 * in the list. 28443 */ 28444 if (idl->idl_conn == NULL) { 28445 idl->idl_conn = connp; 28446 connp->conn_drain_next = connp; 28447 connp->conn_drain_prev = connp; 28448 } else { 28449 conn_t *head = idl->idl_conn; 28450 28451 connp->conn_drain_next = head; 28452 connp->conn_drain_prev = head->conn_drain_prev; 28453 head->conn_drain_prev->conn_drain_next = connp; 28454 head->conn_drain_prev = connp; 28455 } 28456 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28457 } 28458 28459 /* 28460 * This conn is closing, and we are called from ip_close. OR 28461 * This conn has been serviced by ip_wsrv, and we need to do the tail 28462 * processing. 28463 * If this conn is part of the drain list, we may need to sustain the drain 28464 * process by qenabling the next conn in the drain list. We may also need to 28465 * remove this conn from the list, if it is done. 28466 */ 28467 static void 28468 conn_drain_tail(conn_t *connp, boolean_t closing) 28469 { 28470 idl_t *idl; 28471 28472 /* 28473 * connp->conn_idl is stable at this point, and no lock is needed 28474 * to check it. If we are called from ip_close, close has already 28475 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28476 * called us only because conn_idl is non-null. If we are called thru 28477 * service, conn_idl could be null, but it cannot change because 28478 * service is single-threaded per queue, and there cannot be another 28479 * instance of service trying to call conn_drain_insert on this conn 28480 * now. 28481 */ 28482 ASSERT(!closing || (connp->conn_idl != NULL)); 28483 28484 /* 28485 * If connp->conn_idl is null, the conn has not been inserted into any 28486 * drain list even once since creation of the conn. Just return. 28487 */ 28488 if (connp->conn_idl == NULL) 28489 return; 28490 28491 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28492 28493 if (connp->conn_drain_prev == NULL) { 28494 /* This conn is currently not in the drain list. */ 28495 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28496 return; 28497 } 28498 idl = connp->conn_idl; 28499 if (idl->idl_conn_draining == connp) { 28500 /* 28501 * This conn is the current drainer. If this is the last conn 28502 * in the drain list, we need to do more checks, in the 'if' 28503 * below. Otherwwise we need to just qenable the next conn, 28504 * to sustain the draining, and is handled in the 'else' 28505 * below. 28506 */ 28507 if (connp->conn_drain_next == idl->idl_conn) { 28508 /* 28509 * This conn is the last in this list. This round 28510 * of draining is complete. If idl_repeat is set, 28511 * it means another flow enabling has happened from 28512 * the driver/streams and we need to another round 28513 * of draining. 28514 * If there are more than 2 conns in the drain list, 28515 * do a left rotate by 1, so that all conns except the 28516 * conn at the head move towards the head by 1, and the 28517 * the conn at the head goes to the tail. This attempts 28518 * a more even share for all queues that are being 28519 * drained. 28520 */ 28521 if ((connp->conn_drain_next != connp) && 28522 (idl->idl_conn->conn_drain_next != connp)) { 28523 idl->idl_conn = idl->idl_conn->conn_drain_next; 28524 } 28525 if (idl->idl_repeat) { 28526 qenable(idl->idl_conn->conn_wq); 28527 idl->idl_conn_draining = idl->idl_conn; 28528 idl->idl_repeat = 0; 28529 } else { 28530 idl->idl_conn_draining = NULL; 28531 } 28532 } else { 28533 /* 28534 * If the next queue that we are now qenable'ing, 28535 * is closing, it will remove itself from this list 28536 * and qenable the subsequent queue in ip_close(). 28537 * Serialization is acheived thru idl_lock. 28538 */ 28539 qenable(connp->conn_drain_next->conn_wq); 28540 idl->idl_conn_draining = connp->conn_drain_next; 28541 } 28542 } 28543 if (!connp->conn_did_putbq || closing) { 28544 /* 28545 * Remove ourself from the drain list, if we did not do 28546 * a putbq, or if the conn is closing. 28547 * Note: It is possible that q->q_first is non-null. It means 28548 * that these messages landed after we did a enableok() in 28549 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28550 * service them. 28551 */ 28552 if (connp->conn_drain_next == connp) { 28553 /* Singleton in the list */ 28554 ASSERT(connp->conn_drain_prev == connp); 28555 idl->idl_conn = NULL; 28556 idl->idl_conn_draining = NULL; 28557 } else { 28558 connp->conn_drain_prev->conn_drain_next = 28559 connp->conn_drain_next; 28560 connp->conn_drain_next->conn_drain_prev = 28561 connp->conn_drain_prev; 28562 if (idl->idl_conn == connp) 28563 idl->idl_conn = connp->conn_drain_next; 28564 ASSERT(idl->idl_conn_draining != connp); 28565 28566 } 28567 connp->conn_drain_next = NULL; 28568 connp->conn_drain_prev = NULL; 28569 } 28570 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28571 } 28572 28573 /* 28574 * Write service routine. Shared perimeter entry point. 28575 * ip_wsrv can be called in any of the following ways. 28576 * 1. The device queue's messages has fallen below the low water mark 28577 * and STREAMS has backenabled the ill_wq. We walk thru all the 28578 * the drain lists and backenable the first conn in each list. 28579 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28580 * qenabled non-tcp upper layers. We start dequeing messages and call 28581 * ip_wput for each message. 28582 */ 28583 28584 void 28585 ip_wsrv(queue_t *q) 28586 { 28587 conn_t *connp; 28588 ill_t *ill; 28589 mblk_t *mp; 28590 28591 if (q->q_next) { 28592 ill = (ill_t *)q->q_ptr; 28593 if (ill->ill_state_flags == 0) { 28594 /* 28595 * The device flow control has opened up. 28596 * Walk through conn drain lists and qenable the 28597 * first conn in each list. This makes sense only 28598 * if the stream is fully plumbed and setup. 28599 * Hence the if check above. 28600 */ 28601 ip1dbg(("ip_wsrv: walking\n")); 28602 conn_walk_drain(ill->ill_ipst); 28603 } 28604 return; 28605 } 28606 28607 connp = Q_TO_CONN(q); 28608 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28609 28610 /* 28611 * 1. Set conn_draining flag to signal that service is active. 28612 * 28613 * 2. ip_output determines whether it has been called from service, 28614 * based on the last parameter. If it is IP_WSRV it concludes it 28615 * has been called from service. 28616 * 28617 * 3. Message ordering is preserved by the following logic. 28618 * i. A directly called ip_output (i.e. not thru service) will queue 28619 * the message at the tail, if conn_draining is set (i.e. service 28620 * is running) or if q->q_first is non-null. 28621 * 28622 * ii. If ip_output is called from service, and if ip_output cannot 28623 * putnext due to flow control, it does a putbq. 28624 * 28625 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28626 * (causing an infinite loop). 28627 */ 28628 ASSERT(!connp->conn_did_putbq); 28629 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28630 connp->conn_draining = 1; 28631 noenable(q); 28632 while ((mp = getq(q)) != NULL) { 28633 ASSERT(CONN_Q(q)); 28634 28635 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28636 if (connp->conn_did_putbq) { 28637 /* ip_wput did a putbq */ 28638 break; 28639 } 28640 } 28641 /* 28642 * At this point, a thread coming down from top, calling 28643 * ip_wput, may end up queueing the message. We have not yet 28644 * enabled the queue, so ip_wsrv won't be called again. 28645 * To avoid this race, check q->q_first again (in the loop) 28646 * If the other thread queued the message before we call 28647 * enableok(), we will catch it in the q->q_first check. 28648 * If the other thread queues the message after we call 28649 * enableok(), ip_wsrv will be called again by STREAMS. 28650 */ 28651 connp->conn_draining = 0; 28652 enableok(q); 28653 } 28654 28655 /* Enable the next conn for draining */ 28656 conn_drain_tail(connp, B_FALSE); 28657 28658 connp->conn_did_putbq = 0; 28659 } 28660 28661 /* 28662 * Walk the list of all conn's calling the function provided with the 28663 * specified argument for each. Note that this only walks conn's that 28664 * have been bound. 28665 * Applies to both IPv4 and IPv6. 28666 */ 28667 static void 28668 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28669 { 28670 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28671 ipst->ips_ipcl_udp_fanout_size, 28672 func, arg, zoneid); 28673 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28674 ipst->ips_ipcl_conn_fanout_size, 28675 func, arg, zoneid); 28676 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28677 ipst->ips_ipcl_bind_fanout_size, 28678 func, arg, zoneid); 28679 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28680 IPPROTO_MAX, func, arg, zoneid); 28681 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28682 IPPROTO_MAX, func, arg, zoneid); 28683 } 28684 28685 /* 28686 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28687 * of conns that need to be drained, check if drain is already in progress. 28688 * If so set the idl_repeat bit, indicating that the last conn in the list 28689 * needs to reinitiate the drain once again, for the list. If drain is not 28690 * in progress for the list, initiate the draining, by qenabling the 1st 28691 * conn in the list. The drain is self-sustaining, each qenabled conn will 28692 * in turn qenable the next conn, when it is done/blocked/closing. 28693 */ 28694 static void 28695 conn_walk_drain(ip_stack_t *ipst) 28696 { 28697 int i; 28698 idl_t *idl; 28699 28700 IP_STAT(ipst, ip_conn_walk_drain); 28701 28702 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28703 idl = &ipst->ips_conn_drain_list[i]; 28704 mutex_enter(&idl->idl_lock); 28705 if (idl->idl_conn == NULL) { 28706 mutex_exit(&idl->idl_lock); 28707 continue; 28708 } 28709 /* 28710 * If this list is not being drained currently by 28711 * an ip_wsrv thread, start the process. 28712 */ 28713 if (idl->idl_conn_draining == NULL) { 28714 ASSERT(idl->idl_repeat == 0); 28715 qenable(idl->idl_conn->conn_wq); 28716 idl->idl_conn_draining = idl->idl_conn; 28717 } else { 28718 idl->idl_repeat = 1; 28719 } 28720 mutex_exit(&idl->idl_lock); 28721 } 28722 } 28723 28724 /* 28725 * Walk an conn hash table of `count' buckets, calling func for each entry. 28726 */ 28727 static void 28728 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28729 zoneid_t zoneid) 28730 { 28731 conn_t *connp; 28732 28733 while (count-- > 0) { 28734 mutex_enter(&connfp->connf_lock); 28735 for (connp = connfp->connf_head; connp != NULL; 28736 connp = connp->conn_next) { 28737 if (zoneid == GLOBAL_ZONEID || 28738 zoneid == connp->conn_zoneid) { 28739 CONN_INC_REF(connp); 28740 mutex_exit(&connfp->connf_lock); 28741 (*func)(connp, arg); 28742 mutex_enter(&connfp->connf_lock); 28743 CONN_DEC_REF(connp); 28744 } 28745 } 28746 mutex_exit(&connfp->connf_lock); 28747 connfp++; 28748 } 28749 } 28750 28751 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 28752 static void 28753 conn_report1(conn_t *connp, void *mp) 28754 { 28755 char buf1[INET6_ADDRSTRLEN]; 28756 char buf2[INET6_ADDRSTRLEN]; 28757 uint_t print_len, buf_len; 28758 28759 ASSERT(connp != NULL); 28760 28761 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28762 if (buf_len <= 0) 28763 return; 28764 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 28765 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 28766 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28767 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28768 "%5d %s/%05d %s/%05d\n", 28769 (void *)connp, (void *)CONNP_TO_RQ(connp), 28770 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28771 buf1, connp->conn_lport, 28772 buf2, connp->conn_fport); 28773 if (print_len < buf_len) { 28774 ((mblk_t *)mp)->b_wptr += print_len; 28775 } else { 28776 ((mblk_t *)mp)->b_wptr += buf_len; 28777 } 28778 } 28779 28780 /* 28781 * Named Dispatch routine to produce a formatted report on all conns 28782 * that are listed in one of the fanout tables. 28783 * This report is accessed by using the ndd utility to "get" ND variable 28784 * "ip_conn_status". 28785 */ 28786 /* ARGSUSED */ 28787 static int 28788 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28789 { 28790 conn_t *connp = Q_TO_CONN(q); 28791 28792 (void) mi_mpprintf(mp, 28793 "CONN " MI_COL_HDRPAD_STR 28794 "rfq " MI_COL_HDRPAD_STR 28795 "stq " MI_COL_HDRPAD_STR 28796 " zone local remote"); 28797 28798 /* 28799 * Because of the ndd constraint, at most we can have 64K buffer 28800 * to put in all conn info. So to be more efficient, just 28801 * allocate a 64K buffer here, assuming we need that large buffer. 28802 * This should be OK as only privileged processes can do ndd /dev/ip. 28803 */ 28804 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28805 /* The following may work even if we cannot get a large buf. */ 28806 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28807 return (0); 28808 } 28809 28810 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28811 connp->conn_netstack->netstack_ip); 28812 return (0); 28813 } 28814 28815 /* 28816 * Determine if the ill and multicast aspects of that packets 28817 * "matches" the conn. 28818 */ 28819 boolean_t 28820 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28821 zoneid_t zoneid) 28822 { 28823 ill_t *in_ill; 28824 boolean_t found; 28825 ipif_t *ipif; 28826 ire_t *ire; 28827 ipaddr_t dst, src; 28828 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28829 28830 dst = ipha->ipha_dst; 28831 src = ipha->ipha_src; 28832 28833 /* 28834 * conn_incoming_ill is set by IP_BOUND_IF which limits 28835 * unicast, broadcast and multicast reception to 28836 * conn_incoming_ill. conn_wantpacket itself is called 28837 * only for BROADCAST and multicast. 28838 * 28839 * 1) ip_rput supresses duplicate broadcasts if the ill 28840 * is part of a group. Hence, we should be receiving 28841 * just one copy of broadcast for the whole group. 28842 * Thus, if it is part of the group the packet could 28843 * come on any ill of the group and hence we need a 28844 * match on the group. Otherwise, match on ill should 28845 * be sufficient. 28846 * 28847 * 2) ip_rput does not suppress duplicate multicast packets. 28848 * If there are two interfaces in a ill group and we have 28849 * 2 applications (conns) joined a multicast group G on 28850 * both the interfaces, ilm_lookup_ill filter in ip_rput 28851 * will give us two packets because we join G on both the 28852 * interfaces rather than nominating just one interface 28853 * for receiving multicast like broadcast above. So, 28854 * we have to call ilg_lookup_ill to filter out duplicate 28855 * copies, if ill is part of a group. 28856 */ 28857 in_ill = connp->conn_incoming_ill; 28858 if (in_ill != NULL) { 28859 if (in_ill->ill_group == NULL) { 28860 if (in_ill != ill) 28861 return (B_FALSE); 28862 } else if (in_ill->ill_group != ill->ill_group) { 28863 return (B_FALSE); 28864 } 28865 } 28866 28867 if (!CLASSD(dst)) { 28868 if (IPCL_ZONE_MATCH(connp, zoneid)) 28869 return (B_TRUE); 28870 /* 28871 * The conn is in a different zone; we need to check that this 28872 * broadcast address is configured in the application's zone and 28873 * on one ill in the group. 28874 */ 28875 ipif = ipif_get_next_ipif(NULL, ill); 28876 if (ipif == NULL) 28877 return (B_FALSE); 28878 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28879 connp->conn_zoneid, NULL, 28880 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28881 ipif_refrele(ipif); 28882 if (ire != NULL) { 28883 ire_refrele(ire); 28884 return (B_TRUE); 28885 } else { 28886 return (B_FALSE); 28887 } 28888 } 28889 28890 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28891 connp->conn_zoneid == zoneid) { 28892 /* 28893 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28894 * disabled, therefore we don't dispatch the multicast packet to 28895 * the sending zone. 28896 */ 28897 return (B_FALSE); 28898 } 28899 28900 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 28901 connp->conn_zoneid != zoneid) { 28902 /* 28903 * Multicast packet on the loopback interface: we only match 28904 * conns who joined the group in the specified zone. 28905 */ 28906 return (B_FALSE); 28907 } 28908 28909 if (connp->conn_multi_router) { 28910 /* multicast packet and multicast router socket: send up */ 28911 return (B_TRUE); 28912 } 28913 28914 mutex_enter(&connp->conn_lock); 28915 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28916 mutex_exit(&connp->conn_lock); 28917 return (found); 28918 } 28919 28920 /* 28921 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28922 */ 28923 /* ARGSUSED */ 28924 static void 28925 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28926 { 28927 ill_t *ill = (ill_t *)q->q_ptr; 28928 mblk_t *mp1, *mp2; 28929 ipif_t *ipif; 28930 int err = 0; 28931 conn_t *connp = NULL; 28932 ipsq_t *ipsq; 28933 arc_t *arc; 28934 28935 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28936 28937 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28938 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28939 28940 ASSERT(IAM_WRITER_ILL(ill)); 28941 mp2 = mp->b_cont; 28942 mp->b_cont = NULL; 28943 28944 /* 28945 * We have now received the arp bringup completion message 28946 * from ARP. Mark the arp bringup as done. Also if the arp 28947 * stream has already started closing, send up the AR_ARP_CLOSING 28948 * ack now since ARP is waiting in close for this ack. 28949 */ 28950 mutex_enter(&ill->ill_lock); 28951 ill->ill_arp_bringup_pending = 0; 28952 if (ill->ill_arp_closing) { 28953 mutex_exit(&ill->ill_lock); 28954 /* Let's reuse the mp for sending the ack */ 28955 arc = (arc_t *)mp->b_rptr; 28956 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28957 arc->arc_cmd = AR_ARP_CLOSING; 28958 qreply(q, mp); 28959 } else { 28960 mutex_exit(&ill->ill_lock); 28961 freeb(mp); 28962 } 28963 28964 ipsq = ill->ill_phyint->phyint_ipsq; 28965 ipif = ipsq->ipsq_pending_ipif; 28966 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28967 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28968 if (mp1 == NULL) { 28969 /* bringup was aborted by the user */ 28970 freemsg(mp2); 28971 return; 28972 } 28973 28974 /* 28975 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28976 * must have an associated conn_t. Otherwise, we're bringing this 28977 * interface back up as part of handling an asynchronous event (e.g., 28978 * physical address change). 28979 */ 28980 if (ipsq->ipsq_current_ioctl != 0) { 28981 ASSERT(connp != NULL); 28982 q = CONNP_TO_WQ(connp); 28983 } else { 28984 ASSERT(connp == NULL); 28985 q = ill->ill_rq; 28986 } 28987 28988 /* 28989 * If the DL_BIND_REQ fails, it is noted 28990 * in arc_name_offset. 28991 */ 28992 err = *((int *)mp2->b_rptr); 28993 if (err == 0) { 28994 if (ipif->ipif_isv6) { 28995 if ((err = ipif_up_done_v6(ipif)) != 0) 28996 ip0dbg(("ip_arp_done: init failed\n")); 28997 } else { 28998 if ((err = ipif_up_done(ipif)) != 0) 28999 ip0dbg(("ip_arp_done: init failed\n")); 29000 } 29001 } else { 29002 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 29003 } 29004 29005 freemsg(mp2); 29006 29007 if ((err == 0) && (ill->ill_up_ipifs)) { 29008 err = ill_up_ipifs(ill, q, mp1); 29009 if (err == EINPROGRESS) 29010 return; 29011 } 29012 29013 if (ill->ill_up_ipifs) 29014 ill_group_cleanup(ill); 29015 29016 /* 29017 * The operation must complete without EINPROGRESS since 29018 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 29019 * Otherwise, the operation will be stuck forever in the ipsq. 29020 */ 29021 ASSERT(err != EINPROGRESS); 29022 if (ipsq->ipsq_current_ioctl != 0) 29023 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 29024 else 29025 ipsq_current_finish(ipsq); 29026 } 29027 29028 /* Allocate the private structure */ 29029 static int 29030 ip_priv_alloc(void **bufp) 29031 { 29032 void *buf; 29033 29034 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 29035 return (ENOMEM); 29036 29037 *bufp = buf; 29038 return (0); 29039 } 29040 29041 /* Function to delete the private structure */ 29042 void 29043 ip_priv_free(void *buf) 29044 { 29045 ASSERT(buf != NULL); 29046 kmem_free(buf, sizeof (ip_priv_t)); 29047 } 29048 29049 /* 29050 * The entry point for IPPF processing. 29051 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 29052 * routine just returns. 29053 * 29054 * When called, ip_process generates an ipp_packet_t structure 29055 * which holds the state information for this packet and invokes the 29056 * the classifier (via ipp_packet_process). The classification, depending on 29057 * configured filters, results in a list of actions for this packet. Invoking 29058 * an action may cause the packet to be dropped, in which case the resulting 29059 * mblk (*mpp) is NULL. proc indicates the callout position for 29060 * this packet and ill_index is the interface this packet on or will leave 29061 * on (inbound and outbound resp.). 29062 */ 29063 void 29064 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 29065 { 29066 mblk_t *mp; 29067 ip_priv_t *priv; 29068 ipp_action_id_t aid; 29069 int rc = 0; 29070 ipp_packet_t *pp; 29071 #define IP_CLASS "ip" 29072 29073 /* If the classifier is not loaded, return */ 29074 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 29075 return; 29076 } 29077 29078 mp = *mpp; 29079 ASSERT(mp != NULL); 29080 29081 /* Allocate the packet structure */ 29082 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 29083 if (rc != 0) { 29084 *mpp = NULL; 29085 freemsg(mp); 29086 return; 29087 } 29088 29089 /* Allocate the private structure */ 29090 rc = ip_priv_alloc((void **)&priv); 29091 if (rc != 0) { 29092 *mpp = NULL; 29093 freemsg(mp); 29094 ipp_packet_free(pp); 29095 return; 29096 } 29097 priv->proc = proc; 29098 priv->ill_index = ill_index; 29099 ipp_packet_set_private(pp, priv, ip_priv_free); 29100 ipp_packet_set_data(pp, mp); 29101 29102 /* Invoke the classifier */ 29103 rc = ipp_packet_process(&pp); 29104 if (pp != NULL) { 29105 mp = ipp_packet_get_data(pp); 29106 ipp_packet_free(pp); 29107 if (rc != 0) { 29108 freemsg(mp); 29109 *mpp = NULL; 29110 } 29111 } else { 29112 *mpp = NULL; 29113 } 29114 #undef IP_CLASS 29115 } 29116 29117 /* 29118 * Propagate a multicast group membership operation (add/drop) on 29119 * all the interfaces crossed by the related multirt routes. 29120 * The call is considered successful if the operation succeeds 29121 * on at least one interface. 29122 */ 29123 static int 29124 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 29125 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 29126 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 29127 mblk_t *first_mp) 29128 { 29129 ire_t *ire_gw; 29130 irb_t *irb; 29131 int error = 0; 29132 opt_restart_t *or; 29133 ip_stack_t *ipst = ire->ire_ipst; 29134 29135 irb = ire->ire_bucket; 29136 ASSERT(irb != NULL); 29137 29138 ASSERT(DB_TYPE(first_mp) == M_CTL); 29139 29140 or = (opt_restart_t *)first_mp->b_rptr; 29141 IRB_REFHOLD(irb); 29142 for (; ire != NULL; ire = ire->ire_next) { 29143 if ((ire->ire_flags & RTF_MULTIRT) == 0) 29144 continue; 29145 if (ire->ire_addr != group) 29146 continue; 29147 29148 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 29149 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 29150 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 29151 /* No resolver exists for the gateway; skip this ire. */ 29152 if (ire_gw == NULL) 29153 continue; 29154 29155 /* 29156 * This function can return EINPROGRESS. If so the operation 29157 * will be restarted from ip_restart_optmgmt which will 29158 * call ip_opt_set and option processing will restart for 29159 * this option. So we may end up calling 'fn' more than once. 29160 * This requires that 'fn' is idempotent except for the 29161 * return value. The operation is considered a success if 29162 * it succeeds at least once on any one interface. 29163 */ 29164 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 29165 NULL, fmode, src, first_mp); 29166 if (error == 0) 29167 or->or_private = CGTP_MCAST_SUCCESS; 29168 29169 if (ip_debug > 0) { 29170 ulong_t off; 29171 char *ksym; 29172 ksym = kobj_getsymname((uintptr_t)fn, &off); 29173 ip2dbg(("ip_multirt_apply_membership: " 29174 "called %s, multirt group 0x%08x via itf 0x%08x, " 29175 "error %d [success %u]\n", 29176 ksym ? ksym : "?", 29177 ntohl(group), ntohl(ire_gw->ire_src_addr), 29178 error, or->or_private)); 29179 } 29180 29181 ire_refrele(ire_gw); 29182 if (error == EINPROGRESS) { 29183 IRB_REFRELE(irb); 29184 return (error); 29185 } 29186 } 29187 IRB_REFRELE(irb); 29188 /* 29189 * Consider the call as successful if we succeeded on at least 29190 * one interface. Otherwise, return the last encountered error. 29191 */ 29192 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 29193 } 29194 29195 29196 /* 29197 * Issue a warning regarding a route crossing an interface with an 29198 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 29199 * amount of time is logged. 29200 */ 29201 static void 29202 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 29203 { 29204 hrtime_t current = gethrtime(); 29205 char buf[INET_ADDRSTRLEN]; 29206 ip_stack_t *ipst = ire->ire_ipst; 29207 29208 /* Convert interval in ms to hrtime in ns */ 29209 if (ipst->ips_multirt_bad_mtu_last_time + 29210 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 29211 current) { 29212 cmn_err(CE_WARN, "ip: ignoring multiroute " 29213 "to %s, incorrect MTU %u (expected %u)\n", 29214 ip_dot_addr(ire->ire_addr, buf), 29215 ire->ire_max_frag, max_frag); 29216 29217 ipst->ips_multirt_bad_mtu_last_time = current; 29218 } 29219 } 29220 29221 29222 /* 29223 * Get the CGTP (multirouting) filtering status. 29224 * If 0, the CGTP hooks are transparent. 29225 */ 29226 /* ARGSUSED */ 29227 static int 29228 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 29229 { 29230 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29231 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29232 29233 /* 29234 * Only applies to the shared stack since the filter_ops 29235 * do not carry an ip_stack_t or zoneid. 29236 */ 29237 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 29238 return (ENOTSUP); 29239 29240 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 29241 return (0); 29242 } 29243 29244 29245 /* 29246 * Set the CGTP (multirouting) filtering status. 29247 * If the status is changed from active to transparent 29248 * or from transparent to active, forward the new status 29249 * to the filtering module (if loaded). 29250 */ 29251 /* ARGSUSED */ 29252 static int 29253 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 29254 cred_t *ioc_cr) 29255 { 29256 long new_value; 29257 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29258 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29259 29260 if (secpolicy_net_config(ioc_cr, B_FALSE) != 0) 29261 return (EPERM); 29262 29263 /* 29264 * Only applies to the shared stack since the filter_ops 29265 * do not carry an ip_stack_t or zoneid. 29266 */ 29267 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 29268 return (ENOTSUP); 29269 29270 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29271 new_value < 0 || new_value > 1) { 29272 return (EINVAL); 29273 } 29274 29275 /* 29276 * Do not enable CGTP filtering - thus preventing the hooks 29277 * from being invoked - if the version number of the 29278 * filtering module hooks does not match. 29279 */ 29280 if ((ip_cgtp_filter_ops != NULL) && 29281 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 29282 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 29283 "(module hooks version %d, expecting %d)\n", 29284 ip_cgtp_filter_ops->cfo_filter_rev, 29285 CGTP_FILTER_REV); 29286 return (ENOTSUP); 29287 } 29288 29289 if ((!*ip_cgtp_filter_value) && new_value) { 29290 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29291 ip_cgtp_filter_ops == NULL ? 29292 " (module not loaded)" : ""); 29293 } 29294 if (*ip_cgtp_filter_value && (!new_value)) { 29295 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29296 ip_cgtp_filter_ops == NULL ? 29297 " (module not loaded)" : ""); 29298 } 29299 29300 if (ip_cgtp_filter_ops != NULL) { 29301 int res; 29302 29303 res = ip_cgtp_filter_ops->cfo_change_state(new_value); 29304 if (res) 29305 return (res); 29306 } 29307 29308 *ip_cgtp_filter_value = (boolean_t)new_value; 29309 29310 return (0); 29311 } 29312 29313 29314 /* 29315 * Return the expected CGTP hooks version number. 29316 */ 29317 int 29318 ip_cgtp_filter_supported(void) 29319 { 29320 ip_stack_t *ipst; 29321 int ret; 29322 29323 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 29324 if (ipst == NULL) 29325 return (-1); 29326 ret = ip_cgtp_filter_rev; 29327 netstack_rele(ipst->ips_netstack); 29328 return (ret); 29329 } 29330 29331 29332 /* 29333 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 29334 * or by invoking this function. In the first case, the version number 29335 * of the registered structure is checked at hooks activation time 29336 * in ip_cgtp_filter_set(). 29337 * 29338 * Only applies to the shared stack since the filter_ops 29339 * do not carry an ip_stack_t or zoneid. 29340 */ 29341 int 29342 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 29343 { 29344 ip_stack_t *ipst; 29345 29346 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29347 return (ENOTSUP); 29348 29349 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 29350 if (ipst == NULL) 29351 return (EINVAL); 29352 29353 ip_cgtp_filter_ops = ops; 29354 netstack_rele(ipst->ips_netstack); 29355 return (0); 29356 } 29357 29358 static squeue_func_t 29359 ip_squeue_switch(int val) 29360 { 29361 squeue_func_t rval = squeue_fill; 29362 29363 switch (val) { 29364 case IP_SQUEUE_ENTER_NODRAIN: 29365 rval = squeue_enter_nodrain; 29366 break; 29367 case IP_SQUEUE_ENTER: 29368 rval = squeue_enter; 29369 break; 29370 default: 29371 break; 29372 } 29373 return (rval); 29374 } 29375 29376 /* ARGSUSED */ 29377 static int 29378 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29379 caddr_t addr, cred_t *cr) 29380 { 29381 int *v = (int *)addr; 29382 long new_value; 29383 29384 if (secpolicy_net_config(cr, B_FALSE) != 0) 29385 return (EPERM); 29386 29387 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29388 return (EINVAL); 29389 29390 ip_input_proc = ip_squeue_switch(new_value); 29391 *v = new_value; 29392 return (0); 29393 } 29394 29395 /* ARGSUSED */ 29396 static int 29397 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29398 caddr_t addr, cred_t *cr) 29399 { 29400 int *v = (int *)addr; 29401 long new_value; 29402 29403 if (secpolicy_net_config(cr, B_FALSE) != 0) 29404 return (EPERM); 29405 29406 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29407 return (EINVAL); 29408 29409 *v = new_value; 29410 return (0); 29411 } 29412 29413 /* 29414 * Handle changes to ipmp_hook_emulation ndd variable. 29415 * Need to update phyint_hook_ifindex. 29416 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29417 */ 29418 static void 29419 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29420 { 29421 phyint_t *phyi; 29422 phyint_t *phyi_tmp; 29423 char *groupname; 29424 int namelen; 29425 ill_t *ill; 29426 boolean_t new_group; 29427 29428 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29429 /* 29430 * Group indicies are stored in the phyint - a common structure 29431 * to both IPv4 and IPv6. 29432 */ 29433 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29434 for (; phyi != NULL; 29435 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29436 phyi, AVL_AFTER)) { 29437 /* Ignore the ones that do not have a group */ 29438 if (phyi->phyint_groupname_len == 0) 29439 continue; 29440 29441 /* 29442 * Look for other phyint in group. 29443 * Clear name/namelen so the lookup doesn't find ourselves. 29444 */ 29445 namelen = phyi->phyint_groupname_len; 29446 groupname = phyi->phyint_groupname; 29447 phyi->phyint_groupname_len = 0; 29448 phyi->phyint_groupname = NULL; 29449 29450 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29451 /* Restore */ 29452 phyi->phyint_groupname_len = namelen; 29453 phyi->phyint_groupname = groupname; 29454 29455 new_group = B_FALSE; 29456 if (ipst->ips_ipmp_hook_emulation) { 29457 /* 29458 * If the group already exists and has already 29459 * been assigned a group ifindex, we use the existing 29460 * group_ifindex, otherwise we pick a new group_ifindex 29461 * here. 29462 */ 29463 if (phyi_tmp != NULL && 29464 phyi_tmp->phyint_group_ifindex != 0) { 29465 phyi->phyint_group_ifindex = 29466 phyi_tmp->phyint_group_ifindex; 29467 } else { 29468 /* XXX We need a recovery strategy here. */ 29469 if (!ip_assign_ifindex( 29470 &phyi->phyint_group_ifindex, ipst)) 29471 cmn_err(CE_PANIC, 29472 "ip_assign_ifindex() failed"); 29473 new_group = B_TRUE; 29474 } 29475 } else { 29476 phyi->phyint_group_ifindex = 0; 29477 } 29478 if (ipst->ips_ipmp_hook_emulation) 29479 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29480 else 29481 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29482 29483 /* 29484 * For IP Filter to find out the relationship between 29485 * names and interface indicies, we need to generate 29486 * a NE_PLUMB event when a new group can appear. 29487 * We always generate events when a new interface appears 29488 * (even when ipmp_hook_emulation is set) so there 29489 * is no need to generate NE_PLUMB events when 29490 * ipmp_hook_emulation is turned off. 29491 * And since it isn't critical for IP Filter to get 29492 * the NE_UNPLUMB events we skip those here. 29493 */ 29494 if (new_group) { 29495 /* 29496 * First phyint in group - generate group PLUMB event. 29497 * Since we are not running inside the ipsq we do 29498 * the dispatch immediately. 29499 */ 29500 if (phyi->phyint_illv4 != NULL) 29501 ill = phyi->phyint_illv4; 29502 else 29503 ill = phyi->phyint_illv6; 29504 29505 if (ill != NULL) { 29506 mutex_enter(&ill->ill_lock); 29507 ill_nic_info_plumb(ill, B_TRUE); 29508 ill_nic_info_dispatch(ill); 29509 mutex_exit(&ill->ill_lock); 29510 } 29511 } 29512 } 29513 rw_exit(&ipst->ips_ill_g_lock); 29514 } 29515 29516 /* ARGSUSED */ 29517 static int 29518 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29519 caddr_t addr, cred_t *cr) 29520 { 29521 int *v = (int *)addr; 29522 long new_value; 29523 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29524 29525 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29526 return (EINVAL); 29527 29528 if (*v != new_value) { 29529 *v = new_value; 29530 ipmp_hook_emulation_changed(ipst); 29531 } 29532 return (0); 29533 } 29534 29535 static void * 29536 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29537 { 29538 kstat_t *ksp; 29539 29540 ip_stat_t template = { 29541 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29542 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29543 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29544 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29545 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29546 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29547 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29548 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29549 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29550 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29551 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29552 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29553 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29554 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29555 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29556 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29557 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29558 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29559 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29560 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29561 { "ip_opt", KSTAT_DATA_UINT64 }, 29562 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29563 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29564 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29565 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29566 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29567 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29568 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29569 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29570 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29571 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29572 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29573 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29574 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29575 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29576 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29577 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29578 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29579 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29580 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29581 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29582 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29583 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29584 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29585 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29586 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29587 }; 29588 29589 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29590 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29591 KSTAT_FLAG_VIRTUAL, stackid); 29592 29593 if (ksp == NULL) 29594 return (NULL); 29595 29596 bcopy(&template, ip_statisticsp, sizeof (template)); 29597 ksp->ks_data = (void *)ip_statisticsp; 29598 ksp->ks_private = (void *)(uintptr_t)stackid; 29599 29600 kstat_install(ksp); 29601 return (ksp); 29602 } 29603 29604 static void 29605 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29606 { 29607 if (ksp != NULL) { 29608 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29609 kstat_delete_netstack(ksp, stackid); 29610 } 29611 } 29612 29613 static void * 29614 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29615 { 29616 kstat_t *ksp; 29617 29618 ip_named_kstat_t template = { 29619 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29620 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29621 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29622 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29623 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29624 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29625 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29626 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29627 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29628 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29629 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29630 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29631 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29632 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29633 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29634 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29635 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29636 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29637 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29638 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29639 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29640 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29641 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29642 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29643 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29644 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29645 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29646 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29647 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29648 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29649 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29650 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29651 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29652 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29653 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29654 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29655 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29656 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29657 }; 29658 29659 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29660 NUM_OF_FIELDS(ip_named_kstat_t), 29661 0, stackid); 29662 if (ksp == NULL || ksp->ks_data == NULL) 29663 return (NULL); 29664 29665 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29666 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29667 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29668 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29669 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29670 29671 template.netToMediaEntrySize.value.i32 = 29672 sizeof (mib2_ipNetToMediaEntry_t); 29673 29674 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29675 29676 bcopy(&template, ksp->ks_data, sizeof (template)); 29677 ksp->ks_update = ip_kstat_update; 29678 ksp->ks_private = (void *)(uintptr_t)stackid; 29679 29680 kstat_install(ksp); 29681 return (ksp); 29682 } 29683 29684 static void 29685 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29686 { 29687 if (ksp != NULL) { 29688 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29689 kstat_delete_netstack(ksp, stackid); 29690 } 29691 } 29692 29693 static int 29694 ip_kstat_update(kstat_t *kp, int rw) 29695 { 29696 ip_named_kstat_t *ipkp; 29697 mib2_ipIfStatsEntry_t ipmib; 29698 ill_walk_context_t ctx; 29699 ill_t *ill; 29700 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29701 netstack_t *ns; 29702 ip_stack_t *ipst; 29703 29704 if (kp == NULL || kp->ks_data == NULL) 29705 return (EIO); 29706 29707 if (rw == KSTAT_WRITE) 29708 return (EACCES); 29709 29710 ns = netstack_find_by_stackid(stackid); 29711 if (ns == NULL) 29712 return (-1); 29713 ipst = ns->netstack_ip; 29714 if (ipst == NULL) { 29715 netstack_rele(ns); 29716 return (-1); 29717 } 29718 ipkp = (ip_named_kstat_t *)kp->ks_data; 29719 29720 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29721 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29722 ill = ILL_START_WALK_V4(&ctx, ipst); 29723 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29724 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29725 rw_exit(&ipst->ips_ill_g_lock); 29726 29727 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29728 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29729 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29730 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29731 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29732 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29733 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29734 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29735 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29736 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29737 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29738 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29739 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29740 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29741 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29742 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29743 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29744 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29745 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29746 29747 ipkp->routingDiscards.value.ui32 = 0; 29748 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29749 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29750 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29751 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29752 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29753 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29754 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29755 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29756 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29757 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29758 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29759 29760 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29761 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29762 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29763 29764 netstack_rele(ns); 29765 29766 return (0); 29767 } 29768 29769 static void * 29770 icmp_kstat_init(netstackid_t stackid) 29771 { 29772 kstat_t *ksp; 29773 29774 icmp_named_kstat_t template = { 29775 { "inMsgs", KSTAT_DATA_UINT32 }, 29776 { "inErrors", KSTAT_DATA_UINT32 }, 29777 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29778 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29779 { "inParmProbs", KSTAT_DATA_UINT32 }, 29780 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29781 { "inRedirects", KSTAT_DATA_UINT32 }, 29782 { "inEchos", KSTAT_DATA_UINT32 }, 29783 { "inEchoReps", KSTAT_DATA_UINT32 }, 29784 { "inTimestamps", KSTAT_DATA_UINT32 }, 29785 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29786 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29787 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29788 { "outMsgs", KSTAT_DATA_UINT32 }, 29789 { "outErrors", KSTAT_DATA_UINT32 }, 29790 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29791 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29792 { "outParmProbs", KSTAT_DATA_UINT32 }, 29793 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29794 { "outRedirects", KSTAT_DATA_UINT32 }, 29795 { "outEchos", KSTAT_DATA_UINT32 }, 29796 { "outEchoReps", KSTAT_DATA_UINT32 }, 29797 { "outTimestamps", KSTAT_DATA_UINT32 }, 29798 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29799 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29800 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29801 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29802 { "inUnknowns", KSTAT_DATA_UINT32 }, 29803 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29804 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29805 { "outDrops", KSTAT_DATA_UINT32 }, 29806 { "inOverFlows", KSTAT_DATA_UINT32 }, 29807 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29808 }; 29809 29810 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29811 NUM_OF_FIELDS(icmp_named_kstat_t), 29812 0, stackid); 29813 if (ksp == NULL || ksp->ks_data == NULL) 29814 return (NULL); 29815 29816 bcopy(&template, ksp->ks_data, sizeof (template)); 29817 29818 ksp->ks_update = icmp_kstat_update; 29819 ksp->ks_private = (void *)(uintptr_t)stackid; 29820 29821 kstat_install(ksp); 29822 return (ksp); 29823 } 29824 29825 static void 29826 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29827 { 29828 if (ksp != NULL) { 29829 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29830 kstat_delete_netstack(ksp, stackid); 29831 } 29832 } 29833 29834 static int 29835 icmp_kstat_update(kstat_t *kp, int rw) 29836 { 29837 icmp_named_kstat_t *icmpkp; 29838 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29839 netstack_t *ns; 29840 ip_stack_t *ipst; 29841 29842 if ((kp == NULL) || (kp->ks_data == NULL)) 29843 return (EIO); 29844 29845 if (rw == KSTAT_WRITE) 29846 return (EACCES); 29847 29848 ns = netstack_find_by_stackid(stackid); 29849 if (ns == NULL) 29850 return (-1); 29851 ipst = ns->netstack_ip; 29852 if (ipst == NULL) { 29853 netstack_rele(ns); 29854 return (-1); 29855 } 29856 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29857 29858 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29859 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29860 icmpkp->inDestUnreachs.value.ui32 = 29861 ipst->ips_icmp_mib.icmpInDestUnreachs; 29862 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29863 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29864 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29865 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29866 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29867 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29868 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29869 icmpkp->inTimestampReps.value.ui32 = 29870 ipst->ips_icmp_mib.icmpInTimestampReps; 29871 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29872 icmpkp->inAddrMaskReps.value.ui32 = 29873 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29874 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29875 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29876 icmpkp->outDestUnreachs.value.ui32 = 29877 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29878 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29879 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29880 icmpkp->outSrcQuenchs.value.ui32 = 29881 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29882 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29883 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29884 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29885 icmpkp->outTimestamps.value.ui32 = 29886 ipst->ips_icmp_mib.icmpOutTimestamps; 29887 icmpkp->outTimestampReps.value.ui32 = 29888 ipst->ips_icmp_mib.icmpOutTimestampReps; 29889 icmpkp->outAddrMasks.value.ui32 = 29890 ipst->ips_icmp_mib.icmpOutAddrMasks; 29891 icmpkp->outAddrMaskReps.value.ui32 = 29892 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29893 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29894 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29895 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29896 icmpkp->outFragNeeded.value.ui32 = 29897 ipst->ips_icmp_mib.icmpOutFragNeeded; 29898 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29899 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29900 icmpkp->inBadRedirects.value.ui32 = 29901 ipst->ips_icmp_mib.icmpInBadRedirects; 29902 29903 netstack_rele(ns); 29904 return (0); 29905 } 29906 29907 /* 29908 * This is the fanout function for raw socket opened for SCTP. Note 29909 * that it is called after SCTP checks that there is no socket which 29910 * wants a packet. Then before SCTP handles this out of the blue packet, 29911 * this function is called to see if there is any raw socket for SCTP. 29912 * If there is and it is bound to the correct address, the packet will 29913 * be sent to that socket. Note that only one raw socket can be bound to 29914 * a port. This is assured in ipcl_sctp_hash_insert(); 29915 */ 29916 void 29917 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29918 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29919 zoneid_t zoneid) 29920 { 29921 conn_t *connp; 29922 queue_t *rq; 29923 mblk_t *first_mp; 29924 boolean_t secure; 29925 ip6_t *ip6h; 29926 ip_stack_t *ipst = recv_ill->ill_ipst; 29927 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29928 29929 first_mp = mp; 29930 if (mctl_present) { 29931 mp = first_mp->b_cont; 29932 secure = ipsec_in_is_secure(first_mp); 29933 ASSERT(mp != NULL); 29934 } else { 29935 secure = B_FALSE; 29936 } 29937 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29938 29939 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29940 if (connp == NULL) { 29941 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29942 return; 29943 } 29944 rq = connp->conn_rq; 29945 if (!canputnext(rq)) { 29946 CONN_DEC_REF(connp); 29947 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29948 freemsg(first_mp); 29949 return; 29950 } 29951 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29952 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29953 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29954 (isv4 ? ipha : NULL), ip6h, mctl_present); 29955 if (first_mp == NULL) { 29956 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29957 CONN_DEC_REF(connp); 29958 return; 29959 } 29960 } 29961 /* 29962 * We probably should not send M_CTL message up to 29963 * raw socket. 29964 */ 29965 if (mctl_present) 29966 freeb(first_mp); 29967 29968 /* Initiate IPPF processing here if needed. */ 29969 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29970 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29971 ip_process(IPP_LOCAL_IN, &mp, 29972 recv_ill->ill_phyint->phyint_ifindex); 29973 if (mp == NULL) { 29974 CONN_DEC_REF(connp); 29975 return; 29976 } 29977 } 29978 29979 if (connp->conn_recvif || connp->conn_recvslla || 29980 ((connp->conn_ip_recvpktinfo || 29981 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29982 (flags & IP_FF_IPINFO))) { 29983 int in_flags = 0; 29984 29985 /* 29986 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29987 * IPF_RECVIF. 29988 */ 29989 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29990 in_flags = IPF_RECVIF; 29991 } 29992 if (connp->conn_recvslla) { 29993 in_flags |= IPF_RECVSLLA; 29994 } 29995 if (isv4) { 29996 mp = ip_add_info(mp, recv_ill, in_flags, 29997 IPCL_ZONEID(connp), ipst); 29998 } else { 29999 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 30000 if (mp == NULL) { 30001 BUMP_MIB(recv_ill->ill_ip_mib, 30002 ipIfStatsInDiscards); 30003 CONN_DEC_REF(connp); 30004 return; 30005 } 30006 } 30007 } 30008 30009 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 30010 /* 30011 * We are sending the IPSEC_IN message also up. Refer 30012 * to comments above this function. 30013 */ 30014 putnext(rq, mp); 30015 CONN_DEC_REF(connp); 30016 } 30017 30018 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 30019 { \ 30020 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 30021 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 30022 } 30023 /* 30024 * This function should be called only if all packet processing 30025 * including fragmentation is complete. Callers of this function 30026 * must set mp->b_prev to one of these values: 30027 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 30028 * prior to handing over the mp as first argument to this function. 30029 * 30030 * If the ire passed by caller is incomplete, this function 30031 * queues the packet and if necessary, sends ARP request and bails. 30032 * If the ire passed is fully resolved, we simply prepend 30033 * the link-layer header to the packet, do ipsec hw acceleration 30034 * work if necessary, and send the packet out on the wire. 30035 * 30036 * NOTE: IPSEC will only call this function with fully resolved 30037 * ires if hw acceleration is involved. 30038 * TODO list : 30039 * a Handle M_MULTIDATA so that 30040 * tcp_multisend->tcp_multisend_data can 30041 * call ip_xmit_v4 directly 30042 * b Handle post-ARP work for fragments so that 30043 * ip_wput_frag can call this function. 30044 */ 30045 ipxmit_state_t 30046 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 30047 { 30048 nce_t *arpce; 30049 queue_t *q; 30050 int ill_index; 30051 mblk_t *nxt_mp, *first_mp; 30052 boolean_t xmit_drop = B_FALSE; 30053 ip_proc_t proc; 30054 ill_t *out_ill; 30055 int pkt_len; 30056 30057 arpce = ire->ire_nce; 30058 ASSERT(arpce != NULL); 30059 30060 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 30061 30062 mutex_enter(&arpce->nce_lock); 30063 switch (arpce->nce_state) { 30064 case ND_REACHABLE: 30065 /* If there are other queued packets, queue this packet */ 30066 if (arpce->nce_qd_mp != NULL) { 30067 if (mp != NULL) 30068 nce_queue_mp_common(arpce, mp, B_FALSE); 30069 mp = arpce->nce_qd_mp; 30070 } 30071 arpce->nce_qd_mp = NULL; 30072 mutex_exit(&arpce->nce_lock); 30073 30074 /* 30075 * Flush the queue. In the common case, where the 30076 * ARP is already resolved, it will go through the 30077 * while loop only once. 30078 */ 30079 while (mp != NULL) { 30080 30081 nxt_mp = mp->b_next; 30082 mp->b_next = NULL; 30083 ASSERT(mp->b_datap->db_type != M_CTL); 30084 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 30085 /* 30086 * This info is needed for IPQOS to do COS marking 30087 * in ip_wput_attach_llhdr->ip_process. 30088 */ 30089 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 30090 mp->b_prev = NULL; 30091 30092 /* set up ill index for outbound qos processing */ 30093 out_ill = ire->ire_ipif->ipif_ill; 30094 ill_index = out_ill->ill_phyint->phyint_ifindex; 30095 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 30096 ill_index); 30097 if (first_mp == NULL) { 30098 xmit_drop = B_TRUE; 30099 BUMP_MIB(out_ill->ill_ip_mib, 30100 ipIfStatsOutDiscards); 30101 goto next_mp; 30102 } 30103 /* non-ipsec hw accel case */ 30104 if (io == NULL || !io->ipsec_out_accelerated) { 30105 /* send it */ 30106 q = ire->ire_stq; 30107 if (proc == IPP_FWD_OUT) { 30108 UPDATE_IB_PKT_COUNT(ire); 30109 } else { 30110 UPDATE_OB_PKT_COUNT(ire); 30111 } 30112 ire->ire_last_used_time = lbolt; 30113 30114 if (flow_ctl_enabled || canputnext(q)) { 30115 if (proc == IPP_FWD_OUT) { 30116 BUMP_MIB(out_ill->ill_ip_mib, 30117 ipIfStatsHCOutForwDatagrams); 30118 } 30119 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 30120 pkt_len); 30121 30122 putnext(q, first_mp); 30123 } else { 30124 BUMP_MIB(out_ill->ill_ip_mib, 30125 ipIfStatsOutDiscards); 30126 xmit_drop = B_TRUE; 30127 freemsg(first_mp); 30128 } 30129 } else { 30130 /* 30131 * Safety Pup says: make sure this 30132 * is going to the right interface! 30133 */ 30134 ill_t *ill1 = 30135 (ill_t *)ire->ire_stq->q_ptr; 30136 int ifindex = 30137 ill1->ill_phyint->phyint_ifindex; 30138 if (ifindex != 30139 io->ipsec_out_capab_ill_index) { 30140 xmit_drop = B_TRUE; 30141 freemsg(mp); 30142 } else { 30143 UPDATE_IP_MIB_OB_COUNTERS(ill1, 30144 pkt_len); 30145 ipsec_hw_putnext(ire->ire_stq, mp); 30146 } 30147 } 30148 next_mp: 30149 mp = nxt_mp; 30150 } /* while (mp != NULL) */ 30151 if (xmit_drop) 30152 return (SEND_FAILED); 30153 else 30154 return (SEND_PASSED); 30155 30156 case ND_INITIAL: 30157 case ND_INCOMPLETE: 30158 30159 /* 30160 * While we do send off packets to dests that 30161 * use fully-resolved CGTP routes, we do not 30162 * handle unresolved CGTP routes. 30163 */ 30164 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 30165 ASSERT(io == NULL || !io->ipsec_out_accelerated); 30166 30167 if (mp != NULL) { 30168 /* queue the packet */ 30169 nce_queue_mp_common(arpce, mp, B_FALSE); 30170 } 30171 30172 if (arpce->nce_state == ND_INCOMPLETE) { 30173 mutex_exit(&arpce->nce_lock); 30174 DTRACE_PROBE3(ip__xmit__incomplete, 30175 (ire_t *), ire, (mblk_t *), mp, 30176 (ipsec_out_t *), io); 30177 return (LOOKUP_IN_PROGRESS); 30178 } 30179 30180 arpce->nce_state = ND_INCOMPLETE; 30181 mutex_exit(&arpce->nce_lock); 30182 /* 30183 * Note that ire_add() (called from ire_forward()) 30184 * holds a ref on the ire until ARP is completed. 30185 */ 30186 30187 ire_arpresolve(ire, ire_to_ill(ire)); 30188 return (LOOKUP_IN_PROGRESS); 30189 default: 30190 ASSERT(0); 30191 mutex_exit(&arpce->nce_lock); 30192 return (LLHDR_RESLV_FAILED); 30193 } 30194 } 30195 30196 #undef UPDATE_IP_MIB_OB_COUNTERS 30197 30198 /* 30199 * Return B_TRUE if the buffers differ in length or content. 30200 * This is used for comparing extension header buffers. 30201 * Note that an extension header would be declared different 30202 * even if all that changed was the next header value in that header i.e. 30203 * what really changed is the next extension header. 30204 */ 30205 boolean_t 30206 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 30207 uint_t blen) 30208 { 30209 if (!b_valid) 30210 blen = 0; 30211 30212 if (alen != blen) 30213 return (B_TRUE); 30214 if (alen == 0) 30215 return (B_FALSE); /* Both zero length */ 30216 return (bcmp(abuf, bbuf, alen)); 30217 } 30218 30219 /* 30220 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 30221 * Return B_FALSE if memory allocation fails - don't change any state! 30222 */ 30223 boolean_t 30224 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30225 const void *src, uint_t srclen) 30226 { 30227 void *dst; 30228 30229 if (!src_valid) 30230 srclen = 0; 30231 30232 ASSERT(*dstlenp == 0); 30233 if (src != NULL && srclen != 0) { 30234 dst = mi_alloc(srclen, BPRI_MED); 30235 if (dst == NULL) 30236 return (B_FALSE); 30237 } else { 30238 dst = NULL; 30239 } 30240 if (*dstp != NULL) 30241 mi_free(*dstp); 30242 *dstp = dst; 30243 *dstlenp = dst == NULL ? 0 : srclen; 30244 return (B_TRUE); 30245 } 30246 30247 /* 30248 * Replace what is in *dst, *dstlen with the source. 30249 * Assumes ip_allocbuf has already been called. 30250 */ 30251 void 30252 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30253 const void *src, uint_t srclen) 30254 { 30255 if (!src_valid) 30256 srclen = 0; 30257 30258 ASSERT(*dstlenp == srclen); 30259 if (src != NULL && srclen != 0) 30260 bcopy(src, *dstp, srclen); 30261 } 30262 30263 /* 30264 * Free the storage pointed to by the members of an ip6_pkt_t. 30265 */ 30266 void 30267 ip6_pkt_free(ip6_pkt_t *ipp) 30268 { 30269 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30270 30271 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30272 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30273 ipp->ipp_hopopts = NULL; 30274 ipp->ipp_hopoptslen = 0; 30275 } 30276 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30277 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30278 ipp->ipp_rtdstopts = NULL; 30279 ipp->ipp_rtdstoptslen = 0; 30280 } 30281 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30282 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30283 ipp->ipp_dstopts = NULL; 30284 ipp->ipp_dstoptslen = 0; 30285 } 30286 if (ipp->ipp_fields & IPPF_RTHDR) { 30287 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30288 ipp->ipp_rthdr = NULL; 30289 ipp->ipp_rthdrlen = 0; 30290 } 30291 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30292 IPPF_RTHDR); 30293 } 30294