1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/stream.h> 31 #include <sys/dlpi.h> 32 #include <sys/stropts.h> 33 #include <sys/sysmacros.h> 34 #include <sys/strsubr.h> 35 #include <sys/strlog.h> 36 #include <sys/strsun.h> 37 #include <sys/zone.h> 38 #define _SUN_TPI_VERSION 2 39 #include <sys/tihdr.h> 40 #include <sys/xti_inet.h> 41 #include <sys/ddi.h> 42 #include <sys/sunddi.h> 43 #include <sys/cmn_err.h> 44 #include <sys/debug.h> 45 #include <sys/kobj.h> 46 #include <sys/modctl.h> 47 #include <sys/atomic.h> 48 #include <sys/policy.h> 49 #include <sys/priv.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <net/if.h> 58 #include <net/if_arp.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <net/if_dl.h> 63 64 #include <inet/common.h> 65 #include <inet/mi.h> 66 #include <inet/mib2.h> 67 #include <inet/nd.h> 68 #include <inet/arp.h> 69 #include <inet/snmpcom.h> 70 #include <inet/kstatcom.h> 71 72 #include <netinet/igmp_var.h> 73 #include <netinet/ip6.h> 74 #include <netinet/icmp6.h> 75 #include <netinet/sctp.h> 76 77 #include <inet/ip.h> 78 #include <inet/ip_impl.h> 79 #include <inet/ip6.h> 80 #include <inet/ip6_asp.h> 81 #include <inet/tcp.h> 82 #include <inet/tcp_impl.h> 83 #include <inet/ip_multi.h> 84 #include <inet/ip_if.h> 85 #include <inet/ip_ire.h> 86 #include <inet/ip_ftable.h> 87 #include <inet/ip_rts.h> 88 #include <inet/optcom.h> 89 #include <inet/ip_ndp.h> 90 #include <inet/ip_listutils.h> 91 #include <netinet/igmp.h> 92 #include <netinet/ip_mroute.h> 93 #include <inet/ipp_common.h> 94 95 #include <net/pfkeyv2.h> 96 #include <inet/ipsec_info.h> 97 #include <inet/sadb.h> 98 #include <inet/ipsec_impl.h> 99 #include <sys/iphada.h> 100 #include <inet/tun.h> 101 #include <inet/ipdrop.h> 102 103 #include <sys/ethernet.h> 104 #include <net/if_types.h> 105 #include <sys/cpuvar.h> 106 107 #include <ipp/ipp.h> 108 #include <ipp/ipp_impl.h> 109 #include <ipp/ipgpc/ipgpc.h> 110 111 #include <sys/multidata.h> 112 #include <sys/pattr.h> 113 114 #include <inet/ipclassifier.h> 115 #include <inet/sctp_ip.h> 116 #include <inet/sctp/sctp_impl.h> 117 #include <inet/udp_impl.h> 118 119 #include <sys/tsol/label.h> 120 #include <sys/tsol/tnet.h> 121 122 #include <rpc/pmap_prot.h> 123 124 /* 125 * Values for squeue switch: 126 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 127 * IP_SQUEUE_ENTER: squeue_enter 128 * IP_SQUEUE_FILL: squeue_fill 129 */ 130 int ip_squeue_enter = 2; 131 squeue_func_t ip_input_proc; 132 /* 133 * IP statistics. 134 */ 135 #define IP_STAT(x) (ip_statistics.x.value.ui64++) 136 #define IP_STAT_UPDATE(x, n) (ip_statistics.x.value.ui64 += (n)) 137 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 138 139 typedef struct ip_stat { 140 kstat_named_t ipsec_fanout_proto; 141 kstat_named_t ip_udp_fannorm; 142 kstat_named_t ip_udp_fanmb; 143 kstat_named_t ip_udp_fanothers; 144 kstat_named_t ip_udp_fast_path; 145 kstat_named_t ip_udp_slow_path; 146 kstat_named_t ip_udp_input_err; 147 kstat_named_t ip_tcppullup; 148 kstat_named_t ip_tcpoptions; 149 kstat_named_t ip_multipkttcp; 150 kstat_named_t ip_tcp_fast_path; 151 kstat_named_t ip_tcp_slow_path; 152 kstat_named_t ip_tcp_input_error; 153 kstat_named_t ip_db_ref; 154 kstat_named_t ip_notaligned1; 155 kstat_named_t ip_notaligned2; 156 kstat_named_t ip_multimblk3; 157 kstat_named_t ip_multimblk4; 158 kstat_named_t ip_ipoptions; 159 kstat_named_t ip_classify_fail; 160 kstat_named_t ip_opt; 161 kstat_named_t ip_udp_rput_local; 162 kstat_named_t ipsec_proto_ahesp; 163 kstat_named_t ip_conn_flputbq; 164 kstat_named_t ip_conn_walk_drain; 165 kstat_named_t ip_out_sw_cksum; 166 kstat_named_t ip_in_sw_cksum; 167 kstat_named_t ip_trash_ire_reclaim_calls; 168 kstat_named_t ip_trash_ire_reclaim_success; 169 kstat_named_t ip_ire_arp_timer_expired; 170 kstat_named_t ip_ire_redirect_timer_expired; 171 kstat_named_t ip_ire_pmtu_timer_expired; 172 kstat_named_t ip_input_multi_squeue; 173 kstat_named_t ip_tcp_in_full_hw_cksum_err; 174 kstat_named_t ip_tcp_in_part_hw_cksum_err; 175 kstat_named_t ip_tcp_in_sw_cksum_err; 176 kstat_named_t ip_tcp_out_sw_cksum_bytes; 177 kstat_named_t ip_udp_in_full_hw_cksum_err; 178 kstat_named_t ip_udp_in_part_hw_cksum_err; 179 kstat_named_t ip_udp_in_sw_cksum_err; 180 kstat_named_t ip_udp_out_sw_cksum_bytes; 181 kstat_named_t ip_frag_mdt_pkt_out; 182 kstat_named_t ip_frag_mdt_discarded; 183 kstat_named_t ip_frag_mdt_allocfail; 184 kstat_named_t ip_frag_mdt_addpdescfail; 185 kstat_named_t ip_frag_mdt_allocd; 186 } ip_stat_t; 187 188 static ip_stat_t ip_statistics = { 189 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 190 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 191 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 192 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 193 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 194 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 195 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 196 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 197 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 198 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 199 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 200 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 201 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 202 { "ip_db_ref", KSTAT_DATA_UINT64 }, 203 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 204 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 205 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 206 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 207 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 208 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 209 { "ip_opt", KSTAT_DATA_UINT64 }, 210 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 211 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 212 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 213 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 214 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 215 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 216 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 217 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 218 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 219 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 220 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 221 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 222 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 223 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 224 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 225 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 226 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 227 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 228 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 229 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 230 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 231 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 232 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 233 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 234 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 235 }; 236 237 static kstat_t *ip_kstat; 238 239 #define TCP6 "tcp6" 240 #define TCP "tcp" 241 #define SCTP "sctp" 242 #define SCTP6 "sctp6" 243 244 major_t TCP6_MAJ; 245 major_t TCP_MAJ; 246 major_t SCTP_MAJ; 247 major_t SCTP6_MAJ; 248 249 int ip_poll_normal_ms = 100; 250 int ip_poll_normal_ticks = 0; 251 252 /* 253 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 254 */ 255 256 struct listptr_s { 257 mblk_t *lp_head; /* pointer to the head of the list */ 258 mblk_t *lp_tail; /* pointer to the tail of the list */ 259 }; 260 261 typedef struct listptr_s listptr_t; 262 263 /* 264 * This is used by ip_snmp_get_mib2_ip_route_media and 265 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 266 */ 267 typedef struct iproutedata_s { 268 uint_t ird_idx; 269 listptr_t ird_route; /* ipRouteEntryTable */ 270 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 271 listptr_t ird_attrs; /* ipRouteAttributeTable */ 272 } iproutedata_t; 273 274 /* 275 * Cluster specific hooks. These should be NULL when booted as a non-cluster 276 */ 277 278 /* 279 * Hook functions to enable cluster networking 280 * On non-clustered systems these vectors must always be NULL. 281 * 282 * Hook function to Check ip specified ip address is a shared ip address 283 * in the cluster 284 * 285 */ 286 int (*cl_inet_isclusterwide)(uint8_t protocol, 287 sa_family_t addr_family, uint8_t *laddrp) = NULL; 288 289 /* 290 * Hook function to generate cluster wide ip fragment identifier 291 */ 292 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 293 uint8_t *laddrp, uint8_t *faddrp) = NULL; 294 295 /* 296 * Synchronization notes: 297 * 298 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 299 * MT level protection given by STREAMS. IP uses a combination of its own 300 * internal serialization mechanism and standard Solaris locking techniques. 301 * The internal serialization is per phyint (no IPMP) or per IPMP group. 302 * This is used to serialize plumbing operations, IPMP operations, certain 303 * multicast operations, most set ioctls, igmp/mld timers etc. 304 * 305 * Plumbing is a long sequence of operations involving message 306 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 307 * involved in plumbing operations. A natural model is to serialize these 308 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 309 * parallel without any interference. But various set ioctls on hme0 are best 310 * serialized. However if the system uses IPMP, the operations are easier if 311 * they are serialized on a per IPMP group basis since IPMP operations 312 * happen across ill's of a group. Thus the lowest common denominator is to 313 * serialize most set ioctls, multicast join/leave operations, IPMP operations 314 * igmp/mld timer operations, and processing of DLPI control messages received 315 * from drivers on a per IPMP group basis. If the system does not employ 316 * IPMP the serialization is on a per phyint basis. This serialization is 317 * provided by the ipsq_t and primitives operating on this. Details can 318 * be found in ip_if.c above the core primitives operating on ipsq_t. 319 * 320 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 321 * Simiarly lookup of an ire by a thread also returns a refheld ire. 322 * In addition ipif's and ill's referenced by the ire are also indirectly 323 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 324 * the ipif's address or netmask change as long as an ipif is refheld 325 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 326 * address of an ipif has to go through the ipsq_t. This ensures that only 327 * 1 such exclusive operation proceeds at any time on the ipif. It then 328 * deletes all ires associated with this ipif, and waits for all refcnts 329 * associated with this ipif to come down to zero. The address is changed 330 * only after the ipif has been quiesced. Then the ipif is brought up again. 331 * More details are described above the comment in ip_sioctl_flags. 332 * 333 * Packet processing is based mostly on IREs and are fully multi-threaded 334 * using standard Solaris MT techniques. 335 * 336 * There are explicit locks in IP to handle: 337 * - The ip_g_head list maintained by mi_open_link() and friends. 338 * 339 * - The reassembly data structures (one lock per hash bucket) 340 * 341 * - conn_lock is meant to protect conn_t fields. The fields actually 342 * protected by conn_lock are documented in the conn_t definition. 343 * 344 * - ire_lock to protect some of the fields of the ire, IRE tables 345 * (one lock per hash bucket). Refer to ip_ire.c for details. 346 * 347 * - ndp_g_lock and nce_lock for protecting NCEs. 348 * 349 * - ill_lock protects fields of the ill and ipif. Details in ip.h 350 * 351 * - ill_g_lock: This is a global reader/writer lock. Protects the following 352 * * The AVL tree based global multi list of all ills. 353 * * The linked list of all ipifs of an ill 354 * * The <ill-ipsq> mapping 355 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 356 * * The illgroup list threaded by ill_group_next. 357 * * <ill-phyint> association 358 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 359 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 360 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 361 * will all have to hold the ill_g_lock as writer for the actual duration 362 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 363 * may be found in the IPMP section. 364 * 365 * - ill_lock: This is a per ill mutex. 366 * It protects some members of the ill and is documented below. 367 * It also protects the <ill-ipsq> mapping 368 * It also protects the illgroup list threaded by ill_group_next. 369 * It also protects the <ill-phyint> assoc. 370 * It also protects the list of ipifs hanging off the ill. 371 * 372 * - ipsq_lock: This is a per ipsq_t mutex lock. 373 * This protects all the other members of the ipsq struct except 374 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 375 * 376 * - illgrp_lock: This is a per ill_group mutex lock. 377 * The only thing it protects is the illgrp_ill_schednext member of ill_group 378 * which dictates which is the next ill in an ill_group that is to be chosen 379 * for sending outgoing packets, through creation of an IRE_CACHE that 380 * references this ill. 381 * 382 * - phyint_lock: This is a per phyint mutex lock. Protects just the 383 * phyint_flags 384 * 385 * - ip_g_nd_lock: This is a global reader/writer lock. 386 * Any call to nd_load to load a new parameter to the ND table must hold the 387 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 388 * as reader. 389 * 390 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 391 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 392 * uniqueness check also done atomically. 393 * 394 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 395 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 396 * as a writer when adding or deleting elements from these lists, and 397 * as a reader when walking these lists to send a SADB update to the 398 * IPsec capable ills. 399 * 400 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 401 * group list linked by ill_usesrc_grp_next. It also protects the 402 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 403 * group is being added or deleted. This lock is taken as a reader when 404 * walking the list/group(eg: to get the number of members in a usesrc group). 405 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 406 * field is changing state i.e from NULL to non-NULL or vice-versa. For 407 * example, it is not necessary to take this lock in the initial portion 408 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 409 * ip_sioctl_flags since the these operations are executed exclusively and 410 * that ensures that the "usesrc group state" cannot change. The "usesrc 411 * group state" change can happen only in the latter part of 412 * ip_sioctl_slifusesrc and in ill_delete. 413 * 414 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 415 * 416 * To change the <ill-phyint> association, the ill_g_lock must be held 417 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 418 * must be held. 419 * 420 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 421 * and the ill_lock of the ill in question must be held. 422 * 423 * To change the <ill-illgroup> association the ill_g_lock must be held as 424 * writer and the ill_lock of the ill in question must be held. 425 * 426 * To add or delete an ipif from the list of ipifs hanging off the ill, 427 * ill_g_lock (writer) and ill_lock must be held and the thread must be 428 * a writer on the associated ipsq,. 429 * 430 * To add or delete an ill to the system, the ill_g_lock must be held as 431 * writer and the thread must be a writer on the associated ipsq. 432 * 433 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 434 * must be a writer on the associated ipsq. 435 * 436 * Lock hierarchy 437 * 438 * Some lock hierarchy scenarios are listed below. 439 * 440 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 441 * ill_g_lock -> illgrp_lock -> ill_lock 442 * ill_g_lock -> ill_lock(s) -> phyint_lock 443 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 444 * ill_g_lock -> ip_addr_avail_lock 445 * conn_lock -> irb_lock -> ill_lock -> ire_lock 446 * ill_g_lock -> ip_g_nd_lock 447 * 448 * When more than 1 ill lock is needed to be held, all ill lock addresses 449 * are sorted on address and locked starting from highest addressed lock 450 * downward. 451 * 452 * Mobile-IP scenarios 453 * 454 * irb_lock -> ill_lock -> ire_mrtun_lock 455 * irb_lock -> ill_lock -> ire_srcif_table_lock 456 * 457 * IPsec scenarios 458 * 459 * ipsa_lock -> ill_g_lock -> ill_lock 460 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 461 * ipsec_capab_ills_lock -> ipsa_lock 462 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 463 * 464 * Trusted Solaris scenarios 465 * 466 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 467 * igsa_lock -> gcdb_lock 468 * gcgrp_rwlock -> ire_lock 469 * gcgrp_rwlock -> gcdb_lock 470 * 471 * 472 * Routing/forwarding table locking notes: 473 * 474 * Lock acquisition order: Radix tree lock, irb_lock. 475 * Requirements: 476 * i. Walker must not hold any locks during the walker callback. 477 * ii Walker must not see a truncated tree during the walk because of any node 478 * deletion. 479 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 480 * in many places in the code to walk the irb list. Thus even if all the 481 * ires in a bucket have been deleted, we still can't free the radix node 482 * until the ires have actually been inactive'd (freed). 483 * 484 * Tree traversal - Need to hold the global tree lock in read mode. 485 * Before dropping the global tree lock, need to either increment the ire_refcnt 486 * to ensure that the radix node can't be deleted. 487 * 488 * Tree add - Need to hold the global tree lock in write mode to add a 489 * radix node. To prevent the node from being deleted, increment the 490 * irb_refcnt, after the node is added to the tree. The ire itself is 491 * added later while holding the irb_lock, but not the tree lock. 492 * 493 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 494 * All associated ires must be inactive (i.e. freed), and irb_refcnt 495 * must be zero. 496 * 497 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 498 * global tree lock (read mode) for traversal. 499 * 500 * IPSEC notes : 501 * 502 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 503 * in front of the actual packet. For outbound datagrams, the M_CTL 504 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 505 * information used by the IPSEC code for applying the right level of 506 * protection. The information initialized by IP in the ipsec_out_t 507 * is determined by the per-socket policy or global policy in the system. 508 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 509 * ipsec_info.h) which starts out with nothing in it. It gets filled 510 * with the right information if it goes through the AH/ESP code, which 511 * happens if the incoming packet is secure. The information initialized 512 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 513 * the policy requirements needed by per-socket policy or global policy 514 * is met or not. 515 * 516 * If there is both per-socket policy (set using setsockopt) and there 517 * is also global policy match for the 5 tuples of the socket, 518 * ipsec_override_policy() makes the decision of which one to use. 519 * 520 * For fully connected sockets i.e dst, src [addr, port] is known, 521 * conn_policy_cached is set indicating that policy has been cached. 522 * conn_in_enforce_policy may or may not be set depending on whether 523 * there is a global policy match or per-socket policy match. 524 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 525 * Once the right policy is set on the conn_t, policy cannot change for 526 * this socket. This makes life simpler for TCP (UDP ?) where 527 * re-transmissions go out with the same policy. For symmetry, policy 528 * is cached for fully connected UDP sockets also. Thus if policy is cached, 529 * it also implies that policy is latched i.e policy cannot change 530 * on these sockets. As we have the right policy on the conn, we don't 531 * have to lookup global policy for every outbound and inbound datagram 532 * and thus serving as an optimization. Note that a global policy change 533 * does not affect fully connected sockets if they have policy. If fully 534 * connected sockets did not have any policy associated with it, global 535 * policy change may affect them. 536 * 537 * IP Flow control notes: 538 * 539 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 540 * cannot be sent down to the driver by IP, because of a canput failure, IP 541 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 542 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 543 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 544 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 545 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 546 * the queued messages, and removes the conn from the drain list, if all 547 * messages were drained. It also qenables the next conn in the drain list to 548 * continue the drain process. 549 * 550 * In reality the drain list is not a single list, but a configurable number 551 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 552 * list. If the ip_wsrv of the next qenabled conn does not run, because the 553 * stream closes, ip_close takes responsibility to qenable the next conn in 554 * the drain list. The directly called ip_wput path always does a putq, if 555 * it cannot putnext. Thus synchronization problems are handled between 556 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 557 * functions that manipulate this drain list. Furthermore conn_drain_insert 558 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 559 * running on a queue at any time. conn_drain_tail can be simultaneously called 560 * from both ip_wsrv and ip_close. 561 * 562 * IPQOS notes: 563 * 564 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 565 * and IPQoS modules. IPPF includes hooks in IP at different control points 566 * (callout positions) which direct packets to IPQoS modules for policy 567 * processing. Policies, if present, are global. 568 * 569 * The callout positions are located in the following paths: 570 * o local_in (packets destined for this host) 571 * o local_out (packets orginating from this host ) 572 * o fwd_in (packets forwarded by this m/c - inbound) 573 * o fwd_out (packets forwarded by this m/c - outbound) 574 * Hooks at these callout points can be enabled/disabled using the ndd variable 575 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 576 * By default all the callout positions are enabled. 577 * 578 * Outbound (local_out) 579 * Hooks are placed in ip_wput_ire and ipsec_out_process. 580 * 581 * Inbound (local_in) 582 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 583 * TCP and UDP fanout routines. 584 * 585 * Forwarding (in and out) 586 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 587 * 588 * IP Policy Framework processing (IPPF processing) 589 * Policy processing for a packet is initiated by ip_process, which ascertains 590 * that the classifier (ipgpc) is loaded and configured, failing which the 591 * packet resumes normal processing in IP. If the clasifier is present, the 592 * packet is acted upon by one or more IPQoS modules (action instances), per 593 * filters configured in ipgpc and resumes normal IP processing thereafter. 594 * An action instance can drop a packet in course of its processing. 595 * 596 * A boolean variable, ip_policy, is used in all the fanout routines that can 597 * invoke ip_process for a packet. This variable indicates if the packet should 598 * to be sent for policy processing. The variable is set to B_TRUE by default, 599 * i.e. when the routines are invoked in the normal ip procesing path for a 600 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 601 * ip_policy is set to B_FALSE for all the routines called in these two 602 * functions because, in the former case, we don't process loopback traffic 603 * currently while in the latter, the packets have already been processed in 604 * icmp_inbound. 605 * 606 * Zones notes: 607 * 608 * The partitioning rules for networking are as follows: 609 * 1) Packets coming from a zone must have a source address belonging to that 610 * zone. 611 * 2) Packets coming from a zone can only be sent on a physical interface on 612 * which the zone has an IP address. 613 * 3) Between two zones on the same machine, packet delivery is only allowed if 614 * there's a matching route for the destination and zone in the forwarding 615 * table. 616 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 617 * different zones can bind to the same port with the wildcard address 618 * (INADDR_ANY). 619 * 620 * The granularity of interface partitioning is at the logical interface level. 621 * Therefore, every zone has its own IP addresses, and incoming packets can be 622 * attributed to a zone unambiguously. A logical interface is placed into a zone 623 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 624 * structure. Rule (1) is implemented by modifying the source address selection 625 * algorithm so that the list of eligible addresses is filtered based on the 626 * sending process zone. 627 * 628 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 629 * across all zones, depending on their type. Here is the break-up: 630 * 631 * IRE type Shared/exclusive 632 * -------- ---------------- 633 * IRE_BROADCAST Exclusive 634 * IRE_DEFAULT (default routes) Shared (*) 635 * IRE_LOCAL Exclusive (x) 636 * IRE_LOOPBACK Exclusive 637 * IRE_PREFIX (net routes) Shared (*) 638 * IRE_CACHE Exclusive 639 * IRE_IF_NORESOLVER (interface routes) Exclusive 640 * IRE_IF_RESOLVER (interface routes) Exclusive 641 * IRE_HOST (host routes) Shared (*) 642 * 643 * (*) A zone can only use a default or off-subnet route if the gateway is 644 * directly reachable from the zone, that is, if the gateway's address matches 645 * one of the zone's logical interfaces. 646 * 647 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 648 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 649 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 650 * address of the zone itself (the destination). Since IRE_LOCAL is used 651 * for communication between zones, ip_wput_ire has special logic to set 652 * the right source address when sending using an IRE_LOCAL. 653 * 654 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 655 * ire_cache_lookup restricts loopback using an IRE_LOCAL 656 * between zone to the case when L2 would have conceptually looped the packet 657 * back, i.e. the loopback which is required since neither Ethernet drivers 658 * nor Ethernet hardware loops them back. This is the case when the normal 659 * routes (ignoring IREs with different zoneids) would send out the packet on 660 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 661 * associated. 662 * 663 * Multiple zones can share a common broadcast address; typically all zones 664 * share the 255.255.255.255 address. Incoming as well as locally originated 665 * broadcast packets must be dispatched to all the zones on the broadcast 666 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 667 * since some zones may not be on the 10.16.72/24 network. To handle this, each 668 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 669 * sent to every zone that has an IRE_BROADCAST entry for the destination 670 * address on the input ill, see conn_wantpacket(). 671 * 672 * Applications in different zones can join the same multicast group address. 673 * For IPv4, group memberships are per-logical interface, so they're already 674 * inherently part of a zone. For IPv6, group memberships are per-physical 675 * interface, so we distinguish IPv6 group memberships based on group address, 676 * interface and zoneid. In both cases, received multicast packets are sent to 677 * every zone for which a group membership entry exists. On IPv6 we need to 678 * check that the target zone still has an address on the receiving physical 679 * interface; it could have been removed since the application issued the 680 * IPV6_JOIN_GROUP. 681 */ 682 683 /* 684 * Squeue Fanout flags: 685 * 0: No fanout. 686 * 1: Fanout across all squeues 687 */ 688 boolean_t ip_squeue_fanout = 0; 689 690 /* 691 * Maximum dups allowed per packet. 692 */ 693 uint_t ip_max_frag_dups = 10; 694 695 #define IS_SIMPLE_IPH(ipha) \ 696 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 697 698 /* RFC1122 Conformance */ 699 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 700 701 #define ILL_MAX_NAMELEN LIFNAMSIZ 702 703 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 704 705 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 706 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 707 708 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t); 709 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 710 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 711 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 712 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 713 mblk_t *, int); 714 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 715 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 716 ill_t *, zoneid_t); 717 static void icmp_options_update(ipha_t *); 718 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t); 719 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 720 zoneid_t zoneid); 721 static mblk_t *icmp_pkt_err_ok(mblk_t *); 722 static void icmp_redirect(mblk_t *); 723 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t); 724 725 static void ip_arp_news(queue_t *, mblk_t *); 726 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *); 727 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 728 char *ip_dot_addr(ipaddr_t, char *); 729 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 730 int ip_close(queue_t *, int); 731 static char *ip_dot_saddr(uchar_t *, char *); 732 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 733 boolean_t, boolean_t, ill_t *, zoneid_t); 734 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 735 boolean_t, boolean_t, zoneid_t); 736 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 737 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 738 static void ip_lrput(queue_t *, mblk_t *); 739 ipaddr_t ip_massage_options(ipha_t *); 740 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 741 ipaddr_t ip_net_mask(ipaddr_t); 742 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *, 743 zoneid_t); 744 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 745 conn_t *, uint32_t, zoneid_t); 746 char *ip_nv_lookup(nv_t *, int); 747 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 748 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 749 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 750 static boolean_t ip_param_register(ipparam_t *, size_t, ipndp_t *, 751 size_t); 752 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 753 void ip_rput(queue_t *, mblk_t *); 754 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 755 void *dummy_arg); 756 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 757 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *); 758 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 759 ire_t *); 760 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *); 761 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 762 uint16_t *); 763 int ip_snmp_get(queue_t *, mblk_t *); 764 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *); 765 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *); 766 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *); 767 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *); 768 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *); 769 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *); 770 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *); 771 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *); 772 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *); 773 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *); 774 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *); 775 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *); 776 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *); 777 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *); 778 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *); 779 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *); 780 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 781 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 782 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 783 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 784 static boolean_t ip_source_routed(ipha_t *); 785 static boolean_t ip_source_route_included(ipha_t *); 786 787 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 788 zoneid_t); 789 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int); 790 static void ip_wput_local_options(ipha_t *); 791 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 792 zoneid_t); 793 794 static void conn_drain_init(void); 795 static void conn_drain_fini(void); 796 static void conn_drain_tail(conn_t *connp, boolean_t closing); 797 798 static void conn_walk_drain(void); 799 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 800 zoneid_t); 801 802 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 803 zoneid_t); 804 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 805 void *dummy_arg); 806 807 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 808 809 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 810 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 811 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 812 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 813 814 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 815 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 816 caddr_t, cred_t *); 817 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 818 caddr_t cp, cred_t *cr); 819 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 820 cred_t *); 821 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 822 caddr_t cp, cred_t *cr); 823 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 824 cred_t *); 825 static squeue_func_t ip_squeue_switch(int); 826 827 static void ip_kstat_init(void); 828 static void ip_kstat_fini(void); 829 static int ip_kstat_update(kstat_t *kp, int rw); 830 static void icmp_kstat_init(void); 831 static void icmp_kstat_fini(void); 832 static int icmp_kstat_update(kstat_t *kp, int rw); 833 834 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 835 836 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 837 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 838 839 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 840 ipha_t *, ill_t *, boolean_t); 841 842 timeout_id_t ip_ire_expire_id; /* IRE expiration timer. */ 843 static clock_t ip_ire_arp_time_elapsed; /* Time since IRE cache last flushed */ 844 static clock_t ip_ire_rd_time_elapsed; /* ... redirect IREs last flushed */ 845 static clock_t ip_ire_pmtu_time_elapsed; /* Time since path mtu increase */ 846 847 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 848 clock_t icmp_pkt_err_last = 0; /* Time since last icmp_pkt_err */ 849 uint_t icmp_pkt_err_sent = 0; /* Number of packets sent in burst */ 850 851 /* How long, in seconds, we allow frags to hang around. */ 852 #define IP_FRAG_TIMEOUT 60 853 854 time_t ip_g_frag_timeout = IP_FRAG_TIMEOUT; 855 clock_t ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 856 857 /* 858 * Threshold which determines whether MDT should be used when 859 * generating IP fragments; payload size must be greater than 860 * this threshold for MDT to take place. 861 */ 862 #define IP_WPUT_FRAG_MDT_MIN 32768 863 864 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 865 866 /* Protected by ip_mi_lock */ 867 static void *ip_g_head; /* Instance Data List Head */ 868 kmutex_t ip_mi_lock; /* Lock for list of instances */ 869 870 /* Only modified during _init and _fini thus no locking is needed. */ 871 caddr_t ip_g_nd; /* Named Dispatch List Head */ 872 873 874 static long ip_rput_pullups; 875 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 876 877 vmem_t *ip_minor_arena; 878 879 /* 880 * MIB-2 stuff for SNMP (both IP and ICMP) 881 */ 882 mib2_ip_t ip_mib; 883 mib2_icmp_t icmp_mib; 884 885 #ifdef DEBUG 886 uint32_t ipsechw_debug = 0; 887 #endif 888 889 kstat_t *ip_mibkp; /* kstat exporting ip_mib data */ 890 kstat_t *icmp_mibkp; /* kstat exporting icmp_mib data */ 891 892 uint_t loopback_packets = 0; 893 894 /* 895 * Multirouting/CGTP stuff 896 */ 897 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 898 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 899 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 900 /* Interval (in ms) between consecutive 'bad MTU' warnings */ 901 hrtime_t ip_multirt_log_interval = 1000; 902 /* Time since last warning issued. */ 903 static hrtime_t multirt_bad_mtu_last_time = 0; 904 905 kmutex_t ip_trash_timer_lock; 906 krwlock_t ip_g_nd_lock; 907 908 /* 909 * XXX following really should only be in a header. Would need more 910 * header and .c clean up first. 911 */ 912 extern optdb_obj_t ip_opt_obj; 913 914 ulong_t ip_squeue_enter_unbound = 0; 915 916 /* 917 * Named Dispatch Parameter Table. 918 * All of these are alterable, within the min/max values given, at run time. 919 */ 920 static ipparam_t lcl_param_arr[] = { 921 /* min max value name */ 922 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 923 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 924 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 925 { 0, 1, 0, "ip_respond_to_timestamp"}, 926 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 927 { 0, 1, 1, "ip_send_redirects"}, 928 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 929 { 0, 10, 0, "ip_debug"}, 930 { 0, 10, 0, "ip_mrtdebug"}, 931 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 932 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 933 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 934 { 1, 255, 255, "ip_def_ttl" }, 935 { 0, 1, 0, "ip_forward_src_routed"}, 936 { 0, 256, 32, "ip_wroff_extra" }, 937 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 938 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 939 { 0, 1, 1, "ip_path_mtu_discovery" }, 940 { 0, 240, 30, "ip_ignore_delete_time" }, 941 { 0, 1, 0, "ip_ignore_redirect" }, 942 { 0, 1, 1, "ip_output_queue" }, 943 { 1, 254, 1, "ip_broadcast_ttl" }, 944 { 0, 99999, 100, "ip_icmp_err_interval" }, 945 { 1, 99999, 10, "ip_icmp_err_burst" }, 946 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 947 { 0, 1, 0, "ip_strict_dst_multihoming" }, 948 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 949 { 0, 1, 0, "ipsec_override_persocket_policy" }, 950 { 0, 1, 1, "icmp_accept_clear_messages" }, 951 { 0, 1, 1, "igmp_accept_clear_messages" }, 952 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 953 "ip_ndp_delay_first_probe_time"}, 954 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 955 "ip_ndp_max_unicast_solicit"}, 956 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 957 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 958 { 0, 1, 0, "ip6_forward_src_routed"}, 959 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 960 { 0, 1, 1, "ip6_send_redirects"}, 961 { 0, 1, 0, "ip6_ignore_redirect" }, 962 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 963 964 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 965 966 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 967 968 { 0, 1, 1, "pim_accept_clear_messages" }, 969 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 970 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 971 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 972 { 0, 15, 0, "ip_policy_mask" }, 973 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 974 { 0, 255, 1, "ip_multirt_ttl" }, 975 { 0, 1, 1, "ip_multidata_outbound" }, 976 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 977 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 978 { 0, 1000, 1, "ip_max_temp_defend" }, 979 { 0, 1000, 3, "ip_max_defend" }, 980 { 0, 999999, 30, "ip_defend_interval" }, 981 { 0, 3600000, 300000, "ip_dup_recovery" }, 982 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 983 #ifdef DEBUG 984 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 985 #endif 986 }; 987 988 ipparam_t *ip_param_arr = lcl_param_arr; 989 990 /* Extended NDP table */ 991 static ipndp_t lcl_ndp_arr[] = { 992 /* getf setf data name */ 993 { ip_param_generic_get, ip_forward_set, (caddr_t)&ip_g_forward, 994 "ip_forwarding" }, 995 { ip_param_generic_get, ip_forward_set, (caddr_t)&ipv6_forward, 996 "ip6_forwarding" }, 997 { ip_ill_report, NULL, NULL, 998 "ip_ill_status" }, 999 { ip_ipif_report, NULL, NULL, 1000 "ip_ipif_status" }, 1001 { ip_ire_report, NULL, NULL, 1002 "ipv4_ire_status" }, 1003 { ip_ire_report_mrtun, NULL, NULL, 1004 "ipv4_mrtun_ire_status" }, 1005 { ip_ire_report_srcif, NULL, NULL, 1006 "ipv4_srcif_ire_status" }, 1007 { ip_ire_report_v6, NULL, NULL, 1008 "ipv6_ire_status" }, 1009 { ip_conn_report, NULL, NULL, 1010 "ip_conn_status" }, 1011 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 1012 "ip_rput_pullups" }, 1013 { ndp_report, NULL, NULL, 1014 "ip_ndp_cache_report" }, 1015 { ip_srcid_report, NULL, NULL, 1016 "ip_srcid_status" }, 1017 { ip_param_generic_get, ip_squeue_profile_set, 1018 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 1019 { ip_param_generic_get, ip_squeue_bind_set, 1020 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 1021 { ip_param_generic_get, ip_input_proc_set, 1022 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 1023 { ip_param_generic_get, ip_int_set, 1024 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 1025 { ip_cgtp_filter_get, ip_cgtp_filter_set, (caddr_t)&ip_cgtp_filter, 1026 "ip_cgtp_filter" }, 1027 { ip_param_generic_get, ip_int_set, 1028 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" } 1029 }; 1030 1031 /* 1032 * ip_g_forward controls IP forwarding. It takes two values: 1033 * 0: IP_FORWARD_NEVER Don't forward packets ever. 1034 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 1035 * 1036 * RFC1122 says there must be a configuration switch to control forwarding, 1037 * but that the default MUST be to not forward packets ever. Implicit 1038 * control based on configuration of multiple interfaces MUST NOT be 1039 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 1040 * and, in fact, it was the default. That capability is now provided in the 1041 * /etc/rc2.d/S69inet script. 1042 */ 1043 int ip_g_forward = IP_FORWARD_DEFAULT; 1044 1045 /* It also has an IPv6 counterpart. */ 1046 1047 int ipv6_forward = IP_FORWARD_DEFAULT; 1048 1049 /* 1050 * Table of IP ioctls encoding the various properties of the ioctl and 1051 * indexed based on the last byte of the ioctl command. Occasionally there 1052 * is a clash, and there is more than 1 ioctl with the same last byte. 1053 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1054 * ioctls are encoded in the misc table. An entry in the ndx table is 1055 * retrieved by indexing on the last byte of the ioctl command and comparing 1056 * the ioctl command with the value in the ndx table. In the event of a 1057 * mismatch the misc table is then searched sequentially for the desired 1058 * ioctl command. 1059 * 1060 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1061 */ 1062 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1063 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1064 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 1074 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1075 MISC_CMD, ip_siocaddrt, NULL }, 1076 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1077 MISC_CMD, ip_siocdelrt, NULL }, 1078 1079 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1080 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1081 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1082 IF_CMD, ip_sioctl_get_addr, NULL }, 1083 1084 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1085 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1086 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1087 IPI_GET_CMD | IPI_REPL, 1088 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1089 1090 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1091 IPI_PRIV | IPI_WR | IPI_REPL, 1092 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1093 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1094 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1095 IF_CMD, ip_sioctl_get_flags, NULL }, 1096 1097 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 1100 /* copyin size cannot be coded for SIOCGIFCONF */ 1101 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1102 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1103 1104 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1105 IF_CMD, ip_sioctl_mtu, NULL }, 1106 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1107 IF_CMD, ip_sioctl_get_mtu, NULL }, 1108 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1109 IPI_GET_CMD | IPI_REPL, 1110 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1111 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1112 IF_CMD, ip_sioctl_brdaddr, NULL }, 1113 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1114 IPI_GET_CMD | IPI_REPL, 1115 IF_CMD, ip_sioctl_get_netmask, NULL }, 1116 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1117 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1118 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1119 IPI_GET_CMD | IPI_REPL, 1120 IF_CMD, ip_sioctl_get_metric, NULL }, 1121 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1122 IF_CMD, ip_sioctl_metric, NULL }, 1123 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 1125 /* See 166-168 below for extended SIOC*XARP ioctls */ 1126 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1127 MISC_CMD, ip_sioctl_arp, NULL }, 1128 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1129 MISC_CMD, ip_sioctl_arp, NULL }, 1130 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1131 MISC_CMD, ip_sioctl_arp, NULL }, 1132 1133 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1134 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1135 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1136 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1137 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1138 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1153 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1154 1155 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1156 MISC_CMD, if_unitsel, if_unitsel_restart }, 1157 1158 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1159 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1160 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1161 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1162 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1163 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1164 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1165 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1166 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1167 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1168 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1169 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1170 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 1177 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1178 IPI_PRIV | IPI_WR | IPI_MODOK, 1179 IF_CMD, ip_sioctl_sifname, NULL }, 1180 1181 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1182 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1183 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1188 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1189 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1190 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1191 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1192 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1193 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1194 1195 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1196 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1197 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1198 IF_CMD, ip_sioctl_get_muxid, NULL }, 1199 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1200 IPI_PRIV | IPI_WR | IPI_REPL, 1201 IF_CMD, ip_sioctl_muxid, NULL }, 1202 1203 /* Both if and lif variants share same func */ 1204 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1205 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1206 /* Both if and lif variants share same func */ 1207 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1208 IPI_PRIV | IPI_WR | IPI_REPL, 1209 IF_CMD, ip_sioctl_slifindex, NULL }, 1210 1211 /* copyin size cannot be coded for SIOCGIFCONF */ 1212 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1213 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1214 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1215 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1216 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1217 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1218 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1219 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1220 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1221 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1222 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1223 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1224 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1225 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1226 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1227 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1228 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1229 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1230 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1231 1232 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1233 IPI_PRIV | IPI_WR | IPI_REPL, 1234 LIF_CMD, ip_sioctl_removeif, 1235 ip_sioctl_removeif_restart }, 1236 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1237 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1238 LIF_CMD, ip_sioctl_addif, NULL }, 1239 #define SIOCLIFADDR_NDX 112 1240 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1241 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1242 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1243 IPI_GET_CMD | IPI_REPL, 1244 LIF_CMD, ip_sioctl_get_addr, NULL }, 1245 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1246 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1247 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1248 IPI_GET_CMD | IPI_REPL, 1249 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1250 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1251 IPI_PRIV | IPI_WR | IPI_REPL, 1252 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1253 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1254 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1255 LIF_CMD, ip_sioctl_get_flags, NULL }, 1256 1257 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1258 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1259 1260 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1261 ip_sioctl_get_lifconf, NULL }, 1262 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1263 LIF_CMD, ip_sioctl_mtu, NULL }, 1264 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1265 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1266 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1267 IPI_GET_CMD | IPI_REPL, 1268 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1269 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1270 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1271 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1272 IPI_GET_CMD | IPI_REPL, 1273 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1274 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1275 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1276 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1277 IPI_GET_CMD | IPI_REPL, 1278 LIF_CMD, ip_sioctl_get_metric, NULL }, 1279 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1280 LIF_CMD, ip_sioctl_metric, NULL }, 1281 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1282 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1283 LIF_CMD, ip_sioctl_slifname, 1284 ip_sioctl_slifname_restart }, 1285 1286 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1287 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1288 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1289 IPI_GET_CMD | IPI_REPL, 1290 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1291 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1292 IPI_PRIV | IPI_WR | IPI_REPL, 1293 LIF_CMD, ip_sioctl_muxid, NULL }, 1294 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1295 IPI_GET_CMD | IPI_REPL, 1296 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1297 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1298 IPI_PRIV | IPI_WR | IPI_REPL, 1299 LIF_CMD, ip_sioctl_slifindex, 0 }, 1300 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1301 LIF_CMD, ip_sioctl_token, NULL }, 1302 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1303 IPI_GET_CMD | IPI_REPL, 1304 LIF_CMD, ip_sioctl_get_token, NULL }, 1305 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1306 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1307 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1308 IPI_GET_CMD | IPI_REPL, 1309 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1310 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1311 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1312 1313 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1314 IPI_GET_CMD | IPI_REPL, 1315 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1316 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1317 LIF_CMD, ip_siocdelndp_v6, NULL }, 1318 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1319 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1320 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1321 LIF_CMD, ip_siocsetndp_v6, NULL }, 1322 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1323 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1324 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1325 MISC_CMD, ip_sioctl_tonlink, NULL }, 1326 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1327 MISC_CMD, ip_sioctl_tmysite, NULL }, 1328 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1329 TUN_CMD, ip_sioctl_tunparam, NULL }, 1330 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1331 IPI_PRIV | IPI_WR, 1332 TUN_CMD, ip_sioctl_tunparam, NULL }, 1333 1334 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1335 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1336 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1337 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1338 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1339 1340 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1341 IPI_PRIV | IPI_WR | IPI_REPL, 1342 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1343 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1344 IPI_PRIV | IPI_WR | IPI_REPL, 1345 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1346 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1347 IPI_PRIV | IPI_WR, 1348 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1349 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1350 IPI_GET_CMD | IPI_REPL, 1351 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1352 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1353 IPI_GET_CMD | IPI_REPL, 1354 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1355 1356 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1357 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1358 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1359 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1360 1361 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1362 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1363 1364 /* These are handled in ip_sioctl_copyin_setup itself */ 1365 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1366 MISC_CMD, NULL, NULL }, 1367 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1368 MISC_CMD, NULL, NULL }, 1369 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1370 1371 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1372 ip_sioctl_get_lifconf, NULL }, 1373 1374 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1375 MISC_CMD, ip_sioctl_xarp, NULL }, 1376 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1377 MISC_CMD, ip_sioctl_xarp, NULL }, 1378 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1379 MISC_CMD, ip_sioctl_xarp, NULL }, 1380 1381 /* SIOCPOPSOCKFS is not handled by IP */ 1382 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1383 1384 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1385 IPI_GET_CMD | IPI_REPL, 1386 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1387 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1388 IPI_PRIV | IPI_WR | IPI_REPL, 1389 LIF_CMD, ip_sioctl_slifzone, 1390 ip_sioctl_slifzone_restart }, 1391 /* 172-174 are SCTP ioctls and not handled by IP */ 1392 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1393 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1394 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1395 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1396 IPI_GET_CMD, LIF_CMD, 1397 ip_sioctl_get_lifusesrc, 0 }, 1398 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1399 IPI_PRIV | IPI_WR, 1400 LIF_CMD, ip_sioctl_slifusesrc, 1401 NULL }, 1402 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1403 ip_sioctl_get_lifsrcof, NULL }, 1404 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1405 MISC_CMD, ip_sioctl_msfilter, NULL }, 1406 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1407 MISC_CMD, ip_sioctl_msfilter, NULL }, 1408 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1409 MISC_CMD, ip_sioctl_msfilter, NULL }, 1410 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1411 MISC_CMD, ip_sioctl_msfilter, NULL }, 1412 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1413 ip_sioctl_set_ipmpfailback, NULL } 1414 }; 1415 1416 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1417 1418 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1419 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1420 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1421 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1422 TUN_CMD, ip_sioctl_tunparam, NULL }, 1423 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1424 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1425 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1426 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1427 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1428 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1429 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1430 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1431 MISC_CMD, mrt_ioctl}, 1432 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1433 MISC_CMD, mrt_ioctl}, 1434 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1435 MISC_CMD, mrt_ioctl} 1436 }; 1437 1438 int ip_misc_ioctl_count = 1439 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1440 1441 static idl_t *conn_drain_list; /* The array of conn drain lists */ 1442 static uint_t conn_drain_list_cnt; /* Total count of conn_drain_list */ 1443 static int conn_drain_list_index; /* Next drain_list to be used */ 1444 int conn_drain_nthreads; /* Number of drainers reqd. */ 1445 /* Settable in /etc/system */ 1446 uint_t ip_redirect_cnt; /* Num of redirect routes in ftable */ 1447 1448 /* Defined in ip_ire.c */ 1449 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1450 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1451 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1452 1453 static nv_t ire_nv_arr[] = { 1454 { IRE_BROADCAST, "BROADCAST" }, 1455 { IRE_LOCAL, "LOCAL" }, 1456 { IRE_LOOPBACK, "LOOPBACK" }, 1457 { IRE_CACHE, "CACHE" }, 1458 { IRE_DEFAULT, "DEFAULT" }, 1459 { IRE_PREFIX, "PREFIX" }, 1460 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1461 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1462 { IRE_HOST, "HOST" }, 1463 { IRE_HOST_REDIRECT, "HOST_REDIRECT" }, 1464 { 0 } 1465 }; 1466 1467 nv_t *ire_nv_tbl = ire_nv_arr; 1468 1469 /* Defined in ip_if.c, protect the list of IPsec capable ills */ 1470 extern krwlock_t ipsec_capab_ills_lock; 1471 1472 /* Packet dropper for IP IPsec processing failures */ 1473 ipdropper_t ip_dropper; 1474 1475 /* Simple ICMP IP Header Template */ 1476 static ipha_t icmp_ipha = { 1477 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1478 }; 1479 1480 struct module_info ip_mod_info = { 1481 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1482 }; 1483 1484 /* 1485 * Duplicate static symbols within a module confuses mdb; so we avoid the 1486 * problem by making the symbols here distinct from those in udp.c. 1487 */ 1488 1489 static struct qinit iprinit = { 1490 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1491 &ip_mod_info 1492 }; 1493 1494 static struct qinit ipwinit = { 1495 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1496 &ip_mod_info 1497 }; 1498 1499 static struct qinit iplrinit = { 1500 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1501 &ip_mod_info 1502 }; 1503 1504 static struct qinit iplwinit = { 1505 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1506 &ip_mod_info 1507 }; 1508 1509 struct streamtab ipinfo = { 1510 &iprinit, &ipwinit, &iplrinit, &iplwinit 1511 }; 1512 1513 #ifdef DEBUG 1514 static boolean_t skip_sctp_cksum = B_FALSE; 1515 #endif 1516 1517 /* 1518 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1519 * ip_rput_v6(), ip_output(), etc. If the message 1520 * block already has a M_CTL at the front of it, then simply set the zoneid 1521 * appropriately. 1522 */ 1523 mblk_t * 1524 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid) 1525 { 1526 mblk_t *first_mp; 1527 ipsec_out_t *io; 1528 1529 ASSERT(zoneid != ALL_ZONES); 1530 if (mp->b_datap->db_type == M_CTL) { 1531 io = (ipsec_out_t *)mp->b_rptr; 1532 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1533 io->ipsec_out_zoneid = zoneid; 1534 return (mp); 1535 } 1536 1537 first_mp = ipsec_alloc_ipsec_out(); 1538 if (first_mp == NULL) 1539 return (NULL); 1540 io = (ipsec_out_t *)first_mp->b_rptr; 1541 /* This is not a secure packet */ 1542 io->ipsec_out_secure = B_FALSE; 1543 io->ipsec_out_zoneid = zoneid; 1544 first_mp->b_cont = mp; 1545 return (first_mp); 1546 } 1547 1548 /* 1549 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1550 */ 1551 mblk_t * 1552 ip_copymsg(mblk_t *mp) 1553 { 1554 mblk_t *nmp; 1555 ipsec_info_t *in; 1556 1557 if (mp->b_datap->db_type != M_CTL) 1558 return (copymsg(mp)); 1559 1560 in = (ipsec_info_t *)mp->b_rptr; 1561 1562 /* 1563 * Note that M_CTL is also used for delivering ICMP error messages 1564 * upstream to transport layers. 1565 */ 1566 if (in->ipsec_info_type != IPSEC_OUT && 1567 in->ipsec_info_type != IPSEC_IN) 1568 return (copymsg(mp)); 1569 1570 nmp = copymsg(mp->b_cont); 1571 1572 if (in->ipsec_info_type == IPSEC_OUT) 1573 return (ipsec_out_tag(mp, nmp)); 1574 else 1575 return (ipsec_in_tag(mp, nmp)); 1576 } 1577 1578 /* Generate an ICMP fragmentation needed message. */ 1579 static void 1580 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid) 1581 { 1582 icmph_t icmph; 1583 mblk_t *first_mp; 1584 boolean_t mctl_present; 1585 1586 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1587 1588 if (!(mp = icmp_pkt_err_ok(mp))) { 1589 if (mctl_present) 1590 freeb(first_mp); 1591 return; 1592 } 1593 1594 bzero(&icmph, sizeof (icmph_t)); 1595 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1596 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1597 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1598 BUMP_MIB(&icmp_mib, icmpOutFragNeeded); 1599 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 1600 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 1601 } 1602 1603 /* 1604 * icmp_inbound deals with ICMP messages in the following ways. 1605 * 1606 * 1) It needs to send a reply back and possibly delivering it 1607 * to the "interested" upper clients. 1608 * 2) It needs to send it to the upper clients only. 1609 * 3) It needs to change some values in IP only. 1610 * 4) It needs to change some values in IP and upper layers e.g TCP. 1611 * 1612 * We need to accomodate icmp messages coming in clear until we get 1613 * everything secure from the wire. If icmp_accept_clear_messages 1614 * is zero we check with the global policy and act accordingly. If 1615 * it is non-zero, we accept the message without any checks. But 1616 * *this does not mean* that this will be delivered to the upper 1617 * clients. By accepting we might send replies back, change our MTU 1618 * value etc. but delivery to the ULP/clients depends on their policy 1619 * dispositions. 1620 * 1621 * We handle the above 4 cases in the context of IPSEC in the 1622 * following way : 1623 * 1624 * 1) Send the reply back in the same way as the request came in. 1625 * If it came in encrypted, it goes out encrypted. If it came in 1626 * clear, it goes out in clear. Thus, this will prevent chosen 1627 * plain text attack. 1628 * 2) The client may or may not expect things to come in secure. 1629 * If it comes in secure, the policy constraints are checked 1630 * before delivering it to the upper layers. If it comes in 1631 * clear, ipsec_inbound_accept_clear will decide whether to 1632 * accept this in clear or not. In both the cases, if the returned 1633 * message (IP header + 8 bytes) that caused the icmp message has 1634 * AH/ESP headers, it is sent up to AH/ESP for validation before 1635 * sending up. If there are only 8 bytes of returned message, then 1636 * upper client will not be notified. 1637 * 3) Check with global policy to see whether it matches the constaints. 1638 * But this will be done only if icmp_accept_messages_in_clear is 1639 * zero. 1640 * 4) If we need to change both in IP and ULP, then the decision taken 1641 * while affecting the values in IP and while delivering up to TCP 1642 * should be the same. 1643 * 1644 * There are two cases. 1645 * 1646 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1647 * failed), we will not deliver it to the ULP, even though they 1648 * are *willing* to accept in *clear*. This is fine as our global 1649 * disposition to icmp messages asks us reject the datagram. 1650 * 1651 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1652 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1653 * to deliver it to ULP (policy failed), it can lead to 1654 * consistency problems. The cases known at this time are 1655 * ICMP_DESTINATION_UNREACHABLE messages with following code 1656 * values : 1657 * 1658 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1659 * and Upper layer rejects. Then the communication will 1660 * come to a stop. This is solved by making similar decisions 1661 * at both levels. Currently, when we are unable to deliver 1662 * to the Upper Layer (due to policy failures) while IP has 1663 * adjusted ire_max_frag, the next outbound datagram would 1664 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1665 * will be with the right level of protection. Thus the right 1666 * value will be communicated even if we are not able to 1667 * communicate when we get from the wire initially. But this 1668 * assumes there would be at least one outbound datagram after 1669 * IP has adjusted its ire_max_frag value. To make things 1670 * simpler, we accept in clear after the validation of 1671 * AH/ESP headers. 1672 * 1673 * - Other ICMP ERRORS : We may not be able to deliver it to the 1674 * upper layer depending on the level of protection the upper 1675 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1676 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1677 * should be accepted in clear when the Upper layer expects secure. 1678 * Thus the communication may get aborted by some bad ICMP 1679 * packets. 1680 * 1681 * IPQoS Notes: 1682 * The only instance when a packet is sent for processing is when there 1683 * isn't an ICMP client and if we are interested in it. 1684 * If there is a client, IPPF processing will take place in the 1685 * ip_fanout_proto routine. 1686 * 1687 * Zones notes: 1688 * The packet is only processed in the context of the specified zone: typically 1689 * only this zone will reply to an echo request, and only interested clients in 1690 * this zone will receive a copy of the packet. This means that the caller must 1691 * call icmp_inbound() for each relevant zone. 1692 */ 1693 static void 1694 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1695 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1696 ill_t *recv_ill, zoneid_t zoneid) 1697 { 1698 icmph_t *icmph; 1699 ipha_t *ipha; 1700 int iph_hdr_length; 1701 int hdr_length; 1702 boolean_t interested; 1703 uint32_t ts; 1704 uchar_t *wptr; 1705 ipif_t *ipif; 1706 mblk_t *first_mp; 1707 ipsec_in_t *ii; 1708 ire_t *src_ire; 1709 boolean_t onlink; 1710 timestruc_t now; 1711 uint32_t ill_index; 1712 1713 ASSERT(ill != NULL); 1714 1715 first_mp = mp; 1716 if (mctl_present) { 1717 mp = first_mp->b_cont; 1718 ASSERT(mp != NULL); 1719 } 1720 1721 ipha = (ipha_t *)mp->b_rptr; 1722 if (icmp_accept_clear_messages == 0) { 1723 first_mp = ipsec_check_global_policy(first_mp, NULL, 1724 ipha, NULL, mctl_present); 1725 if (first_mp == NULL) 1726 return; 1727 } 1728 1729 /* 1730 * On a labeled system, we have to check whether the zone itself is 1731 * permitted to receive raw traffic. 1732 */ 1733 if (is_system_labeled()) { 1734 if (zoneid == ALL_ZONES) 1735 zoneid = tsol_packet_to_zoneid(mp); 1736 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1737 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1738 zoneid)); 1739 BUMP_MIB(&icmp_mib, icmpInErrors); 1740 freemsg(first_mp); 1741 return; 1742 } 1743 } 1744 1745 /* 1746 * We have accepted the ICMP message. It means that we will 1747 * respond to the packet if needed. It may not be delivered 1748 * to the upper client depending on the policy constraints 1749 * and the disposition in ipsec_inbound_accept_clear. 1750 */ 1751 1752 ASSERT(ill != NULL); 1753 1754 BUMP_MIB(&icmp_mib, icmpInMsgs); 1755 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1756 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1757 /* Last chance to get real. */ 1758 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1759 BUMP_MIB(&icmp_mib, icmpInErrors); 1760 freemsg(first_mp); 1761 return; 1762 } 1763 /* Refresh iph following the pullup. */ 1764 ipha = (ipha_t *)mp->b_rptr; 1765 } 1766 /* ICMP header checksum, including checksum field, should be zero. */ 1767 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1768 IP_CSUM(mp, iph_hdr_length, 0)) { 1769 BUMP_MIB(&icmp_mib, icmpInCksumErrs); 1770 freemsg(first_mp); 1771 return; 1772 } 1773 /* The IP header will always be a multiple of four bytes */ 1774 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1775 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1776 icmph->icmph_code)); 1777 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1778 /* We will set "interested" to "true" if we want a copy */ 1779 interested = B_FALSE; 1780 switch (icmph->icmph_type) { 1781 case ICMP_ECHO_REPLY: 1782 BUMP_MIB(&icmp_mib, icmpInEchoReps); 1783 break; 1784 case ICMP_DEST_UNREACHABLE: 1785 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1786 BUMP_MIB(&icmp_mib, icmpInFragNeeded); 1787 interested = B_TRUE; /* Pass up to transport */ 1788 BUMP_MIB(&icmp_mib, icmpInDestUnreachs); 1789 break; 1790 case ICMP_SOURCE_QUENCH: 1791 interested = B_TRUE; /* Pass up to transport */ 1792 BUMP_MIB(&icmp_mib, icmpInSrcQuenchs); 1793 break; 1794 case ICMP_REDIRECT: 1795 if (!ip_ignore_redirect) 1796 interested = B_TRUE; 1797 BUMP_MIB(&icmp_mib, icmpInRedirects); 1798 break; 1799 case ICMP_ECHO_REQUEST: 1800 /* 1801 * Whether to respond to echo requests that come in as IP 1802 * broadcasts or as IP multicast is subject to debate 1803 * (what isn't?). We aim to please, you pick it. 1804 * Default is do it. 1805 */ 1806 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1807 /* unicast: always respond */ 1808 interested = B_TRUE; 1809 } else if (CLASSD(ipha->ipha_dst)) { 1810 /* multicast: respond based on tunable */ 1811 interested = ip_g_resp_to_echo_mcast; 1812 } else if (broadcast) { 1813 /* broadcast: respond based on tunable */ 1814 interested = ip_g_resp_to_echo_bcast; 1815 } 1816 BUMP_MIB(&icmp_mib, icmpInEchos); 1817 break; 1818 case ICMP_ROUTER_ADVERTISEMENT: 1819 case ICMP_ROUTER_SOLICITATION: 1820 break; 1821 case ICMP_TIME_EXCEEDED: 1822 interested = B_TRUE; /* Pass up to transport */ 1823 BUMP_MIB(&icmp_mib, icmpInTimeExcds); 1824 break; 1825 case ICMP_PARAM_PROBLEM: 1826 interested = B_TRUE; /* Pass up to transport */ 1827 BUMP_MIB(&icmp_mib, icmpInParmProbs); 1828 break; 1829 case ICMP_TIME_STAMP_REQUEST: 1830 /* Response to Time Stamp Requests is local policy. */ 1831 if (ip_g_resp_to_timestamp && 1832 /* So is whether to respond if it was an IP broadcast. */ 1833 (!broadcast || ip_g_resp_to_timestamp_bcast)) { 1834 int tstamp_len = 3 * sizeof (uint32_t); 1835 1836 if (wptr + tstamp_len > mp->b_wptr) { 1837 if (!pullupmsg(mp, wptr + tstamp_len - 1838 mp->b_rptr)) { 1839 BUMP_MIB(&ip_mib, ipInDiscards); 1840 freemsg(first_mp); 1841 return; 1842 } 1843 /* Refresh ipha following the pullup. */ 1844 ipha = (ipha_t *)mp->b_rptr; 1845 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1846 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1847 } 1848 interested = B_TRUE; 1849 } 1850 BUMP_MIB(&icmp_mib, icmpInTimestamps); 1851 break; 1852 case ICMP_TIME_STAMP_REPLY: 1853 BUMP_MIB(&icmp_mib, icmpInTimestampReps); 1854 break; 1855 case ICMP_INFO_REQUEST: 1856 /* Per RFC 1122 3.2.2.7, ignore this. */ 1857 case ICMP_INFO_REPLY: 1858 break; 1859 case ICMP_ADDRESS_MASK_REQUEST: 1860 if ((ip_respond_to_address_mask_broadcast || !broadcast) && 1861 /* TODO m_pullup of complete header? */ 1862 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1863 interested = B_TRUE; 1864 BUMP_MIB(&icmp_mib, icmpInAddrMasks); 1865 break; 1866 case ICMP_ADDRESS_MASK_REPLY: 1867 BUMP_MIB(&icmp_mib, icmpInAddrMaskReps); 1868 break; 1869 default: 1870 interested = B_TRUE; /* Pass up to transport */ 1871 BUMP_MIB(&icmp_mib, icmpInUnknowns); 1872 break; 1873 } 1874 /* See if there is an ICMP client. */ 1875 if (ipcl_proto_search(IPPROTO_ICMP) != NULL) { 1876 /* If there is an ICMP client and we want one too, copy it. */ 1877 mblk_t *first_mp1; 1878 1879 if (!interested) { 1880 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1881 ip_policy, recv_ill, zoneid); 1882 return; 1883 } 1884 first_mp1 = ip_copymsg(first_mp); 1885 if (first_mp1 != NULL) { 1886 ip_fanout_proto(q, first_mp1, ill, ipha, 1887 0, mctl_present, ip_policy, recv_ill, zoneid); 1888 } 1889 } else if (!interested) { 1890 freemsg(first_mp); 1891 return; 1892 } else { 1893 /* 1894 * Initiate policy processing for this packet if ip_policy 1895 * is true. 1896 */ 1897 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 1898 ill_index = ill->ill_phyint->phyint_ifindex; 1899 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1900 if (mp == NULL) { 1901 if (mctl_present) { 1902 freeb(first_mp); 1903 } 1904 BUMP_MIB(&icmp_mib, icmpInErrors); 1905 return; 1906 } 1907 } 1908 } 1909 /* We want to do something with it. */ 1910 /* Check db_ref to make sure we can modify the packet. */ 1911 if (mp->b_datap->db_ref > 1) { 1912 mblk_t *first_mp1; 1913 1914 first_mp1 = ip_copymsg(first_mp); 1915 freemsg(first_mp); 1916 if (!first_mp1) { 1917 BUMP_MIB(&icmp_mib, icmpOutDrops); 1918 return; 1919 } 1920 first_mp = first_mp1; 1921 if (mctl_present) { 1922 mp = first_mp->b_cont; 1923 ASSERT(mp != NULL); 1924 } else { 1925 mp = first_mp; 1926 } 1927 ipha = (ipha_t *)mp->b_rptr; 1928 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1929 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1930 } 1931 switch (icmph->icmph_type) { 1932 case ICMP_ADDRESS_MASK_REQUEST: 1933 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1934 if (ipif == NULL) { 1935 freemsg(first_mp); 1936 return; 1937 } 1938 /* 1939 * outging interface must be IPv4 1940 */ 1941 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1942 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1943 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1944 ipif_refrele(ipif); 1945 BUMP_MIB(&icmp_mib, icmpOutAddrMaskReps); 1946 break; 1947 case ICMP_ECHO_REQUEST: 1948 icmph->icmph_type = ICMP_ECHO_REPLY; 1949 BUMP_MIB(&icmp_mib, icmpOutEchoReps); 1950 break; 1951 case ICMP_TIME_STAMP_REQUEST: { 1952 uint32_t *tsp; 1953 1954 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1955 tsp = (uint32_t *)wptr; 1956 tsp++; /* Skip past 'originate time' */ 1957 /* Compute # of milliseconds since midnight */ 1958 gethrestime(&now); 1959 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1960 now.tv_nsec / (NANOSEC / MILLISEC); 1961 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1962 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1963 BUMP_MIB(&icmp_mib, icmpOutTimestampReps); 1964 break; 1965 } 1966 default: 1967 ipha = (ipha_t *)&icmph[1]; 1968 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1969 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1970 BUMP_MIB(&ip_mib, ipInDiscards); 1971 freemsg(first_mp); 1972 return; 1973 } 1974 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1975 ipha = (ipha_t *)&icmph[1]; 1976 } 1977 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1978 BUMP_MIB(&ip_mib, ipInDiscards); 1979 freemsg(first_mp); 1980 return; 1981 } 1982 hdr_length = IPH_HDR_LENGTH(ipha); 1983 if (hdr_length < sizeof (ipha_t)) { 1984 BUMP_MIB(&ip_mib, ipInDiscards); 1985 freemsg(first_mp); 1986 return; 1987 } 1988 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1989 if (!pullupmsg(mp, 1990 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1991 BUMP_MIB(&ip_mib, ipInDiscards); 1992 freemsg(first_mp); 1993 return; 1994 } 1995 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1996 ipha = (ipha_t *)&icmph[1]; 1997 } 1998 switch (icmph->icmph_type) { 1999 case ICMP_REDIRECT: 2000 /* 2001 * As there is no upper client to deliver, we don't 2002 * need the first_mp any more. 2003 */ 2004 if (mctl_present) { 2005 freeb(first_mp); 2006 } 2007 icmp_redirect(mp); 2008 return; 2009 case ICMP_DEST_UNREACHABLE: 2010 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 2011 if (!icmp_inbound_too_big(icmph, ipha, ill, 2012 zoneid, mp, iph_hdr_length)) { 2013 freemsg(first_mp); 2014 return; 2015 } 2016 /* 2017 * icmp_inbound_too_big() may alter mp. 2018 * Resynch ipha and icmph accordingly. 2019 */ 2020 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2021 ipha = (ipha_t *)&icmph[1]; 2022 } 2023 /* FALLTHRU */ 2024 default : 2025 /* 2026 * IPQoS notes: Since we have already done IPQoS 2027 * processing we don't want to do it again in 2028 * the fanout routines called by 2029 * icmp_inbound_error_fanout, hence the last 2030 * argument, ip_policy, is B_FALSE. 2031 */ 2032 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 2033 ipha, iph_hdr_length, hdr_length, mctl_present, 2034 B_FALSE, recv_ill, zoneid); 2035 } 2036 return; 2037 } 2038 /* Send out an ICMP packet */ 2039 icmph->icmph_checksum = 0; 2040 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 2041 if (icmph->icmph_checksum == 0) 2042 icmph->icmph_checksum = 0xFFFF; 2043 if (broadcast || CLASSD(ipha->ipha_dst)) { 2044 ipif_t *ipif_chosen; 2045 /* 2046 * Make it look like it was directed to us, so we don't look 2047 * like a fool with a broadcast or multicast source address. 2048 */ 2049 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 2050 /* 2051 * Make sure that we haven't grabbed an interface that's DOWN. 2052 */ 2053 if (ipif != NULL) { 2054 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2055 ipha->ipha_src, zoneid); 2056 if (ipif_chosen != NULL) { 2057 ipif_refrele(ipif); 2058 ipif = ipif_chosen; 2059 } 2060 } 2061 if (ipif == NULL) { 2062 ip0dbg(("icmp_inbound: " 2063 "No source for broadcast/multicast:\n" 2064 "\tsrc 0x%x dst 0x%x ill %p " 2065 "ipif_lcl_addr 0x%x\n", 2066 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2067 (void *)ill, 2068 ill->ill_ipif->ipif_lcl_addr)); 2069 freemsg(first_mp); 2070 return; 2071 } 2072 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2073 ipha->ipha_dst = ipif->ipif_src_addr; 2074 ipif_refrele(ipif); 2075 } 2076 /* Reset time to live. */ 2077 ipha->ipha_ttl = ip_def_ttl; 2078 { 2079 /* Swap source and destination addresses */ 2080 ipaddr_t tmp; 2081 2082 tmp = ipha->ipha_src; 2083 ipha->ipha_src = ipha->ipha_dst; 2084 ipha->ipha_dst = tmp; 2085 } 2086 ipha->ipha_ident = 0; 2087 if (!IS_SIMPLE_IPH(ipha)) 2088 icmp_options_update(ipha); 2089 2090 /* 2091 * ICMP echo replies should go out on the same interface 2092 * the request came on as probes used by in.mpathd for detecting 2093 * NIC failures are ECHO packets. We turn-off load spreading 2094 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2095 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2096 * function. This is in turn handled by ip_wput and ip_newroute 2097 * to make sure that the packet goes out on the interface it came 2098 * in on. If we don't turnoff load spreading, the packets might get 2099 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2100 * to go out and in.mpathd would wrongly detect a failure or 2101 * mis-detect a NIC failure for link failure. As load spreading 2102 * can happen only if ill_group is not NULL, we do only for 2103 * that case and this does not affect the normal case. 2104 * 2105 * We turn off load spreading only on echo packets that came from 2106 * on-link hosts. If the interface route has been deleted, this will 2107 * not be enforced as we can't do much. For off-link hosts, as the 2108 * default routes in IPv4 does not typically have an ire_ipif 2109 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2110 * Moreover, expecting a default route through this interface may 2111 * not be correct. We use ipha_dst because of the swap above. 2112 */ 2113 onlink = B_FALSE; 2114 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2115 /* 2116 * First, we need to make sure that it is not one of our 2117 * local addresses. If we set onlink when it is one of 2118 * our local addresses, we will end up creating IRE_CACHES 2119 * for one of our local addresses. Then, we will never 2120 * accept packets for them afterwards. 2121 */ 2122 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2123 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2124 if (src_ire == NULL) { 2125 ipif = ipif_get_next_ipif(NULL, ill); 2126 if (ipif == NULL) { 2127 BUMP_MIB(&ip_mib, ipInDiscards); 2128 freemsg(mp); 2129 return; 2130 } 2131 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2132 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2133 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE); 2134 ipif_refrele(ipif); 2135 if (src_ire != NULL) { 2136 onlink = B_TRUE; 2137 ire_refrele(src_ire); 2138 } 2139 } else { 2140 ire_refrele(src_ire); 2141 } 2142 } 2143 if (!mctl_present) { 2144 /* 2145 * This packet should go out the same way as it 2146 * came in i.e in clear. To make sure that global 2147 * policy will not be applied to this in ip_wput_ire, 2148 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2149 */ 2150 ASSERT(first_mp == mp); 2151 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 2152 BUMP_MIB(&ip_mib, ipInDiscards); 2153 freemsg(mp); 2154 return; 2155 } 2156 ii = (ipsec_in_t *)first_mp->b_rptr; 2157 2158 /* This is not a secure packet */ 2159 ii->ipsec_in_secure = B_FALSE; 2160 if (onlink) { 2161 ii->ipsec_in_attach_if = B_TRUE; 2162 ii->ipsec_in_ill_index = 2163 ill->ill_phyint->phyint_ifindex; 2164 ii->ipsec_in_rill_index = 2165 recv_ill->ill_phyint->phyint_ifindex; 2166 } 2167 first_mp->b_cont = mp; 2168 } else if (onlink) { 2169 ii = (ipsec_in_t *)first_mp->b_rptr; 2170 ii->ipsec_in_attach_if = B_TRUE; 2171 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2172 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2173 } else { 2174 ii = (ipsec_in_t *)first_mp->b_rptr; 2175 } 2176 ii->ipsec_in_zoneid = zoneid; 2177 ASSERT(zoneid != ALL_ZONES); 2178 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2179 BUMP_MIB(&ip_mib, ipInDiscards); 2180 return; 2181 } 2182 BUMP_MIB(&icmp_mib, icmpOutMsgs); 2183 put(WR(q), first_mp); 2184 } 2185 2186 static ipaddr_t 2187 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2188 { 2189 conn_t *connp; 2190 connf_t *connfp; 2191 ipaddr_t nexthop_addr = INADDR_ANY; 2192 int hdr_length = IPH_HDR_LENGTH(ipha); 2193 uint16_t *up; 2194 uint32_t ports; 2195 2196 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2197 switch (ipha->ipha_protocol) { 2198 case IPPROTO_TCP: 2199 { 2200 tcph_t *tcph; 2201 2202 /* do a reverse lookup */ 2203 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2204 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2205 TCPS_LISTEN); 2206 break; 2207 } 2208 case IPPROTO_UDP: 2209 { 2210 uint32_t dstport, srcport; 2211 2212 ((uint16_t *)&ports)[0] = up[1]; 2213 ((uint16_t *)&ports)[1] = up[0]; 2214 2215 /* Extract ports in net byte order */ 2216 dstport = htons(ntohl(ports) & 0xFFFF); 2217 srcport = htons(ntohl(ports) >> 16); 2218 2219 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 2220 mutex_enter(&connfp->connf_lock); 2221 connp = connfp->connf_head; 2222 2223 /* do a reverse lookup */ 2224 while ((connp != NULL) && 2225 (!IPCL_UDP_MATCH(connp, dstport, 2226 ipha->ipha_src, srcport, ipha->ipha_dst) || 2227 !IPCL_ZONE_MATCH(connp, zoneid))) { 2228 connp = connp->conn_next; 2229 } 2230 if (connp != NULL) 2231 CONN_INC_REF(connp); 2232 mutex_exit(&connfp->connf_lock); 2233 break; 2234 } 2235 case IPPROTO_SCTP: 2236 { 2237 in6_addr_t map_src, map_dst; 2238 2239 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2240 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2241 ((uint16_t *)&ports)[0] = up[1]; 2242 ((uint16_t *)&ports)[1] = up[0]; 2243 2244 if ((connp = sctp_find_conn(&map_src, &map_dst, ports, 2245 0, zoneid)) == NULL) { 2246 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2247 zoneid, ports, ipha); 2248 } else { 2249 CONN_INC_REF(connp); 2250 SCTP_REFRELE(CONN2SCTP(connp)); 2251 } 2252 break; 2253 } 2254 default: 2255 { 2256 ipha_t ripha; 2257 2258 ripha.ipha_src = ipha->ipha_dst; 2259 ripha.ipha_dst = ipha->ipha_src; 2260 ripha.ipha_protocol = ipha->ipha_protocol; 2261 2262 connfp = &ipcl_proto_fanout[ipha->ipha_protocol]; 2263 mutex_enter(&connfp->connf_lock); 2264 connp = connfp->connf_head; 2265 for (connp = connfp->connf_head; connp != NULL; 2266 connp = connp->conn_next) { 2267 if (IPCL_PROTO_MATCH(connp, 2268 ipha->ipha_protocol, &ripha, ill, 2269 0, zoneid)) { 2270 CONN_INC_REF(connp); 2271 break; 2272 } 2273 } 2274 mutex_exit(&connfp->connf_lock); 2275 } 2276 } 2277 if (connp != NULL) { 2278 if (connp->conn_nexthop_set) 2279 nexthop_addr = connp->conn_nexthop_v4; 2280 CONN_DEC_REF(connp); 2281 } 2282 return (nexthop_addr); 2283 } 2284 2285 /* Table from RFC 1191 */ 2286 static int icmp_frag_size_table[] = 2287 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2288 2289 /* 2290 * Process received ICMP Packet too big. 2291 * After updating any IRE it does the fanout to any matching transport streams. 2292 * Assumes the message has been pulled up till the IP header that caused 2293 * the error. 2294 * 2295 * Returns B_FALSE on failure and B_TRUE on success. 2296 */ 2297 static boolean_t 2298 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2299 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length) 2300 { 2301 ire_t *ire, *first_ire; 2302 int mtu; 2303 int hdr_length; 2304 ipaddr_t nexthop_addr; 2305 2306 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2307 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2308 2309 hdr_length = IPH_HDR_LENGTH(ipha); 2310 2311 /* Drop if the original packet contained a source route */ 2312 if (ip_source_route_included(ipha)) { 2313 return (B_FALSE); 2314 } 2315 /* 2316 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2317 * header. 2318 */ 2319 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2320 mp->b_wptr) { 2321 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2322 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2323 BUMP_MIB(&ip_mib, ipInDiscards); 2324 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2325 return (B_FALSE); 2326 } 2327 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2328 ipha = (ipha_t *)&icmph[1]; 2329 } 2330 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2331 if (nexthop_addr != INADDR_ANY) { 2332 /* nexthop set */ 2333 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2334 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2335 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW); 2336 } else { 2337 /* nexthop not set */ 2338 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2339 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2340 } 2341 2342 if (!first_ire) { 2343 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2344 ntohl(ipha->ipha_dst))); 2345 return (B_FALSE); 2346 } 2347 /* Check for MTU discovery advice as described in RFC 1191 */ 2348 mtu = ntohs(icmph->icmph_du_mtu); 2349 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2350 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2351 ire = ire->ire_next) { 2352 /* 2353 * Look for the connection to which this ICMP message is 2354 * directed. If it has the IP_NEXTHOP option set, then the 2355 * search is limited to IREs with the MATCH_IRE_PRIVATE 2356 * option. Else the search is limited to regular IREs. 2357 */ 2358 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2359 (nexthop_addr != ire->ire_gateway_addr)) || 2360 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2361 (nexthop_addr != INADDR_ANY))) 2362 continue; 2363 2364 mutex_enter(&ire->ire_lock); 2365 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2366 /* Reduce the IRE max frag value as advised. */ 2367 ip1dbg(("Received mtu from router: %d (was %d)\n", 2368 mtu, ire->ire_max_frag)); 2369 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2370 } else { 2371 uint32_t length; 2372 int i; 2373 2374 /* 2375 * Use the table from RFC 1191 to figure out 2376 * the next "plateau" based on the length in 2377 * the original IP packet. 2378 */ 2379 length = ntohs(ipha->ipha_length); 2380 if (ire->ire_max_frag <= length && 2381 ire->ire_max_frag >= length - hdr_length) { 2382 /* 2383 * Handle broken BSD 4.2 systems that 2384 * return the wrong iph_length in ICMP 2385 * errors. 2386 */ 2387 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2388 length, ire->ire_max_frag)); 2389 length -= hdr_length; 2390 } 2391 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2392 if (length > icmp_frag_size_table[i]) 2393 break; 2394 } 2395 if (i == A_CNT(icmp_frag_size_table)) { 2396 /* Smaller than 68! */ 2397 ip1dbg(("Too big for packet size %d\n", 2398 length)); 2399 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2400 ire->ire_frag_flag = 0; 2401 } else { 2402 mtu = icmp_frag_size_table[i]; 2403 ip1dbg(("Calculated mtu %d, packet size %d, " 2404 "before %d", mtu, length, 2405 ire->ire_max_frag)); 2406 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2407 ip1dbg((", after %d\n", ire->ire_max_frag)); 2408 } 2409 /* Record the new max frag size for the ULP. */ 2410 icmph->icmph_du_zero = 0; 2411 icmph->icmph_du_mtu = 2412 htons((uint16_t)ire->ire_max_frag); 2413 } 2414 mutex_exit(&ire->ire_lock); 2415 } 2416 rw_exit(&first_ire->ire_bucket->irb_lock); 2417 ire_refrele(first_ire); 2418 return (B_TRUE); 2419 } 2420 2421 /* 2422 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2423 * calls this function. 2424 */ 2425 static mblk_t * 2426 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2427 { 2428 ipha_t *ipha; 2429 icmph_t *icmph; 2430 ipha_t *in_ipha; 2431 int length; 2432 2433 ASSERT(mp->b_datap->db_type == M_DATA); 2434 2435 /* 2436 * For Self-encapsulated packets, we added an extra IP header 2437 * without the options. Inner IP header is the one from which 2438 * the outer IP header was formed. Thus, we need to remove the 2439 * outer IP header. To do this, we pullup the whole message 2440 * and overlay whatever follows the outer IP header over the 2441 * outer IP header. 2442 */ 2443 2444 if (!pullupmsg(mp, -1)) { 2445 BUMP_MIB(&ip_mib, ipInDiscards); 2446 return (NULL); 2447 } 2448 2449 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2450 ipha = (ipha_t *)&icmph[1]; 2451 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2452 2453 /* 2454 * The length that we want to overlay is following the inner 2455 * IP header. Subtracting the IP header + icmp header + outer 2456 * IP header's length should give us the length that we want to 2457 * overlay. 2458 */ 2459 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2460 hdr_length; 2461 /* 2462 * Overlay whatever follows the inner header over the 2463 * outer header. 2464 */ 2465 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2466 2467 /* Set the wptr to account for the outer header */ 2468 mp->b_wptr -= hdr_length; 2469 return (mp); 2470 } 2471 2472 /* 2473 * Try to pass the ICMP message upstream in case the ULP cares. 2474 * 2475 * If the packet that caused the ICMP error is secure, we send 2476 * it to AH/ESP to make sure that the attached packet has a 2477 * valid association. ipha in the code below points to the 2478 * IP header of the packet that caused the error. 2479 * 2480 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2481 * in the context of IPSEC. Normally we tell the upper layer 2482 * whenever we send the ire (including ip_bind), the IPSEC header 2483 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2484 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2485 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2486 * same thing. As TCP has the IPSEC options size that needs to be 2487 * adjusted, we just pass the MTU unchanged. 2488 * 2489 * IFN could have been generated locally or by some router. 2490 * 2491 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2492 * This happens because IP adjusted its value of MTU on an 2493 * earlier IFN message and could not tell the upper layer, 2494 * the new adjusted value of MTU e.g. Packet was encrypted 2495 * or there was not enough information to fanout to upper 2496 * layers. Thus on the next outbound datagram, ip_wput_ire 2497 * generates the IFN, where IPSEC processing has *not* been 2498 * done. 2499 * 2500 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2501 * could have generated this. This happens because ire_max_frag 2502 * value in IP was set to a new value, while the IPSEC processing 2503 * was being done and after we made the fragmentation check in 2504 * ip_wput_ire. Thus on return from IPSEC processing, 2505 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2506 * and generates the IFN. As IPSEC processing is over, we fanout 2507 * to AH/ESP to remove the header. 2508 * 2509 * In both these cases, ipsec_in_loopback will be set indicating 2510 * that IFN was generated locally. 2511 * 2512 * ROUTER : IFN could be secure or non-secure. 2513 * 2514 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2515 * packet in error has AH/ESP headers to validate the AH/ESP 2516 * headers. AH/ESP will verify whether there is a valid SA or 2517 * not and send it back. We will fanout again if we have more 2518 * data in the packet. 2519 * 2520 * If the packet in error does not have AH/ESP, we handle it 2521 * like any other case. 2522 * 2523 * * NON_SECURE : If the packet in error has AH/ESP headers, 2524 * we attach a dummy ipsec_in and send it up to AH/ESP 2525 * for validation. AH/ESP will verify whether there is a 2526 * valid SA or not and send it back. We will fanout again if 2527 * we have more data in the packet. 2528 * 2529 * If the packet in error does not have AH/ESP, we handle it 2530 * like any other case. 2531 */ 2532 static void 2533 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2534 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2535 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2536 zoneid_t zoneid) 2537 { 2538 uint16_t *up; /* Pointer to ports in ULP header */ 2539 uint32_t ports; /* reversed ports for fanout */ 2540 ipha_t ripha; /* With reversed addresses */ 2541 mblk_t *first_mp; 2542 ipsec_in_t *ii; 2543 tcph_t *tcph; 2544 conn_t *connp; 2545 2546 first_mp = mp; 2547 if (mctl_present) { 2548 mp = first_mp->b_cont; 2549 ASSERT(mp != NULL); 2550 2551 ii = (ipsec_in_t *)first_mp->b_rptr; 2552 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2553 } else { 2554 ii = NULL; 2555 } 2556 2557 switch (ipha->ipha_protocol) { 2558 case IPPROTO_UDP: 2559 /* 2560 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2561 * transport header. 2562 */ 2563 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2564 mp->b_wptr) { 2565 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2566 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2567 BUMP_MIB(&ip_mib, ipInDiscards); 2568 goto drop_pkt; 2569 } 2570 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2571 ipha = (ipha_t *)&icmph[1]; 2572 } 2573 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2574 2575 /* 2576 * Attempt to find a client stream based on port. 2577 * Note that we do a reverse lookup since the header is 2578 * in the form we sent it out. 2579 * The ripha header is only used for the IP_UDP_MATCH and we 2580 * only set the src and dst addresses and protocol. 2581 */ 2582 ripha.ipha_src = ipha->ipha_dst; 2583 ripha.ipha_dst = ipha->ipha_src; 2584 ripha.ipha_protocol = ipha->ipha_protocol; 2585 ((uint16_t *)&ports)[0] = up[1]; 2586 ((uint16_t *)&ports)[1] = up[0]; 2587 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2588 ntohl(ipha->ipha_src), ntohs(up[0]), 2589 ntohl(ipha->ipha_dst), ntohs(up[1]), 2590 icmph->icmph_type, icmph->icmph_code)); 2591 2592 /* Have to change db_type after any pullupmsg */ 2593 DB_TYPE(mp) = M_CTL; 2594 2595 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2596 mctl_present, ip_policy, recv_ill, zoneid); 2597 return; 2598 2599 case IPPROTO_TCP: 2600 /* 2601 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2602 * transport header. 2603 */ 2604 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2605 mp->b_wptr) { 2606 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2607 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2608 BUMP_MIB(&ip_mib, ipInDiscards); 2609 goto drop_pkt; 2610 } 2611 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2612 ipha = (ipha_t *)&icmph[1]; 2613 } 2614 /* 2615 * Find a TCP client stream for this packet. 2616 * Note that we do a reverse lookup since the header is 2617 * in the form we sent it out. 2618 */ 2619 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2620 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN); 2621 if (connp == NULL) { 2622 BUMP_MIB(&ip_mib, ipInDiscards); 2623 goto drop_pkt; 2624 } 2625 2626 /* Have to change db_type after any pullupmsg */ 2627 DB_TYPE(mp) = M_CTL; 2628 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2629 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2630 return; 2631 2632 case IPPROTO_SCTP: 2633 /* 2634 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2635 * transport header. 2636 */ 2637 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2638 mp->b_wptr) { 2639 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2640 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2641 BUMP_MIB(&ip_mib, ipInDiscards); 2642 goto drop_pkt; 2643 } 2644 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2645 ipha = (ipha_t *)&icmph[1]; 2646 } 2647 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2648 /* 2649 * Find a SCTP client stream for this packet. 2650 * Note that we do a reverse lookup since the header is 2651 * in the form we sent it out. 2652 * The ripha header is only used for the matching and we 2653 * only set the src and dst addresses, protocol, and version. 2654 */ 2655 ripha.ipha_src = ipha->ipha_dst; 2656 ripha.ipha_dst = ipha->ipha_src; 2657 ripha.ipha_protocol = ipha->ipha_protocol; 2658 ripha.ipha_version_and_hdr_length = 2659 ipha->ipha_version_and_hdr_length; 2660 ((uint16_t *)&ports)[0] = up[1]; 2661 ((uint16_t *)&ports)[1] = up[0]; 2662 2663 /* Have to change db_type after any pullupmsg */ 2664 DB_TYPE(mp) = M_CTL; 2665 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2666 mctl_present, ip_policy, 0, zoneid); 2667 return; 2668 2669 case IPPROTO_ESP: 2670 case IPPROTO_AH: { 2671 int ipsec_rc; 2672 2673 /* 2674 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2675 * We will re-use the IPSEC_IN if it is already present as 2676 * AH/ESP will not affect any fields in the IPSEC_IN for 2677 * ICMP errors. If there is no IPSEC_IN, allocate a new 2678 * one and attach it in the front. 2679 */ 2680 if (ii != NULL) { 2681 /* 2682 * ip_fanout_proto_again converts the ICMP errors 2683 * that come back from AH/ESP to M_DATA so that 2684 * if it is non-AH/ESP and we do a pullupmsg in 2685 * this function, it would work. Convert it back 2686 * to M_CTL before we send up as this is a ICMP 2687 * error. This could have been generated locally or 2688 * by some router. Validate the inner IPSEC 2689 * headers. 2690 * 2691 * NOTE : ill_index is used by ip_fanout_proto_again 2692 * to locate the ill. 2693 */ 2694 ASSERT(ill != NULL); 2695 ii->ipsec_in_ill_index = 2696 ill->ill_phyint->phyint_ifindex; 2697 ii->ipsec_in_rill_index = 2698 recv_ill->ill_phyint->phyint_ifindex; 2699 DB_TYPE(first_mp->b_cont) = M_CTL; 2700 } else { 2701 /* 2702 * IPSEC_IN is not present. We attach a ipsec_in 2703 * message and send up to IPSEC for validating 2704 * and removing the IPSEC headers. Clear 2705 * ipsec_in_secure so that when we return 2706 * from IPSEC, we don't mistakenly think that this 2707 * is a secure packet came from the network. 2708 * 2709 * NOTE : ill_index is used by ip_fanout_proto_again 2710 * to locate the ill. 2711 */ 2712 ASSERT(first_mp == mp); 2713 first_mp = ipsec_in_alloc(B_TRUE); 2714 if (first_mp == NULL) { 2715 freemsg(mp); 2716 BUMP_MIB(&ip_mib, ipInDiscards); 2717 return; 2718 } 2719 ii = (ipsec_in_t *)first_mp->b_rptr; 2720 2721 /* This is not a secure packet */ 2722 ii->ipsec_in_secure = B_FALSE; 2723 first_mp->b_cont = mp; 2724 DB_TYPE(mp) = M_CTL; 2725 ASSERT(ill != NULL); 2726 ii->ipsec_in_ill_index = 2727 ill->ill_phyint->phyint_ifindex; 2728 ii->ipsec_in_rill_index = 2729 recv_ill->ill_phyint->phyint_ifindex; 2730 } 2731 ip2dbg(("icmp_inbound_error: ipsec\n")); 2732 2733 if (!ipsec_loaded()) { 2734 ip_proto_not_sup(q, first_mp, 0, zoneid); 2735 return; 2736 } 2737 2738 if (ipha->ipha_protocol == IPPROTO_ESP) 2739 ipsec_rc = ipsecesp_icmp_error(first_mp); 2740 else 2741 ipsec_rc = ipsecah_icmp_error(first_mp); 2742 if (ipsec_rc == IPSEC_STATUS_FAILED) 2743 return; 2744 2745 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2746 return; 2747 } 2748 default: 2749 /* 2750 * The ripha header is only used for the lookup and we 2751 * only set the src and dst addresses and protocol. 2752 */ 2753 ripha.ipha_src = ipha->ipha_dst; 2754 ripha.ipha_dst = ipha->ipha_src; 2755 ripha.ipha_protocol = ipha->ipha_protocol; 2756 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2757 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2758 ntohl(ipha->ipha_dst), 2759 icmph->icmph_type, icmph->icmph_code)); 2760 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2761 ipha_t *in_ipha; 2762 2763 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2764 mp->b_wptr) { 2765 if (!pullupmsg(mp, (uchar_t *)ipha + 2766 hdr_length + sizeof (ipha_t) - 2767 mp->b_rptr)) { 2768 2769 BUMP_MIB(&ip_mib, ipInDiscards); 2770 goto drop_pkt; 2771 } 2772 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2773 ipha = (ipha_t *)&icmph[1]; 2774 } 2775 /* 2776 * Caller has verified that length has to be 2777 * at least the size of IP header. 2778 */ 2779 ASSERT(hdr_length >= sizeof (ipha_t)); 2780 /* 2781 * Check the sanity of the inner IP header like 2782 * we did for the outer header. 2783 */ 2784 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2785 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2786 BUMP_MIB(&ip_mib, ipInDiscards); 2787 goto drop_pkt; 2788 } 2789 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2790 BUMP_MIB(&ip_mib, ipInDiscards); 2791 goto drop_pkt; 2792 } 2793 /* Check for Self-encapsulated tunnels */ 2794 if (in_ipha->ipha_src == ipha->ipha_src && 2795 in_ipha->ipha_dst == ipha->ipha_dst) { 2796 2797 mp = icmp_inbound_self_encap_error(mp, 2798 iph_hdr_length, hdr_length); 2799 if (mp == NULL) 2800 goto drop_pkt; 2801 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2802 ipha = (ipha_t *)&icmph[1]; 2803 hdr_length = IPH_HDR_LENGTH(ipha); 2804 /* 2805 * The packet in error is self-encapsualted. 2806 * And we are finding it further encapsulated 2807 * which we could not have possibly generated. 2808 */ 2809 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2810 BUMP_MIB(&ip_mib, ipInDiscards); 2811 goto drop_pkt; 2812 } 2813 icmp_inbound_error_fanout(q, ill, first_mp, 2814 icmph, ipha, iph_hdr_length, hdr_length, 2815 mctl_present, ip_policy, recv_ill, zoneid); 2816 return; 2817 } 2818 } 2819 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2820 ipha->ipha_protocol == IPPROTO_IPV6) && 2821 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2822 ii != NULL && 2823 ii->ipsec_in_loopback && 2824 ii->ipsec_in_secure) { 2825 /* 2826 * For IP tunnels that get a looped-back 2827 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2828 * reported new MTU to take into account the IPsec 2829 * headers protecting this configured tunnel. 2830 * 2831 * This allows the tunnel module (tun.c) to blindly 2832 * accept the MTU reported in an ICMP "too big" 2833 * message. 2834 * 2835 * Non-looped back ICMP messages will just be 2836 * handled by the security protocols (if needed), 2837 * and the first subsequent packet will hit this 2838 * path. 2839 */ 2840 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2841 ipsec_in_extra_length(first_mp)); 2842 } 2843 /* Have to change db_type after any pullupmsg */ 2844 DB_TYPE(mp) = M_CTL; 2845 2846 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2847 ip_policy, recv_ill, zoneid); 2848 return; 2849 } 2850 /* NOTREACHED */ 2851 drop_pkt:; 2852 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2853 freemsg(first_mp); 2854 } 2855 2856 /* 2857 * Common IP options parser. 2858 * 2859 * Setup routine: fill in *optp with options-parsing state, then 2860 * tail-call ipoptp_next to return the first option. 2861 */ 2862 uint8_t 2863 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2864 { 2865 uint32_t totallen; /* total length of all options */ 2866 2867 totallen = ipha->ipha_version_and_hdr_length - 2868 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2869 totallen <<= 2; 2870 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2871 optp->ipoptp_end = optp->ipoptp_next + totallen; 2872 optp->ipoptp_flags = 0; 2873 return (ipoptp_next(optp)); 2874 } 2875 2876 /* 2877 * Common IP options parser: extract next option. 2878 */ 2879 uint8_t 2880 ipoptp_next(ipoptp_t *optp) 2881 { 2882 uint8_t *end = optp->ipoptp_end; 2883 uint8_t *cur = optp->ipoptp_next; 2884 uint8_t opt, len, pointer; 2885 2886 /* 2887 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2888 * has been corrupted. 2889 */ 2890 ASSERT(cur <= end); 2891 2892 if (cur == end) 2893 return (IPOPT_EOL); 2894 2895 opt = cur[IPOPT_OPTVAL]; 2896 2897 /* 2898 * Skip any NOP options. 2899 */ 2900 while (opt == IPOPT_NOP) { 2901 cur++; 2902 if (cur == end) 2903 return (IPOPT_EOL); 2904 opt = cur[IPOPT_OPTVAL]; 2905 } 2906 2907 if (opt == IPOPT_EOL) 2908 return (IPOPT_EOL); 2909 2910 /* 2911 * Option requiring a length. 2912 */ 2913 if ((cur + 1) >= end) { 2914 optp->ipoptp_flags |= IPOPTP_ERROR; 2915 return (IPOPT_EOL); 2916 } 2917 len = cur[IPOPT_OLEN]; 2918 if (len < 2) { 2919 optp->ipoptp_flags |= IPOPTP_ERROR; 2920 return (IPOPT_EOL); 2921 } 2922 optp->ipoptp_cur = cur; 2923 optp->ipoptp_len = len; 2924 optp->ipoptp_next = cur + len; 2925 if (cur + len > end) { 2926 optp->ipoptp_flags |= IPOPTP_ERROR; 2927 return (IPOPT_EOL); 2928 } 2929 2930 /* 2931 * For the options which require a pointer field, make sure 2932 * its there, and make sure it points to either something 2933 * inside this option, or the end of the option. 2934 */ 2935 switch (opt) { 2936 case IPOPT_RR: 2937 case IPOPT_TS: 2938 case IPOPT_LSRR: 2939 case IPOPT_SSRR: 2940 if (len <= IPOPT_OFFSET) { 2941 optp->ipoptp_flags |= IPOPTP_ERROR; 2942 return (opt); 2943 } 2944 pointer = cur[IPOPT_OFFSET]; 2945 if (pointer - 1 > len) { 2946 optp->ipoptp_flags |= IPOPTP_ERROR; 2947 return (opt); 2948 } 2949 break; 2950 } 2951 2952 /* 2953 * Sanity check the pointer field based on the type of the 2954 * option. 2955 */ 2956 switch (opt) { 2957 case IPOPT_RR: 2958 case IPOPT_SSRR: 2959 case IPOPT_LSRR: 2960 if (pointer < IPOPT_MINOFF_SR) 2961 optp->ipoptp_flags |= IPOPTP_ERROR; 2962 break; 2963 case IPOPT_TS: 2964 if (pointer < IPOPT_MINOFF_IT) 2965 optp->ipoptp_flags |= IPOPTP_ERROR; 2966 /* 2967 * Note that the Internet Timestamp option also 2968 * contains two four bit fields (the Overflow field, 2969 * and the Flag field), which follow the pointer 2970 * field. We don't need to check that these fields 2971 * fall within the length of the option because this 2972 * was implicitely done above. We've checked that the 2973 * pointer value is at least IPOPT_MINOFF_IT, and that 2974 * it falls within the option. Since IPOPT_MINOFF_IT > 2975 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2976 */ 2977 ASSERT(len > IPOPT_POS_OV_FLG); 2978 break; 2979 } 2980 2981 return (opt); 2982 } 2983 2984 /* 2985 * Use the outgoing IP header to create an IP_OPTIONS option the way 2986 * it was passed down from the application. 2987 */ 2988 int 2989 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2990 { 2991 ipoptp_t opts; 2992 const uchar_t *opt; 2993 uint8_t optval; 2994 uint8_t optlen; 2995 uint32_t len = 0; 2996 uchar_t *buf1 = buf; 2997 2998 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2999 len += IP_ADDR_LEN; 3000 bzero(buf1, IP_ADDR_LEN); 3001 3002 /* 3003 * OK to cast away const here, as we don't store through the returned 3004 * opts.ipoptp_cur pointer. 3005 */ 3006 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 3007 optval != IPOPT_EOL; 3008 optval = ipoptp_next(&opts)) { 3009 int off; 3010 3011 opt = opts.ipoptp_cur; 3012 optlen = opts.ipoptp_len; 3013 switch (optval) { 3014 case IPOPT_SSRR: 3015 case IPOPT_LSRR: 3016 3017 /* 3018 * Insert ipha_dst as the first entry in the source 3019 * route and move down the entries on step. 3020 * The last entry gets placed at buf1. 3021 */ 3022 buf[IPOPT_OPTVAL] = optval; 3023 buf[IPOPT_OLEN] = optlen; 3024 buf[IPOPT_OFFSET] = optlen; 3025 3026 off = optlen - IP_ADDR_LEN; 3027 if (off < 0) { 3028 /* No entries in source route */ 3029 break; 3030 } 3031 /* Last entry in source route */ 3032 bcopy(opt + off, buf1, IP_ADDR_LEN); 3033 off -= IP_ADDR_LEN; 3034 3035 while (off > 0) { 3036 bcopy(opt + off, 3037 buf + off + IP_ADDR_LEN, 3038 IP_ADDR_LEN); 3039 off -= IP_ADDR_LEN; 3040 } 3041 /* ipha_dst into first slot */ 3042 bcopy(&ipha->ipha_dst, 3043 buf + off + IP_ADDR_LEN, 3044 IP_ADDR_LEN); 3045 buf += optlen; 3046 len += optlen; 3047 break; 3048 3049 case IPOPT_COMSEC: 3050 case IPOPT_SECURITY: 3051 /* if passing up a label is not ok, then remove */ 3052 if (is_system_labeled()) 3053 break; 3054 /* FALLTHROUGH */ 3055 default: 3056 bcopy(opt, buf, optlen); 3057 buf += optlen; 3058 len += optlen; 3059 break; 3060 } 3061 } 3062 done: 3063 /* Pad the resulting options */ 3064 while (len & 0x3) { 3065 *buf++ = IPOPT_EOL; 3066 len++; 3067 } 3068 return (len); 3069 } 3070 3071 /* 3072 * Update any record route or timestamp options to include this host. 3073 * Reverse any source route option. 3074 * This routine assumes that the options are well formed i.e. that they 3075 * have already been checked. 3076 */ 3077 static void 3078 icmp_options_update(ipha_t *ipha) 3079 { 3080 ipoptp_t opts; 3081 uchar_t *opt; 3082 uint8_t optval; 3083 ipaddr_t src; /* Our local address */ 3084 ipaddr_t dst; 3085 3086 ip2dbg(("icmp_options_update\n")); 3087 src = ipha->ipha_src; 3088 dst = ipha->ipha_dst; 3089 3090 for (optval = ipoptp_first(&opts, ipha); 3091 optval != IPOPT_EOL; 3092 optval = ipoptp_next(&opts)) { 3093 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3094 opt = opts.ipoptp_cur; 3095 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3096 optval, opts.ipoptp_len)); 3097 switch (optval) { 3098 int off1, off2; 3099 case IPOPT_SSRR: 3100 case IPOPT_LSRR: 3101 /* 3102 * Reverse the source route. The first entry 3103 * should be the next to last one in the current 3104 * source route (the last entry is our address). 3105 * The last entry should be the final destination. 3106 */ 3107 off1 = IPOPT_MINOFF_SR - 1; 3108 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3109 if (off2 < 0) { 3110 /* No entries in source route */ 3111 ip1dbg(( 3112 "icmp_options_update: bad src route\n")); 3113 break; 3114 } 3115 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3116 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3117 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3118 off2 -= IP_ADDR_LEN; 3119 3120 while (off1 < off2) { 3121 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3122 bcopy((char *)opt + off2, (char *)opt + off1, 3123 IP_ADDR_LEN); 3124 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3125 off1 += IP_ADDR_LEN; 3126 off2 -= IP_ADDR_LEN; 3127 } 3128 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3129 break; 3130 } 3131 } 3132 } 3133 3134 /* 3135 * Process received ICMP Redirect messages. 3136 */ 3137 /* ARGSUSED */ 3138 static void 3139 icmp_redirect(mblk_t *mp) 3140 { 3141 ipha_t *ipha; 3142 int iph_hdr_length; 3143 icmph_t *icmph; 3144 ipha_t *ipha_err; 3145 ire_t *ire; 3146 ire_t *prev_ire; 3147 ire_t *save_ire; 3148 ipaddr_t src, dst, gateway; 3149 iulp_t ulp_info = { 0 }; 3150 int error; 3151 3152 ipha = (ipha_t *)mp->b_rptr; 3153 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3154 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3155 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3156 BUMP_MIB(&icmp_mib, icmpInErrors); 3157 freemsg(mp); 3158 return; 3159 } 3160 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3161 ipha_err = (ipha_t *)&icmph[1]; 3162 src = ipha->ipha_src; 3163 dst = ipha_err->ipha_dst; 3164 gateway = icmph->icmph_rd_gateway; 3165 /* Make sure the new gateway is reachable somehow. */ 3166 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3167 ALL_ZONES, NULL, MATCH_IRE_TYPE); 3168 /* 3169 * Make sure we had a route for the dest in question and that 3170 * that route was pointing to the old gateway (the source of the 3171 * redirect packet.) 3172 */ 3173 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3174 NULL, MATCH_IRE_GW); 3175 /* 3176 * Check that 3177 * the redirect was not from ourselves 3178 * the new gateway and the old gateway are directly reachable 3179 */ 3180 if (!prev_ire || 3181 !ire || 3182 ire->ire_type == IRE_LOCAL) { 3183 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3184 freemsg(mp); 3185 if (ire != NULL) 3186 ire_refrele(ire); 3187 if (prev_ire != NULL) 3188 ire_refrele(prev_ire); 3189 return; 3190 } 3191 3192 /* 3193 * Should we use the old ULP info to create the new gateway? From 3194 * a user's perspective, we should inherit the info so that it 3195 * is a "smooth" transition. If we do not do that, then new 3196 * connections going thru the new gateway will have no route metrics, 3197 * which is counter-intuitive to user. From a network point of 3198 * view, this may or may not make sense even though the new gateway 3199 * is still directly connected to us so the route metrics should not 3200 * change much. 3201 * 3202 * But if the old ire_uinfo is not initialized, we do another 3203 * recursive lookup on the dest using the new gateway. There may 3204 * be a route to that. If so, use it to initialize the redirect 3205 * route. 3206 */ 3207 if (prev_ire->ire_uinfo.iulp_set) { 3208 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3209 } else { 3210 ire_t *tmp_ire; 3211 ire_t *sire; 3212 3213 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3214 ALL_ZONES, 0, NULL, 3215 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT)); 3216 if (sire != NULL) { 3217 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3218 /* 3219 * If sire != NULL, ire_ftable_lookup() should not 3220 * return a NULL value. 3221 */ 3222 ASSERT(tmp_ire != NULL); 3223 ire_refrele(tmp_ire); 3224 ire_refrele(sire); 3225 } else if (tmp_ire != NULL) { 3226 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3227 sizeof (iulp_t)); 3228 ire_refrele(tmp_ire); 3229 } 3230 } 3231 if (prev_ire->ire_type == IRE_CACHE) 3232 ire_delete(prev_ire); 3233 ire_refrele(prev_ire); 3234 /* 3235 * TODO: more precise handling for cases 0, 2, 3, the latter two 3236 * require TOS routing 3237 */ 3238 switch (icmph->icmph_code) { 3239 case 0: 3240 case 1: 3241 /* TODO: TOS specificity for cases 2 and 3 */ 3242 case 2: 3243 case 3: 3244 break; 3245 default: 3246 freemsg(mp); 3247 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3248 ire_refrele(ire); 3249 return; 3250 } 3251 /* 3252 * Create a Route Association. This will allow us to remember that 3253 * someone we believe told us to use the particular gateway. 3254 */ 3255 save_ire = ire; 3256 ire = ire_create( 3257 (uchar_t *)&dst, /* dest addr */ 3258 (uchar_t *)&ip_g_all_ones, /* mask */ 3259 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3260 (uchar_t *)&gateway, /* gateway addr */ 3261 NULL, /* no in_srcaddr */ 3262 &save_ire->ire_max_frag, /* max frag */ 3263 NULL, /* Fast Path header */ 3264 NULL, /* no rfq */ 3265 NULL, /* no stq */ 3266 IRE_HOST_REDIRECT, 3267 NULL, 3268 NULL, 3269 NULL, 3270 0, 3271 0, 3272 0, 3273 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3274 &ulp_info, 3275 NULL, 3276 NULL); 3277 3278 if (ire == NULL) { 3279 freemsg(mp); 3280 ire_refrele(save_ire); 3281 return; 3282 } 3283 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3284 ire_refrele(save_ire); 3285 atomic_inc_32(&ip_redirect_cnt); 3286 3287 if (error == 0) { 3288 ire_refrele(ire); /* Held in ire_add_v4 */ 3289 /* tell routing sockets that we received a redirect */ 3290 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3291 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3292 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR)); 3293 } 3294 3295 /* 3296 * Delete any existing IRE_HOST_REDIRECT for this destination. 3297 * This together with the added IRE has the effect of 3298 * modifying an existing redirect. 3299 */ 3300 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST_REDIRECT, NULL, NULL, 3301 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE)); 3302 if (prev_ire) { 3303 ire_delete(prev_ire); 3304 ire_refrele(prev_ire); 3305 } 3306 3307 freemsg(mp); 3308 } 3309 3310 /* 3311 * Generate an ICMP parameter problem message. 3312 */ 3313 static void 3314 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid) 3315 { 3316 icmph_t icmph; 3317 boolean_t mctl_present; 3318 mblk_t *first_mp; 3319 3320 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3321 3322 if (!(mp = icmp_pkt_err_ok(mp))) { 3323 if (mctl_present) 3324 freeb(first_mp); 3325 return; 3326 } 3327 3328 bzero(&icmph, sizeof (icmph_t)); 3329 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3330 icmph.icmph_pp_ptr = ptr; 3331 BUMP_MIB(&icmp_mib, icmpOutParmProbs); 3332 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 3333 } 3334 3335 /* 3336 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3337 * the ICMP header pointed to by "stuff". (May be called as writer.) 3338 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3339 * an icmp error packet can be sent. 3340 * Assigns an appropriate source address to the packet. If ipha_dst is 3341 * one of our addresses use it for source. Otherwise pick a source based 3342 * on a route lookup back to ipha_src. 3343 * Note that ipha_src must be set here since the 3344 * packet is likely to arrive on an ill queue in ip_wput() which will 3345 * not set a source address. 3346 */ 3347 static void 3348 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3349 boolean_t mctl_present, zoneid_t zoneid) 3350 { 3351 ipaddr_t dst; 3352 icmph_t *icmph; 3353 ipha_t *ipha; 3354 uint_t len_needed; 3355 size_t msg_len; 3356 mblk_t *mp1; 3357 ipaddr_t src; 3358 ire_t *ire; 3359 mblk_t *ipsec_mp; 3360 ipsec_out_t *io = NULL; 3361 boolean_t xmit_if_on = B_FALSE; 3362 3363 if (mctl_present) { 3364 /* 3365 * If it is : 3366 * 3367 * 1) a IPSEC_OUT, then this is caused by outbound 3368 * datagram originating on this host. IPSEC processing 3369 * may or may not have been done. Refer to comments above 3370 * icmp_inbound_error_fanout for details. 3371 * 3372 * 2) a IPSEC_IN if we are generating a icmp_message 3373 * for an incoming datagram destined for us i.e called 3374 * from ip_fanout_send_icmp. 3375 */ 3376 ipsec_info_t *in; 3377 ipsec_mp = mp; 3378 mp = ipsec_mp->b_cont; 3379 3380 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3381 ipha = (ipha_t *)mp->b_rptr; 3382 3383 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3384 in->ipsec_info_type == IPSEC_IN); 3385 3386 if (in->ipsec_info_type == IPSEC_IN) { 3387 /* 3388 * Convert the IPSEC_IN to IPSEC_OUT. 3389 */ 3390 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3391 BUMP_MIB(&ip_mib, ipOutDiscards); 3392 return; 3393 } 3394 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3395 } else { 3396 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3397 io = (ipsec_out_t *)in; 3398 if (io->ipsec_out_xmit_if) 3399 xmit_if_on = B_TRUE; 3400 /* 3401 * Clear out ipsec_out_proc_begin, so we do a fresh 3402 * ire lookup. 3403 */ 3404 io->ipsec_out_proc_begin = B_FALSE; 3405 } 3406 ASSERT(zoneid == io->ipsec_out_zoneid); 3407 ASSERT(zoneid != ALL_ZONES); 3408 } else { 3409 /* 3410 * This is in clear. The icmp message we are building 3411 * here should go out in clear. 3412 * 3413 * Pardon the convolution of it all, but it's easier to 3414 * allocate a "use cleartext" IPSEC_IN message and convert 3415 * it than it is to allocate a new one. 3416 */ 3417 ipsec_in_t *ii; 3418 ASSERT(DB_TYPE(mp) == M_DATA); 3419 if ((ipsec_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 3420 freemsg(mp); 3421 BUMP_MIB(&ip_mib, ipOutDiscards); 3422 return; 3423 } 3424 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3425 3426 /* This is not a secure packet */ 3427 ii->ipsec_in_secure = B_FALSE; 3428 /* 3429 * For trusted extensions using a shared IP address we can 3430 * send using any zoneid. 3431 */ 3432 if (zoneid == ALL_ZONES) 3433 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3434 else 3435 ii->ipsec_in_zoneid = zoneid; 3436 ipsec_mp->b_cont = mp; 3437 ipha = (ipha_t *)mp->b_rptr; 3438 /* 3439 * Convert the IPSEC_IN to IPSEC_OUT. 3440 */ 3441 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3442 BUMP_MIB(&ip_mib, ipOutDiscards); 3443 return; 3444 } 3445 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3446 } 3447 3448 /* Remember our eventual destination */ 3449 dst = ipha->ipha_src; 3450 3451 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3452 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE); 3453 if (ire != NULL && 3454 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3455 src = ipha->ipha_dst; 3456 } else if (!xmit_if_on) { 3457 if (ire != NULL) 3458 ire_refrele(ire); 3459 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3460 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY)); 3461 if (ire == NULL) { 3462 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3463 freemsg(ipsec_mp); 3464 return; 3465 } 3466 src = ire->ire_src_addr; 3467 } else { 3468 ipif_t *ipif = NULL; 3469 ill_t *ill; 3470 /* 3471 * This must be an ICMP error coming from 3472 * ip_mrtun_forward(). The src addr should 3473 * be equal to the IP-addr of the outgoing 3474 * interface. 3475 */ 3476 if (io == NULL) { 3477 /* This is not a IPSEC_OUT type control msg */ 3478 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3479 freemsg(ipsec_mp); 3480 return; 3481 } 3482 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3483 NULL, NULL, NULL, NULL); 3484 if (ill != NULL) { 3485 ipif = ipif_get_next_ipif(NULL, ill); 3486 ill_refrele(ill); 3487 } 3488 if (ipif == NULL) { 3489 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3490 freemsg(ipsec_mp); 3491 return; 3492 } 3493 src = ipif->ipif_src_addr; 3494 ipif_refrele(ipif); 3495 } 3496 3497 if (ire != NULL) 3498 ire_refrele(ire); 3499 3500 /* 3501 * Check if we can send back more then 8 bytes in addition 3502 * to the IP header. We will include as much as 64 bytes. 3503 */ 3504 len_needed = IPH_HDR_LENGTH(ipha); 3505 if (ipha->ipha_protocol == IPPROTO_ENCAP && 3506 (uchar_t *)ipha + len_needed + 1 <= mp->b_wptr) { 3507 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + len_needed)); 3508 } 3509 len_needed += ip_icmp_return; 3510 msg_len = msgdsize(mp); 3511 if (msg_len > len_needed) { 3512 (void) adjmsg(mp, len_needed - msg_len); 3513 msg_len = len_needed; 3514 } 3515 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3516 if (mp1 == NULL) { 3517 BUMP_MIB(&icmp_mib, icmpOutErrors); 3518 freemsg(ipsec_mp); 3519 return; 3520 } 3521 /* 3522 * On an unlabeled system, dblks don't necessarily have creds. 3523 */ 3524 ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL); 3525 if (DB_CRED(mp) != NULL) 3526 mblk_setcred(mp1, DB_CRED(mp)); 3527 mp1->b_cont = mp; 3528 mp = mp1; 3529 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3530 ipsec_mp->b_rptr == (uint8_t *)io && 3531 io->ipsec_out_type == IPSEC_OUT); 3532 ipsec_mp->b_cont = mp; 3533 3534 /* 3535 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3536 * node generates be accepted in peace by all on-host destinations. 3537 * If we do NOT assume that all on-host destinations trust 3538 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3539 * (Look for ipsec_out_icmp_loopback). 3540 */ 3541 io->ipsec_out_icmp_loopback = B_TRUE; 3542 3543 ipha = (ipha_t *)mp->b_rptr; 3544 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3545 *ipha = icmp_ipha; 3546 ipha->ipha_src = src; 3547 ipha->ipha_dst = dst; 3548 ipha->ipha_ttl = ip_def_ttl; 3549 msg_len += sizeof (icmp_ipha) + len; 3550 if (msg_len > IP_MAXPACKET) { 3551 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3552 msg_len = IP_MAXPACKET; 3553 } 3554 ipha->ipha_length = htons((uint16_t)msg_len); 3555 icmph = (icmph_t *)&ipha[1]; 3556 bcopy(stuff, icmph, len); 3557 icmph->icmph_checksum = 0; 3558 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3559 if (icmph->icmph_checksum == 0) 3560 icmph->icmph_checksum = 0xFFFF; 3561 BUMP_MIB(&icmp_mib, icmpOutMsgs); 3562 put(q, ipsec_mp); 3563 } 3564 3565 /* 3566 * Determine if an ICMP error packet can be sent given the rate limit. 3567 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3568 * in milliseconds) and a burst size. Burst size number of packets can 3569 * be sent arbitrarely closely spaced. 3570 * The state is tracked using two variables to implement an approximate 3571 * token bucket filter: 3572 * icmp_pkt_err_last - lbolt value when the last burst started 3573 * icmp_pkt_err_sent - number of packets sent in current burst 3574 */ 3575 boolean_t 3576 icmp_err_rate_limit(void) 3577 { 3578 clock_t now = TICK_TO_MSEC(lbolt); 3579 uint_t refilled; /* Number of packets refilled in tbf since last */ 3580 uint_t err_interval = ip_icmp_err_interval; /* Guard against changes */ 3581 3582 if (err_interval == 0) 3583 return (B_FALSE); 3584 3585 if (icmp_pkt_err_last > now) { 3586 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3587 icmp_pkt_err_last = 0; 3588 icmp_pkt_err_sent = 0; 3589 } 3590 /* 3591 * If we are in a burst update the token bucket filter. 3592 * Update the "last" time to be close to "now" but make sure 3593 * we don't loose precision. 3594 */ 3595 if (icmp_pkt_err_sent != 0) { 3596 refilled = (now - icmp_pkt_err_last)/err_interval; 3597 if (refilled > icmp_pkt_err_sent) { 3598 icmp_pkt_err_sent = 0; 3599 } else { 3600 icmp_pkt_err_sent -= refilled; 3601 icmp_pkt_err_last += refilled * err_interval; 3602 } 3603 } 3604 if (icmp_pkt_err_sent == 0) { 3605 /* Start of new burst */ 3606 icmp_pkt_err_last = now; 3607 } 3608 if (icmp_pkt_err_sent < ip_icmp_err_burst) { 3609 icmp_pkt_err_sent++; 3610 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3611 icmp_pkt_err_sent)); 3612 return (B_FALSE); 3613 } 3614 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3615 return (B_TRUE); 3616 } 3617 3618 /* 3619 * Check if it is ok to send an IPv4 ICMP error packet in 3620 * response to the IPv4 packet in mp. 3621 * Free the message and return null if no 3622 * ICMP error packet should be sent. 3623 */ 3624 static mblk_t * 3625 icmp_pkt_err_ok(mblk_t *mp) 3626 { 3627 icmph_t *icmph; 3628 ipha_t *ipha; 3629 uint_t len_needed; 3630 ire_t *src_ire; 3631 ire_t *dst_ire; 3632 3633 if (!mp) 3634 return (NULL); 3635 ipha = (ipha_t *)mp->b_rptr; 3636 if (ip_csum_hdr(ipha)) { 3637 BUMP_MIB(&ip_mib, ipInCksumErrs); 3638 freemsg(mp); 3639 return (NULL); 3640 } 3641 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3642 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3643 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3644 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3645 if (src_ire != NULL || dst_ire != NULL || 3646 CLASSD(ipha->ipha_dst) || 3647 CLASSD(ipha->ipha_src) || 3648 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3649 /* Note: only errors to the fragment with offset 0 */ 3650 BUMP_MIB(&icmp_mib, icmpOutDrops); 3651 freemsg(mp); 3652 if (src_ire != NULL) 3653 ire_refrele(src_ire); 3654 if (dst_ire != NULL) 3655 ire_refrele(dst_ire); 3656 return (NULL); 3657 } 3658 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3659 /* 3660 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3661 * errors in response to any ICMP errors. 3662 */ 3663 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3664 if (mp->b_wptr - mp->b_rptr < len_needed) { 3665 if (!pullupmsg(mp, len_needed)) { 3666 BUMP_MIB(&icmp_mib, icmpInErrors); 3667 freemsg(mp); 3668 return (NULL); 3669 } 3670 ipha = (ipha_t *)mp->b_rptr; 3671 } 3672 icmph = (icmph_t *) 3673 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3674 switch (icmph->icmph_type) { 3675 case ICMP_DEST_UNREACHABLE: 3676 case ICMP_SOURCE_QUENCH: 3677 case ICMP_TIME_EXCEEDED: 3678 case ICMP_PARAM_PROBLEM: 3679 case ICMP_REDIRECT: 3680 BUMP_MIB(&icmp_mib, icmpOutDrops); 3681 freemsg(mp); 3682 return (NULL); 3683 default: 3684 break; 3685 } 3686 } 3687 /* 3688 * If this is a labeled system, then check to see if we're allowed to 3689 * send a response to this particular sender. If not, then just drop. 3690 */ 3691 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3692 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3693 BUMP_MIB(&icmp_mib, icmpOutDrops); 3694 freemsg(mp); 3695 return (NULL); 3696 } 3697 if (icmp_err_rate_limit()) { 3698 /* 3699 * Only send ICMP error packets every so often. 3700 * This should be done on a per port/source basis, 3701 * but for now this will suffice. 3702 */ 3703 freemsg(mp); 3704 return (NULL); 3705 } 3706 return (mp); 3707 } 3708 3709 /* 3710 * Generate an ICMP redirect message. 3711 */ 3712 static void 3713 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway) 3714 { 3715 icmph_t icmph; 3716 3717 /* 3718 * We are called from ip_rput where we could 3719 * not have attached an IPSEC_IN. 3720 */ 3721 ASSERT(mp->b_datap->db_type == M_DATA); 3722 3723 if (!(mp = icmp_pkt_err_ok(mp))) { 3724 return; 3725 } 3726 3727 bzero(&icmph, sizeof (icmph_t)); 3728 icmph.icmph_type = ICMP_REDIRECT; 3729 icmph.icmph_code = 1; 3730 icmph.icmph_rd_gateway = gateway; 3731 BUMP_MIB(&icmp_mib, icmpOutRedirects); 3732 /* Redirects sent by router, and router is global zone */ 3733 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID); 3734 } 3735 3736 /* 3737 * Generate an ICMP time exceeded message. 3738 */ 3739 void 3740 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid) 3741 { 3742 icmph_t icmph; 3743 boolean_t mctl_present; 3744 mblk_t *first_mp; 3745 3746 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3747 3748 if (!(mp = icmp_pkt_err_ok(mp))) { 3749 if (mctl_present) 3750 freeb(first_mp); 3751 return; 3752 } 3753 3754 bzero(&icmph, sizeof (icmph_t)); 3755 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3756 icmph.icmph_code = code; 3757 BUMP_MIB(&icmp_mib, icmpOutTimeExcds); 3758 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 3759 } 3760 3761 /* 3762 * Generate an ICMP unreachable message. 3763 */ 3764 void 3765 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid) 3766 { 3767 icmph_t icmph; 3768 mblk_t *first_mp; 3769 boolean_t mctl_present; 3770 3771 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3772 3773 if (!(mp = icmp_pkt_err_ok(mp))) { 3774 if (mctl_present) 3775 freeb(first_mp); 3776 return; 3777 } 3778 3779 bzero(&icmph, sizeof (icmph_t)); 3780 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3781 icmph.icmph_code = code; 3782 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 3783 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3784 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3785 zoneid); 3786 } 3787 3788 /* 3789 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3790 * duplicate. As long as someone else holds the address, the interface will 3791 * stay down. When that conflict goes away, the interface is brought back up. 3792 * This is done so that accidental shutdowns of addresses aren't made 3793 * permanent. Your server will recover from a failure. 3794 * 3795 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3796 * user space process (dhcpagent). 3797 * 3798 * Recovery completes if ARP reports that the address is now ours (via 3799 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3800 * 3801 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3802 */ 3803 static void 3804 ipif_dup_recovery(void *arg) 3805 { 3806 ipif_t *ipif = arg; 3807 ill_t *ill = ipif->ipif_ill; 3808 mblk_t *arp_add_mp; 3809 mblk_t *arp_del_mp; 3810 area_t *area; 3811 3812 ipif->ipif_recovery_id = 0; 3813 3814 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3815 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 3816 /* No reason to try to bring this address back. */ 3817 return; 3818 } 3819 3820 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3821 goto alloc_fail; 3822 3823 if (ipif->ipif_arp_del_mp == NULL) { 3824 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3825 goto alloc_fail; 3826 ipif->ipif_arp_del_mp = arp_del_mp; 3827 } 3828 3829 /* Setting the 'unverified' flag restarts DAD */ 3830 area = (area_t *)arp_add_mp->b_rptr; 3831 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3832 ACE_F_UNVERIFIED; 3833 putnext(ill->ill_rq, arp_add_mp); 3834 return; 3835 3836 alloc_fail: 3837 /* On allocation failure, just restart the timer */ 3838 freemsg(arp_add_mp); 3839 if (ip_dup_recovery > 0) { 3840 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3841 MSEC_TO_TICK(ip_dup_recovery)); 3842 } 3843 } 3844 3845 /* 3846 * This is for exclusive changes due to ARP. Either tear down an interface due 3847 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3848 */ 3849 /* ARGSUSED */ 3850 static void 3851 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3852 { 3853 ill_t *ill = rq->q_ptr; 3854 arh_t *arh; 3855 ipaddr_t src; 3856 ipif_t *ipif; 3857 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3858 char hbuf[MAC_STR_LEN]; 3859 char sbuf[INET_ADDRSTRLEN]; 3860 const char *failtype; 3861 boolean_t bring_up; 3862 3863 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3864 case AR_CN_READY: 3865 failtype = NULL; 3866 bring_up = B_TRUE; 3867 break; 3868 case AR_CN_FAILED: 3869 failtype = "in use"; 3870 bring_up = B_FALSE; 3871 break; 3872 default: 3873 failtype = "claimed"; 3874 bring_up = B_FALSE; 3875 break; 3876 } 3877 3878 arh = (arh_t *)mp->b_cont->b_rptr; 3879 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3880 3881 /* Handle failures due to probes */ 3882 if (src == 0) { 3883 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3884 IP_ADDR_LEN); 3885 } 3886 3887 (void) strlcpy(ibuf, ill->ill_name, sizeof (ibuf)); 3888 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3889 sizeof (hbuf)); 3890 (void) ip_dot_addr(src, sbuf); 3891 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3892 3893 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3894 ipif->ipif_lcl_addr != src) { 3895 continue; 3896 } 3897 3898 /* 3899 * If we failed on a recovery probe, then restart the timer to 3900 * try again later. 3901 */ 3902 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3903 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3904 ill->ill_net_type == IRE_IF_RESOLVER && 3905 ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0) { 3906 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3907 ipif, MSEC_TO_TICK(ip_dup_recovery)); 3908 continue; 3909 } 3910 3911 /* 3912 * If what we're trying to do has already been done, then do 3913 * nothing. 3914 */ 3915 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3916 continue; 3917 3918 if (ipif->ipif_id != 0) { 3919 (void) snprintf(ibuf + ill->ill_name_length - 1, 3920 sizeof (ibuf) - ill->ill_name_length + 1, ":%d", 3921 ipif->ipif_id); 3922 } 3923 if (failtype == NULL) { 3924 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3925 ibuf); 3926 } else { 3927 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3928 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3929 } 3930 3931 if (bring_up) { 3932 ASSERT(ill->ill_dl_up); 3933 /* 3934 * Free up the ARP delete message so we can allocate 3935 * a fresh one through the normal path. 3936 */ 3937 freemsg(ipif->ipif_arp_del_mp); 3938 ipif->ipif_arp_del_mp = NULL; 3939 if (ipif_resolver_up(ipif, Res_act_initial) != 3940 EINPROGRESS) { 3941 ipif->ipif_addr_ready = 1; 3942 (void) ipif_up_done(ipif); 3943 } 3944 continue; 3945 } 3946 3947 mutex_enter(&ill->ill_lock); 3948 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3949 ipif->ipif_flags |= IPIF_DUPLICATE; 3950 ill->ill_ipif_dup_count++; 3951 mutex_exit(&ill->ill_lock); 3952 /* 3953 * Already exclusive on the ill; no need to handle deferred 3954 * processing here. 3955 */ 3956 (void) ipif_down(ipif, NULL, NULL); 3957 ipif_down_tail(ipif); 3958 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3959 ill->ill_net_type == IRE_IF_RESOLVER && 3960 ip_dup_recovery > 0) { 3961 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3962 ipif, MSEC_TO_TICK(ip_dup_recovery)); 3963 } 3964 } 3965 freemsg(mp); 3966 } 3967 3968 /* ARGSUSED */ 3969 static void 3970 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3971 { 3972 ill_t *ill = rq->q_ptr; 3973 arh_t *arh; 3974 ipaddr_t src; 3975 ipif_t *ipif; 3976 3977 arh = (arh_t *)mp->b_cont->b_rptr; 3978 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3979 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3980 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3981 (void) ipif_resolver_up(ipif, Res_act_defend); 3982 } 3983 freemsg(mp); 3984 } 3985 3986 /* 3987 * News from ARP. ARP sends notification of interesting events down 3988 * to its clients using M_CTL messages with the interesting ARP packet 3989 * attached via b_cont. 3990 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3991 * queue as opposed to ARP sending the message to all the clients, i.e. all 3992 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3993 * table if a cache IRE is found to delete all the entries for the address in 3994 * the packet. 3995 */ 3996 static void 3997 ip_arp_news(queue_t *q, mblk_t *mp) 3998 { 3999 arcn_t *arcn; 4000 arh_t *arh; 4001 ire_t *ire = NULL; 4002 char hbuf[MAC_STR_LEN]; 4003 char sbuf[INET_ADDRSTRLEN]; 4004 ipaddr_t src; 4005 in6_addr_t v6src; 4006 boolean_t isv6 = B_FALSE; 4007 ipif_t *ipif; 4008 ill_t *ill; 4009 4010 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 4011 if (q->q_next) { 4012 putnext(q, mp); 4013 } else 4014 freemsg(mp); 4015 return; 4016 } 4017 arh = (arh_t *)mp->b_cont->b_rptr; 4018 /* Is it one we are interested in? */ 4019 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 4020 isv6 = B_TRUE; 4021 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 4022 IPV6_ADDR_LEN); 4023 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 4024 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 4025 IP_ADDR_LEN); 4026 } else { 4027 freemsg(mp); 4028 return; 4029 } 4030 4031 ill = q->q_ptr; 4032 4033 arcn = (arcn_t *)mp->b_rptr; 4034 switch (arcn->arcn_code) { 4035 case AR_CN_BOGON: 4036 /* 4037 * Someone is sending ARP packets with a source protocol 4038 * address that we have published and for which we believe our 4039 * entry is authoritative and (when ill_arp_extend is set) 4040 * verified to be unique on the network. 4041 * 4042 * The ARP module internally handles the cases where the sender 4043 * is just probing (for DAD) and where the hardware address of 4044 * a non-authoritative entry has changed. Thus, these are the 4045 * real conflicts, and we have to do resolution. 4046 * 4047 * We back away quickly from the address if it's from DHCP or 4048 * otherwise temporary and hasn't been used recently (or at 4049 * all). We'd like to include "deprecated" addresses here as 4050 * well (as there's no real reason to defend something we're 4051 * discarding), but IPMP "reuses" this flag to mean something 4052 * other than the standard meaning. 4053 * 4054 * If the ARP module above is not extended (meaning that it 4055 * doesn't know how to defend the address), then we just log 4056 * the problem as we always did and continue on. It's not 4057 * right, but there's little else we can do, and those old ATM 4058 * users are going away anyway. 4059 */ 4060 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 4061 hbuf, sizeof (hbuf)); 4062 (void) ip_dot_addr(src, sbuf); 4063 if (isv6) 4064 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL); 4065 else 4066 ire = ire_cache_lookup(src, ALL_ZONES, NULL); 4067 4068 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4069 uint32_t now; 4070 uint32_t maxage; 4071 clock_t lused; 4072 uint_t maxdefense; 4073 uint_t defs; 4074 4075 /* 4076 * First, figure out if this address hasn't been used 4077 * in a while. If it hasn't, then it's a better 4078 * candidate for abandoning. 4079 */ 4080 ipif = ire->ire_ipif; 4081 ASSERT(ipif != NULL); 4082 now = gethrestime_sec(); 4083 maxage = now - ire->ire_create_time; 4084 if (maxage > ip_max_temp_idle) 4085 maxage = ip_max_temp_idle; 4086 lused = drv_hztousec(ddi_get_lbolt() - 4087 ire->ire_last_used_time) / MICROSEC + 1; 4088 if (lused >= maxage && (ipif->ipif_flags & 4089 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4090 maxdefense = ip_max_temp_defend; 4091 else 4092 maxdefense = ip_max_defend; 4093 4094 /* 4095 * Now figure out how many times we've defended 4096 * ourselves. Ignore defenses that happened long in 4097 * the past. 4098 */ 4099 mutex_enter(&ire->ire_lock); 4100 if ((defs = ire->ire_defense_count) > 0 && 4101 now - ire->ire_defense_time > ip_defend_interval) { 4102 ire->ire_defense_count = defs = 0; 4103 } 4104 ire->ire_defense_count++; 4105 ire->ire_defense_time = now; 4106 mutex_exit(&ire->ire_lock); 4107 ill_refhold(ill); 4108 ire_refrele(ire); 4109 4110 /* 4111 * If we've defended ourselves too many times already, 4112 * then give up and tear down the interface(s) using 4113 * this address. Otherwise, defend by sending out a 4114 * gratuitous ARP. 4115 */ 4116 if (defs >= maxdefense && ill->ill_arp_extend) { 4117 (void) qwriter_ip(NULL, ill, q, mp, 4118 ip_arp_excl, CUR_OP, B_FALSE); 4119 } else { 4120 cmn_err(CE_WARN, 4121 "node %s is using our IP address %s on %s", 4122 hbuf, sbuf, ill->ill_name); 4123 /* 4124 * If this is an old (ATM) ARP module, then 4125 * don't try to defend the address. Remain 4126 * compatible with the old behavior. Defend 4127 * only with new ARP. 4128 */ 4129 if (ill->ill_arp_extend) { 4130 (void) qwriter_ip(NULL, ill, q, mp, 4131 ip_arp_defend, CUR_OP, B_FALSE); 4132 } else { 4133 ill_refrele(ill); 4134 } 4135 } 4136 return; 4137 } 4138 cmn_err(CE_WARN, 4139 "proxy ARP problem? Node '%s' is using %s on %s", 4140 hbuf, sbuf, ill->ill_name); 4141 if (ire != NULL) 4142 ire_refrele(ire); 4143 break; 4144 case AR_CN_ANNOUNCE: 4145 if (isv6) { 4146 /* 4147 * For XRESOLV interfaces. 4148 * Delete the IRE cache entry and NCE for this 4149 * v6 address 4150 */ 4151 ip_ire_clookup_and_delete_v6(&v6src); 4152 /* 4153 * If v6src is a non-zero, it's a router address 4154 * as below. Do the same sort of thing to clean 4155 * out off-net IRE_CACHE entries that go through 4156 * the router. 4157 */ 4158 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4159 ire_walk_v6(ire_delete_cache_gw_v6, 4160 (char *)&v6src, ALL_ZONES); 4161 } 4162 } else { 4163 nce_hw_map_t hwm; 4164 4165 /* 4166 * ARP gives us a copy of any packet where it thinks 4167 * the address has changed, so that we can update our 4168 * caches. We're responsible for caching known answers 4169 * in the current design. We check whether the 4170 * hardware address really has changed in all of our 4171 * entries that have cached this mapping, and if so, we 4172 * blow them away. This way we will immediately pick 4173 * up the rare case of a host changing hardware 4174 * address. 4175 */ 4176 if (src == 0) 4177 break; 4178 hwm.hwm_addr = src; 4179 hwm.hwm_hwlen = arh->arh_hlen; 4180 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4181 ndp_walk_common(&ndp4, NULL, 4182 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4183 } 4184 break; 4185 case AR_CN_READY: 4186 /* No external v6 resolver has a contract to use this */ 4187 if (isv6) 4188 break; 4189 /* If the link is down, we'll retry this later */ 4190 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4191 break; 4192 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4193 NULL, NULL); 4194 if (ipif != NULL) { 4195 /* 4196 * If this is a duplicate recovery, then we now need to 4197 * go exclusive to bring this thing back up. 4198 */ 4199 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4200 IPIF_DUPLICATE) { 4201 ipif_refrele(ipif); 4202 ill_refhold(ill); 4203 (void) qwriter_ip(NULL, ill, q, mp, 4204 ip_arp_excl, CUR_OP, B_FALSE); 4205 return; 4206 } 4207 /* 4208 * If this is the first notice that this address is 4209 * ready, then let the user know now. 4210 */ 4211 if ((ipif->ipif_flags & IPIF_UP) && 4212 !ipif->ipif_addr_ready) { 4213 ipif_mask_reply(ipif); 4214 ip_rts_ifmsg(ipif); 4215 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4216 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4217 } 4218 ipif->ipif_addr_ready = 1; 4219 ipif_refrele(ipif); 4220 } 4221 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp)); 4222 if (ire != NULL) { 4223 ire->ire_defense_count = 0; 4224 ire_refrele(ire); 4225 } 4226 break; 4227 case AR_CN_FAILED: 4228 /* No external v6 resolver has a contract to use this */ 4229 if (isv6) 4230 break; 4231 ill_refhold(ill); 4232 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_excl, CUR_OP, 4233 B_FALSE); 4234 return; 4235 } 4236 freemsg(mp); 4237 } 4238 4239 /* 4240 * Create a mblk suitable for carrying the interface index and/or source link 4241 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4242 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4243 * application. 4244 */ 4245 mblk_t * 4246 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags) 4247 { 4248 mblk_t *mp; 4249 in_pktinfo_t *pinfo; 4250 ipha_t *ipha; 4251 struct ether_header *pether; 4252 4253 mp = allocb(sizeof (in_pktinfo_t), BPRI_MED); 4254 if (mp == NULL) { 4255 ip1dbg(("ip_add_info: allocation failure.\n")); 4256 return (data_mp); 4257 } 4258 4259 ipha = (ipha_t *)data_mp->b_rptr; 4260 pinfo = (in_pktinfo_t *)mp->b_rptr; 4261 bzero(pinfo, sizeof (in_pktinfo_t)); 4262 pinfo->in_pkt_flags = (uchar_t)flags; 4263 pinfo->in_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4264 4265 if (flags & IPF_RECVIF) 4266 pinfo->in_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4267 4268 pether = (struct ether_header *)((char *)ipha 4269 - sizeof (struct ether_header)); 4270 /* 4271 * Make sure the interface is an ethernet type, since this option 4272 * is currently supported only on this type of interface. Also make 4273 * sure we are pointing correctly above db_base. 4274 */ 4275 4276 if ((flags & IPF_RECVSLLA) && 4277 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4278 (ill->ill_type == IFT_ETHER) && 4279 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4280 4281 pinfo->in_pkt_slla.sdl_type = IFT_ETHER; 4282 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4283 (uchar_t *)pinfo->in_pkt_slla.sdl_data, ETHERADDRL); 4284 } else { 4285 /* 4286 * Clear the bit. Indicate to upper layer that IP is not 4287 * sending this ancillary info. 4288 */ 4289 pinfo->in_pkt_flags = pinfo->in_pkt_flags & ~IPF_RECVSLLA; 4290 } 4291 4292 mp->b_datap->db_type = M_CTL; 4293 mp->b_wptr += sizeof (in_pktinfo_t); 4294 mp->b_cont = data_mp; 4295 4296 return (mp); 4297 } 4298 4299 /* 4300 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4301 * part of the bind request. 4302 */ 4303 4304 boolean_t 4305 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4306 { 4307 ipsec_in_t *ii; 4308 4309 ASSERT(policy_mp != NULL); 4310 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4311 4312 ii = (ipsec_in_t *)policy_mp->b_rptr; 4313 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4314 4315 connp->conn_policy = ii->ipsec_in_policy; 4316 ii->ipsec_in_policy = NULL; 4317 4318 if (ii->ipsec_in_action != NULL) { 4319 if (connp->conn_latch == NULL) { 4320 connp->conn_latch = iplatch_create(); 4321 if (connp->conn_latch == NULL) 4322 return (B_FALSE); 4323 } 4324 ipsec_latch_inbound(connp->conn_latch, ii); 4325 } 4326 return (B_TRUE); 4327 } 4328 4329 /* 4330 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4331 * and to arrange for power-fanout assist. The ULP is identified by 4332 * adding a single byte at the end of the original bind message. 4333 * A ULP other than UDP or TCP that wishes to be recognized passes 4334 * down a bind with a zero length address. 4335 * 4336 * The binding works as follows: 4337 * - A zero byte address means just bind to the protocol. 4338 * - A four byte address is treated as a request to validate 4339 * that the address is a valid local address, appropriate for 4340 * an application to bind to. This does not affect any fanout 4341 * information in IP. 4342 * - A sizeof sin_t byte address is used to bind to only the local address 4343 * and port. 4344 * - A sizeof ipa_conn_t byte address contains complete fanout information 4345 * consisting of local and remote addresses and ports. In 4346 * this case, the addresses are both validated as appropriate 4347 * for this operation, and, if so, the information is retained 4348 * for use in the inbound fanout. 4349 * 4350 * The ULP (except in the zero-length bind) can append an 4351 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4352 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4353 * a copy of the source or destination IRE (source for local bind; 4354 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4355 * policy information contained should be copied on to the conn. 4356 * 4357 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4358 */ 4359 mblk_t * 4360 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4361 { 4362 ssize_t len; 4363 struct T_bind_req *tbr; 4364 sin_t *sin; 4365 ipa_conn_t *ac; 4366 uchar_t *ucp; 4367 mblk_t *mp1; 4368 boolean_t ire_requested; 4369 boolean_t ipsec_policy_set = B_FALSE; 4370 int error = 0; 4371 int protocol; 4372 ipa_conn_x_t *acx; 4373 4374 ASSERT(!connp->conn_af_isv6); 4375 connp->conn_pkt_isv6 = B_FALSE; 4376 4377 len = MBLKL(mp); 4378 if (len < (sizeof (*tbr) + 1)) { 4379 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4380 "ip_bind: bogus msg, len %ld", len); 4381 /* XXX: Need to return something better */ 4382 goto bad_addr; 4383 } 4384 /* Back up and extract the protocol identifier. */ 4385 mp->b_wptr--; 4386 protocol = *mp->b_wptr & 0xFF; 4387 tbr = (struct T_bind_req *)mp->b_rptr; 4388 /* Reset the message type in preparation for shipping it back. */ 4389 DB_TYPE(mp) = M_PCPROTO; 4390 4391 connp->conn_ulp = (uint8_t)protocol; 4392 4393 /* 4394 * Check for a zero length address. This is from a protocol that 4395 * wants to register to receive all packets of its type. 4396 */ 4397 if (tbr->ADDR_length == 0) { 4398 /* 4399 * These protocols are now intercepted in ip_bind_v6(). 4400 * Reject protocol-level binds here for now. 4401 * 4402 * For SCTP raw socket, ICMP sends down a bind with sin_t 4403 * so that the protocol type cannot be SCTP. 4404 */ 4405 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4406 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4407 goto bad_addr; 4408 } 4409 4410 /* 4411 * 4412 * The udp module never sends down a zero-length address, 4413 * and allowing this on a labeled system will break MLP 4414 * functionality. 4415 */ 4416 if (is_system_labeled() && protocol == IPPROTO_UDP) 4417 goto bad_addr; 4418 4419 if (connp->conn_mac_exempt) 4420 goto bad_addr; 4421 4422 /* No hash here really. The table is big enough. */ 4423 connp->conn_srcv6 = ipv6_all_zeros; 4424 4425 ipcl_proto_insert(connp, protocol); 4426 4427 tbr->PRIM_type = T_BIND_ACK; 4428 return (mp); 4429 } 4430 4431 /* Extract the address pointer from the message. */ 4432 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4433 tbr->ADDR_length); 4434 if (ucp == NULL) { 4435 ip1dbg(("ip_bind: no address\n")); 4436 goto bad_addr; 4437 } 4438 if (!OK_32PTR(ucp)) { 4439 ip1dbg(("ip_bind: unaligned address\n")); 4440 goto bad_addr; 4441 } 4442 /* 4443 * Check for trailing mps. 4444 */ 4445 4446 mp1 = mp->b_cont; 4447 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4448 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4449 4450 switch (tbr->ADDR_length) { 4451 default: 4452 ip1dbg(("ip_bind: bad address length %d\n", 4453 (int)tbr->ADDR_length)); 4454 goto bad_addr; 4455 4456 case IP_ADDR_LEN: 4457 /* Verification of local address only */ 4458 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4459 ire_requested, ipsec_policy_set, B_FALSE); 4460 break; 4461 4462 case sizeof (sin_t): 4463 sin = (sin_t *)ucp; 4464 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4465 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4466 if (protocol == IPPROTO_TCP) 4467 connp->conn_recv = tcp_conn_request; 4468 break; 4469 4470 case sizeof (ipa_conn_t): 4471 ac = (ipa_conn_t *)ucp; 4472 /* For raw socket, the local port is not set. */ 4473 if (ac->ac_lport == 0) 4474 ac->ac_lport = connp->conn_lport; 4475 /* Always verify destination reachability. */ 4476 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4477 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4478 ipsec_policy_set, B_TRUE, B_TRUE); 4479 if (protocol == IPPROTO_TCP) 4480 connp->conn_recv = tcp_input; 4481 break; 4482 4483 case sizeof (ipa_conn_x_t): 4484 acx = (ipa_conn_x_t *)ucp; 4485 /* 4486 * Whether or not to verify destination reachability depends 4487 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4488 */ 4489 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4490 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4491 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4492 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4493 if (protocol == IPPROTO_TCP) 4494 connp->conn_recv = tcp_input; 4495 break; 4496 } 4497 if (error == EINPROGRESS) 4498 return (NULL); 4499 else if (error != 0) 4500 goto bad_addr; 4501 /* 4502 * Pass the IPSEC headers size in ire_ipsec_overhead. 4503 * We can't do this in ip_bind_insert_ire because the policy 4504 * may not have been inherited at that point in time and hence 4505 * conn_out_enforce_policy may not be set. 4506 */ 4507 mp1 = mp->b_cont; 4508 if (ire_requested && connp->conn_out_enforce_policy && 4509 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4510 ire_t *ire = (ire_t *)mp1->b_rptr; 4511 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4512 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4513 } 4514 4515 /* Send it home. */ 4516 mp->b_datap->db_type = M_PCPROTO; 4517 tbr->PRIM_type = T_BIND_ACK; 4518 return (mp); 4519 4520 bad_addr: 4521 /* 4522 * If error = -1 then we generate a TBADADDR - otherwise error is 4523 * a unix errno. 4524 */ 4525 if (error > 0) 4526 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4527 else 4528 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4529 return (mp); 4530 } 4531 4532 /* 4533 * Here address is verified to be a valid local address. 4534 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4535 * address is also considered a valid local address. 4536 * In the case of a broadcast/multicast address, however, the 4537 * upper protocol is expected to reset the src address 4538 * to 0 if it sees a IRE_BROADCAST type returned so that 4539 * no packets are emitted with broadcast/multicast address as 4540 * source address (that violates hosts requirements RFC1122) 4541 * The addresses valid for bind are: 4542 * (1) - INADDR_ANY (0) 4543 * (2) - IP address of an UP interface 4544 * (3) - IP address of a DOWN interface 4545 * (4) - valid local IP broadcast addresses. In this case 4546 * the conn will only receive packets destined to 4547 * the specified broadcast address. 4548 * (5) - a multicast address. In this case 4549 * the conn will only receive packets destined to 4550 * the specified multicast address. Note: the 4551 * application still has to issue an 4552 * IP_ADD_MEMBERSHIP socket option. 4553 * 4554 * On error, return -1 for TBADADDR otherwise pass the 4555 * errno with TSYSERR reply. 4556 * 4557 * In all the above cases, the bound address must be valid in the current zone. 4558 * When the address is loopback, multicast or broadcast, there might be many 4559 * matching IREs so bind has to look up based on the zone. 4560 * 4561 * Note: lport is in network byte order. 4562 */ 4563 int 4564 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4565 boolean_t ire_requested, boolean_t ipsec_policy_set, 4566 boolean_t fanout_insert) 4567 { 4568 int error = 0; 4569 ire_t *src_ire; 4570 mblk_t *policy_mp; 4571 ipif_t *ipif; 4572 zoneid_t zoneid; 4573 4574 if (ipsec_policy_set) { 4575 policy_mp = mp->b_cont; 4576 } 4577 4578 /* 4579 * If it was previously connected, conn_fully_bound would have 4580 * been set. 4581 */ 4582 connp->conn_fully_bound = B_FALSE; 4583 4584 src_ire = NULL; 4585 ipif = NULL; 4586 4587 zoneid = IPCL_ZONEID(connp); 4588 4589 if (src_addr) { 4590 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4591 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 4592 /* 4593 * If an address other than 0.0.0.0 is requested, 4594 * we verify that it is a valid address for bind 4595 * Note: Following code is in if-else-if form for 4596 * readability compared to a condition check. 4597 */ 4598 /* LINTED - statement has no consequent */ 4599 if (IRE_IS_LOCAL(src_ire)) { 4600 /* 4601 * (2) Bind to address of local UP interface 4602 */ 4603 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4604 /* 4605 * (4) Bind to broadcast address 4606 * Note: permitted only from transports that 4607 * request IRE 4608 */ 4609 if (!ire_requested) 4610 error = EADDRNOTAVAIL; 4611 } else { 4612 /* 4613 * (3) Bind to address of local DOWN interface 4614 * (ipif_lookup_addr() looks up all interfaces 4615 * but we do not get here for UP interfaces 4616 * - case (2) above) 4617 * We put the protocol byte back into the mblk 4618 * since we may come back via ip_wput_nondata() 4619 * later with this mblk if ipif_lookup_addr chooses 4620 * to defer processing. 4621 */ 4622 *mp->b_wptr++ = (char)connp->conn_ulp; 4623 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4624 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4625 &error)) != NULL) { 4626 ipif_refrele(ipif); 4627 } else if (error == EINPROGRESS) { 4628 if (src_ire != NULL) 4629 ire_refrele(src_ire); 4630 return (EINPROGRESS); 4631 } else if (CLASSD(src_addr)) { 4632 error = 0; 4633 if (src_ire != NULL) 4634 ire_refrele(src_ire); 4635 /* 4636 * (5) bind to multicast address. 4637 * Fake out the IRE returned to upper 4638 * layer to be a broadcast IRE. 4639 */ 4640 src_ire = ire_ctable_lookup( 4641 INADDR_BROADCAST, INADDR_ANY, 4642 IRE_BROADCAST, NULL, zoneid, NULL, 4643 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY)); 4644 if (src_ire == NULL || !ire_requested) 4645 error = EADDRNOTAVAIL; 4646 } else { 4647 /* 4648 * Not a valid address for bind 4649 */ 4650 error = EADDRNOTAVAIL; 4651 } 4652 /* 4653 * Just to keep it consistent with the processing in 4654 * ip_bind_v4() 4655 */ 4656 mp->b_wptr--; 4657 } 4658 if (error) { 4659 /* Red Alert! Attempting to be a bogon! */ 4660 ip1dbg(("ip_bind: bad src address 0x%x\n", 4661 ntohl(src_addr))); 4662 goto bad_addr; 4663 } 4664 } 4665 4666 /* 4667 * Allow setting new policies. For example, disconnects come 4668 * down as ipa_t bind. As we would have set conn_policy_cached 4669 * to B_TRUE before, we should set it to B_FALSE, so that policy 4670 * can change after the disconnect. 4671 */ 4672 connp->conn_policy_cached = B_FALSE; 4673 4674 /* 4675 * If not fanout_insert this was just an address verification 4676 */ 4677 if (fanout_insert) { 4678 /* 4679 * The addresses have been verified. Time to insert in 4680 * the correct fanout list. 4681 */ 4682 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4683 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4684 connp->conn_lport = lport; 4685 connp->conn_fport = 0; 4686 /* 4687 * Do we need to add a check to reject Multicast packets 4688 */ 4689 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4690 } 4691 4692 if (error == 0) { 4693 if (ire_requested) { 4694 if (!ip_bind_insert_ire(mp, src_ire, NULL)) { 4695 error = -1; 4696 /* Falls through to bad_addr */ 4697 } 4698 } else if (ipsec_policy_set) { 4699 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4700 error = -1; 4701 /* Falls through to bad_addr */ 4702 } 4703 } 4704 } 4705 bad_addr: 4706 if (error != 0) { 4707 if (connp->conn_anon_port) { 4708 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4709 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4710 B_FALSE); 4711 } 4712 connp->conn_mlp_type = mlptSingle; 4713 } 4714 if (src_ire != NULL) 4715 IRE_REFRELE(src_ire); 4716 if (ipsec_policy_set) { 4717 ASSERT(policy_mp == mp->b_cont); 4718 ASSERT(policy_mp != NULL); 4719 freeb(policy_mp); 4720 /* 4721 * As of now assume that nothing else accompanies 4722 * IPSEC_POLICY_SET. 4723 */ 4724 mp->b_cont = NULL; 4725 } 4726 return (error); 4727 } 4728 4729 /* 4730 * Verify that both the source and destination addresses 4731 * are valid. If verify_dst is false, then the destination address may be 4732 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4733 * destination reachability, while tunnels do not. 4734 * Note that we allow connect to broadcast and multicast 4735 * addresses when ire_requested is set. Thus the ULP 4736 * has to check for IRE_BROADCAST and multicast. 4737 * 4738 * Returns zero if ok. 4739 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4740 * (for use with TSYSERR reply). 4741 * 4742 * Note: lport and fport are in network byte order. 4743 */ 4744 int 4745 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4746 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4747 boolean_t ire_requested, boolean_t ipsec_policy_set, 4748 boolean_t fanout_insert, boolean_t verify_dst) 4749 { 4750 ire_t *src_ire; 4751 ire_t *dst_ire; 4752 int error = 0; 4753 int protocol; 4754 mblk_t *policy_mp; 4755 ire_t *sire = NULL; 4756 ire_t *md_dst_ire = NULL; 4757 ill_t *md_ill = NULL; 4758 zoneid_t zoneid; 4759 ipaddr_t src_addr = *src_addrp; 4760 4761 src_ire = dst_ire = NULL; 4762 protocol = *mp->b_wptr & 0xFF; 4763 4764 /* 4765 * If we never got a disconnect before, clear it now. 4766 */ 4767 connp->conn_fully_bound = B_FALSE; 4768 4769 if (ipsec_policy_set) { 4770 policy_mp = mp->b_cont; 4771 } 4772 4773 zoneid = IPCL_ZONEID(connp); 4774 4775 if (CLASSD(dst_addr)) { 4776 /* Pick up an IRE_BROADCAST */ 4777 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4778 NULL, zoneid, MBLK_GETLABEL(mp), 4779 (MATCH_IRE_RECURSIVE | 4780 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4781 MATCH_IRE_SECATTR)); 4782 } else { 4783 /* 4784 * If conn_dontroute is set or if conn_nexthop_set is set, 4785 * and onlink ipif is not found set ENETUNREACH error. 4786 */ 4787 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4788 ipif_t *ipif; 4789 4790 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4791 dst_addr : connp->conn_nexthop_v4, 4792 connp->conn_zoneid); 4793 if (ipif == NULL) { 4794 error = ENETUNREACH; 4795 goto bad_addr; 4796 } 4797 ipif_refrele(ipif); 4798 } 4799 4800 if (connp->conn_nexthop_set) { 4801 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4802 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4803 MATCH_IRE_SECATTR); 4804 } else { 4805 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4806 &sire, zoneid, MBLK_GETLABEL(mp), 4807 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4808 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4809 MATCH_IRE_SECATTR)); 4810 } 4811 } 4812 /* 4813 * dst_ire can't be a broadcast when not ire_requested. 4814 * We also prevent ire's with src address INADDR_ANY to 4815 * be used, which are created temporarily for 4816 * sending out packets from endpoints that have 4817 * conn_unspec_src set. If verify_dst is true, the destination must be 4818 * reachable. If verify_dst is false, the destination needn't be 4819 * reachable. 4820 * 4821 * If we match on a reject or black hole, then we've got a 4822 * local failure. May as well fail out the connect() attempt, 4823 * since it's never going to succeed. 4824 */ 4825 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4826 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4827 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4828 /* 4829 * If we're verifying destination reachability, we always want 4830 * to complain here. 4831 * 4832 * If we're not verifying destination reachability but the 4833 * destination has a route, we still want to fail on the 4834 * temporary address and broadcast address tests. 4835 */ 4836 if (verify_dst || (dst_ire != NULL)) { 4837 if (ip_debug > 2) { 4838 pr_addr_dbg("ip_bind_connected: bad connected " 4839 "dst %s\n", AF_INET, &dst_addr); 4840 } 4841 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4842 error = ENETUNREACH; 4843 else 4844 error = EHOSTUNREACH; 4845 goto bad_addr; 4846 } 4847 } 4848 4849 /* 4850 * We now know that routing will allow us to reach the destination. 4851 * Check whether Trusted Solaris policy allows communication with this 4852 * host, and pretend that the destination is unreachable if not. 4853 * 4854 * This is never a problem for TCP, since that transport is known to 4855 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4856 * handling. If the remote is unreachable, it will be detected at that 4857 * point, so there's no reason to check it here. 4858 * 4859 * Note that for sendto (and other datagram-oriented friends), this 4860 * check is done as part of the data path label computation instead. 4861 * The check here is just to make non-TCP connect() report the right 4862 * error. 4863 */ 4864 if (dst_ire != NULL && is_system_labeled() && 4865 !IPCL_IS_TCP(connp) && 4866 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4867 connp->conn_mac_exempt) != 0) { 4868 error = EHOSTUNREACH; 4869 if (ip_debug > 2) { 4870 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4871 AF_INET, &dst_addr); 4872 } 4873 goto bad_addr; 4874 } 4875 4876 /* 4877 * If the app does a connect(), it means that it will most likely 4878 * send more than 1 packet to the destination. It makes sense 4879 * to clear the temporary flag. 4880 */ 4881 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4882 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4883 irb_t *irb = dst_ire->ire_bucket; 4884 4885 rw_enter(&irb->irb_lock, RW_WRITER); 4886 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4887 irb->irb_tmp_ire_cnt--; 4888 rw_exit(&irb->irb_lock); 4889 } 4890 4891 /* 4892 * See if we should notify ULP about MDT; we do this whether or not 4893 * ire_requested is TRUE, in order to handle active connects; MDT 4894 * eligibility tests for passive connects are handled separately 4895 * through tcp_adapt_ire(). We do this before the source address 4896 * selection, because dst_ire may change after a call to 4897 * ipif_select_source(). This is a best-effort check, as the 4898 * packet for this connection may not actually go through 4899 * dst_ire->ire_stq, and the exact IRE can only be known after 4900 * calling ip_newroute(). This is why we further check on the 4901 * IRE during Multidata packet transmission in tcp_multisend(). 4902 */ 4903 if (ip_multidata_outbound && !ipsec_policy_set && dst_ire != NULL && 4904 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4905 (md_ill = ire_to_ill(dst_ire), md_ill != NULL) && 4906 ILL_MDT_CAPABLE(md_ill)) { 4907 md_dst_ire = dst_ire; 4908 IRE_REFHOLD(md_dst_ire); 4909 } 4910 4911 if (dst_ire != NULL && 4912 dst_ire->ire_type == IRE_LOCAL && 4913 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4914 /* 4915 * If the IRE belongs to a different zone, look for a matching 4916 * route in the forwarding table and use the source address from 4917 * that route. 4918 */ 4919 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4920 zoneid, 0, NULL, 4921 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4922 MATCH_IRE_RJ_BHOLE); 4923 if (src_ire == NULL) { 4924 error = EHOSTUNREACH; 4925 goto bad_addr; 4926 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4927 if (!(src_ire->ire_type & IRE_HOST)) 4928 error = ENETUNREACH; 4929 else 4930 error = EHOSTUNREACH; 4931 goto bad_addr; 4932 } 4933 if (src_addr == INADDR_ANY) 4934 src_addr = src_ire->ire_src_addr; 4935 ire_refrele(src_ire); 4936 src_ire = NULL; 4937 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4938 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4939 src_addr = sire->ire_src_addr; 4940 ire_refrele(dst_ire); 4941 dst_ire = sire; 4942 sire = NULL; 4943 } else { 4944 /* 4945 * Pick a source address so that a proper inbound 4946 * load spreading would happen. 4947 */ 4948 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4949 ipif_t *src_ipif = NULL; 4950 ire_t *ipif_ire; 4951 4952 /* 4953 * Supply a local source address such that inbound 4954 * load spreading happens. 4955 * 4956 * Determine the best source address on this ill for 4957 * the destination. 4958 * 4959 * 1) For broadcast, we should return a broadcast ire 4960 * found above so that upper layers know that the 4961 * destination address is a broadcast address. 4962 * 4963 * 2) If this is part of a group, select a better 4964 * source address so that better inbound load 4965 * balancing happens. Do the same if the ipif 4966 * is DEPRECATED. 4967 * 4968 * 3) If the outgoing interface is part of a usesrc 4969 * group, then try selecting a source address from 4970 * the usesrc ILL. 4971 */ 4972 if ((dst_ire->ire_zoneid != zoneid && 4973 dst_ire->ire_zoneid != ALL_ZONES) || 4974 (!(dst_ire->ire_type & IRE_BROADCAST) && 4975 ((dst_ill->ill_group != NULL) || 4976 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4977 (dst_ill->ill_usesrc_ifindex != 0)))) { 4978 /* 4979 * If the destination is reachable via a 4980 * given gateway, the selected source address 4981 * should be in the same subnet as the gateway. 4982 * Otherwise, the destination is not reachable. 4983 * 4984 * If there are no interfaces on the same subnet 4985 * as the destination, ipif_select_source gives 4986 * first non-deprecated interface which might be 4987 * on a different subnet than the gateway. 4988 * This is not desirable. Hence pass the dst_ire 4989 * source address to ipif_select_source. 4990 * It is sure that the destination is reachable 4991 * with the dst_ire source address subnet. 4992 * So passing dst_ire source address to 4993 * ipif_select_source will make sure that the 4994 * selected source will be on the same subnet 4995 * as dst_ire source address. 4996 */ 4997 ipaddr_t saddr = 4998 dst_ire->ire_ipif->ipif_src_addr; 4999 src_ipif = ipif_select_source(dst_ill, 5000 saddr, zoneid); 5001 if (src_ipif != NULL) { 5002 if (IS_VNI(src_ipif->ipif_ill)) { 5003 /* 5004 * For VNI there is no 5005 * interface route 5006 */ 5007 src_addr = 5008 src_ipif->ipif_src_addr; 5009 } else { 5010 ipif_ire = 5011 ipif_to_ire(src_ipif); 5012 if (ipif_ire != NULL) { 5013 IRE_REFRELE(dst_ire); 5014 dst_ire = ipif_ire; 5015 } 5016 src_addr = 5017 dst_ire->ire_src_addr; 5018 } 5019 ipif_refrele(src_ipif); 5020 } else { 5021 src_addr = dst_ire->ire_src_addr; 5022 } 5023 } else { 5024 src_addr = dst_ire->ire_src_addr; 5025 } 5026 } 5027 } 5028 5029 /* 5030 * We do ire_route_lookup() here (and not 5031 * interface lookup as we assert that 5032 * src_addr should only come from an 5033 * UP interface for hard binding. 5034 */ 5035 ASSERT(src_ire == NULL); 5036 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5037 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 5038 /* src_ire must be a local|loopback */ 5039 if (!IRE_IS_LOCAL(src_ire)) { 5040 if (ip_debug > 2) { 5041 pr_addr_dbg("ip_bind_connected: bad connected " 5042 "src %s\n", AF_INET, &src_addr); 5043 } 5044 error = EADDRNOTAVAIL; 5045 goto bad_addr; 5046 } 5047 5048 /* 5049 * If the source address is a loopback address, the 5050 * destination had best be local or multicast. 5051 * The transports that can't handle multicast will reject 5052 * those addresses. 5053 */ 5054 if (src_ire->ire_type == IRE_LOOPBACK && 5055 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5056 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5057 error = -1; 5058 goto bad_addr; 5059 } 5060 5061 /* 5062 * Allow setting new policies. For example, disconnects come 5063 * down as ipa_t bind. As we would have set conn_policy_cached 5064 * to B_TRUE before, we should set it to B_FALSE, so that policy 5065 * can change after the disconnect. 5066 */ 5067 connp->conn_policy_cached = B_FALSE; 5068 5069 /* 5070 * Set the conn addresses/ports immediately, so the IPsec policy calls 5071 * can handle their passed-in conn's. 5072 */ 5073 5074 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5075 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5076 connp->conn_lport = lport; 5077 connp->conn_fport = fport; 5078 *src_addrp = src_addr; 5079 5080 ASSERT(!(ipsec_policy_set && ire_requested)); 5081 if (ire_requested) { 5082 iulp_t *ulp_info = NULL; 5083 5084 /* 5085 * Note that sire will not be NULL if this is an off-link 5086 * connection and there is not cache for that dest yet. 5087 * 5088 * XXX Because of an existing bug, if there are multiple 5089 * default routes, the IRE returned now may not be the actual 5090 * default route used (default routes are chosen in a 5091 * round robin fashion). So if the metrics for different 5092 * default routes are different, we may return the wrong 5093 * metrics. This will not be a problem if the existing 5094 * bug is fixed. 5095 */ 5096 if (sire != NULL) { 5097 ulp_info = &(sire->ire_uinfo); 5098 } 5099 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info)) { 5100 error = -1; 5101 goto bad_addr; 5102 } 5103 } else if (ipsec_policy_set) { 5104 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5105 error = -1; 5106 goto bad_addr; 5107 } 5108 } 5109 5110 /* 5111 * Cache IPsec policy in this conn. If we have per-socket policy, 5112 * we'll cache that. If we don't, we'll inherit global policy. 5113 * 5114 * We can't insert until the conn reflects the policy. Note that 5115 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5116 * connections where we don't have a policy. This is to prevent 5117 * global policy lookups in the inbound path. 5118 * 5119 * If we insert before we set conn_policy_cached, 5120 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5121 * because global policy cound be non-empty. We normally call 5122 * ipsec_check_policy() for conn_policy_cached connections only if 5123 * ipc_in_enforce_policy is set. But in this case, 5124 * conn_policy_cached can get set anytime since we made the 5125 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5126 * called, which will make the above assumption false. Thus, we 5127 * need to insert after we set conn_policy_cached. 5128 */ 5129 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5130 goto bad_addr; 5131 5132 if (fanout_insert) { 5133 /* 5134 * The addresses have been verified. Time to insert in 5135 * the correct fanout list. 5136 */ 5137 error = ipcl_conn_insert(connp, protocol, src_addr, 5138 dst_addr, connp->conn_ports); 5139 } 5140 5141 if (error == 0) { 5142 connp->conn_fully_bound = B_TRUE; 5143 /* 5144 * Our initial checks for MDT have passed; the IRE is not 5145 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5146 * be supporting MDT. Pass the IRE, IPC and ILL into 5147 * ip_mdinfo_return(), which performs further checks 5148 * against them and upon success, returns the MDT info 5149 * mblk which we will attach to the bind acknowledgment. 5150 */ 5151 if (md_dst_ire != NULL) { 5152 mblk_t *mdinfo_mp; 5153 5154 ASSERT(md_ill != NULL); 5155 ASSERT(md_ill->ill_mdt_capab != NULL); 5156 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5157 md_ill->ill_name, md_ill->ill_mdt_capab)) != NULL) 5158 linkb(mp, mdinfo_mp); 5159 } 5160 } 5161 bad_addr: 5162 if (ipsec_policy_set) { 5163 ASSERT(policy_mp == mp->b_cont); 5164 ASSERT(policy_mp != NULL); 5165 freeb(policy_mp); 5166 /* 5167 * As of now assume that nothing else accompanies 5168 * IPSEC_POLICY_SET. 5169 */ 5170 mp->b_cont = NULL; 5171 } 5172 if (src_ire != NULL) 5173 IRE_REFRELE(src_ire); 5174 if (dst_ire != NULL) 5175 IRE_REFRELE(dst_ire); 5176 if (sire != NULL) 5177 IRE_REFRELE(sire); 5178 if (md_dst_ire != NULL) 5179 IRE_REFRELE(md_dst_ire); 5180 return (error); 5181 } 5182 5183 /* 5184 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5185 * Prefers dst_ire over src_ire. 5186 */ 5187 static boolean_t 5188 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info) 5189 { 5190 mblk_t *mp1; 5191 ire_t *ret_ire = NULL; 5192 5193 mp1 = mp->b_cont; 5194 ASSERT(mp1 != NULL); 5195 5196 if (ire != NULL) { 5197 /* 5198 * mp1 initialized above to IRE_DB_REQ_TYPE 5199 * appended mblk. Its <upper protocol>'s 5200 * job to make sure there is room. 5201 */ 5202 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5203 return (0); 5204 5205 mp1->b_datap->db_type = IRE_DB_TYPE; 5206 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5207 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5208 ret_ire = (ire_t *)mp1->b_rptr; 5209 /* 5210 * Pass the latest setting of the ip_path_mtu_discovery and 5211 * copy the ulp info if any. 5212 */ 5213 ret_ire->ire_frag_flag |= (ip_path_mtu_discovery) ? 5214 IPH_DF : 0; 5215 if (ulp_info != NULL) { 5216 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5217 sizeof (iulp_t)); 5218 } 5219 ret_ire->ire_mp = mp1; 5220 } else { 5221 /* 5222 * No IRE was found. Remove IRE mblk. 5223 */ 5224 mp->b_cont = mp1->b_cont; 5225 freeb(mp1); 5226 } 5227 5228 return (1); 5229 } 5230 5231 /* 5232 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5233 * the final piece where we don't. Return a pointer to the first mblk in the 5234 * result, and update the pointer to the next mblk to chew on. If anything 5235 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5236 * NULL pointer. 5237 */ 5238 mblk_t * 5239 ip_carve_mp(mblk_t **mpp, ssize_t len) 5240 { 5241 mblk_t *mp0; 5242 mblk_t *mp1; 5243 mblk_t *mp2; 5244 5245 if (!len || !mpp || !(mp0 = *mpp)) 5246 return (NULL); 5247 /* If we aren't going to consume the first mblk, we need a dup. */ 5248 if (mp0->b_wptr - mp0->b_rptr > len) { 5249 mp1 = dupb(mp0); 5250 if (mp1) { 5251 /* Partition the data between the two mblks. */ 5252 mp1->b_wptr = mp1->b_rptr + len; 5253 mp0->b_rptr = mp1->b_wptr; 5254 /* 5255 * after adjustments if mblk not consumed is now 5256 * unaligned, try to align it. If this fails free 5257 * all messages and let upper layer recover. 5258 */ 5259 if (!OK_32PTR(mp0->b_rptr)) { 5260 if (!pullupmsg(mp0, -1)) { 5261 freemsg(mp0); 5262 freemsg(mp1); 5263 *mpp = NULL; 5264 return (NULL); 5265 } 5266 } 5267 } 5268 return (mp1); 5269 } 5270 /* Eat through as many mblks as we need to get len bytes. */ 5271 len -= mp0->b_wptr - mp0->b_rptr; 5272 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5273 if (mp2->b_wptr - mp2->b_rptr > len) { 5274 /* 5275 * We won't consume the entire last mblk. Like 5276 * above, dup and partition it. 5277 */ 5278 mp1->b_cont = dupb(mp2); 5279 mp1 = mp1->b_cont; 5280 if (!mp1) { 5281 /* 5282 * Trouble. Rather than go to a lot of 5283 * trouble to clean up, we free the messages. 5284 * This won't be any worse than losing it on 5285 * the wire. 5286 */ 5287 freemsg(mp0); 5288 freemsg(mp2); 5289 *mpp = NULL; 5290 return (NULL); 5291 } 5292 mp1->b_wptr = mp1->b_rptr + len; 5293 mp2->b_rptr = mp1->b_wptr; 5294 /* 5295 * after adjustments if mblk not consumed is now 5296 * unaligned, try to align it. If this fails free 5297 * all messages and let upper layer recover. 5298 */ 5299 if (!OK_32PTR(mp2->b_rptr)) { 5300 if (!pullupmsg(mp2, -1)) { 5301 freemsg(mp0); 5302 freemsg(mp2); 5303 *mpp = NULL; 5304 return (NULL); 5305 } 5306 } 5307 *mpp = mp2; 5308 return (mp0); 5309 } 5310 /* Decrement len by the amount we just got. */ 5311 len -= mp2->b_wptr - mp2->b_rptr; 5312 } 5313 /* 5314 * len should be reduced to zero now. If not our caller has 5315 * screwed up. 5316 */ 5317 if (len) { 5318 /* Shouldn't happen! */ 5319 freemsg(mp0); 5320 *mpp = NULL; 5321 return (NULL); 5322 } 5323 /* 5324 * We consumed up to exactly the end of an mblk. Detach the part 5325 * we are returning from the rest of the chain. 5326 */ 5327 mp1->b_cont = NULL; 5328 *mpp = mp2; 5329 return (mp0); 5330 } 5331 5332 /* The ill stream is being unplumbed. Called from ip_close */ 5333 int 5334 ip_modclose(ill_t *ill) 5335 { 5336 5337 boolean_t success; 5338 ipsq_t *ipsq; 5339 ipif_t *ipif; 5340 queue_t *q = ill->ill_rq; 5341 5342 /* 5343 * Forcibly enter the ipsq after some delay. This is to take 5344 * care of the case when some ioctl does not complete because 5345 * we sent a control message to the driver and it did not 5346 * send us a reply. We want to be able to at least unplumb 5347 * and replumb rather than force the user to reboot the system. 5348 */ 5349 success = ipsq_enter(ill, B_FALSE); 5350 5351 /* 5352 * Open/close/push/pop is guaranteed to be single threaded 5353 * per stream by STREAMS. FS guarantees that all references 5354 * from top are gone before close is called. So there can't 5355 * be another close thread that has set CONDEMNED on this ill. 5356 * and cause ipsq_enter to return failure. 5357 */ 5358 ASSERT(success); 5359 ipsq = ill->ill_phyint->phyint_ipsq; 5360 5361 /* 5362 * Mark it condemned. No new reference will be made to this ill. 5363 * Lookup functions will return an error. Threads that try to 5364 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5365 * that the refcnt will drop down to zero. 5366 */ 5367 mutex_enter(&ill->ill_lock); 5368 ill->ill_state_flags |= ILL_CONDEMNED; 5369 for (ipif = ill->ill_ipif; ipif != NULL; 5370 ipif = ipif->ipif_next) { 5371 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5372 } 5373 /* 5374 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5375 * returns error if ILL_CONDEMNED is set 5376 */ 5377 cv_broadcast(&ill->ill_cv); 5378 mutex_exit(&ill->ill_lock); 5379 5380 /* 5381 * Shut down fragmentation reassembly. 5382 * ill_frag_timer won't start a timer again. 5383 * Now cancel any existing timer 5384 */ 5385 (void) untimeout(ill->ill_frag_timer_id); 5386 (void) ill_frag_timeout(ill, 0); 5387 5388 /* 5389 * If MOVE was in progress, clear the 5390 * move_in_progress fields also. 5391 */ 5392 if (ill->ill_move_in_progress) { 5393 ILL_CLEAR_MOVE(ill); 5394 } 5395 5396 /* 5397 * Call ill_delete to bring down the ipifs, ilms and ill on 5398 * this ill. Then wait for the refcnts to drop to zero. 5399 * ill_is_quiescent checks whether the ill is really quiescent. 5400 * Then make sure that threads that are waiting to enter the 5401 * ipsq have seen the error returned by ipsq_enter and have 5402 * gone away. Then we call ill_delete_tail which does the 5403 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 5404 */ 5405 ill_delete(ill); 5406 mutex_enter(&ill->ill_lock); 5407 while (!ill_is_quiescent(ill)) 5408 cv_wait(&ill->ill_cv, &ill->ill_lock); 5409 while (ill->ill_waiters) 5410 cv_wait(&ill->ill_cv, &ill->ill_lock); 5411 5412 mutex_exit(&ill->ill_lock); 5413 5414 /* qprocsoff is called in ill_delete_tail */ 5415 ill_delete_tail(ill); 5416 5417 /* 5418 * Walk through all upper (conn) streams and qenable 5419 * those that have queued data. 5420 * close synchronization needs this to 5421 * be done to ensure that all upper layers blocked 5422 * due to flow control to the closing device 5423 * get unblocked. 5424 */ 5425 ip1dbg(("ip_wsrv: walking\n")); 5426 conn_walk_drain(); 5427 5428 mutex_enter(&ip_mi_lock); 5429 mi_close_unlink(&ip_g_head, (IDP)ill); 5430 mutex_exit(&ip_mi_lock); 5431 5432 /* 5433 * credp could be null if the open didn't succeed and ip_modopen 5434 * itself calls ip_close. 5435 */ 5436 if (ill->ill_credp != NULL) 5437 crfree(ill->ill_credp); 5438 5439 mi_close_free((IDP)ill); 5440 q->q_ptr = WR(q)->q_ptr = NULL; 5441 5442 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5443 5444 return (0); 5445 } 5446 5447 /* 5448 * This is called as part of close() for both IP and UDP 5449 * in order to quiesce the conn. 5450 */ 5451 void 5452 ip_quiesce_conn(conn_t *connp) 5453 { 5454 boolean_t drain_cleanup_reqd = B_FALSE; 5455 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5456 boolean_t ilg_cleanup_reqd = B_FALSE; 5457 5458 ASSERT(!IPCL_IS_TCP(connp)); 5459 5460 /* 5461 * Mark the conn as closing, and this conn must not be 5462 * inserted in future into any list. Eg. conn_drain_insert(), 5463 * won't insert this conn into the conn_drain_list. 5464 * Similarly ill_pending_mp_add() will not add any mp to 5465 * the pending mp list, after this conn has started closing. 5466 * 5467 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5468 * cannot get set henceforth. 5469 */ 5470 mutex_enter(&connp->conn_lock); 5471 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5472 connp->conn_state_flags |= CONN_CLOSING; 5473 if (connp->conn_idl != NULL) 5474 drain_cleanup_reqd = B_TRUE; 5475 if (connp->conn_oper_pending_ill != NULL) 5476 conn_ioctl_cleanup_reqd = B_TRUE; 5477 if (connp->conn_ilg_inuse != 0) 5478 ilg_cleanup_reqd = B_TRUE; 5479 mutex_exit(&connp->conn_lock); 5480 5481 if (IPCL_IS_UDP(connp)) 5482 udp_quiesce_conn(connp); 5483 5484 if (conn_ioctl_cleanup_reqd) 5485 conn_ioctl_cleanup(connp); 5486 5487 if (is_system_labeled() && connp->conn_anon_port) { 5488 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5489 connp->conn_mlp_type, connp->conn_ulp, 5490 ntohs(connp->conn_lport), B_FALSE); 5491 connp->conn_anon_port = 0; 5492 } 5493 connp->conn_mlp_type = mlptSingle; 5494 5495 /* 5496 * Remove this conn from any fanout list it is on. 5497 * and then wait for any threads currently operating 5498 * on this endpoint to finish 5499 */ 5500 ipcl_hash_remove(connp); 5501 5502 /* 5503 * Remove this conn from the drain list, and do 5504 * any other cleanup that may be required. 5505 * (Only non-tcp streams may have a non-null conn_idl. 5506 * TCP streams are never flow controlled, and 5507 * conn_idl will be null) 5508 */ 5509 if (drain_cleanup_reqd) 5510 conn_drain_tail(connp, B_TRUE); 5511 5512 if (connp->conn_rq == ip_g_mrouter || connp->conn_wq == ip_g_mrouter) 5513 (void) ip_mrouter_done(NULL); 5514 5515 if (ilg_cleanup_reqd) 5516 ilg_delete_all(connp); 5517 5518 conn_delete_ire(connp, NULL); 5519 5520 /* 5521 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5522 * callers from write side can't be there now because close 5523 * is in progress. The only other caller is ipcl_walk 5524 * which checks for the condemned flag. 5525 */ 5526 mutex_enter(&connp->conn_lock); 5527 connp->conn_state_flags |= CONN_CONDEMNED; 5528 while (connp->conn_ref != 1) 5529 cv_wait(&connp->conn_cv, &connp->conn_lock); 5530 connp->conn_state_flags |= CONN_QUIESCED; 5531 mutex_exit(&connp->conn_lock); 5532 } 5533 5534 /* ARGSUSED */ 5535 int 5536 ip_close(queue_t *q, int flags) 5537 { 5538 conn_t *connp; 5539 5540 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5541 5542 /* 5543 * Call the appropriate delete routine depending on whether this is 5544 * a module or device. 5545 */ 5546 if (WR(q)->q_next != NULL) { 5547 /* This is a module close */ 5548 return (ip_modclose((ill_t *)q->q_ptr)); 5549 } 5550 5551 connp = q->q_ptr; 5552 ip_quiesce_conn(connp); 5553 5554 qprocsoff(q); 5555 5556 /* 5557 * Now we are truly single threaded on this stream, and can 5558 * delete the things hanging off the connp, and finally the connp. 5559 * We removed this connp from the fanout list, it cannot be 5560 * accessed thru the fanouts, and we already waited for the 5561 * conn_ref to drop to 0. We are already in close, so 5562 * there cannot be any other thread from the top. qprocsoff 5563 * has completed, and service has completed or won't run in 5564 * future. 5565 */ 5566 ASSERT(connp->conn_ref == 1); 5567 5568 /* 5569 * A conn which was previously marked as IPCL_UDP cannot 5570 * retain the flag because it would have been cleared by 5571 * udp_close(). 5572 */ 5573 ASSERT(!IPCL_IS_UDP(connp)); 5574 5575 if (connp->conn_latch != NULL) { 5576 IPLATCH_REFRELE(connp->conn_latch); 5577 connp->conn_latch = NULL; 5578 } 5579 if (connp->conn_policy != NULL) { 5580 IPPH_REFRELE(connp->conn_policy); 5581 connp->conn_policy = NULL; 5582 } 5583 if (connp->conn_ipsec_opt_mp != NULL) { 5584 freemsg(connp->conn_ipsec_opt_mp); 5585 connp->conn_ipsec_opt_mp = NULL; 5586 } 5587 5588 inet_minor_free(ip_minor_arena, connp->conn_dev); 5589 5590 connp->conn_ref--; 5591 ipcl_conn_destroy(connp); 5592 5593 q->q_ptr = WR(q)->q_ptr = NULL; 5594 return (0); 5595 } 5596 5597 int 5598 ip_snmpmod_close(queue_t *q) 5599 { 5600 conn_t *connp = Q_TO_CONN(q); 5601 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5602 5603 qprocsoff(q); 5604 5605 if (connp->conn_flags & IPCL_UDPMOD) 5606 udp_close_free(connp); 5607 5608 if (connp->conn_cred != NULL) { 5609 crfree(connp->conn_cred); 5610 connp->conn_cred = NULL; 5611 } 5612 CONN_DEC_REF(connp); 5613 q->q_ptr = WR(q)->q_ptr = NULL; 5614 return (0); 5615 } 5616 5617 /* 5618 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5619 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5620 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5621 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5622 * queues as we never enqueue messages there and we don't handle any ioctls. 5623 * Everything else is freed. 5624 */ 5625 void 5626 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5627 { 5628 conn_t *connp = q->q_ptr; 5629 pfi_t setfn; 5630 pfi_t getfn; 5631 5632 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5633 5634 switch (DB_TYPE(mp)) { 5635 case M_PROTO: 5636 case M_PCPROTO: 5637 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5638 ((((union T_primitives *)mp->b_rptr)->type == 5639 T_SVR4_OPTMGMT_REQ) || 5640 (((union T_primitives *)mp->b_rptr)->type == 5641 T_OPTMGMT_REQ))) { 5642 /* 5643 * This is the only TPI primitive supported. Its 5644 * handling does not require tcp_t, but it does require 5645 * conn_t to check permissions. 5646 */ 5647 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5648 5649 if (connp->conn_flags & IPCL_TCPMOD) { 5650 setfn = tcp_snmp_set; 5651 getfn = tcp_snmp_get; 5652 } else { 5653 setfn = udp_snmp_set; 5654 getfn = udp_snmp_get; 5655 } 5656 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5657 freemsg(mp); 5658 return; 5659 } 5660 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5661 != NULL) 5662 qreply(q, mp); 5663 break; 5664 case M_FLUSH: 5665 case M_IOCTL: 5666 putnext(q, mp); 5667 break; 5668 default: 5669 freemsg(mp); 5670 break; 5671 } 5672 } 5673 5674 /* Return the IP checksum for the IP header at "iph". */ 5675 uint16_t 5676 ip_csum_hdr(ipha_t *ipha) 5677 { 5678 uint16_t *uph; 5679 uint32_t sum; 5680 int opt_len; 5681 5682 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5683 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5684 uph = (uint16_t *)ipha; 5685 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5686 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5687 if (opt_len > 0) { 5688 do { 5689 sum += uph[10]; 5690 sum += uph[11]; 5691 uph += 2; 5692 } while (--opt_len); 5693 } 5694 sum = (sum & 0xFFFF) + (sum >> 16); 5695 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5696 if (sum == 0xffff) 5697 sum = 0; 5698 return ((uint16_t)sum); 5699 } 5700 5701 void 5702 ip_ddi_destroy(void) 5703 { 5704 tnet_fini(); 5705 tcp_ddi_destroy(); 5706 sctp_ddi_destroy(); 5707 ipsec_loader_destroy(); 5708 ipsec_policy_destroy(); 5709 ipsec_kstat_destroy(); 5710 nd_free(&ip_g_nd); 5711 mutex_destroy(&igmp_timer_lock); 5712 mutex_destroy(&mld_timer_lock); 5713 mutex_destroy(&igmp_slowtimeout_lock); 5714 mutex_destroy(&mld_slowtimeout_lock); 5715 mutex_destroy(&ip_mi_lock); 5716 mutex_destroy(&rts_clients.connf_lock); 5717 ip_ire_fini(); 5718 ip6_asp_free(); 5719 conn_drain_fini(); 5720 ipcl_destroy(); 5721 inet_minor_destroy(ip_minor_arena); 5722 icmp_kstat_fini(); 5723 ip_kstat_fini(); 5724 rw_destroy(&ipsec_capab_ills_lock); 5725 rw_destroy(&ill_g_usesrc_lock); 5726 ip_drop_unregister(&ip_dropper); 5727 } 5728 5729 5730 void 5731 ip_ddi_init(void) 5732 { 5733 TCP6_MAJ = ddi_name_to_major(TCP6); 5734 TCP_MAJ = ddi_name_to_major(TCP); 5735 SCTP_MAJ = ddi_name_to_major(SCTP); 5736 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5737 5738 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5739 5740 /* IP's IPsec code calls the packet dropper */ 5741 ip_drop_register(&ip_dropper, "IP IPsec processing"); 5742 5743 if (!ip_g_nd) { 5744 if (!ip_param_register(lcl_param_arr, A_CNT(lcl_param_arr), 5745 lcl_ndp_arr, A_CNT(lcl_ndp_arr))) { 5746 nd_free(&ip_g_nd); 5747 } 5748 } 5749 5750 ipsec_loader_init(); 5751 ipsec_policy_init(); 5752 ipsec_kstat_init(); 5753 rw_init(&ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5754 mutex_init(&igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5755 mutex_init(&mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5756 mutex_init(&igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5757 mutex_init(&mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5758 mutex_init(&ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5759 mutex_init(&ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5760 rw_init(&ill_g_lock, NULL, RW_DEFAULT, NULL); 5761 rw_init(&ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5762 rw_init(&ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5763 5764 /* 5765 * For IP and TCP the minor numbers should start from 2 since we have 4 5766 * initial devices: ip, ip6, tcp, tcp6. 5767 */ 5768 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5769 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5770 cmn_err(CE_PANIC, 5771 "ip_ddi_init: ip_minor_arena creation failed\n"); 5772 } 5773 5774 ipcl_init(); 5775 mutex_init(&rts_clients.connf_lock, NULL, MUTEX_DEFAULT, NULL); 5776 ip_ire_init(); 5777 ip6_asp_init(); 5778 ipif_init(); 5779 conn_drain_init(); 5780 tcp_ddi_init(); 5781 sctp_ddi_init(); 5782 5783 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5784 5785 if ((ip_kstat = kstat_create("ip", 0, "ipstat", 5786 "net", KSTAT_TYPE_NAMED, 5787 sizeof (ip_statistics) / sizeof (kstat_named_t), 5788 KSTAT_FLAG_VIRTUAL)) != NULL) { 5789 ip_kstat->ks_data = &ip_statistics; 5790 kstat_install(ip_kstat); 5791 } 5792 ip_kstat_init(); 5793 ip6_kstat_init(); 5794 icmp_kstat_init(); 5795 ipsec_loader_start(); 5796 tnet_init(); 5797 } 5798 5799 /* 5800 * Allocate and initialize a DLPI template of the specified length. (May be 5801 * called as writer.) 5802 */ 5803 mblk_t * 5804 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 5805 { 5806 mblk_t *mp; 5807 5808 mp = allocb(len, BPRI_MED); 5809 if (!mp) 5810 return (NULL); 5811 5812 /* 5813 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 5814 * of which we don't seem to use) are sent with M_PCPROTO, and 5815 * that other DLPI are M_PROTO. 5816 */ 5817 if (prim == DL_INFO_REQ) { 5818 mp->b_datap->db_type = M_PCPROTO; 5819 } else { 5820 mp->b_datap->db_type = M_PROTO; 5821 } 5822 5823 mp->b_wptr = mp->b_rptr + len; 5824 bzero(mp->b_rptr, len); 5825 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 5826 return (mp); 5827 } 5828 5829 const char * 5830 dlpi_prim_str(int prim) 5831 { 5832 switch (prim) { 5833 case DL_INFO_REQ: return ("DL_INFO_REQ"); 5834 case DL_INFO_ACK: return ("DL_INFO_ACK"); 5835 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 5836 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 5837 case DL_BIND_REQ: return ("DL_BIND_REQ"); 5838 case DL_BIND_ACK: return ("DL_BIND_ACK"); 5839 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 5840 case DL_OK_ACK: return ("DL_OK_ACK"); 5841 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 5842 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 5843 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 5844 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 5845 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 5846 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 5847 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 5848 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 5849 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 5850 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 5851 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 5852 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 5853 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 5854 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 5855 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 5856 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 5857 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 5858 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 5859 default: return ("<unknown primitive>"); 5860 } 5861 } 5862 5863 const char * 5864 dlpi_err_str(int err) 5865 { 5866 switch (err) { 5867 case DL_ACCESS: return ("DL_ACCESS"); 5868 case DL_BADADDR: return ("DL_BADADDR"); 5869 case DL_BADCORR: return ("DL_BADCORR"); 5870 case DL_BADDATA: return ("DL_BADDATA"); 5871 case DL_BADPPA: return ("DL_BADPPA"); 5872 case DL_BADPRIM: return ("DL_BADPRIM"); 5873 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 5874 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 5875 case DL_BADSAP: return ("DL_BADSAP"); 5876 case DL_BADTOKEN: return ("DL_BADTOKEN"); 5877 case DL_BOUND: return ("DL_BOUND"); 5878 case DL_INITFAILED: return ("DL_INITFAILED"); 5879 case DL_NOADDR: return ("DL_NOADDR"); 5880 case DL_NOTINIT: return ("DL_NOTINIT"); 5881 case DL_OUTSTATE: return ("DL_OUTSTATE"); 5882 case DL_SYSERR: return ("DL_SYSERR"); 5883 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 5884 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 5885 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 5886 case DL_TOOMANY: return ("DL_TOOMANY"); 5887 case DL_NOTENAB: return ("DL_NOTENAB"); 5888 case DL_BUSY: return ("DL_BUSY"); 5889 case DL_NOAUTO: return ("DL_NOAUTO"); 5890 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 5891 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 5892 case DL_XIDAUTO: return ("DL_XIDAUTO"); 5893 case DL_TESTAUTO: return ("DL_TESTAUTO"); 5894 case DL_PENDING: return ("DL_PENDING"); 5895 default: return ("<unknown error>"); 5896 } 5897 } 5898 5899 /* 5900 * Debug formatting routine. Returns a character string representation of the 5901 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5902 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 5903 * 5904 * Once the ndd table-printing interfaces are removed, this can be changed to 5905 * standard dotted-decimal form. 5906 */ 5907 char * 5908 ip_dot_addr(ipaddr_t addr, char *buf) 5909 { 5910 uint8_t *ap = (uint8_t *)&addr; 5911 5912 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 5913 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 5914 return (buf); 5915 } 5916 5917 /* 5918 * Write the given MAC address as a printable string in the usual colon- 5919 * separated format. 5920 */ 5921 const char * 5922 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 5923 { 5924 char *bp; 5925 5926 if (alen == 0 || buflen < 4) 5927 return ("?"); 5928 bp = buf; 5929 for (;;) { 5930 /* 5931 * If there are more MAC address bytes available, but we won't 5932 * have any room to print them, then add "..." to the string 5933 * instead. See below for the 'magic number' explanation. 5934 */ 5935 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 5936 (void) strcpy(bp, "..."); 5937 break; 5938 } 5939 (void) sprintf(bp, "%02x", *addr++); 5940 bp += 2; 5941 if (--alen == 0) 5942 break; 5943 *bp++ = ':'; 5944 buflen -= 3; 5945 /* 5946 * At this point, based on the first 'if' statement above, 5947 * either alen == 1 and buflen >= 3, or alen > 1 and 5948 * buflen >= 4. The first case leaves room for the final "xx" 5949 * number and trailing NUL byte. The second leaves room for at 5950 * least "...". Thus the apparently 'magic' numbers chosen for 5951 * that statement. 5952 */ 5953 } 5954 return (buf); 5955 } 5956 5957 /* 5958 * Send an ICMP error after patching up the packet appropriately. Returns 5959 * non-zero if the appropriate MIB should be bumped; zero otherwise. 5960 */ 5961 static boolean_t 5962 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 5963 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, zoneid_t zoneid) 5964 { 5965 ipha_t *ipha; 5966 mblk_t *first_mp; 5967 boolean_t secure; 5968 unsigned char db_type; 5969 5970 first_mp = mp; 5971 if (mctl_present) { 5972 mp = mp->b_cont; 5973 secure = ipsec_in_is_secure(first_mp); 5974 ASSERT(mp != NULL); 5975 } else { 5976 /* 5977 * If this is an ICMP error being reported - which goes 5978 * up as M_CTLs, we need to convert them to M_DATA till 5979 * we finish checking with global policy because 5980 * ipsec_check_global_policy() assumes M_DATA as clear 5981 * and M_CTL as secure. 5982 */ 5983 db_type = DB_TYPE(mp); 5984 DB_TYPE(mp) = M_DATA; 5985 secure = B_FALSE; 5986 } 5987 /* 5988 * We are generating an icmp error for some inbound packet. 5989 * Called from all ip_fanout_(udp, tcp, proto) functions. 5990 * Before we generate an error, check with global policy 5991 * to see whether this is allowed to enter the system. As 5992 * there is no "conn", we are checking with global policy. 5993 */ 5994 ipha = (ipha_t *)mp->b_rptr; 5995 if (secure || ipsec_inbound_v4_policy_present) { 5996 first_mp = ipsec_check_global_policy(first_mp, NULL, 5997 ipha, NULL, mctl_present); 5998 if (first_mp == NULL) 5999 return (B_FALSE); 6000 } 6001 6002 if (!mctl_present) 6003 DB_TYPE(mp) = db_type; 6004 6005 if (flags & IP_FF_SEND_ICMP) { 6006 if (flags & IP_FF_HDR_COMPLETE) { 6007 if (ip_hdr_complete(ipha, zoneid)) { 6008 freemsg(first_mp); 6009 return (B_TRUE); 6010 } 6011 } 6012 if (flags & IP_FF_CKSUM) { 6013 /* 6014 * Have to correct checksum since 6015 * the packet might have been 6016 * fragmented and the reassembly code in ip_rput 6017 * does not restore the IP checksum. 6018 */ 6019 ipha->ipha_hdr_checksum = 0; 6020 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6021 } 6022 switch (icmp_type) { 6023 case ICMP_DEST_UNREACHABLE: 6024 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid); 6025 break; 6026 default: 6027 freemsg(first_mp); 6028 break; 6029 } 6030 } else { 6031 freemsg(first_mp); 6032 return (B_FALSE); 6033 } 6034 6035 return (B_TRUE); 6036 } 6037 6038 /* 6039 * Used to send an ICMP error message when a packet is received for 6040 * a protocol that is not supported. The mblk passed as argument 6041 * is consumed by this function. 6042 */ 6043 void 6044 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid) 6045 { 6046 mblk_t *mp; 6047 ipha_t *ipha; 6048 ill_t *ill; 6049 ipsec_in_t *ii; 6050 6051 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6052 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6053 6054 mp = ipsec_mp->b_cont; 6055 ipsec_mp->b_cont = NULL; 6056 ipha = (ipha_t *)mp->b_rptr; 6057 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6058 if (ip_fanout_send_icmp(q, mp, flags, ICMP_DEST_UNREACHABLE, 6059 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid)) { 6060 BUMP_MIB(&ip_mib, ipInUnknownProtos); 6061 } 6062 } else { 6063 /* Get ill from index in ipsec_in_t. */ 6064 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6065 B_TRUE, NULL, NULL, NULL, NULL); 6066 if (ill != NULL) { 6067 if (ip_fanout_send_icmp_v6(q, mp, flags, 6068 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6069 0, B_FALSE, zoneid)) { 6070 BUMP_MIB(ill->ill_ip6_mib, ipv6InUnknownProtos); 6071 } 6072 6073 ill_refrele(ill); 6074 } else { /* re-link for the freemsg() below. */ 6075 ipsec_mp->b_cont = mp; 6076 } 6077 } 6078 6079 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6080 freemsg(ipsec_mp); 6081 } 6082 6083 /* 6084 * See if the inbound datagram has had IPsec processing applied to it. 6085 */ 6086 boolean_t 6087 ipsec_in_is_secure(mblk_t *ipsec_mp) 6088 { 6089 ipsec_in_t *ii; 6090 6091 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6092 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6093 6094 if (ii->ipsec_in_loopback) { 6095 return (ii->ipsec_in_secure); 6096 } else { 6097 return (ii->ipsec_in_ah_sa != NULL || 6098 ii->ipsec_in_esp_sa != NULL || 6099 ii->ipsec_in_decaps); 6100 } 6101 } 6102 6103 /* 6104 * Handle protocols with which IP is less intimate. There 6105 * can be more than one stream bound to a particular 6106 * protocol. When this is the case, normally each one gets a copy 6107 * of any incoming packets. 6108 * 6109 * IPSEC NOTE : 6110 * 6111 * Don't allow a secure packet going up a non-secure connection. 6112 * We don't allow this because 6113 * 6114 * 1) Reply might go out in clear which will be dropped at 6115 * the sending side. 6116 * 2) If the reply goes out in clear it will give the 6117 * adversary enough information for getting the key in 6118 * most of the cases. 6119 * 6120 * Moreover getting a secure packet when we expect clear 6121 * implies that SA's were added without checking for 6122 * policy on both ends. This should not happen once ISAKMP 6123 * is used to negotiate SAs as SAs will be added only after 6124 * verifying the policy. 6125 * 6126 * NOTE : If the packet was tunneled and not multicast we only send 6127 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6128 * back to delivering packets to AF_INET6 raw sockets. 6129 * 6130 * IPQoS Notes: 6131 * Once we have determined the client, invoke IPPF processing. 6132 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6133 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6134 * ip_policy will be false. 6135 * 6136 * Zones notes: 6137 * Currently only applications in the global zone can create raw sockets for 6138 * protocols other than ICMP. So unlike the broadcast / multicast case of 6139 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6140 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6141 */ 6142 static void 6143 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6144 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6145 zoneid_t zoneid) 6146 { 6147 queue_t *rq; 6148 mblk_t *mp1, *first_mp1; 6149 uint_t protocol = ipha->ipha_protocol; 6150 ipaddr_t dst; 6151 boolean_t one_only; 6152 mblk_t *first_mp = mp; 6153 boolean_t secure; 6154 uint32_t ill_index; 6155 conn_t *connp, *first_connp, *next_connp; 6156 connf_t *connfp; 6157 boolean_t shared_addr; 6158 6159 if (mctl_present) { 6160 mp = first_mp->b_cont; 6161 secure = ipsec_in_is_secure(first_mp); 6162 ASSERT(mp != NULL); 6163 } else { 6164 secure = B_FALSE; 6165 } 6166 dst = ipha->ipha_dst; 6167 /* 6168 * If the packet was tunneled and not multicast we only send to it 6169 * the first match. 6170 */ 6171 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6172 !CLASSD(dst)); 6173 6174 shared_addr = (zoneid == ALL_ZONES); 6175 if (shared_addr) { 6176 /* 6177 * We don't allow multilevel ports for raw IP, so no need to 6178 * check for that here. 6179 */ 6180 zoneid = tsol_packet_to_zoneid(mp); 6181 } 6182 6183 connfp = &ipcl_proto_fanout[protocol]; 6184 mutex_enter(&connfp->connf_lock); 6185 connp = connfp->connf_head; 6186 for (connp = connfp->connf_head; connp != NULL; 6187 connp = connp->conn_next) { 6188 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6189 zoneid) && 6190 (!is_system_labeled() || 6191 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6192 connp))) 6193 break; 6194 } 6195 6196 if (connp == NULL || connp->conn_upq == NULL) { 6197 /* 6198 * No one bound to these addresses. Is 6199 * there a client that wants all 6200 * unclaimed datagrams? 6201 */ 6202 mutex_exit(&connfp->connf_lock); 6203 /* 6204 * Check for IPPROTO_ENCAP... 6205 */ 6206 if (protocol == IPPROTO_ENCAP && ip_g_mrouter) { 6207 /* 6208 * XXX If an IPsec mblk is here on a multicast 6209 * tunnel (using ip_mroute stuff), what should 6210 * I do? 6211 * 6212 * For now, just free the IPsec mblk before 6213 * passing it up to the multicast routing 6214 * stuff. 6215 * 6216 * BTW, If I match a configured IP-in-IP 6217 * tunnel, ip_mroute_decap will never be 6218 * called. 6219 */ 6220 if (mp != first_mp) 6221 freeb(first_mp); 6222 ip_mroute_decap(q, mp); 6223 } else { 6224 /* 6225 * Otherwise send an ICMP protocol unreachable. 6226 */ 6227 if (ip_fanout_send_icmp(q, first_mp, flags, 6228 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6229 mctl_present, zoneid)) { 6230 BUMP_MIB(&ip_mib, ipInUnknownProtos); 6231 } 6232 } 6233 return; 6234 } 6235 CONN_INC_REF(connp); 6236 first_connp = connp; 6237 6238 /* 6239 * Only send message to one tunnel driver by immediately 6240 * terminating the loop. 6241 */ 6242 connp = one_only ? NULL : connp->conn_next; 6243 6244 for (;;) { 6245 while (connp != NULL) { 6246 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6247 flags, zoneid) && 6248 (!is_system_labeled() || 6249 tsol_receive_local(mp, &dst, IPV4_VERSION, 6250 shared_addr, connp))) 6251 break; 6252 connp = connp->conn_next; 6253 } 6254 6255 /* 6256 * Copy the packet. 6257 */ 6258 if (connp == NULL || connp->conn_upq == NULL || 6259 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6260 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6261 /* 6262 * No more interested clients or memory 6263 * allocation failed 6264 */ 6265 connp = first_connp; 6266 break; 6267 } 6268 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6269 CONN_INC_REF(connp); 6270 mutex_exit(&connfp->connf_lock); 6271 rq = connp->conn_rq; 6272 if (!canputnext(rq)) { 6273 if (flags & IP_FF_RAWIP) { 6274 BUMP_MIB(&ip_mib, rawipInOverflows); 6275 } else { 6276 BUMP_MIB(&icmp_mib, icmpInOverflows); 6277 } 6278 6279 freemsg(first_mp1); 6280 } else { 6281 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6282 first_mp1 = ipsec_check_inbound_policy 6283 (first_mp1, connp, ipha, NULL, 6284 mctl_present); 6285 } 6286 if (first_mp1 != NULL) { 6287 /* 6288 * ip_fanout_proto also gets called from 6289 * icmp_inbound_error_fanout, in which case 6290 * the msg type is M_CTL. Don't add info 6291 * in this case for the time being. In future 6292 * when there is a need for knowing the 6293 * inbound iface index for ICMP error msgs, 6294 * then this can be changed. 6295 */ 6296 if ((connp->conn_recvif != 0) && 6297 (mp->b_datap->db_type != M_CTL)) { 6298 /* 6299 * the actual data will be 6300 * contained in b_cont upon 6301 * successful return of the 6302 * following call else 6303 * original mblk is returned 6304 */ 6305 ASSERT(recv_ill != NULL); 6306 mp1 = ip_add_info(mp1, recv_ill, 6307 IPF_RECVIF); 6308 } 6309 BUMP_MIB(&ip_mib, ipInDelivers); 6310 if (mctl_present) 6311 freeb(first_mp1); 6312 putnext(rq, mp1); 6313 } 6314 } 6315 mutex_enter(&connfp->connf_lock); 6316 /* Follow the next pointer before releasing the conn. */ 6317 next_connp = connp->conn_next; 6318 CONN_DEC_REF(connp); 6319 connp = next_connp; 6320 } 6321 6322 /* Last one. Send it upstream. */ 6323 mutex_exit(&connfp->connf_lock); 6324 6325 /* 6326 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6327 * will be set to false. 6328 */ 6329 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6330 ill_index = ill->ill_phyint->phyint_ifindex; 6331 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6332 if (mp == NULL) { 6333 CONN_DEC_REF(connp); 6334 if (mctl_present) { 6335 freeb(first_mp); 6336 } 6337 return; 6338 } 6339 } 6340 6341 rq = connp->conn_rq; 6342 if (!canputnext(rq)) { 6343 if (flags & IP_FF_RAWIP) { 6344 BUMP_MIB(&ip_mib, rawipInOverflows); 6345 } else { 6346 BUMP_MIB(&icmp_mib, icmpInOverflows); 6347 } 6348 6349 freemsg(first_mp); 6350 } else { 6351 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6352 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6353 ipha, NULL, mctl_present); 6354 } 6355 if (first_mp != NULL) { 6356 /* 6357 * ip_fanout_proto also gets called 6358 * from icmp_inbound_error_fanout, in 6359 * which case the msg type is M_CTL. 6360 * Don't add info in this case for time 6361 * being. In future when there is a 6362 * need for knowing the inbound iface 6363 * index for ICMP error msgs, then this 6364 * can be changed 6365 */ 6366 if ((connp->conn_recvif != 0) && 6367 (mp->b_datap->db_type != M_CTL)) { 6368 /* 6369 * the actual data will be contained in 6370 * b_cont upon successful return 6371 * of the following call else original 6372 * mblk is returned 6373 */ 6374 ASSERT(recv_ill != NULL); 6375 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6376 } 6377 BUMP_MIB(&ip_mib, ipInDelivers); 6378 putnext(rq, mp); 6379 if (mctl_present) 6380 freeb(first_mp); 6381 } 6382 } 6383 CONN_DEC_REF(connp); 6384 } 6385 6386 /* 6387 * Fanout for TCP packets 6388 * The caller puts <fport, lport> in the ports parameter. 6389 * 6390 * IPQoS Notes 6391 * Before sending it to the client, invoke IPPF processing. 6392 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6393 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6394 * ip_policy is false. 6395 */ 6396 static void 6397 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6398 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6399 { 6400 mblk_t *first_mp; 6401 boolean_t secure; 6402 uint32_t ill_index; 6403 int ip_hdr_len; 6404 tcph_t *tcph; 6405 boolean_t syn_present = B_FALSE; 6406 conn_t *connp; 6407 6408 first_mp = mp; 6409 if (mctl_present) { 6410 ASSERT(first_mp->b_datap->db_type == M_CTL); 6411 mp = first_mp->b_cont; 6412 secure = ipsec_in_is_secure(first_mp); 6413 ASSERT(mp != NULL); 6414 } else { 6415 secure = B_FALSE; 6416 } 6417 6418 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6419 6420 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 6421 NULL) { 6422 /* 6423 * No connected connection or listener. Send a 6424 * TH_RST via tcp_xmit_listeners_reset. 6425 */ 6426 6427 /* Initiate IPPf processing, if needed. */ 6428 if (IPP_ENABLED(IPP_LOCAL_IN)) { 6429 uint32_t ill_index; 6430 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6431 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6432 if (first_mp == NULL) 6433 return; 6434 } 6435 BUMP_MIB(&ip_mib, ipInDelivers); 6436 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6437 zoneid)); 6438 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 6439 return; 6440 } 6441 6442 /* 6443 * Allocate the SYN for the TCP connection here itself 6444 */ 6445 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6446 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6447 if (IPCL_IS_TCP(connp)) { 6448 squeue_t *sqp; 6449 6450 /* 6451 * For fused tcp loopback, assign the eager's 6452 * squeue to be that of the active connect's. 6453 * Note that we don't check for IP_FF_LOOPBACK 6454 * here since this routine gets called only 6455 * for loopback (unlike the IPv6 counterpart). 6456 */ 6457 ASSERT(Q_TO_CONN(q) != NULL); 6458 if (do_tcp_fusion && 6459 !CONN_INBOUND_POLICY_PRESENT(connp) && !secure && 6460 !IPP_ENABLED(IPP_LOCAL_IN) && !ip_policy && 6461 IPCL_IS_TCP(Q_TO_CONN(q))) { 6462 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6463 sqp = Q_TO_CONN(q)->conn_sqp; 6464 } else { 6465 sqp = IP_SQUEUE_GET(lbolt); 6466 } 6467 6468 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6469 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6470 syn_present = B_TRUE; 6471 } 6472 } 6473 6474 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6475 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6476 if ((flags & TH_RST) || (flags & TH_URG)) { 6477 CONN_DEC_REF(connp); 6478 freemsg(first_mp); 6479 return; 6480 } 6481 if (flags & TH_ACK) { 6482 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 6483 CONN_DEC_REF(connp); 6484 return; 6485 } 6486 6487 CONN_DEC_REF(connp); 6488 freemsg(first_mp); 6489 return; 6490 } 6491 6492 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6493 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6494 NULL, mctl_present); 6495 if (first_mp == NULL) { 6496 CONN_DEC_REF(connp); 6497 return; 6498 } 6499 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6500 ASSERT(syn_present); 6501 if (mctl_present) { 6502 ASSERT(first_mp != mp); 6503 first_mp->b_datap->db_struioflag |= 6504 STRUIO_POLICY; 6505 } else { 6506 ASSERT(first_mp == mp); 6507 mp->b_datap->db_struioflag &= 6508 ~STRUIO_EAGER; 6509 mp->b_datap->db_struioflag |= 6510 STRUIO_POLICY; 6511 } 6512 } else { 6513 /* 6514 * Discard first_mp early since we're dealing with a 6515 * fully-connected conn_t and tcp doesn't do policy in 6516 * this case. 6517 */ 6518 if (mctl_present) { 6519 freeb(first_mp); 6520 mctl_present = B_FALSE; 6521 } 6522 first_mp = mp; 6523 } 6524 } 6525 6526 /* 6527 * Initiate policy processing here if needed. If we get here from 6528 * icmp_inbound_error_fanout, ip_policy is false. 6529 */ 6530 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6531 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6532 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6533 if (mp == NULL) { 6534 CONN_DEC_REF(connp); 6535 if (mctl_present) 6536 freeb(first_mp); 6537 return; 6538 } else if (mctl_present) { 6539 ASSERT(first_mp != mp); 6540 first_mp->b_cont = mp; 6541 } else { 6542 first_mp = mp; 6543 } 6544 } 6545 6546 6547 6548 /* Handle IPv6 socket options. */ 6549 if (!syn_present && 6550 connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) { 6551 /* Add header */ 6552 ASSERT(recv_ill != NULL); 6553 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6554 if (mp == NULL) { 6555 CONN_DEC_REF(connp); 6556 if (mctl_present) 6557 freeb(first_mp); 6558 return; 6559 } else if (mctl_present) { 6560 /* 6561 * ip_add_info might return a new mp. 6562 */ 6563 ASSERT(first_mp != mp); 6564 first_mp->b_cont = mp; 6565 } else { 6566 first_mp = mp; 6567 } 6568 } 6569 6570 BUMP_MIB(&ip_mib, ipInDelivers); 6571 if (IPCL_IS_TCP(connp)) { 6572 (*ip_input_proc)(connp->conn_sqp, first_mp, 6573 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6574 } else { 6575 putnext(connp->conn_rq, first_mp); 6576 CONN_DEC_REF(connp); 6577 } 6578 } 6579 6580 /* 6581 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6582 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6583 * Caller is responsible for dropping references to the conn, and freeing 6584 * first_mp. 6585 * 6586 * IPQoS Notes 6587 * Before sending it to the client, invoke IPPF processing. Policy processing 6588 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6589 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6590 * ip_wput_local, ip_policy is false. 6591 */ 6592 static void 6593 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6594 boolean_t secure, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6595 boolean_t ip_policy) 6596 { 6597 boolean_t mctl_present = (first_mp != NULL); 6598 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6599 uint32_t ill_index; 6600 6601 if (mctl_present) 6602 first_mp->b_cont = mp; 6603 else 6604 first_mp = mp; 6605 6606 if (CONN_UDP_FLOWCTLD(connp)) { 6607 BUMP_MIB(&ip_mib, udpInOverflows); 6608 freemsg(first_mp); 6609 return; 6610 } 6611 6612 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6613 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6614 NULL, mctl_present); 6615 if (first_mp == NULL) 6616 return; /* Freed by ipsec_check_inbound_policy(). */ 6617 } 6618 if (mctl_present) 6619 freeb(first_mp); 6620 6621 if (connp->conn_recvif) 6622 in_flags = IPF_RECVIF; 6623 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 6624 in_flags |= IPF_RECVSLLA; 6625 6626 /* Handle IPv6 options. */ 6627 if (connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) 6628 in_flags |= IPF_RECVIF; 6629 6630 /* 6631 * Initiate IPPF processing here, if needed. Note first_mp won't be 6632 * freed if the packet is dropped. The caller will do so. 6633 */ 6634 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6635 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6636 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6637 if (mp == NULL) { 6638 return; 6639 } 6640 } 6641 if ((in_flags != 0) && 6642 (mp->b_datap->db_type != M_CTL)) { 6643 /* 6644 * The actual data will be contained in b_cont 6645 * upon successful return of the following call 6646 * else original mblk is returned 6647 */ 6648 ASSERT(recv_ill != NULL); 6649 mp = ip_add_info(mp, recv_ill, in_flags); 6650 } 6651 BUMP_MIB(&ip_mib, ipInDelivers); 6652 6653 /* Send it upstream */ 6654 CONN_UDP_RECV(connp, mp); 6655 } 6656 6657 /* 6658 * Fanout for UDP packets. 6659 * The caller puts <fport, lport> in the ports parameter. 6660 * 6661 * If SO_REUSEADDR is set all multicast and broadcast packets 6662 * will be delivered to all streams bound to the same port. 6663 * 6664 * Zones notes: 6665 * Multicast and broadcast packets will be distributed to streams in all zones. 6666 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 6667 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 6668 * packets. To maintain this behavior with multiple zones, the conns are grouped 6669 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 6670 * each zone. If unset, all the following conns in the same zone are skipped. 6671 */ 6672 static void 6673 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 6674 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 6675 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 6676 { 6677 uint32_t dstport, srcport; 6678 ipaddr_t dst; 6679 mblk_t *first_mp; 6680 boolean_t secure; 6681 in6_addr_t v6src; 6682 conn_t *connp; 6683 connf_t *connfp; 6684 conn_t *first_connp; 6685 conn_t *next_connp; 6686 mblk_t *mp1, *first_mp1; 6687 ipaddr_t src; 6688 zoneid_t last_zoneid; 6689 boolean_t reuseaddr; 6690 boolean_t shared_addr; 6691 6692 first_mp = mp; 6693 if (mctl_present) { 6694 mp = first_mp->b_cont; 6695 first_mp->b_cont = NULL; 6696 secure = ipsec_in_is_secure(first_mp); 6697 ASSERT(mp != NULL); 6698 } else { 6699 first_mp = NULL; 6700 secure = B_FALSE; 6701 } 6702 6703 /* Extract ports in net byte order */ 6704 dstport = htons(ntohl(ports) & 0xFFFF); 6705 srcport = htons(ntohl(ports) >> 16); 6706 dst = ipha->ipha_dst; 6707 src = ipha->ipha_src; 6708 6709 shared_addr = (zoneid == ALL_ZONES); 6710 if (shared_addr) { 6711 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 6712 if (zoneid == ALL_ZONES) 6713 zoneid = tsol_packet_to_zoneid(mp); 6714 } 6715 6716 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6717 mutex_enter(&connfp->connf_lock); 6718 connp = connfp->connf_head; 6719 if (!broadcast && !CLASSD(dst)) { 6720 /* 6721 * Not broadcast or multicast. Send to the one (first) 6722 * client we find. No need to check conn_wantpacket() 6723 * since IP_BOUND_IF/conn_incoming_ill does not apply to 6724 * IPv4 unicast packets. 6725 */ 6726 while ((connp != NULL) && 6727 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 6728 !IPCL_ZONE_MATCH(connp, zoneid))) { 6729 connp = connp->conn_next; 6730 } 6731 6732 if (connp == NULL || connp->conn_upq == NULL) 6733 goto notfound; 6734 6735 if (is_system_labeled() && 6736 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6737 connp)) 6738 goto notfound; 6739 6740 CONN_INC_REF(connp); 6741 mutex_exit(&connfp->connf_lock); 6742 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6743 recv_ill, ip_policy); 6744 IP_STAT(ip_udp_fannorm); 6745 CONN_DEC_REF(connp); 6746 return; 6747 } 6748 6749 /* 6750 * Broadcast and multicast case 6751 * 6752 * Need to check conn_wantpacket(). 6753 * If SO_REUSEADDR has been set on the first we send the 6754 * packet to all clients that have joined the group and 6755 * match the port. 6756 */ 6757 6758 while (connp != NULL) { 6759 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 6760 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6761 (!is_system_labeled() || 6762 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6763 connp))) 6764 break; 6765 connp = connp->conn_next; 6766 } 6767 6768 if (connp == NULL || connp->conn_upq == NULL) 6769 goto notfound; 6770 6771 first_connp = connp; 6772 /* 6773 * When SO_REUSEADDR is not set, send the packet only to the first 6774 * matching connection in its zone by keeping track of the zoneid. 6775 */ 6776 reuseaddr = first_connp->conn_reuseaddr; 6777 last_zoneid = first_connp->conn_zoneid; 6778 6779 CONN_INC_REF(connp); 6780 connp = connp->conn_next; 6781 for (;;) { 6782 while (connp != NULL) { 6783 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 6784 (reuseaddr || connp->conn_zoneid != last_zoneid) && 6785 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6786 (!is_system_labeled() || 6787 tsol_receive_local(mp, &dst, IPV4_VERSION, 6788 shared_addr, connp))) 6789 break; 6790 connp = connp->conn_next; 6791 } 6792 /* 6793 * Just copy the data part alone. The mctl part is 6794 * needed just for verifying policy and it is never 6795 * sent up. 6796 */ 6797 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6798 ((mp1 = copymsg(mp)) == NULL))) { 6799 /* 6800 * No more interested clients or memory 6801 * allocation failed 6802 */ 6803 connp = first_connp; 6804 break; 6805 } 6806 if (connp->conn_zoneid != last_zoneid) { 6807 /* 6808 * Update the zoneid so that the packet isn't sent to 6809 * any more conns in the same zone unless SO_REUSEADDR 6810 * is set. 6811 */ 6812 reuseaddr = connp->conn_reuseaddr; 6813 last_zoneid = connp->conn_zoneid; 6814 } 6815 if (first_mp != NULL) { 6816 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6817 ipsec_info_type == IPSEC_IN); 6818 first_mp1 = ipsec_in_tag(first_mp, NULL); 6819 if (first_mp1 == NULL) { 6820 freemsg(mp1); 6821 connp = first_connp; 6822 break; 6823 } 6824 } else { 6825 first_mp1 = NULL; 6826 } 6827 CONN_INC_REF(connp); 6828 mutex_exit(&connfp->connf_lock); 6829 /* 6830 * IPQoS notes: We don't send the packet for policy 6831 * processing here, will do it for the last one (below). 6832 * i.e. we do it per-packet now, but if we do policy 6833 * processing per-conn, then we would need to do it 6834 * here too. 6835 */ 6836 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6837 ipha, flags, recv_ill, B_FALSE); 6838 mutex_enter(&connfp->connf_lock); 6839 /* Follow the next pointer before releasing the conn. */ 6840 next_connp = connp->conn_next; 6841 IP_STAT(ip_udp_fanmb); 6842 CONN_DEC_REF(connp); 6843 connp = next_connp; 6844 } 6845 6846 /* Last one. Send it upstream. */ 6847 mutex_exit(&connfp->connf_lock); 6848 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6849 ip_policy); 6850 IP_STAT(ip_udp_fanmb); 6851 CONN_DEC_REF(connp); 6852 return; 6853 6854 notfound: 6855 6856 mutex_exit(&connfp->connf_lock); 6857 IP_STAT(ip_udp_fanothers); 6858 /* 6859 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 6860 * have already been matched above, since they live in the IPv4 6861 * fanout tables. This implies we only need to 6862 * check for IPv6 in6addr_any endpoints here. 6863 * Thus we compare using ipv6_all_zeros instead of the destination 6864 * address, except for the multicast group membership lookup which 6865 * uses the IPv4 destination. 6866 */ 6867 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 6868 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6869 mutex_enter(&connfp->connf_lock); 6870 connp = connfp->connf_head; 6871 if (!broadcast && !CLASSD(dst)) { 6872 while (connp != NULL) { 6873 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6874 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 6875 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6876 !connp->conn_ipv6_v6only) 6877 break; 6878 connp = connp->conn_next; 6879 } 6880 6881 if (connp != NULL && is_system_labeled() && 6882 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6883 connp)) 6884 connp = NULL; 6885 6886 if (connp == NULL || connp->conn_upq == NULL) { 6887 /* 6888 * No one bound to this port. Is 6889 * there a client that wants all 6890 * unclaimed datagrams? 6891 */ 6892 mutex_exit(&connfp->connf_lock); 6893 6894 if (mctl_present) 6895 first_mp->b_cont = mp; 6896 else 6897 first_mp = mp; 6898 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6899 ip_fanout_proto(q, first_mp, ill, ipha, 6900 flags | IP_FF_RAWIP, mctl_present, 6901 ip_policy, recv_ill, zoneid); 6902 } else { 6903 if (ip_fanout_send_icmp(q, first_mp, flags, 6904 ICMP_DEST_UNREACHABLE, 6905 ICMP_PORT_UNREACHABLE, 6906 mctl_present, zoneid)) { 6907 BUMP_MIB(&ip_mib, udpNoPorts); 6908 } 6909 } 6910 return; 6911 } 6912 6913 CONN_INC_REF(connp); 6914 mutex_exit(&connfp->connf_lock); 6915 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6916 recv_ill, ip_policy); 6917 CONN_DEC_REF(connp); 6918 return; 6919 } 6920 /* 6921 * IPv4 multicast packet being delivered to an AF_INET6 6922 * in6addr_any endpoint. 6923 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 6924 * and not conn_wantpacket_v6() since any multicast membership is 6925 * for an IPv4-mapped multicast address. 6926 * The packet is sent to all clients in all zones that have joined the 6927 * group and match the port. 6928 */ 6929 while (connp != NULL) { 6930 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6931 srcport, v6src) && 6932 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6933 (!is_system_labeled() || 6934 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6935 connp))) 6936 break; 6937 connp = connp->conn_next; 6938 } 6939 6940 if (connp == NULL || connp->conn_upq == NULL) { 6941 /* 6942 * No one bound to this port. Is 6943 * there a client that wants all 6944 * unclaimed datagrams? 6945 */ 6946 mutex_exit(&connfp->connf_lock); 6947 6948 if (mctl_present) 6949 first_mp->b_cont = mp; 6950 else 6951 first_mp = mp; 6952 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6953 ip_fanout_proto(q, first_mp, ill, ipha, 6954 flags | IP_FF_RAWIP, mctl_present, ip_policy, 6955 recv_ill, zoneid); 6956 } else { 6957 /* 6958 * We used to attempt to send an icmp error here, but 6959 * since this is known to be a multicast packet 6960 * and we don't send icmp errors in response to 6961 * multicast, just drop the packet and give up sooner. 6962 */ 6963 BUMP_MIB(&ip_mib, udpNoPorts); 6964 freemsg(first_mp); 6965 } 6966 return; 6967 } 6968 6969 first_connp = connp; 6970 6971 CONN_INC_REF(connp); 6972 connp = connp->conn_next; 6973 for (;;) { 6974 while (connp != NULL) { 6975 if (IPCL_UDP_MATCH_V6(connp, dstport, 6976 ipv6_all_zeros, srcport, v6src) && 6977 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6978 (!is_system_labeled() || 6979 tsol_receive_local(mp, &dst, IPV4_VERSION, 6980 shared_addr, connp))) 6981 break; 6982 connp = connp->conn_next; 6983 } 6984 /* 6985 * Just copy the data part alone. The mctl part is 6986 * needed just for verifying policy and it is never 6987 * sent up. 6988 */ 6989 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6990 ((mp1 = copymsg(mp)) == NULL))) { 6991 /* 6992 * No more intested clients or memory 6993 * allocation failed 6994 */ 6995 connp = first_connp; 6996 break; 6997 } 6998 if (first_mp != NULL) { 6999 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7000 ipsec_info_type == IPSEC_IN); 7001 first_mp1 = ipsec_in_tag(first_mp, NULL); 7002 if (first_mp1 == NULL) { 7003 freemsg(mp1); 7004 connp = first_connp; 7005 break; 7006 } 7007 } else { 7008 first_mp1 = NULL; 7009 } 7010 CONN_INC_REF(connp); 7011 mutex_exit(&connfp->connf_lock); 7012 /* 7013 * IPQoS notes: We don't send the packet for policy 7014 * processing here, will do it for the last one (below). 7015 * i.e. we do it per-packet now, but if we do policy 7016 * processing per-conn, then we would need to do it 7017 * here too. 7018 */ 7019 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 7020 ipha, flags, recv_ill, B_FALSE); 7021 mutex_enter(&connfp->connf_lock); 7022 /* Follow the next pointer before releasing the conn. */ 7023 next_connp = connp->conn_next; 7024 CONN_DEC_REF(connp); 7025 connp = next_connp; 7026 } 7027 7028 /* Last one. Send it upstream. */ 7029 mutex_exit(&connfp->connf_lock); 7030 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 7031 ip_policy); 7032 CONN_DEC_REF(connp); 7033 } 7034 7035 /* 7036 * Complete the ip_wput header so that it 7037 * is possible to generate ICMP 7038 * errors. 7039 */ 7040 int 7041 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid) 7042 { 7043 ire_t *ire; 7044 7045 if (ipha->ipha_src == INADDR_ANY) { 7046 ire = ire_lookup_local(zoneid); 7047 if (ire == NULL) { 7048 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7049 return (1); 7050 } 7051 ipha->ipha_src = ire->ire_addr; 7052 ire_refrele(ire); 7053 } 7054 ipha->ipha_ttl = ip_def_ttl; 7055 ipha->ipha_hdr_checksum = 0; 7056 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7057 return (0); 7058 } 7059 7060 /* 7061 * Nobody should be sending 7062 * packets up this stream 7063 */ 7064 static void 7065 ip_lrput(queue_t *q, mblk_t *mp) 7066 { 7067 mblk_t *mp1; 7068 7069 switch (mp->b_datap->db_type) { 7070 case M_FLUSH: 7071 /* Turn around */ 7072 if (*mp->b_rptr & FLUSHW) { 7073 *mp->b_rptr &= ~FLUSHR; 7074 qreply(q, mp); 7075 return; 7076 } 7077 break; 7078 } 7079 /* Could receive messages that passed through ar_rput */ 7080 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7081 mp1->b_prev = mp1->b_next = NULL; 7082 freemsg(mp); 7083 } 7084 7085 /* Nobody should be sending packets down this stream */ 7086 /* ARGSUSED */ 7087 void 7088 ip_lwput(queue_t *q, mblk_t *mp) 7089 { 7090 freemsg(mp); 7091 } 7092 7093 /* 7094 * Move the first hop in any source route to ipha_dst and remove that part of 7095 * the source route. Called by other protocols. Errors in option formatting 7096 * are ignored - will be handled by ip_wput_options Return the final 7097 * destination (either ipha_dst or the last entry in a source route.) 7098 */ 7099 ipaddr_t 7100 ip_massage_options(ipha_t *ipha) 7101 { 7102 ipoptp_t opts; 7103 uchar_t *opt; 7104 uint8_t optval; 7105 uint8_t optlen; 7106 ipaddr_t dst; 7107 int i; 7108 ire_t *ire; 7109 7110 ip2dbg(("ip_massage_options\n")); 7111 dst = ipha->ipha_dst; 7112 for (optval = ipoptp_first(&opts, ipha); 7113 optval != IPOPT_EOL; 7114 optval = ipoptp_next(&opts)) { 7115 opt = opts.ipoptp_cur; 7116 switch (optval) { 7117 uint8_t off; 7118 case IPOPT_SSRR: 7119 case IPOPT_LSRR: 7120 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7121 ip1dbg(("ip_massage_options: bad src route\n")); 7122 break; 7123 } 7124 optlen = opts.ipoptp_len; 7125 off = opt[IPOPT_OFFSET]; 7126 off--; 7127 redo_srr: 7128 if (optlen < IP_ADDR_LEN || 7129 off > optlen - IP_ADDR_LEN) { 7130 /* End of source route */ 7131 ip1dbg(("ip_massage_options: end of SR\n")); 7132 break; 7133 } 7134 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7135 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7136 ntohl(dst))); 7137 /* 7138 * Check if our address is present more than 7139 * once as consecutive hops in source route. 7140 * XXX verify per-interface ip_forwarding 7141 * for source route? 7142 */ 7143 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7144 ALL_ZONES, NULL, MATCH_IRE_TYPE); 7145 if (ire != NULL) { 7146 ire_refrele(ire); 7147 off += IP_ADDR_LEN; 7148 goto redo_srr; 7149 } 7150 if (dst == htonl(INADDR_LOOPBACK)) { 7151 ip1dbg(("ip_massage_options: loopback addr in " 7152 "source route!\n")); 7153 break; 7154 } 7155 /* 7156 * Update ipha_dst to be the first hop and remove the 7157 * first hop from the source route (by overwriting 7158 * part of the option with NOP options). 7159 */ 7160 ipha->ipha_dst = dst; 7161 /* Put the last entry in dst */ 7162 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7163 3; 7164 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7165 7166 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7167 ntohl(dst))); 7168 /* Move down and overwrite */ 7169 opt[IP_ADDR_LEN] = opt[0]; 7170 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7171 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7172 for (i = 0; i < IP_ADDR_LEN; i++) 7173 opt[i] = IPOPT_NOP; 7174 break; 7175 } 7176 } 7177 return (dst); 7178 } 7179 7180 /* 7181 * This function's job is to forward data to the reverse tunnel (FA->HA) 7182 * after doing a few checks. It is assumed that the incoming interface 7183 * of the packet is always different than the outgoing interface and the 7184 * ire_type of the found ire has to be a non-resolver type. 7185 * 7186 * IPQoS notes 7187 * IP policy is invoked twice for a forwarded packet, once on the read side 7188 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 7189 * enabled. 7190 */ 7191 static void 7192 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 7193 { 7194 ipha_t *ipha; 7195 queue_t *q; 7196 uint32_t pkt_len; 7197 #define rptr ((uchar_t *)ipha) 7198 uint32_t sum; 7199 uint32_t max_frag; 7200 mblk_t *first_mp; 7201 uint32_t ill_index; 7202 ipxmit_state_t pktxmit_state; 7203 7204 ASSERT(ire != NULL); 7205 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 7206 ASSERT(ire->ire_stq != NULL); 7207 7208 /* Initiate read side IPPF processing */ 7209 if (IPP_ENABLED(IPP_FWD_IN)) { 7210 ill_index = in_ill->ill_phyint->phyint_ifindex; 7211 ip_process(IPP_FWD_IN, &mp, ill_index); 7212 if (mp == NULL) { 7213 ip2dbg(("ip_mrtun_forward: inbound pkt " 7214 "dropped during IPPF processing\n")); 7215 return; 7216 } 7217 } 7218 7219 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 7220 ILLF_ROUTER) == 0) || 7221 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 7222 BUMP_MIB(&ip_mib, ipForwProhibits); 7223 ip0dbg(("ip_mrtun_forward: Can't forward :" 7224 "forwarding is not turned on\n")); 7225 goto drop_pkt; 7226 } 7227 7228 /* 7229 * Don't forward if the interface is down 7230 */ 7231 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 7232 BUMP_MIB(&ip_mib, ipInDiscards); 7233 goto drop_pkt; 7234 } 7235 7236 ipha = (ipha_t *)mp->b_rptr; 7237 pkt_len = ntohs(ipha->ipha_length); 7238 /* Adjust the checksum to reflect the ttl decrement. */ 7239 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 7240 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 7241 if (ipha->ipha_ttl-- <= 1) { 7242 if (ip_csum_hdr(ipha)) { 7243 BUMP_MIB(&ip_mib, ipInCksumErrs); 7244 goto drop_pkt; 7245 } 7246 q = ire->ire_stq; 7247 if ((first_mp = allocb(sizeof (ipsec_info_t), 7248 BPRI_HI)) == NULL) { 7249 goto drop_pkt; 7250 } 7251 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7252 /* Sent by forwarding path, and router is global zone */ 7253 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED, 7254 GLOBAL_ZONEID); 7255 return; 7256 } 7257 7258 /* Get the ill_index of the ILL */ 7259 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 7260 7261 /* 7262 * ip_mrtun_forward is only used by foreign agent to reverse 7263 * tunnel the incoming packet. So it does not do any option 7264 * processing for source routing. 7265 */ 7266 max_frag = ire->ire_max_frag; 7267 if (pkt_len > max_frag) { 7268 /* 7269 * It needs fragging on its way out. We haven't 7270 * verified the header checksum yet. Since we 7271 * are going to put a surely good checksum in the 7272 * outgoing header, we have to make sure that it 7273 * was good coming in. 7274 */ 7275 if (ip_csum_hdr(ipha)) { 7276 BUMP_MIB(&ip_mib, ipInCksumErrs); 7277 goto drop_pkt; 7278 } 7279 7280 /* Initiate write side IPPF processing */ 7281 if (IPP_ENABLED(IPP_FWD_OUT)) { 7282 ip_process(IPP_FWD_OUT, &mp, ill_index); 7283 if (mp == NULL) { 7284 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 7285 "dropped/deferred during ip policy "\ 7286 "processing\n")); 7287 return; 7288 } 7289 } 7290 if ((first_mp = allocb(sizeof (ipsec_info_t), 7291 BPRI_HI)) == NULL) { 7292 goto drop_pkt; 7293 } 7294 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7295 mp = first_mp; 7296 7297 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID); 7298 return; 7299 } 7300 7301 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 7302 7303 ASSERT(ire->ire_ipif != NULL); 7304 7305 /* Now send the packet to the tunnel interface */ 7306 mp->b_prev = SET_BPREV_FLAG(IPP_FWD_OUT); 7307 q = ire->ire_stq; 7308 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_FALSE); 7309 if ((pktxmit_state == SEND_FAILED) || 7310 (pktxmit_state == LLHDR_RESLV_FAILED)) { 7311 ip2dbg(("ip_mrtun_forward: failed to send packet to ill %p\n", 7312 q->q_ptr)); 7313 } 7314 7315 return; 7316 7317 drop_pkt:; 7318 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 7319 freemsg(mp); 7320 #undef rptr 7321 } 7322 7323 /* 7324 * Fills the ipsec_out_t data structure with appropriate fields and 7325 * prepends it to mp which contains the IP hdr + data that was meant 7326 * to be forwarded. Please note that ipsec_out_info data structure 7327 * is used here to communicate the outgoing ill path at ip_wput() 7328 * for the ICMP error packet. This has nothing to do with ipsec IP 7329 * security. ipsec_out_t is really used to pass the info to the module 7330 * IP where this information cannot be extracted from conn. 7331 * This functions is called by ip_mrtun_forward(). 7332 */ 7333 void 7334 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 7335 { 7336 ipsec_out_t *io; 7337 7338 ASSERT(xmit_ill != NULL); 7339 first_mp->b_datap->db_type = M_CTL; 7340 first_mp->b_wptr += sizeof (ipsec_info_t); 7341 /* 7342 * This is to pass info to ip_wput in absence of conn. 7343 * ipsec_out_secure will be B_FALSE because of this. 7344 * Thus ipsec_out_secure being B_FALSE indicates that 7345 * this is not IPSEC security related information. 7346 */ 7347 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 7348 io = (ipsec_out_t *)first_mp->b_rptr; 7349 io->ipsec_out_type = IPSEC_OUT; 7350 io->ipsec_out_len = sizeof (ipsec_out_t); 7351 first_mp->b_cont = mp; 7352 io->ipsec_out_ill_index = 7353 xmit_ill->ill_phyint->phyint_ifindex; 7354 io->ipsec_out_xmit_if = B_TRUE; 7355 } 7356 7357 /* 7358 * Return the network mask 7359 * associated with the specified address. 7360 */ 7361 ipaddr_t 7362 ip_net_mask(ipaddr_t addr) 7363 { 7364 uchar_t *up = (uchar_t *)&addr; 7365 ipaddr_t mask = 0; 7366 uchar_t *maskp = (uchar_t *)&mask; 7367 7368 #if defined(__i386) || defined(__amd64) 7369 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7370 #endif 7371 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7372 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7373 #endif 7374 if (CLASSD(addr)) { 7375 maskp[0] = 0xF0; 7376 return (mask); 7377 } 7378 if (addr == 0) 7379 return (0); 7380 maskp[0] = 0xFF; 7381 if ((up[0] & 0x80) == 0) 7382 return (mask); 7383 7384 maskp[1] = 0xFF; 7385 if ((up[0] & 0xC0) == 0x80) 7386 return (mask); 7387 7388 maskp[2] = 0xFF; 7389 if ((up[0] & 0xE0) == 0xC0) 7390 return (mask); 7391 7392 /* Must be experimental or multicast, indicate as much */ 7393 return ((ipaddr_t)0); 7394 } 7395 7396 /* 7397 * Select an ill for the packet by considering load spreading across 7398 * a different ill in the group if dst_ill is part of some group. 7399 */ 7400 ill_t * 7401 ip_newroute_get_dst_ill(ill_t *dst_ill) 7402 { 7403 ill_t *ill; 7404 7405 /* 7406 * We schedule irrespective of whether the source address is 7407 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7408 */ 7409 ill = illgrp_scheduler(dst_ill); 7410 if (ill == NULL) 7411 return (NULL); 7412 7413 /* 7414 * For groups with names ip_sioctl_groupname ensures that all 7415 * ills are of same type. For groups without names, ifgrp_insert 7416 * ensures this. 7417 */ 7418 ASSERT(dst_ill->ill_type == ill->ill_type); 7419 7420 return (ill); 7421 } 7422 7423 /* 7424 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7425 */ 7426 ill_t * 7427 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6) 7428 { 7429 ill_t *ret_ill; 7430 7431 ASSERT(ifindex != 0); 7432 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 7433 if (ret_ill == NULL || 7434 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7435 if (isv6) { 7436 if (ill != NULL) { 7437 BUMP_MIB(ill->ill_ip6_mib, ipv6OutDiscards); 7438 } else { 7439 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 7440 } 7441 ip1dbg(("ip_grab_attach_ill (IPv6): " 7442 "bad ifindex %d.\n", ifindex)); 7443 } else { 7444 BUMP_MIB(&ip_mib, ipOutDiscards); 7445 ip1dbg(("ip_grab_attach_ill (IPv4): " 7446 "bad ifindex %d.\n", ifindex)); 7447 } 7448 if (ret_ill != NULL) 7449 ill_refrele(ret_ill); 7450 freemsg(first_mp); 7451 return (NULL); 7452 } 7453 7454 return (ret_ill); 7455 } 7456 7457 /* 7458 * IPv4 - 7459 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7460 * out a packet to a destination address for which we do not have specific 7461 * (or sufficient) routing information. 7462 * 7463 * NOTE : These are the scopes of some of the variables that point at IRE, 7464 * which needs to be followed while making any future modifications 7465 * to avoid memory leaks. 7466 * 7467 * - ire and sire are the entries looked up initially by 7468 * ire_ftable_lookup. 7469 * - ipif_ire is used to hold the interface ire associated with 7470 * the new cache ire. But it's scope is limited, so we always REFRELE 7471 * it before branching out to error paths. 7472 * - save_ire is initialized before ire_create, so that ire returned 7473 * by ire_create will not over-write the ire. We REFRELE save_ire 7474 * before breaking out of the switch. 7475 * 7476 * Thus on failures, we have to REFRELE only ire and sire, if they 7477 * are not NULL. 7478 */ 7479 void 7480 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp, 7481 zoneid_t zoneid) 7482 { 7483 areq_t *areq; 7484 ipaddr_t gw = 0; 7485 ire_t *ire = NULL; 7486 mblk_t *res_mp; 7487 ipaddr_t *addrp; 7488 ipaddr_t nexthop_addr; 7489 ipif_t *src_ipif = NULL; 7490 ill_t *dst_ill = NULL; 7491 ipha_t *ipha; 7492 ire_t *sire = NULL; 7493 mblk_t *first_mp; 7494 ire_t *save_ire; 7495 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7496 ushort_t ire_marks = 0; 7497 boolean_t mctl_present; 7498 ipsec_out_t *io; 7499 mblk_t *saved_mp; 7500 ire_t *first_sire = NULL; 7501 mblk_t *copy_mp = NULL; 7502 mblk_t *xmit_mp = NULL; 7503 ipaddr_t save_dst; 7504 uint32_t multirt_flags = 7505 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7506 boolean_t multirt_is_resolvable; 7507 boolean_t multirt_resolve_next; 7508 boolean_t do_attach_ill = B_FALSE; 7509 boolean_t ip_nexthop = B_FALSE; 7510 tsol_ire_gw_secattr_t *attrp = NULL; 7511 tsol_gcgrp_t *gcgrp = NULL; 7512 tsol_gcgrp_addr_t ga; 7513 7514 if (ip_debug > 2) { 7515 /* ip1dbg */ 7516 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7517 } 7518 7519 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7520 if (mctl_present) { 7521 io = (ipsec_out_t *)first_mp->b_rptr; 7522 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7523 ASSERT(zoneid == io->ipsec_out_zoneid); 7524 ASSERT(zoneid != ALL_ZONES); 7525 } 7526 7527 ipha = (ipha_t *)mp->b_rptr; 7528 7529 /* All multicast lookups come through ip_newroute_ipif() */ 7530 if (CLASSD(dst)) { 7531 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7532 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7533 freemsg(first_mp); 7534 return; 7535 } 7536 7537 if (mctl_present && io->ipsec_out_attach_if) { 7538 /* ip_grab_attach_ill returns a held ill */ 7539 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7540 io->ipsec_out_ill_index, B_FALSE); 7541 7542 /* Failure case frees things for us. */ 7543 if (attach_ill == NULL) 7544 return; 7545 7546 /* 7547 * Check if we need an ire that will not be 7548 * looked up by anybody else i.e. HIDDEN. 7549 */ 7550 if (ill_is_probeonly(attach_ill)) 7551 ire_marks = IRE_MARK_HIDDEN; 7552 } 7553 if (mctl_present && io->ipsec_out_ip_nexthop) { 7554 ip_nexthop = B_TRUE; 7555 nexthop_addr = io->ipsec_out_nexthop_addr; 7556 } 7557 /* 7558 * If this IRE is created for forwarding or it is not for 7559 * traffic for congestion controlled protocols, mark it as temporary. 7560 */ 7561 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7562 ire_marks |= IRE_MARK_TEMPORARY; 7563 7564 /* 7565 * Get what we can from ire_ftable_lookup which will follow an IRE 7566 * chain until it gets the most specific information available. 7567 * For example, we know that there is no IRE_CACHE for this dest, 7568 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7569 * ire_ftable_lookup will look up the gateway, etc. 7570 * Check if in_ill != NULL. If it is true, the packet must be 7571 * from an incoming interface where RTA_SRCIFP is set. 7572 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7573 * to the destination, of equal netmask length in the forward table, 7574 * will be recursively explored. If no information is available 7575 * for the final gateway of that route, we force the returned ire 7576 * to be equal to sire using MATCH_IRE_PARENT. 7577 * At least, in this case we have a starting point (in the buckets) 7578 * to look for other routes to the destination in the forward table. 7579 * This is actually used only for multirouting, where a list 7580 * of routes has to be processed in sequence. 7581 * 7582 * In the process of coming up with the most specific information, 7583 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7584 * for the gateway (i.e., one for which the ire_nce->nce_state is 7585 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7586 * Two caveats when handling incomplete ire's in ip_newroute: 7587 * - we should be careful when accessing its ire_nce (specifically 7588 * the nce_res_mp) ast it might change underneath our feet, and, 7589 * - not all legacy code path callers are prepared to handle 7590 * incomplete ire's, so we should not create/add incomplete 7591 * ire_cache entries here. (See discussion about temporary solution 7592 * further below). 7593 * 7594 * In order to minimize packet dropping, and to preserve existing 7595 * behavior, we treat this case as if there were no IRE_CACHE for the 7596 * gateway, and instead use the IF_RESOLVER ire to send out 7597 * another request to ARP (this is achieved by passing the 7598 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7599 * arp response comes back in ip_wput_nondata, we will create 7600 * a per-dst ire_cache that has an ND_COMPLETE ire. 7601 * 7602 * Note that this is a temporary solution; the correct solution is 7603 * to create an incomplete per-dst ire_cache entry, and send the 7604 * packet out when the gw's nce is resolved. In order to achieve this, 7605 * all packet processing must have been completed prior to calling 7606 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7607 * to be modified to accomodate this solution. 7608 */ 7609 if (in_ill != NULL) { 7610 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 7611 in_ill, MATCH_IRE_TYPE); 7612 } else if (ip_nexthop) { 7613 /* 7614 * The first time we come here, we look for an IRE_INTERFACE 7615 * entry for the specified nexthop, set the dst to be the 7616 * nexthop address and create an IRE_CACHE entry for the 7617 * nexthop. The next time around, we are able to find an 7618 * IRE_CACHE entry for the nexthop, set the gateway to be the 7619 * nexthop address and create an IRE_CACHE entry for the 7620 * destination address via the specified nexthop. 7621 */ 7622 ire = ire_cache_lookup(nexthop_addr, zoneid, 7623 MBLK_GETLABEL(mp)); 7624 if (ire != NULL) { 7625 gw = nexthop_addr; 7626 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7627 } else { 7628 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7629 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7630 MBLK_GETLABEL(mp), 7631 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 7632 if (ire != NULL) { 7633 dst = nexthop_addr; 7634 } 7635 } 7636 } else if (attach_ill == NULL) { 7637 ire = ire_ftable_lookup(dst, 0, 0, 0, 7638 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7639 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7640 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7641 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE); 7642 } else { 7643 /* 7644 * attach_ill is set only for communicating with 7645 * on-link hosts. So, don't look for DEFAULT. 7646 */ 7647 ipif_t *attach_ipif; 7648 7649 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7650 if (attach_ipif == NULL) { 7651 ill_refrele(attach_ill); 7652 goto icmp_err_ret; 7653 } 7654 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7655 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7656 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7657 MATCH_IRE_SECATTR); 7658 ipif_refrele(attach_ipif); 7659 } 7660 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7661 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7662 7663 /* 7664 * This loop is run only once in most cases. 7665 * We loop to resolve further routes only when the destination 7666 * can be reached through multiple RTF_MULTIRT-flagged ires. 7667 */ 7668 do { 7669 /* Clear the previous iteration's values */ 7670 if (src_ipif != NULL) { 7671 ipif_refrele(src_ipif); 7672 src_ipif = NULL; 7673 } 7674 if (dst_ill != NULL) { 7675 ill_refrele(dst_ill); 7676 dst_ill = NULL; 7677 } 7678 7679 multirt_resolve_next = B_FALSE; 7680 /* 7681 * We check if packets have to be multirouted. 7682 * In this case, given the current <ire, sire> couple, 7683 * we look for the next suitable <ire, sire>. 7684 * This check is done in ire_multirt_lookup(), 7685 * which applies various criteria to find the next route 7686 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7687 * unchanged if it detects it has not been tried yet. 7688 */ 7689 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7690 ip3dbg(("ip_newroute: starting next_resolution " 7691 "with first_mp %p, tag %d\n", 7692 (void *)first_mp, 7693 MULTIRT_DEBUG_TAGGED(first_mp))); 7694 7695 ASSERT(sire != NULL); 7696 multirt_is_resolvable = 7697 ire_multirt_lookup(&ire, &sire, multirt_flags, 7698 MBLK_GETLABEL(mp)); 7699 7700 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7701 "ire %p, sire %p\n", 7702 multirt_is_resolvable, 7703 (void *)ire, (void *)sire)); 7704 7705 if (!multirt_is_resolvable) { 7706 /* 7707 * No more multirt route to resolve; give up 7708 * (all routes resolved or no more 7709 * resolvable routes). 7710 */ 7711 if (ire != NULL) { 7712 ire_refrele(ire); 7713 ire = NULL; 7714 } 7715 } else { 7716 ASSERT(sire != NULL); 7717 ASSERT(ire != NULL); 7718 /* 7719 * We simply use first_sire as a flag that 7720 * indicates if a resolvable multirt route 7721 * has already been found. 7722 * If it is not the case, we may have to send 7723 * an ICMP error to report that the 7724 * destination is unreachable. 7725 * We do not IRE_REFHOLD first_sire. 7726 */ 7727 if (first_sire == NULL) { 7728 first_sire = sire; 7729 } 7730 } 7731 } 7732 if (ire == NULL) { 7733 if (ip_debug > 3) { 7734 /* ip2dbg */ 7735 pr_addr_dbg("ip_newroute: " 7736 "can't resolve %s\n", AF_INET, &dst); 7737 } 7738 ip3dbg(("ip_newroute: " 7739 "ire %p, sire %p, first_sire %p\n", 7740 (void *)ire, (void *)sire, (void *)first_sire)); 7741 7742 if (sire != NULL) { 7743 ire_refrele(sire); 7744 sire = NULL; 7745 } 7746 7747 if (first_sire != NULL) { 7748 /* 7749 * At least one multirt route has been found 7750 * in the same call to ip_newroute(); 7751 * there is no need to report an ICMP error. 7752 * first_sire was not IRE_REFHOLDed. 7753 */ 7754 MULTIRT_DEBUG_UNTAG(first_mp); 7755 freemsg(first_mp); 7756 return; 7757 } 7758 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 7759 RTA_DST); 7760 if (attach_ill != NULL) 7761 ill_refrele(attach_ill); 7762 goto icmp_err_ret; 7763 } 7764 7765 /* 7766 * When RTA_SRCIFP is used to add a route, then an interface 7767 * route is added in the source interface's routing table. 7768 * If the outgoing interface of this route is of type 7769 * IRE_IF_RESOLVER, then upon creation of the ire, 7770 * ire_nce->nce_res_mp is set to NULL. 7771 * Later, when this route is first used for forwarding 7772 * a packet, ip_newroute() is called 7773 * to resolve the hardware address of the outgoing ipif. 7774 * We do not come here for IRE_IF_NORESOLVER entries in the 7775 * source interface based table. We only come here if the 7776 * outgoing interface is a resolver interface and we don't 7777 * have the ire_nce->nce_res_mp information yet. 7778 * If in_ill is not null that means it is called from 7779 * ip_rput. 7780 */ 7781 7782 ASSERT(ire->ire_in_ill == NULL || 7783 (ire->ire_type == IRE_IF_RESOLVER && 7784 ire->ire_nce != NULL && ire->ire_nce->nce_res_mp == NULL)); 7785 7786 /* 7787 * Verify that the returned IRE does not have either 7788 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 7789 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 7790 */ 7791 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 7792 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 7793 if (attach_ill != NULL) 7794 ill_refrele(attach_ill); 7795 goto icmp_err_ret; 7796 } 7797 /* 7798 * Increment the ire_ob_pkt_count field for ire if it is an 7799 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 7800 * increment the same for the parent IRE, sire, if it is some 7801 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 7802 * and HOST_REDIRECT). 7803 */ 7804 if ((ire->ire_type & IRE_INTERFACE) != 0) { 7805 UPDATE_OB_PKT_COUNT(ire); 7806 ire->ire_last_used_time = lbolt; 7807 } 7808 7809 if (sire != NULL) { 7810 gw = sire->ire_gateway_addr; 7811 ASSERT((sire->ire_type & (IRE_CACHETABLE | 7812 IRE_INTERFACE)) == 0); 7813 UPDATE_OB_PKT_COUNT(sire); 7814 sire->ire_last_used_time = lbolt; 7815 } 7816 /* 7817 * We have a route to reach the destination. 7818 * 7819 * 1) If the interface is part of ill group, try to get a new 7820 * ill taking load spreading into account. 7821 * 7822 * 2) After selecting the ill, get a source address that 7823 * might create good inbound load spreading. 7824 * ipif_select_source does this for us. 7825 * 7826 * If the application specified the ill (ifindex), we still 7827 * load spread. Only if the packets needs to go out 7828 * specifically on a given ill e.g. binding to 7829 * IPIF_NOFAILOVER address, then we don't try to use a 7830 * different ill for load spreading. 7831 */ 7832 if (attach_ill == NULL) { 7833 /* 7834 * Don't perform outbound load spreading in the 7835 * case of an RTF_MULTIRT route, as we actually 7836 * typically want to replicate outgoing packets 7837 * through particular interfaces. 7838 */ 7839 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7840 dst_ill = ire->ire_ipif->ipif_ill; 7841 /* for uniformity */ 7842 ill_refhold(dst_ill); 7843 } else { 7844 /* 7845 * If we are here trying to create an IRE_CACHE 7846 * for an offlink destination and have the 7847 * IRE_CACHE for the next hop and the latter is 7848 * using virtual IP source address selection i.e 7849 * it's ire->ire_ipif is pointing to a virtual 7850 * network interface (vni) then 7851 * ip_newroute_get_dst_ll() will return the vni 7852 * interface as the dst_ill. Since the vni is 7853 * virtual i.e not associated with any physical 7854 * interface, it cannot be the dst_ill, hence 7855 * in such a case call ip_newroute_get_dst_ll() 7856 * with the stq_ill instead of the ire_ipif ILL. 7857 * The function returns a refheld ill. 7858 */ 7859 if ((ire->ire_type == IRE_CACHE) && 7860 IS_VNI(ire->ire_ipif->ipif_ill)) 7861 dst_ill = ip_newroute_get_dst_ill( 7862 ire->ire_stq->q_ptr); 7863 else 7864 dst_ill = ip_newroute_get_dst_ill( 7865 ire->ire_ipif->ipif_ill); 7866 } 7867 if (dst_ill == NULL) { 7868 if (ip_debug > 2) { 7869 pr_addr_dbg("ip_newroute: " 7870 "no dst ill for dst" 7871 " %s\n", AF_INET, &dst); 7872 } 7873 goto icmp_err_ret; 7874 } 7875 } else { 7876 dst_ill = ire->ire_ipif->ipif_ill; 7877 /* for uniformity */ 7878 ill_refhold(dst_ill); 7879 /* 7880 * We should have found a route matching ill as we 7881 * called ire_ftable_lookup with MATCH_IRE_ILL. 7882 * Rather than asserting, when there is a mismatch, 7883 * we just drop the packet. 7884 */ 7885 if (dst_ill != attach_ill) { 7886 ip0dbg(("ip_newroute: Packet dropped as " 7887 "IPIF_NOFAILOVER ill is %s, " 7888 "ire->ire_ipif->ipif_ill is %s\n", 7889 attach_ill->ill_name, 7890 dst_ill->ill_name)); 7891 ill_refrele(attach_ill); 7892 goto icmp_err_ret; 7893 } 7894 } 7895 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 7896 if (attach_ill != NULL) { 7897 ill_refrele(attach_ill); 7898 attach_ill = NULL; 7899 do_attach_ill = B_TRUE; 7900 } 7901 ASSERT(dst_ill != NULL); 7902 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 7903 7904 /* 7905 * Pick the best source address from dst_ill. 7906 * 7907 * 1) If it is part of a multipathing group, we would 7908 * like to spread the inbound packets across different 7909 * interfaces. ipif_select_source picks a random source 7910 * across the different ills in the group. 7911 * 7912 * 2) If it is not part of a multipathing group, we try 7913 * to pick the source address from the destination 7914 * route. Clustering assumes that when we have multiple 7915 * prefixes hosted on an interface, the prefix of the 7916 * source address matches the prefix of the destination 7917 * route. We do this only if the address is not 7918 * DEPRECATED. 7919 * 7920 * 3) If the conn is in a different zone than the ire, we 7921 * need to pick a source address from the right zone. 7922 * 7923 * NOTE : If we hit case (1) above, the prefix of the source 7924 * address picked may not match the prefix of the 7925 * destination routes prefix as ipif_select_source 7926 * does not look at "dst" while picking a source 7927 * address. 7928 * If we want the same behavior as (2), we will need 7929 * to change the behavior of ipif_select_source. 7930 */ 7931 ASSERT(src_ipif == NULL); 7932 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 7933 /* 7934 * The RTF_SETSRC flag is set in the parent ire (sire). 7935 * Check that the ipif matching the requested source 7936 * address still exists. 7937 */ 7938 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 7939 zoneid, NULL, NULL, NULL, NULL); 7940 } 7941 if (src_ipif == NULL) { 7942 ire_marks |= IRE_MARK_USESRC_CHECK; 7943 if ((dst_ill->ill_group != NULL) || 7944 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 7945 (connp != NULL && ire->ire_zoneid != zoneid && 7946 ire->ire_zoneid != ALL_ZONES) || 7947 (dst_ill->ill_usesrc_ifindex != 0)) { 7948 /* 7949 * If the destination is reachable via a 7950 * given gateway, the selected source address 7951 * should be in the same subnet as the gateway. 7952 * Otherwise, the destination is not reachable. 7953 * 7954 * If there are no interfaces on the same subnet 7955 * as the destination, ipif_select_source gives 7956 * first non-deprecated interface which might be 7957 * on a different subnet than the gateway. 7958 * This is not desirable. Hence pass the dst_ire 7959 * source address to ipif_select_source. 7960 * It is sure that the destination is reachable 7961 * with the dst_ire source address subnet. 7962 * So passing dst_ire source address to 7963 * ipif_select_source will make sure that the 7964 * selected source will be on the same subnet 7965 * as dst_ire source address. 7966 */ 7967 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 7968 src_ipif = ipif_select_source(dst_ill, saddr, 7969 zoneid); 7970 if (src_ipif == NULL) { 7971 if (ip_debug > 2) { 7972 pr_addr_dbg("ip_newroute: " 7973 "no src for dst %s ", 7974 AF_INET, &dst); 7975 printf("through interface %s\n", 7976 dst_ill->ill_name); 7977 } 7978 goto icmp_err_ret; 7979 } 7980 } else { 7981 src_ipif = ire->ire_ipif; 7982 ASSERT(src_ipif != NULL); 7983 /* hold src_ipif for uniformity */ 7984 ipif_refhold(src_ipif); 7985 } 7986 } 7987 7988 /* 7989 * Assign a source address while we have the conn. 7990 * We can't have ip_wput_ire pick a source address when the 7991 * packet returns from arp since we need to look at 7992 * conn_unspec_src and conn_zoneid, and we lose the conn when 7993 * going through arp. 7994 * 7995 * NOTE : ip_newroute_v6 does not have this piece of code as 7996 * it uses ip6i to store this information. 7997 */ 7998 if (ipha->ipha_src == INADDR_ANY && 7999 (connp == NULL || !connp->conn_unspec_src)) { 8000 ipha->ipha_src = src_ipif->ipif_src_addr; 8001 } 8002 if (ip_debug > 3) { 8003 /* ip2dbg */ 8004 pr_addr_dbg("ip_newroute: first hop %s\n", 8005 AF_INET, &gw); 8006 } 8007 ip2dbg(("\tire type %s (%d)\n", 8008 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8009 8010 /* 8011 * The TTL of multirouted packets is bounded by the 8012 * ip_multirt_ttl ndd variable. 8013 */ 8014 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8015 /* Force TTL of multirouted packets */ 8016 if ((ip_multirt_ttl > 0) && 8017 (ipha->ipha_ttl > ip_multirt_ttl)) { 8018 ip2dbg(("ip_newroute: forcing multirt TTL " 8019 "to %d (was %d), dst 0x%08x\n", 8020 ip_multirt_ttl, ipha->ipha_ttl, 8021 ntohl(sire->ire_addr))); 8022 ipha->ipha_ttl = ip_multirt_ttl; 8023 } 8024 } 8025 /* 8026 * At this point in ip_newroute(), ire is either the 8027 * IRE_CACHE of the next-hop gateway for an off-subnet 8028 * destination or an IRE_INTERFACE type that should be used 8029 * to resolve an on-subnet destination or an on-subnet 8030 * next-hop gateway. 8031 * 8032 * In the IRE_CACHE case, we have the following : 8033 * 8034 * 1) src_ipif - used for getting a source address. 8035 * 8036 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8037 * means packets using this IRE_CACHE will go out on 8038 * dst_ill. 8039 * 8040 * 3) The IRE sire will point to the prefix that is the 8041 * longest matching route for the destination. These 8042 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST, 8043 * and IRE_HOST_REDIRECT. 8044 * 8045 * The newly created IRE_CACHE entry for the off-subnet 8046 * destination is tied to both the prefix route and the 8047 * interface route used to resolve the next-hop gateway 8048 * via the ire_phandle and ire_ihandle fields, 8049 * respectively. 8050 * 8051 * In the IRE_INTERFACE case, we have the following : 8052 * 8053 * 1) src_ipif - used for getting a source address. 8054 * 8055 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8056 * means packets using the IRE_CACHE that we will build 8057 * here will go out on dst_ill. 8058 * 8059 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8060 * to be created will only be tied to the IRE_INTERFACE 8061 * that was derived from the ire_ihandle field. 8062 * 8063 * If sire is non-NULL, it means the destination is 8064 * off-link and we will first create the IRE_CACHE for the 8065 * gateway. Next time through ip_newroute, we will create 8066 * the IRE_CACHE for the final destination as described 8067 * above. 8068 * 8069 * In both cases, after the current resolution has been 8070 * completed (or possibly initialised, in the IRE_INTERFACE 8071 * case), the loop may be re-entered to attempt the resolution 8072 * of another RTF_MULTIRT route. 8073 * 8074 * When an IRE_CACHE entry for the off-subnet destination is 8075 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8076 * for further processing in emission loops. 8077 */ 8078 save_ire = ire; 8079 switch (ire->ire_type) { 8080 case IRE_CACHE: { 8081 ire_t *ipif_ire; 8082 mblk_t *ire_fp_mp; 8083 8084 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8085 if (gw == 0) 8086 gw = ire->ire_gateway_addr; 8087 /* 8088 * We need 3 ire's to create a new cache ire for an 8089 * off-link destination from the cache ire of the 8090 * gateway. 8091 * 8092 * 1. The prefix ire 'sire' (Note that this does 8093 * not apply to the conn_nexthop_set case) 8094 * 2. The cache ire of the gateway 'ire' 8095 * 3. The interface ire 'ipif_ire' 8096 * 8097 * We have (1) and (2). We lookup (3) below. 8098 * 8099 * If there is no interface route to the gateway, 8100 * it is a race condition, where we found the cache 8101 * but the interface route has been deleted. 8102 */ 8103 if (ip_nexthop) { 8104 ipif_ire = ire_ihandle_lookup_onlink(ire); 8105 } else { 8106 ipif_ire = 8107 ire_ihandle_lookup_offlink(ire, sire); 8108 } 8109 if (ipif_ire == NULL) { 8110 ip1dbg(("ip_newroute: " 8111 "ire_ihandle_lookup_offlink failed\n")); 8112 goto icmp_err_ret; 8113 } 8114 /* 8115 * XXX We are using the same res_mp 8116 * (DL_UNITDATA_REQ) though the save_ire is not 8117 * pointing at the same ill. 8118 * This is incorrect. We need to send it up to the 8119 * resolver to get the right res_mp. For ethernets 8120 * this may be okay (ill_type == DL_ETHER). 8121 */ 8122 res_mp = save_ire->ire_nce->nce_res_mp; 8123 ire_fp_mp = NULL; 8124 /* 8125 * save_ire's nce_fp_mp can't change since it is 8126 * not an IRE_MIPRTUN or IRE_BROADCAST 8127 * LOCK_IRE_FP_MP does not do any useful work in 8128 * the case of IRE_CACHE. So we don't use it below. 8129 */ 8130 if (save_ire->ire_stq == dst_ill->ill_wq) 8131 ire_fp_mp = save_ire->ire_nce->nce_fp_mp; 8132 8133 /* 8134 * Check cached gateway IRE for any security 8135 * attributes; if found, associate the gateway 8136 * credentials group to the destination IRE. 8137 */ 8138 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8139 mutex_enter(&attrp->igsa_lock); 8140 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8141 GCGRP_REFHOLD(gcgrp); 8142 mutex_exit(&attrp->igsa_lock); 8143 } 8144 8145 ire = ire_create( 8146 (uchar_t *)&dst, /* dest address */ 8147 (uchar_t *)&ip_g_all_ones, /* mask */ 8148 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8149 (uchar_t *)&gw, /* gateway address */ 8150 NULL, 8151 &save_ire->ire_max_frag, 8152 ire_fp_mp, /* Fast Path header */ 8153 dst_ill->ill_rq, /* recv-from queue */ 8154 dst_ill->ill_wq, /* send-to queue */ 8155 IRE_CACHE, /* IRE type */ 8156 res_mp, 8157 src_ipif, 8158 in_ill, /* incoming ill */ 8159 (sire != NULL) ? 8160 sire->ire_mask : 0, /* Parent mask */ 8161 (sire != NULL) ? 8162 sire->ire_phandle : 0, /* Parent handle */ 8163 ipif_ire->ire_ihandle, /* Interface handle */ 8164 (sire != NULL) ? (sire->ire_flags & 8165 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8166 (sire != NULL) ? 8167 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8168 NULL, 8169 gcgrp); 8170 8171 if (ire == NULL) { 8172 if (gcgrp != NULL) { 8173 GCGRP_REFRELE(gcgrp); 8174 gcgrp = NULL; 8175 } 8176 ire_refrele(ipif_ire); 8177 ire_refrele(save_ire); 8178 break; 8179 } 8180 8181 /* reference now held by IRE */ 8182 gcgrp = NULL; 8183 8184 ire->ire_marks |= ire_marks; 8185 8186 /* 8187 * Prevent sire and ipif_ire from getting deleted. 8188 * The newly created ire is tied to both of them via 8189 * the phandle and ihandle respectively. 8190 */ 8191 if (sire != NULL) { 8192 IRB_REFHOLD(sire->ire_bucket); 8193 /* Has it been removed already ? */ 8194 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8195 IRB_REFRELE(sire->ire_bucket); 8196 ire_refrele(ipif_ire); 8197 ire_refrele(save_ire); 8198 break; 8199 } 8200 } 8201 8202 IRB_REFHOLD(ipif_ire->ire_bucket); 8203 /* Has it been removed already ? */ 8204 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8205 IRB_REFRELE(ipif_ire->ire_bucket); 8206 if (sire != NULL) 8207 IRB_REFRELE(sire->ire_bucket); 8208 ire_refrele(ipif_ire); 8209 ire_refrele(save_ire); 8210 break; 8211 } 8212 8213 xmit_mp = first_mp; 8214 /* 8215 * In the case of multirouting, a copy 8216 * of the packet is done before its sending. 8217 * The copy is used to attempt another 8218 * route resolution, in a next loop. 8219 */ 8220 if (ire->ire_flags & RTF_MULTIRT) { 8221 copy_mp = copymsg(first_mp); 8222 if (copy_mp != NULL) { 8223 xmit_mp = copy_mp; 8224 MULTIRT_DEBUG_TAG(first_mp); 8225 } 8226 } 8227 ire_add_then_send(q, ire, xmit_mp); 8228 ire_refrele(save_ire); 8229 8230 /* Assert that sire is not deleted yet. */ 8231 if (sire != NULL) { 8232 ASSERT(sire->ire_ptpn != NULL); 8233 IRB_REFRELE(sire->ire_bucket); 8234 } 8235 8236 /* Assert that ipif_ire is not deleted yet. */ 8237 ASSERT(ipif_ire->ire_ptpn != NULL); 8238 IRB_REFRELE(ipif_ire->ire_bucket); 8239 ire_refrele(ipif_ire); 8240 8241 /* 8242 * If copy_mp is not NULL, multirouting was 8243 * requested. We loop to initiate a next 8244 * route resolution attempt, starting from sire. 8245 */ 8246 if (copy_mp != NULL) { 8247 /* 8248 * Search for the next unresolved 8249 * multirt route. 8250 */ 8251 copy_mp = NULL; 8252 ipif_ire = NULL; 8253 ire = NULL; 8254 multirt_resolve_next = B_TRUE; 8255 continue; 8256 } 8257 if (sire != NULL) 8258 ire_refrele(sire); 8259 ipif_refrele(src_ipif); 8260 ill_refrele(dst_ill); 8261 return; 8262 } 8263 case IRE_IF_NORESOLVER: { 8264 /* 8265 * We have what we need to build an IRE_CACHE. 8266 * 8267 * Create a new res_mp with the IP gateway address 8268 * in destination address in the DLPI hdr if the 8269 * physical length is exactly 4 bytes. 8270 */ 8271 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8272 uchar_t *addr; 8273 8274 if (gw) 8275 addr = (uchar_t *)&gw; 8276 else 8277 addr = (uchar_t *)&dst; 8278 8279 res_mp = ill_dlur_gen(addr, 8280 dst_ill->ill_phys_addr_length, 8281 dst_ill->ill_sap, 8282 dst_ill->ill_sap_length); 8283 8284 if (res_mp == NULL) { 8285 ip1dbg(("ip_newroute: res_mp NULL\n")); 8286 break; 8287 } 8288 } else { 8289 res_mp = NULL; 8290 } 8291 8292 /* 8293 * TSol note: We are creating the ire cache for the 8294 * destination 'dst'. If 'dst' is offlink, going 8295 * through the first hop 'gw', the security attributes 8296 * of 'dst' must be set to point to the gateway 8297 * credentials of gateway 'gw'. If 'dst' is onlink, it 8298 * is possible that 'dst' is a potential gateway that is 8299 * referenced by some route that has some security 8300 * attributes. Thus in the former case, we need to do a 8301 * gcgrp_lookup of 'gw' while in the latter case we 8302 * need to do gcgrp_lookup of 'dst' itself. 8303 */ 8304 ga.ga_af = AF_INET; 8305 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8306 &ga.ga_addr); 8307 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8308 8309 ire = ire_create( 8310 (uchar_t *)&dst, /* dest address */ 8311 (uchar_t *)&ip_g_all_ones, /* mask */ 8312 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8313 (uchar_t *)&gw, /* gateway address */ 8314 NULL, 8315 &save_ire->ire_max_frag, 8316 NULL, /* Fast Path header */ 8317 dst_ill->ill_rq, /* recv-from queue */ 8318 dst_ill->ill_wq, /* send-to queue */ 8319 IRE_CACHE, 8320 res_mp, 8321 src_ipif, 8322 in_ill, /* Incoming ill */ 8323 save_ire->ire_mask, /* Parent mask */ 8324 (sire != NULL) ? /* Parent handle */ 8325 sire->ire_phandle : 0, 8326 save_ire->ire_ihandle, /* Interface handle */ 8327 (sire != NULL) ? sire->ire_flags & 8328 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8329 &(save_ire->ire_uinfo), 8330 NULL, 8331 gcgrp); 8332 8333 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 8334 freeb(res_mp); 8335 8336 if (ire == NULL) { 8337 if (gcgrp != NULL) { 8338 GCGRP_REFRELE(gcgrp); 8339 gcgrp = NULL; 8340 } 8341 ire_refrele(save_ire); 8342 break; 8343 } 8344 8345 /* reference now held by IRE */ 8346 gcgrp = NULL; 8347 8348 ire->ire_marks |= ire_marks; 8349 8350 /* Prevent save_ire from getting deleted */ 8351 IRB_REFHOLD(save_ire->ire_bucket); 8352 /* Has it been removed already ? */ 8353 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8354 IRB_REFRELE(save_ire->ire_bucket); 8355 ire_refrele(save_ire); 8356 break; 8357 } 8358 8359 /* 8360 * In the case of multirouting, a copy 8361 * of the packet is made before it is sent. 8362 * The copy is used in the next 8363 * loop to attempt another resolution. 8364 */ 8365 xmit_mp = first_mp; 8366 if ((sire != NULL) && 8367 (sire->ire_flags & RTF_MULTIRT)) { 8368 copy_mp = copymsg(first_mp); 8369 if (copy_mp != NULL) { 8370 xmit_mp = copy_mp; 8371 MULTIRT_DEBUG_TAG(first_mp); 8372 } 8373 } 8374 ire_add_then_send(q, ire, xmit_mp); 8375 8376 /* Assert that it is not deleted yet. */ 8377 ASSERT(save_ire->ire_ptpn != NULL); 8378 IRB_REFRELE(save_ire->ire_bucket); 8379 ire_refrele(save_ire); 8380 8381 if (copy_mp != NULL) { 8382 /* 8383 * If we found a (no)resolver, we ignore any 8384 * trailing top priority IRE_CACHE in further 8385 * loops. This ensures that we do not omit any 8386 * (no)resolver. 8387 * This IRE_CACHE, if any, will be processed 8388 * by another thread entering ip_newroute(). 8389 * IRE_CACHE entries, if any, will be processed 8390 * by another thread entering ip_newroute(), 8391 * (upon resolver response, for instance). 8392 * This aims to force parallel multirt 8393 * resolutions as soon as a packet must be sent. 8394 * In the best case, after the tx of only one 8395 * packet, all reachable routes are resolved. 8396 * Otherwise, the resolution of all RTF_MULTIRT 8397 * routes would require several emissions. 8398 */ 8399 multirt_flags &= ~MULTIRT_CACHEGW; 8400 8401 /* 8402 * Search for the next unresolved multirt 8403 * route. 8404 */ 8405 copy_mp = NULL; 8406 save_ire = NULL; 8407 ire = NULL; 8408 multirt_resolve_next = B_TRUE; 8409 continue; 8410 } 8411 8412 /* 8413 * Don't need sire anymore 8414 */ 8415 if (sire != NULL) 8416 ire_refrele(sire); 8417 8418 ipif_refrele(src_ipif); 8419 ill_refrele(dst_ill); 8420 return; 8421 } 8422 case IRE_IF_RESOLVER: 8423 /* 8424 * We can't build an IRE_CACHE yet, but at least we 8425 * found a resolver that can help. 8426 */ 8427 res_mp = dst_ill->ill_resolver_mp; 8428 if (!OK_RESOLVER_MP(res_mp)) 8429 break; 8430 8431 /* 8432 * To be at this point in the code with a non-zero gw 8433 * means that dst is reachable through a gateway that 8434 * we have never resolved. By changing dst to the gw 8435 * addr we resolve the gateway first. 8436 * When ire_add_then_send() tries to put the IP dg 8437 * to dst, it will reenter ip_newroute() at which 8438 * time we will find the IRE_CACHE for the gw and 8439 * create another IRE_CACHE in case IRE_CACHE above. 8440 */ 8441 if (gw != INADDR_ANY) { 8442 /* 8443 * The source ipif that was determined above was 8444 * relative to the destination address, not the 8445 * gateway's. If src_ipif was not taken out of 8446 * the IRE_IF_RESOLVER entry, we'll need to call 8447 * ipif_select_source() again. 8448 */ 8449 if (src_ipif != ire->ire_ipif) { 8450 ipif_refrele(src_ipif); 8451 src_ipif = ipif_select_source(dst_ill, 8452 gw, zoneid); 8453 if (src_ipif == NULL) { 8454 if (ip_debug > 2) { 8455 pr_addr_dbg( 8456 "ip_newroute: no " 8457 "src for gw %s ", 8458 AF_INET, &gw); 8459 printf("through " 8460 "interface %s\n", 8461 dst_ill->ill_name); 8462 } 8463 goto icmp_err_ret; 8464 } 8465 } 8466 save_dst = dst; 8467 dst = gw; 8468 gw = INADDR_ANY; 8469 } 8470 8471 /* 8472 * We obtain a partial IRE_CACHE which we will pass 8473 * along with the resolver query. When the response 8474 * comes back it will be there ready for us to add. 8475 * The ire_max_frag is atomically set under the 8476 * irebucket lock in ire_add_v[46]. 8477 */ 8478 8479 ire = ire_create_mp( 8480 (uchar_t *)&dst, /* dest address */ 8481 (uchar_t *)&ip_g_all_ones, /* mask */ 8482 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8483 (uchar_t *)&gw, /* gateway address */ 8484 NULL, /* no in_src_addr */ 8485 NULL, /* ire_max_frag */ 8486 NULL, /* Fast Path header */ 8487 dst_ill->ill_rq, /* recv-from queue */ 8488 dst_ill->ill_wq, /* send-to queue */ 8489 IRE_CACHE, 8490 NULL, 8491 src_ipif, /* Interface ipif */ 8492 in_ill, /* Incoming ILL */ 8493 save_ire->ire_mask, /* Parent mask */ 8494 0, 8495 save_ire->ire_ihandle, /* Interface handle */ 8496 0, /* flags if any */ 8497 &(save_ire->ire_uinfo), 8498 NULL, 8499 NULL); 8500 8501 if (ire == NULL) { 8502 ire_refrele(save_ire); 8503 break; 8504 } 8505 8506 if ((sire != NULL) && 8507 (sire->ire_flags & RTF_MULTIRT)) { 8508 copy_mp = copymsg(first_mp); 8509 if (copy_mp != NULL) 8510 MULTIRT_DEBUG_TAG(copy_mp); 8511 } 8512 8513 ire->ire_marks |= ire_marks; 8514 8515 /* 8516 * Construct message chain for the resolver 8517 * of the form: 8518 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8519 * Packet could contain a IPSEC_OUT mp. 8520 * 8521 * NOTE : ire will be added later when the response 8522 * comes back from ARP. If the response does not 8523 * come back, ARP frees the packet. For this reason, 8524 * we can't REFHOLD the bucket of save_ire to prevent 8525 * deletions. We may not be able to REFRELE the bucket 8526 * if the response never comes back. Thus, before 8527 * adding the ire, ire_add_v4 will make sure that the 8528 * interface route does not get deleted. This is the 8529 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8530 * where we can always prevent deletions because of 8531 * the synchronous nature of adding IRES i.e 8532 * ire_add_then_send is called after creating the IRE. 8533 */ 8534 ASSERT(ire->ire_mp != NULL); 8535 ire->ire_mp->b_cont = first_mp; 8536 /* Have saved_mp handy, for cleanup if canput fails */ 8537 saved_mp = mp; 8538 mp = copyb(res_mp); 8539 if (mp == NULL) { 8540 /* Prepare for cleanup */ 8541 mp = saved_mp; /* pkt */ 8542 ire_delete(ire); /* ire_mp */ 8543 ire = NULL; 8544 ire_refrele(save_ire); 8545 if (copy_mp != NULL) { 8546 MULTIRT_DEBUG_UNTAG(copy_mp); 8547 freemsg(copy_mp); 8548 copy_mp = NULL; 8549 } 8550 break; 8551 } 8552 linkb(mp, ire->ire_mp); 8553 8554 /* 8555 * Fill in the source and dest addrs for the resolver. 8556 * NOTE: this depends on memory layouts imposed by 8557 * ill_init(). 8558 */ 8559 areq = (areq_t *)mp->b_rptr; 8560 addrp = (ipaddr_t *)((char *)areq + 8561 areq->areq_sender_addr_offset); 8562 if (do_attach_ill) { 8563 /* 8564 * This is bind to no failover case. 8565 * arp packet also must go out on attach_ill. 8566 */ 8567 ASSERT(ipha->ipha_src != NULL); 8568 *addrp = ipha->ipha_src; 8569 } else { 8570 *addrp = save_ire->ire_src_addr; 8571 } 8572 8573 ire_refrele(save_ire); 8574 addrp = (ipaddr_t *)((char *)areq + 8575 areq->areq_target_addr_offset); 8576 *addrp = dst; 8577 /* Up to the resolver. */ 8578 if (canputnext(dst_ill->ill_rq) && 8579 !(dst_ill->ill_arp_closing)) { 8580 putnext(dst_ill->ill_rq, mp); 8581 ire = NULL; 8582 if (copy_mp != NULL) { 8583 /* 8584 * If we found a resolver, we ignore 8585 * any trailing top priority IRE_CACHE 8586 * in the further loops. This ensures 8587 * that we do not omit any resolver. 8588 * IRE_CACHE entries, if any, will be 8589 * processed next time we enter 8590 * ip_newroute(). 8591 */ 8592 multirt_flags &= ~MULTIRT_CACHEGW; 8593 /* 8594 * Search for the next unresolved 8595 * multirt route. 8596 */ 8597 first_mp = copy_mp; 8598 copy_mp = NULL; 8599 /* Prepare the next resolution loop. */ 8600 mp = first_mp; 8601 EXTRACT_PKT_MP(mp, first_mp, 8602 mctl_present); 8603 if (mctl_present) 8604 io = (ipsec_out_t *) 8605 first_mp->b_rptr; 8606 ipha = (ipha_t *)mp->b_rptr; 8607 8608 ASSERT(sire != NULL); 8609 8610 dst = save_dst; 8611 multirt_resolve_next = B_TRUE; 8612 continue; 8613 } 8614 8615 if (sire != NULL) 8616 ire_refrele(sire); 8617 8618 /* 8619 * The response will come back in ip_wput 8620 * with db_type IRE_DB_TYPE. 8621 */ 8622 ipif_refrele(src_ipif); 8623 ill_refrele(dst_ill); 8624 return; 8625 } else { 8626 /* Prepare for cleanup */ 8627 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8628 mp); 8629 mp->b_cont = NULL; 8630 freeb(mp); /* areq */ 8631 /* 8632 * this is an ire that is not added to the 8633 * cache. ire_freemblk will handle the release 8634 * of any resources associated with the ire. 8635 */ 8636 ire_delete(ire); /* ire_mp */ 8637 mp = saved_mp; /* pkt */ 8638 ire = NULL; 8639 if (copy_mp != NULL) { 8640 MULTIRT_DEBUG_UNTAG(copy_mp); 8641 freemsg(copy_mp); 8642 copy_mp = NULL; 8643 } 8644 break; 8645 } 8646 default: 8647 break; 8648 } 8649 } while (multirt_resolve_next); 8650 8651 ip1dbg(("ip_newroute: dropped\n")); 8652 /* Did this packet originate externally? */ 8653 if (mp->b_prev) { 8654 mp->b_next = NULL; 8655 mp->b_prev = NULL; 8656 BUMP_MIB(&ip_mib, ipInDiscards); 8657 } else { 8658 BUMP_MIB(&ip_mib, ipOutDiscards); 8659 } 8660 ASSERT(copy_mp == NULL); 8661 MULTIRT_DEBUG_UNTAG(first_mp); 8662 freemsg(first_mp); 8663 if (ire != NULL) 8664 ire_refrele(ire); 8665 if (sire != NULL) 8666 ire_refrele(sire); 8667 if (src_ipif != NULL) 8668 ipif_refrele(src_ipif); 8669 if (dst_ill != NULL) 8670 ill_refrele(dst_ill); 8671 return; 8672 8673 icmp_err_ret: 8674 ip1dbg(("ip_newroute: no route\n")); 8675 if (src_ipif != NULL) 8676 ipif_refrele(src_ipif); 8677 if (dst_ill != NULL) 8678 ill_refrele(dst_ill); 8679 if (sire != NULL) 8680 ire_refrele(sire); 8681 /* Did this packet originate externally? */ 8682 if (mp->b_prev) { 8683 mp->b_next = NULL; 8684 mp->b_prev = NULL; 8685 /* XXX ipInNoRoutes */ 8686 q = WR(q); 8687 } else { 8688 /* 8689 * Since ip_wput() isn't close to finished, we fill 8690 * in enough of the header for credible error reporting. 8691 */ 8692 if (ip_hdr_complete(ipha, zoneid)) { 8693 /* Failed */ 8694 MULTIRT_DEBUG_UNTAG(first_mp); 8695 freemsg(first_mp); 8696 if (ire != NULL) 8697 ire_refrele(ire); 8698 return; 8699 } 8700 } 8701 BUMP_MIB(&ip_mib, ipOutNoRoutes); 8702 8703 /* 8704 * At this point we will have ire only if RTF_BLACKHOLE 8705 * or RTF_REJECT flags are set on the IRE. It will not 8706 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8707 */ 8708 if (ire != NULL) { 8709 if (ire->ire_flags & RTF_BLACKHOLE) { 8710 ire_refrele(ire); 8711 MULTIRT_DEBUG_UNTAG(first_mp); 8712 freemsg(first_mp); 8713 return; 8714 } 8715 ire_refrele(ire); 8716 } 8717 if (ip_source_routed(ipha)) { 8718 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8719 zoneid); 8720 return; 8721 } 8722 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid); 8723 } 8724 8725 /* 8726 * IPv4 - 8727 * ip_newroute_ipif is called by ip_wput_multicast and 8728 * ip_rput_forward_multicast whenever we need to send 8729 * out a packet to a destination address for which we do not have specific 8730 * routing information. It is used when the packet will be sent out 8731 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 8732 * socket option is set or icmp error message wants to go out on a particular 8733 * interface for a unicast packet. 8734 * 8735 * In most cases, the destination address is resolved thanks to the ipif 8736 * intrinsic resolver. However, there are some cases where the call to 8737 * ip_newroute_ipif must take into account the potential presence of 8738 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8739 * that uses the interface. This is specified through flags, 8740 * which can be a combination of: 8741 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8742 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8743 * and flags. Additionally, the packet source address has to be set to 8744 * the specified address. The caller is thus expected to set this flag 8745 * if the packet has no specific source address yet. 8746 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8747 * flag, the resulting ire will inherit the flag. All unresolved routes 8748 * to the destination must be explored in the same call to 8749 * ip_newroute_ipif(). 8750 */ 8751 static void 8752 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8753 conn_t *connp, uint32_t flags, zoneid_t zoneid) 8754 { 8755 areq_t *areq; 8756 ire_t *ire = NULL; 8757 mblk_t *res_mp; 8758 ipaddr_t *addrp; 8759 mblk_t *first_mp; 8760 ire_t *save_ire = NULL; 8761 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8762 ipif_t *src_ipif = NULL; 8763 ushort_t ire_marks = 0; 8764 ill_t *dst_ill = NULL; 8765 boolean_t mctl_present; 8766 ipsec_out_t *io; 8767 ipha_t *ipha; 8768 int ihandle = 0; 8769 mblk_t *saved_mp; 8770 ire_t *fire = NULL; 8771 mblk_t *copy_mp = NULL; 8772 boolean_t multirt_resolve_next; 8773 ipaddr_t ipha_dst; 8774 8775 /* 8776 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 8777 * here for uniformity 8778 */ 8779 ipif_refhold(ipif); 8780 8781 /* 8782 * This loop is run only once in most cases. 8783 * We loop to resolve further routes only when the destination 8784 * can be reached through multiple RTF_MULTIRT-flagged ires. 8785 */ 8786 do { 8787 if (dst_ill != NULL) { 8788 ill_refrele(dst_ill); 8789 dst_ill = NULL; 8790 } 8791 if (src_ipif != NULL) { 8792 ipif_refrele(src_ipif); 8793 src_ipif = NULL; 8794 } 8795 multirt_resolve_next = B_FALSE; 8796 8797 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 8798 ipif->ipif_ill->ill_name)); 8799 8800 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 8801 if (mctl_present) 8802 io = (ipsec_out_t *)first_mp->b_rptr; 8803 8804 ipha = (ipha_t *)mp->b_rptr; 8805 8806 /* 8807 * Save the packet destination address, we may need it after 8808 * the packet has been consumed. 8809 */ 8810 ipha_dst = ipha->ipha_dst; 8811 8812 /* 8813 * If the interface is a pt-pt interface we look for an 8814 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 8815 * local_address and the pt-pt destination address. Otherwise 8816 * we just match the local address. 8817 * NOTE: dst could be different than ipha->ipha_dst in case 8818 * of sending igmp multicast packets over a point-to-point 8819 * connection. 8820 * Thus we must be careful enough to check ipha_dst to be a 8821 * multicast address, otherwise it will take xmit_if path for 8822 * multicast packets resulting into kernel stack overflow by 8823 * repeated calls to ip_newroute_ipif from ire_send(). 8824 */ 8825 if (CLASSD(ipha_dst) && 8826 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 8827 goto err_ret; 8828 } 8829 8830 /* 8831 * We check if an IRE_OFFSUBNET for the addr that goes through 8832 * ipif exists. We need it to determine if the RTF_SETSRC and/or 8833 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 8834 * propagate its flags to the new ire. 8835 */ 8836 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 8837 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 8838 ip2dbg(("ip_newroute_ipif: " 8839 "ipif_lookup_multi_ire(" 8840 "ipif %p, dst %08x) = fire %p\n", 8841 (void *)ipif, ntohl(dst), (void *)fire)); 8842 } 8843 8844 if (mctl_present && io->ipsec_out_attach_if) { 8845 attach_ill = ip_grab_attach_ill(NULL, first_mp, 8846 io->ipsec_out_ill_index, B_FALSE); 8847 8848 /* Failure case frees things for us. */ 8849 if (attach_ill == NULL) { 8850 ipif_refrele(ipif); 8851 if (fire != NULL) 8852 ire_refrele(fire); 8853 return; 8854 } 8855 8856 /* 8857 * Check if we need an ire that will not be 8858 * looked up by anybody else i.e. HIDDEN. 8859 */ 8860 if (ill_is_probeonly(attach_ill)) { 8861 ire_marks = IRE_MARK_HIDDEN; 8862 } 8863 /* 8864 * ip_wput passes the right ipif for IPIF_NOFAILOVER 8865 * case. 8866 */ 8867 dst_ill = ipif->ipif_ill; 8868 /* attach_ill has been refheld by ip_grab_attach_ill */ 8869 ASSERT(dst_ill == attach_ill); 8870 } else { 8871 /* 8872 * If this is set by IP_XMIT_IF, then make sure that 8873 * ipif is pointing to the same ill as the IP_XMIT_IF 8874 * specified ill. 8875 */ 8876 ASSERT((connp == NULL) || 8877 (connp->conn_xmit_if_ill == NULL) || 8878 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 8879 /* 8880 * If the interface belongs to an interface group, 8881 * make sure the next possible interface in the group 8882 * is used. This encourages load spreading among 8883 * peers in an interface group. 8884 * Note: load spreading is disabled for RTF_MULTIRT 8885 * routes. 8886 */ 8887 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8888 (fire->ire_flags & RTF_MULTIRT)) { 8889 /* 8890 * Don't perform outbound load spreading 8891 * in the case of an RTF_MULTIRT issued route, 8892 * we actually typically want to replicate 8893 * outgoing packets through particular 8894 * interfaces. 8895 */ 8896 dst_ill = ipif->ipif_ill; 8897 ill_refhold(dst_ill); 8898 } else { 8899 dst_ill = ip_newroute_get_dst_ill( 8900 ipif->ipif_ill); 8901 } 8902 if (dst_ill == NULL) { 8903 if (ip_debug > 2) { 8904 pr_addr_dbg("ip_newroute_ipif: " 8905 "no dst ill for dst %s\n", 8906 AF_INET, &dst); 8907 } 8908 goto err_ret; 8909 } 8910 } 8911 8912 /* 8913 * Pick a source address preferring non-deprecated ones. 8914 * Unlike ip_newroute, we don't do any source address 8915 * selection here since for multicast it really does not help 8916 * in inbound load spreading as in the unicast case. 8917 */ 8918 if ((flags & RTF_SETSRC) && (fire != NULL) && 8919 (fire->ire_flags & RTF_SETSRC)) { 8920 /* 8921 * As requested by flags, an IRE_OFFSUBNET was looked up 8922 * on that interface. This ire has RTF_SETSRC flag, so 8923 * the source address of the packet must be changed. 8924 * Check that the ipif matching the requested source 8925 * address still exists. 8926 */ 8927 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 8928 zoneid, NULL, NULL, NULL, NULL); 8929 } 8930 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 8931 (connp != NULL && ipif->ipif_zoneid != zoneid && 8932 ipif->ipif_zoneid != ALL_ZONES)) && 8933 (src_ipif == NULL)) { 8934 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 8935 if (src_ipif == NULL) { 8936 if (ip_debug > 2) { 8937 /* ip1dbg */ 8938 pr_addr_dbg("ip_newroute_ipif: " 8939 "no src for dst %s", 8940 AF_INET, &dst); 8941 } 8942 ip1dbg((" through interface %s\n", 8943 dst_ill->ill_name)); 8944 goto err_ret; 8945 } 8946 ipif_refrele(ipif); 8947 ipif = src_ipif; 8948 ipif_refhold(ipif); 8949 } 8950 if (src_ipif == NULL) { 8951 src_ipif = ipif; 8952 ipif_refhold(src_ipif); 8953 } 8954 8955 /* 8956 * Assign a source address while we have the conn. 8957 * We can't have ip_wput_ire pick a source address when the 8958 * packet returns from arp since conn_unspec_src might be set 8959 * and we loose the conn when going through arp. 8960 */ 8961 if (ipha->ipha_src == INADDR_ANY && 8962 (connp == NULL || !connp->conn_unspec_src)) { 8963 ipha->ipha_src = src_ipif->ipif_src_addr; 8964 } 8965 8966 /* 8967 * In case of IP_XMIT_IF, it is possible that the outgoing 8968 * interface does not have an interface ire. 8969 * Example: Thousands of mobileip PPP interfaces to mobile 8970 * nodes. We don't want to create interface ires because 8971 * packets from other mobile nodes must not take the route 8972 * via interface ires to the visiting mobile node without 8973 * going through the home agent, in absence of mobileip 8974 * route optimization. 8975 */ 8976 if (CLASSD(ipha_dst) && (connp == NULL || 8977 connp->conn_xmit_if_ill == NULL)) { 8978 /* ipif_to_ire returns an held ire */ 8979 ire = ipif_to_ire(ipif); 8980 if (ire == NULL) 8981 goto err_ret; 8982 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 8983 goto err_ret; 8984 /* 8985 * ihandle is needed when the ire is added to 8986 * cache table. 8987 */ 8988 save_ire = ire; 8989 ihandle = save_ire->ire_ihandle; 8990 8991 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 8992 "flags %04x\n", 8993 (void *)ire, (void *)ipif, flags)); 8994 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8995 (fire->ire_flags & RTF_MULTIRT)) { 8996 /* 8997 * As requested by flags, an IRE_OFFSUBNET was 8998 * looked up on that interface. This ire has 8999 * RTF_MULTIRT flag, so the resolution loop will 9000 * be re-entered to resolve additional routes on 9001 * other interfaces. For that purpose, a copy of 9002 * the packet is performed at this point. 9003 */ 9004 fire->ire_last_used_time = lbolt; 9005 copy_mp = copymsg(first_mp); 9006 if (copy_mp) { 9007 MULTIRT_DEBUG_TAG(copy_mp); 9008 } 9009 } 9010 if ((flags & RTF_SETSRC) && (fire != NULL) && 9011 (fire->ire_flags & RTF_SETSRC)) { 9012 /* 9013 * As requested by flags, an IRE_OFFSUBET was 9014 * looked up on that interface. This ire has 9015 * RTF_SETSRC flag, so the source address of the 9016 * packet must be changed. 9017 */ 9018 ipha->ipha_src = fire->ire_src_addr; 9019 } 9020 } else { 9021 ASSERT((connp == NULL) || 9022 (connp->conn_xmit_if_ill != NULL) || 9023 (connp->conn_dontroute)); 9024 /* 9025 * The only ways we can come here are: 9026 * 1) IP_XMIT_IF socket option is set 9027 * 2) ICMP error message generated from 9028 * ip_mrtun_forward() routine and it needs 9029 * to go through the specified ill. 9030 * 3) SO_DONTROUTE socket option is set 9031 * In all cases, the new ire will not be added 9032 * into cache table. 9033 */ 9034 ire_marks |= IRE_MARK_NOADD; 9035 } 9036 9037 switch (ipif->ipif_net_type) { 9038 case IRE_IF_NORESOLVER: { 9039 /* We have what we need to build an IRE_CACHE. */ 9040 mblk_t *res_mp; 9041 9042 /* 9043 * Create a new res_mp with the 9044 * IP gateway address as destination address in the 9045 * DLPI hdr if the physical length is exactly 4 bytes. 9046 */ 9047 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 9048 res_mp = ill_dlur_gen((uchar_t *)&dst, 9049 dst_ill->ill_phys_addr_length, 9050 dst_ill->ill_sap, 9051 dst_ill->ill_sap_length); 9052 } else { 9053 /* use the value set in ip_ll_subnet_defaults */ 9054 res_mp = ill_dlur_gen(NULL, 9055 dst_ill->ill_phys_addr_length, 9056 dst_ill->ill_sap, 9057 dst_ill->ill_sap_length); 9058 } 9059 9060 if (res_mp == NULL) 9061 break; 9062 /* 9063 * The new ire inherits the IRE_OFFSUBNET flags 9064 * and source address, if this was requested. 9065 */ 9066 ire = ire_create( 9067 (uchar_t *)&dst, /* dest address */ 9068 (uchar_t *)&ip_g_all_ones, /* mask */ 9069 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9070 NULL, /* gateway address */ 9071 NULL, 9072 &ipif->ipif_mtu, 9073 NULL, /* Fast Path header */ 9074 dst_ill->ill_rq, /* recv-from queue */ 9075 dst_ill->ill_wq, /* send-to queue */ 9076 IRE_CACHE, 9077 res_mp, 9078 src_ipif, 9079 NULL, 9080 (save_ire != NULL ? save_ire->ire_mask : 0), 9081 (fire != NULL) ? /* Parent handle */ 9082 fire->ire_phandle : 0, 9083 ihandle, /* Interface handle */ 9084 (fire != NULL) ? 9085 (fire->ire_flags & 9086 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9087 (save_ire == NULL ? &ire_uinfo_null : 9088 &save_ire->ire_uinfo), 9089 NULL, 9090 NULL); 9091 9092 freeb(res_mp); 9093 9094 if (ire == NULL) { 9095 if (save_ire != NULL) 9096 ire_refrele(save_ire); 9097 break; 9098 } 9099 9100 ire->ire_marks |= ire_marks; 9101 9102 /* 9103 * If IRE_MARK_NOADD is set then we need to convert 9104 * the max_fragp to a useable value now. This is 9105 * normally done in ire_add_v[46]. We also need to 9106 * associate the ire with an nce (normally would be 9107 * done in ip_wput_nondata()). 9108 * 9109 * Note that IRE_MARK_NOADD packets created here 9110 * do not have a non-null ire_mp pointer. The null 9111 * value of ire_bucket indicates that they were 9112 * never added. 9113 */ 9114 if (ire->ire_marks & IRE_MARK_NOADD) { 9115 uint_t max_frag; 9116 9117 max_frag = *ire->ire_max_fragp; 9118 ire->ire_max_fragp = NULL; 9119 ire->ire_max_frag = max_frag; 9120 9121 if ((ire->ire_nce = ndp_lookup_v4( 9122 ire_to_ill(ire), 9123 (ire->ire_gateway_addr != INADDR_ANY ? 9124 &ire->ire_gateway_addr : &ire->ire_addr), 9125 B_FALSE)) == NULL) { 9126 if (save_ire != NULL) 9127 ire_refrele(save_ire); 9128 break; 9129 } 9130 ASSERT(ire->ire_nce->nce_state == 9131 ND_REACHABLE); 9132 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9133 } 9134 9135 /* Prevent save_ire from getting deleted */ 9136 if (save_ire != NULL) { 9137 IRB_REFHOLD(save_ire->ire_bucket); 9138 /* Has it been removed already ? */ 9139 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9140 IRB_REFRELE(save_ire->ire_bucket); 9141 ire_refrele(save_ire); 9142 break; 9143 } 9144 } 9145 9146 ire_add_then_send(q, ire, first_mp); 9147 9148 /* Assert that save_ire is not deleted yet. */ 9149 if (save_ire != NULL) { 9150 ASSERT(save_ire->ire_ptpn != NULL); 9151 IRB_REFRELE(save_ire->ire_bucket); 9152 ire_refrele(save_ire); 9153 save_ire = NULL; 9154 } 9155 if (fire != NULL) { 9156 ire_refrele(fire); 9157 fire = NULL; 9158 } 9159 9160 /* 9161 * the resolution loop is re-entered if this 9162 * was requested through flags and if we 9163 * actually are in a multirouting case. 9164 */ 9165 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9166 boolean_t need_resolve = 9167 ire_multirt_need_resolve(ipha_dst, 9168 MBLK_GETLABEL(copy_mp)); 9169 if (!need_resolve) { 9170 MULTIRT_DEBUG_UNTAG(copy_mp); 9171 freemsg(copy_mp); 9172 copy_mp = NULL; 9173 } else { 9174 /* 9175 * ipif_lookup_group() calls 9176 * ire_lookup_multi() that uses 9177 * ire_ftable_lookup() to find 9178 * an IRE_INTERFACE for the group. 9179 * In the multirt case, 9180 * ire_lookup_multi() then invokes 9181 * ire_multirt_lookup() to find 9182 * the next resolvable ire. 9183 * As a result, we obtain an new 9184 * interface, derived from the 9185 * next ire. 9186 */ 9187 ipif_refrele(ipif); 9188 ipif = ipif_lookup_group(ipha_dst, 9189 zoneid); 9190 ip2dbg(("ip_newroute_ipif: " 9191 "multirt dst %08x, ipif %p\n", 9192 htonl(dst), (void *)ipif)); 9193 if (ipif != NULL) { 9194 mp = copy_mp; 9195 copy_mp = NULL; 9196 multirt_resolve_next = B_TRUE; 9197 continue; 9198 } else { 9199 freemsg(copy_mp); 9200 } 9201 } 9202 } 9203 if (ipif != NULL) 9204 ipif_refrele(ipif); 9205 ill_refrele(dst_ill); 9206 ipif_refrele(src_ipif); 9207 return; 9208 } 9209 case IRE_IF_RESOLVER: 9210 /* 9211 * We can't build an IRE_CACHE yet, but at least 9212 * we found a resolver that can help. 9213 */ 9214 res_mp = dst_ill->ill_resolver_mp; 9215 if (!OK_RESOLVER_MP(res_mp)) 9216 break; 9217 9218 /* 9219 * We obtain a partial IRE_CACHE which we will pass 9220 * along with the resolver query. When the response 9221 * comes back it will be there ready for us to add. 9222 * The new ire inherits the IRE_OFFSUBNET flags 9223 * and source address, if this was requested. 9224 * The ire_max_frag is atomically set under the 9225 * irebucket lock in ire_add_v[46]. Only in the 9226 * case of IRE_MARK_NOADD, we set it here itself. 9227 */ 9228 ire = ire_create_mp( 9229 (uchar_t *)&dst, /* dest address */ 9230 (uchar_t *)&ip_g_all_ones, /* mask */ 9231 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9232 NULL, /* gateway address */ 9233 NULL, /* no in_src_addr */ 9234 (ire_marks & IRE_MARK_NOADD) ? 9235 ipif->ipif_mtu : 0, /* max_frag */ 9236 NULL, /* Fast path header */ 9237 dst_ill->ill_rq, /* recv-from queue */ 9238 dst_ill->ill_wq, /* send-to queue */ 9239 IRE_CACHE, 9240 NULL, /* let ire_nce_init figure res_mp out */ 9241 src_ipif, 9242 NULL, 9243 (save_ire != NULL ? save_ire->ire_mask : 0), 9244 (fire != NULL) ? /* Parent handle */ 9245 fire->ire_phandle : 0, 9246 ihandle, /* Interface handle */ 9247 (fire != NULL) ? /* flags if any */ 9248 (fire->ire_flags & 9249 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9250 (save_ire == NULL ? &ire_uinfo_null : 9251 &save_ire->ire_uinfo), 9252 NULL, 9253 NULL); 9254 9255 if (save_ire != NULL) { 9256 ire_refrele(save_ire); 9257 save_ire = NULL; 9258 } 9259 if (ire == NULL) 9260 break; 9261 9262 ire->ire_marks |= ire_marks; 9263 /* 9264 * Construct message chain for the resolver of the 9265 * form: 9266 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9267 * 9268 * NOTE : ire will be added later when the response 9269 * comes back from ARP. If the response does not 9270 * come back, ARP frees the packet. For this reason, 9271 * we can't REFHOLD the bucket of save_ire to prevent 9272 * deletions. We may not be able to REFRELE the 9273 * bucket if the response never comes back. 9274 * Thus, before adding the ire, ire_add_v4 will make 9275 * sure that the interface route does not get deleted. 9276 * This is the only case unlike ip_newroute_v6, 9277 * ip_newroute_ipif_v6 where we can always prevent 9278 * deletions because ire_add_then_send is called after 9279 * creating the IRE. 9280 * If IRE_MARK_NOADD is set, then ire_add_then_send 9281 * does not add this IRE into the IRE CACHE. 9282 */ 9283 ASSERT(ire->ire_mp != NULL); 9284 ire->ire_mp->b_cont = first_mp; 9285 /* Have saved_mp handy, for cleanup if canput fails */ 9286 saved_mp = mp; 9287 mp = copyb(res_mp); 9288 if (mp == NULL) { 9289 /* Prepare for cleanup */ 9290 mp = saved_mp; /* pkt */ 9291 ire_delete(ire); /* ire_mp */ 9292 ire = NULL; 9293 if (copy_mp != NULL) { 9294 MULTIRT_DEBUG_UNTAG(copy_mp); 9295 freemsg(copy_mp); 9296 copy_mp = NULL; 9297 } 9298 break; 9299 } 9300 linkb(mp, ire->ire_mp); 9301 9302 /* 9303 * Fill in the source and dest addrs for the resolver. 9304 * NOTE: this depends on memory layouts imposed by 9305 * ill_init(). 9306 */ 9307 areq = (areq_t *)mp->b_rptr; 9308 addrp = (ipaddr_t *)((char *)areq + 9309 areq->areq_sender_addr_offset); 9310 *addrp = ire->ire_src_addr; 9311 addrp = (ipaddr_t *)((char *)areq + 9312 areq->areq_target_addr_offset); 9313 *addrp = dst; 9314 /* Up to the resolver. */ 9315 if (canputnext(dst_ill->ill_rq) && 9316 !(dst_ill->ill_arp_closing)) { 9317 putnext(dst_ill->ill_rq, mp); 9318 /* 9319 * The response will come back in ip_wput 9320 * with db_type IRE_DB_TYPE. 9321 */ 9322 } else { 9323 mp->b_cont = NULL; 9324 freeb(mp); /* areq */ 9325 ire_delete(ire); /* ire_mp */ 9326 saved_mp->b_next = NULL; 9327 saved_mp->b_prev = NULL; 9328 freemsg(first_mp); /* pkt */ 9329 ip2dbg(("ip_newroute_ipif: dropped\n")); 9330 } 9331 9332 if (fire != NULL) { 9333 ire_refrele(fire); 9334 fire = NULL; 9335 } 9336 9337 9338 /* 9339 * The resolution loop is re-entered if this was 9340 * requested through flags and we actually are 9341 * in a multirouting case. 9342 */ 9343 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9344 boolean_t need_resolve = 9345 ire_multirt_need_resolve(ipha_dst, 9346 MBLK_GETLABEL(copy_mp)); 9347 if (!need_resolve) { 9348 MULTIRT_DEBUG_UNTAG(copy_mp); 9349 freemsg(copy_mp); 9350 copy_mp = NULL; 9351 } else { 9352 /* 9353 * ipif_lookup_group() calls 9354 * ire_lookup_multi() that uses 9355 * ire_ftable_lookup() to find 9356 * an IRE_INTERFACE for the group. 9357 * In the multirt case, 9358 * ire_lookup_multi() then invokes 9359 * ire_multirt_lookup() to find 9360 * the next resolvable ire. 9361 * As a result, we obtain an new 9362 * interface, derived from the 9363 * next ire. 9364 */ 9365 ipif_refrele(ipif); 9366 ipif = ipif_lookup_group(ipha_dst, 9367 zoneid); 9368 if (ipif != NULL) { 9369 mp = copy_mp; 9370 copy_mp = NULL; 9371 multirt_resolve_next = B_TRUE; 9372 continue; 9373 } else { 9374 freemsg(copy_mp); 9375 } 9376 } 9377 } 9378 if (ipif != NULL) 9379 ipif_refrele(ipif); 9380 ill_refrele(dst_ill); 9381 ipif_refrele(src_ipif); 9382 return; 9383 default: 9384 break; 9385 } 9386 } while (multirt_resolve_next); 9387 9388 err_ret: 9389 ip2dbg(("ip_newroute_ipif: dropped\n")); 9390 if (fire != NULL) 9391 ire_refrele(fire); 9392 ipif_refrele(ipif); 9393 /* Did this packet originate externally? */ 9394 if (dst_ill != NULL) 9395 ill_refrele(dst_ill); 9396 if (src_ipif != NULL) 9397 ipif_refrele(src_ipif); 9398 if (mp->b_prev || mp->b_next) { 9399 mp->b_next = NULL; 9400 mp->b_prev = NULL; 9401 } else { 9402 /* 9403 * Since ip_wput() isn't close to finished, we fill 9404 * in enough of the header for credible error reporting. 9405 */ 9406 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 9407 /* Failed */ 9408 freemsg(first_mp); 9409 if (ire != NULL) 9410 ire_refrele(ire); 9411 return; 9412 } 9413 } 9414 /* 9415 * At this point we will have ire only if RTF_BLACKHOLE 9416 * or RTF_REJECT flags are set on the IRE. It will not 9417 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9418 */ 9419 if (ire != NULL) { 9420 if (ire->ire_flags & RTF_BLACKHOLE) { 9421 ire_refrele(ire); 9422 freemsg(first_mp); 9423 return; 9424 } 9425 ire_refrele(ire); 9426 } 9427 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid); 9428 } 9429 9430 /* Name/Value Table Lookup Routine */ 9431 char * 9432 ip_nv_lookup(nv_t *nv, int value) 9433 { 9434 if (!nv) 9435 return (NULL); 9436 for (; nv->nv_name; nv++) { 9437 if (nv->nv_value == value) 9438 return (nv->nv_name); 9439 } 9440 return ("unknown"); 9441 } 9442 9443 /* 9444 * one day it can be patched to 1 from /etc/system for machines that have few 9445 * fast network interfaces feeding multiple cpus. 9446 */ 9447 int ill_stream_putlocks = 0; 9448 9449 /* 9450 * This is a module open, i.e. this is a control stream for access 9451 * to a DLPI device. We allocate an ill_t as the instance data in 9452 * this case. 9453 */ 9454 int 9455 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9456 { 9457 uint32_t mem_cnt; 9458 uint32_t cpu_cnt; 9459 uint32_t min_cnt; 9460 pgcnt_t mem_avail; 9461 ill_t *ill; 9462 int err; 9463 9464 /* 9465 * Prevent unprivileged processes from pushing IP so that 9466 * they can't send raw IP. 9467 */ 9468 if (secpolicy_net_rawaccess(credp) != 0) 9469 return (EPERM); 9470 9471 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9472 q->q_ptr = WR(q)->q_ptr = ill; 9473 9474 /* 9475 * ill_init initializes the ill fields and then sends down 9476 * down a DL_INFO_REQ after calling qprocson. 9477 */ 9478 err = ill_init(q, ill); 9479 if (err != 0) { 9480 mi_free(ill); 9481 q->q_ptr = NULL; 9482 WR(q)->q_ptr = NULL; 9483 return (err); 9484 } 9485 9486 /* ill_init initializes the ipsq marking this thread as writer */ 9487 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9488 /* Wait for the DL_INFO_ACK */ 9489 mutex_enter(&ill->ill_lock); 9490 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9491 /* 9492 * Return value of 0 indicates a pending signal. 9493 */ 9494 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9495 if (err == 0) { 9496 mutex_exit(&ill->ill_lock); 9497 (void) ip_close(q, 0); 9498 return (EINTR); 9499 } 9500 } 9501 mutex_exit(&ill->ill_lock); 9502 9503 /* 9504 * ip_rput_other could have set an error in ill_error on 9505 * receipt of M_ERROR. 9506 */ 9507 9508 err = ill->ill_error; 9509 if (err != 0) { 9510 (void) ip_close(q, 0); 9511 return (err); 9512 } 9513 9514 /* 9515 * ip_ire_max_bucket_cnt is sized below based on the memory 9516 * size and the cpu speed of the machine. This is upper 9517 * bounded by the compile time value of ip_ire_max_bucket_cnt 9518 * and is lower bounded by the compile time value of 9519 * ip_ire_min_bucket_cnt. Similar logic applies to 9520 * ip6_ire_max_bucket_cnt. 9521 */ 9522 mem_avail = kmem_avail(); 9523 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9524 ip_cache_table_size / sizeof (ire_t); 9525 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 9526 9527 min_cnt = MIN(cpu_cnt, mem_cnt); 9528 if (min_cnt < ip_ire_min_bucket_cnt) 9529 min_cnt = ip_ire_min_bucket_cnt; 9530 if (ip_ire_max_bucket_cnt > min_cnt) { 9531 ip_ire_max_bucket_cnt = min_cnt; 9532 } 9533 9534 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9535 ip6_cache_table_size / sizeof (ire_t); 9536 min_cnt = MIN(cpu_cnt, mem_cnt); 9537 if (min_cnt < ip6_ire_min_bucket_cnt) 9538 min_cnt = ip6_ire_min_bucket_cnt; 9539 if (ip6_ire_max_bucket_cnt > min_cnt) { 9540 ip6_ire_max_bucket_cnt = min_cnt; 9541 } 9542 9543 ill->ill_credp = credp; 9544 crhold(credp); 9545 9546 mutex_enter(&ip_mi_lock); 9547 err = mi_open_link(&ip_g_head, (IDP)ill, devp, flag, sflag, credp); 9548 mutex_exit(&ip_mi_lock); 9549 if (err) { 9550 (void) ip_close(q, 0); 9551 return (err); 9552 } 9553 return (0); 9554 } 9555 9556 /* IP open routine. */ 9557 int 9558 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9559 { 9560 conn_t *connp; 9561 major_t maj; 9562 9563 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9564 9565 /* Allow reopen. */ 9566 if (q->q_ptr != NULL) 9567 return (0); 9568 9569 if (sflag & MODOPEN) { 9570 /* This is a module open */ 9571 return (ip_modopen(q, devp, flag, sflag, credp)); 9572 } 9573 9574 /* 9575 * We are opening as a device. This is an IP client stream, and we 9576 * allocate an conn_t as the instance data. 9577 */ 9578 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP); 9579 connp->conn_upq = q; 9580 q->q_ptr = WR(q)->q_ptr = connp; 9581 9582 if (flag & SO_SOCKSTR) 9583 connp->conn_flags |= IPCL_SOCKET; 9584 9585 /* Minor tells us which /dev entry was opened */ 9586 if (geteminor(*devp) == IPV6_MINOR) { 9587 connp->conn_flags |= IPCL_ISV6; 9588 connp->conn_af_isv6 = B_TRUE; 9589 ip_setqinfo(q, geteminor(*devp), B_FALSE); 9590 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9591 } else { 9592 connp->conn_af_isv6 = B_FALSE; 9593 connp->conn_pkt_isv6 = B_FALSE; 9594 } 9595 9596 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9597 q->q_ptr = WR(q)->q_ptr = NULL; 9598 CONN_DEC_REF(connp); 9599 return (EBUSY); 9600 } 9601 9602 maj = getemajor(*devp); 9603 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9604 9605 /* 9606 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9607 */ 9608 connp->conn_cred = credp; 9609 crhold(connp->conn_cred); 9610 9611 /* 9612 * If the caller has the process-wide flag set, then default to MAC 9613 * exempt mode. This allows read-down to unlabeled hosts. 9614 */ 9615 if (getpflags(NET_MAC_AWARE, credp) != 0) 9616 connp->conn_mac_exempt = B_TRUE; 9617 9618 connp->conn_zoneid = getzoneid(); 9619 9620 /* 9621 * This should only happen for ndd, netstat, raw socket or other SCTP 9622 * administrative ops. In these cases, we just need a normal conn_t 9623 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 9624 * an error will be returned. 9625 */ 9626 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 9627 connp->conn_rq = q; 9628 connp->conn_wq = WR(q); 9629 } else { 9630 connp->conn_ulp = IPPROTO_SCTP; 9631 connp->conn_rq = connp->conn_wq = NULL; 9632 } 9633 /* Non-zero default values */ 9634 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9635 9636 /* 9637 * Make the conn globally visible to walkers 9638 */ 9639 mutex_enter(&connp->conn_lock); 9640 connp->conn_state_flags &= ~CONN_INCIPIENT; 9641 mutex_exit(&connp->conn_lock); 9642 ASSERT(connp->conn_ref == 1); 9643 9644 qprocson(q); 9645 9646 return (0); 9647 } 9648 9649 /* 9650 * Change q_qinfo based on the value of isv6. 9651 * This can not called on an ill queue. 9652 * Note that there is no race since either q_qinfo works for conn queues - it 9653 * is just an optimization to enter the best wput routine directly. 9654 */ 9655 void 9656 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib) 9657 { 9658 ASSERT(q->q_flag & QREADR); 9659 ASSERT(WR(q)->q_next == NULL); 9660 ASSERT(q->q_ptr != NULL); 9661 9662 if (minor == IPV6_MINOR) { 9663 if (bump_mib) 9664 BUMP_MIB(&ip6_mib, ipv6OutSwitchIPv4); 9665 q->q_qinfo = &rinit_ipv6; 9666 WR(q)->q_qinfo = &winit_ipv6; 9667 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 9668 } else { 9669 if (bump_mib) 9670 BUMP_MIB(&ip_mib, ipOutSwitchIPv6); 9671 q->q_qinfo = &iprinit; 9672 WR(q)->q_qinfo = &ipwinit; 9673 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 9674 } 9675 9676 } 9677 9678 /* 9679 * See if IPsec needs loading because of the options in mp. 9680 */ 9681 static boolean_t 9682 ipsec_opt_present(mblk_t *mp) 9683 { 9684 uint8_t *optcp, *next_optcp, *opt_endcp; 9685 struct opthdr *opt; 9686 struct T_opthdr *topt; 9687 int opthdr_len; 9688 t_uscalar_t optname, optlevel; 9689 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9690 ipsec_req_t *ipsr; 9691 9692 /* 9693 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9694 * return TRUE. 9695 */ 9696 9697 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9698 opt_endcp = optcp + tor->OPT_length; 9699 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9700 opthdr_len = sizeof (struct T_opthdr); 9701 } else { /* O_OPTMGMT_REQ */ 9702 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9703 opthdr_len = sizeof (struct opthdr); 9704 } 9705 for (; optcp < opt_endcp; optcp = next_optcp) { 9706 if (optcp + opthdr_len > opt_endcp) 9707 return (B_FALSE); /* Not enough option header. */ 9708 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9709 topt = (struct T_opthdr *)optcp; 9710 optlevel = topt->level; 9711 optname = topt->name; 9712 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9713 } else { 9714 opt = (struct opthdr *)optcp; 9715 optlevel = opt->level; 9716 optname = opt->name; 9717 next_optcp = optcp + opthdr_len + 9718 _TPI_ALIGN_OPT(opt->len); 9719 } 9720 if ((next_optcp < optcp) || /* wraparound pointer space */ 9721 ((next_optcp >= opt_endcp) && /* last option bad len */ 9722 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9723 return (B_FALSE); /* bad option buffer */ 9724 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9725 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9726 /* 9727 * Check to see if it's an all-bypass or all-zeroes 9728 * IPsec request. Don't bother loading IPsec if 9729 * the socket doesn't want to use it. (A good example 9730 * is a bypass request.) 9731 * 9732 * Basically, if any of the non-NEVER bits are set, 9733 * load IPsec. 9734 */ 9735 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9736 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9737 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9738 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9739 != 0) 9740 return (B_TRUE); 9741 } 9742 } 9743 return (B_FALSE); 9744 } 9745 9746 /* 9747 * If conn is is waiting for ipsec to finish loading, kick it. 9748 */ 9749 /* ARGSUSED */ 9750 static void 9751 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9752 { 9753 t_scalar_t optreq_prim; 9754 mblk_t *mp; 9755 cred_t *cr; 9756 int err = 0; 9757 9758 /* 9759 * This function is called, after ipsec loading is complete. 9760 * Since IP checks exclusively and atomically (i.e it prevents 9761 * ipsec load from completing until ip_optcom_req completes) 9762 * whether ipsec load is complete, there cannot be a race with IP 9763 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9764 */ 9765 mutex_enter(&connp->conn_lock); 9766 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9767 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9768 mp = connp->conn_ipsec_opt_mp; 9769 connp->conn_ipsec_opt_mp = NULL; 9770 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9771 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 9772 mutex_exit(&connp->conn_lock); 9773 9774 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9775 9776 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9777 if (optreq_prim == T_OPTMGMT_REQ) { 9778 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9779 &ip_opt_obj); 9780 } else { 9781 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 9782 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9783 &ip_opt_obj); 9784 } 9785 if (err != EINPROGRESS) 9786 CONN_OPER_PENDING_DONE(connp); 9787 return; 9788 } 9789 mutex_exit(&connp->conn_lock); 9790 } 9791 9792 /* 9793 * Called from the ipsec_loader thread, outside any perimeter, to tell 9794 * ip qenable any of the queues waiting for the ipsec loader to 9795 * complete. 9796 * 9797 * Use ip_mi_lock to be safe here: all modifications of the mi lists 9798 * are done with this lock held, so it's guaranteed that none of the 9799 * links will change along the way. 9800 */ 9801 void 9802 ip_ipsec_load_complete() 9803 { 9804 ipcl_walk(conn_restart_ipsec_waiter, NULL); 9805 } 9806 9807 /* 9808 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 9809 * determines the grp on which it has to become exclusive, queues the mp 9810 * and sq draining restarts the optmgmt 9811 */ 9812 static boolean_t 9813 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 9814 { 9815 conn_t *connp; 9816 9817 /* 9818 * Take IPsec requests and treat them special. 9819 */ 9820 if (ipsec_opt_present(mp)) { 9821 /* First check if IPsec is loaded. */ 9822 mutex_enter(&ipsec_loader_lock); 9823 if (ipsec_loader_state != IPSEC_LOADER_WAIT) { 9824 mutex_exit(&ipsec_loader_lock); 9825 return (B_FALSE); 9826 } 9827 connp = Q_TO_CONN(q); 9828 mutex_enter(&connp->conn_lock); 9829 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 9830 9831 ASSERT(connp->conn_ipsec_opt_mp == NULL); 9832 connp->conn_ipsec_opt_mp = mp; 9833 mutex_exit(&connp->conn_lock); 9834 mutex_exit(&ipsec_loader_lock); 9835 9836 ipsec_loader_loadnow(); 9837 return (B_TRUE); 9838 } 9839 return (B_FALSE); 9840 } 9841 9842 /* 9843 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 9844 * all of them are copied to the conn_t. If the req is "zero", the policy is 9845 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 9846 * fields. 9847 * We keep only the latest setting of the policy and thus policy setting 9848 * is not incremental/cumulative. 9849 * 9850 * Requests to set policies with multiple alternative actions will 9851 * go through a different API. 9852 */ 9853 int 9854 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 9855 { 9856 uint_t ah_req = 0; 9857 uint_t esp_req = 0; 9858 uint_t se_req = 0; 9859 ipsec_selkey_t sel; 9860 ipsec_act_t *actp = NULL; 9861 uint_t nact; 9862 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 9863 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 9864 ipsec_policy_root_t *pr; 9865 ipsec_policy_head_t *ph; 9866 int fam; 9867 boolean_t is_pol_reset; 9868 int error = 0; 9869 9870 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 9871 9872 /* 9873 * The IP_SEC_OPT option does not allow variable length parameters, 9874 * hence a request cannot be NULL. 9875 */ 9876 if (req == NULL) 9877 return (EINVAL); 9878 9879 ah_req = req->ipsr_ah_req; 9880 esp_req = req->ipsr_esp_req; 9881 se_req = req->ipsr_self_encap_req; 9882 9883 /* 9884 * Are we dealing with a request to reset the policy (i.e. 9885 * zero requests). 9886 */ 9887 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 9888 (esp_req & REQ_MASK) == 0 && 9889 (se_req & REQ_MASK) == 0); 9890 9891 if (!is_pol_reset) { 9892 /* 9893 * If we couldn't load IPsec, fail with "protocol 9894 * not supported". 9895 * IPsec may not have been loaded for a request with zero 9896 * policies, so we don't fail in this case. 9897 */ 9898 mutex_enter(&ipsec_loader_lock); 9899 if (ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 9900 mutex_exit(&ipsec_loader_lock); 9901 return (EPROTONOSUPPORT); 9902 } 9903 mutex_exit(&ipsec_loader_lock); 9904 9905 /* 9906 * Test for valid requests. Invalid algorithms 9907 * need to be tested by IPSEC code because new 9908 * algorithms can be added dynamically. 9909 */ 9910 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 9911 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 9912 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 9913 return (EINVAL); 9914 } 9915 9916 /* 9917 * Only privileged users can issue these 9918 * requests. 9919 */ 9920 if (((ah_req & IPSEC_PREF_NEVER) || 9921 (esp_req & IPSEC_PREF_NEVER) || 9922 (se_req & IPSEC_PREF_NEVER)) && 9923 secpolicy_net_config(cr, B_FALSE) != 0) { 9924 return (EPERM); 9925 } 9926 9927 /* 9928 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 9929 * are mutually exclusive. 9930 */ 9931 if (((ah_req & REQ_MASK) == REQ_MASK) || 9932 ((esp_req & REQ_MASK) == REQ_MASK) || 9933 ((se_req & REQ_MASK) == REQ_MASK)) { 9934 /* Both of them are set */ 9935 return (EINVAL); 9936 } 9937 } 9938 9939 mutex_enter(&connp->conn_lock); 9940 9941 /* 9942 * If we have already cached policies in ip_bind_connected*(), don't 9943 * let them change now. We cache policies for connections 9944 * whose src,dst [addr, port] is known. The exception to this is 9945 * tunnels. Tunnels are allowed to change policies after having 9946 * become fully bound. 9947 */ 9948 if (connp->conn_policy_cached && !IPCL_IS_IPTUN(connp)) { 9949 mutex_exit(&connp->conn_lock); 9950 return (EINVAL); 9951 } 9952 9953 /* 9954 * We have a zero policies, reset the connection policy if already 9955 * set. This will cause the connection to inherit the 9956 * global policy, if any. 9957 */ 9958 if (is_pol_reset) { 9959 if (connp->conn_policy != NULL) { 9960 IPPH_REFRELE(connp->conn_policy); 9961 connp->conn_policy = NULL; 9962 } 9963 connp->conn_flags &= ~IPCL_CHECK_POLICY; 9964 connp->conn_in_enforce_policy = B_FALSE; 9965 connp->conn_out_enforce_policy = B_FALSE; 9966 mutex_exit(&connp->conn_lock); 9967 return (0); 9968 } 9969 9970 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy); 9971 if (ph == NULL) 9972 goto enomem; 9973 9974 ipsec_actvec_from_req(req, &actp, &nact); 9975 if (actp == NULL) 9976 goto enomem; 9977 9978 /* 9979 * Always allocate IPv4 policy entries, since they can also 9980 * apply to ipv6 sockets being used in ipv4-compat mode. 9981 */ 9982 bzero(&sel, sizeof (sel)); 9983 sel.ipsl_valid = IPSL_IPV4; 9984 9985 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 9986 if (pin4 == NULL) 9987 goto enomem; 9988 9989 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 9990 if (pout4 == NULL) 9991 goto enomem; 9992 9993 if (connp->conn_pkt_isv6) { 9994 /* 9995 * We're looking at a v6 socket, also allocate the 9996 * v6-specific entries... 9997 */ 9998 sel.ipsl_valid = IPSL_IPV6; 9999 pin6 = ipsec_policy_create(&sel, actp, nact, 10000 IPSEC_PRIO_SOCKET); 10001 if (pin6 == NULL) 10002 goto enomem; 10003 10004 pout6 = ipsec_policy_create(&sel, actp, nact, 10005 IPSEC_PRIO_SOCKET); 10006 if (pout6 == NULL) 10007 goto enomem; 10008 10009 /* 10010 * .. and file them away in the right place. 10011 */ 10012 fam = IPSEC_AF_V6; 10013 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10014 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10015 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10016 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10017 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10018 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10019 } 10020 10021 ipsec_actvec_free(actp, nact); 10022 10023 /* 10024 * File the v4 policies. 10025 */ 10026 fam = IPSEC_AF_V4; 10027 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10028 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10029 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10030 10031 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10032 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10033 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10034 10035 /* 10036 * If the requests need security, set enforce_policy. 10037 * If the requests are IPSEC_PREF_NEVER, one should 10038 * still set conn_out_enforce_policy so that an ipsec_out 10039 * gets attached in ip_wput. This is needed so that 10040 * for connections that we don't cache policy in ip_bind, 10041 * if global policy matches in ip_wput_attach_policy, we 10042 * don't wrongly inherit global policy. Similarly, we need 10043 * to set conn_in_enforce_policy also so that we don't verify 10044 * policy wrongly. 10045 */ 10046 if ((ah_req & REQ_MASK) != 0 || 10047 (esp_req & REQ_MASK) != 0 || 10048 (se_req & REQ_MASK) != 0) { 10049 connp->conn_in_enforce_policy = B_TRUE; 10050 connp->conn_out_enforce_policy = B_TRUE; 10051 connp->conn_flags |= IPCL_CHECK_POLICY; 10052 } 10053 10054 /* 10055 * Tunnels are allowed to set policy after having been fully bound. 10056 * If that's the case, cache policy here. 10057 */ 10058 if (IPCL_IS_IPTUN(connp) && connp->conn_fully_bound) 10059 error = ipsec_conn_cache_policy(connp, !connp->conn_af_isv6); 10060 10061 mutex_exit(&connp->conn_lock); 10062 return (error); 10063 #undef REQ_MASK 10064 10065 /* 10066 * Common memory-allocation-failure exit path. 10067 */ 10068 enomem: 10069 mutex_exit(&connp->conn_lock); 10070 if (actp != NULL) 10071 ipsec_actvec_free(actp, nact); 10072 if (pin4 != NULL) 10073 IPPOL_REFRELE(pin4); 10074 if (pout4 != NULL) 10075 IPPOL_REFRELE(pout4); 10076 if (pin6 != NULL) 10077 IPPOL_REFRELE(pin6); 10078 if (pout6 != NULL) 10079 IPPOL_REFRELE(pout6); 10080 return (ENOMEM); 10081 } 10082 10083 /* 10084 * Only for options that pass in an IP addr. Currently only V4 options 10085 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10086 * So this function assumes level is IPPROTO_IP 10087 */ 10088 int 10089 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10090 mblk_t *first_mp) 10091 { 10092 ipif_t *ipif = NULL; 10093 int error; 10094 ill_t *ill; 10095 int zoneid; 10096 10097 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10098 10099 if (addr != INADDR_ANY || checkonly) { 10100 ASSERT(connp != NULL); 10101 zoneid = IPCL_ZONEID(connp); 10102 if (option == IP_NEXTHOP) { 10103 ipif = ipif_lookup_onlink_addr(addr, 10104 connp->conn_zoneid); 10105 } else { 10106 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10107 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10108 &error); 10109 } 10110 if (ipif == NULL) { 10111 if (error == EINPROGRESS) 10112 return (error); 10113 else if ((option == IP_MULTICAST_IF) || 10114 (option == IP_NEXTHOP)) 10115 return (EHOSTUNREACH); 10116 else 10117 return (EINVAL); 10118 } else if (checkonly) { 10119 if (option == IP_MULTICAST_IF) { 10120 ill = ipif->ipif_ill; 10121 /* not supported by the virtual network iface */ 10122 if (IS_VNI(ill)) { 10123 ipif_refrele(ipif); 10124 return (EINVAL); 10125 } 10126 } 10127 ipif_refrele(ipif); 10128 return (0); 10129 } 10130 ill = ipif->ipif_ill; 10131 mutex_enter(&connp->conn_lock); 10132 mutex_enter(&ill->ill_lock); 10133 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10134 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10135 mutex_exit(&ill->ill_lock); 10136 mutex_exit(&connp->conn_lock); 10137 ipif_refrele(ipif); 10138 return (option == IP_MULTICAST_IF ? 10139 EHOSTUNREACH : EINVAL); 10140 } 10141 } else { 10142 mutex_enter(&connp->conn_lock); 10143 } 10144 10145 /* None of the options below are supported on the VNI */ 10146 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10147 mutex_exit(&ill->ill_lock); 10148 mutex_exit(&connp->conn_lock); 10149 ipif_refrele(ipif); 10150 return (EINVAL); 10151 } 10152 10153 switch (option) { 10154 case IP_DONTFAILOVER_IF: 10155 /* 10156 * This option is used by in.mpathd to ensure 10157 * that IPMP probe packets only go out on the 10158 * test interfaces. in.mpathd sets this option 10159 * on the non-failover interfaces. 10160 * For backward compatibility, this option 10161 * implicitly sets IP_MULTICAST_IF, as used 10162 * be done in bind(), so that ip_wput gets 10163 * this ipif to send mcast packets. 10164 */ 10165 if (ipif != NULL) { 10166 ASSERT(addr != INADDR_ANY); 10167 connp->conn_nofailover_ill = ipif->ipif_ill; 10168 connp->conn_multicast_ipif = ipif; 10169 } else { 10170 ASSERT(addr == INADDR_ANY); 10171 connp->conn_nofailover_ill = NULL; 10172 connp->conn_multicast_ipif = NULL; 10173 } 10174 break; 10175 10176 case IP_MULTICAST_IF: 10177 connp->conn_multicast_ipif = ipif; 10178 break; 10179 case IP_NEXTHOP: 10180 connp->conn_nexthop_v4 = addr; 10181 connp->conn_nexthop_set = B_TRUE; 10182 break; 10183 } 10184 10185 if (ipif != NULL) { 10186 mutex_exit(&ill->ill_lock); 10187 mutex_exit(&connp->conn_lock); 10188 ipif_refrele(ipif); 10189 return (0); 10190 } 10191 mutex_exit(&connp->conn_lock); 10192 /* We succeded in cleared the option */ 10193 return (0); 10194 } 10195 10196 /* 10197 * For options that pass in an ifindex specifying the ill. V6 options always 10198 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10199 */ 10200 int 10201 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10202 int level, int option, mblk_t *first_mp) 10203 { 10204 ill_t *ill = NULL; 10205 int error = 0; 10206 10207 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10208 if (ifindex != 0) { 10209 ASSERT(connp != NULL); 10210 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10211 first_mp, ip_restart_optmgmt, &error); 10212 if (ill != NULL) { 10213 if (checkonly) { 10214 /* not supported by the virtual network iface */ 10215 if (IS_VNI(ill)) { 10216 ill_refrele(ill); 10217 return (EINVAL); 10218 } 10219 ill_refrele(ill); 10220 return (0); 10221 } 10222 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10223 0, NULL)) { 10224 ill_refrele(ill); 10225 ill = NULL; 10226 mutex_enter(&connp->conn_lock); 10227 goto setit; 10228 } 10229 mutex_enter(&connp->conn_lock); 10230 mutex_enter(&ill->ill_lock); 10231 if (ill->ill_state_flags & ILL_CONDEMNED) { 10232 mutex_exit(&ill->ill_lock); 10233 mutex_exit(&connp->conn_lock); 10234 ill_refrele(ill); 10235 ill = NULL; 10236 mutex_enter(&connp->conn_lock); 10237 } 10238 goto setit; 10239 } else if (error == EINPROGRESS) { 10240 return (error); 10241 } else { 10242 error = 0; 10243 } 10244 } 10245 mutex_enter(&connp->conn_lock); 10246 setit: 10247 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10248 10249 /* 10250 * The options below assume that the ILL (if any) transmits and/or 10251 * receives traffic. Neither of which is true for the virtual network 10252 * interface, so fail setting these on a VNI. 10253 */ 10254 if (IS_VNI(ill)) { 10255 ASSERT(ill != NULL); 10256 mutex_exit(&ill->ill_lock); 10257 mutex_exit(&connp->conn_lock); 10258 ill_refrele(ill); 10259 return (EINVAL); 10260 } 10261 10262 if (level == IPPROTO_IP) { 10263 switch (option) { 10264 case IP_BOUND_IF: 10265 connp->conn_incoming_ill = ill; 10266 connp->conn_outgoing_ill = ill; 10267 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10268 0 : ifindex; 10269 break; 10270 10271 case IP_XMIT_IF: 10272 /* 10273 * Similar to IP_BOUND_IF, but this only 10274 * determines the outgoing interface for 10275 * unicast packets. Also no IRE_CACHE entry 10276 * is added for the destination of the 10277 * outgoing packets. This feature is needed 10278 * for mobile IP. 10279 */ 10280 connp->conn_xmit_if_ill = ill; 10281 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 10282 0 : ifindex; 10283 break; 10284 10285 case IP_MULTICAST_IF: 10286 /* 10287 * This option is an internal special. The socket 10288 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10289 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10290 * specifies an ifindex and we try first on V6 ill's. 10291 * If we don't find one, we they try using on v4 ill's 10292 * intenally and we come here. 10293 */ 10294 if (!checkonly && ill != NULL) { 10295 ipif_t *ipif; 10296 ipif = ill->ill_ipif; 10297 10298 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10299 mutex_exit(&ill->ill_lock); 10300 mutex_exit(&connp->conn_lock); 10301 ill_refrele(ill); 10302 ill = NULL; 10303 mutex_enter(&connp->conn_lock); 10304 } else { 10305 connp->conn_multicast_ipif = ipif; 10306 } 10307 } 10308 break; 10309 } 10310 } else { 10311 switch (option) { 10312 case IPV6_BOUND_IF: 10313 connp->conn_incoming_ill = ill; 10314 connp->conn_outgoing_ill = ill; 10315 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10316 0 : ifindex; 10317 break; 10318 10319 case IPV6_BOUND_PIF: 10320 /* 10321 * Limit all transmit to this ill. 10322 * Unlike IPV6_BOUND_IF, using this option 10323 * prevents load spreading and failover from 10324 * happening when the interface is part of the 10325 * group. That's why we don't need to remember 10326 * the ifindex in orig_bound_ifindex as in 10327 * IPV6_BOUND_IF. 10328 */ 10329 connp->conn_outgoing_pill = ill; 10330 break; 10331 10332 case IPV6_DONTFAILOVER_IF: 10333 /* 10334 * This option is used by in.mpathd to ensure 10335 * that IPMP probe packets only go out on the 10336 * test interfaces. in.mpathd sets this option 10337 * on the non-failover interfaces. 10338 */ 10339 connp->conn_nofailover_ill = ill; 10340 /* 10341 * For backward compatibility, this option 10342 * implicitly sets ip_multicast_ill as used in 10343 * IP_MULTICAST_IF so that ip_wput gets 10344 * this ipif to send mcast packets. 10345 */ 10346 connp->conn_multicast_ill = ill; 10347 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10348 0 : ifindex; 10349 break; 10350 10351 case IPV6_MULTICAST_IF: 10352 /* 10353 * Set conn_multicast_ill to be the IPv6 ill. 10354 * Set conn_multicast_ipif to be an IPv4 ipif 10355 * for ifindex to make IPv4 mapped addresses 10356 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10357 * Even if no IPv6 ill exists for the ifindex 10358 * we need to check for an IPv4 ifindex in order 10359 * for this to work with mapped addresses. In that 10360 * case only set conn_multicast_ipif. 10361 */ 10362 if (!checkonly) { 10363 if (ifindex == 0) { 10364 connp->conn_multicast_ill = NULL; 10365 connp->conn_orig_multicast_ifindex = 0; 10366 connp->conn_multicast_ipif = NULL; 10367 } else if (ill != NULL) { 10368 connp->conn_multicast_ill = ill; 10369 connp->conn_orig_multicast_ifindex = 10370 ifindex; 10371 } 10372 } 10373 break; 10374 } 10375 } 10376 10377 if (ill != NULL) { 10378 mutex_exit(&ill->ill_lock); 10379 mutex_exit(&connp->conn_lock); 10380 ill_refrele(ill); 10381 return (0); 10382 } 10383 mutex_exit(&connp->conn_lock); 10384 /* 10385 * We succeeded in clearing the option (ifindex == 0) or failed to 10386 * locate the ill and could not set the option (ifindex != 0) 10387 */ 10388 return (ifindex == 0 ? 0 : EINVAL); 10389 } 10390 10391 /* This routine sets socket options. */ 10392 /* ARGSUSED */ 10393 int 10394 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10395 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10396 void *dummy, cred_t *cr, mblk_t *first_mp) 10397 { 10398 int *i1 = (int *)invalp; 10399 conn_t *connp = Q_TO_CONN(q); 10400 int error = 0; 10401 boolean_t checkonly; 10402 ire_t *ire; 10403 boolean_t found; 10404 10405 switch (optset_context) { 10406 10407 case SETFN_OPTCOM_CHECKONLY: 10408 checkonly = B_TRUE; 10409 /* 10410 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10411 * inlen != 0 implies value supplied and 10412 * we have to "pretend" to set it. 10413 * inlen == 0 implies that there is no 10414 * value part in T_CHECK request and just validation 10415 * done elsewhere should be enough, we just return here. 10416 */ 10417 if (inlen == 0) { 10418 *outlenp = 0; 10419 return (0); 10420 } 10421 break; 10422 case SETFN_OPTCOM_NEGOTIATE: 10423 case SETFN_UD_NEGOTIATE: 10424 case SETFN_CONN_NEGOTIATE: 10425 checkonly = B_FALSE; 10426 break; 10427 default: 10428 /* 10429 * We should never get here 10430 */ 10431 *outlenp = 0; 10432 return (EINVAL); 10433 } 10434 10435 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10436 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10437 10438 /* 10439 * For fixed length options, no sanity check 10440 * of passed in length is done. It is assumed *_optcom_req() 10441 * routines do the right thing. 10442 */ 10443 10444 switch (level) { 10445 case SOL_SOCKET: 10446 /* 10447 * conn_lock protects the bitfields, and is used to 10448 * set the fields atomically. 10449 */ 10450 switch (name) { 10451 case SO_BROADCAST: 10452 if (!checkonly) { 10453 /* TODO: use value someplace? */ 10454 mutex_enter(&connp->conn_lock); 10455 connp->conn_broadcast = *i1 ? 1 : 0; 10456 mutex_exit(&connp->conn_lock); 10457 } 10458 break; /* goto sizeof (int) option return */ 10459 case SO_USELOOPBACK: 10460 if (!checkonly) { 10461 /* TODO: use value someplace? */ 10462 mutex_enter(&connp->conn_lock); 10463 connp->conn_loopback = *i1 ? 1 : 0; 10464 mutex_exit(&connp->conn_lock); 10465 } 10466 break; /* goto sizeof (int) option return */ 10467 case SO_DONTROUTE: 10468 if (!checkonly) { 10469 mutex_enter(&connp->conn_lock); 10470 connp->conn_dontroute = *i1 ? 1 : 0; 10471 mutex_exit(&connp->conn_lock); 10472 } 10473 break; /* goto sizeof (int) option return */ 10474 case SO_REUSEADDR: 10475 if (!checkonly) { 10476 mutex_enter(&connp->conn_lock); 10477 connp->conn_reuseaddr = *i1 ? 1 : 0; 10478 mutex_exit(&connp->conn_lock); 10479 } 10480 break; /* goto sizeof (int) option return */ 10481 case SO_PROTOTYPE: 10482 if (!checkonly) { 10483 mutex_enter(&connp->conn_lock); 10484 connp->conn_proto = *i1; 10485 mutex_exit(&connp->conn_lock); 10486 } 10487 break; /* goto sizeof (int) option return */ 10488 case SO_ALLZONES: 10489 if (!checkonly) { 10490 mutex_enter(&connp->conn_lock); 10491 if (IPCL_IS_BOUND(connp)) { 10492 mutex_exit(&connp->conn_lock); 10493 return (EINVAL); 10494 } 10495 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10496 mutex_exit(&connp->conn_lock); 10497 } 10498 break; /* goto sizeof (int) option return */ 10499 case SO_ANON_MLP: 10500 if (!checkonly) { 10501 mutex_enter(&connp->conn_lock); 10502 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10503 mutex_exit(&connp->conn_lock); 10504 } 10505 break; /* goto sizeof (int) option return */ 10506 case SO_MAC_EXEMPT: 10507 if (secpolicy_net_mac_aware(cr) != 0 || 10508 IPCL_IS_BOUND(connp)) 10509 return (EACCES); 10510 if (!checkonly) { 10511 mutex_enter(&connp->conn_lock); 10512 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10513 mutex_exit(&connp->conn_lock); 10514 } 10515 break; /* goto sizeof (int) option return */ 10516 default: 10517 /* 10518 * "soft" error (negative) 10519 * option not handled at this level 10520 * Note: Do not modify *outlenp 10521 */ 10522 return (-EINVAL); 10523 } 10524 break; 10525 case IPPROTO_IP: 10526 switch (name) { 10527 case IP_NEXTHOP: 10528 if (secpolicy_net_config(cr, B_FALSE) != 0) 10529 return (EPERM); 10530 /* FALLTHRU */ 10531 case IP_MULTICAST_IF: 10532 case IP_DONTFAILOVER_IF: { 10533 ipaddr_t addr = *i1; 10534 10535 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10536 first_mp); 10537 if (error != 0) 10538 return (error); 10539 break; /* goto sizeof (int) option return */ 10540 } 10541 10542 case IP_MULTICAST_TTL: 10543 /* Recorded in transport above IP */ 10544 *outvalp = *invalp; 10545 *outlenp = sizeof (uchar_t); 10546 return (0); 10547 case IP_MULTICAST_LOOP: 10548 if (!checkonly) { 10549 mutex_enter(&connp->conn_lock); 10550 connp->conn_multicast_loop = *invalp ? 1 : 0; 10551 mutex_exit(&connp->conn_lock); 10552 } 10553 *outvalp = *invalp; 10554 *outlenp = sizeof (uchar_t); 10555 return (0); 10556 case IP_ADD_MEMBERSHIP: 10557 case MCAST_JOIN_GROUP: 10558 case IP_DROP_MEMBERSHIP: 10559 case MCAST_LEAVE_GROUP: { 10560 struct ip_mreq *mreqp; 10561 struct group_req *greqp; 10562 ire_t *ire; 10563 boolean_t done = B_FALSE; 10564 ipaddr_t group, ifaddr; 10565 struct sockaddr_in *sin; 10566 uint32_t *ifindexp; 10567 boolean_t mcast_opt = B_TRUE; 10568 mcast_record_t fmode; 10569 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10570 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10571 10572 switch (name) { 10573 case IP_ADD_MEMBERSHIP: 10574 mcast_opt = B_FALSE; 10575 /* FALLTHRU */ 10576 case MCAST_JOIN_GROUP: 10577 fmode = MODE_IS_EXCLUDE; 10578 optfn = ip_opt_add_group; 10579 break; 10580 10581 case IP_DROP_MEMBERSHIP: 10582 mcast_opt = B_FALSE; 10583 /* FALLTHRU */ 10584 case MCAST_LEAVE_GROUP: 10585 fmode = MODE_IS_INCLUDE; 10586 optfn = ip_opt_delete_group; 10587 break; 10588 } 10589 10590 if (mcast_opt) { 10591 greqp = (struct group_req *)i1; 10592 sin = (struct sockaddr_in *)&greqp->gr_group; 10593 if (sin->sin_family != AF_INET) { 10594 *outlenp = 0; 10595 return (ENOPROTOOPT); 10596 } 10597 group = (ipaddr_t)sin->sin_addr.s_addr; 10598 ifaddr = INADDR_ANY; 10599 ifindexp = &greqp->gr_interface; 10600 } else { 10601 mreqp = (struct ip_mreq *)i1; 10602 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10603 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10604 ifindexp = NULL; 10605 } 10606 10607 /* 10608 * In the multirouting case, we need to replicate 10609 * the request on all interfaces that will take part 10610 * in replication. We do so because multirouting is 10611 * reflective, thus we will probably receive multi- 10612 * casts on those interfaces. 10613 * The ip_multirt_apply_membership() succeeds if the 10614 * operation succeeds on at least one interface. 10615 */ 10616 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10617 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10618 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10619 if (ire != NULL) { 10620 if (ire->ire_flags & RTF_MULTIRT) { 10621 error = ip_multirt_apply_membership( 10622 optfn, ire, connp, checkonly, group, 10623 fmode, INADDR_ANY, first_mp); 10624 done = B_TRUE; 10625 } 10626 ire_refrele(ire); 10627 } 10628 if (!done) { 10629 error = optfn(connp, checkonly, group, ifaddr, 10630 ifindexp, fmode, INADDR_ANY, first_mp); 10631 } 10632 if (error) { 10633 /* 10634 * EINPROGRESS is a soft error, needs retry 10635 * so don't make *outlenp zero. 10636 */ 10637 if (error != EINPROGRESS) 10638 *outlenp = 0; 10639 return (error); 10640 } 10641 /* OK return - copy input buffer into output buffer */ 10642 if (invalp != outvalp) { 10643 /* don't trust bcopy for identical src/dst */ 10644 bcopy(invalp, outvalp, inlen); 10645 } 10646 *outlenp = inlen; 10647 return (0); 10648 } 10649 case IP_BLOCK_SOURCE: 10650 case IP_UNBLOCK_SOURCE: 10651 case IP_ADD_SOURCE_MEMBERSHIP: 10652 case IP_DROP_SOURCE_MEMBERSHIP: 10653 case MCAST_BLOCK_SOURCE: 10654 case MCAST_UNBLOCK_SOURCE: 10655 case MCAST_JOIN_SOURCE_GROUP: 10656 case MCAST_LEAVE_SOURCE_GROUP: { 10657 struct ip_mreq_source *imreqp; 10658 struct group_source_req *gsreqp; 10659 in_addr_t grp, src, ifaddr = INADDR_ANY; 10660 uint32_t ifindex = 0; 10661 mcast_record_t fmode; 10662 struct sockaddr_in *sin; 10663 ire_t *ire; 10664 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10665 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10666 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10667 10668 switch (name) { 10669 case IP_BLOCK_SOURCE: 10670 mcast_opt = B_FALSE; 10671 /* FALLTHRU */ 10672 case MCAST_BLOCK_SOURCE: 10673 fmode = MODE_IS_EXCLUDE; 10674 optfn = ip_opt_add_group; 10675 break; 10676 10677 case IP_UNBLOCK_SOURCE: 10678 mcast_opt = B_FALSE; 10679 /* FALLTHRU */ 10680 case MCAST_UNBLOCK_SOURCE: 10681 fmode = MODE_IS_EXCLUDE; 10682 optfn = ip_opt_delete_group; 10683 break; 10684 10685 case IP_ADD_SOURCE_MEMBERSHIP: 10686 mcast_opt = B_FALSE; 10687 /* FALLTHRU */ 10688 case MCAST_JOIN_SOURCE_GROUP: 10689 fmode = MODE_IS_INCLUDE; 10690 optfn = ip_opt_add_group; 10691 break; 10692 10693 case IP_DROP_SOURCE_MEMBERSHIP: 10694 mcast_opt = B_FALSE; 10695 /* FALLTHRU */ 10696 case MCAST_LEAVE_SOURCE_GROUP: 10697 fmode = MODE_IS_INCLUDE; 10698 optfn = ip_opt_delete_group; 10699 break; 10700 } 10701 10702 if (mcast_opt) { 10703 gsreqp = (struct group_source_req *)i1; 10704 if (gsreqp->gsr_group.ss_family != AF_INET) { 10705 *outlenp = 0; 10706 return (ENOPROTOOPT); 10707 } 10708 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10709 grp = (ipaddr_t)sin->sin_addr.s_addr; 10710 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10711 src = (ipaddr_t)sin->sin_addr.s_addr; 10712 ifindex = gsreqp->gsr_interface; 10713 } else { 10714 imreqp = (struct ip_mreq_source *)i1; 10715 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10716 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10717 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10718 } 10719 10720 /* 10721 * In the multirouting case, we need to replicate 10722 * the request as noted in the mcast cases above. 10723 */ 10724 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10725 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10726 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10727 if (ire != NULL) { 10728 if (ire->ire_flags & RTF_MULTIRT) { 10729 error = ip_multirt_apply_membership( 10730 optfn, ire, connp, checkonly, grp, 10731 fmode, src, first_mp); 10732 done = B_TRUE; 10733 } 10734 ire_refrele(ire); 10735 } 10736 if (!done) { 10737 error = optfn(connp, checkonly, grp, ifaddr, 10738 &ifindex, fmode, src, first_mp); 10739 } 10740 if (error != 0) { 10741 /* 10742 * EINPROGRESS is a soft error, needs retry 10743 * so don't make *outlenp zero. 10744 */ 10745 if (error != EINPROGRESS) 10746 *outlenp = 0; 10747 return (error); 10748 } 10749 /* OK return - copy input buffer into output buffer */ 10750 if (invalp != outvalp) { 10751 bcopy(invalp, outvalp, inlen); 10752 } 10753 *outlenp = inlen; 10754 return (0); 10755 } 10756 case IP_SEC_OPT: 10757 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10758 if (error != 0) { 10759 *outlenp = 0; 10760 return (error); 10761 } 10762 break; 10763 case IP_HDRINCL: 10764 case IP_OPTIONS: 10765 case T_IP_OPTIONS: 10766 case IP_TOS: 10767 case T_IP_TOS: 10768 case IP_TTL: 10769 case IP_RECVDSTADDR: 10770 case IP_RECVOPTS: 10771 /* OK return - copy input buffer into output buffer */ 10772 if (invalp != outvalp) { 10773 /* don't trust bcopy for identical src/dst */ 10774 bcopy(invalp, outvalp, inlen); 10775 } 10776 *outlenp = inlen; 10777 return (0); 10778 case IP_RECVIF: 10779 /* Retrieve the inbound interface index */ 10780 if (!checkonly) { 10781 mutex_enter(&connp->conn_lock); 10782 connp->conn_recvif = *i1 ? 1 : 0; 10783 mutex_exit(&connp->conn_lock); 10784 } 10785 break; /* goto sizeof (int) option return */ 10786 case IP_RECVSLLA: 10787 /* Retrieve the source link layer address */ 10788 if (!checkonly) { 10789 mutex_enter(&connp->conn_lock); 10790 connp->conn_recvslla = *i1 ? 1 : 0; 10791 mutex_exit(&connp->conn_lock); 10792 } 10793 break; /* goto sizeof (int) option return */ 10794 case MRT_INIT: 10795 case MRT_DONE: 10796 case MRT_ADD_VIF: 10797 case MRT_DEL_VIF: 10798 case MRT_ADD_MFC: 10799 case MRT_DEL_MFC: 10800 case MRT_ASSERT: 10801 if ((error = secpolicy_net_config(cr, B_FALSE)) != 0) { 10802 *outlenp = 0; 10803 return (error); 10804 } 10805 error = ip_mrouter_set((int)name, q, checkonly, 10806 (uchar_t *)invalp, inlen, first_mp); 10807 if (error) { 10808 *outlenp = 0; 10809 return (error); 10810 } 10811 /* OK return - copy input buffer into output buffer */ 10812 if (invalp != outvalp) { 10813 /* don't trust bcopy for identical src/dst */ 10814 bcopy(invalp, outvalp, inlen); 10815 } 10816 *outlenp = inlen; 10817 return (0); 10818 case IP_BOUND_IF: 10819 case IP_XMIT_IF: 10820 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10821 level, name, first_mp); 10822 if (error != 0) 10823 return (error); 10824 break; /* goto sizeof (int) option return */ 10825 10826 case IP_UNSPEC_SRC: 10827 /* Allow sending with a zero source address */ 10828 if (!checkonly) { 10829 mutex_enter(&connp->conn_lock); 10830 connp->conn_unspec_src = *i1 ? 1 : 0; 10831 mutex_exit(&connp->conn_lock); 10832 } 10833 break; /* goto sizeof (int) option return */ 10834 default: 10835 /* 10836 * "soft" error (negative) 10837 * option not handled at this level 10838 * Note: Do not modify *outlenp 10839 */ 10840 return (-EINVAL); 10841 } 10842 break; 10843 case IPPROTO_IPV6: 10844 switch (name) { 10845 case IPV6_BOUND_IF: 10846 case IPV6_BOUND_PIF: 10847 case IPV6_DONTFAILOVER_IF: 10848 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10849 level, name, first_mp); 10850 if (error != 0) 10851 return (error); 10852 break; /* goto sizeof (int) option return */ 10853 10854 case IPV6_MULTICAST_IF: 10855 /* 10856 * The only possible errors are EINPROGRESS and 10857 * EINVAL. EINPROGRESS will be restarted and is not 10858 * a hard error. We call this option on both V4 and V6 10859 * If both return EINVAL, then this call returns 10860 * EINVAL. If at least one of them succeeds we 10861 * return success. 10862 */ 10863 found = B_FALSE; 10864 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10865 level, name, first_mp); 10866 if (error == EINPROGRESS) 10867 return (error); 10868 if (error == 0) 10869 found = B_TRUE; 10870 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10871 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 10872 if (error == 0) 10873 found = B_TRUE; 10874 if (!found) 10875 return (error); 10876 break; /* goto sizeof (int) option return */ 10877 10878 case IPV6_MULTICAST_HOPS: 10879 /* Recorded in transport above IP */ 10880 break; /* goto sizeof (int) option return */ 10881 case IPV6_MULTICAST_LOOP: 10882 if (!checkonly) { 10883 mutex_enter(&connp->conn_lock); 10884 connp->conn_multicast_loop = *i1; 10885 mutex_exit(&connp->conn_lock); 10886 } 10887 break; /* goto sizeof (int) option return */ 10888 case IPV6_JOIN_GROUP: 10889 case MCAST_JOIN_GROUP: 10890 case IPV6_LEAVE_GROUP: 10891 case MCAST_LEAVE_GROUP: { 10892 struct ipv6_mreq *ip_mreqp; 10893 struct group_req *greqp; 10894 ire_t *ire; 10895 boolean_t done = B_FALSE; 10896 in6_addr_t groupv6; 10897 uint32_t ifindex; 10898 boolean_t mcast_opt = B_TRUE; 10899 mcast_record_t fmode; 10900 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 10901 int, mcast_record_t, const in6_addr_t *, mblk_t *); 10902 10903 switch (name) { 10904 case IPV6_JOIN_GROUP: 10905 mcast_opt = B_FALSE; 10906 /* FALLTHRU */ 10907 case MCAST_JOIN_GROUP: 10908 fmode = MODE_IS_EXCLUDE; 10909 optfn = ip_opt_add_group_v6; 10910 break; 10911 10912 case IPV6_LEAVE_GROUP: 10913 mcast_opt = B_FALSE; 10914 /* FALLTHRU */ 10915 case MCAST_LEAVE_GROUP: 10916 fmode = MODE_IS_INCLUDE; 10917 optfn = ip_opt_delete_group_v6; 10918 break; 10919 } 10920 10921 if (mcast_opt) { 10922 struct sockaddr_in *sin; 10923 struct sockaddr_in6 *sin6; 10924 greqp = (struct group_req *)i1; 10925 if (greqp->gr_group.ss_family == AF_INET) { 10926 sin = (struct sockaddr_in *) 10927 &(greqp->gr_group); 10928 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 10929 &groupv6); 10930 } else { 10931 sin6 = (struct sockaddr_in6 *) 10932 &(greqp->gr_group); 10933 groupv6 = sin6->sin6_addr; 10934 } 10935 ifindex = greqp->gr_interface; 10936 } else { 10937 ip_mreqp = (struct ipv6_mreq *)i1; 10938 groupv6 = ip_mreqp->ipv6mr_multiaddr; 10939 ifindex = ip_mreqp->ipv6mr_interface; 10940 } 10941 /* 10942 * In the multirouting case, we need to replicate 10943 * the request on all interfaces that will take part 10944 * in replication. We do so because multirouting is 10945 * reflective, thus we will probably receive multi- 10946 * casts on those interfaces. 10947 * The ip_multirt_apply_membership_v6() succeeds if 10948 * the operation succeeds on at least one interface. 10949 */ 10950 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 10951 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10952 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10953 if (ire != NULL) { 10954 if (ire->ire_flags & RTF_MULTIRT) { 10955 error = ip_multirt_apply_membership_v6( 10956 optfn, ire, connp, checkonly, 10957 &groupv6, fmode, &ipv6_all_zeros, 10958 first_mp); 10959 done = B_TRUE; 10960 } 10961 ire_refrele(ire); 10962 } 10963 if (!done) { 10964 error = optfn(connp, checkonly, &groupv6, 10965 ifindex, fmode, &ipv6_all_zeros, first_mp); 10966 } 10967 if (error) { 10968 /* 10969 * EINPROGRESS is a soft error, needs retry 10970 * so don't make *outlenp zero. 10971 */ 10972 if (error != EINPROGRESS) 10973 *outlenp = 0; 10974 return (error); 10975 } 10976 /* OK return - copy input buffer into output buffer */ 10977 if (invalp != outvalp) { 10978 /* don't trust bcopy for identical src/dst */ 10979 bcopy(invalp, outvalp, inlen); 10980 } 10981 *outlenp = inlen; 10982 return (0); 10983 } 10984 case MCAST_BLOCK_SOURCE: 10985 case MCAST_UNBLOCK_SOURCE: 10986 case MCAST_JOIN_SOURCE_GROUP: 10987 case MCAST_LEAVE_SOURCE_GROUP: { 10988 struct group_source_req *gsreqp; 10989 in6_addr_t v6grp, v6src; 10990 uint32_t ifindex; 10991 mcast_record_t fmode; 10992 ire_t *ire; 10993 boolean_t done = B_FALSE; 10994 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 10995 int, mcast_record_t, const in6_addr_t *, mblk_t *); 10996 10997 switch (name) { 10998 case MCAST_BLOCK_SOURCE: 10999 fmode = MODE_IS_EXCLUDE; 11000 optfn = ip_opt_add_group_v6; 11001 break; 11002 case MCAST_UNBLOCK_SOURCE: 11003 fmode = MODE_IS_EXCLUDE; 11004 optfn = ip_opt_delete_group_v6; 11005 break; 11006 case MCAST_JOIN_SOURCE_GROUP: 11007 fmode = MODE_IS_INCLUDE; 11008 optfn = ip_opt_add_group_v6; 11009 break; 11010 case MCAST_LEAVE_SOURCE_GROUP: 11011 fmode = MODE_IS_INCLUDE; 11012 optfn = ip_opt_delete_group_v6; 11013 break; 11014 } 11015 11016 gsreqp = (struct group_source_req *)i1; 11017 ifindex = gsreqp->gsr_interface; 11018 if (gsreqp->gsr_group.ss_family == AF_INET) { 11019 struct sockaddr_in *s; 11020 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11021 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11022 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11023 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11024 } else { 11025 struct sockaddr_in6 *s6; 11026 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11027 v6grp = s6->sin6_addr; 11028 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11029 v6src = s6->sin6_addr; 11030 } 11031 11032 /* 11033 * In the multirouting case, we need to replicate 11034 * the request as noted in the mcast cases above. 11035 */ 11036 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11037 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11038 MATCH_IRE_MASK | MATCH_IRE_TYPE); 11039 if (ire != NULL) { 11040 if (ire->ire_flags & RTF_MULTIRT) { 11041 error = ip_multirt_apply_membership_v6( 11042 optfn, ire, connp, checkonly, 11043 &v6grp, fmode, &v6src, first_mp); 11044 done = B_TRUE; 11045 } 11046 ire_refrele(ire); 11047 } 11048 if (!done) { 11049 error = optfn(connp, checkonly, &v6grp, 11050 ifindex, fmode, &v6src, first_mp); 11051 } 11052 if (error != 0) { 11053 /* 11054 * EINPROGRESS is a soft error, needs retry 11055 * so don't make *outlenp zero. 11056 */ 11057 if (error != EINPROGRESS) 11058 *outlenp = 0; 11059 return (error); 11060 } 11061 /* OK return - copy input buffer into output buffer */ 11062 if (invalp != outvalp) { 11063 bcopy(invalp, outvalp, inlen); 11064 } 11065 *outlenp = inlen; 11066 return (0); 11067 } 11068 case IPV6_UNICAST_HOPS: 11069 /* Recorded in transport above IP */ 11070 break; /* goto sizeof (int) option return */ 11071 case IPV6_UNSPEC_SRC: 11072 /* Allow sending with a zero source address */ 11073 if (!checkonly) { 11074 mutex_enter(&connp->conn_lock); 11075 connp->conn_unspec_src = *i1 ? 1 : 0; 11076 mutex_exit(&connp->conn_lock); 11077 } 11078 break; /* goto sizeof (int) option return */ 11079 case IPV6_RECVPKTINFO: 11080 if (!checkonly) { 11081 mutex_enter(&connp->conn_lock); 11082 connp->conn_ipv6_recvpktinfo = *i1 ? 1 : 0; 11083 mutex_exit(&connp->conn_lock); 11084 } 11085 break; /* goto sizeof (int) option return */ 11086 case IPV6_RECVTCLASS: 11087 if (!checkonly) { 11088 if (*i1 < 0 || *i1 > 1) { 11089 return (EINVAL); 11090 } 11091 mutex_enter(&connp->conn_lock); 11092 connp->conn_ipv6_recvtclass = *i1; 11093 mutex_exit(&connp->conn_lock); 11094 } 11095 break; 11096 case IPV6_RECVPATHMTU: 11097 if (!checkonly) { 11098 if (*i1 < 0 || *i1 > 1) { 11099 return (EINVAL); 11100 } 11101 mutex_enter(&connp->conn_lock); 11102 connp->conn_ipv6_recvpathmtu = *i1; 11103 mutex_exit(&connp->conn_lock); 11104 } 11105 break; 11106 case IPV6_RECVHOPLIMIT: 11107 if (!checkonly) { 11108 mutex_enter(&connp->conn_lock); 11109 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11110 mutex_exit(&connp->conn_lock); 11111 } 11112 break; /* goto sizeof (int) option return */ 11113 case IPV6_RECVHOPOPTS: 11114 if (!checkonly) { 11115 mutex_enter(&connp->conn_lock); 11116 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11117 mutex_exit(&connp->conn_lock); 11118 } 11119 break; /* goto sizeof (int) option return */ 11120 case IPV6_RECVDSTOPTS: 11121 if (!checkonly) { 11122 mutex_enter(&connp->conn_lock); 11123 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11124 mutex_exit(&connp->conn_lock); 11125 } 11126 break; /* goto sizeof (int) option return */ 11127 case IPV6_RECVRTHDR: 11128 if (!checkonly) { 11129 mutex_enter(&connp->conn_lock); 11130 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11131 mutex_exit(&connp->conn_lock); 11132 } 11133 break; /* goto sizeof (int) option return */ 11134 case IPV6_RECVRTHDRDSTOPTS: 11135 if (!checkonly) { 11136 mutex_enter(&connp->conn_lock); 11137 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11138 mutex_exit(&connp->conn_lock); 11139 } 11140 break; /* goto sizeof (int) option return */ 11141 case IPV6_PKTINFO: 11142 if (inlen == 0) 11143 return (-EINVAL); /* clearing option */ 11144 error = ip6_set_pktinfo(cr, connp, 11145 (struct in6_pktinfo *)invalp, first_mp); 11146 if (error != 0) 11147 *outlenp = 0; 11148 else 11149 *outlenp = inlen; 11150 return (error); 11151 case IPV6_NEXTHOP: { 11152 struct sockaddr_in6 *sin6; 11153 11154 /* Verify that the nexthop is reachable */ 11155 if (inlen == 0) 11156 return (-EINVAL); /* clearing option */ 11157 11158 sin6 = (struct sockaddr_in6 *)invalp; 11159 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11160 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11161 NULL, MATCH_IRE_DEFAULT); 11162 11163 if (ire == NULL) { 11164 *outlenp = 0; 11165 return (EHOSTUNREACH); 11166 } 11167 ire_refrele(ire); 11168 return (-EINVAL); 11169 } 11170 case IPV6_SEC_OPT: 11171 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11172 if (error != 0) { 11173 *outlenp = 0; 11174 return (error); 11175 } 11176 break; 11177 case IPV6_SRC_PREFERENCES: { 11178 /* 11179 * This is implemented strictly in the ip module 11180 * (here and in tcp_opt_*() to accomodate tcp 11181 * sockets). Modules above ip pass this option 11182 * down here since ip is the only one that needs to 11183 * be aware of source address preferences. 11184 * 11185 * This socket option only affects connected 11186 * sockets that haven't already bound to a specific 11187 * IPv6 address. In other words, sockets that 11188 * don't call bind() with an address other than the 11189 * unspecified address and that call connect(). 11190 * ip_bind_connected_v6() passes these preferences 11191 * to the ipif_select_source_v6() function. 11192 */ 11193 if (inlen != sizeof (uint32_t)) 11194 return (EINVAL); 11195 error = ip6_set_src_preferences(connp, 11196 *(uint32_t *)invalp); 11197 if (error != 0) { 11198 *outlenp = 0; 11199 return (error); 11200 } else { 11201 *outlenp = sizeof (uint32_t); 11202 } 11203 break; 11204 } 11205 case IPV6_V6ONLY: 11206 if (*i1 < 0 || *i1 > 1) { 11207 return (EINVAL); 11208 } 11209 mutex_enter(&connp->conn_lock); 11210 connp->conn_ipv6_v6only = *i1; 11211 mutex_exit(&connp->conn_lock); 11212 break; 11213 default: 11214 return (-EINVAL); 11215 } 11216 break; 11217 default: 11218 /* 11219 * "soft" error (negative) 11220 * option not handled at this level 11221 * Note: Do not modify *outlenp 11222 */ 11223 return (-EINVAL); 11224 } 11225 /* 11226 * Common case of return from an option that is sizeof (int) 11227 */ 11228 *(int *)outvalp = *i1; 11229 *outlenp = sizeof (int); 11230 return (0); 11231 } 11232 11233 /* 11234 * This routine gets default values of certain options whose default 11235 * values are maintained by protocol specific code 11236 */ 11237 /* ARGSUSED */ 11238 int 11239 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11240 { 11241 int *i1 = (int *)ptr; 11242 11243 switch (level) { 11244 case IPPROTO_IP: 11245 switch (name) { 11246 case IP_MULTICAST_TTL: 11247 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11248 return (sizeof (uchar_t)); 11249 case IP_MULTICAST_LOOP: 11250 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11251 return (sizeof (uchar_t)); 11252 default: 11253 return (-1); 11254 } 11255 case IPPROTO_IPV6: 11256 switch (name) { 11257 case IPV6_UNICAST_HOPS: 11258 *i1 = ipv6_def_hops; 11259 return (sizeof (int)); 11260 case IPV6_MULTICAST_HOPS: 11261 *i1 = IP_DEFAULT_MULTICAST_TTL; 11262 return (sizeof (int)); 11263 case IPV6_MULTICAST_LOOP: 11264 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11265 return (sizeof (int)); 11266 case IPV6_V6ONLY: 11267 *i1 = 1; 11268 return (sizeof (int)); 11269 default: 11270 return (-1); 11271 } 11272 default: 11273 return (-1); 11274 } 11275 /* NOTREACHED */ 11276 } 11277 11278 /* 11279 * Given a destination address and a pointer to where to put the information 11280 * this routine fills in the mtuinfo. 11281 */ 11282 int 11283 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11284 struct ip6_mtuinfo *mtuinfo) 11285 { 11286 ire_t *ire; 11287 11288 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11289 return (-1); 11290 11291 bzero(mtuinfo, sizeof (*mtuinfo)); 11292 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11293 mtuinfo->ip6m_addr.sin6_port = port; 11294 mtuinfo->ip6m_addr.sin6_addr = *in6; 11295 11296 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL); 11297 if (ire != NULL) { 11298 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11299 ire_refrele(ire); 11300 } else { 11301 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11302 } 11303 return (sizeof (struct ip6_mtuinfo)); 11304 } 11305 11306 /* 11307 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11308 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11309 * isn't. This doesn't matter as the error checking is done properly for the 11310 * other MRT options coming in through ip_opt_set. 11311 */ 11312 int 11313 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11314 { 11315 conn_t *connp = Q_TO_CONN(q); 11316 ipsec_req_t *req = (ipsec_req_t *)ptr; 11317 11318 switch (level) { 11319 case IPPROTO_IP: 11320 switch (name) { 11321 case MRT_VERSION: 11322 case MRT_ASSERT: 11323 (void) ip_mrouter_get(name, q, ptr); 11324 return (sizeof (int)); 11325 case IP_SEC_OPT: 11326 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11327 case IP_NEXTHOP: 11328 if (connp->conn_nexthop_set) { 11329 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11330 return (sizeof (ipaddr_t)); 11331 } else 11332 return (0); 11333 default: 11334 break; 11335 } 11336 break; 11337 case IPPROTO_IPV6: 11338 switch (name) { 11339 case IPV6_SEC_OPT: 11340 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11341 case IPV6_SRC_PREFERENCES: { 11342 return (ip6_get_src_preferences(connp, 11343 (uint32_t *)ptr)); 11344 } 11345 case IPV6_V6ONLY: 11346 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11347 return (sizeof (int)); 11348 case IPV6_PATHMTU: 11349 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11350 (struct ip6_mtuinfo *)ptr)); 11351 default: 11352 break; 11353 } 11354 break; 11355 default: 11356 break; 11357 } 11358 return (-1); 11359 } 11360 11361 /* Named Dispatch routine to get a current value out of our parameter table. */ 11362 /* ARGSUSED */ 11363 static int 11364 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11365 { 11366 ipparam_t *ippa = (ipparam_t *)cp; 11367 11368 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11369 return (0); 11370 } 11371 11372 /* ARGSUSED */ 11373 static int 11374 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11375 { 11376 11377 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11378 return (0); 11379 } 11380 11381 /* 11382 * Set ip{,6}_forwarding values. This means walking through all of the 11383 * ill's and toggling their forwarding values. 11384 */ 11385 /* ARGSUSED */ 11386 static int 11387 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11388 { 11389 long new_value; 11390 int *forwarding_value = (int *)cp; 11391 ill_t *walker; 11392 boolean_t isv6 = (forwarding_value == &ipv6_forward); 11393 ill_walk_context_t ctx; 11394 11395 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11396 new_value < 0 || new_value > 1) { 11397 return (EINVAL); 11398 } 11399 11400 *forwarding_value = new_value; 11401 11402 /* 11403 * Regardless of the current value of ip_forwarding, set all per-ill 11404 * values of ip_forwarding to the value being set. 11405 * 11406 * Bring all the ill's up to date with the new global value. 11407 */ 11408 rw_enter(&ill_g_lock, RW_READER); 11409 11410 if (isv6) 11411 walker = ILL_START_WALK_V6(&ctx); 11412 else 11413 walker = ILL_START_WALK_V4(&ctx); 11414 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 11415 (void) ill_forward_set(q, mp, (new_value != 0), 11416 (caddr_t)walker); 11417 } 11418 rw_exit(&ill_g_lock); 11419 11420 return (0); 11421 } 11422 11423 /* 11424 * Walk through the param array specified registering each element with the 11425 * Named Dispatch handler. This is called only during init. So it is ok 11426 * not to acquire any locks 11427 */ 11428 static boolean_t 11429 ip_param_register(ipparam_t *ippa, size_t ippa_cnt, 11430 ipndp_t *ipnd, size_t ipnd_cnt) 11431 { 11432 for (; ippa_cnt-- > 0; ippa++) { 11433 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11434 if (!nd_load(&ip_g_nd, ippa->ip_param_name, 11435 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11436 nd_free(&ip_g_nd); 11437 return (B_FALSE); 11438 } 11439 } 11440 } 11441 11442 for (; ipnd_cnt-- > 0; ipnd++) { 11443 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11444 if (!nd_load(&ip_g_nd, ipnd->ip_ndp_name, 11445 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11446 ipnd->ip_ndp_data)) { 11447 nd_free(&ip_g_nd); 11448 return (B_FALSE); 11449 } 11450 } 11451 } 11452 11453 return (B_TRUE); 11454 } 11455 11456 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11457 /* ARGSUSED */ 11458 static int 11459 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11460 { 11461 long new_value; 11462 ipparam_t *ippa = (ipparam_t *)cp; 11463 11464 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11465 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11466 return (EINVAL); 11467 } 11468 ippa->ip_param_value = new_value; 11469 return (0); 11470 } 11471 11472 /* 11473 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11474 * When an ipf is passed here for the first time, if 11475 * we already have in-order fragments on the queue, we convert from the fast- 11476 * path reassembly scheme to the hard-case scheme. From then on, additional 11477 * fragments are reassembled here. We keep track of the start and end offsets 11478 * of each piece, and the number of holes in the chain. When the hole count 11479 * goes to zero, we are done! 11480 * 11481 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11482 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11483 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11484 * after the call to ip_reassemble(). 11485 */ 11486 int 11487 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11488 size_t msg_len) 11489 { 11490 uint_t end; 11491 mblk_t *next_mp; 11492 mblk_t *mp1; 11493 uint_t offset; 11494 boolean_t incr_dups = B_TRUE; 11495 boolean_t offset_zero_seen = B_FALSE; 11496 boolean_t pkt_boundary_checked = B_FALSE; 11497 11498 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11499 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11500 11501 /* Add in byte count */ 11502 ipf->ipf_count += msg_len; 11503 if (ipf->ipf_end) { 11504 /* 11505 * We were part way through in-order reassembly, but now there 11506 * is a hole. We walk through messages already queued, and 11507 * mark them for hard case reassembly. We know that up till 11508 * now they were in order starting from offset zero. 11509 */ 11510 offset = 0; 11511 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11512 IP_REASS_SET_START(mp1, offset); 11513 if (offset == 0) { 11514 ASSERT(ipf->ipf_nf_hdr_len != 0); 11515 offset = -ipf->ipf_nf_hdr_len; 11516 } 11517 offset += mp1->b_wptr - mp1->b_rptr; 11518 IP_REASS_SET_END(mp1, offset); 11519 } 11520 /* One hole at the end. */ 11521 ipf->ipf_hole_cnt = 1; 11522 /* Brand it as a hard case, forever. */ 11523 ipf->ipf_end = 0; 11524 } 11525 /* Walk through all the new pieces. */ 11526 do { 11527 end = start + (mp->b_wptr - mp->b_rptr); 11528 /* 11529 * If start is 0, decrease 'end' only for the first mblk of 11530 * the fragment. Otherwise 'end' can get wrong value in the 11531 * second pass of the loop if first mblk is exactly the 11532 * size of ipf_nf_hdr_len. 11533 */ 11534 if (start == 0 && !offset_zero_seen) { 11535 /* First segment */ 11536 ASSERT(ipf->ipf_nf_hdr_len != 0); 11537 end -= ipf->ipf_nf_hdr_len; 11538 offset_zero_seen = B_TRUE; 11539 } 11540 next_mp = mp->b_cont; 11541 /* 11542 * We are checking to see if there is any interesing data 11543 * to process. If there isn't and the mblk isn't the 11544 * one which carries the unfragmentable header then we 11545 * drop it. It's possible to have just the unfragmentable 11546 * header come through without any data. That needs to be 11547 * saved. 11548 * 11549 * If the assert at the top of this function holds then the 11550 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11551 * is infrequently traveled enough that the test is left in 11552 * to protect against future code changes which break that 11553 * invariant. 11554 */ 11555 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11556 /* Empty. Blast it. */ 11557 IP_REASS_SET_START(mp, 0); 11558 IP_REASS_SET_END(mp, 0); 11559 /* 11560 * If the ipf points to the mblk we are about to free, 11561 * update ipf to point to the next mblk (or NULL 11562 * if none). 11563 */ 11564 if (ipf->ipf_mp->b_cont == mp) 11565 ipf->ipf_mp->b_cont = next_mp; 11566 freeb(mp); 11567 continue; 11568 } 11569 mp->b_cont = NULL; 11570 IP_REASS_SET_START(mp, start); 11571 IP_REASS_SET_END(mp, end); 11572 if (!ipf->ipf_tail_mp) { 11573 ipf->ipf_tail_mp = mp; 11574 ipf->ipf_mp->b_cont = mp; 11575 if (start == 0 || !more) { 11576 ipf->ipf_hole_cnt = 1; 11577 /* 11578 * if the first fragment comes in more than one 11579 * mblk, this loop will be executed for each 11580 * mblk. Need to adjust hole count so exiting 11581 * this routine will leave hole count at 1. 11582 */ 11583 if (next_mp) 11584 ipf->ipf_hole_cnt++; 11585 } else 11586 ipf->ipf_hole_cnt = 2; 11587 continue; 11588 } else if (ipf->ipf_last_frag_seen && !more && 11589 !pkt_boundary_checked) { 11590 /* 11591 * We check datagram boundary only if this fragment 11592 * claims to be the last fragment and we have seen a 11593 * last fragment in the past too. We do this only 11594 * once for a given fragment. 11595 * 11596 * start cannot be 0 here as fragments with start=0 11597 * and MF=0 gets handled as a complete packet. These 11598 * fragments should not reach here. 11599 */ 11600 11601 if (start + msgdsize(mp) != 11602 IP_REASS_END(ipf->ipf_tail_mp)) { 11603 /* 11604 * We have two fragments both of which claim 11605 * to be the last fragment but gives conflicting 11606 * information about the whole datagram size. 11607 * Something fishy is going on. Drop the 11608 * fragment and free up the reassembly list. 11609 */ 11610 return (IP_REASS_FAILED); 11611 } 11612 11613 /* 11614 * We shouldn't come to this code block again for this 11615 * particular fragment. 11616 */ 11617 pkt_boundary_checked = B_TRUE; 11618 } 11619 11620 /* New stuff at or beyond tail? */ 11621 offset = IP_REASS_END(ipf->ipf_tail_mp); 11622 if (start >= offset) { 11623 if (ipf->ipf_last_frag_seen) { 11624 /* current fragment is beyond last fragment */ 11625 return (IP_REASS_FAILED); 11626 } 11627 /* Link it on end. */ 11628 ipf->ipf_tail_mp->b_cont = mp; 11629 ipf->ipf_tail_mp = mp; 11630 if (more) { 11631 if (start != offset) 11632 ipf->ipf_hole_cnt++; 11633 } else if (start == offset && next_mp == NULL) 11634 ipf->ipf_hole_cnt--; 11635 continue; 11636 } 11637 mp1 = ipf->ipf_mp->b_cont; 11638 offset = IP_REASS_START(mp1); 11639 /* New stuff at the front? */ 11640 if (start < offset) { 11641 if (start == 0) { 11642 if (end >= offset) { 11643 /* Nailed the hole at the begining. */ 11644 ipf->ipf_hole_cnt--; 11645 } 11646 } else if (end < offset) { 11647 /* 11648 * A hole, stuff, and a hole where there used 11649 * to be just a hole. 11650 */ 11651 ipf->ipf_hole_cnt++; 11652 } 11653 mp->b_cont = mp1; 11654 /* Check for overlap. */ 11655 while (end > offset) { 11656 if (end < IP_REASS_END(mp1)) { 11657 mp->b_wptr -= end - offset; 11658 IP_REASS_SET_END(mp, offset); 11659 if (ill->ill_isv6) { 11660 BUMP_MIB(ill->ill_ip6_mib, 11661 ipv6ReasmPartDups); 11662 } else { 11663 BUMP_MIB(&ip_mib, 11664 ipReasmPartDups); 11665 } 11666 break; 11667 } 11668 /* Did we cover another hole? */ 11669 if ((mp1->b_cont && 11670 IP_REASS_END(mp1) != 11671 IP_REASS_START(mp1->b_cont) && 11672 end >= IP_REASS_START(mp1->b_cont)) || 11673 (!ipf->ipf_last_frag_seen && !more)) { 11674 ipf->ipf_hole_cnt--; 11675 } 11676 /* Clip out mp1. */ 11677 if ((mp->b_cont = mp1->b_cont) == NULL) { 11678 /* 11679 * After clipping out mp1, this guy 11680 * is now hanging off the end. 11681 */ 11682 ipf->ipf_tail_mp = mp; 11683 } 11684 IP_REASS_SET_START(mp1, 0); 11685 IP_REASS_SET_END(mp1, 0); 11686 /* Subtract byte count */ 11687 ipf->ipf_count -= mp1->b_datap->db_lim - 11688 mp1->b_datap->db_base; 11689 freeb(mp1); 11690 if (ill->ill_isv6) { 11691 BUMP_MIB(ill->ill_ip6_mib, 11692 ipv6ReasmPartDups); 11693 } else { 11694 BUMP_MIB(&ip_mib, ipReasmPartDups); 11695 } 11696 mp1 = mp->b_cont; 11697 if (!mp1) 11698 break; 11699 offset = IP_REASS_START(mp1); 11700 } 11701 ipf->ipf_mp->b_cont = mp; 11702 continue; 11703 } 11704 /* 11705 * The new piece starts somewhere between the start of the head 11706 * and before the end of the tail. 11707 */ 11708 for (; mp1; mp1 = mp1->b_cont) { 11709 offset = IP_REASS_END(mp1); 11710 if (start < offset) { 11711 if (end <= offset) { 11712 /* Nothing new. */ 11713 IP_REASS_SET_START(mp, 0); 11714 IP_REASS_SET_END(mp, 0); 11715 /* Subtract byte count */ 11716 ipf->ipf_count -= mp->b_datap->db_lim - 11717 mp->b_datap->db_base; 11718 if (incr_dups) { 11719 ipf->ipf_num_dups++; 11720 incr_dups = B_FALSE; 11721 } 11722 freeb(mp); 11723 if (ill->ill_isv6) { 11724 BUMP_MIB(ill->ill_ip6_mib, 11725 ipv6ReasmDuplicates); 11726 } else { 11727 BUMP_MIB(&ip_mib, 11728 ipReasmDuplicates); 11729 } 11730 break; 11731 } 11732 /* 11733 * Trim redundant stuff off beginning of new 11734 * piece. 11735 */ 11736 IP_REASS_SET_START(mp, offset); 11737 mp->b_rptr += offset - start; 11738 if (ill->ill_isv6) { 11739 BUMP_MIB(ill->ill_ip6_mib, 11740 ipv6ReasmPartDups); 11741 } else { 11742 BUMP_MIB(&ip_mib, ipReasmPartDups); 11743 } 11744 start = offset; 11745 if (!mp1->b_cont) { 11746 /* 11747 * After trimming, this guy is now 11748 * hanging off the end. 11749 */ 11750 mp1->b_cont = mp; 11751 ipf->ipf_tail_mp = mp; 11752 if (!more) { 11753 ipf->ipf_hole_cnt--; 11754 } 11755 break; 11756 } 11757 } 11758 if (start >= IP_REASS_START(mp1->b_cont)) 11759 continue; 11760 /* Fill a hole */ 11761 if (start > offset) 11762 ipf->ipf_hole_cnt++; 11763 mp->b_cont = mp1->b_cont; 11764 mp1->b_cont = mp; 11765 mp1 = mp->b_cont; 11766 offset = IP_REASS_START(mp1); 11767 if (end >= offset) { 11768 ipf->ipf_hole_cnt--; 11769 /* Check for overlap. */ 11770 while (end > offset) { 11771 if (end < IP_REASS_END(mp1)) { 11772 mp->b_wptr -= end - offset; 11773 IP_REASS_SET_END(mp, offset); 11774 /* 11775 * TODO we might bump 11776 * this up twice if there is 11777 * overlap at both ends. 11778 */ 11779 if (ill->ill_isv6) { 11780 BUMP_MIB( 11781 ill->ill_ip6_mib, 11782 ipv6ReasmPartDups); 11783 } else { 11784 BUMP_MIB(&ip_mib, 11785 ipReasmPartDups); 11786 } 11787 break; 11788 } 11789 /* Did we cover another hole? */ 11790 if ((mp1->b_cont && 11791 IP_REASS_END(mp1) 11792 != IP_REASS_START(mp1->b_cont) && 11793 end >= 11794 IP_REASS_START(mp1->b_cont)) || 11795 (!ipf->ipf_last_frag_seen && 11796 !more)) { 11797 ipf->ipf_hole_cnt--; 11798 } 11799 /* Clip out mp1. */ 11800 if ((mp->b_cont = mp1->b_cont) == 11801 NULL) { 11802 /* 11803 * After clipping out mp1, 11804 * this guy is now hanging 11805 * off the end. 11806 */ 11807 ipf->ipf_tail_mp = mp; 11808 } 11809 IP_REASS_SET_START(mp1, 0); 11810 IP_REASS_SET_END(mp1, 0); 11811 /* Subtract byte count */ 11812 ipf->ipf_count -= 11813 mp1->b_datap->db_lim - 11814 mp1->b_datap->db_base; 11815 freeb(mp1); 11816 if (ill->ill_isv6) { 11817 BUMP_MIB(ill->ill_ip6_mib, 11818 ipv6ReasmPartDups); 11819 } else { 11820 BUMP_MIB(&ip_mib, 11821 ipReasmPartDups); 11822 } 11823 mp1 = mp->b_cont; 11824 if (!mp1) 11825 break; 11826 offset = IP_REASS_START(mp1); 11827 } 11828 } 11829 break; 11830 } 11831 } while (start = end, mp = next_mp); 11832 11833 /* Fragment just processed could be the last one. Remember this fact */ 11834 if (!more) 11835 ipf->ipf_last_frag_seen = B_TRUE; 11836 11837 /* Still got holes? */ 11838 if (ipf->ipf_hole_cnt) 11839 return (IP_REASS_PARTIAL); 11840 /* Clean up overloaded fields to avoid upstream disasters. */ 11841 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11842 IP_REASS_SET_START(mp1, 0); 11843 IP_REASS_SET_END(mp1, 0); 11844 } 11845 return (IP_REASS_COMPLETE); 11846 } 11847 11848 /* 11849 * ipsec processing for the fast path, used for input UDP Packets 11850 */ 11851 static boolean_t 11852 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 11853 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 11854 { 11855 uint32_t ill_index; 11856 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 11857 11858 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11859 /* The ill_index of the incoming ILL */ 11860 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 11861 11862 /* pass packet up to the transport */ 11863 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 11864 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 11865 NULL, mctl_present); 11866 if (*first_mpp == NULL) { 11867 return (B_FALSE); 11868 } 11869 } 11870 11871 /* Initiate IPPF processing for fastpath UDP */ 11872 if (IPP_ENABLED(IPP_LOCAL_IN)) { 11873 ip_process(IPP_LOCAL_IN, mpp, ill_index); 11874 if (*mpp == NULL) { 11875 ip2dbg(("ip_input_ipsec_process: UDP pkt " 11876 "deferred/dropped during IPPF processing\n")); 11877 return (B_FALSE); 11878 } 11879 } 11880 /* 11881 * We make the checks as below since we are in the fast path 11882 * and want to minimize the number of checks if the IP_RECVIF and/or 11883 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 11884 */ 11885 if (connp->conn_recvif || connp->conn_recvslla || 11886 connp->conn_ipv6_recvpktinfo) { 11887 if (connp->conn_recvif || 11888 connp->conn_ipv6_recvpktinfo) { 11889 in_flags = IPF_RECVIF; 11890 } 11891 if (connp->conn_recvslla) { 11892 in_flags |= IPF_RECVSLLA; 11893 } 11894 /* 11895 * since in_flags are being set ill will be 11896 * referenced in ip_add_info, so it better not 11897 * be NULL. 11898 */ 11899 /* 11900 * the actual data will be contained in b_cont 11901 * upon successful return of the following call. 11902 * If the call fails then the original mblk is 11903 * returned. 11904 */ 11905 *mpp = ip_add_info(*mpp, ill, in_flags); 11906 } 11907 11908 return (B_TRUE); 11909 } 11910 11911 /* 11912 * Fragmentation reassembly. Each ILL has a hash table for 11913 * queuing packets undergoing reassembly for all IPIFs 11914 * associated with the ILL. The hash is based on the packet 11915 * IP ident field. The ILL frag hash table was allocated 11916 * as a timer block at the time the ILL was created. Whenever 11917 * there is anything on the reassembly queue, the timer will 11918 * be running. Returns B_TRUE if successful else B_FALSE; 11919 * frees mp on failure. 11920 */ 11921 static boolean_t 11922 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 11923 uint32_t *cksum_val, uint16_t *cksum_flags) 11924 { 11925 uint32_t frag_offset_flags; 11926 ill_t *ill = (ill_t *)q->q_ptr; 11927 mblk_t *mp = *mpp; 11928 mblk_t *t_mp; 11929 ipaddr_t dst; 11930 uint8_t proto = ipha->ipha_protocol; 11931 uint32_t sum_val; 11932 uint16_t sum_flags; 11933 ipf_t *ipf; 11934 ipf_t **ipfp; 11935 ipfb_t *ipfb; 11936 uint16_t ident; 11937 uint32_t offset; 11938 ipaddr_t src; 11939 uint_t hdr_length; 11940 uint32_t end; 11941 mblk_t *mp1; 11942 mblk_t *tail_mp; 11943 size_t count; 11944 size_t msg_len; 11945 uint8_t ecn_info = 0; 11946 uint32_t packet_size; 11947 boolean_t pruned = B_FALSE; 11948 11949 if (cksum_val != NULL) 11950 *cksum_val = 0; 11951 if (cksum_flags != NULL) 11952 *cksum_flags = 0; 11953 11954 /* 11955 * Drop the fragmented as early as possible, if 11956 * we don't have resource(s) to re-assemble. 11957 */ 11958 if (ip_reass_queue_bytes == 0) { 11959 freemsg(mp); 11960 return (B_FALSE); 11961 } 11962 11963 /* Check for fragmentation offset; return if there's none */ 11964 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 11965 (IPH_MF | IPH_OFFSET)) == 0) 11966 return (B_TRUE); 11967 11968 /* 11969 * We utilize hardware computed checksum info only for UDP since 11970 * IP fragmentation is a normal occurence for the protocol. In 11971 * addition, checksum offload support for IP fragments carrying 11972 * UDP payload is commonly implemented across network adapters. 11973 */ 11974 ASSERT(ill != NULL); 11975 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 11976 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 11977 mblk_t *mp1 = mp->b_cont; 11978 int32_t len; 11979 11980 /* Record checksum information from the packet */ 11981 sum_val = (uint32_t)DB_CKSUM16(mp); 11982 sum_flags = DB_CKSUMFLAGS(mp); 11983 11984 /* IP payload offset from beginning of mblk */ 11985 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 11986 11987 if ((sum_flags & HCK_PARTIALCKSUM) && 11988 (mp1 == NULL || mp1->b_cont == NULL) && 11989 offset >= DB_CKSUMSTART(mp) && 11990 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 11991 uint32_t adj; 11992 /* 11993 * Partial checksum has been calculated by hardware 11994 * and attached to the packet; in addition, any 11995 * prepended extraneous data is even byte aligned. 11996 * If any such data exists, we adjust the checksum; 11997 * this would also handle any postpended data. 11998 */ 11999 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12000 mp, mp1, len, adj); 12001 12002 /* One's complement subtract extraneous checksum */ 12003 if (adj >= sum_val) 12004 sum_val = ~(adj - sum_val) & 0xFFFF; 12005 else 12006 sum_val -= adj; 12007 } 12008 } else { 12009 sum_val = 0; 12010 sum_flags = 0; 12011 } 12012 12013 /* Clear hardware checksumming flag */ 12014 DB_CKSUMFLAGS(mp) = 0; 12015 12016 ident = ipha->ipha_ident; 12017 offset = (frag_offset_flags << 3) & 0xFFFF; 12018 src = ipha->ipha_src; 12019 dst = ipha->ipha_dst; 12020 hdr_length = IPH_HDR_LENGTH(ipha); 12021 end = ntohs(ipha->ipha_length) - hdr_length; 12022 12023 /* If end == 0 then we have a packet with no data, so just free it */ 12024 if (end == 0) { 12025 freemsg(mp); 12026 return (B_FALSE); 12027 } 12028 12029 /* Record the ECN field info. */ 12030 ecn_info = (ipha->ipha_type_of_service & 0x3); 12031 if (offset != 0) { 12032 /* 12033 * If this isn't the first piece, strip the header, and 12034 * add the offset to the end value. 12035 */ 12036 mp->b_rptr += hdr_length; 12037 end += offset; 12038 } 12039 12040 msg_len = MBLKSIZE(mp); 12041 tail_mp = mp; 12042 while (tail_mp->b_cont != NULL) { 12043 tail_mp = tail_mp->b_cont; 12044 msg_len += MBLKSIZE(tail_mp); 12045 } 12046 12047 /* If the reassembly list for this ILL will get too big, prune it */ 12048 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12049 ip_reass_queue_bytes) { 12050 ill_frag_prune(ill, 12051 (ip_reass_queue_bytes < msg_len) ? 0 : 12052 (ip_reass_queue_bytes - msg_len)); 12053 pruned = B_TRUE; 12054 } 12055 12056 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12057 mutex_enter(&ipfb->ipfb_lock); 12058 12059 ipfp = &ipfb->ipfb_ipf; 12060 /* Try to find an existing fragment queue for this packet. */ 12061 for (;;) { 12062 ipf = ipfp[0]; 12063 if (ipf != NULL) { 12064 /* 12065 * It has to match on ident and src/dst address. 12066 */ 12067 if (ipf->ipf_ident == ident && 12068 ipf->ipf_src == src && 12069 ipf->ipf_dst == dst && 12070 ipf->ipf_protocol == proto) { 12071 /* 12072 * If we have received too many 12073 * duplicate fragments for this packet 12074 * free it. 12075 */ 12076 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12077 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12078 freemsg(mp); 12079 mutex_exit(&ipfb->ipfb_lock); 12080 return (B_FALSE); 12081 } 12082 /* Found it. */ 12083 break; 12084 } 12085 ipfp = &ipf->ipf_hash_next; 12086 continue; 12087 } 12088 12089 /* 12090 * If we pruned the list, do we want to store this new 12091 * fragment?. We apply an optimization here based on the 12092 * fact that most fragments will be received in order. 12093 * So if the offset of this incoming fragment is zero, 12094 * it is the first fragment of a new packet. We will 12095 * keep it. Otherwise drop the fragment, as we have 12096 * probably pruned the packet already (since the 12097 * packet cannot be found). 12098 */ 12099 if (pruned && offset != 0) { 12100 mutex_exit(&ipfb->ipfb_lock); 12101 freemsg(mp); 12102 return (B_FALSE); 12103 } 12104 12105 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS) { 12106 /* 12107 * Too many fragmented packets in this hash 12108 * bucket. Free the oldest. 12109 */ 12110 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12111 } 12112 12113 /* New guy. Allocate a frag message. */ 12114 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12115 if (mp1 == NULL) { 12116 BUMP_MIB(&ip_mib, ipInDiscards); 12117 freemsg(mp); 12118 reass_done: 12119 mutex_exit(&ipfb->ipfb_lock); 12120 return (B_FALSE); 12121 } 12122 12123 12124 BUMP_MIB(&ip_mib, ipReasmReqds); 12125 mp1->b_cont = mp; 12126 12127 /* Initialize the fragment header. */ 12128 ipf = (ipf_t *)mp1->b_rptr; 12129 ipf->ipf_mp = mp1; 12130 ipf->ipf_ptphn = ipfp; 12131 ipfp[0] = ipf; 12132 ipf->ipf_hash_next = NULL; 12133 ipf->ipf_ident = ident; 12134 ipf->ipf_protocol = proto; 12135 ipf->ipf_src = src; 12136 ipf->ipf_dst = dst; 12137 ipf->ipf_nf_hdr_len = 0; 12138 /* Record reassembly start time. */ 12139 ipf->ipf_timestamp = gethrestime_sec(); 12140 /* Record ipf generation and account for frag header */ 12141 ipf->ipf_gen = ill->ill_ipf_gen++; 12142 ipf->ipf_count = MBLKSIZE(mp1); 12143 ipf->ipf_last_frag_seen = B_FALSE; 12144 ipf->ipf_ecn = ecn_info; 12145 ipf->ipf_num_dups = 0; 12146 ipfb->ipfb_frag_pkts++; 12147 ipf->ipf_checksum = 0; 12148 ipf->ipf_checksum_flags = 0; 12149 12150 /* Store checksum value in fragment header */ 12151 if (sum_flags != 0) { 12152 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12153 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12154 ipf->ipf_checksum = sum_val; 12155 ipf->ipf_checksum_flags = sum_flags; 12156 } 12157 12158 /* 12159 * We handle reassembly two ways. In the easy case, 12160 * where all the fragments show up in order, we do 12161 * minimal bookkeeping, and just clip new pieces on 12162 * the end. If we ever see a hole, then we go off 12163 * to ip_reassemble which has to mark the pieces and 12164 * keep track of the number of holes, etc. Obviously, 12165 * the point of having both mechanisms is so we can 12166 * handle the easy case as efficiently as possible. 12167 */ 12168 if (offset == 0) { 12169 /* Easy case, in-order reassembly so far. */ 12170 ipf->ipf_count += msg_len; 12171 ipf->ipf_tail_mp = tail_mp; 12172 /* 12173 * Keep track of next expected offset in 12174 * ipf_end. 12175 */ 12176 ipf->ipf_end = end; 12177 ipf->ipf_nf_hdr_len = hdr_length; 12178 } else { 12179 /* Hard case, hole at the beginning. */ 12180 ipf->ipf_tail_mp = NULL; 12181 /* 12182 * ipf_end == 0 means that we have given up 12183 * on easy reassembly. 12184 */ 12185 ipf->ipf_end = 0; 12186 12187 /* Forget checksum offload from now on */ 12188 ipf->ipf_checksum_flags = 0; 12189 12190 /* 12191 * ipf_hole_cnt is set by ip_reassemble. 12192 * ipf_count is updated by ip_reassemble. 12193 * No need to check for return value here 12194 * as we don't expect reassembly to complete 12195 * or fail for the first fragment itself. 12196 */ 12197 (void) ip_reassemble(mp, ipf, 12198 (frag_offset_flags & IPH_OFFSET) << 3, 12199 (frag_offset_flags & IPH_MF), ill, msg_len); 12200 } 12201 /* Update per ipfb and ill byte counts */ 12202 ipfb->ipfb_count += ipf->ipf_count; 12203 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12204 ill->ill_frag_count += ipf->ipf_count; 12205 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12206 /* If the frag timer wasn't already going, start it. */ 12207 mutex_enter(&ill->ill_lock); 12208 ill_frag_timer_start(ill); 12209 mutex_exit(&ill->ill_lock); 12210 goto reass_done; 12211 } 12212 12213 /* 12214 * If the packet's flag has changed (it could be coming up 12215 * from an interface different than the previous, therefore 12216 * possibly different checksum capability), then forget about 12217 * any stored checksum states. Otherwise add the value to 12218 * the existing one stored in the fragment header. 12219 */ 12220 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12221 sum_val += ipf->ipf_checksum; 12222 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12223 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12224 ipf->ipf_checksum = sum_val; 12225 } else if (ipf->ipf_checksum_flags != 0) { 12226 /* Forget checksum offload from now on */ 12227 ipf->ipf_checksum_flags = 0; 12228 } 12229 12230 /* 12231 * We have a new piece of a datagram which is already being 12232 * reassembled. Update the ECN info if all IP fragments 12233 * are ECN capable. If there is one which is not, clear 12234 * all the info. If there is at least one which has CE 12235 * code point, IP needs to report that up to transport. 12236 */ 12237 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12238 if (ecn_info == IPH_ECN_CE) 12239 ipf->ipf_ecn = IPH_ECN_CE; 12240 } else { 12241 ipf->ipf_ecn = IPH_ECN_NECT; 12242 } 12243 if (offset && ipf->ipf_end == offset) { 12244 /* The new fragment fits at the end */ 12245 ipf->ipf_tail_mp->b_cont = mp; 12246 /* Update the byte count */ 12247 ipf->ipf_count += msg_len; 12248 /* Update per ipfb and ill byte counts */ 12249 ipfb->ipfb_count += msg_len; 12250 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12251 ill->ill_frag_count += msg_len; 12252 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12253 if (frag_offset_flags & IPH_MF) { 12254 /* More to come. */ 12255 ipf->ipf_end = end; 12256 ipf->ipf_tail_mp = tail_mp; 12257 goto reass_done; 12258 } 12259 } else { 12260 /* Go do the hard cases. */ 12261 int ret; 12262 12263 if (offset == 0) 12264 ipf->ipf_nf_hdr_len = hdr_length; 12265 12266 /* Save current byte count */ 12267 count = ipf->ipf_count; 12268 ret = ip_reassemble(mp, ipf, 12269 (frag_offset_flags & IPH_OFFSET) << 3, 12270 (frag_offset_flags & IPH_MF), ill, msg_len); 12271 /* Count of bytes added and subtracted (freeb()ed) */ 12272 count = ipf->ipf_count - count; 12273 if (count) { 12274 /* Update per ipfb and ill byte counts */ 12275 ipfb->ipfb_count += count; 12276 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12277 ill->ill_frag_count += count; 12278 ASSERT(ill->ill_frag_count > 0); 12279 } 12280 if (ret == IP_REASS_PARTIAL) { 12281 goto reass_done; 12282 } else if (ret == IP_REASS_FAILED) { 12283 /* Reassembly failed. Free up all resources */ 12284 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12285 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12286 IP_REASS_SET_START(t_mp, 0); 12287 IP_REASS_SET_END(t_mp, 0); 12288 } 12289 freemsg(mp); 12290 goto reass_done; 12291 } 12292 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12293 } 12294 /* 12295 * We have completed reassembly. Unhook the frag header from 12296 * the reassembly list. 12297 * 12298 * Before we free the frag header, record the ECN info 12299 * to report back to the transport. 12300 */ 12301 ecn_info = ipf->ipf_ecn; 12302 BUMP_MIB(&ip_mib, ipReasmOKs); 12303 ipfp = ipf->ipf_ptphn; 12304 12305 /* We need to supply these to caller */ 12306 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12307 sum_val = ipf->ipf_checksum; 12308 else 12309 sum_val = 0; 12310 12311 mp1 = ipf->ipf_mp; 12312 count = ipf->ipf_count; 12313 ipf = ipf->ipf_hash_next; 12314 if (ipf != NULL) 12315 ipf->ipf_ptphn = ipfp; 12316 ipfp[0] = ipf; 12317 ill->ill_frag_count -= count; 12318 ASSERT(ipfb->ipfb_count >= count); 12319 ipfb->ipfb_count -= count; 12320 ipfb->ipfb_frag_pkts--; 12321 mutex_exit(&ipfb->ipfb_lock); 12322 /* Ditch the frag header. */ 12323 mp = mp1->b_cont; 12324 12325 freeb(mp1); 12326 12327 /* Restore original IP length in header. */ 12328 packet_size = (uint32_t)msgdsize(mp); 12329 if (packet_size > IP_MAXPACKET) { 12330 freemsg(mp); 12331 BUMP_MIB(&ip_mib, ipInHdrErrors); 12332 return (B_FALSE); 12333 } 12334 12335 if (DB_REF(mp) > 1) { 12336 mblk_t *mp2 = copymsg(mp); 12337 12338 freemsg(mp); 12339 if (mp2 == NULL) { 12340 BUMP_MIB(&ip_mib, ipInDiscards); 12341 return (B_FALSE); 12342 } 12343 mp = mp2; 12344 } 12345 ipha = (ipha_t *)mp->b_rptr; 12346 12347 ipha->ipha_length = htons((uint16_t)packet_size); 12348 /* We're now complete, zip the frag state */ 12349 ipha->ipha_fragment_offset_and_flags = 0; 12350 /* Record the ECN info. */ 12351 ipha->ipha_type_of_service &= 0xFC; 12352 ipha->ipha_type_of_service |= ecn_info; 12353 *mpp = mp; 12354 12355 /* Reassembly is successful; return checksum information if needed */ 12356 if (cksum_val != NULL) 12357 *cksum_val = sum_val; 12358 if (cksum_flags != NULL) 12359 *cksum_flags = sum_flags; 12360 12361 return (B_TRUE); 12362 } 12363 12364 /* 12365 * Perform ip header check sum update local options. 12366 * return B_TRUE if all is well, else return B_FALSE and release 12367 * the mp. caller is responsible for decrementing ire ref cnt. 12368 */ 12369 static boolean_t 12370 ip_options_cksum(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 12371 { 12372 mblk_t *first_mp; 12373 boolean_t mctl_present; 12374 uint16_t sum; 12375 12376 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12377 /* 12378 * Don't do the checksum if it has gone through AH/ESP 12379 * processing. 12380 */ 12381 if (!mctl_present) { 12382 sum = ip_csum_hdr(ipha); 12383 if (sum != 0) { 12384 BUMP_MIB(&ip_mib, ipInCksumErrs); 12385 freemsg(first_mp); 12386 return (B_FALSE); 12387 } 12388 } 12389 12390 if (!ip_rput_local_options(q, mp, ipha, ire)) { 12391 if (mctl_present) 12392 freeb(first_mp); 12393 return (B_FALSE); 12394 } 12395 12396 return (B_TRUE); 12397 } 12398 12399 /* 12400 * All udp packet are delivered to the local host via this routine. 12401 */ 12402 void 12403 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12404 ill_t *recv_ill) 12405 { 12406 uint32_t sum; 12407 uint32_t u1; 12408 boolean_t mctl_present; 12409 conn_t *connp; 12410 mblk_t *first_mp; 12411 uint16_t *up; 12412 ill_t *ill = (ill_t *)q->q_ptr; 12413 uint16_t reass_hck_flags = 0; 12414 12415 #define rptr ((uchar_t *)ipha) 12416 12417 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12418 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12419 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12420 12421 /* 12422 * FAST PATH for udp packets 12423 */ 12424 12425 /* u1 is # words of IP options */ 12426 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12427 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12428 12429 /* IP options present */ 12430 if (u1 != 0) 12431 goto ipoptions; 12432 12433 /* Check the IP header checksum. */ 12434 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12435 /* Clear the IP header h/w cksum flag */ 12436 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12437 } else { 12438 #define uph ((uint16_t *)ipha) 12439 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12440 uph[6] + uph[7] + uph[8] + uph[9]; 12441 #undef uph 12442 /* finish doing IP checksum */ 12443 sum = (sum & 0xFFFF) + (sum >> 16); 12444 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12445 /* 12446 * Don't verify header checksum if this packet is coming 12447 * back from AH/ESP as we already did it. 12448 */ 12449 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12450 BUMP_MIB(&ip_mib, ipInCksumErrs); 12451 freemsg(first_mp); 12452 return; 12453 } 12454 } 12455 12456 /* 12457 * Count for SNMP of inbound packets for ire. 12458 * if mctl is present this might be a secure packet and 12459 * has already been counted for in ip_proto_input(). 12460 */ 12461 if (!mctl_present) { 12462 UPDATE_IB_PKT_COUNT(ire); 12463 ire->ire_last_used_time = lbolt; 12464 } 12465 12466 /* packet part of fragmented IP packet? */ 12467 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12468 if (u1 & (IPH_MF | IPH_OFFSET)) { 12469 goto fragmented; 12470 } 12471 12472 /* u1 = IP header length (20 bytes) */ 12473 u1 = IP_SIMPLE_HDR_LENGTH; 12474 12475 /* packet does not contain complete IP & UDP headers */ 12476 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12477 goto udppullup; 12478 12479 /* up points to UDP header */ 12480 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12481 #define iphs ((uint16_t *)ipha) 12482 12483 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12484 if (up[3] != 0) { 12485 mblk_t *mp1 = mp->b_cont; 12486 boolean_t cksum_err; 12487 uint16_t hck_flags = 0; 12488 12489 /* Pseudo-header checksum */ 12490 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12491 iphs[9] + up[2]; 12492 12493 /* 12494 * Revert to software checksum calculation if the interface 12495 * isn't capable of checksum offload or if IPsec is present. 12496 */ 12497 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12498 hck_flags = DB_CKSUMFLAGS(mp); 12499 12500 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12501 IP_STAT(ip_in_sw_cksum); 12502 12503 IP_CKSUM_RECV(hck_flags, u1, 12504 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12505 (int32_t)((uchar_t *)up - rptr), 12506 mp, mp1, cksum_err); 12507 12508 if (cksum_err) { 12509 BUMP_MIB(&ip_mib, udpInCksumErrs); 12510 12511 if (hck_flags & HCK_FULLCKSUM) 12512 IP_STAT(ip_udp_in_full_hw_cksum_err); 12513 else if (hck_flags & HCK_PARTIALCKSUM) 12514 IP_STAT(ip_udp_in_part_hw_cksum_err); 12515 else 12516 IP_STAT(ip_udp_in_sw_cksum_err); 12517 12518 freemsg(first_mp); 12519 return; 12520 } 12521 } 12522 12523 /* Non-fragmented broadcast or multicast packet? */ 12524 if (ire->ire_type == IRE_BROADCAST) 12525 goto udpslowpath; 12526 12527 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12528 ire->ire_zoneid)) != NULL) { 12529 ASSERT(connp->conn_upq != NULL); 12530 IP_STAT(ip_udp_fast_path); 12531 12532 if (CONN_UDP_FLOWCTLD(connp)) { 12533 freemsg(mp); 12534 BUMP_MIB(&ip_mib, udpInOverflows); 12535 } else { 12536 if (!mctl_present) { 12537 BUMP_MIB(&ip_mib, ipInDelivers); 12538 } 12539 /* 12540 * mp and first_mp can change. 12541 */ 12542 if (ip_udp_check(q, connp, recv_ill, 12543 ipha, &mp, &first_mp, mctl_present)) { 12544 /* Send it upstream */ 12545 CONN_UDP_RECV(connp, mp); 12546 } 12547 } 12548 /* 12549 * freeb() cannot deal with null mblk being passed 12550 * in and first_mp can be set to null in the call 12551 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12552 */ 12553 if (mctl_present && first_mp != NULL) { 12554 freeb(first_mp); 12555 } 12556 CONN_DEC_REF(connp); 12557 return; 12558 } 12559 12560 /* 12561 * if we got here we know the packet is not fragmented and 12562 * has no options. The classifier could not find a conn_t and 12563 * most likely its an icmp packet so send it through slow path. 12564 */ 12565 12566 goto udpslowpath; 12567 12568 ipoptions: 12569 if (!ip_options_cksum(q, mp, ipha, ire)) { 12570 goto slow_done; 12571 } 12572 12573 UPDATE_IB_PKT_COUNT(ire); 12574 ire->ire_last_used_time = lbolt; 12575 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12576 if (u1 & (IPH_MF | IPH_OFFSET)) { 12577 fragmented: 12578 /* 12579 * "sum" and "reass_hck_flags" are non-zero if the 12580 * reassembled packet has a valid hardware computed 12581 * checksum information associated with it. 12582 */ 12583 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12584 goto slow_done; 12585 /* 12586 * Make sure that first_mp points back to mp as 12587 * the mp we came in with could have changed in 12588 * ip_rput_fragment(). 12589 */ 12590 ASSERT(!mctl_present); 12591 ipha = (ipha_t *)mp->b_rptr; 12592 first_mp = mp; 12593 } 12594 12595 /* Now we have a complete datagram, destined for this machine. */ 12596 u1 = IPH_HDR_LENGTH(ipha); 12597 /* Pull up the UDP header, if necessary. */ 12598 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12599 udppullup: 12600 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12601 BUMP_MIB(&ip_mib, ipInDiscards); 12602 freemsg(first_mp); 12603 goto slow_done; 12604 } 12605 ipha = (ipha_t *)mp->b_rptr; 12606 } 12607 12608 /* 12609 * Validate the checksum for the reassembled packet; for the 12610 * pullup case we calculate the payload checksum in software. 12611 */ 12612 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12613 if (up[3] != 0) { 12614 boolean_t cksum_err; 12615 12616 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12617 IP_STAT(ip_in_sw_cksum); 12618 12619 IP_CKSUM_RECV_REASS(reass_hck_flags, 12620 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12621 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12622 iphs[9] + up[2], sum, cksum_err); 12623 12624 if (cksum_err) { 12625 BUMP_MIB(&ip_mib, udpInCksumErrs); 12626 12627 if (reass_hck_flags & HCK_FULLCKSUM) 12628 IP_STAT(ip_udp_in_full_hw_cksum_err); 12629 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12630 IP_STAT(ip_udp_in_part_hw_cksum_err); 12631 else 12632 IP_STAT(ip_udp_in_sw_cksum_err); 12633 12634 freemsg(first_mp); 12635 goto slow_done; 12636 } 12637 } 12638 udpslowpath: 12639 12640 /* Clear hardware checksum flag to be safe */ 12641 DB_CKSUMFLAGS(mp) = 0; 12642 12643 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12644 (ire->ire_type == IRE_BROADCAST), 12645 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IP6INFO, 12646 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12647 12648 slow_done: 12649 IP_STAT(ip_udp_slow_path); 12650 return; 12651 12652 #undef iphs 12653 #undef rptr 12654 } 12655 12656 /* ARGSUSED */ 12657 static mblk_t * 12658 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12659 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12660 ill_rx_ring_t *ill_ring) 12661 { 12662 conn_t *connp; 12663 uint32_t sum; 12664 uint32_t u1; 12665 uint16_t *up; 12666 int offset; 12667 ssize_t len; 12668 mblk_t *mp1; 12669 boolean_t syn_present = B_FALSE; 12670 tcph_t *tcph; 12671 uint_t ip_hdr_len; 12672 ill_t *ill = (ill_t *)q->q_ptr; 12673 zoneid_t zoneid = ire->ire_zoneid; 12674 boolean_t cksum_err; 12675 uint16_t hck_flags = 0; 12676 12677 #define rptr ((uchar_t *)ipha) 12678 12679 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12680 12681 /* 12682 * FAST PATH for tcp packets 12683 */ 12684 12685 /* u1 is # words of IP options */ 12686 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12687 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12688 12689 /* IP options present */ 12690 if (u1) { 12691 goto ipoptions; 12692 } else { 12693 /* Check the IP header checksum. */ 12694 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12695 /* Clear the IP header h/w cksum flag */ 12696 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12697 } else { 12698 #define uph ((uint16_t *)ipha) 12699 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12700 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12701 #undef uph 12702 /* finish doing IP checksum */ 12703 sum = (sum & 0xFFFF) + (sum >> 16); 12704 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12705 /* 12706 * Don't verify header checksum if this packet 12707 * is coming back from AH/ESP as we already did it. 12708 */ 12709 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 12710 BUMP_MIB(&ip_mib, ipInCksumErrs); 12711 goto error; 12712 } 12713 } 12714 } 12715 12716 if (!mctl_present) { 12717 UPDATE_IB_PKT_COUNT(ire); 12718 ire->ire_last_used_time = lbolt; 12719 } 12720 12721 /* packet part of fragmented IP packet? */ 12722 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12723 if (u1 & (IPH_MF | IPH_OFFSET)) { 12724 goto fragmented; 12725 } 12726 12727 /* u1 = IP header length (20 bytes) */ 12728 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12729 12730 /* does packet contain IP+TCP headers? */ 12731 len = mp->b_wptr - rptr; 12732 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12733 IP_STAT(ip_tcppullup); 12734 goto tcppullup; 12735 } 12736 12737 /* TCP options present? */ 12738 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12739 12740 /* 12741 * If options need to be pulled up, then goto tcpoptions. 12742 * otherwise we are still in the fast path 12743 */ 12744 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12745 IP_STAT(ip_tcpoptions); 12746 goto tcpoptions; 12747 } 12748 12749 /* multiple mblks of tcp data? */ 12750 if ((mp1 = mp->b_cont) != NULL) { 12751 /* more then two? */ 12752 if (mp1->b_cont != NULL) { 12753 IP_STAT(ip_multipkttcp); 12754 goto multipkttcp; 12755 } 12756 len += mp1->b_wptr - mp1->b_rptr; 12757 } 12758 12759 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12760 12761 /* part of pseudo checksum */ 12762 12763 /* TCP datagram length */ 12764 u1 = len - IP_SIMPLE_HDR_LENGTH; 12765 12766 #define iphs ((uint16_t *)ipha) 12767 12768 #ifdef _BIG_ENDIAN 12769 u1 += IPPROTO_TCP; 12770 #else 12771 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12772 #endif 12773 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12774 12775 /* 12776 * Revert to software checksum calculation if the interface 12777 * isn't capable of checksum offload or if IPsec is present. 12778 */ 12779 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12780 hck_flags = DB_CKSUMFLAGS(mp); 12781 12782 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12783 IP_STAT(ip_in_sw_cksum); 12784 12785 IP_CKSUM_RECV(hck_flags, u1, 12786 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12787 (int32_t)((uchar_t *)up - rptr), 12788 mp, mp1, cksum_err); 12789 12790 if (cksum_err) { 12791 BUMP_MIB(&ip_mib, tcpInErrs); 12792 12793 if (hck_flags & HCK_FULLCKSUM) 12794 IP_STAT(ip_tcp_in_full_hw_cksum_err); 12795 else if (hck_flags & HCK_PARTIALCKSUM) 12796 IP_STAT(ip_tcp_in_part_hw_cksum_err); 12797 else 12798 IP_STAT(ip_tcp_in_sw_cksum_err); 12799 12800 goto error; 12801 } 12802 12803 try_again: 12804 12805 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 12806 NULL) { 12807 /* Send the TH_RST */ 12808 goto no_conn; 12809 } 12810 12811 /* 12812 * TCP FAST PATH for AF_INET socket. 12813 * 12814 * TCP fast path to avoid extra work. An AF_INET socket type 12815 * does not have facility to receive extra information via 12816 * ip_process or ip_add_info. Also, when the connection was 12817 * established, we made a check if this connection is impacted 12818 * by any global IPSec policy or per connection policy (a 12819 * policy that comes in effect later will not apply to this 12820 * connection). Since all this can be determined at the 12821 * connection establishment time, a quick check of flags 12822 * can avoid extra work. 12823 */ 12824 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 12825 !IPP_ENABLED(IPP_LOCAL_IN)) { 12826 ASSERT(first_mp == mp); 12827 SET_SQUEUE(mp, tcp_rput_data, connp); 12828 return (mp); 12829 } 12830 12831 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 12832 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 12833 if (IPCL_IS_TCP(connp)) { 12834 mp->b_datap->db_struioflag |= STRUIO_EAGER; 12835 DB_CKSUMSTART(mp) = 12836 (intptr_t)ip_squeue_get(ill_ring); 12837 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 12838 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12839 SET_SQUEUE(mp, connp->conn_recv, connp); 12840 return (mp); 12841 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 12842 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12843 ip_squeue_enter_unbound++; 12844 SET_SQUEUE(mp, tcp_conn_request_unbound, 12845 connp); 12846 return (mp); 12847 } 12848 syn_present = B_TRUE; 12849 } 12850 12851 } 12852 12853 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 12854 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12855 12856 /* No need to send this packet to TCP */ 12857 if ((flags & TH_RST) || (flags & TH_URG)) { 12858 CONN_DEC_REF(connp); 12859 freemsg(first_mp); 12860 return (NULL); 12861 } 12862 if (flags & TH_ACK) { 12863 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 12864 CONN_DEC_REF(connp); 12865 return (NULL); 12866 } 12867 12868 CONN_DEC_REF(connp); 12869 freemsg(first_mp); 12870 return (NULL); 12871 } 12872 12873 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 12874 first_mp = ipsec_check_inbound_policy(first_mp, connp, 12875 ipha, NULL, mctl_present); 12876 if (first_mp == NULL) { 12877 CONN_DEC_REF(connp); 12878 return (NULL); 12879 } 12880 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 12881 ASSERT(syn_present); 12882 if (mctl_present) { 12883 ASSERT(first_mp != mp); 12884 first_mp->b_datap->db_struioflag |= 12885 STRUIO_POLICY; 12886 } else { 12887 ASSERT(first_mp == mp); 12888 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 12889 mp->b_datap->db_struioflag |= STRUIO_POLICY; 12890 } 12891 } else { 12892 /* 12893 * Discard first_mp early since we're dealing with a 12894 * fully-connected conn_t and tcp doesn't do policy in 12895 * this case. 12896 */ 12897 if (mctl_present) { 12898 freeb(first_mp); 12899 mctl_present = B_FALSE; 12900 } 12901 first_mp = mp; 12902 } 12903 } 12904 12905 /* Initiate IPPF processing for fastpath */ 12906 if (IPP_ENABLED(IPP_LOCAL_IN)) { 12907 uint32_t ill_index; 12908 12909 ill_index = recv_ill->ill_phyint->phyint_ifindex; 12910 ip_process(IPP_LOCAL_IN, &mp, ill_index); 12911 if (mp == NULL) { 12912 ip2dbg(("ip_input_ipsec_process: TCP pkt " 12913 "deferred/dropped during IPPF processing\n")); 12914 CONN_DEC_REF(connp); 12915 if (mctl_present) 12916 freeb(first_mp); 12917 return (NULL); 12918 } else if (mctl_present) { 12919 /* 12920 * ip_process might return a new mp. 12921 */ 12922 ASSERT(first_mp != mp); 12923 first_mp->b_cont = mp; 12924 } else { 12925 first_mp = mp; 12926 } 12927 12928 } 12929 12930 if (!syn_present && connp->conn_ipv6_recvpktinfo) { 12931 mp = ip_add_info(mp, recv_ill, flags); 12932 if (mp == NULL) { 12933 CONN_DEC_REF(connp); 12934 if (mctl_present) 12935 freeb(first_mp); 12936 return (NULL); 12937 } else if (mctl_present) { 12938 /* 12939 * ip_add_info might return a new mp. 12940 */ 12941 ASSERT(first_mp != mp); 12942 first_mp->b_cont = mp; 12943 } else { 12944 first_mp = mp; 12945 } 12946 } 12947 12948 if (IPCL_IS_TCP(connp)) { 12949 SET_SQUEUE(first_mp, connp->conn_recv, connp); 12950 return (first_mp); 12951 } else { 12952 putnext(connp->conn_rq, first_mp); 12953 CONN_DEC_REF(connp); 12954 return (NULL); 12955 } 12956 12957 no_conn: 12958 /* Initiate IPPf processing, if needed. */ 12959 if (IPP_ENABLED(IPP_LOCAL_IN)) { 12960 uint32_t ill_index; 12961 ill_index = recv_ill->ill_phyint->phyint_ifindex; 12962 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 12963 if (first_mp == NULL) { 12964 return (NULL); 12965 } 12966 } 12967 BUMP_MIB(&ip_mib, ipInDelivers); 12968 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid); 12969 return (NULL); 12970 ipoptions: 12971 if (!ip_options_cksum(q, first_mp, ipha, ire)) { 12972 goto slow_done; 12973 } 12974 12975 UPDATE_IB_PKT_COUNT(ire); 12976 ire->ire_last_used_time = lbolt; 12977 12978 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12979 if (u1 & (IPH_MF | IPH_OFFSET)) { 12980 fragmented: 12981 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 12982 if (mctl_present) 12983 freeb(first_mp); 12984 goto slow_done; 12985 } 12986 /* 12987 * Make sure that first_mp points back to mp as 12988 * the mp we came in with could have changed in 12989 * ip_rput_fragment(). 12990 */ 12991 ASSERT(!mctl_present); 12992 ipha = (ipha_t *)mp->b_rptr; 12993 first_mp = mp; 12994 } 12995 12996 /* Now we have a complete datagram, destined for this machine. */ 12997 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 12998 12999 len = mp->b_wptr - mp->b_rptr; 13000 /* Pull up a minimal TCP header, if necessary. */ 13001 if (len < (u1 + 20)) { 13002 tcppullup: 13003 if (!pullupmsg(mp, u1 + 20)) { 13004 BUMP_MIB(&ip_mib, ipInDiscards); 13005 goto error; 13006 } 13007 ipha = (ipha_t *)mp->b_rptr; 13008 len = mp->b_wptr - mp->b_rptr; 13009 } 13010 13011 /* 13012 * Extract the offset field from the TCP header. As usual, we 13013 * try to help the compiler more than the reader. 13014 */ 13015 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13016 if (offset != 5) { 13017 tcpoptions: 13018 if (offset < 5) { 13019 BUMP_MIB(&ip_mib, ipInDiscards); 13020 goto error; 13021 } 13022 /* 13023 * There must be TCP options. 13024 * Make sure we can grab them. 13025 */ 13026 offset <<= 2; 13027 offset += u1; 13028 if (len < offset) { 13029 if (!pullupmsg(mp, offset)) { 13030 BUMP_MIB(&ip_mib, ipInDiscards); 13031 goto error; 13032 } 13033 ipha = (ipha_t *)mp->b_rptr; 13034 len = mp->b_wptr - rptr; 13035 } 13036 } 13037 13038 /* Get the total packet length in len, including headers. */ 13039 if (mp->b_cont) { 13040 multipkttcp: 13041 len = msgdsize(mp); 13042 } 13043 13044 /* 13045 * Check the TCP checksum by pulling together the pseudo- 13046 * header checksum, and passing it to ip_csum to be added in 13047 * with the TCP datagram. 13048 * 13049 * Since we are not using the hwcksum if available we must 13050 * clear the flag. We may come here via tcppullup or tcpoptions. 13051 * If either of these fails along the way the mblk is freed. 13052 * If this logic ever changes and mblk is reused to say send 13053 * ICMP's back, then this flag may need to be cleared in 13054 * other places as well. 13055 */ 13056 DB_CKSUMFLAGS(mp) = 0; 13057 13058 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13059 13060 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13061 #ifdef _BIG_ENDIAN 13062 u1 += IPPROTO_TCP; 13063 #else 13064 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13065 #endif 13066 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13067 /* 13068 * Not M_DATA mblk or its a dup, so do the checksum now. 13069 */ 13070 IP_STAT(ip_in_sw_cksum); 13071 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13072 BUMP_MIB(&ip_mib, tcpInErrs); 13073 goto error; 13074 } 13075 13076 IP_STAT(ip_tcp_slow_path); 13077 goto try_again; 13078 #undef iphs 13079 #undef rptr 13080 13081 error: 13082 freemsg(first_mp); 13083 slow_done: 13084 return (NULL); 13085 } 13086 13087 /* ARGSUSED */ 13088 static void 13089 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13090 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13091 { 13092 conn_t *connp; 13093 uint32_t sum; 13094 uint32_t u1; 13095 ssize_t len; 13096 sctp_hdr_t *sctph; 13097 zoneid_t zoneid = ire->ire_zoneid; 13098 uint32_t pktsum; 13099 uint32_t calcsum; 13100 uint32_t ports; 13101 uint_t ipif_seqid; 13102 in6_addr_t map_src, map_dst; 13103 ill_t *ill = (ill_t *)q->q_ptr; 13104 13105 #define rptr ((uchar_t *)ipha) 13106 13107 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13108 13109 /* u1 is # words of IP options */ 13110 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13111 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13112 13113 /* IP options present */ 13114 if (u1 > 0) { 13115 goto ipoptions; 13116 } else { 13117 /* Check the IP header checksum. */ 13118 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13119 #define uph ((uint16_t *)ipha) 13120 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13121 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13122 #undef uph 13123 /* finish doing IP checksum */ 13124 sum = (sum & 0xFFFF) + (sum >> 16); 13125 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13126 /* 13127 * Don't verify header checksum if this packet 13128 * is coming back from AH/ESP as we already did it. 13129 */ 13130 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13131 BUMP_MIB(&ip_mib, ipInCksumErrs); 13132 goto error; 13133 } 13134 } 13135 /* 13136 * Since there is no SCTP h/w cksum support yet, just 13137 * clear the flag. 13138 */ 13139 DB_CKSUMFLAGS(mp) = 0; 13140 } 13141 13142 /* 13143 * Don't verify header checksum if this packet is coming 13144 * back from AH/ESP as we already did it. 13145 */ 13146 if (!mctl_present) { 13147 UPDATE_IB_PKT_COUNT(ire); 13148 ire->ire_last_used_time = lbolt; 13149 } 13150 13151 /* packet part of fragmented IP packet? */ 13152 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13153 if (u1 & (IPH_MF | IPH_OFFSET)) 13154 goto fragmented; 13155 13156 /* u1 = IP header length (20 bytes) */ 13157 u1 = IP_SIMPLE_HDR_LENGTH; 13158 13159 find_sctp_client: 13160 /* Pullup if we don't have the sctp common header. */ 13161 len = MBLKL(mp); 13162 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13163 if (mp->b_cont == NULL || 13164 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13165 BUMP_MIB(&ip_mib, ipInDiscards); 13166 goto error; 13167 } 13168 ipha = (ipha_t *)mp->b_rptr; 13169 len = MBLKL(mp); 13170 } 13171 13172 sctph = (sctp_hdr_t *)(rptr + u1); 13173 #ifdef DEBUG 13174 if (!skip_sctp_cksum) { 13175 #endif 13176 pktsum = sctph->sh_chksum; 13177 sctph->sh_chksum = 0; 13178 calcsum = sctp_cksum(mp, u1); 13179 if (calcsum != pktsum) { 13180 BUMP_MIB(&sctp_mib, sctpChecksumError); 13181 goto error; 13182 } 13183 sctph->sh_chksum = pktsum; 13184 #ifdef DEBUG /* skip_sctp_cksum */ 13185 } 13186 #endif 13187 /* get the ports */ 13188 ports = *(uint32_t *)&sctph->sh_sport; 13189 13190 ipif_seqid = ire->ire_ipif->ipif_seqid; 13191 IRE_REFRELE(ire); 13192 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13193 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13194 if ((connp = sctp_fanout(&map_src, &map_dst, ports, ipif_seqid, zoneid, 13195 mp)) == NULL) { 13196 /* Check for raw socket or OOTB handling */ 13197 goto no_conn; 13198 } 13199 13200 /* Found a client; up it goes */ 13201 BUMP_MIB(&ip_mib, ipInDelivers); 13202 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13203 return; 13204 13205 no_conn: 13206 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13207 ports, mctl_present, flags, B_TRUE, ipif_seqid, zoneid); 13208 return; 13209 13210 ipoptions: 13211 DB_CKSUMFLAGS(mp) = 0; 13212 if (!ip_options_cksum(q, first_mp, ipha, ire)) 13213 goto slow_done; 13214 13215 UPDATE_IB_PKT_COUNT(ire); 13216 ire->ire_last_used_time = lbolt; 13217 13218 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13219 if (u1 & (IPH_MF | IPH_OFFSET)) { 13220 fragmented: 13221 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13222 goto slow_done; 13223 /* 13224 * Make sure that first_mp points back to mp as 13225 * the mp we came in with could have changed in 13226 * ip_rput_fragment(). 13227 */ 13228 ASSERT(!mctl_present); 13229 ipha = (ipha_t *)mp->b_rptr; 13230 first_mp = mp; 13231 } 13232 13233 /* Now we have a complete datagram, destined for this machine. */ 13234 u1 = IPH_HDR_LENGTH(ipha); 13235 goto find_sctp_client; 13236 #undef iphs 13237 #undef rptr 13238 13239 error: 13240 freemsg(first_mp); 13241 slow_done: 13242 IRE_REFRELE(ire); 13243 } 13244 13245 #define VER_BITS 0xF0 13246 #define VERSION_6 0x60 13247 13248 static boolean_t 13249 ip_rput_multimblk_ipoptions(queue_t *q, mblk_t *mp, ipha_t **iphapp, 13250 ipaddr_t *dstp) 13251 { 13252 uint_t opt_len; 13253 ipha_t *ipha; 13254 ssize_t len; 13255 uint_t pkt_len; 13256 13257 IP_STAT(ip_ipoptions); 13258 ipha = *iphapp; 13259 13260 #define rptr ((uchar_t *)ipha) 13261 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13262 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13263 BUMP_MIB(&ip_mib, ipInIPv6); 13264 freemsg(mp); 13265 return (B_FALSE); 13266 } 13267 13268 /* multiple mblk or too short */ 13269 pkt_len = ntohs(ipha->ipha_length); 13270 13271 /* Get the number of words of IP options in the IP header. */ 13272 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13273 if (opt_len) { 13274 /* IP Options present! Validate and process. */ 13275 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13276 BUMP_MIB(&ip_mib, ipInHdrErrors); 13277 goto done; 13278 } 13279 /* 13280 * Recompute complete header length and make sure we 13281 * have access to all of it. 13282 */ 13283 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13284 if (len > (mp->b_wptr - rptr)) { 13285 if (len > pkt_len) { 13286 BUMP_MIB(&ip_mib, ipInHdrErrors); 13287 goto done; 13288 } 13289 if (!pullupmsg(mp, len)) { 13290 BUMP_MIB(&ip_mib, ipInDiscards); 13291 goto done; 13292 } 13293 ipha = (ipha_t *)mp->b_rptr; 13294 } 13295 /* 13296 * Go off to ip_rput_options which returns the next hop 13297 * destination address, which may have been affected 13298 * by source routing. 13299 */ 13300 IP_STAT(ip_opt); 13301 if (ip_rput_options(q, mp, ipha, dstp) == -1) { 13302 return (B_FALSE); 13303 } 13304 } 13305 *iphapp = ipha; 13306 return (B_TRUE); 13307 done: 13308 /* clear b_prev - used by ip_mroute_decap */ 13309 mp->b_prev = NULL; 13310 freemsg(mp); 13311 return (B_FALSE); 13312 #undef rptr 13313 } 13314 13315 /* 13316 * Deal with the fact that there is no ire for the destination. 13317 * The incoming ill (in_ill) is passed in to ip_newroute only 13318 * in the case of packets coming from mobile ip forward tunnel. 13319 * It must be null otherwise. 13320 */ 13321 static ire_t * 13322 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 13323 ipaddr_t dst) 13324 { 13325 ipha_t *ipha; 13326 ill_t *ill; 13327 ire_t *ire; 13328 boolean_t check_multirt = B_FALSE; 13329 13330 ipha = (ipha_t *)mp->b_rptr; 13331 ill = (ill_t *)q->q_ptr; 13332 13333 ASSERT(ill != NULL); 13334 /* 13335 * No IRE for this destination, so it can't be for us. 13336 * Unless we are forwarding, drop the packet. 13337 * We have to let source routed packets through 13338 * since we don't yet know if they are 'ping -l' 13339 * packets i.e. if they will go out over the 13340 * same interface as they came in on. 13341 */ 13342 if (ll_multicast) { 13343 freemsg(mp); 13344 return (NULL); 13345 } 13346 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha)) { 13347 BUMP_MIB(&ip_mib, ipForwProhibits); 13348 freemsg(mp); 13349 return (NULL); 13350 } 13351 13352 /* 13353 * Mark this packet as having originated externally. 13354 * 13355 * For non-forwarding code path, ire_send later double 13356 * checks this interface to see if it is still exists 13357 * post-ARP resolution. 13358 * 13359 * Also, IPQOS uses this to differentiate between 13360 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13361 * QOS packet processing in ip_wput_attach_llhdr(). 13362 * The QoS module can mark the b_band for a fastpath message 13363 * or the dl_priority field in a unitdata_req header for 13364 * CoS marking. This info can only be found in 13365 * ip_wput_attach_llhdr(). 13366 */ 13367 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13368 /* 13369 * Clear the indication that this may have a hardware checksum 13370 * as we are not using it 13371 */ 13372 DB_CKSUMFLAGS(mp) = 0; 13373 13374 if (in_ill != NULL) { 13375 /* 13376 * Now hand the packet to ip_newroute. 13377 */ 13378 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID); 13379 return (NULL); 13380 } 13381 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13382 MBLK_GETLABEL(mp)); 13383 13384 if (ire == NULL && check_multirt) { 13385 /* Let ip_newroute handle CGTP */ 13386 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID); 13387 return (NULL); 13388 } 13389 13390 if (ire != NULL) 13391 return (ire); 13392 13393 mp->b_prev = mp->b_next = 0; 13394 /* send icmp unreachable */ 13395 q = WR(q); 13396 /* Sent by forwarding path, and router is global zone */ 13397 if (ip_source_routed(ipha)) { 13398 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13399 GLOBAL_ZONEID); 13400 } else { 13401 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID); 13402 } 13403 13404 return (NULL); 13405 13406 } 13407 13408 /* 13409 * check ip header length and align it. 13410 */ 13411 static boolean_t 13412 ip_check_and_align_header(queue_t *q, mblk_t *mp) 13413 { 13414 ssize_t len; 13415 ill_t *ill; 13416 ipha_t *ipha; 13417 13418 len = MBLKL(mp); 13419 13420 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13421 if (!OK_32PTR(mp->b_rptr)) 13422 IP_STAT(ip_notaligned1); 13423 else 13424 IP_STAT(ip_notaligned2); 13425 /* Guard against bogus device drivers */ 13426 if (len < 0) { 13427 /* clear b_prev - used by ip_mroute_decap */ 13428 mp->b_prev = NULL; 13429 BUMP_MIB(&ip_mib, ipInHdrErrors); 13430 freemsg(mp); 13431 return (B_FALSE); 13432 } 13433 13434 if (ip_rput_pullups++ == 0) { 13435 ill = (ill_t *)q->q_ptr; 13436 ipha = (ipha_t *)mp->b_rptr; 13437 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13438 "ip_check_and_align_header: %s forced us to " 13439 " pullup pkt, hdr len %ld, hdr addr %p", 13440 ill->ill_name, len, ipha); 13441 } 13442 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13443 /* clear b_prev - used by ip_mroute_decap */ 13444 mp->b_prev = NULL; 13445 BUMP_MIB(&ip_mib, ipInDiscards); 13446 freemsg(mp); 13447 return (B_FALSE); 13448 } 13449 } 13450 return (B_TRUE); 13451 } 13452 13453 static boolean_t 13454 ip_rput_notforus(queue_t **qp, mblk_t *mp, ire_t *ire, ill_t *ill) 13455 { 13456 ill_group_t *ill_group; 13457 ill_group_t *ire_group; 13458 queue_t *q; 13459 ill_t *ire_ill; 13460 uint_t ill_ifindex; 13461 13462 q = *qp; 13463 /* 13464 * We need to check to make sure the packet came in 13465 * on the queue associated with the destination IRE. 13466 * Note that for multicast packets and broadcast packets sent to 13467 * a broadcast address which is shared between multiple interfaces 13468 * we should not do this since we just got a random broadcast ire. 13469 */ 13470 if (ire->ire_rfq && ire->ire_type != IRE_BROADCAST) { 13471 boolean_t check_multi = B_TRUE; 13472 13473 /* 13474 * This packet came in on an interface other than the 13475 * one associated with the destination address. 13476 * "Gateway" it to the appropriate interface here. 13477 * As long as the ills belong to the same group, 13478 * we don't consider them to arriving on the wrong 13479 * interface. Thus, when the switch is doing inbound 13480 * load spreading, we won't drop packets when we 13481 * are doing strict multihoming checks. Note, the 13482 * same holds true for 'usesrc groups' where the 13483 * destination address may belong to another interface 13484 * to allow multipathing to happen 13485 */ 13486 ill_group = ill->ill_group; 13487 ire_ill = (ill_t *)(ire->ire_rfq)->q_ptr; 13488 ill_ifindex = ill->ill_usesrc_ifindex; 13489 ire_group = ire_ill->ill_group; 13490 13491 /* 13492 * If it's part of the same IPMP group, or if it's a legal 13493 * address on the 'usesrc' interface, then bypass strict 13494 * checks. 13495 */ 13496 if (ill_group != NULL && ill_group == ire_group) { 13497 check_multi = B_FALSE; 13498 } else if (ill_ifindex != 0 && 13499 ill_ifindex == ire_ill->ill_phyint->phyint_ifindex) { 13500 check_multi = B_FALSE; 13501 } 13502 13503 if (check_multi && 13504 ip_strict_dst_multihoming && 13505 ((ill->ill_flags & 13506 ire->ire_ipif->ipif_ill->ill_flags & 13507 ILLF_ROUTER) == 0)) { 13508 /* Drop packet */ 13509 BUMP_MIB(&ip_mib, ipForwProhibits); 13510 freemsg(mp); 13511 return (B_TRUE); 13512 } 13513 13514 /* 13515 * Change the queue (for non-virtual destination network 13516 * interfaces) and ip_rput_local will be called with the right 13517 * queue 13518 */ 13519 q = ire->ire_rfq; 13520 } 13521 /* Must be broadcast. We'll take it. */ 13522 *qp = q; 13523 return (B_FALSE); 13524 } 13525 13526 #define SEND_PKT(ire, mp) \ 13527 { \ 13528 UPDATE_IB_PKT_COUNT(ire); \ 13529 (ire)->ire_last_used_time = lbolt; \ 13530 BUMP_MIB(&ip_mib, ipForwDatagrams); \ 13531 putnext((ire)->ire_stq, mp); \ 13532 } 13533 13534 ire_t * 13535 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13536 { 13537 ipha_t *ipha; 13538 ipaddr_t ip_dst, ip_src; 13539 ire_t *src_ire = NULL; 13540 ill_t *stq_ill; 13541 uint_t hlen; 13542 uint32_t sum; 13543 queue_t *dev_q; 13544 boolean_t check_multirt = B_FALSE; 13545 13546 13547 ipha = (ipha_t *)mp->b_rptr; 13548 13549 /* 13550 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13551 * The loopback address check for both src and dst has already 13552 * been checked in ip_input 13553 */ 13554 ip_dst = ntohl(dst); 13555 ip_src = ntohl(ipha->ipha_src); 13556 13557 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 13558 IN_CLASSD(ip_src)) { 13559 BUMP_MIB(&ip_mib, ipForwProhibits); 13560 goto drop; 13561 } 13562 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13563 ALL_ZONES, NULL, MATCH_IRE_TYPE); 13564 13565 if (src_ire != NULL) { 13566 BUMP_MIB(&ip_mib, ipForwProhibits); 13567 goto drop; 13568 } 13569 13570 /* No ire cache of nexthop. So first create one */ 13571 if (ire == NULL) { 13572 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL); 13573 /* 13574 * We only come to ip_fast_forward if ip_cgtp_filter is 13575 * is not set. So upon return from ire_forward 13576 * check_multirt should remain as false. 13577 */ 13578 ASSERT(!check_multirt); 13579 if (ire == NULL) { 13580 BUMP_MIB(&ip_mib, ipInDiscards); 13581 mp->b_prev = mp->b_next = 0; 13582 /* send icmp unreachable */ 13583 /* Sent by forwarding path, and router is global zone */ 13584 if (ip_source_routed(ipha)) { 13585 icmp_unreachable(ill->ill_wq, mp, 13586 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID); 13587 } else { 13588 icmp_unreachable(ill->ill_wq, mp, 13589 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID); 13590 } 13591 return (ire); 13592 } 13593 } 13594 13595 /* 13596 * Forwarding fastpath exception case: 13597 * If either of the follwoing case is true, we take 13598 * the slowpath 13599 * o forwarding is not enabled 13600 * o IPMP is enabled 13601 * o corresponding ire is in incomplete state 13602 * o packet needs fragmentation 13603 * 13604 * The codeflow from here on is thus: 13605 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13606 */ 13607 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13608 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13609 !(ill->ill_flags & ILLF_ROUTER) || SAME_IPMP_GROUP(ill, stq_ill) || 13610 (ire->ire_nce == NULL) || 13611 (ire->ire_nce->nce_state != ND_REACHABLE) || 13612 (ntohs(ipha->ipha_length) > ire->ire_max_frag) || 13613 ipha->ipha_ttl <= 1) { 13614 ip_rput_process_forward(ill->ill_rq, mp, ire, 13615 ipha, ill, B_FALSE); 13616 return (ire); 13617 } 13618 13619 mp->b_datap->db_struioun.cksum.flags = 0; 13620 /* Adjust the checksum to reflect the ttl decrement. */ 13621 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13622 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13623 ipha->ipha_ttl--; 13624 13625 dev_q = ire->ire_stq->q_next; 13626 if ((dev_q->q_next != NULL || 13627 dev_q->q_first != NULL) && !canput(dev_q)) { 13628 goto indiscard; 13629 } 13630 13631 hlen = ire->ire_nce->nce_fp_mp != NULL ? 13632 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 13633 13634 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 13635 mp = ip_wput_attach_llhdr(mp, ire, 0, 0); 13636 if (mp != NULL) { 13637 SEND_PKT(ire, mp); 13638 return (ire); 13639 } 13640 } 13641 13642 indiscard: 13643 BUMP_MIB(&ip_mib, ipInDiscards); 13644 drop: 13645 if (mp != NULL) 13646 freemsg(mp); 13647 if (src_ire != NULL) 13648 ire_refrele(src_ire); 13649 return (ire); 13650 13651 } 13652 13653 /* 13654 * This function is called in the forwarding slowpath, when 13655 * either the ire lacks the link-layer address, or the packet needs 13656 * further processing(eg. fragmentation), before transmission. 13657 */ 13658 static void 13659 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13660 ill_t *ill, boolean_t ll_multicast) 13661 { 13662 ill_group_t *ill_group; 13663 ill_group_t *ire_group; 13664 queue_t *dev_q; 13665 ire_t *src_ire; 13666 13667 ASSERT(ire->ire_stq != NULL); 13668 13669 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 13670 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 13671 13672 if (ll_multicast != 0) 13673 goto drop_pkt; 13674 13675 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13676 ALL_ZONES, NULL, MATCH_IRE_TYPE); 13677 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 13678 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 13679 if (src_ire != NULL) 13680 ire_refrele(src_ire); 13681 BUMP_MIB(&ip_mib, ipForwProhibits); 13682 ip2dbg(("ip_rput_process_forward: Received packet with" 13683 " bad src/dst address on %s\n", ill->ill_name)); 13684 } 13685 13686 ill_group = ill->ill_group; 13687 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 13688 /* 13689 * Check if we want to forward this one at this time. 13690 * We allow source routed packets on a host provided that 13691 * they go out the same interface or same interface group 13692 * as they came in on. 13693 * 13694 * XXX To be quicker, we may wish to not chase pointers to 13695 * get the ILLF_ROUTER flag and instead store the 13696 * forwarding policy in the ire. An unfortunate 13697 * side-effect of that would be requiring an ire flush 13698 * whenever the ILLF_ROUTER flag changes. 13699 */ 13700 if (((ill->ill_flags & 13701 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 13702 ILLF_ROUTER) == 0) && 13703 !(ip_source_routed(ipha) && (ire->ire_rfq == q || 13704 (ill_group != NULL && ill_group == ire_group)))) { 13705 BUMP_MIB(&ip_mib, ipForwProhibits); 13706 if (ip_source_routed(ipha)) { 13707 q = WR(q); 13708 /* 13709 * Clear the indication that this may have 13710 * hardware checksum as we are not using it. 13711 */ 13712 DB_CKSUMFLAGS(mp) = 0; 13713 /* Sent by forwarding path, and router is global zone */ 13714 icmp_unreachable(q, mp, 13715 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID); 13716 return; 13717 } 13718 goto drop_pkt; 13719 } 13720 13721 /* Packet is being forwarded. Turning off hwcksum flag. */ 13722 DB_CKSUMFLAGS(mp) = 0; 13723 if (ip_g_send_redirects) { 13724 /* 13725 * Check whether the incoming interface and outgoing 13726 * interface is part of the same group. If so, 13727 * send redirects. 13728 * 13729 * Check the source address to see if it originated 13730 * on the same logical subnet it is going back out on. 13731 * If so, we should be able to send it a redirect. 13732 * Avoid sending a redirect if the destination 13733 * is directly connected (gw_addr == 0), 13734 * or if the packet was source routed out this 13735 * interface. 13736 */ 13737 ipaddr_t src; 13738 mblk_t *mp1; 13739 ire_t *src_ire = NULL; 13740 13741 /* 13742 * Check whether ire_rfq and q are from the same ill 13743 * or if they are not same, they at least belong 13744 * to the same group. If so, send redirects. 13745 */ 13746 if ((ire->ire_rfq == q || 13747 (ill_group != NULL && ill_group == ire_group)) && 13748 (ire->ire_gateway_addr != 0) && 13749 !ip_source_routed(ipha)) { 13750 13751 src = ipha->ipha_src; 13752 src_ire = ire_ftable_lookup(src, 0, 0, 13753 IRE_INTERFACE, ire->ire_ipif, NULL, ALL_ZONES, 13754 0, NULL, MATCH_IRE_IPIF | MATCH_IRE_TYPE); 13755 13756 if (src_ire != NULL) { 13757 /* 13758 * The source is directly connected. 13759 * Just copy the ip header (which is 13760 * in the first mblk) 13761 */ 13762 mp1 = copyb(mp); 13763 if (mp1 != NULL) { 13764 icmp_send_redirect(WR(q), mp1, 13765 ire->ire_gateway_addr); 13766 } 13767 ire_refrele(src_ire); 13768 } 13769 } 13770 } 13771 13772 dev_q = ire->ire_stq->q_next; 13773 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 13774 BUMP_MIB(&ip_mib, ipInDiscards); 13775 freemsg(mp); 13776 return; 13777 } 13778 13779 ip_rput_forward(ire, ipha, mp, ill); 13780 return; 13781 13782 drop_pkt: 13783 ip2dbg(("ip_rput_forward: drop pkt\n")); 13784 freemsg(mp); 13785 } 13786 13787 ire_t * 13788 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13789 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 13790 { 13791 queue_t *q; 13792 uint16_t hcksumflags; 13793 13794 q = *qp; 13795 13796 /* 13797 * Clear the indication that this may have hardware 13798 * checksum as we are not using it for forwarding. 13799 */ 13800 hcksumflags = DB_CKSUMFLAGS(mp); 13801 DB_CKSUMFLAGS(mp) = 0; 13802 13803 /* 13804 * Directed broadcast forwarding: if the packet came in over a 13805 * different interface then it is routed out over we can forward it. 13806 */ 13807 if (ipha->ipha_protocol == IPPROTO_TCP) { 13808 ire_refrele(ire); 13809 freemsg(mp); 13810 BUMP_MIB(&ip_mib, ipInDiscards); 13811 return (NULL); 13812 } 13813 /* 13814 * For multicast we have set dst to be INADDR_BROADCAST 13815 * for delivering to all STREAMS. IRE_MARK_NORECV is really 13816 * only for broadcast packets. 13817 */ 13818 if (!CLASSD(ipha->ipha_dst)) { 13819 ire_t *new_ire; 13820 ipif_t *ipif; 13821 /* 13822 * For ill groups, as the switch duplicates broadcasts 13823 * across all the ports, we need to filter out and 13824 * send up only one copy. There is one copy for every 13825 * broadcast address on each ill. Thus, we look for a 13826 * specific IRE on this ill and look at IRE_MARK_NORECV 13827 * later to see whether this ill is eligible to receive 13828 * them or not. ill_nominate_bcast_rcv() nominates only 13829 * one set of IREs for receiving. 13830 */ 13831 13832 ipif = ipif_get_next_ipif(NULL, ill); 13833 if (ipif == NULL) { 13834 ire_refrele(ire); 13835 freemsg(mp); 13836 BUMP_MIB(&ip_mib, ipInDiscards); 13837 return (NULL); 13838 } 13839 new_ire = ire_ctable_lookup(dst, 0, 0, 13840 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL); 13841 ipif_refrele(ipif); 13842 13843 if (new_ire != NULL) { 13844 if (new_ire->ire_marks & IRE_MARK_NORECV) { 13845 ire_refrele(ire); 13846 ire_refrele(new_ire); 13847 freemsg(mp); 13848 BUMP_MIB(&ip_mib, ipInDiscards); 13849 return (NULL); 13850 } 13851 /* 13852 * In the special case of multirouted broadcast 13853 * packets, we unconditionally need to "gateway" 13854 * them to the appropriate interface here. 13855 * In the normal case, this cannot happen, because 13856 * there is no broadcast IRE tagged with the 13857 * RTF_MULTIRT flag. 13858 */ 13859 if (new_ire->ire_flags & RTF_MULTIRT) { 13860 ire_refrele(new_ire); 13861 if (ire->ire_rfq != NULL) { 13862 q = ire->ire_rfq; 13863 *qp = q; 13864 } 13865 } else { 13866 ire_refrele(ire); 13867 ire = new_ire; 13868 } 13869 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 13870 if (!ip_g_forward_directed_bcast) { 13871 /* 13872 * Free the message if 13873 * ip_g_forward_directed_bcast is turned 13874 * off for non-local broadcast. 13875 */ 13876 ire_refrele(ire); 13877 freemsg(mp); 13878 BUMP_MIB(&ip_mib, ipInDiscards); 13879 return (NULL); 13880 } 13881 } else { 13882 /* 13883 * This CGTP packet successfully passed the 13884 * CGTP filter, but the related CGTP 13885 * broadcast IRE has not been found, 13886 * meaning that the redundant ipif is 13887 * probably down. However, if we discarded 13888 * this packet, its duplicate would be 13889 * filtered out by the CGTP filter so none 13890 * of them would get through. So we keep 13891 * going with this one. 13892 */ 13893 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 13894 if (ire->ire_rfq != NULL) { 13895 q = ire->ire_rfq; 13896 *qp = q; 13897 } 13898 } 13899 } 13900 if (ip_g_forward_directed_bcast && ll_multicast == 0) { 13901 /* 13902 * Verify that there are not more then one 13903 * IRE_BROADCAST with this broadcast address which 13904 * has ire_stq set. 13905 * TODO: simplify, loop over all IRE's 13906 */ 13907 ire_t *ire1; 13908 int num_stq = 0; 13909 mblk_t *mp1; 13910 13911 /* Find the first one with ire_stq set */ 13912 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 13913 for (ire1 = ire; ire1 && 13914 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 13915 ire1 = ire1->ire_next) 13916 ; 13917 if (ire1) { 13918 ire_refrele(ire); 13919 ire = ire1; 13920 IRE_REFHOLD(ire); 13921 } 13922 13923 /* Check if there are additional ones with stq set */ 13924 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 13925 if (ire->ire_addr != ire1->ire_addr) 13926 break; 13927 if (ire1->ire_stq) { 13928 num_stq++; 13929 break; 13930 } 13931 } 13932 rw_exit(&ire->ire_bucket->irb_lock); 13933 if (num_stq == 1 && ire->ire_stq != NULL) { 13934 ip1dbg(("ip_rput_process_broadcast: directed " 13935 "broadcast to 0x%x\n", 13936 ntohl(ire->ire_addr))); 13937 mp1 = copymsg(mp); 13938 if (mp1) { 13939 switch (ipha->ipha_protocol) { 13940 case IPPROTO_UDP: 13941 ip_udp_input(q, mp1, ipha, ire, ill); 13942 break; 13943 default: 13944 ip_proto_input(q, mp1, ipha, ire, ill); 13945 break; 13946 } 13947 } 13948 /* 13949 * Adjust ttl to 2 (1+1 - the forward engine 13950 * will decrement it by one. 13951 */ 13952 if (ip_csum_hdr(ipha)) { 13953 BUMP_MIB(&ip_mib, ipInCksumErrs); 13954 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 13955 freemsg(mp); 13956 ire_refrele(ire); 13957 return (NULL); 13958 } 13959 ipha->ipha_ttl = ip_broadcast_ttl + 1; 13960 ipha->ipha_hdr_checksum = 0; 13961 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 13962 ip_rput_process_forward(q, mp, ire, ipha, 13963 ill, ll_multicast); 13964 ire_refrele(ire); 13965 return (NULL); 13966 } 13967 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 13968 ntohl(ire->ire_addr))); 13969 } 13970 13971 13972 /* Restore any hardware checksum flags */ 13973 DB_CKSUMFLAGS(mp) = hcksumflags; 13974 return (ire); 13975 } 13976 13977 /* ARGSUSED */ 13978 static boolean_t 13979 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 13980 int *ll_multicast, ipaddr_t *dstp) 13981 { 13982 /* 13983 * Forward packets only if we have joined the allmulti 13984 * group on this interface. 13985 */ 13986 if (ip_g_mrouter && ill->ill_join_allmulti) { 13987 int retval; 13988 13989 /* 13990 * Clear the indication that this may have hardware 13991 * checksum as we are not using it. 13992 */ 13993 DB_CKSUMFLAGS(mp) = 0; 13994 retval = ip_mforward(ill, ipha, mp); 13995 /* ip_mforward updates mib variables if needed */ 13996 /* clear b_prev - used by ip_mroute_decap */ 13997 mp->b_prev = NULL; 13998 13999 switch (retval) { 14000 case 0: 14001 /* 14002 * pkt is okay and arrived on phyint. 14003 * 14004 * If we are running as a multicast router 14005 * we need to see all IGMP and/or PIM packets. 14006 */ 14007 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14008 (ipha->ipha_protocol == IPPROTO_PIM)) { 14009 goto done; 14010 } 14011 break; 14012 case -1: 14013 /* pkt is mal-formed, toss it */ 14014 goto drop_pkt; 14015 case 1: 14016 /* pkt is okay and arrived on a tunnel */ 14017 /* 14018 * If we are running a multicast router 14019 * we need to see all igmp packets. 14020 */ 14021 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14022 *dstp = INADDR_BROADCAST; 14023 *ll_multicast = 1; 14024 return (B_FALSE); 14025 } 14026 14027 goto drop_pkt; 14028 } 14029 } 14030 14031 ILM_WALKER_HOLD(ill); 14032 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14033 /* 14034 * This might just be caused by the fact that 14035 * multiple IP Multicast addresses map to the same 14036 * link layer multicast - no need to increment counter! 14037 */ 14038 ILM_WALKER_RELE(ill); 14039 freemsg(mp); 14040 return (B_TRUE); 14041 } 14042 ILM_WALKER_RELE(ill); 14043 done: 14044 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14045 /* 14046 * This assumes the we deliver to all streams for multicast 14047 * and broadcast packets. 14048 */ 14049 *dstp = INADDR_BROADCAST; 14050 *ll_multicast = 1; 14051 return (B_FALSE); 14052 drop_pkt: 14053 ip2dbg(("ip_rput: drop pkt\n")); 14054 freemsg(mp); 14055 return (B_TRUE); 14056 } 14057 14058 static boolean_t 14059 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14060 int *ll_multicast, mblk_t **mpp) 14061 { 14062 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14063 boolean_t must_copy = B_FALSE; 14064 struct iocblk *iocp; 14065 ipha_t *ipha; 14066 14067 #define rptr ((uchar_t *)ipha) 14068 14069 first_mp = *first_mpp; 14070 mp = *mpp; 14071 14072 ASSERT(first_mp == mp); 14073 14074 /* 14075 * if db_ref > 1 then copymsg and free original. Packet may be 14076 * changed and do not want other entity who has a reference to this 14077 * message to trip over the changes. This is a blind change because 14078 * trying to catch all places that might change packet is too 14079 * difficult (since it may be a module above this one) 14080 * 14081 * This corresponds to the non-fast path case. We walk down the full 14082 * chain in this case, and check the db_ref count of all the dblks, 14083 * and do a copymsg if required. It is possible that the db_ref counts 14084 * of the data blocks in the mblk chain can be different. 14085 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14086 * count of 1, followed by a M_DATA block with a ref count of 2, if 14087 * 'snoop' is running. 14088 */ 14089 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14090 if (mp1->b_datap->db_ref > 1) { 14091 must_copy = B_TRUE; 14092 break; 14093 } 14094 } 14095 14096 if (must_copy) { 14097 mp1 = copymsg(mp); 14098 if (mp1 == NULL) { 14099 for (mp1 = mp; mp1 != NULL; 14100 mp1 = mp1->b_cont) { 14101 mp1->b_next = NULL; 14102 mp1->b_prev = NULL; 14103 } 14104 freemsg(mp); 14105 BUMP_MIB(&ip_mib, ipInDiscards); 14106 return (B_TRUE); 14107 } 14108 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14109 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14110 /* Copy b_prev - used by ip_mroute_decap */ 14111 to_mp->b_prev = from_mp->b_prev; 14112 from_mp->b_prev = NULL; 14113 } 14114 *first_mpp = first_mp = mp1; 14115 freemsg(mp); 14116 mp = mp1; 14117 *mpp = mp1; 14118 } 14119 14120 ipha = (ipha_t *)mp->b_rptr; 14121 14122 /* 14123 * previous code has a case for M_DATA. 14124 * We want to check how that happens. 14125 */ 14126 ASSERT(first_mp->b_datap->db_type != M_DATA); 14127 switch (first_mp->b_datap->db_type) { 14128 case M_PROTO: 14129 case M_PCPROTO: 14130 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14131 DL_UNITDATA_IND) { 14132 /* Go handle anything other than data elsewhere. */ 14133 ip_rput_dlpi(q, mp); 14134 return (B_TRUE); 14135 } 14136 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14137 /* Ditch the DLPI header. */ 14138 mp1 = mp->b_cont; 14139 ASSERT(first_mp == mp); 14140 *first_mpp = mp1; 14141 freeb(mp); 14142 *mpp = mp1; 14143 return (B_FALSE); 14144 case M_IOCACK: 14145 ip1dbg(("got iocack ")); 14146 iocp = (struct iocblk *)mp->b_rptr; 14147 switch (iocp->ioc_cmd) { 14148 case DL_IOC_HDR_INFO: 14149 ill = (ill_t *)q->q_ptr; 14150 ill_fastpath_ack(ill, mp); 14151 return (B_TRUE); 14152 case SIOCSTUNPARAM: 14153 case OSIOCSTUNPARAM: 14154 /* Go through qwriter_ip */ 14155 break; 14156 case SIOCGTUNPARAM: 14157 case OSIOCGTUNPARAM: 14158 ip_rput_other(NULL, q, mp, NULL); 14159 return (B_TRUE); 14160 default: 14161 putnext(q, mp); 14162 return (B_TRUE); 14163 } 14164 /* FALLTHRU */ 14165 case M_ERROR: 14166 case M_HANGUP: 14167 /* 14168 * Since this is on the ill stream we unconditionally 14169 * bump up the refcount 14170 */ 14171 ill_refhold(ill); 14172 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 14173 B_FALSE); 14174 return (B_TRUE); 14175 case M_CTL: 14176 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14177 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14178 IPHADA_M_CTL)) { 14179 /* 14180 * It's an IPsec accelerated packet. 14181 * Make sure that the ill from which we received the 14182 * packet has enabled IPsec hardware acceleration. 14183 */ 14184 if (!(ill->ill_capabilities & 14185 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14186 /* IPsec kstats: bean counter */ 14187 freemsg(mp); 14188 return (B_TRUE); 14189 } 14190 14191 /* 14192 * Make mp point to the mblk following the M_CTL, 14193 * then process according to type of mp. 14194 * After this processing, first_mp will point to 14195 * the data-attributes and mp to the pkt following 14196 * the M_CTL. 14197 */ 14198 mp = first_mp->b_cont; 14199 if (mp == NULL) { 14200 freemsg(first_mp); 14201 return (B_TRUE); 14202 } 14203 /* 14204 * A Hardware Accelerated packet can only be M_DATA 14205 * ESP or AH packet. 14206 */ 14207 if (mp->b_datap->db_type != M_DATA) { 14208 /* non-M_DATA IPsec accelerated packet */ 14209 IPSECHW_DEBUG(IPSECHW_PKT, 14210 ("non-M_DATA IPsec accelerated pkt\n")); 14211 freemsg(first_mp); 14212 return (B_TRUE); 14213 } 14214 ipha = (ipha_t *)mp->b_rptr; 14215 if (ipha->ipha_protocol != IPPROTO_AH && 14216 ipha->ipha_protocol != IPPROTO_ESP) { 14217 IPSECHW_DEBUG(IPSECHW_PKT, 14218 ("non-M_DATA IPsec accelerated pkt\n")); 14219 freemsg(first_mp); 14220 return (B_TRUE); 14221 } 14222 *mpp = mp; 14223 return (B_FALSE); 14224 } 14225 putnext(q, mp); 14226 return (B_TRUE); 14227 case M_FLUSH: 14228 if (*mp->b_rptr & FLUSHW) { 14229 *mp->b_rptr &= ~FLUSHR; 14230 qreply(q, mp); 14231 return (B_TRUE); 14232 } 14233 freemsg(mp); 14234 return (B_TRUE); 14235 case M_IOCNAK: 14236 ip1dbg(("got iocnak ")); 14237 iocp = (struct iocblk *)mp->b_rptr; 14238 switch (iocp->ioc_cmd) { 14239 case DL_IOC_HDR_INFO: 14240 case SIOCSTUNPARAM: 14241 case OSIOCSTUNPARAM: 14242 /* 14243 * Since this is on the ill stream we unconditionally 14244 * bump up the refcount 14245 */ 14246 ill_refhold(ill); 14247 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 14248 CUR_OP, B_FALSE); 14249 return (B_TRUE); 14250 case SIOCGTUNPARAM: 14251 case OSIOCGTUNPARAM: 14252 ip_rput_other(NULL, q, mp, NULL); 14253 return (B_TRUE); 14254 default: 14255 break; 14256 } 14257 /* FALLTHRU */ 14258 default: 14259 putnext(q, mp); 14260 return (B_TRUE); 14261 } 14262 } 14263 14264 /* Read side put procedure. Packets coming from the wire arrive here. */ 14265 void 14266 ip_rput(queue_t *q, mblk_t *mp) 14267 { 14268 ill_t *ill; 14269 mblk_t *dmp = NULL; 14270 14271 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14272 14273 ill = (ill_t *)q->q_ptr; 14274 14275 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14276 union DL_primitives *dl; 14277 14278 /* 14279 * Things are opening or closing. Only accept DLPI control 14280 * messages. In the open case, the ill->ill_ipif has not yet 14281 * been created. In the close case, things hanging off the 14282 * ill could have been freed already. In either case it 14283 * may not be safe to proceed further. 14284 */ 14285 14286 dl = (union DL_primitives *)mp->b_rptr; 14287 if ((mp->b_datap->db_type != M_PCPROTO) || 14288 (dl->dl_primitive == DL_UNITDATA_IND)) { 14289 /* 14290 * Also SIOC[GS]TUN* ioctls can come here. 14291 */ 14292 inet_freemsg(mp); 14293 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14294 "ip_input_end: q %p (%S)", q, "uninit"); 14295 return; 14296 } 14297 } 14298 14299 /* 14300 * if db_ref > 1 then copymsg and free original. Packet may be 14301 * changed and we do not want the other entity who has a reference to 14302 * this message to trip over the changes. This is a blind change because 14303 * trying to catch all places that might change the packet is too 14304 * difficult. 14305 * 14306 * This corresponds to the fast path case, where we have a chain of 14307 * M_DATA mblks. We check the db_ref count of only the 1st data block 14308 * in the mblk chain. There doesn't seem to be a reason why a device 14309 * driver would send up data with varying db_ref counts in the mblk 14310 * chain. In any case the Fast path is a private interface, and our 14311 * drivers don't do such a thing. Given the above assumption, there is 14312 * no need to walk down the entire mblk chain (which could have a 14313 * potential performance problem) 14314 */ 14315 if (mp->b_datap->db_ref > 1) { 14316 mblk_t *mp1; 14317 boolean_t adjusted = B_FALSE; 14318 IP_STAT(ip_db_ref); 14319 14320 /* 14321 * The IP_RECVSLLA option depends on having the link layer 14322 * header. First check that: 14323 * a> the underlying device is of type ether, since this 14324 * option is currently supported only over ethernet. 14325 * b> there is enough room to copy over the link layer header. 14326 * 14327 * Once the checks are done, adjust rptr so that the link layer 14328 * header will be copied via copymsg. Note that, IFT_ETHER may 14329 * be returned by some non-ethernet drivers but in this case the 14330 * second check will fail. 14331 */ 14332 if (ill->ill_type == IFT_ETHER && 14333 (mp->b_rptr - mp->b_datap->db_base) >= 14334 sizeof (struct ether_header)) { 14335 mp->b_rptr -= sizeof (struct ether_header); 14336 adjusted = B_TRUE; 14337 } 14338 mp1 = copymsg(mp); 14339 if (mp1 == NULL) { 14340 mp->b_next = NULL; 14341 /* clear b_prev - used by ip_mroute_decap */ 14342 mp->b_prev = NULL; 14343 freemsg(mp); 14344 BUMP_MIB(&ip_mib, ipInDiscards); 14345 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14346 "ip_rput_end: q %p (%S)", q, "copymsg"); 14347 return; 14348 } 14349 if (adjusted) { 14350 /* 14351 * Copy is done. Restore the pointer in the _new_ mblk 14352 */ 14353 mp1->b_rptr += sizeof (struct ether_header); 14354 } 14355 /* Copy b_prev - used by ip_mroute_decap */ 14356 mp1->b_prev = mp->b_prev; 14357 mp->b_prev = NULL; 14358 freemsg(mp); 14359 mp = mp1; 14360 } 14361 if (DB_TYPE(mp) == M_DATA) { 14362 dmp = mp; 14363 } else if (DB_TYPE(mp) == M_PROTO && 14364 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14365 dmp = mp->b_cont; 14366 } 14367 if (dmp != NULL) { 14368 /* 14369 * IP header ptr not aligned? 14370 * OR IP header not complete in first mblk 14371 */ 14372 if (!OK_32PTR(dmp->b_rptr) || 14373 (dmp->b_wptr - dmp->b_rptr) < IP_SIMPLE_HDR_LENGTH) { 14374 if (!ip_check_and_align_header(q, dmp)) 14375 return; 14376 } 14377 } 14378 14379 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14380 "ip_rput_end: q %p (%S)", q, "end"); 14381 14382 ip_input(ill, NULL, mp, NULL); 14383 } 14384 14385 /* 14386 * Direct read side procedure capable of dealing with chains. GLDv3 based 14387 * drivers call this function directly with mblk chains while STREAMS 14388 * read side procedure ip_rput() calls this for single packet with ip_ring 14389 * set to NULL to process one packet at a time. 14390 * 14391 * The ill will always be valid if this function is called directly from 14392 * the driver. 14393 * 14394 * If ip_input() is called from GLDv3: 14395 * 14396 * - This must be a non-VLAN IP stream. 14397 * - 'mp' is either an untagged or a special priority-tagged packet. 14398 * - Any VLAN tag that was in the MAC header has been stripped. 14399 * 14400 * Thus, there is no need to adjust b_rptr in this function. 14401 */ 14402 /* ARGSUSED */ 14403 void 14404 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14405 struct mac_header_info_s *mhip) 14406 { 14407 ipaddr_t dst = NULL; 14408 ipaddr_t prev_dst; 14409 ire_t *ire = NULL; 14410 ipha_t *ipha; 14411 uint_t pkt_len; 14412 ssize_t len; 14413 uint_t opt_len; 14414 int ll_multicast; 14415 int cgtp_flt_pkt; 14416 queue_t *q = ill->ill_rq; 14417 squeue_t *curr_sqp = NULL; 14418 mblk_t *head = NULL; 14419 mblk_t *tail = NULL; 14420 mblk_t *first_mp; 14421 mblk_t *mp; 14422 int cnt = 0; 14423 14424 ASSERT(mp_chain != NULL); 14425 ASSERT(ill != NULL); 14426 14427 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14428 14429 #define rptr ((uchar_t *)ipha) 14430 14431 while (mp_chain != NULL) { 14432 first_mp = mp = mp_chain; 14433 mp_chain = mp_chain->b_next; 14434 mp->b_next = NULL; 14435 ll_multicast = 0; 14436 14437 /* 14438 * We do ire caching from one iteration to 14439 * another. In the event the packet chain contains 14440 * all packets from the same dst, this caching saves 14441 * an ire_cache_lookup for each of the succeeding 14442 * packets in a packet chain. 14443 */ 14444 prev_dst = dst; 14445 14446 /* 14447 * ip_input fast path 14448 */ 14449 14450 /* mblk type is not M_DATA */ 14451 if (mp->b_datap->db_type != M_DATA) { 14452 if (ip_rput_process_notdata(q, &first_mp, ill, 14453 &ll_multicast, &mp)) 14454 continue; 14455 } 14456 14457 /* Make sure its an M_DATA and that its aligned */ 14458 ASSERT(mp->b_datap->db_type == M_DATA); 14459 ASSERT(mp->b_datap->db_ref == 1 && OK_32PTR(mp->b_rptr)); 14460 14461 ipha = (ipha_t *)mp->b_rptr; 14462 len = mp->b_wptr - rptr; 14463 14464 BUMP_MIB(&ip_mib, ipInReceives); 14465 14466 14467 /* multiple mblk or too short */ 14468 pkt_len = ntohs(ipha->ipha_length); 14469 len -= pkt_len; 14470 if (len != 0) { 14471 /* 14472 * Make sure we have data length consistent 14473 * with the IP header. 14474 */ 14475 if (mp->b_cont == NULL) { 14476 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14477 BUMP_MIB(&ip_mib, ipInHdrErrors); 14478 ip2dbg(("ip_input: drop pkt\n")); 14479 freemsg(mp); 14480 continue; 14481 } 14482 mp->b_wptr = rptr + pkt_len; 14483 } else if (len += msgdsize(mp->b_cont)) { 14484 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14485 BUMP_MIB(&ip_mib, ipInHdrErrors); 14486 ip2dbg(("ip_input: drop pkt\n")); 14487 freemsg(mp); 14488 continue; 14489 } 14490 (void) adjmsg(mp, -len); 14491 IP_STAT(ip_multimblk3); 14492 } 14493 } 14494 14495 /* Obtain the dst of the current packet */ 14496 dst = ipha->ipha_dst; 14497 14498 if (IP_LOOPBACK_ADDR(dst) || 14499 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 14500 BUMP_MIB(&ip_mib, ipInAddrErrors); 14501 cmn_err(CE_CONT, "dst %X src %X\n", 14502 dst, ipha->ipha_src); 14503 freemsg(mp); 14504 continue; 14505 } 14506 14507 /* 14508 * Attach any necessary label information to 14509 * this packet 14510 */ 14511 if (is_system_labeled() && 14512 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 14513 BUMP_MIB(&ip_mib, ipInDiscards); 14514 freemsg(mp); 14515 continue; 14516 } 14517 14518 /* 14519 * Reuse the cached ire only if the ipha_dst of the previous 14520 * packet is the same as the current packet AND it is not 14521 * INADDR_ANY. 14522 */ 14523 if (!(dst == prev_dst && dst != INADDR_ANY) && 14524 (ire != NULL)) { 14525 ire_refrele(ire); 14526 ire = NULL; 14527 } 14528 opt_len = ipha->ipha_version_and_hdr_length - 14529 IP_SIMPLE_HDR_VERSION; 14530 14531 /* 14532 * Check to see if we can take the fastpath. 14533 * That is possible if the following conditions are met 14534 * o Tsol disabled 14535 * o CGTP disabled 14536 * o ipp_action_count is 0 14537 * o Mobile IP not running 14538 * o no options in the packet 14539 * o not a RSVP packet 14540 * o not a multicast packet 14541 */ 14542 if (!is_system_labeled() && 14543 !ip_cgtp_filter && ipp_action_count == 0 && 14544 ill->ill_mrtun_refcnt == 0 && ill->ill_srcif_refcnt == 0 && 14545 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 14546 !ll_multicast && !CLASSD(dst)) { 14547 if (ire == NULL) 14548 ire = ire_cache_lookup(dst, ALL_ZONES, NULL); 14549 14550 /* incoming packet is for forwarding */ 14551 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 14552 ire = ip_fast_forward(ire, dst, ill, mp); 14553 continue; 14554 } 14555 /* incoming packet is for local consumption */ 14556 if (ire->ire_type & IRE_LOCAL) 14557 goto local; 14558 } 14559 14560 /* 14561 * Disable ire caching for anything more complex 14562 * than the simple fast path case we checked for above. 14563 */ 14564 if (ire != NULL) { 14565 ire_refrele(ire); 14566 ire = NULL; 14567 } 14568 14569 /* Full-blown slow path */ 14570 if (opt_len != 0) { 14571 if (len != 0) 14572 IP_STAT(ip_multimblk4); 14573 else 14574 IP_STAT(ip_ipoptions); 14575 if (!ip_rput_multimblk_ipoptions(q, mp, &ipha, &dst)) 14576 continue; 14577 } 14578 14579 /* 14580 * Invoke the CGTP (multirouting) filtering module to process 14581 * the incoming packet. Packets identified as duplicates 14582 * must be discarded. Filtering is active only if the 14583 * the ip_cgtp_filter ndd variable is non-zero. 14584 */ 14585 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 14586 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL)) { 14587 cgtp_flt_pkt = 14588 ip_cgtp_filter_ops->cfo_filter(q, mp); 14589 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 14590 freemsg(first_mp); 14591 continue; 14592 } 14593 } 14594 14595 /* 14596 * If rsvpd is running, let RSVP daemon handle its processing 14597 * and forwarding of RSVP multicast/unicast packets. 14598 * If rsvpd is not running but mrouted is running, RSVP 14599 * multicast packets are forwarded as multicast traffic 14600 * and RSVP unicast packets are forwarded by unicast router. 14601 * If neither rsvpd nor mrouted is running, RSVP multicast 14602 * packets are not forwarded, but the unicast packets are 14603 * forwarded like unicast traffic. 14604 */ 14605 if (ipha->ipha_protocol == IPPROTO_RSVP && 14606 ipcl_proto_search(IPPROTO_RSVP) != NULL) { 14607 /* RSVP packet and rsvpd running. Treat as ours */ 14608 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 14609 /* 14610 * This assumes that we deliver to all streams for 14611 * multicast and broadcast packets. 14612 * We have to force ll_multicast to 1 to handle the 14613 * M_DATA messages passed in from ip_mroute_decap. 14614 */ 14615 dst = INADDR_BROADCAST; 14616 ll_multicast = 1; 14617 } else if (CLASSD(dst)) { 14618 /* packet is multicast */ 14619 mp->b_next = NULL; 14620 if (ip_rput_process_multicast(q, mp, ill, ipha, 14621 &ll_multicast, &dst)) 14622 continue; 14623 } 14624 14625 14626 /* 14627 * Check if the packet is coming from the Mobile IP 14628 * forward tunnel interface 14629 */ 14630 if (ill->ill_srcif_refcnt > 0) { 14631 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 14632 NULL, ill, MATCH_IRE_TYPE); 14633 if (ire != NULL && ire->ire_nce->nce_res_mp == NULL && 14634 ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER) { 14635 14636 /* We need to resolve the link layer info */ 14637 ire_refrele(ire); 14638 ire = NULL; 14639 (void) ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 14640 ll_multicast, dst); 14641 continue; 14642 } 14643 } 14644 14645 if (ire == NULL) { 14646 ire = ire_cache_lookup(dst, ALL_ZONES, 14647 MBLK_GETLABEL(mp)); 14648 } 14649 14650 /* 14651 * If mipagent is running and reverse tunnel is created as per 14652 * mobile node request, then any packet coming through the 14653 * incoming interface from the mobile-node, should be reverse 14654 * tunneled to it's home agent except those that are destined 14655 * to foreign agent only. 14656 * This needs source address based ire lookup. The routing 14657 * entries for source address based lookup are only created by 14658 * mipagent program only when a reverse tunnel is created. 14659 * Reference : RFC2002, RFC2344 14660 */ 14661 if (ill->ill_mrtun_refcnt > 0) { 14662 ipaddr_t srcaddr; 14663 ire_t *tmp_ire; 14664 14665 tmp_ire = ire; /* Save, we might need it later */ 14666 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 14667 ire->ire_type != IRE_BROADCAST)) { 14668 srcaddr = ipha->ipha_src; 14669 ire = ire_mrtun_lookup(srcaddr, ill); 14670 if (ire != NULL) { 14671 /* 14672 * Should not be getting iphada packet 14673 * here. we should only get those for 14674 * IRE_LOCAL traffic, excluded above. 14675 * Fail-safe (drop packet) in the event 14676 * hardware is misbehaving. 14677 */ 14678 if (first_mp != mp) { 14679 /* IPsec KSTATS: beancount me */ 14680 freemsg(first_mp); 14681 } else { 14682 /* 14683 * This packet must be forwarded 14684 * to Reverse Tunnel 14685 */ 14686 ip_mrtun_forward(ire, ill, mp); 14687 } 14688 ire_refrele(ire); 14689 ire = NULL; 14690 if (tmp_ire != NULL) { 14691 ire_refrele(tmp_ire); 14692 tmp_ire = NULL; 14693 } 14694 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14695 "ip_input_end: q %p (%S)", 14696 q, "uninit"); 14697 continue; 14698 } 14699 } 14700 /* 14701 * If this packet is from a non-mobilenode or a 14702 * mobile-node which does not request reverse 14703 * tunnel service 14704 */ 14705 ire = tmp_ire; 14706 } 14707 14708 14709 /* 14710 * If we reach here that means the incoming packet satisfies 14711 * one of the following conditions: 14712 * - packet is from a mobile node which does not request 14713 * reverse tunnel 14714 * - packet is from a non-mobile node, which is the most 14715 * common case 14716 * - packet is from a reverse tunnel enabled mobile node 14717 * and destined to foreign agent only 14718 */ 14719 14720 if (ire == NULL) { 14721 /* 14722 * No IRE for this destination, so it can't be for us. 14723 * Unless we are forwarding, drop the packet. 14724 * We have to let source routed packets through 14725 * since we don't yet know if they are 'ping -l' 14726 * packets i.e. if they will go out over the 14727 * same interface as they came in on. 14728 */ 14729 ire = ip_rput_noire(q, NULL, mp, ll_multicast, dst); 14730 if (ire == NULL) 14731 continue; 14732 } 14733 14734 /* 14735 * Broadcast IRE may indicate either broadcast or 14736 * multicast packet 14737 */ 14738 if (ire->ire_type == IRE_BROADCAST) { 14739 /* 14740 * Skip broadcast checks if packet is UDP multicast; 14741 * we'd rather not enter ip_rput_process_broadcast() 14742 * unless the packet is broadcast for real, since 14743 * that routine is a no-op for multicast. 14744 */ 14745 if (ipha->ipha_protocol != IPPROTO_UDP || 14746 !CLASSD(ipha->ipha_dst)) { 14747 ire = ip_rput_process_broadcast(&q, mp, 14748 ire, ipha, ill, dst, cgtp_flt_pkt, 14749 ll_multicast); 14750 if (ire == NULL) 14751 continue; 14752 } 14753 } else if (ire->ire_stq != NULL) { 14754 /* fowarding? */ 14755 ip_rput_process_forward(q, mp, ire, ipha, ill, 14756 ll_multicast); 14757 /* ip_rput_process_forward consumed the packet */ 14758 continue; 14759 } 14760 14761 local: 14762 /* packet not for us */ 14763 if (ire->ire_rfq != q) { 14764 if (ip_rput_notforus(&q, mp, ire, ill)) 14765 continue; 14766 } 14767 14768 switch (ipha->ipha_protocol) { 14769 case IPPROTO_TCP: 14770 ASSERT(first_mp == mp); 14771 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 14772 mp, 0, q, ip_ring)) != NULL) { 14773 if (curr_sqp == NULL) { 14774 curr_sqp = GET_SQUEUE(mp); 14775 ASSERT(cnt == 0); 14776 cnt++; 14777 head = tail = mp; 14778 } else if (curr_sqp == GET_SQUEUE(mp)) { 14779 ASSERT(tail != NULL); 14780 cnt++; 14781 tail->b_next = mp; 14782 tail = mp; 14783 } else { 14784 /* 14785 * A different squeue. Send the 14786 * chain for the previous squeue on 14787 * its way. This shouldn't happen 14788 * often unless interrupt binding 14789 * changes. 14790 */ 14791 IP_STAT(ip_input_multi_squeue); 14792 squeue_enter_chain(curr_sqp, head, 14793 tail, cnt, SQTAG_IP_INPUT); 14794 curr_sqp = GET_SQUEUE(mp); 14795 head = mp; 14796 tail = mp; 14797 cnt = 1; 14798 } 14799 } 14800 continue; 14801 case IPPROTO_UDP: 14802 ASSERT(first_mp == mp); 14803 ip_udp_input(q, mp, ipha, ire, ill); 14804 continue; 14805 case IPPROTO_SCTP: 14806 ASSERT(first_mp == mp); 14807 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 14808 q, dst); 14809 /* ire has been released by ip_sctp_input */ 14810 ire = NULL; 14811 continue; 14812 default: 14813 ip_proto_input(q, first_mp, ipha, ire, ill); 14814 continue; 14815 } 14816 } 14817 14818 if (ire != NULL) 14819 ire_refrele(ire); 14820 14821 if (head != NULL) 14822 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 14823 14824 /* 14825 * This code is there just to make netperf/ttcp look good. 14826 * 14827 * Its possible that after being in polling mode (and having cleared 14828 * the backlog), squeues have turned the interrupt frequency higher 14829 * to improve latency at the expense of more CPU utilization (less 14830 * packets per interrupts or more number of interrupts). Workloads 14831 * like ttcp/netperf do manage to tickle polling once in a while 14832 * but for the remaining time, stay in higher interrupt mode since 14833 * their packet arrival rate is pretty uniform and this shows up 14834 * as higher CPU utilization. Since people care about CPU utilization 14835 * while running netperf/ttcp, turn the interrupt frequency back to 14836 * normal/default if polling has not been used in ip_poll_normal_ticks. 14837 */ 14838 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 14839 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 14840 ip_ring->rr_poll_state &= ~ILL_POLLING; 14841 ip_ring->rr_blank(ip_ring->rr_handle, 14842 ip_ring->rr_normal_blank_time, 14843 ip_ring->rr_normal_pkt_cnt); 14844 } 14845 } 14846 14847 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14848 "ip_input_end: q %p (%S)", q, "end"); 14849 #undef rptr 14850 } 14851 14852 static void 14853 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 14854 t_uscalar_t err) 14855 { 14856 if (dl_err == DL_SYSERR) { 14857 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14858 "%s: %s failed: DL_SYSERR (errno %u)\n", 14859 ill->ill_name, dlpi_prim_str(prim), err); 14860 return; 14861 } 14862 14863 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14864 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 14865 dlpi_err_str(dl_err)); 14866 } 14867 14868 /* 14869 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 14870 * than DL_UNITDATA_IND messages. If we need to process this message 14871 * exclusively, we call qwriter_ip, in which case we also need to call 14872 * ill_refhold before that, since qwriter_ip does an ill_refrele. 14873 */ 14874 void 14875 ip_rput_dlpi(queue_t *q, mblk_t *mp) 14876 { 14877 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 14878 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 14879 ill_t *ill; 14880 14881 ip1dbg(("ip_rput_dlpi")); 14882 ill = (ill_t *)q->q_ptr; 14883 switch (dloa->dl_primitive) { 14884 case DL_ERROR_ACK: 14885 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 14886 "%s (0x%x), unix %u\n", ill->ill_name, 14887 dlpi_prim_str(dlea->dl_error_primitive), 14888 dlea->dl_error_primitive, 14889 dlpi_err_str(dlea->dl_errno), 14890 dlea->dl_errno, 14891 dlea->dl_unix_errno)); 14892 switch (dlea->dl_error_primitive) { 14893 case DL_UNBIND_REQ: 14894 mutex_enter(&ill->ill_lock); 14895 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 14896 cv_signal(&ill->ill_cv); 14897 mutex_exit(&ill->ill_lock); 14898 /* FALLTHRU */ 14899 case DL_NOTIFY_REQ: 14900 case DL_ATTACH_REQ: 14901 case DL_DETACH_REQ: 14902 case DL_INFO_REQ: 14903 case DL_BIND_REQ: 14904 case DL_ENABMULTI_REQ: 14905 case DL_PHYS_ADDR_REQ: 14906 case DL_CAPABILITY_REQ: 14907 case DL_CONTROL_REQ: 14908 /* 14909 * Refhold the ill to match qwriter_ip which does a 14910 * refrele. Since this is on the ill stream we 14911 * unconditionally bump up the refcount without 14912 * checking for ILL_CAN_LOOKUP 14913 */ 14914 ill_refhold(ill); 14915 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14916 CUR_OP, B_FALSE); 14917 return; 14918 case DL_DISABMULTI_REQ: 14919 freemsg(mp); /* Don't want to pass this up */ 14920 return; 14921 default: 14922 break; 14923 } 14924 ip_dlpi_error(ill, dlea->dl_error_primitive, 14925 dlea->dl_errno, dlea->dl_unix_errno); 14926 freemsg(mp); 14927 return; 14928 case DL_INFO_ACK: 14929 case DL_BIND_ACK: 14930 case DL_PHYS_ADDR_ACK: 14931 case DL_NOTIFY_ACK: 14932 case DL_CAPABILITY_ACK: 14933 case DL_CONTROL_ACK: 14934 /* 14935 * Refhold the ill to match qwriter_ip which does a refrele 14936 * Since this is on the ill stream we unconditionally 14937 * bump up the refcount without doing ILL_CAN_LOOKUP. 14938 */ 14939 ill_refhold(ill); 14940 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14941 CUR_OP, B_FALSE); 14942 return; 14943 case DL_NOTIFY_IND: 14944 ill_refhold(ill); 14945 /* 14946 * The DL_NOTIFY_IND is an asynchronous message that has no 14947 * relation to the current ioctl in progress (if any). Hence we 14948 * pass in NEW_OP in this case. 14949 */ 14950 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14951 NEW_OP, B_FALSE); 14952 return; 14953 case DL_OK_ACK: 14954 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 14955 dlpi_prim_str((int)dloa->dl_correct_primitive))); 14956 switch (dloa->dl_correct_primitive) { 14957 case DL_UNBIND_REQ: 14958 mutex_enter(&ill->ill_lock); 14959 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 14960 cv_signal(&ill->ill_cv); 14961 mutex_exit(&ill->ill_lock); 14962 /* FALLTHRU */ 14963 case DL_ATTACH_REQ: 14964 case DL_DETACH_REQ: 14965 /* 14966 * Refhold the ill to match qwriter_ip which does a 14967 * refrele. Since this is on the ill stream we 14968 * unconditionally bump up the refcount 14969 */ 14970 ill_refhold(ill); 14971 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14972 CUR_OP, B_FALSE); 14973 return; 14974 case DL_ENABMULTI_REQ: 14975 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 14976 ill->ill_dlpi_multicast_state = IDS_OK; 14977 break; 14978 14979 } 14980 break; 14981 default: 14982 break; 14983 } 14984 freemsg(mp); 14985 } 14986 14987 /* 14988 * Handling of DLPI messages that require exclusive access to the ipsq. 14989 * 14990 * Need to do ill_pending_mp_release on ioctl completion, which could 14991 * happen here. (along with mi_copy_done) 14992 */ 14993 /* ARGSUSED */ 14994 static void 14995 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 14996 { 14997 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 14998 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 14999 int err = 0; 15000 ill_t *ill; 15001 ipif_t *ipif = NULL; 15002 mblk_t *mp1 = NULL; 15003 conn_t *connp = NULL; 15004 t_uscalar_t physaddr_req; 15005 mblk_t *mp_hw; 15006 union DL_primitives *dlp; 15007 boolean_t success; 15008 boolean_t ioctl_aborted = B_FALSE; 15009 boolean_t log = B_TRUE; 15010 15011 ip1dbg(("ip_rput_dlpi_writer ..")); 15012 ill = (ill_t *)q->q_ptr; 15013 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15014 15015 ASSERT(IAM_WRITER_ILL(ill)); 15016 15017 /* 15018 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15019 * both are null or non-null. However we can assert that only 15020 * after grabbing the ipsq_lock. So we don't make any assertion 15021 * here and in other places in the code. 15022 */ 15023 ipif = ipsq->ipsq_pending_ipif; 15024 /* 15025 * The current ioctl could have been aborted by the user and a new 15026 * ioctl to bring up another ill could have started. We could still 15027 * get a response from the driver later. 15028 */ 15029 if (ipif != NULL && ipif->ipif_ill != ill) 15030 ioctl_aborted = B_TRUE; 15031 15032 switch (dloa->dl_primitive) { 15033 case DL_ERROR_ACK: 15034 switch (dlea->dl_error_primitive) { 15035 case DL_UNBIND_REQ: 15036 case DL_ATTACH_REQ: 15037 case DL_DETACH_REQ: 15038 case DL_INFO_REQ: 15039 ill_dlpi_done(ill, dlea->dl_error_primitive); 15040 break; 15041 case DL_NOTIFY_REQ: 15042 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15043 log = B_FALSE; 15044 break; 15045 case DL_PHYS_ADDR_REQ: 15046 /* 15047 * For IPv6 only, there are two additional 15048 * phys_addr_req's sent to the driver to get the 15049 * IPv6 token and lla. This allows IP to acquire 15050 * the hardware address format for a given interface 15051 * without having built in knowledge of the hardware 15052 * address. ill_phys_addr_pend keeps track of the last 15053 * DL_PAR sent so we know which response we are 15054 * dealing with. ill_dlpi_done will update 15055 * ill_phys_addr_pend when it sends the next req. 15056 * We don't complete the IOCTL until all three DL_PARs 15057 * have been attempted, so set *_len to 0 and break. 15058 */ 15059 physaddr_req = ill->ill_phys_addr_pend; 15060 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15061 if (physaddr_req == DL_IPV6_TOKEN) { 15062 ill->ill_token_length = 0; 15063 log = B_FALSE; 15064 break; 15065 } else if (physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 15066 ill->ill_nd_lla_len = 0; 15067 log = B_FALSE; 15068 break; 15069 } 15070 /* 15071 * Something went wrong with the DL_PHYS_ADDR_REQ. 15072 * We presumably have an IOCTL hanging out waiting 15073 * for completion. Find it and complete the IOCTL 15074 * with the error noted. 15075 * However, ill_dl_phys was called on an ill queue 15076 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15077 * set. But the ioctl is known to be pending on ill_wq. 15078 */ 15079 if (!ill->ill_ifname_pending) 15080 break; 15081 ill->ill_ifname_pending = 0; 15082 if (!ioctl_aborted) 15083 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15084 if (mp1 != NULL) { 15085 /* 15086 * This operation (SIOCSLIFNAME) must have 15087 * happened on the ill. Assert there is no conn 15088 */ 15089 ASSERT(connp == NULL); 15090 q = ill->ill_wq; 15091 } 15092 break; 15093 case DL_BIND_REQ: 15094 ill_dlpi_done(ill, DL_BIND_REQ); 15095 if (ill->ill_ifname_pending) 15096 break; 15097 /* 15098 * Something went wrong with the bind. We presumably 15099 * have an IOCTL hanging out waiting for completion. 15100 * Find it, take down the interface that was coming 15101 * up, and complete the IOCTL with the error noted. 15102 */ 15103 if (!ioctl_aborted) 15104 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15105 if (mp1 != NULL) { 15106 /* 15107 * This operation (SIOCSLIFFLAGS) must have 15108 * happened from a conn. 15109 */ 15110 ASSERT(connp != NULL); 15111 q = CONNP_TO_WQ(connp); 15112 if (ill->ill_move_in_progress) { 15113 ILL_CLEAR_MOVE(ill); 15114 } 15115 (void) ipif_down(ipif, NULL, NULL); 15116 /* error is set below the switch */ 15117 } 15118 break; 15119 case DL_ENABMULTI_REQ: 15120 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 15121 15122 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15123 ill->ill_dlpi_multicast_state = IDS_FAILED; 15124 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15125 ipif_t *ipif; 15126 15127 log = B_FALSE; 15128 printf("ip: joining multicasts failed (%d)" 15129 " on %s - will use link layer " 15130 "broadcasts for multicast\n", 15131 dlea->dl_errno, ill->ill_name); 15132 15133 /* 15134 * Set up the multicast mapping alone. 15135 * writer, so ok to access ill->ill_ipif 15136 * without any lock. 15137 */ 15138 ipif = ill->ill_ipif; 15139 mutex_enter(&ill->ill_phyint->phyint_lock); 15140 ill->ill_phyint->phyint_flags |= 15141 PHYI_MULTI_BCAST; 15142 mutex_exit(&ill->ill_phyint->phyint_lock); 15143 15144 if (!ill->ill_isv6) { 15145 (void) ipif_arp_setup_multicast(ipif, 15146 NULL); 15147 } else { 15148 (void) ipif_ndp_setup_multicast(ipif, 15149 NULL); 15150 } 15151 } 15152 freemsg(mp); /* Don't want to pass this up */ 15153 return; 15154 case DL_CAPABILITY_REQ: 15155 case DL_CONTROL_REQ: 15156 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15157 "DL_CAPABILITY/CONTROL REQ\n")); 15158 ill_dlpi_done(ill, dlea->dl_error_primitive); 15159 ill->ill_dlpi_capab_state = IDS_FAILED; 15160 freemsg(mp); 15161 return; 15162 } 15163 /* 15164 * Note the error for IOCTL completion (mp1 is set when 15165 * ready to complete ioctl). If ill_ifname_pending_err is 15166 * set, an error occured during plumbing (ill_ifname_pending), 15167 * so we want to report that error. 15168 * 15169 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15170 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15171 * expected to get errack'd if the driver doesn't support 15172 * these flags (e.g. ethernet). log will be set to B_FALSE 15173 * if these error conditions are encountered. 15174 */ 15175 if (mp1 != NULL) { 15176 if (ill->ill_ifname_pending_err != 0) { 15177 err = ill->ill_ifname_pending_err; 15178 ill->ill_ifname_pending_err = 0; 15179 } else { 15180 err = dlea->dl_unix_errno ? 15181 dlea->dl_unix_errno : ENXIO; 15182 } 15183 /* 15184 * If we're plumbing an interface and an error hasn't already 15185 * been saved, set ill_ifname_pending_err to the error passed 15186 * up. Ignore the error if log is B_FALSE (see comment above). 15187 */ 15188 } else if (log && ill->ill_ifname_pending && 15189 ill->ill_ifname_pending_err == 0) { 15190 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15191 dlea->dl_unix_errno : ENXIO; 15192 } 15193 15194 if (log) 15195 ip_dlpi_error(ill, dlea->dl_error_primitive, 15196 dlea->dl_errno, dlea->dl_unix_errno); 15197 break; 15198 case DL_CAPABILITY_ACK: { 15199 boolean_t reneg_flag = B_FALSE; 15200 /* Call a routine to handle this one. */ 15201 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15202 /* 15203 * Check if the ACK is due to renegotiation case since we 15204 * will need to send a new CAPABILITY_REQ later. 15205 */ 15206 if (ill->ill_dlpi_capab_state == IDS_RENEG) { 15207 /* This is the ack for a renogiation case */ 15208 reneg_flag = B_TRUE; 15209 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 15210 } 15211 ill_capability_ack(ill, mp); 15212 if (reneg_flag) 15213 ill_capability_probe(ill); 15214 break; 15215 } 15216 case DL_CONTROL_ACK: 15217 /* We treat all of these as "fire and forget" */ 15218 ill_dlpi_done(ill, DL_CONTROL_REQ); 15219 break; 15220 case DL_INFO_ACK: 15221 /* Call a routine to handle this one. */ 15222 ill_dlpi_done(ill, DL_INFO_REQ); 15223 ip_ll_subnet_defaults(ill, mp); 15224 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15225 return; 15226 case DL_BIND_ACK: 15227 /* 15228 * We should have an IOCTL waiting on this unless 15229 * sent by ill_dl_phys, in which case just return 15230 */ 15231 ill_dlpi_done(ill, DL_BIND_REQ); 15232 if (ill->ill_ifname_pending) 15233 break; 15234 15235 if (!ioctl_aborted) 15236 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15237 if (mp1 == NULL) 15238 break; 15239 ASSERT(connp != NULL); 15240 q = CONNP_TO_WQ(connp); 15241 15242 /* 15243 * We are exclusive. So nothing can change even after 15244 * we get the pending mp. If need be we can put it back 15245 * and restart, as in calling ipif_arp_up() below. 15246 */ 15247 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15248 15249 mutex_enter(&ill->ill_lock); 15250 ill->ill_dl_up = 1; 15251 mutex_exit(&ill->ill_lock); 15252 15253 /* 15254 * Now bring up the resolver; when that is complete, we'll 15255 * create IREs. Note that we intentionally mirror what 15256 * ipif_up() would have done, because we got here by way of 15257 * ill_dl_up(), which stopped ipif_up()'s processing. 15258 */ 15259 if (ill->ill_isv6) { 15260 /* 15261 * v6 interfaces. 15262 * Unlike ARP which has to do another bind 15263 * and attach, once we get here we are 15264 * done with NDP. Except in the case of 15265 * ILLF_XRESOLV, in which case we send an 15266 * AR_INTERFACE_UP to the external resolver. 15267 * If all goes well, the ioctl will complete 15268 * in ip_rput(). If there's an error, we 15269 * complete it here. 15270 */ 15271 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 15272 B_FALSE); 15273 if (err == 0) { 15274 if (ill->ill_flags & ILLF_XRESOLV) { 15275 mutex_enter(&connp->conn_lock); 15276 mutex_enter(&ill->ill_lock); 15277 success = ipsq_pending_mp_add( 15278 connp, ipif, q, mp1, 0); 15279 mutex_exit(&ill->ill_lock); 15280 mutex_exit(&connp->conn_lock); 15281 if (success) { 15282 err = ipif_resolver_up(ipif, 15283 Res_act_initial); 15284 if (err == EINPROGRESS) { 15285 freemsg(mp); 15286 return; 15287 } 15288 ASSERT(err != 0); 15289 mp1 = ipsq_pending_mp_get(ipsq, 15290 &connp); 15291 ASSERT(mp1 != NULL); 15292 } else { 15293 /* conn has started closing */ 15294 err = EINTR; 15295 } 15296 } else { /* Non XRESOLV interface */ 15297 (void) ipif_resolver_up(ipif, 15298 Res_act_initial); 15299 err = ipif_up_done_v6(ipif); 15300 } 15301 } 15302 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15303 /* 15304 * ARP and other v4 external resolvers. 15305 * Leave the pending mblk intact so that 15306 * the ioctl completes in ip_rput(). 15307 */ 15308 mutex_enter(&connp->conn_lock); 15309 mutex_enter(&ill->ill_lock); 15310 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15311 mutex_exit(&ill->ill_lock); 15312 mutex_exit(&connp->conn_lock); 15313 if (success) { 15314 err = ipif_resolver_up(ipif, Res_act_initial); 15315 if (err == EINPROGRESS) { 15316 freemsg(mp); 15317 return; 15318 } 15319 ASSERT(err != 0); 15320 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15321 } else { 15322 /* The conn has started closing */ 15323 err = EINTR; 15324 } 15325 } else { 15326 /* 15327 * This one is complete. Reply to pending ioctl. 15328 */ 15329 (void) ipif_resolver_up(ipif, Res_act_initial); 15330 err = ipif_up_done(ipif); 15331 } 15332 15333 if ((err == 0) && (ill->ill_up_ipifs)) { 15334 err = ill_up_ipifs(ill, q, mp1); 15335 if (err == EINPROGRESS) { 15336 freemsg(mp); 15337 return; 15338 } 15339 } 15340 15341 if (ill->ill_up_ipifs) { 15342 ill_group_cleanup(ill); 15343 } 15344 15345 break; 15346 case DL_NOTIFY_IND: { 15347 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15348 ire_t *ire; 15349 boolean_t need_ire_walk_v4 = B_FALSE; 15350 boolean_t need_ire_walk_v6 = B_FALSE; 15351 15352 /* 15353 * Change the address everywhere we need to. 15354 * What we're getting here is a link-level addr or phys addr. 15355 * The new addr is at notify + notify->dl_addr_offset 15356 * The address length is notify->dl_addr_length; 15357 */ 15358 switch (notify->dl_notification) { 15359 case DL_NOTE_PHYS_ADDR: 15360 mp_hw = copyb(mp); 15361 if (mp_hw == NULL) { 15362 err = ENOMEM; 15363 break; 15364 } 15365 dlp = (union DL_primitives *)mp_hw->b_rptr; 15366 /* 15367 * We currently don't support changing 15368 * the token via DL_NOTIFY_IND. 15369 * When we do support it, we have to consider 15370 * what the implications are with respect to 15371 * the token and the link local address. 15372 */ 15373 mutex_enter(&ill->ill_lock); 15374 if (dlp->notify_ind.dl_data == 15375 DL_IPV6_LINK_LAYER_ADDR) { 15376 if (ill->ill_nd_lla_mp != NULL) 15377 freemsg(ill->ill_nd_lla_mp); 15378 ill->ill_nd_lla_mp = mp_hw; 15379 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 15380 dlp->notify_ind.dl_addr_offset; 15381 ill->ill_nd_lla_len = 15382 dlp->notify_ind.dl_addr_length - 15383 ABS(ill->ill_sap_length); 15384 mutex_exit(&ill->ill_lock); 15385 break; 15386 } else if (dlp->notify_ind.dl_data == 15387 DL_CURR_PHYS_ADDR) { 15388 if (ill->ill_phys_addr_mp != NULL) 15389 freemsg(ill->ill_phys_addr_mp); 15390 ill->ill_phys_addr_mp = mp_hw; 15391 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 15392 dlp->notify_ind.dl_addr_offset; 15393 ill->ill_phys_addr_length = 15394 dlp->notify_ind.dl_addr_length - 15395 ABS(ill->ill_sap_length); 15396 if (ill->ill_isv6 && 15397 !(ill->ill_flags & ILLF_XRESOLV)) { 15398 if (ill->ill_nd_lla_mp != NULL) 15399 freemsg(ill->ill_nd_lla_mp); 15400 ill->ill_nd_lla_mp = copyb(mp_hw); 15401 ill->ill_nd_lla = (uchar_t *) 15402 ill->ill_nd_lla_mp->b_rptr + 15403 dlp->notify_ind.dl_addr_offset; 15404 ill->ill_nd_lla_len = 15405 ill->ill_phys_addr_length; 15406 } 15407 } 15408 mutex_exit(&ill->ill_lock); 15409 /* 15410 * Send out gratuitous arp request for our new 15411 * hardware address. 15412 */ 15413 for (ipif = ill->ill_ipif; ipif != NULL; 15414 ipif = ipif->ipif_next) { 15415 if (!(ipif->ipif_flags & IPIF_UP)) 15416 continue; 15417 if (ill->ill_isv6) { 15418 ipif_ndp_down(ipif); 15419 /* 15420 * Set B_TRUE to enable 15421 * ipif_ndp_up() to send out 15422 * unsolicited advertisements. 15423 */ 15424 err = ipif_ndp_up(ipif, 15425 &ipif->ipif_v6lcl_addr, 15426 B_TRUE); 15427 if (err) { 15428 ip1dbg(( 15429 "ip_rput_dlpi_writer: " 15430 "Failed to update ndp " 15431 "err %d\n", err)); 15432 } 15433 } else { 15434 /* 15435 * IPv4 ARP case 15436 * 15437 * Set Res_act_move, as we only want 15438 * ipif_resolver_up to send an 15439 * AR_ENTRY_ADD request up to 15440 * ARP. 15441 */ 15442 err = ipif_resolver_up(ipif, 15443 Res_act_move); 15444 if (err) { 15445 ip1dbg(( 15446 "ip_rput_dlpi_writer: " 15447 "Failed to update arp " 15448 "err %d\n", err)); 15449 } 15450 } 15451 } 15452 /* 15453 * Allow "fall through" to the DL_NOTE_FASTPATH_FLUSH 15454 * case so that all old fastpath information can be 15455 * purged from IRE caches. 15456 */ 15457 /* FALLTHRU */ 15458 case DL_NOTE_FASTPATH_FLUSH: 15459 /* 15460 * Any fastpath probe sent henceforth will get the 15461 * new fp mp. So we first delete any ires that are 15462 * waiting for the fastpath. Then walk all ires and 15463 * delete the ire or delete the fp mp. In the case of 15464 * IRE_MIPRTUN and IRE_BROADCAST it is difficult to 15465 * recreate the ire's without going through a complex 15466 * ipif up/down dance. So we don't delete the ire 15467 * itself, but just the nce_fp_mp for these 2 ire's 15468 * In the case of the other ire's we delete the ire's 15469 * themselves. Access to nce_fp_mp is completely 15470 * protected by ire_lock for IRE_MIPRTUN and 15471 * IRE_BROADCAST. Deleting the ire is preferable in the 15472 * other cases for performance. 15473 */ 15474 if (ill->ill_isv6) { 15475 nce_fastpath_list_dispatch(ill, NULL, NULL); 15476 ndp_walk(ill, (pfi_t)ndp_fastpath_flush, 15477 NULL); 15478 } else { 15479 ire_fastpath_list_dispatch(ill, NULL, NULL); 15480 ire_walk_ill_v4(MATCH_IRE_WQ | MATCH_IRE_TYPE, 15481 IRE_CACHE | IRE_BROADCAST, 15482 ire_fastpath_flush, NULL, ill); 15483 mutex_enter(&ire_mrtun_lock); 15484 if (ire_mrtun_count != 0) { 15485 mutex_exit(&ire_mrtun_lock); 15486 ire_walk_ill_mrtun(MATCH_IRE_WQ, 15487 IRE_MIPRTUN, ire_fastpath_flush, 15488 NULL, ill); 15489 } else { 15490 mutex_exit(&ire_mrtun_lock); 15491 } 15492 } 15493 break; 15494 case DL_NOTE_SDU_SIZE: 15495 /* 15496 * Change the MTU size of the interface, of all 15497 * attached ipif's, and of all relevant ire's. The 15498 * new value's a uint32_t at notify->dl_data. 15499 * Mtu change Vs. new ire creation - protocol below. 15500 * 15501 * a Mark the ipif as IPIF_CHANGING. 15502 * b Set the new mtu in the ipif. 15503 * c Change the ire_max_frag on all affected ires 15504 * d Unmark the IPIF_CHANGING 15505 * 15506 * To see how the protocol works, assume an interface 15507 * route is also being added simultaneously by 15508 * ip_rt_add and let 'ipif' be the ipif referenced by 15509 * the ire. If the ire is created before step a, 15510 * it will be cleaned up by step c. If the ire is 15511 * created after step d, it will see the new value of 15512 * ipif_mtu. Any attempt to create the ire between 15513 * steps a to d will fail because of the IPIF_CHANGING 15514 * flag. Note that ire_create() is passed a pointer to 15515 * the ipif_mtu, and not the value. During ire_add 15516 * under the bucket lock, the ire_max_frag of the 15517 * new ire being created is set from the ipif/ire from 15518 * which it is being derived. 15519 */ 15520 mutex_enter(&ill->ill_lock); 15521 ill->ill_max_frag = (uint_t)notify->dl_data; 15522 15523 /* 15524 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15525 * leave it alone 15526 */ 15527 if (ill->ill_mtu_userspecified) { 15528 mutex_exit(&ill->ill_lock); 15529 break; 15530 } 15531 ill->ill_max_mtu = ill->ill_max_frag; 15532 if (ill->ill_isv6) { 15533 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15534 ill->ill_max_mtu = IPV6_MIN_MTU; 15535 } else { 15536 if (ill->ill_max_mtu < IP_MIN_MTU) 15537 ill->ill_max_mtu = IP_MIN_MTU; 15538 } 15539 for (ipif = ill->ill_ipif; ipif != NULL; 15540 ipif = ipif->ipif_next) { 15541 /* 15542 * Don't override the mtu if the user 15543 * has explicitly set it. 15544 */ 15545 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15546 continue; 15547 ipif->ipif_mtu = (uint_t)notify->dl_data; 15548 if (ipif->ipif_isv6) 15549 ire = ipif_to_ire_v6(ipif); 15550 else 15551 ire = ipif_to_ire(ipif); 15552 if (ire != NULL) { 15553 ire->ire_max_frag = ipif->ipif_mtu; 15554 ire_refrele(ire); 15555 } 15556 if (ipif->ipif_flags & IPIF_UP) { 15557 if (ill->ill_isv6) 15558 need_ire_walk_v6 = B_TRUE; 15559 else 15560 need_ire_walk_v4 = B_TRUE; 15561 } 15562 } 15563 mutex_exit(&ill->ill_lock); 15564 if (need_ire_walk_v4) 15565 ire_walk_v4(ill_mtu_change, (char *)ill, 15566 ALL_ZONES); 15567 if (need_ire_walk_v6) 15568 ire_walk_v6(ill_mtu_change, (char *)ill, 15569 ALL_ZONES); 15570 break; 15571 case DL_NOTE_LINK_UP: 15572 case DL_NOTE_LINK_DOWN: { 15573 /* 15574 * We are writer. ill / phyint / ipsq assocs stable. 15575 * The RUNNING flag reflects the state of the link. 15576 */ 15577 phyint_t *phyint = ill->ill_phyint; 15578 uint64_t new_phyint_flags; 15579 boolean_t changed = B_FALSE; 15580 boolean_t went_up; 15581 15582 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 15583 mutex_enter(&phyint->phyint_lock); 15584 new_phyint_flags = went_up ? 15585 phyint->phyint_flags | PHYI_RUNNING : 15586 phyint->phyint_flags & ~PHYI_RUNNING; 15587 if (new_phyint_flags != phyint->phyint_flags) { 15588 phyint->phyint_flags = new_phyint_flags; 15589 changed = B_TRUE; 15590 } 15591 mutex_exit(&phyint->phyint_lock); 15592 /* 15593 * ill_restart_dad handles the DAD restart and routing 15594 * socket notification logic. 15595 */ 15596 if (changed) { 15597 ill_restart_dad(phyint->phyint_illv4, went_up); 15598 ill_restart_dad(phyint->phyint_illv6, went_up); 15599 } 15600 break; 15601 } 15602 case DL_NOTE_PROMISC_ON_PHYS: 15603 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15604 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 15605 mutex_enter(&ill->ill_lock); 15606 ill->ill_promisc_on_phys = B_TRUE; 15607 mutex_exit(&ill->ill_lock); 15608 break; 15609 case DL_NOTE_PROMISC_OFF_PHYS: 15610 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15611 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 15612 mutex_enter(&ill->ill_lock); 15613 ill->ill_promisc_on_phys = B_FALSE; 15614 mutex_exit(&ill->ill_lock); 15615 break; 15616 case DL_NOTE_CAPAB_RENEG: 15617 /* 15618 * Something changed on the driver side. 15619 * It wants us to renegotiate the capabilities 15620 * on this ill. The most likely cause is the 15621 * aggregation interface under us where a 15622 * port got added or went away. 15623 * 15624 * We reset the capabilities and set the 15625 * state to IDS_RENG so that when the ack 15626 * comes back, we can start the 15627 * renegotiation process. 15628 */ 15629 ill_capability_reset(ill); 15630 ill->ill_dlpi_capab_state = IDS_RENEG; 15631 break; 15632 default: 15633 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 15634 "type 0x%x for DL_NOTIFY_IND\n", 15635 notify->dl_notification)); 15636 break; 15637 } 15638 15639 /* 15640 * As this is an asynchronous operation, we 15641 * should not call ill_dlpi_done 15642 */ 15643 break; 15644 } 15645 case DL_NOTIFY_ACK: { 15646 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 15647 15648 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 15649 ill->ill_note_link = 1; 15650 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15651 break; 15652 } 15653 case DL_PHYS_ADDR_ACK: { 15654 /* 15655 * We should have an IOCTL waiting on this when request 15656 * sent by ill_dl_phys. 15657 * However, ill_dl_phys was called on an ill queue (from 15658 * SIOCSLIFNAME), thus conn_pending_ill is not set. But the 15659 * ioctl is known to be pending on ill_wq. 15660 * There are two additional phys_addr_req's sent to the 15661 * driver to get the token and lla. ill_phys_addr_pend 15662 * keeps track of the last one sent so we know which 15663 * response we are dealing with. ill_dlpi_done will 15664 * update ill_phys_addr_pend when it sends the next req. 15665 * We don't complete the IOCTL until all three DL_PARs 15666 * have been attempted. 15667 * 15668 * We don't need any lock to update ill_nd_lla* fields, 15669 * since the ill is not yet up, We grab the lock just 15670 * for uniformity with other code that accesses ill_nd_lla. 15671 */ 15672 physaddr_req = ill->ill_phys_addr_pend; 15673 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15674 if (physaddr_req == DL_IPV6_TOKEN || 15675 physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 15676 if (physaddr_req == DL_IPV6_TOKEN) { 15677 /* 15678 * bcopy to low-order bits of ill_token 15679 * 15680 * XXX Temporary hack - currently, 15681 * all known tokens are 64 bits, 15682 * so I'll cheat for the moment. 15683 */ 15684 dlp = (union DL_primitives *)mp->b_rptr; 15685 15686 mutex_enter(&ill->ill_lock); 15687 bcopy((uchar_t *)(mp->b_rptr + 15688 dlp->physaddr_ack.dl_addr_offset), 15689 (void *)&ill->ill_token.s6_addr32[2], 15690 dlp->physaddr_ack.dl_addr_length); 15691 ill->ill_token_length = 15692 dlp->physaddr_ack.dl_addr_length; 15693 mutex_exit(&ill->ill_lock); 15694 } else { 15695 ASSERT(ill->ill_nd_lla_mp == NULL); 15696 mp_hw = copyb(mp); 15697 if (mp_hw == NULL) { 15698 err = ENOMEM; 15699 break; 15700 } 15701 dlp = (union DL_primitives *)mp_hw->b_rptr; 15702 mutex_enter(&ill->ill_lock); 15703 ill->ill_nd_lla_mp = mp_hw; 15704 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 15705 dlp->physaddr_ack.dl_addr_offset; 15706 ill->ill_nd_lla_len = 15707 dlp->physaddr_ack.dl_addr_length; 15708 mutex_exit(&ill->ill_lock); 15709 } 15710 break; 15711 } 15712 ASSERT(physaddr_req == DL_CURR_PHYS_ADDR); 15713 ASSERT(ill->ill_phys_addr_mp == NULL); 15714 if (!ill->ill_ifname_pending) 15715 break; 15716 ill->ill_ifname_pending = 0; 15717 if (!ioctl_aborted) 15718 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15719 if (mp1 != NULL) { 15720 ASSERT(connp == NULL); 15721 q = ill->ill_wq; 15722 } 15723 /* 15724 * If any error acks received during the plumbing sequence, 15725 * ill_ifname_pending_err will be set. Break out and send up 15726 * the error to the pending ioctl. 15727 */ 15728 if (ill->ill_ifname_pending_err != 0) { 15729 err = ill->ill_ifname_pending_err; 15730 ill->ill_ifname_pending_err = 0; 15731 break; 15732 } 15733 /* 15734 * Get the interface token. If the zeroth interface 15735 * address is zero then set the address to the link local 15736 * address 15737 */ 15738 mp_hw = copyb(mp); 15739 if (mp_hw == NULL) { 15740 err = ENOMEM; 15741 break; 15742 } 15743 dlp = (union DL_primitives *)mp_hw->b_rptr; 15744 ill->ill_phys_addr_mp = mp_hw; 15745 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 15746 dlp->physaddr_ack.dl_addr_offset; 15747 if (dlp->physaddr_ack.dl_addr_length == 0 || 15748 ill->ill_phys_addr_length == 0 || 15749 ill->ill_phys_addr_length == IP_ADDR_LEN) { 15750 /* 15751 * Compatibility: atun driver returns a length of 0. 15752 * ipdptp has an ill_phys_addr_length of zero(from 15753 * DL_BIND_ACK) but a non-zero length here. 15754 * ipd has an ill_phys_addr_length of 4(from 15755 * DL_BIND_ACK) but a non-zero length here. 15756 */ 15757 ill->ill_phys_addr = NULL; 15758 } else if (dlp->physaddr_ack.dl_addr_length != 15759 ill->ill_phys_addr_length) { 15760 ip0dbg(("DL_PHYS_ADDR_ACK: " 15761 "Address length mismatch %d %d\n", 15762 dlp->physaddr_ack.dl_addr_length, 15763 ill->ill_phys_addr_length)); 15764 err = EINVAL; 15765 break; 15766 } 15767 mutex_enter(&ill->ill_lock); 15768 if (ill->ill_nd_lla_mp == NULL) { 15769 ill->ill_nd_lla_mp = copyb(mp_hw); 15770 if (ill->ill_nd_lla_mp == NULL) { 15771 err = ENOMEM; 15772 mutex_exit(&ill->ill_lock); 15773 break; 15774 } 15775 ill->ill_nd_lla = 15776 (uchar_t *)ill->ill_nd_lla_mp->b_rptr + 15777 dlp->physaddr_ack.dl_addr_offset; 15778 ill->ill_nd_lla_len = ill->ill_phys_addr_length; 15779 } 15780 mutex_exit(&ill->ill_lock); 15781 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 15782 (void) ill_setdefaulttoken(ill); 15783 15784 /* 15785 * If the ill zero interface has a zero address assign 15786 * it the proper link local address. 15787 */ 15788 ASSERT(ill->ill_ipif->ipif_id == 0); 15789 if (ipif != NULL && 15790 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 15791 (void) ipif_setlinklocal(ipif); 15792 break; 15793 } 15794 case DL_OK_ACK: 15795 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 15796 dlpi_prim_str((int)dloa->dl_correct_primitive), 15797 dloa->dl_correct_primitive)); 15798 switch (dloa->dl_correct_primitive) { 15799 case DL_UNBIND_REQ: 15800 case DL_ATTACH_REQ: 15801 case DL_DETACH_REQ: 15802 ill_dlpi_done(ill, dloa->dl_correct_primitive); 15803 break; 15804 } 15805 break; 15806 default: 15807 break; 15808 } 15809 15810 freemsg(mp); 15811 if (mp1) { 15812 struct iocblk *iocp; 15813 int mode; 15814 15815 /* 15816 * Complete the waiting IOCTL. For SIOCLIFADDIF or 15817 * SIOCSLIFNAME do a copyout. 15818 */ 15819 iocp = (struct iocblk *)mp1->b_rptr; 15820 15821 if (iocp->ioc_cmd == SIOCLIFADDIF || 15822 iocp->ioc_cmd == SIOCSLIFNAME) 15823 mode = COPYOUT; 15824 else 15825 mode = NO_COPYOUT; 15826 /* 15827 * The ioctl must complete now without EINPROGRESS 15828 * since ipsq_pending_mp_get has removed the ioctl mblk 15829 * from ipsq_pending_mp. Otherwise the ioctl will be 15830 * stuck for ever in the ipsq. 15831 */ 15832 ASSERT(err != EINPROGRESS); 15833 ip_ioctl_finish(q, mp1, err, mode, ipif, ipsq); 15834 15835 } 15836 } 15837 15838 /* 15839 * ip_rput_other is called by ip_rput to handle messages modifying the global 15840 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 15841 */ 15842 /* ARGSUSED */ 15843 void 15844 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15845 { 15846 ill_t *ill; 15847 struct iocblk *iocp; 15848 mblk_t *mp1; 15849 conn_t *connp = NULL; 15850 15851 ip1dbg(("ip_rput_other ")); 15852 ill = (ill_t *)q->q_ptr; 15853 /* 15854 * This routine is not a writer in the case of SIOCGTUNPARAM 15855 * in which case ipsq is NULL. 15856 */ 15857 if (ipsq != NULL) { 15858 ASSERT(IAM_WRITER_IPSQ(ipsq)); 15859 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15860 } 15861 15862 switch (mp->b_datap->db_type) { 15863 case M_ERROR: 15864 case M_HANGUP: 15865 /* 15866 * The device has a problem. We force the ILL down. It can 15867 * be brought up again manually using SIOCSIFFLAGS (via 15868 * ifconfig or equivalent). 15869 */ 15870 ASSERT(ipsq != NULL); 15871 if (mp->b_rptr < mp->b_wptr) 15872 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 15873 if (ill->ill_error == 0) 15874 ill->ill_error = ENXIO; 15875 if (!ill_down_start(q, mp)) 15876 return; 15877 ipif_all_down_tail(ipsq, q, mp, NULL); 15878 break; 15879 case M_IOCACK: 15880 iocp = (struct iocblk *)mp->b_rptr; 15881 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 15882 switch (iocp->ioc_cmd) { 15883 case SIOCSTUNPARAM: 15884 case OSIOCSTUNPARAM: 15885 ASSERT(ipsq != NULL); 15886 /* 15887 * Finish socket ioctl passed through to tun. 15888 * We should have an IOCTL waiting on this. 15889 */ 15890 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15891 if (ill->ill_isv6) { 15892 struct iftun_req *ta; 15893 15894 /* 15895 * if a source or destination is 15896 * being set, try and set the link 15897 * local address for the tunnel 15898 */ 15899 ta = (struct iftun_req *)mp->b_cont-> 15900 b_cont->b_rptr; 15901 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 15902 ipif_set_tun_llink(ill, ta); 15903 } 15904 15905 } 15906 if (mp1 != NULL) { 15907 /* 15908 * Now copy back the b_next/b_prev used by 15909 * mi code for the mi_copy* functions. 15910 * See ip_sioctl_tunparam() for the reason. 15911 * Also protect against missing b_cont. 15912 */ 15913 if (mp->b_cont != NULL) { 15914 mp->b_cont->b_next = 15915 mp1->b_cont->b_next; 15916 mp->b_cont->b_prev = 15917 mp1->b_cont->b_prev; 15918 } 15919 inet_freemsg(mp1); 15920 ASSERT(ipsq->ipsq_current_ipif != NULL); 15921 ASSERT(connp != NULL); 15922 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 15923 iocp->ioc_error, NO_COPYOUT, 15924 ipsq->ipsq_current_ipif, ipsq); 15925 } else { 15926 ASSERT(connp == NULL); 15927 putnext(q, mp); 15928 } 15929 break; 15930 case SIOCGTUNPARAM: 15931 case OSIOCGTUNPARAM: 15932 /* 15933 * This is really M_IOCDATA from the tunnel driver. 15934 * convert back and complete the ioctl. 15935 * We should have an IOCTL waiting on this. 15936 */ 15937 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 15938 if (mp1) { 15939 /* 15940 * Now copy back the b_next/b_prev used by 15941 * mi code for the mi_copy* functions. 15942 * See ip_sioctl_tunparam() for the reason. 15943 * Also protect against missing b_cont. 15944 */ 15945 if (mp->b_cont != NULL) { 15946 mp->b_cont->b_next = 15947 mp1->b_cont->b_next; 15948 mp->b_cont->b_prev = 15949 mp1->b_cont->b_prev; 15950 } 15951 inet_freemsg(mp1); 15952 if (iocp->ioc_error == 0) 15953 mp->b_datap->db_type = M_IOCDATA; 15954 ASSERT(connp != NULL); 15955 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 15956 iocp->ioc_error, COPYOUT, NULL, NULL); 15957 } else { 15958 ASSERT(connp == NULL); 15959 putnext(q, mp); 15960 } 15961 break; 15962 default: 15963 break; 15964 } 15965 break; 15966 case M_IOCNAK: 15967 iocp = (struct iocblk *)mp->b_rptr; 15968 15969 switch (iocp->ioc_cmd) { 15970 int mode; 15971 ipif_t *ipif; 15972 15973 case DL_IOC_HDR_INFO: 15974 /* 15975 * If this was the first attempt turn of the 15976 * fastpath probing. 15977 */ 15978 mutex_enter(&ill->ill_lock); 15979 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 15980 ill->ill_dlpi_fastpath_state = IDS_FAILED; 15981 mutex_exit(&ill->ill_lock); 15982 ill_fastpath_nack(ill); 15983 ip1dbg(("ip_rput: DLPI fastpath off on " 15984 "interface %s\n", 15985 ill->ill_name)); 15986 } else { 15987 mutex_exit(&ill->ill_lock); 15988 } 15989 freemsg(mp); 15990 break; 15991 case SIOCSTUNPARAM: 15992 case OSIOCSTUNPARAM: 15993 ASSERT(ipsq != NULL); 15994 /* 15995 * Finish socket ioctl passed through to tun 15996 * We should have an IOCTL waiting on this. 15997 */ 15998 /* FALLTHRU */ 15999 case SIOCGTUNPARAM: 16000 case OSIOCGTUNPARAM: 16001 /* 16002 * This is really M_IOCDATA from the tunnel driver. 16003 * convert back and complete the ioctl. 16004 * We should have an IOCTL waiting on this. 16005 */ 16006 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16007 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16008 mp1 = ill_pending_mp_get(ill, &connp, 16009 iocp->ioc_id); 16010 mode = COPYOUT; 16011 ipsq = NULL; 16012 ipif = NULL; 16013 } else { 16014 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16015 mode = NO_COPYOUT; 16016 ASSERT(ipsq->ipsq_current_ipif != NULL); 16017 ipif = ipsq->ipsq_current_ipif; 16018 } 16019 if (mp1 != NULL) { 16020 /* 16021 * Now copy back the b_next/b_prev used by 16022 * mi code for the mi_copy* functions. 16023 * See ip_sioctl_tunparam() for the reason. 16024 * Also protect against missing b_cont. 16025 */ 16026 if (mp->b_cont != NULL) { 16027 mp->b_cont->b_next = 16028 mp1->b_cont->b_next; 16029 mp->b_cont->b_prev = 16030 mp1->b_cont->b_prev; 16031 } 16032 inet_freemsg(mp1); 16033 if (iocp->ioc_error == 0) 16034 iocp->ioc_error = EINVAL; 16035 ASSERT(connp != NULL); 16036 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16037 iocp->ioc_error, mode, ipif, ipsq); 16038 } else { 16039 ASSERT(connp == NULL); 16040 putnext(q, mp); 16041 } 16042 break; 16043 default: 16044 break; 16045 } 16046 default: 16047 break; 16048 } 16049 } 16050 16051 /* 16052 * NOTE : This function does not ire_refrele the ire argument passed in. 16053 * 16054 * IPQoS notes 16055 * IP policy is invoked twice for a forwarded packet, once on the read side 16056 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16057 * enabled. An additional parameter, in_ill, has been added for this purpose. 16058 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16059 * because ip_mroute drops this information. 16060 * 16061 */ 16062 void 16063 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16064 { 16065 uint32_t pkt_len; 16066 queue_t *q; 16067 uint32_t sum; 16068 #define rptr ((uchar_t *)ipha) 16069 uint32_t max_frag; 16070 uint32_t ill_index; 16071 16072 /* Get the ill_index of the incoming ILL */ 16073 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16074 16075 /* Initiate Read side IPPF processing */ 16076 if (IPP_ENABLED(IPP_FWD_IN)) { 16077 ip_process(IPP_FWD_IN, &mp, ill_index); 16078 if (mp == NULL) { 16079 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16080 "during IPPF processing\n")); 16081 return; 16082 } 16083 } 16084 16085 pkt_len = ntohs(ipha->ipha_length); 16086 16087 /* Adjust the checksum to reflect the ttl decrement. */ 16088 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16089 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16090 16091 if (ipha->ipha_ttl-- <= 1) { 16092 if (ip_csum_hdr(ipha)) { 16093 BUMP_MIB(&ip_mib, ipInCksumErrs); 16094 goto drop_pkt; 16095 } 16096 /* 16097 * Note: ire_stq this will be NULL for multicast 16098 * datagrams using the long path through arp (the IRE 16099 * is not an IRE_CACHE). This should not cause 16100 * problems since we don't generate ICMP errors for 16101 * multicast packets. 16102 */ 16103 q = ire->ire_stq; 16104 if (q != NULL) { 16105 /* Sent by forwarding path, and router is global zone */ 16106 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16107 GLOBAL_ZONEID); 16108 } else 16109 freemsg(mp); 16110 return; 16111 } 16112 16113 /* 16114 * Don't forward if the interface is down 16115 */ 16116 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16117 BUMP_MIB(&ip_mib, ipInDiscards); 16118 ip2dbg(("ip_rput_forward:interface is down\n")); 16119 goto drop_pkt; 16120 } 16121 16122 /* Get the ill_index of the outgoing ILL */ 16123 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 16124 16125 if (is_system_labeled()) { 16126 mblk_t *mp1; 16127 16128 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16129 BUMP_MIB(&ip_mib, ipForwProhibits); 16130 goto drop_pkt; 16131 } 16132 /* Size may have changed */ 16133 mp = mp1; 16134 ipha = (ipha_t *)mp->b_rptr; 16135 pkt_len = ntohs(ipha->ipha_length); 16136 } 16137 16138 /* Check if there are options to update */ 16139 if (!IS_SIMPLE_IPH(ipha)) { 16140 if (ip_csum_hdr(ipha)) { 16141 BUMP_MIB(&ip_mib, ipInCksumErrs); 16142 goto drop_pkt; 16143 } 16144 if (ip_rput_forward_options(mp, ipha, ire)) { 16145 return; 16146 } 16147 16148 ipha->ipha_hdr_checksum = 0; 16149 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16150 } 16151 max_frag = ire->ire_max_frag; 16152 if (pkt_len > max_frag) { 16153 /* 16154 * It needs fragging on its way out. We haven't 16155 * verified the header checksum yet. Since we 16156 * are going to put a surely good checksum in the 16157 * outgoing header, we have to make sure that it 16158 * was good coming in. 16159 */ 16160 if (ip_csum_hdr(ipha)) { 16161 BUMP_MIB(&ip_mib, ipInCksumErrs); 16162 goto drop_pkt; 16163 } 16164 /* Initiate Write side IPPF processing */ 16165 if (IPP_ENABLED(IPP_FWD_OUT)) { 16166 ip_process(IPP_FWD_OUT, &mp, ill_index); 16167 if (mp == NULL) { 16168 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16169 " during IPPF processing\n")); 16170 return; 16171 } 16172 } 16173 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID); 16174 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16175 return; 16176 } 16177 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16178 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16179 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16180 /* ip_xmit_v4 always consumes the packet */ 16181 return; 16182 16183 drop_pkt:; 16184 ip1dbg(("ip_rput_forward: drop pkt\n")); 16185 freemsg(mp); 16186 #undef rptr 16187 } 16188 16189 void 16190 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16191 { 16192 ire_t *ire; 16193 16194 ASSERT(!ipif->ipif_isv6); 16195 /* 16196 * Find an IRE which matches the destination and the outgoing 16197 * queue in the cache table. All we need is an IRE_CACHE which 16198 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16199 * then it is enough to have some IRE_CACHE in the group. 16200 */ 16201 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16202 dst = ipif->ipif_pp_dst_addr; 16203 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16204 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR); 16205 if (ire == NULL) { 16206 /* 16207 * Mark this packet to make it be delivered to 16208 * ip_rput_forward after the new ire has been 16209 * created. 16210 */ 16211 mp->b_prev = NULL; 16212 mp->b_next = mp; 16213 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16214 NULL, 0, GLOBAL_ZONEID); 16215 } else { 16216 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16217 IRE_REFRELE(ire); 16218 } 16219 } 16220 16221 /* Update any source route, record route or timestamp options */ 16222 static int 16223 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire) 16224 { 16225 ipoptp_t opts; 16226 uchar_t *opt; 16227 uint8_t optval; 16228 uint8_t optlen; 16229 ipaddr_t dst; 16230 uint32_t ts; 16231 ire_t *dst_ire = NULL; 16232 ire_t *tmp_ire = NULL; 16233 timestruc_t now; 16234 16235 ip2dbg(("ip_rput_forward_options\n")); 16236 dst = ipha->ipha_dst; 16237 for (optval = ipoptp_first(&opts, ipha); 16238 optval != IPOPT_EOL; 16239 optval = ipoptp_next(&opts)) { 16240 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16241 opt = opts.ipoptp_cur; 16242 optlen = opts.ipoptp_len; 16243 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16244 optval, opts.ipoptp_len)); 16245 switch (optval) { 16246 uint32_t off; 16247 case IPOPT_SSRR: 16248 case IPOPT_LSRR: 16249 /* Check if adminstratively disabled */ 16250 if (!ip_forward_src_routed) { 16251 BUMP_MIB(&ip_mib, ipForwProhibits); 16252 if (ire->ire_stq != NULL) { 16253 /* 16254 * Sent by forwarding path, and router 16255 * is global zone 16256 */ 16257 icmp_unreachable(ire->ire_stq, mp, 16258 ICMP_SOURCE_ROUTE_FAILED, 16259 GLOBAL_ZONEID); 16260 } else { 16261 ip0dbg(("ip_rput_forward_options: " 16262 "unable to send unreach\n")); 16263 freemsg(mp); 16264 } 16265 return (-1); 16266 } 16267 16268 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16269 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 16270 if (dst_ire == NULL) { 16271 /* 16272 * Must be partial since ip_rput_options 16273 * checked for strict. 16274 */ 16275 break; 16276 } 16277 off = opt[IPOPT_OFFSET]; 16278 off--; 16279 redo_srr: 16280 if (optlen < IP_ADDR_LEN || 16281 off > optlen - IP_ADDR_LEN) { 16282 /* End of source route */ 16283 ip1dbg(( 16284 "ip_rput_forward_options: end of SR\n")); 16285 ire_refrele(dst_ire); 16286 break; 16287 } 16288 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16289 bcopy(&ire->ire_src_addr, (char *)opt + off, 16290 IP_ADDR_LEN); 16291 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16292 ntohl(dst))); 16293 16294 /* 16295 * Check if our address is present more than 16296 * once as consecutive hops in source route. 16297 */ 16298 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16299 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 16300 if (tmp_ire != NULL) { 16301 ire_refrele(tmp_ire); 16302 off += IP_ADDR_LEN; 16303 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16304 goto redo_srr; 16305 } 16306 ipha->ipha_dst = dst; 16307 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16308 ire_refrele(dst_ire); 16309 break; 16310 case IPOPT_RR: 16311 off = opt[IPOPT_OFFSET]; 16312 off--; 16313 if (optlen < IP_ADDR_LEN || 16314 off > optlen - IP_ADDR_LEN) { 16315 /* No more room - ignore */ 16316 ip1dbg(( 16317 "ip_rput_forward_options: end of RR\n")); 16318 break; 16319 } 16320 bcopy(&ire->ire_src_addr, (char *)opt + off, 16321 IP_ADDR_LEN); 16322 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16323 break; 16324 case IPOPT_TS: 16325 /* Insert timestamp if there is room */ 16326 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16327 case IPOPT_TS_TSONLY: 16328 off = IPOPT_TS_TIMELEN; 16329 break; 16330 case IPOPT_TS_PRESPEC: 16331 case IPOPT_TS_PRESPEC_RFC791: 16332 /* Verify that the address matched */ 16333 off = opt[IPOPT_OFFSET] - 1; 16334 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16335 dst_ire = ire_ctable_lookup(dst, 0, 16336 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16337 MATCH_IRE_TYPE); 16338 16339 if (dst_ire == NULL) { 16340 /* Not for us */ 16341 break; 16342 } 16343 ire_refrele(dst_ire); 16344 /* FALLTHRU */ 16345 case IPOPT_TS_TSANDADDR: 16346 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16347 break; 16348 default: 16349 /* 16350 * ip_*put_options should have already 16351 * dropped this packet. 16352 */ 16353 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16354 "unknown IT - bug in ip_rput_options?\n"); 16355 return (0); /* Keep "lint" happy */ 16356 } 16357 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16358 /* Increase overflow counter */ 16359 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16360 opt[IPOPT_POS_OV_FLG] = 16361 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16362 (off << 4)); 16363 break; 16364 } 16365 off = opt[IPOPT_OFFSET] - 1; 16366 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16367 case IPOPT_TS_PRESPEC: 16368 case IPOPT_TS_PRESPEC_RFC791: 16369 case IPOPT_TS_TSANDADDR: 16370 bcopy(&ire->ire_src_addr, 16371 (char *)opt + off, IP_ADDR_LEN); 16372 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16373 /* FALLTHRU */ 16374 case IPOPT_TS_TSONLY: 16375 off = opt[IPOPT_OFFSET] - 1; 16376 /* Compute # of milliseconds since midnight */ 16377 gethrestime(&now); 16378 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16379 now.tv_nsec / (NANOSEC / MILLISEC); 16380 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16381 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16382 break; 16383 } 16384 break; 16385 } 16386 } 16387 return (0); 16388 } 16389 16390 /* 16391 * This is called after processing at least one of AH/ESP headers. 16392 * 16393 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16394 * the actual, physical interface on which the packet was received, 16395 * but, when ip_strict_dst_multihoming is set to 1, could be the 16396 * interface which had the ipha_dst configured when the packet went 16397 * through ip_rput. The ill_index corresponding to the recv_ill 16398 * is saved in ipsec_in_rill_index 16399 */ 16400 void 16401 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16402 { 16403 mblk_t *mp; 16404 ipaddr_t dst; 16405 in6_addr_t *v6dstp; 16406 ipha_t *ipha; 16407 ip6_t *ip6h; 16408 ipsec_in_t *ii; 16409 boolean_t ill_need_rele = B_FALSE; 16410 boolean_t rill_need_rele = B_FALSE; 16411 boolean_t ire_need_rele = B_FALSE; 16412 16413 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16414 ASSERT(ii->ipsec_in_ill_index != 0); 16415 16416 mp = ipsec_mp->b_cont; 16417 ASSERT(mp != NULL); 16418 16419 16420 if (ill == NULL) { 16421 ASSERT(recv_ill == NULL); 16422 /* 16423 * We need to get the original queue on which ip_rput_local 16424 * or ip_rput_data_v6 was called. 16425 */ 16426 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16427 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL); 16428 ill_need_rele = B_TRUE; 16429 16430 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16431 recv_ill = ill_lookup_on_ifindex( 16432 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16433 NULL, NULL, NULL, NULL); 16434 rill_need_rele = B_TRUE; 16435 } else { 16436 recv_ill = ill; 16437 } 16438 16439 if ((ill == NULL) || (recv_ill == NULL)) { 16440 ip0dbg(("ip_fanout_proto_again: interface " 16441 "disappeared\n")); 16442 if (ill != NULL) 16443 ill_refrele(ill); 16444 if (recv_ill != NULL) 16445 ill_refrele(recv_ill); 16446 freemsg(ipsec_mp); 16447 return; 16448 } 16449 } 16450 16451 ASSERT(ill != NULL && recv_ill != NULL); 16452 16453 if (mp->b_datap->db_type == M_CTL) { 16454 /* 16455 * AH/ESP is returning the ICMP message after 16456 * removing their headers. Fanout again till 16457 * it gets to the right protocol. 16458 */ 16459 if (ii->ipsec_in_v4) { 16460 icmph_t *icmph; 16461 int iph_hdr_length; 16462 int hdr_length; 16463 16464 ipha = (ipha_t *)mp->b_rptr; 16465 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16466 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16467 ipha = (ipha_t *)&icmph[1]; 16468 hdr_length = IPH_HDR_LENGTH(ipha); 16469 /* 16470 * icmp_inbound_error_fanout may need to do pullupmsg. 16471 * Reset the type to M_DATA. 16472 */ 16473 mp->b_datap->db_type = M_DATA; 16474 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16475 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16476 B_FALSE, ill, ii->ipsec_in_zoneid); 16477 } else { 16478 icmp6_t *icmp6; 16479 int hdr_length; 16480 16481 ip6h = (ip6_t *)mp->b_rptr; 16482 /* Don't call hdr_length_v6() unless you have to. */ 16483 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16484 hdr_length = ip_hdr_length_v6(mp, ip6h); 16485 else 16486 hdr_length = IPV6_HDR_LEN; 16487 16488 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16489 /* 16490 * icmp_inbound_error_fanout_v6 may need to do 16491 * pullupmsg. Reset the type to M_DATA. 16492 */ 16493 mp->b_datap->db_type = M_DATA; 16494 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16495 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16496 } 16497 if (ill_need_rele) 16498 ill_refrele(ill); 16499 if (rill_need_rele) 16500 ill_refrele(recv_ill); 16501 return; 16502 } 16503 16504 if (ii->ipsec_in_v4) { 16505 ipha = (ipha_t *)mp->b_rptr; 16506 dst = ipha->ipha_dst; 16507 if (CLASSD(dst)) { 16508 /* 16509 * Multicast has to be delivered to all streams. 16510 */ 16511 dst = INADDR_BROADCAST; 16512 } 16513 16514 if (ire == NULL) { 16515 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16516 MBLK_GETLABEL(mp)); 16517 if (ire == NULL) { 16518 if (ill_need_rele) 16519 ill_refrele(ill); 16520 if (rill_need_rele) 16521 ill_refrele(recv_ill); 16522 ip1dbg(("ip_fanout_proto_again: " 16523 "IRE not found")); 16524 freemsg(ipsec_mp); 16525 return; 16526 } 16527 ire_need_rele = B_TRUE; 16528 } 16529 16530 switch (ipha->ipha_protocol) { 16531 case IPPROTO_UDP: 16532 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16533 recv_ill); 16534 if (ire_need_rele) 16535 ire_refrele(ire); 16536 break; 16537 case IPPROTO_TCP: 16538 if (!ire_need_rele) 16539 IRE_REFHOLD(ire); 16540 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 16541 ire, ipsec_mp, 0, ill->ill_rq, NULL); 16542 IRE_REFRELE(ire); 16543 if (mp != NULL) 16544 squeue_enter_chain(GET_SQUEUE(mp), mp, 16545 mp, 1, SQTAG_IP_PROTO_AGAIN); 16546 break; 16547 case IPPROTO_SCTP: 16548 if (!ire_need_rele) 16549 IRE_REFHOLD(ire); 16550 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 16551 ipsec_mp, 0, ill->ill_rq, dst); 16552 break; 16553 default: 16554 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 16555 recv_ill); 16556 if (ire_need_rele) 16557 ire_refrele(ire); 16558 break; 16559 } 16560 } else { 16561 uint32_t rput_flags = 0; 16562 16563 ip6h = (ip6_t *)mp->b_rptr; 16564 v6dstp = &ip6h->ip6_dst; 16565 /* 16566 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 16567 * address. 16568 * 16569 * Currently, we don't store that state in the IPSEC_IN 16570 * message, and we may need to. 16571 */ 16572 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 16573 IP6_IN_LLMCAST : 0); 16574 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 16575 NULL, NULL); 16576 } 16577 if (ill_need_rele) 16578 ill_refrele(ill); 16579 if (rill_need_rele) 16580 ill_refrele(recv_ill); 16581 } 16582 16583 /* 16584 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 16585 * returns 'true' if there are still fragments left on the queue, in 16586 * which case we restart the timer. 16587 */ 16588 void 16589 ill_frag_timer(void *arg) 16590 { 16591 ill_t *ill = (ill_t *)arg; 16592 boolean_t frag_pending; 16593 16594 mutex_enter(&ill->ill_lock); 16595 ASSERT(!ill->ill_fragtimer_executing); 16596 if (ill->ill_state_flags & ILL_CONDEMNED) { 16597 ill->ill_frag_timer_id = 0; 16598 mutex_exit(&ill->ill_lock); 16599 return; 16600 } 16601 ill->ill_fragtimer_executing = 1; 16602 mutex_exit(&ill->ill_lock); 16603 16604 frag_pending = ill_frag_timeout(ill, ip_g_frag_timeout); 16605 16606 /* 16607 * Restart the timer, if we have fragments pending or if someone 16608 * wanted us to be scheduled again. 16609 */ 16610 mutex_enter(&ill->ill_lock); 16611 ill->ill_fragtimer_executing = 0; 16612 ill->ill_frag_timer_id = 0; 16613 if (frag_pending || ill->ill_fragtimer_needrestart) 16614 ill_frag_timer_start(ill); 16615 mutex_exit(&ill->ill_lock); 16616 } 16617 16618 void 16619 ill_frag_timer_start(ill_t *ill) 16620 { 16621 ASSERT(MUTEX_HELD(&ill->ill_lock)); 16622 16623 /* If the ill is closing or opening don't proceed */ 16624 if (ill->ill_state_flags & ILL_CONDEMNED) 16625 return; 16626 16627 if (ill->ill_fragtimer_executing) { 16628 /* 16629 * ill_frag_timer is currently executing. Just record the 16630 * the fact that we want the timer to be restarted. 16631 * ill_frag_timer will post a timeout before it returns, 16632 * ensuring it will be called again. 16633 */ 16634 ill->ill_fragtimer_needrestart = 1; 16635 return; 16636 } 16637 16638 if (ill->ill_frag_timer_id == 0) { 16639 /* 16640 * The timer is neither running nor is the timeout handler 16641 * executing. Post a timeout so that ill_frag_timer will be 16642 * called 16643 */ 16644 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 16645 MSEC_TO_TICK(ip_g_frag_timo_ms >> 1)); 16646 ill->ill_fragtimer_needrestart = 0; 16647 } 16648 } 16649 16650 /* 16651 * This routine is needed for loopback when forwarding multicasts. 16652 * 16653 * IPQoS Notes: 16654 * IPPF processing is done in fanout routines. 16655 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 16656 * processing for IPSec packets is done when it comes back in clear. 16657 * NOTE : The callers of this function need to do the ire_refrele for the 16658 * ire that is being passed in. 16659 */ 16660 void 16661 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 16662 ill_t *recv_ill) 16663 { 16664 ill_t *ill = (ill_t *)q->q_ptr; 16665 uint32_t sum; 16666 uint32_t u1; 16667 uint32_t u2; 16668 int hdr_length; 16669 boolean_t mctl_present; 16670 mblk_t *first_mp = mp; 16671 mblk_t *hada_mp = NULL; 16672 ipha_t *inner_ipha; 16673 16674 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 16675 "ip_rput_locl_start: q %p", q); 16676 16677 ASSERT(ire->ire_ipversion == IPV4_VERSION); 16678 16679 16680 #define rptr ((uchar_t *)ipha) 16681 #define iphs ((uint16_t *)ipha) 16682 16683 /* 16684 * no UDP or TCP packet should come here anymore. 16685 */ 16686 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 16687 (ipha->ipha_protocol != IPPROTO_UDP)); 16688 16689 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 16690 if (mctl_present && 16691 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 16692 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 16693 16694 /* 16695 * It's an IPsec accelerated packet. 16696 * Keep a pointer to the data attributes around until 16697 * we allocate the ipsec_info_t. 16698 */ 16699 IPSECHW_DEBUG(IPSECHW_PKT, 16700 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 16701 hada_mp = first_mp; 16702 hada_mp->b_cont = NULL; 16703 /* 16704 * Since it is accelerated, it comes directly from 16705 * the ill and the data attributes is followed by 16706 * the packet data. 16707 */ 16708 ASSERT(mp->b_datap->db_type != M_CTL); 16709 first_mp = mp; 16710 mctl_present = B_FALSE; 16711 } 16712 16713 /* 16714 * IF M_CTL is not present, then ipsec_in_is_secure 16715 * should return B_TRUE. There is a case where loopback 16716 * packets has an M_CTL in the front with all the 16717 * IPSEC options set to IPSEC_PREF_NEVER - which means 16718 * ipsec_in_is_secure will return B_FALSE. As loopback 16719 * packets never comes here, it is safe to ASSERT the 16720 * following. 16721 */ 16722 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 16723 16724 16725 /* u1 is # words of IP options */ 16726 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 16727 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 16728 16729 if (u1) { 16730 if (!ip_options_cksum(q, mp, ipha, ire)) { 16731 if (hada_mp != NULL) 16732 freemsg(hada_mp); 16733 return; 16734 } 16735 } else { 16736 /* Check the IP header checksum. */ 16737 #define uph ((uint16_t *)ipha) 16738 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 16739 uph[6] + uph[7] + uph[8] + uph[9]; 16740 #undef uph 16741 /* finish doing IP checksum */ 16742 sum = (sum & 0xFFFF) + (sum >> 16); 16743 sum = ~(sum + (sum >> 16)) & 0xFFFF; 16744 /* 16745 * Don't verify header checksum if this packet is coming 16746 * back from AH/ESP as we already did it. 16747 */ 16748 if (!mctl_present && (sum && sum != 0xFFFF)) { 16749 BUMP_MIB(&ip_mib, ipInCksumErrs); 16750 goto drop_pkt; 16751 } 16752 } 16753 16754 /* 16755 * Count for SNMP of inbound packets for ire. As ip_proto_input 16756 * might be called more than once for secure packets, count only 16757 * the first time. 16758 */ 16759 if (!mctl_present) { 16760 UPDATE_IB_PKT_COUNT(ire); 16761 ire->ire_last_used_time = lbolt; 16762 } 16763 16764 /* Check for fragmentation offset. */ 16765 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 16766 u1 = u2 & (IPH_MF | IPH_OFFSET); 16767 if (u1) { 16768 /* 16769 * We re-assemble fragments before we do the AH/ESP 16770 * processing. Thus, M_CTL should not be present 16771 * while we are re-assembling. 16772 */ 16773 ASSERT(!mctl_present); 16774 ASSERT(first_mp == mp); 16775 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 16776 return; 16777 } 16778 /* 16779 * Make sure that first_mp points back to mp as 16780 * the mp we came in with could have changed in 16781 * ip_rput_fragment(). 16782 */ 16783 ipha = (ipha_t *)mp->b_rptr; 16784 first_mp = mp; 16785 } 16786 16787 /* 16788 * Clear hardware checksumming flag as it is currently only 16789 * used by TCP and UDP. 16790 */ 16791 DB_CKSUMFLAGS(mp) = 0; 16792 16793 /* Now we have a complete datagram, destined for this machine. */ 16794 u1 = IPH_HDR_LENGTH(ipha); 16795 switch (ipha->ipha_protocol) { 16796 case IPPROTO_ICMP: { 16797 ire_t *ire_zone; 16798 ilm_t *ilm; 16799 mblk_t *mp1; 16800 zoneid_t last_zoneid; 16801 16802 if (CLASSD(ipha->ipha_dst) && 16803 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 16804 ASSERT(ire->ire_type == IRE_BROADCAST); 16805 /* 16806 * In the multicast case, applications may have joined 16807 * the group from different zones, so we need to deliver 16808 * the packet to each of them. Loop through the 16809 * multicast memberships structures (ilm) on the receive 16810 * ill and send a copy of the packet up each matching 16811 * one. However, we don't do this for multicasts sent on 16812 * the loopback interface (PHYI_LOOPBACK flag set) as 16813 * they must stay in the sender's zone. 16814 * 16815 * ilm_add_v6() ensures that ilms in the same zone are 16816 * contiguous in the ill_ilm list. We use this property 16817 * to avoid sending duplicates needed when two 16818 * applications in the same zone join the same group on 16819 * different logical interfaces: we ignore the ilm if 16820 * its zoneid is the same as the last matching one. 16821 * In addition, the sending of the packet for 16822 * ire_zoneid is delayed until all of the other ilms 16823 * have been exhausted. 16824 */ 16825 last_zoneid = -1; 16826 ILM_WALKER_HOLD(recv_ill); 16827 for (ilm = recv_ill->ill_ilm; ilm != NULL; 16828 ilm = ilm->ilm_next) { 16829 if ((ilm->ilm_flags & ILM_DELETED) || 16830 ipha->ipha_dst != ilm->ilm_addr || 16831 ilm->ilm_zoneid == last_zoneid || 16832 ilm->ilm_zoneid == ire->ire_zoneid || 16833 ilm->ilm_zoneid == ALL_ZONES || 16834 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 16835 continue; 16836 mp1 = ip_copymsg(first_mp); 16837 if (mp1 == NULL) 16838 continue; 16839 icmp_inbound(q, mp1, B_TRUE, ill, 16840 0, sum, mctl_present, B_TRUE, 16841 recv_ill, ilm->ilm_zoneid); 16842 last_zoneid = ilm->ilm_zoneid; 16843 } 16844 ILM_WALKER_RELE(recv_ill); 16845 } else if (ire->ire_type == IRE_BROADCAST) { 16846 /* 16847 * In the broadcast case, there may be many zones 16848 * which need a copy of the packet delivered to them. 16849 * There is one IRE_BROADCAST per broadcast address 16850 * and per zone; we walk those using a helper function. 16851 * In addition, the sending of the packet for ire is 16852 * delayed until all of the other ires have been 16853 * processed. 16854 */ 16855 IRB_REFHOLD(ire->ire_bucket); 16856 ire_zone = NULL; 16857 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 16858 ire)) != NULL) { 16859 mp1 = ip_copymsg(first_mp); 16860 if (mp1 == NULL) 16861 continue; 16862 16863 UPDATE_IB_PKT_COUNT(ire_zone); 16864 ire_zone->ire_last_used_time = lbolt; 16865 icmp_inbound(q, mp1, B_TRUE, ill, 16866 0, sum, mctl_present, B_TRUE, 16867 recv_ill, ire_zone->ire_zoneid); 16868 } 16869 IRB_REFRELE(ire->ire_bucket); 16870 } 16871 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 16872 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 16873 ire->ire_zoneid); 16874 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16875 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 16876 return; 16877 } 16878 case IPPROTO_IGMP: 16879 /* 16880 * If we are not willing to accept IGMP packets in clear, 16881 * then check with global policy. 16882 */ 16883 if (igmp_accept_clear_messages == 0) { 16884 first_mp = ipsec_check_global_policy(first_mp, NULL, 16885 ipha, NULL, mctl_present); 16886 if (first_mp == NULL) 16887 return; 16888 } 16889 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 16890 freemsg(first_mp); 16891 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 16892 BUMP_MIB(&ip_mib, ipInDiscards); 16893 return; 16894 } 16895 if ((mp = igmp_input(q, mp, ill)) == NULL) { 16896 /* Bad packet - discarded by igmp_input */ 16897 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16898 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 16899 if (mctl_present) 16900 freeb(first_mp); 16901 return; 16902 } 16903 /* 16904 * igmp_input() may have returned the pulled up message. 16905 * So first_mp and ipha need to be reinitialized. 16906 */ 16907 ipha = (ipha_t *)mp->b_rptr; 16908 if (mctl_present) 16909 first_mp->b_cont = mp; 16910 else 16911 first_mp = mp; 16912 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 16913 /* No user-level listener for IGMP packets */ 16914 goto drop_pkt; 16915 } 16916 /* deliver to local raw users */ 16917 break; 16918 case IPPROTO_PIM: 16919 /* 16920 * If we are not willing to accept PIM packets in clear, 16921 * then check with global policy. 16922 */ 16923 if (pim_accept_clear_messages == 0) { 16924 first_mp = ipsec_check_global_policy(first_mp, NULL, 16925 ipha, NULL, mctl_present); 16926 if (first_mp == NULL) 16927 return; 16928 } 16929 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 16930 freemsg(first_mp); 16931 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 16932 BUMP_MIB(&ip_mib, ipInDiscards); 16933 return; 16934 } 16935 if (pim_input(q, mp) != 0) { 16936 /* Bad packet - discarded by pim_input */ 16937 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16938 "ip_rput_locl_end: q %p (%S)", q, "pim"); 16939 if (mctl_present) 16940 freeb(first_mp); 16941 return; 16942 } 16943 16944 /* 16945 * pim_input() may have pulled up the message so ipha needs to 16946 * be reinitialized. 16947 */ 16948 ipha = (ipha_t *)mp->b_rptr; 16949 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 16950 /* No user-level listener for PIM packets */ 16951 goto drop_pkt; 16952 } 16953 /* deliver to local raw users */ 16954 break; 16955 case IPPROTO_ENCAP: 16956 /* 16957 * Handle self-encapsulated packets (IP-in-IP where 16958 * the inner addresses == the outer addresses). 16959 */ 16960 hdr_length = IPH_HDR_LENGTH(ipha); 16961 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 16962 mp->b_wptr) { 16963 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 16964 sizeof (ipha_t) - mp->b_rptr)) { 16965 BUMP_MIB(&ip_mib, ipInDiscards); 16966 freemsg(first_mp); 16967 return; 16968 } 16969 ipha = (ipha_t *)mp->b_rptr; 16970 } 16971 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 16972 /* 16973 * Check the sanity of the inner IP header. 16974 */ 16975 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 16976 BUMP_MIB(&ip_mib, ipInDiscards); 16977 freemsg(first_mp); 16978 return; 16979 } 16980 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 16981 BUMP_MIB(&ip_mib, ipInDiscards); 16982 freemsg(first_mp); 16983 return; 16984 } 16985 if (inner_ipha->ipha_src == ipha->ipha_src && 16986 inner_ipha->ipha_dst == ipha->ipha_dst) { 16987 ipsec_in_t *ii; 16988 16989 /* 16990 * Self-encapsulated tunnel packet. Remove 16991 * the outer IP header and fanout again. 16992 * We also need to make sure that the inner 16993 * header is pulled up until options. 16994 */ 16995 mp->b_rptr = (uchar_t *)inner_ipha; 16996 ipha = inner_ipha; 16997 hdr_length = IPH_HDR_LENGTH(ipha); 16998 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 16999 if (!pullupmsg(mp, (uchar_t *)ipha + 17000 + hdr_length - mp->b_rptr)) { 17001 freemsg(first_mp); 17002 return; 17003 } 17004 ipha = (ipha_t *)mp->b_rptr; 17005 } 17006 if (!mctl_present) { 17007 ASSERT(first_mp == mp); 17008 /* 17009 * This means that somebody is sending 17010 * Self-encapsualted packets without AH/ESP. 17011 * If AH/ESP was present, we would have already 17012 * allocated the first_mp. 17013 */ 17014 if ((first_mp = ipsec_in_alloc(B_TRUE)) == 17015 NULL) { 17016 ip1dbg(("ip_proto_input: IPSEC_IN " 17017 "allocation failure.\n")); 17018 BUMP_MIB(&ip_mib, ipInDiscards); 17019 freemsg(mp); 17020 return; 17021 } 17022 first_mp->b_cont = mp; 17023 } 17024 /* 17025 * We generally store the ill_index if we need to 17026 * do IPSEC processing as we lose the ill queue when 17027 * we come back. But in this case, we never should 17028 * have to store the ill_index here as it should have 17029 * been stored previously when we processed the 17030 * AH/ESP header in this routine or for non-ipsec 17031 * cases, we still have the queue. But for some bad 17032 * packets from the wire, we can get to IPSEC after 17033 * this and we better store the index for that case. 17034 */ 17035 ill = (ill_t *)q->q_ptr; 17036 ii = (ipsec_in_t *)first_mp->b_rptr; 17037 ii->ipsec_in_ill_index = 17038 ill->ill_phyint->phyint_ifindex; 17039 ii->ipsec_in_rill_index = 17040 recv_ill->ill_phyint->phyint_ifindex; 17041 if (ii->ipsec_in_decaps) { 17042 /* 17043 * This packet is self-encapsulated multiple 17044 * times. We don't want to recurse infinitely. 17045 * To keep it simple, drop the packet. 17046 */ 17047 BUMP_MIB(&ip_mib, ipInDiscards); 17048 freemsg(first_mp); 17049 return; 17050 } 17051 ii->ipsec_in_decaps = B_TRUE; 17052 ip_proto_input(q, first_mp, ipha, ire, recv_ill); 17053 return; 17054 } 17055 break; 17056 case IPPROTO_AH: 17057 case IPPROTO_ESP: { 17058 /* 17059 * Fast path for AH/ESP. If this is the first time 17060 * we are sending a datagram to AH/ESP, allocate 17061 * a IPSEC_IN message and prepend it. Otherwise, 17062 * just fanout. 17063 */ 17064 17065 int ipsec_rc; 17066 ipsec_in_t *ii; 17067 17068 IP_STAT(ipsec_proto_ahesp); 17069 if (!mctl_present) { 17070 ASSERT(first_mp == mp); 17071 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 17072 ip1dbg(("ip_proto_input: IPSEC_IN " 17073 "allocation failure.\n")); 17074 freemsg(hada_mp); /* okay ifnull */ 17075 BUMP_MIB(&ip_mib, ipInDiscards); 17076 freemsg(mp); 17077 return; 17078 } 17079 /* 17080 * Store the ill_index so that when we come back 17081 * from IPSEC we ride on the same queue. 17082 */ 17083 ill = (ill_t *)q->q_ptr; 17084 ii = (ipsec_in_t *)first_mp->b_rptr; 17085 ii->ipsec_in_ill_index = 17086 ill->ill_phyint->phyint_ifindex; 17087 ii->ipsec_in_rill_index = 17088 recv_ill->ill_phyint->phyint_ifindex; 17089 first_mp->b_cont = mp; 17090 /* 17091 * Cache hardware acceleration info. 17092 */ 17093 if (hada_mp != NULL) { 17094 IPSECHW_DEBUG(IPSECHW_PKT, 17095 ("ip_rput_local: caching data attr.\n")); 17096 ii->ipsec_in_accelerated = B_TRUE; 17097 ii->ipsec_in_da = hada_mp; 17098 hada_mp = NULL; 17099 } 17100 } else { 17101 ii = (ipsec_in_t *)first_mp->b_rptr; 17102 } 17103 17104 if (!ipsec_loaded()) { 17105 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17106 ire->ire_zoneid); 17107 return; 17108 } 17109 17110 /* select inbound SA and have IPsec process the pkt */ 17111 if (ipha->ipha_protocol == IPPROTO_ESP) { 17112 esph_t *esph = ipsec_inbound_esp_sa(first_mp); 17113 if (esph == NULL) 17114 return; 17115 ASSERT(ii->ipsec_in_esp_sa != NULL); 17116 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17117 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17118 first_mp, esph); 17119 } else { 17120 ah_t *ah = ipsec_inbound_ah_sa(first_mp); 17121 if (ah == NULL) 17122 return; 17123 ASSERT(ii->ipsec_in_ah_sa != NULL); 17124 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17125 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17126 first_mp, ah); 17127 } 17128 17129 switch (ipsec_rc) { 17130 case IPSEC_STATUS_SUCCESS: 17131 break; 17132 case IPSEC_STATUS_FAILED: 17133 BUMP_MIB(&ip_mib, ipInDiscards); 17134 /* FALLTHRU */ 17135 case IPSEC_STATUS_PENDING: 17136 return; 17137 } 17138 /* we're done with IPsec processing, send it up */ 17139 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17140 return; 17141 } 17142 default: 17143 break; 17144 } 17145 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17146 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17147 ire->ire_zoneid)); 17148 goto drop_pkt; 17149 } 17150 /* 17151 * Handle protocols with which IP is less intimate. There 17152 * can be more than one stream bound to a particular 17153 * protocol. When this is the case, each one gets a copy 17154 * of any incoming packets. 17155 */ 17156 ip_fanout_proto(q, first_mp, ill, ipha, 17157 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17158 B_TRUE, recv_ill, ire->ire_zoneid); 17159 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17160 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17161 return; 17162 17163 drop_pkt: 17164 freemsg(first_mp); 17165 if (hada_mp != NULL) 17166 freeb(hada_mp); 17167 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17168 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17169 #undef rptr 17170 #undef iphs 17171 17172 } 17173 17174 /* 17175 * Update any source route, record route or timestamp options. 17176 * Check that we are at end of strict source route. 17177 * The options have already been checked for sanity in ip_rput_options(). 17178 */ 17179 static boolean_t 17180 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 17181 { 17182 ipoptp_t opts; 17183 uchar_t *opt; 17184 uint8_t optval; 17185 uint8_t optlen; 17186 ipaddr_t dst; 17187 uint32_t ts; 17188 ire_t *dst_ire; 17189 timestruc_t now; 17190 zoneid_t zoneid; 17191 ill_t *ill; 17192 17193 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17194 17195 ip2dbg(("ip_rput_local_options\n")); 17196 17197 for (optval = ipoptp_first(&opts, ipha); 17198 optval != IPOPT_EOL; 17199 optval = ipoptp_next(&opts)) { 17200 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17201 opt = opts.ipoptp_cur; 17202 optlen = opts.ipoptp_len; 17203 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17204 optval, optlen)); 17205 switch (optval) { 17206 uint32_t off; 17207 case IPOPT_SSRR: 17208 case IPOPT_LSRR: 17209 off = opt[IPOPT_OFFSET]; 17210 off--; 17211 if (optlen < IP_ADDR_LEN || 17212 off > optlen - IP_ADDR_LEN) { 17213 /* End of source route */ 17214 ip1dbg(("ip_rput_local_options: end of SR\n")); 17215 break; 17216 } 17217 /* 17218 * This will only happen if two consecutive entries 17219 * in the source route contains our address or if 17220 * it is a packet with a loose source route which 17221 * reaches us before consuming the whole source route 17222 */ 17223 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17224 if (optval == IPOPT_SSRR) { 17225 goto bad_src_route; 17226 } 17227 /* 17228 * Hack: instead of dropping the packet truncate the 17229 * source route to what has been used by filling the 17230 * rest with IPOPT_NOP. 17231 */ 17232 opt[IPOPT_OLEN] = (uint8_t)off; 17233 while (off < optlen) { 17234 opt[off++] = IPOPT_NOP; 17235 } 17236 break; 17237 case IPOPT_RR: 17238 off = opt[IPOPT_OFFSET]; 17239 off--; 17240 if (optlen < IP_ADDR_LEN || 17241 off > optlen - IP_ADDR_LEN) { 17242 /* No more room - ignore */ 17243 ip1dbg(( 17244 "ip_rput_local_options: end of RR\n")); 17245 break; 17246 } 17247 bcopy(&ire->ire_src_addr, (char *)opt + off, 17248 IP_ADDR_LEN); 17249 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17250 break; 17251 case IPOPT_TS: 17252 /* Insert timestamp if there is romm */ 17253 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17254 case IPOPT_TS_TSONLY: 17255 off = IPOPT_TS_TIMELEN; 17256 break; 17257 case IPOPT_TS_PRESPEC: 17258 case IPOPT_TS_PRESPEC_RFC791: 17259 /* Verify that the address matched */ 17260 off = opt[IPOPT_OFFSET] - 1; 17261 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17262 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17263 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 17264 if (dst_ire == NULL) { 17265 /* Not for us */ 17266 break; 17267 } 17268 ire_refrele(dst_ire); 17269 /* FALLTHRU */ 17270 case IPOPT_TS_TSANDADDR: 17271 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17272 break; 17273 default: 17274 /* 17275 * ip_*put_options should have already 17276 * dropped this packet. 17277 */ 17278 cmn_err(CE_PANIC, "ip_rput_local_options: " 17279 "unknown IT - bug in ip_rput_options?\n"); 17280 return (B_TRUE); /* Keep "lint" happy */ 17281 } 17282 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17283 /* Increase overflow counter */ 17284 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17285 opt[IPOPT_POS_OV_FLG] = 17286 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17287 (off << 4)); 17288 break; 17289 } 17290 off = opt[IPOPT_OFFSET] - 1; 17291 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17292 case IPOPT_TS_PRESPEC: 17293 case IPOPT_TS_PRESPEC_RFC791: 17294 case IPOPT_TS_TSANDADDR: 17295 bcopy(&ire->ire_src_addr, (char *)opt + off, 17296 IP_ADDR_LEN); 17297 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17298 /* FALLTHRU */ 17299 case IPOPT_TS_TSONLY: 17300 off = opt[IPOPT_OFFSET] - 1; 17301 /* Compute # of milliseconds since midnight */ 17302 gethrestime(&now); 17303 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17304 now.tv_nsec / (NANOSEC / MILLISEC); 17305 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17306 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17307 break; 17308 } 17309 break; 17310 } 17311 } 17312 return (B_TRUE); 17313 17314 bad_src_route: 17315 q = WR(q); 17316 if (q->q_next != NULL) 17317 ill = q->q_ptr; 17318 else 17319 ill = NULL; 17320 17321 /* make sure we clear any indication of a hardware checksum */ 17322 DB_CKSUMFLAGS(mp) = 0; 17323 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill); 17324 if (zoneid == ALL_ZONES) 17325 freemsg(mp); 17326 else 17327 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 17328 return (B_FALSE); 17329 17330 } 17331 17332 /* 17333 * Process IP options in an inbound packet. If an option affects the 17334 * effective destination address, return the next hop address via dstp. 17335 * Returns -1 if something fails in which case an ICMP error has been sent 17336 * and mp freed. 17337 */ 17338 static int 17339 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp) 17340 { 17341 ipoptp_t opts; 17342 uchar_t *opt; 17343 uint8_t optval; 17344 uint8_t optlen; 17345 ipaddr_t dst; 17346 intptr_t code = 0; 17347 ire_t *ire = NULL; 17348 zoneid_t zoneid; 17349 ill_t *ill; 17350 17351 ip2dbg(("ip_rput_options\n")); 17352 dst = ipha->ipha_dst; 17353 for (optval = ipoptp_first(&opts, ipha); 17354 optval != IPOPT_EOL; 17355 optval = ipoptp_next(&opts)) { 17356 opt = opts.ipoptp_cur; 17357 optlen = opts.ipoptp_len; 17358 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17359 optval, optlen)); 17360 /* 17361 * Note: we need to verify the checksum before we 17362 * modify anything thus this routine only extracts the next 17363 * hop dst from any source route. 17364 */ 17365 switch (optval) { 17366 uint32_t off; 17367 case IPOPT_SSRR: 17368 case IPOPT_LSRR: 17369 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17370 ALL_ZONES, NULL, MATCH_IRE_TYPE); 17371 if (ire == NULL) { 17372 if (optval == IPOPT_SSRR) { 17373 ip1dbg(("ip_rput_options: not next" 17374 " strict source route 0x%x\n", 17375 ntohl(dst))); 17376 code = (char *)&ipha->ipha_dst - 17377 (char *)ipha; 17378 goto param_prob; /* RouterReq's */ 17379 } 17380 ip2dbg(("ip_rput_options: " 17381 "not next source route 0x%x\n", 17382 ntohl(dst))); 17383 break; 17384 } 17385 ire_refrele(ire); 17386 17387 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17388 ip1dbg(( 17389 "ip_rput_options: bad option offset\n")); 17390 code = (char *)&opt[IPOPT_OLEN] - 17391 (char *)ipha; 17392 goto param_prob; 17393 } 17394 off = opt[IPOPT_OFFSET]; 17395 off--; 17396 redo_srr: 17397 if (optlen < IP_ADDR_LEN || 17398 off > optlen - IP_ADDR_LEN) { 17399 /* End of source route */ 17400 ip1dbg(("ip_rput_options: end of SR\n")); 17401 break; 17402 } 17403 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17404 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17405 ntohl(dst))); 17406 17407 /* 17408 * Check if our address is present more than 17409 * once as consecutive hops in source route. 17410 * XXX verify per-interface ip_forwarding 17411 * for source route? 17412 */ 17413 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17414 ALL_ZONES, NULL, MATCH_IRE_TYPE); 17415 17416 if (ire != NULL) { 17417 ire_refrele(ire); 17418 off += IP_ADDR_LEN; 17419 goto redo_srr; 17420 } 17421 17422 if (dst == htonl(INADDR_LOOPBACK)) { 17423 ip1dbg(("ip_rput_options: loopback addr in " 17424 "source route!\n")); 17425 goto bad_src_route; 17426 } 17427 /* 17428 * For strict: verify that dst is directly 17429 * reachable. 17430 */ 17431 if (optval == IPOPT_SSRR) { 17432 ire = ire_ftable_lookup(dst, 0, 0, 17433 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17434 MBLK_GETLABEL(mp), 17435 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 17436 if (ire == NULL) { 17437 ip1dbg(("ip_rput_options: SSRR not " 17438 "directly reachable: 0x%x\n", 17439 ntohl(dst))); 17440 goto bad_src_route; 17441 } 17442 ire_refrele(ire); 17443 } 17444 /* 17445 * Defer update of the offset and the record route 17446 * until the packet is forwarded. 17447 */ 17448 break; 17449 case IPOPT_RR: 17450 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17451 ip1dbg(( 17452 "ip_rput_options: bad option offset\n")); 17453 code = (char *)&opt[IPOPT_OLEN] - 17454 (char *)ipha; 17455 goto param_prob; 17456 } 17457 break; 17458 case IPOPT_TS: 17459 /* 17460 * Verify that length >= 5 and that there is either 17461 * room for another timestamp or that the overflow 17462 * counter is not maxed out. 17463 */ 17464 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17465 if (optlen < IPOPT_MINLEN_IT) { 17466 goto param_prob; 17467 } 17468 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17469 ip1dbg(( 17470 "ip_rput_options: bad option offset\n")); 17471 code = (char *)&opt[IPOPT_OFFSET] - 17472 (char *)ipha; 17473 goto param_prob; 17474 } 17475 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17476 case IPOPT_TS_TSONLY: 17477 off = IPOPT_TS_TIMELEN; 17478 break; 17479 case IPOPT_TS_TSANDADDR: 17480 case IPOPT_TS_PRESPEC: 17481 case IPOPT_TS_PRESPEC_RFC791: 17482 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17483 break; 17484 default: 17485 code = (char *)&opt[IPOPT_POS_OV_FLG] - 17486 (char *)ipha; 17487 goto param_prob; 17488 } 17489 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 17490 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 17491 /* 17492 * No room and the overflow counter is 15 17493 * already. 17494 */ 17495 goto param_prob; 17496 } 17497 break; 17498 } 17499 } 17500 17501 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 17502 *dstp = dst; 17503 return (0); 17504 } 17505 17506 ip1dbg(("ip_rput_options: error processing IP options.")); 17507 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 17508 17509 param_prob: 17510 q = WR(q); 17511 if (q->q_next != NULL) 17512 ill = q->q_ptr; 17513 else 17514 ill = NULL; 17515 17516 /* make sure we clear any indication of a hardware checksum */ 17517 DB_CKSUMFLAGS(mp) = 0; 17518 /* Don't know whether this is for non-global or global/forwarding */ 17519 zoneid = ipif_lookup_addr_zoneid(dst, ill); 17520 if (zoneid == ALL_ZONES) 17521 freemsg(mp); 17522 else 17523 icmp_param_problem(q, mp, (uint8_t)code, zoneid); 17524 return (-1); 17525 17526 bad_src_route: 17527 q = WR(q); 17528 if (q->q_next != NULL) 17529 ill = q->q_ptr; 17530 else 17531 ill = NULL; 17532 17533 /* make sure we clear any indication of a hardware checksum */ 17534 DB_CKSUMFLAGS(mp) = 0; 17535 zoneid = ipif_lookup_addr_zoneid(dst, ill); 17536 if (zoneid == ALL_ZONES) 17537 freemsg(mp); 17538 else 17539 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 17540 return (-1); 17541 } 17542 17543 /* 17544 * IP & ICMP info in >=14 msg's ... 17545 * - ip fixed part (mib2_ip_t) 17546 * - icmp fixed part (mib2_icmp_t) 17547 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 17548 * - ipRouteEntryTable (ip 21) all IPv4 IREs 17549 * - ipNetToMediaEntryTable (ip 22) IPv4 IREs for on-link destinations 17550 * - ipRouteAttributeTable (ip 102) labeled routes 17551 * - ip multicast membership (ip_member_t) 17552 * - ip multicast source filtering (ip_grpsrc_t) 17553 * - igmp fixed part (struct igmpstat) 17554 * - multicast routing stats (struct mrtstat) 17555 * - multicast routing vifs (array of struct vifctl) 17556 * - multicast routing routes (array of struct mfcctl) 17557 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 17558 * One per ill plus one generic 17559 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 17560 * One per ill plus one generic 17561 * - ipv6RouteEntry all IPv6 IREs 17562 * - ipv6RouteAttributeTable (ip6 102) labeled routes 17563 * - ipv6NetToMediaEntry all Neighbor Cache entries 17564 * - ipv6AddrEntry all IPv6 ipifs 17565 * - ipv6 multicast membership (ipv6_member_t) 17566 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 17567 * 17568 * IP_ROUTE and IP_MEDIA are augmented in arp to include arp cache entries not 17569 * already present. 17570 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 17571 * already filled in by the caller. 17572 * Return value of 0 indicates that no messages were sent and caller 17573 * should free mpctl. 17574 */ 17575 int 17576 ip_snmp_get(queue_t *q, mblk_t *mpctl) 17577 { 17578 17579 if (mpctl == NULL || mpctl->b_cont == NULL) { 17580 return (0); 17581 } 17582 17583 if ((mpctl = ip_snmp_get_mib2_ip(q, mpctl)) == NULL) { 17584 return (1); 17585 } 17586 17587 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl)) == NULL) { 17588 return (1); 17589 } 17590 17591 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl)) == NULL) { 17592 return (1); 17593 } 17594 17595 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl)) == NULL) { 17596 return (1); 17597 } 17598 17599 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl)) == NULL) { 17600 return (1); 17601 } 17602 17603 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl)) == NULL) { 17604 return (1); 17605 } 17606 17607 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl)) == NULL) { 17608 return (1); 17609 } 17610 17611 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl)) == NULL) { 17612 return (1); 17613 } 17614 17615 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl)) == NULL) { 17616 return (1); 17617 } 17618 17619 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl)) == NULL) { 17620 return (1); 17621 } 17622 17623 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl)) == NULL) { 17624 return (1); 17625 } 17626 17627 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl)) == NULL) { 17628 return (1); 17629 } 17630 17631 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl)) == NULL) { 17632 return (1); 17633 } 17634 17635 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl)) == NULL) { 17636 return (1); 17637 } 17638 17639 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl)) == NULL) { 17640 return (1); 17641 } 17642 17643 if ((mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl)) == NULL) { 17644 return (1); 17645 } 17646 17647 if ((mpctl = sctp_snmp_get_mib2(q, mpctl)) == NULL) { 17648 return (1); 17649 } 17650 freemsg(mpctl); 17651 return (1); 17652 } 17653 17654 17655 /* Get global IPv4 statistics */ 17656 static mblk_t * 17657 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl) 17658 { 17659 struct opthdr *optp; 17660 mblk_t *mp2ctl; 17661 17662 /* 17663 * make a copy of the original message 17664 */ 17665 mp2ctl = copymsg(mpctl); 17666 17667 /* fixed length IP structure... */ 17668 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17669 optp->level = MIB2_IP; 17670 optp->name = 0; 17671 SET_MIB(ip_mib.ipForwarding, 17672 (WE_ARE_FORWARDING ? 1 : 2)); 17673 SET_MIB(ip_mib.ipDefaultTTL, 17674 (uint32_t)ip_def_ttl); 17675 SET_MIB(ip_mib.ipReasmTimeout, 17676 ip_g_frag_timeout); 17677 SET_MIB(ip_mib.ipAddrEntrySize, 17678 sizeof (mib2_ipAddrEntry_t)); 17679 SET_MIB(ip_mib.ipRouteEntrySize, 17680 sizeof (mib2_ipRouteEntry_t)); 17681 SET_MIB(ip_mib.ipNetToMediaEntrySize, 17682 sizeof (mib2_ipNetToMediaEntry_t)); 17683 SET_MIB(ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 17684 SET_MIB(ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 17685 SET_MIB(ip_mib.ipRouteAttributeSize, sizeof (mib2_ipAttributeEntry_t)); 17686 SET_MIB(ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 17687 if (!snmp_append_data(mpctl->b_cont, (char *)&ip_mib, 17688 (int)sizeof (ip_mib))) { 17689 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 17690 (uint_t)sizeof (ip_mib))); 17691 } 17692 17693 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17694 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 17695 (int)optp->level, (int)optp->name, (int)optp->len)); 17696 qreply(q, mpctl); 17697 return (mp2ctl); 17698 } 17699 17700 /* Global IPv4 ICMP statistics */ 17701 static mblk_t * 17702 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl) 17703 { 17704 struct opthdr *optp; 17705 mblk_t *mp2ctl; 17706 17707 /* 17708 * Make a copy of the original message 17709 */ 17710 mp2ctl = copymsg(mpctl); 17711 17712 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17713 optp->level = MIB2_ICMP; 17714 optp->name = 0; 17715 if (!snmp_append_data(mpctl->b_cont, (char *)&icmp_mib, 17716 (int)sizeof (icmp_mib))) { 17717 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 17718 (uint_t)sizeof (icmp_mib))); 17719 } 17720 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17721 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 17722 (int)optp->level, (int)optp->name, (int)optp->len)); 17723 qreply(q, mpctl); 17724 return (mp2ctl); 17725 } 17726 17727 /* Global IPv4 IGMP statistics */ 17728 static mblk_t * 17729 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl) 17730 { 17731 struct opthdr *optp; 17732 mblk_t *mp2ctl; 17733 17734 /* 17735 * make a copy of the original message 17736 */ 17737 mp2ctl = copymsg(mpctl); 17738 17739 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17740 optp->level = EXPER_IGMP; 17741 optp->name = 0; 17742 if (!snmp_append_data(mpctl->b_cont, (char *)&igmpstat, 17743 (int)sizeof (igmpstat))) { 17744 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 17745 (uint_t)sizeof (igmpstat))); 17746 } 17747 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17748 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 17749 (int)optp->level, (int)optp->name, (int)optp->len)); 17750 qreply(q, mpctl); 17751 return (mp2ctl); 17752 } 17753 17754 /* Global IPv4 Multicast Routing statistics */ 17755 static mblk_t * 17756 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl) 17757 { 17758 struct opthdr *optp; 17759 mblk_t *mp2ctl; 17760 17761 /* 17762 * make a copy of the original message 17763 */ 17764 mp2ctl = copymsg(mpctl); 17765 17766 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17767 optp->level = EXPER_DVMRP; 17768 optp->name = 0; 17769 if (!ip_mroute_stats(mpctl->b_cont)) { 17770 ip0dbg(("ip_mroute_stats: failed\n")); 17771 } 17772 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17773 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 17774 (int)optp->level, (int)optp->name, (int)optp->len)); 17775 qreply(q, mpctl); 17776 return (mp2ctl); 17777 } 17778 17779 /* IPv4 address information */ 17780 static mblk_t * 17781 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl) 17782 { 17783 struct opthdr *optp; 17784 mblk_t *mp2ctl; 17785 mblk_t *mp_tail = NULL; 17786 ill_t *ill; 17787 ipif_t *ipif; 17788 uint_t bitval; 17789 mib2_ipAddrEntry_t mae; 17790 zoneid_t zoneid; 17791 ill_walk_context_t ctx; 17792 17793 /* 17794 * make a copy of the original message 17795 */ 17796 mp2ctl = copymsg(mpctl); 17797 17798 /* ipAddrEntryTable */ 17799 17800 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17801 optp->level = MIB2_IP; 17802 optp->name = MIB2_IP_ADDR; 17803 zoneid = Q_TO_CONN(q)->conn_zoneid; 17804 17805 rw_enter(&ill_g_lock, RW_READER); 17806 ill = ILL_START_WALK_V4(&ctx); 17807 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17808 for (ipif = ill->ill_ipif; ipif != NULL; 17809 ipif = ipif->ipif_next) { 17810 if (ipif->ipif_zoneid != zoneid && 17811 ipif->ipif_zoneid != ALL_ZONES) 17812 continue; 17813 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 17814 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 17815 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 17816 17817 (void) ipif_get_name(ipif, 17818 mae.ipAdEntIfIndex.o_bytes, 17819 OCTET_LENGTH); 17820 mae.ipAdEntIfIndex.o_length = 17821 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 17822 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 17823 mae.ipAdEntNetMask = ipif->ipif_net_mask; 17824 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 17825 mae.ipAdEntInfo.ae_subnet_len = 17826 ip_mask_to_plen(ipif->ipif_net_mask); 17827 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 17828 for (bitval = 1; 17829 bitval && 17830 !(bitval & ipif->ipif_brd_addr); 17831 bitval <<= 1) 17832 noop; 17833 mae.ipAdEntBcastAddr = bitval; 17834 mae.ipAdEntReasmMaxSize = 65535; 17835 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 17836 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 17837 mae.ipAdEntInfo.ae_broadcast_addr = 17838 ipif->ipif_brd_addr; 17839 mae.ipAdEntInfo.ae_pp_dst_addr = 17840 ipif->ipif_pp_dst_addr; 17841 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 17842 ill->ill_flags | ill->ill_phyint->phyint_flags; 17843 17844 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17845 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 17846 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 17847 "allocate %u bytes\n", 17848 (uint_t)sizeof (mib2_ipAddrEntry_t))); 17849 } 17850 } 17851 } 17852 rw_exit(&ill_g_lock); 17853 17854 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17855 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 17856 (int)optp->level, (int)optp->name, (int)optp->len)); 17857 qreply(q, mpctl); 17858 return (mp2ctl); 17859 } 17860 17861 /* IPv6 address information */ 17862 static mblk_t * 17863 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl) 17864 { 17865 struct opthdr *optp; 17866 mblk_t *mp2ctl; 17867 mblk_t *mp_tail = NULL; 17868 ill_t *ill; 17869 ipif_t *ipif; 17870 mib2_ipv6AddrEntry_t mae6; 17871 zoneid_t zoneid; 17872 ill_walk_context_t ctx; 17873 17874 /* 17875 * make a copy of the original message 17876 */ 17877 mp2ctl = copymsg(mpctl); 17878 17879 /* ipv6AddrEntryTable */ 17880 17881 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17882 optp->level = MIB2_IP6; 17883 optp->name = MIB2_IP6_ADDR; 17884 zoneid = Q_TO_CONN(q)->conn_zoneid; 17885 17886 rw_enter(&ill_g_lock, RW_READER); 17887 ill = ILL_START_WALK_V6(&ctx); 17888 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17889 for (ipif = ill->ill_ipif; ipif != NULL; 17890 ipif = ipif->ipif_next) { 17891 if (ipif->ipif_zoneid != zoneid && 17892 ipif->ipif_zoneid != ALL_ZONES) 17893 continue; 17894 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 17895 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 17896 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 17897 17898 (void) ipif_get_name(ipif, 17899 mae6.ipv6AddrIfIndex.o_bytes, 17900 OCTET_LENGTH); 17901 mae6.ipv6AddrIfIndex.o_length = 17902 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 17903 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 17904 mae6.ipv6AddrPfxLength = 17905 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 17906 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 17907 mae6.ipv6AddrInfo.ae_subnet_len = 17908 mae6.ipv6AddrPfxLength; 17909 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 17910 17911 /* Type: stateless(1), stateful(2), unknown(3) */ 17912 if (ipif->ipif_flags & IPIF_ADDRCONF) 17913 mae6.ipv6AddrType = 1; 17914 else 17915 mae6.ipv6AddrType = 2; 17916 /* Anycast: true(1), false(2) */ 17917 if (ipif->ipif_flags & IPIF_ANYCAST) 17918 mae6.ipv6AddrAnycastFlag = 1; 17919 else 17920 mae6.ipv6AddrAnycastFlag = 2; 17921 17922 /* 17923 * Address status: preferred(1), deprecated(2), 17924 * invalid(3), inaccessible(4), unknown(5) 17925 */ 17926 if (ipif->ipif_flags & IPIF_NOLOCAL) 17927 mae6.ipv6AddrStatus = 3; 17928 else if (ipif->ipif_flags & IPIF_DEPRECATED) 17929 mae6.ipv6AddrStatus = 2; 17930 else 17931 mae6.ipv6AddrStatus = 1; 17932 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 17933 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 17934 mae6.ipv6AddrInfo.ae_pp_dst_addr = 17935 ipif->ipif_v6pp_dst_addr; 17936 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 17937 ill->ill_flags | ill->ill_phyint->phyint_flags; 17938 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17939 (char *)&mae6, 17940 (int)sizeof (mib2_ipv6AddrEntry_t))) { 17941 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 17942 "allocate %u bytes\n", 17943 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 17944 } 17945 } 17946 } 17947 rw_exit(&ill_g_lock); 17948 17949 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17950 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 17951 (int)optp->level, (int)optp->name, (int)optp->len)); 17952 qreply(q, mpctl); 17953 return (mp2ctl); 17954 } 17955 17956 /* IPv4 multicast group membership. */ 17957 static mblk_t * 17958 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl) 17959 { 17960 struct opthdr *optp; 17961 mblk_t *mp2ctl; 17962 ill_t *ill; 17963 ipif_t *ipif; 17964 ilm_t *ilm; 17965 ip_member_t ipm; 17966 mblk_t *mp_tail = NULL; 17967 ill_walk_context_t ctx; 17968 zoneid_t zoneid; 17969 17970 /* 17971 * make a copy of the original message 17972 */ 17973 mp2ctl = copymsg(mpctl); 17974 zoneid = Q_TO_CONN(q)->conn_zoneid; 17975 17976 /* ipGroupMember table */ 17977 optp = (struct opthdr *)&mpctl->b_rptr[ 17978 sizeof (struct T_optmgmt_ack)]; 17979 optp->level = MIB2_IP; 17980 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 17981 17982 rw_enter(&ill_g_lock, RW_READER); 17983 ill = ILL_START_WALK_V4(&ctx); 17984 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17985 ILM_WALKER_HOLD(ill); 17986 for (ipif = ill->ill_ipif; ipif != NULL; 17987 ipif = ipif->ipif_next) { 17988 if (ipif->ipif_zoneid != zoneid && 17989 ipif->ipif_zoneid != ALL_ZONES) 17990 continue; /* not this zone */ 17991 (void) ipif_get_name(ipif, 17992 ipm.ipGroupMemberIfIndex.o_bytes, 17993 OCTET_LENGTH); 17994 ipm.ipGroupMemberIfIndex.o_length = 17995 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 17996 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 17997 ASSERT(ilm->ilm_ipif != NULL); 17998 ASSERT(ilm->ilm_ill == NULL); 17999 if (ilm->ilm_ipif != ipif) 18000 continue; 18001 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18002 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18003 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18004 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18005 (char *)&ipm, (int)sizeof (ipm))) { 18006 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18007 "failed to allocate %u bytes\n", 18008 (uint_t)sizeof (ipm))); 18009 } 18010 } 18011 } 18012 ILM_WALKER_RELE(ill); 18013 } 18014 rw_exit(&ill_g_lock); 18015 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18016 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18017 (int)optp->level, (int)optp->name, (int)optp->len)); 18018 qreply(q, mpctl); 18019 return (mp2ctl); 18020 } 18021 18022 /* IPv6 multicast group membership. */ 18023 static mblk_t * 18024 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl) 18025 { 18026 struct opthdr *optp; 18027 mblk_t *mp2ctl; 18028 ill_t *ill; 18029 ilm_t *ilm; 18030 ipv6_member_t ipm6; 18031 mblk_t *mp_tail = NULL; 18032 ill_walk_context_t ctx; 18033 zoneid_t zoneid; 18034 18035 /* 18036 * make a copy of the original message 18037 */ 18038 mp2ctl = copymsg(mpctl); 18039 zoneid = Q_TO_CONN(q)->conn_zoneid; 18040 18041 /* ip6GroupMember table */ 18042 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18043 optp->level = MIB2_IP6; 18044 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18045 18046 rw_enter(&ill_g_lock, RW_READER); 18047 ill = ILL_START_WALK_V6(&ctx); 18048 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18049 ILM_WALKER_HOLD(ill); 18050 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18051 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18052 ASSERT(ilm->ilm_ipif == NULL); 18053 ASSERT(ilm->ilm_ill != NULL); 18054 if (ilm->ilm_zoneid != zoneid) 18055 continue; /* not this zone */ 18056 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18057 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18058 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18059 if (!snmp_append_data2(mpctl->b_cont, 18060 &mp_tail, 18061 (char *)&ipm6, (int)sizeof (ipm6))) { 18062 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18063 "failed to allocate %u bytes\n", 18064 (uint_t)sizeof (ipm6))); 18065 } 18066 } 18067 ILM_WALKER_RELE(ill); 18068 } 18069 rw_exit(&ill_g_lock); 18070 18071 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18072 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18073 (int)optp->level, (int)optp->name, (int)optp->len)); 18074 qreply(q, mpctl); 18075 return (mp2ctl); 18076 } 18077 18078 /* IP multicast filtered sources */ 18079 static mblk_t * 18080 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl) 18081 { 18082 struct opthdr *optp; 18083 mblk_t *mp2ctl; 18084 ill_t *ill; 18085 ipif_t *ipif; 18086 ilm_t *ilm; 18087 ip_grpsrc_t ips; 18088 mblk_t *mp_tail = NULL; 18089 ill_walk_context_t ctx; 18090 zoneid_t zoneid; 18091 int i; 18092 slist_t *sl; 18093 18094 /* 18095 * make a copy of the original message 18096 */ 18097 mp2ctl = copymsg(mpctl); 18098 zoneid = Q_TO_CONN(q)->conn_zoneid; 18099 18100 /* ipGroupSource table */ 18101 optp = (struct opthdr *)&mpctl->b_rptr[ 18102 sizeof (struct T_optmgmt_ack)]; 18103 optp->level = MIB2_IP; 18104 optp->name = EXPER_IP_GROUP_SOURCES; 18105 18106 rw_enter(&ill_g_lock, RW_READER); 18107 ill = ILL_START_WALK_V4(&ctx); 18108 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18109 ILM_WALKER_HOLD(ill); 18110 for (ipif = ill->ill_ipif; ipif != NULL; 18111 ipif = ipif->ipif_next) { 18112 if (ipif->ipif_zoneid != zoneid) 18113 continue; /* not this zone */ 18114 (void) ipif_get_name(ipif, 18115 ips.ipGroupSourceIfIndex.o_bytes, 18116 OCTET_LENGTH); 18117 ips.ipGroupSourceIfIndex.o_length = 18118 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18119 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18120 ASSERT(ilm->ilm_ipif != NULL); 18121 ASSERT(ilm->ilm_ill == NULL); 18122 sl = ilm->ilm_filter; 18123 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18124 continue; 18125 ips.ipGroupSourceGroup = ilm->ilm_addr; 18126 for (i = 0; i < sl->sl_numsrc; i++) { 18127 if (!IN6_IS_ADDR_V4MAPPED( 18128 &sl->sl_addr[i])) 18129 continue; 18130 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18131 ips.ipGroupSourceAddress); 18132 if (snmp_append_data2(mpctl->b_cont, 18133 &mp_tail, (char *)&ips, 18134 (int)sizeof (ips)) == 0) { 18135 ip1dbg(("ip_snmp_get_mib2_" 18136 "ip_group_src: failed to " 18137 "allocate %u bytes\n", 18138 (uint_t)sizeof (ips))); 18139 } 18140 } 18141 } 18142 } 18143 ILM_WALKER_RELE(ill); 18144 } 18145 rw_exit(&ill_g_lock); 18146 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18147 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18148 (int)optp->level, (int)optp->name, (int)optp->len)); 18149 qreply(q, mpctl); 18150 return (mp2ctl); 18151 } 18152 18153 /* IPv6 multicast filtered sources. */ 18154 static mblk_t * 18155 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl) 18156 { 18157 struct opthdr *optp; 18158 mblk_t *mp2ctl; 18159 ill_t *ill; 18160 ilm_t *ilm; 18161 ipv6_grpsrc_t ips6; 18162 mblk_t *mp_tail = NULL; 18163 ill_walk_context_t ctx; 18164 zoneid_t zoneid; 18165 int i; 18166 slist_t *sl; 18167 18168 /* 18169 * make a copy of the original message 18170 */ 18171 mp2ctl = copymsg(mpctl); 18172 zoneid = Q_TO_CONN(q)->conn_zoneid; 18173 18174 /* ip6GroupMember table */ 18175 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18176 optp->level = MIB2_IP6; 18177 optp->name = EXPER_IP6_GROUP_SOURCES; 18178 18179 rw_enter(&ill_g_lock, RW_READER); 18180 ill = ILL_START_WALK_V6(&ctx); 18181 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18182 ILM_WALKER_HOLD(ill); 18183 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18184 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18185 ASSERT(ilm->ilm_ipif == NULL); 18186 ASSERT(ilm->ilm_ill != NULL); 18187 sl = ilm->ilm_filter; 18188 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18189 continue; 18190 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18191 for (i = 0; i < sl->sl_numsrc; i++) { 18192 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18193 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18194 (char *)&ips6, (int)sizeof (ips6))) { 18195 ip1dbg(("ip_snmp_get_mib2_ip6_" 18196 "group_src: failed to allocate " 18197 "%u bytes\n", 18198 (uint_t)sizeof (ips6))); 18199 } 18200 } 18201 } 18202 ILM_WALKER_RELE(ill); 18203 } 18204 rw_exit(&ill_g_lock); 18205 18206 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18207 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18208 (int)optp->level, (int)optp->name, (int)optp->len)); 18209 qreply(q, mpctl); 18210 return (mp2ctl); 18211 } 18212 18213 /* Multicast routing virtual interface table. */ 18214 static mblk_t * 18215 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl) 18216 { 18217 struct opthdr *optp; 18218 mblk_t *mp2ctl; 18219 18220 /* 18221 * make a copy of the original message 18222 */ 18223 mp2ctl = copymsg(mpctl); 18224 18225 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18226 optp->level = EXPER_DVMRP; 18227 optp->name = EXPER_DVMRP_VIF; 18228 if (!ip_mroute_vif(mpctl->b_cont)) { 18229 ip0dbg(("ip_mroute_vif: failed\n")); 18230 } 18231 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18232 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18233 (int)optp->level, (int)optp->name, (int)optp->len)); 18234 qreply(q, mpctl); 18235 return (mp2ctl); 18236 } 18237 18238 /* Multicast routing table. */ 18239 static mblk_t * 18240 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl) 18241 { 18242 struct opthdr *optp; 18243 mblk_t *mp2ctl; 18244 18245 /* 18246 * make a copy of the original message 18247 */ 18248 mp2ctl = copymsg(mpctl); 18249 18250 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18251 optp->level = EXPER_DVMRP; 18252 optp->name = EXPER_DVMRP_MRT; 18253 if (!ip_mroute_mrt(mpctl->b_cont)) { 18254 ip0dbg(("ip_mroute_mrt: failed\n")); 18255 } 18256 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18257 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18258 (int)optp->level, (int)optp->name, (int)optp->len)); 18259 qreply(q, mpctl); 18260 return (mp2ctl); 18261 } 18262 18263 /* 18264 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18265 * in one IRE walk. 18266 */ 18267 static mblk_t * 18268 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl) 18269 { 18270 struct opthdr *optp; 18271 mblk_t *mp2ctl; /* Returned */ 18272 mblk_t *mp3ctl; /* nettomedia */ 18273 mblk_t *mp4ctl; /* routeattrs */ 18274 iproutedata_t ird; 18275 zoneid_t zoneid; 18276 18277 /* 18278 * make copies of the original message 18279 * - mp2ctl is returned unchanged to the caller for his use 18280 * - mpctl is sent upstream as ipRouteEntryTable 18281 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18282 * - mp4ctl is sent upstream as ipRouteAttributeTable 18283 */ 18284 mp2ctl = copymsg(mpctl); 18285 mp3ctl = copymsg(mpctl); 18286 mp4ctl = copymsg(mpctl); 18287 if (mp3ctl == NULL || mp4ctl == NULL) { 18288 freemsg(mp4ctl); 18289 freemsg(mp3ctl); 18290 freemsg(mp2ctl); 18291 freemsg(mpctl); 18292 return (NULL); 18293 } 18294 18295 bzero(&ird, sizeof (ird)); 18296 18297 ird.ird_route.lp_head = mpctl->b_cont; 18298 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18299 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18300 18301 zoneid = Q_TO_CONN(q)->conn_zoneid; 18302 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid); 18303 if (zoneid == GLOBAL_ZONEID) { 18304 /* 18305 * Those IREs are used by Mobile-IP; since mipagent(1M) requires 18306 * the sys_net_config privilege, it can only run in the global 18307 * zone, so we don't display these IREs in the other zones. 18308 */ 18309 ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird); 18310 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL); 18311 } 18312 18313 /* ipRouteEntryTable in mpctl */ 18314 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18315 optp->level = MIB2_IP; 18316 optp->name = MIB2_IP_ROUTE; 18317 optp->len = msgdsize(ird.ird_route.lp_head); 18318 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18319 (int)optp->level, (int)optp->name, (int)optp->len)); 18320 qreply(q, mpctl); 18321 18322 /* ipNetToMediaEntryTable in mp3ctl */ 18323 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18324 optp->level = MIB2_IP; 18325 optp->name = MIB2_IP_MEDIA; 18326 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18327 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18328 (int)optp->level, (int)optp->name, (int)optp->len)); 18329 qreply(q, mp3ctl); 18330 18331 /* ipRouteAttributeTable in mp4ctl */ 18332 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18333 optp->level = MIB2_IP; 18334 optp->name = EXPER_IP_RTATTR; 18335 optp->len = msgdsize(ird.ird_attrs.lp_head); 18336 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18337 (int)optp->level, (int)optp->name, (int)optp->len)); 18338 if (optp->len == 0) 18339 freemsg(mp4ctl); 18340 else 18341 qreply(q, mp4ctl); 18342 18343 return (mp2ctl); 18344 } 18345 18346 /* 18347 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 18348 * ipv6NetToMediaEntryTable in an NDP walk. 18349 */ 18350 static mblk_t * 18351 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl) 18352 { 18353 struct opthdr *optp; 18354 mblk_t *mp2ctl; /* Returned */ 18355 mblk_t *mp3ctl; /* nettomedia */ 18356 mblk_t *mp4ctl; /* routeattrs */ 18357 iproutedata_t ird; 18358 zoneid_t zoneid; 18359 18360 /* 18361 * make copies of the original message 18362 * - mp2ctl is returned unchanged to the caller for his use 18363 * - mpctl is sent upstream as ipv6RouteEntryTable 18364 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 18365 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 18366 */ 18367 mp2ctl = copymsg(mpctl); 18368 mp3ctl = copymsg(mpctl); 18369 mp4ctl = copymsg(mpctl); 18370 if (mp3ctl == NULL || mp4ctl == NULL) { 18371 freemsg(mp4ctl); 18372 freemsg(mp3ctl); 18373 freemsg(mp2ctl); 18374 freemsg(mpctl); 18375 return (NULL); 18376 } 18377 18378 bzero(&ird, sizeof (ird)); 18379 18380 ird.ird_route.lp_head = mpctl->b_cont; 18381 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18382 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18383 18384 zoneid = Q_TO_CONN(q)->conn_zoneid; 18385 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid); 18386 18387 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18388 optp->level = MIB2_IP6; 18389 optp->name = MIB2_IP6_ROUTE; 18390 optp->len = msgdsize(ird.ird_route.lp_head); 18391 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18392 (int)optp->level, (int)optp->name, (int)optp->len)); 18393 qreply(q, mpctl); 18394 18395 /* ipv6NetToMediaEntryTable in mp3ctl */ 18396 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird); 18397 18398 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18399 optp->level = MIB2_IP6; 18400 optp->name = MIB2_IP6_MEDIA; 18401 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18402 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18403 (int)optp->level, (int)optp->name, (int)optp->len)); 18404 qreply(q, mp3ctl); 18405 18406 /* ipv6RouteAttributeTable in mp4ctl */ 18407 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18408 optp->level = MIB2_IP6; 18409 optp->name = EXPER_IP_RTATTR; 18410 optp->len = msgdsize(ird.ird_attrs.lp_head); 18411 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18412 (int)optp->level, (int)optp->name, (int)optp->len)); 18413 if (optp->len == 0) 18414 freemsg(mp4ctl); 18415 else 18416 qreply(q, mp4ctl); 18417 18418 return (mp2ctl); 18419 } 18420 18421 /* 18422 * ICMPv6 mib: One per ill 18423 */ 18424 static mblk_t * 18425 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl) 18426 { 18427 struct opthdr *optp; 18428 mblk_t *mp2ctl; 18429 ill_t *ill; 18430 ill_walk_context_t ctx; 18431 mblk_t *mp_tail = NULL; 18432 18433 /* 18434 * Make a copy of the original message 18435 */ 18436 mp2ctl = copymsg(mpctl); 18437 18438 /* fixed length IPv6 structure ... */ 18439 18440 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18441 optp->level = MIB2_IP6; 18442 optp->name = 0; 18443 /* Include "unknown interface" ip6_mib */ 18444 ip6_mib.ipv6IfIndex = 0; /* Flag to netstat */ 18445 SET_MIB(ip6_mib.ipv6Forwarding, ipv6_forward ? 1 : 2); 18446 SET_MIB(ip6_mib.ipv6DefaultHopLimit, ipv6_def_hops); 18447 SET_MIB(ip6_mib.ipv6IfStatsEntrySize, 18448 sizeof (mib2_ipv6IfStatsEntry_t)); 18449 SET_MIB(ip6_mib.ipv6AddrEntrySize, sizeof (mib2_ipv6AddrEntry_t)); 18450 SET_MIB(ip6_mib.ipv6RouteEntrySize, sizeof (mib2_ipv6RouteEntry_t)); 18451 SET_MIB(ip6_mib.ipv6NetToMediaEntrySize, 18452 sizeof (mib2_ipv6NetToMediaEntry_t)); 18453 SET_MIB(ip6_mib.ipv6MemberEntrySize, sizeof (ipv6_member_t)); 18454 SET_MIB(ip6_mib.ipv6GroupSourceEntrySize, sizeof (ipv6_grpsrc_t)); 18455 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip6_mib, 18456 (int)sizeof (ip6_mib))) { 18457 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 18458 (uint_t)sizeof (ip6_mib))); 18459 } 18460 18461 rw_enter(&ill_g_lock, RW_READER); 18462 ill = ILL_START_WALK_V6(&ctx); 18463 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18464 ill->ill_ip6_mib->ipv6IfIndex = 18465 ill->ill_phyint->phyint_ifindex; 18466 SET_MIB(ill->ill_ip6_mib->ipv6Forwarding, 18467 ipv6_forward ? 1 : 2); 18468 SET_MIB(ill->ill_ip6_mib->ipv6DefaultHopLimit, 18469 ill->ill_max_hops); 18470 SET_MIB(ill->ill_ip6_mib->ipv6IfStatsEntrySize, 18471 sizeof (mib2_ipv6IfStatsEntry_t)); 18472 SET_MIB(ill->ill_ip6_mib->ipv6AddrEntrySize, 18473 sizeof (mib2_ipv6AddrEntry_t)); 18474 SET_MIB(ill->ill_ip6_mib->ipv6RouteEntrySize, 18475 sizeof (mib2_ipv6RouteEntry_t)); 18476 SET_MIB(ill->ill_ip6_mib->ipv6NetToMediaEntrySize, 18477 sizeof (mib2_ipv6NetToMediaEntry_t)); 18478 SET_MIB(ill->ill_ip6_mib->ipv6MemberEntrySize, 18479 sizeof (ipv6_member_t)); 18480 18481 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18482 (char *)ill->ill_ip6_mib, 18483 (int)sizeof (*ill->ill_ip6_mib))) { 18484 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 18485 "%u bytes\n", 18486 (uint_t)sizeof (*ill->ill_ip6_mib))); 18487 } 18488 } 18489 rw_exit(&ill_g_lock); 18490 18491 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18492 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 18493 (int)optp->level, (int)optp->name, (int)optp->len)); 18494 qreply(q, mpctl); 18495 return (mp2ctl); 18496 } 18497 18498 /* 18499 * ICMPv6 mib: One per ill 18500 */ 18501 static mblk_t * 18502 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl) 18503 { 18504 struct opthdr *optp; 18505 mblk_t *mp2ctl; 18506 ill_t *ill; 18507 ill_walk_context_t ctx; 18508 mblk_t *mp_tail = NULL; 18509 /* 18510 * Make a copy of the original message 18511 */ 18512 mp2ctl = copymsg(mpctl); 18513 18514 /* fixed length ICMPv6 structure ... */ 18515 18516 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18517 optp->level = MIB2_ICMP6; 18518 optp->name = 0; 18519 /* Include "unknown interface" icmp6_mib */ 18520 icmp6_mib.ipv6IfIcmpIfIndex = 0; /* Flag to netstat */ 18521 icmp6_mib.ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t); 18522 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&icmp6_mib, 18523 (int)sizeof (icmp6_mib))) { 18524 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 18525 (uint_t)sizeof (icmp6_mib))); 18526 } 18527 18528 rw_enter(&ill_g_lock, RW_READER); 18529 ill = ILL_START_WALK_V6(&ctx); 18530 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18531 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 18532 ill->ill_phyint->phyint_ifindex; 18533 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 18534 sizeof (mib2_ipv6IfIcmpEntry_t); 18535 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18536 (char *)ill->ill_icmp6_mib, 18537 (int)sizeof (*ill->ill_icmp6_mib))) { 18538 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 18539 "%u bytes\n", 18540 (uint_t)sizeof (*ill->ill_icmp6_mib))); 18541 } 18542 } 18543 rw_exit(&ill_g_lock); 18544 18545 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18546 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 18547 (int)optp->level, (int)optp->name, (int)optp->len)); 18548 qreply(q, mpctl); 18549 return (mp2ctl); 18550 } 18551 18552 /* 18553 * ire_walk routine to create both ipRouteEntryTable and 18554 * ipNetToMediaEntryTable in one IRE walk 18555 */ 18556 static void 18557 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 18558 { 18559 ill_t *ill; 18560 ipif_t *ipif; 18561 mblk_t *llmp; 18562 dl_unitdata_req_t *dlup; 18563 mib2_ipRouteEntry_t *re; 18564 mib2_ipNetToMediaEntry_t ntme; 18565 mib2_ipAttributeEntry_t *iae, *iaeptr; 18566 ipaddr_t gw_addr; 18567 tsol_ire_gw_secattr_t *attrp; 18568 tsol_gc_t *gc = NULL; 18569 tsol_gcgrp_t *gcgrp = NULL; 18570 uint_t sacnt = 0; 18571 int i; 18572 18573 ASSERT(ire->ire_ipversion == IPV4_VERSION); 18574 18575 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 18576 return; 18577 18578 if ((attrp = ire->ire_gw_secattr) != NULL) { 18579 mutex_enter(&attrp->igsa_lock); 18580 if ((gc = attrp->igsa_gc) != NULL) { 18581 gcgrp = gc->gc_grp; 18582 ASSERT(gcgrp != NULL); 18583 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18584 sacnt = 1; 18585 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 18586 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18587 gc = gcgrp->gcgrp_head; 18588 sacnt = gcgrp->gcgrp_count; 18589 } 18590 mutex_exit(&attrp->igsa_lock); 18591 18592 /* do nothing if there's no gc to report */ 18593 if (gc == NULL) { 18594 ASSERT(sacnt == 0); 18595 if (gcgrp != NULL) { 18596 /* we might as well drop the lock now */ 18597 rw_exit(&gcgrp->gcgrp_rwlock); 18598 gcgrp = NULL; 18599 } 18600 attrp = NULL; 18601 } 18602 18603 ASSERT(gc == NULL || (gcgrp != NULL && 18604 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 18605 } 18606 ASSERT(sacnt == 0 || gc != NULL); 18607 18608 if (sacnt != 0 && 18609 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 18610 kmem_free(re, sizeof (*re)); 18611 rw_exit(&gcgrp->gcgrp_rwlock); 18612 return; 18613 } 18614 18615 /* 18616 * Return all IRE types for route table... let caller pick and choose 18617 */ 18618 re->ipRouteDest = ire->ire_addr; 18619 ipif = ire->ire_ipif; 18620 re->ipRouteIfIndex.o_length = 0; 18621 if (ire->ire_type == IRE_CACHE) { 18622 ill = (ill_t *)ire->ire_stq->q_ptr; 18623 re->ipRouteIfIndex.o_length = 18624 ill->ill_name_length == 0 ? 0 : 18625 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18626 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 18627 re->ipRouteIfIndex.o_length); 18628 } else if (ipif != NULL) { 18629 (void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, 18630 OCTET_LENGTH); 18631 re->ipRouteIfIndex.o_length = 18632 mi_strlen(re->ipRouteIfIndex.o_bytes); 18633 } 18634 re->ipRouteMetric1 = -1; 18635 re->ipRouteMetric2 = -1; 18636 re->ipRouteMetric3 = -1; 18637 re->ipRouteMetric4 = -1; 18638 18639 gw_addr = ire->ire_gateway_addr; 18640 18641 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 18642 re->ipRouteNextHop = ire->ire_src_addr; 18643 else 18644 re->ipRouteNextHop = gw_addr; 18645 /* indirect(4), direct(3), or invalid(2) */ 18646 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 18647 re->ipRouteType = 2; 18648 else 18649 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 18650 re->ipRouteProto = -1; 18651 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 18652 re->ipRouteMask = ire->ire_mask; 18653 re->ipRouteMetric5 = -1; 18654 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 18655 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 18656 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 18657 if (ire->ire_nce && 18658 ire->ire_nce->nce_state == ND_REACHABLE) 18659 llmp = ire->ire_nce->nce_res_mp; 18660 else 18661 llmp = NULL; 18662 re->ipRouteInfo.re_ref = ire->ire_refcnt; 18663 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 18664 re->ipRouteInfo.re_ire_type = ire->ire_type; 18665 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 18666 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 18667 re->ipRouteInfo.re_flags = ire->ire_flags; 18668 re->ipRouteInfo.re_in_ill.o_length = 0; 18669 if (ire->ire_in_ill != NULL) { 18670 re->ipRouteInfo.re_in_ill.o_length = 18671 ire->ire_in_ill->ill_name_length == 0 ? 0 : 18672 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 18673 bcopy(ire->ire_in_ill->ill_name, 18674 re->ipRouteInfo.re_in_ill.o_bytes, 18675 re->ipRouteInfo.re_in_ill.o_length); 18676 } 18677 re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 18678 18679 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 18680 (char *)re, (int)sizeof (*re))) { 18681 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18682 (uint_t)sizeof (*re))); 18683 } 18684 18685 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 18686 iaeptr->iae_routeidx = ird->ird_idx; 18687 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 18688 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 18689 } 18690 18691 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 18692 (char *)iae, sacnt * sizeof (*iae))) { 18693 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18694 (unsigned)(sacnt * sizeof (*iae)))); 18695 } 18696 18697 if (ire->ire_type != IRE_CACHE || gw_addr != 0) 18698 goto done; 18699 /* 18700 * only IRE_CACHE entries that are for a directly connected subnet 18701 * get appended to net -> phys addr table 18702 * (others in arp) 18703 */ 18704 ntme.ipNetToMediaIfIndex.o_length = 0; 18705 ill = ire_to_ill(ire); 18706 ASSERT(ill != NULL); 18707 ntme.ipNetToMediaIfIndex.o_length = 18708 ill->ill_name_length == 0 ? 0 : 18709 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18710 bcopy(ill->ill_name, ntme.ipNetToMediaIfIndex.o_bytes, 18711 ntme.ipNetToMediaIfIndex.o_length); 18712 18713 ntme.ipNetToMediaPhysAddress.o_length = 0; 18714 if (llmp) { 18715 uchar_t *addr; 18716 18717 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 18718 /* Remove sap from address */ 18719 if (ill->ill_sap_length < 0) 18720 addr = llmp->b_rptr + dlup->dl_dest_addr_offset; 18721 else 18722 addr = llmp->b_rptr + dlup->dl_dest_addr_offset + 18723 ill->ill_sap_length; 18724 18725 ntme.ipNetToMediaPhysAddress.o_length = 18726 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 18727 bcopy(addr, ntme.ipNetToMediaPhysAddress.o_bytes, 18728 ntme.ipNetToMediaPhysAddress.o_length); 18729 } 18730 ntme.ipNetToMediaNetAddress = ire->ire_addr; 18731 /* assume dynamic (may be changed in arp) */ 18732 ntme.ipNetToMediaType = 3; 18733 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (uint32_t); 18734 bcopy(&ire->ire_mask, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 18735 ntme.ipNetToMediaInfo.ntm_mask.o_length); 18736 ntme.ipNetToMediaInfo.ntm_flags = ACE_F_RESOLVED; 18737 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 18738 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 18739 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18740 (uint_t)sizeof (ntme))); 18741 } 18742 done: 18743 /* bump route index for next pass */ 18744 ird->ird_idx++; 18745 18746 kmem_free(re, sizeof (*re)); 18747 if (sacnt != 0) 18748 kmem_free(iae, sacnt * sizeof (*iae)); 18749 18750 if (gcgrp != NULL) 18751 rw_exit(&gcgrp->gcgrp_rwlock); 18752 } 18753 18754 /* 18755 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 18756 */ 18757 static void 18758 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 18759 { 18760 ill_t *ill; 18761 ipif_t *ipif; 18762 mib2_ipv6RouteEntry_t *re; 18763 mib2_ipAttributeEntry_t *iae, *iaeptr; 18764 in6_addr_t gw_addr_v6; 18765 tsol_ire_gw_secattr_t *attrp; 18766 tsol_gc_t *gc = NULL; 18767 tsol_gcgrp_t *gcgrp = NULL; 18768 uint_t sacnt = 0; 18769 int i; 18770 18771 ASSERT(ire->ire_ipversion == IPV6_VERSION); 18772 18773 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 18774 return; 18775 18776 if ((attrp = ire->ire_gw_secattr) != NULL) { 18777 mutex_enter(&attrp->igsa_lock); 18778 if ((gc = attrp->igsa_gc) != NULL) { 18779 gcgrp = gc->gc_grp; 18780 ASSERT(gcgrp != NULL); 18781 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18782 sacnt = 1; 18783 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 18784 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18785 gc = gcgrp->gcgrp_head; 18786 sacnt = gcgrp->gcgrp_count; 18787 } 18788 mutex_exit(&attrp->igsa_lock); 18789 18790 /* do nothing if there's no gc to report */ 18791 if (gc == NULL) { 18792 ASSERT(sacnt == 0); 18793 if (gcgrp != NULL) { 18794 /* we might as well drop the lock now */ 18795 rw_exit(&gcgrp->gcgrp_rwlock); 18796 gcgrp = NULL; 18797 } 18798 attrp = NULL; 18799 } 18800 18801 ASSERT(gc == NULL || (gcgrp != NULL && 18802 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 18803 } 18804 ASSERT(sacnt == 0 || gc != NULL); 18805 18806 if (sacnt != 0 && 18807 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 18808 kmem_free(re, sizeof (*re)); 18809 rw_exit(&gcgrp->gcgrp_rwlock); 18810 return; 18811 } 18812 18813 /* 18814 * Return all IRE types for route table... let caller pick and choose 18815 */ 18816 re->ipv6RouteDest = ire->ire_addr_v6; 18817 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 18818 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 18819 re->ipv6RouteIfIndex.o_length = 0; 18820 ipif = ire->ire_ipif; 18821 if (ire->ire_type == IRE_CACHE) { 18822 ill = (ill_t *)ire->ire_stq->q_ptr; 18823 re->ipv6RouteIfIndex.o_length = 18824 ill->ill_name_length == 0 ? 0 : 18825 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18826 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 18827 re->ipv6RouteIfIndex.o_length); 18828 } else if (ipif != NULL) { 18829 (void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, 18830 OCTET_LENGTH); 18831 re->ipv6RouteIfIndex.o_length = 18832 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 18833 } 18834 18835 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 18836 18837 mutex_enter(&ire->ire_lock); 18838 gw_addr_v6 = ire->ire_gateway_addr_v6; 18839 mutex_exit(&ire->ire_lock); 18840 18841 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 18842 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 18843 else 18844 re->ipv6RouteNextHop = gw_addr_v6; 18845 18846 /* remote(4), local(3), or discard(2) */ 18847 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 18848 re->ipv6RouteType = 2; 18849 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 18850 re->ipv6RouteType = 3; 18851 else 18852 re->ipv6RouteType = 4; 18853 18854 re->ipv6RouteProtocol = -1; 18855 re->ipv6RoutePolicy = 0; 18856 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 18857 re->ipv6RouteNextHopRDI = 0; 18858 re->ipv6RouteWeight = 0; 18859 re->ipv6RouteMetric = 0; 18860 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 18861 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 18862 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 18863 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 18864 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 18865 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 18866 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 18867 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 18868 re->ipv6RouteInfo.re_flags = ire->ire_flags; 18869 18870 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 18871 (char *)re, (int)sizeof (*re))) { 18872 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 18873 (uint_t)sizeof (*re))); 18874 } 18875 18876 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 18877 iaeptr->iae_routeidx = ird->ird_idx; 18878 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 18879 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 18880 } 18881 18882 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 18883 (char *)iae, sacnt * sizeof (*iae))) { 18884 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 18885 (unsigned)(sacnt * sizeof (*iae)))); 18886 } 18887 18888 /* bump route index for next pass */ 18889 ird->ird_idx++; 18890 18891 kmem_free(re, sizeof (*re)); 18892 if (sacnt != 0) 18893 kmem_free(iae, sacnt * sizeof (*iae)); 18894 18895 if (gcgrp != NULL) 18896 rw_exit(&gcgrp->gcgrp_rwlock); 18897 } 18898 18899 /* 18900 * ndp_walk routine to create ipv6NetToMediaEntryTable 18901 */ 18902 static int 18903 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 18904 { 18905 ill_t *ill; 18906 mib2_ipv6NetToMediaEntry_t ntme; 18907 dl_unitdata_req_t *dl; 18908 18909 ill = nce->nce_ill; 18910 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 18911 return (0); 18912 18913 /* 18914 * Neighbor cache entry attached to IRE with on-link 18915 * destination. 18916 */ 18917 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 18918 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 18919 if ((ill->ill_flags & ILLF_XRESOLV) && 18920 (nce->nce_res_mp != NULL)) { 18921 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 18922 ntme.ipv6NetToMediaPhysAddress.o_length = 18923 dl->dl_dest_addr_length; 18924 } else { 18925 ntme.ipv6NetToMediaPhysAddress.o_length = 18926 ill->ill_phys_addr_length; 18927 } 18928 if (nce->nce_res_mp != NULL) { 18929 bcopy((char *)nce->nce_res_mp->b_rptr + 18930 NCE_LL_ADDR_OFFSET(ill), 18931 ntme.ipv6NetToMediaPhysAddress.o_bytes, 18932 ntme.ipv6NetToMediaPhysAddress.o_length); 18933 } else { 18934 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 18935 ill->ill_phys_addr_length); 18936 } 18937 /* 18938 * Note: Returns ND_* states. Should be: 18939 * reachable(1), stale(2), delay(3), probe(4), 18940 * invalid(5), unknown(6) 18941 */ 18942 ntme.ipv6NetToMediaState = nce->nce_state; 18943 ntme.ipv6NetToMediaLastUpdated = 0; 18944 18945 /* other(1), dynamic(2), static(3), local(4) */ 18946 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 18947 ntme.ipv6NetToMediaType = 4; 18948 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 18949 ntme.ipv6NetToMediaType = 1; 18950 } else { 18951 ntme.ipv6NetToMediaType = 2; 18952 } 18953 18954 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 18955 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 18956 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 18957 (uint_t)sizeof (ntme))); 18958 } 18959 return (0); 18960 } 18961 18962 /* 18963 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 18964 */ 18965 /* ARGSUSED */ 18966 int 18967 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 18968 { 18969 switch (level) { 18970 case MIB2_IP: 18971 case MIB2_ICMP: 18972 switch (name) { 18973 default: 18974 break; 18975 } 18976 return (1); 18977 default: 18978 return (1); 18979 } 18980 } 18981 18982 /* 18983 * Called before the options are updated to check if this packet will 18984 * be source routed from here. 18985 * This routine assumes that the options are well formed i.e. that they 18986 * have already been checked. 18987 */ 18988 static boolean_t 18989 ip_source_routed(ipha_t *ipha) 18990 { 18991 ipoptp_t opts; 18992 uchar_t *opt; 18993 uint8_t optval; 18994 uint8_t optlen; 18995 ipaddr_t dst; 18996 ire_t *ire; 18997 18998 if (IS_SIMPLE_IPH(ipha)) { 18999 ip2dbg(("not source routed\n")); 19000 return (B_FALSE); 19001 } 19002 dst = ipha->ipha_dst; 19003 for (optval = ipoptp_first(&opts, ipha); 19004 optval != IPOPT_EOL; 19005 optval = ipoptp_next(&opts)) { 19006 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19007 opt = opts.ipoptp_cur; 19008 optlen = opts.ipoptp_len; 19009 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19010 optval, optlen)); 19011 switch (optval) { 19012 uint32_t off; 19013 case IPOPT_SSRR: 19014 case IPOPT_LSRR: 19015 /* 19016 * If dst is one of our addresses and there are some 19017 * entries left in the source route return (true). 19018 */ 19019 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19020 ALL_ZONES, NULL, MATCH_IRE_TYPE); 19021 if (ire == NULL) { 19022 ip2dbg(("ip_source_routed: not next" 19023 " source route 0x%x\n", 19024 ntohl(dst))); 19025 return (B_FALSE); 19026 } 19027 ire_refrele(ire); 19028 off = opt[IPOPT_OFFSET]; 19029 off--; 19030 if (optlen < IP_ADDR_LEN || 19031 off > optlen - IP_ADDR_LEN) { 19032 /* End of source route */ 19033 ip1dbg(("ip_source_routed: end of SR\n")); 19034 return (B_FALSE); 19035 } 19036 return (B_TRUE); 19037 } 19038 } 19039 ip2dbg(("not source routed\n")); 19040 return (B_FALSE); 19041 } 19042 19043 /* 19044 * Check if the packet contains any source route. 19045 */ 19046 static boolean_t 19047 ip_source_route_included(ipha_t *ipha) 19048 { 19049 ipoptp_t opts; 19050 uint8_t optval; 19051 19052 if (IS_SIMPLE_IPH(ipha)) 19053 return (B_FALSE); 19054 for (optval = ipoptp_first(&opts, ipha); 19055 optval != IPOPT_EOL; 19056 optval = ipoptp_next(&opts)) { 19057 switch (optval) { 19058 case IPOPT_SSRR: 19059 case IPOPT_LSRR: 19060 return (B_TRUE); 19061 } 19062 } 19063 return (B_FALSE); 19064 } 19065 19066 /* 19067 * Called when the IRE expiration timer fires. 19068 */ 19069 /* ARGSUSED */ 19070 void 19071 ip_trash_timer_expire(void *args) 19072 { 19073 int flush_flag = 0; 19074 19075 /* 19076 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19077 * This lock makes sure that a new invocation of this function 19078 * that occurs due to an almost immediate timer firing will not 19079 * progress beyond this point until the current invocation is done 19080 */ 19081 mutex_enter(&ip_trash_timer_lock); 19082 ip_ire_expire_id = 0; 19083 mutex_exit(&ip_trash_timer_lock); 19084 19085 /* Periodic timer */ 19086 if (ip_ire_arp_time_elapsed >= ip_ire_arp_interval) { 19087 /* 19088 * Remove all IRE_CACHE entries since they might 19089 * contain arp information. 19090 */ 19091 flush_flag |= FLUSH_ARP_TIME; 19092 ip_ire_arp_time_elapsed = 0; 19093 IP_STAT(ip_ire_arp_timer_expired); 19094 } 19095 if (ip_ire_rd_time_elapsed >= ip_ire_redir_interval) { 19096 /* Remove all redirects */ 19097 flush_flag |= FLUSH_REDIRECT_TIME; 19098 ip_ire_rd_time_elapsed = 0; 19099 IP_STAT(ip_ire_redirect_timer_expired); 19100 } 19101 if (ip_ire_pmtu_time_elapsed >= ip_ire_pathmtu_interval) { 19102 /* Increase path mtu */ 19103 flush_flag |= FLUSH_MTU_TIME; 19104 ip_ire_pmtu_time_elapsed = 0; 19105 IP_STAT(ip_ire_pmtu_timer_expired); 19106 } 19107 19108 /* 19109 * Optimize for the case when there are no redirects in the 19110 * ftable, that is, no need to walk the ftable in that case. 19111 */ 19112 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19113 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19114 (char *)(uintptr_t)flush_flag, IP_MASK_TABLE_SIZE, 0, NULL, 19115 ip_cache_table_size, ip_cache_table, NULL, ALL_ZONES); 19116 } 19117 if ((flush_flag & FLUSH_REDIRECT_TIME) && ip_redirect_cnt > 0) { 19118 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19119 ire_expire, (char *)(uintptr_t)flush_flag, 19120 IP_MASK_TABLE_SIZE, 0, NULL, 0, NULL, NULL, ALL_ZONES); 19121 } 19122 if (flush_flag & FLUSH_MTU_TIME) { 19123 /* 19124 * Walk all IPv6 IRE's and update them 19125 * Note that ARP and redirect timers are not 19126 * needed since NUD handles stale entries. 19127 */ 19128 flush_flag = FLUSH_MTU_TIME; 19129 ire_walk_v6(ire_expire, (char *)(uintptr_t)flush_flag, 19130 ALL_ZONES); 19131 } 19132 19133 ip_ire_arp_time_elapsed += ip_timer_interval; 19134 ip_ire_rd_time_elapsed += ip_timer_interval; 19135 ip_ire_pmtu_time_elapsed += ip_timer_interval; 19136 19137 /* 19138 * Hold the lock to serialize timeout calls and prevent 19139 * stale values in ip_ire_expire_id. Otherwise it is possible 19140 * for the timer to fire and a new invocation of this function 19141 * to start before the return value of timeout has been stored 19142 * in ip_ire_expire_id by the current invocation. 19143 */ 19144 mutex_enter(&ip_trash_timer_lock); 19145 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 19146 MSEC_TO_TICK(ip_timer_interval)); 19147 mutex_exit(&ip_trash_timer_lock); 19148 } 19149 19150 /* 19151 * Called by the memory allocator subsystem directly, when the system 19152 * is running low on memory. 19153 */ 19154 /* ARGSUSED */ 19155 void 19156 ip_trash_ire_reclaim(void *args) 19157 { 19158 ire_cache_count_t icc; 19159 ire_cache_reclaim_t icr; 19160 ncc_cache_count_t ncc; 19161 nce_cache_reclaim_t ncr; 19162 uint_t delete_cnt; 19163 /* 19164 * Memory reclaim call back. 19165 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19166 * Then, with a target of freeing 1/Nth of IRE_CACHE 19167 * entries, determine what fraction to free for 19168 * each category of IRE_CACHE entries giving absolute priority 19169 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19170 * entry will be freed unless all offlink entries are freed). 19171 */ 19172 icc.icc_total = 0; 19173 icc.icc_unused = 0; 19174 icc.icc_offlink = 0; 19175 icc.icc_pmtu = 0; 19176 icc.icc_onlink = 0; 19177 ire_walk(ire_cache_count, (char *)&icc); 19178 19179 /* 19180 * Free NCEs for IPv6 like the onlink ires. 19181 */ 19182 ncc.ncc_total = 0; 19183 ncc.ncc_host = 0; 19184 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc); 19185 19186 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 19187 icc.icc_pmtu + icc.icc_onlink); 19188 delete_cnt = icc.icc_total/ip_ire_reclaim_fraction; 19189 IP_STAT(ip_trash_ire_reclaim_calls); 19190 if (delete_cnt == 0) 19191 return; 19192 IP_STAT(ip_trash_ire_reclaim_success); 19193 /* Always delete all unused offlink entries */ 19194 icr.icr_unused = 1; 19195 if (delete_cnt <= icc.icc_unused) { 19196 /* 19197 * Only need to free unused entries. In other words, 19198 * there are enough unused entries to free to meet our 19199 * target number of freed ire cache entries. 19200 */ 19201 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 19202 ncr.ncr_host = 0; 19203 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 19204 /* 19205 * Only need to free unused entries, plus a fraction of offlink 19206 * entries. It follows from the first if statement that 19207 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 19208 */ 19209 delete_cnt -= icc.icc_unused; 19210 /* Round up # deleted by truncating fraction */ 19211 icr.icr_offlink = icc.icc_offlink / delete_cnt; 19212 icr.icr_pmtu = icr.icr_onlink = 0; 19213 ncr.ncr_host = 0; 19214 } else if (delete_cnt <= 19215 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 19216 /* 19217 * Free all unused and offlink entries, plus a fraction of 19218 * pmtu entries. It follows from the previous if statement 19219 * that icc_pmtu is non-zero, and that 19220 * delete_cnt != icc_unused + icc_offlink. 19221 */ 19222 icr.icr_offlink = 1; 19223 delete_cnt -= icc.icc_unused + icc.icc_offlink; 19224 /* Round up # deleted by truncating fraction */ 19225 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 19226 icr.icr_onlink = 0; 19227 ncr.ncr_host = 0; 19228 } else { 19229 /* 19230 * Free all unused, offlink, and pmtu entries, plus a fraction 19231 * of onlink entries. If we're here, then we know that 19232 * icc_onlink is non-zero, and that 19233 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 19234 */ 19235 icr.icr_offlink = icr.icr_pmtu = 1; 19236 delete_cnt -= icc.icc_unused + icc.icc_offlink + 19237 icc.icc_pmtu; 19238 /* Round up # deleted by truncating fraction */ 19239 icr.icr_onlink = icc.icc_onlink / delete_cnt; 19240 /* Using the same delete fraction as for onlink IREs */ 19241 ncr.ncr_host = ncc.ncc_host / delete_cnt; 19242 } 19243 #ifdef DEBUG 19244 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 19245 "fractions %d/%d/%d/%d\n", 19246 icc.icc_total/ip_ire_reclaim_fraction, icc.icc_total, 19247 icc.icc_unused, icc.icc_offlink, 19248 icc.icc_pmtu, icc.icc_onlink, 19249 icr.icr_unused, icr.icr_offlink, 19250 icr.icr_pmtu, icr.icr_onlink)); 19251 #endif 19252 ire_walk(ire_cache_reclaim, (char *)&icr); 19253 if (ncr.ncr_host != 0) 19254 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 19255 (uchar_t *)&ncr); 19256 #ifdef DEBUG 19257 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 19258 icc.icc_pmtu = 0; icc.icc_onlink = 0; 19259 ire_walk(ire_cache_count, (char *)&icc); 19260 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 19261 icc.icc_total, icc.icc_unused, icc.icc_offlink, 19262 icc.icc_pmtu, icc.icc_onlink)); 19263 #endif 19264 } 19265 19266 /* 19267 * ip_unbind is called when a copy of an unbind request is received from the 19268 * upper level protocol. We remove this conn from any fanout hash list it is 19269 * on, and zero out the bind information. No reply is expected up above. 19270 */ 19271 mblk_t * 19272 ip_unbind(queue_t *q, mblk_t *mp) 19273 { 19274 conn_t *connp = Q_TO_CONN(q); 19275 19276 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 19277 19278 if (is_system_labeled() && connp->conn_anon_port) { 19279 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 19280 connp->conn_mlp_type, connp->conn_ulp, 19281 ntohs(connp->conn_lport), B_FALSE); 19282 connp->conn_anon_port = 0; 19283 } 19284 connp->conn_mlp_type = mlptSingle; 19285 19286 ipcl_hash_remove(connp); 19287 19288 ASSERT(mp->b_cont == NULL); 19289 /* 19290 * Convert mp into a T_OK_ACK 19291 */ 19292 mp = mi_tpi_ok_ack_alloc(mp); 19293 19294 /* 19295 * should not happen in practice... T_OK_ACK is smaller than the 19296 * original message. 19297 */ 19298 if (mp == NULL) 19299 return (NULL); 19300 19301 /* 19302 * Don't bzero the ports if its TCP since TCP still needs the 19303 * lport to remove it from its own bind hash. TCP will do the 19304 * cleanup. 19305 */ 19306 if (!IPCL_IS_TCP(connp)) 19307 bzero(&connp->u_port, sizeof (connp->u_port)); 19308 19309 return (mp); 19310 } 19311 19312 /* 19313 * Write side put procedure. Outbound data, IOCTLs, responses from 19314 * resolvers, etc, come down through here. 19315 * 19316 * arg2 is always a queue_t *. 19317 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 19318 * the zoneid. 19319 * When that queue is not an ill_t, then arg must be a conn_t pointer. 19320 */ 19321 void 19322 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 19323 { 19324 conn_t *connp = NULL; 19325 queue_t *q = (queue_t *)arg2; 19326 ipha_t *ipha; 19327 #define rptr ((uchar_t *)ipha) 19328 ire_t *ire = NULL; 19329 ire_t *sctp_ire = NULL; 19330 uint32_t v_hlen_tos_len; 19331 ipaddr_t dst; 19332 mblk_t *first_mp = NULL; 19333 boolean_t mctl_present; 19334 ipsec_out_t *io; 19335 int match_flags; 19336 ill_t *attach_ill = NULL; 19337 /* Bind to IPIF_NOFAILOVER ill etc. */ 19338 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 19339 ipif_t *dst_ipif; 19340 boolean_t multirt_need_resolve = B_FALSE; 19341 mblk_t *copy_mp = NULL; 19342 int err; 19343 zoneid_t zoneid; 19344 int adjust; 19345 uint16_t iplen; 19346 boolean_t need_decref = B_FALSE; 19347 boolean_t ignore_dontroute = B_FALSE; 19348 boolean_t ignore_nexthop = B_FALSE; 19349 boolean_t ip_nexthop = B_FALSE; 19350 ipaddr_t nexthop_addr; 19351 19352 #ifdef _BIG_ENDIAN 19353 #define V_HLEN (v_hlen_tos_len >> 24) 19354 #else 19355 #define V_HLEN (v_hlen_tos_len & 0xFF) 19356 #endif 19357 19358 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 19359 "ip_wput_start: q %p", q); 19360 19361 /* 19362 * ip_wput fast path 19363 */ 19364 19365 /* is packet from ARP ? */ 19366 if (q->q_next != NULL) { 19367 zoneid = (zoneid_t)(uintptr_t)arg; 19368 goto qnext; 19369 } 19370 19371 connp = (conn_t *)arg; 19372 ASSERT(connp != NULL); 19373 zoneid = connp->conn_zoneid; 19374 19375 /* is queue flow controlled? */ 19376 if ((q->q_first != NULL || connp->conn_draining) && 19377 (caller == IP_WPUT)) { 19378 ASSERT(!need_decref); 19379 (void) putq(q, mp); 19380 return; 19381 } 19382 19383 /* Multidata transmit? */ 19384 if (DB_TYPE(mp) == M_MULTIDATA) { 19385 /* 19386 * We should never get here, since all Multidata messages 19387 * originating from tcp should have been directed over to 19388 * tcp_multisend() in the first place. 19389 */ 19390 BUMP_MIB(&ip_mib, ipOutDiscards); 19391 freemsg(mp); 19392 return; 19393 } else if (DB_TYPE(mp) != M_DATA) 19394 goto notdata; 19395 19396 if (mp->b_flag & MSGHASREF) { 19397 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 19398 mp->b_flag &= ~MSGHASREF; 19399 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 19400 need_decref = B_TRUE; 19401 } 19402 ipha = (ipha_t *)mp->b_rptr; 19403 19404 /* is IP header non-aligned or mblk smaller than basic IP header */ 19405 #ifndef SAFETY_BEFORE_SPEED 19406 if (!OK_32PTR(rptr) || 19407 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 19408 goto hdrtoosmall; 19409 #endif 19410 19411 ASSERT(OK_32PTR(ipha)); 19412 19413 /* 19414 * This function assumes that mp points to an IPv4 packet. If it's the 19415 * wrong version, we'll catch it again in ip_output_v6. 19416 * 19417 * Note that this is *only* locally-generated output here, and never 19418 * forwarded data, and that we need to deal only with transports that 19419 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 19420 * label.) 19421 */ 19422 if (is_system_labeled() && 19423 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 19424 !connp->conn_ulp_labeled) { 19425 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 19426 connp->conn_mac_exempt); 19427 ipha = (ipha_t *)mp->b_rptr; 19428 if (err != 0) { 19429 first_mp = mp; 19430 if (err == EINVAL) 19431 goto icmp_parameter_problem; 19432 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 19433 goto drop_pkt; 19434 } 19435 iplen = ntohs(ipha->ipha_length) + adjust; 19436 ipha->ipha_length = htons(iplen); 19437 } 19438 19439 /* 19440 * If there is a policy, try to attach an ipsec_out in 19441 * the front. At the end, first_mp either points to a 19442 * M_DATA message or IPSEC_OUT message linked to a 19443 * M_DATA message. We have to do it now as we might 19444 * lose the "conn" if we go through ip_newroute. 19445 */ 19446 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 19447 if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL, 19448 ipha->ipha_protocol)) == NULL)) { 19449 if (need_decref) 19450 CONN_DEC_REF(connp); 19451 return; 19452 } else { 19453 ASSERT(mp->b_datap->db_type == M_CTL); 19454 first_mp = mp; 19455 mp = mp->b_cont; 19456 mctl_present = B_TRUE; 19457 } 19458 } else { 19459 first_mp = mp; 19460 mctl_present = B_FALSE; 19461 } 19462 19463 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19464 19465 /* is wrong version or IP options present */ 19466 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 19467 goto version_hdrlen_check; 19468 dst = ipha->ipha_dst; 19469 19470 if (connp->conn_nofailover_ill != NULL) { 19471 attach_ill = conn_get_held_ill(connp, 19472 &connp->conn_nofailover_ill, &err); 19473 if (err == ILL_LOOKUP_FAILED) { 19474 if (need_decref) 19475 CONN_DEC_REF(connp); 19476 freemsg(first_mp); 19477 return; 19478 } 19479 } 19480 19481 /* is packet multicast? */ 19482 if (CLASSD(dst)) 19483 goto multicast; 19484 19485 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 19486 (connp->conn_nexthop_set)) { 19487 /* 19488 * If the destination is a broadcast or a loopback 19489 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 19490 * through the standard path. But in the case of local 19491 * destination only SO_DONTROUTE and IP_NEXTHOP go through 19492 * the standard path not IP_XMIT_IF. 19493 */ 19494 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19495 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 19496 (ire->ire_type != IRE_LOOPBACK))) { 19497 if ((connp->conn_dontroute || 19498 connp->conn_nexthop_set) && (ire != NULL) && 19499 (ire->ire_type == IRE_LOCAL)) 19500 goto standard_path; 19501 19502 if (ire != NULL) { 19503 ire_refrele(ire); 19504 /* No more access to ire */ 19505 ire = NULL; 19506 } 19507 /* 19508 * bypass routing checks and go directly to 19509 * interface. 19510 */ 19511 if (connp->conn_dontroute) { 19512 goto dontroute; 19513 } else if (connp->conn_nexthop_set) { 19514 ip_nexthop = B_TRUE; 19515 nexthop_addr = connp->conn_nexthop_v4; 19516 goto send_from_ill; 19517 } 19518 19519 /* 19520 * If IP_XMIT_IF socket option is set, 19521 * then we allow unicast and multicast 19522 * packets to go through the ill. It is 19523 * quite possible that the destination 19524 * is not in the ire cache table and we 19525 * do not want to go to ip_newroute() 19526 * instead we call ip_newroute_ipif. 19527 */ 19528 xmit_ill = conn_get_held_ill(connp, 19529 &connp->conn_xmit_if_ill, &err); 19530 if (err == ILL_LOOKUP_FAILED) { 19531 if (attach_ill != NULL) 19532 ill_refrele(attach_ill); 19533 if (need_decref) 19534 CONN_DEC_REF(connp); 19535 freemsg(first_mp); 19536 return; 19537 } 19538 goto send_from_ill; 19539 } 19540 standard_path: 19541 /* Must be a broadcast, a loopback or a local ire */ 19542 if (ire != NULL) { 19543 ire_refrele(ire); 19544 /* No more access to ire */ 19545 ire = NULL; 19546 } 19547 } 19548 19549 if (attach_ill != NULL) 19550 goto send_from_ill; 19551 19552 /* 19553 * We cache IRE_CACHEs to avoid lookups. We don't do 19554 * this for the tcp global queue and listen end point 19555 * as it does not really have a real destination to 19556 * talk to. This is also true for SCTP. 19557 */ 19558 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 19559 !connp->conn_fully_bound) { 19560 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19561 if (ire == NULL) 19562 goto noirefound; 19563 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19564 "ip_wput_end: q %p (%S)", q, "end"); 19565 19566 /* 19567 * Check if the ire has the RTF_MULTIRT flag, inherited 19568 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 19569 */ 19570 if (ire->ire_flags & RTF_MULTIRT) { 19571 19572 /* 19573 * Force the TTL of multirouted packets if required. 19574 * The TTL of such packets is bounded by the 19575 * ip_multirt_ttl ndd variable. 19576 */ 19577 if ((ip_multirt_ttl > 0) && 19578 (ipha->ipha_ttl > ip_multirt_ttl)) { 19579 ip2dbg(("ip_wput: forcing multirt TTL to %d " 19580 "(was %d), dst 0x%08x\n", 19581 ip_multirt_ttl, ipha->ipha_ttl, 19582 ntohl(ire->ire_addr))); 19583 ipha->ipha_ttl = ip_multirt_ttl; 19584 } 19585 /* 19586 * We look at this point if there are pending 19587 * unresolved routes. ire_multirt_resolvable() 19588 * checks in O(n) that all IRE_OFFSUBNET ire 19589 * entries for the packet's destination and 19590 * flagged RTF_MULTIRT are currently resolved. 19591 * If some remain unresolved, we make a copy 19592 * of the current message. It will be used 19593 * to initiate additional route resolutions. 19594 */ 19595 multirt_need_resolve = 19596 ire_multirt_need_resolve(ire->ire_addr, 19597 MBLK_GETLABEL(first_mp)); 19598 ip2dbg(("ip_wput[TCP]: ire %p, " 19599 "multirt_need_resolve %d, first_mp %p\n", 19600 (void *)ire, multirt_need_resolve, 19601 (void *)first_mp)); 19602 if (multirt_need_resolve) { 19603 copy_mp = copymsg(first_mp); 19604 if (copy_mp != NULL) { 19605 MULTIRT_DEBUG_TAG(copy_mp); 19606 } 19607 } 19608 } 19609 19610 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 19611 19612 /* 19613 * Try to resolve another multiroute if 19614 * ire_multirt_need_resolve() deemed it necessary. 19615 */ 19616 if (copy_mp != NULL) { 19617 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 19618 } 19619 if (need_decref) 19620 CONN_DEC_REF(connp); 19621 return; 19622 } 19623 19624 /* 19625 * Access to conn_ire_cache. (protected by conn_lock) 19626 * 19627 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 19628 * the ire bucket lock here to check for CONDEMNED as it is okay to 19629 * send a packet or two with the IRE_CACHE that is going away. 19630 * Access to the ire requires an ire refhold on the ire prior to 19631 * its use since an interface unplumb thread may delete the cached 19632 * ire and release the refhold at any time. 19633 * 19634 * Caching an ire in the conn_ire_cache 19635 * 19636 * o Caching an ire pointer in the conn requires a strict check for 19637 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 19638 * ires before cleaning up the conns. So the caching of an ire pointer 19639 * in the conn is done after making sure under the bucket lock that the 19640 * ire has not yet been marked CONDEMNED. Otherwise we will end up 19641 * caching an ire after the unplumb thread has cleaned up the conn. 19642 * If the conn does not send a packet subsequently the unplumb thread 19643 * will be hanging waiting for the ire count to drop to zero. 19644 * 19645 * o We also need to atomically test for a null conn_ire_cache and 19646 * set the conn_ire_cache under the the protection of the conn_lock 19647 * to avoid races among concurrent threads trying to simultaneously 19648 * cache an ire in the conn_ire_cache. 19649 */ 19650 mutex_enter(&connp->conn_lock); 19651 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 19652 19653 if (ire != NULL && ire->ire_addr == dst && 19654 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19655 19656 IRE_REFHOLD(ire); 19657 mutex_exit(&connp->conn_lock); 19658 19659 } else { 19660 boolean_t cached = B_FALSE; 19661 connp->conn_ire_cache = NULL; 19662 mutex_exit(&connp->conn_lock); 19663 /* Release the old ire */ 19664 if (ire != NULL && sctp_ire == NULL) 19665 IRE_REFRELE_NOTR(ire); 19666 19667 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19668 if (ire == NULL) 19669 goto noirefound; 19670 IRE_REFHOLD_NOTR(ire); 19671 19672 mutex_enter(&connp->conn_lock); 19673 if (!(connp->conn_state_flags & CONN_CLOSING) && 19674 connp->conn_ire_cache == NULL) { 19675 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 19676 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19677 connp->conn_ire_cache = ire; 19678 cached = B_TRUE; 19679 } 19680 rw_exit(&ire->ire_bucket->irb_lock); 19681 } 19682 mutex_exit(&connp->conn_lock); 19683 19684 /* 19685 * We can continue to use the ire but since it was 19686 * not cached, we should drop the extra reference. 19687 */ 19688 if (!cached) 19689 IRE_REFRELE_NOTR(ire); 19690 } 19691 19692 19693 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19694 "ip_wput_end: q %p (%S)", q, "end"); 19695 19696 /* 19697 * Check if the ire has the RTF_MULTIRT flag, inherited 19698 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 19699 */ 19700 if (ire->ire_flags & RTF_MULTIRT) { 19701 19702 /* 19703 * Force the TTL of multirouted packets if required. 19704 * The TTL of such packets is bounded by the 19705 * ip_multirt_ttl ndd variable. 19706 */ 19707 if ((ip_multirt_ttl > 0) && 19708 (ipha->ipha_ttl > ip_multirt_ttl)) { 19709 ip2dbg(("ip_wput: forcing multirt TTL to %d " 19710 "(was %d), dst 0x%08x\n", 19711 ip_multirt_ttl, ipha->ipha_ttl, 19712 ntohl(ire->ire_addr))); 19713 ipha->ipha_ttl = ip_multirt_ttl; 19714 } 19715 19716 /* 19717 * At this point, we check to see if there are any pending 19718 * unresolved routes. ire_multirt_resolvable() 19719 * checks in O(n) that all IRE_OFFSUBNET ire 19720 * entries for the packet's destination and 19721 * flagged RTF_MULTIRT are currently resolved. 19722 * If some remain unresolved, we make a copy 19723 * of the current message. It will be used 19724 * to initiate additional route resolutions. 19725 */ 19726 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 19727 MBLK_GETLABEL(first_mp)); 19728 ip2dbg(("ip_wput[not TCP]: ire %p, " 19729 "multirt_need_resolve %d, first_mp %p\n", 19730 (void *)ire, multirt_need_resolve, (void *)first_mp)); 19731 if (multirt_need_resolve) { 19732 copy_mp = copymsg(first_mp); 19733 if (copy_mp != NULL) { 19734 MULTIRT_DEBUG_TAG(copy_mp); 19735 } 19736 } 19737 } 19738 19739 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 19740 19741 /* 19742 * Try to resolve another multiroute if 19743 * ire_multirt_resolvable() deemed it necessary 19744 */ 19745 if (copy_mp != NULL) { 19746 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 19747 } 19748 if (need_decref) 19749 CONN_DEC_REF(connp); 19750 return; 19751 19752 qnext: 19753 /* 19754 * Upper Level Protocols pass down complete IP datagrams 19755 * as M_DATA messages. Everything else is a sideshow. 19756 * 19757 * 1) We could be re-entering ip_wput because of ip_neworute 19758 * in which case we could have a IPSEC_OUT message. We 19759 * need to pass through ip_wput like other datagrams and 19760 * hence cannot branch to ip_wput_nondata. 19761 * 19762 * 2) ARP, AH, ESP, and other clients who are on the module 19763 * instance of IP stream, give us something to deal with. 19764 * We will handle AH and ESP here and rest in ip_wput_nondata. 19765 * 19766 * 3) ICMP replies also could come here. 19767 */ 19768 if (DB_TYPE(mp) != M_DATA) { 19769 notdata: 19770 if (DB_TYPE(mp) == M_CTL) { 19771 /* 19772 * M_CTL messages are used by ARP, AH and ESP to 19773 * communicate with IP. We deal with IPSEC_IN and 19774 * IPSEC_OUT here. ip_wput_nondata handles other 19775 * cases. 19776 */ 19777 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 19778 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 19779 first_mp = mp->b_cont; 19780 first_mp->b_flag &= ~MSGHASREF; 19781 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 19782 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 19783 CONN_DEC_REF(connp); 19784 connp = NULL; 19785 } 19786 if (ii->ipsec_info_type == IPSEC_IN) { 19787 /* 19788 * Either this message goes back to 19789 * IPSEC for further processing or to 19790 * ULP after policy checks. 19791 */ 19792 ip_fanout_proto_again(mp, NULL, NULL, NULL); 19793 return; 19794 } else if (ii->ipsec_info_type == IPSEC_OUT) { 19795 io = (ipsec_out_t *)ii; 19796 if (io->ipsec_out_proc_begin) { 19797 /* 19798 * IPSEC processing has already started. 19799 * Complete it. 19800 * IPQoS notes: We don't care what is 19801 * in ipsec_out_ill_index since this 19802 * won't be processed for IPQoS policies 19803 * in ipsec_out_process. 19804 */ 19805 ipsec_out_process(q, mp, NULL, 19806 io->ipsec_out_ill_index); 19807 return; 19808 } else { 19809 connp = (q->q_next != NULL) ? 19810 NULL : Q_TO_CONN(q); 19811 first_mp = mp; 19812 mp = mp->b_cont; 19813 mctl_present = B_TRUE; 19814 } 19815 zoneid = io->ipsec_out_zoneid; 19816 ASSERT(zoneid != ALL_ZONES); 19817 } else if (ii->ipsec_info_type == IPSEC_CTL) { 19818 /* 19819 * It's an IPsec control message requesting 19820 * an SADB update to be sent to the IPsec 19821 * hardware acceleration capable ills. 19822 */ 19823 ipsec_ctl_t *ipsec_ctl = 19824 (ipsec_ctl_t *)mp->b_rptr; 19825 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 19826 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 19827 mblk_t *cmp = mp->b_cont; 19828 19829 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 19830 ASSERT(cmp != NULL); 19831 19832 freeb(mp); 19833 ill_ipsec_capab_send_all(satype, cmp, sa); 19834 return; 19835 } else { 19836 /* 19837 * This must be ARP or special TSOL signaling. 19838 */ 19839 ip_wput_nondata(NULL, q, mp, NULL); 19840 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19841 "ip_wput_end: q %p (%S)", q, "nondata"); 19842 return; 19843 } 19844 } else { 19845 /* 19846 * This must be non-(ARP/AH/ESP) messages. 19847 */ 19848 ASSERT(!need_decref); 19849 ip_wput_nondata(NULL, q, mp, NULL); 19850 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19851 "ip_wput_end: q %p (%S)", q, "nondata"); 19852 return; 19853 } 19854 } else { 19855 first_mp = mp; 19856 mctl_present = B_FALSE; 19857 } 19858 19859 ASSERT(first_mp != NULL); 19860 /* 19861 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 19862 * to make sure that this packet goes out on the same interface it 19863 * came in. We handle that here. 19864 */ 19865 if (mctl_present) { 19866 uint_t ifindex; 19867 19868 io = (ipsec_out_t *)first_mp->b_rptr; 19869 if (io->ipsec_out_attach_if || 19870 io->ipsec_out_xmit_if || 19871 io->ipsec_out_ip_nexthop) { 19872 ill_t *ill; 19873 19874 /* 19875 * We may have lost the conn context if we are 19876 * coming here from ip_newroute(). Copy the 19877 * nexthop information. 19878 */ 19879 if (io->ipsec_out_ip_nexthop) { 19880 ip_nexthop = B_TRUE; 19881 nexthop_addr = io->ipsec_out_nexthop_addr; 19882 19883 ipha = (ipha_t *)mp->b_rptr; 19884 dst = ipha->ipha_dst; 19885 goto send_from_ill; 19886 } else { 19887 ASSERT(io->ipsec_out_ill_index != 0); 19888 ifindex = io->ipsec_out_ill_index; 19889 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 19890 NULL, NULL, NULL, NULL); 19891 /* 19892 * ipsec_out_xmit_if bit is used to tell 19893 * ip_wput to use the ill to send outgoing data 19894 * as we have no conn when data comes from ICMP 19895 * error msg routines. Currently this feature is 19896 * only used by ip_mrtun_forward routine. 19897 */ 19898 if (io->ipsec_out_xmit_if) { 19899 xmit_ill = ill; 19900 if (xmit_ill == NULL) { 19901 ip1dbg(("ip_output:bad ifindex " 19902 "for xmit_ill %d\n", 19903 ifindex)); 19904 freemsg(first_mp); 19905 BUMP_MIB(&ip_mib, 19906 ipOutDiscards); 19907 ASSERT(!need_decref); 19908 return; 19909 } 19910 /* Free up the ipsec_out_t mblk */ 19911 ASSERT(first_mp->b_cont == mp); 19912 first_mp->b_cont = NULL; 19913 freeb(first_mp); 19914 /* Just send the IP header+ICMP+data */ 19915 first_mp = mp; 19916 ipha = (ipha_t *)mp->b_rptr; 19917 dst = ipha->ipha_dst; 19918 goto send_from_ill; 19919 } else { 19920 attach_ill = ill; 19921 } 19922 19923 if (attach_ill == NULL) { 19924 ASSERT(xmit_ill == NULL); 19925 ip1dbg(("ip_output: bad ifindex for " 19926 "(BIND TO IPIF_NOFAILOVER) %d\n", 19927 ifindex)); 19928 freemsg(first_mp); 19929 BUMP_MIB(&ip_mib, ipOutDiscards); 19930 ASSERT(!need_decref); 19931 return; 19932 } 19933 } 19934 } 19935 } 19936 19937 ASSERT(xmit_ill == NULL); 19938 19939 /* We have a complete IP datagram heading outbound. */ 19940 ipha = (ipha_t *)mp->b_rptr; 19941 19942 #ifndef SPEED_BEFORE_SAFETY 19943 /* 19944 * Make sure we have a full-word aligned message and that at least 19945 * a simple IP header is accessible in the first message. If not, 19946 * try a pullup. 19947 */ 19948 if (!OK_32PTR(rptr) || 19949 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 19950 hdrtoosmall: 19951 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 19952 BUMP_MIB(&ip_mib, ipOutDiscards); 19953 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19954 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 19955 if (first_mp == NULL) 19956 first_mp = mp; 19957 goto drop_pkt; 19958 } 19959 19960 /* This function assumes that mp points to an IPv4 packet. */ 19961 if (is_system_labeled() && q->q_next == NULL && 19962 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 19963 !connp->conn_ulp_labeled) { 19964 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 19965 &adjust, connp->conn_mac_exempt); 19966 ipha = (ipha_t *)mp->b_rptr; 19967 if (first_mp != NULL) 19968 first_mp->b_cont = mp; 19969 if (err != 0) { 19970 if (first_mp == NULL) 19971 first_mp = mp; 19972 if (err == EINVAL) 19973 goto icmp_parameter_problem; 19974 ip2dbg(("ip_wput: label check failed (%d)\n", 19975 err)); 19976 goto drop_pkt; 19977 } 19978 iplen = ntohs(ipha->ipha_length) + adjust; 19979 ipha->ipha_length = htons(iplen); 19980 } 19981 19982 ipha = (ipha_t *)mp->b_rptr; 19983 if (first_mp == NULL) { 19984 ASSERT(attach_ill == NULL && xmit_ill == NULL); 19985 /* 19986 * If we got here because of "goto hdrtoosmall" 19987 * We need to attach a IPSEC_OUT. 19988 */ 19989 if (connp->conn_out_enforce_policy) { 19990 if (((mp = ipsec_attach_ipsec_out(mp, connp, 19991 NULL, ipha->ipha_protocol)) == NULL)) { 19992 if (need_decref) 19993 CONN_DEC_REF(connp); 19994 return; 19995 } else { 19996 ASSERT(mp->b_datap->db_type == M_CTL); 19997 first_mp = mp; 19998 mp = mp->b_cont; 19999 mctl_present = B_TRUE; 20000 } 20001 } else { 20002 first_mp = mp; 20003 mctl_present = B_FALSE; 20004 } 20005 } 20006 } 20007 #endif 20008 20009 /* Most of the code below is written for speed, not readability */ 20010 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20011 20012 /* 20013 * If ip_newroute() fails, we're going to need a full 20014 * header for the icmp wraparound. 20015 */ 20016 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20017 uint_t v_hlen; 20018 version_hdrlen_check: 20019 ASSERT(first_mp != NULL); 20020 v_hlen = V_HLEN; 20021 /* 20022 * siphon off IPv6 packets coming down from transport 20023 * layer modules here. 20024 * Note: high-order bit carries NUD reachability confirmation 20025 */ 20026 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20027 /* 20028 * XXX implement a IPv4 and IPv6 packet counter per 20029 * conn and switch when ratio exceeds e.g. 10:1 20030 */ 20031 #ifdef notyet 20032 if (q->q_next == NULL) /* Avoid ill queue */ 20033 ip_setqinfo(RD(q), B_TRUE, B_TRUE); 20034 #endif 20035 BUMP_MIB(&ip_mib, ipOutIPv6); 20036 ASSERT(xmit_ill == NULL); 20037 if (attach_ill != NULL) 20038 ill_refrele(attach_ill); 20039 if (need_decref) 20040 mp->b_flag |= MSGHASREF; 20041 (void) ip_output_v6(arg, first_mp, arg2, caller); 20042 return; 20043 } 20044 20045 if ((v_hlen >> 4) != IP_VERSION) { 20046 BUMP_MIB(&ip_mib, ipOutDiscards); 20047 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20048 "ip_wput_end: q %p (%S)", q, "badvers"); 20049 goto drop_pkt; 20050 } 20051 /* 20052 * Is the header length at least 20 bytes? 20053 * 20054 * Are there enough bytes accessible in the header? If 20055 * not, try a pullup. 20056 */ 20057 v_hlen &= 0xF; 20058 v_hlen <<= 2; 20059 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20060 BUMP_MIB(&ip_mib, ipOutDiscards); 20061 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20062 "ip_wput_end: q %p (%S)", q, "badlen"); 20063 goto drop_pkt; 20064 } 20065 if (v_hlen > (mp->b_wptr - rptr)) { 20066 if (!pullupmsg(mp, v_hlen)) { 20067 BUMP_MIB(&ip_mib, ipOutDiscards); 20068 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20069 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20070 goto drop_pkt; 20071 } 20072 ipha = (ipha_t *)mp->b_rptr; 20073 } 20074 /* 20075 * Move first entry from any source route into ipha_dst and 20076 * verify the options 20077 */ 20078 if (ip_wput_options(q, first_mp, ipha, mctl_present, zoneid)) { 20079 ASSERT(xmit_ill == NULL); 20080 if (attach_ill != NULL) 20081 ill_refrele(attach_ill); 20082 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20083 "ip_wput_end: q %p (%S)", q, "badopts"); 20084 if (need_decref) 20085 CONN_DEC_REF(connp); 20086 return; 20087 } 20088 } 20089 dst = ipha->ipha_dst; 20090 20091 /* 20092 * Try to get an IRE_CACHE for the destination address. If we can't, 20093 * we have to run the packet through ip_newroute which will take 20094 * the appropriate action to arrange for an IRE_CACHE, such as querying 20095 * a resolver, or assigning a default gateway, etc. 20096 */ 20097 if (CLASSD(dst)) { 20098 ipif_t *ipif; 20099 uint32_t setsrc = 0; 20100 20101 multicast: 20102 ASSERT(first_mp != NULL); 20103 ASSERT(xmit_ill == NULL); 20104 ip2dbg(("ip_wput: CLASSD\n")); 20105 if (connp == NULL) { 20106 /* 20107 * Use the first good ipif on the ill. 20108 * XXX Should this ever happen? (Appears 20109 * to show up with just ppp and no ethernet due 20110 * to in.rdisc.) 20111 * However, ire_send should be able to 20112 * call ip_wput_ire directly. 20113 * 20114 * XXX Also, this can happen for ICMP and other packets 20115 * with multicast source addresses. Perhaps we should 20116 * fix things so that we drop the packet in question, 20117 * but for now, just run with it. 20118 */ 20119 ill_t *ill = (ill_t *)q->q_ptr; 20120 20121 /* 20122 * Don't honor attach_if for this case. If ill 20123 * is part of the group, ipif could belong to 20124 * any ill and we cannot maintain attach_ill 20125 * and ipif_ill same anymore and the assert 20126 * below would fail. 20127 */ 20128 if (mctl_present && io->ipsec_out_attach_if) { 20129 io->ipsec_out_ill_index = 0; 20130 io->ipsec_out_attach_if = B_FALSE; 20131 ASSERT(attach_ill != NULL); 20132 ill_refrele(attach_ill); 20133 attach_ill = NULL; 20134 } 20135 20136 ASSERT(attach_ill == NULL); 20137 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20138 if (ipif == NULL) { 20139 if (need_decref) 20140 CONN_DEC_REF(connp); 20141 freemsg(first_mp); 20142 return; 20143 } 20144 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20145 ntohl(dst), ill->ill_name)); 20146 } else { 20147 /* 20148 * If both IP_MULTICAST_IF and IP_XMIT_IF are set, 20149 * IP_XMIT_IF is honoured. 20150 * Block comment above this function explains the 20151 * locking mechanism used here 20152 */ 20153 xmit_ill = conn_get_held_ill(connp, 20154 &connp->conn_xmit_if_ill, &err); 20155 if (err == ILL_LOOKUP_FAILED) { 20156 ip1dbg(("ip_wput: No ill for IP_XMIT_IF\n")); 20157 goto drop_pkt; 20158 } 20159 if (xmit_ill == NULL) { 20160 ipif = conn_get_held_ipif(connp, 20161 &connp->conn_multicast_ipif, &err); 20162 if (err == IPIF_LOOKUP_FAILED) { 20163 ip1dbg(("ip_wput: No ipif for " 20164 "multicast\n")); 20165 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20166 goto drop_pkt; 20167 } 20168 } 20169 if (xmit_ill != NULL) { 20170 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20171 if (ipif == NULL) { 20172 ip1dbg(("ip_wput: No ipif for " 20173 "IP_XMIT_IF\n")); 20174 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20175 goto drop_pkt; 20176 } 20177 } else if (ipif == NULL || ipif->ipif_isv6) { 20178 /* 20179 * We must do this ipif determination here 20180 * else we could pass through ip_newroute 20181 * and come back here without the conn context. 20182 * 20183 * Note: we do late binding i.e. we bind to 20184 * the interface when the first packet is sent. 20185 * For performance reasons we do not rebind on 20186 * each packet but keep the binding until the 20187 * next IP_MULTICAST_IF option. 20188 * 20189 * conn_multicast_{ipif,ill} are shared between 20190 * IPv4 and IPv6 and AF_INET6 sockets can 20191 * send both IPv4 and IPv6 packets. Hence 20192 * we have to check that "isv6" matches above. 20193 */ 20194 if (ipif != NULL) 20195 ipif_refrele(ipif); 20196 ipif = ipif_lookup_group(dst, zoneid); 20197 if (ipif == NULL) { 20198 ip1dbg(("ip_wput: No ipif for " 20199 "multicast\n")); 20200 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20201 goto drop_pkt; 20202 } 20203 err = conn_set_held_ipif(connp, 20204 &connp->conn_multicast_ipif, ipif); 20205 if (err == IPIF_LOOKUP_FAILED) { 20206 ipif_refrele(ipif); 20207 ip1dbg(("ip_wput: No ipif for " 20208 "multicast\n")); 20209 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20210 goto drop_pkt; 20211 } 20212 } 20213 } 20214 ASSERT(!ipif->ipif_isv6); 20215 /* 20216 * As we may lose the conn by the time we reach ip_wput_ire, 20217 * we copy conn_multicast_loop and conn_dontroute on to an 20218 * ipsec_out. In case if this datagram goes out secure, 20219 * we need the ill_index also. Copy that also into the 20220 * ipsec_out. 20221 */ 20222 if (mctl_present) { 20223 io = (ipsec_out_t *)first_mp->b_rptr; 20224 ASSERT(first_mp->b_datap->db_type == M_CTL); 20225 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20226 } else { 20227 ASSERT(mp == first_mp); 20228 if ((first_mp = allocb(sizeof (ipsec_info_t), 20229 BPRI_HI)) == NULL) { 20230 ipif_refrele(ipif); 20231 first_mp = mp; 20232 goto drop_pkt; 20233 } 20234 first_mp->b_datap->db_type = M_CTL; 20235 first_mp->b_wptr += sizeof (ipsec_info_t); 20236 /* ipsec_out_secure is B_FALSE now */ 20237 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 20238 io = (ipsec_out_t *)first_mp->b_rptr; 20239 io->ipsec_out_type = IPSEC_OUT; 20240 io->ipsec_out_len = sizeof (ipsec_out_t); 20241 io->ipsec_out_use_global_policy = B_TRUE; 20242 first_mp->b_cont = mp; 20243 mctl_present = B_TRUE; 20244 } 20245 if (attach_ill != NULL) { 20246 ASSERT(attach_ill == ipif->ipif_ill); 20247 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20248 20249 /* 20250 * Check if we need an ire that will not be 20251 * looked up by anybody else i.e. HIDDEN. 20252 */ 20253 if (ill_is_probeonly(attach_ill)) { 20254 match_flags |= MATCH_IRE_MARK_HIDDEN; 20255 } 20256 io->ipsec_out_ill_index = 20257 attach_ill->ill_phyint->phyint_ifindex; 20258 io->ipsec_out_attach_if = B_TRUE; 20259 } else { 20260 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 20261 io->ipsec_out_ill_index = 20262 ipif->ipif_ill->ill_phyint->phyint_ifindex; 20263 } 20264 if (connp != NULL) { 20265 io->ipsec_out_multicast_loop = 20266 connp->conn_multicast_loop; 20267 io->ipsec_out_dontroute = connp->conn_dontroute; 20268 io->ipsec_out_zoneid = connp->conn_zoneid; 20269 } 20270 /* 20271 * If the application uses IP_MULTICAST_IF with 20272 * different logical addresses of the same ILL, we 20273 * need to make sure that the soruce address of 20274 * the packet matches the logical IP address used 20275 * in the option. We do it by initializing ipha_src 20276 * here. This should keep IPSEC also happy as 20277 * when we return from IPSEC processing, we don't 20278 * have to worry about getting the right address on 20279 * the packet. Thus it is sufficient to look for 20280 * IRE_CACHE using MATCH_IRE_ILL rathen than 20281 * MATCH_IRE_IPIF. 20282 * 20283 * NOTE : We need to do it for non-secure case also as 20284 * this might go out secure if there is a global policy 20285 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 20286 * address, the source should be initialized already and 20287 * hence we won't be initializing here. 20288 * 20289 * As we do not have the ire yet, it is possible that 20290 * we set the source address here and then later discover 20291 * that the ire implies the source address to be assigned 20292 * through the RTF_SETSRC flag. 20293 * In that case, the setsrc variable will remind us 20294 * that overwritting the source address by the one 20295 * of the RTF_SETSRC-flagged ire is allowed. 20296 */ 20297 if (ipha->ipha_src == INADDR_ANY && 20298 (connp == NULL || !connp->conn_unspec_src)) { 20299 ipha->ipha_src = ipif->ipif_src_addr; 20300 setsrc = RTF_SETSRC; 20301 } 20302 /* 20303 * Find an IRE which matches the destination and the outgoing 20304 * queue (i.e. the outgoing interface.) 20305 * For loopback use a unicast IP address for 20306 * the ire lookup. 20307 */ 20308 if (ipif->ipif_ill->ill_phyint->phyint_flags & 20309 PHYI_LOOPBACK) { 20310 dst = ipif->ipif_lcl_addr; 20311 } 20312 /* 20313 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 20314 * We don't need to lookup ire in ctable as the packet 20315 * needs to be sent to the destination through the specified 20316 * ill irrespective of ires in the cache table. 20317 */ 20318 ire = NULL; 20319 if (xmit_ill == NULL) { 20320 ire = ire_ctable_lookup(dst, 0, 0, ipif, 20321 zoneid, MBLK_GETLABEL(mp), match_flags); 20322 } 20323 20324 /* 20325 * refrele attach_ill as its not needed anymore. 20326 */ 20327 if (attach_ill != NULL) { 20328 ill_refrele(attach_ill); 20329 attach_ill = NULL; 20330 } 20331 20332 if (ire == NULL) { 20333 /* 20334 * Multicast loopback and multicast forwarding is 20335 * done in ip_wput_ire. 20336 * 20337 * Mark this packet to make it be delivered to 20338 * ip_wput_ire after the new ire has been 20339 * created. 20340 * 20341 * The call to ip_newroute_ipif takes into account 20342 * the setsrc reminder. In any case, we take care 20343 * of the RTF_MULTIRT flag. 20344 */ 20345 mp->b_prev = mp->b_next = NULL; 20346 if (xmit_ill == NULL || 20347 xmit_ill->ill_ipif_up_count > 0) { 20348 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 20349 setsrc | RTF_MULTIRT, zoneid); 20350 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20351 "ip_wput_end: q %p (%S)", q, "noire"); 20352 } else { 20353 freemsg(first_mp); 20354 } 20355 ipif_refrele(ipif); 20356 if (xmit_ill != NULL) 20357 ill_refrele(xmit_ill); 20358 if (need_decref) 20359 CONN_DEC_REF(connp); 20360 return; 20361 } 20362 20363 ipif_refrele(ipif); 20364 ipif = NULL; 20365 ASSERT(xmit_ill == NULL); 20366 20367 /* 20368 * Honor the RTF_SETSRC flag for multicast packets, 20369 * if allowed by the setsrc reminder. 20370 */ 20371 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 20372 ipha->ipha_src = ire->ire_src_addr; 20373 } 20374 20375 /* 20376 * Unconditionally force the TTL to 1 for 20377 * multirouted multicast packets: 20378 * multirouted multicast should not cross 20379 * multicast routers. 20380 */ 20381 if (ire->ire_flags & RTF_MULTIRT) { 20382 if (ipha->ipha_ttl > 1) { 20383 ip2dbg(("ip_wput: forcing multicast " 20384 "multirt TTL to 1 (was %d), dst 0x%08x\n", 20385 ipha->ipha_ttl, ntohl(ire->ire_addr))); 20386 ipha->ipha_ttl = 1; 20387 } 20388 } 20389 } else { 20390 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 20391 if ((ire != NULL) && (ire->ire_type & 20392 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 20393 ignore_dontroute = B_TRUE; 20394 ignore_nexthop = B_TRUE; 20395 } 20396 if (ire != NULL) { 20397 ire_refrele(ire); 20398 ire = NULL; 20399 } 20400 /* 20401 * Guard against coming in from arp in which case conn is NULL. 20402 * Also guard against non M_DATA with dontroute set but 20403 * destined to local, loopback or broadcast addresses. 20404 */ 20405 if (connp != NULL && connp->conn_dontroute && 20406 !ignore_dontroute) { 20407 dontroute: 20408 /* 20409 * Set TTL to 1 if SO_DONTROUTE is set to prevent 20410 * routing protocols from seeing false direct 20411 * connectivity. 20412 */ 20413 ipha->ipha_ttl = 1; 20414 /* 20415 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 20416 * along with SO_DONTROUTE, higher precedence is 20417 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 20418 */ 20419 if (connp->conn_xmit_if_ill == NULL) { 20420 /* If suitable ipif not found, drop packet */ 20421 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid); 20422 if (dst_ipif == NULL) { 20423 ip1dbg(("ip_wput: no route for " 20424 "dst using SO_DONTROUTE\n")); 20425 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20426 mp->b_prev = mp->b_next = NULL; 20427 if (first_mp == NULL) 20428 first_mp = mp; 20429 goto drop_pkt; 20430 } else { 20431 /* 20432 * If suitable ipif has been found, set 20433 * xmit_ill to the corresponding 20434 * ipif_ill because we'll be following 20435 * the IP_XMIT_IF logic. 20436 */ 20437 ASSERT(xmit_ill == NULL); 20438 xmit_ill = dst_ipif->ipif_ill; 20439 mutex_enter(&xmit_ill->ill_lock); 20440 if (!ILL_CAN_LOOKUP(xmit_ill)) { 20441 mutex_exit(&xmit_ill->ill_lock); 20442 xmit_ill = NULL; 20443 ipif_refrele(dst_ipif); 20444 ip1dbg(("ip_wput: no route for" 20445 " dst using" 20446 " SO_DONTROUTE\n")); 20447 BUMP_MIB(&ip_mib, 20448 ipOutNoRoutes); 20449 mp->b_prev = mp->b_next = NULL; 20450 if (first_mp == NULL) 20451 first_mp = mp; 20452 goto drop_pkt; 20453 } 20454 ill_refhold_locked(xmit_ill); 20455 mutex_exit(&xmit_ill->ill_lock); 20456 ipif_refrele(dst_ipif); 20457 } 20458 } 20459 20460 } 20461 /* 20462 * If we are bound to IPIF_NOFAILOVER address, look for 20463 * an IRE_CACHE matching the ill. 20464 */ 20465 send_from_ill: 20466 if (attach_ill != NULL) { 20467 ipif_t *attach_ipif; 20468 20469 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20470 20471 /* 20472 * Check if we need an ire that will not be 20473 * looked up by anybody else i.e. HIDDEN. 20474 */ 20475 if (ill_is_probeonly(attach_ill)) { 20476 match_flags |= MATCH_IRE_MARK_HIDDEN; 20477 } 20478 20479 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 20480 if (attach_ipif == NULL) { 20481 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 20482 goto drop_pkt; 20483 } 20484 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 20485 zoneid, MBLK_GETLABEL(mp), match_flags); 20486 ipif_refrele(attach_ipif); 20487 } else if (xmit_ill != NULL || (connp != NULL && 20488 connp->conn_xmit_if_ill != NULL)) { 20489 /* 20490 * Mark this packet as originated locally 20491 */ 20492 mp->b_prev = mp->b_next = NULL; 20493 /* 20494 * xmit_ill could be NULL if SO_DONTROUTE 20495 * is also set. 20496 */ 20497 if (xmit_ill == NULL) { 20498 xmit_ill = conn_get_held_ill(connp, 20499 &connp->conn_xmit_if_ill, &err); 20500 if (err == ILL_LOOKUP_FAILED) { 20501 if (need_decref) 20502 CONN_DEC_REF(connp); 20503 freemsg(first_mp); 20504 return; 20505 } 20506 if (xmit_ill == NULL) { 20507 if (connp->conn_dontroute) 20508 goto dontroute; 20509 goto send_from_ill; 20510 } 20511 } 20512 /* 20513 * could be SO_DONTROUTE case also. 20514 * check at least one interface is UP as 20515 * spcified by this ILL, and then call 20516 * ip_newroute_ipif() 20517 */ 20518 if (xmit_ill->ill_ipif_up_count > 0) { 20519 ipif_t *ipif; 20520 20521 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20522 if (ipif != NULL) { 20523 ip_newroute_ipif(q, first_mp, ipif, 20524 dst, connp, 0, zoneid); 20525 ipif_refrele(ipif); 20526 ip1dbg(("ip_wput: ip_unicast_if\n")); 20527 } 20528 } else { 20529 freemsg(first_mp); 20530 } 20531 ill_refrele(xmit_ill); 20532 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20533 "ip_wput_end: q %p (%S)", q, "unicast_if"); 20534 if (need_decref) 20535 CONN_DEC_REF(connp); 20536 return; 20537 } else if (ip_nexthop || (connp != NULL && 20538 (connp->conn_nexthop_set)) && !ignore_nexthop) { 20539 if (!ip_nexthop) { 20540 ip_nexthop = B_TRUE; 20541 nexthop_addr = connp->conn_nexthop_v4; 20542 } 20543 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 20544 MATCH_IRE_GW; 20545 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 20546 NULL, zoneid, MBLK_GETLABEL(mp), match_flags); 20547 } else { 20548 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 20549 } 20550 if (!ire) { 20551 /* 20552 * Make sure we don't load spread if this 20553 * is IPIF_NOFAILOVER case. 20554 */ 20555 if ((attach_ill != NULL) || 20556 (ip_nexthop && !ignore_nexthop)) { 20557 if (mctl_present) { 20558 io = (ipsec_out_t *)first_mp->b_rptr; 20559 ASSERT(first_mp->b_datap->db_type == 20560 M_CTL); 20561 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20562 } else { 20563 ASSERT(mp == first_mp); 20564 first_mp = allocb( 20565 sizeof (ipsec_info_t), BPRI_HI); 20566 if (first_mp == NULL) { 20567 first_mp = mp; 20568 goto drop_pkt; 20569 } 20570 first_mp->b_datap->db_type = M_CTL; 20571 first_mp->b_wptr += 20572 sizeof (ipsec_info_t); 20573 /* ipsec_out_secure is B_FALSE now */ 20574 bzero(first_mp->b_rptr, 20575 sizeof (ipsec_info_t)); 20576 io = (ipsec_out_t *)first_mp->b_rptr; 20577 io->ipsec_out_type = IPSEC_OUT; 20578 io->ipsec_out_len = 20579 sizeof (ipsec_out_t); 20580 io->ipsec_out_use_global_policy = 20581 B_TRUE; 20582 first_mp->b_cont = mp; 20583 mctl_present = B_TRUE; 20584 } 20585 if (attach_ill != NULL) { 20586 io->ipsec_out_ill_index = attach_ill-> 20587 ill_phyint->phyint_ifindex; 20588 io->ipsec_out_attach_if = B_TRUE; 20589 } else { 20590 io->ipsec_out_ip_nexthop = ip_nexthop; 20591 io->ipsec_out_nexthop_addr = 20592 nexthop_addr; 20593 } 20594 } 20595 noirefound: 20596 /* 20597 * Mark this packet as having originated on 20598 * this machine. This will be noted in 20599 * ire_add_then_send, which needs to know 20600 * whether to run it back through ip_wput or 20601 * ip_rput following successful resolution. 20602 */ 20603 mp->b_prev = NULL; 20604 mp->b_next = NULL; 20605 ip_newroute(q, first_mp, dst, NULL, connp, zoneid); 20606 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20607 "ip_wput_end: q %p (%S)", q, "newroute"); 20608 if (attach_ill != NULL) 20609 ill_refrele(attach_ill); 20610 if (xmit_ill != NULL) 20611 ill_refrele(xmit_ill); 20612 if (need_decref) 20613 CONN_DEC_REF(connp); 20614 return; 20615 } 20616 } 20617 20618 /* We now know where we are going with it. */ 20619 20620 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20621 "ip_wput_end: q %p (%S)", q, "end"); 20622 20623 /* 20624 * Check if the ire has the RTF_MULTIRT flag, inherited 20625 * from an IRE_OFFSUBNET ire entry in ip_newroute. 20626 */ 20627 if (ire->ire_flags & RTF_MULTIRT) { 20628 /* 20629 * Force the TTL of multirouted packets if required. 20630 * The TTL of such packets is bounded by the 20631 * ip_multirt_ttl ndd variable. 20632 */ 20633 if ((ip_multirt_ttl > 0) && 20634 (ipha->ipha_ttl > ip_multirt_ttl)) { 20635 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20636 "(was %d), dst 0x%08x\n", 20637 ip_multirt_ttl, ipha->ipha_ttl, 20638 ntohl(ire->ire_addr))); 20639 ipha->ipha_ttl = ip_multirt_ttl; 20640 } 20641 /* 20642 * At this point, we check to see if there are any pending 20643 * unresolved routes. ire_multirt_resolvable() 20644 * checks in O(n) that all IRE_OFFSUBNET ire 20645 * entries for the packet's destination and 20646 * flagged RTF_MULTIRT are currently resolved. 20647 * If some remain unresolved, we make a copy 20648 * of the current message. It will be used 20649 * to initiate additional route resolutions. 20650 */ 20651 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20652 MBLK_GETLABEL(first_mp)); 20653 ip2dbg(("ip_wput[noirefound]: ire %p, " 20654 "multirt_need_resolve %d, first_mp %p\n", 20655 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20656 if (multirt_need_resolve) { 20657 copy_mp = copymsg(first_mp); 20658 if (copy_mp != NULL) { 20659 MULTIRT_DEBUG_TAG(copy_mp); 20660 } 20661 } 20662 } 20663 20664 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20665 /* 20666 * Try to resolve another multiroute if 20667 * ire_multirt_resolvable() deemed it necessary. 20668 * At this point, we need to distinguish 20669 * multicasts from other packets. For multicasts, 20670 * we call ip_newroute_ipif() and request that both 20671 * multirouting and setsrc flags are checked. 20672 */ 20673 if (copy_mp != NULL) { 20674 if (CLASSD(dst)) { 20675 ipif_t *ipif = ipif_lookup_group(dst, zoneid); 20676 if (ipif) { 20677 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 20678 RTF_SETSRC | RTF_MULTIRT, zoneid); 20679 ipif_refrele(ipif); 20680 } else { 20681 MULTIRT_DEBUG_UNTAG(copy_mp); 20682 freemsg(copy_mp); 20683 copy_mp = NULL; 20684 } 20685 } else { 20686 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 20687 } 20688 } 20689 if (attach_ill != NULL) 20690 ill_refrele(attach_ill); 20691 if (xmit_ill != NULL) 20692 ill_refrele(xmit_ill); 20693 if (need_decref) 20694 CONN_DEC_REF(connp); 20695 return; 20696 20697 icmp_parameter_problem: 20698 /* could not have originated externally */ 20699 ASSERT(mp->b_prev == NULL); 20700 if (ip_hdr_complete(ipha, zoneid) == 0) { 20701 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20702 /* it's the IP header length that's in trouble */ 20703 icmp_param_problem(q, first_mp, 0, zoneid); 20704 first_mp = NULL; 20705 } 20706 20707 drop_pkt: 20708 ip1dbg(("ip_wput: dropped packet\n")); 20709 if (ire != NULL) 20710 ire_refrele(ire); 20711 if (need_decref) 20712 CONN_DEC_REF(connp); 20713 freemsg(first_mp); 20714 if (attach_ill != NULL) 20715 ill_refrele(attach_ill); 20716 if (xmit_ill != NULL) 20717 ill_refrele(xmit_ill); 20718 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20719 "ip_wput_end: q %p (%S)", q, "droppkt"); 20720 } 20721 20722 /* 20723 * If this is a conn_t queue, then we pass in the conn. This includes the 20724 * zoneid. 20725 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 20726 * in which case we use the global zoneid since those are all part of 20727 * the global zone. 20728 */ 20729 void 20730 ip_wput(queue_t *q, mblk_t *mp) 20731 { 20732 if (CONN_Q(q)) 20733 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 20734 else 20735 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 20736 } 20737 20738 /* 20739 * 20740 * The following rules must be observed when accessing any ipif or ill 20741 * that has been cached in the conn. Typically conn_nofailover_ill, 20742 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 20743 * 20744 * Access: The ipif or ill pointed to from the conn can be accessed under 20745 * the protection of the conn_lock or after it has been refheld under the 20746 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 20747 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 20748 * The reason for this is that a concurrent unplumb could actually be 20749 * cleaning up these cached pointers by walking the conns and might have 20750 * finished cleaning up the conn in question. The macros check that an 20751 * unplumb has not yet started on the ipif or ill. 20752 * 20753 * Caching: An ipif or ill pointer may be cached in the conn only after 20754 * making sure that an unplumb has not started. So the caching is done 20755 * while holding both the conn_lock and the ill_lock and after using the 20756 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 20757 * flag before starting the cleanup of conns. 20758 * 20759 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 20760 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 20761 * or a reference to the ipif or a reference to an ire that references the 20762 * ipif. An ipif does not change its ill except for failover/failback. Since 20763 * failover/failback happens only after bringing down the ipif and making sure 20764 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 20765 * the above holds. 20766 */ 20767 ipif_t * 20768 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 20769 { 20770 ipif_t *ipif; 20771 ill_t *ill; 20772 20773 *err = 0; 20774 rw_enter(&ill_g_lock, RW_READER); 20775 mutex_enter(&connp->conn_lock); 20776 ipif = *ipifp; 20777 if (ipif != NULL) { 20778 ill = ipif->ipif_ill; 20779 mutex_enter(&ill->ill_lock); 20780 if (IPIF_CAN_LOOKUP(ipif)) { 20781 ipif_refhold_locked(ipif); 20782 mutex_exit(&ill->ill_lock); 20783 mutex_exit(&connp->conn_lock); 20784 rw_exit(&ill_g_lock); 20785 return (ipif); 20786 } else { 20787 *err = IPIF_LOOKUP_FAILED; 20788 } 20789 mutex_exit(&ill->ill_lock); 20790 } 20791 mutex_exit(&connp->conn_lock); 20792 rw_exit(&ill_g_lock); 20793 return (NULL); 20794 } 20795 20796 ill_t * 20797 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 20798 { 20799 ill_t *ill; 20800 20801 *err = 0; 20802 mutex_enter(&connp->conn_lock); 20803 ill = *illp; 20804 if (ill != NULL) { 20805 mutex_enter(&ill->ill_lock); 20806 if (ILL_CAN_LOOKUP(ill)) { 20807 ill_refhold_locked(ill); 20808 mutex_exit(&ill->ill_lock); 20809 mutex_exit(&connp->conn_lock); 20810 return (ill); 20811 } else { 20812 *err = ILL_LOOKUP_FAILED; 20813 } 20814 mutex_exit(&ill->ill_lock); 20815 } 20816 mutex_exit(&connp->conn_lock); 20817 return (NULL); 20818 } 20819 20820 static int 20821 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 20822 { 20823 ill_t *ill; 20824 20825 ill = ipif->ipif_ill; 20826 mutex_enter(&connp->conn_lock); 20827 mutex_enter(&ill->ill_lock); 20828 if (IPIF_CAN_LOOKUP(ipif)) { 20829 *ipifp = ipif; 20830 mutex_exit(&ill->ill_lock); 20831 mutex_exit(&connp->conn_lock); 20832 return (0); 20833 } 20834 mutex_exit(&ill->ill_lock); 20835 mutex_exit(&connp->conn_lock); 20836 return (IPIF_LOOKUP_FAILED); 20837 } 20838 20839 /* 20840 * This is called if the outbound datagram needs fragmentation. 20841 * 20842 * NOTE : This function does not ire_refrele the ire argument passed in. 20843 */ 20844 static void 20845 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid) 20846 { 20847 ipha_t *ipha; 20848 mblk_t *mp; 20849 uint32_t v_hlen_tos_len; 20850 uint32_t max_frag; 20851 uint32_t frag_flag; 20852 boolean_t dont_use; 20853 20854 if (ipsec_mp->b_datap->db_type == M_CTL) { 20855 mp = ipsec_mp->b_cont; 20856 } else { 20857 mp = ipsec_mp; 20858 } 20859 20860 ipha = (ipha_t *)mp->b_rptr; 20861 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20862 20863 #ifdef _BIG_ENDIAN 20864 #define V_HLEN (v_hlen_tos_len >> 24) 20865 #define LENGTH (v_hlen_tos_len & 0xFFFF) 20866 #else 20867 #define V_HLEN (v_hlen_tos_len & 0xFF) 20868 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 20869 #endif 20870 20871 #ifndef SPEED_BEFORE_SAFETY 20872 /* 20873 * Check that ipha_length is consistent with 20874 * the mblk length 20875 */ 20876 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 20877 ip0dbg(("Packet length mismatch: %d, %ld\n", 20878 LENGTH, msgdsize(mp))); 20879 freemsg(ipsec_mp); 20880 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20881 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 20882 "packet length mismatch"); 20883 return; 20884 } 20885 #endif 20886 /* 20887 * Don't use frag_flag if pre-built packet or source 20888 * routed or if multicast (since multicast packets do not solicit 20889 * ICMP "packet too big" messages). Get the values of 20890 * max_frag and frag_flag atomically by acquiring the 20891 * ire_lock. 20892 */ 20893 mutex_enter(&ire->ire_lock); 20894 max_frag = ire->ire_max_frag; 20895 frag_flag = ire->ire_frag_flag; 20896 mutex_exit(&ire->ire_lock); 20897 20898 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 20899 (V_HLEN != IP_SIMPLE_HDR_VERSION && 20900 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 20901 20902 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 20903 (dont_use ? 0 : frag_flag), zoneid); 20904 } 20905 20906 /* 20907 * Used for deciding the MSS size for the upper layer. Thus 20908 * we need to check the outbound policy values in the conn. 20909 */ 20910 int 20911 conn_ipsec_length(conn_t *connp) 20912 { 20913 ipsec_latch_t *ipl; 20914 20915 ipl = connp->conn_latch; 20916 if (ipl == NULL) 20917 return (0); 20918 20919 if (ipl->ipl_out_policy == NULL) 20920 return (0); 20921 20922 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 20923 } 20924 20925 /* 20926 * Returns an estimate of the IPSEC headers size. This is used if 20927 * we don't want to call into IPSEC to get the exact size. 20928 */ 20929 int 20930 ipsec_out_extra_length(mblk_t *ipsec_mp) 20931 { 20932 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 20933 ipsec_action_t *a; 20934 20935 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20936 if (!io->ipsec_out_secure) 20937 return (0); 20938 20939 a = io->ipsec_out_act; 20940 20941 if (a == NULL) { 20942 ASSERT(io->ipsec_out_policy != NULL); 20943 a = io->ipsec_out_policy->ipsp_act; 20944 } 20945 ASSERT(a != NULL); 20946 20947 return (a->ipa_ovhd); 20948 } 20949 20950 /* 20951 * Returns an estimate of the IPSEC headers size. This is used if 20952 * we don't want to call into IPSEC to get the exact size. 20953 */ 20954 int 20955 ipsec_in_extra_length(mblk_t *ipsec_mp) 20956 { 20957 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 20958 ipsec_action_t *a; 20959 20960 ASSERT(ii->ipsec_in_type == IPSEC_IN); 20961 20962 a = ii->ipsec_in_action; 20963 return (a == NULL ? 0 : a->ipa_ovhd); 20964 } 20965 20966 /* 20967 * If there are any source route options, return the true final 20968 * destination. Otherwise, return the destination. 20969 */ 20970 ipaddr_t 20971 ip_get_dst(ipha_t *ipha) 20972 { 20973 ipoptp_t opts; 20974 uchar_t *opt; 20975 uint8_t optval; 20976 uint8_t optlen; 20977 ipaddr_t dst; 20978 uint32_t off; 20979 20980 dst = ipha->ipha_dst; 20981 20982 if (IS_SIMPLE_IPH(ipha)) 20983 return (dst); 20984 20985 for (optval = ipoptp_first(&opts, ipha); 20986 optval != IPOPT_EOL; 20987 optval = ipoptp_next(&opts)) { 20988 opt = opts.ipoptp_cur; 20989 optlen = opts.ipoptp_len; 20990 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 20991 switch (optval) { 20992 case IPOPT_SSRR: 20993 case IPOPT_LSRR: 20994 off = opt[IPOPT_OFFSET]; 20995 /* 20996 * If one of the conditions is true, it means 20997 * end of options and dst already has the right 20998 * value. 20999 */ 21000 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21001 off = optlen - IP_ADDR_LEN; 21002 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21003 } 21004 return (dst); 21005 default: 21006 break; 21007 } 21008 } 21009 21010 return (dst); 21011 } 21012 21013 mblk_t * 21014 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21015 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21016 { 21017 ipsec_out_t *io; 21018 mblk_t *first_mp; 21019 boolean_t policy_present; 21020 21021 first_mp = mp; 21022 if (mp->b_datap->db_type == M_CTL) { 21023 io = (ipsec_out_t *)first_mp->b_rptr; 21024 /* 21025 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21026 * 21027 * 1) There is per-socket policy (including cached global 21028 * policy). 21029 * 2) There is no per-socket policy, but it is 21030 * a multicast packet that needs to go out 21031 * on a specific interface. This is the case 21032 * where (ip_wput and ip_wput_multicast) attaches 21033 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21034 * 21035 * In case (2) we check with global policy to 21036 * see if there is a match and set the ill_index 21037 * appropriately so that we can lookup the ire 21038 * properly in ip_wput_ipsec_out. 21039 */ 21040 21041 /* 21042 * ipsec_out_use_global_policy is set to B_FALSE 21043 * in ipsec_in_to_out(). Refer to that function for 21044 * details. 21045 */ 21046 if ((io->ipsec_out_latch == NULL) && 21047 (io->ipsec_out_use_global_policy)) { 21048 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21049 ire, connp, unspec_src, zoneid)); 21050 } 21051 if (!io->ipsec_out_secure) { 21052 /* 21053 * If this is not a secure packet, drop 21054 * the IPSEC_OUT mp and treat it as a clear 21055 * packet. This happens when we are sending 21056 * a ICMP reply back to a clear packet. See 21057 * ipsec_in_to_out() for details. 21058 */ 21059 mp = first_mp->b_cont; 21060 freeb(first_mp); 21061 } 21062 return (mp); 21063 } 21064 /* 21065 * See whether we need to attach a global policy here. We 21066 * don't depend on the conn (as it could be null) for deciding 21067 * what policy this datagram should go through because it 21068 * should have happened in ip_wput if there was some 21069 * policy. This normally happens for connections which are not 21070 * fully bound preventing us from caching policies in 21071 * ip_bind. Packets coming from the TCP listener/global queue 21072 * - which are non-hard_bound - could also be affected by 21073 * applying policy here. 21074 * 21075 * If this packet is coming from tcp global queue or listener, 21076 * we will be applying policy here. This may not be *right* 21077 * if these packets are coming from the detached connection as 21078 * it could have gone in clear before. This happens only if a 21079 * TCP connection started when there is no policy and somebody 21080 * added policy before it became detached. Thus packets of the 21081 * detached connection could go out secure and the other end 21082 * would drop it because it will be expecting in clear. The 21083 * converse is not true i.e if somebody starts a TCP 21084 * connection and deletes the policy, all the packets will 21085 * still go out with the policy that existed before deleting 21086 * because ip_unbind sends up policy information which is used 21087 * by TCP on subsequent ip_wputs. The right solution is to fix 21088 * TCP to attach a dummy IPSEC_OUT and set 21089 * ipsec_out_use_global_policy to B_FALSE. As this might 21090 * affect performance for normal cases, we are not doing it. 21091 * Thus, set policy before starting any TCP connections. 21092 * 21093 * NOTE - We might apply policy even for a hard bound connection 21094 * - for which we cached policy in ip_bind - if somebody added 21095 * global policy after we inherited the policy in ip_bind. 21096 * This means that the packets that were going out in clear 21097 * previously would start going secure and hence get dropped 21098 * on the other side. To fix this, TCP attaches a dummy 21099 * ipsec_out and make sure that we don't apply global policy. 21100 */ 21101 if (ipha != NULL) 21102 policy_present = ipsec_outbound_v4_policy_present; 21103 else 21104 policy_present = ipsec_outbound_v6_policy_present; 21105 if (!policy_present) 21106 return (mp); 21107 21108 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21109 zoneid)); 21110 } 21111 21112 ire_t * 21113 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21114 { 21115 ipaddr_t addr; 21116 ire_t *save_ire; 21117 irb_t *irb; 21118 ill_group_t *illgrp; 21119 int err; 21120 21121 save_ire = ire; 21122 addr = ire->ire_addr; 21123 21124 ASSERT(ire->ire_type == IRE_BROADCAST); 21125 21126 illgrp = connp->conn_outgoing_ill->ill_group; 21127 if (illgrp == NULL) { 21128 *conn_outgoing_ill = conn_get_held_ill(connp, 21129 &connp->conn_outgoing_ill, &err); 21130 if (err == ILL_LOOKUP_FAILED) { 21131 ire_refrele(save_ire); 21132 return (NULL); 21133 } 21134 return (save_ire); 21135 } 21136 /* 21137 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21138 * If it is part of the group, we need to send on the ire 21139 * that has been cleared of IRE_MARK_NORECV and that belongs 21140 * to this group. This is okay as IP_BOUND_IF really means 21141 * any ill in the group. We depend on the fact that the 21142 * first ire in the group is always cleared of IRE_MARK_NORECV 21143 * if such an ire exists. This is possible only if you have 21144 * at least one ill in the group that has not failed. 21145 * 21146 * First get to the ire that matches the address and group. 21147 * 21148 * We don't look for an ire with a matching zoneid because a given zone 21149 * won't always have broadcast ires on all ills in the group. 21150 */ 21151 irb = ire->ire_bucket; 21152 rw_enter(&irb->irb_lock, RW_READER); 21153 if (ire->ire_marks & IRE_MARK_NORECV) { 21154 /* 21155 * If the current zone only has an ire broadcast for this 21156 * address marked NORECV, the ire we want is ahead in the 21157 * bucket, so we look it up deliberately ignoring the zoneid. 21158 */ 21159 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21160 if (ire->ire_addr != addr) 21161 continue; 21162 /* skip over deleted ires */ 21163 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21164 continue; 21165 } 21166 } 21167 while (ire != NULL) { 21168 /* 21169 * If a new interface is coming up, we could end up 21170 * seeing the loopback ire and the non-loopback ire 21171 * may not have been added yet. So check for ire_stq 21172 */ 21173 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 21174 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 21175 break; 21176 } 21177 ire = ire->ire_next; 21178 } 21179 if (ire != NULL && ire->ire_addr == addr && 21180 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 21181 IRE_REFHOLD(ire); 21182 rw_exit(&irb->irb_lock); 21183 ire_refrele(save_ire); 21184 *conn_outgoing_ill = ire_to_ill(ire); 21185 /* 21186 * Refhold the ill to make the conn_outgoing_ill 21187 * independent of the ire. ip_wput_ire goes in a loop 21188 * and may refrele the ire. Since we have an ire at this 21189 * point we don't need to use ILL_CAN_LOOKUP on the ill. 21190 */ 21191 ill_refhold(*conn_outgoing_ill); 21192 return (ire); 21193 } 21194 rw_exit(&irb->irb_lock); 21195 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 21196 /* 21197 * If we can't find a suitable ire, return the original ire. 21198 */ 21199 return (save_ire); 21200 } 21201 21202 /* 21203 * This function does the ire_refrele of the ire passed in as the 21204 * argument. As this function looks up more ires i.e broadcast ires, 21205 * it needs to REFRELE them. Currently, for simplicity we don't 21206 * differentiate the one passed in and looked up here. We always 21207 * REFRELE. 21208 * IPQoS Notes: 21209 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21210 * IPSec packets are done in ipsec_out_process. 21211 * 21212 */ 21213 void 21214 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21215 zoneid_t zoneid) 21216 { 21217 ipha_t *ipha; 21218 #define rptr ((uchar_t *)ipha) 21219 queue_t *stq; 21220 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21221 uint32_t v_hlen_tos_len; 21222 uint32_t ttl_protocol; 21223 ipaddr_t src; 21224 ipaddr_t dst; 21225 uint32_t cksum; 21226 ipaddr_t orig_src; 21227 ire_t *ire1; 21228 mblk_t *next_mp; 21229 uint_t hlen; 21230 uint16_t *up; 21231 uint32_t max_frag = ire->ire_max_frag; 21232 ill_t *ill = ire_to_ill(ire); 21233 int clusterwide; 21234 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21235 int ipsec_len; 21236 mblk_t *first_mp; 21237 ipsec_out_t *io; 21238 boolean_t conn_dontroute; /* conn value for multicast */ 21239 boolean_t conn_multicast_loop; /* conn value for multicast */ 21240 boolean_t multicast_forward; /* Should we forward ? */ 21241 boolean_t unspec_src; 21242 ill_t *conn_outgoing_ill = NULL; 21243 ill_t *ire_ill; 21244 ill_t *ire1_ill; 21245 uint32_t ill_index = 0; 21246 boolean_t multirt_send = B_FALSE; 21247 int err; 21248 ipxmit_state_t pktxmit_state; 21249 21250 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 21251 "ip_wput_ire_start: q %p", q); 21252 21253 multicast_forward = B_FALSE; 21254 unspec_src = (connp != NULL && connp->conn_unspec_src); 21255 21256 if (ire->ire_flags & RTF_MULTIRT) { 21257 /* 21258 * Multirouting case. The bucket where ire is stored 21259 * probably holds other RTF_MULTIRT flagged ire 21260 * to the destination. In this call to ip_wput_ire, 21261 * we attempt to send the packet through all 21262 * those ires. Thus, we first ensure that ire is the 21263 * first RTF_MULTIRT ire in the bucket, 21264 * before walking the ire list. 21265 */ 21266 ire_t *first_ire; 21267 irb_t *irb = ire->ire_bucket; 21268 ASSERT(irb != NULL); 21269 21270 /* Make sure we do not omit any multiroute ire. */ 21271 IRB_REFHOLD(irb); 21272 for (first_ire = irb->irb_ire; 21273 first_ire != NULL; 21274 first_ire = first_ire->ire_next) { 21275 if ((first_ire->ire_flags & RTF_MULTIRT) && 21276 (first_ire->ire_addr == ire->ire_addr) && 21277 !(first_ire->ire_marks & 21278 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 21279 break; 21280 } 21281 21282 if ((first_ire != NULL) && (first_ire != ire)) { 21283 IRE_REFHOLD(first_ire); 21284 ire_refrele(ire); 21285 ire = first_ire; 21286 ill = ire_to_ill(ire); 21287 } 21288 IRB_REFRELE(irb); 21289 } 21290 21291 /* 21292 * conn_outgoing_ill is used only in the broadcast loop. 21293 * for performance we don't grab the mutexs in the fastpath 21294 */ 21295 if ((connp != NULL) && 21296 (connp->conn_xmit_if_ill == NULL) && 21297 (ire->ire_type == IRE_BROADCAST) && 21298 ((connp->conn_nofailover_ill != NULL) || 21299 (connp->conn_outgoing_ill != NULL))) { 21300 /* 21301 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 21302 * option. So, see if this endpoint is bound to a 21303 * IPIF_NOFAILOVER address. If so, honor it. This implies 21304 * that if the interface is failed, we will still send 21305 * the packet on the same ill which is what we want. 21306 */ 21307 conn_outgoing_ill = conn_get_held_ill(connp, 21308 &connp->conn_nofailover_ill, &err); 21309 if (err == ILL_LOOKUP_FAILED) { 21310 ire_refrele(ire); 21311 freemsg(mp); 21312 return; 21313 } 21314 if (conn_outgoing_ill == NULL) { 21315 /* 21316 * Choose a good ill in the group to send the 21317 * packets on. 21318 */ 21319 ire = conn_set_outgoing_ill(connp, ire, 21320 &conn_outgoing_ill); 21321 if (ire == NULL) { 21322 freemsg(mp); 21323 return; 21324 } 21325 } 21326 } 21327 21328 if (mp->b_datap->db_type != M_CTL) { 21329 ipha = (ipha_t *)mp->b_rptr; 21330 } else { 21331 io = (ipsec_out_t *)mp->b_rptr; 21332 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21333 ASSERT(zoneid == io->ipsec_out_zoneid); 21334 ASSERT(zoneid != ALL_ZONES); 21335 ipha = (ipha_t *)mp->b_cont->b_rptr; 21336 dst = ipha->ipha_dst; 21337 /* 21338 * For the multicast case, ipsec_out carries conn_dontroute and 21339 * conn_multicast_loop as conn may not be available here. We 21340 * need this for multicast loopback and forwarding which is done 21341 * later in the code. 21342 */ 21343 if (CLASSD(dst)) { 21344 conn_dontroute = io->ipsec_out_dontroute; 21345 conn_multicast_loop = io->ipsec_out_multicast_loop; 21346 /* 21347 * If conn_dontroute is not set or conn_multicast_loop 21348 * is set, we need to do forwarding/loopback. For 21349 * datagrams from ip_wput_multicast, conn_dontroute is 21350 * set to B_TRUE and conn_multicast_loop is set to 21351 * B_FALSE so that we neither do forwarding nor 21352 * loopback. 21353 */ 21354 if (!conn_dontroute || conn_multicast_loop) 21355 multicast_forward = B_TRUE; 21356 } 21357 } 21358 21359 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 21360 ire->ire_zoneid != ALL_ZONES) { 21361 /* 21362 * When a zone sends a packet to another zone, we try to deliver 21363 * the packet under the same conditions as if the destination 21364 * was a real node on the network. To do so, we look for a 21365 * matching route in the forwarding table. 21366 * RTF_REJECT and RTF_BLACKHOLE are handled just like 21367 * ip_newroute() does. 21368 * Note that IRE_LOCAL are special, since they are used 21369 * when the zoneid doesn't match in some cases. This means that 21370 * we need to handle ipha_src differently since ire_src_addr 21371 * belongs to the receiving zone instead of the sending zone. 21372 * When ip_restrict_interzone_loopback is set, then 21373 * ire_cache_lookup() ensures that IRE_LOCAL are only used 21374 * for loopback between zones when the logical "Ethernet" would 21375 * have looped them back. 21376 */ 21377 ire_t *src_ire; 21378 21379 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 21380 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 21381 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE)); 21382 if (src_ire != NULL && 21383 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 21384 (!ip_restrict_interzone_loopback || 21385 ire_local_same_ill_group(ire, src_ire))) { 21386 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 21387 ipha->ipha_src = src_ire->ire_src_addr; 21388 ire_refrele(src_ire); 21389 } else { 21390 ire_refrele(ire); 21391 if (conn_outgoing_ill != NULL) 21392 ill_refrele(conn_outgoing_ill); 21393 BUMP_MIB(&ip_mib, ipOutNoRoutes); 21394 if (src_ire != NULL) { 21395 if (src_ire->ire_flags & RTF_BLACKHOLE) { 21396 ire_refrele(src_ire); 21397 freemsg(mp); 21398 return; 21399 } 21400 ire_refrele(src_ire); 21401 } 21402 if (ip_hdr_complete(ipha, zoneid)) { 21403 /* Failed */ 21404 freemsg(mp); 21405 return; 21406 } 21407 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid); 21408 return; 21409 } 21410 } 21411 21412 if (mp->b_datap->db_type == M_CTL || 21413 ipsec_outbound_v4_policy_present) { 21414 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 21415 unspec_src, zoneid); 21416 if (mp == NULL) { 21417 ire_refrele(ire); 21418 if (conn_outgoing_ill != NULL) 21419 ill_refrele(conn_outgoing_ill); 21420 return; 21421 } 21422 } 21423 21424 first_mp = mp; 21425 ipsec_len = 0; 21426 21427 if (first_mp->b_datap->db_type == M_CTL) { 21428 io = (ipsec_out_t *)first_mp->b_rptr; 21429 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21430 mp = first_mp->b_cont; 21431 ipsec_len = ipsec_out_extra_length(first_mp); 21432 ASSERT(ipsec_len >= 0); 21433 /* We already picked up the zoneid from the M_CTL above */ 21434 ASSERT(zoneid == io->ipsec_out_zoneid); 21435 ASSERT(zoneid != ALL_ZONES); 21436 21437 /* 21438 * Drop M_CTL here if IPsec processing is not needed. 21439 * (Non-IPsec use of M_CTL extracted any information it 21440 * needed above). 21441 */ 21442 if (ipsec_len == 0) { 21443 freeb(first_mp); 21444 first_mp = mp; 21445 } 21446 } 21447 21448 /* 21449 * Fast path for ip_wput_ire 21450 */ 21451 21452 ipha = (ipha_t *)mp->b_rptr; 21453 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21454 dst = ipha->ipha_dst; 21455 21456 /* 21457 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 21458 * if the socket is a SOCK_RAW type. The transport checksum should 21459 * be provided in the pre-built packet, so we don't need to compute it. 21460 * Also, other application set flags, like DF, should not be altered. 21461 * Other transport MUST pass down zero. 21462 */ 21463 ip_hdr_included = ipha->ipha_ident; 21464 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 21465 21466 if (CLASSD(dst)) { 21467 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 21468 ntohl(dst), 21469 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 21470 ntohl(ire->ire_addr))); 21471 } 21472 21473 /* Macros to extract header fields from data already in registers */ 21474 #ifdef _BIG_ENDIAN 21475 #define V_HLEN (v_hlen_tos_len >> 24) 21476 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21477 #define PROTO (ttl_protocol & 0xFF) 21478 #else 21479 #define V_HLEN (v_hlen_tos_len & 0xFF) 21480 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21481 #define PROTO (ttl_protocol >> 8) 21482 #endif 21483 21484 21485 orig_src = src = ipha->ipha_src; 21486 /* (The loop back to "another" is explained down below.) */ 21487 another:; 21488 /* 21489 * Assign an ident value for this packet. We assign idents on 21490 * a per destination basis out of the IRE. There could be 21491 * other threads targeting the same destination, so we have to 21492 * arrange for a atomic increment. Note that we use a 32-bit 21493 * atomic add because it has better performance than its 21494 * 16-bit sibling. 21495 * 21496 * If running in cluster mode and if the source address 21497 * belongs to a replicated service then vector through 21498 * cl_inet_ipident vector to allocate ip identifier 21499 * NOTE: This is a contract private interface with the 21500 * clustering group. 21501 */ 21502 clusterwide = 0; 21503 if (cl_inet_ipident) { 21504 ASSERT(cl_inet_isclusterwide); 21505 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 21506 AF_INET, (uint8_t *)(uintptr_t)src)) { 21507 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 21508 AF_INET, (uint8_t *)(uintptr_t)src, 21509 (uint8_t *)(uintptr_t)dst); 21510 clusterwide = 1; 21511 } 21512 } 21513 if (!clusterwide) { 21514 ipha->ipha_ident = 21515 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 21516 } 21517 21518 #ifndef _BIG_ENDIAN 21519 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 21520 #endif 21521 21522 /* 21523 * Set source address unless sent on an ill or conn_unspec_src is set. 21524 * This is needed to obey conn_unspec_src when packets go through 21525 * ip_newroute + arp. 21526 * Assumes ip_newroute{,_multi} sets the source address as well. 21527 */ 21528 if (src == INADDR_ANY && !unspec_src) { 21529 /* 21530 * Assign the appropriate source address from the IRE if none 21531 * was specified. 21532 */ 21533 ASSERT(ire->ire_ipversion == IPV4_VERSION); 21534 21535 /* 21536 * With IP multipathing, broadcast packets are sent on the ire 21537 * that has been cleared of IRE_MARK_NORECV and that belongs to 21538 * the group. However, this ire might not be in the same zone so 21539 * we can't always use its source address. We look for a 21540 * broadcast ire in the same group and in the right zone. 21541 */ 21542 if (ire->ire_type == IRE_BROADCAST && 21543 ire->ire_zoneid != zoneid) { 21544 ire_t *src_ire = ire_ctable_lookup(dst, 0, 21545 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 21546 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 21547 if (src_ire != NULL) { 21548 src = src_ire->ire_src_addr; 21549 ire_refrele(src_ire); 21550 } else { 21551 ire_refrele(ire); 21552 if (conn_outgoing_ill != NULL) 21553 ill_refrele(conn_outgoing_ill); 21554 freemsg(first_mp); 21555 BUMP_MIB(&ip_mib, ipOutDiscards); 21556 return; 21557 } 21558 } else { 21559 src = ire->ire_src_addr; 21560 } 21561 21562 if (connp == NULL) { 21563 ip1dbg(("ip_wput_ire: no connp and no src " 21564 "address for dst 0x%x, using src 0x%x\n", 21565 ntohl(dst), 21566 ntohl(src))); 21567 } 21568 ipha->ipha_src = src; 21569 } 21570 stq = ire->ire_stq; 21571 21572 /* 21573 * We only allow ire chains for broadcasts since there will 21574 * be multiple IRE_CACHE entries for the same multicast 21575 * address (one per ipif). 21576 */ 21577 next_mp = NULL; 21578 21579 /* broadcast packet */ 21580 if (ire->ire_type == IRE_BROADCAST) 21581 goto broadcast; 21582 21583 /* loopback ? */ 21584 if (stq == NULL) 21585 goto nullstq; 21586 21587 /* The ill_index for outbound ILL */ 21588 ill_index = Q_TO_INDEX(stq); 21589 21590 BUMP_MIB(&ip_mib, ipOutRequests); 21591 ttl_protocol = ((uint16_t *)ipha)[4]; 21592 21593 /* pseudo checksum (do it in parts for IP header checksum) */ 21594 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 21595 21596 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 21597 queue_t *dev_q = stq->q_next; 21598 21599 /* flow controlled */ 21600 if ((dev_q->q_next || dev_q->q_first) && 21601 !canput(dev_q)) 21602 goto blocked; 21603 if ((PROTO == IPPROTO_UDP) && 21604 (ip_hdr_included != IP_HDR_INCLUDED)) { 21605 hlen = (V_HLEN & 0xF) << 2; 21606 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 21607 if (*up != 0) { 21608 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 21609 hlen, LENGTH, max_frag, ipsec_len, cksum); 21610 /* Software checksum? */ 21611 if (DB_CKSUMFLAGS(mp) == 0) { 21612 IP_STAT(ip_out_sw_cksum); 21613 IP_STAT_UPDATE( 21614 ip_udp_out_sw_cksum_bytes, 21615 LENGTH - hlen); 21616 } 21617 } 21618 } 21619 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 21620 hlen = (V_HLEN & 0xF) << 2; 21621 if (PROTO == IPPROTO_TCP) { 21622 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 21623 /* 21624 * The packet header is processed once and for all, even 21625 * in the multirouting case. We disable hardware 21626 * checksum if the packet is multirouted, as it will be 21627 * replicated via several interfaces, and not all of 21628 * them may have this capability. 21629 */ 21630 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 21631 LENGTH, max_frag, ipsec_len, cksum); 21632 /* Software checksum? */ 21633 if (DB_CKSUMFLAGS(mp) == 0) { 21634 IP_STAT(ip_out_sw_cksum); 21635 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 21636 LENGTH - hlen); 21637 } 21638 } else { 21639 sctp_hdr_t *sctph; 21640 21641 ASSERT(PROTO == IPPROTO_SCTP); 21642 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 21643 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 21644 /* 21645 * Zero out the checksum field to ensure proper 21646 * checksum calculation. 21647 */ 21648 sctph->sh_chksum = 0; 21649 #ifdef DEBUG 21650 if (!skip_sctp_cksum) 21651 #endif 21652 sctph->sh_chksum = sctp_cksum(mp, hlen); 21653 } 21654 } 21655 21656 /* 21657 * If this is a multicast packet and originated from ip_wput 21658 * we need to do loopback and forwarding checks. If it comes 21659 * from ip_wput_multicast, we SHOULD not do this. 21660 */ 21661 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 21662 21663 /* checksum */ 21664 cksum += ttl_protocol; 21665 21666 /* fragment the packet */ 21667 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 21668 goto fragmentit; 21669 /* 21670 * Don't use frag_flag if packet is pre-built or source 21671 * routed or if multicast (since multicast packets do 21672 * not solicit ICMP "packet too big" messages). 21673 */ 21674 if ((ip_hdr_included != IP_HDR_INCLUDED) && 21675 (V_HLEN == IP_SIMPLE_HDR_VERSION || 21676 !ip_source_route_included(ipha)) && 21677 !CLASSD(ipha->ipha_dst)) 21678 ipha->ipha_fragment_offset_and_flags |= 21679 htons(ire->ire_frag_flag); 21680 21681 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 21682 /* calculate IP header checksum */ 21683 cksum += ipha->ipha_ident; 21684 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 21685 cksum += ipha->ipha_fragment_offset_and_flags; 21686 21687 /* IP options present */ 21688 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 21689 if (hlen) 21690 goto checksumoptions; 21691 21692 /* calculate hdr checksum */ 21693 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 21694 cksum = ~(cksum + (cksum >> 16)); 21695 ipha->ipha_hdr_checksum = (uint16_t)cksum; 21696 } 21697 if (ipsec_len != 0) { 21698 /* 21699 * We will do the rest of the processing after 21700 * we come back from IPSEC in ip_wput_ipsec_out(). 21701 */ 21702 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 21703 21704 io = (ipsec_out_t *)first_mp->b_rptr; 21705 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 21706 ill_phyint->phyint_ifindex; 21707 21708 ipsec_out_process(q, first_mp, ire, ill_index); 21709 ire_refrele(ire); 21710 if (conn_outgoing_ill != NULL) 21711 ill_refrele(conn_outgoing_ill); 21712 return; 21713 } 21714 21715 /* 21716 * In most cases, the emission loop below is entered only 21717 * once. Only in the case where the ire holds the 21718 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 21719 * flagged ires in the bucket, and send the packet 21720 * through all crossed RTF_MULTIRT routes. 21721 */ 21722 if (ire->ire_flags & RTF_MULTIRT) { 21723 multirt_send = B_TRUE; 21724 } 21725 do { 21726 if (multirt_send) { 21727 irb_t *irb; 21728 /* 21729 * We are in a multiple send case, need to get 21730 * the next ire and make a duplicate of the packet. 21731 * ire1 holds here the next ire to process in the 21732 * bucket. If multirouting is expected, 21733 * any non-RTF_MULTIRT ire that has the 21734 * right destination address is ignored. 21735 */ 21736 irb = ire->ire_bucket; 21737 ASSERT(irb != NULL); 21738 21739 IRB_REFHOLD(irb); 21740 for (ire1 = ire->ire_next; 21741 ire1 != NULL; 21742 ire1 = ire1->ire_next) { 21743 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 21744 continue; 21745 if (ire1->ire_addr != ire->ire_addr) 21746 continue; 21747 if (ire1->ire_marks & 21748 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 21749 continue; 21750 21751 /* Got one */ 21752 IRE_REFHOLD(ire1); 21753 break; 21754 } 21755 IRB_REFRELE(irb); 21756 21757 if (ire1 != NULL) { 21758 next_mp = copyb(mp); 21759 if ((next_mp == NULL) || 21760 ((mp->b_cont != NULL) && 21761 ((next_mp->b_cont = 21762 dupmsg(mp->b_cont)) == NULL))) { 21763 freemsg(next_mp); 21764 next_mp = NULL; 21765 ire_refrele(ire1); 21766 ire1 = NULL; 21767 } 21768 } 21769 21770 /* Last multiroute ire; don't loop anymore. */ 21771 if (ire1 == NULL) { 21772 multirt_send = B_FALSE; 21773 } 21774 } 21775 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 21776 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 21777 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 21778 if ((pktxmit_state == SEND_FAILED) || 21779 (pktxmit_state == LLHDR_RESLV_FAILED)) { 21780 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 21781 "- packet dropped\n")); 21782 ire_refrele(ire); 21783 if (next_mp != NULL) { 21784 freemsg(next_mp); 21785 ire_refrele(ire1); 21786 } 21787 if (conn_outgoing_ill != NULL) 21788 ill_refrele(conn_outgoing_ill); 21789 return; 21790 } 21791 21792 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21793 "ip_wput_ire_end: q %p (%S)", 21794 q, "last copy out"); 21795 IRE_REFRELE(ire); 21796 21797 if (multirt_send) { 21798 ASSERT(ire1); 21799 /* 21800 * Proceed with the next RTF_MULTIRT ire, 21801 * Also set up the send-to queue accordingly. 21802 */ 21803 ire = ire1; 21804 ire1 = NULL; 21805 stq = ire->ire_stq; 21806 mp = next_mp; 21807 next_mp = NULL; 21808 ipha = (ipha_t *)mp->b_rptr; 21809 ill_index = Q_TO_INDEX(stq); 21810 } 21811 } while (multirt_send); 21812 if (conn_outgoing_ill != NULL) 21813 ill_refrele(conn_outgoing_ill); 21814 return; 21815 21816 /* 21817 * ire->ire_type == IRE_BROADCAST (minimize diffs) 21818 */ 21819 broadcast: 21820 { 21821 /* 21822 * Avoid broadcast storms by setting the ttl to 1 21823 * for broadcasts. This parameter can be set 21824 * via ndd, so make sure that for the SO_DONTROUTE 21825 * case that ipha_ttl is always set to 1. 21826 * In the event that we are replying to incoming 21827 * ICMP packets, conn could be NULL. 21828 */ 21829 if ((connp != NULL) && connp->conn_dontroute) 21830 ipha->ipha_ttl = 1; 21831 else 21832 ipha->ipha_ttl = ip_broadcast_ttl; 21833 21834 /* 21835 * Note that we are not doing a IRB_REFHOLD here. 21836 * Actually we don't care if the list changes i.e 21837 * if somebody deletes an IRE from the list while 21838 * we drop the lock, the next time we come around 21839 * ire_next will be NULL and hence we won't send 21840 * out multiple copies which is fine. 21841 */ 21842 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 21843 ire1 = ire->ire_next; 21844 if (conn_outgoing_ill != NULL) { 21845 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 21846 ASSERT(ire1 == ire->ire_next); 21847 if (ire1 != NULL && ire1->ire_addr == dst) { 21848 ire_refrele(ire); 21849 ire = ire1; 21850 IRE_REFHOLD(ire); 21851 ire1 = ire->ire_next; 21852 continue; 21853 } 21854 rw_exit(&ire->ire_bucket->irb_lock); 21855 /* Did not find a matching ill */ 21856 ip1dbg(("ip_wput_ire: broadcast with no " 21857 "matching IP_BOUND_IF ill %s\n", 21858 conn_outgoing_ill->ill_name)); 21859 freemsg(first_mp); 21860 if (ire != NULL) 21861 ire_refrele(ire); 21862 ill_refrele(conn_outgoing_ill); 21863 return; 21864 } 21865 } else if (ire1 != NULL && ire1->ire_addr == dst) { 21866 /* 21867 * If the next IRE has the same address and is not one 21868 * of the two copies that we need to send, try to see 21869 * whether this copy should be sent at all. This 21870 * assumes that we insert loopbacks first and then 21871 * non-loopbacks. This is acheived by inserting the 21872 * loopback always before non-loopback. 21873 * This is used to send a single copy of a broadcast 21874 * packet out all physical interfaces that have an 21875 * matching IRE_BROADCAST while also looping 21876 * back one copy (to ip_wput_local) for each 21877 * matching physical interface. However, we avoid 21878 * sending packets out different logical that match by 21879 * having ipif_up/ipif_down supress duplicate 21880 * IRE_BROADCASTS. 21881 * 21882 * This feature is currently used to get broadcasts 21883 * sent to multiple interfaces, when the broadcast 21884 * address being used applies to multiple interfaces. 21885 * For example, a whole net broadcast will be 21886 * replicated on every connected subnet of 21887 * the target net. 21888 * 21889 * Each zone has its own set of IRE_BROADCASTs, so that 21890 * we're able to distribute inbound packets to multiple 21891 * zones who share a broadcast address. We avoid looping 21892 * back outbound packets in different zones but on the 21893 * same ill, as the application would see duplicates. 21894 * 21895 * If the interfaces are part of the same group, 21896 * we would want to send only one copy out for 21897 * whole group. 21898 * 21899 * This logic assumes that ire_add_v4() groups the 21900 * IRE_BROADCAST entries so that those with the same 21901 * ire_addr and ill_group are kept together. 21902 */ 21903 ire_ill = ire->ire_ipif->ipif_ill; 21904 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 21905 if (ire_ill->ill_group != NULL && 21906 (ire->ire_marks & IRE_MARK_NORECV)) { 21907 /* 21908 * If the current zone only has an ire 21909 * broadcast for this address marked 21910 * NORECV, the ire we want is ahead in 21911 * the bucket, so we look it up 21912 * deliberately ignoring the zoneid. 21913 */ 21914 for (ire1 = ire->ire_bucket->irb_ire; 21915 ire1 != NULL; 21916 ire1 = ire1->ire_next) { 21917 ire1_ill = 21918 ire1->ire_ipif->ipif_ill; 21919 if (ire1->ire_addr != dst) 21920 continue; 21921 /* skip over the current ire */ 21922 if (ire1 == ire) 21923 continue; 21924 /* skip over deleted ires */ 21925 if (ire1->ire_marks & 21926 IRE_MARK_CONDEMNED) 21927 continue; 21928 /* 21929 * non-loopback ire in our 21930 * group: use it for the next 21931 * pass in the loop 21932 */ 21933 if (ire1->ire_stq != NULL && 21934 ire1_ill->ill_group == 21935 ire_ill->ill_group) 21936 break; 21937 } 21938 } 21939 } else { 21940 while (ire1 != NULL && ire1->ire_addr == dst) { 21941 ire1_ill = ire1->ire_ipif->ipif_ill; 21942 /* 21943 * We can have two broadcast ires on the 21944 * same ill in different zones; here 21945 * we'll send a copy of the packet on 21946 * each ill and the fanout code will 21947 * call conn_wantpacket() to check that 21948 * the zone has the broadcast address 21949 * configured on the ill. If the two 21950 * ires are in the same group we only 21951 * send one copy up. 21952 */ 21953 if (ire1_ill != ire_ill && 21954 (ire1_ill->ill_group == NULL || 21955 ire_ill->ill_group == NULL || 21956 ire1_ill->ill_group != 21957 ire_ill->ill_group)) { 21958 break; 21959 } 21960 ire1 = ire1->ire_next; 21961 } 21962 } 21963 } 21964 ASSERT(multirt_send == B_FALSE); 21965 if (ire1 != NULL && ire1->ire_addr == dst) { 21966 if ((ire->ire_flags & RTF_MULTIRT) && 21967 (ire1->ire_flags & RTF_MULTIRT)) { 21968 /* 21969 * We are in the multirouting case. 21970 * The message must be sent at least 21971 * on both ires. These ires have been 21972 * inserted AFTER the standard ones 21973 * in ip_rt_add(). There are thus no 21974 * other ire entries for the destination 21975 * address in the rest of the bucket 21976 * that do not have the RTF_MULTIRT 21977 * flag. We don't process a copy 21978 * of the message here. This will be 21979 * done in the final sending loop. 21980 */ 21981 multirt_send = B_TRUE; 21982 } else { 21983 next_mp = ip_copymsg(first_mp); 21984 if (next_mp != NULL) 21985 IRE_REFHOLD(ire1); 21986 } 21987 } 21988 rw_exit(&ire->ire_bucket->irb_lock); 21989 } 21990 21991 if (stq) { 21992 /* 21993 * A non-NULL send-to queue means this packet is going 21994 * out of this machine. 21995 */ 21996 21997 BUMP_MIB(&ip_mib, ipOutRequests); 21998 ttl_protocol = ((uint16_t *)ipha)[4]; 21999 /* 22000 * We accumulate the pseudo header checksum in cksum. 22001 * This is pretty hairy code, so watch close. One 22002 * thing to keep in mind is that UDP and TCP have 22003 * stored their respective datagram lengths in their 22004 * checksum fields. This lines things up real nice. 22005 */ 22006 cksum = (dst >> 16) + (dst & 0xFFFF) + 22007 (src >> 16) + (src & 0xFFFF); 22008 /* 22009 * We assume the udp checksum field contains the 22010 * length, so to compute the pseudo header checksum, 22011 * all we need is the protocol number and src/dst. 22012 */ 22013 /* Provide the checksums for UDP and TCP. */ 22014 if ((PROTO == IPPROTO_TCP) && 22015 (ip_hdr_included != IP_HDR_INCLUDED)) { 22016 /* hlen gets the number of uchar_ts in the IP header */ 22017 hlen = (V_HLEN & 0xF) << 2; 22018 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22019 IP_STAT(ip_out_sw_cksum); 22020 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 22021 LENGTH - hlen); 22022 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22023 if (*up == 0) 22024 *up = 0xFFFF; 22025 } else if (PROTO == IPPROTO_SCTP && 22026 (ip_hdr_included != IP_HDR_INCLUDED)) { 22027 sctp_hdr_t *sctph; 22028 22029 hlen = (V_HLEN & 0xF) << 2; 22030 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22031 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22032 sctph->sh_chksum = 0; 22033 #ifdef DEBUG 22034 if (!skip_sctp_cksum) 22035 #endif 22036 sctph->sh_chksum = sctp_cksum(mp, hlen); 22037 } else { 22038 queue_t *dev_q = stq->q_next; 22039 22040 if ((dev_q->q_next || dev_q->q_first) && 22041 !canput(dev_q)) { 22042 blocked: 22043 ipha->ipha_ident = ip_hdr_included; 22044 /* 22045 * If we don't have a conn to apply 22046 * backpressure, free the message. 22047 * In the ire_send path, we don't know 22048 * the position to requeue the packet. Rather 22049 * than reorder packets, we just drop this 22050 * packet. 22051 */ 22052 if (ip_output_queue && connp != NULL && 22053 caller != IRE_SEND) { 22054 if (caller == IP_WSRV) { 22055 connp->conn_did_putbq = 1; 22056 (void) putbq(connp->conn_wq, 22057 first_mp); 22058 conn_drain_insert(connp); 22059 /* 22060 * This is the service thread, 22061 * and the queue is already 22062 * noenabled. The check for 22063 * canput and the putbq is not 22064 * atomic. So we need to check 22065 * again. 22066 */ 22067 if (canput(stq->q_next)) 22068 connp->conn_did_putbq 22069 = 0; 22070 IP_STAT(ip_conn_flputbq); 22071 } else { 22072 /* 22073 * We are not the service proc. 22074 * ip_wsrv will be scheduled or 22075 * is already running. 22076 */ 22077 (void) putq(connp->conn_wq, 22078 first_mp); 22079 } 22080 } else { 22081 BUMP_MIB(&ip_mib, ipOutDiscards); 22082 freemsg(first_mp); 22083 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22084 "ip_wput_ire_end: q %p (%S)", 22085 q, "discard"); 22086 } 22087 ire_refrele(ire); 22088 if (next_mp) { 22089 ire_refrele(ire1); 22090 freemsg(next_mp); 22091 } 22092 if (conn_outgoing_ill != NULL) 22093 ill_refrele(conn_outgoing_ill); 22094 return; 22095 } 22096 if ((PROTO == IPPROTO_UDP) && 22097 (ip_hdr_included != IP_HDR_INCLUDED)) { 22098 /* 22099 * hlen gets the number of uchar_ts in the 22100 * IP header 22101 */ 22102 hlen = (V_HLEN & 0xF) << 2; 22103 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22104 max_frag = ire->ire_max_frag; 22105 if (*up != 0) { 22106 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 22107 up, PROTO, hlen, LENGTH, max_frag, 22108 ipsec_len, cksum); 22109 /* Software checksum? */ 22110 if (DB_CKSUMFLAGS(mp) == 0) { 22111 IP_STAT(ip_out_sw_cksum); 22112 IP_STAT_UPDATE( 22113 ip_udp_out_sw_cksum_bytes, 22114 LENGTH - hlen); 22115 } 22116 } 22117 } 22118 } 22119 /* 22120 * Need to do this even when fragmenting. The local 22121 * loopback can be done without computing checksums 22122 * but forwarding out other interface must be done 22123 * after the IP checksum (and ULP checksums) have been 22124 * computed. 22125 * 22126 * NOTE : multicast_forward is set only if this packet 22127 * originated from ip_wput. For packets originating from 22128 * ip_wput_multicast, it is not set. 22129 */ 22130 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22131 multi_loopback: 22132 ip2dbg(("ip_wput: multicast, loop %d\n", 22133 conn_multicast_loop)); 22134 22135 /* Forget header checksum offload */ 22136 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22137 22138 /* 22139 * Local loopback of multicasts? Check the 22140 * ill. 22141 * 22142 * Note that the loopback function will not come 22143 * in through ip_rput - it will only do the 22144 * client fanout thus we need to do an mforward 22145 * as well. The is different from the BSD 22146 * logic. 22147 */ 22148 if (ill != NULL) { 22149 ilm_t *ilm; 22150 22151 ILM_WALKER_HOLD(ill); 22152 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 22153 ALL_ZONES); 22154 ILM_WALKER_RELE(ill); 22155 if (ilm != NULL) { 22156 /* 22157 * Pass along the virtual output q. 22158 * ip_wput_local() will distribute the 22159 * packet to all the matching zones, 22160 * except the sending zone when 22161 * IP_MULTICAST_LOOP is false. 22162 */ 22163 ip_multicast_loopback(q, ill, first_mp, 22164 conn_multicast_loop ? 0 : 22165 IP_FF_NO_MCAST_LOOP, zoneid); 22166 } 22167 } 22168 if (ipha->ipha_ttl == 0) { 22169 /* 22170 * 0 => only to this host i.e. we are 22171 * done. We are also done if this was the 22172 * loopback interface since it is sufficient 22173 * to loopback one copy of a multicast packet. 22174 */ 22175 freemsg(first_mp); 22176 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22177 "ip_wput_ire_end: q %p (%S)", 22178 q, "loopback"); 22179 ire_refrele(ire); 22180 if (conn_outgoing_ill != NULL) 22181 ill_refrele(conn_outgoing_ill); 22182 return; 22183 } 22184 /* 22185 * ILLF_MULTICAST is checked in ip_newroute 22186 * i.e. we don't need to check it here since 22187 * all IRE_CACHEs come from ip_newroute. 22188 * For multicast traffic, SO_DONTROUTE is interpreted 22189 * to mean only send the packet out the interface 22190 * (optionally specified with IP_MULTICAST_IF) 22191 * and do not forward it out additional interfaces. 22192 * RSVP and the rsvp daemon is an example of a 22193 * protocol and user level process that 22194 * handles it's own routing. Hence, it uses the 22195 * SO_DONTROUTE option to accomplish this. 22196 */ 22197 22198 if (ip_g_mrouter && !conn_dontroute && ill != NULL) { 22199 /* Unconditionally redo the checksum */ 22200 ipha->ipha_hdr_checksum = 0; 22201 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22202 22203 /* 22204 * If this needs to go out secure, we need 22205 * to wait till we finish the IPSEC 22206 * processing. 22207 */ 22208 if (ipsec_len == 0 && 22209 ip_mforward(ill, ipha, mp)) { 22210 freemsg(first_mp); 22211 ip1dbg(("ip_wput: mforward failed\n")); 22212 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22213 "ip_wput_ire_end: q %p (%S)", 22214 q, "mforward failed"); 22215 ire_refrele(ire); 22216 if (conn_outgoing_ill != NULL) 22217 ill_refrele(conn_outgoing_ill); 22218 return; 22219 } 22220 } 22221 } 22222 max_frag = ire->ire_max_frag; 22223 cksum += ttl_protocol; 22224 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 22225 /* No fragmentation required for this one. */ 22226 /* 22227 * Don't use frag_flag if packet is pre-built or source 22228 * routed or if multicast (since multicast packets do 22229 * not solicit ICMP "packet too big" messages). 22230 */ 22231 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22232 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22233 !ip_source_route_included(ipha)) && 22234 !CLASSD(ipha->ipha_dst)) 22235 ipha->ipha_fragment_offset_and_flags |= 22236 htons(ire->ire_frag_flag); 22237 22238 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22239 /* Complete the IP header checksum. */ 22240 cksum += ipha->ipha_ident; 22241 cksum += (v_hlen_tos_len >> 16)+ 22242 (v_hlen_tos_len & 0xFFFF); 22243 cksum += ipha->ipha_fragment_offset_and_flags; 22244 hlen = (V_HLEN & 0xF) - 22245 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22246 if (hlen) { 22247 checksumoptions: 22248 /* 22249 * Account for the IP Options in the IP 22250 * header checksum. 22251 */ 22252 up = (uint16_t *)(rptr+ 22253 IP_SIMPLE_HDR_LENGTH); 22254 do { 22255 cksum += up[0]; 22256 cksum += up[1]; 22257 up += 2; 22258 } while (--hlen); 22259 } 22260 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22261 cksum = ~(cksum + (cksum >> 16)); 22262 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22263 } 22264 if (ipsec_len != 0) { 22265 ipsec_out_process(q, first_mp, ire, ill_index); 22266 if (!next_mp) { 22267 ire_refrele(ire); 22268 if (conn_outgoing_ill != NULL) 22269 ill_refrele(conn_outgoing_ill); 22270 return; 22271 } 22272 goto next; 22273 } 22274 22275 /* 22276 * multirt_send has already been handled 22277 * for broadcast, but not yet for multicast 22278 * or IP options. 22279 */ 22280 if (next_mp == NULL) { 22281 if (ire->ire_flags & RTF_MULTIRT) { 22282 multirt_send = B_TRUE; 22283 } 22284 } 22285 22286 /* 22287 * In most cases, the emission loop below is 22288 * entered only once. Only in the case where 22289 * the ire holds the RTF_MULTIRT flag, do we loop 22290 * to process all RTF_MULTIRT ires in the bucket, 22291 * and send the packet through all crossed 22292 * RTF_MULTIRT routes. 22293 */ 22294 do { 22295 if (multirt_send) { 22296 irb_t *irb; 22297 22298 irb = ire->ire_bucket; 22299 ASSERT(irb != NULL); 22300 /* 22301 * We are in a multiple send case, 22302 * need to get the next IRE and make 22303 * a duplicate of the packet. 22304 */ 22305 IRB_REFHOLD(irb); 22306 for (ire1 = ire->ire_next; 22307 ire1 != NULL; 22308 ire1 = ire1->ire_next) { 22309 if (!(ire1->ire_flags & 22310 RTF_MULTIRT)) 22311 continue; 22312 if (ire1->ire_addr != 22313 ire->ire_addr) 22314 continue; 22315 if (ire1->ire_marks & 22316 (IRE_MARK_CONDEMNED| 22317 IRE_MARK_HIDDEN)) 22318 continue; 22319 22320 /* Got one */ 22321 IRE_REFHOLD(ire1); 22322 break; 22323 } 22324 IRB_REFRELE(irb); 22325 22326 if (ire1 != NULL) { 22327 next_mp = copyb(mp); 22328 if ((next_mp == NULL) || 22329 ((mp->b_cont != NULL) && 22330 ((next_mp->b_cont = 22331 dupmsg(mp->b_cont)) 22332 == NULL))) { 22333 freemsg(next_mp); 22334 next_mp = NULL; 22335 ire_refrele(ire1); 22336 ire1 = NULL; 22337 } 22338 } 22339 22340 /* 22341 * Last multiroute ire; don't loop 22342 * anymore. The emission is over 22343 * and next_mp is NULL. 22344 */ 22345 if (ire1 == NULL) { 22346 multirt_send = B_FALSE; 22347 } 22348 } 22349 22350 ASSERT(ipsec_len == 0); 22351 mp->b_prev = 22352 SET_BPREV_FLAG(IPP_LOCAL_OUT); 22353 DTRACE_PROBE2(ip__xmit__2, 22354 mblk_t *, mp, ire_t *, ire); 22355 pktxmit_state = ip_xmit_v4(mp, ire, 22356 NULL, B_TRUE); 22357 if ((pktxmit_state == SEND_FAILED) || 22358 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22359 if (next_mp) { 22360 freemsg(next_mp); 22361 ire_refrele(ire1); 22362 } 22363 ire_refrele(ire); 22364 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22365 "ip_wput_ire_end: q %p (%S)", 22366 q, "discard MDATA"); 22367 if (conn_outgoing_ill != NULL) 22368 ill_refrele(conn_outgoing_ill); 22369 return; 22370 } 22371 22372 if (multirt_send) { 22373 /* 22374 * We are in a multiple send case, 22375 * need to re-enter the sending loop 22376 * using the next ire. 22377 */ 22378 ire_refrele(ire); 22379 ire = ire1; 22380 stq = ire->ire_stq; 22381 mp = next_mp; 22382 next_mp = NULL; 22383 ipha = (ipha_t *)mp->b_rptr; 22384 ill_index = Q_TO_INDEX(stq); 22385 } 22386 } while (multirt_send); 22387 22388 if (!next_mp) { 22389 /* 22390 * Last copy going out (the ultra-common 22391 * case). Note that we intentionally replicate 22392 * the putnext rather than calling it before 22393 * the next_mp check in hopes of a little 22394 * tail-call action out of the compiler. 22395 */ 22396 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22397 "ip_wput_ire_end: q %p (%S)", 22398 q, "last copy out(1)"); 22399 ire_refrele(ire); 22400 if (conn_outgoing_ill != NULL) 22401 ill_refrele(conn_outgoing_ill); 22402 return; 22403 } 22404 /* More copies going out below. */ 22405 } else { 22406 int offset; 22407 fragmentit: 22408 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 22409 /* 22410 * If this would generate a icmp_frag_needed message, 22411 * we need to handle it before we do the IPSEC 22412 * processing. Otherwise, we need to strip the IPSEC 22413 * headers before we send up the message to the ULPs 22414 * which becomes messy and difficult. 22415 */ 22416 if (ipsec_len != 0) { 22417 if ((max_frag < (unsigned int)(LENGTH + 22418 ipsec_len)) && (offset & IPH_DF)) { 22419 22420 BUMP_MIB(&ip_mib, ipFragFails); 22421 ipha->ipha_hdr_checksum = 0; 22422 ipha->ipha_hdr_checksum = 22423 (uint16_t)ip_csum_hdr(ipha); 22424 icmp_frag_needed(ire->ire_stq, first_mp, 22425 max_frag, zoneid); 22426 if (!next_mp) { 22427 ire_refrele(ire); 22428 if (conn_outgoing_ill != NULL) { 22429 ill_refrele( 22430 conn_outgoing_ill); 22431 } 22432 return; 22433 } 22434 } else { 22435 /* 22436 * This won't cause a icmp_frag_needed 22437 * message. to be gnerated. Send it on 22438 * the wire. Note that this could still 22439 * cause fragmentation and all we 22440 * do is the generation of the message 22441 * to the ULP if needed before IPSEC. 22442 */ 22443 if (!next_mp) { 22444 ipsec_out_process(q, first_mp, 22445 ire, ill_index); 22446 TRACE_2(TR_FAC_IP, 22447 TR_IP_WPUT_IRE_END, 22448 "ip_wput_ire_end: q %p " 22449 "(%S)", q, 22450 "last ipsec_out_process"); 22451 ire_refrele(ire); 22452 if (conn_outgoing_ill != NULL) { 22453 ill_refrele( 22454 conn_outgoing_ill); 22455 } 22456 return; 22457 } 22458 ipsec_out_process(q, first_mp, 22459 ire, ill_index); 22460 } 22461 } else { 22462 /* 22463 * Initiate IPPF processing. For 22464 * fragmentable packets we finish 22465 * all QOS packet processing before 22466 * calling: 22467 * ip_wput_ire_fragmentit->ip_wput_frag 22468 */ 22469 22470 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 22471 ip_process(IPP_LOCAL_OUT, &mp, 22472 ill_index); 22473 if (mp == NULL) { 22474 BUMP_MIB(&ip_mib, 22475 ipOutDiscards); 22476 if (next_mp != NULL) { 22477 freemsg(next_mp); 22478 ire_refrele(ire1); 22479 } 22480 ire_refrele(ire); 22481 TRACE_2(TR_FAC_IP, 22482 TR_IP_WPUT_IRE_END, 22483 "ip_wput_ire: q %p (%S)", 22484 q, "discard MDATA"); 22485 if (conn_outgoing_ill != NULL) { 22486 ill_refrele( 22487 conn_outgoing_ill); 22488 } 22489 return; 22490 } 22491 } 22492 if (!next_mp) { 22493 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22494 "ip_wput_ire_end: q %p (%S)", 22495 q, "last fragmentation"); 22496 ip_wput_ire_fragmentit(mp, ire, 22497 zoneid); 22498 ire_refrele(ire); 22499 if (conn_outgoing_ill != NULL) 22500 ill_refrele(conn_outgoing_ill); 22501 return; 22502 } 22503 ip_wput_ire_fragmentit(mp, ire, zoneid); 22504 } 22505 } 22506 } else { 22507 nullstq: 22508 /* A NULL stq means the destination address is local. */ 22509 UPDATE_OB_PKT_COUNT(ire); 22510 ire->ire_last_used_time = lbolt; 22511 ASSERT(ire->ire_ipif != NULL); 22512 if (!next_mp) { 22513 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22514 "ip_wput_ire_end: q %p (%S)", 22515 q, "local address"); 22516 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, 22517 first_mp, ire, 0, ire->ire_zoneid); 22518 ire_refrele(ire); 22519 if (conn_outgoing_ill != NULL) 22520 ill_refrele(conn_outgoing_ill); 22521 return; 22522 } 22523 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, first_mp, 22524 ire, 0, ire->ire_zoneid); 22525 } 22526 next: 22527 /* 22528 * More copies going out to additional interfaces. 22529 * ire1 has already been held. We don't need the 22530 * "ire" anymore. 22531 */ 22532 ire_refrele(ire); 22533 ire = ire1; 22534 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 22535 mp = next_mp; 22536 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22537 ill = ire_to_ill(ire); 22538 first_mp = mp; 22539 if (ipsec_len != 0) { 22540 ASSERT(first_mp->b_datap->db_type == M_CTL); 22541 mp = mp->b_cont; 22542 } 22543 dst = ire->ire_addr; 22544 ipha = (ipha_t *)mp->b_rptr; 22545 /* 22546 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 22547 * Restore ipha_ident "no checksum" flag. 22548 */ 22549 src = orig_src; 22550 ipha->ipha_ident = ip_hdr_included; 22551 goto another; 22552 22553 #undef rptr 22554 #undef Q_TO_INDEX 22555 } 22556 22557 /* 22558 * Routine to allocate a message that is used to notify the ULP about MDT. 22559 * The caller may provide a pointer to the link-layer MDT capabilities, 22560 * or NULL if MDT is to be disabled on the stream. 22561 */ 22562 mblk_t * 22563 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 22564 { 22565 mblk_t *mp; 22566 ip_mdt_info_t *mdti; 22567 ill_mdt_capab_t *idst; 22568 22569 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 22570 DB_TYPE(mp) = M_CTL; 22571 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 22572 mdti = (ip_mdt_info_t *)mp->b_rptr; 22573 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 22574 idst = &(mdti->mdt_capab); 22575 22576 /* 22577 * If the caller provides us with the capability, copy 22578 * it over into our notification message; otherwise 22579 * we zero out the capability portion. 22580 */ 22581 if (isrc != NULL) 22582 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 22583 else 22584 bzero((caddr_t)idst, sizeof (*idst)); 22585 } 22586 return (mp); 22587 } 22588 22589 /* 22590 * Routine which determines whether MDT can be enabled on the destination 22591 * IRE and IPC combination, and if so, allocates and returns the MDT 22592 * notification mblk that may be used by ULP. We also check if we need to 22593 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 22594 * MDT usage in the past have been lifted. This gets called during IP 22595 * and ULP binding. 22596 */ 22597 mblk_t * 22598 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 22599 ill_mdt_capab_t *mdt_cap) 22600 { 22601 mblk_t *mp; 22602 boolean_t rc = B_FALSE; 22603 22604 ASSERT(dst_ire != NULL); 22605 ASSERT(connp != NULL); 22606 ASSERT(mdt_cap != NULL); 22607 22608 /* 22609 * Currently, we only support simple TCP/{IPv4,IPv6} with 22610 * Multidata, which is handled in tcp_multisend(). This 22611 * is the reason why we do all these checks here, to ensure 22612 * that we don't enable Multidata for the cases which we 22613 * can't handle at the moment. 22614 */ 22615 do { 22616 /* Only do TCP at the moment */ 22617 if (connp->conn_ulp != IPPROTO_TCP) 22618 break; 22619 22620 /* 22621 * IPSEC outbound policy present? Note that we get here 22622 * after calling ipsec_conn_cache_policy() where the global 22623 * policy checking is performed. conn_latch will be 22624 * non-NULL as long as there's a policy defined, 22625 * i.e. conn_out_enforce_policy may be NULL in such case 22626 * when the connection is non-secure, and hence we check 22627 * further if the latch refers to an outbound policy. 22628 */ 22629 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 22630 break; 22631 22632 /* CGTP (multiroute) is enabled? */ 22633 if (dst_ire->ire_flags & RTF_MULTIRT) 22634 break; 22635 22636 /* Outbound IPQoS enabled? */ 22637 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 22638 /* 22639 * In this case, we disable MDT for this and all 22640 * future connections going over the interface. 22641 */ 22642 mdt_cap->ill_mdt_on = 0; 22643 break; 22644 } 22645 22646 /* socket option(s) present? */ 22647 if (!CONN_IS_MD_FASTPATH(connp)) 22648 break; 22649 22650 rc = B_TRUE; 22651 /* CONSTCOND */ 22652 } while (0); 22653 22654 /* Remember the result */ 22655 connp->conn_mdt_ok = rc; 22656 22657 if (!rc) 22658 return (NULL); 22659 else if (!mdt_cap->ill_mdt_on) { 22660 /* 22661 * If MDT has been previously turned off in the past, and we 22662 * currently can do MDT (due to IPQoS policy removal, etc.) 22663 * then enable it for this interface. 22664 */ 22665 mdt_cap->ill_mdt_on = 1; 22666 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 22667 "interface %s\n", ill_name)); 22668 } 22669 22670 /* Allocate the MDT info mblk */ 22671 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 22672 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 22673 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 22674 return (NULL); 22675 } 22676 return (mp); 22677 } 22678 22679 /* 22680 * Create destination address attribute, and fill it with the physical 22681 * destination address and SAP taken from the template DL_UNITDATA_REQ 22682 * message block. 22683 */ 22684 boolean_t 22685 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 22686 { 22687 dl_unitdata_req_t *dlurp; 22688 pattr_t *pa; 22689 pattrinfo_t pa_info; 22690 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 22691 uint_t das_len, das_off; 22692 22693 ASSERT(dlmp != NULL); 22694 22695 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 22696 das_len = dlurp->dl_dest_addr_length; 22697 das_off = dlurp->dl_dest_addr_offset; 22698 22699 pa_info.type = PATTR_DSTADDRSAP; 22700 pa_info.len = sizeof (**das) + das_len - 1; 22701 22702 /* create and associate the attribute */ 22703 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 22704 if (pa != NULL) { 22705 ASSERT(*das != NULL); 22706 (*das)->addr_is_group = 0; 22707 (*das)->addr_len = (uint8_t)das_len; 22708 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 22709 } 22710 22711 return (pa != NULL); 22712 } 22713 22714 /* 22715 * Create hardware checksum attribute and fill it with the values passed. 22716 */ 22717 boolean_t 22718 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 22719 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 22720 { 22721 pattr_t *pa; 22722 pattrinfo_t pa_info; 22723 22724 ASSERT(mmd != NULL); 22725 22726 pa_info.type = PATTR_HCKSUM; 22727 pa_info.len = sizeof (pattr_hcksum_t); 22728 22729 /* create and associate the attribute */ 22730 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 22731 if (pa != NULL) { 22732 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 22733 22734 hck->hcksum_start_offset = start_offset; 22735 hck->hcksum_stuff_offset = stuff_offset; 22736 hck->hcksum_end_offset = end_offset; 22737 hck->hcksum_flags = flags; 22738 } 22739 return (pa != NULL); 22740 } 22741 22742 /* 22743 * Create zerocopy attribute and fill it with the specified flags 22744 */ 22745 boolean_t 22746 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 22747 { 22748 pattr_t *pa; 22749 pattrinfo_t pa_info; 22750 22751 ASSERT(mmd != NULL); 22752 pa_info.type = PATTR_ZCOPY; 22753 pa_info.len = sizeof (pattr_zcopy_t); 22754 22755 /* create and associate the attribute */ 22756 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 22757 if (pa != NULL) { 22758 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 22759 22760 zcopy->zcopy_flags = flags; 22761 } 22762 return (pa != NULL); 22763 } 22764 22765 /* 22766 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 22767 * block chain. We could rewrite to handle arbitrary message block chains but 22768 * that would make the code complicated and slow. Right now there three 22769 * restrictions: 22770 * 22771 * 1. The first message block must contain the complete IP header and 22772 * at least 1 byte of payload data. 22773 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 22774 * so that we can use a single Multidata message. 22775 * 3. No frag must be distributed over two or more message blocks so 22776 * that we don't need more than two packet descriptors per frag. 22777 * 22778 * The above restrictions allow us to support userland applications (which 22779 * will send down a single message block) and NFS over UDP (which will 22780 * send down a chain of at most three message blocks). 22781 * 22782 * We also don't use MDT for payloads with less than or equal to 22783 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 22784 */ 22785 boolean_t 22786 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 22787 { 22788 int blocks; 22789 ssize_t total, missing, size; 22790 22791 ASSERT(mp != NULL); 22792 ASSERT(hdr_len > 0); 22793 22794 size = MBLKL(mp) - hdr_len; 22795 if (size <= 0) 22796 return (B_FALSE); 22797 22798 /* The first mblk contains the header and some payload. */ 22799 blocks = 1; 22800 total = size; 22801 size %= len; 22802 missing = (size == 0) ? 0 : (len - size); 22803 mp = mp->b_cont; 22804 22805 while (mp != NULL) { 22806 /* 22807 * Give up if we encounter a zero length message block. 22808 * In practice, this should rarely happen and therefore 22809 * not worth the trouble of freeing and re-linking the 22810 * mblk from the chain to handle such case. 22811 */ 22812 if ((size = MBLKL(mp)) == 0) 22813 return (B_FALSE); 22814 22815 /* Too many payload buffers for a single Multidata message? */ 22816 if (++blocks > MULTIDATA_MAX_PBUFS) 22817 return (B_FALSE); 22818 22819 total += size; 22820 /* Is a frag distributed over two or more message blocks? */ 22821 if (missing > size) 22822 return (B_FALSE); 22823 size -= missing; 22824 22825 size %= len; 22826 missing = (size == 0) ? 0 : (len - size); 22827 22828 mp = mp->b_cont; 22829 } 22830 22831 return (total > ip_wput_frag_mdt_min); 22832 } 22833 22834 /* 22835 * Outbound IPv4 fragmentation routine using MDT. 22836 */ 22837 static void 22838 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 22839 uint32_t frag_flag, int offset) 22840 { 22841 ipha_t *ipha_orig; 22842 int i1, ip_data_end; 22843 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 22844 mblk_t *hdr_mp, *md_mp = NULL; 22845 unsigned char *hdr_ptr, *pld_ptr; 22846 multidata_t *mmd; 22847 ip_pdescinfo_t pdi; 22848 22849 ASSERT(DB_TYPE(mp) == M_DATA); 22850 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 22851 22852 ipha_orig = (ipha_t *)mp->b_rptr; 22853 mp->b_rptr += sizeof (ipha_t); 22854 22855 /* Calculate how many packets we will send out */ 22856 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 22857 pkts = (i1 + len - 1) / len; 22858 ASSERT(pkts > 1); 22859 22860 /* Allocate a message block which will hold all the IP Headers. */ 22861 wroff = ip_wroff_extra; 22862 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 22863 22864 i1 = pkts * hdr_chunk_len; 22865 /* 22866 * Create the header buffer, Multidata and destination address 22867 * and SAP attribute that should be associated with it. 22868 */ 22869 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 22870 ((hdr_mp->b_wptr += i1), 22871 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 22872 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 22873 freemsg(mp); 22874 if (md_mp == NULL) { 22875 freemsg(hdr_mp); 22876 } else { 22877 free_mmd: IP_STAT(ip_frag_mdt_discarded); 22878 freemsg(md_mp); 22879 } 22880 IP_STAT(ip_frag_mdt_allocfail); 22881 UPDATE_MIB(&ip_mib, ipOutDiscards, pkts); 22882 return; 22883 } 22884 IP_STAT(ip_frag_mdt_allocd); 22885 22886 /* 22887 * Add a payload buffer to the Multidata; this operation must not 22888 * fail, or otherwise our logic in this routine is broken. There 22889 * is no memory allocation done by the routine, so any returned 22890 * failure simply tells us that we've done something wrong. 22891 * 22892 * A failure tells us that either we're adding the same payload 22893 * buffer more than once, or we're trying to add more buffers than 22894 * allowed. None of the above cases should happen, and we panic 22895 * because either there's horrible heap corruption, and/or 22896 * programming mistake. 22897 */ 22898 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 22899 goto pbuf_panic; 22900 22901 hdr_ptr = hdr_mp->b_rptr; 22902 pld_ptr = mp->b_rptr; 22903 22904 /* Establish the ending byte offset, based on the starting offset. */ 22905 offset <<= 3; 22906 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 22907 IP_SIMPLE_HDR_LENGTH; 22908 22909 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 22910 22911 while (pld_ptr < mp->b_wptr) { 22912 ipha_t *ipha; 22913 uint16_t offset_and_flags; 22914 uint16_t ip_len; 22915 int error; 22916 22917 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 22918 ipha = (ipha_t *)(hdr_ptr + wroff); 22919 ASSERT(OK_32PTR(ipha)); 22920 *ipha = *ipha_orig; 22921 22922 if (ip_data_end - offset > len) { 22923 offset_and_flags = IPH_MF; 22924 } else { 22925 /* 22926 * Last frag. Set len to the length of this last piece. 22927 */ 22928 len = ip_data_end - offset; 22929 /* A frag of a frag might have IPH_MF non-zero */ 22930 offset_and_flags = 22931 ntohs(ipha->ipha_fragment_offset_and_flags) & 22932 IPH_MF; 22933 } 22934 offset_and_flags |= (uint16_t)(offset >> 3); 22935 offset_and_flags |= (uint16_t)frag_flag; 22936 /* Store the offset and flags in the IP header. */ 22937 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 22938 22939 /* Store the length in the IP header. */ 22940 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 22941 ipha->ipha_length = htons(ip_len); 22942 22943 /* 22944 * Set the IP header checksum. Note that mp is just 22945 * the header, so this is easy to pass to ip_csum. 22946 */ 22947 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22948 22949 /* 22950 * Record offset and size of header and data of the next packet 22951 * in the multidata message. 22952 */ 22953 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 22954 PDESC_PLD_INIT(&pdi); 22955 i1 = MIN(mp->b_wptr - pld_ptr, len); 22956 ASSERT(i1 > 0); 22957 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 22958 if (i1 == len) { 22959 pld_ptr += len; 22960 } else { 22961 i1 = len - i1; 22962 mp = mp->b_cont; 22963 ASSERT(mp != NULL); 22964 ASSERT(MBLKL(mp) >= i1); 22965 /* 22966 * Attach the next payload message block to the 22967 * multidata message. 22968 */ 22969 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 22970 goto pbuf_panic; 22971 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 22972 pld_ptr = mp->b_rptr + i1; 22973 } 22974 22975 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 22976 KM_NOSLEEP)) == NULL) { 22977 /* 22978 * Any failure other than ENOMEM indicates that we 22979 * have passed in invalid pdesc info or parameters 22980 * to mmd_addpdesc, which must not happen. 22981 * 22982 * EINVAL is a result of failure on boundary checks 22983 * against the pdesc info contents. It should not 22984 * happen, and we panic because either there's 22985 * horrible heap corruption, and/or programming 22986 * mistake. 22987 */ 22988 if (error != ENOMEM) { 22989 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 22990 "pdesc logic error detected for " 22991 "mmd %p pinfo %p (%d)\n", 22992 (void *)mmd, (void *)&pdi, error); 22993 /* NOTREACHED */ 22994 } 22995 IP_STAT(ip_frag_mdt_addpdescfail); 22996 /* Free unattached payload message blocks as well */ 22997 md_mp->b_cont = mp->b_cont; 22998 goto free_mmd; 22999 } 23000 23001 /* Advance fragment offset. */ 23002 offset += len; 23003 23004 /* Advance to location for next header in the buffer. */ 23005 hdr_ptr += hdr_chunk_len; 23006 23007 /* Did we reach the next payload message block? */ 23008 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23009 mp = mp->b_cont; 23010 /* 23011 * Attach the next message block with payload 23012 * data to the multidata message. 23013 */ 23014 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23015 goto pbuf_panic; 23016 pld_ptr = mp->b_rptr; 23017 } 23018 } 23019 23020 ASSERT(hdr_mp->b_wptr == hdr_ptr); 23021 ASSERT(mp->b_wptr == pld_ptr); 23022 23023 /* Update IP statistics */ 23024 UPDATE_MIB(&ip_mib, ipFragCreates, pkts); 23025 BUMP_MIB(&ip_mib, ipFragOKs); 23026 IP_STAT_UPDATE(ip_frag_mdt_pkt_out, pkts); 23027 23028 if (pkt_type == OB_PKT) { 23029 ire->ire_ob_pkt_count += pkts; 23030 if (ire->ire_ipif != NULL) 23031 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 23032 } else { 23033 /* 23034 * The type is IB_PKT in the forwarding path and in 23035 * the mobile IP case when the packet is being reverse- 23036 * tunneled to the home agent. 23037 */ 23038 ire->ire_ib_pkt_count += pkts; 23039 ASSERT(!IRE_IS_LOCAL(ire)); 23040 if (ire->ire_type & IRE_BROADCAST) 23041 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 23042 else 23043 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 23044 } 23045 ire->ire_last_used_time = lbolt; 23046 /* Send it down */ 23047 putnext(ire->ire_stq, md_mp); 23048 return; 23049 23050 pbuf_panic: 23051 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 23052 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 23053 pbuf_idx); 23054 /* NOTREACHED */ 23055 } 23056 23057 /* 23058 * Outbound IP fragmentation routine. 23059 * 23060 * NOTE : This routine does not ire_refrele the ire that is passed in 23061 * as the argument. 23062 */ 23063 static void 23064 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 23065 uint32_t frag_flag, zoneid_t zoneid) 23066 { 23067 int i1; 23068 mblk_t *ll_hdr_mp; 23069 int ll_hdr_len; 23070 int hdr_len; 23071 mblk_t *hdr_mp; 23072 ipha_t *ipha; 23073 int ip_data_end; 23074 int len; 23075 mblk_t *mp = mp_orig; 23076 int offset; 23077 queue_t *q; 23078 uint32_t v_hlen_tos_len; 23079 mblk_t *first_mp; 23080 boolean_t mctl_present; 23081 ill_t *ill; 23082 mblk_t *xmit_mp; 23083 mblk_t *carve_mp; 23084 ire_t *ire1 = NULL; 23085 ire_t *save_ire = NULL; 23086 mblk_t *next_mp = NULL; 23087 boolean_t last_frag = B_FALSE; 23088 boolean_t multirt_send = B_FALSE; 23089 ire_t *first_ire = NULL; 23090 irb_t *irb = NULL; 23091 23092 /* 23093 * IPSEC does not allow hw accelerated packets to be fragmented 23094 * This check is made in ip_wput_ipsec_out prior to coming here 23095 * via ip_wput_ire_fragmentit. 23096 * 23097 * If at this point we have an ire whose ARP request has not 23098 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 23099 * sending of ARP query and change ire's state to ND_INCOMPLETE. 23100 * This packet and all fragmentable packets for this ire will 23101 * continue to get dropped while ire_nce->nce_state remains in 23102 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 23103 * ND_REACHABLE, all subsquent large packets for this ire will 23104 * get fragemented and sent out by this function. 23105 */ 23106 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 23107 /* If nce_state is ND_INITIAL, trigger ARP query */ 23108 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 23109 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 23110 " - dropping packet\n")); 23111 BUMP_MIB(&ip_mib, ipFragFails); 23112 freemsg(mp); 23113 return; 23114 } 23115 23116 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 23117 "ip_wput_frag_start:"); 23118 23119 if (mp->b_datap->db_type == M_CTL) { 23120 first_mp = mp; 23121 mp_orig = mp = mp->b_cont; 23122 mctl_present = B_TRUE; 23123 } else { 23124 first_mp = mp; 23125 mctl_present = B_FALSE; 23126 } 23127 23128 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 23129 ipha = (ipha_t *)mp->b_rptr; 23130 23131 /* 23132 * If the Don't Fragment flag is on, generate an ICMP destination 23133 * unreachable, fragmentation needed. 23134 */ 23135 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23136 if (offset & IPH_DF) { 23137 BUMP_MIB(&ip_mib, ipFragFails); 23138 /* 23139 * Need to compute hdr checksum if called from ip_wput_ire. 23140 * Note that ip_rput_forward verifies the checksum before 23141 * calling this routine so in that case this is a noop. 23142 */ 23143 ipha->ipha_hdr_checksum = 0; 23144 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23145 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid); 23146 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23147 "ip_wput_frag_end:(%S)", 23148 "don't fragment"); 23149 return; 23150 } 23151 if (mctl_present) 23152 freeb(first_mp); 23153 /* 23154 * Establish the starting offset. May not be zero if we are fragging 23155 * a fragment that is being forwarded. 23156 */ 23157 offset = offset & IPH_OFFSET; 23158 23159 /* TODO why is this test needed? */ 23160 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 23161 if (((max_frag - LENGTH) & ~7) < 8) { 23162 /* TODO: notify ulp somehow */ 23163 BUMP_MIB(&ip_mib, ipFragFails); 23164 freemsg(mp); 23165 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23166 "ip_wput_frag_end:(%S)", 23167 "len < 8"); 23168 return; 23169 } 23170 23171 hdr_len = (V_HLEN & 0xF) << 2; 23172 23173 ipha->ipha_hdr_checksum = 0; 23174 23175 /* 23176 * Establish the number of bytes maximum per frag, after putting 23177 * in the header. 23178 */ 23179 len = (max_frag - hdr_len) & ~7; 23180 23181 /* Check if we can use MDT to send out the frags. */ 23182 ASSERT(!IRE_IS_LOCAL(ire)); 23183 if (hdr_len == IP_SIMPLE_HDR_LENGTH && ip_multidata_outbound && 23184 !(ire->ire_flags & RTF_MULTIRT) && !IPP_ENABLED(IPP_LOCAL_OUT) && 23185 (ill = ire_to_ill(ire)) != NULL && ILL_MDT_CAPABLE(ill) && 23186 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 23187 ASSERT(ill->ill_mdt_capab != NULL); 23188 if (!ill->ill_mdt_capab->ill_mdt_on) { 23189 /* 23190 * If MDT has been previously turned off in the past, 23191 * and we currently can do MDT (due to IPQoS policy 23192 * removal, etc.) then enable it for this interface. 23193 */ 23194 ill->ill_mdt_capab->ill_mdt_on = 1; 23195 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 23196 ill->ill_name)); 23197 } 23198 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 23199 offset); 23200 return; 23201 } 23202 23203 /* Get a copy of the header for the trailing frags */ 23204 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset); 23205 if (!hdr_mp) { 23206 BUMP_MIB(&ip_mib, ipOutDiscards); 23207 freemsg(mp); 23208 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23209 "ip_wput_frag_end:(%S)", 23210 "couldn't copy hdr"); 23211 return; 23212 } 23213 if (DB_CRED(mp) != NULL) 23214 mblk_setcred(hdr_mp, DB_CRED(mp)); 23215 23216 /* Store the starting offset, with the MoreFrags flag. */ 23217 i1 = offset | IPH_MF | frag_flag; 23218 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 23219 23220 /* Establish the ending byte offset, based on the starting offset. */ 23221 offset <<= 3; 23222 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 23223 23224 /* Store the length of the first fragment in the IP header. */ 23225 i1 = len + hdr_len; 23226 ASSERT(i1 <= IP_MAXPACKET); 23227 ipha->ipha_length = htons((uint16_t)i1); 23228 23229 /* 23230 * Compute the IP header checksum for the first frag. We have to 23231 * watch out that we stop at the end of the header. 23232 */ 23233 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23234 23235 /* 23236 * Now carve off the first frag. Note that this will include the 23237 * original IP header. 23238 */ 23239 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 23240 BUMP_MIB(&ip_mib, ipOutDiscards); 23241 freeb(hdr_mp); 23242 freemsg(mp_orig); 23243 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23244 "ip_wput_frag_end:(%S)", 23245 "couldn't carve first"); 23246 return; 23247 } 23248 23249 /* 23250 * Multirouting case. Each fragment is replicated 23251 * via all non-condemned RTF_MULTIRT routes 23252 * currently resolved. 23253 * We ensure that first_ire is the first RTF_MULTIRT 23254 * ire in the bucket. 23255 */ 23256 if (ire->ire_flags & RTF_MULTIRT) { 23257 irb = ire->ire_bucket; 23258 ASSERT(irb != NULL); 23259 23260 multirt_send = B_TRUE; 23261 23262 /* Make sure we do not omit any multiroute ire. */ 23263 IRB_REFHOLD(irb); 23264 for (first_ire = irb->irb_ire; 23265 first_ire != NULL; 23266 first_ire = first_ire->ire_next) { 23267 if ((first_ire->ire_flags & RTF_MULTIRT) && 23268 (first_ire->ire_addr == ire->ire_addr) && 23269 !(first_ire->ire_marks & 23270 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 23271 break; 23272 } 23273 23274 if (first_ire != NULL) { 23275 if (first_ire != ire) { 23276 IRE_REFHOLD(first_ire); 23277 /* 23278 * Do not release the ire passed in 23279 * as the argument. 23280 */ 23281 ire = first_ire; 23282 } else { 23283 first_ire = NULL; 23284 } 23285 } 23286 IRB_REFRELE(irb); 23287 23288 /* 23289 * Save the first ire; we will need to restore it 23290 * for the trailing frags. 23291 * We REFHOLD save_ire, as each iterated ire will be 23292 * REFRELEd. 23293 */ 23294 save_ire = ire; 23295 IRE_REFHOLD(save_ire); 23296 } 23297 23298 /* 23299 * First fragment emission loop. 23300 * In most cases, the emission loop below is entered only 23301 * once. Only in the case where the ire holds the RTF_MULTIRT 23302 * flag, do we loop to process all RTF_MULTIRT ires in the 23303 * bucket, and send the fragment through all crossed 23304 * RTF_MULTIRT routes. 23305 */ 23306 do { 23307 if (ire->ire_flags & RTF_MULTIRT) { 23308 /* 23309 * We are in a multiple send case, need to get 23310 * the next ire and make a copy of the packet. 23311 * ire1 holds here the next ire to process in the 23312 * bucket. If multirouting is expected, 23313 * any non-RTF_MULTIRT ire that has the 23314 * right destination address is ignored. 23315 * 23316 * We have to take into account the MTU of 23317 * each walked ire. max_frag is set by the 23318 * the caller and generally refers to 23319 * the primary ire entry. Here we ensure that 23320 * no route with a lower MTU will be used, as 23321 * fragments are carved once for all ires, 23322 * then replicated. 23323 */ 23324 ASSERT(irb != NULL); 23325 IRB_REFHOLD(irb); 23326 for (ire1 = ire->ire_next; 23327 ire1 != NULL; 23328 ire1 = ire1->ire_next) { 23329 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 23330 continue; 23331 if (ire1->ire_addr != ire->ire_addr) 23332 continue; 23333 if (ire1->ire_marks & 23334 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 23335 continue; 23336 /* 23337 * Ensure we do not exceed the MTU 23338 * of the next route. 23339 */ 23340 if (ire1->ire_max_frag < max_frag) { 23341 ip_multirt_bad_mtu(ire1, max_frag); 23342 continue; 23343 } 23344 23345 /* Got one. */ 23346 IRE_REFHOLD(ire1); 23347 break; 23348 } 23349 IRB_REFRELE(irb); 23350 23351 if (ire1 != NULL) { 23352 next_mp = copyb(mp); 23353 if ((next_mp == NULL) || 23354 ((mp->b_cont != NULL) && 23355 ((next_mp->b_cont = 23356 dupmsg(mp->b_cont)) == NULL))) { 23357 freemsg(next_mp); 23358 next_mp = NULL; 23359 ire_refrele(ire1); 23360 ire1 = NULL; 23361 } 23362 } 23363 23364 /* Last multiroute ire; don't loop anymore. */ 23365 if (ire1 == NULL) { 23366 multirt_send = B_FALSE; 23367 } 23368 } 23369 23370 ll_hdr_len = 0; 23371 LOCK_IRE_FP_MP(ire); 23372 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 23373 if (ll_hdr_mp != NULL) { 23374 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 23375 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 23376 } else { 23377 ll_hdr_mp = ire->ire_nce->nce_res_mp; 23378 } 23379 23380 /* If there is a transmit header, get a copy for this frag. */ 23381 /* 23382 * TODO: should check db_ref before calling ip_carve_mp since 23383 * it might give us a dup. 23384 */ 23385 if (!ll_hdr_mp) { 23386 /* No xmit header. */ 23387 xmit_mp = mp; 23388 23389 /* We have a link-layer header that can fit in our mblk. */ 23390 } else if (mp->b_datap->db_ref == 1 && 23391 ll_hdr_len != 0 && 23392 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 23393 /* M_DATA fastpath */ 23394 mp->b_rptr -= ll_hdr_len; 23395 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 23396 xmit_mp = mp; 23397 23398 /* Corner case if copyb has failed */ 23399 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 23400 UNLOCK_IRE_FP_MP(ire); 23401 BUMP_MIB(&ip_mib, ipOutDiscards); 23402 freeb(hdr_mp); 23403 freemsg(mp); 23404 freemsg(mp_orig); 23405 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23406 "ip_wput_frag_end:(%S)", 23407 "discard"); 23408 23409 if (multirt_send) { 23410 ASSERT(ire1); 23411 ASSERT(next_mp); 23412 23413 freemsg(next_mp); 23414 ire_refrele(ire1); 23415 } 23416 if (save_ire != NULL) 23417 IRE_REFRELE(save_ire); 23418 23419 if (first_ire != NULL) 23420 ire_refrele(first_ire); 23421 return; 23422 23423 /* 23424 * Case of res_mp OR the fastpath mp can't fit 23425 * in the mblk 23426 */ 23427 } else { 23428 xmit_mp->b_cont = mp; 23429 if (DB_CRED(mp) != NULL) 23430 mblk_setcred(xmit_mp, DB_CRED(mp)); 23431 /* 23432 * Get priority marking, if any. 23433 * We propagate the CoS marking from the 23434 * original packet that went to QoS processing 23435 * in ip_wput_ire to the newly carved mp. 23436 */ 23437 if (DB_TYPE(xmit_mp) == M_DATA) 23438 xmit_mp->b_band = mp->b_band; 23439 } 23440 UNLOCK_IRE_FP_MP(ire); 23441 q = ire->ire_stq; 23442 BUMP_MIB(&ip_mib, ipFragCreates); 23443 putnext(q, xmit_mp); 23444 if (pkt_type != OB_PKT) { 23445 /* 23446 * Update the packet count of trailing 23447 * RTF_MULTIRT ires. 23448 */ 23449 UPDATE_OB_PKT_COUNT(ire); 23450 } 23451 23452 if (multirt_send) { 23453 /* 23454 * We are in a multiple send case; look for 23455 * the next ire and re-enter the loop. 23456 */ 23457 ASSERT(ire1); 23458 ASSERT(next_mp); 23459 /* REFRELE the current ire before looping */ 23460 ire_refrele(ire); 23461 ire = ire1; 23462 ire1 = NULL; 23463 mp = next_mp; 23464 next_mp = NULL; 23465 } 23466 } while (multirt_send); 23467 23468 ASSERT(ire1 == NULL); 23469 23470 /* Restore the original ire; we need it for the trailing frags */ 23471 if (save_ire != NULL) { 23472 /* REFRELE the last iterated ire */ 23473 ire_refrele(ire); 23474 /* save_ire has been REFHOLDed */ 23475 ire = save_ire; 23476 save_ire = NULL; 23477 q = ire->ire_stq; 23478 } 23479 23480 if (pkt_type == OB_PKT) { 23481 UPDATE_OB_PKT_COUNT(ire); 23482 } else { 23483 UPDATE_IB_PKT_COUNT(ire); 23484 } 23485 23486 /* Advance the offset to the second frag starting point. */ 23487 offset += len; 23488 /* 23489 * Update hdr_len from the copied header - there might be less options 23490 * in the later fragments. 23491 */ 23492 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 23493 /* Loop until done. */ 23494 for (;;) { 23495 uint16_t offset_and_flags; 23496 uint16_t ip_len; 23497 23498 if (ip_data_end - offset > len) { 23499 /* 23500 * Carve off the appropriate amount from the original 23501 * datagram. 23502 */ 23503 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 23504 mp = NULL; 23505 break; 23506 } 23507 /* 23508 * More frags after this one. Get another copy 23509 * of the header. 23510 */ 23511 if (carve_mp->b_datap->db_ref == 1 && 23512 hdr_mp->b_wptr - hdr_mp->b_rptr < 23513 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 23514 /* Inline IP header */ 23515 carve_mp->b_rptr -= hdr_mp->b_wptr - 23516 hdr_mp->b_rptr; 23517 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 23518 hdr_mp->b_wptr - hdr_mp->b_rptr); 23519 mp = carve_mp; 23520 } else { 23521 if (!(mp = copyb(hdr_mp))) { 23522 freemsg(carve_mp); 23523 break; 23524 } 23525 /* Get priority marking, if any. */ 23526 mp->b_band = carve_mp->b_band; 23527 mp->b_cont = carve_mp; 23528 } 23529 ipha = (ipha_t *)mp->b_rptr; 23530 offset_and_flags = IPH_MF; 23531 } else { 23532 /* 23533 * Last frag. Consume the header. Set len to 23534 * the length of this last piece. 23535 */ 23536 len = ip_data_end - offset; 23537 23538 /* 23539 * Carve off the appropriate amount from the original 23540 * datagram. 23541 */ 23542 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 23543 mp = NULL; 23544 break; 23545 } 23546 if (carve_mp->b_datap->db_ref == 1 && 23547 hdr_mp->b_wptr - hdr_mp->b_rptr < 23548 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 23549 /* Inline IP header */ 23550 carve_mp->b_rptr -= hdr_mp->b_wptr - 23551 hdr_mp->b_rptr; 23552 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 23553 hdr_mp->b_wptr - hdr_mp->b_rptr); 23554 mp = carve_mp; 23555 freeb(hdr_mp); 23556 hdr_mp = mp; 23557 } else { 23558 mp = hdr_mp; 23559 /* Get priority marking, if any. */ 23560 mp->b_band = carve_mp->b_band; 23561 mp->b_cont = carve_mp; 23562 } 23563 ipha = (ipha_t *)mp->b_rptr; 23564 /* A frag of a frag might have IPH_MF non-zero */ 23565 offset_and_flags = 23566 ntohs(ipha->ipha_fragment_offset_and_flags) & 23567 IPH_MF; 23568 } 23569 offset_and_flags |= (uint16_t)(offset >> 3); 23570 offset_and_flags |= (uint16_t)frag_flag; 23571 /* Store the offset and flags in the IP header. */ 23572 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23573 23574 /* Store the length in the IP header. */ 23575 ip_len = (uint16_t)(len + hdr_len); 23576 ipha->ipha_length = htons(ip_len); 23577 23578 /* 23579 * Set the IP header checksum. Note that mp is just 23580 * the header, so this is easy to pass to ip_csum. 23581 */ 23582 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23583 23584 /* Attach a transmit header, if any, and ship it. */ 23585 if (pkt_type == OB_PKT) { 23586 UPDATE_OB_PKT_COUNT(ire); 23587 } else { 23588 UPDATE_IB_PKT_COUNT(ire); 23589 } 23590 23591 if (ire->ire_flags & RTF_MULTIRT) { 23592 irb = ire->ire_bucket; 23593 ASSERT(irb != NULL); 23594 23595 multirt_send = B_TRUE; 23596 23597 /* 23598 * Save the original ire; we will need to restore it 23599 * for the tailing frags. 23600 */ 23601 save_ire = ire; 23602 IRE_REFHOLD(save_ire); 23603 } 23604 /* 23605 * Emission loop for this fragment, similar 23606 * to what is done for the first fragment. 23607 */ 23608 do { 23609 if (multirt_send) { 23610 /* 23611 * We are in a multiple send case, need to get 23612 * the next ire and make a copy of the packet. 23613 */ 23614 ASSERT(irb != NULL); 23615 IRB_REFHOLD(irb); 23616 for (ire1 = ire->ire_next; 23617 ire1 != NULL; 23618 ire1 = ire1->ire_next) { 23619 if (!(ire1->ire_flags & RTF_MULTIRT)) 23620 continue; 23621 if (ire1->ire_addr != ire->ire_addr) 23622 continue; 23623 if (ire1->ire_marks & 23624 (IRE_MARK_CONDEMNED| 23625 IRE_MARK_HIDDEN)) 23626 continue; 23627 /* 23628 * Ensure we do not exceed the MTU 23629 * of the next route. 23630 */ 23631 if (ire1->ire_max_frag < max_frag) { 23632 ip_multirt_bad_mtu(ire1, 23633 max_frag); 23634 continue; 23635 } 23636 23637 /* Got one. */ 23638 IRE_REFHOLD(ire1); 23639 break; 23640 } 23641 IRB_REFRELE(irb); 23642 23643 if (ire1 != NULL) { 23644 next_mp = copyb(mp); 23645 if ((next_mp == NULL) || 23646 ((mp->b_cont != NULL) && 23647 ((next_mp->b_cont = 23648 dupmsg(mp->b_cont)) == NULL))) { 23649 freemsg(next_mp); 23650 next_mp = NULL; 23651 ire_refrele(ire1); 23652 ire1 = NULL; 23653 } 23654 } 23655 23656 /* Last multiroute ire; don't loop anymore. */ 23657 if (ire1 == NULL) { 23658 multirt_send = B_FALSE; 23659 } 23660 } 23661 23662 /* Update transmit header */ 23663 ll_hdr_len = 0; 23664 LOCK_IRE_FP_MP(ire); 23665 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 23666 if (ll_hdr_mp != NULL) { 23667 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 23668 ll_hdr_len = MBLKL(ll_hdr_mp); 23669 } else { 23670 ll_hdr_mp = ire->ire_nce->nce_res_mp; 23671 } 23672 23673 if (!ll_hdr_mp) { 23674 xmit_mp = mp; 23675 23676 /* 23677 * We have link-layer header that can fit in 23678 * our mblk. 23679 */ 23680 } else if (mp->b_datap->db_ref == 1 && 23681 ll_hdr_len != 0 && 23682 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 23683 /* M_DATA fastpath */ 23684 mp->b_rptr -= ll_hdr_len; 23685 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 23686 ll_hdr_len); 23687 xmit_mp = mp; 23688 23689 /* 23690 * Case of res_mp OR the fastpath mp can't fit 23691 * in the mblk 23692 */ 23693 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 23694 xmit_mp->b_cont = mp; 23695 if (DB_CRED(mp) != NULL) 23696 mblk_setcred(xmit_mp, DB_CRED(mp)); 23697 /* Get priority marking, if any. */ 23698 if (DB_TYPE(xmit_mp) == M_DATA) 23699 xmit_mp->b_band = mp->b_band; 23700 23701 /* Corner case if copyb failed */ 23702 } else { 23703 /* 23704 * Exit both the replication and 23705 * fragmentation loops. 23706 */ 23707 UNLOCK_IRE_FP_MP(ire); 23708 goto drop_pkt; 23709 } 23710 UNLOCK_IRE_FP_MP(ire); 23711 BUMP_MIB(&ip_mib, ipFragCreates); 23712 putnext(q, xmit_mp); 23713 23714 if (pkt_type != OB_PKT) { 23715 /* 23716 * Update the packet count of trailing 23717 * RTF_MULTIRT ires. 23718 */ 23719 UPDATE_OB_PKT_COUNT(ire); 23720 } 23721 23722 /* All done if we just consumed the hdr_mp. */ 23723 if (mp == hdr_mp) { 23724 last_frag = B_TRUE; 23725 } 23726 23727 if (multirt_send) { 23728 /* 23729 * We are in a multiple send case; look for 23730 * the next ire and re-enter the loop. 23731 */ 23732 ASSERT(ire1); 23733 ASSERT(next_mp); 23734 /* REFRELE the current ire before looping */ 23735 ire_refrele(ire); 23736 ire = ire1; 23737 ire1 = NULL; 23738 q = ire->ire_stq; 23739 mp = next_mp; 23740 next_mp = NULL; 23741 } 23742 } while (multirt_send); 23743 /* 23744 * Restore the original ire; we need it for the 23745 * trailing frags 23746 */ 23747 if (save_ire != NULL) { 23748 ASSERT(ire1 == NULL); 23749 /* REFRELE the last iterated ire */ 23750 ire_refrele(ire); 23751 /* save_ire has been REFHOLDed */ 23752 ire = save_ire; 23753 q = ire->ire_stq; 23754 save_ire = NULL; 23755 } 23756 23757 if (last_frag) { 23758 BUMP_MIB(&ip_mib, ipFragOKs); 23759 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23760 "ip_wput_frag_end:(%S)", 23761 "consumed hdr_mp"); 23762 23763 if (first_ire != NULL) 23764 ire_refrele(first_ire); 23765 return; 23766 } 23767 /* Otherwise, advance and loop. */ 23768 offset += len; 23769 } 23770 23771 drop_pkt: 23772 /* Clean up following allocation failure. */ 23773 BUMP_MIB(&ip_mib, ipOutDiscards); 23774 freemsg(mp); 23775 if (mp != hdr_mp) 23776 freeb(hdr_mp); 23777 if (mp != mp_orig) 23778 freemsg(mp_orig); 23779 23780 if (save_ire != NULL) 23781 IRE_REFRELE(save_ire); 23782 if (first_ire != NULL) 23783 ire_refrele(first_ire); 23784 23785 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23786 "ip_wput_frag_end:(%S)", 23787 "end--alloc failure"); 23788 } 23789 23790 /* 23791 * Copy the header plus those options which have the copy bit set 23792 */ 23793 static mblk_t * 23794 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset) 23795 { 23796 mblk_t *mp; 23797 uchar_t *up; 23798 23799 /* 23800 * Quick check if we need to look for options without the copy bit 23801 * set 23802 */ 23803 mp = allocb(ip_wroff_extra + hdr_len, BPRI_HI); 23804 if (!mp) 23805 return (mp); 23806 mp->b_rptr += ip_wroff_extra; 23807 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 23808 bcopy(rptr, mp->b_rptr, hdr_len); 23809 mp->b_wptr += hdr_len + ip_wroff_extra; 23810 return (mp); 23811 } 23812 up = mp->b_rptr; 23813 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 23814 up += IP_SIMPLE_HDR_LENGTH; 23815 rptr += IP_SIMPLE_HDR_LENGTH; 23816 hdr_len -= IP_SIMPLE_HDR_LENGTH; 23817 while (hdr_len > 0) { 23818 uint32_t optval; 23819 uint32_t optlen; 23820 23821 optval = *rptr; 23822 if (optval == IPOPT_EOL) 23823 break; 23824 if (optval == IPOPT_NOP) 23825 optlen = 1; 23826 else 23827 optlen = rptr[1]; 23828 if (optval & IPOPT_COPY) { 23829 bcopy(rptr, up, optlen); 23830 up += optlen; 23831 } 23832 rptr += optlen; 23833 hdr_len -= optlen; 23834 } 23835 /* 23836 * Make sure that we drop an even number of words by filling 23837 * with EOL to the next word boundary. 23838 */ 23839 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 23840 hdr_len & 0x3; hdr_len++) 23841 *up++ = IPOPT_EOL; 23842 mp->b_wptr = up; 23843 /* Update header length */ 23844 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 23845 return (mp); 23846 } 23847 23848 /* 23849 * Delivery to local recipients including fanout to multiple recipients. 23850 * Does not do checksumming of UDP/TCP. 23851 * Note: q should be the read side queue for either the ill or conn. 23852 * Note: rq should be the read side q for the lower (ill) stream. 23853 * We don't send packets to IPPF processing, thus the last argument 23854 * to all the fanout calls are B_FALSE. 23855 */ 23856 void 23857 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 23858 int fanout_flags, zoneid_t zoneid) 23859 { 23860 uint32_t protocol; 23861 mblk_t *first_mp; 23862 boolean_t mctl_present; 23863 int ire_type; 23864 #define rptr ((uchar_t *)ipha) 23865 23866 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 23867 "ip_wput_local_start: q %p", q); 23868 23869 if (ire != NULL) { 23870 ire_type = ire->ire_type; 23871 } else { 23872 /* 23873 * Only ip_multicast_loopback() calls us with a NULL ire. If the 23874 * packet is not multicast, we can't tell the ire type. 23875 */ 23876 ASSERT(CLASSD(ipha->ipha_dst)); 23877 ire_type = IRE_BROADCAST; 23878 } 23879 23880 first_mp = mp; 23881 if (first_mp->b_datap->db_type == M_CTL) { 23882 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 23883 if (!io->ipsec_out_secure) { 23884 /* 23885 * This ipsec_out_t was allocated in ip_wput 23886 * for multicast packets to store the ill_index. 23887 * As this is being delivered locally, we don't 23888 * need this anymore. 23889 */ 23890 mp = first_mp->b_cont; 23891 freeb(first_mp); 23892 first_mp = mp; 23893 mctl_present = B_FALSE; 23894 } else { 23895 mctl_present = B_TRUE; 23896 mp = first_mp->b_cont; 23897 ASSERT(mp != NULL); 23898 ipsec_out_to_in(first_mp); 23899 } 23900 } else { 23901 mctl_present = B_FALSE; 23902 } 23903 23904 loopback_packets++; 23905 23906 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 23907 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 23908 if (!IS_SIMPLE_IPH(ipha)) { 23909 ip_wput_local_options(ipha); 23910 } 23911 23912 protocol = ipha->ipha_protocol; 23913 switch (protocol) { 23914 case IPPROTO_ICMP: { 23915 ire_t *ire_zone; 23916 ilm_t *ilm; 23917 mblk_t *mp1; 23918 zoneid_t last_zoneid; 23919 23920 if (CLASSD(ipha->ipha_dst) && 23921 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 23922 ASSERT(ire_type == IRE_BROADCAST); 23923 /* 23924 * In the multicast case, applications may have joined 23925 * the group from different zones, so we need to deliver 23926 * the packet to each of them. Loop through the 23927 * multicast memberships structures (ilm) on the receive 23928 * ill and send a copy of the packet up each matching 23929 * one. However, we don't do this for multicasts sent on 23930 * the loopback interface (PHYI_LOOPBACK flag set) as 23931 * they must stay in the sender's zone. 23932 * 23933 * ilm_add_v6() ensures that ilms in the same zone are 23934 * contiguous in the ill_ilm list. We use this property 23935 * to avoid sending duplicates needed when two 23936 * applications in the same zone join the same group on 23937 * different logical interfaces: we ignore the ilm if 23938 * it's zoneid is the same as the last matching one. 23939 * In addition, the sending of the packet for 23940 * ire_zoneid is delayed until all of the other ilms 23941 * have been exhausted. 23942 */ 23943 last_zoneid = -1; 23944 ILM_WALKER_HOLD(ill); 23945 for (ilm = ill->ill_ilm; ilm != NULL; 23946 ilm = ilm->ilm_next) { 23947 if ((ilm->ilm_flags & ILM_DELETED) || 23948 ipha->ipha_dst != ilm->ilm_addr || 23949 ilm->ilm_zoneid == last_zoneid || 23950 ilm->ilm_zoneid == zoneid || 23951 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 23952 continue; 23953 mp1 = ip_copymsg(first_mp); 23954 if (mp1 == NULL) 23955 continue; 23956 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 23957 mctl_present, B_FALSE, ill, 23958 ilm->ilm_zoneid); 23959 last_zoneid = ilm->ilm_zoneid; 23960 } 23961 ILM_WALKER_RELE(ill); 23962 /* 23963 * Loopback case: the sending endpoint has 23964 * IP_MULTICAST_LOOP disabled, therefore we don't 23965 * dispatch the multicast packet to the sending zone. 23966 */ 23967 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 23968 freemsg(first_mp); 23969 return; 23970 } 23971 } else if (ire_type == IRE_BROADCAST) { 23972 /* 23973 * In the broadcast case, there may be many zones 23974 * which need a copy of the packet delivered to them. 23975 * There is one IRE_BROADCAST per broadcast address 23976 * and per zone; we walk those using a helper function. 23977 * In addition, the sending of the packet for zoneid is 23978 * delayed until all of the other ires have been 23979 * processed. 23980 */ 23981 IRB_REFHOLD(ire->ire_bucket); 23982 ire_zone = NULL; 23983 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 23984 ire)) != NULL) { 23985 mp1 = ip_copymsg(first_mp); 23986 if (mp1 == NULL) 23987 continue; 23988 23989 UPDATE_IB_PKT_COUNT(ire_zone); 23990 ire_zone->ire_last_used_time = lbolt; 23991 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 23992 mctl_present, B_FALSE, ill, 23993 ire_zone->ire_zoneid); 23994 } 23995 IRB_REFRELE(ire->ire_bucket); 23996 } 23997 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 23998 0, mctl_present, B_FALSE, ill, zoneid); 23999 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24000 "ip_wput_local_end: q %p (%S)", 24001 q, "icmp"); 24002 return; 24003 } 24004 case IPPROTO_IGMP: 24005 if ((mp = igmp_input(q, mp, ill)) == NULL) { 24006 /* Bad packet - discarded by igmp_input */ 24007 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24008 "ip_wput_local_end: q %p (%S)", 24009 q, "igmp_input--bad packet"); 24010 if (mctl_present) 24011 freeb(first_mp); 24012 return; 24013 } 24014 /* 24015 * igmp_input() may have returned the pulled up message. 24016 * So first_mp and ipha need to be reinitialized. 24017 */ 24018 ipha = (ipha_t *)mp->b_rptr; 24019 if (mctl_present) 24020 first_mp->b_cont = mp; 24021 else 24022 first_mp = mp; 24023 /* deliver to local raw users */ 24024 break; 24025 case IPPROTO_ENCAP: 24026 /* 24027 * This case is covered by either ip_fanout_proto, or by 24028 * the above security processing for self-tunneled packets. 24029 */ 24030 break; 24031 case IPPROTO_UDP: { 24032 uint16_t *up; 24033 uint32_t ports; 24034 24035 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 24036 UDP_PORTS_OFFSET); 24037 /* Force a 'valid' checksum. */ 24038 up[3] = 0; 24039 24040 ports = *(uint32_t *)up; 24041 ip_fanout_udp(q, first_mp, ill, ipha, ports, 24042 (ire_type == IRE_BROADCAST), 24043 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24044 IP_FF_SEND_SLLA | IP_FF_IP6INFO, mctl_present, B_FALSE, 24045 ill, zoneid); 24046 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24047 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 24048 return; 24049 } 24050 case IPPROTO_TCP: { 24051 24052 /* 24053 * For TCP, discard broadcast packets. 24054 */ 24055 if ((ushort_t)ire_type == IRE_BROADCAST) { 24056 freemsg(first_mp); 24057 BUMP_MIB(&ip_mib, ipInDiscards); 24058 ip2dbg(("ip_wput_local: discard broadcast\n")); 24059 return; 24060 } 24061 24062 if (mp->b_datap->db_type == M_DATA) { 24063 /* 24064 * M_DATA mblk, so init mblk (chain) for no struio(). 24065 */ 24066 mblk_t *mp1 = mp; 24067 24068 do 24069 mp1->b_datap->db_struioflag = 0; 24070 while ((mp1 = mp1->b_cont) != NULL); 24071 } 24072 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 24073 <= mp->b_wptr); 24074 ip_fanout_tcp(q, first_mp, ill, ipha, 24075 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24076 IP_FF_SYN_ADDIRE | IP_FF_IP6INFO, 24077 mctl_present, B_FALSE, zoneid); 24078 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24079 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 24080 return; 24081 } 24082 case IPPROTO_SCTP: 24083 { 24084 uint32_t ports; 24085 24086 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 24087 ip_fanout_sctp(first_mp, ill, ipha, ports, 24088 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24089 IP_FF_IP6INFO, 24090 mctl_present, B_FALSE, 0, zoneid); 24091 return; 24092 } 24093 24094 default: 24095 break; 24096 } 24097 /* 24098 * Find a client for some other protocol. We give 24099 * copies to multiple clients, if more than one is 24100 * bound. 24101 */ 24102 ip_fanout_proto(q, first_mp, ill, ipha, 24103 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 24104 mctl_present, B_FALSE, ill, zoneid); 24105 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24106 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 24107 #undef rptr 24108 } 24109 24110 /* 24111 * Update any source route, record route, or timestamp options. 24112 * Check that we are at end of strict source route. 24113 * The options have been sanity checked by ip_wput_options(). 24114 */ 24115 static void 24116 ip_wput_local_options(ipha_t *ipha) 24117 { 24118 ipoptp_t opts; 24119 uchar_t *opt; 24120 uint8_t optval; 24121 uint8_t optlen; 24122 ipaddr_t dst; 24123 uint32_t ts; 24124 ire_t *ire; 24125 timestruc_t now; 24126 24127 ip2dbg(("ip_wput_local_options\n")); 24128 for (optval = ipoptp_first(&opts, ipha); 24129 optval != IPOPT_EOL; 24130 optval = ipoptp_next(&opts)) { 24131 opt = opts.ipoptp_cur; 24132 optlen = opts.ipoptp_len; 24133 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 24134 switch (optval) { 24135 uint32_t off; 24136 case IPOPT_SSRR: 24137 case IPOPT_LSRR: 24138 off = opt[IPOPT_OFFSET]; 24139 off--; 24140 if (optlen < IP_ADDR_LEN || 24141 off > optlen - IP_ADDR_LEN) { 24142 /* End of source route */ 24143 break; 24144 } 24145 /* 24146 * This will only happen if two consecutive entries 24147 * in the source route contains our address or if 24148 * it is a packet with a loose source route which 24149 * reaches us before consuming the whole source route 24150 */ 24151 ip1dbg(("ip_wput_local_options: not end of SR\n")); 24152 if (optval == IPOPT_SSRR) { 24153 return; 24154 } 24155 /* 24156 * Hack: instead of dropping the packet truncate the 24157 * source route to what has been used by filling the 24158 * rest with IPOPT_NOP. 24159 */ 24160 opt[IPOPT_OLEN] = (uint8_t)off; 24161 while (off < optlen) { 24162 opt[off++] = IPOPT_NOP; 24163 } 24164 break; 24165 case IPOPT_RR: 24166 off = opt[IPOPT_OFFSET]; 24167 off--; 24168 if (optlen < IP_ADDR_LEN || 24169 off > optlen - IP_ADDR_LEN) { 24170 /* No more room - ignore */ 24171 ip1dbg(( 24172 "ip_wput_forward_options: end of RR\n")); 24173 break; 24174 } 24175 dst = htonl(INADDR_LOOPBACK); 24176 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 24177 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 24178 break; 24179 case IPOPT_TS: 24180 /* Insert timestamp if there is romm */ 24181 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 24182 case IPOPT_TS_TSONLY: 24183 off = IPOPT_TS_TIMELEN; 24184 break; 24185 case IPOPT_TS_PRESPEC: 24186 case IPOPT_TS_PRESPEC_RFC791: 24187 /* Verify that the address matched */ 24188 off = opt[IPOPT_OFFSET] - 1; 24189 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 24190 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 24191 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 24192 if (ire == NULL) { 24193 /* Not for us */ 24194 break; 24195 } 24196 ire_refrele(ire); 24197 /* FALLTHRU */ 24198 case IPOPT_TS_TSANDADDR: 24199 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 24200 break; 24201 default: 24202 /* 24203 * ip_*put_options should have already 24204 * dropped this packet. 24205 */ 24206 cmn_err(CE_PANIC, "ip_wput_local_options: " 24207 "unknown IT - bug in ip_wput_options?\n"); 24208 return; /* Keep "lint" happy */ 24209 } 24210 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 24211 /* Increase overflow counter */ 24212 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 24213 opt[IPOPT_POS_OV_FLG] = (uint8_t) 24214 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 24215 (off << 4); 24216 break; 24217 } 24218 off = opt[IPOPT_OFFSET] - 1; 24219 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 24220 case IPOPT_TS_PRESPEC: 24221 case IPOPT_TS_PRESPEC_RFC791: 24222 case IPOPT_TS_TSANDADDR: 24223 dst = htonl(INADDR_LOOPBACK); 24224 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 24225 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 24226 /* FALLTHRU */ 24227 case IPOPT_TS_TSONLY: 24228 off = opt[IPOPT_OFFSET] - 1; 24229 /* Compute # of milliseconds since midnight */ 24230 gethrestime(&now); 24231 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 24232 now.tv_nsec / (NANOSEC / MILLISEC); 24233 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 24234 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 24235 break; 24236 } 24237 break; 24238 } 24239 } 24240 } 24241 24242 /* 24243 * Send out a multicast packet on interface ipif. 24244 * The sender does not have an conn. 24245 * Caller verifies that this isn't a PHYI_LOOPBACK. 24246 */ 24247 void 24248 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 24249 { 24250 ipha_t *ipha; 24251 ire_t *ire; 24252 ipaddr_t dst; 24253 mblk_t *first_mp; 24254 24255 /* igmp_sendpkt always allocates a ipsec_out_t */ 24256 ASSERT(mp->b_datap->db_type == M_CTL); 24257 ASSERT(!ipif->ipif_isv6); 24258 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 24259 24260 first_mp = mp; 24261 mp = first_mp->b_cont; 24262 ASSERT(mp->b_datap->db_type == M_DATA); 24263 ipha = (ipha_t *)mp->b_rptr; 24264 24265 /* 24266 * Find an IRE which matches the destination and the outgoing 24267 * queue (i.e. the outgoing interface.) 24268 */ 24269 if (ipif->ipif_flags & IPIF_POINTOPOINT) 24270 dst = ipif->ipif_pp_dst_addr; 24271 else 24272 dst = ipha->ipha_dst; 24273 /* 24274 * The source address has already been initialized by the 24275 * caller and hence matching on ILL (MATCH_IRE_ILL) would 24276 * be sufficient rather than MATCH_IRE_IPIF. 24277 * 24278 * This function is used for sending IGMP packets. We need 24279 * to make sure that we send the packet out of the interface 24280 * (ipif->ipif_ill) where we joined the group. This is to 24281 * prevent from switches doing IGMP snooping to send us multicast 24282 * packets for a given group on the interface we have joined. 24283 * If we can't find an ire, igmp_sendpkt has already initialized 24284 * ipsec_out_attach_if so that this will not be load spread in 24285 * ip_newroute_ipif. 24286 */ 24287 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 24288 MATCH_IRE_ILL); 24289 if (!ire) { 24290 /* 24291 * Mark this packet to make it be delivered to 24292 * ip_wput_ire after the new ire has been 24293 * created. 24294 */ 24295 mp->b_prev = NULL; 24296 mp->b_next = NULL; 24297 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 24298 zoneid); 24299 return; 24300 } 24301 24302 /* 24303 * Honor the RTF_SETSRC flag; this is the only case 24304 * where we force this addr whatever the current src addr is, 24305 * because this address is set by igmp_sendpkt(), and 24306 * cannot be specified by any user. 24307 */ 24308 if (ire->ire_flags & RTF_SETSRC) { 24309 ipha->ipha_src = ire->ire_src_addr; 24310 } 24311 24312 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 24313 } 24314 24315 /* 24316 * NOTE : This function does not ire_refrele the ire argument passed in. 24317 * 24318 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 24319 * failure. The nce_fp_mp can vanish any time in the case of IRE_MIPRTUN 24320 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 24321 * the ire_lock to access the nce_fp_mp in this case. 24322 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 24323 * prepending a fastpath message IPQoS processing must precede it, we also set 24324 * the b_band of the fastpath message to that of the mblk returned by IPQoS 24325 * (IPQoS might have set the b_band for CoS marking). 24326 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 24327 * must follow it so that IPQoS can mark the dl_priority field for CoS 24328 * marking, if needed. 24329 */ 24330 static mblk_t * 24331 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 24332 { 24333 uint_t hlen; 24334 ipha_t *ipha; 24335 mblk_t *mp1; 24336 boolean_t qos_done = B_FALSE; 24337 uchar_t *ll_hdr; 24338 24339 #define rptr ((uchar_t *)ipha) 24340 24341 ipha = (ipha_t *)mp->b_rptr; 24342 hlen = 0; 24343 LOCK_IRE_FP_MP(ire); 24344 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 24345 ASSERT(DB_TYPE(mp1) == M_DATA); 24346 /* Initiate IPPF processing */ 24347 if ((proc != 0) && IPP_ENABLED(proc)) { 24348 UNLOCK_IRE_FP_MP(ire); 24349 ip_process(proc, &mp, ill_index); 24350 if (mp == NULL) 24351 return (NULL); 24352 24353 ipha = (ipha_t *)mp->b_rptr; 24354 LOCK_IRE_FP_MP(ire); 24355 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 24356 qos_done = B_TRUE; 24357 goto no_fp_mp; 24358 } 24359 ASSERT(DB_TYPE(mp1) == M_DATA); 24360 } 24361 hlen = MBLKL(mp1); 24362 /* 24363 * Check if we have enough room to prepend fastpath 24364 * header 24365 */ 24366 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 24367 ll_hdr = rptr - hlen; 24368 bcopy(mp1->b_rptr, ll_hdr, hlen); 24369 /* 24370 * Set the b_rptr to the start of the link layer 24371 * header 24372 */ 24373 mp->b_rptr = ll_hdr; 24374 mp1 = mp; 24375 } else { 24376 mp1 = copyb(mp1); 24377 if (mp1 == NULL) 24378 goto unlock_err; 24379 mp1->b_band = mp->b_band; 24380 mp1->b_cont = mp; 24381 /* 24382 * certain system generated traffic may not 24383 * have cred/label in ip header block. This 24384 * is true even for a labeled system. But for 24385 * labeled traffic, inherit the label in the 24386 * new header. 24387 */ 24388 if (DB_CRED(mp) != NULL) 24389 mblk_setcred(mp1, DB_CRED(mp)); 24390 /* 24391 * XXX disable ICK_VALID and compute checksum 24392 * here; can happen if nce_fp_mp changes and 24393 * it can't be copied now due to insufficient 24394 * space. (unlikely, fp mp can change, but it 24395 * does not increase in length) 24396 */ 24397 } 24398 UNLOCK_IRE_FP_MP(ire); 24399 } else { 24400 no_fp_mp: 24401 mp1 = copyb(ire->ire_nce->nce_res_mp); 24402 if (mp1 == NULL) { 24403 unlock_err: 24404 UNLOCK_IRE_FP_MP(ire); 24405 freemsg(mp); 24406 return (NULL); 24407 } 24408 UNLOCK_IRE_FP_MP(ire); 24409 mp1->b_cont = mp; 24410 /* 24411 * certain system generated traffic may not 24412 * have cred/label in ip header block. This 24413 * is true even for a labeled system. But for 24414 * labeled traffic, inherit the label in the 24415 * new header. 24416 */ 24417 if (DB_CRED(mp) != NULL) 24418 mblk_setcred(mp1, DB_CRED(mp)); 24419 if (!qos_done && (proc != 0) && IPP_ENABLED(proc)) { 24420 ip_process(proc, &mp1, ill_index); 24421 if (mp1 == NULL) 24422 return (NULL); 24423 } 24424 } 24425 return (mp1); 24426 #undef rptr 24427 } 24428 24429 /* 24430 * Finish the outbound IPsec processing for an IPv6 packet. This function 24431 * is called from ipsec_out_process() if the IPsec packet was processed 24432 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 24433 * asynchronously. 24434 */ 24435 void 24436 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 24437 ire_t *ire_arg) 24438 { 24439 in6_addr_t *v6dstp; 24440 ire_t *ire; 24441 mblk_t *mp; 24442 uint_t ill_index; 24443 ipsec_out_t *io; 24444 boolean_t attach_if, hwaccel; 24445 uint32_t flags = IP6_NO_IPPOLICY; 24446 int match_flags; 24447 zoneid_t zoneid; 24448 boolean_t ill_need_rele = B_FALSE; 24449 boolean_t ire_need_rele = B_FALSE; 24450 24451 mp = ipsec_mp->b_cont; 24452 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24453 ill_index = io->ipsec_out_ill_index; 24454 if (io->ipsec_out_reachable) { 24455 flags |= IPV6_REACHABILITY_CONFIRMATION; 24456 } 24457 attach_if = io->ipsec_out_attach_if; 24458 hwaccel = io->ipsec_out_accelerated; 24459 zoneid = io->ipsec_out_zoneid; 24460 ASSERT(zoneid != ALL_ZONES); 24461 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 24462 /* Multicast addresses should have non-zero ill_index. */ 24463 v6dstp = &ip6h->ip6_dst; 24464 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 24465 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 24466 ASSERT(!attach_if || ill_index != 0); 24467 if (ill_index != 0) { 24468 if (ill == NULL) { 24469 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 24470 B_TRUE); 24471 24472 /* Failure case frees things for us. */ 24473 if (ill == NULL) 24474 return; 24475 24476 ill_need_rele = B_TRUE; 24477 } 24478 /* 24479 * If this packet needs to go out on a particular interface 24480 * honor it. 24481 */ 24482 if (attach_if) { 24483 match_flags = MATCH_IRE_ILL; 24484 24485 /* 24486 * Check if we need an ire that will not be 24487 * looked up by anybody else i.e. HIDDEN. 24488 */ 24489 if (ill_is_probeonly(ill)) { 24490 match_flags |= MATCH_IRE_MARK_HIDDEN; 24491 } 24492 } 24493 } 24494 ASSERT(mp != NULL); 24495 24496 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 24497 boolean_t unspec_src; 24498 ipif_t *ipif; 24499 24500 /* 24501 * Use the ill_index to get the right ill. 24502 */ 24503 unspec_src = io->ipsec_out_unspec_src; 24504 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 24505 if (ipif == NULL) { 24506 if (ill_need_rele) 24507 ill_refrele(ill); 24508 freemsg(ipsec_mp); 24509 return; 24510 } 24511 24512 if (ire_arg != NULL) { 24513 ire = ire_arg; 24514 } else { 24515 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 24516 zoneid, MBLK_GETLABEL(mp), match_flags); 24517 ire_need_rele = B_TRUE; 24518 } 24519 if (ire != NULL) { 24520 ipif_refrele(ipif); 24521 /* 24522 * XXX Do the multicast forwarding now, as the IPSEC 24523 * processing has been done. 24524 */ 24525 goto send; 24526 } 24527 24528 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 24529 mp->b_prev = NULL; 24530 mp->b_next = NULL; 24531 24532 /* 24533 * If the IPsec packet was processed asynchronously, 24534 * drop it now. 24535 */ 24536 if (q == NULL) { 24537 if (ill_need_rele) 24538 ill_refrele(ill); 24539 freemsg(ipsec_mp); 24540 return; 24541 } 24542 24543 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 24544 unspec_src, zoneid); 24545 ipif_refrele(ipif); 24546 } else { 24547 if (attach_if) { 24548 ipif_t *ipif; 24549 24550 ipif = ipif_get_next_ipif(NULL, ill); 24551 if (ipif == NULL) { 24552 if (ill_need_rele) 24553 ill_refrele(ill); 24554 freemsg(ipsec_mp); 24555 return; 24556 } 24557 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 24558 zoneid, MBLK_GETLABEL(mp), match_flags); 24559 ire_need_rele = B_TRUE; 24560 ipif_refrele(ipif); 24561 } else { 24562 if (ire_arg != NULL) { 24563 ire = ire_arg; 24564 } else { 24565 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL); 24566 ire_need_rele = B_TRUE; 24567 } 24568 } 24569 if (ire != NULL) 24570 goto send; 24571 /* 24572 * ire disappeared underneath. 24573 * 24574 * What we need to do here is the ip_newroute 24575 * logic to get the ire without doing the IPSEC 24576 * processing. Follow the same old path. But this 24577 * time, ip_wput or ire_add_then_send will call us 24578 * directly as all the IPSEC operations are done. 24579 */ 24580 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 24581 mp->b_prev = NULL; 24582 mp->b_next = NULL; 24583 24584 /* 24585 * If the IPsec packet was processed asynchronously, 24586 * drop it now. 24587 */ 24588 if (q == NULL) { 24589 if (ill_need_rele) 24590 ill_refrele(ill); 24591 freemsg(ipsec_mp); 24592 return; 24593 } 24594 24595 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 24596 zoneid); 24597 } 24598 if (ill != NULL && ill_need_rele) 24599 ill_refrele(ill); 24600 return; 24601 send: 24602 if (ill != NULL && ill_need_rele) 24603 ill_refrele(ill); 24604 24605 /* Local delivery */ 24606 if (ire->ire_stq == NULL) { 24607 ASSERT(q != NULL); 24608 ip_wput_local_v6(RD(q), ire->ire_ipif->ipif_ill, ip6h, ipsec_mp, 24609 ire, 0); 24610 if (ire_need_rele) 24611 ire_refrele(ire); 24612 return; 24613 } 24614 /* 24615 * Everything is done. Send it out on the wire. 24616 * We force the insertion of a fragment header using the 24617 * IPH_FRAG_HDR flag in two cases: 24618 * - after reception of an ICMPv6 "packet too big" message 24619 * with a MTU < 1280 (cf. RFC 2460 section 5) 24620 * - for multirouted IPv6 packets, so that the receiver can 24621 * discard duplicates according to their fragment identifier 24622 */ 24623 /* XXX fix flow control problems. */ 24624 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 24625 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 24626 if (hwaccel) { 24627 /* 24628 * hardware acceleration does not handle these 24629 * "slow path" cases. 24630 */ 24631 /* IPsec KSTATS: should bump bean counter here. */ 24632 if (ire_need_rele) 24633 ire_refrele(ire); 24634 freemsg(ipsec_mp); 24635 return; 24636 } 24637 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 24638 (mp->b_cont ? msgdsize(mp) : 24639 mp->b_wptr - (uchar_t *)ip6h)) { 24640 /* IPsec KSTATS: should bump bean counter here. */ 24641 ip0dbg(("Packet length mismatch: %d, %ld\n", 24642 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 24643 msgdsize(mp))); 24644 if (ire_need_rele) 24645 ire_refrele(ire); 24646 freemsg(ipsec_mp); 24647 return; 24648 } 24649 ASSERT(mp->b_prev == NULL); 24650 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 24651 ntohs(ip6h->ip6_plen) + 24652 IPV6_HDR_LEN, ire->ire_max_frag)); 24653 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 24654 ire->ire_max_frag); 24655 } else { 24656 UPDATE_OB_PKT_COUNT(ire); 24657 ire->ire_last_used_time = lbolt; 24658 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 24659 } 24660 if (ire_need_rele) 24661 ire_refrele(ire); 24662 freeb(ipsec_mp); 24663 } 24664 24665 void 24666 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 24667 { 24668 mblk_t *hada_mp; /* attributes M_CTL mblk */ 24669 da_ipsec_t *hada; /* data attributes */ 24670 ill_t *ill = (ill_t *)q->q_ptr; 24671 24672 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 24673 24674 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 24675 /* IPsec KSTATS: Bump lose counter here! */ 24676 freemsg(mp); 24677 return; 24678 } 24679 24680 /* 24681 * It's an IPsec packet that must be 24682 * accelerated by the Provider, and the 24683 * outbound ill is IPsec acceleration capable. 24684 * Prepends the mblk with an IPHADA_M_CTL, and ship it 24685 * to the ill. 24686 * IPsec KSTATS: should bump packet counter here. 24687 */ 24688 24689 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 24690 if (hada_mp == NULL) { 24691 /* IPsec KSTATS: should bump packet counter here. */ 24692 freemsg(mp); 24693 return; 24694 } 24695 24696 hada_mp->b_datap->db_type = M_CTL; 24697 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 24698 hada_mp->b_cont = mp; 24699 24700 hada = (da_ipsec_t *)hada_mp->b_rptr; 24701 bzero(hada, sizeof (da_ipsec_t)); 24702 hada->da_type = IPHADA_M_CTL; 24703 24704 putnext(q, hada_mp); 24705 } 24706 24707 /* 24708 * Finish the outbound IPsec processing. This function is called from 24709 * ipsec_out_process() if the IPsec packet was processed 24710 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 24711 * asynchronously. 24712 */ 24713 void 24714 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 24715 ire_t *ire_arg) 24716 { 24717 uint32_t v_hlen_tos_len; 24718 ipaddr_t dst; 24719 ipif_t *ipif = NULL; 24720 ire_t *ire; 24721 ire_t *ire1 = NULL; 24722 mblk_t *next_mp = NULL; 24723 uint32_t max_frag; 24724 boolean_t multirt_send = B_FALSE; 24725 mblk_t *mp; 24726 mblk_t *mp1; 24727 uint_t ill_index; 24728 ipsec_out_t *io; 24729 boolean_t attach_if; 24730 int match_flags, offset; 24731 irb_t *irb = NULL; 24732 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 24733 zoneid_t zoneid; 24734 uint32_t cksum; 24735 uint16_t *up; 24736 ipxmit_state_t pktxmit_state; 24737 #ifdef _BIG_ENDIAN 24738 #define LENGTH (v_hlen_tos_len & 0xFFFF) 24739 #else 24740 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 24741 #endif 24742 24743 mp = ipsec_mp->b_cont; 24744 ASSERT(mp != NULL); 24745 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24746 dst = ipha->ipha_dst; 24747 24748 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24749 ill_index = io->ipsec_out_ill_index; 24750 attach_if = io->ipsec_out_attach_if; 24751 zoneid = io->ipsec_out_zoneid; 24752 ASSERT(zoneid != ALL_ZONES); 24753 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 24754 if (ill_index != 0) { 24755 if (ill == NULL) { 24756 ill = ip_grab_attach_ill(NULL, ipsec_mp, 24757 ill_index, B_FALSE); 24758 24759 /* Failure case frees things for us. */ 24760 if (ill == NULL) 24761 return; 24762 24763 ill_need_rele = B_TRUE; 24764 } 24765 /* 24766 * If this packet needs to go out on a particular interface 24767 * honor it. 24768 */ 24769 if (attach_if) { 24770 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 24771 24772 /* 24773 * Check if we need an ire that will not be 24774 * looked up by anybody else i.e. HIDDEN. 24775 */ 24776 if (ill_is_probeonly(ill)) { 24777 match_flags |= MATCH_IRE_MARK_HIDDEN; 24778 } 24779 } 24780 } 24781 24782 if (CLASSD(dst)) { 24783 boolean_t conn_dontroute; 24784 /* 24785 * Use the ill_index to get the right ipif. 24786 */ 24787 conn_dontroute = io->ipsec_out_dontroute; 24788 if (ill_index == 0) 24789 ipif = ipif_lookup_group(dst, zoneid); 24790 else 24791 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 24792 if (ipif == NULL) { 24793 ip1dbg(("ip_wput_ipsec_out: No ipif for" 24794 " multicast\n")); 24795 BUMP_MIB(&ip_mib, ipOutNoRoutes); 24796 freemsg(ipsec_mp); 24797 goto done; 24798 } 24799 /* 24800 * ipha_src has already been intialized with the 24801 * value of the ipif in ip_wput. All we need now is 24802 * an ire to send this downstream. 24803 */ 24804 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 24805 MBLK_GETLABEL(mp), match_flags); 24806 if (ire != NULL) { 24807 ill_t *ill1; 24808 /* 24809 * Do the multicast forwarding now, as the IPSEC 24810 * processing has been done. 24811 */ 24812 if (ip_g_mrouter && !conn_dontroute && 24813 (ill1 = ire_to_ill(ire))) { 24814 if (ip_mforward(ill1, ipha, mp)) { 24815 freemsg(ipsec_mp); 24816 ip1dbg(("ip_wput_ipsec_out: mforward " 24817 "failed\n")); 24818 ire_refrele(ire); 24819 goto done; 24820 } 24821 } 24822 goto send; 24823 } 24824 24825 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 24826 mp->b_prev = NULL; 24827 mp->b_next = NULL; 24828 24829 /* 24830 * If the IPsec packet was processed asynchronously, 24831 * drop it now. 24832 */ 24833 if (q == NULL) { 24834 freemsg(ipsec_mp); 24835 goto done; 24836 } 24837 24838 /* 24839 * We may be using a wrong ipif to create the ire. 24840 * But it is okay as the source address is assigned 24841 * for the packet already. Next outbound packet would 24842 * create the IRE with the right IPIF in ip_wput. 24843 * 24844 * Also handle RTF_MULTIRT routes. 24845 */ 24846 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 24847 zoneid); 24848 } else { 24849 if (attach_if) { 24850 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 24851 zoneid, MBLK_GETLABEL(mp), match_flags); 24852 } else { 24853 if (ire_arg != NULL) { 24854 ire = ire_arg; 24855 ire_need_rele = B_FALSE; 24856 } else { 24857 ire = ire_cache_lookup(dst, zoneid, 24858 MBLK_GETLABEL(mp)); 24859 } 24860 } 24861 if (ire != NULL) { 24862 goto send; 24863 } 24864 24865 /* 24866 * ire disappeared underneath. 24867 * 24868 * What we need to do here is the ip_newroute 24869 * logic to get the ire without doing the IPSEC 24870 * processing. Follow the same old path. But this 24871 * time, ip_wput or ire_add_then_put will call us 24872 * directly as all the IPSEC operations are done. 24873 */ 24874 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 24875 mp->b_prev = NULL; 24876 mp->b_next = NULL; 24877 24878 /* 24879 * If the IPsec packet was processed asynchronously, 24880 * drop it now. 24881 */ 24882 if (q == NULL) { 24883 freemsg(ipsec_mp); 24884 goto done; 24885 } 24886 24887 /* 24888 * Since we're going through ip_newroute() again, we 24889 * need to make sure we don't: 24890 * 24891 * 1.) Trigger the ASSERT() with the ipha_ident 24892 * overloading. 24893 * 2.) Redo transport-layer checksumming, since we've 24894 * already done all that to get this far. 24895 * 24896 * The easiest way not do either of the above is to set 24897 * the ipha_ident field to IP_HDR_INCLUDED. 24898 */ 24899 ipha->ipha_ident = IP_HDR_INCLUDED; 24900 ip_newroute(q, ipsec_mp, dst, NULL, 24901 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), zoneid); 24902 } 24903 goto done; 24904 send: 24905 if (ipha->ipha_protocol == IPPROTO_UDP && udp_compute_checksum()) { 24906 /* 24907 * ESP NAT-Traversal packet. 24908 * 24909 * Just do software checksum for now. 24910 */ 24911 24912 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 24913 IP_STAT(ip_out_sw_cksum); 24914 IP_STAT_UPDATE(ip_udp_out_sw_cksum_bytes, 24915 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 24916 #define iphs ((uint16_t *)ipha) 24917 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 24918 iphs[9] + ntohs(htons(ipha->ipha_length) - 24919 IP_SIMPLE_HDR_LENGTH); 24920 #undef iphs 24921 if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0) 24922 cksum = 0xFFFF; 24923 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 24924 if (mp1->b_wptr - mp1->b_rptr >= 24925 offset + sizeof (uint16_t)) { 24926 up = (uint16_t *)(mp1->b_rptr + offset); 24927 *up = cksum; 24928 break; /* out of for loop */ 24929 } else { 24930 offset -= (mp->b_wptr - mp->b_rptr); 24931 } 24932 } /* Otherwise, just keep the all-zero checksum. */ 24933 24934 if (ire->ire_stq == NULL) { 24935 /* 24936 * Loopbacks go through ip_wput_local except for one case. 24937 * We come here if we generate a icmp_frag_needed message 24938 * after IPSEC processing is over. When this function calls 24939 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 24940 * icmp_frag_needed. The message generated comes back here 24941 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 24942 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 24943 * source address as it is usually set in ip_wput_ire. As 24944 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 24945 * and we end up here. We can't enter ip_wput_ire once the 24946 * IPSEC processing is over and hence we need to do it here. 24947 */ 24948 ASSERT(q != NULL); 24949 UPDATE_OB_PKT_COUNT(ire); 24950 ire->ire_last_used_time = lbolt; 24951 if (ipha->ipha_src == 0) 24952 ipha->ipha_src = ire->ire_src_addr; 24953 ip_wput_local(RD(q), ire->ire_ipif->ipif_ill, ipha, ipsec_mp, 24954 ire, 0, zoneid); 24955 if (ire_need_rele) 24956 ire_refrele(ire); 24957 goto done; 24958 } 24959 24960 if (ire->ire_max_frag < (unsigned int)LENGTH) { 24961 /* 24962 * We are through with IPSEC processing. 24963 * Fragment this and send it on the wire. 24964 */ 24965 if (io->ipsec_out_accelerated) { 24966 /* 24967 * The packet has been accelerated but must 24968 * be fragmented. This should not happen 24969 * since AH and ESP must not accelerate 24970 * packets that need fragmentation, however 24971 * the configuration could have changed 24972 * since the AH or ESP processing. 24973 * Drop packet. 24974 * IPsec KSTATS: bump bean counter here. 24975 */ 24976 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 24977 "fragmented accelerated packet!\n")); 24978 freemsg(ipsec_mp); 24979 } else { 24980 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid); 24981 } 24982 if (ire_need_rele) 24983 ire_refrele(ire); 24984 goto done; 24985 } 24986 24987 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 24988 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 24989 (void *)ire->ire_ipif, (void *)ipif)); 24990 24991 /* 24992 * Multiroute the secured packet, unless IPsec really 24993 * requires the packet to go out only through a particular 24994 * interface. 24995 */ 24996 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 24997 ire_t *first_ire; 24998 irb = ire->ire_bucket; 24999 ASSERT(irb != NULL); 25000 /* 25001 * This ire has been looked up as the one that 25002 * goes through the given ipif; 25003 * make sure we do not omit any other multiroute ire 25004 * that may be present in the bucket before this one. 25005 */ 25006 IRB_REFHOLD(irb); 25007 for (first_ire = irb->irb_ire; 25008 first_ire != NULL; 25009 first_ire = first_ire->ire_next) { 25010 if ((first_ire->ire_flags & RTF_MULTIRT) && 25011 (first_ire->ire_addr == ire->ire_addr) && 25012 !(first_ire->ire_marks & 25013 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 25014 break; 25015 } 25016 25017 if ((first_ire != NULL) && (first_ire != ire)) { 25018 /* 25019 * Don't change the ire if the packet must 25020 * be fragmented if sent via this new one. 25021 */ 25022 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 25023 IRE_REFHOLD(first_ire); 25024 if (ire_need_rele) 25025 ire_refrele(ire); 25026 else 25027 ire_need_rele = B_TRUE; 25028 ire = first_ire; 25029 } 25030 } 25031 IRB_REFRELE(irb); 25032 25033 multirt_send = B_TRUE; 25034 max_frag = ire->ire_max_frag; 25035 } else { 25036 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 25037 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 25038 "flag, attach_if %d\n", attach_if)); 25039 } 25040 } 25041 25042 /* 25043 * In most cases, the emission loop below is entered only once. 25044 * Only in the case where the ire holds the RTF_MULTIRT 25045 * flag, we loop to process all RTF_MULTIRT ires in the 25046 * bucket, and send the packet through all crossed 25047 * RTF_MULTIRT routes. 25048 */ 25049 do { 25050 if (multirt_send) { 25051 /* 25052 * ire1 holds here the next ire to process in the 25053 * bucket. If multirouting is expected, 25054 * any non-RTF_MULTIRT ire that has the 25055 * right destination address is ignored. 25056 */ 25057 ASSERT(irb != NULL); 25058 IRB_REFHOLD(irb); 25059 for (ire1 = ire->ire_next; 25060 ire1 != NULL; 25061 ire1 = ire1->ire_next) { 25062 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 25063 continue; 25064 if (ire1->ire_addr != ire->ire_addr) 25065 continue; 25066 if (ire1->ire_marks & 25067 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 25068 continue; 25069 /* No loopback here */ 25070 if (ire1->ire_stq == NULL) 25071 continue; 25072 /* 25073 * Ensure we do not exceed the MTU 25074 * of the next route. 25075 */ 25076 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 25077 ip_multirt_bad_mtu(ire1, max_frag); 25078 continue; 25079 } 25080 25081 IRE_REFHOLD(ire1); 25082 break; 25083 } 25084 IRB_REFRELE(irb); 25085 if (ire1 != NULL) { 25086 /* 25087 * We are in a multiple send case, need to 25088 * make a copy of the packet. 25089 */ 25090 next_mp = copymsg(ipsec_mp); 25091 if (next_mp == NULL) { 25092 ire_refrele(ire1); 25093 ire1 = NULL; 25094 } 25095 } 25096 } 25097 /* 25098 * Everything is done. Send it out on the wire 25099 * 25100 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 25101 * either send it on the wire or, in the case of 25102 * HW acceleration, call ipsec_hw_putnext. 25103 */ 25104 if (ire->ire_nce && 25105 ire->ire_nce->nce_state != ND_REACHABLE) { 25106 DTRACE_PROBE2(ip__wput__ipsec__bail, 25107 (ire_t *), ire, (mblk_t *), ipsec_mp); 25108 /* 25109 * If ire's link-layer is unresolved (this 25110 * would only happen if the incomplete ire 25111 * was added to cachetable via forwarding path) 25112 * don't bother going to ip_xmit_v4. Just drop the 25113 * packet. 25114 * There is a slight risk here, in that, if we 25115 * have the forwarding path create an incomplete 25116 * IRE, then until the IRE is completed, any 25117 * transmitted IPSEC packets will be dropped 25118 * instead of being queued waiting for resolution. 25119 * 25120 * But the likelihood of a forwarding packet and a wput 25121 * packet sending to the same dst at the same time 25122 * and there not yet be an ARP entry for it is small. 25123 * Furthermore, if this actually happens, it might 25124 * be likely that wput would generate multiple 25125 * packets (and forwarding would also have a train 25126 * of packets) for that destination. If this is 25127 * the case, some of them would have been dropped 25128 * anyway, since ARP only queues a few packets while 25129 * waiting for resolution 25130 * 25131 * NOTE: We should really call ip_xmit_v4, 25132 * and let it queue the packet and send the 25133 * ARP query and have ARP come back thus: 25134 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 25135 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 25136 * hw accel work. But it's too complex to get 25137 * the IPsec hw acceleration approach to fit 25138 * well with ip_xmit_v4 doing ARP without 25139 * doing IPSEC simplification. For now, we just 25140 * poke ip_xmit_v4 to trigger the arp resolve, so 25141 * that we can continue with the send on the next 25142 * attempt. 25143 * 25144 * XXX THis should be revisited, when 25145 * the IPsec/IP interaction is cleaned up 25146 */ 25147 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 25148 " - dropping packet\n")); 25149 freemsg(ipsec_mp); 25150 /* 25151 * Call ip_xmit_v4() to trigger ARP query 25152 * in case the nce_state is ND_INITIAL 25153 */ 25154 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 25155 goto drop_pkt; 25156 } 25157 25158 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 25159 pktxmit_state = ip_xmit_v4(mp, ire, 25160 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 25161 25162 if ((pktxmit_state == SEND_FAILED) || 25163 (pktxmit_state == LLHDR_RESLV_FAILED)) { 25164 25165 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 25166 drop_pkt: 25167 BUMP_MIB(&ip_mib, ipOutDiscards); 25168 if (ire_need_rele) 25169 ire_refrele(ire); 25170 if (ire1 != NULL) { 25171 ire_refrele(ire1); 25172 freemsg(next_mp); 25173 } 25174 goto done; 25175 } 25176 25177 freeb(ipsec_mp); 25178 if (ire_need_rele) 25179 ire_refrele(ire); 25180 25181 if (ire1 != NULL) { 25182 ire = ire1; 25183 ire_need_rele = B_TRUE; 25184 ASSERT(next_mp); 25185 ipsec_mp = next_mp; 25186 mp = ipsec_mp->b_cont; 25187 ire1 = NULL; 25188 next_mp = NULL; 25189 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25190 } else { 25191 multirt_send = B_FALSE; 25192 } 25193 } while (multirt_send); 25194 done: 25195 if (ill != NULL && ill_need_rele) 25196 ill_refrele(ill); 25197 if (ipif != NULL) 25198 ipif_refrele(ipif); 25199 } 25200 25201 /* 25202 * Get the ill corresponding to the specified ire, and compare its 25203 * capabilities with the protocol and algorithms specified by the 25204 * the SA obtained from ipsec_out. If they match, annotate the 25205 * ipsec_out structure to indicate that the packet needs acceleration. 25206 * 25207 * 25208 * A packet is eligible for outbound hardware acceleration if the 25209 * following conditions are satisfied: 25210 * 25211 * 1. the packet will not be fragmented 25212 * 2. the provider supports the algorithm 25213 * 3. there is no pending control message being exchanged 25214 * 4. snoop is not attached 25215 * 5. the destination address is not a broadcast or multicast address. 25216 * 25217 * Rationale: 25218 * - Hardware drivers do not support fragmentation with 25219 * the current interface. 25220 * - snoop, multicast, and broadcast may result in exposure of 25221 * a cleartext datagram. 25222 * We check all five of these conditions here. 25223 * 25224 * XXX would like to nuke "ire_t *" parameter here; problem is that 25225 * IRE is only way to figure out if a v4 address is a broadcast and 25226 * thus ineligible for acceleration... 25227 */ 25228 static void 25229 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 25230 { 25231 ipsec_out_t *io; 25232 mblk_t *data_mp; 25233 uint_t plen, overhead; 25234 25235 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 25236 return; 25237 25238 if (ill == NULL) 25239 return; 25240 25241 /* 25242 * Destination address is a broadcast or multicast. Punt. 25243 */ 25244 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 25245 IRE_LOCAL))) 25246 return; 25247 25248 data_mp = ipsec_mp->b_cont; 25249 25250 if (ill->ill_isv6) { 25251 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 25252 25253 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 25254 return; 25255 25256 plen = ip6h->ip6_plen; 25257 } else { 25258 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 25259 25260 if (CLASSD(ipha->ipha_dst)) 25261 return; 25262 25263 plen = ipha->ipha_length; 25264 } 25265 /* 25266 * Is there a pending DLPI control message being exchanged 25267 * between IP/IPsec and the DLS Provider? If there is, it 25268 * could be a SADB update, and the state of the DLS Provider 25269 * SADB might not be in sync with the SADB maintained by 25270 * IPsec. To avoid dropping packets or using the wrong keying 25271 * material, we do not accelerate this packet. 25272 */ 25273 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 25274 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 25275 "ill_dlpi_pending! don't accelerate packet\n")); 25276 return; 25277 } 25278 25279 /* 25280 * Is the Provider in promiscous mode? If it does, we don't 25281 * accelerate the packet since it will bounce back up to the 25282 * listeners in the clear. 25283 */ 25284 if (ill->ill_promisc_on_phys) { 25285 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 25286 "ill in promiscous mode, don't accelerate packet\n")); 25287 return; 25288 } 25289 25290 /* 25291 * Will the packet require fragmentation? 25292 */ 25293 25294 /* 25295 * IPsec ESP note: this is a pessimistic estimate, but the same 25296 * as is used elsewhere. 25297 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 25298 * + 2-byte trailer 25299 */ 25300 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 25301 IPSEC_BASE_ESP_HDR_SIZE(sa); 25302 25303 if ((plen + overhead) > ill->ill_max_mtu) 25304 return; 25305 25306 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25307 25308 /* 25309 * Can the ill accelerate this IPsec protocol and algorithm 25310 * specified by the SA? 25311 */ 25312 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 25313 ill->ill_isv6, sa)) { 25314 return; 25315 } 25316 25317 /* 25318 * Tell AH or ESP that the outbound ill is capable of 25319 * accelerating this packet. 25320 */ 25321 io->ipsec_out_is_capab_ill = B_TRUE; 25322 } 25323 25324 /* 25325 * Select which AH & ESP SA's to use (if any) for the outbound packet. 25326 * 25327 * If this function returns B_TRUE, the requested SA's have been filled 25328 * into the ipsec_out_*_sa pointers. 25329 * 25330 * If the function returns B_FALSE, the packet has been "consumed", most 25331 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 25332 * 25333 * The SA references created by the protocol-specific "select" 25334 * function will be released when the ipsec_mp is freed, thanks to the 25335 * ipsec_out_free destructor -- see spd.c. 25336 */ 25337 static boolean_t 25338 ipsec_out_select_sa(mblk_t *ipsec_mp) 25339 { 25340 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 25341 ipsec_out_t *io; 25342 ipsec_policy_t *pp; 25343 ipsec_action_t *ap; 25344 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25345 ASSERT(io->ipsec_out_type == IPSEC_OUT); 25346 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 25347 25348 if (!io->ipsec_out_secure) { 25349 /* 25350 * We came here by mistake. 25351 * Don't bother with ipsec processing 25352 * We should "discourage" this path in the future. 25353 */ 25354 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 25355 return (B_FALSE); 25356 } 25357 ASSERT(io->ipsec_out_need_policy == B_FALSE); 25358 ASSERT((io->ipsec_out_policy != NULL) || 25359 (io->ipsec_out_act != NULL)); 25360 25361 ASSERT(io->ipsec_out_failed == B_FALSE); 25362 25363 /* 25364 * IPSEC processing has started. 25365 */ 25366 io->ipsec_out_proc_begin = B_TRUE; 25367 ap = io->ipsec_out_act; 25368 if (ap == NULL) { 25369 pp = io->ipsec_out_policy; 25370 ASSERT(pp != NULL); 25371 ap = pp->ipsp_act; 25372 ASSERT(ap != NULL); 25373 } 25374 25375 /* 25376 * We have an action. now, let's select SA's. 25377 * (In the future, we can cache this in the conn_t..) 25378 */ 25379 if (ap->ipa_want_esp) { 25380 if (io->ipsec_out_esp_sa == NULL) { 25381 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 25382 IPPROTO_ESP); 25383 } 25384 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 25385 } 25386 25387 if (ap->ipa_want_ah) { 25388 if (io->ipsec_out_ah_sa == NULL) { 25389 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 25390 IPPROTO_AH); 25391 } 25392 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 25393 /* 25394 * The ESP and AH processing order needs to be preserved 25395 * when both protocols are required (ESP should be applied 25396 * before AH for an outbound packet). Force an ESP ACQUIRE 25397 * when both ESP and AH are required, and an AH ACQUIRE 25398 * is needed. 25399 */ 25400 if (ap->ipa_want_esp && need_ah_acquire) 25401 need_esp_acquire = B_TRUE; 25402 } 25403 25404 /* 25405 * Send an ACQUIRE (extended, regular, or both) if we need one. 25406 * Release SAs that got referenced, but will not be used until we 25407 * acquire _all_ of the SAs we need. 25408 */ 25409 if (need_ah_acquire || need_esp_acquire) { 25410 if (io->ipsec_out_ah_sa != NULL) { 25411 IPSA_REFRELE(io->ipsec_out_ah_sa); 25412 io->ipsec_out_ah_sa = NULL; 25413 } 25414 if (io->ipsec_out_esp_sa != NULL) { 25415 IPSA_REFRELE(io->ipsec_out_esp_sa); 25416 io->ipsec_out_esp_sa = NULL; 25417 } 25418 25419 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 25420 return (B_FALSE); 25421 } 25422 25423 return (B_TRUE); 25424 } 25425 25426 /* 25427 * Process an IPSEC_OUT message and see what you can 25428 * do with it. 25429 * IPQoS Notes: 25430 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 25431 * IPSec. 25432 * XXX would like to nuke ire_t. 25433 * XXX ill_index better be "real" 25434 */ 25435 void 25436 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 25437 { 25438 ipsec_out_t *io; 25439 ipsec_policy_t *pp; 25440 ipsec_action_t *ap; 25441 ipha_t *ipha; 25442 ip6_t *ip6h; 25443 mblk_t *mp; 25444 ill_t *ill; 25445 zoneid_t zoneid; 25446 ipsec_status_t ipsec_rc; 25447 boolean_t ill_need_rele = B_FALSE; 25448 25449 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25450 ASSERT(io->ipsec_out_type == IPSEC_OUT); 25451 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 25452 mp = ipsec_mp->b_cont; 25453 25454 /* 25455 * Initiate IPPF processing. We do it here to account for packets 25456 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 25457 * We can check for ipsec_out_proc_begin even for such packets, as 25458 * they will always be false (asserted below). 25459 */ 25460 if (IPP_ENABLED(IPP_LOCAL_OUT) && !io->ipsec_out_proc_begin) { 25461 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 25462 io->ipsec_out_ill_index : ill_index); 25463 if (mp == NULL) { 25464 ip2dbg(("ipsec_out_process: packet dropped "\ 25465 "during IPPF processing\n")); 25466 freeb(ipsec_mp); 25467 BUMP_MIB(&ip_mib, ipOutDiscards); 25468 return; 25469 } 25470 } 25471 25472 if (!io->ipsec_out_secure) { 25473 /* 25474 * We came here by mistake. 25475 * Don't bother with ipsec processing 25476 * Should "discourage" this path in the future. 25477 */ 25478 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 25479 goto done; 25480 } 25481 ASSERT(io->ipsec_out_need_policy == B_FALSE); 25482 ASSERT((io->ipsec_out_policy != NULL) || 25483 (io->ipsec_out_act != NULL)); 25484 ASSERT(io->ipsec_out_failed == B_FALSE); 25485 25486 if (!ipsec_loaded()) { 25487 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 25488 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 25489 BUMP_MIB(&ip_mib, ipOutDiscards); 25490 } else { 25491 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 25492 } 25493 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 25494 &ipdrops_ip_ipsec_not_loaded, &ip_dropper); 25495 return; 25496 } 25497 25498 /* 25499 * IPSEC processing has started. 25500 */ 25501 io->ipsec_out_proc_begin = B_TRUE; 25502 ap = io->ipsec_out_act; 25503 if (ap == NULL) { 25504 pp = io->ipsec_out_policy; 25505 ASSERT(pp != NULL); 25506 ap = pp->ipsp_act; 25507 ASSERT(ap != NULL); 25508 } 25509 25510 /* 25511 * Save the outbound ill index. When the packet comes back 25512 * from IPsec, we make sure the ill hasn't changed or disappeared 25513 * before sending it the accelerated packet. 25514 */ 25515 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 25516 int ifindex; 25517 ill = ire_to_ill(ire); 25518 ifindex = ill->ill_phyint->phyint_ifindex; 25519 io->ipsec_out_capab_ill_index = ifindex; 25520 } 25521 25522 /* 25523 * The order of processing is first insert a IP header if needed. 25524 * Then insert the ESP header and then the AH header. 25525 */ 25526 if ((io->ipsec_out_se_done == B_FALSE) && 25527 (ap->ipa_want_se)) { 25528 /* 25529 * First get the outer IP header before sending 25530 * it to ESP. 25531 */ 25532 ipha_t *oipha, *iipha; 25533 mblk_t *outer_mp, *inner_mp; 25534 25535 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 25536 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 25537 "ipsec_out_process: " 25538 "Self-Encapsulation failed: Out of memory\n"); 25539 freemsg(ipsec_mp); 25540 BUMP_MIB(&ip_mib, ipOutDiscards); 25541 return; 25542 } 25543 inner_mp = ipsec_mp->b_cont; 25544 ASSERT(inner_mp->b_datap->db_type == M_DATA); 25545 oipha = (ipha_t *)outer_mp->b_rptr; 25546 iipha = (ipha_t *)inner_mp->b_rptr; 25547 *oipha = *iipha; 25548 outer_mp->b_wptr += sizeof (ipha_t); 25549 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 25550 sizeof (ipha_t)); 25551 oipha->ipha_protocol = IPPROTO_ENCAP; 25552 oipha->ipha_version_and_hdr_length = 25553 IP_SIMPLE_HDR_VERSION; 25554 oipha->ipha_hdr_checksum = 0; 25555 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 25556 outer_mp->b_cont = inner_mp; 25557 ipsec_mp->b_cont = outer_mp; 25558 25559 io->ipsec_out_se_done = B_TRUE; 25560 io->ipsec_out_encaps = B_TRUE; 25561 } 25562 25563 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 25564 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 25565 !ipsec_out_select_sa(ipsec_mp)) 25566 return; 25567 25568 /* 25569 * By now, we know what SA's to use. Toss over to ESP & AH 25570 * to do the heavy lifting. 25571 */ 25572 zoneid = io->ipsec_out_zoneid; 25573 ASSERT(zoneid != ALL_ZONES); 25574 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 25575 ASSERT(io->ipsec_out_esp_sa != NULL); 25576 io->ipsec_out_esp_done = B_TRUE; 25577 /* 25578 * Note that since hw accel can only apply one transform, 25579 * not two, we skip hw accel for ESP if we also have AH 25580 * This is an design limitation of the interface 25581 * which should be revisited. 25582 */ 25583 ASSERT(ire != NULL); 25584 if (io->ipsec_out_ah_sa == NULL) { 25585 ill = (ill_t *)ire->ire_stq->q_ptr; 25586 ipsec_out_is_accelerated(ipsec_mp, 25587 io->ipsec_out_esp_sa, ill, ire); 25588 } 25589 25590 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 25591 switch (ipsec_rc) { 25592 case IPSEC_STATUS_SUCCESS: 25593 break; 25594 case IPSEC_STATUS_FAILED: 25595 BUMP_MIB(&ip_mib, ipOutDiscards); 25596 /* FALLTHRU */ 25597 case IPSEC_STATUS_PENDING: 25598 return; 25599 } 25600 } 25601 25602 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 25603 ASSERT(io->ipsec_out_ah_sa != NULL); 25604 io->ipsec_out_ah_done = B_TRUE; 25605 if (ire == NULL) { 25606 int idx = io->ipsec_out_capab_ill_index; 25607 ill = ill_lookup_on_ifindex(idx, B_FALSE, 25608 NULL, NULL, NULL, NULL); 25609 ill_need_rele = B_TRUE; 25610 } else { 25611 ill = (ill_t *)ire->ire_stq->q_ptr; 25612 } 25613 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 25614 ire); 25615 25616 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 25617 switch (ipsec_rc) { 25618 case IPSEC_STATUS_SUCCESS: 25619 break; 25620 case IPSEC_STATUS_FAILED: 25621 BUMP_MIB(&ip_mib, ipOutDiscards); 25622 /* FALLTHRU */ 25623 case IPSEC_STATUS_PENDING: 25624 if (ill != NULL && ill_need_rele) 25625 ill_refrele(ill); 25626 return; 25627 } 25628 } 25629 /* 25630 * We are done with IPSEC processing. Send it over 25631 * the wire. 25632 */ 25633 done: 25634 mp = ipsec_mp->b_cont; 25635 ipha = (ipha_t *)mp->b_rptr; 25636 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 25637 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 25638 } else { 25639 ip6h = (ip6_t *)ipha; 25640 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 25641 } 25642 if (ill != NULL && ill_need_rele) 25643 ill_refrele(ill); 25644 } 25645 25646 /* ARGSUSED */ 25647 void 25648 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 25649 { 25650 opt_restart_t *or; 25651 int err; 25652 conn_t *connp; 25653 25654 ASSERT(CONN_Q(q)); 25655 connp = Q_TO_CONN(q); 25656 25657 ASSERT(first_mp->b_datap->db_type == M_CTL); 25658 or = (opt_restart_t *)first_mp->b_rptr; 25659 /* 25660 * We don't need to pass any credentials here since this is just 25661 * a restart. The credentials are passed in when svr4_optcom_req 25662 * is called the first time (from ip_wput_nondata). 25663 */ 25664 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 25665 err = svr4_optcom_req(q, first_mp, NULL, 25666 &ip_opt_obj); 25667 } else { 25668 ASSERT(or->or_type == T_OPTMGMT_REQ); 25669 err = tpi_optcom_req(q, first_mp, NULL, 25670 &ip_opt_obj); 25671 } 25672 if (err != EINPROGRESS) { 25673 /* operation is done */ 25674 CONN_OPER_PENDING_DONE(connp); 25675 } 25676 } 25677 25678 /* 25679 * ioctls that go through a down/up sequence may need to wait for the down 25680 * to complete. This involves waiting for the ire and ipif refcnts to go down 25681 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 25682 */ 25683 /* ARGSUSED */ 25684 void 25685 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 25686 { 25687 struct iocblk *iocp; 25688 mblk_t *mp1; 25689 ipif_t *ipif; 25690 ip_ioctl_cmd_t *ipip; 25691 int err; 25692 sin_t *sin; 25693 struct lifreq *lifr; 25694 struct ifreq *ifr; 25695 25696 iocp = (struct iocblk *)mp->b_rptr; 25697 ASSERT(ipsq != NULL); 25698 /* Existence of mp1 verified in ip_wput_nondata */ 25699 mp1 = mp->b_cont->b_cont; 25700 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 25701 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 25702 ill_t *ill; 25703 /* 25704 * Special case where ipsq_current_ipif may not be set. 25705 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 25706 * ill could also have become part of a ipmp group in the 25707 * process, we are here as were not able to complete the 25708 * operation in ipif_set_values because we could not become 25709 * exclusive on the new ipsq, In such a case ipsq_current_ipif 25710 * will not be set so we need to set it. 25711 */ 25712 ill = (ill_t *)q->q_ptr; 25713 ipsq->ipsq_current_ipif = ill->ill_ipif; 25714 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 25715 } 25716 25717 ipif = ipsq->ipsq_current_ipif; 25718 ASSERT(ipif != NULL); 25719 if (ipip->ipi_cmd_type == IF_CMD) { 25720 /* This a old style SIOC[GS]IF* command */ 25721 ifr = (struct ifreq *)mp1->b_rptr; 25722 sin = (sin_t *)&ifr->ifr_addr; 25723 } else if (ipip->ipi_cmd_type == LIF_CMD) { 25724 /* This a new style SIOC[GS]LIF* command */ 25725 lifr = (struct lifreq *)mp1->b_rptr; 25726 sin = (sin_t *)&lifr->lifr_addr; 25727 } else { 25728 sin = NULL; 25729 } 25730 25731 err = (*ipip->ipi_func_restart)(ipif, sin, q, mp, ipip, 25732 (void *)mp1->b_rptr); 25733 25734 /* SIOCLIFREMOVEIF could have removed the ipif */ 25735 ip_ioctl_finish(q, mp, err, 25736 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25737 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ipif, ipsq); 25738 } 25739 25740 /* 25741 * ioctl processing 25742 * 25743 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 25744 * the ioctl command in the ioctl tables and determines the copyin data size 25745 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 25746 * size. 25747 * 25748 * ioctl processing then continues when the M_IOCDATA makes its way down. 25749 * Now the ioctl is looked up again in the ioctl table, and its properties are 25750 * extracted. The associated 'conn' is then refheld till the end of the ioctl 25751 * and the general ioctl processing function ip_process_ioctl is called. 25752 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 25753 * so goes thru the serialization primitive ipsq_try_enter. Then the 25754 * appropriate function to handle the ioctl is called based on the entry in 25755 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 25756 * which also refreleases the 'conn' that was refheld at the start of the 25757 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 25758 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 25759 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 25760 * 25761 * Many exclusive ioctls go thru an internal down up sequence as part of 25762 * the operation. For example an attempt to change the IP address of an 25763 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 25764 * does all the cleanup such as deleting all ires that use this address. 25765 * Then we need to wait till all references to the interface go away. 25766 */ 25767 void 25768 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 25769 { 25770 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 25771 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 25772 cmd_info_t ci; 25773 int err; 25774 boolean_t entered_ipsq = B_FALSE; 25775 25776 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 25777 25778 if (ipip == NULL) 25779 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 25780 25781 /* 25782 * SIOCLIFADDIF needs to go thru a special path since the 25783 * ill may not exist yet. This happens in the case of lo0 25784 * which is created using this ioctl. 25785 */ 25786 if (ipip->ipi_cmd == SIOCLIFADDIF) { 25787 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 25788 ip_ioctl_finish(q, mp, err, 25789 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25790 NULL, NULL); 25791 return; 25792 } 25793 25794 ci.ci_ipif = NULL; 25795 switch (ipip->ipi_cmd_type) { 25796 case IF_CMD: 25797 case LIF_CMD: 25798 /* 25799 * ioctls that pass in a [l]ifreq appear here. 25800 * ip_extract_lifreq_cmn returns a refheld ipif in 25801 * ci.ci_ipif 25802 */ 25803 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 25804 ipip->ipi_flags, &ci, ip_process_ioctl); 25805 if (err != 0) { 25806 ip_ioctl_finish(q, mp, err, 25807 ipip->ipi_flags & IPI_GET_CMD ? 25808 COPYOUT : NO_COPYOUT, NULL, NULL); 25809 return; 25810 } 25811 ASSERT(ci.ci_ipif != NULL); 25812 break; 25813 25814 case TUN_CMD: 25815 /* 25816 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 25817 * a refheld ipif in ci.ci_ipif 25818 */ 25819 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 25820 if (err != 0) { 25821 ip_ioctl_finish(q, mp, err, 25822 ipip->ipi_flags & IPI_GET_CMD ? 25823 COPYOUT : NO_COPYOUT, NULL, NULL); 25824 return; 25825 } 25826 ASSERT(ci.ci_ipif != NULL); 25827 break; 25828 25829 case MISC_CMD: 25830 /* 25831 * ioctls that neither pass in [l]ifreq or iftun_req come here 25832 * For eg. SIOCGLIFCONF will appear here. 25833 */ 25834 switch (ipip->ipi_cmd) { 25835 case IF_UNITSEL: 25836 /* ioctl comes down the ill */ 25837 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 25838 ipif_refhold(ci.ci_ipif); 25839 break; 25840 case SIOCGMSFILTER: 25841 case SIOCSMSFILTER: 25842 case SIOCGIPMSFILTER: 25843 case SIOCSIPMSFILTER: 25844 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 25845 ip_process_ioctl); 25846 if (err != 0) { 25847 ip_ioctl_finish(q, mp, err, 25848 ipip->ipi_flags & IPI_GET_CMD ? 25849 COPYOUT : NO_COPYOUT, NULL, NULL); 25850 return; 25851 } 25852 break; 25853 } 25854 err = 0; 25855 ci.ci_sin = NULL; 25856 ci.ci_sin6 = NULL; 25857 ci.ci_lifr = NULL; 25858 break; 25859 } 25860 25861 /* 25862 * If ipsq is non-null, we are already being called exclusively 25863 */ 25864 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 25865 if (!(ipip->ipi_flags & IPI_WR)) { 25866 /* 25867 * A return value of EINPROGRESS means the ioctl is 25868 * either queued and waiting for some reason or has 25869 * already completed. 25870 */ 25871 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 25872 ci.ci_lifr); 25873 if (ci.ci_ipif != NULL) 25874 ipif_refrele(ci.ci_ipif); 25875 ip_ioctl_finish(q, mp, err, 25876 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25877 NULL, NULL); 25878 return; 25879 } 25880 25881 ASSERT(ci.ci_ipif != NULL); 25882 25883 if (ipsq == NULL) { 25884 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 25885 ip_process_ioctl, NEW_OP, B_TRUE); 25886 entered_ipsq = B_TRUE; 25887 } 25888 /* 25889 * Release the ipif so that ipif_down and friends that wait for 25890 * references to go away are not misled about the current ipif_refcnt 25891 * values. We are writer so we can access the ipif even after releasing 25892 * the ipif. 25893 */ 25894 ipif_refrele(ci.ci_ipif); 25895 if (ipsq == NULL) 25896 return; 25897 25898 mutex_enter(&ipsq->ipsq_lock); 25899 ASSERT(ipsq->ipsq_current_ipif == NULL); 25900 ipsq->ipsq_current_ipif = ci.ci_ipif; 25901 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 25902 mutex_exit(&ipsq->ipsq_lock); 25903 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 25904 /* 25905 * For most set ioctls that come here, this serves as a single point 25906 * where we set the IPIF_CHANGING flag. This ensures that there won't 25907 * be any new references to the ipif. This helps functions that go 25908 * through this path and end up trying to wait for the refcnts 25909 * associated with the ipif to go down to zero. Some exceptions are 25910 * Failover, Failback, and Groupname commands that operate on more than 25911 * just the ci.ci_ipif. These commands internally determine the 25912 * set of ipif's they operate on and set and clear the IPIF_CHANGING 25913 * flags on that set. Another exception is the Removeif command that 25914 * sets the IPIF_CONDEMNED flag internally after identifying the right 25915 * ipif to operate on. 25916 */ 25917 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 25918 ipip->ipi_cmd != SIOCLIFFAILOVER && 25919 ipip->ipi_cmd != SIOCLIFFAILBACK && 25920 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 25921 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 25922 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 25923 25924 /* 25925 * A return value of EINPROGRESS means the ioctl is 25926 * either queued and waiting for some reason or has 25927 * already completed. 25928 */ 25929 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 25930 ci.ci_lifr); 25931 25932 /* SIOCLIFREMOVEIF could have removed the ipif */ 25933 ip_ioctl_finish(q, mp, err, 25934 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25935 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ci.ci_ipif, ipsq); 25936 25937 if (entered_ipsq) 25938 ipsq_exit(ipsq, B_TRUE, B_TRUE); 25939 } 25940 25941 /* 25942 * Complete the ioctl. Typically ioctls use the mi package and need to 25943 * do mi_copyout/mi_copy_done. 25944 */ 25945 void 25946 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, 25947 ipif_t *ipif, ipsq_t *ipsq) 25948 { 25949 conn_t *connp = NULL; 25950 25951 if (err == EINPROGRESS) 25952 return; 25953 25954 if (CONN_Q(q)) { 25955 connp = Q_TO_CONN(q); 25956 ASSERT(connp->conn_ref >= 2); 25957 } 25958 25959 switch (mode) { 25960 case COPYOUT: 25961 if (err == 0) 25962 mi_copyout(q, mp); 25963 else 25964 mi_copy_done(q, mp, err); 25965 break; 25966 25967 case NO_COPYOUT: 25968 mi_copy_done(q, mp, err); 25969 break; 25970 25971 default: 25972 /* An ioctl aborted through a conn close would take this path */ 25973 break; 25974 } 25975 25976 /* 25977 * The refhold placed at the start of the ioctl is released here. 25978 */ 25979 if (connp != NULL) 25980 CONN_OPER_PENDING_DONE(connp); 25981 25982 /* 25983 * If the ioctl were an exclusive ioctl it would have set 25984 * IPIF_CHANGING at the start of the ioctl which is undone here. 25985 */ 25986 if (ipif != NULL) { 25987 mutex_enter(&(ipif)->ipif_ill->ill_lock); 25988 ipif->ipif_state_flags &= ~IPIF_CHANGING; 25989 mutex_exit(&(ipif)->ipif_ill->ill_lock); 25990 } 25991 25992 /* 25993 * Clear the current ipif in the ipsq at the completion of the ioctl. 25994 * Note that a non-null ipsq_current_ipif prevents new ioctls from 25995 * entering the ipsq 25996 */ 25997 if (ipsq != NULL) { 25998 mutex_enter(&ipsq->ipsq_lock); 25999 ipsq->ipsq_current_ipif = NULL; 26000 mutex_exit(&ipsq->ipsq_lock); 26001 } 26002 } 26003 26004 /* 26005 * This is called from ip_wput_nondata to resume a deferred TCP bind. 26006 */ 26007 /* ARGSUSED */ 26008 void 26009 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 26010 { 26011 conn_t *connp = arg; 26012 tcp_t *tcp; 26013 26014 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 26015 tcp = connp->conn_tcp; 26016 26017 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 26018 freemsg(mp); 26019 else 26020 tcp_rput_other(tcp, mp); 26021 CONN_OPER_PENDING_DONE(connp); 26022 } 26023 26024 /* Called from ip_wput for all non data messages */ 26025 /* ARGSUSED */ 26026 void 26027 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26028 { 26029 mblk_t *mp1; 26030 ire_t *ire, *fake_ire; 26031 ill_t *ill; 26032 struct iocblk *iocp; 26033 ip_ioctl_cmd_t *ipip; 26034 cred_t *cr; 26035 conn_t *connp = NULL; 26036 int cmd, err; 26037 nce_t *nce; 26038 ipif_t *ipif; 26039 26040 if (CONN_Q(q)) 26041 connp = Q_TO_CONN(q); 26042 26043 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 26044 26045 /* Check if it is a queue to /dev/sctp. */ 26046 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 26047 connp->conn_rq == NULL) { 26048 sctp_wput(q, mp); 26049 return; 26050 } 26051 26052 switch (DB_TYPE(mp)) { 26053 case M_IOCTL: 26054 /* 26055 * IOCTL processing begins in ip_sioctl_copyin_setup which 26056 * will arrange to copy in associated control structures. 26057 */ 26058 ip_sioctl_copyin_setup(q, mp); 26059 return; 26060 case M_IOCDATA: 26061 /* 26062 * Ensure that this is associated with one of our trans- 26063 * parent ioctls. If it's not ours, discard it if we're 26064 * running as a driver, or pass it on if we're a module. 26065 */ 26066 iocp = (struct iocblk *)mp->b_rptr; 26067 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26068 if (ipip == NULL) { 26069 if (q->q_next == NULL) { 26070 goto nak; 26071 } else { 26072 putnext(q, mp); 26073 } 26074 return; 26075 } else if ((q->q_next != NULL) && 26076 !(ipip->ipi_flags & IPI_MODOK)) { 26077 /* 26078 * the ioctl is one we recognise, but is not 26079 * consumed by IP as a module, pass M_IOCDATA 26080 * for processing downstream, but only for 26081 * common Streams ioctls. 26082 */ 26083 if (ipip->ipi_flags & IPI_PASS_DOWN) { 26084 putnext(q, mp); 26085 return; 26086 } else { 26087 goto nak; 26088 } 26089 } 26090 26091 /* IOCTL continuation following copyin or copyout. */ 26092 if (mi_copy_state(q, mp, NULL) == -1) { 26093 /* 26094 * The copy operation failed. mi_copy_state already 26095 * cleaned up, so we're out of here. 26096 */ 26097 return; 26098 } 26099 /* 26100 * If we just completed a copy in, we become writer and 26101 * continue processing in ip_sioctl_copyin_done. If it 26102 * was a copy out, we call mi_copyout again. If there is 26103 * nothing more to copy out, it will complete the IOCTL. 26104 */ 26105 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 26106 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 26107 mi_copy_done(q, mp, EPROTO); 26108 return; 26109 } 26110 /* 26111 * Check for cases that need more copying. A return 26112 * value of 0 means a second copyin has been started, 26113 * so we return; a return value of 1 means no more 26114 * copying is needed, so we continue. 26115 */ 26116 cmd = iocp->ioc_cmd; 26117 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 26118 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 26119 MI_COPY_COUNT(mp) == 1) { 26120 if (ip_copyin_msfilter(q, mp) == 0) 26121 return; 26122 } 26123 /* 26124 * Refhold the conn, till the ioctl completes. This is 26125 * needed in case the ioctl ends up in the pending mp 26126 * list. Every mp in the ill_pending_mp list and 26127 * the ipsq_pending_mp must have a refhold on the conn 26128 * to resume processing. The refhold is released when 26129 * the ioctl completes. (normally or abnormally) 26130 * In all cases ip_ioctl_finish is called to finish 26131 * the ioctl. 26132 */ 26133 if (connp != NULL) { 26134 /* This is not a reentry */ 26135 ASSERT(ipsq == NULL); 26136 CONN_INC_REF(connp); 26137 } else { 26138 if (!(ipip->ipi_flags & IPI_MODOK)) { 26139 mi_copy_done(q, mp, EINVAL); 26140 return; 26141 } 26142 } 26143 26144 ip_process_ioctl(ipsq, q, mp, ipip); 26145 26146 } else { 26147 mi_copyout(q, mp); 26148 } 26149 return; 26150 nak: 26151 iocp->ioc_error = EINVAL; 26152 mp->b_datap->db_type = M_IOCNAK; 26153 iocp->ioc_count = 0; 26154 qreply(q, mp); 26155 return; 26156 26157 case M_IOCNAK: 26158 /* 26159 * The only way we could get here is if a resolver didn't like 26160 * an IOCTL we sent it. This shouldn't happen. 26161 */ 26162 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 26163 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 26164 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 26165 freemsg(mp); 26166 return; 26167 case M_IOCACK: 26168 /* Finish socket ioctls passed through to ARP. */ 26169 ip_sioctl_iocack(q, mp); 26170 return; 26171 case M_FLUSH: 26172 if (*mp->b_rptr & FLUSHW) 26173 flushq(q, FLUSHALL); 26174 if (q->q_next) { 26175 /* 26176 * M_FLUSH is sent up to IP by some drivers during 26177 * unbind. ip_rput has already replied to it. We are 26178 * here for the M_FLUSH that we originated in IP 26179 * before sending the unbind request to the driver. 26180 * Just free it as we don't queue packets in IP 26181 * on the write side of the device instance. 26182 */ 26183 freemsg(mp); 26184 return; 26185 } 26186 if (*mp->b_rptr & FLUSHR) { 26187 *mp->b_rptr &= ~FLUSHW; 26188 qreply(q, mp); 26189 return; 26190 } 26191 freemsg(mp); 26192 return; 26193 case IRE_DB_REQ_TYPE: 26194 /* An Upper Level Protocol wants a copy of an IRE. */ 26195 ip_ire_req(q, mp); 26196 return; 26197 case M_CTL: 26198 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 26199 break; 26200 26201 if (connp != NULL && *(uint32_t *)mp->b_rptr == 26202 IP_ULP_OUT_LABELED) { 26203 out_labeled_t *olp; 26204 26205 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 26206 break; 26207 olp = (out_labeled_t *)mp->b_rptr; 26208 connp->conn_ulp_labeled = olp->out_qnext == q; 26209 freemsg(mp); 26210 return; 26211 } 26212 26213 /* M_CTL messages are used by ARP to tell us things. */ 26214 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 26215 break; 26216 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 26217 case AR_ENTRY_SQUERY: 26218 ip_wput_ctl(q, mp); 26219 return; 26220 case AR_CLIENT_NOTIFY: 26221 ip_arp_news(q, mp); 26222 return; 26223 case AR_DLPIOP_DONE: 26224 ASSERT(q->q_next != NULL); 26225 ill = (ill_t *)q->q_ptr; 26226 /* qwriter_ip releases the refhold */ 26227 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 26228 ill_refhold(ill); 26229 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 26230 CUR_OP, B_FALSE); 26231 return; 26232 case AR_ARP_CLOSING: 26233 /* 26234 * ARP (above us) is closing. If no ARP bringup is 26235 * currently pending, ack the message so that ARP 26236 * can complete its close. Also mark ill_arp_closing 26237 * so that new ARP bringups will fail. If any 26238 * ARP bringup is currently in progress, we will 26239 * ack this when the current ARP bringup completes. 26240 */ 26241 ASSERT(q->q_next != NULL); 26242 ill = (ill_t *)q->q_ptr; 26243 mutex_enter(&ill->ill_lock); 26244 ill->ill_arp_closing = 1; 26245 if (!ill->ill_arp_bringup_pending) { 26246 mutex_exit(&ill->ill_lock); 26247 qreply(q, mp); 26248 } else { 26249 mutex_exit(&ill->ill_lock); 26250 freemsg(mp); 26251 } 26252 return; 26253 case AR_ARP_EXTEND: 26254 /* 26255 * The ARP module above us is capable of duplicate 26256 * address detection. Old ATM drivers will not send 26257 * this message. 26258 */ 26259 ASSERT(q->q_next != NULL); 26260 ill = (ill_t *)q->q_ptr; 26261 ill->ill_arp_extend = B_TRUE; 26262 freemsg(mp); 26263 return; 26264 default: 26265 break; 26266 } 26267 break; 26268 case M_PROTO: 26269 case M_PCPROTO: 26270 /* 26271 * The only PROTO messages we expect are ULP binds and 26272 * copies of option negotiation acknowledgements. 26273 */ 26274 switch (((union T_primitives *)mp->b_rptr)->type) { 26275 case O_T_BIND_REQ: 26276 case T_BIND_REQ: { 26277 /* Request can get queued in bind */ 26278 ASSERT(connp != NULL); 26279 /* 26280 * Both TCP and UDP call ip_bind_{v4,v6}() directly 26281 * instead of going through this path. We only get 26282 * here in the following cases: 26283 * 26284 * a. Bind retries, where ipsq is non-NULL. 26285 * b. T_BIND_REQ is issued from non TCP/UDP 26286 * transport, e.g. icmp for raw socket, 26287 * in which case ipsq will be NULL. 26288 */ 26289 ASSERT(ipsq != NULL || 26290 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 26291 26292 /* Don't increment refcnt if this is a re-entry */ 26293 if (ipsq == NULL) 26294 CONN_INC_REF(connp); 26295 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 26296 connp, NULL) : ip_bind_v4(q, mp, connp); 26297 if (mp == NULL) 26298 return; 26299 if (IPCL_IS_TCP(connp)) { 26300 /* 26301 * In the case of TCP endpoint we 26302 * come here only for bind retries 26303 */ 26304 ASSERT(ipsq != NULL); 26305 CONN_INC_REF(connp); 26306 squeue_fill(connp->conn_sqp, mp, 26307 ip_resume_tcp_bind, connp, 26308 SQTAG_BIND_RETRY); 26309 return; 26310 } else if (IPCL_IS_UDP(connp)) { 26311 /* 26312 * In the case of UDP endpoint we 26313 * come here only for bind retries 26314 */ 26315 ASSERT(ipsq != NULL); 26316 udp_resume_bind(connp, mp); 26317 return; 26318 } 26319 qreply(q, mp); 26320 CONN_OPER_PENDING_DONE(connp); 26321 return; 26322 } 26323 case T_SVR4_OPTMGMT_REQ: 26324 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 26325 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 26326 26327 ASSERT(connp != NULL); 26328 if (!snmpcom_req(q, mp, ip_snmp_set, 26329 ip_snmp_get, cr)) { 26330 /* 26331 * Call svr4_optcom_req so that it can 26332 * generate the ack. We don't come here 26333 * if this operation is being restarted. 26334 * ip_restart_optmgmt will drop the conn ref. 26335 * In the case of ipsec option after the ipsec 26336 * load is complete conn_restart_ipsec_waiter 26337 * drops the conn ref. 26338 */ 26339 ASSERT(ipsq == NULL); 26340 CONN_INC_REF(connp); 26341 if (ip_check_for_ipsec_opt(q, mp)) 26342 return; 26343 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 26344 if (err != EINPROGRESS) { 26345 /* Operation is done */ 26346 CONN_OPER_PENDING_DONE(connp); 26347 } 26348 } 26349 return; 26350 case T_OPTMGMT_REQ: 26351 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 26352 /* 26353 * Note: No snmpcom_req support through new 26354 * T_OPTMGMT_REQ. 26355 * Call tpi_optcom_req so that it can 26356 * generate the ack. 26357 */ 26358 ASSERT(connp != NULL); 26359 ASSERT(ipsq == NULL); 26360 /* 26361 * We don't come here for restart. ip_restart_optmgmt 26362 * will drop the conn ref. In the case of ipsec option 26363 * after the ipsec load is complete 26364 * conn_restart_ipsec_waiter drops the conn ref. 26365 */ 26366 CONN_INC_REF(connp); 26367 if (ip_check_for_ipsec_opt(q, mp)) 26368 return; 26369 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 26370 if (err != EINPROGRESS) { 26371 /* Operation is done */ 26372 CONN_OPER_PENDING_DONE(connp); 26373 } 26374 return; 26375 case T_UNBIND_REQ: 26376 mp = ip_unbind(q, mp); 26377 qreply(q, mp); 26378 return; 26379 default: 26380 /* 26381 * Have to drop any DLPI messages coming down from 26382 * arp (such as an info_req which would cause ip 26383 * to receive an extra info_ack if it was passed 26384 * through. 26385 */ 26386 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 26387 (int)*(uint_t *)mp->b_rptr)); 26388 freemsg(mp); 26389 return; 26390 } 26391 /* NOTREACHED */ 26392 case IRE_DB_TYPE: { 26393 nce_t *nce; 26394 ill_t *ill; 26395 in6_addr_t gw_addr_v6; 26396 26397 26398 /* 26399 * This is a response back from a resolver. It 26400 * consists of a message chain containing: 26401 * IRE_MBLK-->LL_HDR_MBLK->pkt 26402 * The IRE_MBLK is the one we allocated in ip_newroute. 26403 * The LL_HDR_MBLK is the DLPI header to use to get 26404 * the attached packet, and subsequent ones for the 26405 * same destination, transmitted. 26406 */ 26407 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 26408 break; 26409 /* 26410 * First, check to make sure the resolution succeeded. 26411 * If it failed, the second mblk will be empty. 26412 * If it is, free the chain, dropping the packet. 26413 * (We must ire_delete the ire; that frees the ire mblk) 26414 * We're doing this now to support PVCs for ATM; it's 26415 * a partial xresolv implementation. When we fully implement 26416 * xresolv interfaces, instead of freeing everything here 26417 * we'll initiate neighbor discovery. 26418 * 26419 * For v4 (ARP and other external resolvers) the resolver 26420 * frees the message, so no check is needed. This check 26421 * is required, though, for a full xresolve implementation. 26422 * Including this code here now both shows how external 26423 * resolvers can NACK a resolution request using an 26424 * existing design that has no specific provisions for NACKs, 26425 * and also takes into account that the current non-ARP 26426 * external resolver has been coded to use this method of 26427 * NACKing for all IPv6 (xresolv) cases, 26428 * whether our xresolv implementation is complete or not. 26429 * 26430 */ 26431 ire = (ire_t *)mp->b_rptr; 26432 ill = ire_to_ill(ire); 26433 mp1 = mp->b_cont; /* dl_unitdata_req */ 26434 if (mp1->b_rptr == mp1->b_wptr) { 26435 if (ire->ire_ipversion == IPV6_VERSION) { 26436 /* 26437 * XRESOLV interface. 26438 */ 26439 ASSERT(ill->ill_flags & ILLF_XRESOLV); 26440 mutex_enter(&ire->ire_lock); 26441 gw_addr_v6 = ire->ire_gateway_addr_v6; 26442 mutex_exit(&ire->ire_lock); 26443 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 26444 nce = ndp_lookup_v6(ill, 26445 &ire->ire_addr_v6, B_FALSE); 26446 } else { 26447 nce = ndp_lookup_v6(ill, &gw_addr_v6, 26448 B_FALSE); 26449 } 26450 if (nce != NULL) { 26451 nce_resolv_failed(nce); 26452 ndp_delete(nce); 26453 NCE_REFRELE(nce); 26454 } 26455 } 26456 mp->b_cont = NULL; 26457 freemsg(mp1); /* frees the pkt as well */ 26458 ASSERT(ire->ire_nce == NULL); 26459 ire_delete((ire_t *)mp->b_rptr); 26460 return; 26461 } 26462 26463 /* 26464 * Split them into IRE_MBLK and pkt and feed it into 26465 * ire_add_then_send. Then in ire_add_then_send 26466 * the IRE will be added, and then the packet will be 26467 * run back through ip_wput. This time it will make 26468 * it to the wire. 26469 */ 26470 mp->b_cont = NULL; 26471 mp = mp1->b_cont; /* now, mp points to pkt */ 26472 mp1->b_cont = NULL; 26473 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 26474 if (ire->ire_ipversion == IPV6_VERSION) { 26475 /* 26476 * XRESOLV interface. Find the nce and put a copy 26477 * of the dl_unitdata_req in nce_res_mp 26478 */ 26479 ASSERT(ill->ill_flags & ILLF_XRESOLV); 26480 mutex_enter(&ire->ire_lock); 26481 gw_addr_v6 = ire->ire_gateway_addr_v6; 26482 mutex_exit(&ire->ire_lock); 26483 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 26484 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 26485 B_FALSE); 26486 } else { 26487 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 26488 } 26489 if (nce != NULL) { 26490 /* 26491 * We have to protect nce_res_mp here 26492 * from being accessed by other threads 26493 * while we change the mblk pointer. 26494 * Other functions will also lock the nce when 26495 * accessing nce_res_mp. 26496 * 26497 * The reason we change the mblk pointer 26498 * here rather than copying the resolved address 26499 * into the template is that, unlike with 26500 * ethernet, we have no guarantee that the 26501 * resolved address length will be 26502 * smaller than or equal to the lla length 26503 * with which the template was allocated, 26504 * (for ethernet, they're equal) 26505 * so we have to use the actual resolved 26506 * address mblk - which holds the real 26507 * dl_unitdata_req with the resolved address. 26508 * 26509 * Doing this is the same behavior as was 26510 * previously used in the v4 ARP case. 26511 */ 26512 mutex_enter(&nce->nce_lock); 26513 if (nce->nce_res_mp != NULL) 26514 freemsg(nce->nce_res_mp); 26515 nce->nce_res_mp = mp1; 26516 mutex_exit(&nce->nce_lock); 26517 /* 26518 * We do a fastpath probe here because 26519 * we have resolved the address without 26520 * using Neighbor Discovery. 26521 * In the non-XRESOLV v6 case, the fastpath 26522 * probe is done right after neighbor 26523 * discovery completes. 26524 */ 26525 if (nce->nce_res_mp != NULL) { 26526 int res; 26527 nce_fastpath_list_add(nce); 26528 res = ill_fastpath_probe(ill, 26529 nce->nce_res_mp); 26530 if (res != 0 && res != EAGAIN) 26531 nce_fastpath_list_delete(nce); 26532 } 26533 26534 ire_add_then_send(q, ire, mp); 26535 /* 26536 * Now we have to clean out any packets 26537 * that may have been queued on the nce 26538 * while it was waiting for address resolution 26539 * to complete. 26540 */ 26541 mutex_enter(&nce->nce_lock); 26542 mp1 = nce->nce_qd_mp; 26543 nce->nce_qd_mp = NULL; 26544 mutex_exit(&nce->nce_lock); 26545 while (mp1 != NULL) { 26546 mblk_t *nxt_mp; 26547 queue_t *fwdq = NULL; 26548 ill_t *inbound_ill; 26549 uint_t ifindex; 26550 26551 nxt_mp = mp1->b_next; 26552 mp1->b_next = NULL; 26553 /* 26554 * Retrieve ifindex stored in 26555 * ip_rput_data_v6() 26556 */ 26557 ifindex = 26558 (uint_t)(uintptr_t)mp1->b_prev; 26559 inbound_ill = 26560 ill_lookup_on_ifindex(ifindex, 26561 B_TRUE, NULL, NULL, NULL, 26562 NULL); 26563 mp1->b_prev = NULL; 26564 if (inbound_ill != NULL) 26565 fwdq = inbound_ill->ill_rq; 26566 26567 if (fwdq != NULL) { 26568 put(fwdq, mp1); 26569 ill_refrele(inbound_ill); 26570 } else 26571 put(WR(ill->ill_rq), mp1); 26572 mp1 = nxt_mp; 26573 } 26574 NCE_REFRELE(nce); 26575 } else { /* nce is NULL; clean up */ 26576 ire_delete(ire); 26577 freemsg(mp); 26578 freemsg(mp1); 26579 return; 26580 } 26581 } else { 26582 nce_t *arpce; 26583 /* 26584 * Link layer resolution succeeded. Recompute the 26585 * ire_nce. 26586 */ 26587 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 26588 if ((arpce = ndp_lookup_v4(ill, 26589 (ire->ire_gateway_addr != INADDR_ANY ? 26590 &ire->ire_gateway_addr : &ire->ire_addr), 26591 B_FALSE)) == NULL) { 26592 freeb(ire->ire_mp); 26593 freeb(mp1); 26594 freemsg(mp); 26595 return; 26596 } 26597 mutex_enter(&arpce->nce_lock); 26598 arpce->nce_last = TICK_TO_MSEC(lbolt64); 26599 if (arpce->nce_state == ND_REACHABLE) { 26600 /* 26601 * Someone resolved this before us; 26602 * cleanup the res_mp. Since ire has 26603 * not been added yet, the call to ire_add_v4 26604 * from ire_add_then_send (when a dup is 26605 * detected) will clean up the ire. 26606 */ 26607 freeb(mp1); 26608 } else { 26609 if (arpce->nce_res_mp != NULL) 26610 freemsg(arpce->nce_res_mp); 26611 arpce->nce_res_mp = mp1; 26612 arpce->nce_state = ND_REACHABLE; 26613 } 26614 mutex_exit(&arpce->nce_lock); 26615 if (ire->ire_marks & IRE_MARK_NOADD) { 26616 /* 26617 * this ire will not be added to the ire 26618 * cache table, so we can set the ire_nce 26619 * here, as there are no atomicity constraints. 26620 */ 26621 ire->ire_nce = arpce; 26622 /* 26623 * We are associating this nce with the ire 26624 * so change the nce ref taken in 26625 * ndp_lookup_v4() from 26626 * NCE_REFHOLD to NCE_REFHOLD_NOTR 26627 */ 26628 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 26629 } else { 26630 NCE_REFRELE(arpce); 26631 } 26632 ire_add_then_send(q, ire, mp); 26633 } 26634 return; /* All is well, the packet has been sent. */ 26635 } 26636 case IRE_ARPRESOLVE_TYPE: { 26637 26638 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 26639 break; 26640 mp1 = mp->b_cont; /* dl_unitdata_req */ 26641 mp->b_cont = NULL; 26642 /* 26643 * First, check to make sure the resolution succeeded. 26644 * If it failed, the second mblk will be empty. 26645 */ 26646 if (mp1->b_rptr == mp1->b_wptr) { 26647 /* cleanup the incomplete ire, free queued packets */ 26648 freemsg(mp); /* fake ire */ 26649 freeb(mp1); /* dl_unitdata response */ 26650 return; 26651 } 26652 26653 /* 26654 * update any incomplete nce_t found. we lookup the ctable 26655 * and find the nce from the ire->ire_nce because we need 26656 * to pass the ire to ip_xmit_v4 later, and can find both 26657 * ire and nce in one lookup from the ctable. 26658 */ 26659 fake_ire = (ire_t *)mp->b_rptr; 26660 /* 26661 * By the time we come back here from ARP 26662 * the logical outgoing interface of the incomplete ire 26663 * we added in ire_forward could have disappeared, 26664 * causing the incomplete ire to also have 26665 * dissapeared. So we need to retreive the 26666 * proper ipif for the ire before looking 26667 * in ctable; do the ctablelookup based on ire_ipif_seqid 26668 */ 26669 ill = q->q_ptr; 26670 26671 /* Get the outgoing ipif */ 26672 mutex_enter(&ill->ill_lock); 26673 if (ill->ill_state_flags & ILL_CONDEMNED) { 26674 mutex_exit(&ill->ill_lock); 26675 freemsg(mp); /* fake ire */ 26676 freeb(mp1); /* dl_unitdata response */ 26677 return; 26678 } 26679 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 26680 26681 if (ipif == NULL) { 26682 mutex_exit(&ill->ill_lock); 26683 ip1dbg(("logical intrf to incomplete ire vanished\n")); 26684 freemsg(mp); 26685 freeb(mp1); 26686 return; 26687 } 26688 ipif_refhold_locked(ipif); 26689 mutex_exit(&ill->ill_lock); 26690 ire = ire_ctable_lookup(fake_ire->ire_addr, 26691 fake_ire->ire_gateway_addr, IRE_CACHE, 26692 ipif, fake_ire->ire_zoneid, NULL, 26693 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY)); 26694 ipif_refrele(ipif); 26695 if (ire == NULL) { 26696 /* 26697 * no ire was found; check if there is an nce 26698 * for this lookup; if it has no ire's pointing at it 26699 * cleanup. 26700 */ 26701 if ((nce = ndp_lookup_v4(ill, 26702 (fake_ire->ire_gateway_addr != INADDR_ANY ? 26703 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 26704 B_FALSE)) != NULL) { 26705 /* 26706 * cleanup: just reset nce. 26707 * We check for refcnt 2 (one for the nce 26708 * hash list + 1 for the ref taken by 26709 * ndp_lookup_v4) to ensure that there are 26710 * no ire's pointing at the nce. 26711 */ 26712 if (nce->nce_refcnt == 2) { 26713 nce = nce_reinit(nce); 26714 } 26715 if (nce != NULL) 26716 NCE_REFRELE(nce); 26717 } 26718 freeb(mp1); /* dl_unitdata response */ 26719 freemsg(mp); /* fake ire */ 26720 return; 26721 } 26722 nce = ire->ire_nce; 26723 DTRACE_PROBE2(ire__arpresolve__type, 26724 ire_t *, ire, nce_t *, nce); 26725 ASSERT(nce->nce_state != ND_INITIAL); 26726 mutex_enter(&nce->nce_lock); 26727 nce->nce_last = TICK_TO_MSEC(lbolt64); 26728 if (nce->nce_state == ND_REACHABLE) { 26729 /* 26730 * Someone resolved this before us; 26731 * our response is not needed any more. 26732 */ 26733 mutex_exit(&nce->nce_lock); 26734 freeb(mp1); /* dl_unitdata response */ 26735 } else { 26736 if (nce->nce_res_mp != NULL) { 26737 freemsg(nce->nce_res_mp); 26738 /* existing dl_unitdata template */ 26739 } 26740 nce->nce_res_mp = mp1; 26741 nce->nce_state = ND_REACHABLE; 26742 mutex_exit(&nce->nce_lock); 26743 ire_fastpath(ire); 26744 } 26745 /* 26746 * The cached nce_t has been updated to be reachable; 26747 * Set the IRE_MARK_UNCACHED flag and free the fake_ire. 26748 */ 26749 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 26750 freemsg(mp); 26751 /* 26752 * send out queued packets. 26753 */ 26754 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26755 26756 IRE_REFRELE(ire); 26757 return; 26758 } 26759 default: 26760 break; 26761 } 26762 if (q->q_next) { 26763 putnext(q, mp); 26764 } else 26765 freemsg(mp); 26766 } 26767 26768 /* 26769 * Process IP options in an outbound packet. Modify the destination if there 26770 * is a source route option. 26771 * Returns non-zero if something fails in which case an ICMP error has been 26772 * sent and mp freed. 26773 */ 26774 static int 26775 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 26776 boolean_t mctl_present, zoneid_t zoneid) 26777 { 26778 ipoptp_t opts; 26779 uchar_t *opt; 26780 uint8_t optval; 26781 uint8_t optlen; 26782 ipaddr_t dst; 26783 intptr_t code = 0; 26784 mblk_t *mp; 26785 ire_t *ire = NULL; 26786 26787 ip2dbg(("ip_wput_options\n")); 26788 mp = ipsec_mp; 26789 if (mctl_present) { 26790 mp = ipsec_mp->b_cont; 26791 } 26792 26793 dst = ipha->ipha_dst; 26794 for (optval = ipoptp_first(&opts, ipha); 26795 optval != IPOPT_EOL; 26796 optval = ipoptp_next(&opts)) { 26797 opt = opts.ipoptp_cur; 26798 optlen = opts.ipoptp_len; 26799 ip2dbg(("ip_wput_options: opt %d, len %d\n", 26800 optval, optlen)); 26801 switch (optval) { 26802 uint32_t off; 26803 case IPOPT_SSRR: 26804 case IPOPT_LSRR: 26805 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 26806 ip1dbg(( 26807 "ip_wput_options: bad option offset\n")); 26808 code = (char *)&opt[IPOPT_OLEN] - 26809 (char *)ipha; 26810 goto param_prob; 26811 } 26812 off = opt[IPOPT_OFFSET]; 26813 ip1dbg(("ip_wput_options: next hop 0x%x\n", 26814 ntohl(dst))); 26815 /* 26816 * For strict: verify that dst is directly 26817 * reachable. 26818 */ 26819 if (optval == IPOPT_SSRR) { 26820 ire = ire_ftable_lookup(dst, 0, 0, 26821 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 26822 MBLK_GETLABEL(mp), 26823 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 26824 if (ire == NULL) { 26825 ip1dbg(("ip_wput_options: SSRR not" 26826 " directly reachable: 0x%x\n", 26827 ntohl(dst))); 26828 goto bad_src_route; 26829 } 26830 ire_refrele(ire); 26831 } 26832 break; 26833 case IPOPT_RR: 26834 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 26835 ip1dbg(( 26836 "ip_wput_options: bad option offset\n")); 26837 code = (char *)&opt[IPOPT_OLEN] - 26838 (char *)ipha; 26839 goto param_prob; 26840 } 26841 break; 26842 case IPOPT_TS: 26843 /* 26844 * Verify that length >=5 and that there is either 26845 * room for another timestamp or that the overflow 26846 * counter is not maxed out. 26847 */ 26848 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 26849 if (optlen < IPOPT_MINLEN_IT) { 26850 goto param_prob; 26851 } 26852 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 26853 ip1dbg(( 26854 "ip_wput_options: bad option offset\n")); 26855 code = (char *)&opt[IPOPT_OFFSET] - 26856 (char *)ipha; 26857 goto param_prob; 26858 } 26859 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 26860 case IPOPT_TS_TSONLY: 26861 off = IPOPT_TS_TIMELEN; 26862 break; 26863 case IPOPT_TS_TSANDADDR: 26864 case IPOPT_TS_PRESPEC: 26865 case IPOPT_TS_PRESPEC_RFC791: 26866 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 26867 break; 26868 default: 26869 code = (char *)&opt[IPOPT_POS_OV_FLG] - 26870 (char *)ipha; 26871 goto param_prob; 26872 } 26873 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 26874 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 26875 /* 26876 * No room and the overflow counter is 15 26877 * already. 26878 */ 26879 goto param_prob; 26880 } 26881 break; 26882 } 26883 } 26884 26885 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 26886 return (0); 26887 26888 ip1dbg(("ip_wput_options: error processing IP options.")); 26889 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 26890 26891 param_prob: 26892 /* 26893 * Since ip_wput() isn't close to finished, we fill 26894 * in enough of the header for credible error reporting. 26895 */ 26896 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 26897 /* Failed */ 26898 freemsg(ipsec_mp); 26899 return (-1); 26900 } 26901 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid); 26902 return (-1); 26903 26904 bad_src_route: 26905 /* 26906 * Since ip_wput() isn't close to finished, we fill 26907 * in enough of the header for credible error reporting. 26908 */ 26909 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 26910 /* Failed */ 26911 freemsg(ipsec_mp); 26912 return (-1); 26913 } 26914 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 26915 return (-1); 26916 } 26917 26918 /* 26919 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 26920 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 26921 * thru /etc/system. 26922 */ 26923 #define CONN_MAXDRAINCNT 64 26924 26925 static void 26926 conn_drain_init(void) 26927 { 26928 int i; 26929 26930 conn_drain_list_cnt = conn_drain_nthreads; 26931 26932 if ((conn_drain_list_cnt == 0) || 26933 (conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 26934 /* 26935 * Default value of the number of drainers is the 26936 * number of cpus, subject to maximum of 8 drainers. 26937 */ 26938 if (boot_max_ncpus != -1) 26939 conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 26940 else 26941 conn_drain_list_cnt = MIN(max_ncpus, 8); 26942 } 26943 26944 conn_drain_list = kmem_zalloc(conn_drain_list_cnt * sizeof (idl_t), 26945 KM_SLEEP); 26946 26947 for (i = 0; i < conn_drain_list_cnt; i++) { 26948 mutex_init(&conn_drain_list[i].idl_lock, NULL, 26949 MUTEX_DEFAULT, NULL); 26950 } 26951 } 26952 26953 static void 26954 conn_drain_fini(void) 26955 { 26956 int i; 26957 26958 for (i = 0; i < conn_drain_list_cnt; i++) 26959 mutex_destroy(&conn_drain_list[i].idl_lock); 26960 kmem_free(conn_drain_list, conn_drain_list_cnt * sizeof (idl_t)); 26961 conn_drain_list = NULL; 26962 } 26963 26964 /* 26965 * Note: For an overview of how flowcontrol is handled in IP please see the 26966 * IP Flowcontrol notes at the top of this file. 26967 * 26968 * Flow control has blocked us from proceeding. Insert the given conn in one 26969 * of the conn drain lists. These conn wq's will be qenabled later on when 26970 * STREAMS flow control does a backenable. conn_walk_drain will enable 26971 * the first conn in each of these drain lists. Each of these qenabled conns 26972 * in turn enables the next in the list, after it runs, or when it closes, 26973 * thus sustaining the drain process. 26974 * 26975 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 26976 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 26977 * running at any time, on a given conn, since there can be only 1 service proc 26978 * running on a queue at any time. 26979 */ 26980 void 26981 conn_drain_insert(conn_t *connp) 26982 { 26983 idl_t *idl; 26984 uint_t index; 26985 26986 mutex_enter(&connp->conn_lock); 26987 if (connp->conn_state_flags & CONN_CLOSING) { 26988 /* 26989 * The conn is closing as a result of which CONN_CLOSING 26990 * is set. Return. 26991 */ 26992 mutex_exit(&connp->conn_lock); 26993 return; 26994 } else if (connp->conn_idl == NULL) { 26995 /* 26996 * Assign the next drain list round robin. We dont' use 26997 * a lock, and thus it may not be strictly round robin. 26998 * Atomicity of load/stores is enough to make sure that 26999 * conn_drain_list_index is always within bounds. 27000 */ 27001 index = conn_drain_list_index; 27002 ASSERT(index < conn_drain_list_cnt); 27003 connp->conn_idl = &conn_drain_list[index]; 27004 index++; 27005 if (index == conn_drain_list_cnt) 27006 index = 0; 27007 conn_drain_list_index = index; 27008 } 27009 mutex_exit(&connp->conn_lock); 27010 27011 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 27012 if ((connp->conn_drain_prev != NULL) || 27013 (connp->conn_state_flags & CONN_CLOSING)) { 27014 /* 27015 * The conn is already in the drain list, OR 27016 * the conn is closing. We need to check again for 27017 * the closing case again since close can happen 27018 * after we drop the conn_lock, and before we 27019 * acquire the CONN_DRAIN_LIST_LOCK. 27020 */ 27021 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27022 return; 27023 } else { 27024 idl = connp->conn_idl; 27025 } 27026 27027 /* 27028 * The conn is not in the drain list. Insert it at the 27029 * tail of the drain list. The drain list is circular 27030 * and doubly linked. idl_conn points to the 1st element 27031 * in the list. 27032 */ 27033 if (idl->idl_conn == NULL) { 27034 idl->idl_conn = connp; 27035 connp->conn_drain_next = connp; 27036 connp->conn_drain_prev = connp; 27037 } else { 27038 conn_t *head = idl->idl_conn; 27039 27040 connp->conn_drain_next = head; 27041 connp->conn_drain_prev = head->conn_drain_prev; 27042 head->conn_drain_prev->conn_drain_next = connp; 27043 head->conn_drain_prev = connp; 27044 } 27045 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27046 } 27047 27048 /* 27049 * This conn is closing, and we are called from ip_close. OR 27050 * This conn has been serviced by ip_wsrv, and we need to do the tail 27051 * processing. 27052 * If this conn is part of the drain list, we may need to sustain the drain 27053 * process by qenabling the next conn in the drain list. We may also need to 27054 * remove this conn from the list, if it is done. 27055 */ 27056 static void 27057 conn_drain_tail(conn_t *connp, boolean_t closing) 27058 { 27059 idl_t *idl; 27060 27061 /* 27062 * connp->conn_idl is stable at this point, and no lock is needed 27063 * to check it. If we are called from ip_close, close has already 27064 * set CONN_CLOSING, thus freezing the value of conn_idl, and 27065 * called us only because conn_idl is non-null. If we are called thru 27066 * service, conn_idl could be null, but it cannot change because 27067 * service is single-threaded per queue, and there cannot be another 27068 * instance of service trying to call conn_drain_insert on this conn 27069 * now. 27070 */ 27071 ASSERT(!closing || (connp->conn_idl != NULL)); 27072 27073 /* 27074 * If connp->conn_idl is null, the conn has not been inserted into any 27075 * drain list even once since creation of the conn. Just return. 27076 */ 27077 if (connp->conn_idl == NULL) 27078 return; 27079 27080 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 27081 27082 if (connp->conn_drain_prev == NULL) { 27083 /* This conn is currently not in the drain list. */ 27084 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27085 return; 27086 } 27087 idl = connp->conn_idl; 27088 if (idl->idl_conn_draining == connp) { 27089 /* 27090 * This conn is the current drainer. If this is the last conn 27091 * in the drain list, we need to do more checks, in the 'if' 27092 * below. Otherwwise we need to just qenable the next conn, 27093 * to sustain the draining, and is handled in the 'else' 27094 * below. 27095 */ 27096 if (connp->conn_drain_next == idl->idl_conn) { 27097 /* 27098 * This conn is the last in this list. This round 27099 * of draining is complete. If idl_repeat is set, 27100 * it means another flow enabling has happened from 27101 * the driver/streams and we need to another round 27102 * of draining. 27103 * If there are more than 2 conns in the drain list, 27104 * do a left rotate by 1, so that all conns except the 27105 * conn at the head move towards the head by 1, and the 27106 * the conn at the head goes to the tail. This attempts 27107 * a more even share for all queues that are being 27108 * drained. 27109 */ 27110 if ((connp->conn_drain_next != connp) && 27111 (idl->idl_conn->conn_drain_next != connp)) { 27112 idl->idl_conn = idl->idl_conn->conn_drain_next; 27113 } 27114 if (idl->idl_repeat) { 27115 qenable(idl->idl_conn->conn_wq); 27116 idl->idl_conn_draining = idl->idl_conn; 27117 idl->idl_repeat = 0; 27118 } else { 27119 idl->idl_conn_draining = NULL; 27120 } 27121 } else { 27122 /* 27123 * If the next queue that we are now qenable'ing, 27124 * is closing, it will remove itself from this list 27125 * and qenable the subsequent queue in ip_close(). 27126 * Serialization is acheived thru idl_lock. 27127 */ 27128 qenable(connp->conn_drain_next->conn_wq); 27129 idl->idl_conn_draining = connp->conn_drain_next; 27130 } 27131 } 27132 if (!connp->conn_did_putbq || closing) { 27133 /* 27134 * Remove ourself from the drain list, if we did not do 27135 * a putbq, or if the conn is closing. 27136 * Note: It is possible that q->q_first is non-null. It means 27137 * that these messages landed after we did a enableok() in 27138 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 27139 * service them. 27140 */ 27141 if (connp->conn_drain_next == connp) { 27142 /* Singleton in the list */ 27143 ASSERT(connp->conn_drain_prev == connp); 27144 idl->idl_conn = NULL; 27145 idl->idl_conn_draining = NULL; 27146 } else { 27147 connp->conn_drain_prev->conn_drain_next = 27148 connp->conn_drain_next; 27149 connp->conn_drain_next->conn_drain_prev = 27150 connp->conn_drain_prev; 27151 if (idl->idl_conn == connp) 27152 idl->idl_conn = connp->conn_drain_next; 27153 ASSERT(idl->idl_conn_draining != connp); 27154 27155 } 27156 connp->conn_drain_next = NULL; 27157 connp->conn_drain_prev = NULL; 27158 } 27159 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27160 } 27161 27162 /* 27163 * Write service routine. Shared perimeter entry point. 27164 * ip_wsrv can be called in any of the following ways. 27165 * 1. The device queue's messages has fallen below the low water mark 27166 * and STREAMS has backenabled the ill_wq. We walk thru all the 27167 * the drain lists and backenable the first conn in each list. 27168 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 27169 * qenabled non-tcp upper layers. We start dequeing messages and call 27170 * ip_wput for each message. 27171 */ 27172 27173 void 27174 ip_wsrv(queue_t *q) 27175 { 27176 conn_t *connp; 27177 ill_t *ill; 27178 mblk_t *mp; 27179 27180 if (q->q_next) { 27181 ill = (ill_t *)q->q_ptr; 27182 if (ill->ill_state_flags == 0) { 27183 /* 27184 * The device flow control has opened up. 27185 * Walk through conn drain lists and qenable the 27186 * first conn in each list. This makes sense only 27187 * if the stream is fully plumbed and setup. 27188 * Hence the if check above. 27189 */ 27190 ip1dbg(("ip_wsrv: walking\n")); 27191 conn_walk_drain(); 27192 } 27193 return; 27194 } 27195 27196 connp = Q_TO_CONN(q); 27197 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 27198 27199 /* 27200 * 1. Set conn_draining flag to signal that service is active. 27201 * 27202 * 2. ip_output determines whether it has been called from service, 27203 * based on the last parameter. If it is IP_WSRV it concludes it 27204 * has been called from service. 27205 * 27206 * 3. Message ordering is preserved by the following logic. 27207 * i. A directly called ip_output (i.e. not thru service) will queue 27208 * the message at the tail, if conn_draining is set (i.e. service 27209 * is running) or if q->q_first is non-null. 27210 * 27211 * ii. If ip_output is called from service, and if ip_output cannot 27212 * putnext due to flow control, it does a putbq. 27213 * 27214 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 27215 * (causing an infinite loop). 27216 */ 27217 ASSERT(!connp->conn_did_putbq); 27218 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 27219 connp->conn_draining = 1; 27220 noenable(q); 27221 while ((mp = getq(q)) != NULL) { 27222 ASSERT(CONN_Q(q)); 27223 27224 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 27225 if (connp->conn_did_putbq) { 27226 /* ip_wput did a putbq */ 27227 break; 27228 } 27229 } 27230 /* 27231 * At this point, a thread coming down from top, calling 27232 * ip_wput, may end up queueing the message. We have not yet 27233 * enabled the queue, so ip_wsrv won't be called again. 27234 * To avoid this race, check q->q_first again (in the loop) 27235 * If the other thread queued the message before we call 27236 * enableok(), we will catch it in the q->q_first check. 27237 * If the other thread queues the message after we call 27238 * enableok(), ip_wsrv will be called again by STREAMS. 27239 */ 27240 connp->conn_draining = 0; 27241 enableok(q); 27242 } 27243 27244 /* Enable the next conn for draining */ 27245 conn_drain_tail(connp, B_FALSE); 27246 27247 connp->conn_did_putbq = 0; 27248 } 27249 27250 /* 27251 * Walk the list of all conn's calling the function provided with the 27252 * specified argument for each. Note that this only walks conn's that 27253 * have been bound. 27254 * Applies to both IPv4 and IPv6. 27255 */ 27256 static void 27257 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid) 27258 { 27259 conn_walk_fanout_table(ipcl_udp_fanout, ipcl_udp_fanout_size, 27260 func, arg, zoneid); 27261 conn_walk_fanout_table(ipcl_conn_fanout, ipcl_conn_fanout_size, 27262 func, arg, zoneid); 27263 conn_walk_fanout_table(ipcl_bind_fanout, ipcl_bind_fanout_size, 27264 func, arg, zoneid); 27265 conn_walk_fanout_table(ipcl_proto_fanout, 27266 A_CNT(ipcl_proto_fanout), func, arg, zoneid); 27267 conn_walk_fanout_table(ipcl_proto_fanout_v6, 27268 A_CNT(ipcl_proto_fanout_v6), func, arg, zoneid); 27269 } 27270 27271 /* 27272 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 27273 * of conns that need to be drained, check if drain is already in progress. 27274 * If so set the idl_repeat bit, indicating that the last conn in the list 27275 * needs to reinitiate the drain once again, for the list. If drain is not 27276 * in progress for the list, initiate the draining, by qenabling the 1st 27277 * conn in the list. The drain is self-sustaining, each qenabled conn will 27278 * in turn qenable the next conn, when it is done/blocked/closing. 27279 */ 27280 static void 27281 conn_walk_drain(void) 27282 { 27283 int i; 27284 idl_t *idl; 27285 27286 IP_STAT(ip_conn_walk_drain); 27287 27288 for (i = 0; i < conn_drain_list_cnt; i++) { 27289 idl = &conn_drain_list[i]; 27290 mutex_enter(&idl->idl_lock); 27291 if (idl->idl_conn == NULL) { 27292 mutex_exit(&idl->idl_lock); 27293 continue; 27294 } 27295 /* 27296 * If this list is not being drained currently by 27297 * an ip_wsrv thread, start the process. 27298 */ 27299 if (idl->idl_conn_draining == NULL) { 27300 ASSERT(idl->idl_repeat == 0); 27301 qenable(idl->idl_conn->conn_wq); 27302 idl->idl_conn_draining = idl->idl_conn; 27303 } else { 27304 idl->idl_repeat = 1; 27305 } 27306 mutex_exit(&idl->idl_lock); 27307 } 27308 } 27309 27310 /* 27311 * Walk an conn hash table of `count' buckets, calling func for each entry. 27312 */ 27313 static void 27314 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 27315 zoneid_t zoneid) 27316 { 27317 conn_t *connp; 27318 27319 while (count-- > 0) { 27320 mutex_enter(&connfp->connf_lock); 27321 for (connp = connfp->connf_head; connp != NULL; 27322 connp = connp->conn_next) { 27323 if (zoneid == GLOBAL_ZONEID || 27324 zoneid == connp->conn_zoneid) { 27325 CONN_INC_REF(connp); 27326 mutex_exit(&connfp->connf_lock); 27327 (*func)(connp, arg); 27328 mutex_enter(&connfp->connf_lock); 27329 CONN_DEC_REF(connp); 27330 } 27331 } 27332 mutex_exit(&connfp->connf_lock); 27333 connfp++; 27334 } 27335 } 27336 27337 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 27338 static void 27339 conn_report1(conn_t *connp, void *mp) 27340 { 27341 char buf1[INET6_ADDRSTRLEN]; 27342 char buf2[INET6_ADDRSTRLEN]; 27343 uint_t print_len, buf_len; 27344 27345 ASSERT(connp != NULL); 27346 27347 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 27348 if (buf_len <= 0) 27349 return; 27350 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 27351 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 27352 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 27353 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 27354 "%5d %s/%05d %s/%05d\n", 27355 (void *)connp, (void *)CONNP_TO_RQ(connp), 27356 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 27357 buf1, connp->conn_lport, 27358 buf2, connp->conn_fport); 27359 if (print_len < buf_len) { 27360 ((mblk_t *)mp)->b_wptr += print_len; 27361 } else { 27362 ((mblk_t *)mp)->b_wptr += buf_len; 27363 } 27364 } 27365 27366 /* 27367 * Named Dispatch routine to produce a formatted report on all conns 27368 * that are listed in one of the fanout tables. 27369 * This report is accessed by using the ndd utility to "get" ND variable 27370 * "ip_conn_status". 27371 */ 27372 /* ARGSUSED */ 27373 static int 27374 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 27375 { 27376 (void) mi_mpprintf(mp, 27377 "CONN " MI_COL_HDRPAD_STR 27378 "rfq " MI_COL_HDRPAD_STR 27379 "stq " MI_COL_HDRPAD_STR 27380 " zone local remote"); 27381 27382 /* 27383 * Because of the ndd constraint, at most we can have 64K buffer 27384 * to put in all conn info. So to be more efficient, just 27385 * allocate a 64K buffer here, assuming we need that large buffer. 27386 * This should be OK as only privileged processes can do ndd /dev/ip. 27387 */ 27388 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 27389 /* The following may work even if we cannot get a large buf. */ 27390 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 27391 return (0); 27392 } 27393 27394 conn_walk_fanout(conn_report1, mp->b_cont, Q_TO_CONN(q)->conn_zoneid); 27395 return (0); 27396 } 27397 27398 /* 27399 * Determine if the ill and multicast aspects of that packets 27400 * "matches" the conn. 27401 */ 27402 boolean_t 27403 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 27404 zoneid_t zoneid) 27405 { 27406 ill_t *in_ill; 27407 boolean_t found; 27408 ipif_t *ipif; 27409 ire_t *ire; 27410 ipaddr_t dst, src; 27411 27412 dst = ipha->ipha_dst; 27413 src = ipha->ipha_src; 27414 27415 /* 27416 * conn_incoming_ill is set by IP_BOUND_IF which limits 27417 * unicast, broadcast and multicast reception to 27418 * conn_incoming_ill. conn_wantpacket itself is called 27419 * only for BROADCAST and multicast. 27420 * 27421 * 1) ip_rput supresses duplicate broadcasts if the ill 27422 * is part of a group. Hence, we should be receiving 27423 * just one copy of broadcast for the whole group. 27424 * Thus, if it is part of the group the packet could 27425 * come on any ill of the group and hence we need a 27426 * match on the group. Otherwise, match on ill should 27427 * be sufficient. 27428 * 27429 * 2) ip_rput does not suppress duplicate multicast packets. 27430 * If there are two interfaces in a ill group and we have 27431 * 2 applications (conns) joined a multicast group G on 27432 * both the interfaces, ilm_lookup_ill filter in ip_rput 27433 * will give us two packets because we join G on both the 27434 * interfaces rather than nominating just one interface 27435 * for receiving multicast like broadcast above. So, 27436 * we have to call ilg_lookup_ill to filter out duplicate 27437 * copies, if ill is part of a group. 27438 */ 27439 in_ill = connp->conn_incoming_ill; 27440 if (in_ill != NULL) { 27441 if (in_ill->ill_group == NULL) { 27442 if (in_ill != ill) 27443 return (B_FALSE); 27444 } else if (in_ill->ill_group != ill->ill_group) { 27445 return (B_FALSE); 27446 } 27447 } 27448 27449 if (!CLASSD(dst)) { 27450 if (IPCL_ZONE_MATCH(connp, zoneid)) 27451 return (B_TRUE); 27452 /* 27453 * The conn is in a different zone; we need to check that this 27454 * broadcast address is configured in the application's zone and 27455 * on one ill in the group. 27456 */ 27457 ipif = ipif_get_next_ipif(NULL, ill); 27458 if (ipif == NULL) 27459 return (B_FALSE); 27460 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 27461 connp->conn_zoneid, NULL, 27462 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 27463 ipif_refrele(ipif); 27464 if (ire != NULL) { 27465 ire_refrele(ire); 27466 return (B_TRUE); 27467 } else { 27468 return (B_FALSE); 27469 } 27470 } 27471 27472 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 27473 connp->conn_zoneid == zoneid) { 27474 /* 27475 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 27476 * disabled, therefore we don't dispatch the multicast packet to 27477 * the sending zone. 27478 */ 27479 return (B_FALSE); 27480 } 27481 27482 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 27483 connp->conn_zoneid != zoneid) { 27484 /* 27485 * Multicast packet on the loopback interface: we only match 27486 * conns who joined the group in the specified zone. 27487 */ 27488 return (B_FALSE); 27489 } 27490 27491 if (connp->conn_multi_router) { 27492 /* multicast packet and multicast router socket: send up */ 27493 return (B_TRUE); 27494 } 27495 27496 mutex_enter(&connp->conn_lock); 27497 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 27498 mutex_exit(&connp->conn_lock); 27499 return (found); 27500 } 27501 27502 /* 27503 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 27504 */ 27505 /* ARGSUSED */ 27506 static void 27507 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 27508 { 27509 ill_t *ill = (ill_t *)q->q_ptr; 27510 mblk_t *mp1, *mp2; 27511 ipif_t *ipif; 27512 int err = 0; 27513 conn_t *connp = NULL; 27514 ipsq_t *ipsq; 27515 arc_t *arc; 27516 27517 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 27518 27519 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 27520 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 27521 27522 ASSERT(IAM_WRITER_ILL(ill)); 27523 mp2 = mp->b_cont; 27524 mp->b_cont = NULL; 27525 27526 /* 27527 * We have now received the arp bringup completion message 27528 * from ARP. Mark the arp bringup as done. Also if the arp 27529 * stream has already started closing, send up the AR_ARP_CLOSING 27530 * ack now since ARP is waiting in close for this ack. 27531 */ 27532 mutex_enter(&ill->ill_lock); 27533 ill->ill_arp_bringup_pending = 0; 27534 if (ill->ill_arp_closing) { 27535 mutex_exit(&ill->ill_lock); 27536 /* Let's reuse the mp for sending the ack */ 27537 arc = (arc_t *)mp->b_rptr; 27538 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 27539 arc->arc_cmd = AR_ARP_CLOSING; 27540 qreply(q, mp); 27541 } else { 27542 mutex_exit(&ill->ill_lock); 27543 freeb(mp); 27544 } 27545 27546 /* We should have an IOCTL waiting on this. */ 27547 ipsq = ill->ill_phyint->phyint_ipsq; 27548 ipif = ipsq->ipsq_pending_ipif; 27549 mp1 = ipsq_pending_mp_get(ipsq, &connp); 27550 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 27551 if (mp1 == NULL) { 27552 /* bringup was aborted by the user */ 27553 freemsg(mp2); 27554 return; 27555 } 27556 ASSERT(connp != NULL); 27557 q = CONNP_TO_WQ(connp); 27558 /* 27559 * If the DL_BIND_REQ fails, it is noted 27560 * in arc_name_offset. 27561 */ 27562 err = *((int *)mp2->b_rptr); 27563 if (err == 0) { 27564 if (ipif->ipif_isv6) { 27565 if ((err = ipif_up_done_v6(ipif)) != 0) 27566 ip0dbg(("ip_arp_done: init failed\n")); 27567 } else { 27568 if ((err = ipif_up_done(ipif)) != 0) 27569 ip0dbg(("ip_arp_done: init failed\n")); 27570 } 27571 } else { 27572 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 27573 } 27574 27575 freemsg(mp2); 27576 27577 if ((err == 0) && (ill->ill_up_ipifs)) { 27578 err = ill_up_ipifs(ill, q, mp1); 27579 if (err == EINPROGRESS) 27580 return; 27581 } 27582 27583 if (ill->ill_up_ipifs) { 27584 ill_group_cleanup(ill); 27585 } 27586 27587 /* 27588 * The ioctl must complete now without EINPROGRESS 27589 * since ipsq_pending_mp_get has removed the ioctl mblk 27590 * from ipsq_pending_mp. Otherwise the ioctl will be 27591 * stuck for ever in the ipsq. 27592 */ 27593 ASSERT(err != EINPROGRESS); 27594 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipif, ipsq); 27595 } 27596 27597 /* Allocate the private structure */ 27598 static int 27599 ip_priv_alloc(void **bufp) 27600 { 27601 void *buf; 27602 27603 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 27604 return (ENOMEM); 27605 27606 *bufp = buf; 27607 return (0); 27608 } 27609 27610 /* Function to delete the private structure */ 27611 void 27612 ip_priv_free(void *buf) 27613 { 27614 ASSERT(buf != NULL); 27615 kmem_free(buf, sizeof (ip_priv_t)); 27616 } 27617 27618 /* 27619 * The entry point for IPPF processing. 27620 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 27621 * routine just returns. 27622 * 27623 * When called, ip_process generates an ipp_packet_t structure 27624 * which holds the state information for this packet and invokes the 27625 * the classifier (via ipp_packet_process). The classification, depending on 27626 * configured filters, results in a list of actions for this packet. Invoking 27627 * an action may cause the packet to be dropped, in which case the resulting 27628 * mblk (*mpp) is NULL. proc indicates the callout position for 27629 * this packet and ill_index is the interface this packet on or will leave 27630 * on (inbound and outbound resp.). 27631 */ 27632 void 27633 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 27634 { 27635 mblk_t *mp; 27636 ip_priv_t *priv; 27637 ipp_action_id_t aid; 27638 int rc = 0; 27639 ipp_packet_t *pp; 27640 #define IP_CLASS "ip" 27641 27642 /* If the classifier is not loaded, return */ 27643 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 27644 return; 27645 } 27646 27647 mp = *mpp; 27648 ASSERT(mp != NULL); 27649 27650 /* Allocate the packet structure */ 27651 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 27652 if (rc != 0) { 27653 *mpp = NULL; 27654 freemsg(mp); 27655 return; 27656 } 27657 27658 /* Allocate the private structure */ 27659 rc = ip_priv_alloc((void **)&priv); 27660 if (rc != 0) { 27661 *mpp = NULL; 27662 freemsg(mp); 27663 ipp_packet_free(pp); 27664 return; 27665 } 27666 priv->proc = proc; 27667 priv->ill_index = ill_index; 27668 ipp_packet_set_private(pp, priv, ip_priv_free); 27669 ipp_packet_set_data(pp, mp); 27670 27671 /* Invoke the classifier */ 27672 rc = ipp_packet_process(&pp); 27673 if (pp != NULL) { 27674 mp = ipp_packet_get_data(pp); 27675 ipp_packet_free(pp); 27676 if (rc != 0) { 27677 freemsg(mp); 27678 *mpp = NULL; 27679 } 27680 } else { 27681 *mpp = NULL; 27682 } 27683 #undef IP_CLASS 27684 } 27685 27686 /* 27687 * Propagate a multicast group membership operation (add/drop) on 27688 * all the interfaces crossed by the related multirt routes. 27689 * The call is considered successful if the operation succeeds 27690 * on at least one interface. 27691 */ 27692 static int 27693 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 27694 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 27695 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 27696 mblk_t *first_mp) 27697 { 27698 ire_t *ire_gw; 27699 irb_t *irb; 27700 int error = 0; 27701 opt_restart_t *or; 27702 27703 irb = ire->ire_bucket; 27704 ASSERT(irb != NULL); 27705 27706 ASSERT(DB_TYPE(first_mp) == M_CTL); 27707 27708 or = (opt_restart_t *)first_mp->b_rptr; 27709 IRB_REFHOLD(irb); 27710 for (; ire != NULL; ire = ire->ire_next) { 27711 if ((ire->ire_flags & RTF_MULTIRT) == 0) 27712 continue; 27713 if (ire->ire_addr != group) 27714 continue; 27715 27716 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 27717 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 27718 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE); 27719 /* No resolver exists for the gateway; skip this ire. */ 27720 if (ire_gw == NULL) 27721 continue; 27722 27723 /* 27724 * This function can return EINPROGRESS. If so the operation 27725 * will be restarted from ip_restart_optmgmt which will 27726 * call ip_opt_set and option processing will restart for 27727 * this option. So we may end up calling 'fn' more than once. 27728 * This requires that 'fn' is idempotent except for the 27729 * return value. The operation is considered a success if 27730 * it succeeds at least once on any one interface. 27731 */ 27732 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 27733 NULL, fmode, src, first_mp); 27734 if (error == 0) 27735 or->or_private = CGTP_MCAST_SUCCESS; 27736 27737 if (ip_debug > 0) { 27738 ulong_t off; 27739 char *ksym; 27740 ksym = kobj_getsymname((uintptr_t)fn, &off); 27741 ip2dbg(("ip_multirt_apply_membership: " 27742 "called %s, multirt group 0x%08x via itf 0x%08x, " 27743 "error %d [success %u]\n", 27744 ksym ? ksym : "?", 27745 ntohl(group), ntohl(ire_gw->ire_src_addr), 27746 error, or->or_private)); 27747 } 27748 27749 ire_refrele(ire_gw); 27750 if (error == EINPROGRESS) { 27751 IRB_REFRELE(irb); 27752 return (error); 27753 } 27754 } 27755 IRB_REFRELE(irb); 27756 /* 27757 * Consider the call as successful if we succeeded on at least 27758 * one interface. Otherwise, return the last encountered error. 27759 */ 27760 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 27761 } 27762 27763 27764 /* 27765 * Issue a warning regarding a route crossing an interface with an 27766 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 27767 * amount of time is logged. 27768 */ 27769 static void 27770 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 27771 { 27772 hrtime_t current = gethrtime(); 27773 char buf[INET_ADDRSTRLEN]; 27774 27775 /* Convert interval in ms to hrtime in ns */ 27776 if (multirt_bad_mtu_last_time + 27777 ((hrtime_t)ip_multirt_log_interval * (hrtime_t)1000000) <= 27778 current) { 27779 cmn_err(CE_WARN, "ip: ignoring multiroute " 27780 "to %s, incorrect MTU %u (expected %u)\n", 27781 ip_dot_addr(ire->ire_addr, buf), 27782 ire->ire_max_frag, max_frag); 27783 27784 multirt_bad_mtu_last_time = current; 27785 } 27786 } 27787 27788 27789 /* 27790 * Get the CGTP (multirouting) filtering status. 27791 * If 0, the CGTP hooks are transparent. 27792 */ 27793 /* ARGSUSED */ 27794 static int 27795 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 27796 { 27797 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 27798 27799 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 27800 return (0); 27801 } 27802 27803 27804 /* 27805 * Set the CGTP (multirouting) filtering status. 27806 * If the status is changed from active to transparent 27807 * or from transparent to active, forward the new status 27808 * to the filtering module (if loaded). 27809 */ 27810 /* ARGSUSED */ 27811 static int 27812 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 27813 cred_t *ioc_cr) 27814 { 27815 long new_value; 27816 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 27817 27818 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 27819 new_value < 0 || new_value > 1) { 27820 return (EINVAL); 27821 } 27822 27823 /* 27824 * Do not enable CGTP filtering - thus preventing the hooks 27825 * from being invoked - if the version number of the 27826 * filtering module hooks does not match. 27827 */ 27828 if ((ip_cgtp_filter_ops != NULL) && 27829 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 27830 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 27831 "(module hooks version %d, expecting %d)\n", 27832 ip_cgtp_filter_ops->cfo_filter_rev, CGTP_FILTER_REV); 27833 return (ENOTSUP); 27834 } 27835 27836 if ((!*ip_cgtp_filter_value) && new_value) { 27837 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 27838 ip_cgtp_filter_ops == NULL ? 27839 " (module not loaded)" : ""); 27840 } 27841 if (*ip_cgtp_filter_value && (!new_value)) { 27842 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 27843 ip_cgtp_filter_ops == NULL ? 27844 " (module not loaded)" : ""); 27845 } 27846 27847 if (ip_cgtp_filter_ops != NULL) { 27848 int res; 27849 if ((res = ip_cgtp_filter_ops->cfo_change_state(new_value))) { 27850 return (res); 27851 } 27852 } 27853 27854 *ip_cgtp_filter_value = (boolean_t)new_value; 27855 27856 return (0); 27857 } 27858 27859 27860 /* 27861 * Return the expected CGTP hooks version number. 27862 */ 27863 int 27864 ip_cgtp_filter_supported(void) 27865 { 27866 return (ip_cgtp_filter_rev); 27867 } 27868 27869 27870 /* 27871 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 27872 * or by invoking this function. In the first case, the version number 27873 * of the registered structure is checked at hooks activation time 27874 * in ip_cgtp_filter_set(). 27875 */ 27876 int 27877 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 27878 { 27879 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 27880 return (ENOTSUP); 27881 27882 ip_cgtp_filter_ops = ops; 27883 return (0); 27884 } 27885 27886 static squeue_func_t 27887 ip_squeue_switch(int val) 27888 { 27889 squeue_func_t rval = squeue_fill; 27890 27891 switch (val) { 27892 case IP_SQUEUE_ENTER_NODRAIN: 27893 rval = squeue_enter_nodrain; 27894 break; 27895 case IP_SQUEUE_ENTER: 27896 rval = squeue_enter; 27897 break; 27898 default: 27899 break; 27900 } 27901 return (rval); 27902 } 27903 27904 /* ARGSUSED */ 27905 static int 27906 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 27907 caddr_t addr, cred_t *cr) 27908 { 27909 int *v = (int *)addr; 27910 long new_value; 27911 27912 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 27913 return (EINVAL); 27914 27915 ip_input_proc = ip_squeue_switch(new_value); 27916 *v = new_value; 27917 return (0); 27918 } 27919 27920 /* ARGSUSED */ 27921 static int 27922 ip_int_set(queue_t *q, mblk_t *mp, char *value, 27923 caddr_t addr, cred_t *cr) 27924 { 27925 int *v = (int *)addr; 27926 long new_value; 27927 27928 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 27929 return (EINVAL); 27930 27931 *v = new_value; 27932 return (0); 27933 } 27934 27935 static void 27936 ip_kstat_init(void) 27937 { 27938 ip_named_kstat_t template = { 27939 { "forwarding", KSTAT_DATA_UINT32, 0 }, 27940 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 27941 { "inReceives", KSTAT_DATA_UINT32, 0 }, 27942 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 27943 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 27944 { "forwDatagrams", KSTAT_DATA_UINT32, 0 }, 27945 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 27946 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 27947 { "inDelivers", KSTAT_DATA_UINT32, 0 }, 27948 { "outRequests", KSTAT_DATA_UINT32, 0 }, 27949 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 27950 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 27951 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 27952 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 27953 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 27954 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 27955 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 27956 { "fragFails", KSTAT_DATA_UINT32, 0 }, 27957 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 27958 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 27959 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 27960 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 27961 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 27962 { "inErrs", KSTAT_DATA_UINT32, 0 }, 27963 { "noPorts", KSTAT_DATA_UINT32, 0 }, 27964 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 27965 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 27966 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 27967 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 27968 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 27969 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 27970 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 27971 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 27972 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 27973 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 27974 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 27975 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 27976 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 27977 }; 27978 27979 ip_mibkp = kstat_create("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 27980 NUM_OF_FIELDS(ip_named_kstat_t), 27981 0); 27982 if (!ip_mibkp) 27983 return; 27984 27985 template.forwarding.value.ui32 = WE_ARE_FORWARDING ? 1:2; 27986 template.defaultTTL.value.ui32 = (uint32_t)ip_def_ttl; 27987 template.reasmTimeout.value.ui32 = ip_g_frag_timeout; 27988 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 27989 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 27990 27991 template.netToMediaEntrySize.value.i32 = 27992 sizeof (mib2_ipNetToMediaEntry_t); 27993 27994 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 27995 27996 bcopy(&template, ip_mibkp->ks_data, sizeof (template)); 27997 27998 ip_mibkp->ks_update = ip_kstat_update; 27999 28000 kstat_install(ip_mibkp); 28001 } 28002 28003 static void 28004 ip_kstat_fini(void) 28005 { 28006 28007 if (ip_mibkp != NULL) { 28008 kstat_delete(ip_mibkp); 28009 ip_mibkp = NULL; 28010 } 28011 } 28012 28013 static int 28014 ip_kstat_update(kstat_t *kp, int rw) 28015 { 28016 ip_named_kstat_t *ipkp; 28017 28018 if (!kp || !kp->ks_data) 28019 return (EIO); 28020 28021 if (rw == KSTAT_WRITE) 28022 return (EACCES); 28023 28024 ipkp = (ip_named_kstat_t *)kp->ks_data; 28025 28026 ipkp->forwarding.value.ui32 = ip_mib.ipForwarding; 28027 ipkp->defaultTTL.value.ui32 = ip_mib.ipDefaultTTL; 28028 ipkp->inReceives.value.ui32 = ip_mib.ipInReceives; 28029 ipkp->inHdrErrors.value.ui32 = ip_mib.ipInHdrErrors; 28030 ipkp->inAddrErrors.value.ui32 = ip_mib.ipInAddrErrors; 28031 ipkp->forwDatagrams.value.ui32 = ip_mib.ipForwDatagrams; 28032 ipkp->inUnknownProtos.value.ui32 = ip_mib.ipInUnknownProtos; 28033 ipkp->inDiscards.value.ui32 = ip_mib.ipInDiscards; 28034 ipkp->inDelivers.value.ui32 = ip_mib.ipInDelivers; 28035 ipkp->outRequests.value.ui32 = ip_mib.ipOutRequests; 28036 ipkp->outDiscards.value.ui32 = ip_mib.ipOutDiscards; 28037 ipkp->outNoRoutes.value.ui32 = ip_mib.ipOutNoRoutes; 28038 ipkp->reasmTimeout.value.ui32 = ip_mib.ipReasmTimeout; 28039 ipkp->reasmReqds.value.ui32 = ip_mib.ipReasmReqds; 28040 ipkp->reasmOKs.value.ui32 = ip_mib.ipReasmOKs; 28041 ipkp->reasmFails.value.ui32 = ip_mib.ipReasmFails; 28042 ipkp->fragOKs.value.ui32 = ip_mib.ipFragOKs; 28043 ipkp->fragFails.value.ui32 = ip_mib.ipFragFails; 28044 ipkp->fragCreates.value.ui32 = ip_mib.ipFragCreates; 28045 28046 ipkp->routingDiscards.value.ui32 = ip_mib.ipRoutingDiscards; 28047 ipkp->inErrs.value.ui32 = ip_mib.tcpInErrs; 28048 ipkp->noPorts.value.ui32 = ip_mib.udpNoPorts; 28049 ipkp->inCksumErrs.value.ui32 = ip_mib.ipInCksumErrs; 28050 ipkp->reasmDuplicates.value.ui32 = ip_mib.ipReasmDuplicates; 28051 ipkp->reasmPartDups.value.ui32 = ip_mib.ipReasmPartDups; 28052 ipkp->forwProhibits.value.ui32 = ip_mib.ipForwProhibits; 28053 ipkp->udpInCksumErrs.value.ui32 = ip_mib.udpInCksumErrs; 28054 ipkp->udpInOverflows.value.ui32 = ip_mib.udpInOverflows; 28055 ipkp->rawipInOverflows.value.ui32 = ip_mib.rawipInOverflows; 28056 ipkp->ipsecInSucceeded.value.ui32 = ip_mib.ipsecInSucceeded; 28057 ipkp->ipsecInFailed.value.i32 = ip_mib.ipsecInFailed; 28058 28059 ipkp->inIPv6.value.ui32 = ip_mib.ipInIPv6; 28060 ipkp->outIPv6.value.ui32 = ip_mib.ipOutIPv6; 28061 ipkp->outSwitchIPv6.value.ui32 = ip_mib.ipOutSwitchIPv6; 28062 28063 return (0); 28064 } 28065 28066 static void 28067 icmp_kstat_init(void) 28068 { 28069 icmp_named_kstat_t template = { 28070 { "inMsgs", KSTAT_DATA_UINT32 }, 28071 { "inErrors", KSTAT_DATA_UINT32 }, 28072 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 28073 { "inTimeExcds", KSTAT_DATA_UINT32 }, 28074 { "inParmProbs", KSTAT_DATA_UINT32 }, 28075 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 28076 { "inRedirects", KSTAT_DATA_UINT32 }, 28077 { "inEchos", KSTAT_DATA_UINT32 }, 28078 { "inEchoReps", KSTAT_DATA_UINT32 }, 28079 { "inTimestamps", KSTAT_DATA_UINT32 }, 28080 { "inTimestampReps", KSTAT_DATA_UINT32 }, 28081 { "inAddrMasks", KSTAT_DATA_UINT32 }, 28082 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 28083 { "outMsgs", KSTAT_DATA_UINT32 }, 28084 { "outErrors", KSTAT_DATA_UINT32 }, 28085 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 28086 { "outTimeExcds", KSTAT_DATA_UINT32 }, 28087 { "outParmProbs", KSTAT_DATA_UINT32 }, 28088 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 28089 { "outRedirects", KSTAT_DATA_UINT32 }, 28090 { "outEchos", KSTAT_DATA_UINT32 }, 28091 { "outEchoReps", KSTAT_DATA_UINT32 }, 28092 { "outTimestamps", KSTAT_DATA_UINT32 }, 28093 { "outTimestampReps", KSTAT_DATA_UINT32 }, 28094 { "outAddrMasks", KSTAT_DATA_UINT32 }, 28095 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 28096 { "inChksumErrs", KSTAT_DATA_UINT32 }, 28097 { "inUnknowns", KSTAT_DATA_UINT32 }, 28098 { "inFragNeeded", KSTAT_DATA_UINT32 }, 28099 { "outFragNeeded", KSTAT_DATA_UINT32 }, 28100 { "outDrops", KSTAT_DATA_UINT32 }, 28101 { "inOverFlows", KSTAT_DATA_UINT32 }, 28102 { "inBadRedirects", KSTAT_DATA_UINT32 }, 28103 }; 28104 28105 icmp_mibkp = kstat_create("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 28106 NUM_OF_FIELDS(icmp_named_kstat_t), 28107 0); 28108 if (icmp_mibkp == NULL) 28109 return; 28110 28111 bcopy(&template, icmp_mibkp->ks_data, sizeof (template)); 28112 28113 icmp_mibkp->ks_update = icmp_kstat_update; 28114 28115 kstat_install(icmp_mibkp); 28116 } 28117 28118 static void 28119 icmp_kstat_fini(void) 28120 { 28121 28122 if (icmp_mibkp != NULL) { 28123 kstat_delete(icmp_mibkp); 28124 icmp_mibkp = NULL; 28125 } 28126 } 28127 28128 static int 28129 icmp_kstat_update(kstat_t *kp, int rw) 28130 { 28131 icmp_named_kstat_t *icmpkp; 28132 28133 if ((kp == NULL) || (kp->ks_data == NULL)) 28134 return (EIO); 28135 28136 if (rw == KSTAT_WRITE) 28137 return (EACCES); 28138 28139 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 28140 28141 icmpkp->inMsgs.value.ui32 = icmp_mib.icmpInMsgs; 28142 icmpkp->inErrors.value.ui32 = icmp_mib.icmpInErrors; 28143 icmpkp->inDestUnreachs.value.ui32 = icmp_mib.icmpInDestUnreachs; 28144 icmpkp->inTimeExcds.value.ui32 = icmp_mib.icmpInTimeExcds; 28145 icmpkp->inParmProbs.value.ui32 = icmp_mib.icmpInParmProbs; 28146 icmpkp->inSrcQuenchs.value.ui32 = icmp_mib.icmpInSrcQuenchs; 28147 icmpkp->inRedirects.value.ui32 = icmp_mib.icmpInRedirects; 28148 icmpkp->inEchos.value.ui32 = icmp_mib.icmpInEchos; 28149 icmpkp->inEchoReps.value.ui32 = icmp_mib.icmpInEchoReps; 28150 icmpkp->inTimestamps.value.ui32 = icmp_mib.icmpInTimestamps; 28151 icmpkp->inTimestampReps.value.ui32 = icmp_mib.icmpInTimestampReps; 28152 icmpkp->inAddrMasks.value.ui32 = icmp_mib.icmpInAddrMasks; 28153 icmpkp->inAddrMaskReps.value.ui32 = icmp_mib.icmpInAddrMaskReps; 28154 icmpkp->outMsgs.value.ui32 = icmp_mib.icmpOutMsgs; 28155 icmpkp->outErrors.value.ui32 = icmp_mib.icmpOutErrors; 28156 icmpkp->outDestUnreachs.value.ui32 = icmp_mib.icmpOutDestUnreachs; 28157 icmpkp->outTimeExcds.value.ui32 = icmp_mib.icmpOutTimeExcds; 28158 icmpkp->outParmProbs.value.ui32 = icmp_mib.icmpOutParmProbs; 28159 icmpkp->outSrcQuenchs.value.ui32 = icmp_mib.icmpOutSrcQuenchs; 28160 icmpkp->outRedirects.value.ui32 = icmp_mib.icmpOutRedirects; 28161 icmpkp->outEchos.value.ui32 = icmp_mib.icmpOutEchos; 28162 icmpkp->outEchoReps.value.ui32 = icmp_mib.icmpOutEchoReps; 28163 icmpkp->outTimestamps.value.ui32 = icmp_mib.icmpOutTimestamps; 28164 icmpkp->outTimestampReps.value.ui32 = icmp_mib.icmpOutTimestampReps; 28165 icmpkp->outAddrMasks.value.ui32 = icmp_mib.icmpOutAddrMasks; 28166 icmpkp->outAddrMaskReps.value.ui32 = icmp_mib.icmpOutAddrMaskReps; 28167 icmpkp->inCksumErrs.value.ui32 = icmp_mib.icmpInCksumErrs; 28168 icmpkp->inUnknowns.value.ui32 = icmp_mib.icmpInUnknowns; 28169 icmpkp->inFragNeeded.value.ui32 = icmp_mib.icmpInFragNeeded; 28170 icmpkp->outFragNeeded.value.ui32 = icmp_mib.icmpOutFragNeeded; 28171 icmpkp->outDrops.value.ui32 = icmp_mib.icmpOutDrops; 28172 icmpkp->inOverflows.value.ui32 = icmp_mib.icmpInOverflows; 28173 icmpkp->inBadRedirects.value.ui32 = icmp_mib.icmpInBadRedirects; 28174 28175 return (0); 28176 } 28177 28178 /* 28179 * This is the fanout function for raw socket opened for SCTP. Note 28180 * that it is called after SCTP checks that there is no socket which 28181 * wants a packet. Then before SCTP handles this out of the blue packet, 28182 * this function is called to see if there is any raw socket for SCTP. 28183 * If there is and it is bound to the correct address, the packet will 28184 * be sent to that socket. Note that only one raw socket can be bound to 28185 * a port. This is assured in ipcl_sctp_hash_insert(); 28186 */ 28187 void 28188 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 28189 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 28190 uint_t ipif_seqid, zoneid_t zoneid) 28191 { 28192 conn_t *connp; 28193 queue_t *rq; 28194 mblk_t *first_mp; 28195 boolean_t secure; 28196 ip6_t *ip6h; 28197 28198 first_mp = mp; 28199 if (mctl_present) { 28200 mp = first_mp->b_cont; 28201 secure = ipsec_in_is_secure(first_mp); 28202 ASSERT(mp != NULL); 28203 } else { 28204 secure = B_FALSE; 28205 } 28206 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 28207 28208 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha); 28209 if (connp == NULL) { 28210 sctp_ootb_input(first_mp, recv_ill, ipif_seqid, zoneid, 28211 mctl_present); 28212 return; 28213 } 28214 rq = connp->conn_rq; 28215 if (!canputnext(rq)) { 28216 CONN_DEC_REF(connp); 28217 BUMP_MIB(&ip_mib, rawipInOverflows); 28218 freemsg(first_mp); 28219 return; 28220 } 28221 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp) : 28222 CONN_INBOUND_POLICY_PRESENT_V6(connp)) || secure) { 28223 first_mp = ipsec_check_inbound_policy(first_mp, connp, 28224 (isv4 ? ipha : NULL), ip6h, mctl_present); 28225 if (first_mp == NULL) { 28226 CONN_DEC_REF(connp); 28227 return; 28228 } 28229 } 28230 /* 28231 * We probably should not send M_CTL message up to 28232 * raw socket. 28233 */ 28234 if (mctl_present) 28235 freeb(first_mp); 28236 28237 /* Initiate IPPF processing here if needed. */ 28238 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) || 28239 (!isv4 && IP6_IN_IPP(flags))) { 28240 ip_process(IPP_LOCAL_IN, &mp, 28241 recv_ill->ill_phyint->phyint_ifindex); 28242 if (mp == NULL) { 28243 CONN_DEC_REF(connp); 28244 return; 28245 } 28246 } 28247 28248 if (connp->conn_recvif || connp->conn_recvslla || 28249 ((connp->conn_ipv6_recvpktinfo || 28250 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 28251 (flags & IP_FF_IP6INFO))) { 28252 int in_flags = 0; 28253 28254 if (connp->conn_recvif || connp->conn_ipv6_recvpktinfo) { 28255 in_flags = IPF_RECVIF; 28256 } 28257 if (connp->conn_recvslla) { 28258 in_flags |= IPF_RECVSLLA; 28259 } 28260 if (isv4) { 28261 mp = ip_add_info(mp, recv_ill, in_flags); 28262 } else { 28263 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 28264 if (mp == NULL) { 28265 CONN_DEC_REF(connp); 28266 return; 28267 } 28268 } 28269 } 28270 28271 BUMP_MIB(&ip_mib, ipInDelivers); 28272 /* 28273 * We are sending the IPSEC_IN message also up. Refer 28274 * to comments above this function. 28275 */ 28276 putnext(rq, mp); 28277 CONN_DEC_REF(connp); 28278 } 28279 28280 /* 28281 * This function should be called only if all packet processing 28282 * including fragmentation is complete. Callers of this function 28283 * must set mp->b_prev to one of these values: 28284 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 28285 * prior to handing over the mp as first argument to this function. 28286 * 28287 * If the ire passed by caller is incomplete, this function 28288 * queues the packet and if necessary, sends ARP request and bails. 28289 * If the ire passed is fully resolved, we simply prepend 28290 * the link-layer header to the packet, do ipsec hw acceleration 28291 * work if necessary, and send the packet out on the wire. 28292 * 28293 * NOTE: IPSEC will only call this function with fully resolved 28294 * ires if hw acceleration is involved. 28295 * TODO list : 28296 * a Handle M_MULTIDATA so that 28297 * tcp_multisend->tcp_multisend_data can 28298 * call ip_xmit_v4 directly 28299 * b Handle post-ARP work for fragments so that 28300 * ip_wput_frag can call this function. 28301 */ 28302 ipxmit_state_t 28303 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 28304 { 28305 nce_t *arpce; 28306 queue_t *q; 28307 int ill_index; 28308 mblk_t *nxt_mp; 28309 boolean_t xmit_drop = B_FALSE; 28310 ip_proc_t proc; 28311 28312 arpce = ire->ire_nce; 28313 ASSERT(arpce != NULL); 28314 28315 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 28316 28317 mutex_enter(&arpce->nce_lock); 28318 switch (arpce->nce_state) { 28319 case ND_REACHABLE: 28320 /* If there are other queued packets, queue this packet */ 28321 if (arpce->nce_qd_mp != NULL) { 28322 if (mp != NULL) 28323 nce_queue_mp_common(arpce, mp, B_FALSE); 28324 mp = arpce->nce_qd_mp; 28325 } 28326 arpce->nce_qd_mp = NULL; 28327 mutex_exit(&arpce->nce_lock); 28328 28329 /* 28330 * Flush the queue. In the common case, where the 28331 * ARP is already resolved, it will go through the 28332 * while loop only once. 28333 */ 28334 while (mp != NULL) { 28335 28336 nxt_mp = mp->b_next; 28337 mp->b_next = NULL; 28338 /* 28339 * This info is needed for IPQOS to do COS marking 28340 * in ip_wput_attach_llhdr->ip_process. 28341 */ 28342 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 28343 mp->b_prev = NULL; 28344 28345 /* set up ill index for outbound qos processing */ 28346 ill_index = 28347 ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 28348 mp = ip_wput_attach_llhdr(mp, ire, proc, ill_index); 28349 if (mp == NULL) { 28350 xmit_drop = B_TRUE; 28351 if (proc == IPP_FWD_OUT) { 28352 BUMP_MIB(&ip_mib, ipInDiscards); 28353 } else { 28354 BUMP_MIB(&ip_mib, ipOutDiscards); 28355 } 28356 goto next_mp; 28357 } 28358 /* non-ipsec hw accel case */ 28359 if (io == NULL || !io->ipsec_out_accelerated) { 28360 /* send it */ 28361 q = ire->ire_stq; 28362 if (proc == IPP_FWD_OUT) { 28363 UPDATE_IB_PKT_COUNT(ire); 28364 } else { 28365 UPDATE_OB_PKT_COUNT(ire); 28366 } 28367 ire->ire_last_used_time = lbolt; 28368 28369 if (flow_ctl_enabled) { 28370 /* 28371 * We are here from ip_wout_ire 28372 * which has already done canput 28373 * check and has enabled flow 28374 * control, so skip the canputnext 28375 * check. 28376 */ 28377 putnext(q, mp); 28378 goto next_mp; 28379 } 28380 if (canputnext(q)) { 28381 if (proc == IPP_FWD_OUT) { 28382 BUMP_MIB(&ip_mib, 28383 ipForwDatagrams); 28384 } 28385 putnext(q, mp); 28386 } else { 28387 BUMP_MIB(&ip_mib, 28388 ipOutDiscards); 28389 xmit_drop = B_TRUE; 28390 freemsg(mp); 28391 } 28392 } else { 28393 /* 28394 * Safety Pup says: make sure this 28395 * is going to the right interface! 28396 */ 28397 ill_t *ill1 = 28398 (ill_t *)ire->ire_stq->q_ptr; 28399 int ifindex = 28400 ill1->ill_phyint->phyint_ifindex; 28401 if (ifindex != 28402 io->ipsec_out_capab_ill_index) { 28403 xmit_drop = B_TRUE; 28404 freemsg(mp); 28405 } else { 28406 ipsec_hw_putnext(ire->ire_stq, 28407 mp); 28408 } 28409 } 28410 next_mp: 28411 mp = nxt_mp; 28412 } /* while (mp != NULL) */ 28413 if (xmit_drop) 28414 return (SEND_FAILED); 28415 else 28416 return (SEND_PASSED); 28417 28418 case ND_INITIAL: 28419 case ND_INCOMPLETE: 28420 28421 /* 28422 * While we do send off packets to dests that 28423 * use fully-resolved CGTP routes, we do not 28424 * handle unresolved CGTP routes. 28425 */ 28426 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 28427 ASSERT(io == NULL || !io->ipsec_out_accelerated); 28428 28429 if (mp != NULL) { 28430 /* queue the packet */ 28431 nce_queue_mp_common(arpce, mp, B_FALSE); 28432 } 28433 28434 if (arpce->nce_state == ND_INCOMPLETE) { 28435 mutex_exit(&arpce->nce_lock); 28436 DTRACE_PROBE3(ip__xmit__incomplete, 28437 (ire_t *), ire, (mblk_t *), mp, 28438 (ipsec_out_t *), io); 28439 return (LOOKUP_IN_PROGRESS); 28440 } 28441 28442 arpce->nce_state = ND_INCOMPLETE; 28443 mutex_exit(&arpce->nce_lock); 28444 /* 28445 * Note that ire_add() (called from ire_forward()) 28446 * holds a ref on the ire until ARP is completed. 28447 */ 28448 28449 ire_arpresolve(ire, ire_to_ill(ire)); 28450 return (LOOKUP_IN_PROGRESS); 28451 default: 28452 ASSERT(0); 28453 mutex_exit(&arpce->nce_lock); 28454 return (LLHDR_RESLV_FAILED); 28455 } 28456 } 28457 28458 /* 28459 * Return B_TRUE if the buffers differ in length or content. 28460 * This is used for comparing extension header buffers. 28461 * Note that an extension header would be declared different 28462 * even if all that changed was the next header value in that header i.e. 28463 * what really changed is the next extension header. 28464 */ 28465 boolean_t 28466 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 28467 uint_t blen) 28468 { 28469 if (!b_valid) 28470 blen = 0; 28471 28472 if (alen != blen) 28473 return (B_TRUE); 28474 if (alen == 0) 28475 return (B_FALSE); /* Both zero length */ 28476 return (bcmp(abuf, bbuf, alen)); 28477 } 28478 28479 /* 28480 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 28481 * Return B_FALSE if memory allocation fails - don't change any state! 28482 */ 28483 boolean_t 28484 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 28485 const void *src, uint_t srclen) 28486 { 28487 void *dst; 28488 28489 if (!src_valid) 28490 srclen = 0; 28491 28492 ASSERT(*dstlenp == 0); 28493 if (src != NULL && srclen != 0) { 28494 dst = mi_alloc(srclen, BPRI_MED); 28495 if (dst == NULL) 28496 return (B_FALSE); 28497 } else { 28498 dst = NULL; 28499 } 28500 if (*dstp != NULL) 28501 mi_free(*dstp); 28502 *dstp = dst; 28503 *dstlenp = dst == NULL ? 0 : srclen; 28504 return (B_TRUE); 28505 } 28506 28507 /* 28508 * Replace what is in *dst, *dstlen with the source. 28509 * Assumes ip_allocbuf has already been called. 28510 */ 28511 void 28512 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 28513 const void *src, uint_t srclen) 28514 { 28515 if (!src_valid) 28516 srclen = 0; 28517 28518 ASSERT(*dstlenp == srclen); 28519 if (src != NULL && srclen != 0) 28520 bcopy(src, *dstp, srclen); 28521 } 28522 28523 /* 28524 * Free the storage pointed to by the members of an ip6_pkt_t. 28525 */ 28526 void 28527 ip6_pkt_free(ip6_pkt_t *ipp) 28528 { 28529 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 28530 28531 if (ipp->ipp_fields & IPPF_HOPOPTS) { 28532 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 28533 ipp->ipp_hopopts = NULL; 28534 ipp->ipp_hopoptslen = 0; 28535 } 28536 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 28537 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 28538 ipp->ipp_rtdstopts = NULL; 28539 ipp->ipp_rtdstoptslen = 0; 28540 } 28541 if (ipp->ipp_fields & IPPF_DSTOPTS) { 28542 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 28543 ipp->ipp_dstopts = NULL; 28544 ipp->ipp_dstoptslen = 0; 28545 } 28546 if (ipp->ipp_fields & IPPF_RTHDR) { 28547 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 28548 ipp->ipp_rthdr = NULL; 28549 ipp->ipp_rthdrlen = 0; 28550 } 28551 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 28552 IPPF_RTHDR); 28553 } 28554