1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/kobj.h> 44 #include <sys/modctl.h> 45 #include <sys/atomic.h> 46 #include <sys/policy.h> 47 #include <sys/priv.h> 48 #include <sys/taskq.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/iptun/iptun_impl.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <inet/rawip_impl.h> 121 #include <inet/rts_impl.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 #include <sys/squeue_impl.h> 128 129 /* 130 * Values for squeue switch: 131 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 132 * IP_SQUEUE_ENTER: SQ_PROCESS 133 * IP_SQUEUE_FILL: SQ_FILL 134 */ 135 int ip_squeue_enter = 2; /* Setable in /etc/system */ 136 137 int ip_squeue_flag; 138 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 139 140 /* 141 * Setable in /etc/system 142 */ 143 int ip_poll_normal_ms = 100; 144 int ip_poll_normal_ticks = 0; 145 int ip_modclose_ackwait_ms = 3000; 146 147 /* 148 * It would be nice to have these present only in DEBUG systems, but the 149 * current design of the global symbol checking logic requires them to be 150 * unconditionally present. 151 */ 152 uint_t ip_thread_data; /* TSD key for debug support */ 153 krwlock_t ip_thread_rwlock; 154 list_t ip_thread_list; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 uint_t ird_flags; /* see below */ 174 listptr_t ird_route; /* ipRouteEntryTable */ 175 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 176 listptr_t ird_attrs; /* ipRouteAttributeTable */ 177 } iproutedata_t; 178 179 #define IRD_REPORT_TESTHIDDEN 0x01 /* include IRE_MARK_TESTHIDDEN routes */ 180 181 /* 182 * Cluster specific hooks. These should be NULL when booted as a non-cluster 183 */ 184 185 /* 186 * Hook functions to enable cluster networking 187 * On non-clustered systems these vectors must always be NULL. 188 * 189 * Hook function to Check ip specified ip address is a shared ip address 190 * in the cluster 191 * 192 */ 193 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 194 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 195 196 /* 197 * Hook function to generate cluster wide ip fragment identifier 198 */ 199 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 200 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 201 void *args) = NULL; 202 203 /* 204 * Hook function to generate cluster wide SPI. 205 */ 206 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 207 void *) = NULL; 208 209 /* 210 * Hook function to verify if the SPI is already utlized. 211 */ 212 213 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 214 215 /* 216 * Hook function to delete the SPI from the cluster wide repository. 217 */ 218 219 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 220 221 /* 222 * Hook function to inform the cluster when packet received on an IDLE SA 223 */ 224 225 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 226 in6_addr_t, in6_addr_t, void *) = NULL; 227 228 /* 229 * Synchronization notes: 230 * 231 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 232 * MT level protection given by STREAMS. IP uses a combination of its own 233 * internal serialization mechanism and standard Solaris locking techniques. 234 * The internal serialization is per phyint. This is used to serialize 235 * plumbing operations, certain multicast operations, most set ioctls, 236 * igmp/mld timers etc. 237 * 238 * Plumbing is a long sequence of operations involving message 239 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 240 * involved in plumbing operations. A natural model is to serialize these 241 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 242 * parallel without any interference. But various set ioctls on hme0 are best 243 * serialized, along with multicast join/leave operations, igmp/mld timer 244 * operations, and processing of DLPI control messages received from drivers 245 * on a per phyint basis. This serialization is provided by the ipsq_t and 246 * primitives operating on this. Details can be found in ip_if.c above the 247 * core primitives operating on ipsq_t. 248 * 249 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 250 * Simiarly lookup of an ire by a thread also returns a refheld ire. 251 * In addition ipif's and ill's referenced by the ire are also indirectly 252 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 253 * the ipif's address or netmask change as long as an ipif is refheld 254 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 255 * address of an ipif has to go through the ipsq_t. This ensures that only 256 * 1 such exclusive operation proceeds at any time on the ipif. It then 257 * deletes all ires associated with this ipif, and waits for all refcnts 258 * associated with this ipif to come down to zero. The address is changed 259 * only after the ipif has been quiesced. Then the ipif is brought up again. 260 * More details are described above the comment in ip_sioctl_flags. 261 * 262 * Packet processing is based mostly on IREs and are fully multi-threaded 263 * using standard Solaris MT techniques. 264 * 265 * There are explicit locks in IP to handle: 266 * - The ip_g_head list maintained by mi_open_link() and friends. 267 * 268 * - The reassembly data structures (one lock per hash bucket) 269 * 270 * - conn_lock is meant to protect conn_t fields. The fields actually 271 * protected by conn_lock are documented in the conn_t definition. 272 * 273 * - ire_lock to protect some of the fields of the ire, IRE tables 274 * (one lock per hash bucket). Refer to ip_ire.c for details. 275 * 276 * - ndp_g_lock and nce_lock for protecting NCEs. 277 * 278 * - ill_lock protects fields of the ill and ipif. Details in ip.h 279 * 280 * - ill_g_lock: This is a global reader/writer lock. Protects the following 281 * * The AVL tree based global multi list of all ills. 282 * * The linked list of all ipifs of an ill 283 * * The <ipsq-xop> mapping 284 * * <ill-phyint> association 285 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 286 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 287 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 288 * writer for the actual duration of the insertion/deletion/change. 289 * 290 * - ill_lock: This is a per ill mutex. 291 * It protects some members of the ill_t struct; see ip.h for details. 292 * It also protects the <ill-phyint> assoc. 293 * It also protects the list of ipifs hanging off the ill. 294 * 295 * - ipsq_lock: This is a per ipsq_t mutex lock. 296 * This protects some members of the ipsq_t struct; see ip.h for details. 297 * It also protects the <ipsq-ipxop> mapping 298 * 299 * - ipx_lock: This is a per ipxop_t mutex lock. 300 * This protects some members of the ipxop_t struct; see ip.h for details. 301 * 302 * - phyint_lock: This is a per phyint mutex lock. Protects just the 303 * phyint_flags 304 * 305 * - ip_g_nd_lock: This is a global reader/writer lock. 306 * Any call to nd_load to load a new parameter to the ND table must hold the 307 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 308 * as reader. 309 * 310 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 311 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 312 * uniqueness check also done atomically. 313 * 314 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 315 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 316 * as a writer when adding or deleting elements from these lists, and 317 * as a reader when walking these lists to send a SADB update to the 318 * IPsec capable ills. 319 * 320 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 321 * group list linked by ill_usesrc_grp_next. It also protects the 322 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 323 * group is being added or deleted. This lock is taken as a reader when 324 * walking the list/group(eg: to get the number of members in a usesrc group). 325 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 326 * field is changing state i.e from NULL to non-NULL or vice-versa. For 327 * example, it is not necessary to take this lock in the initial portion 328 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 329 * operations are executed exclusively and that ensures that the "usesrc 330 * group state" cannot change. The "usesrc group state" change can happen 331 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 332 * 333 * Changing <ill-phyint>, <ipsq-xop> assocications: 334 * 335 * To change the <ill-phyint> association, the ill_g_lock must be held 336 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 337 * must be held. 338 * 339 * To change the <ipsq-xop> association, the ill_g_lock must be held as 340 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 341 * This is only done when ills are added or removed from IPMP groups. 342 * 343 * To add or delete an ipif from the list of ipifs hanging off the ill, 344 * ill_g_lock (writer) and ill_lock must be held and the thread must be 345 * a writer on the associated ipsq. 346 * 347 * To add or delete an ill to the system, the ill_g_lock must be held as 348 * writer and the thread must be a writer on the associated ipsq. 349 * 350 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 351 * must be a writer on the associated ipsq. 352 * 353 * Lock hierarchy 354 * 355 * Some lock hierarchy scenarios are listed below. 356 * 357 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 358 * ill_g_lock -> ill_lock(s) -> phyint_lock 359 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 360 * ill_g_lock -> ip_addr_avail_lock 361 * conn_lock -> irb_lock -> ill_lock -> ire_lock 362 * ill_g_lock -> ip_g_nd_lock 363 * 364 * When more than 1 ill lock is needed to be held, all ill lock addresses 365 * are sorted on address and locked starting from highest addressed lock 366 * downward. 367 * 368 * IPsec scenarios 369 * 370 * ipsa_lock -> ill_g_lock -> ill_lock 371 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 372 * ipsec_capab_ills_lock -> ipsa_lock 373 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 374 * 375 * Trusted Solaris scenarios 376 * 377 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 378 * igsa_lock -> gcdb_lock 379 * gcgrp_rwlock -> ire_lock 380 * gcgrp_rwlock -> gcdb_lock 381 * 382 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 383 * 384 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 385 * sq_lock -> conn_lock -> QLOCK(q) 386 * ill_lock -> ft_lock -> fe_lock 387 * 388 * Routing/forwarding table locking notes: 389 * 390 * Lock acquisition order: Radix tree lock, irb_lock. 391 * Requirements: 392 * i. Walker must not hold any locks during the walker callback. 393 * ii Walker must not see a truncated tree during the walk because of any node 394 * deletion. 395 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 396 * in many places in the code to walk the irb list. Thus even if all the 397 * ires in a bucket have been deleted, we still can't free the radix node 398 * until the ires have actually been inactive'd (freed). 399 * 400 * Tree traversal - Need to hold the global tree lock in read mode. 401 * Before dropping the global tree lock, need to either increment the ire_refcnt 402 * to ensure that the radix node can't be deleted. 403 * 404 * Tree add - Need to hold the global tree lock in write mode to add a 405 * radix node. To prevent the node from being deleted, increment the 406 * irb_refcnt, after the node is added to the tree. The ire itself is 407 * added later while holding the irb_lock, but not the tree lock. 408 * 409 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 410 * All associated ires must be inactive (i.e. freed), and irb_refcnt 411 * must be zero. 412 * 413 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 414 * global tree lock (read mode) for traversal. 415 * 416 * IPsec notes : 417 * 418 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 419 * in front of the actual packet. For outbound datagrams, the M_CTL 420 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 421 * information used by the IPsec code for applying the right level of 422 * protection. The information initialized by IP in the ipsec_out_t 423 * is determined by the per-socket policy or global policy in the system. 424 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 425 * ipsec_info.h) which starts out with nothing in it. It gets filled 426 * with the right information if it goes through the AH/ESP code, which 427 * happens if the incoming packet is secure. The information initialized 428 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 429 * the policy requirements needed by per-socket policy or global policy 430 * is met or not. 431 * 432 * If there is both per-socket policy (set using setsockopt) and there 433 * is also global policy match for the 5 tuples of the socket, 434 * ipsec_override_policy() makes the decision of which one to use. 435 * 436 * For fully connected sockets i.e dst, src [addr, port] is known, 437 * conn_policy_cached is set indicating that policy has been cached. 438 * conn_in_enforce_policy may or may not be set depending on whether 439 * there is a global policy match or per-socket policy match. 440 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 441 * Once the right policy is set on the conn_t, policy cannot change for 442 * this socket. This makes life simpler for TCP (UDP ?) where 443 * re-transmissions go out with the same policy. For symmetry, policy 444 * is cached for fully connected UDP sockets also. Thus if policy is cached, 445 * it also implies that policy is latched i.e policy cannot change 446 * on these sockets. As we have the right policy on the conn, we don't 447 * have to lookup global policy for every outbound and inbound datagram 448 * and thus serving as an optimization. Note that a global policy change 449 * does not affect fully connected sockets if they have policy. If fully 450 * connected sockets did not have any policy associated with it, global 451 * policy change may affect them. 452 * 453 * IP Flow control notes: 454 * --------------------- 455 * Non-TCP streams are flow controlled by IP. The way this is accomplished 456 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 457 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 458 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 459 * functions. 460 * 461 * Per Tx ring udp flow control: 462 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 463 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 464 * 465 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 466 * To achieve best performance, outgoing traffic need to be fanned out among 467 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 468 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 469 * the address of connp as fanout hint to mac_tx(). Under flow controlled 470 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 471 * cookie points to a specific Tx ring that is blocked. The cookie is used to 472 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 473 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 474 * connp's. The drain list is not a single list but a configurable number of 475 * lists. 476 * 477 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 478 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 479 * which is equal to 128. This array in turn contains a pointer to idl_t[], 480 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 481 * list will point to the list of connp's that are flow controlled. 482 * 483 * --------------- ------- ------- ------- 484 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 485 * | --------------- ------- ------- ------- 486 * | --------------- ------- ------- ------- 487 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 488 * ---------------- | --------------- ------- ------- ------- 489 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 490 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 491 * | --------------- ------- ------- ------- 492 * . . . . . 493 * | --------------- ------- ------- ------- 494 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 495 * --------------- ------- ------- ------- 496 * --------------- ------- ------- ------- 497 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 498 * | --------------- ------- ------- ------- 499 * | --------------- ------- ------- ------- 500 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 501 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 502 * ---------------- | . . . . 503 * | --------------- ------- ------- ------- 504 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 505 * --------------- ------- ------- ------- 506 * ..... 507 * ---------------- 508 * |idl_tx_list[n]|-> ... 509 * ---------------- 510 * 511 * When mac_tx() returns a cookie, the cookie is used to hash into a 512 * idl_tx_list in ips_idl_tx_list[] array. Then conn_drain_insert() is 513 * called passing idl_tx_list. The connp gets inserted in a drain list 514 * pointed to by idl_tx_list. conn_drain_list() asserts flow control for 515 * the sockets (non stream based) and sets QFULL condition for conn_wq. 516 * connp->conn_direct_blocked will be set to indicate the blocked 517 * condition. 518 * 519 * GLDv3 mac layer calls ill_flow_enable() when flow control is relieved. 520 * A cookie is passed in the call to ill_flow_enable() that identifies the 521 * blocked Tx ring. This cookie is used to get to the idl_tx_list that 522 * contains the blocked connp's. conn_walk_drain() uses the idl_tx_list_t 523 * and goes through each of the drain list (q)enabling the conn_wq of the 524 * first conn in each of the drain list. This causes ip_wsrv to run for the 525 * conn. ip_wsrv drains the queued messages, and removes the conn from the 526 * drain list, if all messages were drained. It also qenables the next conn 527 * in the drain list to continue the drain process. 528 * 529 * In reality the drain list is not a single list, but a configurable number 530 * of lists. conn_drain_walk() in the IP module, qenables the first conn in 531 * each list. If the ip_wsrv of the next qenabled conn does not run, because 532 * the stream closes, ip_close takes responsibility to qenable the next conn 533 * in the drain list. conn_drain_insert and conn_drain_tail are the only 534 * functions that manipulate this drain list. conn_drain_insert is called in 535 * ip_wput context itself (as opposed to from ip_wsrv context for STREAMS 536 * case -- see below). The synchronization between drain insertion and flow 537 * control wakeup is handled by using idl_txl->txl_lock. 538 * 539 * Flow control using STREAMS: 540 * When ILL_DIRECT_CAPABLE() is not TRUE, STREAMS flow control mechanism 541 * is used. On the send side, if the packet cannot be sent down to the 542 * driver by IP, because of a canput failure, IP does a putq on the conn_wq. 543 * This will cause ip_wsrv to run on the conn_wq. ip_wsrv in turn, inserts 544 * the conn in a list of conn's that need to be drained when the flow 545 * control condition subsides. The blocked connps are put in first member 546 * of ips_idl_tx_list[] array. Ultimately STREAMS backenables the ip_wsrv 547 * on the IP module. It calls conn_walk_drain() passing ips_idl_tx_list[0]. 548 * ips_idl_tx_list[0] contains the drain lists of blocked conns. The 549 * conn_wq of the first conn in the drain lists is (q)enabled to run. 550 * ip_wsrv on this conn drains the queued messages, and removes the conn 551 * from the drain list, if all messages were drained. It also qenables the 552 * next conn in the drain list to continue the drain process. 553 * 554 * If the ip_wsrv of the next qenabled conn does not run, because the 555 * stream closes, ip_close takes responsibility to qenable the next conn in 556 * the drain list. The directly called ip_wput path always does a putq, if 557 * it cannot putnext. Thus synchronization problems are handled between 558 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 559 * functions that manipulate this drain list. Furthermore conn_drain_insert 560 * is called only from ip_wsrv for the STREAMS case, and there can be only 1 561 * instance of ip_wsrv running on a queue at any time. conn_drain_tail can 562 * be simultaneously called from both ip_wsrv and ip_close. 563 * 564 * IPQOS notes: 565 * 566 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 567 * and IPQoS modules. IPPF includes hooks in IP at different control points 568 * (callout positions) which direct packets to IPQoS modules for policy 569 * processing. Policies, if present, are global. 570 * 571 * The callout positions are located in the following paths: 572 * o local_in (packets destined for this host) 573 * o local_out (packets orginating from this host ) 574 * o fwd_in (packets forwarded by this m/c - inbound) 575 * o fwd_out (packets forwarded by this m/c - outbound) 576 * Hooks at these callout points can be enabled/disabled using the ndd variable 577 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 578 * By default all the callout positions are enabled. 579 * 580 * Outbound (local_out) 581 * Hooks are placed in ip_wput_ire and ipsec_out_process. 582 * 583 * Inbound (local_in) 584 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 585 * TCP and UDP fanout routines. 586 * 587 * Forwarding (in and out) 588 * Hooks are placed in ip_rput_forward. 589 * 590 * IP Policy Framework processing (IPPF processing) 591 * Policy processing for a packet is initiated by ip_process, which ascertains 592 * that the classifier (ipgpc) is loaded and configured, failing which the 593 * packet resumes normal processing in IP. If the clasifier is present, the 594 * packet is acted upon by one or more IPQoS modules (action instances), per 595 * filters configured in ipgpc and resumes normal IP processing thereafter. 596 * An action instance can drop a packet in course of its processing. 597 * 598 * A boolean variable, ip_policy, is used in all the fanout routines that can 599 * invoke ip_process for a packet. This variable indicates if the packet should 600 * to be sent for policy processing. The variable is set to B_TRUE by default, 601 * i.e. when the routines are invoked in the normal ip procesing path for a 602 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 603 * ip_policy is set to B_FALSE for all the routines called in these two 604 * functions because, in the former case, we don't process loopback traffic 605 * currently while in the latter, the packets have already been processed in 606 * icmp_inbound. 607 * 608 * Zones notes: 609 * 610 * The partitioning rules for networking are as follows: 611 * 1) Packets coming from a zone must have a source address belonging to that 612 * zone. 613 * 2) Packets coming from a zone can only be sent on a physical interface on 614 * which the zone has an IP address. 615 * 3) Between two zones on the same machine, packet delivery is only allowed if 616 * there's a matching route for the destination and zone in the forwarding 617 * table. 618 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 619 * different zones can bind to the same port with the wildcard address 620 * (INADDR_ANY). 621 * 622 * The granularity of interface partitioning is at the logical interface level. 623 * Therefore, every zone has its own IP addresses, and incoming packets can be 624 * attributed to a zone unambiguously. A logical interface is placed into a zone 625 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 626 * structure. Rule (1) is implemented by modifying the source address selection 627 * algorithm so that the list of eligible addresses is filtered based on the 628 * sending process zone. 629 * 630 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 631 * across all zones, depending on their type. Here is the break-up: 632 * 633 * IRE type Shared/exclusive 634 * -------- ---------------- 635 * IRE_BROADCAST Exclusive 636 * IRE_DEFAULT (default routes) Shared (*) 637 * IRE_LOCAL Exclusive (x) 638 * IRE_LOOPBACK Exclusive 639 * IRE_PREFIX (net routes) Shared (*) 640 * IRE_CACHE Exclusive 641 * IRE_IF_NORESOLVER (interface routes) Exclusive 642 * IRE_IF_RESOLVER (interface routes) Exclusive 643 * IRE_HOST (host routes) Shared (*) 644 * 645 * (*) A zone can only use a default or off-subnet route if the gateway is 646 * directly reachable from the zone, that is, if the gateway's address matches 647 * one of the zone's logical interfaces. 648 * 649 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 650 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 651 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 652 * address of the zone itself (the destination). Since IRE_LOCAL is used 653 * for communication between zones, ip_wput_ire has special logic to set 654 * the right source address when sending using an IRE_LOCAL. 655 * 656 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 657 * ire_cache_lookup restricts loopback using an IRE_LOCAL 658 * between zone to the case when L2 would have conceptually looped the packet 659 * back, i.e. the loopback which is required since neither Ethernet drivers 660 * nor Ethernet hardware loops them back. This is the case when the normal 661 * routes (ignoring IREs with different zoneids) would send out the packet on 662 * the same ill as the ill with which is IRE_LOCAL is associated. 663 * 664 * Multiple zones can share a common broadcast address; typically all zones 665 * share the 255.255.255.255 address. Incoming as well as locally originated 666 * broadcast packets must be dispatched to all the zones on the broadcast 667 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 668 * since some zones may not be on the 10.16.72/24 network. To handle this, each 669 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 670 * sent to every zone that has an IRE_BROADCAST entry for the destination 671 * address on the input ill, see conn_wantpacket(). 672 * 673 * Applications in different zones can join the same multicast group address. 674 * For IPv4, group memberships are per-logical interface, so they're already 675 * inherently part of a zone. For IPv6, group memberships are per-physical 676 * interface, so we distinguish IPv6 group memberships based on group address, 677 * interface and zoneid. In both cases, received multicast packets are sent to 678 * every zone for which a group membership entry exists. On IPv6 we need to 679 * check that the target zone still has an address on the receiving physical 680 * interface; it could have been removed since the application issued the 681 * IPV6_JOIN_GROUP. 682 */ 683 684 /* 685 * Squeue Fanout flags: 686 * 0: No fanout. 687 * 1: Fanout across all squeues 688 */ 689 boolean_t ip_squeue_fanout = 0; 690 691 /* 692 * Maximum dups allowed per packet. 693 */ 694 uint_t ip_max_frag_dups = 10; 695 696 #define IS_SIMPLE_IPH(ipha) \ 697 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 698 699 /* RFC 1122 Conformance */ 700 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 701 702 #define ILL_MAX_NAMELEN LIFNAMSIZ 703 704 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 705 706 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 707 cred_t *credp, boolean_t isv6); 708 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 709 ipha_t **); 710 711 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 712 ip_stack_t *); 713 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 714 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 715 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 716 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 717 mblk_t *, int, ip_stack_t *); 718 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 719 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 720 ill_t *, zoneid_t); 721 static void icmp_options_update(ipha_t *); 722 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 723 ip_stack_t *); 724 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 725 zoneid_t zoneid, ip_stack_t *); 726 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 727 static void icmp_redirect(ill_t *, mblk_t *); 728 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 729 ip_stack_t *); 730 731 static void ip_arp_news(queue_t *, mblk_t *); 732 static boolean_t ip_bind_get_ire_v4(mblk_t **, ire_t *, iulp_t *, ip_stack_t *); 733 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 734 char *ip_dot_addr(ipaddr_t, char *); 735 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 736 int ip_close(queue_t *, int); 737 static char *ip_dot_saddr(uchar_t *, char *); 738 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 739 boolean_t, boolean_t, ill_t *, zoneid_t); 740 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 741 boolean_t, boolean_t, zoneid_t); 742 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 743 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 744 static void ip_lrput(queue_t *, mblk_t *); 745 ipaddr_t ip_net_mask(ipaddr_t); 746 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 747 ip_stack_t *); 748 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 749 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 750 char *ip_nv_lookup(nv_t *, int); 751 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 752 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 753 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 754 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 755 ipndp_t *, size_t); 756 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 757 void ip_rput(queue_t *, mblk_t *); 758 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 759 void *dummy_arg); 760 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 761 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 762 ip_stack_t *); 763 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 764 ire_t *, ip_stack_t *); 765 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 766 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 767 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 768 ip_stack_t *); 769 static boolean_t ip_rput_fragment(ill_t *, ill_t *, mblk_t **, ipha_t *, 770 uint32_t *, uint16_t *); 771 int ip_snmp_get(queue_t *, mblk_t *, int); 772 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 773 mib2_ipIfStatsEntry_t *, ip_stack_t *); 774 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 775 ip_stack_t *); 776 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 777 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 778 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 779 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 780 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 781 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 782 ip_stack_t *ipst); 783 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 784 ip_stack_t *ipst); 785 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 786 ip_stack_t *ipst); 787 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 788 ip_stack_t *ipst); 789 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 790 ip_stack_t *ipst); 791 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 792 ip_stack_t *ipst); 793 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 794 ip_stack_t *ipst); 795 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 796 ip_stack_t *ipst); 797 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 798 ip_stack_t *ipst); 799 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 800 ip_stack_t *ipst); 801 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 802 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 803 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 804 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 805 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 806 static boolean_t ip_source_route_included(ipha_t *); 807 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 808 809 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 810 zoneid_t, ip_stack_t *, conn_t *); 811 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *, 812 mblk_t *); 813 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 814 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 815 zoneid_t, ip_stack_t *); 816 817 static void conn_drain_init(ip_stack_t *); 818 static void conn_drain_fini(ip_stack_t *); 819 static void conn_drain_tail(conn_t *connp, boolean_t closing); 820 821 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 822 static void conn_setqfull(conn_t *); 823 static void conn_clrqfull(conn_t *); 824 825 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 826 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 827 static void ip_stack_fini(netstackid_t stackid, void *arg); 828 829 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 830 zoneid_t); 831 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 832 void *dummy_arg); 833 834 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 835 836 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 837 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 838 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 839 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 840 841 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 842 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 843 caddr_t, cred_t *); 844 extern int ip_helper_stream_setup(queue_t *, dev_t *, int, int, 845 cred_t *, boolean_t); 846 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 847 caddr_t cp, cred_t *cr); 848 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 849 cred_t *); 850 static int ip_squeue_switch(int); 851 852 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 853 static void ip_kstat_fini(netstackid_t, kstat_t *); 854 static int ip_kstat_update(kstat_t *kp, int rw); 855 static void *icmp_kstat_init(netstackid_t); 856 static void icmp_kstat_fini(netstackid_t, kstat_t *); 857 static int icmp_kstat_update(kstat_t *kp, int rw); 858 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 859 static void ip_kstat2_fini(netstackid_t, kstat_t *); 860 861 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 862 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 863 864 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 865 ipha_t *, ill_t *, boolean_t, boolean_t); 866 867 static void ipobs_init(ip_stack_t *); 868 static void ipobs_fini(ip_stack_t *); 869 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 870 871 /* How long, in seconds, we allow frags to hang around. */ 872 #define IP_FRAG_TIMEOUT 15 873 #define IPV6_FRAG_TIMEOUT 60 874 875 /* 876 * Threshold which determines whether MDT should be used when 877 * generating IP fragments; payload size must be greater than 878 * this threshold for MDT to take place. 879 */ 880 #define IP_WPUT_FRAG_MDT_MIN 32768 881 882 /* Setable in /etc/system only */ 883 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 884 885 static long ip_rput_pullups; 886 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 887 888 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 889 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 890 891 int ip_debug; 892 893 #ifdef DEBUG 894 uint32_t ipsechw_debug = 0; 895 #endif 896 897 /* 898 * Multirouting/CGTP stuff 899 */ 900 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 901 902 /* 903 * XXX following really should only be in a header. Would need more 904 * header and .c clean up first. 905 */ 906 extern optdb_obj_t ip_opt_obj; 907 908 ulong_t ip_squeue_enter_unbound = 0; 909 910 /* 911 * Named Dispatch Parameter Table. 912 * All of these are alterable, within the min/max values given, at run time. 913 */ 914 static ipparam_t lcl_param_arr[] = { 915 /* min max value name */ 916 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 917 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 918 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 919 { 0, 1, 0, "ip_respond_to_timestamp"}, 920 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 921 { 0, 1, 1, "ip_send_redirects"}, 922 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 923 { 0, 10, 0, "ip_mrtdebug"}, 924 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 925 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 926 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 927 { 1, 255, 255, "ip_def_ttl" }, 928 { 0, 1, 0, "ip_forward_src_routed"}, 929 { 0, 256, 32, "ip_wroff_extra" }, 930 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 931 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 932 { 0, 1, 1, "ip_path_mtu_discovery" }, 933 { 0, 240, 30, "ip_ignore_delete_time" }, 934 { 0, 1, 0, "ip_ignore_redirect" }, 935 { 0, 1, 1, "ip_output_queue" }, 936 { 1, 254, 1, "ip_broadcast_ttl" }, 937 { 0, 99999, 100, "ip_icmp_err_interval" }, 938 { 1, 99999, 10, "ip_icmp_err_burst" }, 939 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 940 { 0, 1, 0, "ip_strict_dst_multihoming" }, 941 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 942 { 0, 1, 0, "ipsec_override_persocket_policy" }, 943 { 0, 1, 1, "icmp_accept_clear_messages" }, 944 { 0, 1, 1, "igmp_accept_clear_messages" }, 945 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 946 "ip_ndp_delay_first_probe_time"}, 947 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 948 "ip_ndp_max_unicast_solicit"}, 949 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 950 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 951 { 0, 1, 0, "ip6_forward_src_routed"}, 952 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 953 { 0, 1, 1, "ip6_send_redirects"}, 954 { 0, 1, 0, "ip6_ignore_redirect" }, 955 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 956 957 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 958 959 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 960 961 { 0, 1, 1, "pim_accept_clear_messages" }, 962 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 963 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 964 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 965 { 0, 15, 0, "ip_policy_mask" }, 966 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 967 { 0, 255, 1, "ip_multirt_ttl" }, 968 { 0, 1, 1, "ip_multidata_outbound" }, 969 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 970 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 971 { 0, 1000, 1, "ip_max_temp_defend" }, 972 { 0, 1000, 3, "ip_max_defend" }, 973 { 0, 999999, 30, "ip_defend_interval" }, 974 { 0, 3600000, 300000, "ip_dup_recovery" }, 975 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 976 { 0, 1, 1, "ip_lso_outbound" }, 977 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 978 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 979 { 68, 65535, 576, "ip_pmtu_min" }, 980 #ifdef DEBUG 981 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 982 #else 983 { 0, 0, 0, "" }, 984 #endif 985 }; 986 987 /* 988 * Extended NDP table 989 * The addresses for the first two are filled in to be ips_ip_g_forward 990 * and ips_ipv6_forward at init time. 991 */ 992 static ipndp_t lcl_ndp_arr[] = { 993 /* getf setf data name */ 994 #define IPNDP_IP_FORWARDING_OFFSET 0 995 { ip_param_generic_get, ip_forward_set, NULL, 996 "ip_forwarding" }, 997 #define IPNDP_IP6_FORWARDING_OFFSET 1 998 { ip_param_generic_get, ip_forward_set, NULL, 999 "ip6_forwarding" }, 1000 { ip_param_generic_get, ip_input_proc_set, 1001 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 1002 { ip_param_generic_get, ip_int_set, 1003 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 1004 #define IPNDP_CGTP_FILTER_OFFSET 4 1005 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 1006 "ip_cgtp_filter" }, 1007 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 1008 "ip_debug" }, 1009 }; 1010 1011 /* 1012 * Table of IP ioctls encoding the various properties of the ioctl and 1013 * indexed based on the last byte of the ioctl command. Occasionally there 1014 * is a clash, and there is more than 1 ioctl with the same last byte. 1015 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1016 * ioctls are encoded in the misc table. An entry in the ndx table is 1017 * retrieved by indexing on the last byte of the ioctl command and comparing 1018 * the ioctl command with the value in the ndx table. In the event of a 1019 * mismatch the misc table is then searched sequentially for the desired 1020 * ioctl command. 1021 * 1022 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1023 */ 1024 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1025 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 1036 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1037 MISC_CMD, ip_siocaddrt, NULL }, 1038 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1039 MISC_CMD, ip_siocdelrt, NULL }, 1040 1041 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1042 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1043 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 1044 IF_CMD, ip_sioctl_get_addr, NULL }, 1045 1046 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1047 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1048 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1049 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1050 1051 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1052 IPI_PRIV | IPI_WR, 1053 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1054 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1055 IPI_MODOK | IPI_GET_CMD, 1056 IF_CMD, ip_sioctl_get_flags, NULL }, 1057 1058 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 1061 /* copyin size cannot be coded for SIOCGIFCONF */ 1062 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 1063 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1064 1065 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1066 IF_CMD, ip_sioctl_mtu, NULL }, 1067 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 1068 IF_CMD, ip_sioctl_get_mtu, NULL }, 1069 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1070 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1071 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1072 IF_CMD, ip_sioctl_brdaddr, NULL }, 1073 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1074 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 1075 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1076 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1077 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1078 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 1079 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1080 IF_CMD, ip_sioctl_metric, NULL }, 1081 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 1083 /* See 166-168 below for extended SIOC*XARP ioctls */ 1084 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1085 ARP_CMD, ip_sioctl_arp, NULL }, 1086 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 1087 ARP_CMD, ip_sioctl_arp, NULL }, 1088 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1089 ARP_CMD, ip_sioctl_arp, NULL }, 1090 1091 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1092 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1093 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1094 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 1113 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1114 MISC_CMD, if_unitsel, if_unitsel_restart }, 1115 1116 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1129 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1131 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1132 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1133 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1134 1135 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1136 IPI_PRIV | IPI_WR | IPI_MODOK, 1137 IF_CMD, ip_sioctl_sifname, NULL }, 1138 1139 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 1153 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 1154 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1155 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 1156 IF_CMD, ip_sioctl_get_muxid, NULL }, 1157 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1158 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 1159 1160 /* Both if and lif variants share same func */ 1161 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 1162 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1163 /* Both if and lif variants share same func */ 1164 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1165 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 1166 1167 /* copyin size cannot be coded for SIOCGIFCONF */ 1168 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1169 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1170 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1180 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1181 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1182 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1183 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 1188 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1189 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 1190 ip_sioctl_removeif_restart }, 1191 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1192 IPI_GET_CMD | IPI_PRIV | IPI_WR, 1193 LIF_CMD, ip_sioctl_addif, NULL }, 1194 #define SIOCLIFADDR_NDX 112 1195 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1196 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1197 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1198 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 1199 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1200 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1201 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1202 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1203 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1204 IPI_PRIV | IPI_WR, 1205 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1206 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1207 IPI_GET_CMD | IPI_MODOK, 1208 LIF_CMD, ip_sioctl_get_flags, NULL }, 1209 1210 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1211 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1212 1213 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1214 ip_sioctl_get_lifconf, NULL }, 1215 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1216 LIF_CMD, ip_sioctl_mtu, NULL }, 1217 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 1218 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1219 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1220 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1221 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1222 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1223 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1224 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 1225 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1226 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1227 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1228 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 1229 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1230 LIF_CMD, ip_sioctl_metric, NULL }, 1231 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1232 IPI_PRIV | IPI_WR | IPI_MODOK, 1233 LIF_CMD, ip_sioctl_slifname, 1234 ip_sioctl_slifname_restart }, 1235 1236 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 1237 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1238 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1239 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 1240 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1241 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1242 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1243 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1244 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1245 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1246 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1247 LIF_CMD, ip_sioctl_token, NULL }, 1248 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1249 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1250 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1251 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1252 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1253 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1254 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1255 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1256 1257 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1258 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1259 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1260 LIF_CMD, ip_siocdelndp_v6, NULL }, 1261 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1262 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1263 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1264 LIF_CMD, ip_siocsetndp_v6, NULL }, 1265 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1266 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1267 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1268 MISC_CMD, ip_sioctl_tonlink, NULL }, 1269 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1270 MISC_CMD, ip_sioctl_tmysite, NULL }, 1271 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1272 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1273 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1274 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1275 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1276 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1277 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1278 1279 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1280 1281 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1282 LIF_CMD, ip_sioctl_get_binding, NULL }, 1283 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1284 IPI_PRIV | IPI_WR, 1285 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1286 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1287 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1288 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1289 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1290 1291 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1292 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1293 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1294 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1295 1296 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1297 1298 /* These are handled in ip_sioctl_copyin_setup itself */ 1299 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1300 MISC_CMD, NULL, NULL }, 1301 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1302 MISC_CMD, NULL, NULL }, 1303 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1304 1305 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1306 ip_sioctl_get_lifconf, NULL }, 1307 1308 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1309 XARP_CMD, ip_sioctl_arp, NULL }, 1310 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1311 XARP_CMD, ip_sioctl_arp, NULL }, 1312 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1313 XARP_CMD, ip_sioctl_arp, NULL }, 1314 1315 /* SIOCPOPSOCKFS is not handled by IP */ 1316 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1317 1318 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1319 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1320 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1321 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1322 ip_sioctl_slifzone_restart }, 1323 /* 172-174 are SCTP ioctls and not handled by IP */ 1324 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1325 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1326 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1327 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1328 IPI_GET_CMD, LIF_CMD, 1329 ip_sioctl_get_lifusesrc, 0 }, 1330 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1331 IPI_PRIV | IPI_WR, 1332 LIF_CMD, ip_sioctl_slifusesrc, 1333 NULL }, 1334 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1335 ip_sioctl_get_lifsrcof, NULL }, 1336 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1337 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1338 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1339 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1340 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1341 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1342 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1343 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1344 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1345 /* SIOCSENABLESDP is handled by SDP */ 1346 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1347 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1348 }; 1349 1350 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1351 1352 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1353 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1354 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1355 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1356 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1357 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1358 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1359 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1360 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1361 MISC_CMD, mrt_ioctl}, 1362 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1363 MISC_CMD, mrt_ioctl}, 1364 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1365 MISC_CMD, mrt_ioctl} 1366 }; 1367 1368 int ip_misc_ioctl_count = 1369 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1370 1371 int conn_drain_nthreads; /* Number of drainers reqd. */ 1372 /* Settable in /etc/system */ 1373 /* Defined in ip_ire.c */ 1374 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1375 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1376 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1377 1378 static nv_t ire_nv_arr[] = { 1379 { IRE_BROADCAST, "BROADCAST" }, 1380 { IRE_LOCAL, "LOCAL" }, 1381 { IRE_LOOPBACK, "LOOPBACK" }, 1382 { IRE_CACHE, "CACHE" }, 1383 { IRE_DEFAULT, "DEFAULT" }, 1384 { IRE_PREFIX, "PREFIX" }, 1385 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1386 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1387 { IRE_HOST, "HOST" }, 1388 { 0 } 1389 }; 1390 1391 nv_t *ire_nv_tbl = ire_nv_arr; 1392 1393 /* Simple ICMP IP Header Template */ 1394 static ipha_t icmp_ipha = { 1395 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1396 }; 1397 1398 struct module_info ip_mod_info = { 1399 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1400 IP_MOD_LOWAT 1401 }; 1402 1403 /* 1404 * Duplicate static symbols within a module confuses mdb; so we avoid the 1405 * problem by making the symbols here distinct from those in udp.c. 1406 */ 1407 1408 /* 1409 * Entry points for IP as a device and as a module. 1410 * FIXME: down the road we might want a separate module and driver qinit. 1411 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1412 */ 1413 static struct qinit iprinitv4 = { 1414 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1415 &ip_mod_info 1416 }; 1417 1418 struct qinit iprinitv6 = { 1419 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1420 &ip_mod_info 1421 }; 1422 1423 static struct qinit ipwinitv4 = { 1424 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1425 &ip_mod_info 1426 }; 1427 1428 struct qinit ipwinitv6 = { 1429 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1430 &ip_mod_info 1431 }; 1432 1433 static struct qinit iplrinit = { 1434 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1435 &ip_mod_info 1436 }; 1437 1438 static struct qinit iplwinit = { 1439 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1440 &ip_mod_info 1441 }; 1442 1443 /* For AF_INET aka /dev/ip */ 1444 struct streamtab ipinfov4 = { 1445 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1446 }; 1447 1448 /* For AF_INET6 aka /dev/ip6 */ 1449 struct streamtab ipinfov6 = { 1450 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1451 }; 1452 1453 #ifdef DEBUG 1454 static boolean_t skip_sctp_cksum = B_FALSE; 1455 #endif 1456 1457 /* 1458 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1459 * ip_rput_v6(), ip_output(), etc. If the message 1460 * block already has a M_CTL at the front of it, then simply set the zoneid 1461 * appropriately. 1462 */ 1463 mblk_t * 1464 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1465 { 1466 mblk_t *first_mp; 1467 ipsec_out_t *io; 1468 1469 ASSERT(zoneid != ALL_ZONES); 1470 if (mp->b_datap->db_type == M_CTL) { 1471 io = (ipsec_out_t *)mp->b_rptr; 1472 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1473 io->ipsec_out_zoneid = zoneid; 1474 return (mp); 1475 } 1476 1477 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1478 if (first_mp == NULL) 1479 return (NULL); 1480 io = (ipsec_out_t *)first_mp->b_rptr; 1481 /* This is not a secure packet */ 1482 io->ipsec_out_secure = B_FALSE; 1483 io->ipsec_out_zoneid = zoneid; 1484 first_mp->b_cont = mp; 1485 return (first_mp); 1486 } 1487 1488 /* 1489 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1490 */ 1491 mblk_t * 1492 ip_copymsg(mblk_t *mp) 1493 { 1494 mblk_t *nmp; 1495 ipsec_info_t *in; 1496 1497 if (mp->b_datap->db_type != M_CTL) 1498 return (copymsg(mp)); 1499 1500 in = (ipsec_info_t *)mp->b_rptr; 1501 1502 /* 1503 * Note that M_CTL is also used for delivering ICMP error messages 1504 * upstream to transport layers. 1505 */ 1506 if (in->ipsec_info_type != IPSEC_OUT && 1507 in->ipsec_info_type != IPSEC_IN) 1508 return (copymsg(mp)); 1509 1510 nmp = copymsg(mp->b_cont); 1511 1512 if (in->ipsec_info_type == IPSEC_OUT) { 1513 return (ipsec_out_tag(mp, nmp, 1514 ((ipsec_out_t *)in)->ipsec_out_ns)); 1515 } else { 1516 return (ipsec_in_tag(mp, nmp, 1517 ((ipsec_in_t *)in)->ipsec_in_ns)); 1518 } 1519 } 1520 1521 /* Generate an ICMP fragmentation needed message. */ 1522 static void 1523 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1524 ip_stack_t *ipst) 1525 { 1526 icmph_t icmph; 1527 mblk_t *first_mp; 1528 boolean_t mctl_present; 1529 1530 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1531 1532 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1533 if (mctl_present) 1534 freeb(first_mp); 1535 return; 1536 } 1537 1538 bzero(&icmph, sizeof (icmph_t)); 1539 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1540 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1541 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1542 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1543 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1544 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1545 ipst); 1546 } 1547 1548 /* 1549 * icmp_inbound deals with ICMP messages in the following ways. 1550 * 1551 * 1) It needs to send a reply back and possibly delivering it 1552 * to the "interested" upper clients. 1553 * 2) It needs to send it to the upper clients only. 1554 * 3) It needs to change some values in IP only. 1555 * 4) It needs to change some values in IP and upper layers e.g TCP. 1556 * 1557 * We need to accomodate icmp messages coming in clear until we get 1558 * everything secure from the wire. If icmp_accept_clear_messages 1559 * is zero we check with the global policy and act accordingly. If 1560 * it is non-zero, we accept the message without any checks. But 1561 * *this does not mean* that this will be delivered to the upper 1562 * clients. By accepting we might send replies back, change our MTU 1563 * value etc. but delivery to the ULP/clients depends on their policy 1564 * dispositions. 1565 * 1566 * We handle the above 4 cases in the context of IPsec in the 1567 * following way : 1568 * 1569 * 1) Send the reply back in the same way as the request came in. 1570 * If it came in encrypted, it goes out encrypted. If it came in 1571 * clear, it goes out in clear. Thus, this will prevent chosen 1572 * plain text attack. 1573 * 2) The client may or may not expect things to come in secure. 1574 * If it comes in secure, the policy constraints are checked 1575 * before delivering it to the upper layers. If it comes in 1576 * clear, ipsec_inbound_accept_clear will decide whether to 1577 * accept this in clear or not. In both the cases, if the returned 1578 * message (IP header + 8 bytes) that caused the icmp message has 1579 * AH/ESP headers, it is sent up to AH/ESP for validation before 1580 * sending up. If there are only 8 bytes of returned message, then 1581 * upper client will not be notified. 1582 * 3) Check with global policy to see whether it matches the constaints. 1583 * But this will be done only if icmp_accept_messages_in_clear is 1584 * zero. 1585 * 4) If we need to change both in IP and ULP, then the decision taken 1586 * while affecting the values in IP and while delivering up to TCP 1587 * should be the same. 1588 * 1589 * There are two cases. 1590 * 1591 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1592 * failed), we will not deliver it to the ULP, even though they 1593 * are *willing* to accept in *clear*. This is fine as our global 1594 * disposition to icmp messages asks us reject the datagram. 1595 * 1596 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1597 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1598 * to deliver it to ULP (policy failed), it can lead to 1599 * consistency problems. The cases known at this time are 1600 * ICMP_DESTINATION_UNREACHABLE messages with following code 1601 * values : 1602 * 1603 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1604 * and Upper layer rejects. Then the communication will 1605 * come to a stop. This is solved by making similar decisions 1606 * at both levels. Currently, when we are unable to deliver 1607 * to the Upper Layer (due to policy failures) while IP has 1608 * adjusted ire_max_frag, the next outbound datagram would 1609 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1610 * will be with the right level of protection. Thus the right 1611 * value will be communicated even if we are not able to 1612 * communicate when we get from the wire initially. But this 1613 * assumes there would be at least one outbound datagram after 1614 * IP has adjusted its ire_max_frag value. To make things 1615 * simpler, we accept in clear after the validation of 1616 * AH/ESP headers. 1617 * 1618 * - Other ICMP ERRORS : We may not be able to deliver it to the 1619 * upper layer depending on the level of protection the upper 1620 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1621 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1622 * should be accepted in clear when the Upper layer expects secure. 1623 * Thus the communication may get aborted by some bad ICMP 1624 * packets. 1625 * 1626 * IPQoS Notes: 1627 * The only instance when a packet is sent for processing is when there 1628 * isn't an ICMP client and if we are interested in it. 1629 * If there is a client, IPPF processing will take place in the 1630 * ip_fanout_proto routine. 1631 * 1632 * Zones notes: 1633 * The packet is only processed in the context of the specified zone: typically 1634 * only this zone will reply to an echo request, and only interested clients in 1635 * this zone will receive a copy of the packet. This means that the caller must 1636 * call icmp_inbound() for each relevant zone. 1637 */ 1638 static void 1639 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1640 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1641 ill_t *recv_ill, zoneid_t zoneid) 1642 { 1643 icmph_t *icmph; 1644 ipha_t *ipha; 1645 int iph_hdr_length; 1646 int hdr_length; 1647 boolean_t interested; 1648 uint32_t ts; 1649 uchar_t *wptr; 1650 ipif_t *ipif; 1651 mblk_t *first_mp; 1652 ipsec_in_t *ii; 1653 timestruc_t now; 1654 uint32_t ill_index; 1655 ip_stack_t *ipst; 1656 1657 ASSERT(ill != NULL); 1658 ipst = ill->ill_ipst; 1659 1660 first_mp = mp; 1661 if (mctl_present) { 1662 mp = first_mp->b_cont; 1663 ASSERT(mp != NULL); 1664 } 1665 1666 ipha = (ipha_t *)mp->b_rptr; 1667 if (ipst->ips_icmp_accept_clear_messages == 0) { 1668 first_mp = ipsec_check_global_policy(first_mp, NULL, 1669 ipha, NULL, mctl_present, ipst->ips_netstack); 1670 if (first_mp == NULL) 1671 return; 1672 } 1673 1674 /* 1675 * On a labeled system, we have to check whether the zone itself is 1676 * permitted to receive raw traffic. 1677 */ 1678 if (is_system_labeled()) { 1679 if (zoneid == ALL_ZONES) 1680 zoneid = tsol_packet_to_zoneid(mp); 1681 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1682 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1683 zoneid)); 1684 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1685 freemsg(first_mp); 1686 return; 1687 } 1688 } 1689 1690 /* 1691 * We have accepted the ICMP message. It means that we will 1692 * respond to the packet if needed. It may not be delivered 1693 * to the upper client depending on the policy constraints 1694 * and the disposition in ipsec_inbound_accept_clear. 1695 */ 1696 1697 ASSERT(ill != NULL); 1698 1699 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1700 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1701 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1702 /* Last chance to get real. */ 1703 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1704 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1705 freemsg(first_mp); 1706 return; 1707 } 1708 /* Refresh iph following the pullup. */ 1709 ipha = (ipha_t *)mp->b_rptr; 1710 } 1711 /* ICMP header checksum, including checksum field, should be zero. */ 1712 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1713 IP_CSUM(mp, iph_hdr_length, 0)) { 1714 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1715 freemsg(first_mp); 1716 return; 1717 } 1718 /* The IP header will always be a multiple of four bytes */ 1719 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1720 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1721 icmph->icmph_code)); 1722 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1723 /* We will set "interested" to "true" if we want a copy */ 1724 interested = B_FALSE; 1725 switch (icmph->icmph_type) { 1726 case ICMP_ECHO_REPLY: 1727 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1728 break; 1729 case ICMP_DEST_UNREACHABLE: 1730 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1731 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1732 interested = B_TRUE; /* Pass up to transport */ 1733 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1734 break; 1735 case ICMP_SOURCE_QUENCH: 1736 interested = B_TRUE; /* Pass up to transport */ 1737 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1738 break; 1739 case ICMP_REDIRECT: 1740 if (!ipst->ips_ip_ignore_redirect) 1741 interested = B_TRUE; 1742 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1743 break; 1744 case ICMP_ECHO_REQUEST: 1745 /* 1746 * Whether to respond to echo requests that come in as IP 1747 * broadcasts or as IP multicast is subject to debate 1748 * (what isn't?). We aim to please, you pick it. 1749 * Default is do it. 1750 */ 1751 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1752 /* unicast: always respond */ 1753 interested = B_TRUE; 1754 } else if (CLASSD(ipha->ipha_dst)) { 1755 /* multicast: respond based on tunable */ 1756 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1757 } else if (broadcast) { 1758 /* broadcast: respond based on tunable */ 1759 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1760 } 1761 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1762 break; 1763 case ICMP_ROUTER_ADVERTISEMENT: 1764 case ICMP_ROUTER_SOLICITATION: 1765 break; 1766 case ICMP_TIME_EXCEEDED: 1767 interested = B_TRUE; /* Pass up to transport */ 1768 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1769 break; 1770 case ICMP_PARAM_PROBLEM: 1771 interested = B_TRUE; /* Pass up to transport */ 1772 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1773 break; 1774 case ICMP_TIME_STAMP_REQUEST: 1775 /* Response to Time Stamp Requests is local policy. */ 1776 if (ipst->ips_ip_g_resp_to_timestamp && 1777 /* So is whether to respond if it was an IP broadcast. */ 1778 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1779 int tstamp_len = 3 * sizeof (uint32_t); 1780 1781 if (wptr + tstamp_len > mp->b_wptr) { 1782 if (!pullupmsg(mp, wptr + tstamp_len - 1783 mp->b_rptr)) { 1784 BUMP_MIB(ill->ill_ip_mib, 1785 ipIfStatsInDiscards); 1786 freemsg(first_mp); 1787 return; 1788 } 1789 /* Refresh ipha following the pullup. */ 1790 ipha = (ipha_t *)mp->b_rptr; 1791 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1792 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1793 } 1794 interested = B_TRUE; 1795 } 1796 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1797 break; 1798 case ICMP_TIME_STAMP_REPLY: 1799 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1800 break; 1801 case ICMP_INFO_REQUEST: 1802 /* Per RFC 1122 3.2.2.7, ignore this. */ 1803 case ICMP_INFO_REPLY: 1804 break; 1805 case ICMP_ADDRESS_MASK_REQUEST: 1806 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1807 !broadcast) && 1808 /* TODO m_pullup of complete header? */ 1809 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1810 interested = B_TRUE; 1811 } 1812 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1813 break; 1814 case ICMP_ADDRESS_MASK_REPLY: 1815 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1816 break; 1817 default: 1818 interested = B_TRUE; /* Pass up to transport */ 1819 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1820 break; 1821 } 1822 /* See if there is an ICMP client. */ 1823 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1824 /* If there is an ICMP client and we want one too, copy it. */ 1825 mblk_t *first_mp1; 1826 1827 if (!interested) { 1828 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1829 ip_policy, recv_ill, zoneid); 1830 return; 1831 } 1832 first_mp1 = ip_copymsg(first_mp); 1833 if (first_mp1 != NULL) { 1834 ip_fanout_proto(q, first_mp1, ill, ipha, 1835 0, mctl_present, ip_policy, recv_ill, zoneid); 1836 } 1837 } else if (!interested) { 1838 freemsg(first_mp); 1839 return; 1840 } else { 1841 /* 1842 * Initiate policy processing for this packet if ip_policy 1843 * is true. 1844 */ 1845 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1846 ill_index = ill->ill_phyint->phyint_ifindex; 1847 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1848 if (mp == NULL) { 1849 if (mctl_present) { 1850 freeb(first_mp); 1851 } 1852 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1853 return; 1854 } 1855 } 1856 } 1857 /* We want to do something with it. */ 1858 /* Check db_ref to make sure we can modify the packet. */ 1859 if (mp->b_datap->db_ref > 1) { 1860 mblk_t *first_mp1; 1861 1862 first_mp1 = ip_copymsg(first_mp); 1863 freemsg(first_mp); 1864 if (!first_mp1) { 1865 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1866 return; 1867 } 1868 first_mp = first_mp1; 1869 if (mctl_present) { 1870 mp = first_mp->b_cont; 1871 ASSERT(mp != NULL); 1872 } else { 1873 mp = first_mp; 1874 } 1875 ipha = (ipha_t *)mp->b_rptr; 1876 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1877 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1878 } 1879 switch (icmph->icmph_type) { 1880 case ICMP_ADDRESS_MASK_REQUEST: 1881 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1882 if (ipif == NULL) { 1883 freemsg(first_mp); 1884 return; 1885 } 1886 /* 1887 * outging interface must be IPv4 1888 */ 1889 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1890 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1891 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1892 ipif_refrele(ipif); 1893 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1894 break; 1895 case ICMP_ECHO_REQUEST: 1896 icmph->icmph_type = ICMP_ECHO_REPLY; 1897 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1898 break; 1899 case ICMP_TIME_STAMP_REQUEST: { 1900 uint32_t *tsp; 1901 1902 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1903 tsp = (uint32_t *)wptr; 1904 tsp++; /* Skip past 'originate time' */ 1905 /* Compute # of milliseconds since midnight */ 1906 gethrestime(&now); 1907 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1908 now.tv_nsec / (NANOSEC / MILLISEC); 1909 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1910 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1911 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1912 break; 1913 } 1914 default: 1915 ipha = (ipha_t *)&icmph[1]; 1916 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1917 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1918 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1919 freemsg(first_mp); 1920 return; 1921 } 1922 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1923 ipha = (ipha_t *)&icmph[1]; 1924 } 1925 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1926 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1927 freemsg(first_mp); 1928 return; 1929 } 1930 hdr_length = IPH_HDR_LENGTH(ipha); 1931 if (hdr_length < sizeof (ipha_t)) { 1932 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1933 freemsg(first_mp); 1934 return; 1935 } 1936 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1937 if (!pullupmsg(mp, 1938 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1939 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1940 freemsg(first_mp); 1941 return; 1942 } 1943 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1944 ipha = (ipha_t *)&icmph[1]; 1945 } 1946 switch (icmph->icmph_type) { 1947 case ICMP_REDIRECT: 1948 /* 1949 * As there is no upper client to deliver, we don't 1950 * need the first_mp any more. 1951 */ 1952 if (mctl_present) { 1953 freeb(first_mp); 1954 } 1955 icmp_redirect(ill, mp); 1956 return; 1957 case ICMP_DEST_UNREACHABLE: 1958 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1959 if (!icmp_inbound_too_big(icmph, ipha, ill, 1960 zoneid, mp, iph_hdr_length, ipst)) { 1961 freemsg(first_mp); 1962 return; 1963 } 1964 /* 1965 * icmp_inbound_too_big() may alter mp. 1966 * Resynch ipha and icmph accordingly. 1967 */ 1968 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1969 ipha = (ipha_t *)&icmph[1]; 1970 } 1971 /* FALLTHRU */ 1972 default : 1973 /* 1974 * IPQoS notes: Since we have already done IPQoS 1975 * processing we don't want to do it again in 1976 * the fanout routines called by 1977 * icmp_inbound_error_fanout, hence the last 1978 * argument, ip_policy, is B_FALSE. 1979 */ 1980 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1981 ipha, iph_hdr_length, hdr_length, mctl_present, 1982 B_FALSE, recv_ill, zoneid); 1983 } 1984 return; 1985 } 1986 /* Send out an ICMP packet */ 1987 icmph->icmph_checksum = 0; 1988 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1989 if (broadcast || CLASSD(ipha->ipha_dst)) { 1990 ipif_t *ipif_chosen; 1991 /* 1992 * Make it look like it was directed to us, so we don't look 1993 * like a fool with a broadcast or multicast source address. 1994 */ 1995 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1996 /* 1997 * Make sure that we haven't grabbed an interface that's DOWN. 1998 */ 1999 if (ipif != NULL) { 2000 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2001 ipha->ipha_src, zoneid); 2002 if (ipif_chosen != NULL) { 2003 ipif_refrele(ipif); 2004 ipif = ipif_chosen; 2005 } 2006 } 2007 if (ipif == NULL) { 2008 ip0dbg(("icmp_inbound: " 2009 "No source for broadcast/multicast:\n" 2010 "\tsrc 0x%x dst 0x%x ill %p " 2011 "ipif_lcl_addr 0x%x\n", 2012 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2013 (void *)ill, 2014 ill->ill_ipif->ipif_lcl_addr)); 2015 freemsg(first_mp); 2016 return; 2017 } 2018 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2019 ipha->ipha_dst = ipif->ipif_src_addr; 2020 ipif_refrele(ipif); 2021 } 2022 /* Reset time to live. */ 2023 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2024 { 2025 /* Swap source and destination addresses */ 2026 ipaddr_t tmp; 2027 2028 tmp = ipha->ipha_src; 2029 ipha->ipha_src = ipha->ipha_dst; 2030 ipha->ipha_dst = tmp; 2031 } 2032 ipha->ipha_ident = 0; 2033 if (!IS_SIMPLE_IPH(ipha)) 2034 icmp_options_update(ipha); 2035 2036 if (!mctl_present) { 2037 /* 2038 * This packet should go out the same way as it 2039 * came in i.e in clear. To make sure that global 2040 * policy will not be applied to this in ip_wput_ire, 2041 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2042 */ 2043 ASSERT(first_mp == mp); 2044 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2045 if (first_mp == NULL) { 2046 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2047 freemsg(mp); 2048 return; 2049 } 2050 ii = (ipsec_in_t *)first_mp->b_rptr; 2051 2052 /* This is not a secure packet */ 2053 ii->ipsec_in_secure = B_FALSE; 2054 first_mp->b_cont = mp; 2055 } else { 2056 ii = (ipsec_in_t *)first_mp->b_rptr; 2057 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2058 } 2059 if (!ipsec_in_to_out(first_mp, ipha, NULL, zoneid)) { 2060 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2061 return; 2062 } 2063 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2064 put(WR(q), first_mp); 2065 } 2066 2067 static ipaddr_t 2068 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2069 { 2070 conn_t *connp; 2071 connf_t *connfp; 2072 ipaddr_t nexthop_addr = INADDR_ANY; 2073 int hdr_length = IPH_HDR_LENGTH(ipha); 2074 uint16_t *up; 2075 uint32_t ports; 2076 ip_stack_t *ipst = ill->ill_ipst; 2077 2078 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2079 switch (ipha->ipha_protocol) { 2080 case IPPROTO_TCP: 2081 { 2082 tcph_t *tcph; 2083 2084 /* do a reverse lookup */ 2085 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2086 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2087 TCPS_LISTEN, ipst); 2088 break; 2089 } 2090 case IPPROTO_UDP: 2091 { 2092 uint32_t dstport, srcport; 2093 2094 ((uint16_t *)&ports)[0] = up[1]; 2095 ((uint16_t *)&ports)[1] = up[0]; 2096 2097 /* Extract ports in net byte order */ 2098 dstport = htons(ntohl(ports) & 0xFFFF); 2099 srcport = htons(ntohl(ports) >> 16); 2100 2101 connfp = &ipst->ips_ipcl_udp_fanout[ 2102 IPCL_UDP_HASH(dstport, ipst)]; 2103 mutex_enter(&connfp->connf_lock); 2104 connp = connfp->connf_head; 2105 2106 /* do a reverse lookup */ 2107 while ((connp != NULL) && 2108 (!IPCL_UDP_MATCH(connp, dstport, 2109 ipha->ipha_src, srcport, ipha->ipha_dst) || 2110 !IPCL_ZONE_MATCH(connp, zoneid))) { 2111 connp = connp->conn_next; 2112 } 2113 if (connp != NULL) 2114 CONN_INC_REF(connp); 2115 mutex_exit(&connfp->connf_lock); 2116 break; 2117 } 2118 case IPPROTO_SCTP: 2119 { 2120 in6_addr_t map_src, map_dst; 2121 2122 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2123 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2124 ((uint16_t *)&ports)[0] = up[1]; 2125 ((uint16_t *)&ports)[1] = up[0]; 2126 2127 connp = sctp_find_conn(&map_src, &map_dst, ports, 2128 zoneid, ipst->ips_netstack->netstack_sctp); 2129 if (connp == NULL) { 2130 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2131 zoneid, ports, ipha, ipst); 2132 } else { 2133 CONN_INC_REF(connp); 2134 SCTP_REFRELE(CONN2SCTP(connp)); 2135 } 2136 break; 2137 } 2138 default: 2139 { 2140 ipha_t ripha; 2141 2142 ripha.ipha_src = ipha->ipha_dst; 2143 ripha.ipha_dst = ipha->ipha_src; 2144 ripha.ipha_protocol = ipha->ipha_protocol; 2145 2146 connfp = &ipst->ips_ipcl_proto_fanout[ 2147 ipha->ipha_protocol]; 2148 mutex_enter(&connfp->connf_lock); 2149 connp = connfp->connf_head; 2150 for (connp = connfp->connf_head; connp != NULL; 2151 connp = connp->conn_next) { 2152 if (IPCL_PROTO_MATCH(connp, 2153 ipha->ipha_protocol, &ripha, ill, 2154 0, zoneid)) { 2155 CONN_INC_REF(connp); 2156 break; 2157 } 2158 } 2159 mutex_exit(&connfp->connf_lock); 2160 } 2161 } 2162 if (connp != NULL) { 2163 if (connp->conn_nexthop_set) 2164 nexthop_addr = connp->conn_nexthop_v4; 2165 CONN_DEC_REF(connp); 2166 } 2167 return (nexthop_addr); 2168 } 2169 2170 /* Table from RFC 1191 */ 2171 static int icmp_frag_size_table[] = 2172 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2173 2174 /* 2175 * Process received ICMP Packet too big. 2176 * After updating any IRE it does the fanout to any matching transport streams. 2177 * Assumes the message has been pulled up till the IP header that caused 2178 * the error. 2179 * 2180 * Returns B_FALSE on failure and B_TRUE on success. 2181 */ 2182 static boolean_t 2183 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2184 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2185 ip_stack_t *ipst) 2186 { 2187 ire_t *ire, *first_ire; 2188 int mtu, orig_mtu; 2189 int hdr_length; 2190 ipaddr_t nexthop_addr; 2191 boolean_t disable_pmtud; 2192 2193 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2194 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2195 ASSERT(ill != NULL); 2196 2197 hdr_length = IPH_HDR_LENGTH(ipha); 2198 2199 /* Drop if the original packet contained a source route */ 2200 if (ip_source_route_included(ipha)) { 2201 return (B_FALSE); 2202 } 2203 /* 2204 * Verify we have at least ICMP_MIN_TP_HDR_LENGTH bytes of transport 2205 * header. 2206 */ 2207 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2208 mp->b_wptr) { 2209 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2210 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2211 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2212 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2213 return (B_FALSE); 2214 } 2215 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2216 ipha = (ipha_t *)&icmph[1]; 2217 } 2218 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2219 if (nexthop_addr != INADDR_ANY) { 2220 /* nexthop set */ 2221 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2222 nexthop_addr, 0, NULL, ALL_ZONES, msg_getlabel(mp), 2223 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2224 } else { 2225 /* nexthop not set */ 2226 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2227 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2228 } 2229 2230 if (!first_ire) { 2231 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2232 ntohl(ipha->ipha_dst))); 2233 return (B_FALSE); 2234 } 2235 2236 /* Check for MTU discovery advice as described in RFC 1191 */ 2237 mtu = ntohs(icmph->icmph_du_mtu); 2238 orig_mtu = mtu; 2239 disable_pmtud = B_FALSE; 2240 2241 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2242 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2243 ire = ire->ire_next) { 2244 /* 2245 * Look for the connection to which this ICMP message is 2246 * directed. If it has the IP_NEXTHOP option set, then the 2247 * search is limited to IREs with the MATCH_IRE_PRIVATE 2248 * option. Else the search is limited to regular IREs. 2249 */ 2250 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2251 (nexthop_addr != ire->ire_gateway_addr)) || 2252 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2253 (nexthop_addr != INADDR_ANY))) 2254 continue; 2255 2256 mutex_enter(&ire->ire_lock); 2257 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 2258 uint32_t length; 2259 int i; 2260 2261 /* 2262 * Use the table from RFC 1191 to figure out 2263 * the next "plateau" based on the length in 2264 * the original IP packet. 2265 */ 2266 length = ntohs(ipha->ipha_length); 2267 DTRACE_PROBE2(ip4__pmtu__guess, ire_t *, ire, 2268 uint32_t, length); 2269 if (ire->ire_max_frag <= length && 2270 ire->ire_max_frag >= length - hdr_length) { 2271 /* 2272 * Handle broken BSD 4.2 systems that 2273 * return the wrong iph_length in ICMP 2274 * errors. 2275 */ 2276 length -= hdr_length; 2277 } 2278 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2279 if (length > icmp_frag_size_table[i]) 2280 break; 2281 } 2282 if (i == A_CNT(icmp_frag_size_table)) { 2283 /* Smaller than 68! */ 2284 disable_pmtud = B_TRUE; 2285 mtu = ipst->ips_ip_pmtu_min; 2286 } else { 2287 mtu = icmp_frag_size_table[i]; 2288 if (mtu < ipst->ips_ip_pmtu_min) { 2289 mtu = ipst->ips_ip_pmtu_min; 2290 disable_pmtud = B_TRUE; 2291 } 2292 } 2293 /* Fool the ULP into believing our guessed PMTU. */ 2294 icmph->icmph_du_zero = 0; 2295 icmph->icmph_du_mtu = htons(mtu); 2296 } 2297 if (disable_pmtud) 2298 ire->ire_frag_flag = 0; 2299 /* Reduce the IRE max frag value as advised. */ 2300 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2301 if (ire->ire_max_frag == mtu) { 2302 /* Decreased it */ 2303 ire->ire_marks |= IRE_MARK_PMTU; 2304 } 2305 mutex_exit(&ire->ire_lock); 2306 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, ire_t *, 2307 ire, int, orig_mtu, int, mtu); 2308 } 2309 rw_exit(&first_ire->ire_bucket->irb_lock); 2310 ire_refrele(first_ire); 2311 return (B_TRUE); 2312 } 2313 2314 /* 2315 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2316 * calls this function. 2317 */ 2318 static mblk_t * 2319 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2320 { 2321 ipha_t *ipha; 2322 icmph_t *icmph; 2323 ipha_t *in_ipha; 2324 int length; 2325 2326 ASSERT(mp->b_datap->db_type == M_DATA); 2327 2328 /* 2329 * For Self-encapsulated packets, we added an extra IP header 2330 * without the options. Inner IP header is the one from which 2331 * the outer IP header was formed. Thus, we need to remove the 2332 * outer IP header. To do this, we pullup the whole message 2333 * and overlay whatever follows the outer IP header over the 2334 * outer IP header. 2335 */ 2336 2337 if (!pullupmsg(mp, -1)) 2338 return (NULL); 2339 2340 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2341 ipha = (ipha_t *)&icmph[1]; 2342 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2343 2344 /* 2345 * The length that we want to overlay is following the inner 2346 * IP header. Subtracting the IP header + icmp header + outer 2347 * IP header's length should give us the length that we want to 2348 * overlay. 2349 */ 2350 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2351 hdr_length; 2352 /* 2353 * Overlay whatever follows the inner header over the 2354 * outer header. 2355 */ 2356 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2357 2358 /* Set the wptr to account for the outer header */ 2359 mp->b_wptr -= hdr_length; 2360 return (mp); 2361 } 2362 2363 /* 2364 * Fanout for ICMP errors containing IP-in-IPv4 packets. Returns B_TRUE if a 2365 * tunnel consumed the message, and B_FALSE otherwise. 2366 */ 2367 static boolean_t 2368 icmp_inbound_iptun_fanout(mblk_t *first_mp, ipha_t *ripha, ill_t *ill, 2369 ip_stack_t *ipst) 2370 { 2371 conn_t *connp; 2372 2373 if ((connp = ipcl_iptun_classify_v4(&ripha->ipha_src, &ripha->ipha_dst, 2374 ipst)) == NULL) 2375 return (B_FALSE); 2376 2377 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 2378 connp->conn_recv(connp, first_mp, NULL); 2379 CONN_DEC_REF(connp); 2380 return (B_TRUE); 2381 } 2382 2383 /* 2384 * Try to pass the ICMP message upstream in case the ULP cares. 2385 * 2386 * If the packet that caused the ICMP error is secure, we send 2387 * it to AH/ESP to make sure that the attached packet has a 2388 * valid association. ipha in the code below points to the 2389 * IP header of the packet that caused the error. 2390 * 2391 * For IPsec cases, we let the next-layer-up (which has access to 2392 * cached policy on the conn_t, or can query the SPD directly) 2393 * subtract out any IPsec overhead if they must. We therefore make no 2394 * adjustments here for IPsec overhead. 2395 * 2396 * IFN could have been generated locally or by some router. 2397 * 2398 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2399 * This happens because IP adjusted its value of MTU on an 2400 * earlier IFN message and could not tell the upper layer, 2401 * the new adjusted value of MTU e.g. Packet was encrypted 2402 * or there was not enough information to fanout to upper 2403 * layers. Thus on the next outbound datagram, ip_wput_ire 2404 * generates the IFN, where IPsec processing has *not* been 2405 * done. 2406 * 2407 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2408 * could have generated this. This happens because ire_max_frag 2409 * value in IP was set to a new value, while the IPsec processing 2410 * was being done and after we made the fragmentation check in 2411 * ip_wput_ire. Thus on return from IPsec processing, 2412 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2413 * and generates the IFN. As IPsec processing is over, we fanout 2414 * to AH/ESP to remove the header. 2415 * 2416 * In both these cases, ipsec_in_loopback will be set indicating 2417 * that IFN was generated locally. 2418 * 2419 * ROUTER : IFN could be secure or non-secure. 2420 * 2421 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2422 * packet in error has AH/ESP headers to validate the AH/ESP 2423 * headers. AH/ESP will verify whether there is a valid SA or 2424 * not and send it back. We will fanout again if we have more 2425 * data in the packet. 2426 * 2427 * If the packet in error does not have AH/ESP, we handle it 2428 * like any other case. 2429 * 2430 * * NON_SECURE : If the packet in error has AH/ESP headers, 2431 * we attach a dummy ipsec_in and send it up to AH/ESP 2432 * for validation. AH/ESP will verify whether there is a 2433 * valid SA or not and send it back. We will fanout again if 2434 * we have more data in the packet. 2435 * 2436 * If the packet in error does not have AH/ESP, we handle it 2437 * like any other case. 2438 */ 2439 static void 2440 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2441 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2442 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2443 zoneid_t zoneid) 2444 { 2445 uint16_t *up; /* Pointer to ports in ULP header */ 2446 uint32_t ports; /* reversed ports for fanout */ 2447 ipha_t ripha; /* With reversed addresses */ 2448 mblk_t *first_mp; 2449 ipsec_in_t *ii; 2450 tcph_t *tcph; 2451 conn_t *connp; 2452 ip_stack_t *ipst; 2453 2454 ASSERT(ill != NULL); 2455 2456 ASSERT(recv_ill != NULL); 2457 ipst = recv_ill->ill_ipst; 2458 2459 first_mp = mp; 2460 if (mctl_present) { 2461 mp = first_mp->b_cont; 2462 ASSERT(mp != NULL); 2463 2464 ii = (ipsec_in_t *)first_mp->b_rptr; 2465 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2466 } else { 2467 ii = NULL; 2468 } 2469 2470 /* 2471 * We need a separate IP header with the source and destination 2472 * addresses reversed to do fanout/classification because the ipha in 2473 * the ICMP error is in the form we sent it out. 2474 */ 2475 ripha.ipha_src = ipha->ipha_dst; 2476 ripha.ipha_dst = ipha->ipha_src; 2477 ripha.ipha_protocol = ipha->ipha_protocol; 2478 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2479 2480 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2481 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2482 ntohl(ipha->ipha_dst), 2483 icmph->icmph_type, icmph->icmph_code)); 2484 2485 switch (ipha->ipha_protocol) { 2486 case IPPROTO_UDP: 2487 /* 2488 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2489 * transport header. 2490 */ 2491 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2492 mp->b_wptr) { 2493 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2494 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2495 goto discard_pkt; 2496 } 2497 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2498 ipha = (ipha_t *)&icmph[1]; 2499 } 2500 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2501 2502 /* Attempt to find a client stream based on port. */ 2503 ((uint16_t *)&ports)[0] = up[1]; 2504 ((uint16_t *)&ports)[1] = up[0]; 2505 ip2dbg(("icmp_inbound_error: UDP ports %d to %d\n", 2506 ntohs(up[0]), ntohs(up[1]))); 2507 2508 /* Have to change db_type after any pullupmsg */ 2509 DB_TYPE(mp) = M_CTL; 2510 2511 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2512 mctl_present, ip_policy, recv_ill, zoneid); 2513 return; 2514 2515 case IPPROTO_TCP: 2516 /* 2517 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2518 * transport header. 2519 */ 2520 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2521 mp->b_wptr) { 2522 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2523 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2524 goto discard_pkt; 2525 } 2526 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2527 ipha = (ipha_t *)&icmph[1]; 2528 } 2529 /* 2530 * Find a TCP client stream for this packet. 2531 * Note that we do a reverse lookup since the header is 2532 * in the form we sent it out. 2533 */ 2534 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2535 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2536 ipst); 2537 if (connp == NULL) 2538 goto discard_pkt; 2539 2540 /* Have to change db_type after any pullupmsg */ 2541 DB_TYPE(mp) = M_CTL; 2542 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, tcp_input, connp, 2543 SQ_FILL, SQTAG_TCP_INPUT_ICMP_ERR); 2544 return; 2545 2546 case IPPROTO_SCTP: 2547 /* 2548 * Verify we have at least ICMP_MIN_SCTP_HDR_LEN bytes of 2549 * transport header, in the first mp. 2550 */ 2551 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_SCTP_HDR_LEN > 2552 mp->b_wptr) { 2553 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2554 ICMP_MIN_SCTP_HDR_LEN - mp->b_rptr)) { 2555 goto discard_pkt; 2556 } 2557 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2558 ipha = (ipha_t *)&icmph[1]; 2559 } 2560 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2561 /* Find a SCTP client stream for this packet. */ 2562 ((uint16_t *)&ports)[0] = up[1]; 2563 ((uint16_t *)&ports)[1] = up[0]; 2564 2565 /* Have to change db_type after any pullupmsg */ 2566 DB_TYPE(mp) = M_CTL; 2567 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2568 mctl_present, ip_policy, zoneid); 2569 return; 2570 2571 case IPPROTO_ESP: 2572 case IPPROTO_AH: { 2573 int ipsec_rc; 2574 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2575 2576 /* 2577 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2578 * We will re-use the IPSEC_IN if it is already present as 2579 * AH/ESP will not affect any fields in the IPSEC_IN for 2580 * ICMP errors. If there is no IPSEC_IN, allocate a new 2581 * one and attach it in the front. 2582 */ 2583 if (ii != NULL) { 2584 /* 2585 * ip_fanout_proto_again converts the ICMP errors 2586 * that come back from AH/ESP to M_DATA so that 2587 * if it is non-AH/ESP and we do a pullupmsg in 2588 * this function, it would work. Convert it back 2589 * to M_CTL before we send up as this is a ICMP 2590 * error. This could have been generated locally or 2591 * by some router. Validate the inner IPsec 2592 * headers. 2593 * 2594 * NOTE : ill_index is used by ip_fanout_proto_again 2595 * to locate the ill. 2596 */ 2597 ASSERT(ill != NULL); 2598 ii->ipsec_in_ill_index = 2599 ill->ill_phyint->phyint_ifindex; 2600 ii->ipsec_in_rill_index = 2601 recv_ill->ill_phyint->phyint_ifindex; 2602 DB_TYPE(first_mp->b_cont) = M_CTL; 2603 } else { 2604 /* 2605 * IPSEC_IN is not present. We attach a ipsec_in 2606 * message and send up to IPsec for validating 2607 * and removing the IPsec headers. Clear 2608 * ipsec_in_secure so that when we return 2609 * from IPsec, we don't mistakenly think that this 2610 * is a secure packet came from the network. 2611 * 2612 * NOTE : ill_index is used by ip_fanout_proto_again 2613 * to locate the ill. 2614 */ 2615 ASSERT(first_mp == mp); 2616 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2617 if (first_mp == NULL) { 2618 freemsg(mp); 2619 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2620 return; 2621 } 2622 ii = (ipsec_in_t *)first_mp->b_rptr; 2623 2624 /* This is not a secure packet */ 2625 ii->ipsec_in_secure = B_FALSE; 2626 first_mp->b_cont = mp; 2627 DB_TYPE(mp) = M_CTL; 2628 ASSERT(ill != NULL); 2629 ii->ipsec_in_ill_index = 2630 ill->ill_phyint->phyint_ifindex; 2631 ii->ipsec_in_rill_index = 2632 recv_ill->ill_phyint->phyint_ifindex; 2633 } 2634 2635 if (!ipsec_loaded(ipss)) { 2636 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2637 return; 2638 } 2639 2640 if (ipha->ipha_protocol == IPPROTO_ESP) 2641 ipsec_rc = ipsecesp_icmp_error(first_mp); 2642 else 2643 ipsec_rc = ipsecah_icmp_error(first_mp); 2644 if (ipsec_rc == IPSEC_STATUS_FAILED) 2645 return; 2646 2647 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2648 return; 2649 } 2650 case IPPROTO_ENCAP: 2651 case IPPROTO_IPV6: 2652 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2653 ipha_t *in_ipha; 2654 2655 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2656 mp->b_wptr) { 2657 if (!pullupmsg(mp, (uchar_t *)ipha + 2658 hdr_length + sizeof (ipha_t) - 2659 mp->b_rptr)) { 2660 goto discard_pkt; 2661 } 2662 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2663 ipha = (ipha_t *)&icmph[1]; 2664 } 2665 /* 2666 * Caller has verified that length has to be 2667 * at least the size of IP header. 2668 */ 2669 ASSERT(hdr_length >= sizeof (ipha_t)); 2670 /* 2671 * Check the sanity of the inner IP header like 2672 * we did for the outer header. 2673 */ 2674 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2675 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION) || 2676 IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) 2677 goto discard_pkt; 2678 /* Check for Self-encapsulated tunnels */ 2679 if (in_ipha->ipha_src == ipha->ipha_src && 2680 in_ipha->ipha_dst == ipha->ipha_dst) { 2681 2682 mp = icmp_inbound_self_encap_error(mp, 2683 iph_hdr_length, hdr_length); 2684 if (mp == NULL) 2685 goto discard_pkt; 2686 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2687 ipha = (ipha_t *)&icmph[1]; 2688 hdr_length = IPH_HDR_LENGTH(ipha); 2689 /* 2690 * The packet in error is self-encapsualted. 2691 * And we are finding it further encapsulated 2692 * which we could not have possibly generated. 2693 */ 2694 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2695 goto discard_pkt; 2696 } 2697 icmp_inbound_error_fanout(q, ill, first_mp, 2698 icmph, ipha, iph_hdr_length, hdr_length, 2699 mctl_present, ip_policy, recv_ill, zoneid); 2700 return; 2701 } 2702 } 2703 2704 DB_TYPE(mp) = M_CTL; 2705 if (icmp_inbound_iptun_fanout(first_mp, &ripha, ill, ipst)) 2706 return; 2707 /* 2708 * No IP tunnel is interested, fallthrough and see 2709 * if a raw socket will want it. 2710 */ 2711 /* FALLTHRU */ 2712 default: 2713 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2714 ip_policy, recv_ill, zoneid); 2715 return; 2716 } 2717 /* NOTREACHED */ 2718 discard_pkt: 2719 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2720 drop_pkt:; 2721 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2722 freemsg(first_mp); 2723 } 2724 2725 /* 2726 * Common IP options parser. 2727 * 2728 * Setup routine: fill in *optp with options-parsing state, then 2729 * tail-call ipoptp_next to return the first option. 2730 */ 2731 uint8_t 2732 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2733 { 2734 uint32_t totallen; /* total length of all options */ 2735 2736 totallen = ipha->ipha_version_and_hdr_length - 2737 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2738 totallen <<= 2; 2739 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2740 optp->ipoptp_end = optp->ipoptp_next + totallen; 2741 optp->ipoptp_flags = 0; 2742 return (ipoptp_next(optp)); 2743 } 2744 2745 /* 2746 * Common IP options parser: extract next option. 2747 */ 2748 uint8_t 2749 ipoptp_next(ipoptp_t *optp) 2750 { 2751 uint8_t *end = optp->ipoptp_end; 2752 uint8_t *cur = optp->ipoptp_next; 2753 uint8_t opt, len, pointer; 2754 2755 /* 2756 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2757 * has been corrupted. 2758 */ 2759 ASSERT(cur <= end); 2760 2761 if (cur == end) 2762 return (IPOPT_EOL); 2763 2764 opt = cur[IPOPT_OPTVAL]; 2765 2766 /* 2767 * Skip any NOP options. 2768 */ 2769 while (opt == IPOPT_NOP) { 2770 cur++; 2771 if (cur == end) 2772 return (IPOPT_EOL); 2773 opt = cur[IPOPT_OPTVAL]; 2774 } 2775 2776 if (opt == IPOPT_EOL) 2777 return (IPOPT_EOL); 2778 2779 /* 2780 * Option requiring a length. 2781 */ 2782 if ((cur + 1) >= end) { 2783 optp->ipoptp_flags |= IPOPTP_ERROR; 2784 return (IPOPT_EOL); 2785 } 2786 len = cur[IPOPT_OLEN]; 2787 if (len < 2) { 2788 optp->ipoptp_flags |= IPOPTP_ERROR; 2789 return (IPOPT_EOL); 2790 } 2791 optp->ipoptp_cur = cur; 2792 optp->ipoptp_len = len; 2793 optp->ipoptp_next = cur + len; 2794 if (cur + len > end) { 2795 optp->ipoptp_flags |= IPOPTP_ERROR; 2796 return (IPOPT_EOL); 2797 } 2798 2799 /* 2800 * For the options which require a pointer field, make sure 2801 * its there, and make sure it points to either something 2802 * inside this option, or the end of the option. 2803 */ 2804 switch (opt) { 2805 case IPOPT_RR: 2806 case IPOPT_TS: 2807 case IPOPT_LSRR: 2808 case IPOPT_SSRR: 2809 if (len <= IPOPT_OFFSET) { 2810 optp->ipoptp_flags |= IPOPTP_ERROR; 2811 return (opt); 2812 } 2813 pointer = cur[IPOPT_OFFSET]; 2814 if (pointer - 1 > len) { 2815 optp->ipoptp_flags |= IPOPTP_ERROR; 2816 return (opt); 2817 } 2818 break; 2819 } 2820 2821 /* 2822 * Sanity check the pointer field based on the type of the 2823 * option. 2824 */ 2825 switch (opt) { 2826 case IPOPT_RR: 2827 case IPOPT_SSRR: 2828 case IPOPT_LSRR: 2829 if (pointer < IPOPT_MINOFF_SR) 2830 optp->ipoptp_flags |= IPOPTP_ERROR; 2831 break; 2832 case IPOPT_TS: 2833 if (pointer < IPOPT_MINOFF_IT) 2834 optp->ipoptp_flags |= IPOPTP_ERROR; 2835 /* 2836 * Note that the Internet Timestamp option also 2837 * contains two four bit fields (the Overflow field, 2838 * and the Flag field), which follow the pointer 2839 * field. We don't need to check that these fields 2840 * fall within the length of the option because this 2841 * was implicitely done above. We've checked that the 2842 * pointer value is at least IPOPT_MINOFF_IT, and that 2843 * it falls within the option. Since IPOPT_MINOFF_IT > 2844 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2845 */ 2846 ASSERT(len > IPOPT_POS_OV_FLG); 2847 break; 2848 } 2849 2850 return (opt); 2851 } 2852 2853 /* 2854 * Use the outgoing IP header to create an IP_OPTIONS option the way 2855 * it was passed down from the application. 2856 */ 2857 int 2858 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2859 { 2860 ipoptp_t opts; 2861 const uchar_t *opt; 2862 uint8_t optval; 2863 uint8_t optlen; 2864 uint32_t len = 0; 2865 uchar_t *buf1 = buf; 2866 2867 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2868 len += IP_ADDR_LEN; 2869 bzero(buf1, IP_ADDR_LEN); 2870 2871 /* 2872 * OK to cast away const here, as we don't store through the returned 2873 * opts.ipoptp_cur pointer. 2874 */ 2875 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2876 optval != IPOPT_EOL; 2877 optval = ipoptp_next(&opts)) { 2878 int off; 2879 2880 opt = opts.ipoptp_cur; 2881 optlen = opts.ipoptp_len; 2882 switch (optval) { 2883 case IPOPT_SSRR: 2884 case IPOPT_LSRR: 2885 2886 /* 2887 * Insert ipha_dst as the first entry in the source 2888 * route and move down the entries on step. 2889 * The last entry gets placed at buf1. 2890 */ 2891 buf[IPOPT_OPTVAL] = optval; 2892 buf[IPOPT_OLEN] = optlen; 2893 buf[IPOPT_OFFSET] = optlen; 2894 2895 off = optlen - IP_ADDR_LEN; 2896 if (off < 0) { 2897 /* No entries in source route */ 2898 break; 2899 } 2900 /* Last entry in source route */ 2901 bcopy(opt + off, buf1, IP_ADDR_LEN); 2902 off -= IP_ADDR_LEN; 2903 2904 while (off > 0) { 2905 bcopy(opt + off, 2906 buf + off + IP_ADDR_LEN, 2907 IP_ADDR_LEN); 2908 off -= IP_ADDR_LEN; 2909 } 2910 /* ipha_dst into first slot */ 2911 bcopy(&ipha->ipha_dst, 2912 buf + off + IP_ADDR_LEN, 2913 IP_ADDR_LEN); 2914 buf += optlen; 2915 len += optlen; 2916 break; 2917 2918 case IPOPT_COMSEC: 2919 case IPOPT_SECURITY: 2920 /* if passing up a label is not ok, then remove */ 2921 if (is_system_labeled()) 2922 break; 2923 /* FALLTHROUGH */ 2924 default: 2925 bcopy(opt, buf, optlen); 2926 buf += optlen; 2927 len += optlen; 2928 break; 2929 } 2930 } 2931 done: 2932 /* Pad the resulting options */ 2933 while (len & 0x3) { 2934 *buf++ = IPOPT_EOL; 2935 len++; 2936 } 2937 return (len); 2938 } 2939 2940 /* 2941 * Update any record route or timestamp options to include this host. 2942 * Reverse any source route option. 2943 * This routine assumes that the options are well formed i.e. that they 2944 * have already been checked. 2945 */ 2946 static void 2947 icmp_options_update(ipha_t *ipha) 2948 { 2949 ipoptp_t opts; 2950 uchar_t *opt; 2951 uint8_t optval; 2952 ipaddr_t src; /* Our local address */ 2953 ipaddr_t dst; 2954 2955 ip2dbg(("icmp_options_update\n")); 2956 src = ipha->ipha_src; 2957 dst = ipha->ipha_dst; 2958 2959 for (optval = ipoptp_first(&opts, ipha); 2960 optval != IPOPT_EOL; 2961 optval = ipoptp_next(&opts)) { 2962 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2963 opt = opts.ipoptp_cur; 2964 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2965 optval, opts.ipoptp_len)); 2966 switch (optval) { 2967 int off1, off2; 2968 case IPOPT_SSRR: 2969 case IPOPT_LSRR: 2970 /* 2971 * Reverse the source route. The first entry 2972 * should be the next to last one in the current 2973 * source route (the last entry is our address). 2974 * The last entry should be the final destination. 2975 */ 2976 off1 = IPOPT_MINOFF_SR - 1; 2977 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2978 if (off2 < 0) { 2979 /* No entries in source route */ 2980 ip1dbg(( 2981 "icmp_options_update: bad src route\n")); 2982 break; 2983 } 2984 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2985 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2986 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2987 off2 -= IP_ADDR_LEN; 2988 2989 while (off1 < off2) { 2990 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2991 bcopy((char *)opt + off2, (char *)opt + off1, 2992 IP_ADDR_LEN); 2993 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2994 off1 += IP_ADDR_LEN; 2995 off2 -= IP_ADDR_LEN; 2996 } 2997 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2998 break; 2999 } 3000 } 3001 } 3002 3003 /* 3004 * Process received ICMP Redirect messages. 3005 */ 3006 static void 3007 icmp_redirect(ill_t *ill, mblk_t *mp) 3008 { 3009 ipha_t *ipha; 3010 int iph_hdr_length; 3011 icmph_t *icmph; 3012 ipha_t *ipha_err; 3013 ire_t *ire; 3014 ire_t *prev_ire; 3015 ire_t *save_ire; 3016 ipaddr_t src, dst, gateway; 3017 iulp_t ulp_info = { 0 }; 3018 int error; 3019 ip_stack_t *ipst; 3020 3021 ASSERT(ill != NULL); 3022 ipst = ill->ill_ipst; 3023 3024 ipha = (ipha_t *)mp->b_rptr; 3025 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3026 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3027 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3028 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3029 freemsg(mp); 3030 return; 3031 } 3032 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3033 ipha_err = (ipha_t *)&icmph[1]; 3034 src = ipha->ipha_src; 3035 dst = ipha_err->ipha_dst; 3036 gateway = icmph->icmph_rd_gateway; 3037 /* Make sure the new gateway is reachable somehow. */ 3038 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3039 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3040 /* 3041 * Make sure we had a route for the dest in question and that 3042 * that route was pointing to the old gateway (the source of the 3043 * redirect packet.) 3044 */ 3045 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3046 NULL, MATCH_IRE_GW, ipst); 3047 /* 3048 * Check that 3049 * the redirect was not from ourselves 3050 * the new gateway and the old gateway are directly reachable 3051 */ 3052 if (!prev_ire || 3053 !ire || 3054 ire->ire_type == IRE_LOCAL) { 3055 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3056 freemsg(mp); 3057 if (ire != NULL) 3058 ire_refrele(ire); 3059 if (prev_ire != NULL) 3060 ire_refrele(prev_ire); 3061 return; 3062 } 3063 3064 /* 3065 * Should we use the old ULP info to create the new gateway? From 3066 * a user's perspective, we should inherit the info so that it 3067 * is a "smooth" transition. If we do not do that, then new 3068 * connections going thru the new gateway will have no route metrics, 3069 * which is counter-intuitive to user. From a network point of 3070 * view, this may or may not make sense even though the new gateway 3071 * is still directly connected to us so the route metrics should not 3072 * change much. 3073 * 3074 * But if the old ire_uinfo is not initialized, we do another 3075 * recursive lookup on the dest using the new gateway. There may 3076 * be a route to that. If so, use it to initialize the redirect 3077 * route. 3078 */ 3079 if (prev_ire->ire_uinfo.iulp_set) { 3080 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3081 } else { 3082 ire_t *tmp_ire; 3083 ire_t *sire; 3084 3085 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3086 ALL_ZONES, 0, NULL, 3087 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3088 ipst); 3089 if (sire != NULL) { 3090 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3091 /* 3092 * If sire != NULL, ire_ftable_lookup() should not 3093 * return a NULL value. 3094 */ 3095 ASSERT(tmp_ire != NULL); 3096 ire_refrele(tmp_ire); 3097 ire_refrele(sire); 3098 } else if (tmp_ire != NULL) { 3099 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3100 sizeof (iulp_t)); 3101 ire_refrele(tmp_ire); 3102 } 3103 } 3104 if (prev_ire->ire_type == IRE_CACHE) 3105 ire_delete(prev_ire); 3106 ire_refrele(prev_ire); 3107 /* 3108 * TODO: more precise handling for cases 0, 2, 3, the latter two 3109 * require TOS routing 3110 */ 3111 switch (icmph->icmph_code) { 3112 case 0: 3113 case 1: 3114 /* TODO: TOS specificity for cases 2 and 3 */ 3115 case 2: 3116 case 3: 3117 break; 3118 default: 3119 freemsg(mp); 3120 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3121 ire_refrele(ire); 3122 return; 3123 } 3124 /* 3125 * Create a Route Association. This will allow us to remember that 3126 * someone we believe told us to use the particular gateway. 3127 */ 3128 save_ire = ire; 3129 ire = ire_create( 3130 (uchar_t *)&dst, /* dest addr */ 3131 (uchar_t *)&ip_g_all_ones, /* mask */ 3132 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3133 (uchar_t *)&gateway, /* gateway addr */ 3134 &save_ire->ire_max_frag, /* max frag */ 3135 NULL, /* no src nce */ 3136 NULL, /* no rfq */ 3137 NULL, /* no stq */ 3138 IRE_HOST, 3139 NULL, /* ipif */ 3140 0, /* cmask */ 3141 0, /* phandle */ 3142 0, /* ihandle */ 3143 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3144 &ulp_info, 3145 NULL, /* tsol_gc_t */ 3146 NULL, /* gcgrp */ 3147 ipst); 3148 3149 if (ire == NULL) { 3150 freemsg(mp); 3151 ire_refrele(save_ire); 3152 return; 3153 } 3154 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3155 ire_refrele(save_ire); 3156 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3157 3158 if (error == 0) { 3159 ire_refrele(ire); /* Held in ire_add_v4 */ 3160 /* tell routing sockets that we received a redirect */ 3161 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3162 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3163 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3164 } 3165 3166 /* 3167 * Delete any existing IRE_HOST type redirect ires for this destination. 3168 * This together with the added IRE has the effect of 3169 * modifying an existing redirect. 3170 */ 3171 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3172 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3173 if (prev_ire != NULL) { 3174 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3175 ire_delete(prev_ire); 3176 ire_refrele(prev_ire); 3177 } 3178 3179 freemsg(mp); 3180 } 3181 3182 /* 3183 * Generate an ICMP parameter problem message. 3184 */ 3185 static void 3186 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3187 ip_stack_t *ipst) 3188 { 3189 icmph_t icmph; 3190 boolean_t mctl_present; 3191 mblk_t *first_mp; 3192 3193 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3194 3195 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3196 if (mctl_present) 3197 freeb(first_mp); 3198 return; 3199 } 3200 3201 bzero(&icmph, sizeof (icmph_t)); 3202 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3203 icmph.icmph_pp_ptr = ptr; 3204 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3205 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3206 ipst); 3207 } 3208 3209 /* 3210 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3211 * the ICMP header pointed to by "stuff". (May be called as writer.) 3212 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3213 * an icmp error packet can be sent. 3214 * Assigns an appropriate source address to the packet. If ipha_dst is 3215 * one of our addresses use it for source. Otherwise pick a source based 3216 * on a route lookup back to ipha_src. 3217 * Note that ipha_src must be set here since the 3218 * packet is likely to arrive on an ill queue in ip_wput() which will 3219 * not set a source address. 3220 */ 3221 static void 3222 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3223 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3224 { 3225 ipaddr_t dst; 3226 icmph_t *icmph; 3227 ipha_t *ipha; 3228 uint_t len_needed; 3229 size_t msg_len; 3230 mblk_t *mp1; 3231 ipaddr_t src; 3232 ire_t *ire; 3233 mblk_t *ipsec_mp; 3234 ipsec_out_t *io = NULL; 3235 3236 if (mctl_present) { 3237 /* 3238 * If it is : 3239 * 3240 * 1) a IPSEC_OUT, then this is caused by outbound 3241 * datagram originating on this host. IPsec processing 3242 * may or may not have been done. Refer to comments above 3243 * icmp_inbound_error_fanout for details. 3244 * 3245 * 2) a IPSEC_IN if we are generating a icmp_message 3246 * for an incoming datagram destined for us i.e called 3247 * from ip_fanout_send_icmp. 3248 */ 3249 ipsec_info_t *in; 3250 ipsec_mp = mp; 3251 mp = ipsec_mp->b_cont; 3252 3253 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3254 ipha = (ipha_t *)mp->b_rptr; 3255 3256 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3257 in->ipsec_info_type == IPSEC_IN); 3258 3259 if (in->ipsec_info_type == IPSEC_IN) { 3260 /* 3261 * Convert the IPSEC_IN to IPSEC_OUT. 3262 */ 3263 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL, zoneid)) { 3264 BUMP_MIB(&ipst->ips_ip_mib, 3265 ipIfStatsOutDiscards); 3266 return; 3267 } 3268 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3269 } else { 3270 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3271 io = (ipsec_out_t *)in; 3272 /* 3273 * Clear out ipsec_out_proc_begin, so we do a fresh 3274 * ire lookup. 3275 */ 3276 io->ipsec_out_proc_begin = B_FALSE; 3277 } 3278 ASSERT(zoneid != ALL_ZONES); 3279 /* 3280 * The IPSEC_IN (now an IPSEC_OUT) didn't have its zoneid 3281 * initialized. We need to do that now. 3282 */ 3283 io->ipsec_out_zoneid = zoneid; 3284 } else { 3285 /* 3286 * This is in clear. The icmp message we are building 3287 * here should go out in clear. 3288 * 3289 * Pardon the convolution of it all, but it's easier to 3290 * allocate a "use cleartext" IPSEC_IN message and convert 3291 * it than it is to allocate a new one. 3292 */ 3293 ipsec_in_t *ii; 3294 ASSERT(DB_TYPE(mp) == M_DATA); 3295 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3296 if (ipsec_mp == NULL) { 3297 freemsg(mp); 3298 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3299 return; 3300 } 3301 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3302 3303 /* This is not a secure packet */ 3304 ii->ipsec_in_secure = B_FALSE; 3305 ipsec_mp->b_cont = mp; 3306 ipha = (ipha_t *)mp->b_rptr; 3307 /* 3308 * Convert the IPSEC_IN to IPSEC_OUT. 3309 */ 3310 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL, zoneid)) { 3311 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3312 return; 3313 } 3314 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3315 } 3316 3317 /* Remember our eventual destination */ 3318 dst = ipha->ipha_src; 3319 3320 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3321 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3322 if (ire != NULL && 3323 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3324 src = ipha->ipha_dst; 3325 } else { 3326 if (ire != NULL) 3327 ire_refrele(ire); 3328 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3329 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3330 ipst); 3331 if (ire == NULL) { 3332 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3333 freemsg(ipsec_mp); 3334 return; 3335 } 3336 src = ire->ire_src_addr; 3337 } 3338 3339 if (ire != NULL) 3340 ire_refrele(ire); 3341 3342 /* 3343 * Check if we can send back more then 8 bytes in addition to 3344 * the IP header. We try to send 64 bytes of data and the internal 3345 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3346 */ 3347 len_needed = IPH_HDR_LENGTH(ipha); 3348 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3349 ipha->ipha_protocol == IPPROTO_IPV6) { 3350 3351 if (!pullupmsg(mp, -1)) { 3352 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3353 freemsg(ipsec_mp); 3354 return; 3355 } 3356 ipha = (ipha_t *)mp->b_rptr; 3357 3358 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3359 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3360 len_needed)); 3361 } else { 3362 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3363 3364 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3365 len_needed += ip_hdr_length_v6(mp, ip6h); 3366 } 3367 } 3368 len_needed += ipst->ips_ip_icmp_return; 3369 msg_len = msgdsize(mp); 3370 if (msg_len > len_needed) { 3371 (void) adjmsg(mp, len_needed - msg_len); 3372 msg_len = len_needed; 3373 } 3374 /* Make sure we propagate the cred/label for TX */ 3375 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3376 if (mp1 == NULL) { 3377 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3378 freemsg(ipsec_mp); 3379 return; 3380 } 3381 mp1->b_cont = mp; 3382 mp = mp1; 3383 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3384 ipsec_mp->b_rptr == (uint8_t *)io && 3385 io->ipsec_out_type == IPSEC_OUT); 3386 ipsec_mp->b_cont = mp; 3387 3388 /* 3389 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3390 * node generates be accepted in peace by all on-host destinations. 3391 * If we do NOT assume that all on-host destinations trust 3392 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3393 * (Look for ipsec_out_icmp_loopback). 3394 */ 3395 io->ipsec_out_icmp_loopback = B_TRUE; 3396 3397 ipha = (ipha_t *)mp->b_rptr; 3398 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3399 *ipha = icmp_ipha; 3400 ipha->ipha_src = src; 3401 ipha->ipha_dst = dst; 3402 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3403 msg_len += sizeof (icmp_ipha) + len; 3404 if (msg_len > IP_MAXPACKET) { 3405 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3406 msg_len = IP_MAXPACKET; 3407 } 3408 ipha->ipha_length = htons((uint16_t)msg_len); 3409 icmph = (icmph_t *)&ipha[1]; 3410 bcopy(stuff, icmph, len); 3411 icmph->icmph_checksum = 0; 3412 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3413 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3414 put(q, ipsec_mp); 3415 } 3416 3417 /* 3418 * Determine if an ICMP error packet can be sent given the rate limit. 3419 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3420 * in milliseconds) and a burst size. Burst size number of packets can 3421 * be sent arbitrarely closely spaced. 3422 * The state is tracked using two variables to implement an approximate 3423 * token bucket filter: 3424 * icmp_pkt_err_last - lbolt value when the last burst started 3425 * icmp_pkt_err_sent - number of packets sent in current burst 3426 */ 3427 boolean_t 3428 icmp_err_rate_limit(ip_stack_t *ipst) 3429 { 3430 clock_t now = TICK_TO_MSEC(lbolt); 3431 uint_t refilled; /* Number of packets refilled in tbf since last */ 3432 /* Guard against changes by loading into local variable */ 3433 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3434 3435 if (err_interval == 0) 3436 return (B_FALSE); 3437 3438 if (ipst->ips_icmp_pkt_err_last > now) { 3439 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3440 ipst->ips_icmp_pkt_err_last = 0; 3441 ipst->ips_icmp_pkt_err_sent = 0; 3442 } 3443 /* 3444 * If we are in a burst update the token bucket filter. 3445 * Update the "last" time to be close to "now" but make sure 3446 * we don't loose precision. 3447 */ 3448 if (ipst->ips_icmp_pkt_err_sent != 0) { 3449 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3450 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3451 ipst->ips_icmp_pkt_err_sent = 0; 3452 } else { 3453 ipst->ips_icmp_pkt_err_sent -= refilled; 3454 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3455 } 3456 } 3457 if (ipst->ips_icmp_pkt_err_sent == 0) { 3458 /* Start of new burst */ 3459 ipst->ips_icmp_pkt_err_last = now; 3460 } 3461 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3462 ipst->ips_icmp_pkt_err_sent++; 3463 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3464 ipst->ips_icmp_pkt_err_sent)); 3465 return (B_FALSE); 3466 } 3467 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3468 return (B_TRUE); 3469 } 3470 3471 /* 3472 * Check if it is ok to send an IPv4 ICMP error packet in 3473 * response to the IPv4 packet in mp. 3474 * Free the message and return null if no 3475 * ICMP error packet should be sent. 3476 */ 3477 static mblk_t * 3478 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3479 { 3480 icmph_t *icmph; 3481 ipha_t *ipha; 3482 uint_t len_needed; 3483 ire_t *src_ire; 3484 ire_t *dst_ire; 3485 3486 if (!mp) 3487 return (NULL); 3488 ipha = (ipha_t *)mp->b_rptr; 3489 if (ip_csum_hdr(ipha)) { 3490 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3491 freemsg(mp); 3492 return (NULL); 3493 } 3494 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3495 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3496 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3497 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3498 if (src_ire != NULL || dst_ire != NULL || 3499 CLASSD(ipha->ipha_dst) || 3500 CLASSD(ipha->ipha_src) || 3501 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3502 /* Note: only errors to the fragment with offset 0 */ 3503 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3504 freemsg(mp); 3505 if (src_ire != NULL) 3506 ire_refrele(src_ire); 3507 if (dst_ire != NULL) 3508 ire_refrele(dst_ire); 3509 return (NULL); 3510 } 3511 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3512 /* 3513 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3514 * errors in response to any ICMP errors. 3515 */ 3516 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3517 if (mp->b_wptr - mp->b_rptr < len_needed) { 3518 if (!pullupmsg(mp, len_needed)) { 3519 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3520 freemsg(mp); 3521 return (NULL); 3522 } 3523 ipha = (ipha_t *)mp->b_rptr; 3524 } 3525 icmph = (icmph_t *) 3526 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3527 switch (icmph->icmph_type) { 3528 case ICMP_DEST_UNREACHABLE: 3529 case ICMP_SOURCE_QUENCH: 3530 case ICMP_TIME_EXCEEDED: 3531 case ICMP_PARAM_PROBLEM: 3532 case ICMP_REDIRECT: 3533 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3534 freemsg(mp); 3535 return (NULL); 3536 default: 3537 break; 3538 } 3539 } 3540 /* 3541 * If this is a labeled system, then check to see if we're allowed to 3542 * send a response to this particular sender. If not, then just drop. 3543 */ 3544 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3545 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3546 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3547 freemsg(mp); 3548 return (NULL); 3549 } 3550 if (icmp_err_rate_limit(ipst)) { 3551 /* 3552 * Only send ICMP error packets every so often. 3553 * This should be done on a per port/source basis, 3554 * but for now this will suffice. 3555 */ 3556 freemsg(mp); 3557 return (NULL); 3558 } 3559 return (mp); 3560 } 3561 3562 /* 3563 * Generate an ICMP redirect message. 3564 */ 3565 static void 3566 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3567 { 3568 icmph_t icmph; 3569 3570 /* 3571 * We are called from ip_rput where we could 3572 * not have attached an IPSEC_IN. 3573 */ 3574 ASSERT(mp->b_datap->db_type == M_DATA); 3575 3576 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3577 return; 3578 } 3579 3580 bzero(&icmph, sizeof (icmph_t)); 3581 icmph.icmph_type = ICMP_REDIRECT; 3582 icmph.icmph_code = 1; 3583 icmph.icmph_rd_gateway = gateway; 3584 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3585 /* Redirects sent by router, and router is global zone */ 3586 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3587 } 3588 3589 /* 3590 * Generate an ICMP time exceeded message. 3591 */ 3592 void 3593 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3594 ip_stack_t *ipst) 3595 { 3596 icmph_t icmph; 3597 boolean_t mctl_present; 3598 mblk_t *first_mp; 3599 3600 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3601 3602 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3603 if (mctl_present) 3604 freeb(first_mp); 3605 return; 3606 } 3607 3608 bzero(&icmph, sizeof (icmph_t)); 3609 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3610 icmph.icmph_code = code; 3611 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3612 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3613 ipst); 3614 } 3615 3616 /* 3617 * Generate an ICMP unreachable message. 3618 */ 3619 void 3620 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3621 ip_stack_t *ipst) 3622 { 3623 icmph_t icmph; 3624 mblk_t *first_mp; 3625 boolean_t mctl_present; 3626 3627 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3628 3629 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3630 if (mctl_present) 3631 freeb(first_mp); 3632 return; 3633 } 3634 3635 bzero(&icmph, sizeof (icmph_t)); 3636 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3637 icmph.icmph_code = code; 3638 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3639 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3640 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3641 zoneid, ipst); 3642 } 3643 3644 /* 3645 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3646 * duplicate. As long as someone else holds the address, the interface will 3647 * stay down. When that conflict goes away, the interface is brought back up. 3648 * This is done so that accidental shutdowns of addresses aren't made 3649 * permanent. Your server will recover from a failure. 3650 * 3651 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3652 * user space process (dhcpagent). 3653 * 3654 * Recovery completes if ARP reports that the address is now ours (via 3655 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3656 * 3657 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3658 */ 3659 static void 3660 ipif_dup_recovery(void *arg) 3661 { 3662 ipif_t *ipif = arg; 3663 ill_t *ill = ipif->ipif_ill; 3664 mblk_t *arp_add_mp; 3665 mblk_t *arp_del_mp; 3666 ip_stack_t *ipst = ill->ill_ipst; 3667 3668 ipif->ipif_recovery_id = 0; 3669 3670 /* 3671 * No lock needed for moving or condemned check, as this is just an 3672 * optimization. 3673 */ 3674 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3675 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3676 (ipif->ipif_state_flags & (IPIF_CONDEMNED))) { 3677 /* No reason to try to bring this address back. */ 3678 return; 3679 } 3680 3681 /* ACE_F_UNVERIFIED restarts DAD */ 3682 if ((arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) 3683 goto alloc_fail; 3684 3685 if (ipif->ipif_arp_del_mp == NULL) { 3686 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3687 goto alloc_fail; 3688 ipif->ipif_arp_del_mp = arp_del_mp; 3689 } 3690 3691 putnext(ill->ill_rq, arp_add_mp); 3692 return; 3693 3694 alloc_fail: 3695 /* 3696 * On allocation failure, just restart the timer. Note that the ipif 3697 * is down here, so no other thread could be trying to start a recovery 3698 * timer. The ill_lock protects the condemned flag and the recovery 3699 * timer ID. 3700 */ 3701 freemsg(arp_add_mp); 3702 mutex_enter(&ill->ill_lock); 3703 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3704 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3705 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3706 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3707 } 3708 mutex_exit(&ill->ill_lock); 3709 } 3710 3711 /* 3712 * This is for exclusive changes due to ARP. Either tear down an interface due 3713 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3714 */ 3715 /* ARGSUSED */ 3716 static void 3717 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3718 { 3719 ill_t *ill = rq->q_ptr; 3720 arh_t *arh; 3721 ipaddr_t src; 3722 ipif_t *ipif; 3723 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3724 char hbuf[MAC_STR_LEN]; 3725 char sbuf[INET_ADDRSTRLEN]; 3726 const char *failtype; 3727 boolean_t bring_up; 3728 ip_stack_t *ipst = ill->ill_ipst; 3729 3730 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3731 case AR_CN_READY: 3732 failtype = NULL; 3733 bring_up = B_TRUE; 3734 break; 3735 case AR_CN_FAILED: 3736 failtype = "in use"; 3737 bring_up = B_FALSE; 3738 break; 3739 default: 3740 failtype = "claimed"; 3741 bring_up = B_FALSE; 3742 break; 3743 } 3744 3745 arh = (arh_t *)mp->b_cont->b_rptr; 3746 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3747 3748 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3749 sizeof (hbuf)); 3750 (void) ip_dot_addr(src, sbuf); 3751 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3752 3753 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3754 ipif->ipif_lcl_addr != src) { 3755 continue; 3756 } 3757 3758 /* 3759 * If we failed on a recovery probe, then restart the timer to 3760 * try again later. 3761 */ 3762 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3763 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3764 ill->ill_net_type == IRE_IF_RESOLVER && 3765 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3766 ipst->ips_ip_dup_recovery > 0 && 3767 ipif->ipif_recovery_id == 0) { 3768 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3769 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3770 continue; 3771 } 3772 3773 /* 3774 * If what we're trying to do has already been done, then do 3775 * nothing. 3776 */ 3777 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3778 continue; 3779 3780 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3781 3782 if (failtype == NULL) { 3783 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3784 ibuf); 3785 } else { 3786 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3787 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3788 } 3789 3790 if (bring_up) { 3791 ASSERT(ill->ill_dl_up); 3792 /* 3793 * Free up the ARP delete message so we can allocate 3794 * a fresh one through the normal path. 3795 */ 3796 freemsg(ipif->ipif_arp_del_mp); 3797 ipif->ipif_arp_del_mp = NULL; 3798 if (ipif_resolver_up(ipif, Res_act_initial) != 3799 EINPROGRESS) { 3800 ipif->ipif_addr_ready = 1; 3801 (void) ipif_up_done(ipif); 3802 ASSERT(ill->ill_move_ipif == NULL); 3803 } 3804 continue; 3805 } 3806 3807 mutex_enter(&ill->ill_lock); 3808 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3809 ipif->ipif_flags |= IPIF_DUPLICATE; 3810 ill->ill_ipif_dup_count++; 3811 mutex_exit(&ill->ill_lock); 3812 /* 3813 * Already exclusive on the ill; no need to handle deferred 3814 * processing here. 3815 */ 3816 (void) ipif_down(ipif, NULL, NULL); 3817 ipif_down_tail(ipif); 3818 mutex_enter(&ill->ill_lock); 3819 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3820 ill->ill_net_type == IRE_IF_RESOLVER && 3821 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3822 ipst->ips_ip_dup_recovery > 0) { 3823 ASSERT(ipif->ipif_recovery_id == 0); 3824 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3825 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3826 } 3827 mutex_exit(&ill->ill_lock); 3828 } 3829 freemsg(mp); 3830 } 3831 3832 /* ARGSUSED */ 3833 static void 3834 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3835 { 3836 ill_t *ill = rq->q_ptr; 3837 arh_t *arh; 3838 ipaddr_t src; 3839 ipif_t *ipif; 3840 3841 arh = (arh_t *)mp->b_cont->b_rptr; 3842 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3843 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3844 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3845 (void) ipif_resolver_up(ipif, Res_act_defend); 3846 } 3847 freemsg(mp); 3848 } 3849 3850 /* 3851 * News from ARP. ARP sends notification of interesting events down 3852 * to its clients using M_CTL messages with the interesting ARP packet 3853 * attached via b_cont. 3854 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3855 * queue as opposed to ARP sending the message to all the clients, i.e. all 3856 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3857 * table if a cache IRE is found to delete all the entries for the address in 3858 * the packet. 3859 */ 3860 static void 3861 ip_arp_news(queue_t *q, mblk_t *mp) 3862 { 3863 arcn_t *arcn; 3864 arh_t *arh; 3865 ire_t *ire = NULL; 3866 char hbuf[MAC_STR_LEN]; 3867 char sbuf[INET_ADDRSTRLEN]; 3868 ipaddr_t src; 3869 in6_addr_t v6src; 3870 boolean_t isv6 = B_FALSE; 3871 ipif_t *ipif; 3872 ill_t *ill; 3873 ip_stack_t *ipst; 3874 3875 if (CONN_Q(q)) { 3876 conn_t *connp = Q_TO_CONN(q); 3877 3878 ipst = connp->conn_netstack->netstack_ip; 3879 } else { 3880 ill_t *ill = (ill_t *)q->q_ptr; 3881 3882 ipst = ill->ill_ipst; 3883 } 3884 3885 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3886 if (q->q_next) { 3887 putnext(q, mp); 3888 } else 3889 freemsg(mp); 3890 return; 3891 } 3892 arh = (arh_t *)mp->b_cont->b_rptr; 3893 /* Is it one we are interested in? */ 3894 if (BE16_TO_U16(arh->arh_proto) == ETHERTYPE_IPV6) { 3895 isv6 = B_TRUE; 3896 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3897 IPV6_ADDR_LEN); 3898 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3899 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3900 IP_ADDR_LEN); 3901 } else { 3902 freemsg(mp); 3903 return; 3904 } 3905 3906 ill = q->q_ptr; 3907 3908 arcn = (arcn_t *)mp->b_rptr; 3909 switch (arcn->arcn_code) { 3910 case AR_CN_BOGON: 3911 /* 3912 * Someone is sending ARP packets with a source protocol 3913 * address that we have published and for which we believe our 3914 * entry is authoritative and (when ill_arp_extend is set) 3915 * verified to be unique on the network. 3916 * 3917 * The ARP module internally handles the cases where the sender 3918 * is just probing (for DAD) and where the hardware address of 3919 * a non-authoritative entry has changed. Thus, these are the 3920 * real conflicts, and we have to do resolution. 3921 * 3922 * We back away quickly from the address if it's from DHCP or 3923 * otherwise temporary and hasn't been used recently (or at 3924 * all). We'd like to include "deprecated" addresses here as 3925 * well (as there's no real reason to defend something we're 3926 * discarding), but IPMP "reuses" this flag to mean something 3927 * other than the standard meaning. 3928 * 3929 * If the ARP module above is not extended (meaning that it 3930 * doesn't know how to defend the address), then we just log 3931 * the problem as we always did and continue on. It's not 3932 * right, but there's little else we can do, and those old ATM 3933 * users are going away anyway. 3934 */ 3935 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3936 hbuf, sizeof (hbuf)); 3937 (void) ip_dot_addr(src, sbuf); 3938 if (isv6) { 3939 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3940 ipst); 3941 } else { 3942 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3943 } 3944 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3945 uint32_t now; 3946 uint32_t maxage; 3947 clock_t lused; 3948 uint_t maxdefense; 3949 uint_t defs; 3950 3951 /* 3952 * First, figure out if this address hasn't been used 3953 * in a while. If it hasn't, then it's a better 3954 * candidate for abandoning. 3955 */ 3956 ipif = ire->ire_ipif; 3957 ASSERT(ipif != NULL); 3958 now = gethrestime_sec(); 3959 maxage = now - ire->ire_create_time; 3960 if (maxage > ipst->ips_ip_max_temp_idle) 3961 maxage = ipst->ips_ip_max_temp_idle; 3962 lused = drv_hztousec(ddi_get_lbolt() - 3963 ire->ire_last_used_time) / MICROSEC + 1; 3964 if (lused >= maxage && (ipif->ipif_flags & 3965 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 3966 maxdefense = ipst->ips_ip_max_temp_defend; 3967 else 3968 maxdefense = ipst->ips_ip_max_defend; 3969 3970 /* 3971 * Now figure out how many times we've defended 3972 * ourselves. Ignore defenses that happened long in 3973 * the past. 3974 */ 3975 mutex_enter(&ire->ire_lock); 3976 if ((defs = ire->ire_defense_count) > 0 && 3977 now - ire->ire_defense_time > 3978 ipst->ips_ip_defend_interval) { 3979 ire->ire_defense_count = defs = 0; 3980 } 3981 ire->ire_defense_count++; 3982 ire->ire_defense_time = now; 3983 mutex_exit(&ire->ire_lock); 3984 ill_refhold(ill); 3985 ire_refrele(ire); 3986 3987 /* 3988 * If we've defended ourselves too many times already, 3989 * then give up and tear down the interface(s) using 3990 * this address. Otherwise, defend by sending out a 3991 * gratuitous ARP. 3992 */ 3993 if (defs >= maxdefense && ill->ill_arp_extend) { 3994 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 3995 B_FALSE); 3996 } else { 3997 cmn_err(CE_WARN, 3998 "node %s is using our IP address %s on %s", 3999 hbuf, sbuf, ill->ill_name); 4000 /* 4001 * If this is an old (ATM) ARP module, then 4002 * don't try to defend the address. Remain 4003 * compatible with the old behavior. Defend 4004 * only with new ARP. 4005 */ 4006 if (ill->ill_arp_extend) { 4007 qwriter_ip(ill, q, mp, ip_arp_defend, 4008 NEW_OP, B_FALSE); 4009 } else { 4010 ill_refrele(ill); 4011 } 4012 } 4013 return; 4014 } 4015 cmn_err(CE_WARN, 4016 "proxy ARP problem? Node '%s' is using %s on %s", 4017 hbuf, sbuf, ill->ill_name); 4018 if (ire != NULL) 4019 ire_refrele(ire); 4020 break; 4021 case AR_CN_ANNOUNCE: 4022 if (isv6) { 4023 /* 4024 * For XRESOLV interfaces. 4025 * Delete the IRE cache entry and NCE for this 4026 * v6 address 4027 */ 4028 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4029 /* 4030 * If v6src is a non-zero, it's a router address 4031 * as below. Do the same sort of thing to clean 4032 * out off-net IRE_CACHE entries that go through 4033 * the router. 4034 */ 4035 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4036 ire_walk_v6(ire_delete_cache_gw_v6, 4037 (char *)&v6src, ALL_ZONES, ipst); 4038 } 4039 } else { 4040 nce_hw_map_t hwm; 4041 4042 /* 4043 * ARP gives us a copy of any packet where it thinks 4044 * the address has changed, so that we can update our 4045 * caches. We're responsible for caching known answers 4046 * in the current design. We check whether the 4047 * hardware address really has changed in all of our 4048 * entries that have cached this mapping, and if so, we 4049 * blow them away. This way we will immediately pick 4050 * up the rare case of a host changing hardware 4051 * address. 4052 */ 4053 if (src == 0) 4054 break; 4055 hwm.hwm_addr = src; 4056 hwm.hwm_hwlen = arh->arh_hlen; 4057 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4058 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4059 ndp_walk_common(ipst->ips_ndp4, NULL, 4060 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4061 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4062 } 4063 break; 4064 case AR_CN_READY: 4065 /* No external v6 resolver has a contract to use this */ 4066 if (isv6) 4067 break; 4068 /* If the link is down, we'll retry this later */ 4069 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4070 break; 4071 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4072 NULL, NULL, ipst); 4073 if (ipif != NULL) { 4074 /* 4075 * If this is a duplicate recovery, then we now need to 4076 * go exclusive to bring this thing back up. 4077 */ 4078 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4079 IPIF_DUPLICATE) { 4080 ipif_refrele(ipif); 4081 ill_refhold(ill); 4082 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4083 B_FALSE); 4084 return; 4085 } 4086 /* 4087 * If this is the first notice that this address is 4088 * ready, then let the user know now. 4089 */ 4090 if ((ipif->ipif_flags & IPIF_UP) && 4091 !ipif->ipif_addr_ready) { 4092 ipif_mask_reply(ipif); 4093 ipif_up_notify(ipif); 4094 } 4095 ipif->ipif_addr_ready = 1; 4096 ipif_refrele(ipif); 4097 } 4098 ire = ire_cache_lookup(src, ALL_ZONES, msg_getlabel(mp), ipst); 4099 if (ire != NULL) { 4100 ire->ire_defense_count = 0; 4101 ire_refrele(ire); 4102 } 4103 break; 4104 case AR_CN_FAILED: 4105 /* No external v6 resolver has a contract to use this */ 4106 if (isv6) 4107 break; 4108 if (!ill->ill_arp_extend) { 4109 (void) mac_colon_addr((uint8_t *)(arh + 1), 4110 arh->arh_hlen, hbuf, sizeof (hbuf)); 4111 (void) ip_dot_addr(src, sbuf); 4112 4113 cmn_err(CE_WARN, 4114 "node %s is using our IP address %s on %s", 4115 hbuf, sbuf, ill->ill_name); 4116 break; 4117 } 4118 ill_refhold(ill); 4119 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4120 return; 4121 } 4122 freemsg(mp); 4123 } 4124 4125 /* 4126 * Create a mblk suitable for carrying the interface index and/or source link 4127 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4128 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4129 * application. 4130 */ 4131 mblk_t * 4132 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4133 ip_stack_t *ipst) 4134 { 4135 mblk_t *mp; 4136 ip_pktinfo_t *pinfo; 4137 ipha_t *ipha; 4138 struct ether_header *pether; 4139 boolean_t ipmp_ill_held = B_FALSE; 4140 4141 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4142 if (mp == NULL) { 4143 ip1dbg(("ip_add_info: allocation failure.\n")); 4144 return (data_mp); 4145 } 4146 4147 ipha = (ipha_t *)data_mp->b_rptr; 4148 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4149 bzero(pinfo, sizeof (ip_pktinfo_t)); 4150 pinfo->ip_pkt_flags = (uchar_t)flags; 4151 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4152 4153 pether = (struct ether_header *)((char *)ipha 4154 - sizeof (struct ether_header)); 4155 4156 /* 4157 * Make sure the interface is an ethernet type, since this option 4158 * is currently supported only on this type of interface. Also make 4159 * sure we are pointing correctly above db_base. 4160 */ 4161 if ((flags & IPF_RECVSLLA) && 4162 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4163 (ill->ill_type == IFT_ETHER) && 4164 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4165 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4166 bcopy(pether->ether_shost.ether_addr_octet, 4167 pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4168 } else { 4169 /* 4170 * Clear the bit. Indicate to upper layer that IP is not 4171 * sending this ancillary info. 4172 */ 4173 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4174 } 4175 4176 /* 4177 * If `ill' is in an IPMP group, use the IPMP ill to determine 4178 * IPF_RECVIF and IPF_RECVADDR. (This currently assumes that 4179 * IPF_RECVADDR support on test addresses is not needed.) 4180 * 4181 * Note that `ill' may already be an IPMP ill if e.g. we're 4182 * processing a packet looped back to an IPMP data address 4183 * (since those IRE_LOCALs are tied to IPMP ills). 4184 */ 4185 if (IS_UNDER_IPMP(ill)) { 4186 if ((ill = ipmp_ill_hold_ipmp_ill(ill)) == NULL) { 4187 ip1dbg(("ip_add_info: cannot hold IPMP ill.\n")); 4188 freemsg(mp); 4189 return (data_mp); 4190 } 4191 ipmp_ill_held = B_TRUE; 4192 } 4193 4194 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4195 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4196 if (flags & IPF_RECVADDR) { 4197 ipif_t *ipif; 4198 ire_t *ire; 4199 4200 /* 4201 * Only valid for V4 4202 */ 4203 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4204 (IPV4_VERSION << 4)); 4205 4206 ipif = ipif_get_next_ipif(NULL, ill); 4207 if (ipif != NULL) { 4208 /* 4209 * Since a decision has already been made to deliver the 4210 * packet, there is no need to test for SECATTR and 4211 * ZONEONLY. 4212 * When a multicast packet is transmitted 4213 * a cache entry is created for the multicast address. 4214 * When delivering a copy of the packet or when new 4215 * packets are received we do not want to match on the 4216 * cached entry so explicitly match on 4217 * IRE_LOCAL and IRE_LOOPBACK 4218 */ 4219 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4220 IRE_LOCAL | IRE_LOOPBACK, 4221 ipif, zoneid, NULL, 4222 MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 4223 if (ire == NULL) { 4224 /* 4225 * packet must have come on a different 4226 * interface. 4227 * Since a decision has already been made to 4228 * deliver the packet, there is no need to test 4229 * for SECATTR and ZONEONLY. 4230 * Only match on local and broadcast ire's. 4231 * See detailed comment above. 4232 */ 4233 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4234 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4235 NULL, MATCH_IRE_TYPE, ipst); 4236 } 4237 4238 if (ire == NULL) { 4239 /* 4240 * This is either a multicast packet or 4241 * the address has been removed since 4242 * the packet was received. 4243 * Return INADDR_ANY so that normal source 4244 * selection occurs for the response. 4245 */ 4246 4247 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4248 } else { 4249 pinfo->ip_pkt_match_addr.s_addr = 4250 ire->ire_src_addr; 4251 ire_refrele(ire); 4252 } 4253 ipif_refrele(ipif); 4254 } else { 4255 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4256 } 4257 } 4258 4259 if (ipmp_ill_held) 4260 ill_refrele(ill); 4261 4262 mp->b_datap->db_type = M_CTL; 4263 mp->b_wptr += sizeof (ip_pktinfo_t); 4264 mp->b_cont = data_mp; 4265 4266 return (mp); 4267 } 4268 4269 /* 4270 * Used to determine the most accurate cred_t to use for TX. 4271 * First priority is SCM_UCRED having set the label in the message, 4272 * which is used for MLP on UDP. Second priority is the open credentials 4273 * with the peer's label (aka conn_effective_cred), which is needed for 4274 * MLP on TCP/SCTP and for MAC-Exempt. Last priority is the open credentials. 4275 */ 4276 cred_t * 4277 ip_best_cred(mblk_t *mp, conn_t *connp, pid_t *pidp) 4278 { 4279 cred_t *cr; 4280 4281 cr = msg_getcred(mp, pidp); 4282 if (cr != NULL && crgetlabel(cr) != NULL) 4283 return (cr); 4284 *pidp = NOPID; 4285 return (CONN_CRED(connp)); 4286 } 4287 4288 /* 4289 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4290 * part of the bind request. 4291 */ 4292 4293 boolean_t 4294 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4295 { 4296 ipsec_in_t *ii; 4297 4298 ASSERT(policy_mp != NULL); 4299 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4300 4301 ii = (ipsec_in_t *)policy_mp->b_rptr; 4302 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4303 4304 connp->conn_policy = ii->ipsec_in_policy; 4305 ii->ipsec_in_policy = NULL; 4306 4307 if (ii->ipsec_in_action != NULL) { 4308 if (connp->conn_latch == NULL) { 4309 connp->conn_latch = iplatch_create(); 4310 if (connp->conn_latch == NULL) 4311 return (B_FALSE); 4312 } 4313 ipsec_latch_inbound(connp->conn_latch, ii); 4314 } 4315 return (B_TRUE); 4316 } 4317 4318 /* 4319 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4320 * and to arrange for power-fanout assist. The ULP is identified by 4321 * adding a single byte at the end of the original bind message. 4322 * A ULP other than UDP or TCP that wishes to be recognized passes 4323 * down a bind with a zero length address. 4324 * 4325 * The binding works as follows: 4326 * - A zero byte address means just bind to the protocol. 4327 * - A four byte address is treated as a request to validate 4328 * that the address is a valid local address, appropriate for 4329 * an application to bind to. This does not affect any fanout 4330 * information in IP. 4331 * - A sizeof sin_t byte address is used to bind to only the local address 4332 * and port. 4333 * - A sizeof ipa_conn_t byte address contains complete fanout information 4334 * consisting of local and remote addresses and ports. In 4335 * this case, the addresses are both validated as appropriate 4336 * for this operation, and, if so, the information is retained 4337 * for use in the inbound fanout. 4338 * 4339 * The ULP (except in the zero-length bind) can append an 4340 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4341 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4342 * a copy of the source or destination IRE (source for local bind; 4343 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4344 * policy information contained should be copied on to the conn. 4345 * 4346 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4347 */ 4348 mblk_t * 4349 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4350 { 4351 ssize_t len; 4352 struct T_bind_req *tbr; 4353 sin_t *sin; 4354 ipa_conn_t *ac; 4355 uchar_t *ucp; 4356 int error = 0; 4357 int protocol; 4358 ipa_conn_x_t *acx; 4359 cred_t *cr; 4360 4361 /* 4362 * All Solaris components should pass a db_credp 4363 * for this TPI message, hence we ASSERT. 4364 * But in case there is some other M_PROTO that looks 4365 * like a TPI message sent by some other kernel 4366 * component, we check and return an error. 4367 */ 4368 cr = msg_getcred(mp, NULL); 4369 ASSERT(cr != NULL); 4370 if (cr == NULL) { 4371 error = EINVAL; 4372 goto bad_addr; 4373 } 4374 4375 ASSERT(!connp->conn_af_isv6); 4376 connp->conn_pkt_isv6 = B_FALSE; 4377 4378 len = MBLKL(mp); 4379 if (len < (sizeof (*tbr) + 1)) { 4380 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4381 "ip_bind: bogus msg, len %ld", len); 4382 /* XXX: Need to return something better */ 4383 goto bad_addr; 4384 } 4385 /* Back up and extract the protocol identifier. */ 4386 mp->b_wptr--; 4387 protocol = *mp->b_wptr & 0xFF; 4388 tbr = (struct T_bind_req *)mp->b_rptr; 4389 /* Reset the message type in preparation for shipping it back. */ 4390 DB_TYPE(mp) = M_PCPROTO; 4391 4392 connp->conn_ulp = (uint8_t)protocol; 4393 4394 /* 4395 * Check for a zero length address. This is from a protocol that 4396 * wants to register to receive all packets of its type. 4397 */ 4398 if (tbr->ADDR_length == 0) { 4399 /* 4400 * These protocols are now intercepted in ip_bind_v6(). 4401 * Reject protocol-level binds here for now. 4402 * 4403 * For SCTP raw socket, ICMP sends down a bind with sin_t 4404 * so that the protocol type cannot be SCTP. 4405 */ 4406 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4407 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4408 goto bad_addr; 4409 } 4410 4411 /* 4412 * 4413 * The udp module never sends down a zero-length address, 4414 * and allowing this on a labeled system will break MLP 4415 * functionality. 4416 */ 4417 if (is_system_labeled() && protocol == IPPROTO_UDP) 4418 goto bad_addr; 4419 4420 if (connp->conn_mac_mode != CONN_MAC_DEFAULT) 4421 goto bad_addr; 4422 4423 /* No hash here really. The table is big enough. */ 4424 connp->conn_srcv6 = ipv6_all_zeros; 4425 4426 ipcl_proto_insert(connp, protocol); 4427 4428 tbr->PRIM_type = T_BIND_ACK; 4429 return (mp); 4430 } 4431 4432 /* Extract the address pointer from the message. */ 4433 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4434 tbr->ADDR_length); 4435 if (ucp == NULL) { 4436 ip1dbg(("ip_bind: no address\n")); 4437 goto bad_addr; 4438 } 4439 if (!OK_32PTR(ucp)) { 4440 ip1dbg(("ip_bind: unaligned address\n")); 4441 goto bad_addr; 4442 } 4443 4444 switch (tbr->ADDR_length) { 4445 default: 4446 ip1dbg(("ip_bind: bad address length %d\n", 4447 (int)tbr->ADDR_length)); 4448 goto bad_addr; 4449 4450 case IP_ADDR_LEN: 4451 /* Verification of local address only */ 4452 error = ip_bind_laddr_v4(connp, &mp->b_cont, protocol, 4453 *(ipaddr_t *)ucp, 0, B_FALSE); 4454 break; 4455 4456 case sizeof (sin_t): 4457 sin = (sin_t *)ucp; 4458 error = ip_bind_laddr_v4(connp, &mp->b_cont, protocol, 4459 sin->sin_addr.s_addr, sin->sin_port, B_TRUE); 4460 break; 4461 4462 case sizeof (ipa_conn_t): 4463 ac = (ipa_conn_t *)ucp; 4464 /* For raw socket, the local port is not set. */ 4465 if (ac->ac_lport == 0) 4466 ac->ac_lport = connp->conn_lport; 4467 /* Always verify destination reachability. */ 4468 error = ip_bind_connected_v4(connp, &mp->b_cont, protocol, 4469 &ac->ac_laddr, ac->ac_lport, ac->ac_faddr, ac->ac_fport, 4470 B_TRUE, B_TRUE, cr); 4471 break; 4472 4473 case sizeof (ipa_conn_x_t): 4474 acx = (ipa_conn_x_t *)ucp; 4475 /* 4476 * Whether or not to verify destination reachability depends 4477 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4478 */ 4479 error = ip_bind_connected_v4(connp, &mp->b_cont, protocol, 4480 &acx->acx_conn.ac_laddr, acx->acx_conn.ac_lport, 4481 acx->acx_conn.ac_faddr, acx->acx_conn.ac_fport, 4482 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0, cr); 4483 break; 4484 } 4485 ASSERT(error != EINPROGRESS); 4486 if (error != 0) 4487 goto bad_addr; 4488 4489 /* Send it home. */ 4490 mp->b_datap->db_type = M_PCPROTO; 4491 tbr->PRIM_type = T_BIND_ACK; 4492 return (mp); 4493 4494 bad_addr: 4495 /* 4496 * If error = -1 then we generate a TBADADDR - otherwise error is 4497 * a unix errno. 4498 */ 4499 if (error > 0) 4500 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4501 else 4502 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4503 return (mp); 4504 } 4505 4506 /* 4507 * Here address is verified to be a valid local address. 4508 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4509 * address is also considered a valid local address. 4510 * In the case of a broadcast/multicast address, however, the 4511 * upper protocol is expected to reset the src address 4512 * to 0 if it sees a IRE_BROADCAST type returned so that 4513 * no packets are emitted with broadcast/multicast address as 4514 * source address (that violates hosts requirements RFC 1122) 4515 * The addresses valid for bind are: 4516 * (1) - INADDR_ANY (0) 4517 * (2) - IP address of an UP interface 4518 * (3) - IP address of a DOWN interface 4519 * (4) - valid local IP broadcast addresses. In this case 4520 * the conn will only receive packets destined to 4521 * the specified broadcast address. 4522 * (5) - a multicast address. In this case 4523 * the conn will only receive packets destined to 4524 * the specified multicast address. Note: the 4525 * application still has to issue an 4526 * IP_ADD_MEMBERSHIP socket option. 4527 * 4528 * On error, return -1 for TBADADDR otherwise pass the 4529 * errno with TSYSERR reply. 4530 * 4531 * In all the above cases, the bound address must be valid in the current zone. 4532 * When the address is loopback, multicast or broadcast, there might be many 4533 * matching IREs so bind has to look up based on the zone. 4534 * 4535 * Note: lport is in network byte order. 4536 * 4537 */ 4538 int 4539 ip_bind_laddr_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4540 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4541 { 4542 int error = 0; 4543 ire_t *src_ire; 4544 zoneid_t zoneid; 4545 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4546 mblk_t *mp = NULL; 4547 boolean_t ire_requested = B_FALSE; 4548 boolean_t ipsec_policy_set = B_FALSE; 4549 4550 if (mpp) 4551 mp = *mpp; 4552 4553 if (mp != NULL) { 4554 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4555 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4556 } 4557 4558 /* 4559 * If it was previously connected, conn_fully_bound would have 4560 * been set. 4561 */ 4562 connp->conn_fully_bound = B_FALSE; 4563 4564 src_ire = NULL; 4565 4566 zoneid = IPCL_ZONEID(connp); 4567 4568 if (src_addr) { 4569 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4570 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4571 /* 4572 * If an address other than 0.0.0.0 is requested, 4573 * we verify that it is a valid address for bind 4574 * Note: Following code is in if-else-if form for 4575 * readability compared to a condition check. 4576 */ 4577 /* LINTED - statement has no consequence */ 4578 if (IRE_IS_LOCAL(src_ire)) { 4579 /* 4580 * (2) Bind to address of local UP interface 4581 */ 4582 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4583 /* 4584 * (4) Bind to broadcast address 4585 * Note: permitted only from transports that 4586 * request IRE 4587 */ 4588 if (!ire_requested) 4589 error = EADDRNOTAVAIL; 4590 } else { 4591 /* 4592 * (3) Bind to address of local DOWN interface 4593 * (ipif_lookup_addr() looks up all interfaces 4594 * but we do not get here for UP interfaces 4595 * - case (2) above) 4596 */ 4597 /* LINTED - statement has no consequent */ 4598 if (ip_addr_exists(src_addr, zoneid, ipst)) { 4599 /* The address exists */ 4600 } else if (CLASSD(src_addr)) { 4601 error = 0; 4602 if (src_ire != NULL) 4603 ire_refrele(src_ire); 4604 /* 4605 * (5) bind to multicast address. 4606 * Fake out the IRE returned to upper 4607 * layer to be a broadcast IRE. 4608 */ 4609 src_ire = ire_ctable_lookup( 4610 INADDR_BROADCAST, INADDR_ANY, 4611 IRE_BROADCAST, NULL, zoneid, NULL, 4612 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4613 ipst); 4614 if (src_ire == NULL || !ire_requested) 4615 error = EADDRNOTAVAIL; 4616 } else { 4617 /* 4618 * Not a valid address for bind 4619 */ 4620 error = EADDRNOTAVAIL; 4621 } 4622 } 4623 if (error) { 4624 /* Red Alert! Attempting to be a bogon! */ 4625 ip1dbg(("ip_bind_laddr_v4: bad src address 0x%x\n", 4626 ntohl(src_addr))); 4627 goto bad_addr; 4628 } 4629 } 4630 4631 /* 4632 * Allow setting new policies. For example, disconnects come 4633 * down as ipa_t bind. As we would have set conn_policy_cached 4634 * to B_TRUE before, we should set it to B_FALSE, so that policy 4635 * can change after the disconnect. 4636 */ 4637 connp->conn_policy_cached = B_FALSE; 4638 4639 /* 4640 * If not fanout_insert this was just an address verification 4641 */ 4642 if (fanout_insert) { 4643 /* 4644 * The addresses have been verified. Time to insert in 4645 * the correct fanout list. 4646 */ 4647 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4648 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4649 connp->conn_lport = lport; 4650 connp->conn_fport = 0; 4651 /* 4652 * Do we need to add a check to reject Multicast packets 4653 */ 4654 error = ipcl_bind_insert(connp, protocol, src_addr, lport); 4655 } 4656 4657 if (error == 0) { 4658 if (ire_requested) { 4659 if (!ip_bind_get_ire_v4(mpp, src_ire, NULL, ipst)) { 4660 error = -1; 4661 /* Falls through to bad_addr */ 4662 } 4663 } else if (ipsec_policy_set) { 4664 if (!ip_bind_ipsec_policy_set(connp, mp)) { 4665 error = -1; 4666 /* Falls through to bad_addr */ 4667 } 4668 } 4669 } 4670 bad_addr: 4671 if (error != 0) { 4672 if (connp->conn_anon_port) { 4673 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4674 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4675 B_FALSE); 4676 } 4677 connp->conn_mlp_type = mlptSingle; 4678 } 4679 if (src_ire != NULL) 4680 IRE_REFRELE(src_ire); 4681 return (error); 4682 } 4683 4684 int 4685 ip_proto_bind_laddr_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 4686 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4687 { 4688 int error; 4689 4690 ASSERT(!connp->conn_af_isv6); 4691 connp->conn_pkt_isv6 = B_FALSE; 4692 connp->conn_ulp = protocol; 4693 4694 error = ip_bind_laddr_v4(connp, ire_mpp, protocol, src_addr, lport, 4695 fanout_insert); 4696 if (error < 0) 4697 error = -TBADADDR; 4698 return (error); 4699 } 4700 4701 /* 4702 * Verify that both the source and destination addresses 4703 * are valid. If verify_dst is false, then the destination address may be 4704 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4705 * destination reachability, while tunnels do not. 4706 * Note that we allow connect to broadcast and multicast 4707 * addresses when ire_requested is set. Thus the ULP 4708 * has to check for IRE_BROADCAST and multicast. 4709 * 4710 * Returns zero if ok. 4711 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4712 * (for use with TSYSERR reply). 4713 * 4714 * Note: lport and fport are in network byte order. 4715 */ 4716 int 4717 ip_bind_connected_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4718 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4719 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 4720 { 4721 4722 ire_t *src_ire; 4723 ire_t *dst_ire; 4724 int error = 0; 4725 ire_t *sire = NULL; 4726 ire_t *md_dst_ire = NULL; 4727 ire_t *lso_dst_ire = NULL; 4728 ill_t *ill = NULL; 4729 zoneid_t zoneid; 4730 ipaddr_t src_addr = *src_addrp; 4731 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4732 mblk_t *mp = NULL; 4733 boolean_t ire_requested = B_FALSE; 4734 boolean_t ipsec_policy_set = B_FALSE; 4735 ts_label_t *tsl = NULL; 4736 cred_t *effective_cred = NULL; 4737 4738 if (mpp) 4739 mp = *mpp; 4740 4741 if (mp != NULL) { 4742 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4743 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4744 } 4745 4746 src_ire = dst_ire = NULL; 4747 4748 /* 4749 * If we never got a disconnect before, clear it now. 4750 */ 4751 connp->conn_fully_bound = B_FALSE; 4752 4753 zoneid = IPCL_ZONEID(connp); 4754 4755 /* 4756 * Check whether Trusted Solaris policy allows communication with this 4757 * host, and pretend that the destination is unreachable if not. 4758 * 4759 * This is never a problem for TCP, since that transport is known to 4760 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4761 * handling. If the remote is unreachable, it will be detected at that 4762 * point, so there's no reason to check it here. 4763 * 4764 * Note that for sendto (and other datagram-oriented friends), this 4765 * check is done as part of the data path label computation instead. 4766 * The check here is just to make non-TCP connect() report the right 4767 * error. 4768 */ 4769 if (is_system_labeled() && !IPCL_IS_TCP(connp)) { 4770 if ((error = tsol_check_dest(cr, &dst_addr, IPV4_VERSION, 4771 connp->conn_mac_mode, &effective_cred)) != 0) { 4772 if (ip_debug > 2) { 4773 pr_addr_dbg( 4774 "ip_bind_connected_v4:" 4775 " no label for dst %s\n", 4776 AF_INET, &dst_addr); 4777 } 4778 goto bad_addr; 4779 } 4780 4781 /* 4782 * tsol_check_dest() may have created a new cred with 4783 * a modified security label. Use that cred if it exists 4784 * for ire lookups. 4785 */ 4786 if (effective_cred == NULL) { 4787 tsl = crgetlabel(cr); 4788 } else { 4789 tsl = crgetlabel(effective_cred); 4790 } 4791 } 4792 4793 if (CLASSD(dst_addr)) { 4794 /* Pick up an IRE_BROADCAST */ 4795 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4796 NULL, zoneid, tsl, 4797 (MATCH_IRE_RECURSIVE | 4798 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4799 MATCH_IRE_SECATTR), ipst); 4800 } else { 4801 /* 4802 * If conn_dontroute is set or if conn_nexthop_set is set, 4803 * and onlink ipif is not found set ENETUNREACH error. 4804 */ 4805 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4806 ipif_t *ipif; 4807 4808 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4809 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4810 if (ipif == NULL) { 4811 error = ENETUNREACH; 4812 goto bad_addr; 4813 } 4814 ipif_refrele(ipif); 4815 } 4816 4817 if (connp->conn_nexthop_set) { 4818 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4819 0, 0, NULL, NULL, zoneid, tsl, 4820 MATCH_IRE_SECATTR, ipst); 4821 } else { 4822 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4823 &sire, zoneid, tsl, 4824 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4825 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4826 MATCH_IRE_SECATTR), ipst); 4827 } 4828 } 4829 /* 4830 * dst_ire can't be a broadcast when not ire_requested. 4831 * We also prevent ire's with src address INADDR_ANY to 4832 * be used, which are created temporarily for 4833 * sending out packets from endpoints that have 4834 * conn_unspec_src set. If verify_dst is true, the destination must be 4835 * reachable. If verify_dst is false, the destination needn't be 4836 * reachable. 4837 * 4838 * If we match on a reject or black hole, then we've got a 4839 * local failure. May as well fail out the connect() attempt, 4840 * since it's never going to succeed. 4841 */ 4842 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4843 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4844 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4845 /* 4846 * If we're verifying destination reachability, we always want 4847 * to complain here. 4848 * 4849 * If we're not verifying destination reachability but the 4850 * destination has a route, we still want to fail on the 4851 * temporary address and broadcast address tests. 4852 */ 4853 if (verify_dst || (dst_ire != NULL)) { 4854 if (ip_debug > 2) { 4855 pr_addr_dbg("ip_bind_connected_v4:" 4856 "bad connected dst %s\n", 4857 AF_INET, &dst_addr); 4858 } 4859 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4860 error = ENETUNREACH; 4861 else 4862 error = EHOSTUNREACH; 4863 goto bad_addr; 4864 } 4865 } 4866 4867 /* 4868 * If the app does a connect(), it means that it will most likely 4869 * send more than 1 packet to the destination. It makes sense 4870 * to clear the temporary flag. 4871 */ 4872 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4873 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4874 irb_t *irb = dst_ire->ire_bucket; 4875 4876 rw_enter(&irb->irb_lock, RW_WRITER); 4877 /* 4878 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4879 * the lock to guarantee irb_tmp_ire_cnt. 4880 */ 4881 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4882 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4883 irb->irb_tmp_ire_cnt--; 4884 } 4885 rw_exit(&irb->irb_lock); 4886 } 4887 4888 /* 4889 * See if we should notify ULP about LSO/MDT; we do this whether or not 4890 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4891 * eligibility tests for passive connects are handled separately 4892 * through tcp_adapt_ire(). We do this before the source address 4893 * selection, because dst_ire may change after a call to 4894 * ipif_select_source(). This is a best-effort check, as the 4895 * packet for this connection may not actually go through 4896 * dst_ire->ire_stq, and the exact IRE can only be known after 4897 * calling ip_newroute(). This is why we further check on the 4898 * IRE during LSO/Multidata packet transmission in 4899 * tcp_lsosend()/tcp_multisend(). 4900 */ 4901 if (!ipsec_policy_set && dst_ire != NULL && 4902 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4903 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4904 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4905 lso_dst_ire = dst_ire; 4906 IRE_REFHOLD(lso_dst_ire); 4907 } else if (ipst->ips_ip_multidata_outbound && 4908 ILL_MDT_CAPABLE(ill)) { 4909 md_dst_ire = dst_ire; 4910 IRE_REFHOLD(md_dst_ire); 4911 } 4912 } 4913 4914 if (dst_ire != NULL && dst_ire->ire_type == IRE_LOCAL && 4915 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4916 /* 4917 * If the IRE belongs to a different zone, look for a matching 4918 * route in the forwarding table and use the source address from 4919 * that route. 4920 */ 4921 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4922 zoneid, 0, NULL, 4923 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4924 MATCH_IRE_RJ_BHOLE, ipst); 4925 if (src_ire == NULL) { 4926 error = EHOSTUNREACH; 4927 goto bad_addr; 4928 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4929 if (!(src_ire->ire_type & IRE_HOST)) 4930 error = ENETUNREACH; 4931 else 4932 error = EHOSTUNREACH; 4933 goto bad_addr; 4934 } 4935 if (src_addr == INADDR_ANY) 4936 src_addr = src_ire->ire_src_addr; 4937 ire_refrele(src_ire); 4938 src_ire = NULL; 4939 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4940 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4941 src_addr = sire->ire_src_addr; 4942 ire_refrele(dst_ire); 4943 dst_ire = sire; 4944 sire = NULL; 4945 } else { 4946 /* 4947 * Pick a source address so that a proper inbound 4948 * load spreading would happen. 4949 */ 4950 ill_t *ire_ill = dst_ire->ire_ipif->ipif_ill; 4951 ipif_t *src_ipif = NULL; 4952 ire_t *ipif_ire; 4953 4954 /* 4955 * Supply a local source address such that inbound 4956 * load spreading happens. 4957 * 4958 * Determine the best source address on this ill for 4959 * the destination. 4960 * 4961 * 1) For broadcast, we should return a broadcast ire 4962 * found above so that upper layers know that the 4963 * destination address is a broadcast address. 4964 * 4965 * 2) If the ipif is DEPRECATED, select a better 4966 * source address. Similarly, if the ipif is on 4967 * the IPMP meta-interface, pick a source address 4968 * at random to improve inbound load spreading. 4969 * 4970 * 3) If the outgoing interface is part of a usesrc 4971 * group, then try selecting a source address from 4972 * the usesrc ILL. 4973 */ 4974 if ((dst_ire->ire_zoneid != zoneid && 4975 dst_ire->ire_zoneid != ALL_ZONES) || 4976 (!(dst_ire->ire_flags & RTF_SETSRC)) && 4977 (!(dst_ire->ire_type & IRE_BROADCAST) && 4978 (IS_IPMP(ire_ill) || 4979 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4980 (ire_ill->ill_usesrc_ifindex != 0)))) { 4981 /* 4982 * If the destination is reachable via a 4983 * given gateway, the selected source address 4984 * should be in the same subnet as the gateway. 4985 * Otherwise, the destination is not reachable. 4986 * 4987 * If there are no interfaces on the same subnet 4988 * as the destination, ipif_select_source gives 4989 * first non-deprecated interface which might be 4990 * on a different subnet than the gateway. 4991 * This is not desirable. Hence pass the dst_ire 4992 * source address to ipif_select_source. 4993 * It is sure that the destination is reachable 4994 * with the dst_ire source address subnet. 4995 * So passing dst_ire source address to 4996 * ipif_select_source will make sure that the 4997 * selected source will be on the same subnet 4998 * as dst_ire source address. 4999 */ 5000 ipaddr_t saddr = 5001 dst_ire->ire_ipif->ipif_src_addr; 5002 src_ipif = ipif_select_source(ire_ill, 5003 saddr, zoneid); 5004 if (src_ipif != NULL) { 5005 if (IS_VNI(src_ipif->ipif_ill)) { 5006 /* 5007 * For VNI there is no 5008 * interface route 5009 */ 5010 src_addr = 5011 src_ipif->ipif_src_addr; 5012 } else { 5013 ipif_ire = 5014 ipif_to_ire(src_ipif); 5015 if (ipif_ire != NULL) { 5016 IRE_REFRELE(dst_ire); 5017 dst_ire = ipif_ire; 5018 } 5019 src_addr = 5020 dst_ire->ire_src_addr; 5021 } 5022 ipif_refrele(src_ipif); 5023 } else { 5024 src_addr = dst_ire->ire_src_addr; 5025 } 5026 } else { 5027 src_addr = dst_ire->ire_src_addr; 5028 } 5029 } 5030 } 5031 5032 /* 5033 * We do ire_route_lookup() here (and not 5034 * interface lookup as we assert that 5035 * src_addr should only come from an 5036 * UP interface for hard binding. 5037 */ 5038 ASSERT(src_ire == NULL); 5039 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5040 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5041 /* src_ire must be a local|loopback */ 5042 if (!IRE_IS_LOCAL(src_ire)) { 5043 if (ip_debug > 2) { 5044 pr_addr_dbg("ip_bind_connected_v4: bad connected " 5045 "src %s\n", AF_INET, &src_addr); 5046 } 5047 error = EADDRNOTAVAIL; 5048 goto bad_addr; 5049 } 5050 5051 /* 5052 * If the source address is a loopback address, the 5053 * destination had best be local or multicast. 5054 * The transports that can't handle multicast will reject 5055 * those addresses. 5056 */ 5057 if (src_ire->ire_type == IRE_LOOPBACK && 5058 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5059 ip1dbg(("ip_bind_connected_v4: bad connected loopback\n")); 5060 error = -1; 5061 goto bad_addr; 5062 } 5063 5064 /* 5065 * Allow setting new policies. For example, disconnects come 5066 * down as ipa_t bind. As we would have set conn_policy_cached 5067 * to B_TRUE before, we should set it to B_FALSE, so that policy 5068 * can change after the disconnect. 5069 */ 5070 connp->conn_policy_cached = B_FALSE; 5071 5072 /* 5073 * Set the conn addresses/ports immediately, so the IPsec policy calls 5074 * can handle their passed-in conn's. 5075 */ 5076 5077 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5078 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5079 connp->conn_lport = lport; 5080 connp->conn_fport = fport; 5081 *src_addrp = src_addr; 5082 5083 ASSERT(!(ipsec_policy_set && ire_requested)); 5084 if (ire_requested) { 5085 iulp_t *ulp_info = NULL; 5086 5087 /* 5088 * Note that sire will not be NULL if this is an off-link 5089 * connection and there is not cache for that dest yet. 5090 * 5091 * XXX Because of an existing bug, if there are multiple 5092 * default routes, the IRE returned now may not be the actual 5093 * default route used (default routes are chosen in a 5094 * round robin fashion). So if the metrics for different 5095 * default routes are different, we may return the wrong 5096 * metrics. This will not be a problem if the existing 5097 * bug is fixed. 5098 */ 5099 if (sire != NULL) { 5100 ulp_info = &(sire->ire_uinfo); 5101 } 5102 if (!ip_bind_get_ire_v4(mpp, dst_ire, ulp_info, ipst)) { 5103 error = -1; 5104 goto bad_addr; 5105 } 5106 mp = *mpp; 5107 } else if (ipsec_policy_set) { 5108 if (!ip_bind_ipsec_policy_set(connp, mp)) { 5109 error = -1; 5110 goto bad_addr; 5111 } 5112 } 5113 5114 /* 5115 * Cache IPsec policy in this conn. If we have per-socket policy, 5116 * we'll cache that. If we don't, we'll inherit global policy. 5117 * 5118 * We can't insert until the conn reflects the policy. Note that 5119 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5120 * connections where we don't have a policy. This is to prevent 5121 * global policy lookups in the inbound path. 5122 * 5123 * If we insert before we set conn_policy_cached, 5124 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5125 * because global policy cound be non-empty. We normally call 5126 * ipsec_check_policy() for conn_policy_cached connections only if 5127 * ipc_in_enforce_policy is set. But in this case, 5128 * conn_policy_cached can get set anytime since we made the 5129 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5130 * called, which will make the above assumption false. Thus, we 5131 * need to insert after we set conn_policy_cached. 5132 */ 5133 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5134 goto bad_addr; 5135 5136 if (fanout_insert) { 5137 /* 5138 * The addresses have been verified. Time to insert in 5139 * the correct fanout list. 5140 */ 5141 error = ipcl_conn_insert(connp, protocol, src_addr, 5142 dst_addr, connp->conn_ports); 5143 } 5144 5145 if (error == 0) { 5146 connp->conn_fully_bound = B_TRUE; 5147 /* 5148 * Our initial checks for LSO/MDT have passed; the IRE is not 5149 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5150 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5151 * ip_xxinfo_return(), which performs further checks 5152 * against them and upon success, returns the LSO/MDT info 5153 * mblk which we will attach to the bind acknowledgment. 5154 */ 5155 if (lso_dst_ire != NULL) { 5156 mblk_t *lsoinfo_mp; 5157 5158 ASSERT(ill->ill_lso_capab != NULL); 5159 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5160 ill->ill_name, ill->ill_lso_capab)) != NULL) { 5161 if (mp == NULL) { 5162 *mpp = lsoinfo_mp; 5163 } else { 5164 linkb(mp, lsoinfo_mp); 5165 } 5166 } 5167 } else if (md_dst_ire != NULL) { 5168 mblk_t *mdinfo_mp; 5169 5170 ASSERT(ill->ill_mdt_capab != NULL); 5171 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5172 ill->ill_name, ill->ill_mdt_capab)) != NULL) { 5173 if (mp == NULL) { 5174 *mpp = mdinfo_mp; 5175 } else { 5176 linkb(mp, mdinfo_mp); 5177 } 5178 } 5179 } 5180 } 5181 bad_addr: 5182 if (ipsec_policy_set) { 5183 ASSERT(mp != NULL); 5184 freeb(mp); 5185 /* 5186 * As of now assume that nothing else accompanies 5187 * IPSEC_POLICY_SET. 5188 */ 5189 *mpp = NULL; 5190 } 5191 if (src_ire != NULL) 5192 IRE_REFRELE(src_ire); 5193 if (dst_ire != NULL) 5194 IRE_REFRELE(dst_ire); 5195 if (sire != NULL) 5196 IRE_REFRELE(sire); 5197 if (md_dst_ire != NULL) 5198 IRE_REFRELE(md_dst_ire); 5199 if (lso_dst_ire != NULL) 5200 IRE_REFRELE(lso_dst_ire); 5201 if (effective_cred != NULL) 5202 crfree(effective_cred); 5203 return (error); 5204 } 5205 5206 int 5207 ip_proto_bind_connected_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 5208 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 5209 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 5210 { 5211 int error; 5212 5213 ASSERT(!connp->conn_af_isv6); 5214 connp->conn_pkt_isv6 = B_FALSE; 5215 connp->conn_ulp = protocol; 5216 5217 /* For raw socket, the local port is not set. */ 5218 if (lport == 0) 5219 lport = connp->conn_lport; 5220 error = ip_bind_connected_v4(connp, ire_mpp, protocol, 5221 src_addrp, lport, dst_addr, fport, fanout_insert, verify_dst, cr); 5222 if (error < 0) 5223 error = -TBADADDR; 5224 return (error); 5225 } 5226 5227 /* 5228 * Get the ire in *mpp. Returns false if it fails (due to lack of space). 5229 * Prefers dst_ire over src_ire. 5230 */ 5231 static boolean_t 5232 ip_bind_get_ire_v4(mblk_t **mpp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5233 { 5234 mblk_t *mp = *mpp; 5235 ire_t *ret_ire; 5236 5237 ASSERT(mp != NULL); 5238 5239 if (ire != NULL) { 5240 /* 5241 * mp initialized above to IRE_DB_REQ_TYPE 5242 * appended mblk. Its <upper protocol>'s 5243 * job to make sure there is room. 5244 */ 5245 if ((mp->b_datap->db_lim - mp->b_rptr) < sizeof (ire_t)) 5246 return (B_FALSE); 5247 5248 mp->b_datap->db_type = IRE_DB_TYPE; 5249 mp->b_wptr = mp->b_rptr + sizeof (ire_t); 5250 bcopy(ire, mp->b_rptr, sizeof (ire_t)); 5251 ret_ire = (ire_t *)mp->b_rptr; 5252 /* 5253 * Pass the latest setting of the ip_path_mtu_discovery and 5254 * copy the ulp info if any. 5255 */ 5256 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5257 IPH_DF : 0; 5258 if (ulp_info != NULL) { 5259 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5260 sizeof (iulp_t)); 5261 } 5262 ret_ire->ire_mp = mp; 5263 } else { 5264 /* 5265 * No IRE was found. Remove IRE mblk. 5266 */ 5267 *mpp = mp->b_cont; 5268 freeb(mp); 5269 } 5270 return (B_TRUE); 5271 } 5272 5273 /* 5274 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5275 * the final piece where we don't. Return a pointer to the first mblk in the 5276 * result, and update the pointer to the next mblk to chew on. If anything 5277 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5278 * NULL pointer. 5279 */ 5280 mblk_t * 5281 ip_carve_mp(mblk_t **mpp, ssize_t len) 5282 { 5283 mblk_t *mp0; 5284 mblk_t *mp1; 5285 mblk_t *mp2; 5286 5287 if (!len || !mpp || !(mp0 = *mpp)) 5288 return (NULL); 5289 /* If we aren't going to consume the first mblk, we need a dup. */ 5290 if (mp0->b_wptr - mp0->b_rptr > len) { 5291 mp1 = dupb(mp0); 5292 if (mp1) { 5293 /* Partition the data between the two mblks. */ 5294 mp1->b_wptr = mp1->b_rptr + len; 5295 mp0->b_rptr = mp1->b_wptr; 5296 /* 5297 * after adjustments if mblk not consumed is now 5298 * unaligned, try to align it. If this fails free 5299 * all messages and let upper layer recover. 5300 */ 5301 if (!OK_32PTR(mp0->b_rptr)) { 5302 if (!pullupmsg(mp0, -1)) { 5303 freemsg(mp0); 5304 freemsg(mp1); 5305 *mpp = NULL; 5306 return (NULL); 5307 } 5308 } 5309 } 5310 return (mp1); 5311 } 5312 /* Eat through as many mblks as we need to get len bytes. */ 5313 len -= mp0->b_wptr - mp0->b_rptr; 5314 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5315 if (mp2->b_wptr - mp2->b_rptr > len) { 5316 /* 5317 * We won't consume the entire last mblk. Like 5318 * above, dup and partition it. 5319 */ 5320 mp1->b_cont = dupb(mp2); 5321 mp1 = mp1->b_cont; 5322 if (!mp1) { 5323 /* 5324 * Trouble. Rather than go to a lot of 5325 * trouble to clean up, we free the messages. 5326 * This won't be any worse than losing it on 5327 * the wire. 5328 */ 5329 freemsg(mp0); 5330 freemsg(mp2); 5331 *mpp = NULL; 5332 return (NULL); 5333 } 5334 mp1->b_wptr = mp1->b_rptr + len; 5335 mp2->b_rptr = mp1->b_wptr; 5336 /* 5337 * after adjustments if mblk not consumed is now 5338 * unaligned, try to align it. If this fails free 5339 * all messages and let upper layer recover. 5340 */ 5341 if (!OK_32PTR(mp2->b_rptr)) { 5342 if (!pullupmsg(mp2, -1)) { 5343 freemsg(mp0); 5344 freemsg(mp2); 5345 *mpp = NULL; 5346 return (NULL); 5347 } 5348 } 5349 *mpp = mp2; 5350 return (mp0); 5351 } 5352 /* Decrement len by the amount we just got. */ 5353 len -= mp2->b_wptr - mp2->b_rptr; 5354 } 5355 /* 5356 * len should be reduced to zero now. If not our caller has 5357 * screwed up. 5358 */ 5359 if (len) { 5360 /* Shouldn't happen! */ 5361 freemsg(mp0); 5362 *mpp = NULL; 5363 return (NULL); 5364 } 5365 /* 5366 * We consumed up to exactly the end of an mblk. Detach the part 5367 * we are returning from the rest of the chain. 5368 */ 5369 mp1->b_cont = NULL; 5370 *mpp = mp2; 5371 return (mp0); 5372 } 5373 5374 /* The ill stream is being unplumbed. Called from ip_close */ 5375 int 5376 ip_modclose(ill_t *ill) 5377 { 5378 boolean_t success; 5379 ipsq_t *ipsq; 5380 ipif_t *ipif; 5381 queue_t *q = ill->ill_rq; 5382 ip_stack_t *ipst = ill->ill_ipst; 5383 int i; 5384 5385 /* 5386 * The punlink prior to this may have initiated a capability 5387 * negotiation. But ipsq_enter will block until that finishes or 5388 * times out. 5389 */ 5390 success = ipsq_enter(ill, B_FALSE, NEW_OP); 5391 5392 /* 5393 * Open/close/push/pop is guaranteed to be single threaded 5394 * per stream by STREAMS. FS guarantees that all references 5395 * from top are gone before close is called. So there can't 5396 * be another close thread that has set CONDEMNED on this ill. 5397 * and cause ipsq_enter to return failure. 5398 */ 5399 ASSERT(success); 5400 ipsq = ill->ill_phyint->phyint_ipsq; 5401 5402 /* 5403 * Mark it condemned. No new reference will be made to this ill. 5404 * Lookup functions will return an error. Threads that try to 5405 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5406 * that the refcnt will drop down to zero. 5407 */ 5408 mutex_enter(&ill->ill_lock); 5409 ill->ill_state_flags |= ILL_CONDEMNED; 5410 for (ipif = ill->ill_ipif; ipif != NULL; 5411 ipif = ipif->ipif_next) { 5412 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5413 } 5414 /* 5415 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5416 * returns error if ILL_CONDEMNED is set 5417 */ 5418 cv_broadcast(&ill->ill_cv); 5419 mutex_exit(&ill->ill_lock); 5420 5421 /* 5422 * Send all the deferred DLPI messages downstream which came in 5423 * during the small window right before ipsq_enter(). We do this 5424 * without waiting for the ACKs because all the ACKs for M_PROTO 5425 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5426 */ 5427 ill_dlpi_send_deferred(ill); 5428 5429 /* 5430 * Shut down fragmentation reassembly. 5431 * ill_frag_timer won't start a timer again. 5432 * Now cancel any existing timer 5433 */ 5434 (void) untimeout(ill->ill_frag_timer_id); 5435 (void) ill_frag_timeout(ill, 0); 5436 5437 /* 5438 * Call ill_delete to bring down the ipifs, ilms and ill on 5439 * this ill. Then wait for the refcnts to drop to zero. 5440 * ill_is_freeable checks whether the ill is really quiescent. 5441 * Then make sure that threads that are waiting to enter the 5442 * ipsq have seen the error returned by ipsq_enter and have 5443 * gone away. Then we call ill_delete_tail which does the 5444 * DL_UNBIND_REQ with the driver and then qprocsoff. 5445 */ 5446 ill_delete(ill); 5447 mutex_enter(&ill->ill_lock); 5448 while (!ill_is_freeable(ill)) 5449 cv_wait(&ill->ill_cv, &ill->ill_lock); 5450 while (ill->ill_waiters) 5451 cv_wait(&ill->ill_cv, &ill->ill_lock); 5452 5453 mutex_exit(&ill->ill_lock); 5454 5455 /* 5456 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5457 * it held until the end of the function since the cleanup 5458 * below needs to be able to use the ip_stack_t. 5459 */ 5460 netstack_hold(ipst->ips_netstack); 5461 5462 /* qprocsoff is done via ill_delete_tail */ 5463 ill_delete_tail(ill); 5464 ASSERT(ill->ill_ipst == NULL); 5465 5466 /* 5467 * Walk through all upper (conn) streams and qenable 5468 * those that have queued data. 5469 * close synchronization needs this to 5470 * be done to ensure that all upper layers blocked 5471 * due to flow control to the closing device 5472 * get unblocked. 5473 */ 5474 ip1dbg(("ip_wsrv: walking\n")); 5475 for (i = 0; i < TX_FANOUT_SIZE; i++) { 5476 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 5477 } 5478 5479 mutex_enter(&ipst->ips_ip_mi_lock); 5480 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5481 mutex_exit(&ipst->ips_ip_mi_lock); 5482 5483 /* 5484 * credp could be null if the open didn't succeed and ip_modopen 5485 * itself calls ip_close. 5486 */ 5487 if (ill->ill_credp != NULL) 5488 crfree(ill->ill_credp); 5489 5490 /* 5491 * Now we are done with the module close pieces that 5492 * need the netstack_t. 5493 */ 5494 netstack_rele(ipst->ips_netstack); 5495 5496 mi_close_free((IDP)ill); 5497 q->q_ptr = WR(q)->q_ptr = NULL; 5498 5499 ipsq_exit(ipsq); 5500 5501 return (0); 5502 } 5503 5504 /* 5505 * This is called as part of close() for IP, UDP, ICMP, and RTS 5506 * in order to quiesce the conn. 5507 */ 5508 void 5509 ip_quiesce_conn(conn_t *connp) 5510 { 5511 boolean_t drain_cleanup_reqd = B_FALSE; 5512 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5513 boolean_t ilg_cleanup_reqd = B_FALSE; 5514 ip_stack_t *ipst; 5515 5516 ASSERT(!IPCL_IS_TCP(connp)); 5517 ipst = connp->conn_netstack->netstack_ip; 5518 5519 /* 5520 * Mark the conn as closing, and this conn must not be 5521 * inserted in future into any list. Eg. conn_drain_insert(), 5522 * won't insert this conn into the conn_drain_list. 5523 * Similarly ill_pending_mp_add() will not add any mp to 5524 * the pending mp list, after this conn has started closing. 5525 * 5526 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5527 * cannot get set henceforth. 5528 */ 5529 mutex_enter(&connp->conn_lock); 5530 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5531 connp->conn_state_flags |= CONN_CLOSING; 5532 if (connp->conn_idl != NULL) 5533 drain_cleanup_reqd = B_TRUE; 5534 if (connp->conn_oper_pending_ill != NULL) 5535 conn_ioctl_cleanup_reqd = B_TRUE; 5536 if (connp->conn_dhcpinit_ill != NULL) { 5537 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5538 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5539 connp->conn_dhcpinit_ill = NULL; 5540 } 5541 if (connp->conn_ilg_inuse != 0) 5542 ilg_cleanup_reqd = B_TRUE; 5543 mutex_exit(&connp->conn_lock); 5544 5545 if (conn_ioctl_cleanup_reqd) 5546 conn_ioctl_cleanup(connp); 5547 5548 if (is_system_labeled() && connp->conn_anon_port) { 5549 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5550 connp->conn_mlp_type, connp->conn_ulp, 5551 ntohs(connp->conn_lport), B_FALSE); 5552 connp->conn_anon_port = 0; 5553 } 5554 connp->conn_mlp_type = mlptSingle; 5555 5556 /* 5557 * Remove this conn from any fanout list it is on. 5558 * and then wait for any threads currently operating 5559 * on this endpoint to finish 5560 */ 5561 ipcl_hash_remove(connp); 5562 5563 /* 5564 * Remove this conn from the drain list, and do 5565 * any other cleanup that may be required. 5566 * (Only non-tcp streams may have a non-null conn_idl. 5567 * TCP streams are never flow controlled, and 5568 * conn_idl will be null) 5569 */ 5570 if (drain_cleanup_reqd) 5571 conn_drain_tail(connp, B_TRUE); 5572 5573 if (connp == ipst->ips_ip_g_mrouter) 5574 (void) ip_mrouter_done(NULL, ipst); 5575 5576 if (ilg_cleanup_reqd) 5577 ilg_delete_all(connp); 5578 5579 conn_delete_ire(connp, NULL); 5580 5581 /* 5582 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5583 * callers from write side can't be there now because close 5584 * is in progress. The only other caller is ipcl_walk 5585 * which checks for the condemned flag. 5586 */ 5587 mutex_enter(&connp->conn_lock); 5588 connp->conn_state_flags |= CONN_CONDEMNED; 5589 while (connp->conn_ref != 1) 5590 cv_wait(&connp->conn_cv, &connp->conn_lock); 5591 connp->conn_state_flags |= CONN_QUIESCED; 5592 mutex_exit(&connp->conn_lock); 5593 } 5594 5595 /* ARGSUSED */ 5596 int 5597 ip_close(queue_t *q, int flags) 5598 { 5599 conn_t *connp; 5600 5601 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5602 5603 /* 5604 * Call the appropriate delete routine depending on whether this is 5605 * a module or device. 5606 */ 5607 if (WR(q)->q_next != NULL) { 5608 /* This is a module close */ 5609 return (ip_modclose((ill_t *)q->q_ptr)); 5610 } 5611 5612 connp = q->q_ptr; 5613 ip_quiesce_conn(connp); 5614 5615 qprocsoff(q); 5616 5617 /* 5618 * Now we are truly single threaded on this stream, and can 5619 * delete the things hanging off the connp, and finally the connp. 5620 * We removed this connp from the fanout list, it cannot be 5621 * accessed thru the fanouts, and we already waited for the 5622 * conn_ref to drop to 0. We are already in close, so 5623 * there cannot be any other thread from the top. qprocsoff 5624 * has completed, and service has completed or won't run in 5625 * future. 5626 */ 5627 ASSERT(connp->conn_ref == 1); 5628 5629 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5630 5631 connp->conn_ref--; 5632 ipcl_conn_destroy(connp); 5633 5634 q->q_ptr = WR(q)->q_ptr = NULL; 5635 return (0); 5636 } 5637 5638 /* 5639 * Wapper around putnext() so that ip_rts_request can merely use 5640 * conn_recv. 5641 */ 5642 /*ARGSUSED2*/ 5643 static void 5644 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5645 { 5646 conn_t *connp = (conn_t *)arg1; 5647 5648 putnext(connp->conn_rq, mp); 5649 } 5650 5651 /* 5652 * Called when the module is about to be unloaded 5653 */ 5654 void 5655 ip_ddi_destroy(void) 5656 { 5657 tnet_fini(); 5658 5659 icmp_ddi_g_destroy(); 5660 rts_ddi_g_destroy(); 5661 udp_ddi_g_destroy(); 5662 sctp_ddi_g_destroy(); 5663 tcp_ddi_g_destroy(); 5664 ipsec_policy_g_destroy(); 5665 ipcl_g_destroy(); 5666 ip_net_g_destroy(); 5667 ip_ire_g_fini(); 5668 inet_minor_destroy(ip_minor_arena_sa); 5669 #if defined(_LP64) 5670 inet_minor_destroy(ip_minor_arena_la); 5671 #endif 5672 5673 #ifdef DEBUG 5674 list_destroy(&ip_thread_list); 5675 rw_destroy(&ip_thread_rwlock); 5676 tsd_destroy(&ip_thread_data); 5677 #endif 5678 5679 netstack_unregister(NS_IP); 5680 } 5681 5682 /* 5683 * First step in cleanup. 5684 */ 5685 /* ARGSUSED */ 5686 static void 5687 ip_stack_shutdown(netstackid_t stackid, void *arg) 5688 { 5689 ip_stack_t *ipst = (ip_stack_t *)arg; 5690 5691 #ifdef NS_DEBUG 5692 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5693 #endif 5694 5695 /* 5696 * Perform cleanup for special interfaces (loopback and IPMP). 5697 */ 5698 ip_interface_cleanup(ipst); 5699 5700 /* 5701 * The *_hook_shutdown()s start the process of notifying any 5702 * consumers that things are going away.... nothing is destroyed. 5703 */ 5704 ipv4_hook_shutdown(ipst); 5705 ipv6_hook_shutdown(ipst); 5706 5707 mutex_enter(&ipst->ips_capab_taskq_lock); 5708 ipst->ips_capab_taskq_quit = B_TRUE; 5709 cv_signal(&ipst->ips_capab_taskq_cv); 5710 mutex_exit(&ipst->ips_capab_taskq_lock); 5711 5712 mutex_enter(&ipst->ips_mrt_lock); 5713 ipst->ips_mrt_flags |= IP_MRT_STOP; 5714 cv_signal(&ipst->ips_mrt_cv); 5715 mutex_exit(&ipst->ips_mrt_lock); 5716 } 5717 5718 /* 5719 * Free the IP stack instance. 5720 */ 5721 static void 5722 ip_stack_fini(netstackid_t stackid, void *arg) 5723 { 5724 ip_stack_t *ipst = (ip_stack_t *)arg; 5725 int ret; 5726 5727 #ifdef NS_DEBUG 5728 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5729 #endif 5730 /* 5731 * At this point, all of the notifications that the events and 5732 * protocols are going away have been run, meaning that we can 5733 * now set about starting to clean things up. 5734 */ 5735 ipobs_fini(ipst); 5736 ipv4_hook_destroy(ipst); 5737 ipv6_hook_destroy(ipst); 5738 ip_net_destroy(ipst); 5739 5740 mutex_destroy(&ipst->ips_capab_taskq_lock); 5741 cv_destroy(&ipst->ips_capab_taskq_cv); 5742 5743 mutex_enter(&ipst->ips_mrt_lock); 5744 while (!(ipst->ips_mrt_flags & IP_MRT_DONE)) 5745 cv_wait(&ipst->ips_mrt_done_cv, &ipst->ips_mrt_lock); 5746 mutex_destroy(&ipst->ips_mrt_lock); 5747 cv_destroy(&ipst->ips_mrt_cv); 5748 cv_destroy(&ipst->ips_mrt_done_cv); 5749 5750 ipmp_destroy(ipst); 5751 rw_destroy(&ipst->ips_srcid_lock); 5752 5753 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5754 ipst->ips_ip_mibkp = NULL; 5755 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5756 ipst->ips_icmp_mibkp = NULL; 5757 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5758 ipst->ips_ip_kstat = NULL; 5759 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5760 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5761 ipst->ips_ip6_kstat = NULL; 5762 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5763 5764 nd_free(&ipst->ips_ip_g_nd); 5765 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5766 ipst->ips_param_arr = NULL; 5767 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5768 ipst->ips_ndp_arr = NULL; 5769 5770 ip_mrouter_stack_destroy(ipst); 5771 5772 mutex_destroy(&ipst->ips_ip_mi_lock); 5773 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5774 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5775 rw_destroy(&ipst->ips_ip_g_nd_lock); 5776 5777 ret = untimeout(ipst->ips_igmp_timeout_id); 5778 if (ret == -1) { 5779 ASSERT(ipst->ips_igmp_timeout_id == 0); 5780 } else { 5781 ASSERT(ipst->ips_igmp_timeout_id != 0); 5782 ipst->ips_igmp_timeout_id = 0; 5783 } 5784 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5785 if (ret == -1) { 5786 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5787 } else { 5788 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5789 ipst->ips_igmp_slowtimeout_id = 0; 5790 } 5791 ret = untimeout(ipst->ips_mld_timeout_id); 5792 if (ret == -1) { 5793 ASSERT(ipst->ips_mld_timeout_id == 0); 5794 } else { 5795 ASSERT(ipst->ips_mld_timeout_id != 0); 5796 ipst->ips_mld_timeout_id = 0; 5797 } 5798 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5799 if (ret == -1) { 5800 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5801 } else { 5802 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5803 ipst->ips_mld_slowtimeout_id = 0; 5804 } 5805 ret = untimeout(ipst->ips_ip_ire_expire_id); 5806 if (ret == -1) { 5807 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5808 } else { 5809 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5810 ipst->ips_ip_ire_expire_id = 0; 5811 } 5812 5813 mutex_destroy(&ipst->ips_igmp_timer_lock); 5814 mutex_destroy(&ipst->ips_mld_timer_lock); 5815 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5816 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5817 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5818 rw_destroy(&ipst->ips_ill_g_lock); 5819 5820 ip_ire_fini(ipst); 5821 ip6_asp_free(ipst); 5822 conn_drain_fini(ipst); 5823 ipcl_destroy(ipst); 5824 5825 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5826 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5827 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5828 ipst->ips_ndp4 = NULL; 5829 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5830 ipst->ips_ndp6 = NULL; 5831 5832 if (ipst->ips_loopback_ksp != NULL) { 5833 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5834 ipst->ips_loopback_ksp = NULL; 5835 } 5836 5837 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5838 ipst->ips_phyint_g_list = NULL; 5839 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5840 ipst->ips_ill_g_heads = NULL; 5841 5842 ldi_ident_release(ipst->ips_ldi_ident); 5843 kmem_free(ipst, sizeof (*ipst)); 5844 } 5845 5846 /* 5847 * This function is called from the TSD destructor, and is used to debug 5848 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5849 * details. 5850 */ 5851 static void 5852 ip_thread_exit(void *phash) 5853 { 5854 th_hash_t *thh = phash; 5855 5856 rw_enter(&ip_thread_rwlock, RW_WRITER); 5857 list_remove(&ip_thread_list, thh); 5858 rw_exit(&ip_thread_rwlock); 5859 mod_hash_destroy_hash(thh->thh_hash); 5860 kmem_free(thh, sizeof (*thh)); 5861 } 5862 5863 /* 5864 * Called when the IP kernel module is loaded into the kernel 5865 */ 5866 void 5867 ip_ddi_init(void) 5868 { 5869 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 5870 5871 /* 5872 * For IP and TCP the minor numbers should start from 2 since we have 4 5873 * initial devices: ip, ip6, tcp, tcp6. 5874 */ 5875 /* 5876 * If this is a 64-bit kernel, then create two separate arenas - 5877 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5878 * other for socket apps in the range 2^^18 through 2^^32-1. 5879 */ 5880 ip_minor_arena_la = NULL; 5881 ip_minor_arena_sa = NULL; 5882 #if defined(_LP64) 5883 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5884 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5885 cmn_err(CE_PANIC, 5886 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5887 } 5888 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5889 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5890 cmn_err(CE_PANIC, 5891 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5892 } 5893 #else 5894 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5895 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5896 cmn_err(CE_PANIC, 5897 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5898 } 5899 #endif 5900 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5901 5902 ipcl_g_init(); 5903 ip_ire_g_init(); 5904 ip_net_g_init(); 5905 5906 #ifdef DEBUG 5907 tsd_create(&ip_thread_data, ip_thread_exit); 5908 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5909 list_create(&ip_thread_list, sizeof (th_hash_t), 5910 offsetof(th_hash_t, thh_link)); 5911 #endif 5912 5913 /* 5914 * We want to be informed each time a stack is created or 5915 * destroyed in the kernel, so we can maintain the 5916 * set of udp_stack_t's. 5917 */ 5918 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5919 ip_stack_fini); 5920 5921 ipsec_policy_g_init(); 5922 tcp_ddi_g_init(); 5923 sctp_ddi_g_init(); 5924 5925 tnet_init(); 5926 5927 udp_ddi_g_init(); 5928 rts_ddi_g_init(); 5929 icmp_ddi_g_init(); 5930 } 5931 5932 /* 5933 * Initialize the IP stack instance. 5934 */ 5935 static void * 5936 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5937 { 5938 ip_stack_t *ipst; 5939 ipparam_t *pa; 5940 ipndp_t *na; 5941 major_t major; 5942 5943 #ifdef NS_DEBUG 5944 printf("ip_stack_init(stack %d)\n", stackid); 5945 #endif 5946 5947 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5948 ipst->ips_netstack = ns; 5949 5950 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5951 KM_SLEEP); 5952 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5953 KM_SLEEP); 5954 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5955 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5956 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5957 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5958 5959 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5960 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5961 ipst->ips_igmp_deferred_next = INFINITY; 5962 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5963 ipst->ips_mld_deferred_next = INFINITY; 5964 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5965 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5966 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5967 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5968 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5969 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5970 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5971 5972 ipcl_init(ipst); 5973 ip_ire_init(ipst); 5974 ip6_asp_init(ipst); 5975 ipif_init(ipst); 5976 conn_drain_init(ipst); 5977 ip_mrouter_stack_init(ipst); 5978 5979 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5980 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5981 ipst->ips_ipv6_frag_timeout = IPV6_FRAG_TIMEOUT; 5982 ipst->ips_ipv6_frag_timo_ms = IPV6_FRAG_TIMEOUT * 1000; 5983 5984 ipst->ips_ip_multirt_log_interval = 1000; 5985 5986 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5987 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5988 ipst->ips_ill_index = 1; 5989 5990 ipst->ips_saved_ip_g_forward = -1; 5991 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 5992 5993 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 5994 ipst->ips_param_arr = pa; 5995 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 5996 5997 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 5998 ipst->ips_ndp_arr = na; 5999 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6000 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6001 (caddr_t)&ipst->ips_ip_g_forward; 6002 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6003 (caddr_t)&ipst->ips_ipv6_forward; 6004 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6005 "ip_cgtp_filter") == 0); 6006 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6007 (caddr_t)&ipst->ips_ip_cgtp_filter; 6008 6009 (void) ip_param_register(&ipst->ips_ip_g_nd, 6010 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6011 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6012 6013 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6014 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6015 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6016 ipst->ips_ip6_kstat = 6017 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6018 6019 ipst->ips_ip_src_id = 1; 6020 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6021 6022 ip_net_init(ipst, ns); 6023 ipv4_hook_init(ipst); 6024 ipv6_hook_init(ipst); 6025 ipmp_init(ipst); 6026 ipobs_init(ipst); 6027 6028 /* 6029 * Create the taskq dispatcher thread and initialize related stuff. 6030 */ 6031 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 6032 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 6033 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 6034 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 6035 6036 /* 6037 * Create the mcast_restart_timers_thread() worker thread. 6038 */ 6039 mutex_init(&ipst->ips_mrt_lock, NULL, MUTEX_DEFAULT, NULL); 6040 cv_init(&ipst->ips_mrt_cv, NULL, CV_DEFAULT, NULL); 6041 cv_init(&ipst->ips_mrt_done_cv, NULL, CV_DEFAULT, NULL); 6042 ipst->ips_mrt_thread = thread_create(NULL, 0, 6043 mcast_restart_timers_thread, ipst, 0, &p0, TS_RUN, minclsyspri); 6044 6045 major = mod_name_to_major(INET_NAME); 6046 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 6047 return (ipst); 6048 } 6049 6050 /* 6051 * Allocate and initialize a DLPI template of the specified length. (May be 6052 * called as writer.) 6053 */ 6054 mblk_t * 6055 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6056 { 6057 mblk_t *mp; 6058 6059 mp = allocb(len, BPRI_MED); 6060 if (!mp) 6061 return (NULL); 6062 6063 /* 6064 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6065 * of which we don't seem to use) are sent with M_PCPROTO, and 6066 * that other DLPI are M_PROTO. 6067 */ 6068 if (prim == DL_INFO_REQ) { 6069 mp->b_datap->db_type = M_PCPROTO; 6070 } else { 6071 mp->b_datap->db_type = M_PROTO; 6072 } 6073 6074 mp->b_wptr = mp->b_rptr + len; 6075 bzero(mp->b_rptr, len); 6076 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6077 return (mp); 6078 } 6079 6080 /* 6081 * Allocate and initialize a DLPI notification. (May be called as writer.) 6082 */ 6083 mblk_t * 6084 ip_dlnotify_alloc(uint_t notification, uint_t data) 6085 { 6086 dl_notify_ind_t *notifyp; 6087 mblk_t *mp; 6088 6089 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 6090 return (NULL); 6091 6092 notifyp = (dl_notify_ind_t *)mp->b_rptr; 6093 notifyp->dl_notification = notification; 6094 notifyp->dl_data = data; 6095 return (mp); 6096 } 6097 6098 /* 6099 * Debug formatting routine. Returns a character string representation of the 6100 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6101 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6102 * 6103 * Once the ndd table-printing interfaces are removed, this can be changed to 6104 * standard dotted-decimal form. 6105 */ 6106 char * 6107 ip_dot_addr(ipaddr_t addr, char *buf) 6108 { 6109 uint8_t *ap = (uint8_t *)&addr; 6110 6111 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6112 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6113 return (buf); 6114 } 6115 6116 /* 6117 * Write the given MAC address as a printable string in the usual colon- 6118 * separated format. 6119 */ 6120 const char * 6121 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6122 { 6123 char *bp; 6124 6125 if (alen == 0 || buflen < 4) 6126 return ("?"); 6127 bp = buf; 6128 for (;;) { 6129 /* 6130 * If there are more MAC address bytes available, but we won't 6131 * have any room to print them, then add "..." to the string 6132 * instead. See below for the 'magic number' explanation. 6133 */ 6134 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6135 (void) strcpy(bp, "..."); 6136 break; 6137 } 6138 (void) sprintf(bp, "%02x", *addr++); 6139 bp += 2; 6140 if (--alen == 0) 6141 break; 6142 *bp++ = ':'; 6143 buflen -= 3; 6144 /* 6145 * At this point, based on the first 'if' statement above, 6146 * either alen == 1 and buflen >= 3, or alen > 1 and 6147 * buflen >= 4. The first case leaves room for the final "xx" 6148 * number and trailing NUL byte. The second leaves room for at 6149 * least "...". Thus the apparently 'magic' numbers chosen for 6150 * that statement. 6151 */ 6152 } 6153 return (buf); 6154 } 6155 6156 /* 6157 * Send an ICMP error after patching up the packet appropriately. Returns 6158 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6159 */ 6160 static boolean_t 6161 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6162 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6163 zoneid_t zoneid, ip_stack_t *ipst) 6164 { 6165 ipha_t *ipha; 6166 mblk_t *first_mp; 6167 boolean_t secure; 6168 unsigned char db_type; 6169 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6170 6171 first_mp = mp; 6172 if (mctl_present) { 6173 mp = mp->b_cont; 6174 secure = ipsec_in_is_secure(first_mp); 6175 ASSERT(mp != NULL); 6176 } else { 6177 /* 6178 * If this is an ICMP error being reported - which goes 6179 * up as M_CTLs, we need to convert them to M_DATA till 6180 * we finish checking with global policy because 6181 * ipsec_check_global_policy() assumes M_DATA as clear 6182 * and M_CTL as secure. 6183 */ 6184 db_type = DB_TYPE(mp); 6185 DB_TYPE(mp) = M_DATA; 6186 secure = B_FALSE; 6187 } 6188 /* 6189 * We are generating an icmp error for some inbound packet. 6190 * Called from all ip_fanout_(udp, tcp, proto) functions. 6191 * Before we generate an error, check with global policy 6192 * to see whether this is allowed to enter the system. As 6193 * there is no "conn", we are checking with global policy. 6194 */ 6195 ipha = (ipha_t *)mp->b_rptr; 6196 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6197 first_mp = ipsec_check_global_policy(first_mp, NULL, 6198 ipha, NULL, mctl_present, ipst->ips_netstack); 6199 if (first_mp == NULL) 6200 return (B_FALSE); 6201 } 6202 6203 if (!mctl_present) 6204 DB_TYPE(mp) = db_type; 6205 6206 if (flags & IP_FF_SEND_ICMP) { 6207 if (flags & IP_FF_HDR_COMPLETE) { 6208 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6209 freemsg(first_mp); 6210 return (B_TRUE); 6211 } 6212 } 6213 if (flags & IP_FF_CKSUM) { 6214 /* 6215 * Have to correct checksum since 6216 * the packet might have been 6217 * fragmented and the reassembly code in ip_rput 6218 * does not restore the IP checksum. 6219 */ 6220 ipha->ipha_hdr_checksum = 0; 6221 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6222 } 6223 switch (icmp_type) { 6224 case ICMP_DEST_UNREACHABLE: 6225 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6226 ipst); 6227 break; 6228 default: 6229 freemsg(first_mp); 6230 break; 6231 } 6232 } else { 6233 freemsg(first_mp); 6234 return (B_FALSE); 6235 } 6236 6237 return (B_TRUE); 6238 } 6239 6240 /* 6241 * Used to send an ICMP error message when a packet is received for 6242 * a protocol that is not supported. The mblk passed as argument 6243 * is consumed by this function. 6244 */ 6245 void 6246 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6247 ip_stack_t *ipst) 6248 { 6249 mblk_t *mp; 6250 ipha_t *ipha; 6251 ill_t *ill; 6252 ipsec_in_t *ii; 6253 6254 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6255 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6256 6257 mp = ipsec_mp->b_cont; 6258 ipsec_mp->b_cont = NULL; 6259 ipha = (ipha_t *)mp->b_rptr; 6260 /* Get ill from index in ipsec_in_t. */ 6261 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6262 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6263 ipst); 6264 if (ill != NULL) { 6265 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6266 if (ip_fanout_send_icmp(q, mp, flags, 6267 ICMP_DEST_UNREACHABLE, 6268 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6269 BUMP_MIB(ill->ill_ip_mib, 6270 ipIfStatsInUnknownProtos); 6271 } 6272 } else { 6273 if (ip_fanout_send_icmp_v6(q, mp, flags, 6274 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6275 0, B_FALSE, zoneid, ipst)) { 6276 BUMP_MIB(ill->ill_ip_mib, 6277 ipIfStatsInUnknownProtos); 6278 } 6279 } 6280 ill_refrele(ill); 6281 } else { /* re-link for the freemsg() below. */ 6282 ipsec_mp->b_cont = mp; 6283 } 6284 6285 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6286 freemsg(ipsec_mp); 6287 } 6288 6289 /* 6290 * See if the inbound datagram has had IPsec processing applied to it. 6291 */ 6292 boolean_t 6293 ipsec_in_is_secure(mblk_t *ipsec_mp) 6294 { 6295 ipsec_in_t *ii; 6296 6297 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6298 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6299 6300 if (ii->ipsec_in_loopback) { 6301 return (ii->ipsec_in_secure); 6302 } else { 6303 return (ii->ipsec_in_ah_sa != NULL || 6304 ii->ipsec_in_esp_sa != NULL || 6305 ii->ipsec_in_decaps); 6306 } 6307 } 6308 6309 /* 6310 * Handle protocols with which IP is less intimate. There 6311 * can be more than one stream bound to a particular 6312 * protocol. When this is the case, normally each one gets a copy 6313 * of any incoming packets. 6314 * 6315 * IPsec NOTE : 6316 * 6317 * Don't allow a secure packet going up a non-secure connection. 6318 * We don't allow this because 6319 * 6320 * 1) Reply might go out in clear which will be dropped at 6321 * the sending side. 6322 * 2) If the reply goes out in clear it will give the 6323 * adversary enough information for getting the key in 6324 * most of the cases. 6325 * 6326 * Moreover getting a secure packet when we expect clear 6327 * implies that SA's were added without checking for 6328 * policy on both ends. This should not happen once ISAKMP 6329 * is used to negotiate SAs as SAs will be added only after 6330 * verifying the policy. 6331 * 6332 * IPQoS Notes: 6333 * Once we have determined the client, invoke IPPF processing. 6334 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6335 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6336 * ip_policy will be false. 6337 * 6338 * Zones notes: 6339 * Currently only applications in the global zone can create raw sockets for 6340 * protocols other than ICMP. So unlike the broadcast / multicast case of 6341 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6342 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6343 */ 6344 static void 6345 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6346 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6347 zoneid_t zoneid) 6348 { 6349 queue_t *rq; 6350 mblk_t *mp1, *first_mp1; 6351 uint_t protocol = ipha->ipha_protocol; 6352 ipaddr_t dst; 6353 mblk_t *first_mp = mp; 6354 boolean_t secure; 6355 uint32_t ill_index; 6356 conn_t *connp, *first_connp, *next_connp; 6357 connf_t *connfp; 6358 boolean_t shared_addr; 6359 mib2_ipIfStatsEntry_t *mibptr; 6360 ip_stack_t *ipst = recv_ill->ill_ipst; 6361 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6362 6363 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6364 if (mctl_present) { 6365 mp = first_mp->b_cont; 6366 secure = ipsec_in_is_secure(first_mp); 6367 ASSERT(mp != NULL); 6368 } else { 6369 secure = B_FALSE; 6370 } 6371 dst = ipha->ipha_dst; 6372 shared_addr = (zoneid == ALL_ZONES); 6373 if (shared_addr) { 6374 /* 6375 * We don't allow multilevel ports for raw IP, so no need to 6376 * check for that here. 6377 */ 6378 zoneid = tsol_packet_to_zoneid(mp); 6379 } 6380 6381 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6382 mutex_enter(&connfp->connf_lock); 6383 connp = connfp->connf_head; 6384 for (connp = connfp->connf_head; connp != NULL; 6385 connp = connp->conn_next) { 6386 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6387 zoneid) && 6388 (!is_system_labeled() || 6389 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6390 connp))) { 6391 break; 6392 } 6393 } 6394 6395 if (connp == NULL) { 6396 /* 6397 * No one bound to these addresses. Is 6398 * there a client that wants all 6399 * unclaimed datagrams? 6400 */ 6401 mutex_exit(&connfp->connf_lock); 6402 /* 6403 * Check for IPPROTO_ENCAP... 6404 */ 6405 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6406 /* 6407 * If an IPsec mblk is here on a multicast 6408 * tunnel (using ip_mroute stuff), check policy here, 6409 * THEN ship off to ip_mroute_decap(). 6410 * 6411 * BTW, If I match a configured IP-in-IP 6412 * tunnel, this path will not be reached, and 6413 * ip_mroute_decap will never be called. 6414 */ 6415 first_mp = ipsec_check_global_policy(first_mp, connp, 6416 ipha, NULL, mctl_present, ipst->ips_netstack); 6417 if (first_mp != NULL) { 6418 if (mctl_present) 6419 freeb(first_mp); 6420 ip_mroute_decap(q, mp, ill); 6421 } /* Else we already freed everything! */ 6422 } else { 6423 /* 6424 * Otherwise send an ICMP protocol unreachable. 6425 */ 6426 if (ip_fanout_send_icmp(q, first_mp, flags, 6427 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6428 mctl_present, zoneid, ipst)) { 6429 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6430 } 6431 } 6432 return; 6433 } 6434 6435 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 6436 6437 CONN_INC_REF(connp); 6438 first_connp = connp; 6439 connp = connp->conn_next; 6440 6441 for (;;) { 6442 while (connp != NULL) { 6443 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6444 flags, zoneid) && 6445 (!is_system_labeled() || 6446 tsol_receive_local(mp, &dst, IPV4_VERSION, 6447 shared_addr, connp))) 6448 break; 6449 connp = connp->conn_next; 6450 } 6451 6452 /* 6453 * Copy the packet. 6454 */ 6455 if (connp == NULL || 6456 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6457 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6458 /* 6459 * No more interested clients or memory 6460 * allocation failed 6461 */ 6462 connp = first_connp; 6463 break; 6464 } 6465 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 6466 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6467 CONN_INC_REF(connp); 6468 mutex_exit(&connfp->connf_lock); 6469 rq = connp->conn_rq; 6470 6471 /* 6472 * Check flow control 6473 */ 6474 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6475 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6476 if (flags & IP_FF_RAWIP) { 6477 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6478 } else { 6479 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6480 } 6481 6482 freemsg(first_mp1); 6483 } else { 6484 /* 6485 * Enforce policy like any other conn_t. Note that 6486 * IP-in-IP packets don't come through here, but 6487 * through ip_iptun_input() or 6488 * icmp_inbound_iptun_fanout(). IPsec policy for such 6489 * packets is enforced in the iptun module. 6490 */ 6491 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6492 secure) { 6493 first_mp1 = ipsec_check_inbound_policy 6494 (first_mp1, connp, ipha, NULL, 6495 mctl_present); 6496 } 6497 if (first_mp1 != NULL) { 6498 int in_flags = 0; 6499 /* 6500 * ip_fanout_proto also gets called from 6501 * icmp_inbound_error_fanout, in which case 6502 * the msg type is M_CTL. Don't add info 6503 * in this case for the time being. In future 6504 * when there is a need for knowing the 6505 * inbound iface index for ICMP error msgs, 6506 * then this can be changed. 6507 */ 6508 if (connp->conn_recvif) 6509 in_flags = IPF_RECVIF; 6510 /* 6511 * The ULP may support IP_RECVPKTINFO for both 6512 * IP v4 and v6 so pass the appropriate argument 6513 * based on conn IP version. 6514 */ 6515 if (connp->conn_ip_recvpktinfo) { 6516 if (connp->conn_af_isv6) { 6517 /* 6518 * V6 only needs index 6519 */ 6520 in_flags |= IPF_RECVIF; 6521 } else { 6522 /* 6523 * V4 needs index + 6524 * matching address. 6525 */ 6526 in_flags |= IPF_RECVADDR; 6527 } 6528 } 6529 if ((in_flags != 0) && 6530 (mp->b_datap->db_type != M_CTL)) { 6531 /* 6532 * the actual data will be 6533 * contained in b_cont upon 6534 * successful return of the 6535 * following call else 6536 * original mblk is returned 6537 */ 6538 ASSERT(recv_ill != NULL); 6539 mp1 = ip_add_info(mp1, recv_ill, 6540 in_flags, IPCL_ZONEID(connp), ipst); 6541 } 6542 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6543 if (mctl_present) 6544 freeb(first_mp1); 6545 (connp->conn_recv)(connp, mp1, NULL); 6546 } 6547 } 6548 mutex_enter(&connfp->connf_lock); 6549 /* Follow the next pointer before releasing the conn. */ 6550 next_connp = connp->conn_next; 6551 CONN_DEC_REF(connp); 6552 connp = next_connp; 6553 } 6554 6555 /* Last one. Send it upstream. */ 6556 mutex_exit(&connfp->connf_lock); 6557 6558 /* 6559 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6560 * will be set to false. 6561 */ 6562 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6563 ill_index = ill->ill_phyint->phyint_ifindex; 6564 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6565 if (mp == NULL) { 6566 CONN_DEC_REF(connp); 6567 if (mctl_present) { 6568 freeb(first_mp); 6569 } 6570 return; 6571 } 6572 } 6573 6574 rq = connp->conn_rq; 6575 /* 6576 * Check flow control 6577 */ 6578 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6579 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6580 if (flags & IP_FF_RAWIP) { 6581 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6582 } else { 6583 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6584 } 6585 6586 freemsg(first_mp); 6587 } else { 6588 ASSERT(!IPCL_IS_IPTUN(connp)); 6589 6590 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6591 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6592 ipha, NULL, mctl_present); 6593 } 6594 6595 if (first_mp != NULL) { 6596 int in_flags = 0; 6597 6598 /* 6599 * ip_fanout_proto also gets called 6600 * from icmp_inbound_error_fanout, in 6601 * which case the msg type is M_CTL. 6602 * Don't add info in this case for time 6603 * being. In future when there is a 6604 * need for knowing the inbound iface 6605 * index for ICMP error msgs, then this 6606 * can be changed 6607 */ 6608 if (connp->conn_recvif) 6609 in_flags = IPF_RECVIF; 6610 if (connp->conn_ip_recvpktinfo) { 6611 if (connp->conn_af_isv6) { 6612 /* 6613 * V6 only needs index 6614 */ 6615 in_flags |= IPF_RECVIF; 6616 } else { 6617 /* 6618 * V4 needs index + 6619 * matching address. 6620 */ 6621 in_flags |= IPF_RECVADDR; 6622 } 6623 } 6624 if ((in_flags != 0) && 6625 (mp->b_datap->db_type != M_CTL)) { 6626 6627 /* 6628 * the actual data will be contained in 6629 * b_cont upon successful return 6630 * of the following call else original 6631 * mblk is returned 6632 */ 6633 ASSERT(recv_ill != NULL); 6634 mp = ip_add_info(mp, recv_ill, 6635 in_flags, IPCL_ZONEID(connp), ipst); 6636 } 6637 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6638 (connp->conn_recv)(connp, mp, NULL); 6639 if (mctl_present) 6640 freeb(first_mp); 6641 } 6642 } 6643 CONN_DEC_REF(connp); 6644 } 6645 6646 /* 6647 * Serialize tcp resets by calling tcp_xmit_reset_serialize through 6648 * SQUEUE_ENTER_ONE(SQ_FILL). We do this to ensure the reset is handled on 6649 * the correct squeue, in this case the same squeue as a valid listener with 6650 * no current connection state for the packet we are processing. The function 6651 * is called for synchronizing both IPv4 and IPv6. 6652 */ 6653 void 6654 ip_xmit_reset_serialize(mblk_t *mp, int hdrlen, zoneid_t zoneid, 6655 tcp_stack_t *tcps, conn_t *connp) 6656 { 6657 mblk_t *rst_mp; 6658 tcp_xmit_reset_event_t *eventp; 6659 6660 rst_mp = allocb(sizeof (tcp_xmit_reset_event_t), BPRI_HI); 6661 6662 if (rst_mp == NULL) { 6663 freemsg(mp); 6664 return; 6665 } 6666 6667 rst_mp->b_datap->db_type = M_PROTO; 6668 rst_mp->b_wptr += sizeof (tcp_xmit_reset_event_t); 6669 6670 eventp = (tcp_xmit_reset_event_t *)rst_mp->b_rptr; 6671 eventp->tcp_xre_event = TCP_XRE_EVENT_IP_FANOUT_TCP; 6672 eventp->tcp_xre_iphdrlen = hdrlen; 6673 eventp->tcp_xre_zoneid = zoneid; 6674 eventp->tcp_xre_tcps = tcps; 6675 6676 rst_mp->b_cont = mp; 6677 mp = rst_mp; 6678 6679 /* 6680 * Increment the connref, this ref will be released by the squeue 6681 * framework. 6682 */ 6683 CONN_INC_REF(connp); 6684 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_xmit_reset, connp, 6685 SQ_FILL, SQTAG_XMIT_EARLY_RESET); 6686 } 6687 6688 /* 6689 * Fanout for TCP packets 6690 * The caller puts <fport, lport> in the ports parameter. 6691 * 6692 * IPQoS Notes 6693 * Before sending it to the client, invoke IPPF processing. 6694 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6695 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6696 * ip_policy is false. 6697 */ 6698 static void 6699 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6700 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6701 { 6702 mblk_t *first_mp; 6703 boolean_t secure; 6704 uint32_t ill_index; 6705 int ip_hdr_len; 6706 tcph_t *tcph; 6707 boolean_t syn_present = B_FALSE; 6708 conn_t *connp; 6709 ip_stack_t *ipst = recv_ill->ill_ipst; 6710 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6711 6712 ASSERT(recv_ill != NULL); 6713 6714 first_mp = mp; 6715 if (mctl_present) { 6716 ASSERT(first_mp->b_datap->db_type == M_CTL); 6717 mp = first_mp->b_cont; 6718 secure = ipsec_in_is_secure(first_mp); 6719 ASSERT(mp != NULL); 6720 } else { 6721 secure = B_FALSE; 6722 } 6723 6724 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6725 6726 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6727 zoneid, ipst)) == NULL) { 6728 /* 6729 * No connected connection or listener. Send a 6730 * TH_RST via tcp_xmit_listeners_reset. 6731 */ 6732 6733 /* Initiate IPPf processing, if needed. */ 6734 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6735 uint32_t ill_index; 6736 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6737 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6738 if (first_mp == NULL) 6739 return; 6740 } 6741 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6742 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6743 zoneid)); 6744 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6745 ipst->ips_netstack->netstack_tcp, NULL); 6746 return; 6747 } 6748 6749 /* 6750 * Allocate the SYN for the TCP connection here itself 6751 */ 6752 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6753 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6754 if (IPCL_IS_TCP(connp)) { 6755 squeue_t *sqp; 6756 6757 /* 6758 * If the queue belongs to a conn, and fused tcp 6759 * loopback is enabled, assign the eager's squeue 6760 * to be that of the active connect's. Note that 6761 * we don't check for IP_FF_LOOPBACK here since this 6762 * routine gets called only for loopback (unlike the 6763 * IPv6 counterpart). 6764 */ 6765 if (do_tcp_fusion && 6766 CONN_Q(q) && IPCL_IS_TCP(Q_TO_CONN(q)) && 6767 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6768 !secure && 6769 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy) { 6770 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6771 sqp = Q_TO_CONN(q)->conn_sqp; 6772 } else { 6773 sqp = IP_SQUEUE_GET(lbolt); 6774 } 6775 6776 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6777 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6778 syn_present = B_TRUE; 6779 } 6780 } 6781 6782 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6783 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6784 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6785 if ((flags & TH_RST) || (flags & TH_URG)) { 6786 CONN_DEC_REF(connp); 6787 freemsg(first_mp); 6788 return; 6789 } 6790 if (flags & TH_ACK) { 6791 ip_xmit_reset_serialize(first_mp, ip_hdr_len, zoneid, 6792 ipst->ips_netstack->netstack_tcp, connp); 6793 CONN_DEC_REF(connp); 6794 return; 6795 } 6796 6797 CONN_DEC_REF(connp); 6798 freemsg(first_mp); 6799 return; 6800 } 6801 6802 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6803 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6804 NULL, mctl_present); 6805 if (first_mp == NULL) { 6806 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6807 CONN_DEC_REF(connp); 6808 return; 6809 } 6810 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6811 ASSERT(syn_present); 6812 if (mctl_present) { 6813 ASSERT(first_mp != mp); 6814 first_mp->b_datap->db_struioflag |= 6815 STRUIO_POLICY; 6816 } else { 6817 ASSERT(first_mp == mp); 6818 mp->b_datap->db_struioflag &= 6819 ~STRUIO_EAGER; 6820 mp->b_datap->db_struioflag |= 6821 STRUIO_POLICY; 6822 } 6823 } else { 6824 /* 6825 * Discard first_mp early since we're dealing with a 6826 * fully-connected conn_t and tcp doesn't do policy in 6827 * this case. 6828 */ 6829 if (mctl_present) { 6830 freeb(first_mp); 6831 mctl_present = B_FALSE; 6832 } 6833 first_mp = mp; 6834 } 6835 } 6836 6837 /* 6838 * Initiate policy processing here if needed. If we get here from 6839 * icmp_inbound_error_fanout, ip_policy is false. 6840 */ 6841 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6842 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6843 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6844 if (mp == NULL) { 6845 CONN_DEC_REF(connp); 6846 if (mctl_present) 6847 freeb(first_mp); 6848 return; 6849 } else if (mctl_present) { 6850 ASSERT(first_mp != mp); 6851 first_mp->b_cont = mp; 6852 } else { 6853 first_mp = mp; 6854 } 6855 } 6856 6857 /* Handle socket options. */ 6858 if (!syn_present && 6859 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6860 /* Add header */ 6861 ASSERT(recv_ill != NULL); 6862 /* 6863 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6864 * IPF_RECVIF. 6865 */ 6866 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6867 ipst); 6868 if (mp == NULL) { 6869 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6870 CONN_DEC_REF(connp); 6871 if (mctl_present) 6872 freeb(first_mp); 6873 return; 6874 } else if (mctl_present) { 6875 /* 6876 * ip_add_info might return a new mp. 6877 */ 6878 ASSERT(first_mp != mp); 6879 first_mp->b_cont = mp; 6880 } else { 6881 first_mp = mp; 6882 } 6883 } 6884 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6885 if (IPCL_IS_TCP(connp)) { 6886 /* do not drain, certain use cases can blow the stack */ 6887 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, connp->conn_recv, 6888 connp, SQ_NODRAIN, SQTAG_IP_FANOUT_TCP); 6889 } else { 6890 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6891 (connp->conn_recv)(connp, first_mp, NULL); 6892 CONN_DEC_REF(connp); 6893 } 6894 } 6895 6896 /* 6897 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6898 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6899 * is not consumed. 6900 * 6901 * One of four things can happen, all of which affect the passed-in mblk: 6902 * 6903 * 1.) ICMP messages that go through here just get returned TRUE. 6904 * 6905 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6906 * 6907 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6908 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6909 * 6910 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6911 */ 6912 static boolean_t 6913 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6914 ipsec_stack_t *ipss) 6915 { 6916 int shift, plen, iph_len; 6917 ipha_t *ipha; 6918 udpha_t *udpha; 6919 uint32_t *spi; 6920 uint32_t esp_ports; 6921 uint8_t *orptr; 6922 boolean_t free_ire; 6923 6924 if (DB_TYPE(mp) == M_CTL) { 6925 /* 6926 * ICMP message with UDP inside. Don't bother stripping, just 6927 * send it up. 6928 * 6929 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6930 * to ignore errors set by ICMP anyway ('cause they might be 6931 * forged), but that's the app's decision, not ours. 6932 */ 6933 6934 /* Bunch of reality checks for DEBUG kernels... */ 6935 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6936 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6937 6938 return (B_TRUE); 6939 } 6940 6941 ipha = (ipha_t *)mp->b_rptr; 6942 iph_len = IPH_HDR_LENGTH(ipha); 6943 plen = ntohs(ipha->ipha_length); 6944 6945 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6946 /* 6947 * Most likely a keepalive for the benefit of an intervening 6948 * NAT. These aren't for us, per se, so drop it. 6949 * 6950 * RFC 3947/8 doesn't say for sure what to do for 2-3 6951 * byte packets (keepalives are 1-byte), but we'll drop them 6952 * also. 6953 */ 6954 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6955 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6956 return (B_FALSE); 6957 } 6958 6959 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6960 /* might as well pull it all up - it might be ESP. */ 6961 if (!pullupmsg(mp, -1)) { 6962 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6963 DROPPER(ipss, ipds_esp_nomem), 6964 &ipss->ipsec_dropper); 6965 return (B_FALSE); 6966 } 6967 6968 ipha = (ipha_t *)mp->b_rptr; 6969 } 6970 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6971 if (*spi == 0) { 6972 /* UDP packet - remove 0-spi. */ 6973 shift = sizeof (uint32_t); 6974 } else { 6975 /* ESP-in-UDP packet - reduce to ESP. */ 6976 ipha->ipha_protocol = IPPROTO_ESP; 6977 shift = sizeof (udpha_t); 6978 } 6979 6980 /* Fix IP header */ 6981 ipha->ipha_length = htons(plen - shift); 6982 ipha->ipha_hdr_checksum = 0; 6983 6984 orptr = mp->b_rptr; 6985 mp->b_rptr += shift; 6986 6987 udpha = (udpha_t *)(orptr + iph_len); 6988 if (*spi == 0) { 6989 ASSERT((uint8_t *)ipha == orptr); 6990 udpha->uha_length = htons(plen - shift - iph_len); 6991 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6992 esp_ports = 0; 6993 } else { 6994 esp_ports = *((uint32_t *)udpha); 6995 ASSERT(esp_ports != 0); 6996 } 6997 ovbcopy(orptr, orptr + shift, iph_len); 6998 if (esp_ports != 0) /* Punt up for ESP processing. */ { 6999 ipha = (ipha_t *)(orptr + shift); 7000 7001 free_ire = (ire == NULL); 7002 if (free_ire) { 7003 /* Re-acquire ire. */ 7004 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 7005 ipss->ipsec_netstack->netstack_ip); 7006 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 7007 if (ire != NULL) 7008 ire_refrele(ire); 7009 /* 7010 * Do a regular freemsg(), as this is an IP 7011 * error (no local route) not an IPsec one. 7012 */ 7013 freemsg(mp); 7014 } 7015 } 7016 7017 ip_proto_input(q, mp, ipha, ire, recv_ill, esp_ports); 7018 if (free_ire) 7019 ire_refrele(ire); 7020 } 7021 7022 return (esp_ports == 0); 7023 } 7024 7025 /* 7026 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 7027 * We are responsible for disposing of mp, such as by freemsg() or putnext() 7028 * Caller is responsible for dropping references to the conn, and freeing 7029 * first_mp. 7030 * 7031 * IPQoS Notes 7032 * Before sending it to the client, invoke IPPF processing. Policy processing 7033 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 7034 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 7035 * ip_wput_local, ip_policy is false. 7036 */ 7037 static void 7038 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 7039 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 7040 boolean_t ip_policy) 7041 { 7042 boolean_t mctl_present = (first_mp != NULL); 7043 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 7044 uint32_t ill_index; 7045 ip_stack_t *ipst = recv_ill->ill_ipst; 7046 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7047 7048 ASSERT(ill != NULL); 7049 7050 if (mctl_present) 7051 first_mp->b_cont = mp; 7052 else 7053 first_mp = mp; 7054 7055 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 7056 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 7057 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7058 freemsg(first_mp); 7059 return; 7060 } 7061 7062 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7063 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7064 NULL, mctl_present); 7065 /* Freed by ipsec_check_inbound_policy(). */ 7066 if (first_mp == NULL) { 7067 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7068 return; 7069 } 7070 } 7071 if (mctl_present) 7072 freeb(first_mp); 7073 7074 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7075 if (connp->conn_udp->udp_nat_t_endpoint) { 7076 if (mctl_present) { 7077 /* mctl_present *shouldn't* happen. */ 7078 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7079 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7080 &ipss->ipsec_dropper); 7081 return; 7082 } 7083 7084 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7085 return; 7086 } 7087 7088 /* Handle options. */ 7089 if (connp->conn_recvif) 7090 in_flags = IPF_RECVIF; 7091 /* 7092 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7093 * passed to ip_add_info is based on IP version of connp. 7094 */ 7095 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7096 if (connp->conn_af_isv6) { 7097 /* 7098 * V6 only needs index 7099 */ 7100 in_flags |= IPF_RECVIF; 7101 } else { 7102 /* 7103 * V4 needs index + matching address. 7104 */ 7105 in_flags |= IPF_RECVADDR; 7106 } 7107 } 7108 7109 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7110 in_flags |= IPF_RECVSLLA; 7111 7112 /* 7113 * Initiate IPPF processing here, if needed. Note first_mp won't be 7114 * freed if the packet is dropped. The caller will do so. 7115 */ 7116 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7117 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7118 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7119 if (mp == NULL) { 7120 return; 7121 } 7122 } 7123 if ((in_flags != 0) && 7124 (mp->b_datap->db_type != M_CTL)) { 7125 /* 7126 * The actual data will be contained in b_cont 7127 * upon successful return of the following call 7128 * else original mblk is returned 7129 */ 7130 ASSERT(recv_ill != NULL); 7131 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7132 ipst); 7133 } 7134 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7135 /* Send it upstream */ 7136 (connp->conn_recv)(connp, mp, NULL); 7137 } 7138 7139 /* 7140 * Fanout for UDP packets. 7141 * The caller puts <fport, lport> in the ports parameter. 7142 * 7143 * If SO_REUSEADDR is set all multicast and broadcast packets 7144 * will be delivered to all streams bound to the same port. 7145 * 7146 * Zones notes: 7147 * Multicast and broadcast packets will be distributed to streams in all zones. 7148 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7149 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7150 * packets. To maintain this behavior with multiple zones, the conns are grouped 7151 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7152 * each zone. If unset, all the following conns in the same zone are skipped. 7153 */ 7154 static void 7155 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7156 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7157 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7158 { 7159 uint32_t dstport, srcport; 7160 ipaddr_t dst; 7161 mblk_t *first_mp; 7162 boolean_t secure; 7163 in6_addr_t v6src; 7164 conn_t *connp; 7165 connf_t *connfp; 7166 conn_t *first_connp; 7167 conn_t *next_connp; 7168 mblk_t *mp1, *first_mp1; 7169 ipaddr_t src; 7170 zoneid_t last_zoneid; 7171 boolean_t reuseaddr; 7172 boolean_t shared_addr; 7173 boolean_t unlabeled; 7174 ip_stack_t *ipst; 7175 7176 ASSERT(recv_ill != NULL); 7177 ipst = recv_ill->ill_ipst; 7178 7179 first_mp = mp; 7180 if (mctl_present) { 7181 mp = first_mp->b_cont; 7182 first_mp->b_cont = NULL; 7183 secure = ipsec_in_is_secure(first_mp); 7184 ASSERT(mp != NULL); 7185 } else { 7186 first_mp = NULL; 7187 secure = B_FALSE; 7188 } 7189 7190 /* Extract ports in net byte order */ 7191 dstport = htons(ntohl(ports) & 0xFFFF); 7192 srcport = htons(ntohl(ports) >> 16); 7193 dst = ipha->ipha_dst; 7194 src = ipha->ipha_src; 7195 7196 unlabeled = B_FALSE; 7197 if (is_system_labeled()) 7198 /* Cred cannot be null on IPv4 */ 7199 unlabeled = (msg_getlabel(mp)->tsl_flags & 7200 TSLF_UNLABELED) != 0; 7201 shared_addr = (zoneid == ALL_ZONES); 7202 if (shared_addr) { 7203 /* 7204 * No need to handle exclusive-stack zones since ALL_ZONES 7205 * only applies to the shared stack. 7206 */ 7207 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7208 /* 7209 * If no shared MLP is found, tsol_mlp_findzone returns 7210 * ALL_ZONES. In that case, we assume it's SLP, and 7211 * search for the zone based on the packet label. 7212 * 7213 * If there is such a zone, we prefer to find a 7214 * connection in it. Otherwise, we look for a 7215 * MAC-exempt connection in any zone whose label 7216 * dominates the default label on the packet. 7217 */ 7218 if (zoneid == ALL_ZONES) 7219 zoneid = tsol_packet_to_zoneid(mp); 7220 else 7221 unlabeled = B_FALSE; 7222 } 7223 7224 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7225 mutex_enter(&connfp->connf_lock); 7226 connp = connfp->connf_head; 7227 if (!broadcast && !CLASSD(dst)) { 7228 /* 7229 * Not broadcast or multicast. Send to the one (first) 7230 * client we find. No need to check conn_wantpacket() 7231 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7232 * IPv4 unicast packets. 7233 */ 7234 while ((connp != NULL) && 7235 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7236 (!IPCL_ZONE_MATCH(connp, zoneid) && 7237 !(unlabeled && (connp->conn_mac_mode != CONN_MAC_DEFAULT) && 7238 shared_addr)))) { 7239 /* 7240 * We keep searching since the conn did not match, 7241 * or its zone did not match and it is not either 7242 * an allzones conn or a mac exempt conn (if the 7243 * sender is unlabeled.) 7244 */ 7245 connp = connp->conn_next; 7246 } 7247 7248 if (connp == NULL || 7249 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7250 goto notfound; 7251 7252 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7253 7254 if (is_system_labeled() && 7255 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7256 connp)) 7257 goto notfound; 7258 7259 CONN_INC_REF(connp); 7260 mutex_exit(&connfp->connf_lock); 7261 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7262 flags, recv_ill, ip_policy); 7263 IP_STAT(ipst, ip_udp_fannorm); 7264 CONN_DEC_REF(connp); 7265 return; 7266 } 7267 7268 /* 7269 * Broadcast and multicast case 7270 * 7271 * Need to check conn_wantpacket(). 7272 * If SO_REUSEADDR has been set on the first we send the 7273 * packet to all clients that have joined the group and 7274 * match the port. 7275 */ 7276 7277 while (connp != NULL) { 7278 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7279 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7280 (!is_system_labeled() || 7281 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7282 connp))) 7283 break; 7284 connp = connp->conn_next; 7285 } 7286 7287 if (connp == NULL || 7288 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7289 goto notfound; 7290 7291 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7292 7293 first_connp = connp; 7294 /* 7295 * When SO_REUSEADDR is not set, send the packet only to the first 7296 * matching connection in its zone by keeping track of the zoneid. 7297 */ 7298 reuseaddr = first_connp->conn_reuseaddr; 7299 last_zoneid = first_connp->conn_zoneid; 7300 7301 CONN_INC_REF(connp); 7302 connp = connp->conn_next; 7303 for (;;) { 7304 while (connp != NULL) { 7305 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7306 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7307 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7308 (!is_system_labeled() || 7309 tsol_receive_local(mp, &dst, IPV4_VERSION, 7310 shared_addr, connp))) 7311 break; 7312 connp = connp->conn_next; 7313 } 7314 /* 7315 * Just copy the data part alone. The mctl part is 7316 * needed just for verifying policy and it is never 7317 * sent up. 7318 */ 7319 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7320 ((mp1 = copymsg(mp)) == NULL))) { 7321 /* 7322 * No more interested clients or memory 7323 * allocation failed 7324 */ 7325 connp = first_connp; 7326 break; 7327 } 7328 if (connp->conn_zoneid != last_zoneid) { 7329 /* 7330 * Update the zoneid so that the packet isn't sent to 7331 * any more conns in the same zone unless SO_REUSEADDR 7332 * is set. 7333 */ 7334 reuseaddr = connp->conn_reuseaddr; 7335 last_zoneid = connp->conn_zoneid; 7336 } 7337 if (first_mp != NULL) { 7338 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7339 ipsec_info_type == IPSEC_IN); 7340 first_mp1 = ipsec_in_tag(first_mp, NULL, 7341 ipst->ips_netstack); 7342 if (first_mp1 == NULL) { 7343 freemsg(mp1); 7344 connp = first_connp; 7345 break; 7346 } 7347 } else { 7348 first_mp1 = NULL; 7349 } 7350 CONN_INC_REF(connp); 7351 mutex_exit(&connfp->connf_lock); 7352 /* 7353 * IPQoS notes: We don't send the packet for policy 7354 * processing here, will do it for the last one (below). 7355 * i.e. we do it per-packet now, but if we do policy 7356 * processing per-conn, then we would need to do it 7357 * here too. 7358 */ 7359 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7360 ipha, flags, recv_ill, B_FALSE); 7361 mutex_enter(&connfp->connf_lock); 7362 /* Follow the next pointer before releasing the conn. */ 7363 next_connp = connp->conn_next; 7364 IP_STAT(ipst, ip_udp_fanmb); 7365 CONN_DEC_REF(connp); 7366 connp = next_connp; 7367 } 7368 7369 /* Last one. Send it upstream. */ 7370 mutex_exit(&connfp->connf_lock); 7371 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7372 recv_ill, ip_policy); 7373 IP_STAT(ipst, ip_udp_fanmb); 7374 CONN_DEC_REF(connp); 7375 return; 7376 7377 notfound: 7378 7379 mutex_exit(&connfp->connf_lock); 7380 IP_STAT(ipst, ip_udp_fanothers); 7381 /* 7382 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7383 * have already been matched above, since they live in the IPv4 7384 * fanout tables. This implies we only need to 7385 * check for IPv6 in6addr_any endpoints here. 7386 * Thus we compare using ipv6_all_zeros instead of the destination 7387 * address, except for the multicast group membership lookup which 7388 * uses the IPv4 destination. 7389 */ 7390 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7391 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7392 mutex_enter(&connfp->connf_lock); 7393 connp = connfp->connf_head; 7394 if (!broadcast && !CLASSD(dst)) { 7395 while (connp != NULL) { 7396 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7397 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7398 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7399 !connp->conn_ipv6_v6only) 7400 break; 7401 connp = connp->conn_next; 7402 } 7403 7404 if (connp != NULL && is_system_labeled() && 7405 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7406 connp)) 7407 connp = NULL; 7408 7409 if (connp == NULL || 7410 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7411 /* 7412 * No one bound to this port. Is 7413 * there a client that wants all 7414 * unclaimed datagrams? 7415 */ 7416 mutex_exit(&connfp->connf_lock); 7417 7418 if (mctl_present) 7419 first_mp->b_cont = mp; 7420 else 7421 first_mp = mp; 7422 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7423 connf_head != NULL) { 7424 ip_fanout_proto(q, first_mp, ill, ipha, 7425 flags | IP_FF_RAWIP, mctl_present, 7426 ip_policy, recv_ill, zoneid); 7427 } else { 7428 if (ip_fanout_send_icmp(q, first_mp, flags, 7429 ICMP_DEST_UNREACHABLE, 7430 ICMP_PORT_UNREACHABLE, 7431 mctl_present, zoneid, ipst)) { 7432 BUMP_MIB(ill->ill_ip_mib, 7433 udpIfStatsNoPorts); 7434 } 7435 } 7436 return; 7437 } 7438 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7439 7440 CONN_INC_REF(connp); 7441 mutex_exit(&connfp->connf_lock); 7442 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7443 flags, recv_ill, ip_policy); 7444 CONN_DEC_REF(connp); 7445 return; 7446 } 7447 /* 7448 * IPv4 multicast packet being delivered to an AF_INET6 7449 * in6addr_any endpoint. 7450 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7451 * and not conn_wantpacket_v6() since any multicast membership is 7452 * for an IPv4-mapped multicast address. 7453 * The packet is sent to all clients in all zones that have joined the 7454 * group and match the port. 7455 */ 7456 while (connp != NULL) { 7457 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7458 srcport, v6src) && 7459 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7460 (!is_system_labeled() || 7461 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7462 connp))) 7463 break; 7464 connp = connp->conn_next; 7465 } 7466 7467 if (connp == NULL || 7468 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7469 /* 7470 * No one bound to this port. Is 7471 * there a client that wants all 7472 * unclaimed datagrams? 7473 */ 7474 mutex_exit(&connfp->connf_lock); 7475 7476 if (mctl_present) 7477 first_mp->b_cont = mp; 7478 else 7479 first_mp = mp; 7480 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7481 NULL) { 7482 ip_fanout_proto(q, first_mp, ill, ipha, 7483 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7484 recv_ill, zoneid); 7485 } else { 7486 /* 7487 * We used to attempt to send an icmp error here, but 7488 * since this is known to be a multicast packet 7489 * and we don't send icmp errors in response to 7490 * multicast, just drop the packet and give up sooner. 7491 */ 7492 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7493 freemsg(first_mp); 7494 } 7495 return; 7496 } 7497 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7498 7499 first_connp = connp; 7500 7501 CONN_INC_REF(connp); 7502 connp = connp->conn_next; 7503 for (;;) { 7504 while (connp != NULL) { 7505 if (IPCL_UDP_MATCH_V6(connp, dstport, 7506 ipv6_all_zeros, srcport, v6src) && 7507 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7508 (!is_system_labeled() || 7509 tsol_receive_local(mp, &dst, IPV4_VERSION, 7510 shared_addr, connp))) 7511 break; 7512 connp = connp->conn_next; 7513 } 7514 /* 7515 * Just copy the data part alone. The mctl part is 7516 * needed just for verifying policy and it is never 7517 * sent up. 7518 */ 7519 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7520 ((mp1 = copymsg(mp)) == NULL))) { 7521 /* 7522 * No more intested clients or memory 7523 * allocation failed 7524 */ 7525 connp = first_connp; 7526 break; 7527 } 7528 if (first_mp != NULL) { 7529 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7530 ipsec_info_type == IPSEC_IN); 7531 first_mp1 = ipsec_in_tag(first_mp, NULL, 7532 ipst->ips_netstack); 7533 if (first_mp1 == NULL) { 7534 freemsg(mp1); 7535 connp = first_connp; 7536 break; 7537 } 7538 } else { 7539 first_mp1 = NULL; 7540 } 7541 CONN_INC_REF(connp); 7542 mutex_exit(&connfp->connf_lock); 7543 /* 7544 * IPQoS notes: We don't send the packet for policy 7545 * processing here, will do it for the last one (below). 7546 * i.e. we do it per-packet now, but if we do policy 7547 * processing per-conn, then we would need to do it 7548 * here too. 7549 */ 7550 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7551 ipha, flags, recv_ill, B_FALSE); 7552 mutex_enter(&connfp->connf_lock); 7553 /* Follow the next pointer before releasing the conn. */ 7554 next_connp = connp->conn_next; 7555 CONN_DEC_REF(connp); 7556 connp = next_connp; 7557 } 7558 7559 /* Last one. Send it upstream. */ 7560 mutex_exit(&connfp->connf_lock); 7561 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7562 recv_ill, ip_policy); 7563 CONN_DEC_REF(connp); 7564 } 7565 7566 /* 7567 * Complete the ip_wput header so that it 7568 * is possible to generate ICMP 7569 * errors. 7570 */ 7571 int 7572 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7573 { 7574 ire_t *ire; 7575 7576 if (ipha->ipha_src == INADDR_ANY) { 7577 ire = ire_lookup_local(zoneid, ipst); 7578 if (ire == NULL) { 7579 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7580 return (1); 7581 } 7582 ipha->ipha_src = ire->ire_addr; 7583 ire_refrele(ire); 7584 } 7585 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7586 ipha->ipha_hdr_checksum = 0; 7587 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7588 return (0); 7589 } 7590 7591 /* 7592 * Nobody should be sending 7593 * packets up this stream 7594 */ 7595 static void 7596 ip_lrput(queue_t *q, mblk_t *mp) 7597 { 7598 mblk_t *mp1; 7599 7600 switch (mp->b_datap->db_type) { 7601 case M_FLUSH: 7602 /* Turn around */ 7603 if (*mp->b_rptr & FLUSHW) { 7604 *mp->b_rptr &= ~FLUSHR; 7605 qreply(q, mp); 7606 return; 7607 } 7608 break; 7609 } 7610 /* Could receive messages that passed through ar_rput */ 7611 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7612 mp1->b_prev = mp1->b_next = NULL; 7613 freemsg(mp); 7614 } 7615 7616 /* Nobody should be sending packets down this stream */ 7617 /* ARGSUSED */ 7618 void 7619 ip_lwput(queue_t *q, mblk_t *mp) 7620 { 7621 freemsg(mp); 7622 } 7623 7624 /* 7625 * Move the first hop in any source route to ipha_dst and remove that part of 7626 * the source route. Called by other protocols. Errors in option formatting 7627 * are ignored - will be handled by ip_wput_options Return the final 7628 * destination (either ipha_dst or the last entry in a source route.) 7629 */ 7630 ipaddr_t 7631 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7632 { 7633 ipoptp_t opts; 7634 uchar_t *opt; 7635 uint8_t optval; 7636 uint8_t optlen; 7637 ipaddr_t dst; 7638 int i; 7639 ire_t *ire; 7640 ip_stack_t *ipst = ns->netstack_ip; 7641 7642 ip2dbg(("ip_massage_options\n")); 7643 dst = ipha->ipha_dst; 7644 for (optval = ipoptp_first(&opts, ipha); 7645 optval != IPOPT_EOL; 7646 optval = ipoptp_next(&opts)) { 7647 opt = opts.ipoptp_cur; 7648 switch (optval) { 7649 uint8_t off; 7650 case IPOPT_SSRR: 7651 case IPOPT_LSRR: 7652 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7653 ip1dbg(("ip_massage_options: bad src route\n")); 7654 break; 7655 } 7656 optlen = opts.ipoptp_len; 7657 off = opt[IPOPT_OFFSET]; 7658 off--; 7659 redo_srr: 7660 if (optlen < IP_ADDR_LEN || 7661 off > optlen - IP_ADDR_LEN) { 7662 /* End of source route */ 7663 ip1dbg(("ip_massage_options: end of SR\n")); 7664 break; 7665 } 7666 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7667 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7668 ntohl(dst))); 7669 /* 7670 * Check if our address is present more than 7671 * once as consecutive hops in source route. 7672 * XXX verify per-interface ip_forwarding 7673 * for source route? 7674 */ 7675 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7676 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7677 if (ire != NULL) { 7678 ire_refrele(ire); 7679 off += IP_ADDR_LEN; 7680 goto redo_srr; 7681 } 7682 if (dst == htonl(INADDR_LOOPBACK)) { 7683 ip1dbg(("ip_massage_options: loopback addr in " 7684 "source route!\n")); 7685 break; 7686 } 7687 /* 7688 * Update ipha_dst to be the first hop and remove the 7689 * first hop from the source route (by overwriting 7690 * part of the option with NOP options). 7691 */ 7692 ipha->ipha_dst = dst; 7693 /* Put the last entry in dst */ 7694 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7695 3; 7696 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7697 7698 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7699 ntohl(dst))); 7700 /* Move down and overwrite */ 7701 opt[IP_ADDR_LEN] = opt[0]; 7702 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7703 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7704 for (i = 0; i < IP_ADDR_LEN; i++) 7705 opt[i] = IPOPT_NOP; 7706 break; 7707 } 7708 } 7709 return (dst); 7710 } 7711 7712 /* 7713 * Return the network mask 7714 * associated with the specified address. 7715 */ 7716 ipaddr_t 7717 ip_net_mask(ipaddr_t addr) 7718 { 7719 uchar_t *up = (uchar_t *)&addr; 7720 ipaddr_t mask = 0; 7721 uchar_t *maskp = (uchar_t *)&mask; 7722 7723 #if defined(__i386) || defined(__amd64) 7724 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7725 #endif 7726 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7727 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7728 #endif 7729 if (CLASSD(addr)) { 7730 maskp[0] = 0xF0; 7731 return (mask); 7732 } 7733 7734 /* We assume Class E default netmask to be 32 */ 7735 if (CLASSE(addr)) 7736 return (0xffffffffU); 7737 7738 if (addr == 0) 7739 return (0); 7740 maskp[0] = 0xFF; 7741 if ((up[0] & 0x80) == 0) 7742 return (mask); 7743 7744 maskp[1] = 0xFF; 7745 if ((up[0] & 0xC0) == 0x80) 7746 return (mask); 7747 7748 maskp[2] = 0xFF; 7749 if ((up[0] & 0xE0) == 0xC0) 7750 return (mask); 7751 7752 /* Otherwise return no mask */ 7753 return ((ipaddr_t)0); 7754 } 7755 7756 /* 7757 * Helper ill lookup function used by IPsec. 7758 */ 7759 ill_t * 7760 ip_grab_ill(mblk_t *first_mp, int ifindex, boolean_t isv6, ip_stack_t *ipst) 7761 { 7762 ill_t *ret_ill; 7763 7764 ASSERT(ifindex != 0); 7765 7766 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7767 ipst); 7768 if (ret_ill == NULL) { 7769 if (isv6) { 7770 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 7771 ip1dbg(("ip_grab_ill (IPv6): bad ifindex %d.\n", 7772 ifindex)); 7773 } else { 7774 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 7775 ip1dbg(("ip_grab_ill (IPv4): bad ifindex %d.\n", 7776 ifindex)); 7777 } 7778 freemsg(first_mp); 7779 return (NULL); 7780 } 7781 return (ret_ill); 7782 } 7783 7784 /* 7785 * IPv4 - 7786 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7787 * out a packet to a destination address for which we do not have specific 7788 * (or sufficient) routing information. 7789 * 7790 * NOTE : These are the scopes of some of the variables that point at IRE, 7791 * which needs to be followed while making any future modifications 7792 * to avoid memory leaks. 7793 * 7794 * - ire and sire are the entries looked up initially by 7795 * ire_ftable_lookup. 7796 * - ipif_ire is used to hold the interface ire associated with 7797 * the new cache ire. But it's scope is limited, so we always REFRELE 7798 * it before branching out to error paths. 7799 * - save_ire is initialized before ire_create, so that ire returned 7800 * by ire_create will not over-write the ire. We REFRELE save_ire 7801 * before breaking out of the switch. 7802 * 7803 * Thus on failures, we have to REFRELE only ire and sire, if they 7804 * are not NULL. 7805 */ 7806 void 7807 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7808 zoneid_t zoneid, ip_stack_t *ipst) 7809 { 7810 areq_t *areq; 7811 ipaddr_t gw = 0; 7812 ire_t *ire = NULL; 7813 mblk_t *res_mp; 7814 ipaddr_t *addrp; 7815 ipaddr_t nexthop_addr; 7816 ipif_t *src_ipif = NULL; 7817 ill_t *dst_ill = NULL; 7818 ipha_t *ipha; 7819 ire_t *sire = NULL; 7820 mblk_t *first_mp; 7821 ire_t *save_ire; 7822 ushort_t ire_marks = 0; 7823 boolean_t mctl_present; 7824 ipsec_out_t *io; 7825 mblk_t *saved_mp; 7826 mblk_t *copy_mp = NULL; 7827 mblk_t *xmit_mp = NULL; 7828 ipaddr_t save_dst; 7829 uint32_t multirt_flags = 7830 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7831 boolean_t multirt_is_resolvable; 7832 boolean_t multirt_resolve_next; 7833 boolean_t unspec_src; 7834 boolean_t ip_nexthop = B_FALSE; 7835 tsol_ire_gw_secattr_t *attrp = NULL; 7836 tsol_gcgrp_t *gcgrp = NULL; 7837 tsol_gcgrp_addr_t ga; 7838 int multirt_res_failures = 0; 7839 int multirt_res_attempts = 0; 7840 int multirt_already_resolved = 0; 7841 boolean_t multirt_no_icmp_error = B_FALSE; 7842 7843 if (ip_debug > 2) { 7844 /* ip1dbg */ 7845 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7846 } 7847 7848 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7849 if (mctl_present) { 7850 io = (ipsec_out_t *)first_mp->b_rptr; 7851 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7852 ASSERT(zoneid == io->ipsec_out_zoneid); 7853 ASSERT(zoneid != ALL_ZONES); 7854 } 7855 7856 ipha = (ipha_t *)mp->b_rptr; 7857 7858 /* All multicast lookups come through ip_newroute_ipif() */ 7859 if (CLASSD(dst)) { 7860 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7861 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7862 freemsg(first_mp); 7863 return; 7864 } 7865 7866 if (mctl_present && io->ipsec_out_ip_nexthop) { 7867 ip_nexthop = B_TRUE; 7868 nexthop_addr = io->ipsec_out_nexthop_addr; 7869 } 7870 /* 7871 * If this IRE is created for forwarding or it is not for 7872 * traffic for congestion controlled protocols, mark it as temporary. 7873 */ 7874 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7875 ire_marks |= IRE_MARK_TEMPORARY; 7876 7877 /* 7878 * Get what we can from ire_ftable_lookup which will follow an IRE 7879 * chain until it gets the most specific information available. 7880 * For example, we know that there is no IRE_CACHE for this dest, 7881 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7882 * ire_ftable_lookup will look up the gateway, etc. 7883 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7884 * to the destination, of equal netmask length in the forward table, 7885 * will be recursively explored. If no information is available 7886 * for the final gateway of that route, we force the returned ire 7887 * to be equal to sire using MATCH_IRE_PARENT. 7888 * At least, in this case we have a starting point (in the buckets) 7889 * to look for other routes to the destination in the forward table. 7890 * This is actually used only for multirouting, where a list 7891 * of routes has to be processed in sequence. 7892 * 7893 * In the process of coming up with the most specific information, 7894 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7895 * for the gateway (i.e., one for which the ire_nce->nce_state is 7896 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7897 * Two caveats when handling incomplete ire's in ip_newroute: 7898 * - we should be careful when accessing its ire_nce (specifically 7899 * the nce_res_mp) ast it might change underneath our feet, and, 7900 * - not all legacy code path callers are prepared to handle 7901 * incomplete ire's, so we should not create/add incomplete 7902 * ire_cache entries here. (See discussion about temporary solution 7903 * further below). 7904 * 7905 * In order to minimize packet dropping, and to preserve existing 7906 * behavior, we treat this case as if there were no IRE_CACHE for the 7907 * gateway, and instead use the IF_RESOLVER ire to send out 7908 * another request to ARP (this is achieved by passing the 7909 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7910 * arp response comes back in ip_wput_nondata, we will create 7911 * a per-dst ire_cache that has an ND_COMPLETE ire. 7912 * 7913 * Note that this is a temporary solution; the correct solution is 7914 * to create an incomplete per-dst ire_cache entry, and send the 7915 * packet out when the gw's nce is resolved. In order to achieve this, 7916 * all packet processing must have been completed prior to calling 7917 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7918 * to be modified to accomodate this solution. 7919 */ 7920 if (ip_nexthop) { 7921 /* 7922 * The first time we come here, we look for an IRE_INTERFACE 7923 * entry for the specified nexthop, set the dst to be the 7924 * nexthop address and create an IRE_CACHE entry for the 7925 * nexthop. The next time around, we are able to find an 7926 * IRE_CACHE entry for the nexthop, set the gateway to be the 7927 * nexthop address and create an IRE_CACHE entry for the 7928 * destination address via the specified nexthop. 7929 */ 7930 ire = ire_cache_lookup(nexthop_addr, zoneid, 7931 msg_getlabel(mp), ipst); 7932 if (ire != NULL) { 7933 gw = nexthop_addr; 7934 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7935 } else { 7936 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7937 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7938 msg_getlabel(mp), 7939 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7940 ipst); 7941 if (ire != NULL) { 7942 dst = nexthop_addr; 7943 } 7944 } 7945 } else { 7946 ire = ire_ftable_lookup(dst, 0, 0, 0, 7947 NULL, &sire, zoneid, 0, msg_getlabel(mp), 7948 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7949 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7950 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7951 ipst); 7952 } 7953 7954 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7955 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7956 7957 /* 7958 * This loop is run only once in most cases. 7959 * We loop to resolve further routes only when the destination 7960 * can be reached through multiple RTF_MULTIRT-flagged ires. 7961 */ 7962 do { 7963 /* Clear the previous iteration's values */ 7964 if (src_ipif != NULL) { 7965 ipif_refrele(src_ipif); 7966 src_ipif = NULL; 7967 } 7968 if (dst_ill != NULL) { 7969 ill_refrele(dst_ill); 7970 dst_ill = NULL; 7971 } 7972 7973 multirt_resolve_next = B_FALSE; 7974 /* 7975 * We check if packets have to be multirouted. 7976 * In this case, given the current <ire, sire> couple, 7977 * we look for the next suitable <ire, sire>. 7978 * This check is done in ire_multirt_lookup(), 7979 * which applies various criteria to find the next route 7980 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7981 * unchanged if it detects it has not been tried yet. 7982 */ 7983 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7984 ip3dbg(("ip_newroute: starting next_resolution " 7985 "with first_mp %p, tag %d\n", 7986 (void *)first_mp, 7987 MULTIRT_DEBUG_TAGGED(first_mp))); 7988 7989 ASSERT(sire != NULL); 7990 multirt_is_resolvable = 7991 ire_multirt_lookup(&ire, &sire, multirt_flags, 7992 &multirt_already_resolved, msg_getlabel(mp), ipst); 7993 7994 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7995 "multirt_already_resolved %d, " 7996 "multirt_res_attempts %d, multirt_res_failures %d, " 7997 "ire %p, sire %p\n", multirt_is_resolvable, 7998 multirt_already_resolved, multirt_res_attempts, 7999 multirt_res_failures, (void *)ire, (void *)sire)); 8000 8001 if (!multirt_is_resolvable) { 8002 /* 8003 * No more multirt route to resolve; give up 8004 * (all routes resolved or no more 8005 * resolvable routes). 8006 */ 8007 if (ire != NULL) { 8008 ire_refrele(ire); 8009 ire = NULL; 8010 } 8011 /* 8012 * Generate ICMP error only if all attempts to 8013 * resolve multirt route failed and there is no 8014 * already resolved one. Don't generate ICMP 8015 * error when: 8016 * 8017 * 1) there was no attempt to resolve 8018 * 2) at least one attempt passed 8019 * 3) a multirt route is already resolved 8020 * 8021 * Case 1) may occur due to multiple 8022 * resolution attempts during single 8023 * ip_multirt_resolution_interval. 8024 * 8025 * Case 2-3) means that CGTP destination is 8026 * reachable via one link so we don't want to 8027 * generate ICMP host unreachable error. 8028 */ 8029 if (multirt_res_attempts == 0 || 8030 multirt_res_failures < 8031 multirt_res_attempts || 8032 multirt_already_resolved > 0) 8033 multirt_no_icmp_error = B_TRUE; 8034 } else { 8035 ASSERT(sire != NULL); 8036 ASSERT(ire != NULL); 8037 8038 multirt_res_attempts++; 8039 } 8040 } 8041 8042 if (ire == NULL) { 8043 if (ip_debug > 3) { 8044 /* ip2dbg */ 8045 pr_addr_dbg("ip_newroute: " 8046 "can't resolve %s\n", AF_INET, &dst); 8047 } 8048 ip3dbg(("ip_newroute: " 8049 "ire %p, sire %p, multirt_no_icmp_error %d\n", 8050 (void *)ire, (void *)sire, 8051 (int)multirt_no_icmp_error)); 8052 8053 if (sire != NULL) { 8054 ire_refrele(sire); 8055 sire = NULL; 8056 } 8057 8058 if (multirt_no_icmp_error) { 8059 /* There is no need to report an ICMP error. */ 8060 MULTIRT_DEBUG_UNTAG(first_mp); 8061 freemsg(first_mp); 8062 return; 8063 } 8064 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8065 RTA_DST, ipst); 8066 goto icmp_err_ret; 8067 } 8068 8069 /* 8070 * Verify that the returned IRE does not have either 8071 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8072 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8073 */ 8074 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8075 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8076 goto icmp_err_ret; 8077 } 8078 /* 8079 * Increment the ire_ob_pkt_count field for ire if it is an 8080 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8081 * increment the same for the parent IRE, sire, if it is some 8082 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8083 */ 8084 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8085 UPDATE_OB_PKT_COUNT(ire); 8086 ire->ire_last_used_time = lbolt; 8087 } 8088 8089 if (sire != NULL) { 8090 gw = sire->ire_gateway_addr; 8091 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8092 IRE_INTERFACE)) == 0); 8093 UPDATE_OB_PKT_COUNT(sire); 8094 sire->ire_last_used_time = lbolt; 8095 } 8096 /* 8097 * We have a route to reach the destination. Find the 8098 * appropriate ill, then get a source address using 8099 * ipif_select_source(). 8100 * 8101 * If we are here trying to create an IRE_CACHE for an offlink 8102 * destination and have an IRE_CACHE entry for VNI, then use 8103 * ire_stq instead since VNI's queue is a black hole. 8104 */ 8105 if ((ire->ire_type == IRE_CACHE) && 8106 IS_VNI(ire->ire_ipif->ipif_ill)) { 8107 dst_ill = ire->ire_stq->q_ptr; 8108 ill_refhold(dst_ill); 8109 } else { 8110 ill_t *ill = ire->ire_ipif->ipif_ill; 8111 8112 if (IS_IPMP(ill)) { 8113 dst_ill = 8114 ipmp_illgrp_hold_next_ill(ill->ill_grp); 8115 } else { 8116 dst_ill = ill; 8117 ill_refhold(dst_ill); 8118 } 8119 } 8120 8121 if (dst_ill == NULL) { 8122 if (ip_debug > 2) { 8123 pr_addr_dbg("ip_newroute: no dst " 8124 "ill for dst %s\n", AF_INET, &dst); 8125 } 8126 goto icmp_err_ret; 8127 } 8128 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8129 8130 /* 8131 * Pick the best source address from dst_ill. 8132 * 8133 * 1) Try to pick the source address from the destination 8134 * route. Clustering assumes that when we have multiple 8135 * prefixes hosted on an interface, the prefix of the 8136 * source address matches the prefix of the destination 8137 * route. We do this only if the address is not 8138 * DEPRECATED. 8139 * 8140 * 2) If the conn is in a different zone than the ire, we 8141 * need to pick a source address from the right zone. 8142 */ 8143 ASSERT(src_ipif == NULL); 8144 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8145 /* 8146 * The RTF_SETSRC flag is set in the parent ire (sire). 8147 * Check that the ipif matching the requested source 8148 * address still exists. 8149 */ 8150 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8151 zoneid, NULL, NULL, NULL, NULL, ipst); 8152 } 8153 8154 unspec_src = (connp != NULL && connp->conn_unspec_src); 8155 8156 if (src_ipif == NULL && 8157 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8158 ire_marks |= IRE_MARK_USESRC_CHECK; 8159 if (!IS_UNDER_IPMP(ire->ire_ipif->ipif_ill) && 8160 IS_IPMP(ire->ire_ipif->ipif_ill) || 8161 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8162 (connp != NULL && ire->ire_zoneid != zoneid && 8163 ire->ire_zoneid != ALL_ZONES) || 8164 (dst_ill->ill_usesrc_ifindex != 0)) { 8165 /* 8166 * If the destination is reachable via a 8167 * given gateway, the selected source address 8168 * should be in the same subnet as the gateway. 8169 * Otherwise, the destination is not reachable. 8170 * 8171 * If there are no interfaces on the same subnet 8172 * as the destination, ipif_select_source gives 8173 * first non-deprecated interface which might be 8174 * on a different subnet than the gateway. 8175 * This is not desirable. Hence pass the dst_ire 8176 * source address to ipif_select_source. 8177 * It is sure that the destination is reachable 8178 * with the dst_ire source address subnet. 8179 * So passing dst_ire source address to 8180 * ipif_select_source will make sure that the 8181 * selected source will be on the same subnet 8182 * as dst_ire source address. 8183 */ 8184 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8185 8186 src_ipif = ipif_select_source(dst_ill, saddr, 8187 zoneid); 8188 if (src_ipif == NULL) { 8189 /* 8190 * In the case of multirouting, it may 8191 * happen that ipif_select_source fails 8192 * as DAD may disallow use of the 8193 * particular source interface. Anyway, 8194 * we need to continue and attempt to 8195 * resolve other multirt routes. 8196 */ 8197 if ((sire != NULL) && 8198 (sire->ire_flags & RTF_MULTIRT)) { 8199 ire_refrele(ire); 8200 ire = NULL; 8201 multirt_resolve_next = B_TRUE; 8202 multirt_res_failures++; 8203 continue; 8204 } 8205 8206 if (ip_debug > 2) { 8207 pr_addr_dbg("ip_newroute: " 8208 "no src for dst %s ", 8209 AF_INET, &dst); 8210 printf("on interface %s\n", 8211 dst_ill->ill_name); 8212 } 8213 goto icmp_err_ret; 8214 } 8215 } else { 8216 src_ipif = ire->ire_ipif; 8217 ASSERT(src_ipif != NULL); 8218 /* hold src_ipif for uniformity */ 8219 ipif_refhold(src_ipif); 8220 } 8221 } 8222 8223 /* 8224 * Assign a source address while we have the conn. 8225 * We can't have ip_wput_ire pick a source address when the 8226 * packet returns from arp since we need to look at 8227 * conn_unspec_src and conn_zoneid, and we lose the conn when 8228 * going through arp. 8229 * 8230 * NOTE : ip_newroute_v6 does not have this piece of code as 8231 * it uses ip6i to store this information. 8232 */ 8233 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8234 ipha->ipha_src = src_ipif->ipif_src_addr; 8235 8236 if (ip_debug > 3) { 8237 /* ip2dbg */ 8238 pr_addr_dbg("ip_newroute: first hop %s\n", 8239 AF_INET, &gw); 8240 } 8241 ip2dbg(("\tire type %s (%d)\n", 8242 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8243 8244 /* 8245 * The TTL of multirouted packets is bounded by the 8246 * ip_multirt_ttl ndd variable. 8247 */ 8248 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8249 /* Force TTL of multirouted packets */ 8250 if ((ipst->ips_ip_multirt_ttl > 0) && 8251 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8252 ip2dbg(("ip_newroute: forcing multirt TTL " 8253 "to %d (was %d), dst 0x%08x\n", 8254 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8255 ntohl(sire->ire_addr))); 8256 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8257 } 8258 } 8259 /* 8260 * At this point in ip_newroute(), ire is either the 8261 * IRE_CACHE of the next-hop gateway for an off-subnet 8262 * destination or an IRE_INTERFACE type that should be used 8263 * to resolve an on-subnet destination or an on-subnet 8264 * next-hop gateway. 8265 * 8266 * In the IRE_CACHE case, we have the following : 8267 * 8268 * 1) src_ipif - used for getting a source address. 8269 * 8270 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8271 * means packets using this IRE_CACHE will go out on 8272 * dst_ill. 8273 * 8274 * 3) The IRE sire will point to the prefix that is the 8275 * longest matching route for the destination. These 8276 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8277 * 8278 * The newly created IRE_CACHE entry for the off-subnet 8279 * destination is tied to both the prefix route and the 8280 * interface route used to resolve the next-hop gateway 8281 * via the ire_phandle and ire_ihandle fields, 8282 * respectively. 8283 * 8284 * In the IRE_INTERFACE case, we have the following : 8285 * 8286 * 1) src_ipif - used for getting a source address. 8287 * 8288 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8289 * means packets using the IRE_CACHE that we will build 8290 * here will go out on dst_ill. 8291 * 8292 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8293 * to be created will only be tied to the IRE_INTERFACE 8294 * that was derived from the ire_ihandle field. 8295 * 8296 * If sire is non-NULL, it means the destination is 8297 * off-link and we will first create the IRE_CACHE for the 8298 * gateway. Next time through ip_newroute, we will create 8299 * the IRE_CACHE for the final destination as described 8300 * above. 8301 * 8302 * In both cases, after the current resolution has been 8303 * completed (or possibly initialised, in the IRE_INTERFACE 8304 * case), the loop may be re-entered to attempt the resolution 8305 * of another RTF_MULTIRT route. 8306 * 8307 * When an IRE_CACHE entry for the off-subnet destination is 8308 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8309 * for further processing in emission loops. 8310 */ 8311 save_ire = ire; 8312 switch (ire->ire_type) { 8313 case IRE_CACHE: { 8314 ire_t *ipif_ire; 8315 8316 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8317 if (gw == 0) 8318 gw = ire->ire_gateway_addr; 8319 /* 8320 * We need 3 ire's to create a new cache ire for an 8321 * off-link destination from the cache ire of the 8322 * gateway. 8323 * 8324 * 1. The prefix ire 'sire' (Note that this does 8325 * not apply to the conn_nexthop_set case) 8326 * 2. The cache ire of the gateway 'ire' 8327 * 3. The interface ire 'ipif_ire' 8328 * 8329 * We have (1) and (2). We lookup (3) below. 8330 * 8331 * If there is no interface route to the gateway, 8332 * it is a race condition, where we found the cache 8333 * but the interface route has been deleted. 8334 */ 8335 if (ip_nexthop) { 8336 ipif_ire = ire_ihandle_lookup_onlink(ire); 8337 } else { 8338 ipif_ire = 8339 ire_ihandle_lookup_offlink(ire, sire); 8340 } 8341 if (ipif_ire == NULL) { 8342 ip1dbg(("ip_newroute: " 8343 "ire_ihandle_lookup_offlink failed\n")); 8344 goto icmp_err_ret; 8345 } 8346 8347 /* 8348 * Check cached gateway IRE for any security 8349 * attributes; if found, associate the gateway 8350 * credentials group to the destination IRE. 8351 */ 8352 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8353 mutex_enter(&attrp->igsa_lock); 8354 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8355 GCGRP_REFHOLD(gcgrp); 8356 mutex_exit(&attrp->igsa_lock); 8357 } 8358 8359 /* 8360 * XXX For the source of the resolver mp, 8361 * we are using the same DL_UNITDATA_REQ 8362 * (from save_ire->ire_nce->nce_res_mp) 8363 * though the save_ire is not pointing at the same ill. 8364 * This is incorrect. We need to send it up to the 8365 * resolver to get the right res_mp. For ethernets 8366 * this may be okay (ill_type == DL_ETHER). 8367 */ 8368 8369 ire = ire_create( 8370 (uchar_t *)&dst, /* dest address */ 8371 (uchar_t *)&ip_g_all_ones, /* mask */ 8372 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8373 (uchar_t *)&gw, /* gateway address */ 8374 &save_ire->ire_max_frag, 8375 save_ire->ire_nce, /* src nce */ 8376 dst_ill->ill_rq, /* recv-from queue */ 8377 dst_ill->ill_wq, /* send-to queue */ 8378 IRE_CACHE, /* IRE type */ 8379 src_ipif, 8380 (sire != NULL) ? 8381 sire->ire_mask : 0, /* Parent mask */ 8382 (sire != NULL) ? 8383 sire->ire_phandle : 0, /* Parent handle */ 8384 ipif_ire->ire_ihandle, /* Interface handle */ 8385 (sire != NULL) ? (sire->ire_flags & 8386 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8387 (sire != NULL) ? 8388 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8389 NULL, 8390 gcgrp, 8391 ipst); 8392 8393 if (ire == NULL) { 8394 if (gcgrp != NULL) { 8395 GCGRP_REFRELE(gcgrp); 8396 gcgrp = NULL; 8397 } 8398 ire_refrele(ipif_ire); 8399 ire_refrele(save_ire); 8400 break; 8401 } 8402 8403 /* reference now held by IRE */ 8404 gcgrp = NULL; 8405 8406 ire->ire_marks |= ire_marks; 8407 8408 /* 8409 * Prevent sire and ipif_ire from getting deleted. 8410 * The newly created ire is tied to both of them via 8411 * the phandle and ihandle respectively. 8412 */ 8413 if (sire != NULL) { 8414 IRB_REFHOLD(sire->ire_bucket); 8415 /* Has it been removed already ? */ 8416 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8417 IRB_REFRELE(sire->ire_bucket); 8418 ire_refrele(ipif_ire); 8419 ire_refrele(save_ire); 8420 break; 8421 } 8422 } 8423 8424 IRB_REFHOLD(ipif_ire->ire_bucket); 8425 /* Has it been removed already ? */ 8426 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8427 IRB_REFRELE(ipif_ire->ire_bucket); 8428 if (sire != NULL) 8429 IRB_REFRELE(sire->ire_bucket); 8430 ire_refrele(ipif_ire); 8431 ire_refrele(save_ire); 8432 break; 8433 } 8434 8435 xmit_mp = first_mp; 8436 /* 8437 * In the case of multirouting, a copy 8438 * of the packet is done before its sending. 8439 * The copy is used to attempt another 8440 * route resolution, in a next loop. 8441 */ 8442 if (ire->ire_flags & RTF_MULTIRT) { 8443 copy_mp = copymsg(first_mp); 8444 if (copy_mp != NULL) { 8445 xmit_mp = copy_mp; 8446 MULTIRT_DEBUG_TAG(first_mp); 8447 } 8448 } 8449 8450 ire_add_then_send(q, ire, xmit_mp); 8451 ire_refrele(save_ire); 8452 8453 /* Assert that sire is not deleted yet. */ 8454 if (sire != NULL) { 8455 ASSERT(sire->ire_ptpn != NULL); 8456 IRB_REFRELE(sire->ire_bucket); 8457 } 8458 8459 /* Assert that ipif_ire is not deleted yet. */ 8460 ASSERT(ipif_ire->ire_ptpn != NULL); 8461 IRB_REFRELE(ipif_ire->ire_bucket); 8462 ire_refrele(ipif_ire); 8463 8464 /* 8465 * If copy_mp is not NULL, multirouting was 8466 * requested. We loop to initiate a next 8467 * route resolution attempt, starting from sire. 8468 */ 8469 if (copy_mp != NULL) { 8470 /* 8471 * Search for the next unresolved 8472 * multirt route. 8473 */ 8474 copy_mp = NULL; 8475 ipif_ire = NULL; 8476 ire = NULL; 8477 multirt_resolve_next = B_TRUE; 8478 continue; 8479 } 8480 if (sire != NULL) 8481 ire_refrele(sire); 8482 ipif_refrele(src_ipif); 8483 ill_refrele(dst_ill); 8484 return; 8485 } 8486 case IRE_IF_NORESOLVER: { 8487 if (dst_ill->ill_resolver_mp == NULL) { 8488 ip1dbg(("ip_newroute: dst_ill %p " 8489 "for IRE_IF_NORESOLVER ire %p has " 8490 "no ill_resolver_mp\n", 8491 (void *)dst_ill, (void *)ire)); 8492 break; 8493 } 8494 8495 /* 8496 * TSol note: We are creating the ire cache for the 8497 * destination 'dst'. If 'dst' is offlink, going 8498 * through the first hop 'gw', the security attributes 8499 * of 'dst' must be set to point to the gateway 8500 * credentials of gateway 'gw'. If 'dst' is onlink, it 8501 * is possible that 'dst' is a potential gateway that is 8502 * referenced by some route that has some security 8503 * attributes. Thus in the former case, we need to do a 8504 * gcgrp_lookup of 'gw' while in the latter case we 8505 * need to do gcgrp_lookup of 'dst' itself. 8506 */ 8507 ga.ga_af = AF_INET; 8508 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8509 &ga.ga_addr); 8510 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8511 8512 ire = ire_create( 8513 (uchar_t *)&dst, /* dest address */ 8514 (uchar_t *)&ip_g_all_ones, /* mask */ 8515 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8516 (uchar_t *)&gw, /* gateway address */ 8517 &save_ire->ire_max_frag, 8518 NULL, /* no src nce */ 8519 dst_ill->ill_rq, /* recv-from queue */ 8520 dst_ill->ill_wq, /* send-to queue */ 8521 IRE_CACHE, 8522 src_ipif, 8523 save_ire->ire_mask, /* Parent mask */ 8524 (sire != NULL) ? /* Parent handle */ 8525 sire->ire_phandle : 0, 8526 save_ire->ire_ihandle, /* Interface handle */ 8527 (sire != NULL) ? sire->ire_flags & 8528 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8529 &(save_ire->ire_uinfo), 8530 NULL, 8531 gcgrp, 8532 ipst); 8533 8534 if (ire == NULL) { 8535 if (gcgrp != NULL) { 8536 GCGRP_REFRELE(gcgrp); 8537 gcgrp = NULL; 8538 } 8539 ire_refrele(save_ire); 8540 break; 8541 } 8542 8543 /* reference now held by IRE */ 8544 gcgrp = NULL; 8545 8546 ire->ire_marks |= ire_marks; 8547 8548 /* Prevent save_ire from getting deleted */ 8549 IRB_REFHOLD(save_ire->ire_bucket); 8550 /* Has it been removed already ? */ 8551 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8552 IRB_REFRELE(save_ire->ire_bucket); 8553 ire_refrele(save_ire); 8554 break; 8555 } 8556 8557 /* 8558 * In the case of multirouting, a copy 8559 * of the packet is made before it is sent. 8560 * The copy is used in the next 8561 * loop to attempt another resolution. 8562 */ 8563 xmit_mp = first_mp; 8564 if ((sire != NULL) && 8565 (sire->ire_flags & RTF_MULTIRT)) { 8566 copy_mp = copymsg(first_mp); 8567 if (copy_mp != NULL) { 8568 xmit_mp = copy_mp; 8569 MULTIRT_DEBUG_TAG(first_mp); 8570 } 8571 } 8572 ire_add_then_send(q, ire, xmit_mp); 8573 8574 /* Assert that it is not deleted yet. */ 8575 ASSERT(save_ire->ire_ptpn != NULL); 8576 IRB_REFRELE(save_ire->ire_bucket); 8577 ire_refrele(save_ire); 8578 8579 if (copy_mp != NULL) { 8580 /* 8581 * If we found a (no)resolver, we ignore any 8582 * trailing top priority IRE_CACHE in further 8583 * loops. This ensures that we do not omit any 8584 * (no)resolver. 8585 * This IRE_CACHE, if any, will be processed 8586 * by another thread entering ip_newroute(). 8587 * IRE_CACHE entries, if any, will be processed 8588 * by another thread entering ip_newroute(), 8589 * (upon resolver response, for instance). 8590 * This aims to force parallel multirt 8591 * resolutions as soon as a packet must be sent. 8592 * In the best case, after the tx of only one 8593 * packet, all reachable routes are resolved. 8594 * Otherwise, the resolution of all RTF_MULTIRT 8595 * routes would require several emissions. 8596 */ 8597 multirt_flags &= ~MULTIRT_CACHEGW; 8598 8599 /* 8600 * Search for the next unresolved multirt 8601 * route. 8602 */ 8603 copy_mp = NULL; 8604 save_ire = NULL; 8605 ire = NULL; 8606 multirt_resolve_next = B_TRUE; 8607 continue; 8608 } 8609 8610 /* 8611 * Don't need sire anymore 8612 */ 8613 if (sire != NULL) 8614 ire_refrele(sire); 8615 8616 ipif_refrele(src_ipif); 8617 ill_refrele(dst_ill); 8618 return; 8619 } 8620 case IRE_IF_RESOLVER: 8621 /* 8622 * We can't build an IRE_CACHE yet, but at least we 8623 * found a resolver that can help. 8624 */ 8625 res_mp = dst_ill->ill_resolver_mp; 8626 if (!OK_RESOLVER_MP(res_mp)) 8627 break; 8628 8629 /* 8630 * To be at this point in the code with a non-zero gw 8631 * means that dst is reachable through a gateway that 8632 * we have never resolved. By changing dst to the gw 8633 * addr we resolve the gateway first. 8634 * When ire_add_then_send() tries to put the IP dg 8635 * to dst, it will reenter ip_newroute() at which 8636 * time we will find the IRE_CACHE for the gw and 8637 * create another IRE_CACHE in case IRE_CACHE above. 8638 */ 8639 if (gw != INADDR_ANY) { 8640 /* 8641 * The source ipif that was determined above was 8642 * relative to the destination address, not the 8643 * gateway's. If src_ipif was not taken out of 8644 * the IRE_IF_RESOLVER entry, we'll need to call 8645 * ipif_select_source() again. 8646 */ 8647 if (src_ipif != ire->ire_ipif) { 8648 ipif_refrele(src_ipif); 8649 src_ipif = ipif_select_source(dst_ill, 8650 gw, zoneid); 8651 /* 8652 * In the case of multirouting, it may 8653 * happen that ipif_select_source fails 8654 * as DAD may disallow use of the 8655 * particular source interface. Anyway, 8656 * we need to continue and attempt to 8657 * resolve other multirt routes. 8658 */ 8659 if (src_ipif == NULL) { 8660 if (sire != NULL && 8661 (sire->ire_flags & 8662 RTF_MULTIRT)) { 8663 ire_refrele(ire); 8664 ire = NULL; 8665 multirt_resolve_next = 8666 B_TRUE; 8667 multirt_res_failures++; 8668 continue; 8669 } 8670 if (ip_debug > 2) { 8671 pr_addr_dbg( 8672 "ip_newroute: no " 8673 "src for gw %s ", 8674 AF_INET, &gw); 8675 printf("on " 8676 "interface %s\n", 8677 dst_ill->ill_name); 8678 } 8679 goto icmp_err_ret; 8680 } 8681 } 8682 save_dst = dst; 8683 dst = gw; 8684 gw = INADDR_ANY; 8685 } 8686 8687 /* 8688 * We obtain a partial IRE_CACHE which we will pass 8689 * along with the resolver query. When the response 8690 * comes back it will be there ready for us to add. 8691 * The ire_max_frag is atomically set under the 8692 * irebucket lock in ire_add_v[46]. 8693 */ 8694 8695 ire = ire_create_mp( 8696 (uchar_t *)&dst, /* dest address */ 8697 (uchar_t *)&ip_g_all_ones, /* mask */ 8698 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8699 (uchar_t *)&gw, /* gateway address */ 8700 NULL, /* ire_max_frag */ 8701 NULL, /* no src nce */ 8702 dst_ill->ill_rq, /* recv-from queue */ 8703 dst_ill->ill_wq, /* send-to queue */ 8704 IRE_CACHE, 8705 src_ipif, /* Interface ipif */ 8706 save_ire->ire_mask, /* Parent mask */ 8707 0, 8708 save_ire->ire_ihandle, /* Interface handle */ 8709 0, /* flags if any */ 8710 &(save_ire->ire_uinfo), 8711 NULL, 8712 NULL, 8713 ipst); 8714 8715 if (ire == NULL) { 8716 ire_refrele(save_ire); 8717 break; 8718 } 8719 8720 if ((sire != NULL) && 8721 (sire->ire_flags & RTF_MULTIRT)) { 8722 copy_mp = copymsg(first_mp); 8723 if (copy_mp != NULL) 8724 MULTIRT_DEBUG_TAG(copy_mp); 8725 } 8726 8727 ire->ire_marks |= ire_marks; 8728 8729 /* 8730 * Construct message chain for the resolver 8731 * of the form: 8732 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8733 * Packet could contain a IPSEC_OUT mp. 8734 * 8735 * NOTE : ire will be added later when the response 8736 * comes back from ARP. If the response does not 8737 * come back, ARP frees the packet. For this reason, 8738 * we can't REFHOLD the bucket of save_ire to prevent 8739 * deletions. We may not be able to REFRELE the bucket 8740 * if the response never comes back. Thus, before 8741 * adding the ire, ire_add_v4 will make sure that the 8742 * interface route does not get deleted. This is the 8743 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8744 * where we can always prevent deletions because of 8745 * the synchronous nature of adding IRES i.e 8746 * ire_add_then_send is called after creating the IRE. 8747 */ 8748 ASSERT(ire->ire_mp != NULL); 8749 ire->ire_mp->b_cont = first_mp; 8750 /* Have saved_mp handy, for cleanup if canput fails */ 8751 saved_mp = mp; 8752 mp = copyb(res_mp); 8753 if (mp == NULL) { 8754 /* Prepare for cleanup */ 8755 mp = saved_mp; /* pkt */ 8756 ire_delete(ire); /* ire_mp */ 8757 ire = NULL; 8758 ire_refrele(save_ire); 8759 if (copy_mp != NULL) { 8760 MULTIRT_DEBUG_UNTAG(copy_mp); 8761 freemsg(copy_mp); 8762 copy_mp = NULL; 8763 } 8764 break; 8765 } 8766 linkb(mp, ire->ire_mp); 8767 8768 /* 8769 * Fill in the source and dest addrs for the resolver. 8770 * NOTE: this depends on memory layouts imposed by 8771 * ill_init(). 8772 */ 8773 areq = (areq_t *)mp->b_rptr; 8774 addrp = (ipaddr_t *)((char *)areq + 8775 areq->areq_sender_addr_offset); 8776 *addrp = save_ire->ire_src_addr; 8777 8778 ire_refrele(save_ire); 8779 addrp = (ipaddr_t *)((char *)areq + 8780 areq->areq_target_addr_offset); 8781 *addrp = dst; 8782 /* Up to the resolver. */ 8783 if (canputnext(dst_ill->ill_rq) && 8784 !(dst_ill->ill_arp_closing)) { 8785 putnext(dst_ill->ill_rq, mp); 8786 ire = NULL; 8787 if (copy_mp != NULL) { 8788 /* 8789 * If we found a resolver, we ignore 8790 * any trailing top priority IRE_CACHE 8791 * in the further loops. This ensures 8792 * that we do not omit any resolver. 8793 * IRE_CACHE entries, if any, will be 8794 * processed next time we enter 8795 * ip_newroute(). 8796 */ 8797 multirt_flags &= ~MULTIRT_CACHEGW; 8798 /* 8799 * Search for the next unresolved 8800 * multirt route. 8801 */ 8802 first_mp = copy_mp; 8803 copy_mp = NULL; 8804 /* Prepare the next resolution loop. */ 8805 mp = first_mp; 8806 EXTRACT_PKT_MP(mp, first_mp, 8807 mctl_present); 8808 if (mctl_present) 8809 io = (ipsec_out_t *) 8810 first_mp->b_rptr; 8811 ipha = (ipha_t *)mp->b_rptr; 8812 8813 ASSERT(sire != NULL); 8814 8815 dst = save_dst; 8816 multirt_resolve_next = B_TRUE; 8817 continue; 8818 } 8819 8820 if (sire != NULL) 8821 ire_refrele(sire); 8822 8823 /* 8824 * The response will come back in ip_wput 8825 * with db_type IRE_DB_TYPE. 8826 */ 8827 ipif_refrele(src_ipif); 8828 ill_refrele(dst_ill); 8829 return; 8830 } else { 8831 /* Prepare for cleanup */ 8832 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8833 mp); 8834 mp->b_cont = NULL; 8835 freeb(mp); /* areq */ 8836 /* 8837 * this is an ire that is not added to the 8838 * cache. ire_freemblk will handle the release 8839 * of any resources associated with the ire. 8840 */ 8841 ire_delete(ire); /* ire_mp */ 8842 mp = saved_mp; /* pkt */ 8843 ire = NULL; 8844 if (copy_mp != NULL) { 8845 MULTIRT_DEBUG_UNTAG(copy_mp); 8846 freemsg(copy_mp); 8847 copy_mp = NULL; 8848 } 8849 break; 8850 } 8851 default: 8852 break; 8853 } 8854 } while (multirt_resolve_next); 8855 8856 ip1dbg(("ip_newroute: dropped\n")); 8857 /* Did this packet originate externally? */ 8858 if (mp->b_prev) { 8859 mp->b_next = NULL; 8860 mp->b_prev = NULL; 8861 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8862 } else { 8863 if (dst_ill != NULL) { 8864 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8865 } else { 8866 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8867 } 8868 } 8869 ASSERT(copy_mp == NULL); 8870 MULTIRT_DEBUG_UNTAG(first_mp); 8871 freemsg(first_mp); 8872 if (ire != NULL) 8873 ire_refrele(ire); 8874 if (sire != NULL) 8875 ire_refrele(sire); 8876 if (src_ipif != NULL) 8877 ipif_refrele(src_ipif); 8878 if (dst_ill != NULL) 8879 ill_refrele(dst_ill); 8880 return; 8881 8882 icmp_err_ret: 8883 ip1dbg(("ip_newroute: no route\n")); 8884 if (src_ipif != NULL) 8885 ipif_refrele(src_ipif); 8886 if (dst_ill != NULL) 8887 ill_refrele(dst_ill); 8888 if (sire != NULL) 8889 ire_refrele(sire); 8890 /* Did this packet originate externally? */ 8891 if (mp->b_prev) { 8892 mp->b_next = NULL; 8893 mp->b_prev = NULL; 8894 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8895 q = WR(q); 8896 } else { 8897 /* 8898 * There is no outgoing ill, so just increment the 8899 * system MIB. 8900 */ 8901 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8902 /* 8903 * Since ip_wput() isn't close to finished, we fill 8904 * in enough of the header for credible error reporting. 8905 */ 8906 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8907 /* Failed */ 8908 MULTIRT_DEBUG_UNTAG(first_mp); 8909 freemsg(first_mp); 8910 if (ire != NULL) 8911 ire_refrele(ire); 8912 return; 8913 } 8914 } 8915 8916 /* 8917 * At this point we will have ire only if RTF_BLACKHOLE 8918 * or RTF_REJECT flags are set on the IRE. It will not 8919 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8920 */ 8921 if (ire != NULL) { 8922 if (ire->ire_flags & RTF_BLACKHOLE) { 8923 ire_refrele(ire); 8924 MULTIRT_DEBUG_UNTAG(first_mp); 8925 freemsg(first_mp); 8926 return; 8927 } 8928 ire_refrele(ire); 8929 } 8930 if (ip_source_routed(ipha, ipst)) { 8931 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8932 zoneid, ipst); 8933 return; 8934 } 8935 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8936 } 8937 8938 ip_opt_info_t zero_info; 8939 8940 /* 8941 * IPv4 - 8942 * ip_newroute_ipif is called by ip_wput_multicast and 8943 * ip_rput_forward_multicast whenever we need to send 8944 * out a packet to a destination address for which we do not have specific 8945 * routing information. It is used when the packet will be sent out 8946 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8947 * socket option is set or icmp error message wants to go out on a particular 8948 * interface for a unicast packet. 8949 * 8950 * In most cases, the destination address is resolved thanks to the ipif 8951 * intrinsic resolver. However, there are some cases where the call to 8952 * ip_newroute_ipif must take into account the potential presence of 8953 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8954 * that uses the interface. This is specified through flags, 8955 * which can be a combination of: 8956 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8957 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8958 * and flags. Additionally, the packet source address has to be set to 8959 * the specified address. The caller is thus expected to set this flag 8960 * if the packet has no specific source address yet. 8961 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8962 * flag, the resulting ire will inherit the flag. All unresolved routes 8963 * to the destination must be explored in the same call to 8964 * ip_newroute_ipif(). 8965 */ 8966 static void 8967 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8968 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 8969 { 8970 areq_t *areq; 8971 ire_t *ire = NULL; 8972 mblk_t *res_mp; 8973 ipaddr_t *addrp; 8974 mblk_t *first_mp; 8975 ire_t *save_ire = NULL; 8976 ipif_t *src_ipif = NULL; 8977 ushort_t ire_marks = 0; 8978 ill_t *dst_ill = NULL; 8979 ipha_t *ipha; 8980 mblk_t *saved_mp; 8981 ire_t *fire = NULL; 8982 mblk_t *copy_mp = NULL; 8983 boolean_t multirt_resolve_next; 8984 boolean_t unspec_src; 8985 ipaddr_t ipha_dst; 8986 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 8987 8988 /* 8989 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 8990 * here for uniformity 8991 */ 8992 ipif_refhold(ipif); 8993 8994 /* 8995 * This loop is run only once in most cases. 8996 * We loop to resolve further routes only when the destination 8997 * can be reached through multiple RTF_MULTIRT-flagged ires. 8998 */ 8999 do { 9000 if (dst_ill != NULL) { 9001 ill_refrele(dst_ill); 9002 dst_ill = NULL; 9003 } 9004 if (src_ipif != NULL) { 9005 ipif_refrele(src_ipif); 9006 src_ipif = NULL; 9007 } 9008 multirt_resolve_next = B_FALSE; 9009 9010 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9011 ipif->ipif_ill->ill_name)); 9012 9013 first_mp = mp; 9014 if (DB_TYPE(mp) == M_CTL) 9015 mp = mp->b_cont; 9016 ipha = (ipha_t *)mp->b_rptr; 9017 9018 /* 9019 * Save the packet destination address, we may need it after 9020 * the packet has been consumed. 9021 */ 9022 ipha_dst = ipha->ipha_dst; 9023 9024 /* 9025 * If the interface is a pt-pt interface we look for an 9026 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9027 * local_address and the pt-pt destination address. Otherwise 9028 * we just match the local address. 9029 * NOTE: dst could be different than ipha->ipha_dst in case 9030 * of sending igmp multicast packets over a point-to-point 9031 * connection. 9032 * Thus we must be careful enough to check ipha_dst to be a 9033 * multicast address, otherwise it will take xmit_if path for 9034 * multicast packets resulting into kernel stack overflow by 9035 * repeated calls to ip_newroute_ipif from ire_send(). 9036 */ 9037 if (CLASSD(ipha_dst) && 9038 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9039 goto err_ret; 9040 } 9041 9042 /* 9043 * We check if an IRE_OFFSUBNET for the addr that goes through 9044 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9045 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9046 * propagate its flags to the new ire. 9047 */ 9048 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9049 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9050 ip2dbg(("ip_newroute_ipif: " 9051 "ipif_lookup_multi_ire(" 9052 "ipif %p, dst %08x) = fire %p\n", 9053 (void *)ipif, ntohl(dst), (void *)fire)); 9054 } 9055 9056 /* 9057 * Note: While we pick a dst_ill we are really only 9058 * interested in the ill for load spreading. The source 9059 * ipif is determined by source address selection below. 9060 */ 9061 if (IS_IPMP(ipif->ipif_ill)) { 9062 ipmp_illgrp_t *illg = ipif->ipif_ill->ill_grp; 9063 9064 if (CLASSD(ipha_dst)) 9065 dst_ill = ipmp_illgrp_hold_cast_ill(illg); 9066 else 9067 dst_ill = ipmp_illgrp_hold_next_ill(illg); 9068 } else { 9069 dst_ill = ipif->ipif_ill; 9070 ill_refhold(dst_ill); 9071 } 9072 9073 if (dst_ill == NULL) { 9074 if (ip_debug > 2) { 9075 pr_addr_dbg("ip_newroute_ipif: no dst ill " 9076 "for dst %s\n", AF_INET, &dst); 9077 } 9078 goto err_ret; 9079 } 9080 9081 /* 9082 * Pick a source address preferring non-deprecated ones. 9083 * Unlike ip_newroute, we don't do any source address 9084 * selection here since for multicast it really does not help 9085 * in inbound load spreading as in the unicast case. 9086 */ 9087 if ((flags & RTF_SETSRC) && (fire != NULL) && 9088 (fire->ire_flags & RTF_SETSRC)) { 9089 /* 9090 * As requested by flags, an IRE_OFFSUBNET was looked up 9091 * on that interface. This ire has RTF_SETSRC flag, so 9092 * the source address of the packet must be changed. 9093 * Check that the ipif matching the requested source 9094 * address still exists. 9095 */ 9096 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9097 zoneid, NULL, NULL, NULL, NULL, ipst); 9098 } 9099 9100 unspec_src = (connp != NULL && connp->conn_unspec_src); 9101 9102 if (!IS_UNDER_IPMP(ipif->ipif_ill) && 9103 (IS_IPMP(ipif->ipif_ill) || 9104 (!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9105 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9106 (connp != NULL && ipif->ipif_zoneid != zoneid && 9107 ipif->ipif_zoneid != ALL_ZONES)) && 9108 (src_ipif == NULL) && 9109 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9110 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9111 if (src_ipif == NULL) { 9112 if (ip_debug > 2) { 9113 /* ip1dbg */ 9114 pr_addr_dbg("ip_newroute_ipif: " 9115 "no src for dst %s", 9116 AF_INET, &dst); 9117 } 9118 ip1dbg((" on interface %s\n", 9119 dst_ill->ill_name)); 9120 goto err_ret; 9121 } 9122 ipif_refrele(ipif); 9123 ipif = src_ipif; 9124 ipif_refhold(ipif); 9125 } 9126 if (src_ipif == NULL) { 9127 src_ipif = ipif; 9128 ipif_refhold(src_ipif); 9129 } 9130 9131 /* 9132 * Assign a source address while we have the conn. 9133 * We can't have ip_wput_ire pick a source address when the 9134 * packet returns from arp since conn_unspec_src might be set 9135 * and we lose the conn when going through arp. 9136 */ 9137 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9138 ipha->ipha_src = src_ipif->ipif_src_addr; 9139 9140 /* 9141 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9142 * that the outgoing interface does not have an interface ire. 9143 */ 9144 if (CLASSD(ipha_dst) && (connp == NULL || 9145 connp->conn_outgoing_ill == NULL) && 9146 infop->ip_opt_ill_index == 0) { 9147 /* ipif_to_ire returns an held ire */ 9148 ire = ipif_to_ire(ipif); 9149 if (ire == NULL) 9150 goto err_ret; 9151 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9152 goto err_ret; 9153 save_ire = ire; 9154 9155 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9156 "flags %04x\n", 9157 (void *)ire, (void *)ipif, flags)); 9158 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9159 (fire->ire_flags & RTF_MULTIRT)) { 9160 /* 9161 * As requested by flags, an IRE_OFFSUBNET was 9162 * looked up on that interface. This ire has 9163 * RTF_MULTIRT flag, so the resolution loop will 9164 * be re-entered to resolve additional routes on 9165 * other interfaces. For that purpose, a copy of 9166 * the packet is performed at this point. 9167 */ 9168 fire->ire_last_used_time = lbolt; 9169 copy_mp = copymsg(first_mp); 9170 if (copy_mp) { 9171 MULTIRT_DEBUG_TAG(copy_mp); 9172 } 9173 } 9174 if ((flags & RTF_SETSRC) && (fire != NULL) && 9175 (fire->ire_flags & RTF_SETSRC)) { 9176 /* 9177 * As requested by flags, an IRE_OFFSUBET was 9178 * looked up on that interface. This ire has 9179 * RTF_SETSRC flag, so the source address of the 9180 * packet must be changed. 9181 */ 9182 ipha->ipha_src = fire->ire_src_addr; 9183 } 9184 } else { 9185 /* 9186 * The only ways we can come here are: 9187 * 1) IP_BOUND_IF socket option is set 9188 * 2) SO_DONTROUTE socket option is set 9189 * 3) IP_PKTINFO option is passed in as ancillary data. 9190 * In all cases, the new ire will not be added 9191 * into cache table. 9192 */ 9193 ASSERT(connp == NULL || connp->conn_dontroute || 9194 connp->conn_outgoing_ill != NULL || 9195 infop->ip_opt_ill_index != 0); 9196 ire_marks |= IRE_MARK_NOADD; 9197 } 9198 9199 switch (ipif->ipif_net_type) { 9200 case IRE_IF_NORESOLVER: { 9201 /* We have what we need to build an IRE_CACHE. */ 9202 9203 if (dst_ill->ill_resolver_mp == NULL) { 9204 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9205 "for IRE_IF_NORESOLVER ire %p has " 9206 "no ill_resolver_mp\n", 9207 (void *)dst_ill, (void *)ire)); 9208 break; 9209 } 9210 9211 /* 9212 * The new ire inherits the IRE_OFFSUBNET flags 9213 * and source address, if this was requested. 9214 */ 9215 ire = ire_create( 9216 (uchar_t *)&dst, /* dest address */ 9217 (uchar_t *)&ip_g_all_ones, /* mask */ 9218 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9219 NULL, /* gateway address */ 9220 &ipif->ipif_mtu, 9221 NULL, /* no src nce */ 9222 dst_ill->ill_rq, /* recv-from queue */ 9223 dst_ill->ill_wq, /* send-to queue */ 9224 IRE_CACHE, 9225 src_ipif, 9226 (save_ire != NULL ? save_ire->ire_mask : 0), 9227 (fire != NULL) ? /* Parent handle */ 9228 fire->ire_phandle : 0, 9229 (save_ire != NULL) ? /* Interface handle */ 9230 save_ire->ire_ihandle : 0, 9231 (fire != NULL) ? 9232 (fire->ire_flags & 9233 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9234 (save_ire == NULL ? &ire_uinfo_null : 9235 &save_ire->ire_uinfo), 9236 NULL, 9237 NULL, 9238 ipst); 9239 9240 if (ire == NULL) { 9241 if (save_ire != NULL) 9242 ire_refrele(save_ire); 9243 break; 9244 } 9245 9246 ire->ire_marks |= ire_marks; 9247 9248 /* 9249 * If IRE_MARK_NOADD is set then we need to convert 9250 * the max_fragp to a useable value now. This is 9251 * normally done in ire_add_v[46]. We also need to 9252 * associate the ire with an nce (normally would be 9253 * done in ip_wput_nondata()). 9254 * 9255 * Note that IRE_MARK_NOADD packets created here 9256 * do not have a non-null ire_mp pointer. The null 9257 * value of ire_bucket indicates that they were 9258 * never added. 9259 */ 9260 if (ire->ire_marks & IRE_MARK_NOADD) { 9261 uint_t max_frag; 9262 9263 max_frag = *ire->ire_max_fragp; 9264 ire->ire_max_fragp = NULL; 9265 ire->ire_max_frag = max_frag; 9266 9267 if ((ire->ire_nce = ndp_lookup_v4( 9268 ire_to_ill(ire), 9269 (ire->ire_gateway_addr != INADDR_ANY ? 9270 &ire->ire_gateway_addr : &ire->ire_addr), 9271 B_FALSE)) == NULL) { 9272 if (save_ire != NULL) 9273 ire_refrele(save_ire); 9274 break; 9275 } 9276 ASSERT(ire->ire_nce->nce_state == 9277 ND_REACHABLE); 9278 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9279 } 9280 9281 /* Prevent save_ire from getting deleted */ 9282 if (save_ire != NULL) { 9283 IRB_REFHOLD(save_ire->ire_bucket); 9284 /* Has it been removed already ? */ 9285 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9286 IRB_REFRELE(save_ire->ire_bucket); 9287 ire_refrele(save_ire); 9288 break; 9289 } 9290 } 9291 9292 ire_add_then_send(q, ire, first_mp); 9293 9294 /* Assert that save_ire is not deleted yet. */ 9295 if (save_ire != NULL) { 9296 ASSERT(save_ire->ire_ptpn != NULL); 9297 IRB_REFRELE(save_ire->ire_bucket); 9298 ire_refrele(save_ire); 9299 save_ire = NULL; 9300 } 9301 if (fire != NULL) { 9302 ire_refrele(fire); 9303 fire = NULL; 9304 } 9305 9306 /* 9307 * the resolution loop is re-entered if this 9308 * was requested through flags and if we 9309 * actually are in a multirouting case. 9310 */ 9311 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9312 boolean_t need_resolve = 9313 ire_multirt_need_resolve(ipha_dst, 9314 msg_getlabel(copy_mp), ipst); 9315 if (!need_resolve) { 9316 MULTIRT_DEBUG_UNTAG(copy_mp); 9317 freemsg(copy_mp); 9318 copy_mp = NULL; 9319 } else { 9320 /* 9321 * ipif_lookup_group() calls 9322 * ire_lookup_multi() that uses 9323 * ire_ftable_lookup() to find 9324 * an IRE_INTERFACE for the group. 9325 * In the multirt case, 9326 * ire_lookup_multi() then invokes 9327 * ire_multirt_lookup() to find 9328 * the next resolvable ire. 9329 * As a result, we obtain an new 9330 * interface, derived from the 9331 * next ire. 9332 */ 9333 ipif_refrele(ipif); 9334 ipif = ipif_lookup_group(ipha_dst, 9335 zoneid, ipst); 9336 ip2dbg(("ip_newroute_ipif: " 9337 "multirt dst %08x, ipif %p\n", 9338 htonl(dst), (void *)ipif)); 9339 if (ipif != NULL) { 9340 mp = copy_mp; 9341 copy_mp = NULL; 9342 multirt_resolve_next = B_TRUE; 9343 continue; 9344 } else { 9345 freemsg(copy_mp); 9346 } 9347 } 9348 } 9349 if (ipif != NULL) 9350 ipif_refrele(ipif); 9351 ill_refrele(dst_ill); 9352 ipif_refrele(src_ipif); 9353 return; 9354 } 9355 case IRE_IF_RESOLVER: 9356 /* 9357 * We can't build an IRE_CACHE yet, but at least 9358 * we found a resolver that can help. 9359 */ 9360 res_mp = dst_ill->ill_resolver_mp; 9361 if (!OK_RESOLVER_MP(res_mp)) 9362 break; 9363 9364 /* 9365 * We obtain a partial IRE_CACHE which we will pass 9366 * along with the resolver query. When the response 9367 * comes back it will be there ready for us to add. 9368 * The new ire inherits the IRE_OFFSUBNET flags 9369 * and source address, if this was requested. 9370 * The ire_max_frag is atomically set under the 9371 * irebucket lock in ire_add_v[46]. Only in the 9372 * case of IRE_MARK_NOADD, we set it here itself. 9373 */ 9374 ire = ire_create_mp( 9375 (uchar_t *)&dst, /* dest address */ 9376 (uchar_t *)&ip_g_all_ones, /* mask */ 9377 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9378 NULL, /* gateway address */ 9379 (ire_marks & IRE_MARK_NOADD) ? 9380 ipif->ipif_mtu : 0, /* max_frag */ 9381 NULL, /* no src nce */ 9382 dst_ill->ill_rq, /* recv-from queue */ 9383 dst_ill->ill_wq, /* send-to queue */ 9384 IRE_CACHE, 9385 src_ipif, 9386 (save_ire != NULL ? save_ire->ire_mask : 0), 9387 (fire != NULL) ? /* Parent handle */ 9388 fire->ire_phandle : 0, 9389 (save_ire != NULL) ? /* Interface handle */ 9390 save_ire->ire_ihandle : 0, 9391 (fire != NULL) ? /* flags if any */ 9392 (fire->ire_flags & 9393 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9394 (save_ire == NULL ? &ire_uinfo_null : 9395 &save_ire->ire_uinfo), 9396 NULL, 9397 NULL, 9398 ipst); 9399 9400 if (save_ire != NULL) { 9401 ire_refrele(save_ire); 9402 save_ire = NULL; 9403 } 9404 if (ire == NULL) 9405 break; 9406 9407 ire->ire_marks |= ire_marks; 9408 /* 9409 * Construct message chain for the resolver of the 9410 * form: 9411 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9412 * 9413 * NOTE : ire will be added later when the response 9414 * comes back from ARP. If the response does not 9415 * come back, ARP frees the packet. For this reason, 9416 * we can't REFHOLD the bucket of save_ire to prevent 9417 * deletions. We may not be able to REFRELE the 9418 * bucket if the response never comes back. 9419 * Thus, before adding the ire, ire_add_v4 will make 9420 * sure that the interface route does not get deleted. 9421 * This is the only case unlike ip_newroute_v6, 9422 * ip_newroute_ipif_v6 where we can always prevent 9423 * deletions because ire_add_then_send is called after 9424 * creating the IRE. 9425 * If IRE_MARK_NOADD is set, then ire_add_then_send 9426 * does not add this IRE into the IRE CACHE. 9427 */ 9428 ASSERT(ire->ire_mp != NULL); 9429 ire->ire_mp->b_cont = first_mp; 9430 /* Have saved_mp handy, for cleanup if canput fails */ 9431 saved_mp = mp; 9432 mp = copyb(res_mp); 9433 if (mp == NULL) { 9434 /* Prepare for cleanup */ 9435 mp = saved_mp; /* pkt */ 9436 ire_delete(ire); /* ire_mp */ 9437 ire = NULL; 9438 if (copy_mp != NULL) { 9439 MULTIRT_DEBUG_UNTAG(copy_mp); 9440 freemsg(copy_mp); 9441 copy_mp = NULL; 9442 } 9443 break; 9444 } 9445 linkb(mp, ire->ire_mp); 9446 9447 /* 9448 * Fill in the source and dest addrs for the resolver. 9449 * NOTE: this depends on memory layouts imposed by 9450 * ill_init(). There are corner cases above where we 9451 * might've created the IRE with an INADDR_ANY source 9452 * address (e.g., if the zeroth ipif on an underlying 9453 * ill in an IPMP group is 0.0.0.0, but another ipif 9454 * on the ill has a usable test address). If so, tell 9455 * ARP to use ipha_src as its sender address. 9456 */ 9457 areq = (areq_t *)mp->b_rptr; 9458 addrp = (ipaddr_t *)((char *)areq + 9459 areq->areq_sender_addr_offset); 9460 if (ire->ire_src_addr != INADDR_ANY) 9461 *addrp = ire->ire_src_addr; 9462 else 9463 *addrp = ipha->ipha_src; 9464 addrp = (ipaddr_t *)((char *)areq + 9465 areq->areq_target_addr_offset); 9466 *addrp = dst; 9467 /* Up to the resolver. */ 9468 if (canputnext(dst_ill->ill_rq) && 9469 !(dst_ill->ill_arp_closing)) { 9470 putnext(dst_ill->ill_rq, mp); 9471 /* 9472 * The response will come back in ip_wput 9473 * with db_type IRE_DB_TYPE. 9474 */ 9475 } else { 9476 mp->b_cont = NULL; 9477 freeb(mp); /* areq */ 9478 ire_delete(ire); /* ire_mp */ 9479 saved_mp->b_next = NULL; 9480 saved_mp->b_prev = NULL; 9481 freemsg(first_mp); /* pkt */ 9482 ip2dbg(("ip_newroute_ipif: dropped\n")); 9483 } 9484 9485 if (fire != NULL) { 9486 ire_refrele(fire); 9487 fire = NULL; 9488 } 9489 9490 /* 9491 * The resolution loop is re-entered if this was 9492 * requested through flags and we actually are 9493 * in a multirouting case. 9494 */ 9495 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9496 boolean_t need_resolve = 9497 ire_multirt_need_resolve(ipha_dst, 9498 msg_getlabel(copy_mp), ipst); 9499 if (!need_resolve) { 9500 MULTIRT_DEBUG_UNTAG(copy_mp); 9501 freemsg(copy_mp); 9502 copy_mp = NULL; 9503 } else { 9504 /* 9505 * ipif_lookup_group() calls 9506 * ire_lookup_multi() that uses 9507 * ire_ftable_lookup() to find 9508 * an IRE_INTERFACE for the group. 9509 * In the multirt case, 9510 * ire_lookup_multi() then invokes 9511 * ire_multirt_lookup() to find 9512 * the next resolvable ire. 9513 * As a result, we obtain an new 9514 * interface, derived from the 9515 * next ire. 9516 */ 9517 ipif_refrele(ipif); 9518 ipif = ipif_lookup_group(ipha_dst, 9519 zoneid, ipst); 9520 if (ipif != NULL) { 9521 mp = copy_mp; 9522 copy_mp = NULL; 9523 multirt_resolve_next = B_TRUE; 9524 continue; 9525 } else { 9526 freemsg(copy_mp); 9527 } 9528 } 9529 } 9530 if (ipif != NULL) 9531 ipif_refrele(ipif); 9532 ill_refrele(dst_ill); 9533 ipif_refrele(src_ipif); 9534 return; 9535 default: 9536 break; 9537 } 9538 } while (multirt_resolve_next); 9539 9540 err_ret: 9541 ip2dbg(("ip_newroute_ipif: dropped\n")); 9542 if (fire != NULL) 9543 ire_refrele(fire); 9544 ipif_refrele(ipif); 9545 /* Did this packet originate externally? */ 9546 if (dst_ill != NULL) 9547 ill_refrele(dst_ill); 9548 if (src_ipif != NULL) 9549 ipif_refrele(src_ipif); 9550 if (mp->b_prev || mp->b_next) { 9551 mp->b_next = NULL; 9552 mp->b_prev = NULL; 9553 } else { 9554 /* 9555 * Since ip_wput() isn't close to finished, we fill 9556 * in enough of the header for credible error reporting. 9557 */ 9558 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9559 /* Failed */ 9560 freemsg(first_mp); 9561 if (ire != NULL) 9562 ire_refrele(ire); 9563 return; 9564 } 9565 } 9566 /* 9567 * At this point we will have ire only if RTF_BLACKHOLE 9568 * or RTF_REJECT flags are set on the IRE. It will not 9569 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9570 */ 9571 if (ire != NULL) { 9572 if (ire->ire_flags & RTF_BLACKHOLE) { 9573 ire_refrele(ire); 9574 freemsg(first_mp); 9575 return; 9576 } 9577 ire_refrele(ire); 9578 } 9579 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9580 } 9581 9582 /* Name/Value Table Lookup Routine */ 9583 char * 9584 ip_nv_lookup(nv_t *nv, int value) 9585 { 9586 if (!nv) 9587 return (NULL); 9588 for (; nv->nv_name; nv++) { 9589 if (nv->nv_value == value) 9590 return (nv->nv_name); 9591 } 9592 return ("unknown"); 9593 } 9594 9595 /* 9596 * This is a module open, i.e. this is a control stream for access 9597 * to a DLPI device. We allocate an ill_t as the instance data in 9598 * this case. 9599 */ 9600 int 9601 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9602 { 9603 ill_t *ill; 9604 int err; 9605 zoneid_t zoneid; 9606 netstack_t *ns; 9607 ip_stack_t *ipst; 9608 9609 /* 9610 * Prevent unprivileged processes from pushing IP so that 9611 * they can't send raw IP. 9612 */ 9613 if (secpolicy_net_rawaccess(credp) != 0) 9614 return (EPERM); 9615 9616 ns = netstack_find_by_cred(credp); 9617 ASSERT(ns != NULL); 9618 ipst = ns->netstack_ip; 9619 ASSERT(ipst != NULL); 9620 9621 /* 9622 * For exclusive stacks we set the zoneid to zero 9623 * to make IP operate as if in the global zone. 9624 */ 9625 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9626 zoneid = GLOBAL_ZONEID; 9627 else 9628 zoneid = crgetzoneid(credp); 9629 9630 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9631 q->q_ptr = WR(q)->q_ptr = ill; 9632 ill->ill_ipst = ipst; 9633 ill->ill_zoneid = zoneid; 9634 9635 /* 9636 * ill_init initializes the ill fields and then sends down 9637 * down a DL_INFO_REQ after calling qprocson. 9638 */ 9639 err = ill_init(q, ill); 9640 if (err != 0) { 9641 mi_free(ill); 9642 netstack_rele(ipst->ips_netstack); 9643 q->q_ptr = NULL; 9644 WR(q)->q_ptr = NULL; 9645 return (err); 9646 } 9647 9648 /* ill_init initializes the ipsq marking this thread as writer */ 9649 ipsq_exit(ill->ill_phyint->phyint_ipsq); 9650 /* Wait for the DL_INFO_ACK */ 9651 mutex_enter(&ill->ill_lock); 9652 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9653 /* 9654 * Return value of 0 indicates a pending signal. 9655 */ 9656 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9657 if (err == 0) { 9658 mutex_exit(&ill->ill_lock); 9659 (void) ip_close(q, 0); 9660 return (EINTR); 9661 } 9662 } 9663 mutex_exit(&ill->ill_lock); 9664 9665 /* 9666 * ip_rput_other could have set an error in ill_error on 9667 * receipt of M_ERROR. 9668 */ 9669 9670 err = ill->ill_error; 9671 if (err != 0) { 9672 (void) ip_close(q, 0); 9673 return (err); 9674 } 9675 9676 ill->ill_credp = credp; 9677 crhold(credp); 9678 9679 mutex_enter(&ipst->ips_ip_mi_lock); 9680 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9681 credp); 9682 mutex_exit(&ipst->ips_ip_mi_lock); 9683 if (err) { 9684 (void) ip_close(q, 0); 9685 return (err); 9686 } 9687 return (0); 9688 } 9689 9690 /* For /dev/ip aka AF_INET open */ 9691 int 9692 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9693 { 9694 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9695 } 9696 9697 /* For /dev/ip6 aka AF_INET6 open */ 9698 int 9699 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9700 { 9701 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9702 } 9703 9704 /* IP open routine. */ 9705 int 9706 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9707 boolean_t isv6) 9708 { 9709 conn_t *connp; 9710 major_t maj; 9711 zoneid_t zoneid; 9712 netstack_t *ns; 9713 ip_stack_t *ipst; 9714 9715 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9716 9717 /* Allow reopen. */ 9718 if (q->q_ptr != NULL) 9719 return (0); 9720 9721 if (sflag & MODOPEN) { 9722 /* This is a module open */ 9723 return (ip_modopen(q, devp, flag, sflag, credp)); 9724 } 9725 9726 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 9727 /* 9728 * Non streams based socket looking for a stream 9729 * to access IP 9730 */ 9731 return (ip_helper_stream_setup(q, devp, flag, sflag, 9732 credp, isv6)); 9733 } 9734 9735 ns = netstack_find_by_cred(credp); 9736 ASSERT(ns != NULL); 9737 ipst = ns->netstack_ip; 9738 ASSERT(ipst != NULL); 9739 9740 /* 9741 * For exclusive stacks we set the zoneid to zero 9742 * to make IP operate as if in the global zone. 9743 */ 9744 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9745 zoneid = GLOBAL_ZONEID; 9746 else 9747 zoneid = crgetzoneid(credp); 9748 9749 /* 9750 * We are opening as a device. This is an IP client stream, and we 9751 * allocate an conn_t as the instance data. 9752 */ 9753 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9754 9755 /* 9756 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9757 * done by netstack_find_by_cred() 9758 */ 9759 netstack_rele(ipst->ips_netstack); 9760 9761 connp->conn_zoneid = zoneid; 9762 connp->conn_sqp = NULL; 9763 connp->conn_initial_sqp = NULL; 9764 connp->conn_final_sqp = NULL; 9765 9766 connp->conn_upq = q; 9767 q->q_ptr = WR(q)->q_ptr = connp; 9768 9769 if (flag & SO_SOCKSTR) 9770 connp->conn_flags |= IPCL_SOCKET; 9771 9772 /* Minor tells us which /dev entry was opened */ 9773 if (isv6) { 9774 connp->conn_af_isv6 = B_TRUE; 9775 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9776 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9777 } else { 9778 connp->conn_af_isv6 = B_FALSE; 9779 connp->conn_pkt_isv6 = B_FALSE; 9780 } 9781 9782 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9783 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9784 connp->conn_minor_arena = ip_minor_arena_la; 9785 } else { 9786 /* 9787 * Either minor numbers in the large arena were exhausted 9788 * or a non socket application is doing the open. 9789 * Try to allocate from the small arena. 9790 */ 9791 if ((connp->conn_dev = 9792 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9793 /* CONN_DEC_REF takes care of netstack_rele() */ 9794 q->q_ptr = WR(q)->q_ptr = NULL; 9795 CONN_DEC_REF(connp); 9796 return (EBUSY); 9797 } 9798 connp->conn_minor_arena = ip_minor_arena_sa; 9799 } 9800 9801 maj = getemajor(*devp); 9802 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9803 9804 /* 9805 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9806 */ 9807 connp->conn_cred = credp; 9808 9809 /* 9810 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9811 */ 9812 connp->conn_recv = ip_conn_input; 9813 9814 crhold(connp->conn_cred); 9815 9816 /* 9817 * If the caller has the process-wide flag set, then default to MAC 9818 * exempt mode. This allows read-down to unlabeled hosts. 9819 */ 9820 if (getpflags(NET_MAC_AWARE, credp) != 0) 9821 connp->conn_mac_mode = CONN_MAC_AWARE; 9822 9823 connp->conn_rq = q; 9824 connp->conn_wq = WR(q); 9825 9826 /* Non-zero default values */ 9827 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9828 9829 /* 9830 * Make the conn globally visible to walkers 9831 */ 9832 ASSERT(connp->conn_ref == 1); 9833 mutex_enter(&connp->conn_lock); 9834 connp->conn_state_flags &= ~CONN_INCIPIENT; 9835 mutex_exit(&connp->conn_lock); 9836 9837 qprocson(q); 9838 9839 return (0); 9840 } 9841 9842 /* 9843 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9844 * Note that there is no race since either ip_output function works - it 9845 * is just an optimization to enter the best ip_output routine directly. 9846 */ 9847 void 9848 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9849 ip_stack_t *ipst) 9850 { 9851 if (isv6) { 9852 if (bump_mib) { 9853 BUMP_MIB(&ipst->ips_ip6_mib, 9854 ipIfStatsOutSwitchIPVersion); 9855 } 9856 connp->conn_send = ip_output_v6; 9857 connp->conn_pkt_isv6 = B_TRUE; 9858 } else { 9859 if (bump_mib) { 9860 BUMP_MIB(&ipst->ips_ip_mib, 9861 ipIfStatsOutSwitchIPVersion); 9862 } 9863 connp->conn_send = ip_output; 9864 connp->conn_pkt_isv6 = B_FALSE; 9865 } 9866 9867 } 9868 9869 /* 9870 * See if IPsec needs loading because of the options in mp. 9871 */ 9872 static boolean_t 9873 ipsec_opt_present(mblk_t *mp) 9874 { 9875 uint8_t *optcp, *next_optcp, *opt_endcp; 9876 struct opthdr *opt; 9877 struct T_opthdr *topt; 9878 int opthdr_len; 9879 t_uscalar_t optname, optlevel; 9880 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9881 ipsec_req_t *ipsr; 9882 9883 /* 9884 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9885 * return TRUE. 9886 */ 9887 9888 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9889 opt_endcp = optcp + tor->OPT_length; 9890 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9891 opthdr_len = sizeof (struct T_opthdr); 9892 } else { /* O_OPTMGMT_REQ */ 9893 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9894 opthdr_len = sizeof (struct opthdr); 9895 } 9896 for (; optcp < opt_endcp; optcp = next_optcp) { 9897 if (optcp + opthdr_len > opt_endcp) 9898 return (B_FALSE); /* Not enough option header. */ 9899 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9900 topt = (struct T_opthdr *)optcp; 9901 optlevel = topt->level; 9902 optname = topt->name; 9903 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9904 } else { 9905 opt = (struct opthdr *)optcp; 9906 optlevel = opt->level; 9907 optname = opt->name; 9908 next_optcp = optcp + opthdr_len + 9909 _TPI_ALIGN_OPT(opt->len); 9910 } 9911 if ((next_optcp < optcp) || /* wraparound pointer space */ 9912 ((next_optcp >= opt_endcp) && /* last option bad len */ 9913 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9914 return (B_FALSE); /* bad option buffer */ 9915 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9916 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9917 /* 9918 * Check to see if it's an all-bypass or all-zeroes 9919 * IPsec request. Don't bother loading IPsec if 9920 * the socket doesn't want to use it. (A good example 9921 * is a bypass request.) 9922 * 9923 * Basically, if any of the non-NEVER bits are set, 9924 * load IPsec. 9925 */ 9926 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9927 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9928 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9929 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9930 != 0) 9931 return (B_TRUE); 9932 } 9933 } 9934 return (B_FALSE); 9935 } 9936 9937 /* 9938 * If conn is is waiting for ipsec to finish loading, kick it. 9939 */ 9940 /* ARGSUSED */ 9941 static void 9942 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9943 { 9944 t_scalar_t optreq_prim; 9945 mblk_t *mp; 9946 cred_t *cr; 9947 int err = 0; 9948 9949 /* 9950 * This function is called, after ipsec loading is complete. 9951 * Since IP checks exclusively and atomically (i.e it prevents 9952 * ipsec load from completing until ip_optcom_req completes) 9953 * whether ipsec load is complete, there cannot be a race with IP 9954 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9955 */ 9956 mutex_enter(&connp->conn_lock); 9957 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9958 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9959 mp = connp->conn_ipsec_opt_mp; 9960 connp->conn_ipsec_opt_mp = NULL; 9961 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9962 mutex_exit(&connp->conn_lock); 9963 9964 /* 9965 * All Solaris components should pass a db_credp 9966 * for this TPI message, hence we ASSERT. 9967 * But in case there is some other M_PROTO that looks 9968 * like a TPI message sent by some other kernel 9969 * component, we check and return an error. 9970 */ 9971 cr = msg_getcred(mp, NULL); 9972 ASSERT(cr != NULL); 9973 if (cr == NULL) { 9974 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 9975 if (mp != NULL) 9976 qreply(connp->conn_wq, mp); 9977 return; 9978 } 9979 9980 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9981 9982 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9983 if (optreq_prim == T_OPTMGMT_REQ) { 9984 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9985 &ip_opt_obj, B_FALSE); 9986 } else { 9987 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 9988 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9989 &ip_opt_obj, B_FALSE); 9990 } 9991 if (err != EINPROGRESS) 9992 CONN_OPER_PENDING_DONE(connp); 9993 return; 9994 } 9995 mutex_exit(&connp->conn_lock); 9996 } 9997 9998 /* 9999 * Called from the ipsec_loader thread, outside any perimeter, to tell 10000 * ip qenable any of the queues waiting for the ipsec loader to 10001 * complete. 10002 */ 10003 void 10004 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10005 { 10006 netstack_t *ns = ipss->ipsec_netstack; 10007 10008 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10009 } 10010 10011 /* 10012 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10013 * determines the grp on which it has to become exclusive, queues the mp 10014 * and IPSQ draining restarts the optmgmt 10015 */ 10016 static boolean_t 10017 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10018 { 10019 conn_t *connp = Q_TO_CONN(q); 10020 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10021 10022 /* 10023 * Take IPsec requests and treat them special. 10024 */ 10025 if (ipsec_opt_present(mp)) { 10026 /* First check if IPsec is loaded. */ 10027 mutex_enter(&ipss->ipsec_loader_lock); 10028 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10029 mutex_exit(&ipss->ipsec_loader_lock); 10030 return (B_FALSE); 10031 } 10032 mutex_enter(&connp->conn_lock); 10033 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10034 10035 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10036 connp->conn_ipsec_opt_mp = mp; 10037 mutex_exit(&connp->conn_lock); 10038 mutex_exit(&ipss->ipsec_loader_lock); 10039 10040 ipsec_loader_loadnow(ipss); 10041 return (B_TRUE); 10042 } 10043 return (B_FALSE); 10044 } 10045 10046 /* 10047 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10048 * all of them are copied to the conn_t. If the req is "zero", the policy is 10049 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10050 * fields. 10051 * We keep only the latest setting of the policy and thus policy setting 10052 * is not incremental/cumulative. 10053 * 10054 * Requests to set policies with multiple alternative actions will 10055 * go through a different API. 10056 */ 10057 int 10058 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10059 { 10060 uint_t ah_req = 0; 10061 uint_t esp_req = 0; 10062 uint_t se_req = 0; 10063 ipsec_act_t *actp = NULL; 10064 uint_t nact; 10065 ipsec_policy_head_t *ph; 10066 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 10067 int error = 0; 10068 netstack_t *ns = connp->conn_netstack; 10069 ip_stack_t *ipst = ns->netstack_ip; 10070 ipsec_stack_t *ipss = ns->netstack_ipsec; 10071 10072 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10073 10074 /* 10075 * The IP_SEC_OPT option does not allow variable length parameters, 10076 * hence a request cannot be NULL. 10077 */ 10078 if (req == NULL) 10079 return (EINVAL); 10080 10081 ah_req = req->ipsr_ah_req; 10082 esp_req = req->ipsr_esp_req; 10083 se_req = req->ipsr_self_encap_req; 10084 10085 /* Don't allow setting self-encap without one or more of AH/ESP. */ 10086 if (se_req != 0 && esp_req == 0 && ah_req == 0) 10087 return (EINVAL); 10088 10089 /* 10090 * Are we dealing with a request to reset the policy (i.e. 10091 * zero requests). 10092 */ 10093 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10094 (esp_req & REQ_MASK) == 0 && 10095 (se_req & REQ_MASK) == 0); 10096 10097 if (!is_pol_reset) { 10098 /* 10099 * If we couldn't load IPsec, fail with "protocol 10100 * not supported". 10101 * IPsec may not have been loaded for a request with zero 10102 * policies, so we don't fail in this case. 10103 */ 10104 mutex_enter(&ipss->ipsec_loader_lock); 10105 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10106 mutex_exit(&ipss->ipsec_loader_lock); 10107 return (EPROTONOSUPPORT); 10108 } 10109 mutex_exit(&ipss->ipsec_loader_lock); 10110 10111 /* 10112 * Test for valid requests. Invalid algorithms 10113 * need to be tested by IPsec code because new 10114 * algorithms can be added dynamically. 10115 */ 10116 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10117 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10118 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10119 return (EINVAL); 10120 } 10121 10122 /* 10123 * Only privileged users can issue these 10124 * requests. 10125 */ 10126 if (((ah_req & IPSEC_PREF_NEVER) || 10127 (esp_req & IPSEC_PREF_NEVER) || 10128 (se_req & IPSEC_PREF_NEVER)) && 10129 secpolicy_ip_config(cr, B_FALSE) != 0) { 10130 return (EPERM); 10131 } 10132 10133 /* 10134 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10135 * are mutually exclusive. 10136 */ 10137 if (((ah_req & REQ_MASK) == REQ_MASK) || 10138 ((esp_req & REQ_MASK) == REQ_MASK) || 10139 ((se_req & REQ_MASK) == REQ_MASK)) { 10140 /* Both of them are set */ 10141 return (EINVAL); 10142 } 10143 } 10144 10145 mutex_enter(&connp->conn_lock); 10146 10147 /* 10148 * If we have already cached policies in ip_bind_connected*(), don't 10149 * let them change now. We cache policies for connections 10150 * whose src,dst [addr, port] is known. 10151 */ 10152 if (connp->conn_policy_cached) { 10153 mutex_exit(&connp->conn_lock); 10154 return (EINVAL); 10155 } 10156 10157 /* 10158 * We have a zero policies, reset the connection policy if already 10159 * set. This will cause the connection to inherit the 10160 * global policy, if any. 10161 */ 10162 if (is_pol_reset) { 10163 if (connp->conn_policy != NULL) { 10164 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10165 connp->conn_policy = NULL; 10166 } 10167 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10168 connp->conn_in_enforce_policy = B_FALSE; 10169 connp->conn_out_enforce_policy = B_FALSE; 10170 mutex_exit(&connp->conn_lock); 10171 return (0); 10172 } 10173 10174 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10175 ipst->ips_netstack); 10176 if (ph == NULL) 10177 goto enomem; 10178 10179 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10180 if (actp == NULL) 10181 goto enomem; 10182 10183 /* 10184 * Always insert IPv4 policy entries, since they can also apply to 10185 * ipv6 sockets being used in ipv4-compat mode. 10186 */ 10187 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 10188 IPSEC_TYPE_INBOUND, ns)) 10189 goto enomem; 10190 is_pol_inserted = B_TRUE; 10191 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 10192 IPSEC_TYPE_OUTBOUND, ns)) 10193 goto enomem; 10194 10195 /* 10196 * We're looking at a v6 socket, also insert the v6-specific 10197 * entries. 10198 */ 10199 if (connp->conn_af_isv6) { 10200 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 10201 IPSEC_TYPE_INBOUND, ns)) 10202 goto enomem; 10203 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 10204 IPSEC_TYPE_OUTBOUND, ns)) 10205 goto enomem; 10206 } 10207 10208 ipsec_actvec_free(actp, nact); 10209 10210 /* 10211 * If the requests need security, set enforce_policy. 10212 * If the requests are IPSEC_PREF_NEVER, one should 10213 * still set conn_out_enforce_policy so that an ipsec_out 10214 * gets attached in ip_wput. This is needed so that 10215 * for connections that we don't cache policy in ip_bind, 10216 * if global policy matches in ip_wput_attach_policy, we 10217 * don't wrongly inherit global policy. Similarly, we need 10218 * to set conn_in_enforce_policy also so that we don't verify 10219 * policy wrongly. 10220 */ 10221 if ((ah_req & REQ_MASK) != 0 || 10222 (esp_req & REQ_MASK) != 0 || 10223 (se_req & REQ_MASK) != 0) { 10224 connp->conn_in_enforce_policy = B_TRUE; 10225 connp->conn_out_enforce_policy = B_TRUE; 10226 connp->conn_flags |= IPCL_CHECK_POLICY; 10227 } 10228 10229 mutex_exit(&connp->conn_lock); 10230 return (error); 10231 #undef REQ_MASK 10232 10233 /* 10234 * Common memory-allocation-failure exit path. 10235 */ 10236 enomem: 10237 mutex_exit(&connp->conn_lock); 10238 if (actp != NULL) 10239 ipsec_actvec_free(actp, nact); 10240 if (is_pol_inserted) 10241 ipsec_polhead_flush(ph, ns); 10242 return (ENOMEM); 10243 } 10244 10245 /* 10246 * Only for options that pass in an IP addr. Currently only V4 options 10247 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10248 * So this function assumes level is IPPROTO_IP 10249 */ 10250 int 10251 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10252 mblk_t *first_mp) 10253 { 10254 ipif_t *ipif = NULL; 10255 int error; 10256 ill_t *ill; 10257 int zoneid; 10258 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10259 10260 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10261 10262 if (addr != INADDR_ANY || checkonly) { 10263 ASSERT(connp != NULL); 10264 zoneid = IPCL_ZONEID(connp); 10265 if (option == IP_NEXTHOP) { 10266 ipif = ipif_lookup_onlink_addr(addr, 10267 connp->conn_zoneid, ipst); 10268 } else { 10269 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10270 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10271 &error, ipst); 10272 } 10273 if (ipif == NULL) { 10274 if (error == EINPROGRESS) 10275 return (error); 10276 if ((option == IP_MULTICAST_IF) || 10277 (option == IP_NEXTHOP)) 10278 return (EHOSTUNREACH); 10279 else 10280 return (EINVAL); 10281 } else if (checkonly) { 10282 if (option == IP_MULTICAST_IF) { 10283 ill = ipif->ipif_ill; 10284 /* not supported by the virtual network iface */ 10285 if (IS_VNI(ill)) { 10286 ipif_refrele(ipif); 10287 return (EINVAL); 10288 } 10289 } 10290 ipif_refrele(ipif); 10291 return (0); 10292 } 10293 ill = ipif->ipif_ill; 10294 mutex_enter(&connp->conn_lock); 10295 mutex_enter(&ill->ill_lock); 10296 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10297 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10298 mutex_exit(&ill->ill_lock); 10299 mutex_exit(&connp->conn_lock); 10300 ipif_refrele(ipif); 10301 return (option == IP_MULTICAST_IF ? 10302 EHOSTUNREACH : EINVAL); 10303 } 10304 } else { 10305 mutex_enter(&connp->conn_lock); 10306 } 10307 10308 /* None of the options below are supported on the VNI */ 10309 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10310 mutex_exit(&ill->ill_lock); 10311 mutex_exit(&connp->conn_lock); 10312 ipif_refrele(ipif); 10313 return (EINVAL); 10314 } 10315 10316 switch (option) { 10317 case IP_MULTICAST_IF: 10318 connp->conn_multicast_ipif = ipif; 10319 break; 10320 case IP_NEXTHOP: 10321 connp->conn_nexthop_v4 = addr; 10322 connp->conn_nexthop_set = B_TRUE; 10323 break; 10324 } 10325 10326 if (ipif != NULL) { 10327 mutex_exit(&ill->ill_lock); 10328 mutex_exit(&connp->conn_lock); 10329 ipif_refrele(ipif); 10330 return (0); 10331 } 10332 mutex_exit(&connp->conn_lock); 10333 /* We succeded in cleared the option */ 10334 return (0); 10335 } 10336 10337 /* 10338 * For options that pass in an ifindex specifying the ill. V6 options always 10339 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10340 */ 10341 int 10342 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10343 int level, int option, mblk_t *first_mp) 10344 { 10345 ill_t *ill = NULL; 10346 int error = 0; 10347 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10348 10349 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10350 if (ifindex != 0) { 10351 ASSERT(connp != NULL); 10352 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10353 first_mp, ip_restart_optmgmt, &error, ipst); 10354 if (ill != NULL) { 10355 if (checkonly) { 10356 /* not supported by the virtual network iface */ 10357 if (IS_VNI(ill)) { 10358 ill_refrele(ill); 10359 return (EINVAL); 10360 } 10361 ill_refrele(ill); 10362 return (0); 10363 } 10364 if (!ipif_lookup_zoneid(ill, connp->conn_zoneid, 10365 0, NULL)) { 10366 ill_refrele(ill); 10367 ill = NULL; 10368 mutex_enter(&connp->conn_lock); 10369 goto setit; 10370 } 10371 mutex_enter(&connp->conn_lock); 10372 mutex_enter(&ill->ill_lock); 10373 if (ill->ill_state_flags & ILL_CONDEMNED) { 10374 mutex_exit(&ill->ill_lock); 10375 mutex_exit(&connp->conn_lock); 10376 ill_refrele(ill); 10377 ill = NULL; 10378 mutex_enter(&connp->conn_lock); 10379 } 10380 goto setit; 10381 } else if (error == EINPROGRESS) { 10382 return (error); 10383 } else { 10384 error = 0; 10385 } 10386 } 10387 mutex_enter(&connp->conn_lock); 10388 setit: 10389 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10390 10391 /* 10392 * The options below assume that the ILL (if any) transmits and/or 10393 * receives traffic. Neither of which is true for the virtual network 10394 * interface, so fail setting these on a VNI. 10395 */ 10396 if (IS_VNI(ill)) { 10397 ASSERT(ill != NULL); 10398 mutex_exit(&ill->ill_lock); 10399 mutex_exit(&connp->conn_lock); 10400 ill_refrele(ill); 10401 return (EINVAL); 10402 } 10403 10404 if (level == IPPROTO_IP) { 10405 switch (option) { 10406 case IP_BOUND_IF: 10407 connp->conn_incoming_ill = ill; 10408 connp->conn_outgoing_ill = ill; 10409 break; 10410 10411 case IP_MULTICAST_IF: 10412 /* 10413 * This option is an internal special. The socket 10414 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10415 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10416 * specifies an ifindex and we try first on V6 ill's. 10417 * If we don't find one, we they try using on v4 ill's 10418 * intenally and we come here. 10419 */ 10420 if (!checkonly && ill != NULL) { 10421 ipif_t *ipif; 10422 ipif = ill->ill_ipif; 10423 10424 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10425 mutex_exit(&ill->ill_lock); 10426 mutex_exit(&connp->conn_lock); 10427 ill_refrele(ill); 10428 ill = NULL; 10429 mutex_enter(&connp->conn_lock); 10430 } else { 10431 connp->conn_multicast_ipif = ipif; 10432 } 10433 } 10434 break; 10435 10436 case IP_DHCPINIT_IF: 10437 if (connp->conn_dhcpinit_ill != NULL) { 10438 /* 10439 * We've locked the conn so conn_cleanup_ill() 10440 * cannot clear conn_dhcpinit_ill -- so it's 10441 * safe to access the ill. 10442 */ 10443 ill_t *oill = connp->conn_dhcpinit_ill; 10444 10445 ASSERT(oill->ill_dhcpinit != 0); 10446 atomic_dec_32(&oill->ill_dhcpinit); 10447 connp->conn_dhcpinit_ill = NULL; 10448 } 10449 10450 if (ill != NULL) { 10451 connp->conn_dhcpinit_ill = ill; 10452 atomic_inc_32(&ill->ill_dhcpinit); 10453 } 10454 break; 10455 } 10456 } else { 10457 switch (option) { 10458 case IPV6_BOUND_IF: 10459 connp->conn_incoming_ill = ill; 10460 connp->conn_outgoing_ill = ill; 10461 break; 10462 10463 case IPV6_MULTICAST_IF: 10464 /* 10465 * Set conn_multicast_ill to be the IPv6 ill. 10466 * Set conn_multicast_ipif to be an IPv4 ipif 10467 * for ifindex to make IPv4 mapped addresses 10468 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10469 * Even if no IPv6 ill exists for the ifindex 10470 * we need to check for an IPv4 ifindex in order 10471 * for this to work with mapped addresses. In that 10472 * case only set conn_multicast_ipif. 10473 */ 10474 if (!checkonly) { 10475 if (ifindex == 0) { 10476 connp->conn_multicast_ill = NULL; 10477 connp->conn_multicast_ipif = NULL; 10478 } else if (ill != NULL) { 10479 connp->conn_multicast_ill = ill; 10480 } 10481 } 10482 break; 10483 } 10484 } 10485 10486 if (ill != NULL) { 10487 mutex_exit(&ill->ill_lock); 10488 mutex_exit(&connp->conn_lock); 10489 ill_refrele(ill); 10490 return (0); 10491 } 10492 mutex_exit(&connp->conn_lock); 10493 /* 10494 * We succeeded in clearing the option (ifindex == 0) or failed to 10495 * locate the ill and could not set the option (ifindex != 0) 10496 */ 10497 return (ifindex == 0 ? 0 : EINVAL); 10498 } 10499 10500 /* This routine sets socket options. */ 10501 /* ARGSUSED */ 10502 int 10503 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10504 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10505 void *dummy, cred_t *cr, mblk_t *first_mp) 10506 { 10507 int *i1 = (int *)invalp; 10508 conn_t *connp = Q_TO_CONN(q); 10509 int error = 0; 10510 boolean_t checkonly; 10511 ire_t *ire; 10512 boolean_t found; 10513 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10514 10515 switch (optset_context) { 10516 10517 case SETFN_OPTCOM_CHECKONLY: 10518 checkonly = B_TRUE; 10519 /* 10520 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10521 * inlen != 0 implies value supplied and 10522 * we have to "pretend" to set it. 10523 * inlen == 0 implies that there is no 10524 * value part in T_CHECK request and just validation 10525 * done elsewhere should be enough, we just return here. 10526 */ 10527 if (inlen == 0) { 10528 *outlenp = 0; 10529 return (0); 10530 } 10531 break; 10532 case SETFN_OPTCOM_NEGOTIATE: 10533 case SETFN_UD_NEGOTIATE: 10534 case SETFN_CONN_NEGOTIATE: 10535 checkonly = B_FALSE; 10536 break; 10537 default: 10538 /* 10539 * We should never get here 10540 */ 10541 *outlenp = 0; 10542 return (EINVAL); 10543 } 10544 10545 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10546 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10547 10548 /* 10549 * For fixed length options, no sanity check 10550 * of passed in length is done. It is assumed *_optcom_req() 10551 * routines do the right thing. 10552 */ 10553 10554 switch (level) { 10555 case SOL_SOCKET: 10556 /* 10557 * conn_lock protects the bitfields, and is used to 10558 * set the fields atomically. 10559 */ 10560 switch (name) { 10561 case SO_BROADCAST: 10562 if (!checkonly) { 10563 /* TODO: use value someplace? */ 10564 mutex_enter(&connp->conn_lock); 10565 connp->conn_broadcast = *i1 ? 1 : 0; 10566 mutex_exit(&connp->conn_lock); 10567 } 10568 break; /* goto sizeof (int) option return */ 10569 case SO_USELOOPBACK: 10570 if (!checkonly) { 10571 /* TODO: use value someplace? */ 10572 mutex_enter(&connp->conn_lock); 10573 connp->conn_loopback = *i1 ? 1 : 0; 10574 mutex_exit(&connp->conn_lock); 10575 } 10576 break; /* goto sizeof (int) option return */ 10577 case SO_DONTROUTE: 10578 if (!checkonly) { 10579 mutex_enter(&connp->conn_lock); 10580 connp->conn_dontroute = *i1 ? 1 : 0; 10581 mutex_exit(&connp->conn_lock); 10582 } 10583 break; /* goto sizeof (int) option return */ 10584 case SO_REUSEADDR: 10585 if (!checkonly) { 10586 mutex_enter(&connp->conn_lock); 10587 connp->conn_reuseaddr = *i1 ? 1 : 0; 10588 mutex_exit(&connp->conn_lock); 10589 } 10590 break; /* goto sizeof (int) option return */ 10591 case SO_PROTOTYPE: 10592 if (!checkonly) { 10593 mutex_enter(&connp->conn_lock); 10594 connp->conn_proto = *i1; 10595 mutex_exit(&connp->conn_lock); 10596 } 10597 break; /* goto sizeof (int) option return */ 10598 case SO_ALLZONES: 10599 if (!checkonly) { 10600 mutex_enter(&connp->conn_lock); 10601 if (IPCL_IS_BOUND(connp)) { 10602 mutex_exit(&connp->conn_lock); 10603 return (EINVAL); 10604 } 10605 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10606 mutex_exit(&connp->conn_lock); 10607 } 10608 break; /* goto sizeof (int) option return */ 10609 case SO_ANON_MLP: 10610 if (!checkonly) { 10611 mutex_enter(&connp->conn_lock); 10612 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10613 mutex_exit(&connp->conn_lock); 10614 } 10615 break; /* goto sizeof (int) option return */ 10616 case SO_MAC_EXEMPT: 10617 if (secpolicy_net_mac_aware(cr) != 0 || 10618 IPCL_IS_BOUND(connp)) 10619 return (EACCES); 10620 if (!checkonly) { 10621 mutex_enter(&connp->conn_lock); 10622 connp->conn_mac_mode = *i1 != 0 ? 10623 CONN_MAC_AWARE : CONN_MAC_DEFAULT; 10624 mutex_exit(&connp->conn_lock); 10625 } 10626 break; /* goto sizeof (int) option return */ 10627 case SO_MAC_IMPLICIT: 10628 if (secpolicy_net_mac_implicit(cr) != 0) 10629 return (EACCES); 10630 if (!checkonly) { 10631 mutex_enter(&connp->conn_lock); 10632 connp->conn_mac_mode = *i1 != 0 ? 10633 CONN_MAC_IMPLICIT : CONN_MAC_DEFAULT; 10634 mutex_exit(&connp->conn_lock); 10635 } 10636 break; /* goto sizeof (int) option return */ 10637 default: 10638 /* 10639 * "soft" error (negative) 10640 * option not handled at this level 10641 * Note: Do not modify *outlenp 10642 */ 10643 return (-EINVAL); 10644 } 10645 break; 10646 case IPPROTO_IP: 10647 switch (name) { 10648 case IP_NEXTHOP: 10649 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10650 return (EPERM); 10651 /* FALLTHRU */ 10652 case IP_MULTICAST_IF: { 10653 ipaddr_t addr = *i1; 10654 10655 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10656 first_mp); 10657 if (error != 0) 10658 return (error); 10659 break; /* goto sizeof (int) option return */ 10660 } 10661 10662 case IP_MULTICAST_TTL: 10663 /* Recorded in transport above IP */ 10664 *outvalp = *invalp; 10665 *outlenp = sizeof (uchar_t); 10666 return (0); 10667 case IP_MULTICAST_LOOP: 10668 if (!checkonly) { 10669 mutex_enter(&connp->conn_lock); 10670 connp->conn_multicast_loop = *invalp ? 1 : 0; 10671 mutex_exit(&connp->conn_lock); 10672 } 10673 *outvalp = *invalp; 10674 *outlenp = sizeof (uchar_t); 10675 return (0); 10676 case IP_ADD_MEMBERSHIP: 10677 case MCAST_JOIN_GROUP: 10678 case IP_DROP_MEMBERSHIP: 10679 case MCAST_LEAVE_GROUP: { 10680 struct ip_mreq *mreqp; 10681 struct group_req *greqp; 10682 ire_t *ire; 10683 boolean_t done = B_FALSE; 10684 ipaddr_t group, ifaddr; 10685 struct sockaddr_in *sin; 10686 uint32_t *ifindexp; 10687 boolean_t mcast_opt = B_TRUE; 10688 mcast_record_t fmode; 10689 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10690 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10691 10692 switch (name) { 10693 case IP_ADD_MEMBERSHIP: 10694 mcast_opt = B_FALSE; 10695 /* FALLTHRU */ 10696 case MCAST_JOIN_GROUP: 10697 fmode = MODE_IS_EXCLUDE; 10698 optfn = ip_opt_add_group; 10699 break; 10700 10701 case IP_DROP_MEMBERSHIP: 10702 mcast_opt = B_FALSE; 10703 /* FALLTHRU */ 10704 case MCAST_LEAVE_GROUP: 10705 fmode = MODE_IS_INCLUDE; 10706 optfn = ip_opt_delete_group; 10707 break; 10708 } 10709 10710 if (mcast_opt) { 10711 greqp = (struct group_req *)i1; 10712 sin = (struct sockaddr_in *)&greqp->gr_group; 10713 if (sin->sin_family != AF_INET) { 10714 *outlenp = 0; 10715 return (ENOPROTOOPT); 10716 } 10717 group = (ipaddr_t)sin->sin_addr.s_addr; 10718 ifaddr = INADDR_ANY; 10719 ifindexp = &greqp->gr_interface; 10720 } else { 10721 mreqp = (struct ip_mreq *)i1; 10722 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10723 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10724 ifindexp = NULL; 10725 } 10726 10727 /* 10728 * In the multirouting case, we need to replicate 10729 * the request on all interfaces that will take part 10730 * in replication. We do so because multirouting is 10731 * reflective, thus we will probably receive multi- 10732 * casts on those interfaces. 10733 * The ip_multirt_apply_membership() succeeds if the 10734 * operation succeeds on at least one interface. 10735 */ 10736 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10737 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10738 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10739 if (ire != NULL) { 10740 if (ire->ire_flags & RTF_MULTIRT) { 10741 error = ip_multirt_apply_membership( 10742 optfn, ire, connp, checkonly, group, 10743 fmode, INADDR_ANY, first_mp); 10744 done = B_TRUE; 10745 } 10746 ire_refrele(ire); 10747 } 10748 if (!done) { 10749 error = optfn(connp, checkonly, group, ifaddr, 10750 ifindexp, fmode, INADDR_ANY, first_mp); 10751 } 10752 if (error) { 10753 /* 10754 * EINPROGRESS is a soft error, needs retry 10755 * so don't make *outlenp zero. 10756 */ 10757 if (error != EINPROGRESS) 10758 *outlenp = 0; 10759 return (error); 10760 } 10761 /* OK return - copy input buffer into output buffer */ 10762 if (invalp != outvalp) { 10763 /* don't trust bcopy for identical src/dst */ 10764 bcopy(invalp, outvalp, inlen); 10765 } 10766 *outlenp = inlen; 10767 return (0); 10768 } 10769 case IP_BLOCK_SOURCE: 10770 case IP_UNBLOCK_SOURCE: 10771 case IP_ADD_SOURCE_MEMBERSHIP: 10772 case IP_DROP_SOURCE_MEMBERSHIP: 10773 case MCAST_BLOCK_SOURCE: 10774 case MCAST_UNBLOCK_SOURCE: 10775 case MCAST_JOIN_SOURCE_GROUP: 10776 case MCAST_LEAVE_SOURCE_GROUP: { 10777 struct ip_mreq_source *imreqp; 10778 struct group_source_req *gsreqp; 10779 in_addr_t grp, src, ifaddr = INADDR_ANY; 10780 uint32_t ifindex = 0; 10781 mcast_record_t fmode; 10782 struct sockaddr_in *sin; 10783 ire_t *ire; 10784 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10785 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10786 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10787 10788 switch (name) { 10789 case IP_BLOCK_SOURCE: 10790 mcast_opt = B_FALSE; 10791 /* FALLTHRU */ 10792 case MCAST_BLOCK_SOURCE: 10793 fmode = MODE_IS_EXCLUDE; 10794 optfn = ip_opt_add_group; 10795 break; 10796 10797 case IP_UNBLOCK_SOURCE: 10798 mcast_opt = B_FALSE; 10799 /* FALLTHRU */ 10800 case MCAST_UNBLOCK_SOURCE: 10801 fmode = MODE_IS_EXCLUDE; 10802 optfn = ip_opt_delete_group; 10803 break; 10804 10805 case IP_ADD_SOURCE_MEMBERSHIP: 10806 mcast_opt = B_FALSE; 10807 /* FALLTHRU */ 10808 case MCAST_JOIN_SOURCE_GROUP: 10809 fmode = MODE_IS_INCLUDE; 10810 optfn = ip_opt_add_group; 10811 break; 10812 10813 case IP_DROP_SOURCE_MEMBERSHIP: 10814 mcast_opt = B_FALSE; 10815 /* FALLTHRU */ 10816 case MCAST_LEAVE_SOURCE_GROUP: 10817 fmode = MODE_IS_INCLUDE; 10818 optfn = ip_opt_delete_group; 10819 break; 10820 } 10821 10822 if (mcast_opt) { 10823 gsreqp = (struct group_source_req *)i1; 10824 if (gsreqp->gsr_group.ss_family != AF_INET) { 10825 *outlenp = 0; 10826 return (ENOPROTOOPT); 10827 } 10828 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10829 grp = (ipaddr_t)sin->sin_addr.s_addr; 10830 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10831 src = (ipaddr_t)sin->sin_addr.s_addr; 10832 ifindex = gsreqp->gsr_interface; 10833 } else { 10834 imreqp = (struct ip_mreq_source *)i1; 10835 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10836 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10837 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10838 } 10839 10840 /* 10841 * In the multirouting case, we need to replicate 10842 * the request as noted in the mcast cases above. 10843 */ 10844 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10845 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10846 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10847 if (ire != NULL) { 10848 if (ire->ire_flags & RTF_MULTIRT) { 10849 error = ip_multirt_apply_membership( 10850 optfn, ire, connp, checkonly, grp, 10851 fmode, src, first_mp); 10852 done = B_TRUE; 10853 } 10854 ire_refrele(ire); 10855 } 10856 if (!done) { 10857 error = optfn(connp, checkonly, grp, ifaddr, 10858 &ifindex, fmode, src, first_mp); 10859 } 10860 if (error != 0) { 10861 /* 10862 * EINPROGRESS is a soft error, needs retry 10863 * so don't make *outlenp zero. 10864 */ 10865 if (error != EINPROGRESS) 10866 *outlenp = 0; 10867 return (error); 10868 } 10869 /* OK return - copy input buffer into output buffer */ 10870 if (invalp != outvalp) { 10871 bcopy(invalp, outvalp, inlen); 10872 } 10873 *outlenp = inlen; 10874 return (0); 10875 } 10876 case IP_SEC_OPT: 10877 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10878 if (error != 0) { 10879 *outlenp = 0; 10880 return (error); 10881 } 10882 break; 10883 case IP_HDRINCL: 10884 case IP_OPTIONS: 10885 case T_IP_OPTIONS: 10886 case IP_TOS: 10887 case T_IP_TOS: 10888 case IP_TTL: 10889 case IP_RECVDSTADDR: 10890 case IP_RECVOPTS: 10891 /* OK return - copy input buffer into output buffer */ 10892 if (invalp != outvalp) { 10893 /* don't trust bcopy for identical src/dst */ 10894 bcopy(invalp, outvalp, inlen); 10895 } 10896 *outlenp = inlen; 10897 return (0); 10898 case IP_RECVIF: 10899 /* Retrieve the inbound interface index */ 10900 if (!checkonly) { 10901 mutex_enter(&connp->conn_lock); 10902 connp->conn_recvif = *i1 ? 1 : 0; 10903 mutex_exit(&connp->conn_lock); 10904 } 10905 break; /* goto sizeof (int) option return */ 10906 case IP_RECVPKTINFO: 10907 if (!checkonly) { 10908 mutex_enter(&connp->conn_lock); 10909 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 10910 mutex_exit(&connp->conn_lock); 10911 } 10912 break; /* goto sizeof (int) option return */ 10913 case IP_RECVSLLA: 10914 /* Retrieve the source link layer address */ 10915 if (!checkonly) { 10916 mutex_enter(&connp->conn_lock); 10917 connp->conn_recvslla = *i1 ? 1 : 0; 10918 mutex_exit(&connp->conn_lock); 10919 } 10920 break; /* goto sizeof (int) option return */ 10921 case MRT_INIT: 10922 case MRT_DONE: 10923 case MRT_ADD_VIF: 10924 case MRT_DEL_VIF: 10925 case MRT_ADD_MFC: 10926 case MRT_DEL_MFC: 10927 case MRT_ASSERT: 10928 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 10929 *outlenp = 0; 10930 return (error); 10931 } 10932 error = ip_mrouter_set((int)name, q, checkonly, 10933 (uchar_t *)invalp, inlen, first_mp); 10934 if (error) { 10935 *outlenp = 0; 10936 return (error); 10937 } 10938 /* OK return - copy input buffer into output buffer */ 10939 if (invalp != outvalp) { 10940 /* don't trust bcopy for identical src/dst */ 10941 bcopy(invalp, outvalp, inlen); 10942 } 10943 *outlenp = inlen; 10944 return (0); 10945 case IP_BOUND_IF: 10946 case IP_DHCPINIT_IF: 10947 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10948 level, name, first_mp); 10949 if (error != 0) 10950 return (error); 10951 break; /* goto sizeof (int) option return */ 10952 10953 case IP_UNSPEC_SRC: 10954 /* Allow sending with a zero source address */ 10955 if (!checkonly) { 10956 mutex_enter(&connp->conn_lock); 10957 connp->conn_unspec_src = *i1 ? 1 : 0; 10958 mutex_exit(&connp->conn_lock); 10959 } 10960 break; /* goto sizeof (int) option return */ 10961 default: 10962 /* 10963 * "soft" error (negative) 10964 * option not handled at this level 10965 * Note: Do not modify *outlenp 10966 */ 10967 return (-EINVAL); 10968 } 10969 break; 10970 case IPPROTO_IPV6: 10971 switch (name) { 10972 case IPV6_BOUND_IF: 10973 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10974 level, name, first_mp); 10975 if (error != 0) 10976 return (error); 10977 break; /* goto sizeof (int) option return */ 10978 10979 case IPV6_MULTICAST_IF: 10980 /* 10981 * The only possible errors are EINPROGRESS and 10982 * EINVAL. EINPROGRESS will be restarted and is not 10983 * a hard error. We call this option on both V4 and V6 10984 * If both return EINVAL, then this call returns 10985 * EINVAL. If at least one of them succeeds we 10986 * return success. 10987 */ 10988 found = B_FALSE; 10989 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10990 level, name, first_mp); 10991 if (error == EINPROGRESS) 10992 return (error); 10993 if (error == 0) 10994 found = B_TRUE; 10995 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10996 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 10997 if (error == 0) 10998 found = B_TRUE; 10999 if (!found) 11000 return (error); 11001 break; /* goto sizeof (int) option return */ 11002 11003 case IPV6_MULTICAST_HOPS: 11004 /* Recorded in transport above IP */ 11005 break; /* goto sizeof (int) option return */ 11006 case IPV6_MULTICAST_LOOP: 11007 if (!checkonly) { 11008 mutex_enter(&connp->conn_lock); 11009 connp->conn_multicast_loop = *i1; 11010 mutex_exit(&connp->conn_lock); 11011 } 11012 break; /* goto sizeof (int) option return */ 11013 case IPV6_JOIN_GROUP: 11014 case MCAST_JOIN_GROUP: 11015 case IPV6_LEAVE_GROUP: 11016 case MCAST_LEAVE_GROUP: { 11017 struct ipv6_mreq *ip_mreqp; 11018 struct group_req *greqp; 11019 ire_t *ire; 11020 boolean_t done = B_FALSE; 11021 in6_addr_t groupv6; 11022 uint32_t ifindex; 11023 boolean_t mcast_opt = B_TRUE; 11024 mcast_record_t fmode; 11025 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11026 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11027 11028 switch (name) { 11029 case IPV6_JOIN_GROUP: 11030 mcast_opt = B_FALSE; 11031 /* FALLTHRU */ 11032 case MCAST_JOIN_GROUP: 11033 fmode = MODE_IS_EXCLUDE; 11034 optfn = ip_opt_add_group_v6; 11035 break; 11036 11037 case IPV6_LEAVE_GROUP: 11038 mcast_opt = B_FALSE; 11039 /* FALLTHRU */ 11040 case MCAST_LEAVE_GROUP: 11041 fmode = MODE_IS_INCLUDE; 11042 optfn = ip_opt_delete_group_v6; 11043 break; 11044 } 11045 11046 if (mcast_opt) { 11047 struct sockaddr_in *sin; 11048 struct sockaddr_in6 *sin6; 11049 greqp = (struct group_req *)i1; 11050 if (greqp->gr_group.ss_family == AF_INET) { 11051 sin = (struct sockaddr_in *) 11052 &(greqp->gr_group); 11053 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11054 &groupv6); 11055 } else { 11056 sin6 = (struct sockaddr_in6 *) 11057 &(greqp->gr_group); 11058 groupv6 = sin6->sin6_addr; 11059 } 11060 ifindex = greqp->gr_interface; 11061 } else { 11062 ip_mreqp = (struct ipv6_mreq *)i1; 11063 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11064 ifindex = ip_mreqp->ipv6mr_interface; 11065 } 11066 /* 11067 * In the multirouting case, we need to replicate 11068 * the request on all interfaces that will take part 11069 * in replication. We do so because multirouting is 11070 * reflective, thus we will probably receive multi- 11071 * casts on those interfaces. 11072 * The ip_multirt_apply_membership_v6() succeeds if 11073 * the operation succeeds on at least one interface. 11074 */ 11075 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11076 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11077 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11078 if (ire != NULL) { 11079 if (ire->ire_flags & RTF_MULTIRT) { 11080 error = ip_multirt_apply_membership_v6( 11081 optfn, ire, connp, checkonly, 11082 &groupv6, fmode, &ipv6_all_zeros, 11083 first_mp); 11084 done = B_TRUE; 11085 } 11086 ire_refrele(ire); 11087 } 11088 if (!done) { 11089 error = optfn(connp, checkonly, &groupv6, 11090 ifindex, fmode, &ipv6_all_zeros, first_mp); 11091 } 11092 if (error) { 11093 /* 11094 * EINPROGRESS is a soft error, needs retry 11095 * so don't make *outlenp zero. 11096 */ 11097 if (error != EINPROGRESS) 11098 *outlenp = 0; 11099 return (error); 11100 } 11101 /* OK return - copy input buffer into output buffer */ 11102 if (invalp != outvalp) { 11103 /* don't trust bcopy for identical src/dst */ 11104 bcopy(invalp, outvalp, inlen); 11105 } 11106 *outlenp = inlen; 11107 return (0); 11108 } 11109 case MCAST_BLOCK_SOURCE: 11110 case MCAST_UNBLOCK_SOURCE: 11111 case MCAST_JOIN_SOURCE_GROUP: 11112 case MCAST_LEAVE_SOURCE_GROUP: { 11113 struct group_source_req *gsreqp; 11114 in6_addr_t v6grp, v6src; 11115 uint32_t ifindex; 11116 mcast_record_t fmode; 11117 ire_t *ire; 11118 boolean_t done = B_FALSE; 11119 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11120 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11121 11122 switch (name) { 11123 case MCAST_BLOCK_SOURCE: 11124 fmode = MODE_IS_EXCLUDE; 11125 optfn = ip_opt_add_group_v6; 11126 break; 11127 case MCAST_UNBLOCK_SOURCE: 11128 fmode = MODE_IS_EXCLUDE; 11129 optfn = ip_opt_delete_group_v6; 11130 break; 11131 case MCAST_JOIN_SOURCE_GROUP: 11132 fmode = MODE_IS_INCLUDE; 11133 optfn = ip_opt_add_group_v6; 11134 break; 11135 case MCAST_LEAVE_SOURCE_GROUP: 11136 fmode = MODE_IS_INCLUDE; 11137 optfn = ip_opt_delete_group_v6; 11138 break; 11139 } 11140 11141 gsreqp = (struct group_source_req *)i1; 11142 ifindex = gsreqp->gsr_interface; 11143 if (gsreqp->gsr_group.ss_family == AF_INET) { 11144 struct sockaddr_in *s; 11145 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11146 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11147 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11148 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11149 } else { 11150 struct sockaddr_in6 *s6; 11151 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11152 v6grp = s6->sin6_addr; 11153 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11154 v6src = s6->sin6_addr; 11155 } 11156 11157 /* 11158 * In the multirouting case, we need to replicate 11159 * the request as noted in the mcast cases above. 11160 */ 11161 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11162 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11163 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11164 if (ire != NULL) { 11165 if (ire->ire_flags & RTF_MULTIRT) { 11166 error = ip_multirt_apply_membership_v6( 11167 optfn, ire, connp, checkonly, 11168 &v6grp, fmode, &v6src, first_mp); 11169 done = B_TRUE; 11170 } 11171 ire_refrele(ire); 11172 } 11173 if (!done) { 11174 error = optfn(connp, checkonly, &v6grp, 11175 ifindex, fmode, &v6src, first_mp); 11176 } 11177 if (error != 0) { 11178 /* 11179 * EINPROGRESS is a soft error, needs retry 11180 * so don't make *outlenp zero. 11181 */ 11182 if (error != EINPROGRESS) 11183 *outlenp = 0; 11184 return (error); 11185 } 11186 /* OK return - copy input buffer into output buffer */ 11187 if (invalp != outvalp) { 11188 bcopy(invalp, outvalp, inlen); 11189 } 11190 *outlenp = inlen; 11191 return (0); 11192 } 11193 case IPV6_UNICAST_HOPS: 11194 /* Recorded in transport above IP */ 11195 break; /* goto sizeof (int) option return */ 11196 case IPV6_UNSPEC_SRC: 11197 /* Allow sending with a zero source address */ 11198 if (!checkonly) { 11199 mutex_enter(&connp->conn_lock); 11200 connp->conn_unspec_src = *i1 ? 1 : 0; 11201 mutex_exit(&connp->conn_lock); 11202 } 11203 break; /* goto sizeof (int) option return */ 11204 case IPV6_RECVPKTINFO: 11205 if (!checkonly) { 11206 mutex_enter(&connp->conn_lock); 11207 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11208 mutex_exit(&connp->conn_lock); 11209 } 11210 break; /* goto sizeof (int) option return */ 11211 case IPV6_RECVTCLASS: 11212 if (!checkonly) { 11213 if (*i1 < 0 || *i1 > 1) { 11214 return (EINVAL); 11215 } 11216 mutex_enter(&connp->conn_lock); 11217 connp->conn_ipv6_recvtclass = *i1; 11218 mutex_exit(&connp->conn_lock); 11219 } 11220 break; 11221 case IPV6_RECVPATHMTU: 11222 if (!checkonly) { 11223 if (*i1 < 0 || *i1 > 1) { 11224 return (EINVAL); 11225 } 11226 mutex_enter(&connp->conn_lock); 11227 connp->conn_ipv6_recvpathmtu = *i1; 11228 mutex_exit(&connp->conn_lock); 11229 } 11230 break; 11231 case IPV6_RECVHOPLIMIT: 11232 if (!checkonly) { 11233 mutex_enter(&connp->conn_lock); 11234 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11235 mutex_exit(&connp->conn_lock); 11236 } 11237 break; /* goto sizeof (int) option return */ 11238 case IPV6_RECVHOPOPTS: 11239 if (!checkonly) { 11240 mutex_enter(&connp->conn_lock); 11241 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11242 mutex_exit(&connp->conn_lock); 11243 } 11244 break; /* goto sizeof (int) option return */ 11245 case IPV6_RECVDSTOPTS: 11246 if (!checkonly) { 11247 mutex_enter(&connp->conn_lock); 11248 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11249 mutex_exit(&connp->conn_lock); 11250 } 11251 break; /* goto sizeof (int) option return */ 11252 case IPV6_RECVRTHDR: 11253 if (!checkonly) { 11254 mutex_enter(&connp->conn_lock); 11255 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11256 mutex_exit(&connp->conn_lock); 11257 } 11258 break; /* goto sizeof (int) option return */ 11259 case IPV6_RECVRTHDRDSTOPTS: 11260 if (!checkonly) { 11261 mutex_enter(&connp->conn_lock); 11262 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11263 mutex_exit(&connp->conn_lock); 11264 } 11265 break; /* goto sizeof (int) option return */ 11266 case IPV6_PKTINFO: 11267 if (inlen == 0) 11268 return (-EINVAL); /* clearing option */ 11269 error = ip6_set_pktinfo(cr, connp, 11270 (struct in6_pktinfo *)invalp); 11271 if (error != 0) 11272 *outlenp = 0; 11273 else 11274 *outlenp = inlen; 11275 return (error); 11276 case IPV6_NEXTHOP: { 11277 struct sockaddr_in6 *sin6; 11278 11279 /* Verify that the nexthop is reachable */ 11280 if (inlen == 0) 11281 return (-EINVAL); /* clearing option */ 11282 11283 sin6 = (struct sockaddr_in6 *)invalp; 11284 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11285 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11286 NULL, MATCH_IRE_DEFAULT, ipst); 11287 11288 if (ire == NULL) { 11289 *outlenp = 0; 11290 return (EHOSTUNREACH); 11291 } 11292 ire_refrele(ire); 11293 return (-EINVAL); 11294 } 11295 case IPV6_SEC_OPT: 11296 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11297 if (error != 0) { 11298 *outlenp = 0; 11299 return (error); 11300 } 11301 break; 11302 case IPV6_SRC_PREFERENCES: { 11303 /* 11304 * This is implemented strictly in the ip module 11305 * (here and in tcp_opt_*() to accomodate tcp 11306 * sockets). Modules above ip pass this option 11307 * down here since ip is the only one that needs to 11308 * be aware of source address preferences. 11309 * 11310 * This socket option only affects connected 11311 * sockets that haven't already bound to a specific 11312 * IPv6 address. In other words, sockets that 11313 * don't call bind() with an address other than the 11314 * unspecified address and that call connect(). 11315 * ip_bind_connected_v6() passes these preferences 11316 * to the ipif_select_source_v6() function. 11317 */ 11318 if (inlen != sizeof (uint32_t)) 11319 return (EINVAL); 11320 error = ip6_set_src_preferences(connp, 11321 *(uint32_t *)invalp); 11322 if (error != 0) { 11323 *outlenp = 0; 11324 return (error); 11325 } else { 11326 *outlenp = sizeof (uint32_t); 11327 } 11328 break; 11329 } 11330 case IPV6_V6ONLY: 11331 if (*i1 < 0 || *i1 > 1) { 11332 return (EINVAL); 11333 } 11334 mutex_enter(&connp->conn_lock); 11335 connp->conn_ipv6_v6only = *i1; 11336 mutex_exit(&connp->conn_lock); 11337 break; 11338 default: 11339 return (-EINVAL); 11340 } 11341 break; 11342 default: 11343 /* 11344 * "soft" error (negative) 11345 * option not handled at this level 11346 * Note: Do not modify *outlenp 11347 */ 11348 return (-EINVAL); 11349 } 11350 /* 11351 * Common case of return from an option that is sizeof (int) 11352 */ 11353 *(int *)outvalp = *i1; 11354 *outlenp = sizeof (int); 11355 return (0); 11356 } 11357 11358 /* 11359 * This routine gets default values of certain options whose default 11360 * values are maintained by protocol specific code 11361 */ 11362 /* ARGSUSED */ 11363 int 11364 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11365 { 11366 int *i1 = (int *)ptr; 11367 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11368 11369 switch (level) { 11370 case IPPROTO_IP: 11371 switch (name) { 11372 case IP_MULTICAST_TTL: 11373 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11374 return (sizeof (uchar_t)); 11375 case IP_MULTICAST_LOOP: 11376 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11377 return (sizeof (uchar_t)); 11378 default: 11379 return (-1); 11380 } 11381 case IPPROTO_IPV6: 11382 switch (name) { 11383 case IPV6_UNICAST_HOPS: 11384 *i1 = ipst->ips_ipv6_def_hops; 11385 return (sizeof (int)); 11386 case IPV6_MULTICAST_HOPS: 11387 *i1 = IP_DEFAULT_MULTICAST_TTL; 11388 return (sizeof (int)); 11389 case IPV6_MULTICAST_LOOP: 11390 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11391 return (sizeof (int)); 11392 case IPV6_V6ONLY: 11393 *i1 = 1; 11394 return (sizeof (int)); 11395 default: 11396 return (-1); 11397 } 11398 default: 11399 return (-1); 11400 } 11401 /* NOTREACHED */ 11402 } 11403 11404 /* 11405 * Given a destination address and a pointer to where to put the information 11406 * this routine fills in the mtuinfo. 11407 */ 11408 int 11409 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11410 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11411 { 11412 ire_t *ire; 11413 ip_stack_t *ipst = ns->netstack_ip; 11414 11415 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11416 return (-1); 11417 11418 bzero(mtuinfo, sizeof (*mtuinfo)); 11419 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11420 mtuinfo->ip6m_addr.sin6_port = port; 11421 mtuinfo->ip6m_addr.sin6_addr = *in6; 11422 11423 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11424 if (ire != NULL) { 11425 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11426 ire_refrele(ire); 11427 } else { 11428 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11429 } 11430 return (sizeof (struct ip6_mtuinfo)); 11431 } 11432 11433 /* 11434 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11435 * checking of cred and that ip_g_mrouter is set should be done and 11436 * isn't. This doesn't matter as the error checking is done properly for the 11437 * other MRT options coming in through ip_opt_set. 11438 */ 11439 int 11440 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11441 { 11442 conn_t *connp = Q_TO_CONN(q); 11443 ipsec_req_t *req = (ipsec_req_t *)ptr; 11444 11445 switch (level) { 11446 case IPPROTO_IP: 11447 switch (name) { 11448 case MRT_VERSION: 11449 case MRT_ASSERT: 11450 (void) ip_mrouter_get(name, q, ptr); 11451 return (sizeof (int)); 11452 case IP_SEC_OPT: 11453 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11454 case IP_NEXTHOP: 11455 if (connp->conn_nexthop_set) { 11456 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11457 return (sizeof (ipaddr_t)); 11458 } else 11459 return (0); 11460 case IP_RECVPKTINFO: 11461 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11462 return (sizeof (int)); 11463 default: 11464 break; 11465 } 11466 break; 11467 case IPPROTO_IPV6: 11468 switch (name) { 11469 case IPV6_SEC_OPT: 11470 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11471 case IPV6_SRC_PREFERENCES: { 11472 return (ip6_get_src_preferences(connp, 11473 (uint32_t *)ptr)); 11474 } 11475 case IPV6_V6ONLY: 11476 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11477 return (sizeof (int)); 11478 case IPV6_PATHMTU: 11479 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11480 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11481 default: 11482 break; 11483 } 11484 break; 11485 default: 11486 break; 11487 } 11488 return (-1); 11489 } 11490 /* Named Dispatch routine to get a current value out of our parameter table. */ 11491 /* ARGSUSED */ 11492 static int 11493 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11494 { 11495 ipparam_t *ippa = (ipparam_t *)cp; 11496 11497 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11498 return (0); 11499 } 11500 11501 /* ARGSUSED */ 11502 static int 11503 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11504 { 11505 11506 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11507 return (0); 11508 } 11509 11510 /* 11511 * Set ip{,6}_forwarding values. This means walking through all of the 11512 * ill's and toggling their forwarding values. 11513 */ 11514 /* ARGSUSED */ 11515 static int 11516 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11517 { 11518 long new_value; 11519 int *forwarding_value = (int *)cp; 11520 ill_t *ill; 11521 boolean_t isv6; 11522 ill_walk_context_t ctx; 11523 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11524 11525 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11526 11527 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11528 new_value < 0 || new_value > 1) { 11529 return (EINVAL); 11530 } 11531 11532 *forwarding_value = new_value; 11533 11534 /* 11535 * Regardless of the current value of ip_forwarding, set all per-ill 11536 * values of ip_forwarding to the value being set. 11537 * 11538 * Bring all the ill's up to date with the new global value. 11539 */ 11540 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11541 11542 if (isv6) 11543 ill = ILL_START_WALK_V6(&ctx, ipst); 11544 else 11545 ill = ILL_START_WALK_V4(&ctx, ipst); 11546 11547 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11548 (void) ill_forward_set(ill, new_value != 0); 11549 11550 rw_exit(&ipst->ips_ill_g_lock); 11551 return (0); 11552 } 11553 11554 /* 11555 * Walk through the param array specified registering each element with the 11556 * Named Dispatch handler. This is called only during init. So it is ok 11557 * not to acquire any locks 11558 */ 11559 static boolean_t 11560 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11561 ipndp_t *ipnd, size_t ipnd_cnt) 11562 { 11563 for (; ippa_cnt-- > 0; ippa++) { 11564 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11565 if (!nd_load(ndp, ippa->ip_param_name, 11566 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11567 nd_free(ndp); 11568 return (B_FALSE); 11569 } 11570 } 11571 } 11572 11573 for (; ipnd_cnt-- > 0; ipnd++) { 11574 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11575 if (!nd_load(ndp, ipnd->ip_ndp_name, 11576 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11577 ipnd->ip_ndp_data)) { 11578 nd_free(ndp); 11579 return (B_FALSE); 11580 } 11581 } 11582 } 11583 11584 return (B_TRUE); 11585 } 11586 11587 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11588 /* ARGSUSED */ 11589 static int 11590 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11591 { 11592 long new_value; 11593 ipparam_t *ippa = (ipparam_t *)cp; 11594 11595 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11596 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11597 return (EINVAL); 11598 } 11599 ippa->ip_param_value = new_value; 11600 return (0); 11601 } 11602 11603 /* 11604 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11605 * When an ipf is passed here for the first time, if 11606 * we already have in-order fragments on the queue, we convert from the fast- 11607 * path reassembly scheme to the hard-case scheme. From then on, additional 11608 * fragments are reassembled here. We keep track of the start and end offsets 11609 * of each piece, and the number of holes in the chain. When the hole count 11610 * goes to zero, we are done! 11611 * 11612 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11613 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11614 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11615 * after the call to ip_reassemble(). 11616 */ 11617 int 11618 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11619 size_t msg_len) 11620 { 11621 uint_t end; 11622 mblk_t *next_mp; 11623 mblk_t *mp1; 11624 uint_t offset; 11625 boolean_t incr_dups = B_TRUE; 11626 boolean_t offset_zero_seen = B_FALSE; 11627 boolean_t pkt_boundary_checked = B_FALSE; 11628 11629 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11630 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11631 11632 /* Add in byte count */ 11633 ipf->ipf_count += msg_len; 11634 if (ipf->ipf_end) { 11635 /* 11636 * We were part way through in-order reassembly, but now there 11637 * is a hole. We walk through messages already queued, and 11638 * mark them for hard case reassembly. We know that up till 11639 * now they were in order starting from offset zero. 11640 */ 11641 offset = 0; 11642 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11643 IP_REASS_SET_START(mp1, offset); 11644 if (offset == 0) { 11645 ASSERT(ipf->ipf_nf_hdr_len != 0); 11646 offset = -ipf->ipf_nf_hdr_len; 11647 } 11648 offset += mp1->b_wptr - mp1->b_rptr; 11649 IP_REASS_SET_END(mp1, offset); 11650 } 11651 /* One hole at the end. */ 11652 ipf->ipf_hole_cnt = 1; 11653 /* Brand it as a hard case, forever. */ 11654 ipf->ipf_end = 0; 11655 } 11656 /* Walk through all the new pieces. */ 11657 do { 11658 end = start + (mp->b_wptr - mp->b_rptr); 11659 /* 11660 * If start is 0, decrease 'end' only for the first mblk of 11661 * the fragment. Otherwise 'end' can get wrong value in the 11662 * second pass of the loop if first mblk is exactly the 11663 * size of ipf_nf_hdr_len. 11664 */ 11665 if (start == 0 && !offset_zero_seen) { 11666 /* First segment */ 11667 ASSERT(ipf->ipf_nf_hdr_len != 0); 11668 end -= ipf->ipf_nf_hdr_len; 11669 offset_zero_seen = B_TRUE; 11670 } 11671 next_mp = mp->b_cont; 11672 /* 11673 * We are checking to see if there is any interesing data 11674 * to process. If there isn't and the mblk isn't the 11675 * one which carries the unfragmentable header then we 11676 * drop it. It's possible to have just the unfragmentable 11677 * header come through without any data. That needs to be 11678 * saved. 11679 * 11680 * If the assert at the top of this function holds then the 11681 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11682 * is infrequently traveled enough that the test is left in 11683 * to protect against future code changes which break that 11684 * invariant. 11685 */ 11686 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11687 /* Empty. Blast it. */ 11688 IP_REASS_SET_START(mp, 0); 11689 IP_REASS_SET_END(mp, 0); 11690 /* 11691 * If the ipf points to the mblk we are about to free, 11692 * update ipf to point to the next mblk (or NULL 11693 * if none). 11694 */ 11695 if (ipf->ipf_mp->b_cont == mp) 11696 ipf->ipf_mp->b_cont = next_mp; 11697 freeb(mp); 11698 continue; 11699 } 11700 mp->b_cont = NULL; 11701 IP_REASS_SET_START(mp, start); 11702 IP_REASS_SET_END(mp, end); 11703 if (!ipf->ipf_tail_mp) { 11704 ipf->ipf_tail_mp = mp; 11705 ipf->ipf_mp->b_cont = mp; 11706 if (start == 0 || !more) { 11707 ipf->ipf_hole_cnt = 1; 11708 /* 11709 * if the first fragment comes in more than one 11710 * mblk, this loop will be executed for each 11711 * mblk. Need to adjust hole count so exiting 11712 * this routine will leave hole count at 1. 11713 */ 11714 if (next_mp) 11715 ipf->ipf_hole_cnt++; 11716 } else 11717 ipf->ipf_hole_cnt = 2; 11718 continue; 11719 } else if (ipf->ipf_last_frag_seen && !more && 11720 !pkt_boundary_checked) { 11721 /* 11722 * We check datagram boundary only if this fragment 11723 * claims to be the last fragment and we have seen a 11724 * last fragment in the past too. We do this only 11725 * once for a given fragment. 11726 * 11727 * start cannot be 0 here as fragments with start=0 11728 * and MF=0 gets handled as a complete packet. These 11729 * fragments should not reach here. 11730 */ 11731 11732 if (start + msgdsize(mp) != 11733 IP_REASS_END(ipf->ipf_tail_mp)) { 11734 /* 11735 * We have two fragments both of which claim 11736 * to be the last fragment but gives conflicting 11737 * information about the whole datagram size. 11738 * Something fishy is going on. Drop the 11739 * fragment and free up the reassembly list. 11740 */ 11741 return (IP_REASS_FAILED); 11742 } 11743 11744 /* 11745 * We shouldn't come to this code block again for this 11746 * particular fragment. 11747 */ 11748 pkt_boundary_checked = B_TRUE; 11749 } 11750 11751 /* New stuff at or beyond tail? */ 11752 offset = IP_REASS_END(ipf->ipf_tail_mp); 11753 if (start >= offset) { 11754 if (ipf->ipf_last_frag_seen) { 11755 /* current fragment is beyond last fragment */ 11756 return (IP_REASS_FAILED); 11757 } 11758 /* Link it on end. */ 11759 ipf->ipf_tail_mp->b_cont = mp; 11760 ipf->ipf_tail_mp = mp; 11761 if (more) { 11762 if (start != offset) 11763 ipf->ipf_hole_cnt++; 11764 } else if (start == offset && next_mp == NULL) 11765 ipf->ipf_hole_cnt--; 11766 continue; 11767 } 11768 mp1 = ipf->ipf_mp->b_cont; 11769 offset = IP_REASS_START(mp1); 11770 /* New stuff at the front? */ 11771 if (start < offset) { 11772 if (start == 0) { 11773 if (end >= offset) { 11774 /* Nailed the hole at the begining. */ 11775 ipf->ipf_hole_cnt--; 11776 } 11777 } else if (end < offset) { 11778 /* 11779 * A hole, stuff, and a hole where there used 11780 * to be just a hole. 11781 */ 11782 ipf->ipf_hole_cnt++; 11783 } 11784 mp->b_cont = mp1; 11785 /* Check for overlap. */ 11786 while (end > offset) { 11787 if (end < IP_REASS_END(mp1)) { 11788 mp->b_wptr -= end - offset; 11789 IP_REASS_SET_END(mp, offset); 11790 BUMP_MIB(ill->ill_ip_mib, 11791 ipIfStatsReasmPartDups); 11792 break; 11793 } 11794 /* Did we cover another hole? */ 11795 if ((mp1->b_cont && 11796 IP_REASS_END(mp1) != 11797 IP_REASS_START(mp1->b_cont) && 11798 end >= IP_REASS_START(mp1->b_cont)) || 11799 (!ipf->ipf_last_frag_seen && !more)) { 11800 ipf->ipf_hole_cnt--; 11801 } 11802 /* Clip out mp1. */ 11803 if ((mp->b_cont = mp1->b_cont) == NULL) { 11804 /* 11805 * After clipping out mp1, this guy 11806 * is now hanging off the end. 11807 */ 11808 ipf->ipf_tail_mp = mp; 11809 } 11810 IP_REASS_SET_START(mp1, 0); 11811 IP_REASS_SET_END(mp1, 0); 11812 /* Subtract byte count */ 11813 ipf->ipf_count -= mp1->b_datap->db_lim - 11814 mp1->b_datap->db_base; 11815 freeb(mp1); 11816 BUMP_MIB(ill->ill_ip_mib, 11817 ipIfStatsReasmPartDups); 11818 mp1 = mp->b_cont; 11819 if (!mp1) 11820 break; 11821 offset = IP_REASS_START(mp1); 11822 } 11823 ipf->ipf_mp->b_cont = mp; 11824 continue; 11825 } 11826 /* 11827 * The new piece starts somewhere between the start of the head 11828 * and before the end of the tail. 11829 */ 11830 for (; mp1; mp1 = mp1->b_cont) { 11831 offset = IP_REASS_END(mp1); 11832 if (start < offset) { 11833 if (end <= offset) { 11834 /* Nothing new. */ 11835 IP_REASS_SET_START(mp, 0); 11836 IP_REASS_SET_END(mp, 0); 11837 /* Subtract byte count */ 11838 ipf->ipf_count -= mp->b_datap->db_lim - 11839 mp->b_datap->db_base; 11840 if (incr_dups) { 11841 ipf->ipf_num_dups++; 11842 incr_dups = B_FALSE; 11843 } 11844 freeb(mp); 11845 BUMP_MIB(ill->ill_ip_mib, 11846 ipIfStatsReasmDuplicates); 11847 break; 11848 } 11849 /* 11850 * Trim redundant stuff off beginning of new 11851 * piece. 11852 */ 11853 IP_REASS_SET_START(mp, offset); 11854 mp->b_rptr += offset - start; 11855 BUMP_MIB(ill->ill_ip_mib, 11856 ipIfStatsReasmPartDups); 11857 start = offset; 11858 if (!mp1->b_cont) { 11859 /* 11860 * After trimming, this guy is now 11861 * hanging off the end. 11862 */ 11863 mp1->b_cont = mp; 11864 ipf->ipf_tail_mp = mp; 11865 if (!more) { 11866 ipf->ipf_hole_cnt--; 11867 } 11868 break; 11869 } 11870 } 11871 if (start >= IP_REASS_START(mp1->b_cont)) 11872 continue; 11873 /* Fill a hole */ 11874 if (start > offset) 11875 ipf->ipf_hole_cnt++; 11876 mp->b_cont = mp1->b_cont; 11877 mp1->b_cont = mp; 11878 mp1 = mp->b_cont; 11879 offset = IP_REASS_START(mp1); 11880 if (end >= offset) { 11881 ipf->ipf_hole_cnt--; 11882 /* Check for overlap. */ 11883 while (end > offset) { 11884 if (end < IP_REASS_END(mp1)) { 11885 mp->b_wptr -= end - offset; 11886 IP_REASS_SET_END(mp, offset); 11887 /* 11888 * TODO we might bump 11889 * this up twice if there is 11890 * overlap at both ends. 11891 */ 11892 BUMP_MIB(ill->ill_ip_mib, 11893 ipIfStatsReasmPartDups); 11894 break; 11895 } 11896 /* Did we cover another hole? */ 11897 if ((mp1->b_cont && 11898 IP_REASS_END(mp1) 11899 != IP_REASS_START(mp1->b_cont) && 11900 end >= 11901 IP_REASS_START(mp1->b_cont)) || 11902 (!ipf->ipf_last_frag_seen && 11903 !more)) { 11904 ipf->ipf_hole_cnt--; 11905 } 11906 /* Clip out mp1. */ 11907 if ((mp->b_cont = mp1->b_cont) == 11908 NULL) { 11909 /* 11910 * After clipping out mp1, 11911 * this guy is now hanging 11912 * off the end. 11913 */ 11914 ipf->ipf_tail_mp = mp; 11915 } 11916 IP_REASS_SET_START(mp1, 0); 11917 IP_REASS_SET_END(mp1, 0); 11918 /* Subtract byte count */ 11919 ipf->ipf_count -= 11920 mp1->b_datap->db_lim - 11921 mp1->b_datap->db_base; 11922 freeb(mp1); 11923 BUMP_MIB(ill->ill_ip_mib, 11924 ipIfStatsReasmPartDups); 11925 mp1 = mp->b_cont; 11926 if (!mp1) 11927 break; 11928 offset = IP_REASS_START(mp1); 11929 } 11930 } 11931 break; 11932 } 11933 } while (start = end, mp = next_mp); 11934 11935 /* Fragment just processed could be the last one. Remember this fact */ 11936 if (!more) 11937 ipf->ipf_last_frag_seen = B_TRUE; 11938 11939 /* Still got holes? */ 11940 if (ipf->ipf_hole_cnt) 11941 return (IP_REASS_PARTIAL); 11942 /* Clean up overloaded fields to avoid upstream disasters. */ 11943 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11944 IP_REASS_SET_START(mp1, 0); 11945 IP_REASS_SET_END(mp1, 0); 11946 } 11947 return (IP_REASS_COMPLETE); 11948 } 11949 11950 /* 11951 * ipsec processing for the fast path, used for input UDP Packets 11952 * Returns true if ready for passup to UDP. 11953 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 11954 * was an ESP-in-UDP packet, etc.). 11955 */ 11956 static boolean_t 11957 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 11958 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 11959 { 11960 uint32_t ill_index; 11961 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 11962 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 11963 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 11964 udp_t *udp = connp->conn_udp; 11965 11966 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11967 /* The ill_index of the incoming ILL */ 11968 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 11969 11970 /* pass packet up to the transport */ 11971 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 11972 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 11973 NULL, mctl_present); 11974 if (*first_mpp == NULL) { 11975 return (B_FALSE); 11976 } 11977 } 11978 11979 /* Initiate IPPF processing for fastpath UDP */ 11980 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 11981 ip_process(IPP_LOCAL_IN, mpp, ill_index); 11982 if (*mpp == NULL) { 11983 ip2dbg(("ip_input_ipsec_process: UDP pkt " 11984 "deferred/dropped during IPPF processing\n")); 11985 return (B_FALSE); 11986 } 11987 } 11988 /* 11989 * Remove 0-spi if it's 0, or move everything behind 11990 * the UDP header over it and forward to ESP via 11991 * ip_proto_input(). 11992 */ 11993 if (udp->udp_nat_t_endpoint) { 11994 if (mctl_present) { 11995 /* mctl_present *shouldn't* happen. */ 11996 ip_drop_packet(*first_mpp, B_TRUE, NULL, 11997 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 11998 &ipss->ipsec_dropper); 11999 *first_mpp = NULL; 12000 return (B_FALSE); 12001 } 12002 12003 /* "ill" is "recv_ill" in actuality. */ 12004 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12005 return (B_FALSE); 12006 12007 /* Else continue like a normal UDP packet. */ 12008 } 12009 12010 /* 12011 * We make the checks as below since we are in the fast path 12012 * and want to minimize the number of checks if the IP_RECVIF and/or 12013 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12014 */ 12015 if (connp->conn_recvif || connp->conn_recvslla || 12016 connp->conn_ip_recvpktinfo) { 12017 if (connp->conn_recvif) { 12018 in_flags = IPF_RECVIF; 12019 } 12020 /* 12021 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12022 * so the flag passed to ip_add_info is based on IP version 12023 * of connp. 12024 */ 12025 if (connp->conn_ip_recvpktinfo) { 12026 if (connp->conn_af_isv6) { 12027 /* 12028 * V6 only needs index 12029 */ 12030 in_flags |= IPF_RECVIF; 12031 } else { 12032 /* 12033 * V4 needs index + matching address. 12034 */ 12035 in_flags |= IPF_RECVADDR; 12036 } 12037 } 12038 if (connp->conn_recvslla) { 12039 in_flags |= IPF_RECVSLLA; 12040 } 12041 /* 12042 * since in_flags are being set ill will be 12043 * referenced in ip_add_info, so it better not 12044 * be NULL. 12045 */ 12046 /* 12047 * the actual data will be contained in b_cont 12048 * upon successful return of the following call. 12049 * If the call fails then the original mblk is 12050 * returned. 12051 */ 12052 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12053 ipst); 12054 } 12055 12056 return (B_TRUE); 12057 } 12058 12059 /* 12060 * Fragmentation reassembly. Each ILL has a hash table for 12061 * queuing packets undergoing reassembly for all IPIFs 12062 * associated with the ILL. The hash is based on the packet 12063 * IP ident field. The ILL frag hash table was allocated 12064 * as a timer block at the time the ILL was created. Whenever 12065 * there is anything on the reassembly queue, the timer will 12066 * be running. Returns B_TRUE if successful else B_FALSE; 12067 * frees mp on failure. 12068 */ 12069 static boolean_t 12070 ip_rput_fragment(ill_t *ill, ill_t *recv_ill, mblk_t **mpp, ipha_t *ipha, 12071 uint32_t *cksum_val, uint16_t *cksum_flags) 12072 { 12073 uint32_t frag_offset_flags; 12074 mblk_t *mp = *mpp; 12075 mblk_t *t_mp; 12076 ipaddr_t dst; 12077 uint8_t proto = ipha->ipha_protocol; 12078 uint32_t sum_val; 12079 uint16_t sum_flags; 12080 ipf_t *ipf; 12081 ipf_t **ipfp; 12082 ipfb_t *ipfb; 12083 uint16_t ident; 12084 uint32_t offset; 12085 ipaddr_t src; 12086 uint_t hdr_length; 12087 uint32_t end; 12088 mblk_t *mp1; 12089 mblk_t *tail_mp; 12090 size_t count; 12091 size_t msg_len; 12092 uint8_t ecn_info = 0; 12093 uint32_t packet_size; 12094 boolean_t pruned = B_FALSE; 12095 ip_stack_t *ipst = ill->ill_ipst; 12096 12097 if (cksum_val != NULL) 12098 *cksum_val = 0; 12099 if (cksum_flags != NULL) 12100 *cksum_flags = 0; 12101 12102 /* 12103 * Drop the fragmented as early as possible, if 12104 * we don't have resource(s) to re-assemble. 12105 */ 12106 if (ipst->ips_ip_reass_queue_bytes == 0) { 12107 freemsg(mp); 12108 return (B_FALSE); 12109 } 12110 12111 /* Check for fragmentation offset; return if there's none */ 12112 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12113 (IPH_MF | IPH_OFFSET)) == 0) 12114 return (B_TRUE); 12115 12116 /* 12117 * We utilize hardware computed checksum info only for UDP since 12118 * IP fragmentation is a normal occurrence for the protocol. In 12119 * addition, checksum offload support for IP fragments carrying 12120 * UDP payload is commonly implemented across network adapters. 12121 */ 12122 ASSERT(recv_ill != NULL); 12123 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(recv_ill) && 12124 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12125 mblk_t *mp1 = mp->b_cont; 12126 int32_t len; 12127 12128 /* Record checksum information from the packet */ 12129 sum_val = (uint32_t)DB_CKSUM16(mp); 12130 sum_flags = DB_CKSUMFLAGS(mp); 12131 12132 /* IP payload offset from beginning of mblk */ 12133 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12134 12135 if ((sum_flags & HCK_PARTIALCKSUM) && 12136 (mp1 == NULL || mp1->b_cont == NULL) && 12137 offset >= DB_CKSUMSTART(mp) && 12138 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12139 uint32_t adj; 12140 /* 12141 * Partial checksum has been calculated by hardware 12142 * and attached to the packet; in addition, any 12143 * prepended extraneous data is even byte aligned. 12144 * If any such data exists, we adjust the checksum; 12145 * this would also handle any postpended data. 12146 */ 12147 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12148 mp, mp1, len, adj); 12149 12150 /* One's complement subtract extraneous checksum */ 12151 if (adj >= sum_val) 12152 sum_val = ~(adj - sum_val) & 0xFFFF; 12153 else 12154 sum_val -= adj; 12155 } 12156 } else { 12157 sum_val = 0; 12158 sum_flags = 0; 12159 } 12160 12161 /* Clear hardware checksumming flag */ 12162 DB_CKSUMFLAGS(mp) = 0; 12163 12164 ident = ipha->ipha_ident; 12165 offset = (frag_offset_flags << 3) & 0xFFFF; 12166 src = ipha->ipha_src; 12167 dst = ipha->ipha_dst; 12168 hdr_length = IPH_HDR_LENGTH(ipha); 12169 end = ntohs(ipha->ipha_length) - hdr_length; 12170 12171 /* If end == 0 then we have a packet with no data, so just free it */ 12172 if (end == 0) { 12173 freemsg(mp); 12174 return (B_FALSE); 12175 } 12176 12177 /* Record the ECN field info. */ 12178 ecn_info = (ipha->ipha_type_of_service & 0x3); 12179 if (offset != 0) { 12180 /* 12181 * If this isn't the first piece, strip the header, and 12182 * add the offset to the end value. 12183 */ 12184 mp->b_rptr += hdr_length; 12185 end += offset; 12186 } 12187 12188 msg_len = MBLKSIZE(mp); 12189 tail_mp = mp; 12190 while (tail_mp->b_cont != NULL) { 12191 tail_mp = tail_mp->b_cont; 12192 msg_len += MBLKSIZE(tail_mp); 12193 } 12194 12195 /* If the reassembly list for this ILL will get too big, prune it */ 12196 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12197 ipst->ips_ip_reass_queue_bytes) { 12198 ill_frag_prune(ill, 12199 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12200 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12201 pruned = B_TRUE; 12202 } 12203 12204 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12205 mutex_enter(&ipfb->ipfb_lock); 12206 12207 ipfp = &ipfb->ipfb_ipf; 12208 /* Try to find an existing fragment queue for this packet. */ 12209 for (;;) { 12210 ipf = ipfp[0]; 12211 if (ipf != NULL) { 12212 /* 12213 * It has to match on ident and src/dst address. 12214 */ 12215 if (ipf->ipf_ident == ident && 12216 ipf->ipf_src == src && 12217 ipf->ipf_dst == dst && 12218 ipf->ipf_protocol == proto) { 12219 /* 12220 * If we have received too many 12221 * duplicate fragments for this packet 12222 * free it. 12223 */ 12224 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12225 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12226 freemsg(mp); 12227 mutex_exit(&ipfb->ipfb_lock); 12228 return (B_FALSE); 12229 } 12230 /* Found it. */ 12231 break; 12232 } 12233 ipfp = &ipf->ipf_hash_next; 12234 continue; 12235 } 12236 12237 /* 12238 * If we pruned the list, do we want to store this new 12239 * fragment?. We apply an optimization here based on the 12240 * fact that most fragments will be received in order. 12241 * So if the offset of this incoming fragment is zero, 12242 * it is the first fragment of a new packet. We will 12243 * keep it. Otherwise drop the fragment, as we have 12244 * probably pruned the packet already (since the 12245 * packet cannot be found). 12246 */ 12247 if (pruned && offset != 0) { 12248 mutex_exit(&ipfb->ipfb_lock); 12249 freemsg(mp); 12250 return (B_FALSE); 12251 } 12252 12253 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12254 /* 12255 * Too many fragmented packets in this hash 12256 * bucket. Free the oldest. 12257 */ 12258 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12259 } 12260 12261 /* New guy. Allocate a frag message. */ 12262 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12263 if (mp1 == NULL) { 12264 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12265 freemsg(mp); 12266 reass_done: 12267 mutex_exit(&ipfb->ipfb_lock); 12268 return (B_FALSE); 12269 } 12270 12271 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12272 mp1->b_cont = mp; 12273 12274 /* Initialize the fragment header. */ 12275 ipf = (ipf_t *)mp1->b_rptr; 12276 ipf->ipf_mp = mp1; 12277 ipf->ipf_ptphn = ipfp; 12278 ipfp[0] = ipf; 12279 ipf->ipf_hash_next = NULL; 12280 ipf->ipf_ident = ident; 12281 ipf->ipf_protocol = proto; 12282 ipf->ipf_src = src; 12283 ipf->ipf_dst = dst; 12284 ipf->ipf_nf_hdr_len = 0; 12285 /* Record reassembly start time. */ 12286 ipf->ipf_timestamp = gethrestime_sec(); 12287 /* Record ipf generation and account for frag header */ 12288 ipf->ipf_gen = ill->ill_ipf_gen++; 12289 ipf->ipf_count = MBLKSIZE(mp1); 12290 ipf->ipf_last_frag_seen = B_FALSE; 12291 ipf->ipf_ecn = ecn_info; 12292 ipf->ipf_num_dups = 0; 12293 ipfb->ipfb_frag_pkts++; 12294 ipf->ipf_checksum = 0; 12295 ipf->ipf_checksum_flags = 0; 12296 12297 /* Store checksum value in fragment header */ 12298 if (sum_flags != 0) { 12299 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12300 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12301 ipf->ipf_checksum = sum_val; 12302 ipf->ipf_checksum_flags = sum_flags; 12303 } 12304 12305 /* 12306 * We handle reassembly two ways. In the easy case, 12307 * where all the fragments show up in order, we do 12308 * minimal bookkeeping, and just clip new pieces on 12309 * the end. If we ever see a hole, then we go off 12310 * to ip_reassemble which has to mark the pieces and 12311 * keep track of the number of holes, etc. Obviously, 12312 * the point of having both mechanisms is so we can 12313 * handle the easy case as efficiently as possible. 12314 */ 12315 if (offset == 0) { 12316 /* Easy case, in-order reassembly so far. */ 12317 ipf->ipf_count += msg_len; 12318 ipf->ipf_tail_mp = tail_mp; 12319 /* 12320 * Keep track of next expected offset in 12321 * ipf_end. 12322 */ 12323 ipf->ipf_end = end; 12324 ipf->ipf_nf_hdr_len = hdr_length; 12325 } else { 12326 /* Hard case, hole at the beginning. */ 12327 ipf->ipf_tail_mp = NULL; 12328 /* 12329 * ipf_end == 0 means that we have given up 12330 * on easy reassembly. 12331 */ 12332 ipf->ipf_end = 0; 12333 12334 /* Forget checksum offload from now on */ 12335 ipf->ipf_checksum_flags = 0; 12336 12337 /* 12338 * ipf_hole_cnt is set by ip_reassemble. 12339 * ipf_count is updated by ip_reassemble. 12340 * No need to check for return value here 12341 * as we don't expect reassembly to complete 12342 * or fail for the first fragment itself. 12343 */ 12344 (void) ip_reassemble(mp, ipf, 12345 (frag_offset_flags & IPH_OFFSET) << 3, 12346 (frag_offset_flags & IPH_MF), ill, msg_len); 12347 } 12348 /* Update per ipfb and ill byte counts */ 12349 ipfb->ipfb_count += ipf->ipf_count; 12350 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12351 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12352 /* If the frag timer wasn't already going, start it. */ 12353 mutex_enter(&ill->ill_lock); 12354 ill_frag_timer_start(ill); 12355 mutex_exit(&ill->ill_lock); 12356 goto reass_done; 12357 } 12358 12359 /* 12360 * If the packet's flag has changed (it could be coming up 12361 * from an interface different than the previous, therefore 12362 * possibly different checksum capability), then forget about 12363 * any stored checksum states. Otherwise add the value to 12364 * the existing one stored in the fragment header. 12365 */ 12366 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12367 sum_val += ipf->ipf_checksum; 12368 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12369 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12370 ipf->ipf_checksum = sum_val; 12371 } else if (ipf->ipf_checksum_flags != 0) { 12372 /* Forget checksum offload from now on */ 12373 ipf->ipf_checksum_flags = 0; 12374 } 12375 12376 /* 12377 * We have a new piece of a datagram which is already being 12378 * reassembled. Update the ECN info if all IP fragments 12379 * are ECN capable. If there is one which is not, clear 12380 * all the info. If there is at least one which has CE 12381 * code point, IP needs to report that up to transport. 12382 */ 12383 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12384 if (ecn_info == IPH_ECN_CE) 12385 ipf->ipf_ecn = IPH_ECN_CE; 12386 } else { 12387 ipf->ipf_ecn = IPH_ECN_NECT; 12388 } 12389 if (offset && ipf->ipf_end == offset) { 12390 /* The new fragment fits at the end */ 12391 ipf->ipf_tail_mp->b_cont = mp; 12392 /* Update the byte count */ 12393 ipf->ipf_count += msg_len; 12394 /* Update per ipfb and ill byte counts */ 12395 ipfb->ipfb_count += msg_len; 12396 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12397 atomic_add_32(&ill->ill_frag_count, msg_len); 12398 if (frag_offset_flags & IPH_MF) { 12399 /* More to come. */ 12400 ipf->ipf_end = end; 12401 ipf->ipf_tail_mp = tail_mp; 12402 goto reass_done; 12403 } 12404 } else { 12405 /* Go do the hard cases. */ 12406 int ret; 12407 12408 if (offset == 0) 12409 ipf->ipf_nf_hdr_len = hdr_length; 12410 12411 /* Save current byte count */ 12412 count = ipf->ipf_count; 12413 ret = ip_reassemble(mp, ipf, 12414 (frag_offset_flags & IPH_OFFSET) << 3, 12415 (frag_offset_flags & IPH_MF), ill, msg_len); 12416 /* Count of bytes added and subtracted (freeb()ed) */ 12417 count = ipf->ipf_count - count; 12418 if (count) { 12419 /* Update per ipfb and ill byte counts */ 12420 ipfb->ipfb_count += count; 12421 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12422 atomic_add_32(&ill->ill_frag_count, count); 12423 } 12424 if (ret == IP_REASS_PARTIAL) { 12425 goto reass_done; 12426 } else if (ret == IP_REASS_FAILED) { 12427 /* Reassembly failed. Free up all resources */ 12428 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12429 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12430 IP_REASS_SET_START(t_mp, 0); 12431 IP_REASS_SET_END(t_mp, 0); 12432 } 12433 freemsg(mp); 12434 goto reass_done; 12435 } 12436 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12437 } 12438 /* 12439 * We have completed reassembly. Unhook the frag header from 12440 * the reassembly list. 12441 * 12442 * Before we free the frag header, record the ECN info 12443 * to report back to the transport. 12444 */ 12445 ecn_info = ipf->ipf_ecn; 12446 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12447 ipfp = ipf->ipf_ptphn; 12448 12449 /* We need to supply these to caller */ 12450 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12451 sum_val = ipf->ipf_checksum; 12452 else 12453 sum_val = 0; 12454 12455 mp1 = ipf->ipf_mp; 12456 count = ipf->ipf_count; 12457 ipf = ipf->ipf_hash_next; 12458 if (ipf != NULL) 12459 ipf->ipf_ptphn = ipfp; 12460 ipfp[0] = ipf; 12461 atomic_add_32(&ill->ill_frag_count, -count); 12462 ASSERT(ipfb->ipfb_count >= count); 12463 ipfb->ipfb_count -= count; 12464 ipfb->ipfb_frag_pkts--; 12465 mutex_exit(&ipfb->ipfb_lock); 12466 /* Ditch the frag header. */ 12467 mp = mp1->b_cont; 12468 12469 freeb(mp1); 12470 12471 /* Restore original IP length in header. */ 12472 packet_size = (uint32_t)msgdsize(mp); 12473 if (packet_size > IP_MAXPACKET) { 12474 freemsg(mp); 12475 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12476 return (B_FALSE); 12477 } 12478 12479 if (DB_REF(mp) > 1) { 12480 mblk_t *mp2 = copymsg(mp); 12481 12482 freemsg(mp); 12483 if (mp2 == NULL) { 12484 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12485 return (B_FALSE); 12486 } 12487 mp = mp2; 12488 } 12489 ipha = (ipha_t *)mp->b_rptr; 12490 12491 ipha->ipha_length = htons((uint16_t)packet_size); 12492 /* We're now complete, zip the frag state */ 12493 ipha->ipha_fragment_offset_and_flags = 0; 12494 /* Record the ECN info. */ 12495 ipha->ipha_type_of_service &= 0xFC; 12496 ipha->ipha_type_of_service |= ecn_info; 12497 *mpp = mp; 12498 12499 /* Reassembly is successful; return checksum information if needed */ 12500 if (cksum_val != NULL) 12501 *cksum_val = sum_val; 12502 if (cksum_flags != NULL) 12503 *cksum_flags = sum_flags; 12504 12505 return (B_TRUE); 12506 } 12507 12508 /* 12509 * Perform ip header check sum update local options. 12510 * return B_TRUE if all is well, else return B_FALSE and release 12511 * the mp. caller is responsible for decrementing ire ref cnt. 12512 */ 12513 static boolean_t 12514 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12515 ip_stack_t *ipst) 12516 { 12517 mblk_t *first_mp; 12518 boolean_t mctl_present; 12519 uint16_t sum; 12520 12521 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12522 /* 12523 * Don't do the checksum if it has gone through AH/ESP 12524 * processing. 12525 */ 12526 if (!mctl_present) { 12527 sum = ip_csum_hdr(ipha); 12528 if (sum != 0) { 12529 if (ill != NULL) { 12530 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12531 } else { 12532 BUMP_MIB(&ipst->ips_ip_mib, 12533 ipIfStatsInCksumErrs); 12534 } 12535 freemsg(first_mp); 12536 return (B_FALSE); 12537 } 12538 } 12539 12540 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12541 if (mctl_present) 12542 freeb(first_mp); 12543 return (B_FALSE); 12544 } 12545 12546 return (B_TRUE); 12547 } 12548 12549 /* 12550 * All udp packet are delivered to the local host via this routine. 12551 */ 12552 void 12553 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12554 ill_t *recv_ill) 12555 { 12556 uint32_t sum; 12557 uint32_t u1; 12558 boolean_t mctl_present; 12559 conn_t *connp; 12560 mblk_t *first_mp; 12561 uint16_t *up; 12562 ill_t *ill = (ill_t *)q->q_ptr; 12563 uint16_t reass_hck_flags = 0; 12564 ip_stack_t *ipst; 12565 12566 ASSERT(recv_ill != NULL); 12567 ipst = recv_ill->ill_ipst; 12568 12569 #define rptr ((uchar_t *)ipha) 12570 12571 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12572 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12573 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12574 ASSERT(ill != NULL); 12575 12576 /* 12577 * FAST PATH for udp packets 12578 */ 12579 12580 /* u1 is # words of IP options */ 12581 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12582 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12583 12584 /* IP options present */ 12585 if (u1 != 0) 12586 goto ipoptions; 12587 12588 /* Check the IP header checksum. */ 12589 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12590 /* Clear the IP header h/w cksum flag */ 12591 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12592 } else if (!mctl_present) { 12593 /* 12594 * Don't verify header checksum if this packet is coming 12595 * back from AH/ESP as we already did it. 12596 */ 12597 #define uph ((uint16_t *)ipha) 12598 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12599 uph[6] + uph[7] + uph[8] + uph[9]; 12600 #undef uph 12601 /* finish doing IP checksum */ 12602 sum = (sum & 0xFFFF) + (sum >> 16); 12603 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12604 if (sum != 0 && sum != 0xFFFF) { 12605 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12606 freemsg(first_mp); 12607 return; 12608 } 12609 } 12610 12611 /* 12612 * Count for SNMP of inbound packets for ire. 12613 * if mctl is present this might be a secure packet and 12614 * has already been counted for in ip_proto_input(). 12615 */ 12616 if (!mctl_present) { 12617 UPDATE_IB_PKT_COUNT(ire); 12618 ire->ire_last_used_time = lbolt; 12619 } 12620 12621 /* packet part of fragmented IP packet? */ 12622 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12623 if (u1 & (IPH_MF | IPH_OFFSET)) { 12624 goto fragmented; 12625 } 12626 12627 /* u1 = IP header length (20 bytes) */ 12628 u1 = IP_SIMPLE_HDR_LENGTH; 12629 12630 /* packet does not contain complete IP & UDP headers */ 12631 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12632 goto udppullup; 12633 12634 /* up points to UDP header */ 12635 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12636 #define iphs ((uint16_t *)ipha) 12637 12638 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12639 if (up[3] != 0) { 12640 mblk_t *mp1 = mp->b_cont; 12641 boolean_t cksum_err; 12642 uint16_t hck_flags = 0; 12643 12644 /* Pseudo-header checksum */ 12645 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12646 iphs[9] + up[2]; 12647 12648 /* 12649 * Revert to software checksum calculation if the interface 12650 * isn't capable of checksum offload or if IPsec is present. 12651 */ 12652 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 12653 hck_flags = DB_CKSUMFLAGS(mp); 12654 12655 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12656 IP_STAT(ipst, ip_in_sw_cksum); 12657 12658 IP_CKSUM_RECV(hck_flags, u1, 12659 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12660 (int32_t)((uchar_t *)up - rptr), 12661 mp, mp1, cksum_err); 12662 12663 if (cksum_err) { 12664 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12665 if (hck_flags & HCK_FULLCKSUM) 12666 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12667 else if (hck_flags & HCK_PARTIALCKSUM) 12668 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12669 else 12670 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12671 12672 freemsg(first_mp); 12673 return; 12674 } 12675 } 12676 12677 /* Non-fragmented broadcast or multicast packet? */ 12678 if (ire->ire_type == IRE_BROADCAST) 12679 goto udpslowpath; 12680 12681 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12682 ire->ire_zoneid, ipst)) != NULL) { 12683 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 12684 IP_STAT(ipst, ip_udp_fast_path); 12685 12686 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 12687 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 12688 freemsg(mp); 12689 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12690 } else { 12691 if (!mctl_present) { 12692 BUMP_MIB(ill->ill_ip_mib, 12693 ipIfStatsHCInDelivers); 12694 } 12695 /* 12696 * mp and first_mp can change. 12697 */ 12698 if (ip_udp_check(q, connp, recv_ill, 12699 ipha, &mp, &first_mp, mctl_present, ire)) { 12700 /* Send it upstream */ 12701 (connp->conn_recv)(connp, mp, NULL); 12702 } 12703 } 12704 /* 12705 * freeb() cannot deal with null mblk being passed 12706 * in and first_mp can be set to null in the call 12707 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12708 */ 12709 if (mctl_present && first_mp != NULL) { 12710 freeb(first_mp); 12711 } 12712 CONN_DEC_REF(connp); 12713 return; 12714 } 12715 12716 /* 12717 * if we got here we know the packet is not fragmented and 12718 * has no options. The classifier could not find a conn_t and 12719 * most likely its an icmp packet so send it through slow path. 12720 */ 12721 12722 goto udpslowpath; 12723 12724 ipoptions: 12725 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12726 goto slow_done; 12727 } 12728 12729 UPDATE_IB_PKT_COUNT(ire); 12730 ire->ire_last_used_time = lbolt; 12731 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12732 if (u1 & (IPH_MF | IPH_OFFSET)) { 12733 fragmented: 12734 /* 12735 * "sum" and "reass_hck_flags" are non-zero if the 12736 * reassembled packet has a valid hardware computed 12737 * checksum information associated with it. 12738 */ 12739 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, &sum, 12740 &reass_hck_flags)) { 12741 goto slow_done; 12742 } 12743 12744 /* 12745 * Make sure that first_mp points back to mp as 12746 * the mp we came in with could have changed in 12747 * ip_rput_fragment(). 12748 */ 12749 ASSERT(!mctl_present); 12750 ipha = (ipha_t *)mp->b_rptr; 12751 first_mp = mp; 12752 } 12753 12754 /* Now we have a complete datagram, destined for this machine. */ 12755 u1 = IPH_HDR_LENGTH(ipha); 12756 /* Pull up the UDP header, if necessary. */ 12757 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12758 udppullup: 12759 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12760 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12761 freemsg(first_mp); 12762 goto slow_done; 12763 } 12764 ipha = (ipha_t *)mp->b_rptr; 12765 } 12766 12767 /* 12768 * Validate the checksum for the reassembled packet; for the 12769 * pullup case we calculate the payload checksum in software. 12770 */ 12771 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12772 if (up[3] != 0) { 12773 boolean_t cksum_err; 12774 12775 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12776 IP_STAT(ipst, ip_in_sw_cksum); 12777 12778 IP_CKSUM_RECV_REASS(reass_hck_flags, 12779 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12780 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12781 iphs[9] + up[2], sum, cksum_err); 12782 12783 if (cksum_err) { 12784 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12785 12786 if (reass_hck_flags & HCK_FULLCKSUM) 12787 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12788 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12789 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12790 else 12791 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12792 12793 freemsg(first_mp); 12794 goto slow_done; 12795 } 12796 } 12797 udpslowpath: 12798 12799 /* Clear hardware checksum flag to be safe */ 12800 DB_CKSUMFLAGS(mp) = 0; 12801 12802 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12803 (ire->ire_type == IRE_BROADCAST), 12804 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12805 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12806 12807 slow_done: 12808 IP_STAT(ipst, ip_udp_slow_path); 12809 return; 12810 12811 #undef iphs 12812 #undef rptr 12813 } 12814 12815 static boolean_t 12816 ip_iptun_input(mblk_t *ipsec_mp, mblk_t *data_mp, ipha_t *ipha, ill_t *ill, 12817 ire_t *ire, ip_stack_t *ipst) 12818 { 12819 conn_t *connp; 12820 12821 ASSERT(ipsec_mp == NULL || ipsec_mp->b_cont == data_mp); 12822 12823 if ((connp = ipcl_classify_v4(data_mp, ipha->ipha_protocol, 12824 IP_SIMPLE_HDR_LENGTH, ire->ire_zoneid, ipst)) != NULL) { 12825 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 12826 connp->conn_recv(connp, ipsec_mp != NULL ? ipsec_mp : data_mp, 12827 NULL); 12828 CONN_DEC_REF(connp); 12829 return (B_TRUE); 12830 } 12831 return (B_FALSE); 12832 } 12833 12834 /* ARGSUSED */ 12835 static mblk_t * 12836 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12837 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12838 ill_rx_ring_t *ill_ring) 12839 { 12840 conn_t *connp; 12841 uint32_t sum; 12842 uint32_t u1; 12843 uint16_t *up; 12844 int offset; 12845 ssize_t len; 12846 mblk_t *mp1; 12847 boolean_t syn_present = B_FALSE; 12848 tcph_t *tcph; 12849 uint_t tcph_flags; 12850 uint_t ip_hdr_len; 12851 ill_t *ill = (ill_t *)q->q_ptr; 12852 zoneid_t zoneid = ire->ire_zoneid; 12853 boolean_t cksum_err; 12854 uint16_t hck_flags = 0; 12855 ip_stack_t *ipst = recv_ill->ill_ipst; 12856 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12857 12858 #define rptr ((uchar_t *)ipha) 12859 12860 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12861 ASSERT(ill != NULL); 12862 12863 /* 12864 * FAST PATH for tcp packets 12865 */ 12866 12867 /* u1 is # words of IP options */ 12868 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12869 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12870 12871 /* IP options present */ 12872 if (u1) { 12873 goto ipoptions; 12874 } else if (!mctl_present) { 12875 /* Check the IP header checksum. */ 12876 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12877 /* Clear the IP header h/w cksum flag */ 12878 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12879 } else if (!mctl_present) { 12880 /* 12881 * Don't verify header checksum if this packet 12882 * is coming back from AH/ESP as we already did it. 12883 */ 12884 #define uph ((uint16_t *)ipha) 12885 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12886 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12887 #undef uph 12888 /* finish doing IP checksum */ 12889 sum = (sum & 0xFFFF) + (sum >> 16); 12890 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12891 if (sum != 0 && sum != 0xFFFF) { 12892 BUMP_MIB(ill->ill_ip_mib, 12893 ipIfStatsInCksumErrs); 12894 goto error; 12895 } 12896 } 12897 } 12898 12899 if (!mctl_present) { 12900 UPDATE_IB_PKT_COUNT(ire); 12901 ire->ire_last_used_time = lbolt; 12902 } 12903 12904 /* packet part of fragmented IP packet? */ 12905 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12906 if (u1 & (IPH_MF | IPH_OFFSET)) { 12907 goto fragmented; 12908 } 12909 12910 /* u1 = IP header length (20 bytes) */ 12911 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12912 12913 /* does packet contain IP+TCP headers? */ 12914 len = mp->b_wptr - rptr; 12915 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12916 IP_STAT(ipst, ip_tcppullup); 12917 goto tcppullup; 12918 } 12919 12920 /* TCP options present? */ 12921 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12922 12923 /* 12924 * If options need to be pulled up, then goto tcpoptions. 12925 * otherwise we are still in the fast path 12926 */ 12927 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12928 IP_STAT(ipst, ip_tcpoptions); 12929 goto tcpoptions; 12930 } 12931 12932 /* multiple mblks of tcp data? */ 12933 if ((mp1 = mp->b_cont) != NULL) { 12934 IP_STAT(ipst, ip_multipkttcp); 12935 len += msgdsize(mp1); 12936 } 12937 12938 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12939 12940 /* part of pseudo checksum */ 12941 12942 /* TCP datagram length */ 12943 u1 = len - IP_SIMPLE_HDR_LENGTH; 12944 12945 #define iphs ((uint16_t *)ipha) 12946 12947 #ifdef _BIG_ENDIAN 12948 u1 += IPPROTO_TCP; 12949 #else 12950 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12951 #endif 12952 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12953 12954 /* 12955 * Revert to software checksum calculation if the interface 12956 * isn't capable of checksum offload or if IPsec is present. 12957 */ 12958 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 12959 hck_flags = DB_CKSUMFLAGS(mp); 12960 12961 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12962 IP_STAT(ipst, ip_in_sw_cksum); 12963 12964 IP_CKSUM_RECV(hck_flags, u1, 12965 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12966 (int32_t)((uchar_t *)up - rptr), 12967 mp, mp1, cksum_err); 12968 12969 if (cksum_err) { 12970 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 12971 12972 if (hck_flags & HCK_FULLCKSUM) 12973 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 12974 else if (hck_flags & HCK_PARTIALCKSUM) 12975 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 12976 else 12977 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 12978 12979 goto error; 12980 } 12981 12982 try_again: 12983 12984 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 12985 zoneid, ipst)) == NULL) { 12986 /* Send the TH_RST */ 12987 goto no_conn; 12988 } 12989 12990 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 12991 tcph_flags = tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG); 12992 12993 /* 12994 * TCP FAST PATH for AF_INET socket. 12995 * 12996 * TCP fast path to avoid extra work. An AF_INET socket type 12997 * does not have facility to receive extra information via 12998 * ip_process or ip_add_info. Also, when the connection was 12999 * established, we made a check if this connection is impacted 13000 * by any global IPsec policy or per connection policy (a 13001 * policy that comes in effect later will not apply to this 13002 * connection). Since all this can be determined at the 13003 * connection establishment time, a quick check of flags 13004 * can avoid extra work. 13005 */ 13006 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13007 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13008 ASSERT(first_mp == mp); 13009 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13010 if (tcph_flags != (TH_SYN | TH_ACK)) { 13011 SET_SQUEUE(mp, tcp_rput_data, connp); 13012 return (mp); 13013 } 13014 mp->b_datap->db_struioflag |= STRUIO_CONNECT; 13015 DB_CKSUMSTART(mp) = (intptr_t)ip_squeue_get(ill_ring); 13016 SET_SQUEUE(mp, tcp_input, connp); 13017 return (mp); 13018 } 13019 13020 if (tcph_flags == TH_SYN) { 13021 if (IPCL_IS_TCP(connp)) { 13022 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13023 DB_CKSUMSTART(mp) = 13024 (intptr_t)ip_squeue_get(ill_ring); 13025 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13026 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13027 BUMP_MIB(ill->ill_ip_mib, 13028 ipIfStatsHCInDelivers); 13029 SET_SQUEUE(mp, connp->conn_recv, connp); 13030 return (mp); 13031 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13032 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13033 BUMP_MIB(ill->ill_ip_mib, 13034 ipIfStatsHCInDelivers); 13035 ip_squeue_enter_unbound++; 13036 SET_SQUEUE(mp, tcp_conn_request_unbound, 13037 connp); 13038 return (mp); 13039 } 13040 syn_present = B_TRUE; 13041 } 13042 } 13043 13044 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13045 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13046 13047 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13048 /* No need to send this packet to TCP */ 13049 if ((flags & TH_RST) || (flags & TH_URG)) { 13050 CONN_DEC_REF(connp); 13051 freemsg(first_mp); 13052 return (NULL); 13053 } 13054 if (flags & TH_ACK) { 13055 ip_xmit_reset_serialize(first_mp, ip_hdr_len, zoneid, 13056 ipst->ips_netstack->netstack_tcp, connp); 13057 CONN_DEC_REF(connp); 13058 return (NULL); 13059 } 13060 13061 CONN_DEC_REF(connp); 13062 freemsg(first_mp); 13063 return (NULL); 13064 } 13065 13066 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13067 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13068 ipha, NULL, mctl_present); 13069 if (first_mp == NULL) { 13070 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13071 CONN_DEC_REF(connp); 13072 return (NULL); 13073 } 13074 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13075 ASSERT(syn_present); 13076 if (mctl_present) { 13077 ASSERT(first_mp != mp); 13078 first_mp->b_datap->db_struioflag |= 13079 STRUIO_POLICY; 13080 } else { 13081 ASSERT(first_mp == mp); 13082 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13083 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13084 } 13085 } else { 13086 /* 13087 * Discard first_mp early since we're dealing with a 13088 * fully-connected conn_t and tcp doesn't do policy in 13089 * this case. 13090 */ 13091 if (mctl_present) { 13092 freeb(first_mp); 13093 mctl_present = B_FALSE; 13094 } 13095 first_mp = mp; 13096 } 13097 } 13098 13099 /* Initiate IPPF processing for fastpath */ 13100 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13101 uint32_t ill_index; 13102 13103 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13104 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13105 if (mp == NULL) { 13106 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13107 "deferred/dropped during IPPF processing\n")); 13108 CONN_DEC_REF(connp); 13109 if (mctl_present) 13110 freeb(first_mp); 13111 return (NULL); 13112 } else if (mctl_present) { 13113 /* 13114 * ip_process might return a new mp. 13115 */ 13116 ASSERT(first_mp != mp); 13117 first_mp->b_cont = mp; 13118 } else { 13119 first_mp = mp; 13120 } 13121 13122 } 13123 13124 if (!syn_present && connp->conn_ip_recvpktinfo) { 13125 /* 13126 * TCP does not support IP_RECVPKTINFO for v4 so lets 13127 * make sure IPF_RECVIF is passed to ip_add_info. 13128 */ 13129 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13130 IPCL_ZONEID(connp), ipst); 13131 if (mp == NULL) { 13132 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13133 CONN_DEC_REF(connp); 13134 if (mctl_present) 13135 freeb(first_mp); 13136 return (NULL); 13137 } else if (mctl_present) { 13138 /* 13139 * ip_add_info might return a new mp. 13140 */ 13141 ASSERT(first_mp != mp); 13142 first_mp->b_cont = mp; 13143 } else { 13144 first_mp = mp; 13145 } 13146 } 13147 13148 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13149 if (IPCL_IS_TCP(connp)) { 13150 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13151 return (first_mp); 13152 } else { 13153 /* SOCK_RAW, IPPROTO_TCP case */ 13154 (connp->conn_recv)(connp, first_mp, NULL); 13155 CONN_DEC_REF(connp); 13156 return (NULL); 13157 } 13158 13159 no_conn: 13160 /* Initiate IPPf processing, if needed. */ 13161 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13162 uint32_t ill_index; 13163 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13164 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13165 if (first_mp == NULL) { 13166 return (NULL); 13167 } 13168 } 13169 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13170 13171 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13172 ipst->ips_netstack->netstack_tcp, NULL); 13173 return (NULL); 13174 ipoptions: 13175 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13176 goto slow_done; 13177 } 13178 13179 UPDATE_IB_PKT_COUNT(ire); 13180 ire->ire_last_used_time = lbolt; 13181 13182 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13183 if (u1 & (IPH_MF | IPH_OFFSET)) { 13184 fragmented: 13185 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) { 13186 if (mctl_present) 13187 freeb(first_mp); 13188 goto slow_done; 13189 } 13190 /* 13191 * Make sure that first_mp points back to mp as 13192 * the mp we came in with could have changed in 13193 * ip_rput_fragment(). 13194 */ 13195 ASSERT(!mctl_present); 13196 ipha = (ipha_t *)mp->b_rptr; 13197 first_mp = mp; 13198 } 13199 13200 /* Now we have a complete datagram, destined for this machine. */ 13201 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13202 13203 len = mp->b_wptr - mp->b_rptr; 13204 /* Pull up a minimal TCP header, if necessary. */ 13205 if (len < (u1 + 20)) { 13206 tcppullup: 13207 if (!pullupmsg(mp, u1 + 20)) { 13208 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13209 goto error; 13210 } 13211 ipha = (ipha_t *)mp->b_rptr; 13212 len = mp->b_wptr - mp->b_rptr; 13213 } 13214 13215 /* 13216 * Extract the offset field from the TCP header. As usual, we 13217 * try to help the compiler more than the reader. 13218 */ 13219 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13220 if (offset != 5) { 13221 tcpoptions: 13222 if (offset < 5) { 13223 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13224 goto error; 13225 } 13226 /* 13227 * There must be TCP options. 13228 * Make sure we can grab them. 13229 */ 13230 offset <<= 2; 13231 offset += u1; 13232 if (len < offset) { 13233 if (!pullupmsg(mp, offset)) { 13234 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13235 goto error; 13236 } 13237 ipha = (ipha_t *)mp->b_rptr; 13238 len = mp->b_wptr - rptr; 13239 } 13240 } 13241 13242 /* Get the total packet length in len, including headers. */ 13243 if (mp->b_cont) 13244 len = msgdsize(mp); 13245 13246 /* 13247 * Check the TCP checksum by pulling together the pseudo- 13248 * header checksum, and passing it to ip_csum to be added in 13249 * with the TCP datagram. 13250 * 13251 * Since we are not using the hwcksum if available we must 13252 * clear the flag. We may come here via tcppullup or tcpoptions. 13253 * If either of these fails along the way the mblk is freed. 13254 * If this logic ever changes and mblk is reused to say send 13255 * ICMP's back, then this flag may need to be cleared in 13256 * other places as well. 13257 */ 13258 DB_CKSUMFLAGS(mp) = 0; 13259 13260 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13261 13262 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13263 #ifdef _BIG_ENDIAN 13264 u1 += IPPROTO_TCP; 13265 #else 13266 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13267 #endif 13268 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13269 /* 13270 * Not M_DATA mblk or its a dup, so do the checksum now. 13271 */ 13272 IP_STAT(ipst, ip_in_sw_cksum); 13273 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13274 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13275 goto error; 13276 } 13277 13278 IP_STAT(ipst, ip_tcp_slow_path); 13279 goto try_again; 13280 #undef iphs 13281 #undef rptr 13282 13283 error: 13284 freemsg(first_mp); 13285 slow_done: 13286 return (NULL); 13287 } 13288 13289 /* ARGSUSED */ 13290 static void 13291 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13292 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13293 { 13294 conn_t *connp; 13295 uint32_t sum; 13296 uint32_t u1; 13297 ssize_t len; 13298 sctp_hdr_t *sctph; 13299 zoneid_t zoneid = ire->ire_zoneid; 13300 uint32_t pktsum; 13301 uint32_t calcsum; 13302 uint32_t ports; 13303 in6_addr_t map_src, map_dst; 13304 ill_t *ill = (ill_t *)q->q_ptr; 13305 ip_stack_t *ipst; 13306 sctp_stack_t *sctps; 13307 boolean_t sctp_csum_err = B_FALSE; 13308 13309 ASSERT(recv_ill != NULL); 13310 ipst = recv_ill->ill_ipst; 13311 sctps = ipst->ips_netstack->netstack_sctp; 13312 13313 #define rptr ((uchar_t *)ipha) 13314 13315 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13316 ASSERT(ill != NULL); 13317 13318 /* u1 is # words of IP options */ 13319 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13320 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13321 13322 /* IP options present */ 13323 if (u1 > 0) { 13324 goto ipoptions; 13325 } else { 13326 /* Check the IP header checksum. */ 13327 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill) && 13328 !mctl_present) { 13329 #define uph ((uint16_t *)ipha) 13330 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13331 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13332 #undef uph 13333 /* finish doing IP checksum */ 13334 sum = (sum & 0xFFFF) + (sum >> 16); 13335 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13336 /* 13337 * Don't verify header checksum if this packet 13338 * is coming back from AH/ESP as we already did it. 13339 */ 13340 if (sum != 0 && sum != 0xFFFF) { 13341 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13342 goto error; 13343 } 13344 } 13345 /* 13346 * Since there is no SCTP h/w cksum support yet, just 13347 * clear the flag. 13348 */ 13349 DB_CKSUMFLAGS(mp) = 0; 13350 } 13351 13352 /* 13353 * Don't verify header checksum if this packet is coming 13354 * back from AH/ESP as we already did it. 13355 */ 13356 if (!mctl_present) { 13357 UPDATE_IB_PKT_COUNT(ire); 13358 ire->ire_last_used_time = lbolt; 13359 } 13360 13361 /* packet part of fragmented IP packet? */ 13362 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13363 if (u1 & (IPH_MF | IPH_OFFSET)) 13364 goto fragmented; 13365 13366 /* u1 = IP header length (20 bytes) */ 13367 u1 = IP_SIMPLE_HDR_LENGTH; 13368 13369 find_sctp_client: 13370 /* Pullup if we don't have the sctp common header. */ 13371 len = MBLKL(mp); 13372 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13373 if (mp->b_cont == NULL || 13374 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13375 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13376 goto error; 13377 } 13378 ipha = (ipha_t *)mp->b_rptr; 13379 len = MBLKL(mp); 13380 } 13381 13382 sctph = (sctp_hdr_t *)(rptr + u1); 13383 #ifdef DEBUG 13384 if (!skip_sctp_cksum) { 13385 #endif 13386 pktsum = sctph->sh_chksum; 13387 sctph->sh_chksum = 0; 13388 calcsum = sctp_cksum(mp, u1); 13389 sctph->sh_chksum = pktsum; 13390 if (calcsum != pktsum) 13391 sctp_csum_err = B_TRUE; 13392 #ifdef DEBUG /* skip_sctp_cksum */ 13393 } 13394 #endif 13395 /* get the ports */ 13396 ports = *(uint32_t *)&sctph->sh_sport; 13397 13398 IRE_REFRELE(ire); 13399 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13400 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13401 if (sctp_csum_err) { 13402 /* 13403 * No potential sctp checksum errors go to the Sun 13404 * sctp stack however they might be Adler-32 summed 13405 * packets a userland stack bound to a raw IP socket 13406 * could reasonably use. Note though that Adler-32 is 13407 * a long deprecated algorithm and customer sctp 13408 * networks should eventually migrate to CRC-32 at 13409 * which time this facility should be removed. 13410 */ 13411 flags |= IP_FF_SCTP_CSUM_ERR; 13412 goto no_conn; 13413 } 13414 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13415 sctps)) == NULL) { 13416 /* Check for raw socket or OOTB handling */ 13417 goto no_conn; 13418 } 13419 13420 /* Found a client; up it goes */ 13421 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13422 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13423 return; 13424 13425 no_conn: 13426 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13427 ports, mctl_present, flags, B_TRUE, zoneid); 13428 return; 13429 13430 ipoptions: 13431 DB_CKSUMFLAGS(mp) = 0; 13432 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13433 goto slow_done; 13434 13435 UPDATE_IB_PKT_COUNT(ire); 13436 ire->ire_last_used_time = lbolt; 13437 13438 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13439 if (u1 & (IPH_MF | IPH_OFFSET)) { 13440 fragmented: 13441 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 13442 goto slow_done; 13443 /* 13444 * Make sure that first_mp points back to mp as 13445 * the mp we came in with could have changed in 13446 * ip_rput_fragment(). 13447 */ 13448 ASSERT(!mctl_present); 13449 ipha = (ipha_t *)mp->b_rptr; 13450 first_mp = mp; 13451 } 13452 13453 /* Now we have a complete datagram, destined for this machine. */ 13454 u1 = IPH_HDR_LENGTH(ipha); 13455 goto find_sctp_client; 13456 #undef iphs 13457 #undef rptr 13458 13459 error: 13460 freemsg(first_mp); 13461 slow_done: 13462 IRE_REFRELE(ire); 13463 } 13464 13465 #define VER_BITS 0xF0 13466 #define VERSION_6 0x60 13467 13468 static boolean_t 13469 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13470 ipaddr_t *dstp, ip_stack_t *ipst) 13471 { 13472 uint_t opt_len; 13473 ipha_t *ipha; 13474 ssize_t len; 13475 uint_t pkt_len; 13476 13477 ASSERT(ill != NULL); 13478 IP_STAT(ipst, ip_ipoptions); 13479 ipha = *iphapp; 13480 13481 #define rptr ((uchar_t *)ipha) 13482 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13483 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13484 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13485 freemsg(mp); 13486 return (B_FALSE); 13487 } 13488 13489 /* multiple mblk or too short */ 13490 pkt_len = ntohs(ipha->ipha_length); 13491 13492 /* Get the number of words of IP options in the IP header. */ 13493 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13494 if (opt_len) { 13495 /* IP Options present! Validate and process. */ 13496 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13497 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13498 goto done; 13499 } 13500 /* 13501 * Recompute complete header length and make sure we 13502 * have access to all of it. 13503 */ 13504 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13505 if (len > (mp->b_wptr - rptr)) { 13506 if (len > pkt_len) { 13507 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13508 goto done; 13509 } 13510 if (!pullupmsg(mp, len)) { 13511 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13512 goto done; 13513 } 13514 ipha = (ipha_t *)mp->b_rptr; 13515 } 13516 /* 13517 * Go off to ip_rput_options which returns the next hop 13518 * destination address, which may have been affected 13519 * by source routing. 13520 */ 13521 IP_STAT(ipst, ip_opt); 13522 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13523 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13524 return (B_FALSE); 13525 } 13526 } 13527 *iphapp = ipha; 13528 return (B_TRUE); 13529 done: 13530 /* clear b_prev - used by ip_mroute_decap */ 13531 mp->b_prev = NULL; 13532 freemsg(mp); 13533 return (B_FALSE); 13534 #undef rptr 13535 } 13536 13537 /* 13538 * Deal with the fact that there is no ire for the destination. 13539 */ 13540 static ire_t * 13541 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13542 { 13543 ipha_t *ipha; 13544 ill_t *ill; 13545 ire_t *ire; 13546 ip_stack_t *ipst; 13547 enum ire_forward_action ret_action; 13548 13549 ipha = (ipha_t *)mp->b_rptr; 13550 ill = (ill_t *)q->q_ptr; 13551 13552 ASSERT(ill != NULL); 13553 ipst = ill->ill_ipst; 13554 13555 /* 13556 * No IRE for this destination, so it can't be for us. 13557 * Unless we are forwarding, drop the packet. 13558 * We have to let source routed packets through 13559 * since we don't yet know if they are 'ping -l' 13560 * packets i.e. if they will go out over the 13561 * same interface as they came in on. 13562 */ 13563 if (ll_multicast) { 13564 freemsg(mp); 13565 return (NULL); 13566 } 13567 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13568 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13569 freemsg(mp); 13570 return (NULL); 13571 } 13572 13573 /* 13574 * Mark this packet as having originated externally. 13575 * 13576 * For non-forwarding code path, ire_send later double 13577 * checks this interface to see if it is still exists 13578 * post-ARP resolution. 13579 * 13580 * Also, IPQOS uses this to differentiate between 13581 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13582 * QOS packet processing in ip_wput_attach_llhdr(). 13583 * The QoS module can mark the b_band for a fastpath message 13584 * or the dl_priority field in a unitdata_req header for 13585 * CoS marking. This info can only be found in 13586 * ip_wput_attach_llhdr(). 13587 */ 13588 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13589 /* 13590 * Clear the indication that this may have a hardware checksum 13591 * as we are not using it 13592 */ 13593 DB_CKSUMFLAGS(mp) = 0; 13594 13595 ire = ire_forward(dst, &ret_action, NULL, NULL, 13596 msg_getlabel(mp), ipst); 13597 13598 if (ire == NULL && ret_action == Forward_check_multirt) { 13599 /* Let ip_newroute handle CGTP */ 13600 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13601 return (NULL); 13602 } 13603 13604 if (ire != NULL) 13605 return (ire); 13606 13607 mp->b_prev = mp->b_next = 0; 13608 13609 if (ret_action == Forward_blackhole) { 13610 freemsg(mp); 13611 return (NULL); 13612 } 13613 /* send icmp unreachable */ 13614 q = WR(q); 13615 /* Sent by forwarding path, and router is global zone */ 13616 if (ip_source_routed(ipha, ipst)) { 13617 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13618 GLOBAL_ZONEID, ipst); 13619 } else { 13620 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13621 ipst); 13622 } 13623 13624 return (NULL); 13625 13626 } 13627 13628 /* 13629 * check ip header length and align it. 13630 */ 13631 static boolean_t 13632 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13633 { 13634 ssize_t len; 13635 ill_t *ill; 13636 ipha_t *ipha; 13637 13638 len = MBLKL(mp); 13639 13640 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13641 ill = (ill_t *)q->q_ptr; 13642 13643 if (!OK_32PTR(mp->b_rptr)) 13644 IP_STAT(ipst, ip_notaligned1); 13645 else 13646 IP_STAT(ipst, ip_notaligned2); 13647 /* Guard against bogus device drivers */ 13648 if (len < 0) { 13649 /* clear b_prev - used by ip_mroute_decap */ 13650 mp->b_prev = NULL; 13651 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13652 freemsg(mp); 13653 return (B_FALSE); 13654 } 13655 13656 if (ip_rput_pullups++ == 0) { 13657 ipha = (ipha_t *)mp->b_rptr; 13658 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13659 "ip_check_and_align_header: %s forced us to " 13660 " pullup pkt, hdr len %ld, hdr addr %p", 13661 ill->ill_name, len, (void *)ipha); 13662 } 13663 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13664 /* clear b_prev - used by ip_mroute_decap */ 13665 mp->b_prev = NULL; 13666 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13667 freemsg(mp); 13668 return (B_FALSE); 13669 } 13670 } 13671 return (B_TRUE); 13672 } 13673 13674 /* 13675 * Handle the situation where a packet came in on `ill' but matched an IRE 13676 * whose ire_rfq doesn't match `ill'. We return the IRE that should be used 13677 * for interface statistics. 13678 */ 13679 ire_t * 13680 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13681 { 13682 ire_t *new_ire; 13683 ill_t *ire_ill; 13684 uint_t ifindex; 13685 ip_stack_t *ipst = ill->ill_ipst; 13686 boolean_t strict_check = B_FALSE; 13687 13688 /* 13689 * IPMP common case: if IRE and ILL are in the same group, there's no 13690 * issue (e.g. packet received on an underlying interface matched an 13691 * IRE_LOCAL on its associated group interface). 13692 */ 13693 if (ire->ire_rfq != NULL && 13694 IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr)) { 13695 return (ire); 13696 } 13697 13698 /* 13699 * Do another ire lookup here, using the ingress ill, to see if the 13700 * interface is in a usesrc group. 13701 * As long as the ills belong to the same group, we don't consider 13702 * them to be arriving on the wrong interface. Thus, if the switch 13703 * is doing inbound load spreading, we won't drop packets when the 13704 * ip*_strict_dst_multihoming switch is on. 13705 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13706 * where the local address may not be unique. In this case we were 13707 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13708 * actually returned. The new lookup, which is more specific, should 13709 * only find the IRE_LOCAL associated with the ingress ill if one 13710 * exists. 13711 */ 13712 13713 if (ire->ire_ipversion == IPV4_VERSION) { 13714 if (ipst->ips_ip_strict_dst_multihoming) 13715 strict_check = B_TRUE; 13716 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13717 ill->ill_ipif, ALL_ZONES, NULL, 13718 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13719 } else { 13720 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13721 if (ipst->ips_ipv6_strict_dst_multihoming) 13722 strict_check = B_TRUE; 13723 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13724 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13725 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13726 } 13727 /* 13728 * If the same ire that was returned in ip_input() is found then this 13729 * is an indication that usesrc groups are in use. The packet 13730 * arrived on a different ill in the group than the one associated with 13731 * the destination address. If a different ire was found then the same 13732 * IP address must be hosted on multiple ills. This is possible with 13733 * unnumbered point2point interfaces. We switch to use this new ire in 13734 * order to have accurate interface statistics. 13735 */ 13736 if (new_ire != NULL) { 13737 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13738 ire_refrele(ire); 13739 ire = new_ire; 13740 } else { 13741 ire_refrele(new_ire); 13742 } 13743 return (ire); 13744 } else if ((ire->ire_rfq == NULL) && 13745 (ire->ire_ipversion == IPV4_VERSION)) { 13746 /* 13747 * The best match could have been the original ire which 13748 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13749 * the strict multihoming checks are irrelevant as we consider 13750 * local addresses hosted on lo0 to be interface agnostic. We 13751 * only expect a null ire_rfq on IREs which are associated with 13752 * lo0 hence we can return now. 13753 */ 13754 return (ire); 13755 } 13756 13757 /* 13758 * Chase pointers once and store locally. 13759 */ 13760 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13761 (ill_t *)(ire->ire_rfq->q_ptr); 13762 ifindex = ill->ill_usesrc_ifindex; 13763 13764 /* 13765 * Check if it's a legal address on the 'usesrc' interface. 13766 */ 13767 if ((ifindex != 0) && (ire_ill != NULL) && 13768 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13769 return (ire); 13770 } 13771 13772 /* 13773 * If the ip*_strict_dst_multihoming switch is on then we can 13774 * only accept this packet if the interface is marked as routing. 13775 */ 13776 if (!(strict_check)) 13777 return (ire); 13778 13779 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13780 ILLF_ROUTER) != 0) { 13781 return (ire); 13782 } 13783 13784 ire_refrele(ire); 13785 return (NULL); 13786 } 13787 13788 /* 13789 * 13790 * This is the fast forward path. If we are here, we dont need to 13791 * worry about RSVP, CGTP, or TSol. Furthermore the ftable lookup 13792 * needed to find the nexthop in this case is much simpler 13793 */ 13794 ire_t * 13795 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13796 { 13797 ipha_t *ipha; 13798 ire_t *src_ire; 13799 ill_t *stq_ill; 13800 uint_t hlen; 13801 uint_t pkt_len; 13802 uint32_t sum; 13803 queue_t *dev_q; 13804 ip_stack_t *ipst = ill->ill_ipst; 13805 mblk_t *fpmp; 13806 enum ire_forward_action ret_action; 13807 13808 ipha = (ipha_t *)mp->b_rptr; 13809 13810 if (ire != NULL && 13811 ire->ire_zoneid != GLOBAL_ZONEID && 13812 ire->ire_zoneid != ALL_ZONES) { 13813 /* 13814 * Should only use IREs that are visible to the global 13815 * zone for forwarding. 13816 */ 13817 ire_refrele(ire); 13818 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 13819 /* 13820 * ire_cache_lookup() can return ire of IRE_LOCAL in 13821 * transient cases. In such case, just drop the packet 13822 */ 13823 if (ire != NULL && ire->ire_type != IRE_CACHE) 13824 goto indiscard; 13825 } 13826 13827 /* 13828 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13829 * The loopback address check for both src and dst has already 13830 * been checked in ip_input 13831 */ 13832 13833 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13834 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13835 goto drop; 13836 } 13837 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13838 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13839 13840 if (src_ire != NULL) { 13841 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13842 ire_refrele(src_ire); 13843 goto drop; 13844 } 13845 13846 /* No ire cache of nexthop. So first create one */ 13847 if (ire == NULL) { 13848 13849 ire = ire_forward_simple(dst, &ret_action, ipst); 13850 13851 /* 13852 * We only come to ip_fast_forward if ip_cgtp_filter 13853 * is not set. So ire_forward() should not return with 13854 * Forward_check_multirt as the next action. 13855 */ 13856 ASSERT(ret_action != Forward_check_multirt); 13857 if (ire == NULL) { 13858 /* An attempt was made to forward the packet */ 13859 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13860 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13861 mp->b_prev = mp->b_next = 0; 13862 /* send icmp unreachable */ 13863 /* Sent by forwarding path, and router is global zone */ 13864 if (ret_action == Forward_ret_icmp_err) { 13865 if (ip_source_routed(ipha, ipst)) { 13866 icmp_unreachable(ill->ill_wq, mp, 13867 ICMP_SOURCE_ROUTE_FAILED, 13868 GLOBAL_ZONEID, ipst); 13869 } else { 13870 icmp_unreachable(ill->ill_wq, mp, 13871 ICMP_HOST_UNREACHABLE, 13872 GLOBAL_ZONEID, ipst); 13873 } 13874 } else { 13875 freemsg(mp); 13876 } 13877 return (NULL); 13878 } 13879 } 13880 13881 /* 13882 * Forwarding fastpath exception case: 13883 * If any of the following are true, we take the slowpath: 13884 * o forwarding is not enabled 13885 * o incoming and outgoing interface are the same, or in the same 13886 * IPMP group. 13887 * o corresponding ire is in incomplete state 13888 * o packet needs fragmentation 13889 * o ARP cache is not resolved 13890 * 13891 * The codeflow from here on is thus: 13892 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13893 */ 13894 pkt_len = ntohs(ipha->ipha_length); 13895 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13896 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13897 (ill == stq_ill) || IS_IN_SAME_ILLGRP(ill, stq_ill) || 13898 (ire->ire_nce == NULL) || 13899 (pkt_len > ire->ire_max_frag) || 13900 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 13901 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 13902 ipha->ipha_ttl <= 1) { 13903 ip_rput_process_forward(ill->ill_rq, mp, ire, 13904 ipha, ill, B_FALSE, B_TRUE); 13905 return (ire); 13906 } 13907 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13908 13909 DTRACE_PROBE4(ip4__forwarding__start, 13910 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13911 13912 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13913 ipst->ips_ipv4firewall_forwarding, 13914 ill, stq_ill, ipha, mp, mp, 0, ipst); 13915 13916 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13917 13918 if (mp == NULL) 13919 goto drop; 13920 13921 mp->b_datap->db_struioun.cksum.flags = 0; 13922 /* Adjust the checksum to reflect the ttl decrement. */ 13923 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13924 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13925 ipha->ipha_ttl--; 13926 13927 /* 13928 * Write the link layer header. We can do this safely here, 13929 * because we have already tested to make sure that the IP 13930 * policy is not set, and that we have a fast path destination 13931 * header. 13932 */ 13933 mp->b_rptr -= hlen; 13934 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 13935 13936 UPDATE_IB_PKT_COUNT(ire); 13937 ire->ire_last_used_time = lbolt; 13938 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 13939 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 13940 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 13941 13942 if (!ILL_DIRECT_CAPABLE(stq_ill) || DB_TYPE(mp) != M_DATA) { 13943 dev_q = ire->ire_stq->q_next; 13944 if (DEV_Q_FLOW_BLOCKED(dev_q)) 13945 goto indiscard; 13946 } 13947 13948 DTRACE_PROBE4(ip4__physical__out__start, 13949 ill_t *, NULL, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13950 FW_HOOKS(ipst->ips_ip4_physical_out_event, 13951 ipst->ips_ipv4firewall_physical_out, 13952 NULL, stq_ill, ipha, mp, mp, 0, ipst); 13953 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 13954 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 13955 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 13956 ip6_t *, NULL, int, 0); 13957 13958 if (mp != NULL) { 13959 if (ipst->ips_ip4_observe.he_interested) { 13960 zoneid_t szone; 13961 13962 /* 13963 * Both of these functions expect b_rptr to be 13964 * where the IP header starts, so advance past the 13965 * link layer header if present. 13966 */ 13967 mp->b_rptr += hlen; 13968 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 13969 ipst, ALL_ZONES); 13970 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 13971 ALL_ZONES, ill, ipst); 13972 mp->b_rptr -= hlen; 13973 } 13974 ILL_SEND_TX(stq_ill, ire, dst, mp, IP_DROP_ON_NO_DESC, NULL); 13975 } 13976 return (ire); 13977 13978 indiscard: 13979 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13980 drop: 13981 if (mp != NULL) 13982 freemsg(mp); 13983 return (ire); 13984 13985 } 13986 13987 /* 13988 * This function is called in the forwarding slowpath, when 13989 * either the ire lacks the link-layer address, or the packet needs 13990 * further processing(eg. fragmentation), before transmission. 13991 */ 13992 13993 static void 13994 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13995 ill_t *ill, boolean_t ll_multicast, boolean_t from_ip_fast_forward) 13996 { 13997 queue_t *dev_q; 13998 ire_t *src_ire; 13999 ip_stack_t *ipst = ill->ill_ipst; 14000 boolean_t same_illgrp = B_FALSE; 14001 14002 ASSERT(ire->ire_stq != NULL); 14003 14004 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14005 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14006 14007 /* 14008 * If the caller of this function is ip_fast_forward() skip the 14009 * next three checks as it does not apply. 14010 */ 14011 if (from_ip_fast_forward) 14012 goto skip; 14013 14014 if (ll_multicast != 0) { 14015 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14016 goto drop_pkt; 14017 } 14018 14019 /* 14020 * check if ipha_src is a broadcast address. Note that this 14021 * check is redundant when we get here from ip_fast_forward() 14022 * which has already done this check. However, since we can 14023 * also get here from ip_rput_process_broadcast() or, for 14024 * for the slow path through ip_fast_forward(), we perform 14025 * the check again for code-reusability 14026 */ 14027 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14028 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14029 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14030 if (src_ire != NULL) 14031 ire_refrele(src_ire); 14032 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14033 ip2dbg(("ip_rput_process_forward: Received packet with" 14034 " bad src/dst address on %s\n", ill->ill_name)); 14035 goto drop_pkt; 14036 } 14037 14038 /* 14039 * Check if we want to forward this one at this time. 14040 * We allow source routed packets on a host provided that 14041 * they go out the same ill or illgrp as they came in on. 14042 * 14043 * XXX To be quicker, we may wish to not chase pointers to 14044 * get the ILLF_ROUTER flag and instead store the 14045 * forwarding policy in the ire. An unfortunate 14046 * side-effect of that would be requiring an ire flush 14047 * whenever the ILLF_ROUTER flag changes. 14048 */ 14049 skip: 14050 same_illgrp = IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr); 14051 14052 if (((ill->ill_flags & 14053 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & ILLF_ROUTER) == 0) && 14054 !(ip_source_routed(ipha, ipst) && 14055 (ire->ire_rfq == q || same_illgrp))) { 14056 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14057 if (ip_source_routed(ipha, ipst)) { 14058 q = WR(q); 14059 /* 14060 * Clear the indication that this may have 14061 * hardware checksum as we are not using it. 14062 */ 14063 DB_CKSUMFLAGS(mp) = 0; 14064 /* Sent by forwarding path, and router is global zone */ 14065 icmp_unreachable(q, mp, 14066 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14067 return; 14068 } 14069 goto drop_pkt; 14070 } 14071 14072 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14073 14074 /* Packet is being forwarded. Turning off hwcksum flag. */ 14075 DB_CKSUMFLAGS(mp) = 0; 14076 if (ipst->ips_ip_g_send_redirects) { 14077 /* 14078 * Check whether the incoming interface and outgoing 14079 * interface is part of the same group. If so, 14080 * send redirects. 14081 * 14082 * Check the source address to see if it originated 14083 * on the same logical subnet it is going back out on. 14084 * If so, we should be able to send it a redirect. 14085 * Avoid sending a redirect if the destination 14086 * is directly connected (i.e., ipha_dst is the same 14087 * as ire_gateway_addr or the ire_addr of the 14088 * nexthop IRE_CACHE ), or if the packet was source 14089 * routed out this interface. 14090 */ 14091 ipaddr_t src, nhop; 14092 mblk_t *mp1; 14093 ire_t *nhop_ire = NULL; 14094 14095 /* 14096 * Check whether ire_rfq and q are from the same ill or illgrp. 14097 * If so, send redirects. 14098 */ 14099 if ((ire->ire_rfq == q || same_illgrp) && 14100 !ip_source_routed(ipha, ipst)) { 14101 14102 nhop = (ire->ire_gateway_addr != 0 ? 14103 ire->ire_gateway_addr : ire->ire_addr); 14104 14105 if (ipha->ipha_dst == nhop) { 14106 /* 14107 * We avoid sending a redirect if the 14108 * destination is directly connected 14109 * because it is possible that multiple 14110 * IP subnets may have been configured on 14111 * the link, and the source may not 14112 * be on the same subnet as ip destination, 14113 * even though they are on the same 14114 * physical link. 14115 */ 14116 goto sendit; 14117 } 14118 14119 src = ipha->ipha_src; 14120 14121 /* 14122 * We look up the interface ire for the nexthop, 14123 * to see if ipha_src is in the same subnet 14124 * as the nexthop. 14125 * 14126 * Note that, if, in the future, IRE_CACHE entries 14127 * are obsoleted, this lookup will not be needed, 14128 * as the ire passed to this function will be the 14129 * same as the nhop_ire computed below. 14130 */ 14131 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14132 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14133 0, NULL, MATCH_IRE_TYPE, ipst); 14134 14135 if (nhop_ire != NULL) { 14136 if ((src & nhop_ire->ire_mask) == 14137 (nhop & nhop_ire->ire_mask)) { 14138 /* 14139 * The source is directly connected. 14140 * Just copy the ip header (which is 14141 * in the first mblk) 14142 */ 14143 mp1 = copyb(mp); 14144 if (mp1 != NULL) { 14145 icmp_send_redirect(WR(q), mp1, 14146 nhop, ipst); 14147 } 14148 } 14149 ire_refrele(nhop_ire); 14150 } 14151 } 14152 } 14153 sendit: 14154 dev_q = ire->ire_stq->q_next; 14155 if (DEV_Q_FLOW_BLOCKED(dev_q)) { 14156 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14157 freemsg(mp); 14158 return; 14159 } 14160 14161 ip_rput_forward(ire, ipha, mp, ill); 14162 return; 14163 14164 drop_pkt: 14165 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14166 freemsg(mp); 14167 } 14168 14169 ire_t * 14170 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14171 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14172 { 14173 queue_t *q; 14174 uint16_t hcksumflags; 14175 ip_stack_t *ipst = ill->ill_ipst; 14176 14177 q = *qp; 14178 14179 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14180 14181 /* 14182 * Clear the indication that this may have hardware 14183 * checksum as we are not using it for forwarding. 14184 */ 14185 hcksumflags = DB_CKSUMFLAGS(mp); 14186 DB_CKSUMFLAGS(mp) = 0; 14187 14188 /* 14189 * Directed broadcast forwarding: if the packet came in over a 14190 * different interface then it is routed out over we can forward it. 14191 */ 14192 if (ipha->ipha_protocol == IPPROTO_TCP) { 14193 ire_refrele(ire); 14194 freemsg(mp); 14195 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14196 return (NULL); 14197 } 14198 /* 14199 * For multicast we have set dst to be INADDR_BROADCAST 14200 * for delivering to all STREAMS. 14201 */ 14202 if (!CLASSD(ipha->ipha_dst)) { 14203 ire_t *new_ire; 14204 ipif_t *ipif; 14205 14206 ipif = ipif_get_next_ipif(NULL, ill); 14207 if (ipif == NULL) { 14208 discard: ire_refrele(ire); 14209 freemsg(mp); 14210 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14211 return (NULL); 14212 } 14213 new_ire = ire_ctable_lookup(dst, 0, 0, 14214 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14215 ipif_refrele(ipif); 14216 14217 if (new_ire != NULL) { 14218 /* 14219 * If the matching IRE_BROADCAST is part of an IPMP 14220 * group, then drop the packet unless our ill has been 14221 * nominated to receive for the group. 14222 */ 14223 if (IS_IPMP(new_ire->ire_ipif->ipif_ill) && 14224 new_ire->ire_rfq != q) { 14225 ire_refrele(new_ire); 14226 goto discard; 14227 } 14228 14229 /* 14230 * In the special case of multirouted broadcast 14231 * packets, we unconditionally need to "gateway" 14232 * them to the appropriate interface here. 14233 * In the normal case, this cannot happen, because 14234 * there is no broadcast IRE tagged with the 14235 * RTF_MULTIRT flag. 14236 */ 14237 if (new_ire->ire_flags & RTF_MULTIRT) { 14238 ire_refrele(new_ire); 14239 if (ire->ire_rfq != NULL) { 14240 q = ire->ire_rfq; 14241 *qp = q; 14242 } 14243 } else { 14244 ire_refrele(ire); 14245 ire = new_ire; 14246 } 14247 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14248 if (!ipst->ips_ip_g_forward_directed_bcast) { 14249 /* 14250 * Free the message if 14251 * ip_g_forward_directed_bcast is turned 14252 * off for non-local broadcast. 14253 */ 14254 ire_refrele(ire); 14255 freemsg(mp); 14256 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14257 return (NULL); 14258 } 14259 } else { 14260 /* 14261 * This CGTP packet successfully passed the 14262 * CGTP filter, but the related CGTP 14263 * broadcast IRE has not been found, 14264 * meaning that the redundant ipif is 14265 * probably down. However, if we discarded 14266 * this packet, its duplicate would be 14267 * filtered out by the CGTP filter so none 14268 * of them would get through. So we keep 14269 * going with this one. 14270 */ 14271 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14272 if (ire->ire_rfq != NULL) { 14273 q = ire->ire_rfq; 14274 *qp = q; 14275 } 14276 } 14277 } 14278 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14279 /* 14280 * Verify that there are not more then one 14281 * IRE_BROADCAST with this broadcast address which 14282 * has ire_stq set. 14283 * TODO: simplify, loop over all IRE's 14284 */ 14285 ire_t *ire1; 14286 int num_stq = 0; 14287 mblk_t *mp1; 14288 14289 /* Find the first one with ire_stq set */ 14290 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14291 for (ire1 = ire; ire1 && 14292 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14293 ire1 = ire1->ire_next) 14294 ; 14295 if (ire1) { 14296 ire_refrele(ire); 14297 ire = ire1; 14298 IRE_REFHOLD(ire); 14299 } 14300 14301 /* Check if there are additional ones with stq set */ 14302 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14303 if (ire->ire_addr != ire1->ire_addr) 14304 break; 14305 if (ire1->ire_stq) { 14306 num_stq++; 14307 break; 14308 } 14309 } 14310 rw_exit(&ire->ire_bucket->irb_lock); 14311 if (num_stq == 1 && ire->ire_stq != NULL) { 14312 ip1dbg(("ip_rput_process_broadcast: directed " 14313 "broadcast to 0x%x\n", 14314 ntohl(ire->ire_addr))); 14315 mp1 = copymsg(mp); 14316 if (mp1) { 14317 switch (ipha->ipha_protocol) { 14318 case IPPROTO_UDP: 14319 ip_udp_input(q, mp1, ipha, ire, ill); 14320 break; 14321 default: 14322 ip_proto_input(q, mp1, ipha, ire, ill, 14323 0); 14324 break; 14325 } 14326 } 14327 /* 14328 * Adjust ttl to 2 (1+1 - the forward engine 14329 * will decrement it by one. 14330 */ 14331 if (ip_csum_hdr(ipha)) { 14332 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14333 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14334 freemsg(mp); 14335 ire_refrele(ire); 14336 return (NULL); 14337 } 14338 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14339 ipha->ipha_hdr_checksum = 0; 14340 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14341 ip_rput_process_forward(q, mp, ire, ipha, 14342 ill, ll_multicast, B_FALSE); 14343 ire_refrele(ire); 14344 return (NULL); 14345 } 14346 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14347 ntohl(ire->ire_addr))); 14348 } 14349 14350 /* Restore any hardware checksum flags */ 14351 DB_CKSUMFLAGS(mp) = hcksumflags; 14352 return (ire); 14353 } 14354 14355 /* ARGSUSED */ 14356 static boolean_t 14357 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14358 int *ll_multicast, ipaddr_t *dstp) 14359 { 14360 ip_stack_t *ipst = ill->ill_ipst; 14361 14362 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14363 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14364 ntohs(ipha->ipha_length)); 14365 14366 /* 14367 * So that we don't end up with dups, only one ill in an IPMP group is 14368 * nominated to receive multicast traffic. 14369 */ 14370 if (IS_UNDER_IPMP(ill) && !ill->ill_nom_cast) 14371 goto drop_pkt; 14372 14373 /* 14374 * Forward packets only if we have joined the allmulti 14375 * group on this interface. 14376 */ 14377 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14378 int retval; 14379 14380 /* 14381 * Clear the indication that this may have hardware 14382 * checksum as we are not using it. 14383 */ 14384 DB_CKSUMFLAGS(mp) = 0; 14385 retval = ip_mforward(ill, ipha, mp); 14386 /* ip_mforward updates mib variables if needed */ 14387 /* clear b_prev - used by ip_mroute_decap */ 14388 mp->b_prev = NULL; 14389 14390 switch (retval) { 14391 case 0: 14392 /* 14393 * pkt is okay and arrived on phyint. 14394 * 14395 * If we are running as a multicast router 14396 * we need to see all IGMP and/or PIM packets. 14397 */ 14398 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14399 (ipha->ipha_protocol == IPPROTO_PIM)) { 14400 goto done; 14401 } 14402 break; 14403 case -1: 14404 /* pkt is mal-formed, toss it */ 14405 goto drop_pkt; 14406 case 1: 14407 /* pkt is okay and arrived on a tunnel */ 14408 /* 14409 * If we are running a multicast router 14410 * we need to see all igmp packets. 14411 */ 14412 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14413 *dstp = INADDR_BROADCAST; 14414 *ll_multicast = 1; 14415 return (B_FALSE); 14416 } 14417 14418 goto drop_pkt; 14419 } 14420 } 14421 14422 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14423 /* 14424 * This might just be caused by the fact that 14425 * multiple IP Multicast addresses map to the same 14426 * link layer multicast - no need to increment counter! 14427 */ 14428 freemsg(mp); 14429 return (B_TRUE); 14430 } 14431 done: 14432 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14433 /* 14434 * This assumes the we deliver to all streams for multicast 14435 * and broadcast packets. 14436 */ 14437 *dstp = INADDR_BROADCAST; 14438 *ll_multicast = 1; 14439 return (B_FALSE); 14440 drop_pkt: 14441 ip2dbg(("ip_rput: drop pkt\n")); 14442 freemsg(mp); 14443 return (B_TRUE); 14444 } 14445 14446 /* 14447 * This function is used to both return an indication of whether or not 14448 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14449 * and in doing so, determine whether or not it is broadcast vs multicast. 14450 * For it to be a broadcast packet, we must have the appropriate mblk_t 14451 * hanging off the ill_t. If this is either not present or doesn't match 14452 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14453 * to be multicast. Thus NICs that have no broadcast address (or no 14454 * capability for one, such as point to point links) cannot return as 14455 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14456 * the return values simplifies the current use of the return value of this 14457 * function, which is to pass through the multicast/broadcast characteristic 14458 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14459 * changing the return value to some other symbol demands the appropriate 14460 * "translation" when hpe_flags is set prior to calling hook_run() for 14461 * packet events. 14462 */ 14463 int 14464 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14465 { 14466 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14467 mblk_t *bmp; 14468 14469 if (ind->dl_group_address) { 14470 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14471 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14472 MBLKL(mb) && 14473 (bmp = ill->ill_bcast_mp) != NULL) { 14474 dl_unitdata_req_t *dlur; 14475 uint8_t *bphys_addr; 14476 14477 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14478 if (ill->ill_sap_length < 0) 14479 bphys_addr = (uchar_t *)dlur + 14480 dlur->dl_dest_addr_offset; 14481 else 14482 bphys_addr = (uchar_t *)dlur + 14483 dlur->dl_dest_addr_offset + 14484 ill->ill_sap_length; 14485 14486 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14487 bphys_addr, ind->dl_dest_addr_length) == 0) { 14488 return (HPE_BROADCAST); 14489 } 14490 return (HPE_MULTICAST); 14491 } 14492 return (HPE_MULTICAST); 14493 } 14494 return (0); 14495 } 14496 14497 static boolean_t 14498 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14499 int *ll_multicast, mblk_t **mpp) 14500 { 14501 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14502 boolean_t must_copy = B_FALSE; 14503 struct iocblk *iocp; 14504 ipha_t *ipha; 14505 ip_stack_t *ipst = ill->ill_ipst; 14506 14507 #define rptr ((uchar_t *)ipha) 14508 14509 first_mp = *first_mpp; 14510 mp = *mpp; 14511 14512 ASSERT(first_mp == mp); 14513 14514 /* 14515 * if db_ref > 1 then copymsg and free original. Packet may be 14516 * changed and do not want other entity who has a reference to this 14517 * message to trip over the changes. This is a blind change because 14518 * trying to catch all places that might change packet is too 14519 * difficult (since it may be a module above this one) 14520 * 14521 * This corresponds to the non-fast path case. We walk down the full 14522 * chain in this case, and check the db_ref count of all the dblks, 14523 * and do a copymsg if required. It is possible that the db_ref counts 14524 * of the data blocks in the mblk chain can be different. 14525 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14526 * count of 1, followed by a M_DATA block with a ref count of 2, if 14527 * 'snoop' is running. 14528 */ 14529 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14530 if (mp1->b_datap->db_ref > 1) { 14531 must_copy = B_TRUE; 14532 break; 14533 } 14534 } 14535 14536 if (must_copy) { 14537 mp1 = copymsg(mp); 14538 if (mp1 == NULL) { 14539 for (mp1 = mp; mp1 != NULL; 14540 mp1 = mp1->b_cont) { 14541 mp1->b_next = NULL; 14542 mp1->b_prev = NULL; 14543 } 14544 freemsg(mp); 14545 if (ill != NULL) { 14546 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14547 } else { 14548 BUMP_MIB(&ipst->ips_ip_mib, 14549 ipIfStatsInDiscards); 14550 } 14551 return (B_TRUE); 14552 } 14553 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14554 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14555 /* Copy b_prev - used by ip_mroute_decap */ 14556 to_mp->b_prev = from_mp->b_prev; 14557 from_mp->b_prev = NULL; 14558 } 14559 *first_mpp = first_mp = mp1; 14560 freemsg(mp); 14561 mp = mp1; 14562 *mpp = mp1; 14563 } 14564 14565 ipha = (ipha_t *)mp->b_rptr; 14566 14567 /* 14568 * previous code has a case for M_DATA. 14569 * We want to check how that happens. 14570 */ 14571 ASSERT(first_mp->b_datap->db_type != M_DATA); 14572 switch (first_mp->b_datap->db_type) { 14573 case M_PROTO: 14574 case M_PCPROTO: 14575 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14576 DL_UNITDATA_IND) { 14577 /* Go handle anything other than data elsewhere. */ 14578 ip_rput_dlpi(q, mp); 14579 return (B_TRUE); 14580 } 14581 14582 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14583 /* Ditch the DLPI header. */ 14584 mp1 = mp->b_cont; 14585 ASSERT(first_mp == mp); 14586 *first_mpp = mp1; 14587 freeb(mp); 14588 *mpp = mp1; 14589 return (B_FALSE); 14590 case M_IOCACK: 14591 ip1dbg(("got iocack ")); 14592 iocp = (struct iocblk *)mp->b_rptr; 14593 switch (iocp->ioc_cmd) { 14594 case DL_IOC_HDR_INFO: 14595 ill = (ill_t *)q->q_ptr; 14596 ill_fastpath_ack(ill, mp); 14597 return (B_TRUE); 14598 default: 14599 putnext(q, mp); 14600 return (B_TRUE); 14601 } 14602 /* FALLTHRU */ 14603 case M_ERROR: 14604 case M_HANGUP: 14605 /* 14606 * Since this is on the ill stream we unconditionally 14607 * bump up the refcount 14608 */ 14609 ill_refhold(ill); 14610 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14611 return (B_TRUE); 14612 case M_CTL: 14613 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14614 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14615 IPHADA_M_CTL)) { 14616 /* 14617 * It's an IPsec accelerated packet. 14618 * Make sure that the ill from which we received the 14619 * packet has enabled IPsec hardware acceleration. 14620 */ 14621 if (!(ill->ill_capabilities & 14622 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14623 /* IPsec kstats: bean counter */ 14624 freemsg(mp); 14625 return (B_TRUE); 14626 } 14627 14628 /* 14629 * Make mp point to the mblk following the M_CTL, 14630 * then process according to type of mp. 14631 * After this processing, first_mp will point to 14632 * the data-attributes and mp to the pkt following 14633 * the M_CTL. 14634 */ 14635 mp = first_mp->b_cont; 14636 if (mp == NULL) { 14637 freemsg(first_mp); 14638 return (B_TRUE); 14639 } 14640 /* 14641 * A Hardware Accelerated packet can only be M_DATA 14642 * ESP or AH packet. 14643 */ 14644 if (mp->b_datap->db_type != M_DATA) { 14645 /* non-M_DATA IPsec accelerated packet */ 14646 IPSECHW_DEBUG(IPSECHW_PKT, 14647 ("non-M_DATA IPsec accelerated pkt\n")); 14648 freemsg(first_mp); 14649 return (B_TRUE); 14650 } 14651 ipha = (ipha_t *)mp->b_rptr; 14652 if (ipha->ipha_protocol != IPPROTO_AH && 14653 ipha->ipha_protocol != IPPROTO_ESP) { 14654 IPSECHW_DEBUG(IPSECHW_PKT, 14655 ("non-M_DATA IPsec accelerated pkt\n")); 14656 freemsg(first_mp); 14657 return (B_TRUE); 14658 } 14659 *mpp = mp; 14660 return (B_FALSE); 14661 } 14662 putnext(q, mp); 14663 return (B_TRUE); 14664 case M_IOCNAK: 14665 ip1dbg(("got iocnak ")); 14666 iocp = (struct iocblk *)mp->b_rptr; 14667 switch (iocp->ioc_cmd) { 14668 case DL_IOC_HDR_INFO: 14669 ip_rput_other(NULL, q, mp, NULL); 14670 return (B_TRUE); 14671 default: 14672 break; 14673 } 14674 /* FALLTHRU */ 14675 default: 14676 putnext(q, mp); 14677 return (B_TRUE); 14678 } 14679 } 14680 14681 /* Read side put procedure. Packets coming from the wire arrive here. */ 14682 void 14683 ip_rput(queue_t *q, mblk_t *mp) 14684 { 14685 ill_t *ill; 14686 union DL_primitives *dl; 14687 14688 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14689 14690 ill = (ill_t *)q->q_ptr; 14691 14692 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14693 /* 14694 * If things are opening or closing, only accept high-priority 14695 * DLPI messages. (On open ill->ill_ipif has not yet been 14696 * created; on close, things hanging off the ill may have been 14697 * freed already.) 14698 */ 14699 dl = (union DL_primitives *)mp->b_rptr; 14700 if (DB_TYPE(mp) != M_PCPROTO || 14701 dl->dl_primitive == DL_UNITDATA_IND) { 14702 inet_freemsg(mp); 14703 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14704 "ip_rput_end: q %p (%S)", q, "uninit"); 14705 return; 14706 } 14707 } 14708 14709 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14710 "ip_rput_end: q %p (%S)", q, "end"); 14711 14712 ip_input(ill, NULL, mp, NULL); 14713 } 14714 14715 static mblk_t * 14716 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14717 { 14718 mblk_t *mp1; 14719 boolean_t adjusted = B_FALSE; 14720 ip_stack_t *ipst = ill->ill_ipst; 14721 14722 IP_STAT(ipst, ip_db_ref); 14723 /* 14724 * The IP_RECVSLLA option depends on having the 14725 * link layer header. First check that: 14726 * a> the underlying device is of type ether, 14727 * since this option is currently supported only 14728 * over ethernet. 14729 * b> there is enough room to copy over the link 14730 * layer header. 14731 * 14732 * Once the checks are done, adjust rptr so that 14733 * the link layer header will be copied via 14734 * copymsg. Note that, IFT_ETHER may be returned 14735 * by some non-ethernet drivers but in this case 14736 * the second check will fail. 14737 */ 14738 if (ill->ill_type == IFT_ETHER && 14739 (mp->b_rptr - mp->b_datap->db_base) >= 14740 sizeof (struct ether_header)) { 14741 mp->b_rptr -= sizeof (struct ether_header); 14742 adjusted = B_TRUE; 14743 } 14744 mp1 = copymsg(mp); 14745 14746 if (mp1 == NULL) { 14747 mp->b_next = NULL; 14748 /* clear b_prev - used by ip_mroute_decap */ 14749 mp->b_prev = NULL; 14750 freemsg(mp); 14751 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14752 return (NULL); 14753 } 14754 14755 if (adjusted) { 14756 /* 14757 * Copy is done. Restore the pointer in 14758 * the _new_ mblk 14759 */ 14760 mp1->b_rptr += sizeof (struct ether_header); 14761 } 14762 14763 /* Copy b_prev - used by ip_mroute_decap */ 14764 mp1->b_prev = mp->b_prev; 14765 mp->b_prev = NULL; 14766 14767 /* preserve the hardware checksum flags and data, if present */ 14768 if (DB_CKSUMFLAGS(mp) != 0) { 14769 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14770 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14771 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14772 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14773 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14774 } 14775 14776 freemsg(mp); 14777 return (mp1); 14778 } 14779 14780 #define ADD_TO_CHAIN(head, tail, cnt, mp) { \ 14781 if (tail != NULL) \ 14782 tail->b_next = mp; \ 14783 else \ 14784 head = mp; \ 14785 tail = mp; \ 14786 cnt++; \ 14787 } 14788 14789 /* 14790 * Direct read side procedure capable of dealing with chains. GLDv3 based 14791 * drivers call this function directly with mblk chains while STREAMS 14792 * read side procedure ip_rput() calls this for single packet with ip_ring 14793 * set to NULL to process one packet at a time. 14794 * 14795 * The ill will always be valid if this function is called directly from 14796 * the driver. 14797 * 14798 * If ip_input() is called from GLDv3: 14799 * 14800 * - This must be a non-VLAN IP stream. 14801 * - 'mp' is either an untagged or a special priority-tagged packet. 14802 * - Any VLAN tag that was in the MAC header has been stripped. 14803 * 14804 * If the IP header in packet is not 32-bit aligned, every message in the 14805 * chain will be aligned before further operations. This is required on SPARC 14806 * platform. 14807 */ 14808 /* ARGSUSED */ 14809 void 14810 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14811 struct mac_header_info_s *mhip) 14812 { 14813 ipaddr_t dst = NULL; 14814 ipaddr_t prev_dst; 14815 ire_t *ire = NULL; 14816 ipha_t *ipha; 14817 uint_t pkt_len; 14818 ssize_t len; 14819 uint_t opt_len; 14820 int ll_multicast; 14821 int cgtp_flt_pkt; 14822 queue_t *q = ill->ill_rq; 14823 squeue_t *curr_sqp = NULL; 14824 mblk_t *head = NULL; 14825 mblk_t *tail = NULL; 14826 mblk_t *first_mp; 14827 int cnt = 0; 14828 ip_stack_t *ipst = ill->ill_ipst; 14829 mblk_t *mp; 14830 mblk_t *dmp; 14831 uint8_t tag; 14832 14833 ASSERT(mp_chain != NULL); 14834 ASSERT(ill != NULL); 14835 14836 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14837 14838 tag = (ip_ring != NULL) ? SQTAG_IP_INPUT_RX_RING : SQTAG_IP_INPUT; 14839 14840 #define rptr ((uchar_t *)ipha) 14841 14842 while (mp_chain != NULL) { 14843 mp = mp_chain; 14844 mp_chain = mp_chain->b_next; 14845 mp->b_next = NULL; 14846 ll_multicast = 0; 14847 14848 /* 14849 * We do ire caching from one iteration to 14850 * another. In the event the packet chain contains 14851 * all packets from the same dst, this caching saves 14852 * an ire_cache_lookup for each of the succeeding 14853 * packets in a packet chain. 14854 */ 14855 prev_dst = dst; 14856 14857 /* 14858 * if db_ref > 1 then copymsg and free original. Packet 14859 * may be changed and we do not want the other entity 14860 * who has a reference to this message to trip over the 14861 * changes. This is a blind change because trying to 14862 * catch all places that might change the packet is too 14863 * difficult. 14864 * 14865 * This corresponds to the fast path case, where we have 14866 * a chain of M_DATA mblks. We check the db_ref count 14867 * of only the 1st data block in the mblk chain. There 14868 * doesn't seem to be a reason why a device driver would 14869 * send up data with varying db_ref counts in the mblk 14870 * chain. In any case the Fast path is a private 14871 * interface, and our drivers don't do such a thing. 14872 * Given the above assumption, there is no need to walk 14873 * down the entire mblk chain (which could have a 14874 * potential performance problem) 14875 * 14876 * The "(DB_REF(mp) > 1)" check was moved from ip_rput() 14877 * to here because of exclusive ip stacks and vnics. 14878 * Packets transmitted from exclusive stack over vnic 14879 * can have db_ref > 1 and when it gets looped back to 14880 * another vnic in a different zone, you have ip_input() 14881 * getting dblks with db_ref > 1. So if someone 14882 * complains of TCP performance under this scenario, 14883 * take a serious look here on the impact of copymsg(). 14884 */ 14885 14886 if (DB_REF(mp) > 1) { 14887 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14888 continue; 14889 } 14890 14891 /* 14892 * Check and align the IP header. 14893 */ 14894 first_mp = mp; 14895 if (DB_TYPE(mp) == M_DATA) { 14896 dmp = mp; 14897 } else if (DB_TYPE(mp) == M_PROTO && 14898 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14899 dmp = mp->b_cont; 14900 } else { 14901 dmp = NULL; 14902 } 14903 if (dmp != NULL) { 14904 /* 14905 * IP header ptr not aligned? 14906 * OR IP header not complete in first mblk 14907 */ 14908 if (!OK_32PTR(dmp->b_rptr) || 14909 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14910 if (!ip_check_and_align_header(q, dmp, ipst)) 14911 continue; 14912 } 14913 } 14914 14915 /* 14916 * ip_input fast path 14917 */ 14918 14919 /* mblk type is not M_DATA */ 14920 if (DB_TYPE(mp) != M_DATA) { 14921 if (ip_rput_process_notdata(q, &first_mp, ill, 14922 &ll_multicast, &mp)) 14923 continue; 14924 14925 /* 14926 * The only way we can get here is if we had a 14927 * packet that was either a DL_UNITDATA_IND or 14928 * an M_CTL for an IPsec accelerated packet. 14929 * 14930 * In either case, the first_mp will point to 14931 * the leading M_PROTO or M_CTL. 14932 */ 14933 ASSERT(first_mp != NULL); 14934 } else if (mhip != NULL) { 14935 /* 14936 * ll_multicast is set here so that it is ready 14937 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 14938 * manipulates ll_multicast in the same fashion when 14939 * called from ip_rput_process_notdata. 14940 */ 14941 switch (mhip->mhi_dsttype) { 14942 case MAC_ADDRTYPE_MULTICAST : 14943 ll_multicast = HPE_MULTICAST; 14944 break; 14945 case MAC_ADDRTYPE_BROADCAST : 14946 ll_multicast = HPE_BROADCAST; 14947 break; 14948 default : 14949 break; 14950 } 14951 } 14952 14953 /* Only M_DATA can come here and it is always aligned */ 14954 ASSERT(DB_TYPE(mp) == M_DATA); 14955 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 14956 14957 ipha = (ipha_t *)mp->b_rptr; 14958 len = mp->b_wptr - rptr; 14959 pkt_len = ntohs(ipha->ipha_length); 14960 14961 /* 14962 * We must count all incoming packets, even if they end 14963 * up being dropped later on. 14964 */ 14965 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 14966 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 14967 14968 /* multiple mblk or too short */ 14969 len -= pkt_len; 14970 if (len != 0) { 14971 /* 14972 * Make sure we have data length consistent 14973 * with the IP header. 14974 */ 14975 if (mp->b_cont == NULL) { 14976 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14977 BUMP_MIB(ill->ill_ip_mib, 14978 ipIfStatsInHdrErrors); 14979 ip2dbg(("ip_input: drop pkt\n")); 14980 freemsg(mp); 14981 continue; 14982 } 14983 mp->b_wptr = rptr + pkt_len; 14984 } else if ((len += msgdsize(mp->b_cont)) != 0) { 14985 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14986 BUMP_MIB(ill->ill_ip_mib, 14987 ipIfStatsInHdrErrors); 14988 ip2dbg(("ip_input: drop pkt\n")); 14989 freemsg(mp); 14990 continue; 14991 } 14992 (void) adjmsg(mp, -len); 14993 /* 14994 * adjmsg may have freed an mblk from the chain, 14995 * hence invalidate any hw checksum here. This 14996 * will force IP to calculate the checksum in 14997 * sw, but only for this packet. 14998 */ 14999 DB_CKSUMFLAGS(mp) = 0; 15000 IP_STAT(ipst, ip_multimblk3); 15001 } 15002 } 15003 15004 /* Obtain the dst of the current packet */ 15005 dst = ipha->ipha_dst; 15006 15007 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 15008 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 15009 ipha, ip6_t *, NULL, int, 0); 15010 15011 /* 15012 * The following test for loopback is faster than 15013 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15014 * operations. 15015 * Note that these addresses are always in network byte order 15016 */ 15017 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15018 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15019 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15020 freemsg(mp); 15021 continue; 15022 } 15023 15024 /* 15025 * The event for packets being received from a 'physical' 15026 * interface is placed after validation of the source and/or 15027 * destination address as being local so that packets can be 15028 * redirected to loopback addresses using ipnat. 15029 */ 15030 DTRACE_PROBE4(ip4__physical__in__start, 15031 ill_t *, ill, ill_t *, NULL, 15032 ipha_t *, ipha, mblk_t *, first_mp); 15033 15034 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15035 ipst->ips_ipv4firewall_physical_in, 15036 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15037 15038 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15039 15040 if (first_mp == NULL) { 15041 continue; 15042 } 15043 dst = ipha->ipha_dst; 15044 /* 15045 * Attach any necessary label information to 15046 * this packet 15047 */ 15048 if (is_system_labeled() && 15049 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15050 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15051 freemsg(mp); 15052 continue; 15053 } 15054 15055 if (ipst->ips_ip4_observe.he_interested) { 15056 zoneid_t dzone; 15057 15058 /* 15059 * On the inbound path the src zone will be unknown as 15060 * this packet has come from the wire. 15061 */ 15062 dzone = ip_get_zoneid_v4(dst, mp, ipst, ALL_ZONES); 15063 ipobs_hook(mp, IPOBS_HOOK_INBOUND, ALL_ZONES, dzone, 15064 ill, ipst); 15065 } 15066 15067 /* 15068 * Reuse the cached ire only if the ipha_dst of the previous 15069 * packet is the same as the current packet AND it is not 15070 * INADDR_ANY. 15071 */ 15072 if (!(dst == prev_dst && dst != INADDR_ANY) && 15073 (ire != NULL)) { 15074 ire_refrele(ire); 15075 ire = NULL; 15076 } 15077 15078 opt_len = ipha->ipha_version_and_hdr_length - 15079 IP_SIMPLE_HDR_VERSION; 15080 15081 /* 15082 * Check to see if we can take the fastpath. 15083 * That is possible if the following conditions are met 15084 * o Tsol disabled 15085 * o CGTP disabled 15086 * o ipp_action_count is 0 15087 * o no options in the packet 15088 * o not a RSVP packet 15089 * o not a multicast packet 15090 * o ill not in IP_DHCPINIT_IF mode 15091 */ 15092 if (!is_system_labeled() && 15093 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15094 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15095 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15096 if (ire == NULL) 15097 ire = ire_cache_lookup_simple(dst, ipst); 15098 /* 15099 * Unless forwarding is enabled, dont call 15100 * ip_fast_forward(). Incoming packet is for forwarding 15101 */ 15102 if ((ill->ill_flags & ILLF_ROUTER) && 15103 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15104 ire = ip_fast_forward(ire, dst, ill, mp); 15105 continue; 15106 } 15107 /* incoming packet is for local consumption */ 15108 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15109 goto local; 15110 } 15111 15112 /* 15113 * Disable ire caching for anything more complex 15114 * than the simple fast path case we checked for above. 15115 */ 15116 if (ire != NULL) { 15117 ire_refrele(ire); 15118 ire = NULL; 15119 } 15120 15121 /* 15122 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15123 * server to unicast DHCP packets to a DHCP client using the 15124 * IP address it is offering to the client. This can be 15125 * disabled through the "broadcast bit", but not all DHCP 15126 * servers honor that bit. Therefore, to interoperate with as 15127 * many DHCP servers as possible, the DHCP client allows the 15128 * server to unicast, but we treat those packets as broadcast 15129 * here. Note that we don't rewrite the packet itself since 15130 * (a) that would mess up the checksums and (b) the DHCP 15131 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15132 * hand it the packet regardless. 15133 */ 15134 if (ill->ill_dhcpinit != 0 && 15135 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15136 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15137 udpha_t *udpha; 15138 15139 /* 15140 * Reload ipha since pullupmsg() can change b_rptr. 15141 */ 15142 ipha = (ipha_t *)mp->b_rptr; 15143 udpha = (udpha_t *)&ipha[1]; 15144 15145 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15146 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15147 mblk_t *, mp); 15148 dst = INADDR_BROADCAST; 15149 } 15150 } 15151 15152 /* Full-blown slow path */ 15153 if (opt_len != 0) { 15154 if (len != 0) 15155 IP_STAT(ipst, ip_multimblk4); 15156 else 15157 IP_STAT(ipst, ip_ipoptions); 15158 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15159 &dst, ipst)) 15160 continue; 15161 } 15162 15163 /* 15164 * Invoke the CGTP (multirouting) filtering module to process 15165 * the incoming packet. Packets identified as duplicates 15166 * must be discarded. Filtering is active only if the 15167 * the ip_cgtp_filter ndd variable is non-zero. 15168 */ 15169 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15170 if (ipst->ips_ip_cgtp_filter && 15171 ipst->ips_ip_cgtp_filter_ops != NULL) { 15172 netstackid_t stackid; 15173 15174 stackid = ipst->ips_netstack->netstack_stackid; 15175 cgtp_flt_pkt = 15176 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15177 ill->ill_phyint->phyint_ifindex, mp); 15178 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15179 freemsg(first_mp); 15180 continue; 15181 } 15182 } 15183 15184 /* 15185 * If rsvpd is running, let RSVP daemon handle its processing 15186 * and forwarding of RSVP multicast/unicast packets. 15187 * If rsvpd is not running but mrouted is running, RSVP 15188 * multicast packets are forwarded as multicast traffic 15189 * and RSVP unicast packets are forwarded by unicast router. 15190 * If neither rsvpd nor mrouted is running, RSVP multicast 15191 * packets are not forwarded, but the unicast packets are 15192 * forwarded like unicast traffic. 15193 */ 15194 if (ipha->ipha_protocol == IPPROTO_RSVP && 15195 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15196 NULL) { 15197 /* RSVP packet and rsvpd running. Treat as ours */ 15198 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15199 /* 15200 * This assumes that we deliver to all streams for 15201 * multicast and broadcast packets. 15202 * We have to force ll_multicast to 1 to handle the 15203 * M_DATA messages passed in from ip_mroute_decap. 15204 */ 15205 dst = INADDR_BROADCAST; 15206 ll_multicast = 1; 15207 } else if (CLASSD(dst)) { 15208 /* packet is multicast */ 15209 mp->b_next = NULL; 15210 if (ip_rput_process_multicast(q, mp, ill, ipha, 15211 &ll_multicast, &dst)) 15212 continue; 15213 } 15214 15215 if (ire == NULL) { 15216 ire = ire_cache_lookup(dst, ALL_ZONES, 15217 msg_getlabel(mp), ipst); 15218 } 15219 15220 if (ire != NULL && ire->ire_stq != NULL && 15221 ire->ire_zoneid != GLOBAL_ZONEID && 15222 ire->ire_zoneid != ALL_ZONES) { 15223 /* 15224 * Should only use IREs that are visible from the 15225 * global zone for forwarding. 15226 */ 15227 ire_refrele(ire); 15228 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15229 msg_getlabel(mp), ipst); 15230 } 15231 15232 if (ire == NULL) { 15233 /* 15234 * No IRE for this destination, so it can't be for us. 15235 * Unless we are forwarding, drop the packet. 15236 * We have to let source routed packets through 15237 * since we don't yet know if they are 'ping -l' 15238 * packets i.e. if they will go out over the 15239 * same interface as they came in on. 15240 */ 15241 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15242 if (ire == NULL) 15243 continue; 15244 } 15245 15246 /* 15247 * Broadcast IRE may indicate either broadcast or 15248 * multicast packet 15249 */ 15250 if (ire->ire_type == IRE_BROADCAST) { 15251 /* 15252 * Skip broadcast checks if packet is UDP multicast; 15253 * we'd rather not enter ip_rput_process_broadcast() 15254 * unless the packet is broadcast for real, since 15255 * that routine is a no-op for multicast. 15256 */ 15257 if (ipha->ipha_protocol != IPPROTO_UDP || 15258 !CLASSD(ipha->ipha_dst)) { 15259 ire = ip_rput_process_broadcast(&q, mp, 15260 ire, ipha, ill, dst, cgtp_flt_pkt, 15261 ll_multicast); 15262 if (ire == NULL) 15263 continue; 15264 } 15265 } else if (ire->ire_stq != NULL) { 15266 /* fowarding? */ 15267 ip_rput_process_forward(q, mp, ire, ipha, ill, 15268 ll_multicast, B_FALSE); 15269 /* ip_rput_process_forward consumed the packet */ 15270 continue; 15271 } 15272 15273 local: 15274 /* 15275 * If the queue in the ire is different to the ingress queue 15276 * then we need to check to see if we can accept the packet. 15277 * Note that for multicast packets and broadcast packets sent 15278 * to a broadcast address which is shared between multiple 15279 * interfaces we should not do this since we just got a random 15280 * broadcast ire. 15281 */ 15282 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15283 ire = ip_check_multihome(&ipha->ipha_dst, ire, ill); 15284 if (ire == NULL) { 15285 /* Drop packet */ 15286 BUMP_MIB(ill->ill_ip_mib, 15287 ipIfStatsForwProhibits); 15288 freemsg(mp); 15289 continue; 15290 } 15291 if (ire->ire_rfq != NULL) 15292 q = ire->ire_rfq; 15293 } 15294 15295 switch (ipha->ipha_protocol) { 15296 case IPPROTO_TCP: 15297 ASSERT(first_mp == mp); 15298 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15299 mp, 0, q, ip_ring)) != NULL) { 15300 if (curr_sqp == NULL) { 15301 curr_sqp = GET_SQUEUE(mp); 15302 ASSERT(cnt == 0); 15303 cnt++; 15304 head = tail = mp; 15305 } else if (curr_sqp == GET_SQUEUE(mp)) { 15306 ASSERT(tail != NULL); 15307 cnt++; 15308 tail->b_next = mp; 15309 tail = mp; 15310 } else { 15311 /* 15312 * A different squeue. Send the 15313 * chain for the previous squeue on 15314 * its way. This shouldn't happen 15315 * often unless interrupt binding 15316 * changes. 15317 */ 15318 IP_STAT(ipst, ip_input_multi_squeue); 15319 SQUEUE_ENTER(curr_sqp, head, 15320 tail, cnt, SQ_PROCESS, tag); 15321 curr_sqp = GET_SQUEUE(mp); 15322 head = mp; 15323 tail = mp; 15324 cnt = 1; 15325 } 15326 } 15327 continue; 15328 case IPPROTO_UDP: 15329 ASSERT(first_mp == mp); 15330 ip_udp_input(q, mp, ipha, ire, ill); 15331 continue; 15332 case IPPROTO_SCTP: 15333 ASSERT(first_mp == mp); 15334 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15335 q, dst); 15336 /* ire has been released by ip_sctp_input */ 15337 ire = NULL; 15338 continue; 15339 case IPPROTO_ENCAP: 15340 case IPPROTO_IPV6: 15341 ASSERT(first_mp == mp); 15342 if (ip_iptun_input(NULL, mp, ipha, ill, ire, ipst)) 15343 break; 15344 /* 15345 * If there was no IP tunnel data-link bound to 15346 * receive this packet, then we fall through to 15347 * allow potential raw sockets bound to either of 15348 * these protocols to pick it up. 15349 */ 15350 default: 15351 ip_proto_input(q, first_mp, ipha, ire, ill, 0); 15352 continue; 15353 } 15354 } 15355 15356 if (ire != NULL) 15357 ire_refrele(ire); 15358 15359 if (head != NULL) 15360 SQUEUE_ENTER(curr_sqp, head, tail, cnt, SQ_PROCESS, tag); 15361 15362 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15363 "ip_input_end: q %p (%S)", q, "end"); 15364 #undef rptr 15365 } 15366 15367 /* 15368 * ip_accept_tcp() - This function is called by the squeue when it retrieves 15369 * a chain of packets in the poll mode. The packets have gone through the 15370 * data link processing but not IP processing. For performance and latency 15371 * reasons, the squeue wants to process the chain in line instead of feeding 15372 * it back via ip_input path. 15373 * 15374 * So this is a light weight function which checks to see if the packets 15375 * retrived are indeed TCP packets (TCP squeue always polls TCP soft ring 15376 * but we still do the paranoid check) meant for local machine and we don't 15377 * have labels etc enabled. Packets that meet the criterion are returned to 15378 * the squeue and processed inline while the rest go via ip_input path. 15379 */ 15380 /*ARGSUSED*/ 15381 mblk_t * 15382 ip_accept_tcp(ill_t *ill, ill_rx_ring_t *ip_ring, squeue_t *target_sqp, 15383 mblk_t *mp_chain, mblk_t **last, uint_t *cnt) 15384 { 15385 mblk_t *mp; 15386 ipaddr_t dst = NULL; 15387 ipaddr_t prev_dst; 15388 ire_t *ire = NULL; 15389 ipha_t *ipha; 15390 uint_t pkt_len; 15391 ssize_t len; 15392 uint_t opt_len; 15393 queue_t *q = ill->ill_rq; 15394 squeue_t *curr_sqp; 15395 mblk_t *ahead = NULL; /* Accepted head */ 15396 mblk_t *atail = NULL; /* Accepted tail */ 15397 uint_t acnt = 0; /* Accepted count */ 15398 mblk_t *utail = NULL; /* Unaccepted head */ 15399 mblk_t *uhead = NULL; /* Unaccepted tail */ 15400 uint_t ucnt = 0; /* Unaccepted cnt */ 15401 ip_stack_t *ipst = ill->ill_ipst; 15402 15403 *cnt = 0; 15404 15405 ASSERT(ill != NULL); 15406 ASSERT(ip_ring != NULL); 15407 15408 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_accept_tcp: q %p", q); 15409 15410 #define rptr ((uchar_t *)ipha) 15411 15412 while (mp_chain != NULL) { 15413 mp = mp_chain; 15414 mp_chain = mp_chain->b_next; 15415 mp->b_next = NULL; 15416 15417 /* 15418 * We do ire caching from one iteration to 15419 * another. In the event the packet chain contains 15420 * all packets from the same dst, this caching saves 15421 * an ire_cache_lookup for each of the succeeding 15422 * packets in a packet chain. 15423 */ 15424 prev_dst = dst; 15425 15426 ipha = (ipha_t *)mp->b_rptr; 15427 len = mp->b_wptr - rptr; 15428 15429 ASSERT(!MBLK_RX_FANOUT_SLOWPATH(mp, ipha)); 15430 15431 /* 15432 * If it is a non TCP packet, or doesn't have H/W cksum, 15433 * or doesn't have min len, reject. 15434 */ 15435 if ((ipha->ipha_protocol != IPPROTO_TCP) || (len < 15436 (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH))) { 15437 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15438 continue; 15439 } 15440 15441 pkt_len = ntohs(ipha->ipha_length); 15442 if (len != pkt_len) { 15443 if (len > pkt_len) { 15444 mp->b_wptr = rptr + pkt_len; 15445 } else { 15446 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15447 continue; 15448 } 15449 } 15450 15451 opt_len = ipha->ipha_version_and_hdr_length - 15452 IP_SIMPLE_HDR_VERSION; 15453 dst = ipha->ipha_dst; 15454 15455 /* IP version bad or there are IP options */ 15456 if (opt_len && (!ip_rput_multimblk_ipoptions(q, ill, 15457 mp, &ipha, &dst, ipst))) 15458 continue; 15459 15460 if (is_system_labeled() || (ill->ill_dhcpinit != 0) || 15461 (ipst->ips_ip_cgtp_filter && 15462 ipst->ips_ip_cgtp_filter_ops != NULL)) { 15463 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15464 continue; 15465 } 15466 15467 /* 15468 * Reuse the cached ire only if the ipha_dst of the previous 15469 * packet is the same as the current packet AND it is not 15470 * INADDR_ANY. 15471 */ 15472 if (!(dst == prev_dst && dst != INADDR_ANY) && 15473 (ire != NULL)) { 15474 ire_refrele(ire); 15475 ire = NULL; 15476 } 15477 15478 if (ire == NULL) 15479 ire = ire_cache_lookup_simple(dst, ipst); 15480 15481 /* 15482 * Unless forwarding is enabled, dont call 15483 * ip_fast_forward(). Incoming packet is for forwarding 15484 */ 15485 if ((ill->ill_flags & ILLF_ROUTER) && 15486 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15487 15488 DTRACE_PROBE4(ip4__physical__in__start, 15489 ill_t *, ill, ill_t *, NULL, 15490 ipha_t *, ipha, mblk_t *, mp); 15491 15492 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15493 ipst->ips_ipv4firewall_physical_in, 15494 ill, NULL, ipha, mp, mp, 0, ipst); 15495 15496 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15497 15498 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15499 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, 15500 pkt_len); 15501 15502 if (mp != NULL) 15503 ire = ip_fast_forward(ire, dst, ill, mp); 15504 continue; 15505 } 15506 15507 /* incoming packet is for local consumption */ 15508 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15509 goto local_accept; 15510 15511 /* 15512 * Disable ire caching for anything more complex 15513 * than the simple fast path case we checked for above. 15514 */ 15515 if (ire != NULL) { 15516 ire_refrele(ire); 15517 ire = NULL; 15518 } 15519 15520 ire = ire_cache_lookup(dst, ALL_ZONES, msg_getlabel(mp), 15521 ipst); 15522 if (ire == NULL || ire->ire_type == IRE_BROADCAST || 15523 ire->ire_stq != NULL) { 15524 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15525 if (ire != NULL) { 15526 ire_refrele(ire); 15527 ire = NULL; 15528 } 15529 continue; 15530 } 15531 15532 local_accept: 15533 15534 if (ire->ire_rfq != q) { 15535 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15536 if (ire != NULL) { 15537 ire_refrele(ire); 15538 ire = NULL; 15539 } 15540 continue; 15541 } 15542 15543 /* 15544 * The event for packets being received from a 'physical' 15545 * interface is placed after validation of the source and/or 15546 * destination address as being local so that packets can be 15547 * redirected to loopback addresses using ipnat. 15548 */ 15549 DTRACE_PROBE4(ip4__physical__in__start, 15550 ill_t *, ill, ill_t *, NULL, 15551 ipha_t *, ipha, mblk_t *, mp); 15552 15553 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15554 ipst->ips_ipv4firewall_physical_in, 15555 ill, NULL, ipha, mp, mp, 0, ipst); 15556 15557 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15558 15559 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15560 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15561 15562 if (mp != NULL && 15563 (mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, mp, 15564 0, q, ip_ring)) != NULL) { 15565 if ((curr_sqp = GET_SQUEUE(mp)) == target_sqp) { 15566 ADD_TO_CHAIN(ahead, atail, acnt, mp); 15567 } else { 15568 SQUEUE_ENTER(curr_sqp, mp, mp, 1, 15569 SQ_FILL, SQTAG_IP_INPUT); 15570 } 15571 } 15572 } 15573 15574 if (ire != NULL) 15575 ire_refrele(ire); 15576 15577 if (uhead != NULL) 15578 ip_input(ill, ip_ring, uhead, NULL); 15579 15580 if (ahead != NULL) { 15581 *last = atail; 15582 *cnt = acnt; 15583 return (ahead); 15584 } 15585 15586 return (NULL); 15587 #undef rptr 15588 } 15589 15590 static void 15591 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15592 t_uscalar_t err) 15593 { 15594 if (dl_err == DL_SYSERR) { 15595 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15596 "%s: %s failed: DL_SYSERR (errno %u)\n", 15597 ill->ill_name, dl_primstr(prim), err); 15598 return; 15599 } 15600 15601 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15602 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15603 dl_errstr(dl_err)); 15604 } 15605 15606 /* 15607 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15608 * than DL_UNITDATA_IND messages. If we need to process this message 15609 * exclusively, we call qwriter_ip, in which case we also need to call 15610 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15611 */ 15612 void 15613 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15614 { 15615 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15616 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15617 ill_t *ill = q->q_ptr; 15618 t_uscalar_t prim = dloa->dl_primitive; 15619 t_uscalar_t reqprim = DL_PRIM_INVAL; 15620 15621 ip1dbg(("ip_rput_dlpi")); 15622 15623 /* 15624 * If we received an ACK but didn't send a request for it, then it 15625 * can't be part of any pending operation; discard up-front. 15626 */ 15627 switch (prim) { 15628 case DL_ERROR_ACK: 15629 reqprim = dlea->dl_error_primitive; 15630 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 15631 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 15632 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 15633 dlea->dl_unix_errno)); 15634 break; 15635 case DL_OK_ACK: 15636 reqprim = dloa->dl_correct_primitive; 15637 break; 15638 case DL_INFO_ACK: 15639 reqprim = DL_INFO_REQ; 15640 break; 15641 case DL_BIND_ACK: 15642 reqprim = DL_BIND_REQ; 15643 break; 15644 case DL_PHYS_ADDR_ACK: 15645 reqprim = DL_PHYS_ADDR_REQ; 15646 break; 15647 case DL_NOTIFY_ACK: 15648 reqprim = DL_NOTIFY_REQ; 15649 break; 15650 case DL_CONTROL_ACK: 15651 reqprim = DL_CONTROL_REQ; 15652 break; 15653 case DL_CAPABILITY_ACK: 15654 reqprim = DL_CAPABILITY_REQ; 15655 break; 15656 } 15657 15658 if (prim != DL_NOTIFY_IND) { 15659 if (reqprim == DL_PRIM_INVAL || 15660 !ill_dlpi_pending(ill, reqprim)) { 15661 /* Not a DLPI message we support or expected */ 15662 freemsg(mp); 15663 return; 15664 } 15665 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 15666 dl_primstr(reqprim))); 15667 } 15668 15669 switch (reqprim) { 15670 case DL_UNBIND_REQ: 15671 /* 15672 * NOTE: we mark the unbind as complete even if we got a 15673 * DL_ERROR_ACK, since there's not much else we can do. 15674 */ 15675 mutex_enter(&ill->ill_lock); 15676 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15677 cv_signal(&ill->ill_cv); 15678 mutex_exit(&ill->ill_lock); 15679 break; 15680 15681 case DL_ENABMULTI_REQ: 15682 if (prim == DL_OK_ACK) { 15683 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15684 ill->ill_dlpi_multicast_state = IDS_OK; 15685 } 15686 break; 15687 } 15688 15689 /* 15690 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15691 * need to become writer to continue to process it. Because an 15692 * exclusive operation doesn't complete until replies to all queued 15693 * DLPI messages have been received, we know we're in the middle of an 15694 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15695 * 15696 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15697 * Since this is on the ill stream we unconditionally bump up the 15698 * refcount without doing ILL_CAN_LOOKUP(). 15699 */ 15700 ill_refhold(ill); 15701 if (prim == DL_NOTIFY_IND) 15702 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15703 else 15704 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15705 } 15706 15707 /* 15708 * Handling of DLPI messages that require exclusive access to the ipsq. 15709 * 15710 * Need to do ill_pending_mp_release on ioctl completion, which could 15711 * happen here. (along with mi_copy_done) 15712 */ 15713 /* ARGSUSED */ 15714 static void 15715 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15716 { 15717 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15718 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15719 int err = 0; 15720 ill_t *ill; 15721 ipif_t *ipif = NULL; 15722 mblk_t *mp1 = NULL; 15723 conn_t *connp = NULL; 15724 t_uscalar_t paddrreq; 15725 mblk_t *mp_hw; 15726 boolean_t success; 15727 boolean_t ioctl_aborted = B_FALSE; 15728 boolean_t log = B_TRUE; 15729 ip_stack_t *ipst; 15730 15731 ip1dbg(("ip_rput_dlpi_writer ..")); 15732 ill = (ill_t *)q->q_ptr; 15733 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 15734 ASSERT(IAM_WRITER_ILL(ill)); 15735 15736 ipst = ill->ill_ipst; 15737 15738 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 15739 /* 15740 * The current ioctl could have been aborted by the user and a new 15741 * ioctl to bring up another ill could have started. We could still 15742 * get a response from the driver later. 15743 */ 15744 if (ipif != NULL && ipif->ipif_ill != ill) 15745 ioctl_aborted = B_TRUE; 15746 15747 switch (dloa->dl_primitive) { 15748 case DL_ERROR_ACK: 15749 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15750 dl_primstr(dlea->dl_error_primitive))); 15751 15752 switch (dlea->dl_error_primitive) { 15753 case DL_DISABMULTI_REQ: 15754 ill_dlpi_done(ill, dlea->dl_error_primitive); 15755 break; 15756 case DL_PROMISCON_REQ: 15757 case DL_PROMISCOFF_REQ: 15758 case DL_UNBIND_REQ: 15759 case DL_ATTACH_REQ: 15760 case DL_INFO_REQ: 15761 ill_dlpi_done(ill, dlea->dl_error_primitive); 15762 break; 15763 case DL_NOTIFY_REQ: 15764 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15765 log = B_FALSE; 15766 break; 15767 case DL_PHYS_ADDR_REQ: 15768 /* 15769 * For IPv6 only, there are two additional 15770 * phys_addr_req's sent to the driver to get the 15771 * IPv6 token and lla. This allows IP to acquire 15772 * the hardware address format for a given interface 15773 * without having built in knowledge of the hardware 15774 * address. ill_phys_addr_pend keeps track of the last 15775 * DL_PAR sent so we know which response we are 15776 * dealing with. ill_dlpi_done will update 15777 * ill_phys_addr_pend when it sends the next req. 15778 * We don't complete the IOCTL until all three DL_PARs 15779 * have been attempted, so set *_len to 0 and break. 15780 */ 15781 paddrreq = ill->ill_phys_addr_pend; 15782 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15783 if (paddrreq == DL_IPV6_TOKEN) { 15784 ill->ill_token_length = 0; 15785 log = B_FALSE; 15786 break; 15787 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15788 ill->ill_nd_lla_len = 0; 15789 log = B_FALSE; 15790 break; 15791 } 15792 /* 15793 * Something went wrong with the DL_PHYS_ADDR_REQ. 15794 * We presumably have an IOCTL hanging out waiting 15795 * for completion. Find it and complete the IOCTL 15796 * with the error noted. 15797 * However, ill_dl_phys was called on an ill queue 15798 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15799 * set. But the ioctl is known to be pending on ill_wq. 15800 */ 15801 if (!ill->ill_ifname_pending) 15802 break; 15803 ill->ill_ifname_pending = 0; 15804 if (!ioctl_aborted) 15805 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15806 if (mp1 != NULL) { 15807 /* 15808 * This operation (SIOCSLIFNAME) must have 15809 * happened on the ill. Assert there is no conn 15810 */ 15811 ASSERT(connp == NULL); 15812 q = ill->ill_wq; 15813 } 15814 break; 15815 case DL_BIND_REQ: 15816 ill_dlpi_done(ill, DL_BIND_REQ); 15817 if (ill->ill_ifname_pending) 15818 break; 15819 /* 15820 * Something went wrong with the bind. We presumably 15821 * have an IOCTL hanging out waiting for completion. 15822 * Find it, take down the interface that was coming 15823 * up, and complete the IOCTL with the error noted. 15824 */ 15825 if (!ioctl_aborted) 15826 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15827 if (mp1 != NULL) { 15828 /* 15829 * This might be a result of a DL_NOTE_REPLUMB 15830 * notification. In that case, connp is NULL. 15831 */ 15832 if (connp != NULL) 15833 q = CONNP_TO_WQ(connp); 15834 15835 (void) ipif_down(ipif, NULL, NULL); 15836 /* error is set below the switch */ 15837 } 15838 break; 15839 case DL_ENABMULTI_REQ: 15840 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15841 15842 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15843 ill->ill_dlpi_multicast_state = IDS_FAILED; 15844 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15845 ipif_t *ipif; 15846 15847 printf("ip: joining multicasts failed (%d)" 15848 " on %s - will use link layer " 15849 "broadcasts for multicast\n", 15850 dlea->dl_errno, ill->ill_name); 15851 15852 /* 15853 * Set up the multicast mapping alone. 15854 * writer, so ok to access ill->ill_ipif 15855 * without any lock. 15856 */ 15857 ipif = ill->ill_ipif; 15858 mutex_enter(&ill->ill_phyint->phyint_lock); 15859 ill->ill_phyint->phyint_flags |= 15860 PHYI_MULTI_BCAST; 15861 mutex_exit(&ill->ill_phyint->phyint_lock); 15862 15863 if (!ill->ill_isv6) { 15864 (void) ipif_arp_setup_multicast(ipif, 15865 NULL); 15866 } else { 15867 (void) ipif_ndp_setup_multicast(ipif, 15868 NULL); 15869 } 15870 } 15871 freemsg(mp); /* Don't want to pass this up */ 15872 return; 15873 case DL_CONTROL_REQ: 15874 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15875 "DL_CONTROL_REQ\n")); 15876 ill_dlpi_done(ill, dlea->dl_error_primitive); 15877 freemsg(mp); 15878 return; 15879 case DL_CAPABILITY_REQ: 15880 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15881 "DL_CAPABILITY REQ\n")); 15882 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 15883 ill->ill_dlpi_capab_state = IDCS_FAILED; 15884 ill_capability_done(ill); 15885 freemsg(mp); 15886 return; 15887 } 15888 /* 15889 * Note the error for IOCTL completion (mp1 is set when 15890 * ready to complete ioctl). If ill_ifname_pending_err is 15891 * set, an error occured during plumbing (ill_ifname_pending), 15892 * so we want to report that error. 15893 * 15894 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15895 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15896 * expected to get errack'd if the driver doesn't support 15897 * these flags (e.g. ethernet). log will be set to B_FALSE 15898 * if these error conditions are encountered. 15899 */ 15900 if (mp1 != NULL) { 15901 if (ill->ill_ifname_pending_err != 0) { 15902 err = ill->ill_ifname_pending_err; 15903 ill->ill_ifname_pending_err = 0; 15904 } else { 15905 err = dlea->dl_unix_errno ? 15906 dlea->dl_unix_errno : ENXIO; 15907 } 15908 /* 15909 * If we're plumbing an interface and an error hasn't already 15910 * been saved, set ill_ifname_pending_err to the error passed 15911 * up. Ignore the error if log is B_FALSE (see comment above). 15912 */ 15913 } else if (log && ill->ill_ifname_pending && 15914 ill->ill_ifname_pending_err == 0) { 15915 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15916 dlea->dl_unix_errno : ENXIO; 15917 } 15918 15919 if (log) 15920 ip_dlpi_error(ill, dlea->dl_error_primitive, 15921 dlea->dl_errno, dlea->dl_unix_errno); 15922 break; 15923 case DL_CAPABILITY_ACK: 15924 ill_capability_ack(ill, mp); 15925 /* 15926 * The message has been handed off to ill_capability_ack 15927 * and must not be freed below 15928 */ 15929 mp = NULL; 15930 break; 15931 15932 case DL_CONTROL_ACK: 15933 /* We treat all of these as "fire and forget" */ 15934 ill_dlpi_done(ill, DL_CONTROL_REQ); 15935 break; 15936 case DL_INFO_ACK: 15937 /* Call a routine to handle this one. */ 15938 ill_dlpi_done(ill, DL_INFO_REQ); 15939 ip_ll_subnet_defaults(ill, mp); 15940 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15941 return; 15942 case DL_BIND_ACK: 15943 /* 15944 * We should have an IOCTL waiting on this unless 15945 * sent by ill_dl_phys, in which case just return 15946 */ 15947 ill_dlpi_done(ill, DL_BIND_REQ); 15948 if (ill->ill_ifname_pending) 15949 break; 15950 15951 if (!ioctl_aborted) 15952 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15953 if (mp1 == NULL) 15954 break; 15955 /* 15956 * mp1 was added by ill_dl_up(). if that is a result of 15957 * a DL_NOTE_REPLUMB notification, connp could be NULL. 15958 */ 15959 if (connp != NULL) 15960 q = CONNP_TO_WQ(connp); 15961 15962 /* 15963 * We are exclusive. So nothing can change even after 15964 * we get the pending mp. If need be we can put it back 15965 * and restart, as in calling ipif_arp_up() below. 15966 */ 15967 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15968 15969 mutex_enter(&ill->ill_lock); 15970 ill->ill_dl_up = 1; 15971 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 15972 mutex_exit(&ill->ill_lock); 15973 15974 /* 15975 * Now bring up the resolver; when that is complete, we'll 15976 * create IREs. Note that we intentionally mirror what 15977 * ipif_up() would have done, because we got here by way of 15978 * ill_dl_up(), which stopped ipif_up()'s processing. 15979 */ 15980 if (ill->ill_isv6) { 15981 if (ill->ill_flags & ILLF_XRESOLV) { 15982 if (connp != NULL) 15983 mutex_enter(&connp->conn_lock); 15984 mutex_enter(&ill->ill_lock); 15985 success = ipsq_pending_mp_add(connp, ipif, q, 15986 mp1, 0); 15987 mutex_exit(&ill->ill_lock); 15988 if (connp != NULL) 15989 mutex_exit(&connp->conn_lock); 15990 if (success) { 15991 err = ipif_resolver_up(ipif, 15992 Res_act_initial); 15993 if (err == EINPROGRESS) { 15994 freemsg(mp); 15995 return; 15996 } 15997 ASSERT(err != 0); 15998 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15999 ASSERT(mp1 != NULL); 16000 } else { 16001 /* conn has started closing */ 16002 err = EINTR; 16003 } 16004 } else { /* Non XRESOLV interface */ 16005 (void) ipif_resolver_up(ipif, Res_act_initial); 16006 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 16007 err = ipif_up_done_v6(ipif); 16008 } 16009 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 16010 /* 16011 * ARP and other v4 external resolvers. 16012 * Leave the pending mblk intact so that 16013 * the ioctl completes in ip_rput(). 16014 */ 16015 if (connp != NULL) 16016 mutex_enter(&connp->conn_lock); 16017 mutex_enter(&ill->ill_lock); 16018 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 16019 mutex_exit(&ill->ill_lock); 16020 if (connp != NULL) 16021 mutex_exit(&connp->conn_lock); 16022 if (success) { 16023 err = ipif_resolver_up(ipif, Res_act_initial); 16024 if (err == EINPROGRESS) { 16025 freemsg(mp); 16026 return; 16027 } 16028 ASSERT(err != 0); 16029 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16030 } else { 16031 /* The conn has started closing */ 16032 err = EINTR; 16033 } 16034 } else { 16035 /* 16036 * This one is complete. Reply to pending ioctl. 16037 */ 16038 (void) ipif_resolver_up(ipif, Res_act_initial); 16039 err = ipif_up_done(ipif); 16040 } 16041 16042 if ((err == 0) && (ill->ill_up_ipifs)) { 16043 err = ill_up_ipifs(ill, q, mp1); 16044 if (err == EINPROGRESS) { 16045 freemsg(mp); 16046 return; 16047 } 16048 } 16049 16050 /* 16051 * If we have a moved ipif to bring up, and everything has 16052 * succeeded to this point, bring it up on the IPMP ill. 16053 * Otherwise, leave it down -- the admin can try to bring it 16054 * up by hand if need be. 16055 */ 16056 if (ill->ill_move_ipif != NULL) { 16057 if (err != 0) { 16058 ill->ill_move_ipif = NULL; 16059 } else { 16060 ipif = ill->ill_move_ipif; 16061 ill->ill_move_ipif = NULL; 16062 err = ipif_up(ipif, q, mp1); 16063 if (err == EINPROGRESS) { 16064 freemsg(mp); 16065 return; 16066 } 16067 } 16068 } 16069 break; 16070 16071 case DL_NOTIFY_IND: { 16072 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16073 ire_t *ire; 16074 uint_t orig_mtu; 16075 boolean_t need_ire_walk_v4 = B_FALSE; 16076 boolean_t need_ire_walk_v6 = B_FALSE; 16077 16078 switch (notify->dl_notification) { 16079 case DL_NOTE_PHYS_ADDR: 16080 err = ill_set_phys_addr(ill, mp); 16081 break; 16082 16083 case DL_NOTE_REPLUMB: 16084 /* 16085 * Directly return after calling ill_replumb(). 16086 * Note that we should not free mp as it is reused 16087 * in the ill_replumb() function. 16088 */ 16089 err = ill_replumb(ill, mp); 16090 return; 16091 16092 case DL_NOTE_FASTPATH_FLUSH: 16093 ill_fastpath_flush(ill); 16094 break; 16095 16096 case DL_NOTE_SDU_SIZE: 16097 /* 16098 * Change the MTU size of the interface, of all 16099 * attached ipif's, and of all relevant ire's. The 16100 * new value's a uint32_t at notify->dl_data. 16101 * Mtu change Vs. new ire creation - protocol below. 16102 * 16103 * a Mark the ipif as IPIF_CHANGING. 16104 * b Set the new mtu in the ipif. 16105 * c Change the ire_max_frag on all affected ires 16106 * d Unmark the IPIF_CHANGING 16107 * 16108 * To see how the protocol works, assume an interface 16109 * route is also being added simultaneously by 16110 * ip_rt_add and let 'ipif' be the ipif referenced by 16111 * the ire. If the ire is created before step a, 16112 * it will be cleaned up by step c. If the ire is 16113 * created after step d, it will see the new value of 16114 * ipif_mtu. Any attempt to create the ire between 16115 * steps a to d will fail because of the IPIF_CHANGING 16116 * flag. Note that ire_create() is passed a pointer to 16117 * the ipif_mtu, and not the value. During ire_add 16118 * under the bucket lock, the ire_max_frag of the 16119 * new ire being created is set from the ipif/ire from 16120 * which it is being derived. 16121 */ 16122 mutex_enter(&ill->ill_lock); 16123 16124 orig_mtu = ill->ill_max_mtu; 16125 ill->ill_max_frag = (uint_t)notify->dl_data; 16126 ill->ill_max_mtu = (uint_t)notify->dl_data; 16127 16128 /* 16129 * If ill_user_mtu was set (via SIOCSLIFLNKINFO), 16130 * clamp ill_max_mtu at it. 16131 */ 16132 if (ill->ill_user_mtu != 0 && 16133 ill->ill_user_mtu < ill->ill_max_mtu) 16134 ill->ill_max_mtu = ill->ill_user_mtu; 16135 16136 /* 16137 * If the MTU is unchanged, we're done. 16138 */ 16139 if (orig_mtu == ill->ill_max_mtu) { 16140 mutex_exit(&ill->ill_lock); 16141 break; 16142 } 16143 16144 if (ill->ill_isv6) { 16145 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16146 ill->ill_max_mtu = IPV6_MIN_MTU; 16147 } else { 16148 if (ill->ill_max_mtu < IP_MIN_MTU) 16149 ill->ill_max_mtu = IP_MIN_MTU; 16150 } 16151 for (ipif = ill->ill_ipif; ipif != NULL; 16152 ipif = ipif->ipif_next) { 16153 /* 16154 * Don't override the mtu if the user 16155 * has explicitly set it. 16156 */ 16157 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16158 continue; 16159 ipif->ipif_mtu = (uint_t)notify->dl_data; 16160 if (ipif->ipif_isv6) 16161 ire = ipif_to_ire_v6(ipif); 16162 else 16163 ire = ipif_to_ire(ipif); 16164 if (ire != NULL) { 16165 ire->ire_max_frag = ipif->ipif_mtu; 16166 ire_refrele(ire); 16167 } 16168 if (ipif->ipif_flags & IPIF_UP) { 16169 if (ill->ill_isv6) 16170 need_ire_walk_v6 = B_TRUE; 16171 else 16172 need_ire_walk_v4 = B_TRUE; 16173 } 16174 } 16175 mutex_exit(&ill->ill_lock); 16176 if (need_ire_walk_v4) 16177 ire_walk_v4(ill_mtu_change, (char *)ill, 16178 ALL_ZONES, ipst); 16179 if (need_ire_walk_v6) 16180 ire_walk_v6(ill_mtu_change, (char *)ill, 16181 ALL_ZONES, ipst); 16182 16183 /* 16184 * Refresh IPMP meta-interface MTU if necessary. 16185 */ 16186 if (IS_UNDER_IPMP(ill)) 16187 ipmp_illgrp_refresh_mtu(ill->ill_grp); 16188 break; 16189 16190 case DL_NOTE_LINK_UP: 16191 case DL_NOTE_LINK_DOWN: { 16192 /* 16193 * We are writer. ill / phyint / ipsq assocs stable. 16194 * The RUNNING flag reflects the state of the link. 16195 */ 16196 phyint_t *phyint = ill->ill_phyint; 16197 uint64_t new_phyint_flags; 16198 boolean_t changed = B_FALSE; 16199 boolean_t went_up; 16200 16201 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16202 mutex_enter(&phyint->phyint_lock); 16203 16204 new_phyint_flags = went_up ? 16205 phyint->phyint_flags | PHYI_RUNNING : 16206 phyint->phyint_flags & ~PHYI_RUNNING; 16207 16208 if (IS_IPMP(ill)) { 16209 new_phyint_flags = went_up ? 16210 new_phyint_flags & ~PHYI_FAILED : 16211 new_phyint_flags | PHYI_FAILED; 16212 } 16213 16214 if (new_phyint_flags != phyint->phyint_flags) { 16215 phyint->phyint_flags = new_phyint_flags; 16216 changed = B_TRUE; 16217 } 16218 mutex_exit(&phyint->phyint_lock); 16219 /* 16220 * ill_restart_dad handles the DAD restart and routing 16221 * socket notification logic. 16222 */ 16223 if (changed) { 16224 ill_restart_dad(phyint->phyint_illv4, went_up); 16225 ill_restart_dad(phyint->phyint_illv6, went_up); 16226 } 16227 break; 16228 } 16229 case DL_NOTE_PROMISC_ON_PHYS: { 16230 phyint_t *phyint = ill->ill_phyint; 16231 16232 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16233 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16234 mutex_enter(&phyint->phyint_lock); 16235 phyint->phyint_flags |= PHYI_PROMISC; 16236 mutex_exit(&phyint->phyint_lock); 16237 break; 16238 } 16239 case DL_NOTE_PROMISC_OFF_PHYS: { 16240 phyint_t *phyint = ill->ill_phyint; 16241 16242 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16243 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16244 mutex_enter(&phyint->phyint_lock); 16245 phyint->phyint_flags &= ~PHYI_PROMISC; 16246 mutex_exit(&phyint->phyint_lock); 16247 break; 16248 } 16249 case DL_NOTE_CAPAB_RENEG: 16250 /* 16251 * Something changed on the driver side. 16252 * It wants us to renegotiate the capabilities 16253 * on this ill. One possible cause is the aggregation 16254 * interface under us where a port got added or 16255 * went away. 16256 * 16257 * If the capability negotiation is already done 16258 * or is in progress, reset the capabilities and 16259 * mark the ill's ill_capab_reneg to be B_TRUE, 16260 * so that when the ack comes back, we can start 16261 * the renegotiation process. 16262 * 16263 * Note that if ill_capab_reneg is already B_TRUE 16264 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16265 * the capability resetting request has been sent 16266 * and the renegotiation has not been started yet; 16267 * nothing needs to be done in this case. 16268 */ 16269 ipsq_current_start(ipsq, ill->ill_ipif, 0); 16270 ill_capability_reset(ill, B_TRUE); 16271 ipsq_current_finish(ipsq); 16272 break; 16273 default: 16274 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16275 "type 0x%x for DL_NOTIFY_IND\n", 16276 notify->dl_notification)); 16277 break; 16278 } 16279 16280 /* 16281 * As this is an asynchronous operation, we 16282 * should not call ill_dlpi_done 16283 */ 16284 break; 16285 } 16286 case DL_NOTIFY_ACK: { 16287 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16288 16289 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16290 ill->ill_note_link = 1; 16291 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16292 break; 16293 } 16294 case DL_PHYS_ADDR_ACK: { 16295 /* 16296 * As part of plumbing the interface via SIOCSLIFNAME, 16297 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16298 * whose answers we receive here. As each answer is received, 16299 * we call ill_dlpi_done() to dispatch the next request as 16300 * we're processing the current one. Once all answers have 16301 * been received, we use ipsq_pending_mp_get() to dequeue the 16302 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16303 * is invoked from an ill queue, conn_oper_pending_ill is not 16304 * available, but we know the ioctl is pending on ill_wq.) 16305 */ 16306 uint_t paddrlen, paddroff; 16307 uint8_t *addr; 16308 16309 paddrreq = ill->ill_phys_addr_pend; 16310 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16311 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16312 addr = mp->b_rptr + paddroff; 16313 16314 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16315 if (paddrreq == DL_IPV6_TOKEN) { 16316 /* 16317 * bcopy to low-order bits of ill_token 16318 * 16319 * XXX Temporary hack - currently, all known tokens 16320 * are 64 bits, so I'll cheat for the moment. 16321 */ 16322 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 16323 ill->ill_token_length = paddrlen; 16324 break; 16325 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16326 ASSERT(ill->ill_nd_lla_mp == NULL); 16327 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16328 mp = NULL; 16329 break; 16330 } else if (paddrreq == DL_CURR_DEST_ADDR) { 16331 ASSERT(ill->ill_dest_addr_mp == NULL); 16332 ill->ill_dest_addr_mp = mp; 16333 ill->ill_dest_addr = addr; 16334 mp = NULL; 16335 if (ill->ill_isv6) { 16336 ill_setdesttoken(ill); 16337 ipif_setdestlinklocal(ill->ill_ipif); 16338 } 16339 break; 16340 } 16341 16342 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16343 ASSERT(ill->ill_phys_addr_mp == NULL); 16344 if (!ill->ill_ifname_pending) 16345 break; 16346 ill->ill_ifname_pending = 0; 16347 if (!ioctl_aborted) 16348 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16349 if (mp1 != NULL) { 16350 ASSERT(connp == NULL); 16351 q = ill->ill_wq; 16352 } 16353 /* 16354 * If any error acks received during the plumbing sequence, 16355 * ill_ifname_pending_err will be set. Break out and send up 16356 * the error to the pending ioctl. 16357 */ 16358 if (ill->ill_ifname_pending_err != 0) { 16359 err = ill->ill_ifname_pending_err; 16360 ill->ill_ifname_pending_err = 0; 16361 break; 16362 } 16363 16364 ill->ill_phys_addr_mp = mp; 16365 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 16366 mp = NULL; 16367 16368 /* 16369 * If paddrlen or ill_phys_addr_length is zero, the DLPI 16370 * provider doesn't support physical addresses. We check both 16371 * paddrlen and ill_phys_addr_length because sppp (PPP) does 16372 * not have physical addresses, but historically adversises a 16373 * physical address length of 0 in its DL_INFO_ACK, but 6 in 16374 * its DL_PHYS_ADDR_ACK. 16375 */ 16376 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 16377 ill->ill_phys_addr = NULL; 16378 } else if (paddrlen != ill->ill_phys_addr_length) { 16379 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16380 paddrlen, ill->ill_phys_addr_length)); 16381 err = EINVAL; 16382 break; 16383 } 16384 16385 if (ill->ill_nd_lla_mp == NULL) { 16386 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16387 err = ENOMEM; 16388 break; 16389 } 16390 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16391 } 16392 16393 if (ill->ill_isv6) { 16394 ill_setdefaulttoken(ill); 16395 ipif_setlinklocal(ill->ill_ipif); 16396 } 16397 break; 16398 } 16399 case DL_OK_ACK: 16400 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16401 dl_primstr((int)dloa->dl_correct_primitive), 16402 dloa->dl_correct_primitive)); 16403 switch (dloa->dl_correct_primitive) { 16404 case DL_ENABMULTI_REQ: 16405 case DL_DISABMULTI_REQ: 16406 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16407 break; 16408 case DL_PROMISCON_REQ: 16409 case DL_PROMISCOFF_REQ: 16410 case DL_UNBIND_REQ: 16411 case DL_ATTACH_REQ: 16412 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16413 break; 16414 } 16415 break; 16416 default: 16417 break; 16418 } 16419 16420 freemsg(mp); 16421 if (mp1 == NULL) 16422 return; 16423 16424 /* 16425 * The operation must complete without EINPROGRESS since 16426 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 16427 * the operation will be stuck forever inside the IPSQ. 16428 */ 16429 ASSERT(err != EINPROGRESS); 16430 16431 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 16432 case 0: 16433 ipsq_current_finish(ipsq); 16434 break; 16435 16436 case SIOCSLIFNAME: 16437 case IF_UNITSEL: { 16438 ill_t *ill_other = ILL_OTHER(ill); 16439 16440 /* 16441 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 16442 * ill has a peer which is in an IPMP group, then place ill 16443 * into the same group. One catch: although ifconfig plumbs 16444 * the appropriate IPMP meta-interface prior to plumbing this 16445 * ill, it is possible for multiple ifconfig applications to 16446 * race (or for another application to adjust plumbing), in 16447 * which case the IPMP meta-interface we need will be missing. 16448 * If so, kick the phyint out of the group. 16449 */ 16450 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 16451 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 16452 ipmp_illgrp_t *illg; 16453 16454 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 16455 if (illg == NULL) 16456 ipmp_phyint_leave_grp(ill->ill_phyint); 16457 else 16458 ipmp_ill_join_illgrp(ill, illg); 16459 } 16460 16461 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 16462 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16463 else 16464 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16465 break; 16466 } 16467 case SIOCLIFADDIF: 16468 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16469 break; 16470 16471 default: 16472 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16473 break; 16474 } 16475 } 16476 16477 /* 16478 * ip_rput_other is called by ip_rput to handle messages modifying the global 16479 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 16480 */ 16481 /* ARGSUSED */ 16482 void 16483 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16484 { 16485 ill_t *ill = q->q_ptr; 16486 struct iocblk *iocp; 16487 16488 ip1dbg(("ip_rput_other ")); 16489 if (ipsq != NULL) { 16490 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16491 ASSERT(ipsq->ipsq_xop == 16492 ill->ill_phyint->phyint_ipsq->ipsq_xop); 16493 } 16494 16495 switch (mp->b_datap->db_type) { 16496 case M_ERROR: 16497 case M_HANGUP: 16498 /* 16499 * The device has a problem. We force the ILL down. It can 16500 * be brought up again manually using SIOCSIFFLAGS (via 16501 * ifconfig or equivalent). 16502 */ 16503 ASSERT(ipsq != NULL); 16504 if (mp->b_rptr < mp->b_wptr) 16505 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16506 if (ill->ill_error == 0) 16507 ill->ill_error = ENXIO; 16508 if (!ill_down_start(q, mp)) 16509 return; 16510 ipif_all_down_tail(ipsq, q, mp, NULL); 16511 break; 16512 case M_IOCNAK: { 16513 iocp = (struct iocblk *)mp->b_rptr; 16514 16515 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 16516 /* 16517 * If this was the first attempt, turn off the fastpath 16518 * probing. 16519 */ 16520 mutex_enter(&ill->ill_lock); 16521 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16522 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16523 mutex_exit(&ill->ill_lock); 16524 ill_fastpath_nack(ill); 16525 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 16526 ill->ill_name)); 16527 } else { 16528 mutex_exit(&ill->ill_lock); 16529 } 16530 freemsg(mp); 16531 break; 16532 } 16533 default: 16534 ASSERT(0); 16535 break; 16536 } 16537 } 16538 16539 /* 16540 * NOTE : This function does not ire_refrele the ire argument passed in. 16541 * 16542 * IPQoS notes 16543 * IP policy is invoked twice for a forwarded packet, once on the read side 16544 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16545 * enabled. An additional parameter, in_ill, has been added for this purpose. 16546 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16547 * because ip_mroute drops this information. 16548 * 16549 */ 16550 void 16551 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16552 { 16553 uint32_t old_pkt_len; 16554 uint32_t pkt_len; 16555 queue_t *q; 16556 uint32_t sum; 16557 #define rptr ((uchar_t *)ipha) 16558 uint32_t max_frag; 16559 uint32_t ill_index; 16560 ill_t *out_ill; 16561 mib2_ipIfStatsEntry_t *mibptr; 16562 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16563 16564 /* Get the ill_index of the incoming ILL */ 16565 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16566 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16567 16568 /* Initiate Read side IPPF processing */ 16569 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16570 ip_process(IPP_FWD_IN, &mp, ill_index); 16571 if (mp == NULL) { 16572 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16573 "during IPPF processing\n")); 16574 return; 16575 } 16576 } 16577 16578 /* Adjust the checksum to reflect the ttl decrement. */ 16579 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16580 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16581 16582 if (ipha->ipha_ttl-- <= 1) { 16583 if (ip_csum_hdr(ipha)) { 16584 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16585 goto drop_pkt; 16586 } 16587 /* 16588 * Note: ire_stq this will be NULL for multicast 16589 * datagrams using the long path through arp (the IRE 16590 * is not an IRE_CACHE). This should not cause 16591 * problems since we don't generate ICMP errors for 16592 * multicast packets. 16593 */ 16594 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16595 q = ire->ire_stq; 16596 if (q != NULL) { 16597 /* Sent by forwarding path, and router is global zone */ 16598 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16599 GLOBAL_ZONEID, ipst); 16600 } else 16601 freemsg(mp); 16602 return; 16603 } 16604 16605 /* 16606 * Don't forward if the interface is down 16607 */ 16608 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16609 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16610 ip2dbg(("ip_rput_forward:interface is down\n")); 16611 goto drop_pkt; 16612 } 16613 16614 /* Get the ill_index of the outgoing ILL */ 16615 out_ill = ire_to_ill(ire); 16616 ill_index = out_ill->ill_phyint->phyint_ifindex; 16617 16618 DTRACE_PROBE4(ip4__forwarding__start, 16619 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16620 16621 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16622 ipst->ips_ipv4firewall_forwarding, 16623 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16624 16625 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16626 16627 if (mp == NULL) 16628 return; 16629 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16630 16631 if (is_system_labeled()) { 16632 mblk_t *mp1; 16633 16634 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16635 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16636 goto drop_pkt; 16637 } 16638 /* Size may have changed */ 16639 mp = mp1; 16640 ipha = (ipha_t *)mp->b_rptr; 16641 pkt_len = ntohs(ipha->ipha_length); 16642 } 16643 16644 /* Check if there are options to update */ 16645 if (!IS_SIMPLE_IPH(ipha)) { 16646 if (ip_csum_hdr(ipha)) { 16647 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16648 goto drop_pkt; 16649 } 16650 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16651 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16652 return; 16653 } 16654 16655 ipha->ipha_hdr_checksum = 0; 16656 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16657 } 16658 max_frag = ire->ire_max_frag; 16659 if (pkt_len > max_frag) { 16660 /* 16661 * It needs fragging on its way out. We haven't 16662 * verified the header checksum yet. Since we 16663 * are going to put a surely good checksum in the 16664 * outgoing header, we have to make sure that it 16665 * was good coming in. 16666 */ 16667 if (ip_csum_hdr(ipha)) { 16668 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16669 goto drop_pkt; 16670 } 16671 /* Initiate Write side IPPF processing */ 16672 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16673 ip_process(IPP_FWD_OUT, &mp, ill_index); 16674 if (mp == NULL) { 16675 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16676 " during IPPF processing\n")); 16677 return; 16678 } 16679 } 16680 /* 16681 * Handle labeled packet resizing. 16682 * 16683 * If we have added a label, inform ip_wput_frag() of its 16684 * effect on the MTU for ICMP messages. 16685 */ 16686 if (pkt_len > old_pkt_len) { 16687 uint32_t secopt_size; 16688 16689 secopt_size = pkt_len - old_pkt_len; 16690 if (secopt_size < max_frag) 16691 max_frag -= secopt_size; 16692 } 16693 16694 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, 16695 GLOBAL_ZONEID, ipst, NULL); 16696 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16697 return; 16698 } 16699 16700 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16701 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16702 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16703 ipst->ips_ipv4firewall_physical_out, 16704 NULL, out_ill, ipha, mp, mp, 0, ipst); 16705 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16706 if (mp == NULL) 16707 return; 16708 16709 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16710 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16711 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE, NULL); 16712 /* ip_xmit_v4 always consumes the packet */ 16713 return; 16714 16715 drop_pkt:; 16716 ip1dbg(("ip_rput_forward: drop pkt\n")); 16717 freemsg(mp); 16718 #undef rptr 16719 } 16720 16721 void 16722 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16723 { 16724 ire_t *ire; 16725 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16726 16727 ASSERT(!ipif->ipif_isv6); 16728 /* 16729 * Find an IRE which matches the destination and the outgoing 16730 * queue in the cache table. All we need is an IRE_CACHE which 16731 * is pointing at ipif->ipif_ill. 16732 */ 16733 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16734 dst = ipif->ipif_pp_dst_addr; 16735 16736 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, msg_getlabel(mp), 16737 MATCH_IRE_ILL | MATCH_IRE_SECATTR, ipst); 16738 if (ire == NULL) { 16739 /* 16740 * Mark this packet to make it be delivered to 16741 * ip_rput_forward after the new ire has been 16742 * created. 16743 */ 16744 mp->b_prev = NULL; 16745 mp->b_next = mp; 16746 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16747 NULL, 0, GLOBAL_ZONEID, &zero_info); 16748 } else { 16749 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16750 IRE_REFRELE(ire); 16751 } 16752 } 16753 16754 /* Update any source route, record route or timestamp options */ 16755 static int 16756 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16757 { 16758 ipoptp_t opts; 16759 uchar_t *opt; 16760 uint8_t optval; 16761 uint8_t optlen; 16762 ipaddr_t dst; 16763 uint32_t ts; 16764 ire_t *dst_ire = NULL; 16765 ire_t *tmp_ire = NULL; 16766 timestruc_t now; 16767 16768 ip2dbg(("ip_rput_forward_options\n")); 16769 dst = ipha->ipha_dst; 16770 for (optval = ipoptp_first(&opts, ipha); 16771 optval != IPOPT_EOL; 16772 optval = ipoptp_next(&opts)) { 16773 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16774 opt = opts.ipoptp_cur; 16775 optlen = opts.ipoptp_len; 16776 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16777 optval, opts.ipoptp_len)); 16778 switch (optval) { 16779 uint32_t off; 16780 case IPOPT_SSRR: 16781 case IPOPT_LSRR: 16782 /* Check if adminstratively disabled */ 16783 if (!ipst->ips_ip_forward_src_routed) { 16784 if (ire->ire_stq != NULL) { 16785 /* 16786 * Sent by forwarding path, and router 16787 * is global zone 16788 */ 16789 icmp_unreachable(ire->ire_stq, mp, 16790 ICMP_SOURCE_ROUTE_FAILED, 16791 GLOBAL_ZONEID, ipst); 16792 } else { 16793 ip0dbg(("ip_rput_forward_options: " 16794 "unable to send unreach\n")); 16795 freemsg(mp); 16796 } 16797 return (-1); 16798 } 16799 16800 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16801 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16802 if (dst_ire == NULL) { 16803 /* 16804 * Must be partial since ip_rput_options 16805 * checked for strict. 16806 */ 16807 break; 16808 } 16809 off = opt[IPOPT_OFFSET]; 16810 off--; 16811 redo_srr: 16812 if (optlen < IP_ADDR_LEN || 16813 off > optlen - IP_ADDR_LEN) { 16814 /* End of source route */ 16815 ip1dbg(( 16816 "ip_rput_forward_options: end of SR\n")); 16817 ire_refrele(dst_ire); 16818 break; 16819 } 16820 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16821 bcopy(&ire->ire_src_addr, (char *)opt + off, 16822 IP_ADDR_LEN); 16823 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16824 ntohl(dst))); 16825 16826 /* 16827 * Check if our address is present more than 16828 * once as consecutive hops in source route. 16829 */ 16830 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16831 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16832 if (tmp_ire != NULL) { 16833 ire_refrele(tmp_ire); 16834 off += IP_ADDR_LEN; 16835 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16836 goto redo_srr; 16837 } 16838 ipha->ipha_dst = dst; 16839 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16840 ire_refrele(dst_ire); 16841 break; 16842 case IPOPT_RR: 16843 off = opt[IPOPT_OFFSET]; 16844 off--; 16845 if (optlen < IP_ADDR_LEN || 16846 off > optlen - IP_ADDR_LEN) { 16847 /* No more room - ignore */ 16848 ip1dbg(( 16849 "ip_rput_forward_options: end of RR\n")); 16850 break; 16851 } 16852 bcopy(&ire->ire_src_addr, (char *)opt + off, 16853 IP_ADDR_LEN); 16854 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16855 break; 16856 case IPOPT_TS: 16857 /* Insert timestamp if there is room */ 16858 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16859 case IPOPT_TS_TSONLY: 16860 off = IPOPT_TS_TIMELEN; 16861 break; 16862 case IPOPT_TS_PRESPEC: 16863 case IPOPT_TS_PRESPEC_RFC791: 16864 /* Verify that the address matched */ 16865 off = opt[IPOPT_OFFSET] - 1; 16866 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16867 dst_ire = ire_ctable_lookup(dst, 0, 16868 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16869 MATCH_IRE_TYPE, ipst); 16870 if (dst_ire == NULL) { 16871 /* Not for us */ 16872 break; 16873 } 16874 ire_refrele(dst_ire); 16875 /* FALLTHRU */ 16876 case IPOPT_TS_TSANDADDR: 16877 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16878 break; 16879 default: 16880 /* 16881 * ip_*put_options should have already 16882 * dropped this packet. 16883 */ 16884 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16885 "unknown IT - bug in ip_rput_options?\n"); 16886 return (0); /* Keep "lint" happy */ 16887 } 16888 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16889 /* Increase overflow counter */ 16890 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16891 opt[IPOPT_POS_OV_FLG] = 16892 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16893 (off << 4)); 16894 break; 16895 } 16896 off = opt[IPOPT_OFFSET] - 1; 16897 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16898 case IPOPT_TS_PRESPEC: 16899 case IPOPT_TS_PRESPEC_RFC791: 16900 case IPOPT_TS_TSANDADDR: 16901 bcopy(&ire->ire_src_addr, 16902 (char *)opt + off, IP_ADDR_LEN); 16903 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16904 /* FALLTHRU */ 16905 case IPOPT_TS_TSONLY: 16906 off = opt[IPOPT_OFFSET] - 1; 16907 /* Compute # of milliseconds since midnight */ 16908 gethrestime(&now); 16909 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16910 now.tv_nsec / (NANOSEC / MILLISEC); 16911 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16912 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16913 break; 16914 } 16915 break; 16916 } 16917 } 16918 return (0); 16919 } 16920 16921 /* 16922 * This is called after processing at least one of AH/ESP headers. 16923 * 16924 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16925 * the actual, physical interface on which the packet was received, 16926 * but, when ip_strict_dst_multihoming is set to 1, could be the 16927 * interface which had the ipha_dst configured when the packet went 16928 * through ip_rput. The ill_index corresponding to the recv_ill 16929 * is saved in ipsec_in_rill_index 16930 * 16931 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16932 * cannot assume "ire" points to valid data for any IPv6 cases. 16933 */ 16934 void 16935 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16936 { 16937 mblk_t *mp; 16938 ipaddr_t dst; 16939 in6_addr_t *v6dstp; 16940 ipha_t *ipha; 16941 ip6_t *ip6h; 16942 ipsec_in_t *ii; 16943 boolean_t ill_need_rele = B_FALSE; 16944 boolean_t rill_need_rele = B_FALSE; 16945 boolean_t ire_need_rele = B_FALSE; 16946 netstack_t *ns; 16947 ip_stack_t *ipst; 16948 16949 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16950 ASSERT(ii->ipsec_in_ill_index != 0); 16951 ns = ii->ipsec_in_ns; 16952 ASSERT(ii->ipsec_in_ns != NULL); 16953 ipst = ns->netstack_ip; 16954 16955 mp = ipsec_mp->b_cont; 16956 ASSERT(mp != NULL); 16957 16958 if (ill == NULL) { 16959 ASSERT(recv_ill == NULL); 16960 /* 16961 * We need to get the original queue on which ip_rput_local 16962 * or ip_rput_data_v6 was called. 16963 */ 16964 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16965 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16966 ill_need_rele = B_TRUE; 16967 16968 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16969 recv_ill = ill_lookup_on_ifindex( 16970 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16971 NULL, NULL, NULL, NULL, ipst); 16972 rill_need_rele = B_TRUE; 16973 } else { 16974 recv_ill = ill; 16975 } 16976 16977 if ((ill == NULL) || (recv_ill == NULL)) { 16978 ip0dbg(("ip_fanout_proto_again: interface " 16979 "disappeared\n")); 16980 if (ill != NULL) 16981 ill_refrele(ill); 16982 if (recv_ill != NULL) 16983 ill_refrele(recv_ill); 16984 freemsg(ipsec_mp); 16985 return; 16986 } 16987 } 16988 16989 ASSERT(ill != NULL && recv_ill != NULL); 16990 16991 if (mp->b_datap->db_type == M_CTL) { 16992 /* 16993 * AH/ESP is returning the ICMP message after 16994 * removing their headers. Fanout again till 16995 * it gets to the right protocol. 16996 */ 16997 if (ii->ipsec_in_v4) { 16998 icmph_t *icmph; 16999 int iph_hdr_length; 17000 int hdr_length; 17001 17002 ipha = (ipha_t *)mp->b_rptr; 17003 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17004 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17005 ipha = (ipha_t *)&icmph[1]; 17006 hdr_length = IPH_HDR_LENGTH(ipha); 17007 /* 17008 * icmp_inbound_error_fanout may need to do pullupmsg. 17009 * Reset the type to M_DATA. 17010 */ 17011 mp->b_datap->db_type = M_DATA; 17012 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17013 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17014 B_FALSE, ill, ii->ipsec_in_zoneid); 17015 } else { 17016 icmp6_t *icmp6; 17017 int hdr_length; 17018 17019 ip6h = (ip6_t *)mp->b_rptr; 17020 /* Don't call hdr_length_v6() unless you have to. */ 17021 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17022 hdr_length = ip_hdr_length_v6(mp, ip6h); 17023 else 17024 hdr_length = IPV6_HDR_LEN; 17025 17026 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17027 /* 17028 * icmp_inbound_error_fanout_v6 may need to do 17029 * pullupmsg. Reset the type to M_DATA. 17030 */ 17031 mp->b_datap->db_type = M_DATA; 17032 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17033 ip6h, icmp6, ill, recv_ill, B_TRUE, 17034 ii->ipsec_in_zoneid); 17035 } 17036 if (ill_need_rele) 17037 ill_refrele(ill); 17038 if (rill_need_rele) 17039 ill_refrele(recv_ill); 17040 return; 17041 } 17042 17043 if (ii->ipsec_in_v4) { 17044 ipha = (ipha_t *)mp->b_rptr; 17045 dst = ipha->ipha_dst; 17046 if (CLASSD(dst)) { 17047 /* 17048 * Multicast has to be delivered to all streams. 17049 */ 17050 dst = INADDR_BROADCAST; 17051 } 17052 17053 if (ire == NULL) { 17054 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17055 msg_getlabel(mp), ipst); 17056 if (ire == NULL) { 17057 if (ill_need_rele) 17058 ill_refrele(ill); 17059 if (rill_need_rele) 17060 ill_refrele(recv_ill); 17061 ip1dbg(("ip_fanout_proto_again: " 17062 "IRE not found")); 17063 freemsg(ipsec_mp); 17064 return; 17065 } 17066 ire_need_rele = B_TRUE; 17067 } 17068 17069 switch (ipha->ipha_protocol) { 17070 case IPPROTO_UDP: 17071 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17072 recv_ill); 17073 if (ire_need_rele) 17074 ire_refrele(ire); 17075 break; 17076 case IPPROTO_TCP: 17077 if (!ire_need_rele) 17078 IRE_REFHOLD(ire); 17079 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17080 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17081 IRE_REFRELE(ire); 17082 if (mp != NULL) { 17083 SQUEUE_ENTER(GET_SQUEUE(mp), mp, 17084 mp, 1, SQ_PROCESS, 17085 SQTAG_IP_PROTO_AGAIN); 17086 } 17087 break; 17088 case IPPROTO_SCTP: 17089 if (!ire_need_rele) 17090 IRE_REFHOLD(ire); 17091 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17092 ipsec_mp, 0, ill->ill_rq, dst); 17093 break; 17094 case IPPROTO_ENCAP: 17095 case IPPROTO_IPV6: 17096 if (ip_iptun_input(ipsec_mp, mp, ipha, ill, ire, 17097 ill->ill_ipst)) { 17098 /* 17099 * If we made it here, we don't need to worry 17100 * about the raw-socket/protocol fanout. 17101 */ 17102 if (ire_need_rele) 17103 ire_refrele(ire); 17104 break; 17105 } 17106 /* else FALLTHRU */ 17107 default: 17108 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17109 recv_ill, 0); 17110 if (ire_need_rele) 17111 ire_refrele(ire); 17112 break; 17113 } 17114 } else { 17115 uint32_t rput_flags = 0; 17116 17117 ip6h = (ip6_t *)mp->b_rptr; 17118 v6dstp = &ip6h->ip6_dst; 17119 /* 17120 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17121 * address. 17122 * 17123 * Currently, we don't store that state in the IPSEC_IN 17124 * message, and we may need to. 17125 */ 17126 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17127 IP6_IN_LLMCAST : 0); 17128 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17129 NULL, NULL); 17130 } 17131 if (ill_need_rele) 17132 ill_refrele(ill); 17133 if (rill_need_rele) 17134 ill_refrele(recv_ill); 17135 } 17136 17137 /* 17138 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17139 * returns 'true' if there are still fragments left on the queue, in 17140 * which case we restart the timer. 17141 */ 17142 void 17143 ill_frag_timer(void *arg) 17144 { 17145 ill_t *ill = (ill_t *)arg; 17146 boolean_t frag_pending; 17147 ip_stack_t *ipst = ill->ill_ipst; 17148 time_t timeout; 17149 17150 mutex_enter(&ill->ill_lock); 17151 ASSERT(!ill->ill_fragtimer_executing); 17152 if (ill->ill_state_flags & ILL_CONDEMNED) { 17153 ill->ill_frag_timer_id = 0; 17154 mutex_exit(&ill->ill_lock); 17155 return; 17156 } 17157 ill->ill_fragtimer_executing = 1; 17158 mutex_exit(&ill->ill_lock); 17159 17160 if (ill->ill_isv6) 17161 timeout = ipst->ips_ipv6_frag_timeout; 17162 else 17163 timeout = ipst->ips_ip_g_frag_timeout; 17164 17165 frag_pending = ill_frag_timeout(ill, timeout); 17166 17167 /* 17168 * Restart the timer, if we have fragments pending or if someone 17169 * wanted us to be scheduled again. 17170 */ 17171 mutex_enter(&ill->ill_lock); 17172 ill->ill_fragtimer_executing = 0; 17173 ill->ill_frag_timer_id = 0; 17174 if (frag_pending || ill->ill_fragtimer_needrestart) 17175 ill_frag_timer_start(ill); 17176 mutex_exit(&ill->ill_lock); 17177 } 17178 17179 void 17180 ill_frag_timer_start(ill_t *ill) 17181 { 17182 ip_stack_t *ipst = ill->ill_ipst; 17183 clock_t timeo_ms; 17184 17185 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17186 17187 /* If the ill is closing or opening don't proceed */ 17188 if (ill->ill_state_flags & ILL_CONDEMNED) 17189 return; 17190 17191 if (ill->ill_fragtimer_executing) { 17192 /* 17193 * ill_frag_timer is currently executing. Just record the 17194 * the fact that we want the timer to be restarted. 17195 * ill_frag_timer will post a timeout before it returns, 17196 * ensuring it will be called again. 17197 */ 17198 ill->ill_fragtimer_needrestart = 1; 17199 return; 17200 } 17201 17202 if (ill->ill_frag_timer_id == 0) { 17203 if (ill->ill_isv6) 17204 timeo_ms = ipst->ips_ipv6_frag_timo_ms; 17205 else 17206 timeo_ms = ipst->ips_ip_g_frag_timo_ms; 17207 /* 17208 * The timer is neither running nor is the timeout handler 17209 * executing. Post a timeout so that ill_frag_timer will be 17210 * called 17211 */ 17212 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17213 MSEC_TO_TICK(timeo_ms >> 1)); 17214 ill->ill_fragtimer_needrestart = 0; 17215 } 17216 } 17217 17218 /* 17219 * This routine is needed for loopback when forwarding multicasts. 17220 * 17221 * IPQoS Notes: 17222 * IPPF processing is done in fanout routines. 17223 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17224 * processing for IPsec packets is done when it comes back in clear. 17225 * NOTE : The callers of this function need to do the ire_refrele for the 17226 * ire that is being passed in. 17227 */ 17228 void 17229 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17230 ill_t *recv_ill, uint32_t esp_udp_ports) 17231 { 17232 boolean_t esp_in_udp_packet = (esp_udp_ports != 0); 17233 ill_t *ill = (ill_t *)q->q_ptr; 17234 uint32_t sum; 17235 uint32_t u1; 17236 uint32_t u2; 17237 int hdr_length; 17238 boolean_t mctl_present; 17239 mblk_t *first_mp = mp; 17240 mblk_t *hada_mp = NULL; 17241 ipha_t *inner_ipha; 17242 ip_stack_t *ipst; 17243 17244 ASSERT(recv_ill != NULL); 17245 ipst = recv_ill->ill_ipst; 17246 17247 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17248 "ip_rput_locl_start: q %p", q); 17249 17250 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17251 ASSERT(ill != NULL); 17252 17253 #define rptr ((uchar_t *)ipha) 17254 #define iphs ((uint16_t *)ipha) 17255 17256 /* 17257 * no UDP or TCP packet should come here anymore. 17258 */ 17259 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17260 ipha->ipha_protocol != IPPROTO_UDP); 17261 17262 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17263 if (mctl_present && 17264 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17265 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17266 17267 /* 17268 * It's an IPsec accelerated packet. 17269 * Keep a pointer to the data attributes around until 17270 * we allocate the ipsec_info_t. 17271 */ 17272 IPSECHW_DEBUG(IPSECHW_PKT, 17273 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17274 hada_mp = first_mp; 17275 hada_mp->b_cont = NULL; 17276 /* 17277 * Since it is accelerated, it comes directly from 17278 * the ill and the data attributes is followed by 17279 * the packet data. 17280 */ 17281 ASSERT(mp->b_datap->db_type != M_CTL); 17282 first_mp = mp; 17283 mctl_present = B_FALSE; 17284 } 17285 17286 /* 17287 * IF M_CTL is not present, then ipsec_in_is_secure 17288 * should return B_TRUE. There is a case where loopback 17289 * packets has an M_CTL in the front with all the 17290 * IPsec options set to IPSEC_PREF_NEVER - which means 17291 * ipsec_in_is_secure will return B_FALSE. As loopback 17292 * packets never comes here, it is safe to ASSERT the 17293 * following. 17294 */ 17295 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17296 17297 /* 17298 * Also, we should never have an mctl_present if this is an 17299 * ESP-in-UDP packet. 17300 */ 17301 ASSERT(!mctl_present || !esp_in_udp_packet); 17302 17303 /* u1 is # words of IP options */ 17304 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17305 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17306 17307 /* 17308 * Don't verify header checksum if we just removed UDP header or 17309 * packet is coming back from AH/ESP. 17310 */ 17311 if (!esp_in_udp_packet && !mctl_present) { 17312 if (u1) { 17313 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17314 if (hada_mp != NULL) 17315 freemsg(hada_mp); 17316 return; 17317 } 17318 } else { 17319 /* Check the IP header checksum. */ 17320 #define uph ((uint16_t *)ipha) 17321 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17322 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17323 #undef uph 17324 /* finish doing IP checksum */ 17325 sum = (sum & 0xFFFF) + (sum >> 16); 17326 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17327 if (sum && sum != 0xFFFF) { 17328 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17329 goto drop_pkt; 17330 } 17331 } 17332 } 17333 17334 /* 17335 * Count for SNMP of inbound packets for ire. As ip_proto_input 17336 * might be called more than once for secure packets, count only 17337 * the first time. 17338 */ 17339 if (!mctl_present) { 17340 UPDATE_IB_PKT_COUNT(ire); 17341 ire->ire_last_used_time = lbolt; 17342 } 17343 17344 /* Check for fragmentation offset. */ 17345 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17346 u1 = u2 & (IPH_MF | IPH_OFFSET); 17347 if (u1) { 17348 /* 17349 * We re-assemble fragments before we do the AH/ESP 17350 * processing. Thus, M_CTL should not be present 17351 * while we are re-assembling. 17352 */ 17353 ASSERT(!mctl_present); 17354 ASSERT(first_mp == mp); 17355 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 17356 return; 17357 17358 /* 17359 * Make sure that first_mp points back to mp as 17360 * the mp we came in with could have changed in 17361 * ip_rput_fragment(). 17362 */ 17363 ipha = (ipha_t *)mp->b_rptr; 17364 first_mp = mp; 17365 } 17366 17367 /* 17368 * Clear hardware checksumming flag as it is currently only 17369 * used by TCP and UDP. 17370 */ 17371 DB_CKSUMFLAGS(mp) = 0; 17372 17373 /* Now we have a complete datagram, destined for this machine. */ 17374 u1 = IPH_HDR_LENGTH(ipha); 17375 switch (ipha->ipha_protocol) { 17376 case IPPROTO_ICMP: { 17377 ire_t *ire_zone; 17378 ilm_t *ilm; 17379 mblk_t *mp1; 17380 zoneid_t last_zoneid; 17381 ilm_walker_t ilw; 17382 17383 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17384 ASSERT(ire->ire_type == IRE_BROADCAST); 17385 17386 /* 17387 * In the multicast case, applications may have joined 17388 * the group from different zones, so we need to deliver 17389 * the packet to each of them. Loop through the 17390 * multicast memberships structures (ilm) on the receive 17391 * ill and send a copy of the packet up each matching 17392 * one. However, we don't do this for multicasts sent on 17393 * the loopback interface (PHYI_LOOPBACK flag set) as 17394 * they must stay in the sender's zone. 17395 * 17396 * ilm_add_v6() ensures that ilms in the same zone are 17397 * contiguous in the ill_ilm list. We use this property 17398 * to avoid sending duplicates needed when two 17399 * applications in the same zone join the same group on 17400 * different logical interfaces: we ignore the ilm if 17401 * its zoneid is the same as the last matching one. 17402 * In addition, the sending of the packet for 17403 * ire_zoneid is delayed until all of the other ilms 17404 * have been exhausted. 17405 */ 17406 last_zoneid = -1; 17407 ilm = ilm_walker_start(&ilw, recv_ill); 17408 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 17409 if (ipha->ipha_dst != ilm->ilm_addr || 17410 ilm->ilm_zoneid == last_zoneid || 17411 ilm->ilm_zoneid == ire->ire_zoneid || 17412 ilm->ilm_zoneid == ALL_ZONES || 17413 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17414 continue; 17415 mp1 = ip_copymsg(first_mp); 17416 if (mp1 == NULL) 17417 continue; 17418 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 17419 0, sum, mctl_present, B_TRUE, 17420 recv_ill, ilm->ilm_zoneid); 17421 last_zoneid = ilm->ilm_zoneid; 17422 } 17423 ilm_walker_finish(&ilw); 17424 } else if (ire->ire_type == IRE_BROADCAST) { 17425 /* 17426 * In the broadcast case, there may be many zones 17427 * which need a copy of the packet delivered to them. 17428 * There is one IRE_BROADCAST per broadcast address 17429 * and per zone; we walk those using a helper function. 17430 * In addition, the sending of the packet for ire is 17431 * delayed until all of the other ires have been 17432 * processed. 17433 */ 17434 IRB_REFHOLD(ire->ire_bucket); 17435 ire_zone = NULL; 17436 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17437 ire)) != NULL) { 17438 mp1 = ip_copymsg(first_mp); 17439 if (mp1 == NULL) 17440 continue; 17441 17442 UPDATE_IB_PKT_COUNT(ire_zone); 17443 ire_zone->ire_last_used_time = lbolt; 17444 icmp_inbound(q, mp1, B_TRUE, ill, 17445 0, sum, mctl_present, B_TRUE, 17446 recv_ill, ire_zone->ire_zoneid); 17447 } 17448 IRB_REFRELE(ire->ire_bucket); 17449 } 17450 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17451 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17452 ire->ire_zoneid); 17453 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17454 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17455 return; 17456 } 17457 case IPPROTO_IGMP: 17458 /* 17459 * If we are not willing to accept IGMP packets in clear, 17460 * then check with global policy. 17461 */ 17462 if (ipst->ips_igmp_accept_clear_messages == 0) { 17463 first_mp = ipsec_check_global_policy(first_mp, NULL, 17464 ipha, NULL, mctl_present, ipst->ips_netstack); 17465 if (first_mp == NULL) 17466 return; 17467 } 17468 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17469 freemsg(first_mp); 17470 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17471 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17472 return; 17473 } 17474 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17475 /* Bad packet - discarded by igmp_input */ 17476 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17477 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17478 if (mctl_present) 17479 freeb(first_mp); 17480 return; 17481 } 17482 /* 17483 * igmp_input() may have returned the pulled up message. 17484 * So first_mp and ipha need to be reinitialized. 17485 */ 17486 ipha = (ipha_t *)mp->b_rptr; 17487 if (mctl_present) 17488 first_mp->b_cont = mp; 17489 else 17490 first_mp = mp; 17491 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17492 connf_head != NULL) { 17493 /* No user-level listener for IGMP packets */ 17494 goto drop_pkt; 17495 } 17496 /* deliver to local raw users */ 17497 break; 17498 case IPPROTO_PIM: 17499 /* 17500 * If we are not willing to accept PIM packets in clear, 17501 * then check with global policy. 17502 */ 17503 if (ipst->ips_pim_accept_clear_messages == 0) { 17504 first_mp = ipsec_check_global_policy(first_mp, NULL, 17505 ipha, NULL, mctl_present, ipst->ips_netstack); 17506 if (first_mp == NULL) 17507 return; 17508 } 17509 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17510 freemsg(first_mp); 17511 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17512 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17513 return; 17514 } 17515 if (pim_input(q, mp, ill) != 0) { 17516 /* Bad packet - discarded by pim_input */ 17517 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17518 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17519 if (mctl_present) 17520 freeb(first_mp); 17521 return; 17522 } 17523 17524 /* 17525 * pim_input() may have pulled up the message so ipha needs to 17526 * be reinitialized. 17527 */ 17528 ipha = (ipha_t *)mp->b_rptr; 17529 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17530 connf_head != NULL) { 17531 /* No user-level listener for PIM packets */ 17532 goto drop_pkt; 17533 } 17534 /* deliver to local raw users */ 17535 break; 17536 case IPPROTO_ENCAP: 17537 /* 17538 * Handle self-encapsulated packets (IP-in-IP where 17539 * the inner addresses == the outer addresses). 17540 */ 17541 hdr_length = IPH_HDR_LENGTH(ipha); 17542 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17543 mp->b_wptr) { 17544 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17545 sizeof (ipha_t) - mp->b_rptr)) { 17546 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17547 freemsg(first_mp); 17548 return; 17549 } 17550 ipha = (ipha_t *)mp->b_rptr; 17551 } 17552 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17553 /* 17554 * Check the sanity of the inner IP header. 17555 */ 17556 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17557 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17558 freemsg(first_mp); 17559 return; 17560 } 17561 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17562 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17563 freemsg(first_mp); 17564 return; 17565 } 17566 if (inner_ipha->ipha_src == ipha->ipha_src && 17567 inner_ipha->ipha_dst == ipha->ipha_dst) { 17568 ipsec_in_t *ii; 17569 17570 /* 17571 * Self-encapsulated tunnel packet. Remove 17572 * the outer IP header and fanout again. 17573 * We also need to make sure that the inner 17574 * header is pulled up until options. 17575 */ 17576 mp->b_rptr = (uchar_t *)inner_ipha; 17577 ipha = inner_ipha; 17578 hdr_length = IPH_HDR_LENGTH(ipha); 17579 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17580 if (!pullupmsg(mp, (uchar_t *)ipha + 17581 + hdr_length - mp->b_rptr)) { 17582 freemsg(first_mp); 17583 return; 17584 } 17585 ipha = (ipha_t *)mp->b_rptr; 17586 } 17587 if (hdr_length > sizeof (ipha_t)) { 17588 /* We got options on the inner packet. */ 17589 ipaddr_t dst = ipha->ipha_dst; 17590 17591 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17592 -1) { 17593 /* Bad options! */ 17594 return; 17595 } 17596 if (dst != ipha->ipha_dst) { 17597 /* 17598 * Someone put a source-route in 17599 * the inside header of a self- 17600 * encapsulated packet. Drop it 17601 * with extreme prejudice and let 17602 * the sender know. 17603 */ 17604 icmp_unreachable(q, first_mp, 17605 ICMP_SOURCE_ROUTE_FAILED, 17606 recv_ill->ill_zoneid, ipst); 17607 return; 17608 } 17609 } 17610 if (!mctl_present) { 17611 ASSERT(first_mp == mp); 17612 /* 17613 * This means that somebody is sending 17614 * Self-encapsualted packets without AH/ESP. 17615 * If AH/ESP was present, we would have already 17616 * allocated the first_mp. 17617 * 17618 * Send this packet to find a tunnel endpoint. 17619 * if I can't find one, an ICMP 17620 * PROTOCOL_UNREACHABLE will get sent. 17621 */ 17622 goto fanout; 17623 } 17624 /* 17625 * We generally store the ill_index if we need to 17626 * do IPsec processing as we lose the ill queue when 17627 * we come back. But in this case, we never should 17628 * have to store the ill_index here as it should have 17629 * been stored previously when we processed the 17630 * AH/ESP header in this routine or for non-ipsec 17631 * cases, we still have the queue. But for some bad 17632 * packets from the wire, we can get to IPsec after 17633 * this and we better store the index for that case. 17634 */ 17635 ill = (ill_t *)q->q_ptr; 17636 ii = (ipsec_in_t *)first_mp->b_rptr; 17637 ii->ipsec_in_ill_index = 17638 ill->ill_phyint->phyint_ifindex; 17639 ii->ipsec_in_rill_index = 17640 recv_ill->ill_phyint->phyint_ifindex; 17641 if (ii->ipsec_in_decaps) { 17642 /* 17643 * This packet is self-encapsulated multiple 17644 * times. We don't want to recurse infinitely. 17645 * To keep it simple, drop the packet. 17646 */ 17647 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17648 freemsg(first_mp); 17649 return; 17650 } 17651 ii->ipsec_in_decaps = B_TRUE; 17652 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17653 ire); 17654 return; 17655 } 17656 break; 17657 case IPPROTO_AH: 17658 case IPPROTO_ESP: { 17659 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17660 17661 /* 17662 * Fast path for AH/ESP. If this is the first time 17663 * we are sending a datagram to AH/ESP, allocate 17664 * a IPSEC_IN message and prepend it. Otherwise, 17665 * just fanout. 17666 */ 17667 17668 int ipsec_rc; 17669 ipsec_in_t *ii; 17670 netstack_t *ns = ipst->ips_netstack; 17671 17672 IP_STAT(ipst, ipsec_proto_ahesp); 17673 if (!mctl_present) { 17674 ASSERT(first_mp == mp); 17675 first_mp = ipsec_in_alloc(B_TRUE, ns); 17676 if (first_mp == NULL) { 17677 ip1dbg(("ip_proto_input: IPSEC_IN " 17678 "allocation failure.\n")); 17679 freemsg(hada_mp); /* okay ifnull */ 17680 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17681 freemsg(mp); 17682 return; 17683 } 17684 /* 17685 * Store the ill_index so that when we come back 17686 * from IPsec we ride on the same queue. 17687 */ 17688 ill = (ill_t *)q->q_ptr; 17689 ii = (ipsec_in_t *)first_mp->b_rptr; 17690 ii->ipsec_in_ill_index = 17691 ill->ill_phyint->phyint_ifindex; 17692 ii->ipsec_in_rill_index = 17693 recv_ill->ill_phyint->phyint_ifindex; 17694 first_mp->b_cont = mp; 17695 /* 17696 * Cache hardware acceleration info. 17697 */ 17698 if (hada_mp != NULL) { 17699 IPSECHW_DEBUG(IPSECHW_PKT, 17700 ("ip_rput_local: caching data attr.\n")); 17701 ii->ipsec_in_accelerated = B_TRUE; 17702 ii->ipsec_in_da = hada_mp; 17703 hada_mp = NULL; 17704 } 17705 } else { 17706 ii = (ipsec_in_t *)first_mp->b_rptr; 17707 } 17708 17709 ii->ipsec_in_esp_udp_ports = esp_udp_ports; 17710 17711 if (!ipsec_loaded(ipss)) { 17712 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17713 ire->ire_zoneid, ipst); 17714 return; 17715 } 17716 17717 ns = ipst->ips_netstack; 17718 /* select inbound SA and have IPsec process the pkt */ 17719 if (ipha->ipha_protocol == IPPROTO_ESP) { 17720 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17721 boolean_t esp_in_udp_sa; 17722 if (esph == NULL) 17723 return; 17724 ASSERT(ii->ipsec_in_esp_sa != NULL); 17725 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17726 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17727 IPSA_F_NATT) != 0); 17728 /* 17729 * The following is a fancy, but quick, way of saying: 17730 * ESP-in-UDP SA and Raw ESP packet --> drop 17731 * OR 17732 * ESP SA and ESP-in-UDP packet --> drop 17733 */ 17734 if (esp_in_udp_sa != esp_in_udp_packet) { 17735 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17736 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17737 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17738 &ns->netstack_ipsec->ipsec_dropper); 17739 return; 17740 } 17741 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17742 first_mp, esph); 17743 } else { 17744 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17745 if (ah == NULL) 17746 return; 17747 ASSERT(ii->ipsec_in_ah_sa != NULL); 17748 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17749 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17750 first_mp, ah); 17751 } 17752 17753 switch (ipsec_rc) { 17754 case IPSEC_STATUS_SUCCESS: 17755 break; 17756 case IPSEC_STATUS_FAILED: 17757 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17758 /* FALLTHRU */ 17759 case IPSEC_STATUS_PENDING: 17760 return; 17761 } 17762 /* we're done with IPsec processing, send it up */ 17763 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17764 return; 17765 } 17766 default: 17767 break; 17768 } 17769 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17770 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17771 ire->ire_zoneid)); 17772 goto drop_pkt; 17773 } 17774 /* 17775 * Handle protocols with which IP is less intimate. There 17776 * can be more than one stream bound to a particular 17777 * protocol. When this is the case, each one gets a copy 17778 * of any incoming packets. 17779 */ 17780 fanout: 17781 ip_fanout_proto(q, first_mp, ill, ipha, 17782 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17783 B_TRUE, recv_ill, ire->ire_zoneid); 17784 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17785 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17786 return; 17787 17788 drop_pkt: 17789 freemsg(first_mp); 17790 if (hada_mp != NULL) 17791 freeb(hada_mp); 17792 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17793 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17794 #undef rptr 17795 #undef iphs 17796 17797 } 17798 17799 /* 17800 * Update any source route, record route or timestamp options. 17801 * Check that we are at end of strict source route. 17802 * The options have already been checked for sanity in ip_rput_options(). 17803 */ 17804 static boolean_t 17805 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17806 ip_stack_t *ipst) 17807 { 17808 ipoptp_t opts; 17809 uchar_t *opt; 17810 uint8_t optval; 17811 uint8_t optlen; 17812 ipaddr_t dst; 17813 uint32_t ts; 17814 ire_t *dst_ire; 17815 timestruc_t now; 17816 zoneid_t zoneid; 17817 ill_t *ill; 17818 17819 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17820 17821 ip2dbg(("ip_rput_local_options\n")); 17822 17823 for (optval = ipoptp_first(&opts, ipha); 17824 optval != IPOPT_EOL; 17825 optval = ipoptp_next(&opts)) { 17826 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17827 opt = opts.ipoptp_cur; 17828 optlen = opts.ipoptp_len; 17829 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17830 optval, optlen)); 17831 switch (optval) { 17832 uint32_t off; 17833 case IPOPT_SSRR: 17834 case IPOPT_LSRR: 17835 off = opt[IPOPT_OFFSET]; 17836 off--; 17837 if (optlen < IP_ADDR_LEN || 17838 off > optlen - IP_ADDR_LEN) { 17839 /* End of source route */ 17840 ip1dbg(("ip_rput_local_options: end of SR\n")); 17841 break; 17842 } 17843 /* 17844 * This will only happen if two consecutive entries 17845 * in the source route contains our address or if 17846 * it is a packet with a loose source route which 17847 * reaches us before consuming the whole source route 17848 */ 17849 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17850 if (optval == IPOPT_SSRR) { 17851 goto bad_src_route; 17852 } 17853 /* 17854 * Hack: instead of dropping the packet truncate the 17855 * source route to what has been used by filling the 17856 * rest with IPOPT_NOP. 17857 */ 17858 opt[IPOPT_OLEN] = (uint8_t)off; 17859 while (off < optlen) { 17860 opt[off++] = IPOPT_NOP; 17861 } 17862 break; 17863 case IPOPT_RR: 17864 off = opt[IPOPT_OFFSET]; 17865 off--; 17866 if (optlen < IP_ADDR_LEN || 17867 off > optlen - IP_ADDR_LEN) { 17868 /* No more room - ignore */ 17869 ip1dbg(( 17870 "ip_rput_local_options: end of RR\n")); 17871 break; 17872 } 17873 bcopy(&ire->ire_src_addr, (char *)opt + off, 17874 IP_ADDR_LEN); 17875 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17876 break; 17877 case IPOPT_TS: 17878 /* Insert timestamp if there is romm */ 17879 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17880 case IPOPT_TS_TSONLY: 17881 off = IPOPT_TS_TIMELEN; 17882 break; 17883 case IPOPT_TS_PRESPEC: 17884 case IPOPT_TS_PRESPEC_RFC791: 17885 /* Verify that the address matched */ 17886 off = opt[IPOPT_OFFSET] - 1; 17887 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17888 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17889 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17890 ipst); 17891 if (dst_ire == NULL) { 17892 /* Not for us */ 17893 break; 17894 } 17895 ire_refrele(dst_ire); 17896 /* FALLTHRU */ 17897 case IPOPT_TS_TSANDADDR: 17898 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17899 break; 17900 default: 17901 /* 17902 * ip_*put_options should have already 17903 * dropped this packet. 17904 */ 17905 cmn_err(CE_PANIC, "ip_rput_local_options: " 17906 "unknown IT - bug in ip_rput_options?\n"); 17907 return (B_TRUE); /* Keep "lint" happy */ 17908 } 17909 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17910 /* Increase overflow counter */ 17911 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17912 opt[IPOPT_POS_OV_FLG] = 17913 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17914 (off << 4)); 17915 break; 17916 } 17917 off = opt[IPOPT_OFFSET] - 1; 17918 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17919 case IPOPT_TS_PRESPEC: 17920 case IPOPT_TS_PRESPEC_RFC791: 17921 case IPOPT_TS_TSANDADDR: 17922 bcopy(&ire->ire_src_addr, (char *)opt + off, 17923 IP_ADDR_LEN); 17924 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17925 /* FALLTHRU */ 17926 case IPOPT_TS_TSONLY: 17927 off = opt[IPOPT_OFFSET] - 1; 17928 /* Compute # of milliseconds since midnight */ 17929 gethrestime(&now); 17930 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17931 now.tv_nsec / (NANOSEC / MILLISEC); 17932 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17933 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17934 break; 17935 } 17936 break; 17937 } 17938 } 17939 return (B_TRUE); 17940 17941 bad_src_route: 17942 q = WR(q); 17943 if (q->q_next != NULL) 17944 ill = q->q_ptr; 17945 else 17946 ill = NULL; 17947 17948 /* make sure we clear any indication of a hardware checksum */ 17949 DB_CKSUMFLAGS(mp) = 0; 17950 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17951 if (zoneid == ALL_ZONES) 17952 freemsg(mp); 17953 else 17954 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17955 return (B_FALSE); 17956 17957 } 17958 17959 /* 17960 * Process IP options in an inbound packet. If an option affects the 17961 * effective destination address, return the next hop address via dstp. 17962 * Returns -1 if something fails in which case an ICMP error has been sent 17963 * and mp freed. 17964 */ 17965 static int 17966 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17967 ip_stack_t *ipst) 17968 { 17969 ipoptp_t opts; 17970 uchar_t *opt; 17971 uint8_t optval; 17972 uint8_t optlen; 17973 ipaddr_t dst; 17974 intptr_t code = 0; 17975 ire_t *ire = NULL; 17976 zoneid_t zoneid; 17977 ill_t *ill; 17978 17979 ip2dbg(("ip_rput_options\n")); 17980 dst = ipha->ipha_dst; 17981 for (optval = ipoptp_first(&opts, ipha); 17982 optval != IPOPT_EOL; 17983 optval = ipoptp_next(&opts)) { 17984 opt = opts.ipoptp_cur; 17985 optlen = opts.ipoptp_len; 17986 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17987 optval, optlen)); 17988 /* 17989 * Note: we need to verify the checksum before we 17990 * modify anything thus this routine only extracts the next 17991 * hop dst from any source route. 17992 */ 17993 switch (optval) { 17994 uint32_t off; 17995 case IPOPT_SSRR: 17996 case IPOPT_LSRR: 17997 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17998 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17999 if (ire == NULL) { 18000 if (optval == IPOPT_SSRR) { 18001 ip1dbg(("ip_rput_options: not next" 18002 " strict source route 0x%x\n", 18003 ntohl(dst))); 18004 code = (char *)&ipha->ipha_dst - 18005 (char *)ipha; 18006 goto param_prob; /* RouterReq's */ 18007 } 18008 ip2dbg(("ip_rput_options: " 18009 "not next source route 0x%x\n", 18010 ntohl(dst))); 18011 break; 18012 } 18013 ire_refrele(ire); 18014 18015 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18016 ip1dbg(( 18017 "ip_rput_options: bad option offset\n")); 18018 code = (char *)&opt[IPOPT_OLEN] - 18019 (char *)ipha; 18020 goto param_prob; 18021 } 18022 off = opt[IPOPT_OFFSET]; 18023 off--; 18024 redo_srr: 18025 if (optlen < IP_ADDR_LEN || 18026 off > optlen - IP_ADDR_LEN) { 18027 /* End of source route */ 18028 ip1dbg(("ip_rput_options: end of SR\n")); 18029 break; 18030 } 18031 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18032 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18033 ntohl(dst))); 18034 18035 /* 18036 * Check if our address is present more than 18037 * once as consecutive hops in source route. 18038 * XXX verify per-interface ip_forwarding 18039 * for source route? 18040 */ 18041 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18042 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18043 18044 if (ire != NULL) { 18045 ire_refrele(ire); 18046 off += IP_ADDR_LEN; 18047 goto redo_srr; 18048 } 18049 18050 if (dst == htonl(INADDR_LOOPBACK)) { 18051 ip1dbg(("ip_rput_options: loopback addr in " 18052 "source route!\n")); 18053 goto bad_src_route; 18054 } 18055 /* 18056 * For strict: verify that dst is directly 18057 * reachable. 18058 */ 18059 if (optval == IPOPT_SSRR) { 18060 ire = ire_ftable_lookup(dst, 0, 0, 18061 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18062 msg_getlabel(mp), 18063 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18064 if (ire == NULL) { 18065 ip1dbg(("ip_rput_options: SSRR not " 18066 "directly reachable: 0x%x\n", 18067 ntohl(dst))); 18068 goto bad_src_route; 18069 } 18070 ire_refrele(ire); 18071 } 18072 /* 18073 * Defer update of the offset and the record route 18074 * until the packet is forwarded. 18075 */ 18076 break; 18077 case IPOPT_RR: 18078 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18079 ip1dbg(( 18080 "ip_rput_options: bad option offset\n")); 18081 code = (char *)&opt[IPOPT_OLEN] - 18082 (char *)ipha; 18083 goto param_prob; 18084 } 18085 break; 18086 case IPOPT_TS: 18087 /* 18088 * Verify that length >= 5 and that there is either 18089 * room for another timestamp or that the overflow 18090 * counter is not maxed out. 18091 */ 18092 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18093 if (optlen < IPOPT_MINLEN_IT) { 18094 goto param_prob; 18095 } 18096 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18097 ip1dbg(( 18098 "ip_rput_options: bad option offset\n")); 18099 code = (char *)&opt[IPOPT_OFFSET] - 18100 (char *)ipha; 18101 goto param_prob; 18102 } 18103 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18104 case IPOPT_TS_TSONLY: 18105 off = IPOPT_TS_TIMELEN; 18106 break; 18107 case IPOPT_TS_TSANDADDR: 18108 case IPOPT_TS_PRESPEC: 18109 case IPOPT_TS_PRESPEC_RFC791: 18110 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18111 break; 18112 default: 18113 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18114 (char *)ipha; 18115 goto param_prob; 18116 } 18117 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18118 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18119 /* 18120 * No room and the overflow counter is 15 18121 * already. 18122 */ 18123 goto param_prob; 18124 } 18125 break; 18126 } 18127 } 18128 18129 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18130 *dstp = dst; 18131 return (0); 18132 } 18133 18134 ip1dbg(("ip_rput_options: error processing IP options.")); 18135 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18136 18137 param_prob: 18138 q = WR(q); 18139 if (q->q_next != NULL) 18140 ill = q->q_ptr; 18141 else 18142 ill = NULL; 18143 18144 /* make sure we clear any indication of a hardware checksum */ 18145 DB_CKSUMFLAGS(mp) = 0; 18146 /* Don't know whether this is for non-global or global/forwarding */ 18147 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18148 if (zoneid == ALL_ZONES) 18149 freemsg(mp); 18150 else 18151 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18152 return (-1); 18153 18154 bad_src_route: 18155 q = WR(q); 18156 if (q->q_next != NULL) 18157 ill = q->q_ptr; 18158 else 18159 ill = NULL; 18160 18161 /* make sure we clear any indication of a hardware checksum */ 18162 DB_CKSUMFLAGS(mp) = 0; 18163 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18164 if (zoneid == ALL_ZONES) 18165 freemsg(mp); 18166 else 18167 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18168 return (-1); 18169 } 18170 18171 /* 18172 * IP & ICMP info in >=14 msg's ... 18173 * - ip fixed part (mib2_ip_t) 18174 * - icmp fixed part (mib2_icmp_t) 18175 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18176 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18177 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18178 * - ipRouteAttributeTable (ip 102) labeled routes 18179 * - ip multicast membership (ip_member_t) 18180 * - ip multicast source filtering (ip_grpsrc_t) 18181 * - igmp fixed part (struct igmpstat) 18182 * - multicast routing stats (struct mrtstat) 18183 * - multicast routing vifs (array of struct vifctl) 18184 * - multicast routing routes (array of struct mfcctl) 18185 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18186 * One per ill plus one generic 18187 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18188 * One per ill plus one generic 18189 * - ipv6RouteEntry all IPv6 IREs 18190 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18191 * - ipv6NetToMediaEntry all Neighbor Cache entries 18192 * - ipv6AddrEntry all IPv6 ipifs 18193 * - ipv6 multicast membership (ipv6_member_t) 18194 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18195 * 18196 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18197 * 18198 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18199 * already filled in by the caller. 18200 * Return value of 0 indicates that no messages were sent and caller 18201 * should free mpctl. 18202 */ 18203 int 18204 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18205 { 18206 ip_stack_t *ipst; 18207 sctp_stack_t *sctps; 18208 18209 if (q->q_next != NULL) { 18210 ipst = ILLQ_TO_IPST(q); 18211 } else { 18212 ipst = CONNQ_TO_IPST(q); 18213 } 18214 ASSERT(ipst != NULL); 18215 sctps = ipst->ips_netstack->netstack_sctp; 18216 18217 if (mpctl == NULL || mpctl->b_cont == NULL) { 18218 return (0); 18219 } 18220 18221 /* 18222 * For the purposes of the (broken) packet shell use 18223 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18224 * to make TCP and UDP appear first in the list of mib items. 18225 * TBD: We could expand this and use it in netstat so that 18226 * the kernel doesn't have to produce large tables (connections, 18227 * routes, etc) when netstat only wants the statistics or a particular 18228 * table. 18229 */ 18230 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18231 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18232 return (1); 18233 } 18234 } 18235 18236 if (level != MIB2_TCP) { 18237 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18238 return (1); 18239 } 18240 } 18241 18242 if (level != MIB2_UDP) { 18243 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18244 return (1); 18245 } 18246 } 18247 18248 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18249 ipst)) == NULL) { 18250 return (1); 18251 } 18252 18253 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18254 return (1); 18255 } 18256 18257 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18258 return (1); 18259 } 18260 18261 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18262 return (1); 18263 } 18264 18265 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18266 return (1); 18267 } 18268 18269 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18270 return (1); 18271 } 18272 18273 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18274 return (1); 18275 } 18276 18277 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18278 return (1); 18279 } 18280 18281 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18282 return (1); 18283 } 18284 18285 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18286 return (1); 18287 } 18288 18289 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18290 return (1); 18291 } 18292 18293 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18294 return (1); 18295 } 18296 18297 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18298 return (1); 18299 } 18300 18301 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18302 return (1); 18303 } 18304 18305 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 18306 if (mpctl == NULL) 18307 return (1); 18308 18309 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 18310 if (mpctl == NULL) 18311 return (1); 18312 18313 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18314 return (1); 18315 } 18316 freemsg(mpctl); 18317 return (1); 18318 } 18319 18320 /* Get global (legacy) IPv4 statistics */ 18321 static mblk_t * 18322 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18323 ip_stack_t *ipst) 18324 { 18325 mib2_ip_t old_ip_mib; 18326 struct opthdr *optp; 18327 mblk_t *mp2ctl; 18328 18329 /* 18330 * make a copy of the original message 18331 */ 18332 mp2ctl = copymsg(mpctl); 18333 18334 /* fixed length IP structure... */ 18335 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18336 optp->level = MIB2_IP; 18337 optp->name = 0; 18338 SET_MIB(old_ip_mib.ipForwarding, 18339 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18340 SET_MIB(old_ip_mib.ipDefaultTTL, 18341 (uint32_t)ipst->ips_ip_def_ttl); 18342 SET_MIB(old_ip_mib.ipReasmTimeout, 18343 ipst->ips_ip_g_frag_timeout); 18344 SET_MIB(old_ip_mib.ipAddrEntrySize, 18345 sizeof (mib2_ipAddrEntry_t)); 18346 SET_MIB(old_ip_mib.ipRouteEntrySize, 18347 sizeof (mib2_ipRouteEntry_t)); 18348 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18349 sizeof (mib2_ipNetToMediaEntry_t)); 18350 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18351 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18352 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18353 sizeof (mib2_ipAttributeEntry_t)); 18354 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18355 18356 /* 18357 * Grab the statistics from the new IP MIB 18358 */ 18359 SET_MIB(old_ip_mib.ipInReceives, 18360 (uint32_t)ipmib->ipIfStatsHCInReceives); 18361 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18362 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18363 SET_MIB(old_ip_mib.ipForwDatagrams, 18364 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18365 SET_MIB(old_ip_mib.ipInUnknownProtos, 18366 ipmib->ipIfStatsInUnknownProtos); 18367 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18368 SET_MIB(old_ip_mib.ipInDelivers, 18369 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18370 SET_MIB(old_ip_mib.ipOutRequests, 18371 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18372 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18373 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18374 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18375 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18376 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18377 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18378 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18379 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18380 18381 /* ipRoutingDiscards is not being used */ 18382 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18383 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18384 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18385 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18386 SET_MIB(old_ip_mib.ipReasmDuplicates, 18387 ipmib->ipIfStatsReasmDuplicates); 18388 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18389 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18390 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18391 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18392 SET_MIB(old_ip_mib.rawipInOverflows, 18393 ipmib->rawipIfStatsInOverflows); 18394 18395 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18396 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18397 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18398 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18399 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18400 ipmib->ipIfStatsOutSwitchIPVersion); 18401 18402 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18403 (int)sizeof (old_ip_mib))) { 18404 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18405 (uint_t)sizeof (old_ip_mib))); 18406 } 18407 18408 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18409 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18410 (int)optp->level, (int)optp->name, (int)optp->len)); 18411 qreply(q, mpctl); 18412 return (mp2ctl); 18413 } 18414 18415 /* Per interface IPv4 statistics */ 18416 static mblk_t * 18417 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18418 { 18419 struct opthdr *optp; 18420 mblk_t *mp2ctl; 18421 ill_t *ill; 18422 ill_walk_context_t ctx; 18423 mblk_t *mp_tail = NULL; 18424 mib2_ipIfStatsEntry_t global_ip_mib; 18425 18426 /* 18427 * Make a copy of the original message 18428 */ 18429 mp2ctl = copymsg(mpctl); 18430 18431 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18432 optp->level = MIB2_IP; 18433 optp->name = MIB2_IP_TRAFFIC_STATS; 18434 /* Include "unknown interface" ip_mib */ 18435 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18436 ipst->ips_ip_mib.ipIfStatsIfIndex = 18437 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18438 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18439 (ipst->ips_ip_g_forward ? 1 : 2)); 18440 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18441 (uint32_t)ipst->ips_ip_def_ttl); 18442 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18443 sizeof (mib2_ipIfStatsEntry_t)); 18444 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18445 sizeof (mib2_ipAddrEntry_t)); 18446 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18447 sizeof (mib2_ipRouteEntry_t)); 18448 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18449 sizeof (mib2_ipNetToMediaEntry_t)); 18450 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18451 sizeof (ip_member_t)); 18452 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18453 sizeof (ip_grpsrc_t)); 18454 18455 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18456 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18457 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18458 "failed to allocate %u bytes\n", 18459 (uint_t)sizeof (ipst->ips_ip_mib))); 18460 } 18461 18462 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18463 18464 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18465 ill = ILL_START_WALK_V4(&ctx, ipst); 18466 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18467 ill->ill_ip_mib->ipIfStatsIfIndex = 18468 ill->ill_phyint->phyint_ifindex; 18469 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18470 (ipst->ips_ip_g_forward ? 1 : 2)); 18471 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18472 (uint32_t)ipst->ips_ip_def_ttl); 18473 18474 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18475 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18476 (char *)ill->ill_ip_mib, 18477 (int)sizeof (*ill->ill_ip_mib))) { 18478 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18479 "failed to allocate %u bytes\n", 18480 (uint_t)sizeof (*ill->ill_ip_mib))); 18481 } 18482 } 18483 rw_exit(&ipst->ips_ill_g_lock); 18484 18485 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18486 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18487 "level %d, name %d, len %d\n", 18488 (int)optp->level, (int)optp->name, (int)optp->len)); 18489 qreply(q, mpctl); 18490 18491 if (mp2ctl == NULL) 18492 return (NULL); 18493 18494 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18495 } 18496 18497 /* Global IPv4 ICMP statistics */ 18498 static mblk_t * 18499 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18500 { 18501 struct opthdr *optp; 18502 mblk_t *mp2ctl; 18503 18504 /* 18505 * Make a copy of the original message 18506 */ 18507 mp2ctl = copymsg(mpctl); 18508 18509 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18510 optp->level = MIB2_ICMP; 18511 optp->name = 0; 18512 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18513 (int)sizeof (ipst->ips_icmp_mib))) { 18514 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18515 (uint_t)sizeof (ipst->ips_icmp_mib))); 18516 } 18517 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18518 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18519 (int)optp->level, (int)optp->name, (int)optp->len)); 18520 qreply(q, mpctl); 18521 return (mp2ctl); 18522 } 18523 18524 /* Global IPv4 IGMP statistics */ 18525 static mblk_t * 18526 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18527 { 18528 struct opthdr *optp; 18529 mblk_t *mp2ctl; 18530 18531 /* 18532 * make a copy of the original message 18533 */ 18534 mp2ctl = copymsg(mpctl); 18535 18536 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18537 optp->level = EXPER_IGMP; 18538 optp->name = 0; 18539 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18540 (int)sizeof (ipst->ips_igmpstat))) { 18541 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18542 (uint_t)sizeof (ipst->ips_igmpstat))); 18543 } 18544 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18545 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18546 (int)optp->level, (int)optp->name, (int)optp->len)); 18547 qreply(q, mpctl); 18548 return (mp2ctl); 18549 } 18550 18551 /* Global IPv4 Multicast Routing statistics */ 18552 static mblk_t * 18553 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18554 { 18555 struct opthdr *optp; 18556 mblk_t *mp2ctl; 18557 18558 /* 18559 * make a copy of the original message 18560 */ 18561 mp2ctl = copymsg(mpctl); 18562 18563 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18564 optp->level = EXPER_DVMRP; 18565 optp->name = 0; 18566 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18567 ip0dbg(("ip_mroute_stats: failed\n")); 18568 } 18569 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18570 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18571 (int)optp->level, (int)optp->name, (int)optp->len)); 18572 qreply(q, mpctl); 18573 return (mp2ctl); 18574 } 18575 18576 /* IPv4 address information */ 18577 static mblk_t * 18578 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18579 { 18580 struct opthdr *optp; 18581 mblk_t *mp2ctl; 18582 mblk_t *mp_tail = NULL; 18583 ill_t *ill; 18584 ipif_t *ipif; 18585 uint_t bitval; 18586 mib2_ipAddrEntry_t mae; 18587 zoneid_t zoneid; 18588 ill_walk_context_t ctx; 18589 18590 /* 18591 * make a copy of the original message 18592 */ 18593 mp2ctl = copymsg(mpctl); 18594 18595 /* ipAddrEntryTable */ 18596 18597 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18598 optp->level = MIB2_IP; 18599 optp->name = MIB2_IP_ADDR; 18600 zoneid = Q_TO_CONN(q)->conn_zoneid; 18601 18602 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18603 ill = ILL_START_WALK_V4(&ctx, ipst); 18604 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18605 for (ipif = ill->ill_ipif; ipif != NULL; 18606 ipif = ipif->ipif_next) { 18607 if (ipif->ipif_zoneid != zoneid && 18608 ipif->ipif_zoneid != ALL_ZONES) 18609 continue; 18610 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18611 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18612 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18613 18614 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18615 OCTET_LENGTH); 18616 mae.ipAdEntIfIndex.o_length = 18617 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18618 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18619 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18620 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18621 mae.ipAdEntInfo.ae_subnet_len = 18622 ip_mask_to_plen(ipif->ipif_net_mask); 18623 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18624 for (bitval = 1; 18625 bitval && 18626 !(bitval & ipif->ipif_brd_addr); 18627 bitval <<= 1) 18628 noop; 18629 mae.ipAdEntBcastAddr = bitval; 18630 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18631 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18632 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18633 mae.ipAdEntInfo.ae_broadcast_addr = 18634 ipif->ipif_brd_addr; 18635 mae.ipAdEntInfo.ae_pp_dst_addr = 18636 ipif->ipif_pp_dst_addr; 18637 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18638 ill->ill_flags | ill->ill_phyint->phyint_flags; 18639 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18640 18641 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18642 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18643 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18644 "allocate %u bytes\n", 18645 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18646 } 18647 } 18648 } 18649 rw_exit(&ipst->ips_ill_g_lock); 18650 18651 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18652 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18653 (int)optp->level, (int)optp->name, (int)optp->len)); 18654 qreply(q, mpctl); 18655 return (mp2ctl); 18656 } 18657 18658 /* IPv6 address information */ 18659 static mblk_t * 18660 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18661 { 18662 struct opthdr *optp; 18663 mblk_t *mp2ctl; 18664 mblk_t *mp_tail = NULL; 18665 ill_t *ill; 18666 ipif_t *ipif; 18667 mib2_ipv6AddrEntry_t mae6; 18668 zoneid_t zoneid; 18669 ill_walk_context_t ctx; 18670 18671 /* 18672 * make a copy of the original message 18673 */ 18674 mp2ctl = copymsg(mpctl); 18675 18676 /* ipv6AddrEntryTable */ 18677 18678 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18679 optp->level = MIB2_IP6; 18680 optp->name = MIB2_IP6_ADDR; 18681 zoneid = Q_TO_CONN(q)->conn_zoneid; 18682 18683 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18684 ill = ILL_START_WALK_V6(&ctx, ipst); 18685 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18686 for (ipif = ill->ill_ipif; ipif != NULL; 18687 ipif = ipif->ipif_next) { 18688 if (ipif->ipif_zoneid != zoneid && 18689 ipif->ipif_zoneid != ALL_ZONES) 18690 continue; 18691 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18692 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18693 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18694 18695 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18696 OCTET_LENGTH); 18697 mae6.ipv6AddrIfIndex.o_length = 18698 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18699 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18700 mae6.ipv6AddrPfxLength = 18701 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18702 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18703 mae6.ipv6AddrInfo.ae_subnet_len = 18704 mae6.ipv6AddrPfxLength; 18705 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18706 18707 /* Type: stateless(1), stateful(2), unknown(3) */ 18708 if (ipif->ipif_flags & IPIF_ADDRCONF) 18709 mae6.ipv6AddrType = 1; 18710 else 18711 mae6.ipv6AddrType = 2; 18712 /* Anycast: true(1), false(2) */ 18713 if (ipif->ipif_flags & IPIF_ANYCAST) 18714 mae6.ipv6AddrAnycastFlag = 1; 18715 else 18716 mae6.ipv6AddrAnycastFlag = 2; 18717 18718 /* 18719 * Address status: preferred(1), deprecated(2), 18720 * invalid(3), inaccessible(4), unknown(5) 18721 */ 18722 if (ipif->ipif_flags & IPIF_NOLOCAL) 18723 mae6.ipv6AddrStatus = 3; 18724 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18725 mae6.ipv6AddrStatus = 2; 18726 else 18727 mae6.ipv6AddrStatus = 1; 18728 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18729 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18730 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18731 ipif->ipif_v6pp_dst_addr; 18732 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18733 ill->ill_flags | ill->ill_phyint->phyint_flags; 18734 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18735 mae6.ipv6AddrIdentifier = ill->ill_token; 18736 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18737 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18738 mae6.ipv6AddrRetransmitTime = 18739 ill->ill_reachable_retrans_time; 18740 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18741 (char *)&mae6, 18742 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18743 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18744 "allocate %u bytes\n", 18745 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18746 } 18747 } 18748 } 18749 rw_exit(&ipst->ips_ill_g_lock); 18750 18751 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18752 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18753 (int)optp->level, (int)optp->name, (int)optp->len)); 18754 qreply(q, mpctl); 18755 return (mp2ctl); 18756 } 18757 18758 /* IPv4 multicast group membership. */ 18759 static mblk_t * 18760 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18761 { 18762 struct opthdr *optp; 18763 mblk_t *mp2ctl; 18764 ill_t *ill; 18765 ipif_t *ipif; 18766 ilm_t *ilm; 18767 ip_member_t ipm; 18768 mblk_t *mp_tail = NULL; 18769 ill_walk_context_t ctx; 18770 zoneid_t zoneid; 18771 ilm_walker_t ilw; 18772 18773 /* 18774 * make a copy of the original message 18775 */ 18776 mp2ctl = copymsg(mpctl); 18777 zoneid = Q_TO_CONN(q)->conn_zoneid; 18778 18779 /* ipGroupMember table */ 18780 optp = (struct opthdr *)&mpctl->b_rptr[ 18781 sizeof (struct T_optmgmt_ack)]; 18782 optp->level = MIB2_IP; 18783 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18784 18785 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18786 ill = ILL_START_WALK_V4(&ctx, ipst); 18787 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18788 if (IS_UNDER_IPMP(ill)) 18789 continue; 18790 18791 ilm = ilm_walker_start(&ilw, ill); 18792 for (ipif = ill->ill_ipif; ipif != NULL; 18793 ipif = ipif->ipif_next) { 18794 if (ipif->ipif_zoneid != zoneid && 18795 ipif->ipif_zoneid != ALL_ZONES) 18796 continue; /* not this zone */ 18797 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18798 OCTET_LENGTH); 18799 ipm.ipGroupMemberIfIndex.o_length = 18800 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18801 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18802 ASSERT(ilm->ilm_ipif != NULL); 18803 ASSERT(ilm->ilm_ill == NULL); 18804 if (ilm->ilm_ipif != ipif) 18805 continue; 18806 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18807 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18808 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18809 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18810 (char *)&ipm, (int)sizeof (ipm))) { 18811 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18812 "failed to allocate %u bytes\n", 18813 (uint_t)sizeof (ipm))); 18814 } 18815 } 18816 } 18817 ilm_walker_finish(&ilw); 18818 } 18819 rw_exit(&ipst->ips_ill_g_lock); 18820 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18821 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18822 (int)optp->level, (int)optp->name, (int)optp->len)); 18823 qreply(q, mpctl); 18824 return (mp2ctl); 18825 } 18826 18827 /* IPv6 multicast group membership. */ 18828 static mblk_t * 18829 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18830 { 18831 struct opthdr *optp; 18832 mblk_t *mp2ctl; 18833 ill_t *ill; 18834 ilm_t *ilm; 18835 ipv6_member_t ipm6; 18836 mblk_t *mp_tail = NULL; 18837 ill_walk_context_t ctx; 18838 zoneid_t zoneid; 18839 ilm_walker_t ilw; 18840 18841 /* 18842 * make a copy of the original message 18843 */ 18844 mp2ctl = copymsg(mpctl); 18845 zoneid = Q_TO_CONN(q)->conn_zoneid; 18846 18847 /* ip6GroupMember table */ 18848 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18849 optp->level = MIB2_IP6; 18850 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18851 18852 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18853 ill = ILL_START_WALK_V6(&ctx, ipst); 18854 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18855 if (IS_UNDER_IPMP(ill)) 18856 continue; 18857 18858 ilm = ilm_walker_start(&ilw, ill); 18859 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18860 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18861 ASSERT(ilm->ilm_ipif == NULL); 18862 ASSERT(ilm->ilm_ill != NULL); 18863 if (ilm->ilm_zoneid != zoneid) 18864 continue; /* not this zone */ 18865 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18866 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18867 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18868 if (!snmp_append_data2(mpctl->b_cont, 18869 &mp_tail, 18870 (char *)&ipm6, (int)sizeof (ipm6))) { 18871 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18872 "failed to allocate %u bytes\n", 18873 (uint_t)sizeof (ipm6))); 18874 } 18875 } 18876 ilm_walker_finish(&ilw); 18877 } 18878 rw_exit(&ipst->ips_ill_g_lock); 18879 18880 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18881 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18882 (int)optp->level, (int)optp->name, (int)optp->len)); 18883 qreply(q, mpctl); 18884 return (mp2ctl); 18885 } 18886 18887 /* IP multicast filtered sources */ 18888 static mblk_t * 18889 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18890 { 18891 struct opthdr *optp; 18892 mblk_t *mp2ctl; 18893 ill_t *ill; 18894 ipif_t *ipif; 18895 ilm_t *ilm; 18896 ip_grpsrc_t ips; 18897 mblk_t *mp_tail = NULL; 18898 ill_walk_context_t ctx; 18899 zoneid_t zoneid; 18900 int i; 18901 slist_t *sl; 18902 ilm_walker_t ilw; 18903 18904 /* 18905 * make a copy of the original message 18906 */ 18907 mp2ctl = copymsg(mpctl); 18908 zoneid = Q_TO_CONN(q)->conn_zoneid; 18909 18910 /* ipGroupSource table */ 18911 optp = (struct opthdr *)&mpctl->b_rptr[ 18912 sizeof (struct T_optmgmt_ack)]; 18913 optp->level = MIB2_IP; 18914 optp->name = EXPER_IP_GROUP_SOURCES; 18915 18916 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18917 ill = ILL_START_WALK_V4(&ctx, ipst); 18918 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18919 if (IS_UNDER_IPMP(ill)) 18920 continue; 18921 18922 ilm = ilm_walker_start(&ilw, ill); 18923 for (ipif = ill->ill_ipif; ipif != NULL; 18924 ipif = ipif->ipif_next) { 18925 if (ipif->ipif_zoneid != zoneid) 18926 continue; /* not this zone */ 18927 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18928 OCTET_LENGTH); 18929 ips.ipGroupSourceIfIndex.o_length = 18930 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18931 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18932 ASSERT(ilm->ilm_ipif != NULL); 18933 ASSERT(ilm->ilm_ill == NULL); 18934 sl = ilm->ilm_filter; 18935 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18936 continue; 18937 ips.ipGroupSourceGroup = ilm->ilm_addr; 18938 for (i = 0; i < sl->sl_numsrc; i++) { 18939 if (!IN6_IS_ADDR_V4MAPPED( 18940 &sl->sl_addr[i])) 18941 continue; 18942 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18943 ips.ipGroupSourceAddress); 18944 if (snmp_append_data2(mpctl->b_cont, 18945 &mp_tail, (char *)&ips, 18946 (int)sizeof (ips)) == 0) { 18947 ip1dbg(("ip_snmp_get_mib2_" 18948 "ip_group_src: failed to " 18949 "allocate %u bytes\n", 18950 (uint_t)sizeof (ips))); 18951 } 18952 } 18953 } 18954 } 18955 ilm_walker_finish(&ilw); 18956 } 18957 rw_exit(&ipst->ips_ill_g_lock); 18958 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18959 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18960 (int)optp->level, (int)optp->name, (int)optp->len)); 18961 qreply(q, mpctl); 18962 return (mp2ctl); 18963 } 18964 18965 /* IPv6 multicast filtered sources. */ 18966 static mblk_t * 18967 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18968 { 18969 struct opthdr *optp; 18970 mblk_t *mp2ctl; 18971 ill_t *ill; 18972 ilm_t *ilm; 18973 ipv6_grpsrc_t ips6; 18974 mblk_t *mp_tail = NULL; 18975 ill_walk_context_t ctx; 18976 zoneid_t zoneid; 18977 int i; 18978 slist_t *sl; 18979 ilm_walker_t ilw; 18980 18981 /* 18982 * make a copy of the original message 18983 */ 18984 mp2ctl = copymsg(mpctl); 18985 zoneid = Q_TO_CONN(q)->conn_zoneid; 18986 18987 /* ip6GroupMember table */ 18988 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18989 optp->level = MIB2_IP6; 18990 optp->name = EXPER_IP6_GROUP_SOURCES; 18991 18992 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18993 ill = ILL_START_WALK_V6(&ctx, ipst); 18994 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18995 if (IS_UNDER_IPMP(ill)) 18996 continue; 18997 18998 ilm = ilm_walker_start(&ilw, ill); 18999 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 19000 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19001 ASSERT(ilm->ilm_ipif == NULL); 19002 ASSERT(ilm->ilm_ill != NULL); 19003 sl = ilm->ilm_filter; 19004 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 19005 continue; 19006 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 19007 for (i = 0; i < sl->sl_numsrc; i++) { 19008 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 19009 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19010 (char *)&ips6, (int)sizeof (ips6))) { 19011 ip1dbg(("ip_snmp_get_mib2_ip6_" 19012 "group_src: failed to allocate " 19013 "%u bytes\n", 19014 (uint_t)sizeof (ips6))); 19015 } 19016 } 19017 } 19018 ilm_walker_finish(&ilw); 19019 } 19020 rw_exit(&ipst->ips_ill_g_lock); 19021 19022 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19023 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19024 (int)optp->level, (int)optp->name, (int)optp->len)); 19025 qreply(q, mpctl); 19026 return (mp2ctl); 19027 } 19028 19029 /* Multicast routing virtual interface table. */ 19030 static mblk_t * 19031 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19032 { 19033 struct opthdr *optp; 19034 mblk_t *mp2ctl; 19035 19036 /* 19037 * make a copy of the original message 19038 */ 19039 mp2ctl = copymsg(mpctl); 19040 19041 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19042 optp->level = EXPER_DVMRP; 19043 optp->name = EXPER_DVMRP_VIF; 19044 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 19045 ip0dbg(("ip_mroute_vif: failed\n")); 19046 } 19047 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19048 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 19049 (int)optp->level, (int)optp->name, (int)optp->len)); 19050 qreply(q, mpctl); 19051 return (mp2ctl); 19052 } 19053 19054 /* Multicast routing table. */ 19055 static mblk_t * 19056 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19057 { 19058 struct opthdr *optp; 19059 mblk_t *mp2ctl; 19060 19061 /* 19062 * make a copy of the original message 19063 */ 19064 mp2ctl = copymsg(mpctl); 19065 19066 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19067 optp->level = EXPER_DVMRP; 19068 optp->name = EXPER_DVMRP_MRT; 19069 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19070 ip0dbg(("ip_mroute_mrt: failed\n")); 19071 } 19072 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19073 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19074 (int)optp->level, (int)optp->name, (int)optp->len)); 19075 qreply(q, mpctl); 19076 return (mp2ctl); 19077 } 19078 19079 /* 19080 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19081 * in one IRE walk. 19082 */ 19083 static mblk_t * 19084 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 19085 ip_stack_t *ipst) 19086 { 19087 struct opthdr *optp; 19088 mblk_t *mp2ctl; /* Returned */ 19089 mblk_t *mp3ctl; /* nettomedia */ 19090 mblk_t *mp4ctl; /* routeattrs */ 19091 iproutedata_t ird; 19092 zoneid_t zoneid; 19093 19094 /* 19095 * make copies of the original message 19096 * - mp2ctl is returned unchanged to the caller for his use 19097 * - mpctl is sent upstream as ipRouteEntryTable 19098 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19099 * - mp4ctl is sent upstream as ipRouteAttributeTable 19100 */ 19101 mp2ctl = copymsg(mpctl); 19102 mp3ctl = copymsg(mpctl); 19103 mp4ctl = copymsg(mpctl); 19104 if (mp3ctl == NULL || mp4ctl == NULL) { 19105 freemsg(mp4ctl); 19106 freemsg(mp3ctl); 19107 freemsg(mp2ctl); 19108 freemsg(mpctl); 19109 return (NULL); 19110 } 19111 19112 bzero(&ird, sizeof (ird)); 19113 19114 ird.ird_route.lp_head = mpctl->b_cont; 19115 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19116 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19117 /* 19118 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19119 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19120 * intended a temporary solution until a proper MIB API is provided 19121 * that provides complete filtering/caller-opt-in. 19122 */ 19123 if (level == EXPER_IP_AND_TESTHIDDEN) 19124 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19125 19126 zoneid = Q_TO_CONN(q)->conn_zoneid; 19127 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19128 19129 /* ipRouteEntryTable in mpctl */ 19130 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19131 optp->level = MIB2_IP; 19132 optp->name = MIB2_IP_ROUTE; 19133 optp->len = msgdsize(ird.ird_route.lp_head); 19134 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19135 (int)optp->level, (int)optp->name, (int)optp->len)); 19136 qreply(q, mpctl); 19137 19138 /* ipNetToMediaEntryTable in mp3ctl */ 19139 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19140 optp->level = MIB2_IP; 19141 optp->name = MIB2_IP_MEDIA; 19142 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19143 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19144 (int)optp->level, (int)optp->name, (int)optp->len)); 19145 qreply(q, mp3ctl); 19146 19147 /* ipRouteAttributeTable in mp4ctl */ 19148 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19149 optp->level = MIB2_IP; 19150 optp->name = EXPER_IP_RTATTR; 19151 optp->len = msgdsize(ird.ird_attrs.lp_head); 19152 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19153 (int)optp->level, (int)optp->name, (int)optp->len)); 19154 if (optp->len == 0) 19155 freemsg(mp4ctl); 19156 else 19157 qreply(q, mp4ctl); 19158 19159 return (mp2ctl); 19160 } 19161 19162 /* 19163 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19164 * ipv6NetToMediaEntryTable in an NDP walk. 19165 */ 19166 static mblk_t * 19167 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 19168 ip_stack_t *ipst) 19169 { 19170 struct opthdr *optp; 19171 mblk_t *mp2ctl; /* Returned */ 19172 mblk_t *mp3ctl; /* nettomedia */ 19173 mblk_t *mp4ctl; /* routeattrs */ 19174 iproutedata_t ird; 19175 zoneid_t zoneid; 19176 19177 /* 19178 * make copies of the original message 19179 * - mp2ctl is returned unchanged to the caller for his use 19180 * - mpctl is sent upstream as ipv6RouteEntryTable 19181 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19182 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19183 */ 19184 mp2ctl = copymsg(mpctl); 19185 mp3ctl = copymsg(mpctl); 19186 mp4ctl = copymsg(mpctl); 19187 if (mp3ctl == NULL || mp4ctl == NULL) { 19188 freemsg(mp4ctl); 19189 freemsg(mp3ctl); 19190 freemsg(mp2ctl); 19191 freemsg(mpctl); 19192 return (NULL); 19193 } 19194 19195 bzero(&ird, sizeof (ird)); 19196 19197 ird.ird_route.lp_head = mpctl->b_cont; 19198 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19199 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19200 /* 19201 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19202 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19203 * intended a temporary solution until a proper MIB API is provided 19204 * that provides complete filtering/caller-opt-in. 19205 */ 19206 if (level == EXPER_IP_AND_TESTHIDDEN) 19207 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19208 19209 zoneid = Q_TO_CONN(q)->conn_zoneid; 19210 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19211 19212 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19213 optp->level = MIB2_IP6; 19214 optp->name = MIB2_IP6_ROUTE; 19215 optp->len = msgdsize(ird.ird_route.lp_head); 19216 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19217 (int)optp->level, (int)optp->name, (int)optp->len)); 19218 qreply(q, mpctl); 19219 19220 /* ipv6NetToMediaEntryTable in mp3ctl */ 19221 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19222 19223 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19224 optp->level = MIB2_IP6; 19225 optp->name = MIB2_IP6_MEDIA; 19226 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19227 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19228 (int)optp->level, (int)optp->name, (int)optp->len)); 19229 qreply(q, mp3ctl); 19230 19231 /* ipv6RouteAttributeTable in mp4ctl */ 19232 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19233 optp->level = MIB2_IP6; 19234 optp->name = EXPER_IP_RTATTR; 19235 optp->len = msgdsize(ird.ird_attrs.lp_head); 19236 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19237 (int)optp->level, (int)optp->name, (int)optp->len)); 19238 if (optp->len == 0) 19239 freemsg(mp4ctl); 19240 else 19241 qreply(q, mp4ctl); 19242 19243 return (mp2ctl); 19244 } 19245 19246 /* 19247 * IPv6 mib: One per ill 19248 */ 19249 static mblk_t * 19250 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19251 { 19252 struct opthdr *optp; 19253 mblk_t *mp2ctl; 19254 ill_t *ill; 19255 ill_walk_context_t ctx; 19256 mblk_t *mp_tail = NULL; 19257 19258 /* 19259 * Make a copy of the original message 19260 */ 19261 mp2ctl = copymsg(mpctl); 19262 19263 /* fixed length IPv6 structure ... */ 19264 19265 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19266 optp->level = MIB2_IP6; 19267 optp->name = 0; 19268 /* Include "unknown interface" ip6_mib */ 19269 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19270 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19271 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19272 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19273 ipst->ips_ipv6_forward ? 1 : 2); 19274 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19275 ipst->ips_ipv6_def_hops); 19276 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19277 sizeof (mib2_ipIfStatsEntry_t)); 19278 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19279 sizeof (mib2_ipv6AddrEntry_t)); 19280 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19281 sizeof (mib2_ipv6RouteEntry_t)); 19282 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19283 sizeof (mib2_ipv6NetToMediaEntry_t)); 19284 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19285 sizeof (ipv6_member_t)); 19286 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19287 sizeof (ipv6_grpsrc_t)); 19288 19289 /* 19290 * Synchronize 64- and 32-bit counters 19291 */ 19292 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19293 ipIfStatsHCInReceives); 19294 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19295 ipIfStatsHCInDelivers); 19296 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19297 ipIfStatsHCOutRequests); 19298 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19299 ipIfStatsHCOutForwDatagrams); 19300 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19301 ipIfStatsHCOutMcastPkts); 19302 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19303 ipIfStatsHCInMcastPkts); 19304 19305 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19306 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19307 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19308 (uint_t)sizeof (ipst->ips_ip6_mib))); 19309 } 19310 19311 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19312 ill = ILL_START_WALK_V6(&ctx, ipst); 19313 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19314 ill->ill_ip_mib->ipIfStatsIfIndex = 19315 ill->ill_phyint->phyint_ifindex; 19316 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19317 ipst->ips_ipv6_forward ? 1 : 2); 19318 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19319 ill->ill_max_hops); 19320 19321 /* 19322 * Synchronize 64- and 32-bit counters 19323 */ 19324 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19325 ipIfStatsHCInReceives); 19326 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19327 ipIfStatsHCInDelivers); 19328 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19329 ipIfStatsHCOutRequests); 19330 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19331 ipIfStatsHCOutForwDatagrams); 19332 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19333 ipIfStatsHCOutMcastPkts); 19334 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19335 ipIfStatsHCInMcastPkts); 19336 19337 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19338 (char *)ill->ill_ip_mib, 19339 (int)sizeof (*ill->ill_ip_mib))) { 19340 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19341 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19342 } 19343 } 19344 rw_exit(&ipst->ips_ill_g_lock); 19345 19346 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19347 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19348 (int)optp->level, (int)optp->name, (int)optp->len)); 19349 qreply(q, mpctl); 19350 return (mp2ctl); 19351 } 19352 19353 /* 19354 * ICMPv6 mib: One per ill 19355 */ 19356 static mblk_t * 19357 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19358 { 19359 struct opthdr *optp; 19360 mblk_t *mp2ctl; 19361 ill_t *ill; 19362 ill_walk_context_t ctx; 19363 mblk_t *mp_tail = NULL; 19364 /* 19365 * Make a copy of the original message 19366 */ 19367 mp2ctl = copymsg(mpctl); 19368 19369 /* fixed length ICMPv6 structure ... */ 19370 19371 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19372 optp->level = MIB2_ICMP6; 19373 optp->name = 0; 19374 /* Include "unknown interface" icmp6_mib */ 19375 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19376 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19377 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19378 sizeof (mib2_ipv6IfIcmpEntry_t); 19379 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19380 (char *)&ipst->ips_icmp6_mib, 19381 (int)sizeof (ipst->ips_icmp6_mib))) { 19382 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19383 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19384 } 19385 19386 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19387 ill = ILL_START_WALK_V6(&ctx, ipst); 19388 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19389 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19390 ill->ill_phyint->phyint_ifindex; 19391 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19392 (char *)ill->ill_icmp6_mib, 19393 (int)sizeof (*ill->ill_icmp6_mib))) { 19394 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19395 "%u bytes\n", 19396 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19397 } 19398 } 19399 rw_exit(&ipst->ips_ill_g_lock); 19400 19401 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19402 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19403 (int)optp->level, (int)optp->name, (int)optp->len)); 19404 qreply(q, mpctl); 19405 return (mp2ctl); 19406 } 19407 19408 /* 19409 * ire_walk routine to create both ipRouteEntryTable and 19410 * ipRouteAttributeTable in one IRE walk 19411 */ 19412 static void 19413 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19414 { 19415 ill_t *ill; 19416 ipif_t *ipif; 19417 mib2_ipRouteEntry_t *re; 19418 mib2_ipAttributeEntry_t *iae, *iaeptr; 19419 ipaddr_t gw_addr; 19420 tsol_ire_gw_secattr_t *attrp; 19421 tsol_gc_t *gc = NULL; 19422 tsol_gcgrp_t *gcgrp = NULL; 19423 uint_t sacnt = 0; 19424 int i; 19425 19426 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19427 19428 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19429 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19430 return; 19431 } 19432 19433 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19434 return; 19435 19436 if ((attrp = ire->ire_gw_secattr) != NULL) { 19437 mutex_enter(&attrp->igsa_lock); 19438 if ((gc = attrp->igsa_gc) != NULL) { 19439 gcgrp = gc->gc_grp; 19440 ASSERT(gcgrp != NULL); 19441 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19442 sacnt = 1; 19443 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19444 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19445 gc = gcgrp->gcgrp_head; 19446 sacnt = gcgrp->gcgrp_count; 19447 } 19448 mutex_exit(&attrp->igsa_lock); 19449 19450 /* do nothing if there's no gc to report */ 19451 if (gc == NULL) { 19452 ASSERT(sacnt == 0); 19453 if (gcgrp != NULL) { 19454 /* we might as well drop the lock now */ 19455 rw_exit(&gcgrp->gcgrp_rwlock); 19456 gcgrp = NULL; 19457 } 19458 attrp = NULL; 19459 } 19460 19461 ASSERT(gc == NULL || (gcgrp != NULL && 19462 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19463 } 19464 ASSERT(sacnt == 0 || gc != NULL); 19465 19466 if (sacnt != 0 && 19467 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19468 kmem_free(re, sizeof (*re)); 19469 rw_exit(&gcgrp->gcgrp_rwlock); 19470 return; 19471 } 19472 19473 /* 19474 * Return all IRE types for route table... let caller pick and choose 19475 */ 19476 re->ipRouteDest = ire->ire_addr; 19477 ipif = ire->ire_ipif; 19478 re->ipRouteIfIndex.o_length = 0; 19479 if (ire->ire_type == IRE_CACHE) { 19480 ill = (ill_t *)ire->ire_stq->q_ptr; 19481 re->ipRouteIfIndex.o_length = 19482 ill->ill_name_length == 0 ? 0 : 19483 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19484 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19485 re->ipRouteIfIndex.o_length); 19486 } else if (ipif != NULL) { 19487 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19488 re->ipRouteIfIndex.o_length = 19489 mi_strlen(re->ipRouteIfIndex.o_bytes); 19490 } 19491 re->ipRouteMetric1 = -1; 19492 re->ipRouteMetric2 = -1; 19493 re->ipRouteMetric3 = -1; 19494 re->ipRouteMetric4 = -1; 19495 19496 gw_addr = ire->ire_gateway_addr; 19497 19498 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19499 re->ipRouteNextHop = ire->ire_src_addr; 19500 else 19501 re->ipRouteNextHop = gw_addr; 19502 /* indirect(4), direct(3), or invalid(2) */ 19503 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19504 re->ipRouteType = 2; 19505 else 19506 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19507 re->ipRouteProto = -1; 19508 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19509 re->ipRouteMask = ire->ire_mask; 19510 re->ipRouteMetric5 = -1; 19511 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19512 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19513 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19514 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19515 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19516 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19517 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19518 re->ipRouteInfo.re_flags = ire->ire_flags; 19519 19520 if (ire->ire_flags & RTF_DYNAMIC) { 19521 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19522 } else { 19523 re->ipRouteInfo.re_ire_type = ire->ire_type; 19524 } 19525 19526 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19527 (char *)re, (int)sizeof (*re))) { 19528 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19529 (uint_t)sizeof (*re))); 19530 } 19531 19532 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19533 iaeptr->iae_routeidx = ird->ird_idx; 19534 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19535 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19536 } 19537 19538 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19539 (char *)iae, sacnt * sizeof (*iae))) { 19540 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19541 (unsigned)(sacnt * sizeof (*iae)))); 19542 } 19543 19544 /* bump route index for next pass */ 19545 ird->ird_idx++; 19546 19547 kmem_free(re, sizeof (*re)); 19548 if (sacnt != 0) 19549 kmem_free(iae, sacnt * sizeof (*iae)); 19550 19551 if (gcgrp != NULL) 19552 rw_exit(&gcgrp->gcgrp_rwlock); 19553 } 19554 19555 /* 19556 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19557 */ 19558 static void 19559 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19560 { 19561 ill_t *ill; 19562 ipif_t *ipif; 19563 mib2_ipv6RouteEntry_t *re; 19564 mib2_ipAttributeEntry_t *iae, *iaeptr; 19565 in6_addr_t gw_addr_v6; 19566 tsol_ire_gw_secattr_t *attrp; 19567 tsol_gc_t *gc = NULL; 19568 tsol_gcgrp_t *gcgrp = NULL; 19569 uint_t sacnt = 0; 19570 int i; 19571 19572 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19573 19574 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19575 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19576 return; 19577 } 19578 19579 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19580 return; 19581 19582 if ((attrp = ire->ire_gw_secattr) != NULL) { 19583 mutex_enter(&attrp->igsa_lock); 19584 if ((gc = attrp->igsa_gc) != NULL) { 19585 gcgrp = gc->gc_grp; 19586 ASSERT(gcgrp != NULL); 19587 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19588 sacnt = 1; 19589 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19590 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19591 gc = gcgrp->gcgrp_head; 19592 sacnt = gcgrp->gcgrp_count; 19593 } 19594 mutex_exit(&attrp->igsa_lock); 19595 19596 /* do nothing if there's no gc to report */ 19597 if (gc == NULL) { 19598 ASSERT(sacnt == 0); 19599 if (gcgrp != NULL) { 19600 /* we might as well drop the lock now */ 19601 rw_exit(&gcgrp->gcgrp_rwlock); 19602 gcgrp = NULL; 19603 } 19604 attrp = NULL; 19605 } 19606 19607 ASSERT(gc == NULL || (gcgrp != NULL && 19608 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19609 } 19610 ASSERT(sacnt == 0 || gc != NULL); 19611 19612 if (sacnt != 0 && 19613 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19614 kmem_free(re, sizeof (*re)); 19615 rw_exit(&gcgrp->gcgrp_rwlock); 19616 return; 19617 } 19618 19619 /* 19620 * Return all IRE types for route table... let caller pick and choose 19621 */ 19622 re->ipv6RouteDest = ire->ire_addr_v6; 19623 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19624 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19625 re->ipv6RouteIfIndex.o_length = 0; 19626 ipif = ire->ire_ipif; 19627 if (ire->ire_type == IRE_CACHE) { 19628 ill = (ill_t *)ire->ire_stq->q_ptr; 19629 re->ipv6RouteIfIndex.o_length = 19630 ill->ill_name_length == 0 ? 0 : 19631 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19632 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19633 re->ipv6RouteIfIndex.o_length); 19634 } else if (ipif != NULL) { 19635 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19636 re->ipv6RouteIfIndex.o_length = 19637 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19638 } 19639 19640 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19641 19642 mutex_enter(&ire->ire_lock); 19643 gw_addr_v6 = ire->ire_gateway_addr_v6; 19644 mutex_exit(&ire->ire_lock); 19645 19646 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19647 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19648 else 19649 re->ipv6RouteNextHop = gw_addr_v6; 19650 19651 /* remote(4), local(3), or discard(2) */ 19652 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19653 re->ipv6RouteType = 2; 19654 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19655 re->ipv6RouteType = 3; 19656 else 19657 re->ipv6RouteType = 4; 19658 19659 re->ipv6RouteProtocol = -1; 19660 re->ipv6RoutePolicy = 0; 19661 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19662 re->ipv6RouteNextHopRDI = 0; 19663 re->ipv6RouteWeight = 0; 19664 re->ipv6RouteMetric = 0; 19665 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19666 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19667 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19668 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19669 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19670 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19671 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19672 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19673 19674 if (ire->ire_flags & RTF_DYNAMIC) { 19675 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19676 } else { 19677 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19678 } 19679 19680 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19681 (char *)re, (int)sizeof (*re))) { 19682 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19683 (uint_t)sizeof (*re))); 19684 } 19685 19686 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19687 iaeptr->iae_routeidx = ird->ird_idx; 19688 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19689 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19690 } 19691 19692 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19693 (char *)iae, sacnt * sizeof (*iae))) { 19694 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19695 (unsigned)(sacnt * sizeof (*iae)))); 19696 } 19697 19698 /* bump route index for next pass */ 19699 ird->ird_idx++; 19700 19701 kmem_free(re, sizeof (*re)); 19702 if (sacnt != 0) 19703 kmem_free(iae, sacnt * sizeof (*iae)); 19704 19705 if (gcgrp != NULL) 19706 rw_exit(&gcgrp->gcgrp_rwlock); 19707 } 19708 19709 /* 19710 * ndp_walk routine to create ipv6NetToMediaEntryTable 19711 */ 19712 static int 19713 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19714 { 19715 ill_t *ill; 19716 mib2_ipv6NetToMediaEntry_t ntme; 19717 dl_unitdata_req_t *dl; 19718 19719 ill = nce->nce_ill; 19720 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19721 return (0); 19722 19723 /* 19724 * Neighbor cache entry attached to IRE with on-link 19725 * destination. 19726 */ 19727 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19728 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19729 if ((ill->ill_flags & ILLF_XRESOLV) && 19730 (nce->nce_res_mp != NULL)) { 19731 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19732 ntme.ipv6NetToMediaPhysAddress.o_length = 19733 dl->dl_dest_addr_length; 19734 } else { 19735 ntme.ipv6NetToMediaPhysAddress.o_length = 19736 ill->ill_phys_addr_length; 19737 } 19738 if (nce->nce_res_mp != NULL) { 19739 bcopy((char *)nce->nce_res_mp->b_rptr + 19740 NCE_LL_ADDR_OFFSET(ill), 19741 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19742 ntme.ipv6NetToMediaPhysAddress.o_length); 19743 } else { 19744 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19745 ill->ill_phys_addr_length); 19746 } 19747 /* 19748 * Note: Returns ND_* states. Should be: 19749 * reachable(1), stale(2), delay(3), probe(4), 19750 * invalid(5), unknown(6) 19751 */ 19752 ntme.ipv6NetToMediaState = nce->nce_state; 19753 ntme.ipv6NetToMediaLastUpdated = 0; 19754 19755 /* other(1), dynamic(2), static(3), local(4) */ 19756 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19757 ntme.ipv6NetToMediaType = 4; 19758 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19759 ntme.ipv6NetToMediaType = 1; 19760 } else { 19761 ntme.ipv6NetToMediaType = 2; 19762 } 19763 19764 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19765 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19766 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19767 (uint_t)sizeof (ntme))); 19768 } 19769 return (0); 19770 } 19771 19772 /* 19773 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19774 */ 19775 /* ARGSUSED */ 19776 int 19777 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19778 { 19779 switch (level) { 19780 case MIB2_IP: 19781 case MIB2_ICMP: 19782 switch (name) { 19783 default: 19784 break; 19785 } 19786 return (1); 19787 default: 19788 return (1); 19789 } 19790 } 19791 19792 /* 19793 * When there exists both a 64- and 32-bit counter of a particular type 19794 * (i.e., InReceives), only the 64-bit counters are added. 19795 */ 19796 void 19797 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19798 { 19799 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19800 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19801 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19802 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19803 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19804 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19805 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19806 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19807 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19808 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19809 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19810 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19811 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19812 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19813 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19814 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19815 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19816 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19817 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19818 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19819 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19820 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19821 o2->ipIfStatsInWrongIPVersion); 19822 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19823 o2->ipIfStatsInWrongIPVersion); 19824 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19825 o2->ipIfStatsOutSwitchIPVersion); 19826 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19827 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19828 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19829 o2->ipIfStatsHCInForwDatagrams); 19830 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19831 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19832 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19833 o2->ipIfStatsHCOutForwDatagrams); 19834 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19835 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19836 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19837 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19838 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19839 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19840 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19841 o2->ipIfStatsHCOutMcastOctets); 19842 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19843 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19844 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19845 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19846 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19847 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19848 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19849 } 19850 19851 void 19852 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19853 { 19854 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19855 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19856 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19857 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19858 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19859 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19860 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19861 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19862 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19863 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19864 o2->ipv6IfIcmpInRouterSolicits); 19865 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19866 o2->ipv6IfIcmpInRouterAdvertisements); 19867 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19868 o2->ipv6IfIcmpInNeighborSolicits); 19869 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19870 o2->ipv6IfIcmpInNeighborAdvertisements); 19871 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19872 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19873 o2->ipv6IfIcmpInGroupMembQueries); 19874 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19875 o2->ipv6IfIcmpInGroupMembResponses); 19876 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19877 o2->ipv6IfIcmpInGroupMembReductions); 19878 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19879 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19880 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19881 o2->ipv6IfIcmpOutDestUnreachs); 19882 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19883 o2->ipv6IfIcmpOutAdminProhibs); 19884 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19885 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19886 o2->ipv6IfIcmpOutParmProblems); 19887 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19888 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19889 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19890 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19891 o2->ipv6IfIcmpOutRouterSolicits); 19892 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19893 o2->ipv6IfIcmpOutRouterAdvertisements); 19894 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19895 o2->ipv6IfIcmpOutNeighborSolicits); 19896 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19897 o2->ipv6IfIcmpOutNeighborAdvertisements); 19898 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19899 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19900 o2->ipv6IfIcmpOutGroupMembQueries); 19901 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19902 o2->ipv6IfIcmpOutGroupMembResponses); 19903 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19904 o2->ipv6IfIcmpOutGroupMembReductions); 19905 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19906 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19907 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19908 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19909 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19910 o2->ipv6IfIcmpInBadNeighborSolicitations); 19911 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19912 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19913 o2->ipv6IfIcmpInGroupMembTotal); 19914 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19915 o2->ipv6IfIcmpInGroupMembBadQueries); 19916 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19917 o2->ipv6IfIcmpInGroupMembBadReports); 19918 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19919 o2->ipv6IfIcmpInGroupMembOurReports); 19920 } 19921 19922 /* 19923 * Called before the options are updated to check if this packet will 19924 * be source routed from here. 19925 * This routine assumes that the options are well formed i.e. that they 19926 * have already been checked. 19927 */ 19928 static boolean_t 19929 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19930 { 19931 ipoptp_t opts; 19932 uchar_t *opt; 19933 uint8_t optval; 19934 uint8_t optlen; 19935 ipaddr_t dst; 19936 ire_t *ire; 19937 19938 if (IS_SIMPLE_IPH(ipha)) { 19939 ip2dbg(("not source routed\n")); 19940 return (B_FALSE); 19941 } 19942 dst = ipha->ipha_dst; 19943 for (optval = ipoptp_first(&opts, ipha); 19944 optval != IPOPT_EOL; 19945 optval = ipoptp_next(&opts)) { 19946 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19947 opt = opts.ipoptp_cur; 19948 optlen = opts.ipoptp_len; 19949 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19950 optval, optlen)); 19951 switch (optval) { 19952 uint32_t off; 19953 case IPOPT_SSRR: 19954 case IPOPT_LSRR: 19955 /* 19956 * If dst is one of our addresses and there are some 19957 * entries left in the source route return (true). 19958 */ 19959 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19960 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19961 if (ire == NULL) { 19962 ip2dbg(("ip_source_routed: not next" 19963 " source route 0x%x\n", 19964 ntohl(dst))); 19965 return (B_FALSE); 19966 } 19967 ire_refrele(ire); 19968 off = opt[IPOPT_OFFSET]; 19969 off--; 19970 if (optlen < IP_ADDR_LEN || 19971 off > optlen - IP_ADDR_LEN) { 19972 /* End of source route */ 19973 ip1dbg(("ip_source_routed: end of SR\n")); 19974 return (B_FALSE); 19975 } 19976 return (B_TRUE); 19977 } 19978 } 19979 ip2dbg(("not source routed\n")); 19980 return (B_FALSE); 19981 } 19982 19983 /* 19984 * Check if the packet contains any source route. 19985 */ 19986 static boolean_t 19987 ip_source_route_included(ipha_t *ipha) 19988 { 19989 ipoptp_t opts; 19990 uint8_t optval; 19991 19992 if (IS_SIMPLE_IPH(ipha)) 19993 return (B_FALSE); 19994 for (optval = ipoptp_first(&opts, ipha); 19995 optval != IPOPT_EOL; 19996 optval = ipoptp_next(&opts)) { 19997 switch (optval) { 19998 case IPOPT_SSRR: 19999 case IPOPT_LSRR: 20000 return (B_TRUE); 20001 } 20002 } 20003 return (B_FALSE); 20004 } 20005 20006 /* 20007 * Called when the IRE expiration timer fires. 20008 */ 20009 void 20010 ip_trash_timer_expire(void *args) 20011 { 20012 int flush_flag = 0; 20013 ire_expire_arg_t iea; 20014 ip_stack_t *ipst = (ip_stack_t *)args; 20015 20016 iea.iea_ipst = ipst; /* No netstack_hold */ 20017 20018 /* 20019 * ip_ire_expire_id is protected by ip_trash_timer_lock. 20020 * This lock makes sure that a new invocation of this function 20021 * that occurs due to an almost immediate timer firing will not 20022 * progress beyond this point until the current invocation is done 20023 */ 20024 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20025 ipst->ips_ip_ire_expire_id = 0; 20026 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20027 20028 /* Periodic timer */ 20029 if (ipst->ips_ip_ire_arp_time_elapsed >= 20030 ipst->ips_ip_ire_arp_interval) { 20031 /* 20032 * Remove all IRE_CACHE entries since they might 20033 * contain arp information. 20034 */ 20035 flush_flag |= FLUSH_ARP_TIME; 20036 ipst->ips_ip_ire_arp_time_elapsed = 0; 20037 IP_STAT(ipst, ip_ire_arp_timer_expired); 20038 } 20039 if (ipst->ips_ip_ire_rd_time_elapsed >= 20040 ipst->ips_ip_ire_redir_interval) { 20041 /* Remove all redirects */ 20042 flush_flag |= FLUSH_REDIRECT_TIME; 20043 ipst->ips_ip_ire_rd_time_elapsed = 0; 20044 IP_STAT(ipst, ip_ire_redirect_timer_expired); 20045 } 20046 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 20047 ipst->ips_ip_ire_pathmtu_interval) { 20048 /* Increase path mtu */ 20049 flush_flag |= FLUSH_MTU_TIME; 20050 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 20051 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 20052 } 20053 20054 /* 20055 * Optimize for the case when there are no redirects in the 20056 * ftable, that is, no need to walk the ftable in that case. 20057 */ 20058 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20059 iea.iea_flush_flag = flush_flag; 20060 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20061 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20062 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20063 NULL, ALL_ZONES, ipst); 20064 } 20065 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20066 ipst->ips_ip_redirect_cnt > 0) { 20067 iea.iea_flush_flag = flush_flag; 20068 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20069 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20070 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20071 } 20072 if (flush_flag & FLUSH_MTU_TIME) { 20073 /* 20074 * Walk all IPv6 IRE's and update them 20075 * Note that ARP and redirect timers are not 20076 * needed since NUD handles stale entries. 20077 */ 20078 flush_flag = FLUSH_MTU_TIME; 20079 iea.iea_flush_flag = flush_flag; 20080 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20081 ALL_ZONES, ipst); 20082 } 20083 20084 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20085 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20086 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20087 20088 /* 20089 * Hold the lock to serialize timeout calls and prevent 20090 * stale values in ip_ire_expire_id. Otherwise it is possible 20091 * for the timer to fire and a new invocation of this function 20092 * to start before the return value of timeout has been stored 20093 * in ip_ire_expire_id by the current invocation. 20094 */ 20095 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20096 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20097 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20098 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20099 } 20100 20101 /* 20102 * Called by the memory allocator subsystem directly, when the system 20103 * is running low on memory. 20104 */ 20105 /* ARGSUSED */ 20106 void 20107 ip_trash_ire_reclaim(void *args) 20108 { 20109 netstack_handle_t nh; 20110 netstack_t *ns; 20111 20112 netstack_next_init(&nh); 20113 while ((ns = netstack_next(&nh)) != NULL) { 20114 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20115 netstack_rele(ns); 20116 } 20117 netstack_next_fini(&nh); 20118 } 20119 20120 static void 20121 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20122 { 20123 ire_cache_count_t icc; 20124 ire_cache_reclaim_t icr; 20125 ncc_cache_count_t ncc; 20126 nce_cache_reclaim_t ncr; 20127 uint_t delete_cnt; 20128 /* 20129 * Memory reclaim call back. 20130 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20131 * Then, with a target of freeing 1/Nth of IRE_CACHE 20132 * entries, determine what fraction to free for 20133 * each category of IRE_CACHE entries giving absolute priority 20134 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20135 * entry will be freed unless all offlink entries are freed). 20136 */ 20137 icc.icc_total = 0; 20138 icc.icc_unused = 0; 20139 icc.icc_offlink = 0; 20140 icc.icc_pmtu = 0; 20141 icc.icc_onlink = 0; 20142 ire_walk(ire_cache_count, (char *)&icc, ipst); 20143 20144 /* 20145 * Free NCEs for IPv6 like the onlink ires. 20146 */ 20147 ncc.ncc_total = 0; 20148 ncc.ncc_host = 0; 20149 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20150 20151 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20152 icc.icc_pmtu + icc.icc_onlink); 20153 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20154 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20155 if (delete_cnt == 0) 20156 return; 20157 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20158 /* Always delete all unused offlink entries */ 20159 icr.icr_ipst = ipst; 20160 icr.icr_unused = 1; 20161 if (delete_cnt <= icc.icc_unused) { 20162 /* 20163 * Only need to free unused entries. In other words, 20164 * there are enough unused entries to free to meet our 20165 * target number of freed ire cache entries. 20166 */ 20167 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20168 ncr.ncr_host = 0; 20169 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20170 /* 20171 * Only need to free unused entries, plus a fraction of offlink 20172 * entries. It follows from the first if statement that 20173 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20174 */ 20175 delete_cnt -= icc.icc_unused; 20176 /* Round up # deleted by truncating fraction */ 20177 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20178 icr.icr_pmtu = icr.icr_onlink = 0; 20179 ncr.ncr_host = 0; 20180 } else if (delete_cnt <= 20181 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20182 /* 20183 * Free all unused and offlink entries, plus a fraction of 20184 * pmtu entries. It follows from the previous if statement 20185 * that icc_pmtu is non-zero, and that 20186 * delete_cnt != icc_unused + icc_offlink. 20187 */ 20188 icr.icr_offlink = 1; 20189 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20190 /* Round up # deleted by truncating fraction */ 20191 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20192 icr.icr_onlink = 0; 20193 ncr.ncr_host = 0; 20194 } else { 20195 /* 20196 * Free all unused, offlink, and pmtu entries, plus a fraction 20197 * of onlink entries. If we're here, then we know that 20198 * icc_onlink is non-zero, and that 20199 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20200 */ 20201 icr.icr_offlink = icr.icr_pmtu = 1; 20202 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20203 icc.icc_pmtu; 20204 /* Round up # deleted by truncating fraction */ 20205 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20206 /* Using the same delete fraction as for onlink IREs */ 20207 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20208 } 20209 #ifdef DEBUG 20210 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20211 "fractions %d/%d/%d/%d\n", 20212 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20213 icc.icc_unused, icc.icc_offlink, 20214 icc.icc_pmtu, icc.icc_onlink, 20215 icr.icr_unused, icr.icr_offlink, 20216 icr.icr_pmtu, icr.icr_onlink)); 20217 #endif 20218 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20219 if (ncr.ncr_host != 0) 20220 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20221 (uchar_t *)&ncr, ipst); 20222 #ifdef DEBUG 20223 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20224 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20225 ire_walk(ire_cache_count, (char *)&icc, ipst); 20226 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20227 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20228 icc.icc_pmtu, icc.icc_onlink)); 20229 #endif 20230 } 20231 20232 /* 20233 * ip_unbind is called when a copy of an unbind request is received from the 20234 * upper level protocol. We remove this conn from any fanout hash list it is 20235 * on, and zero out the bind information. No reply is expected up above. 20236 */ 20237 void 20238 ip_unbind(conn_t *connp) 20239 { 20240 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20241 20242 if (is_system_labeled() && connp->conn_anon_port) { 20243 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20244 connp->conn_mlp_type, connp->conn_ulp, 20245 ntohs(connp->conn_lport), B_FALSE); 20246 connp->conn_anon_port = 0; 20247 } 20248 connp->conn_mlp_type = mlptSingle; 20249 20250 ipcl_hash_remove(connp); 20251 } 20252 20253 /* 20254 * Write side put procedure. Outbound data, IOCTLs, responses from 20255 * resolvers, etc, come down through here. 20256 * 20257 * arg2 is always a queue_t *. 20258 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20259 * the zoneid. 20260 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20261 */ 20262 void 20263 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20264 { 20265 ip_output_options(arg, mp, arg2, caller, &zero_info); 20266 } 20267 20268 void 20269 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20270 ip_opt_info_t *infop) 20271 { 20272 conn_t *connp = NULL; 20273 queue_t *q = (queue_t *)arg2; 20274 ipha_t *ipha; 20275 #define rptr ((uchar_t *)ipha) 20276 ire_t *ire = NULL; 20277 ire_t *sctp_ire = NULL; 20278 uint32_t v_hlen_tos_len; 20279 ipaddr_t dst; 20280 mblk_t *first_mp = NULL; 20281 boolean_t mctl_present; 20282 ipsec_out_t *io; 20283 int match_flags; 20284 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20285 ipif_t *dst_ipif; 20286 boolean_t multirt_need_resolve = B_FALSE; 20287 mblk_t *copy_mp = NULL; 20288 int err = 0; 20289 zoneid_t zoneid; 20290 boolean_t need_decref = B_FALSE; 20291 boolean_t ignore_dontroute = B_FALSE; 20292 boolean_t ignore_nexthop = B_FALSE; 20293 boolean_t ip_nexthop = B_FALSE; 20294 ipaddr_t nexthop_addr; 20295 ip_stack_t *ipst; 20296 20297 #ifdef _BIG_ENDIAN 20298 #define V_HLEN (v_hlen_tos_len >> 24) 20299 #else 20300 #define V_HLEN (v_hlen_tos_len & 0xFF) 20301 #endif 20302 20303 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20304 "ip_wput_start: q %p", q); 20305 20306 /* 20307 * ip_wput fast path 20308 */ 20309 20310 /* is packet from ARP ? */ 20311 if (q->q_next != NULL) { 20312 zoneid = (zoneid_t)(uintptr_t)arg; 20313 goto qnext; 20314 } 20315 20316 connp = (conn_t *)arg; 20317 ASSERT(connp != NULL); 20318 zoneid = connp->conn_zoneid; 20319 ipst = connp->conn_netstack->netstack_ip; 20320 ASSERT(ipst != NULL); 20321 20322 /* is queue flow controlled? */ 20323 if ((q->q_first != NULL || connp->conn_draining) && 20324 (caller == IP_WPUT)) { 20325 ASSERT(!need_decref); 20326 ASSERT(!IP_FLOW_CONTROLLED_ULP(connp->conn_ulp)); 20327 (void) putq(q, mp); 20328 return; 20329 } 20330 20331 /* Multidata transmit? */ 20332 if (DB_TYPE(mp) == M_MULTIDATA) { 20333 /* 20334 * We should never get here, since all Multidata messages 20335 * originating from tcp should have been directed over to 20336 * tcp_multisend() in the first place. 20337 */ 20338 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20339 freemsg(mp); 20340 return; 20341 } else if (DB_TYPE(mp) != M_DATA) 20342 goto notdata; 20343 20344 if (mp->b_flag & MSGHASREF) { 20345 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20346 mp->b_flag &= ~MSGHASREF; 20347 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20348 need_decref = B_TRUE; 20349 } 20350 ipha = (ipha_t *)mp->b_rptr; 20351 20352 /* is IP header non-aligned or mblk smaller than basic IP header */ 20353 #ifndef SAFETY_BEFORE_SPEED 20354 if (!OK_32PTR(rptr) || 20355 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20356 goto hdrtoosmall; 20357 #endif 20358 20359 ASSERT(OK_32PTR(ipha)); 20360 20361 /* 20362 * This function assumes that mp points to an IPv4 packet. If it's the 20363 * wrong version, we'll catch it again in ip_output_v6. 20364 * 20365 * Note that this is *only* locally-generated output here, and never 20366 * forwarded data, and that we need to deal only with transports that 20367 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20368 * label.) 20369 */ 20370 if (is_system_labeled() && 20371 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20372 !connp->conn_ulp_labeled) { 20373 cred_t *credp; 20374 pid_t pid; 20375 20376 credp = BEST_CRED(mp, connp, &pid); 20377 err = tsol_check_label(credp, &mp, 20378 connp->conn_mac_mode, ipst, pid); 20379 ipha = (ipha_t *)mp->b_rptr; 20380 if (err != 0) { 20381 first_mp = mp; 20382 if (err == EINVAL) 20383 goto icmp_parameter_problem; 20384 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20385 goto discard_pkt; 20386 } 20387 } 20388 20389 ASSERT(infop != NULL); 20390 20391 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20392 /* 20393 * IP_PKTINFO ancillary option is present. 20394 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20395 * allows using address of any zone as the source address. 20396 */ 20397 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20398 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20399 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20400 if (ire == NULL) 20401 goto drop_pkt; 20402 ire_refrele(ire); 20403 ire = NULL; 20404 } 20405 20406 /* 20407 * IP_BOUND_IF has precedence over the ill index passed in IP_PKTINFO. 20408 */ 20409 if (infop->ip_opt_ill_index != 0 && connp->conn_outgoing_ill == NULL) { 20410 xmit_ill = ill_lookup_on_ifindex(infop->ip_opt_ill_index, 20411 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20412 20413 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20414 goto drop_pkt; 20415 /* 20416 * check that there is an ipif belonging 20417 * to our zone. IPCL_ZONEID is not used because 20418 * IP_ALLZONES option is valid only when the ill is 20419 * accessible from all zones i.e has a valid ipif in 20420 * all zones. 20421 */ 20422 if (!ipif_lookup_zoneid(xmit_ill, zoneid, 0, NULL)) { 20423 goto drop_pkt; 20424 } 20425 } 20426 20427 /* 20428 * If there is a policy, try to attach an ipsec_out in 20429 * the front. At the end, first_mp either points to a 20430 * M_DATA message or IPSEC_OUT message linked to a 20431 * M_DATA message. We have to do it now as we might 20432 * lose the "conn" if we go through ip_newroute. 20433 */ 20434 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20435 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20436 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20437 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20438 if (need_decref) 20439 CONN_DEC_REF(connp); 20440 return; 20441 } 20442 ASSERT(mp->b_datap->db_type == M_CTL); 20443 first_mp = mp; 20444 mp = mp->b_cont; 20445 mctl_present = B_TRUE; 20446 } else { 20447 first_mp = mp; 20448 mctl_present = B_FALSE; 20449 } 20450 20451 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20452 20453 /* is wrong version or IP options present */ 20454 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20455 goto version_hdrlen_check; 20456 dst = ipha->ipha_dst; 20457 20458 /* If IP_BOUND_IF has been set, use that ill. */ 20459 if (connp->conn_outgoing_ill != NULL) { 20460 xmit_ill = conn_get_held_ill(connp, 20461 &connp->conn_outgoing_ill, &err); 20462 if (err == ILL_LOOKUP_FAILED) 20463 goto drop_pkt; 20464 20465 goto send_from_ill; 20466 } 20467 20468 /* is packet multicast? */ 20469 if (CLASSD(dst)) 20470 goto multicast; 20471 20472 /* 20473 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20474 * takes precedence over conn_dontroute and conn_nexthop_set 20475 */ 20476 if (xmit_ill != NULL) 20477 goto send_from_ill; 20478 20479 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20480 /* 20481 * If the destination is a broadcast, local, or loopback 20482 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20483 * standard path. 20484 */ 20485 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20486 if ((ire == NULL) || (ire->ire_type & 20487 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20488 if (ire != NULL) { 20489 ire_refrele(ire); 20490 /* No more access to ire */ 20491 ire = NULL; 20492 } 20493 /* 20494 * bypass routing checks and go directly to interface. 20495 */ 20496 if (connp->conn_dontroute) 20497 goto dontroute; 20498 20499 ASSERT(connp->conn_nexthop_set); 20500 ip_nexthop = B_TRUE; 20501 nexthop_addr = connp->conn_nexthop_v4; 20502 goto send_from_ill; 20503 } 20504 20505 /* Must be a broadcast, a loopback or a local ire */ 20506 ire_refrele(ire); 20507 /* No more access to ire */ 20508 ire = NULL; 20509 } 20510 20511 /* 20512 * We cache IRE_CACHEs to avoid lookups. We don't do 20513 * this for the tcp global queue and listen end point 20514 * as it does not really have a real destination to 20515 * talk to. This is also true for SCTP. 20516 */ 20517 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20518 !connp->conn_fully_bound) { 20519 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20520 if (ire == NULL) 20521 goto noirefound; 20522 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20523 "ip_wput_end: q %p (%S)", q, "end"); 20524 20525 /* 20526 * Check if the ire has the RTF_MULTIRT flag, inherited 20527 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20528 */ 20529 if (ire->ire_flags & RTF_MULTIRT) { 20530 20531 /* 20532 * Force the TTL of multirouted packets if required. 20533 * The TTL of such packets is bounded by the 20534 * ip_multirt_ttl ndd variable. 20535 */ 20536 if ((ipst->ips_ip_multirt_ttl > 0) && 20537 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20538 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20539 "(was %d), dst 0x%08x\n", 20540 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20541 ntohl(ire->ire_addr))); 20542 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20543 } 20544 /* 20545 * We look at this point if there are pending 20546 * unresolved routes. ire_multirt_resolvable() 20547 * checks in O(n) that all IRE_OFFSUBNET ire 20548 * entries for the packet's destination and 20549 * flagged RTF_MULTIRT are currently resolved. 20550 * If some remain unresolved, we make a copy 20551 * of the current message. It will be used 20552 * to initiate additional route resolutions. 20553 */ 20554 multirt_need_resolve = 20555 ire_multirt_need_resolve(ire->ire_addr, 20556 msg_getlabel(first_mp), ipst); 20557 ip2dbg(("ip_wput[TCP]: ire %p, " 20558 "multirt_need_resolve %d, first_mp %p\n", 20559 (void *)ire, multirt_need_resolve, 20560 (void *)first_mp)); 20561 if (multirt_need_resolve) { 20562 copy_mp = copymsg(first_mp); 20563 if (copy_mp != NULL) { 20564 MULTIRT_DEBUG_TAG(copy_mp); 20565 } 20566 } 20567 } 20568 20569 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20570 20571 /* 20572 * Try to resolve another multiroute if 20573 * ire_multirt_need_resolve() deemed it necessary. 20574 */ 20575 if (copy_mp != NULL) 20576 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20577 if (need_decref) 20578 CONN_DEC_REF(connp); 20579 return; 20580 } 20581 20582 /* 20583 * Access to conn_ire_cache. (protected by conn_lock) 20584 * 20585 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20586 * the ire bucket lock here to check for CONDEMNED as it is okay to 20587 * send a packet or two with the IRE_CACHE that is going away. 20588 * Access to the ire requires an ire refhold on the ire prior to 20589 * its use since an interface unplumb thread may delete the cached 20590 * ire and release the refhold at any time. 20591 * 20592 * Caching an ire in the conn_ire_cache 20593 * 20594 * o Caching an ire pointer in the conn requires a strict check for 20595 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20596 * ires before cleaning up the conns. So the caching of an ire pointer 20597 * in the conn is done after making sure under the bucket lock that the 20598 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20599 * caching an ire after the unplumb thread has cleaned up the conn. 20600 * If the conn does not send a packet subsequently the unplumb thread 20601 * will be hanging waiting for the ire count to drop to zero. 20602 * 20603 * o We also need to atomically test for a null conn_ire_cache and 20604 * set the conn_ire_cache under the the protection of the conn_lock 20605 * to avoid races among concurrent threads trying to simultaneously 20606 * cache an ire in the conn_ire_cache. 20607 */ 20608 mutex_enter(&connp->conn_lock); 20609 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20610 20611 if (ire != NULL && ire->ire_addr == dst && 20612 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20613 20614 IRE_REFHOLD(ire); 20615 mutex_exit(&connp->conn_lock); 20616 20617 } else { 20618 boolean_t cached = B_FALSE; 20619 connp->conn_ire_cache = NULL; 20620 mutex_exit(&connp->conn_lock); 20621 /* Release the old ire */ 20622 if (ire != NULL && sctp_ire == NULL) 20623 IRE_REFRELE_NOTR(ire); 20624 20625 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20626 if (ire == NULL) 20627 goto noirefound; 20628 IRE_REFHOLD_NOTR(ire); 20629 20630 mutex_enter(&connp->conn_lock); 20631 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20632 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20633 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20634 if (connp->conn_ulp == IPPROTO_TCP) 20635 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20636 connp->conn_ire_cache = ire; 20637 cached = B_TRUE; 20638 } 20639 rw_exit(&ire->ire_bucket->irb_lock); 20640 } 20641 mutex_exit(&connp->conn_lock); 20642 20643 /* 20644 * We can continue to use the ire but since it was 20645 * not cached, we should drop the extra reference. 20646 */ 20647 if (!cached) 20648 IRE_REFRELE_NOTR(ire); 20649 } 20650 20651 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20652 "ip_wput_end: q %p (%S)", q, "end"); 20653 20654 /* 20655 * Check if the ire has the RTF_MULTIRT flag, inherited 20656 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20657 */ 20658 if (ire->ire_flags & RTF_MULTIRT) { 20659 /* 20660 * Force the TTL of multirouted packets if required. 20661 * The TTL of such packets is bounded by the 20662 * ip_multirt_ttl ndd variable. 20663 */ 20664 if ((ipst->ips_ip_multirt_ttl > 0) && 20665 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20666 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20667 "(was %d), dst 0x%08x\n", 20668 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20669 ntohl(ire->ire_addr))); 20670 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20671 } 20672 20673 /* 20674 * At this point, we check to see if there are any pending 20675 * unresolved routes. ire_multirt_resolvable() 20676 * checks in O(n) that all IRE_OFFSUBNET ire 20677 * entries for the packet's destination and 20678 * flagged RTF_MULTIRT are currently resolved. 20679 * If some remain unresolved, we make a copy 20680 * of the current message. It will be used 20681 * to initiate additional route resolutions. 20682 */ 20683 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20684 msg_getlabel(first_mp), ipst); 20685 ip2dbg(("ip_wput[not TCP]: ire %p, " 20686 "multirt_need_resolve %d, first_mp %p\n", 20687 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20688 if (multirt_need_resolve) { 20689 copy_mp = copymsg(first_mp); 20690 if (copy_mp != NULL) { 20691 MULTIRT_DEBUG_TAG(copy_mp); 20692 } 20693 } 20694 } 20695 20696 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20697 20698 /* 20699 * Try to resolve another multiroute if 20700 * ire_multirt_resolvable() deemed it necessary 20701 */ 20702 if (copy_mp != NULL) 20703 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20704 if (need_decref) 20705 CONN_DEC_REF(connp); 20706 return; 20707 20708 qnext: 20709 /* 20710 * Upper Level Protocols pass down complete IP datagrams 20711 * as M_DATA messages. Everything else is a sideshow. 20712 * 20713 * 1) We could be re-entering ip_wput because of ip_neworute 20714 * in which case we could have a IPSEC_OUT message. We 20715 * need to pass through ip_wput like other datagrams and 20716 * hence cannot branch to ip_wput_nondata. 20717 * 20718 * 2) ARP, AH, ESP, and other clients who are on the module 20719 * instance of IP stream, give us something to deal with. 20720 * We will handle AH and ESP here and rest in ip_wput_nondata. 20721 * 20722 * 3) ICMP replies also could come here. 20723 */ 20724 ipst = ILLQ_TO_IPST(q); 20725 20726 if (DB_TYPE(mp) != M_DATA) { 20727 notdata: 20728 if (DB_TYPE(mp) == M_CTL) { 20729 /* 20730 * M_CTL messages are used by ARP, AH and ESP to 20731 * communicate with IP. We deal with IPSEC_IN and 20732 * IPSEC_OUT here. ip_wput_nondata handles other 20733 * cases. 20734 */ 20735 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20736 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20737 first_mp = mp->b_cont; 20738 first_mp->b_flag &= ~MSGHASREF; 20739 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20740 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20741 CONN_DEC_REF(connp); 20742 connp = NULL; 20743 } 20744 if (ii->ipsec_info_type == IPSEC_IN) { 20745 /* 20746 * Either this message goes back to 20747 * IPsec for further processing or to 20748 * ULP after policy checks. 20749 */ 20750 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20751 return; 20752 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20753 io = (ipsec_out_t *)ii; 20754 if (io->ipsec_out_proc_begin) { 20755 /* 20756 * IPsec processing has already started. 20757 * Complete it. 20758 * IPQoS notes: We don't care what is 20759 * in ipsec_out_ill_index since this 20760 * won't be processed for IPQoS policies 20761 * in ipsec_out_process. 20762 */ 20763 ipsec_out_process(q, mp, NULL, 20764 io->ipsec_out_ill_index); 20765 return; 20766 } else { 20767 connp = (q->q_next != NULL) ? 20768 NULL : Q_TO_CONN(q); 20769 first_mp = mp; 20770 mp = mp->b_cont; 20771 mctl_present = B_TRUE; 20772 } 20773 zoneid = io->ipsec_out_zoneid; 20774 ASSERT(zoneid != ALL_ZONES); 20775 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20776 /* 20777 * It's an IPsec control message requesting 20778 * an SADB update to be sent to the IPsec 20779 * hardware acceleration capable ills. 20780 */ 20781 ipsec_ctl_t *ipsec_ctl = 20782 (ipsec_ctl_t *)mp->b_rptr; 20783 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20784 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20785 mblk_t *cmp = mp->b_cont; 20786 20787 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20788 ASSERT(cmp != NULL); 20789 20790 freeb(mp); 20791 ill_ipsec_capab_send_all(satype, cmp, sa, 20792 ipst->ips_netstack); 20793 return; 20794 } else { 20795 /* 20796 * This must be ARP or special TSOL signaling. 20797 */ 20798 ip_wput_nondata(NULL, q, mp, NULL); 20799 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20800 "ip_wput_end: q %p (%S)", q, "nondata"); 20801 return; 20802 } 20803 } else { 20804 /* 20805 * This must be non-(ARP/AH/ESP) messages. 20806 */ 20807 ASSERT(!need_decref); 20808 ip_wput_nondata(NULL, q, mp, NULL); 20809 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20810 "ip_wput_end: q %p (%S)", q, "nondata"); 20811 return; 20812 } 20813 } else { 20814 first_mp = mp; 20815 mctl_present = B_FALSE; 20816 } 20817 20818 ASSERT(first_mp != NULL); 20819 20820 if (mctl_present) { 20821 io = (ipsec_out_t *)first_mp->b_rptr; 20822 if (io->ipsec_out_ip_nexthop) { 20823 /* 20824 * We may have lost the conn context if we are 20825 * coming here from ip_newroute(). Copy the 20826 * nexthop information. 20827 */ 20828 ip_nexthop = B_TRUE; 20829 nexthop_addr = io->ipsec_out_nexthop_addr; 20830 20831 ipha = (ipha_t *)mp->b_rptr; 20832 dst = ipha->ipha_dst; 20833 goto send_from_ill; 20834 } 20835 } 20836 20837 ASSERT(xmit_ill == NULL); 20838 20839 /* We have a complete IP datagram heading outbound. */ 20840 ipha = (ipha_t *)mp->b_rptr; 20841 20842 #ifndef SPEED_BEFORE_SAFETY 20843 /* 20844 * Make sure we have a full-word aligned message and that at least 20845 * a simple IP header is accessible in the first message. If not, 20846 * try a pullup. For labeled systems we need to always take this 20847 * path as M_CTLs are "notdata" but have trailing data to process. 20848 */ 20849 if (!OK_32PTR(rptr) || 20850 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 20851 hdrtoosmall: 20852 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20853 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20854 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20855 if (first_mp == NULL) 20856 first_mp = mp; 20857 goto discard_pkt; 20858 } 20859 20860 /* This function assumes that mp points to an IPv4 packet. */ 20861 if (is_system_labeled() && 20862 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20863 (connp == NULL || !connp->conn_ulp_labeled)) { 20864 cred_t *credp; 20865 pid_t pid; 20866 20867 if (connp != NULL) { 20868 credp = BEST_CRED(mp, connp, &pid); 20869 err = tsol_check_label(credp, &mp, 20870 connp->conn_mac_mode, ipst, pid); 20871 } else if ((credp = msg_getcred(mp, &pid)) != NULL) { 20872 err = tsol_check_label(credp, &mp, 20873 CONN_MAC_DEFAULT, ipst, pid); 20874 } 20875 ipha = (ipha_t *)mp->b_rptr; 20876 if (mctl_present) 20877 first_mp->b_cont = mp; 20878 else 20879 first_mp = mp; 20880 if (err != 0) { 20881 if (err == EINVAL) 20882 goto icmp_parameter_problem; 20883 ip2dbg(("ip_wput: label check failed (%d)\n", 20884 err)); 20885 goto discard_pkt; 20886 } 20887 } 20888 20889 ipha = (ipha_t *)mp->b_rptr; 20890 if (first_mp == NULL) { 20891 ASSERT(xmit_ill == NULL); 20892 /* 20893 * If we got here because of "goto hdrtoosmall" 20894 * We need to attach a IPSEC_OUT. 20895 */ 20896 if (connp->conn_out_enforce_policy) { 20897 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20898 NULL, ipha->ipha_protocol, 20899 ipst->ips_netstack)) == NULL)) { 20900 BUMP_MIB(&ipst->ips_ip_mib, 20901 ipIfStatsOutDiscards); 20902 if (need_decref) 20903 CONN_DEC_REF(connp); 20904 return; 20905 } else { 20906 ASSERT(mp->b_datap->db_type == M_CTL); 20907 first_mp = mp; 20908 mp = mp->b_cont; 20909 mctl_present = B_TRUE; 20910 } 20911 } else { 20912 first_mp = mp; 20913 mctl_present = B_FALSE; 20914 } 20915 } 20916 } 20917 #endif 20918 20919 /* Most of the code below is written for speed, not readability */ 20920 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20921 20922 /* 20923 * If ip_newroute() fails, we're going to need a full 20924 * header for the icmp wraparound. 20925 */ 20926 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20927 uint_t v_hlen; 20928 version_hdrlen_check: 20929 ASSERT(first_mp != NULL); 20930 v_hlen = V_HLEN; 20931 /* 20932 * siphon off IPv6 packets coming down from transport 20933 * layer modules here. 20934 * Note: high-order bit carries NUD reachability confirmation 20935 */ 20936 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20937 /* 20938 * FIXME: assume that callers of ip_output* call 20939 * the right version? 20940 */ 20941 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20942 ASSERT(xmit_ill == NULL); 20943 if (need_decref) 20944 mp->b_flag |= MSGHASREF; 20945 (void) ip_output_v6(arg, first_mp, arg2, caller); 20946 return; 20947 } 20948 20949 if ((v_hlen >> 4) != IP_VERSION) { 20950 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20951 "ip_wput_end: q %p (%S)", q, "badvers"); 20952 goto discard_pkt; 20953 } 20954 /* 20955 * Is the header length at least 20 bytes? 20956 * 20957 * Are there enough bytes accessible in the header? If 20958 * not, try a pullup. 20959 */ 20960 v_hlen &= 0xF; 20961 v_hlen <<= 2; 20962 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20963 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20964 "ip_wput_end: q %p (%S)", q, "badlen"); 20965 goto discard_pkt; 20966 } 20967 if (v_hlen > (mp->b_wptr - rptr)) { 20968 if (!pullupmsg(mp, v_hlen)) { 20969 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20970 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20971 goto discard_pkt; 20972 } 20973 ipha = (ipha_t *)mp->b_rptr; 20974 } 20975 /* 20976 * Move first entry from any source route into ipha_dst and 20977 * verify the options 20978 */ 20979 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20980 zoneid, ipst)) { 20981 ASSERT(xmit_ill == NULL); 20982 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20983 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20984 "ip_wput_end: q %p (%S)", q, "badopts"); 20985 if (need_decref) 20986 CONN_DEC_REF(connp); 20987 return; 20988 } 20989 } 20990 dst = ipha->ipha_dst; 20991 20992 /* 20993 * Try to get an IRE_CACHE for the destination address. If we can't, 20994 * we have to run the packet through ip_newroute which will take 20995 * the appropriate action to arrange for an IRE_CACHE, such as querying 20996 * a resolver, or assigning a default gateway, etc. 20997 */ 20998 if (CLASSD(dst)) { 20999 ipif_t *ipif; 21000 uint32_t setsrc = 0; 21001 21002 multicast: 21003 ASSERT(first_mp != NULL); 21004 ip2dbg(("ip_wput: CLASSD\n")); 21005 if (connp == NULL) { 21006 /* 21007 * Use the first good ipif on the ill. 21008 * XXX Should this ever happen? (Appears 21009 * to show up with just ppp and no ethernet due 21010 * to in.rdisc.) 21011 * However, ire_send should be able to 21012 * call ip_wput_ire directly. 21013 * 21014 * XXX Also, this can happen for ICMP and other packets 21015 * with multicast source addresses. Perhaps we should 21016 * fix things so that we drop the packet in question, 21017 * but for now, just run with it. 21018 */ 21019 ill_t *ill = (ill_t *)q->q_ptr; 21020 21021 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21022 if (ipif == NULL) { 21023 if (need_decref) 21024 CONN_DEC_REF(connp); 21025 freemsg(first_mp); 21026 return; 21027 } 21028 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21029 ntohl(dst), ill->ill_name)); 21030 } else { 21031 /* 21032 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 21033 * and IP_MULTICAST_IF. The block comment above this 21034 * function explains the locking mechanism used here. 21035 */ 21036 if (xmit_ill == NULL) { 21037 xmit_ill = conn_get_held_ill(connp, 21038 &connp->conn_outgoing_ill, &err); 21039 if (err == ILL_LOOKUP_FAILED) { 21040 ip1dbg(("ip_wput: No ill for " 21041 "IP_BOUND_IF\n")); 21042 BUMP_MIB(&ipst->ips_ip_mib, 21043 ipIfStatsOutNoRoutes); 21044 goto drop_pkt; 21045 } 21046 } 21047 21048 if (xmit_ill == NULL) { 21049 ipif = conn_get_held_ipif(connp, 21050 &connp->conn_multicast_ipif, &err); 21051 if (err == IPIF_LOOKUP_FAILED) { 21052 ip1dbg(("ip_wput: No ipif for " 21053 "multicast\n")); 21054 BUMP_MIB(&ipst->ips_ip_mib, 21055 ipIfStatsOutNoRoutes); 21056 goto drop_pkt; 21057 } 21058 } 21059 if (xmit_ill != NULL) { 21060 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21061 if (ipif == NULL) { 21062 ip1dbg(("ip_wput: No ipif for " 21063 "xmit_ill\n")); 21064 BUMP_MIB(&ipst->ips_ip_mib, 21065 ipIfStatsOutNoRoutes); 21066 goto drop_pkt; 21067 } 21068 } else if (ipif == NULL || ipif->ipif_isv6) { 21069 /* 21070 * We must do this ipif determination here 21071 * else we could pass through ip_newroute 21072 * and come back here without the conn context. 21073 * 21074 * Note: we do late binding i.e. we bind to 21075 * the interface when the first packet is sent. 21076 * For performance reasons we do not rebind on 21077 * each packet but keep the binding until the 21078 * next IP_MULTICAST_IF option. 21079 * 21080 * conn_multicast_{ipif,ill} are shared between 21081 * IPv4 and IPv6 and AF_INET6 sockets can 21082 * send both IPv4 and IPv6 packets. Hence 21083 * we have to check that "isv6" matches above. 21084 */ 21085 if (ipif != NULL) 21086 ipif_refrele(ipif); 21087 ipif = ipif_lookup_group(dst, zoneid, ipst); 21088 if (ipif == NULL) { 21089 ip1dbg(("ip_wput: No ipif for " 21090 "multicast\n")); 21091 BUMP_MIB(&ipst->ips_ip_mib, 21092 ipIfStatsOutNoRoutes); 21093 goto drop_pkt; 21094 } 21095 err = conn_set_held_ipif(connp, 21096 &connp->conn_multicast_ipif, ipif); 21097 if (err == IPIF_LOOKUP_FAILED) { 21098 ipif_refrele(ipif); 21099 ip1dbg(("ip_wput: No ipif for " 21100 "multicast\n")); 21101 BUMP_MIB(&ipst->ips_ip_mib, 21102 ipIfStatsOutNoRoutes); 21103 goto drop_pkt; 21104 } 21105 } 21106 } 21107 ASSERT(!ipif->ipif_isv6); 21108 /* 21109 * As we may lose the conn by the time we reach ip_wput_ire, 21110 * we copy conn_multicast_loop and conn_dontroute on to an 21111 * ipsec_out. In case if this datagram goes out secure, 21112 * we need the ill_index also. Copy that also into the 21113 * ipsec_out. 21114 */ 21115 if (mctl_present) { 21116 io = (ipsec_out_t *)first_mp->b_rptr; 21117 ASSERT(first_mp->b_datap->db_type == M_CTL); 21118 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21119 } else { 21120 ASSERT(mp == first_mp); 21121 if ((first_mp = allocb(sizeof (ipsec_info_t), 21122 BPRI_HI)) == NULL) { 21123 ipif_refrele(ipif); 21124 first_mp = mp; 21125 goto discard_pkt; 21126 } 21127 first_mp->b_datap->db_type = M_CTL; 21128 first_mp->b_wptr += sizeof (ipsec_info_t); 21129 /* ipsec_out_secure is B_FALSE now */ 21130 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21131 io = (ipsec_out_t *)first_mp->b_rptr; 21132 io->ipsec_out_type = IPSEC_OUT; 21133 io->ipsec_out_len = sizeof (ipsec_out_t); 21134 io->ipsec_out_use_global_policy = B_TRUE; 21135 io->ipsec_out_ns = ipst->ips_netstack; 21136 first_mp->b_cont = mp; 21137 mctl_present = B_TRUE; 21138 } 21139 21140 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21141 io->ipsec_out_ill_index = 21142 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21143 21144 if (connp != NULL) { 21145 io->ipsec_out_multicast_loop = 21146 connp->conn_multicast_loop; 21147 io->ipsec_out_dontroute = connp->conn_dontroute; 21148 io->ipsec_out_zoneid = connp->conn_zoneid; 21149 } 21150 /* 21151 * If the application uses IP_MULTICAST_IF with 21152 * different logical addresses of the same ILL, we 21153 * need to make sure that the soruce address of 21154 * the packet matches the logical IP address used 21155 * in the option. We do it by initializing ipha_src 21156 * here. This should keep IPsec also happy as 21157 * when we return from IPsec processing, we don't 21158 * have to worry about getting the right address on 21159 * the packet. Thus it is sufficient to look for 21160 * IRE_CACHE using MATCH_IRE_ILL rathen than 21161 * MATCH_IRE_IPIF. 21162 * 21163 * NOTE : We need to do it for non-secure case also as 21164 * this might go out secure if there is a global policy 21165 * match in ip_wput_ire. 21166 * 21167 * As we do not have the ire yet, it is possible that 21168 * we set the source address here and then later discover 21169 * that the ire implies the source address to be assigned 21170 * through the RTF_SETSRC flag. 21171 * In that case, the setsrc variable will remind us 21172 * that overwritting the source address by the one 21173 * of the RTF_SETSRC-flagged ire is allowed. 21174 */ 21175 if (ipha->ipha_src == INADDR_ANY && 21176 (connp == NULL || !connp->conn_unspec_src)) { 21177 ipha->ipha_src = ipif->ipif_src_addr; 21178 setsrc = RTF_SETSRC; 21179 } 21180 /* 21181 * Find an IRE which matches the destination and the outgoing 21182 * queue (i.e. the outgoing interface.) 21183 * For loopback use a unicast IP address for 21184 * the ire lookup. 21185 */ 21186 if (IS_LOOPBACK(ipif->ipif_ill)) 21187 dst = ipif->ipif_lcl_addr; 21188 21189 /* 21190 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21191 * We don't need to lookup ire in ctable as the packet 21192 * needs to be sent to the destination through the specified 21193 * ill irrespective of ires in the cache table. 21194 */ 21195 ire = NULL; 21196 if (xmit_ill == NULL) { 21197 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21198 zoneid, msg_getlabel(mp), match_flags, ipst); 21199 } 21200 21201 if (ire == NULL) { 21202 /* 21203 * Multicast loopback and multicast forwarding is 21204 * done in ip_wput_ire. 21205 * 21206 * Mark this packet to make it be delivered to 21207 * ip_wput_ire after the new ire has been 21208 * created. 21209 * 21210 * The call to ip_newroute_ipif takes into account 21211 * the setsrc reminder. In any case, we take care 21212 * of the RTF_MULTIRT flag. 21213 */ 21214 mp->b_prev = mp->b_next = NULL; 21215 if (xmit_ill == NULL || 21216 xmit_ill->ill_ipif_up_count > 0) { 21217 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21218 setsrc | RTF_MULTIRT, zoneid, infop); 21219 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21220 "ip_wput_end: q %p (%S)", q, "noire"); 21221 } else { 21222 freemsg(first_mp); 21223 } 21224 ipif_refrele(ipif); 21225 if (xmit_ill != NULL) 21226 ill_refrele(xmit_ill); 21227 if (need_decref) 21228 CONN_DEC_REF(connp); 21229 return; 21230 } 21231 21232 ipif_refrele(ipif); 21233 ipif = NULL; 21234 ASSERT(xmit_ill == NULL); 21235 21236 /* 21237 * Honor the RTF_SETSRC flag for multicast packets, 21238 * if allowed by the setsrc reminder. 21239 */ 21240 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21241 ipha->ipha_src = ire->ire_src_addr; 21242 } 21243 21244 /* 21245 * Unconditionally force the TTL to 1 for 21246 * multirouted multicast packets: 21247 * multirouted multicast should not cross 21248 * multicast routers. 21249 */ 21250 if (ire->ire_flags & RTF_MULTIRT) { 21251 if (ipha->ipha_ttl > 1) { 21252 ip2dbg(("ip_wput: forcing multicast " 21253 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21254 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21255 ipha->ipha_ttl = 1; 21256 } 21257 } 21258 } else { 21259 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 21260 if ((ire != NULL) && (ire->ire_type & 21261 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21262 ignore_dontroute = B_TRUE; 21263 ignore_nexthop = B_TRUE; 21264 } 21265 if (ire != NULL) { 21266 ire_refrele(ire); 21267 ire = NULL; 21268 } 21269 /* 21270 * Guard against coming in from arp in which case conn is NULL. 21271 * Also guard against non M_DATA with dontroute set but 21272 * destined to local, loopback or broadcast addresses. 21273 */ 21274 if (connp != NULL && connp->conn_dontroute && 21275 !ignore_dontroute) { 21276 dontroute: 21277 /* 21278 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21279 * routing protocols from seeing false direct 21280 * connectivity. 21281 */ 21282 ipha->ipha_ttl = 1; 21283 /* If suitable ipif not found, drop packet */ 21284 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21285 if (dst_ipif == NULL) { 21286 noroute: 21287 ip1dbg(("ip_wput: no route for dst using" 21288 " SO_DONTROUTE\n")); 21289 BUMP_MIB(&ipst->ips_ip_mib, 21290 ipIfStatsOutNoRoutes); 21291 mp->b_prev = mp->b_next = NULL; 21292 if (first_mp == NULL) 21293 first_mp = mp; 21294 goto drop_pkt; 21295 } else { 21296 /* 21297 * If suitable ipif has been found, set 21298 * xmit_ill to the corresponding 21299 * ipif_ill because we'll be using the 21300 * send_from_ill logic below. 21301 */ 21302 ASSERT(xmit_ill == NULL); 21303 xmit_ill = dst_ipif->ipif_ill; 21304 mutex_enter(&xmit_ill->ill_lock); 21305 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21306 mutex_exit(&xmit_ill->ill_lock); 21307 xmit_ill = NULL; 21308 ipif_refrele(dst_ipif); 21309 goto noroute; 21310 } 21311 ill_refhold_locked(xmit_ill); 21312 mutex_exit(&xmit_ill->ill_lock); 21313 ipif_refrele(dst_ipif); 21314 } 21315 } 21316 21317 send_from_ill: 21318 if (xmit_ill != NULL) { 21319 ipif_t *ipif; 21320 21321 /* 21322 * Mark this packet as originated locally 21323 */ 21324 mp->b_prev = mp->b_next = NULL; 21325 21326 /* 21327 * Could be SO_DONTROUTE case also. 21328 * Verify that at least one ipif is up on the ill. 21329 */ 21330 if (xmit_ill->ill_ipif_up_count == 0) { 21331 ip1dbg(("ip_output: xmit_ill %s is down\n", 21332 xmit_ill->ill_name)); 21333 goto drop_pkt; 21334 } 21335 21336 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21337 if (ipif == NULL) { 21338 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21339 xmit_ill->ill_name)); 21340 goto drop_pkt; 21341 } 21342 21343 match_flags = 0; 21344 if (IS_UNDER_IPMP(xmit_ill)) 21345 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 21346 21347 /* 21348 * Look for a ire that is part of the group, 21349 * if found use it else call ip_newroute_ipif. 21350 * IPCL_ZONEID is not used for matching because 21351 * IP_ALLZONES option is valid only when the 21352 * ill is accessible from all zones i.e has a 21353 * valid ipif in all zones. 21354 */ 21355 match_flags |= MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21356 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21357 msg_getlabel(mp), match_flags, ipst); 21358 /* 21359 * If an ire exists use it or else create 21360 * an ire but don't add it to the cache. 21361 * Adding an ire may cause issues with 21362 * asymmetric routing. 21363 * In case of multiroute always act as if 21364 * ire does not exist. 21365 */ 21366 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21367 if (ire != NULL) 21368 ire_refrele(ire); 21369 ip_newroute_ipif(q, first_mp, ipif, 21370 dst, connp, 0, zoneid, infop); 21371 ipif_refrele(ipif); 21372 ip1dbg(("ip_output: xmit_ill via %s\n", 21373 xmit_ill->ill_name)); 21374 ill_refrele(xmit_ill); 21375 if (need_decref) 21376 CONN_DEC_REF(connp); 21377 return; 21378 } 21379 ipif_refrele(ipif); 21380 } else if (ip_nexthop || (connp != NULL && 21381 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21382 if (!ip_nexthop) { 21383 ip_nexthop = B_TRUE; 21384 nexthop_addr = connp->conn_nexthop_v4; 21385 } 21386 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21387 MATCH_IRE_GW; 21388 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21389 NULL, zoneid, msg_getlabel(mp), match_flags, ipst); 21390 } else { 21391 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), 21392 ipst); 21393 } 21394 if (!ire) { 21395 if (ip_nexthop && !ignore_nexthop) { 21396 if (mctl_present) { 21397 io = (ipsec_out_t *)first_mp->b_rptr; 21398 ASSERT(first_mp->b_datap->db_type == 21399 M_CTL); 21400 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21401 } else { 21402 ASSERT(mp == first_mp); 21403 first_mp = allocb( 21404 sizeof (ipsec_info_t), BPRI_HI); 21405 if (first_mp == NULL) { 21406 first_mp = mp; 21407 goto discard_pkt; 21408 } 21409 first_mp->b_datap->db_type = M_CTL; 21410 first_mp->b_wptr += 21411 sizeof (ipsec_info_t); 21412 /* ipsec_out_secure is B_FALSE now */ 21413 bzero(first_mp->b_rptr, 21414 sizeof (ipsec_info_t)); 21415 io = (ipsec_out_t *)first_mp->b_rptr; 21416 io->ipsec_out_type = IPSEC_OUT; 21417 io->ipsec_out_len = 21418 sizeof (ipsec_out_t); 21419 io->ipsec_out_use_global_policy = 21420 B_TRUE; 21421 io->ipsec_out_ns = ipst->ips_netstack; 21422 first_mp->b_cont = mp; 21423 mctl_present = B_TRUE; 21424 } 21425 io->ipsec_out_ip_nexthop = ip_nexthop; 21426 io->ipsec_out_nexthop_addr = nexthop_addr; 21427 } 21428 noirefound: 21429 /* 21430 * Mark this packet as having originated on 21431 * this machine. This will be noted in 21432 * ire_add_then_send, which needs to know 21433 * whether to run it back through ip_wput or 21434 * ip_rput following successful resolution. 21435 */ 21436 mp->b_prev = NULL; 21437 mp->b_next = NULL; 21438 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21439 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21440 "ip_wput_end: q %p (%S)", q, "newroute"); 21441 if (xmit_ill != NULL) 21442 ill_refrele(xmit_ill); 21443 if (need_decref) 21444 CONN_DEC_REF(connp); 21445 return; 21446 } 21447 } 21448 21449 /* We now know where we are going with it. */ 21450 21451 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21452 "ip_wput_end: q %p (%S)", q, "end"); 21453 21454 /* 21455 * Check if the ire has the RTF_MULTIRT flag, inherited 21456 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21457 */ 21458 if (ire->ire_flags & RTF_MULTIRT) { 21459 /* 21460 * Force the TTL of multirouted packets if required. 21461 * The TTL of such packets is bounded by the 21462 * ip_multirt_ttl ndd variable. 21463 */ 21464 if ((ipst->ips_ip_multirt_ttl > 0) && 21465 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21466 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21467 "(was %d), dst 0x%08x\n", 21468 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21469 ntohl(ire->ire_addr))); 21470 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21471 } 21472 /* 21473 * At this point, we check to see if there are any pending 21474 * unresolved routes. ire_multirt_resolvable() 21475 * checks in O(n) that all IRE_OFFSUBNET ire 21476 * entries for the packet's destination and 21477 * flagged RTF_MULTIRT are currently resolved. 21478 * If some remain unresolved, we make a copy 21479 * of the current message. It will be used 21480 * to initiate additional route resolutions. 21481 */ 21482 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21483 msg_getlabel(first_mp), ipst); 21484 ip2dbg(("ip_wput[noirefound]: ire %p, " 21485 "multirt_need_resolve %d, first_mp %p\n", 21486 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21487 if (multirt_need_resolve) { 21488 copy_mp = copymsg(first_mp); 21489 if (copy_mp != NULL) { 21490 MULTIRT_DEBUG_TAG(copy_mp); 21491 } 21492 } 21493 } 21494 21495 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21496 /* 21497 * Try to resolve another multiroute if 21498 * ire_multirt_resolvable() deemed it necessary. 21499 * At this point, we need to distinguish 21500 * multicasts from other packets. For multicasts, 21501 * we call ip_newroute_ipif() and request that both 21502 * multirouting and setsrc flags are checked. 21503 */ 21504 if (copy_mp != NULL) { 21505 if (CLASSD(dst)) { 21506 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21507 if (ipif) { 21508 ASSERT(infop->ip_opt_ill_index == 0); 21509 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21510 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21511 ipif_refrele(ipif); 21512 } else { 21513 MULTIRT_DEBUG_UNTAG(copy_mp); 21514 freemsg(copy_mp); 21515 copy_mp = NULL; 21516 } 21517 } else { 21518 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21519 } 21520 } 21521 if (xmit_ill != NULL) 21522 ill_refrele(xmit_ill); 21523 if (need_decref) 21524 CONN_DEC_REF(connp); 21525 return; 21526 21527 icmp_parameter_problem: 21528 /* could not have originated externally */ 21529 ASSERT(mp->b_prev == NULL); 21530 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21531 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21532 /* it's the IP header length that's in trouble */ 21533 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21534 first_mp = NULL; 21535 } 21536 21537 discard_pkt: 21538 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21539 drop_pkt: 21540 ip1dbg(("ip_wput: dropped packet\n")); 21541 if (ire != NULL) 21542 ire_refrele(ire); 21543 if (need_decref) 21544 CONN_DEC_REF(connp); 21545 freemsg(first_mp); 21546 if (xmit_ill != NULL) 21547 ill_refrele(xmit_ill); 21548 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21549 "ip_wput_end: q %p (%S)", q, "droppkt"); 21550 } 21551 21552 /* 21553 * If this is a conn_t queue, then we pass in the conn. This includes the 21554 * zoneid. 21555 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21556 * in which case we use the global zoneid since those are all part of 21557 * the global zone. 21558 */ 21559 void 21560 ip_wput(queue_t *q, mblk_t *mp) 21561 { 21562 if (CONN_Q(q)) 21563 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21564 else 21565 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21566 } 21567 21568 /* 21569 * 21570 * The following rules must be observed when accessing any ipif or ill 21571 * that has been cached in the conn. Typically conn_outgoing_ill, 21572 * conn_multicast_ipif and conn_multicast_ill. 21573 * 21574 * Access: The ipif or ill pointed to from the conn can be accessed under 21575 * the protection of the conn_lock or after it has been refheld under the 21576 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21577 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21578 * The reason for this is that a concurrent unplumb could actually be 21579 * cleaning up these cached pointers by walking the conns and might have 21580 * finished cleaning up the conn in question. The macros check that an 21581 * unplumb has not yet started on the ipif or ill. 21582 * 21583 * Caching: An ipif or ill pointer may be cached in the conn only after 21584 * making sure that an unplumb has not started. So the caching is done 21585 * while holding both the conn_lock and the ill_lock and after using the 21586 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21587 * flag before starting the cleanup of conns. 21588 * 21589 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21590 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21591 * or a reference to the ipif or a reference to an ire that references the 21592 * ipif. An ipif only changes its ill when migrating from an underlying ill 21593 * to an IPMP ill in ipif_up(). 21594 */ 21595 ipif_t * 21596 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21597 { 21598 ipif_t *ipif; 21599 ill_t *ill; 21600 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21601 21602 *err = 0; 21603 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21604 mutex_enter(&connp->conn_lock); 21605 ipif = *ipifp; 21606 if (ipif != NULL) { 21607 ill = ipif->ipif_ill; 21608 mutex_enter(&ill->ill_lock); 21609 if (IPIF_CAN_LOOKUP(ipif)) { 21610 ipif_refhold_locked(ipif); 21611 mutex_exit(&ill->ill_lock); 21612 mutex_exit(&connp->conn_lock); 21613 rw_exit(&ipst->ips_ill_g_lock); 21614 return (ipif); 21615 } else { 21616 *err = IPIF_LOOKUP_FAILED; 21617 } 21618 mutex_exit(&ill->ill_lock); 21619 } 21620 mutex_exit(&connp->conn_lock); 21621 rw_exit(&ipst->ips_ill_g_lock); 21622 return (NULL); 21623 } 21624 21625 ill_t * 21626 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21627 { 21628 ill_t *ill; 21629 21630 *err = 0; 21631 mutex_enter(&connp->conn_lock); 21632 ill = *illp; 21633 if (ill != NULL) { 21634 mutex_enter(&ill->ill_lock); 21635 if (ILL_CAN_LOOKUP(ill)) { 21636 ill_refhold_locked(ill); 21637 mutex_exit(&ill->ill_lock); 21638 mutex_exit(&connp->conn_lock); 21639 return (ill); 21640 } else { 21641 *err = ILL_LOOKUP_FAILED; 21642 } 21643 mutex_exit(&ill->ill_lock); 21644 } 21645 mutex_exit(&connp->conn_lock); 21646 return (NULL); 21647 } 21648 21649 static int 21650 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21651 { 21652 ill_t *ill; 21653 21654 ill = ipif->ipif_ill; 21655 mutex_enter(&connp->conn_lock); 21656 mutex_enter(&ill->ill_lock); 21657 if (IPIF_CAN_LOOKUP(ipif)) { 21658 *ipifp = ipif; 21659 mutex_exit(&ill->ill_lock); 21660 mutex_exit(&connp->conn_lock); 21661 return (0); 21662 } 21663 mutex_exit(&ill->ill_lock); 21664 mutex_exit(&connp->conn_lock); 21665 return (IPIF_LOOKUP_FAILED); 21666 } 21667 21668 /* 21669 * This is called if the outbound datagram needs fragmentation. 21670 * 21671 * NOTE : This function does not ire_refrele the ire argument passed in. 21672 */ 21673 static void 21674 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21675 ip_stack_t *ipst, conn_t *connp) 21676 { 21677 ipha_t *ipha; 21678 mblk_t *mp; 21679 uint32_t v_hlen_tos_len; 21680 uint32_t max_frag; 21681 uint32_t frag_flag; 21682 boolean_t dont_use; 21683 21684 if (ipsec_mp->b_datap->db_type == M_CTL) { 21685 mp = ipsec_mp->b_cont; 21686 } else { 21687 mp = ipsec_mp; 21688 } 21689 21690 ipha = (ipha_t *)mp->b_rptr; 21691 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21692 21693 #ifdef _BIG_ENDIAN 21694 #define V_HLEN (v_hlen_tos_len >> 24) 21695 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21696 #else 21697 #define V_HLEN (v_hlen_tos_len & 0xFF) 21698 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21699 #endif 21700 21701 #ifndef SPEED_BEFORE_SAFETY 21702 /* 21703 * Check that ipha_length is consistent with 21704 * the mblk length 21705 */ 21706 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21707 ip0dbg(("Packet length mismatch: %d, %ld\n", 21708 LENGTH, msgdsize(mp))); 21709 freemsg(ipsec_mp); 21710 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21711 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21712 "packet length mismatch"); 21713 return; 21714 } 21715 #endif 21716 /* 21717 * Don't use frag_flag if pre-built packet or source 21718 * routed or if multicast (since multicast packets do not solicit 21719 * ICMP "packet too big" messages). Get the values of 21720 * max_frag and frag_flag atomically by acquiring the 21721 * ire_lock. 21722 */ 21723 mutex_enter(&ire->ire_lock); 21724 max_frag = ire->ire_max_frag; 21725 frag_flag = ire->ire_frag_flag; 21726 mutex_exit(&ire->ire_lock); 21727 21728 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21729 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21730 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21731 21732 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21733 (dont_use ? 0 : frag_flag), zoneid, ipst, connp); 21734 } 21735 21736 /* 21737 * Used for deciding the MSS size for the upper layer. Thus 21738 * we need to check the outbound policy values in the conn. 21739 */ 21740 int 21741 conn_ipsec_length(conn_t *connp) 21742 { 21743 ipsec_latch_t *ipl; 21744 21745 ipl = connp->conn_latch; 21746 if (ipl == NULL) 21747 return (0); 21748 21749 if (ipl->ipl_out_policy == NULL) 21750 return (0); 21751 21752 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21753 } 21754 21755 /* 21756 * Returns an estimate of the IPsec headers size. This is used if 21757 * we don't want to call into IPsec to get the exact size. 21758 */ 21759 int 21760 ipsec_out_extra_length(mblk_t *ipsec_mp) 21761 { 21762 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21763 ipsec_action_t *a; 21764 21765 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21766 if (!io->ipsec_out_secure) 21767 return (0); 21768 21769 a = io->ipsec_out_act; 21770 21771 if (a == NULL) { 21772 ASSERT(io->ipsec_out_policy != NULL); 21773 a = io->ipsec_out_policy->ipsp_act; 21774 } 21775 ASSERT(a != NULL); 21776 21777 return (a->ipa_ovhd); 21778 } 21779 21780 /* 21781 * Returns an estimate of the IPsec headers size. This is used if 21782 * we don't want to call into IPsec to get the exact size. 21783 */ 21784 int 21785 ipsec_in_extra_length(mblk_t *ipsec_mp) 21786 { 21787 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21788 ipsec_action_t *a; 21789 21790 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21791 21792 a = ii->ipsec_in_action; 21793 return (a == NULL ? 0 : a->ipa_ovhd); 21794 } 21795 21796 /* 21797 * If there are any source route options, return the true final 21798 * destination. Otherwise, return the destination. 21799 */ 21800 ipaddr_t 21801 ip_get_dst(ipha_t *ipha) 21802 { 21803 ipoptp_t opts; 21804 uchar_t *opt; 21805 uint8_t optval; 21806 uint8_t optlen; 21807 ipaddr_t dst; 21808 uint32_t off; 21809 21810 dst = ipha->ipha_dst; 21811 21812 if (IS_SIMPLE_IPH(ipha)) 21813 return (dst); 21814 21815 for (optval = ipoptp_first(&opts, ipha); 21816 optval != IPOPT_EOL; 21817 optval = ipoptp_next(&opts)) { 21818 opt = opts.ipoptp_cur; 21819 optlen = opts.ipoptp_len; 21820 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21821 switch (optval) { 21822 case IPOPT_SSRR: 21823 case IPOPT_LSRR: 21824 off = opt[IPOPT_OFFSET]; 21825 /* 21826 * If one of the conditions is true, it means 21827 * end of options and dst already has the right 21828 * value. 21829 */ 21830 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21831 off = optlen - IP_ADDR_LEN; 21832 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21833 } 21834 return (dst); 21835 default: 21836 break; 21837 } 21838 } 21839 21840 return (dst); 21841 } 21842 21843 mblk_t * 21844 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21845 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21846 { 21847 ipsec_out_t *io; 21848 mblk_t *first_mp; 21849 boolean_t policy_present; 21850 ip_stack_t *ipst; 21851 ipsec_stack_t *ipss; 21852 21853 ASSERT(ire != NULL); 21854 ipst = ire->ire_ipst; 21855 ipss = ipst->ips_netstack->netstack_ipsec; 21856 21857 first_mp = mp; 21858 if (mp->b_datap->db_type == M_CTL) { 21859 io = (ipsec_out_t *)first_mp->b_rptr; 21860 /* 21861 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21862 * 21863 * 1) There is per-socket policy (including cached global 21864 * policy) or a policy on the IP-in-IP tunnel. 21865 * 2) There is no per-socket policy, but it is 21866 * a multicast packet that needs to go out 21867 * on a specific interface. This is the case 21868 * where (ip_wput and ip_wput_multicast) attaches 21869 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21870 * 21871 * In case (2) we check with global policy to 21872 * see if there is a match and set the ill_index 21873 * appropriately so that we can lookup the ire 21874 * properly in ip_wput_ipsec_out. 21875 */ 21876 21877 /* 21878 * ipsec_out_use_global_policy is set to B_FALSE 21879 * in ipsec_in_to_out(). Refer to that function for 21880 * details. 21881 */ 21882 if ((io->ipsec_out_latch == NULL) && 21883 (io->ipsec_out_use_global_policy)) { 21884 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21885 ire, connp, unspec_src, zoneid)); 21886 } 21887 if (!io->ipsec_out_secure) { 21888 /* 21889 * If this is not a secure packet, drop 21890 * the IPSEC_OUT mp and treat it as a clear 21891 * packet. This happens when we are sending 21892 * a ICMP reply back to a clear packet. See 21893 * ipsec_in_to_out() for details. 21894 */ 21895 mp = first_mp->b_cont; 21896 freeb(first_mp); 21897 } 21898 return (mp); 21899 } 21900 /* 21901 * See whether we need to attach a global policy here. We 21902 * don't depend on the conn (as it could be null) for deciding 21903 * what policy this datagram should go through because it 21904 * should have happened in ip_wput if there was some 21905 * policy. This normally happens for connections which are not 21906 * fully bound preventing us from caching policies in 21907 * ip_bind. Packets coming from the TCP listener/global queue 21908 * - which are non-hard_bound - could also be affected by 21909 * applying policy here. 21910 * 21911 * If this packet is coming from tcp global queue or listener, 21912 * we will be applying policy here. This may not be *right* 21913 * if these packets are coming from the detached connection as 21914 * it could have gone in clear before. This happens only if a 21915 * TCP connection started when there is no policy and somebody 21916 * added policy before it became detached. Thus packets of the 21917 * detached connection could go out secure and the other end 21918 * would drop it because it will be expecting in clear. The 21919 * converse is not true i.e if somebody starts a TCP 21920 * connection and deletes the policy, all the packets will 21921 * still go out with the policy that existed before deleting 21922 * because ip_unbind sends up policy information which is used 21923 * by TCP on subsequent ip_wputs. The right solution is to fix 21924 * TCP to attach a dummy IPSEC_OUT and set 21925 * ipsec_out_use_global_policy to B_FALSE. As this might 21926 * affect performance for normal cases, we are not doing it. 21927 * Thus, set policy before starting any TCP connections. 21928 * 21929 * NOTE - We might apply policy even for a hard bound connection 21930 * - for which we cached policy in ip_bind - if somebody added 21931 * global policy after we inherited the policy in ip_bind. 21932 * This means that the packets that were going out in clear 21933 * previously would start going secure and hence get dropped 21934 * on the other side. To fix this, TCP attaches a dummy 21935 * ipsec_out and make sure that we don't apply global policy. 21936 */ 21937 if (ipha != NULL) 21938 policy_present = ipss->ipsec_outbound_v4_policy_present; 21939 else 21940 policy_present = ipss->ipsec_outbound_v6_policy_present; 21941 if (!policy_present) 21942 return (mp); 21943 21944 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21945 zoneid)); 21946 } 21947 21948 /* 21949 * This function does the ire_refrele of the ire passed in as the 21950 * argument. As this function looks up more ires i.e broadcast ires, 21951 * it needs to REFRELE them. Currently, for simplicity we don't 21952 * differentiate the one passed in and looked up here. We always 21953 * REFRELE. 21954 * IPQoS Notes: 21955 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21956 * IPsec packets are done in ipsec_out_process. 21957 */ 21958 void 21959 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21960 zoneid_t zoneid) 21961 { 21962 ipha_t *ipha; 21963 #define rptr ((uchar_t *)ipha) 21964 queue_t *stq; 21965 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21966 uint32_t v_hlen_tos_len; 21967 uint32_t ttl_protocol; 21968 ipaddr_t src; 21969 ipaddr_t dst; 21970 uint32_t cksum; 21971 ipaddr_t orig_src; 21972 ire_t *ire1; 21973 mblk_t *next_mp; 21974 uint_t hlen; 21975 uint16_t *up; 21976 uint32_t max_frag = ire->ire_max_frag; 21977 ill_t *ill = ire_to_ill(ire); 21978 int clusterwide; 21979 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21980 int ipsec_len; 21981 mblk_t *first_mp; 21982 ipsec_out_t *io; 21983 boolean_t conn_dontroute; /* conn value for multicast */ 21984 boolean_t conn_multicast_loop; /* conn value for multicast */ 21985 boolean_t multicast_forward; /* Should we forward ? */ 21986 boolean_t unspec_src; 21987 ill_t *conn_outgoing_ill = NULL; 21988 ill_t *ire_ill; 21989 ill_t *ire1_ill; 21990 ill_t *out_ill; 21991 uint32_t ill_index = 0; 21992 boolean_t multirt_send = B_FALSE; 21993 int err; 21994 ipxmit_state_t pktxmit_state; 21995 ip_stack_t *ipst = ire->ire_ipst; 21996 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 21997 21998 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 21999 "ip_wput_ire_start: q %p", q); 22000 22001 multicast_forward = B_FALSE; 22002 unspec_src = (connp != NULL && connp->conn_unspec_src); 22003 22004 if (ire->ire_flags & RTF_MULTIRT) { 22005 /* 22006 * Multirouting case. The bucket where ire is stored 22007 * probably holds other RTF_MULTIRT flagged ire 22008 * to the destination. In this call to ip_wput_ire, 22009 * we attempt to send the packet through all 22010 * those ires. Thus, we first ensure that ire is the 22011 * first RTF_MULTIRT ire in the bucket, 22012 * before walking the ire list. 22013 */ 22014 ire_t *first_ire; 22015 irb_t *irb = ire->ire_bucket; 22016 ASSERT(irb != NULL); 22017 22018 /* Make sure we do not omit any multiroute ire. */ 22019 IRB_REFHOLD(irb); 22020 for (first_ire = irb->irb_ire; 22021 first_ire != NULL; 22022 first_ire = first_ire->ire_next) { 22023 if ((first_ire->ire_flags & RTF_MULTIRT) && 22024 (first_ire->ire_addr == ire->ire_addr) && 22025 !(first_ire->ire_marks & 22026 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 22027 break; 22028 } 22029 22030 if ((first_ire != NULL) && (first_ire != ire)) { 22031 IRE_REFHOLD(first_ire); 22032 ire_refrele(ire); 22033 ire = first_ire; 22034 ill = ire_to_ill(ire); 22035 } 22036 IRB_REFRELE(irb); 22037 } 22038 22039 /* 22040 * conn_outgoing_ill variable is used only in the broadcast loop. 22041 * for performance we don't grab the mutexs in the fastpath 22042 */ 22043 if (ire->ire_type == IRE_BROADCAST && connp != NULL && 22044 connp->conn_outgoing_ill != NULL) { 22045 conn_outgoing_ill = conn_get_held_ill(connp, 22046 &connp->conn_outgoing_ill, &err); 22047 if (err == ILL_LOOKUP_FAILED) { 22048 ire_refrele(ire); 22049 freemsg(mp); 22050 return; 22051 } 22052 } 22053 22054 if (mp->b_datap->db_type != M_CTL) { 22055 ipha = (ipha_t *)mp->b_rptr; 22056 } else { 22057 io = (ipsec_out_t *)mp->b_rptr; 22058 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22059 ASSERT(zoneid == io->ipsec_out_zoneid); 22060 ASSERT(zoneid != ALL_ZONES); 22061 ipha = (ipha_t *)mp->b_cont->b_rptr; 22062 dst = ipha->ipha_dst; 22063 /* 22064 * For the multicast case, ipsec_out carries conn_dontroute and 22065 * conn_multicast_loop as conn may not be available here. We 22066 * need this for multicast loopback and forwarding which is done 22067 * later in the code. 22068 */ 22069 if (CLASSD(dst)) { 22070 conn_dontroute = io->ipsec_out_dontroute; 22071 conn_multicast_loop = io->ipsec_out_multicast_loop; 22072 /* 22073 * If conn_dontroute is not set or conn_multicast_loop 22074 * is set, we need to do forwarding/loopback. For 22075 * datagrams from ip_wput_multicast, conn_dontroute is 22076 * set to B_TRUE and conn_multicast_loop is set to 22077 * B_FALSE so that we neither do forwarding nor 22078 * loopback. 22079 */ 22080 if (!conn_dontroute || conn_multicast_loop) 22081 multicast_forward = B_TRUE; 22082 } 22083 } 22084 22085 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22086 ire->ire_zoneid != ALL_ZONES) { 22087 /* 22088 * When a zone sends a packet to another zone, we try to deliver 22089 * the packet under the same conditions as if the destination 22090 * was a real node on the network. To do so, we look for a 22091 * matching route in the forwarding table. 22092 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22093 * ip_newroute() does. 22094 * Note that IRE_LOCAL are special, since they are used 22095 * when the zoneid doesn't match in some cases. This means that 22096 * we need to handle ipha_src differently since ire_src_addr 22097 * belongs to the receiving zone instead of the sending zone. 22098 * When ip_restrict_interzone_loopback is set, then 22099 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22100 * for loopback between zones when the logical "Ethernet" would 22101 * have looped them back. 22102 */ 22103 ire_t *src_ire; 22104 22105 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22106 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22107 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22108 if (src_ire != NULL && 22109 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22110 (!ipst->ips_ip_restrict_interzone_loopback || 22111 ire_local_same_lan(ire, src_ire))) { 22112 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22113 ipha->ipha_src = src_ire->ire_src_addr; 22114 ire_refrele(src_ire); 22115 } else { 22116 ire_refrele(ire); 22117 if (conn_outgoing_ill != NULL) 22118 ill_refrele(conn_outgoing_ill); 22119 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22120 if (src_ire != NULL) { 22121 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22122 ire_refrele(src_ire); 22123 freemsg(mp); 22124 return; 22125 } 22126 ire_refrele(src_ire); 22127 } 22128 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22129 /* Failed */ 22130 freemsg(mp); 22131 return; 22132 } 22133 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22134 ipst); 22135 return; 22136 } 22137 } 22138 22139 if (mp->b_datap->db_type == M_CTL || 22140 ipss->ipsec_outbound_v4_policy_present) { 22141 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22142 unspec_src, zoneid); 22143 if (mp == NULL) { 22144 ire_refrele(ire); 22145 if (conn_outgoing_ill != NULL) 22146 ill_refrele(conn_outgoing_ill); 22147 return; 22148 } 22149 /* 22150 * Trusted Extensions supports all-zones interfaces, so 22151 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22152 * the global zone. 22153 */ 22154 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22155 io = (ipsec_out_t *)mp->b_rptr; 22156 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22157 zoneid = io->ipsec_out_zoneid; 22158 } 22159 } 22160 22161 first_mp = mp; 22162 ipsec_len = 0; 22163 22164 if (first_mp->b_datap->db_type == M_CTL) { 22165 io = (ipsec_out_t *)first_mp->b_rptr; 22166 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22167 mp = first_mp->b_cont; 22168 ipsec_len = ipsec_out_extra_length(first_mp); 22169 ASSERT(ipsec_len >= 0); 22170 if (zoneid == ALL_ZONES) 22171 zoneid = GLOBAL_ZONEID; 22172 /* We already picked up the zoneid from the M_CTL above */ 22173 ASSERT(zoneid == io->ipsec_out_zoneid); 22174 22175 /* 22176 * Drop M_CTL here if IPsec processing is not needed. 22177 * (Non-IPsec use of M_CTL extracted any information it 22178 * needed above). 22179 */ 22180 if (ipsec_len == 0) { 22181 freeb(first_mp); 22182 first_mp = mp; 22183 } 22184 } 22185 22186 /* 22187 * Fast path for ip_wput_ire 22188 */ 22189 22190 ipha = (ipha_t *)mp->b_rptr; 22191 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22192 dst = ipha->ipha_dst; 22193 22194 /* 22195 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22196 * if the socket is a SOCK_RAW type. The transport checksum should 22197 * be provided in the pre-built packet, so we don't need to compute it. 22198 * Also, other application set flags, like DF, should not be altered. 22199 * Other transport MUST pass down zero. 22200 */ 22201 ip_hdr_included = ipha->ipha_ident; 22202 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22203 22204 if (CLASSD(dst)) { 22205 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22206 ntohl(dst), 22207 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22208 ntohl(ire->ire_addr))); 22209 } 22210 22211 /* Macros to extract header fields from data already in registers */ 22212 #ifdef _BIG_ENDIAN 22213 #define V_HLEN (v_hlen_tos_len >> 24) 22214 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22215 #define PROTO (ttl_protocol & 0xFF) 22216 #else 22217 #define V_HLEN (v_hlen_tos_len & 0xFF) 22218 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22219 #define PROTO (ttl_protocol >> 8) 22220 #endif 22221 22222 orig_src = src = ipha->ipha_src; 22223 /* (The loop back to "another" is explained down below.) */ 22224 another:; 22225 /* 22226 * Assign an ident value for this packet. We assign idents on 22227 * a per destination basis out of the IRE. There could be 22228 * other threads targeting the same destination, so we have to 22229 * arrange for a atomic increment. Note that we use a 32-bit 22230 * atomic add because it has better performance than its 22231 * 16-bit sibling. 22232 * 22233 * If running in cluster mode and if the source address 22234 * belongs to a replicated service then vector through 22235 * cl_inet_ipident vector to allocate ip identifier 22236 * NOTE: This is a contract private interface with the 22237 * clustering group. 22238 */ 22239 clusterwide = 0; 22240 if (cl_inet_ipident) { 22241 ASSERT(cl_inet_isclusterwide); 22242 netstackid_t stack_id = ipst->ips_netstack->netstack_stackid; 22243 22244 if ((*cl_inet_isclusterwide)(stack_id, IPPROTO_IP, 22245 AF_INET, (uint8_t *)(uintptr_t)src, NULL)) { 22246 ipha->ipha_ident = (*cl_inet_ipident)(stack_id, 22247 IPPROTO_IP, AF_INET, (uint8_t *)(uintptr_t)src, 22248 (uint8_t *)(uintptr_t)dst, NULL); 22249 clusterwide = 1; 22250 } 22251 } 22252 if (!clusterwide) { 22253 ipha->ipha_ident = 22254 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22255 } 22256 22257 #ifndef _BIG_ENDIAN 22258 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22259 #endif 22260 22261 /* 22262 * Set source address unless sent on an ill or conn_unspec_src is set. 22263 * This is needed to obey conn_unspec_src when packets go through 22264 * ip_newroute + arp. 22265 * Assumes ip_newroute{,_multi} sets the source address as well. 22266 */ 22267 if (src == INADDR_ANY && !unspec_src) { 22268 /* 22269 * Assign the appropriate source address from the IRE if none 22270 * was specified. 22271 */ 22272 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22273 22274 src = ire->ire_src_addr; 22275 if (connp == NULL) { 22276 ip1dbg(("ip_wput_ire: no connp and no src " 22277 "address for dst 0x%x, using src 0x%x\n", 22278 ntohl(dst), 22279 ntohl(src))); 22280 } 22281 ipha->ipha_src = src; 22282 } 22283 stq = ire->ire_stq; 22284 22285 /* 22286 * We only allow ire chains for broadcasts since there will 22287 * be multiple IRE_CACHE entries for the same multicast 22288 * address (one per ipif). 22289 */ 22290 next_mp = NULL; 22291 22292 /* broadcast packet */ 22293 if (ire->ire_type == IRE_BROADCAST) 22294 goto broadcast; 22295 22296 /* loopback ? */ 22297 if (stq == NULL) 22298 goto nullstq; 22299 22300 /* The ill_index for outbound ILL */ 22301 ill_index = Q_TO_INDEX(stq); 22302 22303 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22304 ttl_protocol = ((uint16_t *)ipha)[4]; 22305 22306 /* pseudo checksum (do it in parts for IP header checksum) */ 22307 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22308 22309 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22310 queue_t *dev_q = stq->q_next; 22311 22312 /* 22313 * For DIRECT_CAPABLE, we do flow control at 22314 * the time of sending the packet. See 22315 * ILL_SEND_TX(). 22316 */ 22317 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 22318 (DEV_Q_FLOW_BLOCKED(dev_q))) 22319 goto blocked; 22320 22321 if ((PROTO == IPPROTO_UDP) && 22322 (ip_hdr_included != IP_HDR_INCLUDED)) { 22323 hlen = (V_HLEN & 0xF) << 2; 22324 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22325 if (*up != 0) { 22326 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22327 hlen, LENGTH, max_frag, ipsec_len, cksum); 22328 /* Software checksum? */ 22329 if (DB_CKSUMFLAGS(mp) == 0) { 22330 IP_STAT(ipst, ip_out_sw_cksum); 22331 IP_STAT_UPDATE(ipst, 22332 ip_udp_out_sw_cksum_bytes, 22333 LENGTH - hlen); 22334 } 22335 } 22336 } 22337 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22338 hlen = (V_HLEN & 0xF) << 2; 22339 if (PROTO == IPPROTO_TCP) { 22340 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22341 /* 22342 * The packet header is processed once and for all, even 22343 * in the multirouting case. We disable hardware 22344 * checksum if the packet is multirouted, as it will be 22345 * replicated via several interfaces, and not all of 22346 * them may have this capability. 22347 */ 22348 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22349 LENGTH, max_frag, ipsec_len, cksum); 22350 /* Software checksum? */ 22351 if (DB_CKSUMFLAGS(mp) == 0) { 22352 IP_STAT(ipst, ip_out_sw_cksum); 22353 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22354 LENGTH - hlen); 22355 } 22356 } else { 22357 sctp_hdr_t *sctph; 22358 22359 ASSERT(PROTO == IPPROTO_SCTP); 22360 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22361 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22362 /* 22363 * Zero out the checksum field to ensure proper 22364 * checksum calculation. 22365 */ 22366 sctph->sh_chksum = 0; 22367 #ifdef DEBUG 22368 if (!skip_sctp_cksum) 22369 #endif 22370 sctph->sh_chksum = sctp_cksum(mp, hlen); 22371 } 22372 } 22373 22374 /* 22375 * If this is a multicast packet and originated from ip_wput 22376 * we need to do loopback and forwarding checks. If it comes 22377 * from ip_wput_multicast, we SHOULD not do this. 22378 */ 22379 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22380 22381 /* checksum */ 22382 cksum += ttl_protocol; 22383 22384 /* fragment the packet */ 22385 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22386 goto fragmentit; 22387 /* 22388 * Don't use frag_flag if packet is pre-built or source 22389 * routed or if multicast (since multicast packets do 22390 * not solicit ICMP "packet too big" messages). 22391 */ 22392 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22393 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22394 !ip_source_route_included(ipha)) && 22395 !CLASSD(ipha->ipha_dst)) 22396 ipha->ipha_fragment_offset_and_flags |= 22397 htons(ire->ire_frag_flag); 22398 22399 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22400 /* calculate IP header checksum */ 22401 cksum += ipha->ipha_ident; 22402 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22403 cksum += ipha->ipha_fragment_offset_and_flags; 22404 22405 /* IP options present */ 22406 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22407 if (hlen) 22408 goto checksumoptions; 22409 22410 /* calculate hdr checksum */ 22411 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22412 cksum = ~(cksum + (cksum >> 16)); 22413 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22414 } 22415 if (ipsec_len != 0) { 22416 /* 22417 * We will do the rest of the processing after 22418 * we come back from IPsec in ip_wput_ipsec_out(). 22419 */ 22420 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22421 22422 io = (ipsec_out_t *)first_mp->b_rptr; 22423 io->ipsec_out_ill_index = 22424 ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 22425 ipsec_out_process(q, first_mp, ire, 0); 22426 ire_refrele(ire); 22427 if (conn_outgoing_ill != NULL) 22428 ill_refrele(conn_outgoing_ill); 22429 return; 22430 } 22431 22432 /* 22433 * In most cases, the emission loop below is entered only 22434 * once. Only in the case where the ire holds the 22435 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22436 * flagged ires in the bucket, and send the packet 22437 * through all crossed RTF_MULTIRT routes. 22438 */ 22439 if (ire->ire_flags & RTF_MULTIRT) { 22440 multirt_send = B_TRUE; 22441 } 22442 do { 22443 if (multirt_send) { 22444 irb_t *irb; 22445 /* 22446 * We are in a multiple send case, need to get 22447 * the next ire and make a duplicate of the packet. 22448 * ire1 holds here the next ire to process in the 22449 * bucket. If multirouting is expected, 22450 * any non-RTF_MULTIRT ire that has the 22451 * right destination address is ignored. 22452 */ 22453 irb = ire->ire_bucket; 22454 ASSERT(irb != NULL); 22455 22456 IRB_REFHOLD(irb); 22457 for (ire1 = ire->ire_next; 22458 ire1 != NULL; 22459 ire1 = ire1->ire_next) { 22460 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22461 continue; 22462 if (ire1->ire_addr != ire->ire_addr) 22463 continue; 22464 if (ire1->ire_marks & 22465 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 22466 continue; 22467 22468 /* Got one */ 22469 IRE_REFHOLD(ire1); 22470 break; 22471 } 22472 IRB_REFRELE(irb); 22473 22474 if (ire1 != NULL) { 22475 next_mp = copyb(mp); 22476 if ((next_mp == NULL) || 22477 ((mp->b_cont != NULL) && 22478 ((next_mp->b_cont = 22479 dupmsg(mp->b_cont)) == NULL))) { 22480 freemsg(next_mp); 22481 next_mp = NULL; 22482 ire_refrele(ire1); 22483 ire1 = NULL; 22484 } 22485 } 22486 22487 /* Last multiroute ire; don't loop anymore. */ 22488 if (ire1 == NULL) { 22489 multirt_send = B_FALSE; 22490 } 22491 } 22492 22493 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22494 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22495 mblk_t *, mp); 22496 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22497 ipst->ips_ipv4firewall_physical_out, 22498 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22499 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22500 22501 if (mp == NULL) 22502 goto release_ire_and_ill; 22503 22504 if (ipst->ips_ip4_observe.he_interested) { 22505 zoneid_t szone; 22506 22507 /* 22508 * On the outbound path the destination zone will be 22509 * unknown as we're sending this packet out on the 22510 * wire. 22511 */ 22512 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 22513 ALL_ZONES); 22514 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 22515 ire->ire_ipif->ipif_ill, ipst); 22516 } 22517 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22518 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22519 22520 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE, connp); 22521 22522 if ((pktxmit_state == SEND_FAILED) || 22523 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22524 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22525 "- packet dropped\n")); 22526 release_ire_and_ill: 22527 ire_refrele(ire); 22528 if (next_mp != NULL) { 22529 freemsg(next_mp); 22530 ire_refrele(ire1); 22531 } 22532 if (conn_outgoing_ill != NULL) 22533 ill_refrele(conn_outgoing_ill); 22534 return; 22535 } 22536 22537 if (CLASSD(dst)) { 22538 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22539 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22540 LENGTH); 22541 } 22542 22543 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22544 "ip_wput_ire_end: q %p (%S)", 22545 q, "last copy out"); 22546 IRE_REFRELE(ire); 22547 22548 if (multirt_send) { 22549 ASSERT(ire1); 22550 /* 22551 * Proceed with the next RTF_MULTIRT ire, 22552 * Also set up the send-to queue accordingly. 22553 */ 22554 ire = ire1; 22555 ire1 = NULL; 22556 stq = ire->ire_stq; 22557 mp = next_mp; 22558 next_mp = NULL; 22559 ipha = (ipha_t *)mp->b_rptr; 22560 ill_index = Q_TO_INDEX(stq); 22561 ill = (ill_t *)stq->q_ptr; 22562 } 22563 } while (multirt_send); 22564 if (conn_outgoing_ill != NULL) 22565 ill_refrele(conn_outgoing_ill); 22566 return; 22567 22568 /* 22569 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22570 */ 22571 broadcast: 22572 { 22573 /* 22574 * To avoid broadcast storms, we usually set the TTL to 1 for 22575 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22576 * can be overridden stack-wide through the ip_broadcast_ttl 22577 * ndd tunable, or on a per-connection basis through the 22578 * IP_BROADCAST_TTL socket option. 22579 * 22580 * In the event that we are replying to incoming ICMP packets, 22581 * connp could be NULL. 22582 */ 22583 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22584 if (connp != NULL) { 22585 if (connp->conn_dontroute) 22586 ipha->ipha_ttl = 1; 22587 else if (connp->conn_broadcast_ttl != 0) 22588 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22589 } 22590 22591 /* 22592 * Note that we are not doing a IRB_REFHOLD here. 22593 * Actually we don't care if the list changes i.e 22594 * if somebody deletes an IRE from the list while 22595 * we drop the lock, the next time we come around 22596 * ire_next will be NULL and hence we won't send 22597 * out multiple copies which is fine. 22598 */ 22599 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22600 ire1 = ire->ire_next; 22601 if (conn_outgoing_ill != NULL) { 22602 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22603 ASSERT(ire1 == ire->ire_next); 22604 if (ire1 != NULL && ire1->ire_addr == dst) { 22605 ire_refrele(ire); 22606 ire = ire1; 22607 IRE_REFHOLD(ire); 22608 ire1 = ire->ire_next; 22609 continue; 22610 } 22611 rw_exit(&ire->ire_bucket->irb_lock); 22612 /* Did not find a matching ill */ 22613 ip1dbg(("ip_wput_ire: broadcast with no " 22614 "matching IP_BOUND_IF ill %s dst %x\n", 22615 conn_outgoing_ill->ill_name, dst)); 22616 freemsg(first_mp); 22617 if (ire != NULL) 22618 ire_refrele(ire); 22619 ill_refrele(conn_outgoing_ill); 22620 return; 22621 } 22622 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22623 /* 22624 * If the next IRE has the same address and is not one 22625 * of the two copies that we need to send, try to see 22626 * whether this copy should be sent at all. This 22627 * assumes that we insert loopbacks first and then 22628 * non-loopbacks. This is acheived by inserting the 22629 * loopback always before non-loopback. 22630 * This is used to send a single copy of a broadcast 22631 * packet out all physical interfaces that have an 22632 * matching IRE_BROADCAST while also looping 22633 * back one copy (to ip_wput_local) for each 22634 * matching physical interface. However, we avoid 22635 * sending packets out different logical that match by 22636 * having ipif_up/ipif_down supress duplicate 22637 * IRE_BROADCASTS. 22638 * 22639 * This feature is currently used to get broadcasts 22640 * sent to multiple interfaces, when the broadcast 22641 * address being used applies to multiple interfaces. 22642 * For example, a whole net broadcast will be 22643 * replicated on every connected subnet of 22644 * the target net. 22645 * 22646 * Each zone has its own set of IRE_BROADCASTs, so that 22647 * we're able to distribute inbound packets to multiple 22648 * zones who share a broadcast address. We avoid looping 22649 * back outbound packets in different zones but on the 22650 * same ill, as the application would see duplicates. 22651 * 22652 * This logic assumes that ire_add_v4() groups the 22653 * IRE_BROADCAST entries so that those with the same 22654 * ire_addr are kept together. 22655 */ 22656 ire_ill = ire->ire_ipif->ipif_ill; 22657 if (ire->ire_stq != NULL || ire1->ire_stq == NULL) { 22658 while (ire1 != NULL && ire1->ire_addr == dst) { 22659 ire1_ill = ire1->ire_ipif->ipif_ill; 22660 if (ire1_ill != ire_ill) 22661 break; 22662 ire1 = ire1->ire_next; 22663 } 22664 } 22665 } 22666 ASSERT(multirt_send == B_FALSE); 22667 if (ire1 != NULL && ire1->ire_addr == dst) { 22668 if ((ire->ire_flags & RTF_MULTIRT) && 22669 (ire1->ire_flags & RTF_MULTIRT)) { 22670 /* 22671 * We are in the multirouting case. 22672 * The message must be sent at least 22673 * on both ires. These ires have been 22674 * inserted AFTER the standard ones 22675 * in ip_rt_add(). There are thus no 22676 * other ire entries for the destination 22677 * address in the rest of the bucket 22678 * that do not have the RTF_MULTIRT 22679 * flag. We don't process a copy 22680 * of the message here. This will be 22681 * done in the final sending loop. 22682 */ 22683 multirt_send = B_TRUE; 22684 } else { 22685 next_mp = ip_copymsg(first_mp); 22686 if (next_mp != NULL) 22687 IRE_REFHOLD(ire1); 22688 } 22689 } 22690 rw_exit(&ire->ire_bucket->irb_lock); 22691 } 22692 22693 if (stq) { 22694 /* 22695 * A non-NULL send-to queue means this packet is going 22696 * out of this machine. 22697 */ 22698 out_ill = (ill_t *)stq->q_ptr; 22699 22700 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22701 ttl_protocol = ((uint16_t *)ipha)[4]; 22702 /* 22703 * We accumulate the pseudo header checksum in cksum. 22704 * This is pretty hairy code, so watch close. One 22705 * thing to keep in mind is that UDP and TCP have 22706 * stored their respective datagram lengths in their 22707 * checksum fields. This lines things up real nice. 22708 */ 22709 cksum = (dst >> 16) + (dst & 0xFFFF) + 22710 (src >> 16) + (src & 0xFFFF); 22711 /* 22712 * We assume the udp checksum field contains the 22713 * length, so to compute the pseudo header checksum, 22714 * all we need is the protocol number and src/dst. 22715 */ 22716 /* Provide the checksums for UDP and TCP. */ 22717 if ((PROTO == IPPROTO_TCP) && 22718 (ip_hdr_included != IP_HDR_INCLUDED)) { 22719 /* hlen gets the number of uchar_ts in the IP header */ 22720 hlen = (V_HLEN & 0xF) << 2; 22721 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22722 IP_STAT(ipst, ip_out_sw_cksum); 22723 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22724 LENGTH - hlen); 22725 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22726 } else if (PROTO == IPPROTO_SCTP && 22727 (ip_hdr_included != IP_HDR_INCLUDED)) { 22728 sctp_hdr_t *sctph; 22729 22730 hlen = (V_HLEN & 0xF) << 2; 22731 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22732 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22733 sctph->sh_chksum = 0; 22734 #ifdef DEBUG 22735 if (!skip_sctp_cksum) 22736 #endif 22737 sctph->sh_chksum = sctp_cksum(mp, hlen); 22738 } else { 22739 queue_t *dev_q = stq->q_next; 22740 22741 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 22742 (DEV_Q_FLOW_BLOCKED(dev_q))) { 22743 blocked: 22744 ipha->ipha_ident = ip_hdr_included; 22745 /* 22746 * If we don't have a conn to apply 22747 * backpressure, free the message. 22748 * In the ire_send path, we don't know 22749 * the position to requeue the packet. Rather 22750 * than reorder packets, we just drop this 22751 * packet. 22752 */ 22753 if (ipst->ips_ip_output_queue && 22754 connp != NULL && 22755 caller != IRE_SEND) { 22756 if (caller == IP_WSRV) { 22757 idl_tx_list_t *idl_txl; 22758 22759 idl_txl = 22760 &ipst->ips_idl_tx_list[0]; 22761 connp->conn_did_putbq = 1; 22762 (void) putbq(connp->conn_wq, 22763 first_mp); 22764 conn_drain_insert(connp, 22765 idl_txl); 22766 /* 22767 * This is the service thread, 22768 * and the queue is already 22769 * noenabled. The check for 22770 * canput and the putbq is not 22771 * atomic. So we need to check 22772 * again. 22773 */ 22774 if (canput(stq->q_next)) 22775 connp->conn_did_putbq 22776 = 0; 22777 IP_STAT(ipst, ip_conn_flputbq); 22778 } else { 22779 /* 22780 * We are not the service proc. 22781 * ip_wsrv will be scheduled or 22782 * is already running. 22783 */ 22784 22785 (void) putq(connp->conn_wq, 22786 first_mp); 22787 } 22788 } else { 22789 out_ill = (ill_t *)stq->q_ptr; 22790 BUMP_MIB(out_ill->ill_ip_mib, 22791 ipIfStatsOutDiscards); 22792 freemsg(first_mp); 22793 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22794 "ip_wput_ire_end: q %p (%S)", 22795 q, "discard"); 22796 } 22797 ire_refrele(ire); 22798 if (next_mp) { 22799 ire_refrele(ire1); 22800 freemsg(next_mp); 22801 } 22802 if (conn_outgoing_ill != NULL) 22803 ill_refrele(conn_outgoing_ill); 22804 return; 22805 } 22806 if ((PROTO == IPPROTO_UDP) && 22807 (ip_hdr_included != IP_HDR_INCLUDED)) { 22808 /* 22809 * hlen gets the number of uchar_ts in the 22810 * IP header 22811 */ 22812 hlen = (V_HLEN & 0xF) << 2; 22813 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22814 max_frag = ire->ire_max_frag; 22815 if (*up != 0) { 22816 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22817 up, PROTO, hlen, LENGTH, max_frag, 22818 ipsec_len, cksum); 22819 /* Software checksum? */ 22820 if (DB_CKSUMFLAGS(mp) == 0) { 22821 IP_STAT(ipst, ip_out_sw_cksum); 22822 IP_STAT_UPDATE(ipst, 22823 ip_udp_out_sw_cksum_bytes, 22824 LENGTH - hlen); 22825 } 22826 } 22827 } 22828 } 22829 /* 22830 * Need to do this even when fragmenting. The local 22831 * loopback can be done without computing checksums 22832 * but forwarding out other interface must be done 22833 * after the IP checksum (and ULP checksums) have been 22834 * computed. 22835 * 22836 * NOTE : multicast_forward is set only if this packet 22837 * originated from ip_wput. For packets originating from 22838 * ip_wput_multicast, it is not set. 22839 */ 22840 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22841 multi_loopback: 22842 ip2dbg(("ip_wput: multicast, loop %d\n", 22843 conn_multicast_loop)); 22844 22845 /* Forget header checksum offload */ 22846 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22847 22848 /* 22849 * Local loopback of multicasts? Check the 22850 * ill. 22851 * 22852 * Note that the loopback function will not come 22853 * in through ip_rput - it will only do the 22854 * client fanout thus we need to do an mforward 22855 * as well. The is different from the BSD 22856 * logic. 22857 */ 22858 if (ill != NULL) { 22859 if (ilm_lookup_ill(ill, ipha->ipha_dst, 22860 ALL_ZONES) != NULL) { 22861 /* 22862 * Pass along the virtual output q. 22863 * ip_wput_local() will distribute the 22864 * packet to all the matching zones, 22865 * except the sending zone when 22866 * IP_MULTICAST_LOOP is false. 22867 */ 22868 ip_multicast_loopback(q, ill, first_mp, 22869 conn_multicast_loop ? 0 : 22870 IP_FF_NO_MCAST_LOOP, zoneid); 22871 } 22872 } 22873 if (ipha->ipha_ttl == 0) { 22874 /* 22875 * 0 => only to this host i.e. we are 22876 * done. We are also done if this was the 22877 * loopback interface since it is sufficient 22878 * to loopback one copy of a multicast packet. 22879 */ 22880 freemsg(first_mp); 22881 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22882 "ip_wput_ire_end: q %p (%S)", 22883 q, "loopback"); 22884 ire_refrele(ire); 22885 if (conn_outgoing_ill != NULL) 22886 ill_refrele(conn_outgoing_ill); 22887 return; 22888 } 22889 /* 22890 * ILLF_MULTICAST is checked in ip_newroute 22891 * i.e. we don't need to check it here since 22892 * all IRE_CACHEs come from ip_newroute. 22893 * For multicast traffic, SO_DONTROUTE is interpreted 22894 * to mean only send the packet out the interface 22895 * (optionally specified with IP_MULTICAST_IF) 22896 * and do not forward it out additional interfaces. 22897 * RSVP and the rsvp daemon is an example of a 22898 * protocol and user level process that 22899 * handles it's own routing. Hence, it uses the 22900 * SO_DONTROUTE option to accomplish this. 22901 */ 22902 22903 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 22904 ill != NULL) { 22905 /* Unconditionally redo the checksum */ 22906 ipha->ipha_hdr_checksum = 0; 22907 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22908 22909 /* 22910 * If this needs to go out secure, we need 22911 * to wait till we finish the IPsec 22912 * processing. 22913 */ 22914 if (ipsec_len == 0 && 22915 ip_mforward(ill, ipha, mp)) { 22916 freemsg(first_mp); 22917 ip1dbg(("ip_wput: mforward failed\n")); 22918 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22919 "ip_wput_ire_end: q %p (%S)", 22920 q, "mforward failed"); 22921 ire_refrele(ire); 22922 if (conn_outgoing_ill != NULL) 22923 ill_refrele(conn_outgoing_ill); 22924 return; 22925 } 22926 } 22927 } 22928 max_frag = ire->ire_max_frag; 22929 cksum += ttl_protocol; 22930 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 22931 /* No fragmentation required for this one. */ 22932 /* 22933 * Don't use frag_flag if packet is pre-built or source 22934 * routed or if multicast (since multicast packets do 22935 * not solicit ICMP "packet too big" messages). 22936 */ 22937 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22938 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22939 !ip_source_route_included(ipha)) && 22940 !CLASSD(ipha->ipha_dst)) 22941 ipha->ipha_fragment_offset_and_flags |= 22942 htons(ire->ire_frag_flag); 22943 22944 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22945 /* Complete the IP header checksum. */ 22946 cksum += ipha->ipha_ident; 22947 cksum += (v_hlen_tos_len >> 16)+ 22948 (v_hlen_tos_len & 0xFFFF); 22949 cksum += ipha->ipha_fragment_offset_and_flags; 22950 hlen = (V_HLEN & 0xF) - 22951 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22952 if (hlen) { 22953 checksumoptions: 22954 /* 22955 * Account for the IP Options in the IP 22956 * header checksum. 22957 */ 22958 up = (uint16_t *)(rptr+ 22959 IP_SIMPLE_HDR_LENGTH); 22960 do { 22961 cksum += up[0]; 22962 cksum += up[1]; 22963 up += 2; 22964 } while (--hlen); 22965 } 22966 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22967 cksum = ~(cksum + (cksum >> 16)); 22968 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22969 } 22970 if (ipsec_len != 0) { 22971 ipsec_out_process(q, first_mp, ire, ill_index); 22972 if (!next_mp) { 22973 ire_refrele(ire); 22974 if (conn_outgoing_ill != NULL) 22975 ill_refrele(conn_outgoing_ill); 22976 return; 22977 } 22978 goto next; 22979 } 22980 22981 /* 22982 * multirt_send has already been handled 22983 * for broadcast, but not yet for multicast 22984 * or IP options. 22985 */ 22986 if (next_mp == NULL) { 22987 if (ire->ire_flags & RTF_MULTIRT) { 22988 multirt_send = B_TRUE; 22989 } 22990 } 22991 22992 /* 22993 * In most cases, the emission loop below is 22994 * entered only once. Only in the case where 22995 * the ire holds the RTF_MULTIRT flag, do we loop 22996 * to process all RTF_MULTIRT ires in the bucket, 22997 * and send the packet through all crossed 22998 * RTF_MULTIRT routes. 22999 */ 23000 do { 23001 if (multirt_send) { 23002 irb_t *irb; 23003 23004 irb = ire->ire_bucket; 23005 ASSERT(irb != NULL); 23006 /* 23007 * We are in a multiple send case, 23008 * need to get the next IRE and make 23009 * a duplicate of the packet. 23010 */ 23011 IRB_REFHOLD(irb); 23012 for (ire1 = ire->ire_next; 23013 ire1 != NULL; 23014 ire1 = ire1->ire_next) { 23015 if (!(ire1->ire_flags & 23016 RTF_MULTIRT)) 23017 continue; 23018 23019 if (ire1->ire_addr != 23020 ire->ire_addr) 23021 continue; 23022 23023 if (ire1->ire_marks & 23024 (IRE_MARK_CONDEMNED | 23025 IRE_MARK_TESTHIDDEN)) 23026 continue; 23027 23028 /* Got one */ 23029 IRE_REFHOLD(ire1); 23030 break; 23031 } 23032 IRB_REFRELE(irb); 23033 23034 if (ire1 != NULL) { 23035 next_mp = copyb(mp); 23036 if ((next_mp == NULL) || 23037 ((mp->b_cont != NULL) && 23038 ((next_mp->b_cont = 23039 dupmsg(mp->b_cont)) 23040 == NULL))) { 23041 freemsg(next_mp); 23042 next_mp = NULL; 23043 ire_refrele(ire1); 23044 ire1 = NULL; 23045 } 23046 } 23047 23048 /* 23049 * Last multiroute ire; don't loop 23050 * anymore. The emission is over 23051 * and next_mp is NULL. 23052 */ 23053 if (ire1 == NULL) { 23054 multirt_send = B_FALSE; 23055 } 23056 } 23057 23058 out_ill = ire_to_ill(ire); 23059 DTRACE_PROBE4(ip4__physical__out__start, 23060 ill_t *, NULL, 23061 ill_t *, out_ill, 23062 ipha_t *, ipha, mblk_t *, mp); 23063 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23064 ipst->ips_ipv4firewall_physical_out, 23065 NULL, out_ill, ipha, mp, mp, 0, ipst); 23066 DTRACE_PROBE1(ip4__physical__out__end, 23067 mblk_t *, mp); 23068 if (mp == NULL) 23069 goto release_ire_and_ill_2; 23070 23071 ASSERT(ipsec_len == 0); 23072 mp->b_prev = 23073 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23074 DTRACE_PROBE2(ip__xmit__2, 23075 mblk_t *, mp, ire_t *, ire); 23076 pktxmit_state = ip_xmit_v4(mp, ire, 23077 NULL, B_TRUE, connp); 23078 if ((pktxmit_state == SEND_FAILED) || 23079 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23080 release_ire_and_ill_2: 23081 if (next_mp) { 23082 freemsg(next_mp); 23083 ire_refrele(ire1); 23084 } 23085 ire_refrele(ire); 23086 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23087 "ip_wput_ire_end: q %p (%S)", 23088 q, "discard MDATA"); 23089 if (conn_outgoing_ill != NULL) 23090 ill_refrele(conn_outgoing_ill); 23091 return; 23092 } 23093 23094 if (CLASSD(dst)) { 23095 BUMP_MIB(out_ill->ill_ip_mib, 23096 ipIfStatsHCOutMcastPkts); 23097 UPDATE_MIB(out_ill->ill_ip_mib, 23098 ipIfStatsHCOutMcastOctets, 23099 LENGTH); 23100 } else if (ire->ire_type == IRE_BROADCAST) { 23101 BUMP_MIB(out_ill->ill_ip_mib, 23102 ipIfStatsHCOutBcastPkts); 23103 } 23104 23105 if (multirt_send) { 23106 /* 23107 * We are in a multiple send case, 23108 * need to re-enter the sending loop 23109 * using the next ire. 23110 */ 23111 ire_refrele(ire); 23112 ire = ire1; 23113 stq = ire->ire_stq; 23114 mp = next_mp; 23115 next_mp = NULL; 23116 ipha = (ipha_t *)mp->b_rptr; 23117 ill_index = Q_TO_INDEX(stq); 23118 } 23119 } while (multirt_send); 23120 23121 if (!next_mp) { 23122 /* 23123 * Last copy going out (the ultra-common 23124 * case). Note that we intentionally replicate 23125 * the putnext rather than calling it before 23126 * the next_mp check in hopes of a little 23127 * tail-call action out of the compiler. 23128 */ 23129 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23130 "ip_wput_ire_end: q %p (%S)", 23131 q, "last copy out(1)"); 23132 ire_refrele(ire); 23133 if (conn_outgoing_ill != NULL) 23134 ill_refrele(conn_outgoing_ill); 23135 return; 23136 } 23137 /* More copies going out below. */ 23138 } else { 23139 int offset; 23140 fragmentit: 23141 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23142 /* 23143 * If this would generate a icmp_frag_needed message, 23144 * we need to handle it before we do the IPsec 23145 * processing. Otherwise, we need to strip the IPsec 23146 * headers before we send up the message to the ULPs 23147 * which becomes messy and difficult. 23148 */ 23149 if (ipsec_len != 0) { 23150 if ((max_frag < (unsigned int)(LENGTH + 23151 ipsec_len)) && (offset & IPH_DF)) { 23152 out_ill = (ill_t *)stq->q_ptr; 23153 BUMP_MIB(out_ill->ill_ip_mib, 23154 ipIfStatsOutFragFails); 23155 BUMP_MIB(out_ill->ill_ip_mib, 23156 ipIfStatsOutFragReqds); 23157 ipha->ipha_hdr_checksum = 0; 23158 ipha->ipha_hdr_checksum = 23159 (uint16_t)ip_csum_hdr(ipha); 23160 icmp_frag_needed(ire->ire_stq, first_mp, 23161 max_frag, zoneid, ipst); 23162 if (!next_mp) { 23163 ire_refrele(ire); 23164 if (conn_outgoing_ill != NULL) { 23165 ill_refrele( 23166 conn_outgoing_ill); 23167 } 23168 return; 23169 } 23170 } else { 23171 /* 23172 * This won't cause a icmp_frag_needed 23173 * message. to be generated. Send it on 23174 * the wire. Note that this could still 23175 * cause fragmentation and all we 23176 * do is the generation of the message 23177 * to the ULP if needed before IPsec. 23178 */ 23179 if (!next_mp) { 23180 ipsec_out_process(q, first_mp, 23181 ire, ill_index); 23182 TRACE_2(TR_FAC_IP, 23183 TR_IP_WPUT_IRE_END, 23184 "ip_wput_ire_end: q %p " 23185 "(%S)", q, 23186 "last ipsec_out_process"); 23187 ire_refrele(ire); 23188 if (conn_outgoing_ill != NULL) { 23189 ill_refrele( 23190 conn_outgoing_ill); 23191 } 23192 return; 23193 } 23194 ipsec_out_process(q, first_mp, 23195 ire, ill_index); 23196 } 23197 } else { 23198 /* 23199 * Initiate IPPF processing. For 23200 * fragmentable packets we finish 23201 * all QOS packet processing before 23202 * calling: 23203 * ip_wput_ire_fragmentit->ip_wput_frag 23204 */ 23205 23206 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23207 ip_process(IPP_LOCAL_OUT, &mp, 23208 ill_index); 23209 if (mp == NULL) { 23210 out_ill = (ill_t *)stq->q_ptr; 23211 BUMP_MIB(out_ill->ill_ip_mib, 23212 ipIfStatsOutDiscards); 23213 if (next_mp != NULL) { 23214 freemsg(next_mp); 23215 ire_refrele(ire1); 23216 } 23217 ire_refrele(ire); 23218 TRACE_2(TR_FAC_IP, 23219 TR_IP_WPUT_IRE_END, 23220 "ip_wput_ire: q %p (%S)", 23221 q, "discard MDATA"); 23222 if (conn_outgoing_ill != NULL) { 23223 ill_refrele( 23224 conn_outgoing_ill); 23225 } 23226 return; 23227 } 23228 } 23229 if (!next_mp) { 23230 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23231 "ip_wput_ire_end: q %p (%S)", 23232 q, "last fragmentation"); 23233 ip_wput_ire_fragmentit(mp, ire, 23234 zoneid, ipst, connp); 23235 ire_refrele(ire); 23236 if (conn_outgoing_ill != NULL) 23237 ill_refrele(conn_outgoing_ill); 23238 return; 23239 } 23240 ip_wput_ire_fragmentit(mp, ire, 23241 zoneid, ipst, connp); 23242 } 23243 } 23244 } else { 23245 nullstq: 23246 /* A NULL stq means the destination address is local. */ 23247 UPDATE_OB_PKT_COUNT(ire); 23248 ire->ire_last_used_time = lbolt; 23249 ASSERT(ire->ire_ipif != NULL); 23250 if (!next_mp) { 23251 /* 23252 * Is there an "in" and "out" for traffic local 23253 * to a host (loopback)? The code in Solaris doesn't 23254 * explicitly draw a line in its code for in vs out, 23255 * so we've had to draw a line in the sand: ip_wput_ire 23256 * is considered to be the "output" side and 23257 * ip_wput_local to be the "input" side. 23258 */ 23259 out_ill = ire_to_ill(ire); 23260 23261 /* 23262 * DTrace this as ip:::send. A blocked packet will 23263 * fire the send probe, but not the receive probe. 23264 */ 23265 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23266 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23267 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23268 23269 DTRACE_PROBE4(ip4__loopback__out__start, 23270 ill_t *, NULL, ill_t *, out_ill, 23271 ipha_t *, ipha, mblk_t *, first_mp); 23272 23273 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23274 ipst->ips_ipv4firewall_loopback_out, 23275 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23276 23277 DTRACE_PROBE1(ip4__loopback__out_end, 23278 mblk_t *, first_mp); 23279 23280 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23281 "ip_wput_ire_end: q %p (%S)", 23282 q, "local address"); 23283 23284 if (first_mp != NULL) 23285 ip_wput_local(q, out_ill, ipha, 23286 first_mp, ire, 0, ire->ire_zoneid); 23287 ire_refrele(ire); 23288 if (conn_outgoing_ill != NULL) 23289 ill_refrele(conn_outgoing_ill); 23290 return; 23291 } 23292 23293 out_ill = ire_to_ill(ire); 23294 23295 /* 23296 * DTrace this as ip:::send. A blocked packet will fire the 23297 * send probe, but not the receive probe. 23298 */ 23299 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23300 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23301 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23302 23303 DTRACE_PROBE4(ip4__loopback__out__start, 23304 ill_t *, NULL, ill_t *, out_ill, 23305 ipha_t *, ipha, mblk_t *, first_mp); 23306 23307 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23308 ipst->ips_ipv4firewall_loopback_out, 23309 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23310 23311 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23312 23313 if (first_mp != NULL) 23314 ip_wput_local(q, out_ill, ipha, 23315 first_mp, ire, 0, ire->ire_zoneid); 23316 } 23317 next: 23318 /* 23319 * More copies going out to additional interfaces. 23320 * ire1 has already been held. We don't need the 23321 * "ire" anymore. 23322 */ 23323 ire_refrele(ire); 23324 ire = ire1; 23325 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23326 mp = next_mp; 23327 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23328 ill = ire_to_ill(ire); 23329 first_mp = mp; 23330 if (ipsec_len != 0) { 23331 ASSERT(first_mp->b_datap->db_type == M_CTL); 23332 mp = mp->b_cont; 23333 } 23334 dst = ire->ire_addr; 23335 ipha = (ipha_t *)mp->b_rptr; 23336 /* 23337 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23338 * Restore ipha_ident "no checksum" flag. 23339 */ 23340 src = orig_src; 23341 ipha->ipha_ident = ip_hdr_included; 23342 goto another; 23343 23344 #undef rptr 23345 #undef Q_TO_INDEX 23346 } 23347 23348 /* 23349 * Routine to allocate a message that is used to notify the ULP about MDT. 23350 * The caller may provide a pointer to the link-layer MDT capabilities, 23351 * or NULL if MDT is to be disabled on the stream. 23352 */ 23353 mblk_t * 23354 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23355 { 23356 mblk_t *mp; 23357 ip_mdt_info_t *mdti; 23358 ill_mdt_capab_t *idst; 23359 23360 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23361 DB_TYPE(mp) = M_CTL; 23362 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23363 mdti = (ip_mdt_info_t *)mp->b_rptr; 23364 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23365 idst = &(mdti->mdt_capab); 23366 23367 /* 23368 * If the caller provides us with the capability, copy 23369 * it over into our notification message; otherwise 23370 * we zero out the capability portion. 23371 */ 23372 if (isrc != NULL) 23373 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23374 else 23375 bzero((caddr_t)idst, sizeof (*idst)); 23376 } 23377 return (mp); 23378 } 23379 23380 /* 23381 * Routine which determines whether MDT can be enabled on the destination 23382 * IRE and IPC combination, and if so, allocates and returns the MDT 23383 * notification mblk that may be used by ULP. We also check if we need to 23384 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23385 * MDT usage in the past have been lifted. This gets called during IP 23386 * and ULP binding. 23387 */ 23388 mblk_t * 23389 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23390 ill_mdt_capab_t *mdt_cap) 23391 { 23392 mblk_t *mp; 23393 boolean_t rc = B_FALSE; 23394 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23395 23396 ASSERT(dst_ire != NULL); 23397 ASSERT(connp != NULL); 23398 ASSERT(mdt_cap != NULL); 23399 23400 /* 23401 * Currently, we only support simple TCP/{IPv4,IPv6} with 23402 * Multidata, which is handled in tcp_multisend(). This 23403 * is the reason why we do all these checks here, to ensure 23404 * that we don't enable Multidata for the cases which we 23405 * can't handle at the moment. 23406 */ 23407 do { 23408 /* Only do TCP at the moment */ 23409 if (connp->conn_ulp != IPPROTO_TCP) 23410 break; 23411 23412 /* 23413 * IPsec outbound policy present? Note that we get here 23414 * after calling ipsec_conn_cache_policy() where the global 23415 * policy checking is performed. conn_latch will be 23416 * non-NULL as long as there's a policy defined, 23417 * i.e. conn_out_enforce_policy may be NULL in such case 23418 * when the connection is non-secure, and hence we check 23419 * further if the latch refers to an outbound policy. 23420 */ 23421 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23422 break; 23423 23424 /* CGTP (multiroute) is enabled? */ 23425 if (dst_ire->ire_flags & RTF_MULTIRT) 23426 break; 23427 23428 /* Outbound IPQoS enabled? */ 23429 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23430 /* 23431 * In this case, we disable MDT for this and all 23432 * future connections going over the interface. 23433 */ 23434 mdt_cap->ill_mdt_on = 0; 23435 break; 23436 } 23437 23438 /* socket option(s) present? */ 23439 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23440 break; 23441 23442 rc = B_TRUE; 23443 /* CONSTCOND */ 23444 } while (0); 23445 23446 /* Remember the result */ 23447 connp->conn_mdt_ok = rc; 23448 23449 if (!rc) 23450 return (NULL); 23451 else if (!mdt_cap->ill_mdt_on) { 23452 /* 23453 * If MDT has been previously turned off in the past, and we 23454 * currently can do MDT (due to IPQoS policy removal, etc.) 23455 * then enable it for this interface. 23456 */ 23457 mdt_cap->ill_mdt_on = 1; 23458 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23459 "interface %s\n", ill_name)); 23460 } 23461 23462 /* Allocate the MDT info mblk */ 23463 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23464 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23465 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23466 return (NULL); 23467 } 23468 return (mp); 23469 } 23470 23471 /* 23472 * Routine to allocate a message that is used to notify the ULP about LSO. 23473 * The caller may provide a pointer to the link-layer LSO capabilities, 23474 * or NULL if LSO is to be disabled on the stream. 23475 */ 23476 mblk_t * 23477 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23478 { 23479 mblk_t *mp; 23480 ip_lso_info_t *lsoi; 23481 ill_lso_capab_t *idst; 23482 23483 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23484 DB_TYPE(mp) = M_CTL; 23485 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23486 lsoi = (ip_lso_info_t *)mp->b_rptr; 23487 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23488 idst = &(lsoi->lso_capab); 23489 23490 /* 23491 * If the caller provides us with the capability, copy 23492 * it over into our notification message; otherwise 23493 * we zero out the capability portion. 23494 */ 23495 if (isrc != NULL) 23496 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23497 else 23498 bzero((caddr_t)idst, sizeof (*idst)); 23499 } 23500 return (mp); 23501 } 23502 23503 /* 23504 * Routine which determines whether LSO can be enabled on the destination 23505 * IRE and IPC combination, and if so, allocates and returns the LSO 23506 * notification mblk that may be used by ULP. We also check if we need to 23507 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23508 * LSO usage in the past have been lifted. This gets called during IP 23509 * and ULP binding. 23510 */ 23511 mblk_t * 23512 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23513 ill_lso_capab_t *lso_cap) 23514 { 23515 mblk_t *mp; 23516 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23517 23518 ASSERT(dst_ire != NULL); 23519 ASSERT(connp != NULL); 23520 ASSERT(lso_cap != NULL); 23521 23522 connp->conn_lso_ok = B_TRUE; 23523 23524 if ((connp->conn_ulp != IPPROTO_TCP) || 23525 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23526 (dst_ire->ire_flags & RTF_MULTIRT) || 23527 !CONN_IS_LSO_MD_FASTPATH(connp) || 23528 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23529 connp->conn_lso_ok = B_FALSE; 23530 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23531 /* 23532 * Disable LSO for this and all future connections going 23533 * over the interface. 23534 */ 23535 lso_cap->ill_lso_on = 0; 23536 } 23537 } 23538 23539 if (!connp->conn_lso_ok) 23540 return (NULL); 23541 else if (!lso_cap->ill_lso_on) { 23542 /* 23543 * If LSO has been previously turned off in the past, and we 23544 * currently can do LSO (due to IPQoS policy removal, etc.) 23545 * then enable it for this interface. 23546 */ 23547 lso_cap->ill_lso_on = 1; 23548 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23549 ill_name)); 23550 } 23551 23552 /* Allocate the LSO info mblk */ 23553 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23554 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23555 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23556 23557 return (mp); 23558 } 23559 23560 /* 23561 * Create destination address attribute, and fill it with the physical 23562 * destination address and SAP taken from the template DL_UNITDATA_REQ 23563 * message block. 23564 */ 23565 boolean_t 23566 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23567 { 23568 dl_unitdata_req_t *dlurp; 23569 pattr_t *pa; 23570 pattrinfo_t pa_info; 23571 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23572 uint_t das_len, das_off; 23573 23574 ASSERT(dlmp != NULL); 23575 23576 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23577 das_len = dlurp->dl_dest_addr_length; 23578 das_off = dlurp->dl_dest_addr_offset; 23579 23580 pa_info.type = PATTR_DSTADDRSAP; 23581 pa_info.len = sizeof (**das) + das_len - 1; 23582 23583 /* create and associate the attribute */ 23584 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23585 if (pa != NULL) { 23586 ASSERT(*das != NULL); 23587 (*das)->addr_is_group = 0; 23588 (*das)->addr_len = (uint8_t)das_len; 23589 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23590 } 23591 23592 return (pa != NULL); 23593 } 23594 23595 /* 23596 * Create hardware checksum attribute and fill it with the values passed. 23597 */ 23598 boolean_t 23599 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23600 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23601 { 23602 pattr_t *pa; 23603 pattrinfo_t pa_info; 23604 23605 ASSERT(mmd != NULL); 23606 23607 pa_info.type = PATTR_HCKSUM; 23608 pa_info.len = sizeof (pattr_hcksum_t); 23609 23610 /* create and associate the attribute */ 23611 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23612 if (pa != NULL) { 23613 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23614 23615 hck->hcksum_start_offset = start_offset; 23616 hck->hcksum_stuff_offset = stuff_offset; 23617 hck->hcksum_end_offset = end_offset; 23618 hck->hcksum_flags = flags; 23619 } 23620 return (pa != NULL); 23621 } 23622 23623 /* 23624 * Create zerocopy attribute and fill it with the specified flags 23625 */ 23626 boolean_t 23627 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23628 { 23629 pattr_t *pa; 23630 pattrinfo_t pa_info; 23631 23632 ASSERT(mmd != NULL); 23633 pa_info.type = PATTR_ZCOPY; 23634 pa_info.len = sizeof (pattr_zcopy_t); 23635 23636 /* create and associate the attribute */ 23637 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23638 if (pa != NULL) { 23639 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23640 23641 zcopy->zcopy_flags = flags; 23642 } 23643 return (pa != NULL); 23644 } 23645 23646 /* 23647 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23648 * block chain. We could rewrite to handle arbitrary message block chains but 23649 * that would make the code complicated and slow. Right now there three 23650 * restrictions: 23651 * 23652 * 1. The first message block must contain the complete IP header and 23653 * at least 1 byte of payload data. 23654 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23655 * so that we can use a single Multidata message. 23656 * 3. No frag must be distributed over two or more message blocks so 23657 * that we don't need more than two packet descriptors per frag. 23658 * 23659 * The above restrictions allow us to support userland applications (which 23660 * will send down a single message block) and NFS over UDP (which will 23661 * send down a chain of at most three message blocks). 23662 * 23663 * We also don't use MDT for payloads with less than or equal to 23664 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23665 */ 23666 boolean_t 23667 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23668 { 23669 int blocks; 23670 ssize_t total, missing, size; 23671 23672 ASSERT(mp != NULL); 23673 ASSERT(hdr_len > 0); 23674 23675 size = MBLKL(mp) - hdr_len; 23676 if (size <= 0) 23677 return (B_FALSE); 23678 23679 /* The first mblk contains the header and some payload. */ 23680 blocks = 1; 23681 total = size; 23682 size %= len; 23683 missing = (size == 0) ? 0 : (len - size); 23684 mp = mp->b_cont; 23685 23686 while (mp != NULL) { 23687 /* 23688 * Give up if we encounter a zero length message block. 23689 * In practice, this should rarely happen and therefore 23690 * not worth the trouble of freeing and re-linking the 23691 * mblk from the chain to handle such case. 23692 */ 23693 if ((size = MBLKL(mp)) == 0) 23694 return (B_FALSE); 23695 23696 /* Too many payload buffers for a single Multidata message? */ 23697 if (++blocks > MULTIDATA_MAX_PBUFS) 23698 return (B_FALSE); 23699 23700 total += size; 23701 /* Is a frag distributed over two or more message blocks? */ 23702 if (missing > size) 23703 return (B_FALSE); 23704 size -= missing; 23705 23706 size %= len; 23707 missing = (size == 0) ? 0 : (len - size); 23708 23709 mp = mp->b_cont; 23710 } 23711 23712 return (total > ip_wput_frag_mdt_min); 23713 } 23714 23715 /* 23716 * Outbound IPv4 fragmentation routine using MDT. 23717 */ 23718 static void 23719 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23720 uint32_t frag_flag, int offset) 23721 { 23722 ipha_t *ipha_orig; 23723 int i1, ip_data_end; 23724 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23725 mblk_t *hdr_mp, *md_mp = NULL; 23726 unsigned char *hdr_ptr, *pld_ptr; 23727 multidata_t *mmd; 23728 ip_pdescinfo_t pdi; 23729 ill_t *ill; 23730 ip_stack_t *ipst = ire->ire_ipst; 23731 23732 ASSERT(DB_TYPE(mp) == M_DATA); 23733 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23734 23735 ill = ire_to_ill(ire); 23736 ASSERT(ill != NULL); 23737 23738 ipha_orig = (ipha_t *)mp->b_rptr; 23739 mp->b_rptr += sizeof (ipha_t); 23740 23741 /* Calculate how many packets we will send out */ 23742 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23743 pkts = (i1 + len - 1) / len; 23744 ASSERT(pkts > 1); 23745 23746 /* Allocate a message block which will hold all the IP Headers. */ 23747 wroff = ipst->ips_ip_wroff_extra; 23748 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23749 23750 i1 = pkts * hdr_chunk_len; 23751 /* 23752 * Create the header buffer, Multidata and destination address 23753 * and SAP attribute that should be associated with it. 23754 */ 23755 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23756 ((hdr_mp->b_wptr += i1), 23757 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23758 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23759 freemsg(mp); 23760 if (md_mp == NULL) { 23761 freemsg(hdr_mp); 23762 } else { 23763 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23764 freemsg(md_mp); 23765 } 23766 IP_STAT(ipst, ip_frag_mdt_allocfail); 23767 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23768 return; 23769 } 23770 IP_STAT(ipst, ip_frag_mdt_allocd); 23771 23772 /* 23773 * Add a payload buffer to the Multidata; this operation must not 23774 * fail, or otherwise our logic in this routine is broken. There 23775 * is no memory allocation done by the routine, so any returned 23776 * failure simply tells us that we've done something wrong. 23777 * 23778 * A failure tells us that either we're adding the same payload 23779 * buffer more than once, or we're trying to add more buffers than 23780 * allowed. None of the above cases should happen, and we panic 23781 * because either there's horrible heap corruption, and/or 23782 * programming mistake. 23783 */ 23784 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23785 goto pbuf_panic; 23786 23787 hdr_ptr = hdr_mp->b_rptr; 23788 pld_ptr = mp->b_rptr; 23789 23790 /* Establish the ending byte offset, based on the starting offset. */ 23791 offset <<= 3; 23792 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23793 IP_SIMPLE_HDR_LENGTH; 23794 23795 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23796 23797 while (pld_ptr < mp->b_wptr) { 23798 ipha_t *ipha; 23799 uint16_t offset_and_flags; 23800 uint16_t ip_len; 23801 int error; 23802 23803 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23804 ipha = (ipha_t *)(hdr_ptr + wroff); 23805 ASSERT(OK_32PTR(ipha)); 23806 *ipha = *ipha_orig; 23807 23808 if (ip_data_end - offset > len) { 23809 offset_and_flags = IPH_MF; 23810 } else { 23811 /* 23812 * Last frag. Set len to the length of this last piece. 23813 */ 23814 len = ip_data_end - offset; 23815 /* A frag of a frag might have IPH_MF non-zero */ 23816 offset_and_flags = 23817 ntohs(ipha->ipha_fragment_offset_and_flags) & 23818 IPH_MF; 23819 } 23820 offset_and_flags |= (uint16_t)(offset >> 3); 23821 offset_and_flags |= (uint16_t)frag_flag; 23822 /* Store the offset and flags in the IP header. */ 23823 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23824 23825 /* Store the length in the IP header. */ 23826 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23827 ipha->ipha_length = htons(ip_len); 23828 23829 /* 23830 * Set the IP header checksum. Note that mp is just 23831 * the header, so this is easy to pass to ip_csum. 23832 */ 23833 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23834 23835 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 23836 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 23837 NULL, int, 0); 23838 23839 /* 23840 * Record offset and size of header and data of the next packet 23841 * in the multidata message. 23842 */ 23843 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23844 PDESC_PLD_INIT(&pdi); 23845 i1 = MIN(mp->b_wptr - pld_ptr, len); 23846 ASSERT(i1 > 0); 23847 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23848 if (i1 == len) { 23849 pld_ptr += len; 23850 } else { 23851 i1 = len - i1; 23852 mp = mp->b_cont; 23853 ASSERT(mp != NULL); 23854 ASSERT(MBLKL(mp) >= i1); 23855 /* 23856 * Attach the next payload message block to the 23857 * multidata message. 23858 */ 23859 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23860 goto pbuf_panic; 23861 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23862 pld_ptr = mp->b_rptr + i1; 23863 } 23864 23865 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23866 KM_NOSLEEP)) == NULL) { 23867 /* 23868 * Any failure other than ENOMEM indicates that we 23869 * have passed in invalid pdesc info or parameters 23870 * to mmd_addpdesc, which must not happen. 23871 * 23872 * EINVAL is a result of failure on boundary checks 23873 * against the pdesc info contents. It should not 23874 * happen, and we panic because either there's 23875 * horrible heap corruption, and/or programming 23876 * mistake. 23877 */ 23878 if (error != ENOMEM) { 23879 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23880 "pdesc logic error detected for " 23881 "mmd %p pinfo %p (%d)\n", 23882 (void *)mmd, (void *)&pdi, error); 23883 /* NOTREACHED */ 23884 } 23885 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 23886 /* Free unattached payload message blocks as well */ 23887 md_mp->b_cont = mp->b_cont; 23888 goto free_mmd; 23889 } 23890 23891 /* Advance fragment offset. */ 23892 offset += len; 23893 23894 /* Advance to location for next header in the buffer. */ 23895 hdr_ptr += hdr_chunk_len; 23896 23897 /* Did we reach the next payload message block? */ 23898 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23899 mp = mp->b_cont; 23900 /* 23901 * Attach the next message block with payload 23902 * data to the multidata message. 23903 */ 23904 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23905 goto pbuf_panic; 23906 pld_ptr = mp->b_rptr; 23907 } 23908 } 23909 23910 ASSERT(hdr_mp->b_wptr == hdr_ptr); 23911 ASSERT(mp->b_wptr == pld_ptr); 23912 23913 /* Update IP statistics */ 23914 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 23915 23916 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 23917 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 23918 23919 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 23920 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 23921 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 23922 23923 if (pkt_type == OB_PKT) { 23924 ire->ire_ob_pkt_count += pkts; 23925 if (ire->ire_ipif != NULL) 23926 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 23927 } else { 23928 /* The type is IB_PKT in the forwarding path. */ 23929 ire->ire_ib_pkt_count += pkts; 23930 ASSERT(!IRE_IS_LOCAL(ire)); 23931 if (ire->ire_type & IRE_BROADCAST) { 23932 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 23933 } else { 23934 UPDATE_MIB(ill->ill_ip_mib, 23935 ipIfStatsHCOutForwDatagrams, pkts); 23936 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 23937 } 23938 } 23939 ire->ire_last_used_time = lbolt; 23940 /* Send it down */ 23941 putnext(ire->ire_stq, md_mp); 23942 return; 23943 23944 pbuf_panic: 23945 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 23946 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 23947 pbuf_idx); 23948 /* NOTREACHED */ 23949 } 23950 23951 /* 23952 * Outbound IP fragmentation routine. 23953 * 23954 * NOTE : This routine does not ire_refrele the ire that is passed in 23955 * as the argument. 23956 */ 23957 static void 23958 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 23959 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst, conn_t *connp) 23960 { 23961 int i1; 23962 mblk_t *ll_hdr_mp; 23963 int ll_hdr_len; 23964 int hdr_len; 23965 mblk_t *hdr_mp; 23966 ipha_t *ipha; 23967 int ip_data_end; 23968 int len; 23969 mblk_t *mp = mp_orig, *mp1; 23970 int offset; 23971 queue_t *q; 23972 uint32_t v_hlen_tos_len; 23973 mblk_t *first_mp; 23974 boolean_t mctl_present; 23975 ill_t *ill; 23976 ill_t *out_ill; 23977 mblk_t *xmit_mp; 23978 mblk_t *carve_mp; 23979 ire_t *ire1 = NULL; 23980 ire_t *save_ire = NULL; 23981 mblk_t *next_mp = NULL; 23982 boolean_t last_frag = B_FALSE; 23983 boolean_t multirt_send = B_FALSE; 23984 ire_t *first_ire = NULL; 23985 irb_t *irb = NULL; 23986 mib2_ipIfStatsEntry_t *mibptr = NULL; 23987 23988 ill = ire_to_ill(ire); 23989 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 23990 23991 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 23992 23993 if (max_frag == 0) { 23994 ip1dbg(("ip_wput_frag: ire frag size is 0" 23995 " - dropping packet\n")); 23996 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 23997 freemsg(mp); 23998 return; 23999 } 24000 24001 /* 24002 * IPsec does not allow hw accelerated packets to be fragmented 24003 * This check is made in ip_wput_ipsec_out prior to coming here 24004 * via ip_wput_ire_fragmentit. 24005 * 24006 * If at this point we have an ire whose ARP request has not 24007 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24008 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24009 * This packet and all fragmentable packets for this ire will 24010 * continue to get dropped while ire_nce->nce_state remains in 24011 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24012 * ND_REACHABLE, all subsquent large packets for this ire will 24013 * get fragemented and sent out by this function. 24014 */ 24015 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24016 /* If nce_state is ND_INITIAL, trigger ARP query */ 24017 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 24018 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24019 " - dropping packet\n")); 24020 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24021 freemsg(mp); 24022 return; 24023 } 24024 24025 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24026 "ip_wput_frag_start:"); 24027 24028 if (mp->b_datap->db_type == M_CTL) { 24029 first_mp = mp; 24030 mp_orig = mp = mp->b_cont; 24031 mctl_present = B_TRUE; 24032 } else { 24033 first_mp = mp; 24034 mctl_present = B_FALSE; 24035 } 24036 24037 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24038 ipha = (ipha_t *)mp->b_rptr; 24039 24040 /* 24041 * If the Don't Fragment flag is on, generate an ICMP destination 24042 * unreachable, fragmentation needed. 24043 */ 24044 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24045 if (offset & IPH_DF) { 24046 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24047 if (is_system_labeled()) { 24048 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24049 ire->ire_max_frag - max_frag, AF_INET); 24050 } 24051 /* 24052 * Need to compute hdr checksum if called from ip_wput_ire. 24053 * Note that ip_rput_forward verifies the checksum before 24054 * calling this routine so in that case this is a noop. 24055 */ 24056 ipha->ipha_hdr_checksum = 0; 24057 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24058 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24059 ipst); 24060 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24061 "ip_wput_frag_end:(%S)", 24062 "don't fragment"); 24063 return; 24064 } 24065 /* 24066 * Labeled systems adjust max_frag if they add a label 24067 * to send the correct path mtu. We need the real mtu since we 24068 * are fragmenting the packet after label adjustment. 24069 */ 24070 if (is_system_labeled()) 24071 max_frag = ire->ire_max_frag; 24072 if (mctl_present) 24073 freeb(first_mp); 24074 /* 24075 * Establish the starting offset. May not be zero if we are fragging 24076 * a fragment that is being forwarded. 24077 */ 24078 offset = offset & IPH_OFFSET; 24079 24080 /* TODO why is this test needed? */ 24081 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24082 if (((max_frag - LENGTH) & ~7) < 8) { 24083 /* TODO: notify ulp somehow */ 24084 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24085 freemsg(mp); 24086 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24087 "ip_wput_frag_end:(%S)", 24088 "len < 8"); 24089 return; 24090 } 24091 24092 hdr_len = (V_HLEN & 0xF) << 2; 24093 24094 ipha->ipha_hdr_checksum = 0; 24095 24096 /* 24097 * Establish the number of bytes maximum per frag, after putting 24098 * in the header. 24099 */ 24100 len = (max_frag - hdr_len) & ~7; 24101 24102 /* Check if we can use MDT to send out the frags. */ 24103 ASSERT(!IRE_IS_LOCAL(ire)); 24104 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24105 ipst->ips_ip_multidata_outbound && 24106 !(ire->ire_flags & RTF_MULTIRT) && 24107 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24108 ill != NULL && ILL_MDT_CAPABLE(ill) && 24109 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24110 ASSERT(ill->ill_mdt_capab != NULL); 24111 if (!ill->ill_mdt_capab->ill_mdt_on) { 24112 /* 24113 * If MDT has been previously turned off in the past, 24114 * and we currently can do MDT (due to IPQoS policy 24115 * removal, etc.) then enable it for this interface. 24116 */ 24117 ill->ill_mdt_capab->ill_mdt_on = 1; 24118 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24119 ill->ill_name)); 24120 } 24121 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24122 offset); 24123 return; 24124 } 24125 24126 /* Get a copy of the header for the trailing frags */ 24127 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 24128 mp); 24129 if (!hdr_mp) { 24130 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24131 freemsg(mp); 24132 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24133 "ip_wput_frag_end:(%S)", 24134 "couldn't copy hdr"); 24135 return; 24136 } 24137 24138 /* Store the starting offset, with the MoreFrags flag. */ 24139 i1 = offset | IPH_MF | frag_flag; 24140 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24141 24142 /* Establish the ending byte offset, based on the starting offset. */ 24143 offset <<= 3; 24144 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24145 24146 /* Store the length of the first fragment in the IP header. */ 24147 i1 = len + hdr_len; 24148 ASSERT(i1 <= IP_MAXPACKET); 24149 ipha->ipha_length = htons((uint16_t)i1); 24150 24151 /* 24152 * Compute the IP header checksum for the first frag. We have to 24153 * watch out that we stop at the end of the header. 24154 */ 24155 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24156 24157 /* 24158 * Now carve off the first frag. Note that this will include the 24159 * original IP header. 24160 */ 24161 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24162 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24163 freeb(hdr_mp); 24164 freemsg(mp_orig); 24165 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24166 "ip_wput_frag_end:(%S)", 24167 "couldn't carve first"); 24168 return; 24169 } 24170 24171 /* 24172 * Multirouting case. Each fragment is replicated 24173 * via all non-condemned RTF_MULTIRT routes 24174 * currently resolved. 24175 * We ensure that first_ire is the first RTF_MULTIRT 24176 * ire in the bucket. 24177 */ 24178 if (ire->ire_flags & RTF_MULTIRT) { 24179 irb = ire->ire_bucket; 24180 ASSERT(irb != NULL); 24181 24182 multirt_send = B_TRUE; 24183 24184 /* Make sure we do not omit any multiroute ire. */ 24185 IRB_REFHOLD(irb); 24186 for (first_ire = irb->irb_ire; 24187 first_ire != NULL; 24188 first_ire = first_ire->ire_next) { 24189 if ((first_ire->ire_flags & RTF_MULTIRT) && 24190 (first_ire->ire_addr == ire->ire_addr) && 24191 !(first_ire->ire_marks & 24192 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 24193 break; 24194 } 24195 24196 if (first_ire != NULL) { 24197 if (first_ire != ire) { 24198 IRE_REFHOLD(first_ire); 24199 /* 24200 * Do not release the ire passed in 24201 * as the argument. 24202 */ 24203 ire = first_ire; 24204 } else { 24205 first_ire = NULL; 24206 } 24207 } 24208 IRB_REFRELE(irb); 24209 24210 /* 24211 * Save the first ire; we will need to restore it 24212 * for the trailing frags. 24213 * We REFHOLD save_ire, as each iterated ire will be 24214 * REFRELEd. 24215 */ 24216 save_ire = ire; 24217 IRE_REFHOLD(save_ire); 24218 } 24219 24220 /* 24221 * First fragment emission loop. 24222 * In most cases, the emission loop below is entered only 24223 * once. Only in the case where the ire holds the RTF_MULTIRT 24224 * flag, do we loop to process all RTF_MULTIRT ires in the 24225 * bucket, and send the fragment through all crossed 24226 * RTF_MULTIRT routes. 24227 */ 24228 do { 24229 if (ire->ire_flags & RTF_MULTIRT) { 24230 /* 24231 * We are in a multiple send case, need to get 24232 * the next ire and make a copy of the packet. 24233 * ire1 holds here the next ire to process in the 24234 * bucket. If multirouting is expected, 24235 * any non-RTF_MULTIRT ire that has the 24236 * right destination address is ignored. 24237 * 24238 * We have to take into account the MTU of 24239 * each walked ire. max_frag is set by the 24240 * the caller and generally refers to 24241 * the primary ire entry. Here we ensure that 24242 * no route with a lower MTU will be used, as 24243 * fragments are carved once for all ires, 24244 * then replicated. 24245 */ 24246 ASSERT(irb != NULL); 24247 IRB_REFHOLD(irb); 24248 for (ire1 = ire->ire_next; 24249 ire1 != NULL; 24250 ire1 = ire1->ire_next) { 24251 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24252 continue; 24253 if (ire1->ire_addr != ire->ire_addr) 24254 continue; 24255 if (ire1->ire_marks & 24256 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 24257 continue; 24258 /* 24259 * Ensure we do not exceed the MTU 24260 * of the next route. 24261 */ 24262 if (ire1->ire_max_frag < max_frag) { 24263 ip_multirt_bad_mtu(ire1, max_frag); 24264 continue; 24265 } 24266 24267 /* Got one. */ 24268 IRE_REFHOLD(ire1); 24269 break; 24270 } 24271 IRB_REFRELE(irb); 24272 24273 if (ire1 != NULL) { 24274 next_mp = copyb(mp); 24275 if ((next_mp == NULL) || 24276 ((mp->b_cont != NULL) && 24277 ((next_mp->b_cont = 24278 dupmsg(mp->b_cont)) == NULL))) { 24279 freemsg(next_mp); 24280 next_mp = NULL; 24281 ire_refrele(ire1); 24282 ire1 = NULL; 24283 } 24284 } 24285 24286 /* Last multiroute ire; don't loop anymore. */ 24287 if (ire1 == NULL) { 24288 multirt_send = B_FALSE; 24289 } 24290 } 24291 24292 ll_hdr_len = 0; 24293 LOCK_IRE_FP_MP(ire); 24294 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24295 if (ll_hdr_mp != NULL) { 24296 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24297 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24298 } else { 24299 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24300 } 24301 24302 /* If there is a transmit header, get a copy for this frag. */ 24303 /* 24304 * TODO: should check db_ref before calling ip_carve_mp since 24305 * it might give us a dup. 24306 */ 24307 if (!ll_hdr_mp) { 24308 /* No xmit header. */ 24309 xmit_mp = mp; 24310 24311 /* We have a link-layer header that can fit in our mblk. */ 24312 } else if (mp->b_datap->db_ref == 1 && 24313 ll_hdr_len != 0 && 24314 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24315 /* M_DATA fastpath */ 24316 mp->b_rptr -= ll_hdr_len; 24317 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24318 xmit_mp = mp; 24319 24320 /* Corner case if copyb has failed */ 24321 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24322 UNLOCK_IRE_FP_MP(ire); 24323 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24324 freeb(hdr_mp); 24325 freemsg(mp); 24326 freemsg(mp_orig); 24327 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24328 "ip_wput_frag_end:(%S)", 24329 "discard"); 24330 24331 if (multirt_send) { 24332 ASSERT(ire1); 24333 ASSERT(next_mp); 24334 24335 freemsg(next_mp); 24336 ire_refrele(ire1); 24337 } 24338 if (save_ire != NULL) 24339 IRE_REFRELE(save_ire); 24340 24341 if (first_ire != NULL) 24342 ire_refrele(first_ire); 24343 return; 24344 24345 /* 24346 * Case of res_mp OR the fastpath mp can't fit 24347 * in the mblk 24348 */ 24349 } else { 24350 xmit_mp->b_cont = mp; 24351 24352 /* 24353 * Get priority marking, if any. 24354 * We propagate the CoS marking from the 24355 * original packet that went to QoS processing 24356 * in ip_wput_ire to the newly carved mp. 24357 */ 24358 if (DB_TYPE(xmit_mp) == M_DATA) 24359 xmit_mp->b_band = mp->b_band; 24360 } 24361 UNLOCK_IRE_FP_MP(ire); 24362 24363 q = ire->ire_stq; 24364 out_ill = (ill_t *)q->q_ptr; 24365 24366 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24367 24368 DTRACE_PROBE4(ip4__physical__out__start, 24369 ill_t *, NULL, ill_t *, out_ill, 24370 ipha_t *, ipha, mblk_t *, xmit_mp); 24371 24372 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24373 ipst->ips_ipv4firewall_physical_out, 24374 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24375 24376 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24377 24378 if (xmit_mp != NULL) { 24379 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24380 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24381 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24382 24383 ILL_SEND_TX(out_ill, ire, connp, xmit_mp, 0, connp); 24384 24385 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24386 UPDATE_MIB(out_ill->ill_ip_mib, 24387 ipIfStatsHCOutOctets, i1); 24388 24389 if (pkt_type != OB_PKT) { 24390 /* 24391 * Update the packet count and MIB stats 24392 * of trailing RTF_MULTIRT ires. 24393 */ 24394 UPDATE_OB_PKT_COUNT(ire); 24395 BUMP_MIB(out_ill->ill_ip_mib, 24396 ipIfStatsOutFragReqds); 24397 } 24398 } 24399 24400 if (multirt_send) { 24401 /* 24402 * We are in a multiple send case; look for 24403 * the next ire and re-enter the loop. 24404 */ 24405 ASSERT(ire1); 24406 ASSERT(next_mp); 24407 /* REFRELE the current ire before looping */ 24408 ire_refrele(ire); 24409 ire = ire1; 24410 ire1 = NULL; 24411 mp = next_mp; 24412 next_mp = NULL; 24413 } 24414 } while (multirt_send); 24415 24416 ASSERT(ire1 == NULL); 24417 24418 /* Restore the original ire; we need it for the trailing frags */ 24419 if (save_ire != NULL) { 24420 /* REFRELE the last iterated ire */ 24421 ire_refrele(ire); 24422 /* save_ire has been REFHOLDed */ 24423 ire = save_ire; 24424 save_ire = NULL; 24425 q = ire->ire_stq; 24426 } 24427 24428 if (pkt_type == OB_PKT) { 24429 UPDATE_OB_PKT_COUNT(ire); 24430 } else { 24431 out_ill = (ill_t *)q->q_ptr; 24432 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24433 UPDATE_IB_PKT_COUNT(ire); 24434 } 24435 24436 /* Advance the offset to the second frag starting point. */ 24437 offset += len; 24438 /* 24439 * Update hdr_len from the copied header - there might be less options 24440 * in the later fragments. 24441 */ 24442 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24443 /* Loop until done. */ 24444 for (;;) { 24445 uint16_t offset_and_flags; 24446 uint16_t ip_len; 24447 24448 if (ip_data_end - offset > len) { 24449 /* 24450 * Carve off the appropriate amount from the original 24451 * datagram. 24452 */ 24453 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24454 mp = NULL; 24455 break; 24456 } 24457 /* 24458 * More frags after this one. Get another copy 24459 * of the header. 24460 */ 24461 if (carve_mp->b_datap->db_ref == 1 && 24462 hdr_mp->b_wptr - hdr_mp->b_rptr < 24463 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24464 /* Inline IP header */ 24465 carve_mp->b_rptr -= hdr_mp->b_wptr - 24466 hdr_mp->b_rptr; 24467 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24468 hdr_mp->b_wptr - hdr_mp->b_rptr); 24469 mp = carve_mp; 24470 } else { 24471 if (!(mp = copyb(hdr_mp))) { 24472 freemsg(carve_mp); 24473 break; 24474 } 24475 /* Get priority marking, if any. */ 24476 mp->b_band = carve_mp->b_band; 24477 mp->b_cont = carve_mp; 24478 } 24479 ipha = (ipha_t *)mp->b_rptr; 24480 offset_and_flags = IPH_MF; 24481 } else { 24482 /* 24483 * Last frag. Consume the header. Set len to 24484 * the length of this last piece. 24485 */ 24486 len = ip_data_end - offset; 24487 24488 /* 24489 * Carve off the appropriate amount from the original 24490 * datagram. 24491 */ 24492 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24493 mp = NULL; 24494 break; 24495 } 24496 if (carve_mp->b_datap->db_ref == 1 && 24497 hdr_mp->b_wptr - hdr_mp->b_rptr < 24498 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24499 /* Inline IP header */ 24500 carve_mp->b_rptr -= hdr_mp->b_wptr - 24501 hdr_mp->b_rptr; 24502 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24503 hdr_mp->b_wptr - hdr_mp->b_rptr); 24504 mp = carve_mp; 24505 freeb(hdr_mp); 24506 hdr_mp = mp; 24507 } else { 24508 mp = hdr_mp; 24509 /* Get priority marking, if any. */ 24510 mp->b_band = carve_mp->b_band; 24511 mp->b_cont = carve_mp; 24512 } 24513 ipha = (ipha_t *)mp->b_rptr; 24514 /* A frag of a frag might have IPH_MF non-zero */ 24515 offset_and_flags = 24516 ntohs(ipha->ipha_fragment_offset_and_flags) & 24517 IPH_MF; 24518 } 24519 offset_and_flags |= (uint16_t)(offset >> 3); 24520 offset_and_flags |= (uint16_t)frag_flag; 24521 /* Store the offset and flags in the IP header. */ 24522 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24523 24524 /* Store the length in the IP header. */ 24525 ip_len = (uint16_t)(len + hdr_len); 24526 ipha->ipha_length = htons(ip_len); 24527 24528 /* 24529 * Set the IP header checksum. Note that mp is just 24530 * the header, so this is easy to pass to ip_csum. 24531 */ 24532 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24533 24534 /* Attach a transmit header, if any, and ship it. */ 24535 if (pkt_type == OB_PKT) { 24536 UPDATE_OB_PKT_COUNT(ire); 24537 } else { 24538 out_ill = (ill_t *)q->q_ptr; 24539 BUMP_MIB(out_ill->ill_ip_mib, 24540 ipIfStatsHCOutForwDatagrams); 24541 UPDATE_IB_PKT_COUNT(ire); 24542 } 24543 24544 if (ire->ire_flags & RTF_MULTIRT) { 24545 irb = ire->ire_bucket; 24546 ASSERT(irb != NULL); 24547 24548 multirt_send = B_TRUE; 24549 24550 /* 24551 * Save the original ire; we will need to restore it 24552 * for the tailing frags. 24553 */ 24554 save_ire = ire; 24555 IRE_REFHOLD(save_ire); 24556 } 24557 /* 24558 * Emission loop for this fragment, similar 24559 * to what is done for the first fragment. 24560 */ 24561 do { 24562 if (multirt_send) { 24563 /* 24564 * We are in a multiple send case, need to get 24565 * the next ire and make a copy of the packet. 24566 */ 24567 ASSERT(irb != NULL); 24568 IRB_REFHOLD(irb); 24569 for (ire1 = ire->ire_next; 24570 ire1 != NULL; 24571 ire1 = ire1->ire_next) { 24572 if (!(ire1->ire_flags & RTF_MULTIRT)) 24573 continue; 24574 if (ire1->ire_addr != ire->ire_addr) 24575 continue; 24576 if (ire1->ire_marks & 24577 (IRE_MARK_CONDEMNED | 24578 IRE_MARK_TESTHIDDEN)) 24579 continue; 24580 /* 24581 * Ensure we do not exceed the MTU 24582 * of the next route. 24583 */ 24584 if (ire1->ire_max_frag < max_frag) { 24585 ip_multirt_bad_mtu(ire1, 24586 max_frag); 24587 continue; 24588 } 24589 24590 /* Got one. */ 24591 IRE_REFHOLD(ire1); 24592 break; 24593 } 24594 IRB_REFRELE(irb); 24595 24596 if (ire1 != NULL) { 24597 next_mp = copyb(mp); 24598 if ((next_mp == NULL) || 24599 ((mp->b_cont != NULL) && 24600 ((next_mp->b_cont = 24601 dupmsg(mp->b_cont)) == NULL))) { 24602 freemsg(next_mp); 24603 next_mp = NULL; 24604 ire_refrele(ire1); 24605 ire1 = NULL; 24606 } 24607 } 24608 24609 /* Last multiroute ire; don't loop anymore. */ 24610 if (ire1 == NULL) { 24611 multirt_send = B_FALSE; 24612 } 24613 } 24614 24615 /* Update transmit header */ 24616 ll_hdr_len = 0; 24617 LOCK_IRE_FP_MP(ire); 24618 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24619 if (ll_hdr_mp != NULL) { 24620 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24621 ll_hdr_len = MBLKL(ll_hdr_mp); 24622 } else { 24623 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24624 } 24625 24626 if (!ll_hdr_mp) { 24627 xmit_mp = mp; 24628 24629 /* 24630 * We have link-layer header that can fit in 24631 * our mblk. 24632 */ 24633 } else if (mp->b_datap->db_ref == 1 && 24634 ll_hdr_len != 0 && 24635 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24636 /* M_DATA fastpath */ 24637 mp->b_rptr -= ll_hdr_len; 24638 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24639 ll_hdr_len); 24640 xmit_mp = mp; 24641 24642 /* 24643 * Case of res_mp OR the fastpath mp can't fit 24644 * in the mblk 24645 */ 24646 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24647 xmit_mp->b_cont = mp; 24648 /* Get priority marking, if any. */ 24649 if (DB_TYPE(xmit_mp) == M_DATA) 24650 xmit_mp->b_band = mp->b_band; 24651 24652 /* Corner case if copyb failed */ 24653 } else { 24654 /* 24655 * Exit both the replication and 24656 * fragmentation loops. 24657 */ 24658 UNLOCK_IRE_FP_MP(ire); 24659 goto drop_pkt; 24660 } 24661 UNLOCK_IRE_FP_MP(ire); 24662 24663 mp1 = mp; 24664 out_ill = (ill_t *)q->q_ptr; 24665 24666 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24667 24668 DTRACE_PROBE4(ip4__physical__out__start, 24669 ill_t *, NULL, ill_t *, out_ill, 24670 ipha_t *, ipha, mblk_t *, xmit_mp); 24671 24672 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24673 ipst->ips_ipv4firewall_physical_out, 24674 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24675 24676 DTRACE_PROBE1(ip4__physical__out__end, 24677 mblk_t *, xmit_mp); 24678 24679 if (mp != mp1 && hdr_mp == mp1) 24680 hdr_mp = mp; 24681 if (mp != mp1 && mp_orig == mp1) 24682 mp_orig = mp; 24683 24684 if (xmit_mp != NULL) { 24685 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 24686 NULL, void_ip_t *, ipha, 24687 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 24688 ipha, ip6_t *, NULL, int, 0); 24689 24690 ILL_SEND_TX(out_ill, ire, connp, 24691 xmit_mp, 0, connp); 24692 24693 BUMP_MIB(out_ill->ill_ip_mib, 24694 ipIfStatsHCOutTransmits); 24695 UPDATE_MIB(out_ill->ill_ip_mib, 24696 ipIfStatsHCOutOctets, ip_len); 24697 24698 if (pkt_type != OB_PKT) { 24699 /* 24700 * Update the packet count of trailing 24701 * RTF_MULTIRT ires. 24702 */ 24703 UPDATE_OB_PKT_COUNT(ire); 24704 } 24705 } 24706 24707 /* All done if we just consumed the hdr_mp. */ 24708 if (mp == hdr_mp) { 24709 last_frag = B_TRUE; 24710 BUMP_MIB(out_ill->ill_ip_mib, 24711 ipIfStatsOutFragOKs); 24712 } 24713 24714 if (multirt_send) { 24715 /* 24716 * We are in a multiple send case; look for 24717 * the next ire and re-enter the loop. 24718 */ 24719 ASSERT(ire1); 24720 ASSERT(next_mp); 24721 /* REFRELE the current ire before looping */ 24722 ire_refrele(ire); 24723 ire = ire1; 24724 ire1 = NULL; 24725 q = ire->ire_stq; 24726 mp = next_mp; 24727 next_mp = NULL; 24728 } 24729 } while (multirt_send); 24730 /* 24731 * Restore the original ire; we need it for the 24732 * trailing frags 24733 */ 24734 if (save_ire != NULL) { 24735 ASSERT(ire1 == NULL); 24736 /* REFRELE the last iterated ire */ 24737 ire_refrele(ire); 24738 /* save_ire has been REFHOLDed */ 24739 ire = save_ire; 24740 q = ire->ire_stq; 24741 save_ire = NULL; 24742 } 24743 24744 if (last_frag) { 24745 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24746 "ip_wput_frag_end:(%S)", 24747 "consumed hdr_mp"); 24748 24749 if (first_ire != NULL) 24750 ire_refrele(first_ire); 24751 return; 24752 } 24753 /* Otherwise, advance and loop. */ 24754 offset += len; 24755 } 24756 24757 drop_pkt: 24758 /* Clean up following allocation failure. */ 24759 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24760 freemsg(mp); 24761 if (mp != hdr_mp) 24762 freeb(hdr_mp); 24763 if (mp != mp_orig) 24764 freemsg(mp_orig); 24765 24766 if (save_ire != NULL) 24767 IRE_REFRELE(save_ire); 24768 if (first_ire != NULL) 24769 ire_refrele(first_ire); 24770 24771 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24772 "ip_wput_frag_end:(%S)", 24773 "end--alloc failure"); 24774 } 24775 24776 /* 24777 * Copy the header plus those options which have the copy bit set 24778 * src is the template to make sure we preserve the cred for TX purposes. 24779 */ 24780 static mblk_t * 24781 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 24782 mblk_t *src) 24783 { 24784 mblk_t *mp; 24785 uchar_t *up; 24786 24787 /* 24788 * Quick check if we need to look for options without the copy bit 24789 * set 24790 */ 24791 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 24792 if (!mp) 24793 return (mp); 24794 mp->b_rptr += ipst->ips_ip_wroff_extra; 24795 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24796 bcopy(rptr, mp->b_rptr, hdr_len); 24797 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24798 return (mp); 24799 } 24800 up = mp->b_rptr; 24801 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24802 up += IP_SIMPLE_HDR_LENGTH; 24803 rptr += IP_SIMPLE_HDR_LENGTH; 24804 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24805 while (hdr_len > 0) { 24806 uint32_t optval; 24807 uint32_t optlen; 24808 24809 optval = *rptr; 24810 if (optval == IPOPT_EOL) 24811 break; 24812 if (optval == IPOPT_NOP) 24813 optlen = 1; 24814 else 24815 optlen = rptr[1]; 24816 if (optval & IPOPT_COPY) { 24817 bcopy(rptr, up, optlen); 24818 up += optlen; 24819 } 24820 rptr += optlen; 24821 hdr_len -= optlen; 24822 } 24823 /* 24824 * Make sure that we drop an even number of words by filling 24825 * with EOL to the next word boundary. 24826 */ 24827 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24828 hdr_len & 0x3; hdr_len++) 24829 *up++ = IPOPT_EOL; 24830 mp->b_wptr = up; 24831 /* Update header length */ 24832 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24833 return (mp); 24834 } 24835 24836 /* 24837 * Delivery to local recipients including fanout to multiple recipients. 24838 * Does not do checksumming of UDP/TCP. 24839 * Note: q should be the read side queue for either the ill or conn. 24840 * Note: rq should be the read side q for the lower (ill) stream. 24841 * We don't send packets to IPPF processing, thus the last argument 24842 * to all the fanout calls are B_FALSE. 24843 */ 24844 void 24845 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24846 int fanout_flags, zoneid_t zoneid) 24847 { 24848 uint32_t protocol; 24849 mblk_t *first_mp; 24850 boolean_t mctl_present; 24851 int ire_type; 24852 #define rptr ((uchar_t *)ipha) 24853 ip_stack_t *ipst = ill->ill_ipst; 24854 24855 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24856 "ip_wput_local_start: q %p", q); 24857 24858 if (ire != NULL) { 24859 ire_type = ire->ire_type; 24860 } else { 24861 /* 24862 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24863 * packet is not multicast, we can't tell the ire type. 24864 */ 24865 ASSERT(CLASSD(ipha->ipha_dst)); 24866 ire_type = IRE_BROADCAST; 24867 } 24868 24869 first_mp = mp; 24870 if (first_mp->b_datap->db_type == M_CTL) { 24871 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24872 if (!io->ipsec_out_secure) { 24873 /* 24874 * This ipsec_out_t was allocated in ip_wput 24875 * for multicast packets to store the ill_index. 24876 * As this is being delivered locally, we don't 24877 * need this anymore. 24878 */ 24879 mp = first_mp->b_cont; 24880 freeb(first_mp); 24881 first_mp = mp; 24882 mctl_present = B_FALSE; 24883 } else { 24884 /* 24885 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24886 * security properties for the looped-back packet. 24887 */ 24888 mctl_present = B_TRUE; 24889 mp = first_mp->b_cont; 24890 ASSERT(mp != NULL); 24891 ipsec_out_to_in(first_mp); 24892 } 24893 } else { 24894 mctl_present = B_FALSE; 24895 } 24896 24897 DTRACE_PROBE4(ip4__loopback__in__start, 24898 ill_t *, ill, ill_t *, NULL, 24899 ipha_t *, ipha, mblk_t *, first_mp); 24900 24901 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 24902 ipst->ips_ipv4firewall_loopback_in, 24903 ill, NULL, ipha, first_mp, mp, 0, ipst); 24904 24905 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24906 24907 if (first_mp == NULL) 24908 return; 24909 24910 if (ipst->ips_ip4_observe.he_interested) { 24911 zoneid_t szone, dzone, lookup_zoneid = ALL_ZONES; 24912 zoneid_t stackzoneid = netstackid_to_zoneid( 24913 ipst->ips_netstack->netstack_stackid); 24914 24915 dzone = (stackzoneid == GLOBAL_ZONEID) ? zoneid : stackzoneid; 24916 /* 24917 * 127.0.0.1 is special, as we cannot lookup its zoneid by 24918 * address. Restrict the lookup below to the destination zone. 24919 */ 24920 if (ipha->ipha_src == ntohl(INADDR_LOOPBACK)) 24921 lookup_zoneid = zoneid; 24922 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 24923 lookup_zoneid); 24924 ipobs_hook(mp, IPOBS_HOOK_LOCAL, szone, dzone, ill, ipst); 24925 } 24926 24927 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 24928 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 24929 int, 1); 24930 24931 ipst->ips_loopback_packets++; 24932 24933 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 24934 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 24935 if (!IS_SIMPLE_IPH(ipha)) { 24936 ip_wput_local_options(ipha, ipst); 24937 } 24938 24939 protocol = ipha->ipha_protocol; 24940 switch (protocol) { 24941 case IPPROTO_ICMP: { 24942 ire_t *ire_zone; 24943 ilm_t *ilm; 24944 mblk_t *mp1; 24945 zoneid_t last_zoneid; 24946 ilm_walker_t ilw; 24947 24948 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 24949 ASSERT(ire_type == IRE_BROADCAST); 24950 /* 24951 * In the multicast case, applications may have joined 24952 * the group from different zones, so we need to deliver 24953 * the packet to each of them. Loop through the 24954 * multicast memberships structures (ilm) on the receive 24955 * ill and send a copy of the packet up each matching 24956 * one. However, we don't do this for multicasts sent on 24957 * the loopback interface (PHYI_LOOPBACK flag set) as 24958 * they must stay in the sender's zone. 24959 * 24960 * ilm_add_v6() ensures that ilms in the same zone are 24961 * contiguous in the ill_ilm list. We use this property 24962 * to avoid sending duplicates needed when two 24963 * applications in the same zone join the same group on 24964 * different logical interfaces: we ignore the ilm if 24965 * it's zoneid is the same as the last matching one. 24966 * In addition, the sending of the packet for 24967 * ire_zoneid is delayed until all of the other ilms 24968 * have been exhausted. 24969 */ 24970 last_zoneid = -1; 24971 ilm = ilm_walker_start(&ilw, ill); 24972 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 24973 if (ipha->ipha_dst != ilm->ilm_addr || 24974 ilm->ilm_zoneid == last_zoneid || 24975 ilm->ilm_zoneid == zoneid || 24976 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 24977 continue; 24978 mp1 = ip_copymsg(first_mp); 24979 if (mp1 == NULL) 24980 continue; 24981 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 24982 0, 0, mctl_present, B_FALSE, ill, 24983 ilm->ilm_zoneid); 24984 last_zoneid = ilm->ilm_zoneid; 24985 } 24986 ilm_walker_finish(&ilw); 24987 /* 24988 * Loopback case: the sending endpoint has 24989 * IP_MULTICAST_LOOP disabled, therefore we don't 24990 * dispatch the multicast packet to the sending zone. 24991 */ 24992 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 24993 freemsg(first_mp); 24994 return; 24995 } 24996 } else if (ire_type == IRE_BROADCAST) { 24997 /* 24998 * In the broadcast case, there may be many zones 24999 * which need a copy of the packet delivered to them. 25000 * There is one IRE_BROADCAST per broadcast address 25001 * and per zone; we walk those using a helper function. 25002 * In addition, the sending of the packet for zoneid is 25003 * delayed until all of the other ires have been 25004 * processed. 25005 */ 25006 IRB_REFHOLD(ire->ire_bucket); 25007 ire_zone = NULL; 25008 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25009 ire)) != NULL) { 25010 mp1 = ip_copymsg(first_mp); 25011 if (mp1 == NULL) 25012 continue; 25013 25014 UPDATE_IB_PKT_COUNT(ire_zone); 25015 ire_zone->ire_last_used_time = lbolt; 25016 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25017 mctl_present, B_FALSE, ill, 25018 ire_zone->ire_zoneid); 25019 } 25020 IRB_REFRELE(ire->ire_bucket); 25021 } 25022 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25023 0, mctl_present, B_FALSE, ill, zoneid); 25024 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25025 "ip_wput_local_end: q %p (%S)", 25026 q, "icmp"); 25027 return; 25028 } 25029 case IPPROTO_IGMP: 25030 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25031 /* Bad packet - discarded by igmp_input */ 25032 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25033 "ip_wput_local_end: q %p (%S)", 25034 q, "igmp_input--bad packet"); 25035 if (mctl_present) 25036 freeb(first_mp); 25037 return; 25038 } 25039 /* 25040 * igmp_input() may have returned the pulled up message. 25041 * So first_mp and ipha need to be reinitialized. 25042 */ 25043 ipha = (ipha_t *)mp->b_rptr; 25044 if (mctl_present) 25045 first_mp->b_cont = mp; 25046 else 25047 first_mp = mp; 25048 /* deliver to local raw users */ 25049 break; 25050 case IPPROTO_ENCAP: 25051 /* 25052 * This case is covered by either ip_fanout_proto, or by 25053 * the above security processing for self-tunneled packets. 25054 */ 25055 break; 25056 case IPPROTO_UDP: { 25057 uint16_t *up; 25058 uint32_t ports; 25059 25060 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25061 UDP_PORTS_OFFSET); 25062 /* Force a 'valid' checksum. */ 25063 up[3] = 0; 25064 25065 ports = *(uint32_t *)up; 25066 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25067 (ire_type == IRE_BROADCAST), 25068 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25069 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25070 ill, zoneid); 25071 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25072 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25073 return; 25074 } 25075 case IPPROTO_TCP: { 25076 25077 /* 25078 * For TCP, discard broadcast packets. 25079 */ 25080 if ((ushort_t)ire_type == IRE_BROADCAST) { 25081 freemsg(first_mp); 25082 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25083 ip2dbg(("ip_wput_local: discard broadcast\n")); 25084 return; 25085 } 25086 25087 if (mp->b_datap->db_type == M_DATA) { 25088 /* 25089 * M_DATA mblk, so init mblk (chain) for no struio(). 25090 */ 25091 mblk_t *mp1 = mp; 25092 25093 do { 25094 mp1->b_datap->db_struioflag = 0; 25095 } while ((mp1 = mp1->b_cont) != NULL); 25096 } 25097 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25098 <= mp->b_wptr); 25099 ip_fanout_tcp(q, first_mp, ill, ipha, 25100 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25101 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25102 mctl_present, B_FALSE, zoneid); 25103 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25104 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25105 return; 25106 } 25107 case IPPROTO_SCTP: 25108 { 25109 uint32_t ports; 25110 25111 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25112 ip_fanout_sctp(first_mp, ill, ipha, ports, 25113 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25114 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25115 return; 25116 } 25117 25118 default: 25119 break; 25120 } 25121 /* 25122 * Find a client for some other protocol. We give 25123 * copies to multiple clients, if more than one is 25124 * bound. 25125 */ 25126 ip_fanout_proto(q, first_mp, ill, ipha, 25127 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25128 mctl_present, B_FALSE, ill, zoneid); 25129 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25130 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25131 #undef rptr 25132 } 25133 25134 /* 25135 * Update any source route, record route, or timestamp options. 25136 * Check that we are at end of strict source route. 25137 * The options have been sanity checked by ip_wput_options(). 25138 */ 25139 static void 25140 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25141 { 25142 ipoptp_t opts; 25143 uchar_t *opt; 25144 uint8_t optval; 25145 uint8_t optlen; 25146 ipaddr_t dst; 25147 uint32_t ts; 25148 ire_t *ire; 25149 timestruc_t now; 25150 25151 ip2dbg(("ip_wput_local_options\n")); 25152 for (optval = ipoptp_first(&opts, ipha); 25153 optval != IPOPT_EOL; 25154 optval = ipoptp_next(&opts)) { 25155 opt = opts.ipoptp_cur; 25156 optlen = opts.ipoptp_len; 25157 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25158 switch (optval) { 25159 uint32_t off; 25160 case IPOPT_SSRR: 25161 case IPOPT_LSRR: 25162 off = opt[IPOPT_OFFSET]; 25163 off--; 25164 if (optlen < IP_ADDR_LEN || 25165 off > optlen - IP_ADDR_LEN) { 25166 /* End of source route */ 25167 break; 25168 } 25169 /* 25170 * This will only happen if two consecutive entries 25171 * in the source route contains our address or if 25172 * it is a packet with a loose source route which 25173 * reaches us before consuming the whole source route 25174 */ 25175 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25176 if (optval == IPOPT_SSRR) { 25177 return; 25178 } 25179 /* 25180 * Hack: instead of dropping the packet truncate the 25181 * source route to what has been used by filling the 25182 * rest with IPOPT_NOP. 25183 */ 25184 opt[IPOPT_OLEN] = (uint8_t)off; 25185 while (off < optlen) { 25186 opt[off++] = IPOPT_NOP; 25187 } 25188 break; 25189 case IPOPT_RR: 25190 off = opt[IPOPT_OFFSET]; 25191 off--; 25192 if (optlen < IP_ADDR_LEN || 25193 off > optlen - IP_ADDR_LEN) { 25194 /* No more room - ignore */ 25195 ip1dbg(( 25196 "ip_wput_forward_options: end of RR\n")); 25197 break; 25198 } 25199 dst = htonl(INADDR_LOOPBACK); 25200 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25201 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25202 break; 25203 case IPOPT_TS: 25204 /* Insert timestamp if there is romm */ 25205 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25206 case IPOPT_TS_TSONLY: 25207 off = IPOPT_TS_TIMELEN; 25208 break; 25209 case IPOPT_TS_PRESPEC: 25210 case IPOPT_TS_PRESPEC_RFC791: 25211 /* Verify that the address matched */ 25212 off = opt[IPOPT_OFFSET] - 1; 25213 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25214 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25215 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25216 ipst); 25217 if (ire == NULL) { 25218 /* Not for us */ 25219 break; 25220 } 25221 ire_refrele(ire); 25222 /* FALLTHRU */ 25223 case IPOPT_TS_TSANDADDR: 25224 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25225 break; 25226 default: 25227 /* 25228 * ip_*put_options should have already 25229 * dropped this packet. 25230 */ 25231 cmn_err(CE_PANIC, "ip_wput_local_options: " 25232 "unknown IT - bug in ip_wput_options?\n"); 25233 return; /* Keep "lint" happy */ 25234 } 25235 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25236 /* Increase overflow counter */ 25237 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25238 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25239 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25240 (off << 4); 25241 break; 25242 } 25243 off = opt[IPOPT_OFFSET] - 1; 25244 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25245 case IPOPT_TS_PRESPEC: 25246 case IPOPT_TS_PRESPEC_RFC791: 25247 case IPOPT_TS_TSANDADDR: 25248 dst = htonl(INADDR_LOOPBACK); 25249 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25250 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25251 /* FALLTHRU */ 25252 case IPOPT_TS_TSONLY: 25253 off = opt[IPOPT_OFFSET] - 1; 25254 /* Compute # of milliseconds since midnight */ 25255 gethrestime(&now); 25256 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25257 now.tv_nsec / (NANOSEC / MILLISEC); 25258 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25259 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25260 break; 25261 } 25262 break; 25263 } 25264 } 25265 } 25266 25267 /* 25268 * Send out a multicast packet on interface ipif. 25269 * The sender does not have an conn. 25270 * Caller verifies that this isn't a PHYI_LOOPBACK. 25271 */ 25272 void 25273 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25274 { 25275 ipha_t *ipha; 25276 ire_t *ire; 25277 ipaddr_t dst; 25278 mblk_t *first_mp; 25279 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25280 25281 /* igmp_sendpkt always allocates a ipsec_out_t */ 25282 ASSERT(mp->b_datap->db_type == M_CTL); 25283 ASSERT(!ipif->ipif_isv6); 25284 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25285 25286 first_mp = mp; 25287 mp = first_mp->b_cont; 25288 ASSERT(mp->b_datap->db_type == M_DATA); 25289 ipha = (ipha_t *)mp->b_rptr; 25290 25291 /* 25292 * Find an IRE which matches the destination and the outgoing 25293 * queue (i.e. the outgoing interface.) 25294 */ 25295 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25296 dst = ipif->ipif_pp_dst_addr; 25297 else 25298 dst = ipha->ipha_dst; 25299 /* 25300 * The source address has already been initialized by the 25301 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25302 * be sufficient rather than MATCH_IRE_IPIF. 25303 * 25304 * This function is used for sending IGMP packets. For IPMP, 25305 * we sidestep IGMP snooping issues by sending all multicast 25306 * traffic on a single interface in the IPMP group. 25307 */ 25308 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25309 MATCH_IRE_ILL, ipst); 25310 if (!ire) { 25311 /* 25312 * Mark this packet to make it be delivered to 25313 * ip_wput_ire after the new ire has been 25314 * created. 25315 */ 25316 mp->b_prev = NULL; 25317 mp->b_next = NULL; 25318 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25319 zoneid, &zero_info); 25320 return; 25321 } 25322 25323 /* 25324 * Honor the RTF_SETSRC flag; this is the only case 25325 * where we force this addr whatever the current src addr is, 25326 * because this address is set by igmp_sendpkt(), and 25327 * cannot be specified by any user. 25328 */ 25329 if (ire->ire_flags & RTF_SETSRC) { 25330 ipha->ipha_src = ire->ire_src_addr; 25331 } 25332 25333 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25334 } 25335 25336 /* 25337 * NOTE : This function does not ire_refrele the ire argument passed in. 25338 * 25339 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25340 * failure. The nce_fp_mp can vanish any time in the case of 25341 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25342 * the ire_lock to access the nce_fp_mp in this case. 25343 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25344 * prepending a fastpath message IPQoS processing must precede it, we also set 25345 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25346 * (IPQoS might have set the b_band for CoS marking). 25347 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25348 * must follow it so that IPQoS can mark the dl_priority field for CoS 25349 * marking, if needed. 25350 */ 25351 static mblk_t * 25352 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25353 uint32_t ill_index, ipha_t **iphap) 25354 { 25355 uint_t hlen; 25356 ipha_t *ipha; 25357 mblk_t *mp1; 25358 boolean_t qos_done = B_FALSE; 25359 uchar_t *ll_hdr; 25360 ip_stack_t *ipst = ire->ire_ipst; 25361 25362 #define rptr ((uchar_t *)ipha) 25363 25364 ipha = (ipha_t *)mp->b_rptr; 25365 hlen = 0; 25366 LOCK_IRE_FP_MP(ire); 25367 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25368 ASSERT(DB_TYPE(mp1) == M_DATA); 25369 /* Initiate IPPF processing */ 25370 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25371 UNLOCK_IRE_FP_MP(ire); 25372 ip_process(proc, &mp, ill_index); 25373 if (mp == NULL) 25374 return (NULL); 25375 25376 ipha = (ipha_t *)mp->b_rptr; 25377 LOCK_IRE_FP_MP(ire); 25378 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25379 qos_done = B_TRUE; 25380 goto no_fp_mp; 25381 } 25382 ASSERT(DB_TYPE(mp1) == M_DATA); 25383 } 25384 hlen = MBLKL(mp1); 25385 /* 25386 * Check if we have enough room to prepend fastpath 25387 * header 25388 */ 25389 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25390 ll_hdr = rptr - hlen; 25391 bcopy(mp1->b_rptr, ll_hdr, hlen); 25392 /* 25393 * Set the b_rptr to the start of the link layer 25394 * header 25395 */ 25396 mp->b_rptr = ll_hdr; 25397 mp1 = mp; 25398 } else { 25399 mp1 = copyb(mp1); 25400 if (mp1 == NULL) 25401 goto unlock_err; 25402 mp1->b_band = mp->b_band; 25403 mp1->b_cont = mp; 25404 /* 25405 * XXX disable ICK_VALID and compute checksum 25406 * here; can happen if nce_fp_mp changes and 25407 * it can't be copied now due to insufficient 25408 * space. (unlikely, fp mp can change, but it 25409 * does not increase in length) 25410 */ 25411 } 25412 UNLOCK_IRE_FP_MP(ire); 25413 } else { 25414 no_fp_mp: 25415 mp1 = copyb(ire->ire_nce->nce_res_mp); 25416 if (mp1 == NULL) { 25417 unlock_err: 25418 UNLOCK_IRE_FP_MP(ire); 25419 freemsg(mp); 25420 return (NULL); 25421 } 25422 UNLOCK_IRE_FP_MP(ire); 25423 mp1->b_cont = mp; 25424 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25425 ip_process(proc, &mp1, ill_index); 25426 if (mp1 == NULL) 25427 return (NULL); 25428 25429 if (mp1->b_cont == NULL) 25430 ipha = NULL; 25431 else 25432 ipha = (ipha_t *)mp1->b_cont->b_rptr; 25433 } 25434 } 25435 25436 *iphap = ipha; 25437 return (mp1); 25438 #undef rptr 25439 } 25440 25441 /* 25442 * Finish the outbound IPsec processing for an IPv6 packet. This function 25443 * is called from ipsec_out_process() if the IPsec packet was processed 25444 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25445 * asynchronously. 25446 */ 25447 void 25448 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25449 ire_t *ire_arg) 25450 { 25451 in6_addr_t *v6dstp; 25452 ire_t *ire; 25453 mblk_t *mp; 25454 ip6_t *ip6h1; 25455 uint_t ill_index; 25456 ipsec_out_t *io; 25457 boolean_t hwaccel; 25458 uint32_t flags = IP6_NO_IPPOLICY; 25459 int match_flags; 25460 zoneid_t zoneid; 25461 boolean_t ill_need_rele = B_FALSE; 25462 boolean_t ire_need_rele = B_FALSE; 25463 ip_stack_t *ipst; 25464 25465 mp = ipsec_mp->b_cont; 25466 ip6h1 = (ip6_t *)mp->b_rptr; 25467 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25468 ASSERT(io->ipsec_out_ns != NULL); 25469 ipst = io->ipsec_out_ns->netstack_ip; 25470 ill_index = io->ipsec_out_ill_index; 25471 if (io->ipsec_out_reachable) { 25472 flags |= IPV6_REACHABILITY_CONFIRMATION; 25473 } 25474 hwaccel = io->ipsec_out_accelerated; 25475 zoneid = io->ipsec_out_zoneid; 25476 ASSERT(zoneid != ALL_ZONES); 25477 ASSERT(IPH_HDR_VERSION(ip6h) == IPV6_VERSION); 25478 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25479 /* Multicast addresses should have non-zero ill_index. */ 25480 v6dstp = &ip6h->ip6_dst; 25481 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25482 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25483 25484 if (ill == NULL && ill_index != 0) { 25485 ill = ip_grab_ill(ipsec_mp, ill_index, B_TRUE, ipst); 25486 /* Failure case frees things for us. */ 25487 if (ill == NULL) 25488 return; 25489 25490 ill_need_rele = B_TRUE; 25491 } 25492 ASSERT(mp != NULL); 25493 25494 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25495 boolean_t unspec_src; 25496 ipif_t *ipif; 25497 25498 /* 25499 * Use the ill_index to get the right ill. 25500 */ 25501 unspec_src = io->ipsec_out_unspec_src; 25502 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25503 if (ipif == NULL) { 25504 if (ill_need_rele) 25505 ill_refrele(ill); 25506 freemsg(ipsec_mp); 25507 return; 25508 } 25509 25510 if (ire_arg != NULL) { 25511 ire = ire_arg; 25512 } else { 25513 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25514 zoneid, msg_getlabel(mp), match_flags, ipst); 25515 ire_need_rele = B_TRUE; 25516 } 25517 if (ire != NULL) { 25518 ipif_refrele(ipif); 25519 /* 25520 * XXX Do the multicast forwarding now, as the IPsec 25521 * processing has been done. 25522 */ 25523 goto send; 25524 } 25525 25526 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25527 mp->b_prev = NULL; 25528 mp->b_next = NULL; 25529 25530 /* 25531 * If the IPsec packet was processed asynchronously, 25532 * drop it now. 25533 */ 25534 if (q == NULL) { 25535 if (ill_need_rele) 25536 ill_refrele(ill); 25537 freemsg(ipsec_mp); 25538 ipif_refrele(ipif); 25539 return; 25540 } 25541 25542 ip_newroute_ipif_v6(q, ipsec_mp, ipif, v6dstp, &ip6h->ip6_src, 25543 unspec_src, zoneid); 25544 ipif_refrele(ipif); 25545 } else { 25546 if (ire_arg != NULL) { 25547 ire = ire_arg; 25548 } else { 25549 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, ipst); 25550 ire_need_rele = B_TRUE; 25551 } 25552 if (ire != NULL) 25553 goto send; 25554 /* 25555 * ire disappeared underneath. 25556 * 25557 * What we need to do here is the ip_newroute 25558 * logic to get the ire without doing the IPsec 25559 * processing. Follow the same old path. But this 25560 * time, ip_wput or ire_add_then_send will call us 25561 * directly as all the IPsec operations are done. 25562 */ 25563 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25564 mp->b_prev = NULL; 25565 mp->b_next = NULL; 25566 25567 /* 25568 * If the IPsec packet was processed asynchronously, 25569 * drop it now. 25570 */ 25571 if (q == NULL) { 25572 if (ill_need_rele) 25573 ill_refrele(ill); 25574 freemsg(ipsec_mp); 25575 return; 25576 } 25577 25578 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25579 zoneid, ipst); 25580 } 25581 if (ill != NULL && ill_need_rele) 25582 ill_refrele(ill); 25583 return; 25584 send: 25585 if (ill != NULL && ill_need_rele) 25586 ill_refrele(ill); 25587 25588 /* Local delivery */ 25589 if (ire->ire_stq == NULL) { 25590 ill_t *out_ill; 25591 ASSERT(q != NULL); 25592 25593 /* PFHooks: LOOPBACK_OUT */ 25594 out_ill = ire_to_ill(ire); 25595 25596 /* 25597 * DTrace this as ip:::send. A blocked packet will fire the 25598 * send probe, but not the receive probe. 25599 */ 25600 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25601 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 25602 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 25603 25604 DTRACE_PROBE4(ip6__loopback__out__start, 25605 ill_t *, NULL, ill_t *, out_ill, 25606 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25607 25608 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25609 ipst->ips_ipv6firewall_loopback_out, 25610 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25611 25612 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25613 25614 if (ipsec_mp != NULL) { 25615 ip_wput_local_v6(RD(q), out_ill, 25616 ip6h, ipsec_mp, ire, 0, zoneid); 25617 } 25618 if (ire_need_rele) 25619 ire_refrele(ire); 25620 return; 25621 } 25622 /* 25623 * Everything is done. Send it out on the wire. 25624 * We force the insertion of a fragment header using the 25625 * IPH_FRAG_HDR flag in two cases: 25626 * - after reception of an ICMPv6 "packet too big" message 25627 * with a MTU < 1280 (cf. RFC 2460 section 5) 25628 * - for multirouted IPv6 packets, so that the receiver can 25629 * discard duplicates according to their fragment identifier 25630 */ 25631 /* XXX fix flow control problems. */ 25632 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25633 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25634 if (hwaccel) { 25635 /* 25636 * hardware acceleration does not handle these 25637 * "slow path" cases. 25638 */ 25639 /* IPsec KSTATS: should bump bean counter here. */ 25640 if (ire_need_rele) 25641 ire_refrele(ire); 25642 freemsg(ipsec_mp); 25643 return; 25644 } 25645 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25646 (mp->b_cont ? msgdsize(mp) : 25647 mp->b_wptr - (uchar_t *)ip6h)) { 25648 /* IPsec KSTATS: should bump bean counter here. */ 25649 ip0dbg(("Packet length mismatch: %d, %ld\n", 25650 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25651 msgdsize(mp))); 25652 if (ire_need_rele) 25653 ire_refrele(ire); 25654 freemsg(ipsec_mp); 25655 return; 25656 } 25657 ASSERT(mp->b_prev == NULL); 25658 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25659 ntohs(ip6h->ip6_plen) + 25660 IPV6_HDR_LEN, ire->ire_max_frag)); 25661 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25662 ire->ire_max_frag); 25663 } else { 25664 UPDATE_OB_PKT_COUNT(ire); 25665 ire->ire_last_used_time = lbolt; 25666 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25667 } 25668 if (ire_need_rele) 25669 ire_refrele(ire); 25670 freeb(ipsec_mp); 25671 } 25672 25673 void 25674 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25675 { 25676 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25677 da_ipsec_t *hada; /* data attributes */ 25678 ill_t *ill = (ill_t *)q->q_ptr; 25679 25680 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25681 25682 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25683 /* IPsec KSTATS: Bump lose counter here! */ 25684 freemsg(mp); 25685 return; 25686 } 25687 25688 /* 25689 * It's an IPsec packet that must be 25690 * accelerated by the Provider, and the 25691 * outbound ill is IPsec acceleration capable. 25692 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25693 * to the ill. 25694 * IPsec KSTATS: should bump packet counter here. 25695 */ 25696 25697 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25698 if (hada_mp == NULL) { 25699 /* IPsec KSTATS: should bump packet counter here. */ 25700 freemsg(mp); 25701 return; 25702 } 25703 25704 hada_mp->b_datap->db_type = M_CTL; 25705 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25706 hada_mp->b_cont = mp; 25707 25708 hada = (da_ipsec_t *)hada_mp->b_rptr; 25709 bzero(hada, sizeof (da_ipsec_t)); 25710 hada->da_type = IPHADA_M_CTL; 25711 25712 putnext(q, hada_mp); 25713 } 25714 25715 /* 25716 * Finish the outbound IPsec processing. This function is called from 25717 * ipsec_out_process() if the IPsec packet was processed 25718 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25719 * asynchronously. 25720 */ 25721 void 25722 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25723 ire_t *ire_arg) 25724 { 25725 uint32_t v_hlen_tos_len; 25726 ipaddr_t dst; 25727 ipif_t *ipif = NULL; 25728 ire_t *ire; 25729 ire_t *ire1 = NULL; 25730 mblk_t *next_mp = NULL; 25731 uint32_t max_frag; 25732 boolean_t multirt_send = B_FALSE; 25733 mblk_t *mp; 25734 ipha_t *ipha1; 25735 uint_t ill_index; 25736 ipsec_out_t *io; 25737 int match_flags; 25738 irb_t *irb = NULL; 25739 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25740 zoneid_t zoneid; 25741 ipxmit_state_t pktxmit_state; 25742 ip_stack_t *ipst; 25743 25744 #ifdef _BIG_ENDIAN 25745 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25746 #else 25747 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25748 #endif 25749 25750 mp = ipsec_mp->b_cont; 25751 ipha1 = (ipha_t *)mp->b_rptr; 25752 ASSERT(mp != NULL); 25753 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25754 dst = ipha->ipha_dst; 25755 25756 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25757 ill_index = io->ipsec_out_ill_index; 25758 zoneid = io->ipsec_out_zoneid; 25759 ASSERT(zoneid != ALL_ZONES); 25760 ipst = io->ipsec_out_ns->netstack_ip; 25761 ASSERT(io->ipsec_out_ns != NULL); 25762 25763 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25764 if (ill == NULL && ill_index != 0) { 25765 ill = ip_grab_ill(ipsec_mp, ill_index, B_FALSE, ipst); 25766 /* Failure case frees things for us. */ 25767 if (ill == NULL) 25768 return; 25769 25770 ill_need_rele = B_TRUE; 25771 } 25772 25773 if (CLASSD(dst)) { 25774 boolean_t conn_dontroute; 25775 /* 25776 * Use the ill_index to get the right ipif. 25777 */ 25778 conn_dontroute = io->ipsec_out_dontroute; 25779 if (ill_index == 0) 25780 ipif = ipif_lookup_group(dst, zoneid, ipst); 25781 else 25782 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25783 if (ipif == NULL) { 25784 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25785 " multicast\n")); 25786 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25787 freemsg(ipsec_mp); 25788 goto done; 25789 } 25790 /* 25791 * ipha_src has already been intialized with the 25792 * value of the ipif in ip_wput. All we need now is 25793 * an ire to send this downstream. 25794 */ 25795 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25796 msg_getlabel(mp), match_flags, ipst); 25797 if (ire != NULL) { 25798 ill_t *ill1; 25799 /* 25800 * Do the multicast forwarding now, as the IPsec 25801 * processing has been done. 25802 */ 25803 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25804 (ill1 = ire_to_ill(ire))) { 25805 if (ip_mforward(ill1, ipha, mp)) { 25806 freemsg(ipsec_mp); 25807 ip1dbg(("ip_wput_ipsec_out: mforward " 25808 "failed\n")); 25809 ire_refrele(ire); 25810 goto done; 25811 } 25812 } 25813 goto send; 25814 } 25815 25816 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25817 mp->b_prev = NULL; 25818 mp->b_next = NULL; 25819 25820 /* 25821 * If the IPsec packet was processed asynchronously, 25822 * drop it now. 25823 */ 25824 if (q == NULL) { 25825 freemsg(ipsec_mp); 25826 goto done; 25827 } 25828 25829 /* 25830 * We may be using a wrong ipif to create the ire. 25831 * But it is okay as the source address is assigned 25832 * for the packet already. Next outbound packet would 25833 * create the IRE with the right IPIF in ip_wput. 25834 * 25835 * Also handle RTF_MULTIRT routes. 25836 */ 25837 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25838 zoneid, &zero_info); 25839 } else { 25840 if (ire_arg != NULL) { 25841 ire = ire_arg; 25842 ire_need_rele = B_FALSE; 25843 } else { 25844 ire = ire_cache_lookup(dst, zoneid, 25845 msg_getlabel(mp), ipst); 25846 } 25847 if (ire != NULL) { 25848 goto send; 25849 } 25850 25851 /* 25852 * ire disappeared underneath. 25853 * 25854 * What we need to do here is the ip_newroute 25855 * logic to get the ire without doing the IPsec 25856 * processing. Follow the same old path. But this 25857 * time, ip_wput or ire_add_then_put will call us 25858 * directly as all the IPsec operations are done. 25859 */ 25860 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25861 mp->b_prev = NULL; 25862 mp->b_next = NULL; 25863 25864 /* 25865 * If the IPsec packet was processed asynchronously, 25866 * drop it now. 25867 */ 25868 if (q == NULL) { 25869 freemsg(ipsec_mp); 25870 goto done; 25871 } 25872 25873 /* 25874 * Since we're going through ip_newroute() again, we 25875 * need to make sure we don't: 25876 * 25877 * 1.) Trigger the ASSERT() with the ipha_ident 25878 * overloading. 25879 * 2.) Redo transport-layer checksumming, since we've 25880 * already done all that to get this far. 25881 * 25882 * The easiest way not do either of the above is to set 25883 * the ipha_ident field to IP_HDR_INCLUDED. 25884 */ 25885 ipha->ipha_ident = IP_HDR_INCLUDED; 25886 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 25887 zoneid, ipst); 25888 } 25889 goto done; 25890 send: 25891 if (ire->ire_stq == NULL) { 25892 ill_t *out_ill; 25893 /* 25894 * Loopbacks go through ip_wput_local except for one case. 25895 * We come here if we generate a icmp_frag_needed message 25896 * after IPsec processing is over. When this function calls 25897 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 25898 * icmp_frag_needed. The message generated comes back here 25899 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 25900 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 25901 * source address as it is usually set in ip_wput_ire. As 25902 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 25903 * and we end up here. We can't enter ip_wput_ire once the 25904 * IPsec processing is over and hence we need to do it here. 25905 */ 25906 ASSERT(q != NULL); 25907 UPDATE_OB_PKT_COUNT(ire); 25908 ire->ire_last_used_time = lbolt; 25909 if (ipha->ipha_src == 0) 25910 ipha->ipha_src = ire->ire_src_addr; 25911 25912 /* PFHooks: LOOPBACK_OUT */ 25913 out_ill = ire_to_ill(ire); 25914 25915 /* 25916 * DTrace this as ip:::send. A blocked packet will fire the 25917 * send probe, but not the receive probe. 25918 */ 25919 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25920 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 25921 ipha_t *, ipha, ip6_t *, NULL, int, 1); 25922 25923 DTRACE_PROBE4(ip4__loopback__out__start, 25924 ill_t *, NULL, ill_t *, out_ill, 25925 ipha_t *, ipha1, mblk_t *, ipsec_mp); 25926 25927 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 25928 ipst->ips_ipv4firewall_loopback_out, 25929 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 25930 25931 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 25932 25933 if (ipsec_mp != NULL) 25934 ip_wput_local(RD(q), out_ill, 25935 ipha, ipsec_mp, ire, 0, zoneid); 25936 if (ire_need_rele) 25937 ire_refrele(ire); 25938 goto done; 25939 } 25940 25941 if (ire->ire_max_frag < (unsigned int)LENGTH) { 25942 /* 25943 * We are through with IPsec processing. 25944 * Fragment this and send it on the wire. 25945 */ 25946 if (io->ipsec_out_accelerated) { 25947 /* 25948 * The packet has been accelerated but must 25949 * be fragmented. This should not happen 25950 * since AH and ESP must not accelerate 25951 * packets that need fragmentation, however 25952 * the configuration could have changed 25953 * since the AH or ESP processing. 25954 * Drop packet. 25955 * IPsec KSTATS: bump bean counter here. 25956 */ 25957 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 25958 "fragmented accelerated packet!\n")); 25959 freemsg(ipsec_mp); 25960 } else { 25961 ip_wput_ire_fragmentit(ipsec_mp, ire, 25962 zoneid, ipst, NULL); 25963 } 25964 if (ire_need_rele) 25965 ire_refrele(ire); 25966 goto done; 25967 } 25968 25969 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 25970 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 25971 (void *)ire->ire_ipif, (void *)ipif)); 25972 25973 /* 25974 * Multiroute the secured packet. 25975 */ 25976 if (ire->ire_flags & RTF_MULTIRT) { 25977 ire_t *first_ire; 25978 irb = ire->ire_bucket; 25979 ASSERT(irb != NULL); 25980 /* 25981 * This ire has been looked up as the one that 25982 * goes through the given ipif; 25983 * make sure we do not omit any other multiroute ire 25984 * that may be present in the bucket before this one. 25985 */ 25986 IRB_REFHOLD(irb); 25987 for (first_ire = irb->irb_ire; 25988 first_ire != NULL; 25989 first_ire = first_ire->ire_next) { 25990 if ((first_ire->ire_flags & RTF_MULTIRT) && 25991 (first_ire->ire_addr == ire->ire_addr) && 25992 !(first_ire->ire_marks & 25993 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 25994 break; 25995 } 25996 25997 if ((first_ire != NULL) && (first_ire != ire)) { 25998 /* 25999 * Don't change the ire if the packet must 26000 * be fragmented if sent via this new one. 26001 */ 26002 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26003 IRE_REFHOLD(first_ire); 26004 if (ire_need_rele) 26005 ire_refrele(ire); 26006 else 26007 ire_need_rele = B_TRUE; 26008 ire = first_ire; 26009 } 26010 } 26011 IRB_REFRELE(irb); 26012 26013 multirt_send = B_TRUE; 26014 max_frag = ire->ire_max_frag; 26015 } 26016 26017 /* 26018 * In most cases, the emission loop below is entered only once. 26019 * Only in the case where the ire holds the RTF_MULTIRT 26020 * flag, we loop to process all RTF_MULTIRT ires in the 26021 * bucket, and send the packet through all crossed 26022 * RTF_MULTIRT routes. 26023 */ 26024 do { 26025 if (multirt_send) { 26026 /* 26027 * ire1 holds here the next ire to process in the 26028 * bucket. If multirouting is expected, 26029 * any non-RTF_MULTIRT ire that has the 26030 * right destination address is ignored. 26031 */ 26032 ASSERT(irb != NULL); 26033 IRB_REFHOLD(irb); 26034 for (ire1 = ire->ire_next; 26035 ire1 != NULL; 26036 ire1 = ire1->ire_next) { 26037 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26038 continue; 26039 if (ire1->ire_addr != ire->ire_addr) 26040 continue; 26041 if (ire1->ire_marks & 26042 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 26043 continue; 26044 /* No loopback here */ 26045 if (ire1->ire_stq == NULL) 26046 continue; 26047 /* 26048 * Ensure we do not exceed the MTU 26049 * of the next route. 26050 */ 26051 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26052 ip_multirt_bad_mtu(ire1, max_frag); 26053 continue; 26054 } 26055 26056 IRE_REFHOLD(ire1); 26057 break; 26058 } 26059 IRB_REFRELE(irb); 26060 if (ire1 != NULL) { 26061 /* 26062 * We are in a multiple send case, need to 26063 * make a copy of the packet. 26064 */ 26065 next_mp = copymsg(ipsec_mp); 26066 if (next_mp == NULL) { 26067 ire_refrele(ire1); 26068 ire1 = NULL; 26069 } 26070 } 26071 } 26072 /* 26073 * Everything is done. Send it out on the wire 26074 * 26075 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26076 * either send it on the wire or, in the case of 26077 * HW acceleration, call ipsec_hw_putnext. 26078 */ 26079 if (ire->ire_nce && 26080 ire->ire_nce->nce_state != ND_REACHABLE) { 26081 DTRACE_PROBE2(ip__wput__ipsec__bail, 26082 (ire_t *), ire, (mblk_t *), ipsec_mp); 26083 /* 26084 * If ire's link-layer is unresolved (this 26085 * would only happen if the incomplete ire 26086 * was added to cachetable via forwarding path) 26087 * don't bother going to ip_xmit_v4. Just drop the 26088 * packet. 26089 * There is a slight risk here, in that, if we 26090 * have the forwarding path create an incomplete 26091 * IRE, then until the IRE is completed, any 26092 * transmitted IPsec packets will be dropped 26093 * instead of being queued waiting for resolution. 26094 * 26095 * But the likelihood of a forwarding packet and a wput 26096 * packet sending to the same dst at the same time 26097 * and there not yet be an ARP entry for it is small. 26098 * Furthermore, if this actually happens, it might 26099 * be likely that wput would generate multiple 26100 * packets (and forwarding would also have a train 26101 * of packets) for that destination. If this is 26102 * the case, some of them would have been dropped 26103 * anyway, since ARP only queues a few packets while 26104 * waiting for resolution 26105 * 26106 * NOTE: We should really call ip_xmit_v4, 26107 * and let it queue the packet and send the 26108 * ARP query and have ARP come back thus: 26109 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26110 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26111 * hw accel work. But it's too complex to get 26112 * the IPsec hw acceleration approach to fit 26113 * well with ip_xmit_v4 doing ARP without 26114 * doing IPsec simplification. For now, we just 26115 * poke ip_xmit_v4 to trigger the arp resolve, so 26116 * that we can continue with the send on the next 26117 * attempt. 26118 * 26119 * XXX THis should be revisited, when 26120 * the IPsec/IP interaction is cleaned up 26121 */ 26122 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26123 " - dropping packet\n")); 26124 freemsg(ipsec_mp); 26125 /* 26126 * Call ip_xmit_v4() to trigger ARP query 26127 * in case the nce_state is ND_INITIAL 26128 */ 26129 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 26130 goto drop_pkt; 26131 } 26132 26133 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26134 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26135 mblk_t *, ipsec_mp); 26136 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26137 ipst->ips_ipv4firewall_physical_out, NULL, 26138 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26139 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26140 if (ipsec_mp == NULL) 26141 goto drop_pkt; 26142 26143 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26144 pktxmit_state = ip_xmit_v4(mp, ire, 26145 (io->ipsec_out_accelerated ? io : NULL), B_FALSE, NULL); 26146 26147 if ((pktxmit_state == SEND_FAILED) || 26148 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26149 26150 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26151 drop_pkt: 26152 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26153 ipIfStatsOutDiscards); 26154 if (ire_need_rele) 26155 ire_refrele(ire); 26156 if (ire1 != NULL) { 26157 ire_refrele(ire1); 26158 freemsg(next_mp); 26159 } 26160 goto done; 26161 } 26162 26163 freeb(ipsec_mp); 26164 if (ire_need_rele) 26165 ire_refrele(ire); 26166 26167 if (ire1 != NULL) { 26168 ire = ire1; 26169 ire_need_rele = B_TRUE; 26170 ASSERT(next_mp); 26171 ipsec_mp = next_mp; 26172 mp = ipsec_mp->b_cont; 26173 ire1 = NULL; 26174 next_mp = NULL; 26175 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26176 } else { 26177 multirt_send = B_FALSE; 26178 } 26179 } while (multirt_send); 26180 done: 26181 if (ill != NULL && ill_need_rele) 26182 ill_refrele(ill); 26183 if (ipif != NULL) 26184 ipif_refrele(ipif); 26185 } 26186 26187 /* 26188 * Get the ill corresponding to the specified ire, and compare its 26189 * capabilities with the protocol and algorithms specified by the 26190 * the SA obtained from ipsec_out. If they match, annotate the 26191 * ipsec_out structure to indicate that the packet needs acceleration. 26192 * 26193 * 26194 * A packet is eligible for outbound hardware acceleration if the 26195 * following conditions are satisfied: 26196 * 26197 * 1. the packet will not be fragmented 26198 * 2. the provider supports the algorithm 26199 * 3. there is no pending control message being exchanged 26200 * 4. snoop is not attached 26201 * 5. the destination address is not a broadcast or multicast address. 26202 * 26203 * Rationale: 26204 * - Hardware drivers do not support fragmentation with 26205 * the current interface. 26206 * - snoop, multicast, and broadcast may result in exposure of 26207 * a cleartext datagram. 26208 * We check all five of these conditions here. 26209 * 26210 * XXX would like to nuke "ire_t *" parameter here; problem is that 26211 * IRE is only way to figure out if a v4 address is a broadcast and 26212 * thus ineligible for acceleration... 26213 */ 26214 static void 26215 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26216 { 26217 ipsec_out_t *io; 26218 mblk_t *data_mp; 26219 uint_t plen, overhead; 26220 ip_stack_t *ipst; 26221 phyint_t *phyint; 26222 26223 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26224 return; 26225 26226 if (ill == NULL) 26227 return; 26228 ipst = ill->ill_ipst; 26229 phyint = ill->ill_phyint; 26230 26231 /* 26232 * Destination address is a broadcast or multicast. Punt. 26233 */ 26234 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26235 IRE_LOCAL))) 26236 return; 26237 26238 data_mp = ipsec_mp->b_cont; 26239 26240 if (ill->ill_isv6) { 26241 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26242 26243 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26244 return; 26245 26246 plen = ip6h->ip6_plen; 26247 } else { 26248 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26249 26250 if (CLASSD(ipha->ipha_dst)) 26251 return; 26252 26253 plen = ipha->ipha_length; 26254 } 26255 /* 26256 * Is there a pending DLPI control message being exchanged 26257 * between IP/IPsec and the DLS Provider? If there is, it 26258 * could be a SADB update, and the state of the DLS Provider 26259 * SADB might not be in sync with the SADB maintained by 26260 * IPsec. To avoid dropping packets or using the wrong keying 26261 * material, we do not accelerate this packet. 26262 */ 26263 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26264 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26265 "ill_dlpi_pending! don't accelerate packet\n")); 26266 return; 26267 } 26268 26269 /* 26270 * Is the Provider in promiscous mode? If it does, we don't 26271 * accelerate the packet since it will bounce back up to the 26272 * listeners in the clear. 26273 */ 26274 if (phyint->phyint_flags & PHYI_PROMISC) { 26275 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26276 "ill in promiscous mode, don't accelerate packet\n")); 26277 return; 26278 } 26279 26280 /* 26281 * Will the packet require fragmentation? 26282 */ 26283 26284 /* 26285 * IPsec ESP note: this is a pessimistic estimate, but the same 26286 * as is used elsewhere. 26287 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26288 * + 2-byte trailer 26289 */ 26290 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26291 IPSEC_BASE_ESP_HDR_SIZE(sa); 26292 26293 if ((plen + overhead) > ill->ill_max_mtu) 26294 return; 26295 26296 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26297 26298 /* 26299 * Can the ill accelerate this IPsec protocol and algorithm 26300 * specified by the SA? 26301 */ 26302 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26303 ill->ill_isv6, sa, ipst->ips_netstack)) { 26304 return; 26305 } 26306 26307 /* 26308 * Tell AH or ESP that the outbound ill is capable of 26309 * accelerating this packet. 26310 */ 26311 io->ipsec_out_is_capab_ill = B_TRUE; 26312 } 26313 26314 /* 26315 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26316 * 26317 * If this function returns B_TRUE, the requested SA's have been filled 26318 * into the ipsec_out_*_sa pointers. 26319 * 26320 * If the function returns B_FALSE, the packet has been "consumed", most 26321 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26322 * 26323 * The SA references created by the protocol-specific "select" 26324 * function will be released when the ipsec_mp is freed, thanks to the 26325 * ipsec_out_free destructor -- see spd.c. 26326 */ 26327 static boolean_t 26328 ipsec_out_select_sa(mblk_t *ipsec_mp) 26329 { 26330 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26331 ipsec_out_t *io; 26332 ipsec_policy_t *pp; 26333 ipsec_action_t *ap; 26334 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26335 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26336 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26337 26338 if (!io->ipsec_out_secure) { 26339 /* 26340 * We came here by mistake. 26341 * Don't bother with ipsec processing 26342 * We should "discourage" this path in the future. 26343 */ 26344 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26345 return (B_FALSE); 26346 } 26347 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26348 ASSERT((io->ipsec_out_policy != NULL) || 26349 (io->ipsec_out_act != NULL)); 26350 26351 ASSERT(io->ipsec_out_failed == B_FALSE); 26352 26353 /* 26354 * IPsec processing has started. 26355 */ 26356 io->ipsec_out_proc_begin = B_TRUE; 26357 ap = io->ipsec_out_act; 26358 if (ap == NULL) { 26359 pp = io->ipsec_out_policy; 26360 ASSERT(pp != NULL); 26361 ap = pp->ipsp_act; 26362 ASSERT(ap != NULL); 26363 } 26364 26365 /* 26366 * We have an action. now, let's select SA's. 26367 * (In the future, we can cache this in the conn_t..) 26368 */ 26369 if (ap->ipa_want_esp) { 26370 if (io->ipsec_out_esp_sa == NULL) { 26371 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26372 IPPROTO_ESP); 26373 } 26374 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26375 } 26376 26377 if (ap->ipa_want_ah) { 26378 if (io->ipsec_out_ah_sa == NULL) { 26379 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26380 IPPROTO_AH); 26381 } 26382 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26383 /* 26384 * The ESP and AH processing order needs to be preserved 26385 * when both protocols are required (ESP should be applied 26386 * before AH for an outbound packet). Force an ESP ACQUIRE 26387 * when both ESP and AH are required, and an AH ACQUIRE 26388 * is needed. 26389 */ 26390 if (ap->ipa_want_esp && need_ah_acquire) 26391 need_esp_acquire = B_TRUE; 26392 } 26393 26394 /* 26395 * Send an ACQUIRE (extended, regular, or both) if we need one. 26396 * Release SAs that got referenced, but will not be used until we 26397 * acquire _all_ of the SAs we need. 26398 */ 26399 if (need_ah_acquire || need_esp_acquire) { 26400 if (io->ipsec_out_ah_sa != NULL) { 26401 IPSA_REFRELE(io->ipsec_out_ah_sa); 26402 io->ipsec_out_ah_sa = NULL; 26403 } 26404 if (io->ipsec_out_esp_sa != NULL) { 26405 IPSA_REFRELE(io->ipsec_out_esp_sa); 26406 io->ipsec_out_esp_sa = NULL; 26407 } 26408 26409 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26410 return (B_FALSE); 26411 } 26412 26413 return (B_TRUE); 26414 } 26415 26416 /* 26417 * Process an IPSEC_OUT message and see what you can 26418 * do with it. 26419 * IPQoS Notes: 26420 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26421 * IPsec. 26422 * XXX would like to nuke ire_t. 26423 * XXX ill_index better be "real" 26424 */ 26425 void 26426 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26427 { 26428 ipsec_out_t *io; 26429 ipsec_policy_t *pp; 26430 ipsec_action_t *ap; 26431 ipha_t *ipha; 26432 ip6_t *ip6h; 26433 mblk_t *mp; 26434 ill_t *ill; 26435 zoneid_t zoneid; 26436 ipsec_status_t ipsec_rc; 26437 boolean_t ill_need_rele = B_FALSE; 26438 ip_stack_t *ipst; 26439 ipsec_stack_t *ipss; 26440 26441 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26442 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26443 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26444 ipst = io->ipsec_out_ns->netstack_ip; 26445 mp = ipsec_mp->b_cont; 26446 26447 /* 26448 * Initiate IPPF processing. We do it here to account for packets 26449 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26450 * We can check for ipsec_out_proc_begin even for such packets, as 26451 * they will always be false (asserted below). 26452 */ 26453 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26454 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26455 io->ipsec_out_ill_index : ill_index); 26456 if (mp == NULL) { 26457 ip2dbg(("ipsec_out_process: packet dropped "\ 26458 "during IPPF processing\n")); 26459 freeb(ipsec_mp); 26460 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26461 return; 26462 } 26463 } 26464 26465 if (!io->ipsec_out_secure) { 26466 /* 26467 * We came here by mistake. 26468 * Don't bother with ipsec processing 26469 * Should "discourage" this path in the future. 26470 */ 26471 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26472 goto done; 26473 } 26474 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26475 ASSERT((io->ipsec_out_policy != NULL) || 26476 (io->ipsec_out_act != NULL)); 26477 ASSERT(io->ipsec_out_failed == B_FALSE); 26478 26479 ipss = ipst->ips_netstack->netstack_ipsec; 26480 if (!ipsec_loaded(ipss)) { 26481 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26482 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26483 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26484 } else { 26485 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26486 } 26487 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26488 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26489 &ipss->ipsec_dropper); 26490 return; 26491 } 26492 26493 /* 26494 * IPsec processing has started. 26495 */ 26496 io->ipsec_out_proc_begin = B_TRUE; 26497 ap = io->ipsec_out_act; 26498 if (ap == NULL) { 26499 pp = io->ipsec_out_policy; 26500 ASSERT(pp != NULL); 26501 ap = pp->ipsp_act; 26502 ASSERT(ap != NULL); 26503 } 26504 26505 /* 26506 * Save the outbound ill index. When the packet comes back 26507 * from IPsec, we make sure the ill hasn't changed or disappeared 26508 * before sending it the accelerated packet. 26509 */ 26510 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26511 ill = ire_to_ill(ire); 26512 io->ipsec_out_capab_ill_index = ill->ill_phyint->phyint_ifindex; 26513 } 26514 26515 /* 26516 * The order of processing is first insert a IP header if needed. 26517 * Then insert the ESP header and then the AH header. 26518 */ 26519 if ((io->ipsec_out_se_done == B_FALSE) && 26520 (ap->ipa_want_se)) { 26521 /* 26522 * First get the outer IP header before sending 26523 * it to ESP. 26524 */ 26525 ipha_t *oipha, *iipha; 26526 mblk_t *outer_mp, *inner_mp; 26527 26528 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26529 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26530 "ipsec_out_process: " 26531 "Self-Encapsulation failed: Out of memory\n"); 26532 freemsg(ipsec_mp); 26533 if (ill != NULL) { 26534 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26535 } else { 26536 BUMP_MIB(&ipst->ips_ip_mib, 26537 ipIfStatsOutDiscards); 26538 } 26539 return; 26540 } 26541 inner_mp = ipsec_mp->b_cont; 26542 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26543 oipha = (ipha_t *)outer_mp->b_rptr; 26544 iipha = (ipha_t *)inner_mp->b_rptr; 26545 *oipha = *iipha; 26546 outer_mp->b_wptr += sizeof (ipha_t); 26547 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26548 sizeof (ipha_t)); 26549 oipha->ipha_protocol = IPPROTO_ENCAP; 26550 oipha->ipha_version_and_hdr_length = 26551 IP_SIMPLE_HDR_VERSION; 26552 oipha->ipha_hdr_checksum = 0; 26553 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26554 outer_mp->b_cont = inner_mp; 26555 ipsec_mp->b_cont = outer_mp; 26556 26557 io->ipsec_out_se_done = B_TRUE; 26558 io->ipsec_out_tunnel = B_TRUE; 26559 } 26560 26561 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26562 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26563 !ipsec_out_select_sa(ipsec_mp)) 26564 return; 26565 26566 /* 26567 * By now, we know what SA's to use. Toss over to ESP & AH 26568 * to do the heavy lifting. 26569 */ 26570 zoneid = io->ipsec_out_zoneid; 26571 ASSERT(zoneid != ALL_ZONES); 26572 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26573 ASSERT(io->ipsec_out_esp_sa != NULL); 26574 io->ipsec_out_esp_done = B_TRUE; 26575 /* 26576 * Note that since hw accel can only apply one transform, 26577 * not two, we skip hw accel for ESP if we also have AH 26578 * This is an design limitation of the interface 26579 * which should be revisited. 26580 */ 26581 ASSERT(ire != NULL); 26582 if (io->ipsec_out_ah_sa == NULL) { 26583 ill = (ill_t *)ire->ire_stq->q_ptr; 26584 ipsec_out_is_accelerated(ipsec_mp, 26585 io->ipsec_out_esp_sa, ill, ire); 26586 } 26587 26588 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26589 switch (ipsec_rc) { 26590 case IPSEC_STATUS_SUCCESS: 26591 break; 26592 case IPSEC_STATUS_FAILED: 26593 if (ill != NULL) { 26594 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26595 } else { 26596 BUMP_MIB(&ipst->ips_ip_mib, 26597 ipIfStatsOutDiscards); 26598 } 26599 /* FALLTHRU */ 26600 case IPSEC_STATUS_PENDING: 26601 return; 26602 } 26603 } 26604 26605 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26606 ASSERT(io->ipsec_out_ah_sa != NULL); 26607 io->ipsec_out_ah_done = B_TRUE; 26608 if (ire == NULL) { 26609 int idx = io->ipsec_out_capab_ill_index; 26610 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26611 NULL, NULL, NULL, NULL, ipst); 26612 ill_need_rele = B_TRUE; 26613 } else { 26614 ill = (ill_t *)ire->ire_stq->q_ptr; 26615 } 26616 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26617 ire); 26618 26619 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26620 switch (ipsec_rc) { 26621 case IPSEC_STATUS_SUCCESS: 26622 break; 26623 case IPSEC_STATUS_FAILED: 26624 if (ill != NULL) { 26625 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26626 } else { 26627 BUMP_MIB(&ipst->ips_ip_mib, 26628 ipIfStatsOutDiscards); 26629 } 26630 /* FALLTHRU */ 26631 case IPSEC_STATUS_PENDING: 26632 if (ill != NULL && ill_need_rele) 26633 ill_refrele(ill); 26634 return; 26635 } 26636 } 26637 /* 26638 * We are done with IPsec processing. Send it over the wire. 26639 */ 26640 done: 26641 mp = ipsec_mp->b_cont; 26642 ipha = (ipha_t *)mp->b_rptr; 26643 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26644 ip_wput_ipsec_out(q, ipsec_mp, ipha, ire->ire_ipif->ipif_ill, 26645 ire); 26646 } else { 26647 ip6h = (ip6_t *)ipha; 26648 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ire->ire_ipif->ipif_ill, 26649 ire); 26650 } 26651 if (ill != NULL && ill_need_rele) 26652 ill_refrele(ill); 26653 } 26654 26655 /* ARGSUSED */ 26656 void 26657 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26658 { 26659 opt_restart_t *or; 26660 int err; 26661 conn_t *connp; 26662 cred_t *cr; 26663 26664 ASSERT(CONN_Q(q)); 26665 connp = Q_TO_CONN(q); 26666 26667 ASSERT(first_mp->b_datap->db_type == M_CTL); 26668 or = (opt_restart_t *)first_mp->b_rptr; 26669 /* 26670 * We checked for a db_credp the first time svr4_optcom_req 26671 * was called (from ip_wput_nondata). So we can just ASSERT here. 26672 */ 26673 cr = msg_getcred(first_mp, NULL); 26674 ASSERT(cr != NULL); 26675 26676 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26677 err = svr4_optcom_req(q, first_mp, cr, 26678 &ip_opt_obj, B_FALSE); 26679 } else { 26680 ASSERT(or->or_type == T_OPTMGMT_REQ); 26681 err = tpi_optcom_req(q, first_mp, cr, 26682 &ip_opt_obj, B_FALSE); 26683 } 26684 if (err != EINPROGRESS) { 26685 /* operation is done */ 26686 CONN_OPER_PENDING_DONE(connp); 26687 } 26688 } 26689 26690 /* 26691 * ioctls that go through a down/up sequence may need to wait for the down 26692 * to complete. This involves waiting for the ire and ipif refcnts to go down 26693 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26694 */ 26695 /* ARGSUSED */ 26696 void 26697 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26698 { 26699 struct iocblk *iocp; 26700 mblk_t *mp1; 26701 ip_ioctl_cmd_t *ipip; 26702 int err; 26703 sin_t *sin; 26704 struct lifreq *lifr; 26705 struct ifreq *ifr; 26706 26707 iocp = (struct iocblk *)mp->b_rptr; 26708 ASSERT(ipsq != NULL); 26709 /* Existence of mp1 verified in ip_wput_nondata */ 26710 mp1 = mp->b_cont->b_cont; 26711 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26712 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26713 /* 26714 * Special case where ipx_current_ipif is not set: 26715 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26716 * We are here as were not able to complete the operation in 26717 * ipif_set_values because we could not become exclusive on 26718 * the new ipsq. 26719 */ 26720 ill_t *ill = q->q_ptr; 26721 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26722 } 26723 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 26724 26725 if (ipip->ipi_cmd_type == IF_CMD) { 26726 /* This a old style SIOC[GS]IF* command */ 26727 ifr = (struct ifreq *)mp1->b_rptr; 26728 sin = (sin_t *)&ifr->ifr_addr; 26729 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26730 /* This a new style SIOC[GS]LIF* command */ 26731 lifr = (struct lifreq *)mp1->b_rptr; 26732 sin = (sin_t *)&lifr->lifr_addr; 26733 } else { 26734 sin = NULL; 26735 } 26736 26737 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 26738 q, mp, ipip, mp1->b_rptr); 26739 26740 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26741 } 26742 26743 /* 26744 * ioctl processing 26745 * 26746 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26747 * the ioctl command in the ioctl tables, determines the copyin data size 26748 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26749 * 26750 * ioctl processing then continues when the M_IOCDATA makes its way down to 26751 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26752 * associated 'conn' is refheld till the end of the ioctl and the general 26753 * ioctl processing function ip_process_ioctl() is called to extract the 26754 * arguments and process the ioctl. To simplify extraction, ioctl commands 26755 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26756 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26757 * is used to extract the ioctl's arguments. 26758 * 26759 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26760 * so goes thru the serialization primitive ipsq_try_enter. Then the 26761 * appropriate function to handle the ioctl is called based on the entry in 26762 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26763 * which also refreleases the 'conn' that was refheld at the start of the 26764 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26765 * 26766 * Many exclusive ioctls go thru an internal down up sequence as part of 26767 * the operation. For example an attempt to change the IP address of an 26768 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26769 * does all the cleanup such as deleting all ires that use this address. 26770 * Then we need to wait till all references to the interface go away. 26771 */ 26772 void 26773 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26774 { 26775 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26776 ip_ioctl_cmd_t *ipip = arg; 26777 ip_extract_func_t *extract_funcp; 26778 cmd_info_t ci; 26779 int err; 26780 boolean_t entered_ipsq = B_FALSE; 26781 26782 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26783 26784 if (ipip == NULL) 26785 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26786 26787 /* 26788 * SIOCLIFADDIF needs to go thru a special path since the 26789 * ill may not exist yet. This happens in the case of lo0 26790 * which is created using this ioctl. 26791 */ 26792 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26793 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26794 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26795 return; 26796 } 26797 26798 ci.ci_ipif = NULL; 26799 if (ipip->ipi_cmd_type == MISC_CMD) { 26800 /* 26801 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26802 */ 26803 if (ipip->ipi_cmd == IF_UNITSEL) { 26804 /* ioctl comes down the ill */ 26805 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26806 ipif_refhold(ci.ci_ipif); 26807 } 26808 err = 0; 26809 ci.ci_sin = NULL; 26810 ci.ci_sin6 = NULL; 26811 ci.ci_lifr = NULL; 26812 } else { 26813 switch (ipip->ipi_cmd_type) { 26814 case IF_CMD: 26815 case LIF_CMD: 26816 extract_funcp = ip_extract_lifreq; 26817 break; 26818 26819 case ARP_CMD: 26820 case XARP_CMD: 26821 extract_funcp = ip_extract_arpreq; 26822 break; 26823 26824 case MSFILT_CMD: 26825 extract_funcp = ip_extract_msfilter; 26826 break; 26827 26828 default: 26829 ASSERT(0); 26830 } 26831 26832 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 26833 if (err != 0) { 26834 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26835 return; 26836 } 26837 26838 /* 26839 * All of the extraction functions return a refheld ipif. 26840 */ 26841 ASSERT(ci.ci_ipif != NULL); 26842 } 26843 26844 if (!(ipip->ipi_flags & IPI_WR)) { 26845 /* 26846 * A return value of EINPROGRESS means the ioctl is 26847 * either queued and waiting for some reason or has 26848 * already completed. 26849 */ 26850 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26851 ci.ci_lifr); 26852 if (ci.ci_ipif != NULL) 26853 ipif_refrele(ci.ci_ipif); 26854 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26855 return; 26856 } 26857 26858 ASSERT(ci.ci_ipif != NULL); 26859 26860 /* 26861 * If ipsq is non-NULL, we are already being called exclusively. 26862 */ 26863 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26864 if (ipsq == NULL) { 26865 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 26866 NEW_OP, B_TRUE); 26867 if (ipsq == NULL) { 26868 ipif_refrele(ci.ci_ipif); 26869 return; 26870 } 26871 entered_ipsq = B_TRUE; 26872 } 26873 26874 /* 26875 * Release the ipif so that ipif_down and friends that wait for 26876 * references to go away are not misled about the current ipif_refcnt 26877 * values. We are writer so we can access the ipif even after releasing 26878 * the ipif. 26879 */ 26880 ipif_refrele(ci.ci_ipif); 26881 26882 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 26883 26884 /* 26885 * A return value of EINPROGRESS means the ioctl is 26886 * either queued and waiting for some reason or has 26887 * already completed. 26888 */ 26889 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 26890 26891 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26892 26893 if (entered_ipsq) 26894 ipsq_exit(ipsq); 26895 } 26896 26897 /* 26898 * Complete the ioctl. Typically ioctls use the mi package and need to 26899 * do mi_copyout/mi_copy_done. 26900 */ 26901 void 26902 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 26903 { 26904 conn_t *connp = NULL; 26905 26906 if (err == EINPROGRESS) 26907 return; 26908 26909 if (CONN_Q(q)) { 26910 connp = Q_TO_CONN(q); 26911 ASSERT(connp->conn_ref >= 2); 26912 } 26913 26914 switch (mode) { 26915 case COPYOUT: 26916 if (err == 0) 26917 mi_copyout(q, mp); 26918 else 26919 mi_copy_done(q, mp, err); 26920 break; 26921 26922 case NO_COPYOUT: 26923 mi_copy_done(q, mp, err); 26924 break; 26925 26926 default: 26927 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 26928 break; 26929 } 26930 26931 /* 26932 * The refhold placed at the start of the ioctl is released here. 26933 */ 26934 if (connp != NULL) 26935 CONN_OPER_PENDING_DONE(connp); 26936 26937 if (ipsq != NULL) 26938 ipsq_current_finish(ipsq); 26939 } 26940 26941 /* Called from ip_wput for all non data messages */ 26942 /* ARGSUSED */ 26943 void 26944 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26945 { 26946 mblk_t *mp1; 26947 ire_t *ire, *fake_ire; 26948 ill_t *ill; 26949 struct iocblk *iocp; 26950 ip_ioctl_cmd_t *ipip; 26951 cred_t *cr; 26952 conn_t *connp; 26953 int err; 26954 nce_t *nce; 26955 ipif_t *ipif; 26956 ip_stack_t *ipst; 26957 char *proto_str; 26958 26959 if (CONN_Q(q)) { 26960 connp = Q_TO_CONN(q); 26961 ipst = connp->conn_netstack->netstack_ip; 26962 } else { 26963 connp = NULL; 26964 ipst = ILLQ_TO_IPST(q); 26965 } 26966 26967 switch (DB_TYPE(mp)) { 26968 case M_IOCTL: 26969 /* 26970 * IOCTL processing begins in ip_sioctl_copyin_setup which 26971 * will arrange to copy in associated control structures. 26972 */ 26973 ip_sioctl_copyin_setup(q, mp); 26974 return; 26975 case M_IOCDATA: 26976 /* 26977 * Ensure that this is associated with one of our trans- 26978 * parent ioctls. If it's not ours, discard it if we're 26979 * running as a driver, or pass it on if we're a module. 26980 */ 26981 iocp = (struct iocblk *)mp->b_rptr; 26982 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26983 if (ipip == NULL) { 26984 if (q->q_next == NULL) { 26985 goto nak; 26986 } else { 26987 putnext(q, mp); 26988 } 26989 return; 26990 } 26991 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 26992 /* 26993 * the ioctl is one we recognise, but is not 26994 * consumed by IP as a module, pass M_IOCDATA 26995 * for processing downstream, but only for 26996 * common Streams ioctls. 26997 */ 26998 if (ipip->ipi_flags & IPI_PASS_DOWN) { 26999 putnext(q, mp); 27000 return; 27001 } else { 27002 goto nak; 27003 } 27004 } 27005 27006 /* IOCTL continuation following copyin or copyout. */ 27007 if (mi_copy_state(q, mp, NULL) == -1) { 27008 /* 27009 * The copy operation failed. mi_copy_state already 27010 * cleaned up, so we're out of here. 27011 */ 27012 return; 27013 } 27014 /* 27015 * If we just completed a copy in, we become writer and 27016 * continue processing in ip_sioctl_copyin_done. If it 27017 * was a copy out, we call mi_copyout again. If there is 27018 * nothing more to copy out, it will complete the IOCTL. 27019 */ 27020 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27021 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27022 mi_copy_done(q, mp, EPROTO); 27023 return; 27024 } 27025 /* 27026 * Check for cases that need more copying. A return 27027 * value of 0 means a second copyin has been started, 27028 * so we return; a return value of 1 means no more 27029 * copying is needed, so we continue. 27030 */ 27031 if (ipip->ipi_cmd_type == MSFILT_CMD && 27032 MI_COPY_COUNT(mp) == 1) { 27033 if (ip_copyin_msfilter(q, mp) == 0) 27034 return; 27035 } 27036 /* 27037 * Refhold the conn, till the ioctl completes. This is 27038 * needed in case the ioctl ends up in the pending mp 27039 * list. Every mp in the ill_pending_mp list and 27040 * the ipx_pending_mp must have a refhold on the conn 27041 * to resume processing. The refhold is released when 27042 * the ioctl completes. (normally or abnormally) 27043 * In all cases ip_ioctl_finish is called to finish 27044 * the ioctl. 27045 */ 27046 if (connp != NULL) { 27047 /* This is not a reentry */ 27048 ASSERT(ipsq == NULL); 27049 CONN_INC_REF(connp); 27050 } else { 27051 if (!(ipip->ipi_flags & IPI_MODOK)) { 27052 mi_copy_done(q, mp, EINVAL); 27053 return; 27054 } 27055 } 27056 27057 ip_process_ioctl(ipsq, q, mp, ipip); 27058 27059 } else { 27060 mi_copyout(q, mp); 27061 } 27062 return; 27063 nak: 27064 iocp->ioc_error = EINVAL; 27065 mp->b_datap->db_type = M_IOCNAK; 27066 iocp->ioc_count = 0; 27067 qreply(q, mp); 27068 return; 27069 27070 case M_IOCNAK: 27071 /* 27072 * The only way we could get here is if a resolver didn't like 27073 * an IOCTL we sent it. This shouldn't happen. 27074 */ 27075 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27076 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27077 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27078 freemsg(mp); 27079 return; 27080 case M_IOCACK: 27081 /* /dev/ip shouldn't see this */ 27082 if (CONN_Q(q)) 27083 goto nak; 27084 27085 /* 27086 * Finish socket ioctls passed through to ARP. We use the 27087 * ioc_cmd values we set in ip_sioctl_arp() to decide whether 27088 * we need to become writer before calling ip_sioctl_iocack(). 27089 * Note that qwriter_ip() will release the refhold, and that a 27090 * refhold is OK without ILL_CAN_LOOKUP() since we're on the 27091 * ill stream. 27092 */ 27093 iocp = (struct iocblk *)mp->b_rptr; 27094 if (iocp->ioc_cmd == AR_ENTRY_SQUERY) { 27095 ip_sioctl_iocack(NULL, q, mp, NULL); 27096 return; 27097 } 27098 27099 ASSERT(iocp->ioc_cmd == AR_ENTRY_DELETE || 27100 iocp->ioc_cmd == AR_ENTRY_ADD); 27101 ill = q->q_ptr; 27102 ill_refhold(ill); 27103 qwriter_ip(ill, q, mp, ip_sioctl_iocack, CUR_OP, B_FALSE); 27104 return; 27105 case M_FLUSH: 27106 if (*mp->b_rptr & FLUSHW) 27107 flushq(q, FLUSHALL); 27108 if (q->q_next) { 27109 putnext(q, mp); 27110 return; 27111 } 27112 if (*mp->b_rptr & FLUSHR) { 27113 *mp->b_rptr &= ~FLUSHW; 27114 qreply(q, mp); 27115 return; 27116 } 27117 freemsg(mp); 27118 return; 27119 case IRE_DB_REQ_TYPE: 27120 if (connp == NULL) { 27121 proto_str = "IRE_DB_REQ_TYPE"; 27122 goto protonak; 27123 } 27124 /* An Upper Level Protocol wants a copy of an IRE. */ 27125 ip_ire_req(q, mp); 27126 return; 27127 case M_CTL: 27128 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27129 break; 27130 27131 /* M_CTL messages are used by ARP to tell us things. */ 27132 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27133 break; 27134 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27135 case AR_ENTRY_SQUERY: 27136 putnext(q, mp); 27137 return; 27138 case AR_CLIENT_NOTIFY: 27139 ip_arp_news(q, mp); 27140 return; 27141 case AR_DLPIOP_DONE: 27142 ASSERT(q->q_next != NULL); 27143 ill = (ill_t *)q->q_ptr; 27144 /* qwriter_ip releases the refhold */ 27145 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27146 ill_refhold(ill); 27147 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27148 return; 27149 case AR_ARP_CLOSING: 27150 /* 27151 * ARP (above us) is closing. If no ARP bringup is 27152 * currently pending, ack the message so that ARP 27153 * can complete its close. Also mark ill_arp_closing 27154 * so that new ARP bringups will fail. If any 27155 * ARP bringup is currently in progress, we will 27156 * ack this when the current ARP bringup completes. 27157 */ 27158 ASSERT(q->q_next != NULL); 27159 ill = (ill_t *)q->q_ptr; 27160 mutex_enter(&ill->ill_lock); 27161 ill->ill_arp_closing = 1; 27162 if (!ill->ill_arp_bringup_pending) { 27163 mutex_exit(&ill->ill_lock); 27164 qreply(q, mp); 27165 } else { 27166 mutex_exit(&ill->ill_lock); 27167 freemsg(mp); 27168 } 27169 return; 27170 case AR_ARP_EXTEND: 27171 /* 27172 * The ARP module above us is capable of duplicate 27173 * address detection. Old ATM drivers will not send 27174 * this message. 27175 */ 27176 ASSERT(q->q_next != NULL); 27177 ill = (ill_t *)q->q_ptr; 27178 ill->ill_arp_extend = B_TRUE; 27179 freemsg(mp); 27180 return; 27181 default: 27182 break; 27183 } 27184 break; 27185 case M_PROTO: 27186 case M_PCPROTO: 27187 /* 27188 * The only PROTO messages we expect are copies of option 27189 * negotiation acknowledgements, AH and ESP bind requests 27190 * are also expected. 27191 */ 27192 switch (((union T_primitives *)mp->b_rptr)->type) { 27193 case O_T_BIND_REQ: 27194 case T_BIND_REQ: { 27195 /* Request can get queued in bind */ 27196 if (connp == NULL) { 27197 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27198 goto protonak; 27199 } 27200 /* 27201 * The transports except SCTP call ip_bind_{v4,v6}() 27202 * directly instead of a a putnext. SCTP doesn't 27203 * generate any T_BIND_REQ since it has its own 27204 * fanout data structures. However, ESP and AH 27205 * come in for regular binds; all other cases are 27206 * bind retries. 27207 */ 27208 ASSERT(!IPCL_IS_SCTP(connp)); 27209 27210 /* Don't increment refcnt if this is a re-entry */ 27211 if (ipsq == NULL) 27212 CONN_INC_REF(connp); 27213 27214 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27215 connp, NULL) : ip_bind_v4(q, mp, connp); 27216 ASSERT(mp != NULL); 27217 27218 ASSERT(!IPCL_IS_TCP(connp)); 27219 ASSERT(!IPCL_IS_UDP(connp)); 27220 ASSERT(!IPCL_IS_RAWIP(connp)); 27221 ASSERT(!IPCL_IS_IPTUN(connp)); 27222 27223 /* The case of AH and ESP */ 27224 qreply(q, mp); 27225 CONN_OPER_PENDING_DONE(connp); 27226 return; 27227 } 27228 case T_SVR4_OPTMGMT_REQ: 27229 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27230 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27231 27232 if (connp == NULL) { 27233 proto_str = "T_SVR4_OPTMGMT_REQ"; 27234 goto protonak; 27235 } 27236 27237 /* 27238 * All Solaris components should pass a db_credp 27239 * for this TPI message, hence we ASSERT. 27240 * But in case there is some other M_PROTO that looks 27241 * like a TPI message sent by some other kernel 27242 * component, we check and return an error. 27243 */ 27244 cr = msg_getcred(mp, NULL); 27245 ASSERT(cr != NULL); 27246 if (cr == NULL) { 27247 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27248 if (mp != NULL) 27249 qreply(q, mp); 27250 return; 27251 } 27252 27253 if (!snmpcom_req(q, mp, ip_snmp_set, 27254 ip_snmp_get, cr)) { 27255 /* 27256 * Call svr4_optcom_req so that it can 27257 * generate the ack. We don't come here 27258 * if this operation is being restarted. 27259 * ip_restart_optmgmt will drop the conn ref. 27260 * In the case of ipsec option after the ipsec 27261 * load is complete conn_restart_ipsec_waiter 27262 * drops the conn ref. 27263 */ 27264 ASSERT(ipsq == NULL); 27265 CONN_INC_REF(connp); 27266 if (ip_check_for_ipsec_opt(q, mp)) 27267 return; 27268 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27269 B_FALSE); 27270 if (err != EINPROGRESS) { 27271 /* Operation is done */ 27272 CONN_OPER_PENDING_DONE(connp); 27273 } 27274 } 27275 return; 27276 case T_OPTMGMT_REQ: 27277 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27278 /* 27279 * Note: No snmpcom_req support through new 27280 * T_OPTMGMT_REQ. 27281 * Call tpi_optcom_req so that it can 27282 * generate the ack. 27283 */ 27284 if (connp == NULL) { 27285 proto_str = "T_OPTMGMT_REQ"; 27286 goto protonak; 27287 } 27288 27289 /* 27290 * All Solaris components should pass a db_credp 27291 * for this TPI message, hence we ASSERT. 27292 * But in case there is some other M_PROTO that looks 27293 * like a TPI message sent by some other kernel 27294 * component, we check and return an error. 27295 */ 27296 cr = msg_getcred(mp, NULL); 27297 ASSERT(cr != NULL); 27298 if (cr == NULL) { 27299 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27300 if (mp != NULL) 27301 qreply(q, mp); 27302 return; 27303 } 27304 ASSERT(ipsq == NULL); 27305 /* 27306 * We don't come here for restart. ip_restart_optmgmt 27307 * will drop the conn ref. In the case of ipsec option 27308 * after the ipsec load is complete 27309 * conn_restart_ipsec_waiter drops the conn ref. 27310 */ 27311 CONN_INC_REF(connp); 27312 if (ip_check_for_ipsec_opt(q, mp)) 27313 return; 27314 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27315 if (err != EINPROGRESS) { 27316 /* Operation is done */ 27317 CONN_OPER_PENDING_DONE(connp); 27318 } 27319 return; 27320 case T_UNBIND_REQ: 27321 if (connp == NULL) { 27322 proto_str = "T_UNBIND_REQ"; 27323 goto protonak; 27324 } 27325 ip_unbind(Q_TO_CONN(q)); 27326 mp = mi_tpi_ok_ack_alloc(mp); 27327 qreply(q, mp); 27328 return; 27329 default: 27330 /* 27331 * Have to drop any DLPI messages coming down from 27332 * arp (such as an info_req which would cause ip 27333 * to receive an extra info_ack if it was passed 27334 * through. 27335 */ 27336 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27337 (int)*(uint_t *)mp->b_rptr)); 27338 freemsg(mp); 27339 return; 27340 } 27341 /* NOTREACHED */ 27342 case IRE_DB_TYPE: { 27343 nce_t *nce; 27344 ill_t *ill; 27345 in6_addr_t gw_addr_v6; 27346 27347 /* 27348 * This is a response back from a resolver. It 27349 * consists of a message chain containing: 27350 * IRE_MBLK-->LL_HDR_MBLK->pkt 27351 * The IRE_MBLK is the one we allocated in ip_newroute. 27352 * The LL_HDR_MBLK is the DLPI header to use to get 27353 * the attached packet, and subsequent ones for the 27354 * same destination, transmitted. 27355 */ 27356 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27357 break; 27358 /* 27359 * First, check to make sure the resolution succeeded. 27360 * If it failed, the second mblk will be empty. 27361 * If it is, free the chain, dropping the packet. 27362 * (We must ire_delete the ire; that frees the ire mblk) 27363 * We're doing this now to support PVCs for ATM; it's 27364 * a partial xresolv implementation. When we fully implement 27365 * xresolv interfaces, instead of freeing everything here 27366 * we'll initiate neighbor discovery. 27367 * 27368 * For v4 (ARP and other external resolvers) the resolver 27369 * frees the message, so no check is needed. This check 27370 * is required, though, for a full xresolve implementation. 27371 * Including this code here now both shows how external 27372 * resolvers can NACK a resolution request using an 27373 * existing design that has no specific provisions for NACKs, 27374 * and also takes into account that the current non-ARP 27375 * external resolver has been coded to use this method of 27376 * NACKing for all IPv6 (xresolv) cases, 27377 * whether our xresolv implementation is complete or not. 27378 * 27379 */ 27380 ire = (ire_t *)mp->b_rptr; 27381 ill = ire_to_ill(ire); 27382 mp1 = mp->b_cont; /* dl_unitdata_req */ 27383 if (mp1->b_rptr == mp1->b_wptr) { 27384 if (ire->ire_ipversion == IPV6_VERSION) { 27385 /* 27386 * XRESOLV interface. 27387 */ 27388 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27389 mutex_enter(&ire->ire_lock); 27390 gw_addr_v6 = ire->ire_gateway_addr_v6; 27391 mutex_exit(&ire->ire_lock); 27392 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27393 nce = ndp_lookup_v6(ill, B_FALSE, 27394 &ire->ire_addr_v6, B_FALSE); 27395 } else { 27396 nce = ndp_lookup_v6(ill, B_FALSE, 27397 &gw_addr_v6, B_FALSE); 27398 } 27399 if (nce != NULL) { 27400 nce_resolv_failed(nce); 27401 ndp_delete(nce); 27402 NCE_REFRELE(nce); 27403 } 27404 } 27405 mp->b_cont = NULL; 27406 freemsg(mp1); /* frees the pkt as well */ 27407 ASSERT(ire->ire_nce == NULL); 27408 ire_delete((ire_t *)mp->b_rptr); 27409 return; 27410 } 27411 27412 /* 27413 * Split them into IRE_MBLK and pkt and feed it into 27414 * ire_add_then_send. Then in ire_add_then_send 27415 * the IRE will be added, and then the packet will be 27416 * run back through ip_wput. This time it will make 27417 * it to the wire. 27418 */ 27419 mp->b_cont = NULL; 27420 mp = mp1->b_cont; /* now, mp points to pkt */ 27421 mp1->b_cont = NULL; 27422 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27423 if (ire->ire_ipversion == IPV6_VERSION) { 27424 /* 27425 * XRESOLV interface. Find the nce and put a copy 27426 * of the dl_unitdata_req in nce_res_mp 27427 */ 27428 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27429 mutex_enter(&ire->ire_lock); 27430 gw_addr_v6 = ire->ire_gateway_addr_v6; 27431 mutex_exit(&ire->ire_lock); 27432 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27433 nce = ndp_lookup_v6(ill, B_FALSE, 27434 &ire->ire_addr_v6, B_FALSE); 27435 } else { 27436 nce = ndp_lookup_v6(ill, B_FALSE, 27437 &gw_addr_v6, B_FALSE); 27438 } 27439 if (nce != NULL) { 27440 /* 27441 * We have to protect nce_res_mp here 27442 * from being accessed by other threads 27443 * while we change the mblk pointer. 27444 * Other functions will also lock the nce when 27445 * accessing nce_res_mp. 27446 * 27447 * The reason we change the mblk pointer 27448 * here rather than copying the resolved address 27449 * into the template is that, unlike with 27450 * ethernet, we have no guarantee that the 27451 * resolved address length will be 27452 * smaller than or equal to the lla length 27453 * with which the template was allocated, 27454 * (for ethernet, they're equal) 27455 * so we have to use the actual resolved 27456 * address mblk - which holds the real 27457 * dl_unitdata_req with the resolved address. 27458 * 27459 * Doing this is the same behavior as was 27460 * previously used in the v4 ARP case. 27461 */ 27462 mutex_enter(&nce->nce_lock); 27463 if (nce->nce_res_mp != NULL) 27464 freemsg(nce->nce_res_mp); 27465 nce->nce_res_mp = mp1; 27466 mutex_exit(&nce->nce_lock); 27467 /* 27468 * We do a fastpath probe here because 27469 * we have resolved the address without 27470 * using Neighbor Discovery. 27471 * In the non-XRESOLV v6 case, the fastpath 27472 * probe is done right after neighbor 27473 * discovery completes. 27474 */ 27475 if (nce->nce_res_mp != NULL) { 27476 int res; 27477 nce_fastpath_list_add(nce); 27478 res = ill_fastpath_probe(ill, 27479 nce->nce_res_mp); 27480 if (res != 0 && res != EAGAIN) 27481 nce_fastpath_list_delete(nce); 27482 } 27483 27484 ire_add_then_send(q, ire, mp); 27485 /* 27486 * Now we have to clean out any packets 27487 * that may have been queued on the nce 27488 * while it was waiting for address resolution 27489 * to complete. 27490 */ 27491 mutex_enter(&nce->nce_lock); 27492 mp1 = nce->nce_qd_mp; 27493 nce->nce_qd_mp = NULL; 27494 mutex_exit(&nce->nce_lock); 27495 while (mp1 != NULL) { 27496 mblk_t *nxt_mp; 27497 queue_t *fwdq = NULL; 27498 ill_t *inbound_ill; 27499 uint_t ifindex; 27500 27501 nxt_mp = mp1->b_next; 27502 mp1->b_next = NULL; 27503 /* 27504 * Retrieve ifindex stored in 27505 * ip_rput_data_v6() 27506 */ 27507 ifindex = 27508 (uint_t)(uintptr_t)mp1->b_prev; 27509 inbound_ill = 27510 ill_lookup_on_ifindex(ifindex, 27511 B_TRUE, NULL, NULL, NULL, 27512 NULL, ipst); 27513 mp1->b_prev = NULL; 27514 if (inbound_ill != NULL) 27515 fwdq = inbound_ill->ill_rq; 27516 27517 if (fwdq != NULL) { 27518 put(fwdq, mp1); 27519 ill_refrele(inbound_ill); 27520 } else 27521 put(WR(ill->ill_rq), mp1); 27522 mp1 = nxt_mp; 27523 } 27524 NCE_REFRELE(nce); 27525 } else { /* nce is NULL; clean up */ 27526 ire_delete(ire); 27527 freemsg(mp); 27528 freemsg(mp1); 27529 return; 27530 } 27531 } else { 27532 nce_t *arpce; 27533 /* 27534 * Link layer resolution succeeded. Recompute the 27535 * ire_nce. 27536 */ 27537 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27538 if ((arpce = ndp_lookup_v4(ill, 27539 (ire->ire_gateway_addr != INADDR_ANY ? 27540 &ire->ire_gateway_addr : &ire->ire_addr), 27541 B_FALSE)) == NULL) { 27542 freeb(ire->ire_mp); 27543 freeb(mp1); 27544 freemsg(mp); 27545 return; 27546 } 27547 mutex_enter(&arpce->nce_lock); 27548 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27549 if (arpce->nce_state == ND_REACHABLE) { 27550 /* 27551 * Someone resolved this before us; 27552 * cleanup the res_mp. Since ire has 27553 * not been added yet, the call to ire_add_v4 27554 * from ire_add_then_send (when a dup is 27555 * detected) will clean up the ire. 27556 */ 27557 freeb(mp1); 27558 } else { 27559 ASSERT(arpce->nce_res_mp == NULL); 27560 arpce->nce_res_mp = mp1; 27561 arpce->nce_state = ND_REACHABLE; 27562 } 27563 mutex_exit(&arpce->nce_lock); 27564 if (ire->ire_marks & IRE_MARK_NOADD) { 27565 /* 27566 * this ire will not be added to the ire 27567 * cache table, so we can set the ire_nce 27568 * here, as there are no atomicity constraints. 27569 */ 27570 ire->ire_nce = arpce; 27571 /* 27572 * We are associating this nce with the ire 27573 * so change the nce ref taken in 27574 * ndp_lookup_v4() from 27575 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27576 */ 27577 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27578 } else { 27579 NCE_REFRELE(arpce); 27580 } 27581 ire_add_then_send(q, ire, mp); 27582 } 27583 return; /* All is well, the packet has been sent. */ 27584 } 27585 case IRE_ARPRESOLVE_TYPE: { 27586 27587 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27588 break; 27589 mp1 = mp->b_cont; /* dl_unitdata_req */ 27590 mp->b_cont = NULL; 27591 /* 27592 * First, check to make sure the resolution succeeded. 27593 * If it failed, the second mblk will be empty. 27594 */ 27595 if (mp1->b_rptr == mp1->b_wptr) { 27596 /* cleanup the incomplete ire, free queued packets */ 27597 freemsg(mp); /* fake ire */ 27598 freeb(mp1); /* dl_unitdata response */ 27599 return; 27600 } 27601 27602 /* 27603 * Update any incomplete nce_t found. We search the ctable 27604 * and find the nce from the ire->ire_nce because we need 27605 * to pass the ire to ip_xmit_v4 later, and can find both 27606 * ire and nce in one lookup. 27607 */ 27608 fake_ire = (ire_t *)mp->b_rptr; 27609 27610 /* 27611 * By the time we come back here from ARP the logical outgoing 27612 * interface of the incomplete ire we added in ire_forward() 27613 * could have disappeared, causing the incomplete ire to also 27614 * disappear. So we need to retreive the proper ipif for the 27615 * ire before looking in ctable. In the case of IPMP, the 27616 * ipif may be on the IPMP ill, so look it up based on the 27617 * ire_ipif_ifindex we stashed back in ire_init_common(). 27618 * Then, we can verify that ire_ipif_seqid still exists. 27619 */ 27620 ill = ill_lookup_on_ifindex(fake_ire->ire_ipif_ifindex, B_FALSE, 27621 NULL, NULL, NULL, NULL, ipst); 27622 if (ill == NULL) { 27623 ip1dbg(("ill for incomplete ire vanished\n")); 27624 freemsg(mp); /* fake ire */ 27625 freeb(mp1); /* dl_unitdata response */ 27626 return; 27627 } 27628 27629 /* Get the outgoing ipif */ 27630 mutex_enter(&ill->ill_lock); 27631 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27632 if (ipif == NULL) { 27633 mutex_exit(&ill->ill_lock); 27634 ill_refrele(ill); 27635 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27636 freemsg(mp); /* fake_ire */ 27637 freeb(mp1); /* dl_unitdata response */ 27638 return; 27639 } 27640 27641 ipif_refhold_locked(ipif); 27642 mutex_exit(&ill->ill_lock); 27643 ill_refrele(ill); 27644 ire = ire_arpresolve_lookup(fake_ire->ire_addr, 27645 fake_ire->ire_gateway_addr, ipif, fake_ire->ire_zoneid, 27646 ipst, ((ill_t *)q->q_ptr)->ill_wq); 27647 ipif_refrele(ipif); 27648 if (ire == NULL) { 27649 /* 27650 * no ire was found; check if there is an nce 27651 * for this lookup; if it has no ire's pointing at it 27652 * cleanup. 27653 */ 27654 if ((nce = ndp_lookup_v4(q->q_ptr, 27655 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27656 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27657 B_FALSE)) != NULL) { 27658 /* 27659 * cleanup: 27660 * We check for refcnt 2 (one for the nce 27661 * hash list + 1 for the ref taken by 27662 * ndp_lookup_v4) to check that there are 27663 * no ire's pointing at the nce. 27664 */ 27665 if (nce->nce_refcnt == 2) 27666 ndp_delete(nce); 27667 NCE_REFRELE(nce); 27668 } 27669 freeb(mp1); /* dl_unitdata response */ 27670 freemsg(mp); /* fake ire */ 27671 return; 27672 } 27673 27674 nce = ire->ire_nce; 27675 DTRACE_PROBE2(ire__arpresolve__type, 27676 ire_t *, ire, nce_t *, nce); 27677 mutex_enter(&nce->nce_lock); 27678 nce->nce_last = TICK_TO_MSEC(lbolt64); 27679 if (nce->nce_state == ND_REACHABLE) { 27680 /* 27681 * Someone resolved this before us; 27682 * our response is not needed any more. 27683 */ 27684 mutex_exit(&nce->nce_lock); 27685 freeb(mp1); /* dl_unitdata response */ 27686 } else { 27687 ASSERT(nce->nce_res_mp == NULL); 27688 nce->nce_res_mp = mp1; 27689 nce->nce_state = ND_REACHABLE; 27690 mutex_exit(&nce->nce_lock); 27691 nce_fastpath(nce); 27692 } 27693 /* 27694 * The cached nce_t has been updated to be reachable; 27695 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27696 */ 27697 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27698 freemsg(mp); 27699 /* 27700 * send out queued packets. 27701 */ 27702 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 27703 27704 IRE_REFRELE(ire); 27705 return; 27706 } 27707 default: 27708 break; 27709 } 27710 if (q->q_next) { 27711 putnext(q, mp); 27712 } else 27713 freemsg(mp); 27714 return; 27715 27716 protonak: 27717 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27718 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27719 qreply(q, mp); 27720 } 27721 27722 /* 27723 * Process IP options in an outbound packet. Modify the destination if there 27724 * is a source route option. 27725 * Returns non-zero if something fails in which case an ICMP error has been 27726 * sent and mp freed. 27727 */ 27728 static int 27729 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27730 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27731 { 27732 ipoptp_t opts; 27733 uchar_t *opt; 27734 uint8_t optval; 27735 uint8_t optlen; 27736 ipaddr_t dst; 27737 intptr_t code = 0; 27738 mblk_t *mp; 27739 ire_t *ire = NULL; 27740 27741 ip2dbg(("ip_wput_options\n")); 27742 mp = ipsec_mp; 27743 if (mctl_present) { 27744 mp = ipsec_mp->b_cont; 27745 } 27746 27747 dst = ipha->ipha_dst; 27748 for (optval = ipoptp_first(&opts, ipha); 27749 optval != IPOPT_EOL; 27750 optval = ipoptp_next(&opts)) { 27751 opt = opts.ipoptp_cur; 27752 optlen = opts.ipoptp_len; 27753 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27754 optval, optlen)); 27755 switch (optval) { 27756 uint32_t off; 27757 case IPOPT_SSRR: 27758 case IPOPT_LSRR: 27759 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27760 ip1dbg(( 27761 "ip_wput_options: bad option offset\n")); 27762 code = (char *)&opt[IPOPT_OLEN] - 27763 (char *)ipha; 27764 goto param_prob; 27765 } 27766 off = opt[IPOPT_OFFSET]; 27767 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27768 ntohl(dst))); 27769 /* 27770 * For strict: verify that dst is directly 27771 * reachable. 27772 */ 27773 if (optval == IPOPT_SSRR) { 27774 ire = ire_ftable_lookup(dst, 0, 0, 27775 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27776 msg_getlabel(mp), 27777 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27778 if (ire == NULL) { 27779 ip1dbg(("ip_wput_options: SSRR not" 27780 " directly reachable: 0x%x\n", 27781 ntohl(dst))); 27782 goto bad_src_route; 27783 } 27784 ire_refrele(ire); 27785 } 27786 break; 27787 case IPOPT_RR: 27788 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27789 ip1dbg(( 27790 "ip_wput_options: bad option offset\n")); 27791 code = (char *)&opt[IPOPT_OLEN] - 27792 (char *)ipha; 27793 goto param_prob; 27794 } 27795 break; 27796 case IPOPT_TS: 27797 /* 27798 * Verify that length >=5 and that there is either 27799 * room for another timestamp or that the overflow 27800 * counter is not maxed out. 27801 */ 27802 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27803 if (optlen < IPOPT_MINLEN_IT) { 27804 goto param_prob; 27805 } 27806 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27807 ip1dbg(( 27808 "ip_wput_options: bad option offset\n")); 27809 code = (char *)&opt[IPOPT_OFFSET] - 27810 (char *)ipha; 27811 goto param_prob; 27812 } 27813 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27814 case IPOPT_TS_TSONLY: 27815 off = IPOPT_TS_TIMELEN; 27816 break; 27817 case IPOPT_TS_TSANDADDR: 27818 case IPOPT_TS_PRESPEC: 27819 case IPOPT_TS_PRESPEC_RFC791: 27820 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27821 break; 27822 default: 27823 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27824 (char *)ipha; 27825 goto param_prob; 27826 } 27827 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27828 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27829 /* 27830 * No room and the overflow counter is 15 27831 * already. 27832 */ 27833 goto param_prob; 27834 } 27835 break; 27836 } 27837 } 27838 27839 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27840 return (0); 27841 27842 ip1dbg(("ip_wput_options: error processing IP options.")); 27843 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27844 27845 param_prob: 27846 /* 27847 * Since ip_wput() isn't close to finished, we fill 27848 * in enough of the header for credible error reporting. 27849 */ 27850 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27851 /* Failed */ 27852 freemsg(ipsec_mp); 27853 return (-1); 27854 } 27855 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 27856 return (-1); 27857 27858 bad_src_route: 27859 /* 27860 * Since ip_wput() isn't close to finished, we fill 27861 * in enough of the header for credible error reporting. 27862 */ 27863 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27864 /* Failed */ 27865 freemsg(ipsec_mp); 27866 return (-1); 27867 } 27868 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 27869 return (-1); 27870 } 27871 27872 /* 27873 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 27874 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 27875 * thru /etc/system. 27876 */ 27877 #define CONN_MAXDRAINCNT 64 27878 27879 static void 27880 conn_drain_init(ip_stack_t *ipst) 27881 { 27882 int i, j; 27883 idl_tx_list_t *itl_tx; 27884 27885 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 27886 27887 if ((ipst->ips_conn_drain_list_cnt == 0) || 27888 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 27889 /* 27890 * Default value of the number of drainers is the 27891 * number of cpus, subject to maximum of 8 drainers. 27892 */ 27893 if (boot_max_ncpus != -1) 27894 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 27895 else 27896 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 27897 } 27898 27899 ipst->ips_idl_tx_list = 27900 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 27901 for (i = 0; i < TX_FANOUT_SIZE; i++) { 27902 itl_tx = &ipst->ips_idl_tx_list[i]; 27903 itl_tx->txl_drain_list = 27904 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 27905 sizeof (idl_t), KM_SLEEP); 27906 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 27907 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 27908 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 27909 MUTEX_DEFAULT, NULL); 27910 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 27911 } 27912 } 27913 } 27914 27915 static void 27916 conn_drain_fini(ip_stack_t *ipst) 27917 { 27918 int i; 27919 idl_tx_list_t *itl_tx; 27920 27921 for (i = 0; i < TX_FANOUT_SIZE; i++) { 27922 itl_tx = &ipst->ips_idl_tx_list[i]; 27923 kmem_free(itl_tx->txl_drain_list, 27924 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 27925 } 27926 kmem_free(ipst->ips_idl_tx_list, 27927 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 27928 ipst->ips_idl_tx_list = NULL; 27929 } 27930 27931 /* 27932 * Note: For an overview of how flowcontrol is handled in IP please see the 27933 * IP Flowcontrol notes at the top of this file. 27934 * 27935 * Flow control has blocked us from proceeding. Insert the given conn in one 27936 * of the conn drain lists. These conn wq's will be qenabled later on when 27937 * STREAMS flow control does a backenable. conn_walk_drain will enable 27938 * the first conn in each of these drain lists. Each of these qenabled conns 27939 * in turn enables the next in the list, after it runs, or when it closes, 27940 * thus sustaining the drain process. 27941 */ 27942 void 27943 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 27944 { 27945 idl_t *idl = tx_list->txl_drain_list; 27946 uint_t index; 27947 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 27948 27949 mutex_enter(&connp->conn_lock); 27950 if (connp->conn_state_flags & CONN_CLOSING) { 27951 /* 27952 * The conn is closing as a result of which CONN_CLOSING 27953 * is set. Return. 27954 */ 27955 mutex_exit(&connp->conn_lock); 27956 return; 27957 } else if (connp->conn_idl == NULL) { 27958 /* 27959 * Assign the next drain list round robin. We dont' use 27960 * a lock, and thus it may not be strictly round robin. 27961 * Atomicity of load/stores is enough to make sure that 27962 * conn_drain_list_index is always within bounds. 27963 */ 27964 index = tx_list->txl_drain_index; 27965 ASSERT(index < ipst->ips_conn_drain_list_cnt); 27966 connp->conn_idl = &tx_list->txl_drain_list[index]; 27967 index++; 27968 if (index == ipst->ips_conn_drain_list_cnt) 27969 index = 0; 27970 tx_list->txl_drain_index = index; 27971 } 27972 mutex_exit(&connp->conn_lock); 27973 27974 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 27975 if ((connp->conn_drain_prev != NULL) || 27976 (connp->conn_state_flags & CONN_CLOSING)) { 27977 /* 27978 * The conn is already in the drain list, OR 27979 * the conn is closing. We need to check again for 27980 * the closing case again since close can happen 27981 * after we drop the conn_lock, and before we 27982 * acquire the CONN_DRAIN_LIST_LOCK. 27983 */ 27984 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27985 return; 27986 } else { 27987 idl = connp->conn_idl; 27988 } 27989 27990 /* 27991 * The conn is not in the drain list. Insert it at the 27992 * tail of the drain list. The drain list is circular 27993 * and doubly linked. idl_conn points to the 1st element 27994 * in the list. 27995 */ 27996 if (idl->idl_conn == NULL) { 27997 idl->idl_conn = connp; 27998 connp->conn_drain_next = connp; 27999 connp->conn_drain_prev = connp; 28000 } else { 28001 conn_t *head = idl->idl_conn; 28002 28003 connp->conn_drain_next = head; 28004 connp->conn_drain_prev = head->conn_drain_prev; 28005 head->conn_drain_prev->conn_drain_next = connp; 28006 head->conn_drain_prev = connp; 28007 } 28008 /* 28009 * For non streams based sockets assert flow control. 28010 */ 28011 if (IPCL_IS_NONSTR(connp)) { 28012 DTRACE_PROBE1(su__txq__full, conn_t *, connp); 28013 (*connp->conn_upcalls->su_txq_full) 28014 (connp->conn_upper_handle, B_TRUE); 28015 } else { 28016 conn_setqfull(connp); 28017 noenable(connp->conn_wq); 28018 } 28019 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28020 } 28021 28022 /* 28023 * This conn is closing, and we are called from ip_close. OR 28024 * This conn has been serviced by ip_wsrv, and we need to do the tail 28025 * processing. 28026 * If this conn is part of the drain list, we may need to sustain the drain 28027 * process by qenabling the next conn in the drain list. We may also need to 28028 * remove this conn from the list, if it is done. 28029 */ 28030 static void 28031 conn_drain_tail(conn_t *connp, boolean_t closing) 28032 { 28033 idl_t *idl; 28034 28035 /* 28036 * connp->conn_idl is stable at this point, and no lock is needed 28037 * to check it. If we are called from ip_close, close has already 28038 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28039 * called us only because conn_idl is non-null. If we are called thru 28040 * service, conn_idl could be null, but it cannot change because 28041 * service is single-threaded per queue, and there cannot be another 28042 * instance of service trying to call conn_drain_insert on this conn 28043 * now. 28044 */ 28045 ASSERT(!closing || (connp->conn_idl != NULL)); 28046 28047 /* 28048 * If connp->conn_idl is null, the conn has not been inserted into any 28049 * drain list even once since creation of the conn. Just return. 28050 */ 28051 if (connp->conn_idl == NULL) 28052 return; 28053 28054 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28055 28056 if (connp->conn_drain_prev == NULL) { 28057 /* This conn is currently not in the drain list. */ 28058 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28059 return; 28060 } 28061 idl = connp->conn_idl; 28062 if (idl->idl_conn_draining == connp) { 28063 /* 28064 * This conn is the current drainer. If this is the last conn 28065 * in the drain list, we need to do more checks, in the 'if' 28066 * below. Otherwwise we need to just qenable the next conn, 28067 * to sustain the draining, and is handled in the 'else' 28068 * below. 28069 */ 28070 if (connp->conn_drain_next == idl->idl_conn) { 28071 /* 28072 * This conn is the last in this list. This round 28073 * of draining is complete. If idl_repeat is set, 28074 * it means another flow enabling has happened from 28075 * the driver/streams and we need to another round 28076 * of draining. 28077 * If there are more than 2 conns in the drain list, 28078 * do a left rotate by 1, so that all conns except the 28079 * conn at the head move towards the head by 1, and the 28080 * the conn at the head goes to the tail. This attempts 28081 * a more even share for all queues that are being 28082 * drained. 28083 */ 28084 if ((connp->conn_drain_next != connp) && 28085 (idl->idl_conn->conn_drain_next != connp)) { 28086 idl->idl_conn = idl->idl_conn->conn_drain_next; 28087 } 28088 if (idl->idl_repeat) { 28089 qenable(idl->idl_conn->conn_wq); 28090 idl->idl_conn_draining = idl->idl_conn; 28091 idl->idl_repeat = 0; 28092 } else { 28093 idl->idl_conn_draining = NULL; 28094 } 28095 } else { 28096 /* 28097 * If the next queue that we are now qenable'ing, 28098 * is closing, it will remove itself from this list 28099 * and qenable the subsequent queue in ip_close(). 28100 * Serialization is acheived thru idl_lock. 28101 */ 28102 qenable(connp->conn_drain_next->conn_wq); 28103 idl->idl_conn_draining = connp->conn_drain_next; 28104 } 28105 } 28106 if (!connp->conn_did_putbq || closing) { 28107 /* 28108 * Remove ourself from the drain list, if we did not do 28109 * a putbq, or if the conn is closing. 28110 * Note: It is possible that q->q_first is non-null. It means 28111 * that these messages landed after we did a enableok() in 28112 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28113 * service them. 28114 */ 28115 if (connp->conn_drain_next == connp) { 28116 /* Singleton in the list */ 28117 ASSERT(connp->conn_drain_prev == connp); 28118 idl->idl_conn = NULL; 28119 idl->idl_conn_draining = NULL; 28120 } else { 28121 connp->conn_drain_prev->conn_drain_next = 28122 connp->conn_drain_next; 28123 connp->conn_drain_next->conn_drain_prev = 28124 connp->conn_drain_prev; 28125 if (idl->idl_conn == connp) 28126 idl->idl_conn = connp->conn_drain_next; 28127 ASSERT(idl->idl_conn_draining != connp); 28128 28129 } 28130 connp->conn_drain_next = NULL; 28131 connp->conn_drain_prev = NULL; 28132 28133 /* 28134 * For non streams based sockets open up flow control. 28135 */ 28136 if (IPCL_IS_NONSTR(connp)) { 28137 (*connp->conn_upcalls->su_txq_full) 28138 (connp->conn_upper_handle, B_FALSE); 28139 } else { 28140 conn_clrqfull(connp); 28141 enableok(connp->conn_wq); 28142 } 28143 } 28144 28145 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28146 } 28147 28148 /* 28149 * Write service routine. Shared perimeter entry point. 28150 * ip_wsrv can be called in any of the following ways. 28151 * 1. The device queue's messages has fallen below the low water mark 28152 * and STREAMS has backenabled the ill_wq. We walk thru all the 28153 * the drain lists and backenable the first conn in each list. 28154 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28155 * qenabled non-tcp upper layers. We start dequeing messages and call 28156 * ip_wput for each message. 28157 */ 28158 28159 void 28160 ip_wsrv(queue_t *q) 28161 { 28162 conn_t *connp; 28163 ill_t *ill; 28164 mblk_t *mp; 28165 28166 if (q->q_next) { 28167 ill = (ill_t *)q->q_ptr; 28168 if (ill->ill_state_flags == 0) { 28169 ip_stack_t *ipst = ill->ill_ipst; 28170 28171 /* 28172 * The device flow control has opened up. 28173 * Walk through conn drain lists and qenable the 28174 * first conn in each list. This makes sense only 28175 * if the stream is fully plumbed and setup. 28176 * Hence the if check above. 28177 */ 28178 ip1dbg(("ip_wsrv: walking\n")); 28179 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 28180 } 28181 return; 28182 } 28183 28184 connp = Q_TO_CONN(q); 28185 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28186 28187 /* 28188 * 1. Set conn_draining flag to signal that service is active. 28189 * 28190 * 2. ip_output determines whether it has been called from service, 28191 * based on the last parameter. If it is IP_WSRV it concludes it 28192 * has been called from service. 28193 * 28194 * 3. Message ordering is preserved by the following logic. 28195 * i. A directly called ip_output (i.e. not thru service) will queue 28196 * the message at the tail, if conn_draining is set (i.e. service 28197 * is running) or if q->q_first is non-null. 28198 * 28199 * ii. If ip_output is called from service, and if ip_output cannot 28200 * putnext due to flow control, it does a putbq. 28201 * 28202 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28203 * (causing an infinite loop). 28204 */ 28205 ASSERT(!connp->conn_did_putbq); 28206 28207 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28208 connp->conn_draining = 1; 28209 noenable(q); 28210 while ((mp = getq(q)) != NULL) { 28211 ASSERT(CONN_Q(q)); 28212 28213 DTRACE_PROBE1(ip__wsrv__ip__output, conn_t *, connp); 28214 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28215 if (connp->conn_did_putbq) { 28216 /* ip_wput did a putbq */ 28217 break; 28218 } 28219 } 28220 /* 28221 * At this point, a thread coming down from top, calling 28222 * ip_wput, may end up queueing the message. We have not yet 28223 * enabled the queue, so ip_wsrv won't be called again. 28224 * To avoid this race, check q->q_first again (in the loop) 28225 * If the other thread queued the message before we call 28226 * enableok(), we will catch it in the q->q_first check. 28227 * If the other thread queues the message after we call 28228 * enableok(), ip_wsrv will be called again by STREAMS. 28229 */ 28230 connp->conn_draining = 0; 28231 enableok(q); 28232 } 28233 28234 /* Enable the next conn for draining */ 28235 conn_drain_tail(connp, B_FALSE); 28236 28237 /* 28238 * conn_direct_blocked is used to indicate blocked 28239 * condition for direct path (ILL_DIRECT_CAPABLE()). 28240 * This is the only place where it is set without 28241 * checking for ILL_DIRECT_CAPABLE() and setting it 28242 * to 0 is ok even if it is not ILL_DIRECT_CAPABLE(). 28243 */ 28244 if (!connp->conn_did_putbq && connp->conn_direct_blocked) { 28245 DTRACE_PROBE1(ip__wsrv__direct__blocked, conn_t *, connp); 28246 connp->conn_direct_blocked = B_FALSE; 28247 } 28248 28249 connp->conn_did_putbq = 0; 28250 } 28251 28252 /* 28253 * Callback to disable flow control in IP. 28254 * 28255 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 28256 * is enabled. 28257 * 28258 * When MAC_TX() is not able to send any more packets, dld sets its queue 28259 * to QFULL and enable the STREAMS flow control. Later, when the underlying 28260 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 28261 * function and wakes up corresponding mac worker threads, which in turn 28262 * calls this callback function, and disables flow control. 28263 */ 28264 void 28265 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 28266 { 28267 ill_t *ill = (ill_t *)arg; 28268 ip_stack_t *ipst = ill->ill_ipst; 28269 idl_tx_list_t *idl_txl; 28270 28271 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 28272 mutex_enter(&idl_txl->txl_lock); 28273 /* add code to to set a flag to indicate idl_txl is enabled */ 28274 conn_walk_drain(ipst, idl_txl); 28275 mutex_exit(&idl_txl->txl_lock); 28276 } 28277 28278 /* 28279 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28280 * of conns that need to be drained, check if drain is already in progress. 28281 * If so set the idl_repeat bit, indicating that the last conn in the list 28282 * needs to reinitiate the drain once again, for the list. If drain is not 28283 * in progress for the list, initiate the draining, by qenabling the 1st 28284 * conn in the list. The drain is self-sustaining, each qenabled conn will 28285 * in turn qenable the next conn, when it is done/blocked/closing. 28286 */ 28287 static void 28288 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 28289 { 28290 int i; 28291 idl_t *idl; 28292 28293 IP_STAT(ipst, ip_conn_walk_drain); 28294 28295 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28296 idl = &tx_list->txl_drain_list[i]; 28297 mutex_enter(&idl->idl_lock); 28298 if (idl->idl_conn == NULL) { 28299 mutex_exit(&idl->idl_lock); 28300 continue; 28301 } 28302 /* 28303 * If this list is not being drained currently by 28304 * an ip_wsrv thread, start the process. 28305 */ 28306 if (idl->idl_conn_draining == NULL) { 28307 ASSERT(idl->idl_repeat == 0); 28308 qenable(idl->idl_conn->conn_wq); 28309 idl->idl_conn_draining = idl->idl_conn; 28310 } else { 28311 idl->idl_repeat = 1; 28312 } 28313 mutex_exit(&idl->idl_lock); 28314 } 28315 } 28316 28317 /* 28318 * Determine if the ill and multicast aspects of that packets 28319 * "matches" the conn. 28320 */ 28321 boolean_t 28322 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28323 zoneid_t zoneid) 28324 { 28325 ill_t *bound_ill; 28326 boolean_t found; 28327 ipif_t *ipif; 28328 ire_t *ire; 28329 ipaddr_t dst, src; 28330 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28331 28332 dst = ipha->ipha_dst; 28333 src = ipha->ipha_src; 28334 28335 /* 28336 * conn_incoming_ill is set by IP_BOUND_IF which limits 28337 * unicast, broadcast and multicast reception to 28338 * conn_incoming_ill. conn_wantpacket itself is called 28339 * only for BROADCAST and multicast. 28340 */ 28341 bound_ill = connp->conn_incoming_ill; 28342 if (bound_ill != NULL) { 28343 if (IS_IPMP(bound_ill)) { 28344 if (bound_ill->ill_grp != ill->ill_grp) 28345 return (B_FALSE); 28346 } else { 28347 if (bound_ill != ill) 28348 return (B_FALSE); 28349 } 28350 } 28351 28352 if (!CLASSD(dst)) { 28353 if (IPCL_ZONE_MATCH(connp, zoneid)) 28354 return (B_TRUE); 28355 /* 28356 * The conn is in a different zone; we need to check that this 28357 * broadcast address is configured in the application's zone. 28358 */ 28359 ipif = ipif_get_next_ipif(NULL, ill); 28360 if (ipif == NULL) 28361 return (B_FALSE); 28362 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28363 connp->conn_zoneid, NULL, 28364 (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 28365 ipif_refrele(ipif); 28366 if (ire != NULL) { 28367 ire_refrele(ire); 28368 return (B_TRUE); 28369 } else { 28370 return (B_FALSE); 28371 } 28372 } 28373 28374 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28375 connp->conn_zoneid == zoneid) { 28376 /* 28377 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28378 * disabled, therefore we don't dispatch the multicast packet to 28379 * the sending zone. 28380 */ 28381 return (B_FALSE); 28382 } 28383 28384 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28385 /* 28386 * Multicast packet on the loopback interface: we only match 28387 * conns who joined the group in the specified zone. 28388 */ 28389 return (B_FALSE); 28390 } 28391 28392 if (connp->conn_multi_router) { 28393 /* multicast packet and multicast router socket: send up */ 28394 return (B_TRUE); 28395 } 28396 28397 mutex_enter(&connp->conn_lock); 28398 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28399 mutex_exit(&connp->conn_lock); 28400 return (found); 28401 } 28402 28403 static void 28404 conn_setqfull(conn_t *connp) 28405 { 28406 queue_t *q = connp->conn_wq; 28407 28408 if (!(q->q_flag & QFULL)) { 28409 mutex_enter(QLOCK(q)); 28410 if (!(q->q_flag & QFULL)) { 28411 /* still need to set QFULL */ 28412 q->q_flag |= QFULL; 28413 mutex_exit(QLOCK(q)); 28414 } else { 28415 mutex_exit(QLOCK(q)); 28416 } 28417 } 28418 } 28419 28420 static void 28421 conn_clrqfull(conn_t *connp) 28422 { 28423 queue_t *q = connp->conn_wq; 28424 28425 if (q->q_flag & QFULL) { 28426 mutex_enter(QLOCK(q)); 28427 if (q->q_flag & QFULL) { 28428 q->q_flag &= ~QFULL; 28429 mutex_exit(QLOCK(q)); 28430 if (q->q_flag & QWANTW) 28431 qbackenable(q, 0); 28432 } else { 28433 mutex_exit(QLOCK(q)); 28434 } 28435 } 28436 } 28437 28438 /* 28439 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28440 */ 28441 /* ARGSUSED */ 28442 static void 28443 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28444 { 28445 ill_t *ill = (ill_t *)q->q_ptr; 28446 mblk_t *mp1, *mp2; 28447 ipif_t *ipif; 28448 int err = 0; 28449 conn_t *connp = NULL; 28450 ipsq_t *ipsq; 28451 arc_t *arc; 28452 28453 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28454 28455 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28456 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28457 28458 ASSERT(IAM_WRITER_ILL(ill)); 28459 mp2 = mp->b_cont; 28460 mp->b_cont = NULL; 28461 28462 /* 28463 * We have now received the arp bringup completion message 28464 * from ARP. Mark the arp bringup as done. Also if the arp 28465 * stream has already started closing, send up the AR_ARP_CLOSING 28466 * ack now since ARP is waiting in close for this ack. 28467 */ 28468 mutex_enter(&ill->ill_lock); 28469 ill->ill_arp_bringup_pending = 0; 28470 if (ill->ill_arp_closing) { 28471 mutex_exit(&ill->ill_lock); 28472 /* Let's reuse the mp for sending the ack */ 28473 arc = (arc_t *)mp->b_rptr; 28474 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28475 arc->arc_cmd = AR_ARP_CLOSING; 28476 qreply(q, mp); 28477 } else { 28478 mutex_exit(&ill->ill_lock); 28479 freeb(mp); 28480 } 28481 28482 ipsq = ill->ill_phyint->phyint_ipsq; 28483 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 28484 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28485 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28486 if (mp1 == NULL) { 28487 /* bringup was aborted by the user */ 28488 freemsg(mp2); 28489 return; 28490 } 28491 28492 /* 28493 * If an IOCTL is waiting on this (ipx_current_ioctl != 0), then we 28494 * must have an associated conn_t. Otherwise, we're bringing this 28495 * interface back up as part of handling an asynchronous event (e.g., 28496 * physical address change). 28497 */ 28498 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 28499 ASSERT(connp != NULL); 28500 q = CONNP_TO_WQ(connp); 28501 } else { 28502 ASSERT(connp == NULL); 28503 q = ill->ill_rq; 28504 } 28505 28506 /* 28507 * If the DL_BIND_REQ fails, it is noted 28508 * in arc_name_offset. 28509 */ 28510 err = *((int *)mp2->b_rptr); 28511 if (err == 0) { 28512 if (ipif->ipif_isv6) { 28513 if ((err = ipif_up_done_v6(ipif)) != 0) 28514 ip0dbg(("ip_arp_done: init failed\n")); 28515 } else { 28516 if ((err = ipif_up_done(ipif)) != 0) 28517 ip0dbg(("ip_arp_done: init failed\n")); 28518 } 28519 } else { 28520 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28521 } 28522 28523 freemsg(mp2); 28524 28525 if ((err == 0) && (ill->ill_up_ipifs)) { 28526 err = ill_up_ipifs(ill, q, mp1); 28527 if (err == EINPROGRESS) 28528 return; 28529 } 28530 28531 /* 28532 * If we have a moved ipif to bring up, and everything has succeeded 28533 * to this point, bring it up on the IPMP ill. Otherwise, leave it 28534 * down -- the admin can try to bring it up by hand if need be. 28535 */ 28536 if (ill->ill_move_ipif != NULL) { 28537 ipif = ill->ill_move_ipif; 28538 ill->ill_move_ipif = NULL; 28539 if (err == 0) { 28540 err = ipif_up(ipif, q, mp1); 28541 if (err == EINPROGRESS) 28542 return; 28543 } 28544 } 28545 28546 /* 28547 * The operation must complete without EINPROGRESS since 28548 * ipsq_pending_mp_get() has removed the mblk. Otherwise, the 28549 * operation will be stuck forever in the ipsq. 28550 */ 28551 ASSERT(err != EINPROGRESS); 28552 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) 28553 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28554 else 28555 ipsq_current_finish(ipsq); 28556 } 28557 28558 /* Allocate the private structure */ 28559 static int 28560 ip_priv_alloc(void **bufp) 28561 { 28562 void *buf; 28563 28564 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28565 return (ENOMEM); 28566 28567 *bufp = buf; 28568 return (0); 28569 } 28570 28571 /* Function to delete the private structure */ 28572 void 28573 ip_priv_free(void *buf) 28574 { 28575 ASSERT(buf != NULL); 28576 kmem_free(buf, sizeof (ip_priv_t)); 28577 } 28578 28579 /* 28580 * The entry point for IPPF processing. 28581 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28582 * routine just returns. 28583 * 28584 * When called, ip_process generates an ipp_packet_t structure 28585 * which holds the state information for this packet and invokes the 28586 * the classifier (via ipp_packet_process). The classification, depending on 28587 * configured filters, results in a list of actions for this packet. Invoking 28588 * an action may cause the packet to be dropped, in which case the resulting 28589 * mblk (*mpp) is NULL. proc indicates the callout position for 28590 * this packet and ill_index is the interface this packet on or will leave 28591 * on (inbound and outbound resp.). 28592 */ 28593 void 28594 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28595 { 28596 mblk_t *mp; 28597 ip_priv_t *priv; 28598 ipp_action_id_t aid; 28599 int rc = 0; 28600 ipp_packet_t *pp; 28601 #define IP_CLASS "ip" 28602 28603 /* If the classifier is not loaded, return */ 28604 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28605 return; 28606 } 28607 28608 mp = *mpp; 28609 ASSERT(mp != NULL); 28610 28611 /* Allocate the packet structure */ 28612 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28613 if (rc != 0) { 28614 *mpp = NULL; 28615 freemsg(mp); 28616 return; 28617 } 28618 28619 /* Allocate the private structure */ 28620 rc = ip_priv_alloc((void **)&priv); 28621 if (rc != 0) { 28622 *mpp = NULL; 28623 freemsg(mp); 28624 ipp_packet_free(pp); 28625 return; 28626 } 28627 priv->proc = proc; 28628 priv->ill_index = ill_index; 28629 ipp_packet_set_private(pp, priv, ip_priv_free); 28630 ipp_packet_set_data(pp, mp); 28631 28632 /* Invoke the classifier */ 28633 rc = ipp_packet_process(&pp); 28634 if (pp != NULL) { 28635 mp = ipp_packet_get_data(pp); 28636 ipp_packet_free(pp); 28637 if (rc != 0) { 28638 freemsg(mp); 28639 *mpp = NULL; 28640 } 28641 } else { 28642 *mpp = NULL; 28643 } 28644 #undef IP_CLASS 28645 } 28646 28647 /* 28648 * Propagate a multicast group membership operation (add/drop) on 28649 * all the interfaces crossed by the related multirt routes. 28650 * The call is considered successful if the operation succeeds 28651 * on at least one interface. 28652 */ 28653 static int 28654 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28655 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28656 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28657 mblk_t *first_mp) 28658 { 28659 ire_t *ire_gw; 28660 irb_t *irb; 28661 int error = 0; 28662 opt_restart_t *or; 28663 ip_stack_t *ipst = ire->ire_ipst; 28664 28665 irb = ire->ire_bucket; 28666 ASSERT(irb != NULL); 28667 28668 ASSERT(DB_TYPE(first_mp) == M_CTL); 28669 28670 or = (opt_restart_t *)first_mp->b_rptr; 28671 IRB_REFHOLD(irb); 28672 for (; ire != NULL; ire = ire->ire_next) { 28673 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28674 continue; 28675 if (ire->ire_addr != group) 28676 continue; 28677 28678 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28679 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28680 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28681 /* No resolver exists for the gateway; skip this ire. */ 28682 if (ire_gw == NULL) 28683 continue; 28684 28685 /* 28686 * This function can return EINPROGRESS. If so the operation 28687 * will be restarted from ip_restart_optmgmt which will 28688 * call ip_opt_set and option processing will restart for 28689 * this option. So we may end up calling 'fn' more than once. 28690 * This requires that 'fn' is idempotent except for the 28691 * return value. The operation is considered a success if 28692 * it succeeds at least once on any one interface. 28693 */ 28694 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28695 NULL, fmode, src, first_mp); 28696 if (error == 0) 28697 or->or_private = CGTP_MCAST_SUCCESS; 28698 28699 if (ip_debug > 0) { 28700 ulong_t off; 28701 char *ksym; 28702 ksym = kobj_getsymname((uintptr_t)fn, &off); 28703 ip2dbg(("ip_multirt_apply_membership: " 28704 "called %s, multirt group 0x%08x via itf 0x%08x, " 28705 "error %d [success %u]\n", 28706 ksym ? ksym : "?", 28707 ntohl(group), ntohl(ire_gw->ire_src_addr), 28708 error, or->or_private)); 28709 } 28710 28711 ire_refrele(ire_gw); 28712 if (error == EINPROGRESS) { 28713 IRB_REFRELE(irb); 28714 return (error); 28715 } 28716 } 28717 IRB_REFRELE(irb); 28718 /* 28719 * Consider the call as successful if we succeeded on at least 28720 * one interface. Otherwise, return the last encountered error. 28721 */ 28722 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28723 } 28724 28725 /* 28726 * Issue a warning regarding a route crossing an interface with an 28727 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28728 * amount of time is logged. 28729 */ 28730 static void 28731 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28732 { 28733 hrtime_t current = gethrtime(); 28734 char buf[INET_ADDRSTRLEN]; 28735 ip_stack_t *ipst = ire->ire_ipst; 28736 28737 /* Convert interval in ms to hrtime in ns */ 28738 if (ipst->ips_multirt_bad_mtu_last_time + 28739 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28740 current) { 28741 cmn_err(CE_WARN, "ip: ignoring multiroute " 28742 "to %s, incorrect MTU %u (expected %u)\n", 28743 ip_dot_addr(ire->ire_addr, buf), 28744 ire->ire_max_frag, max_frag); 28745 28746 ipst->ips_multirt_bad_mtu_last_time = current; 28747 } 28748 } 28749 28750 /* 28751 * Get the CGTP (multirouting) filtering status. 28752 * If 0, the CGTP hooks are transparent. 28753 */ 28754 /* ARGSUSED */ 28755 static int 28756 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28757 { 28758 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28759 28760 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28761 return (0); 28762 } 28763 28764 /* 28765 * Set the CGTP (multirouting) filtering status. 28766 * If the status is changed from active to transparent 28767 * or from transparent to active, forward the new status 28768 * to the filtering module (if loaded). 28769 */ 28770 /* ARGSUSED */ 28771 static int 28772 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28773 cred_t *ioc_cr) 28774 { 28775 long new_value; 28776 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28777 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28778 28779 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 28780 return (EPERM); 28781 28782 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28783 new_value < 0 || new_value > 1) { 28784 return (EINVAL); 28785 } 28786 28787 if ((!*ip_cgtp_filter_value) && new_value) { 28788 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28789 ipst->ips_ip_cgtp_filter_ops == NULL ? 28790 " (module not loaded)" : ""); 28791 } 28792 if (*ip_cgtp_filter_value && (!new_value)) { 28793 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28794 ipst->ips_ip_cgtp_filter_ops == NULL ? 28795 " (module not loaded)" : ""); 28796 } 28797 28798 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28799 int res; 28800 netstackid_t stackid; 28801 28802 stackid = ipst->ips_netstack->netstack_stackid; 28803 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 28804 new_value); 28805 if (res) 28806 return (res); 28807 } 28808 28809 *ip_cgtp_filter_value = (boolean_t)new_value; 28810 28811 return (0); 28812 } 28813 28814 /* 28815 * Return the expected CGTP hooks version number. 28816 */ 28817 int 28818 ip_cgtp_filter_supported(void) 28819 { 28820 return (ip_cgtp_filter_rev); 28821 } 28822 28823 /* 28824 * CGTP hooks can be registered by invoking this function. 28825 * Checks that the version number matches. 28826 */ 28827 int 28828 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 28829 { 28830 netstack_t *ns; 28831 ip_stack_t *ipst; 28832 28833 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 28834 return (ENOTSUP); 28835 28836 ns = netstack_find_by_stackid(stackid); 28837 if (ns == NULL) 28838 return (EINVAL); 28839 ipst = ns->netstack_ip; 28840 ASSERT(ipst != NULL); 28841 28842 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28843 netstack_rele(ns); 28844 return (EALREADY); 28845 } 28846 28847 ipst->ips_ip_cgtp_filter_ops = ops; 28848 netstack_rele(ns); 28849 return (0); 28850 } 28851 28852 /* 28853 * CGTP hooks can be unregistered by invoking this function. 28854 * Returns ENXIO if there was no registration. 28855 * Returns EBUSY if the ndd variable has not been turned off. 28856 */ 28857 int 28858 ip_cgtp_filter_unregister(netstackid_t stackid) 28859 { 28860 netstack_t *ns; 28861 ip_stack_t *ipst; 28862 28863 ns = netstack_find_by_stackid(stackid); 28864 if (ns == NULL) 28865 return (EINVAL); 28866 ipst = ns->netstack_ip; 28867 ASSERT(ipst != NULL); 28868 28869 if (ipst->ips_ip_cgtp_filter) { 28870 netstack_rele(ns); 28871 return (EBUSY); 28872 } 28873 28874 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 28875 netstack_rele(ns); 28876 return (ENXIO); 28877 } 28878 ipst->ips_ip_cgtp_filter_ops = NULL; 28879 netstack_rele(ns); 28880 return (0); 28881 } 28882 28883 /* 28884 * Check whether there is a CGTP filter registration. 28885 * Returns non-zero if there is a registration, otherwise returns zero. 28886 * Note: returns zero if bad stackid. 28887 */ 28888 int 28889 ip_cgtp_filter_is_registered(netstackid_t stackid) 28890 { 28891 netstack_t *ns; 28892 ip_stack_t *ipst; 28893 int ret; 28894 28895 ns = netstack_find_by_stackid(stackid); 28896 if (ns == NULL) 28897 return (0); 28898 ipst = ns->netstack_ip; 28899 ASSERT(ipst != NULL); 28900 28901 if (ipst->ips_ip_cgtp_filter_ops != NULL) 28902 ret = 1; 28903 else 28904 ret = 0; 28905 28906 netstack_rele(ns); 28907 return (ret); 28908 } 28909 28910 static int 28911 ip_squeue_switch(int val) 28912 { 28913 int rval = SQ_FILL; 28914 28915 switch (val) { 28916 case IP_SQUEUE_ENTER_NODRAIN: 28917 rval = SQ_NODRAIN; 28918 break; 28919 case IP_SQUEUE_ENTER: 28920 rval = SQ_PROCESS; 28921 break; 28922 default: 28923 break; 28924 } 28925 return (rval); 28926 } 28927 28928 /* ARGSUSED */ 28929 static int 28930 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 28931 caddr_t addr, cred_t *cr) 28932 { 28933 int *v = (int *)addr; 28934 long new_value; 28935 28936 if (secpolicy_net_config(cr, B_FALSE) != 0) 28937 return (EPERM); 28938 28939 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28940 return (EINVAL); 28941 28942 ip_squeue_flag = ip_squeue_switch(new_value); 28943 *v = new_value; 28944 return (0); 28945 } 28946 28947 /* 28948 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 28949 * ip_debug. 28950 */ 28951 /* ARGSUSED */ 28952 static int 28953 ip_int_set(queue_t *q, mblk_t *mp, char *value, 28954 caddr_t addr, cred_t *cr) 28955 { 28956 int *v = (int *)addr; 28957 long new_value; 28958 28959 if (secpolicy_net_config(cr, B_FALSE) != 0) 28960 return (EPERM); 28961 28962 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28963 return (EINVAL); 28964 28965 *v = new_value; 28966 return (0); 28967 } 28968 28969 static void * 28970 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 28971 { 28972 kstat_t *ksp; 28973 28974 ip_stat_t template = { 28975 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 28976 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 28977 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 28978 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 28979 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 28980 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 28981 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 28982 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 28983 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 28984 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 28985 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 28986 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 28987 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 28988 { "ip_db_ref", KSTAT_DATA_UINT64 }, 28989 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 28990 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 28991 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 28992 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 28993 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 28994 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 28995 { "ip_opt", KSTAT_DATA_UINT64 }, 28996 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 28997 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 28998 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 28999 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29000 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29001 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29002 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29003 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29004 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29005 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29006 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29007 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29008 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29009 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29010 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29011 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29012 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29013 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29014 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29015 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29016 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29017 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29018 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29019 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29020 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29021 }; 29022 29023 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29024 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29025 KSTAT_FLAG_VIRTUAL, stackid); 29026 29027 if (ksp == NULL) 29028 return (NULL); 29029 29030 bcopy(&template, ip_statisticsp, sizeof (template)); 29031 ksp->ks_data = (void *)ip_statisticsp; 29032 ksp->ks_private = (void *)(uintptr_t)stackid; 29033 29034 kstat_install(ksp); 29035 return (ksp); 29036 } 29037 29038 static void 29039 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29040 { 29041 if (ksp != NULL) { 29042 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29043 kstat_delete_netstack(ksp, stackid); 29044 } 29045 } 29046 29047 static void * 29048 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29049 { 29050 kstat_t *ksp; 29051 29052 ip_named_kstat_t template = { 29053 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29054 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29055 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29056 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29057 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29058 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29059 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29060 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29061 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29062 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29063 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29064 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29065 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29066 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29067 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29068 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29069 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29070 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29071 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29072 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29073 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29074 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29075 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29076 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29077 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29078 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29079 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29080 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29081 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29082 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29083 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29084 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29085 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29086 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29087 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29088 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29089 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29090 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29091 }; 29092 29093 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29094 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29095 if (ksp == NULL || ksp->ks_data == NULL) 29096 return (NULL); 29097 29098 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29099 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29100 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29101 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29102 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29103 29104 template.netToMediaEntrySize.value.i32 = 29105 sizeof (mib2_ipNetToMediaEntry_t); 29106 29107 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29108 29109 bcopy(&template, ksp->ks_data, sizeof (template)); 29110 ksp->ks_update = ip_kstat_update; 29111 ksp->ks_private = (void *)(uintptr_t)stackid; 29112 29113 kstat_install(ksp); 29114 return (ksp); 29115 } 29116 29117 static void 29118 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29119 { 29120 if (ksp != NULL) { 29121 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29122 kstat_delete_netstack(ksp, stackid); 29123 } 29124 } 29125 29126 static int 29127 ip_kstat_update(kstat_t *kp, int rw) 29128 { 29129 ip_named_kstat_t *ipkp; 29130 mib2_ipIfStatsEntry_t ipmib; 29131 ill_walk_context_t ctx; 29132 ill_t *ill; 29133 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29134 netstack_t *ns; 29135 ip_stack_t *ipst; 29136 29137 if (kp == NULL || kp->ks_data == NULL) 29138 return (EIO); 29139 29140 if (rw == KSTAT_WRITE) 29141 return (EACCES); 29142 29143 ns = netstack_find_by_stackid(stackid); 29144 if (ns == NULL) 29145 return (-1); 29146 ipst = ns->netstack_ip; 29147 if (ipst == NULL) { 29148 netstack_rele(ns); 29149 return (-1); 29150 } 29151 ipkp = (ip_named_kstat_t *)kp->ks_data; 29152 29153 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29154 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29155 ill = ILL_START_WALK_V4(&ctx, ipst); 29156 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29157 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29158 rw_exit(&ipst->ips_ill_g_lock); 29159 29160 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29161 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29162 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29163 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29164 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29165 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29166 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29167 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29168 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29169 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29170 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29171 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29172 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29173 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29174 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29175 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29176 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29177 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29178 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29179 29180 ipkp->routingDiscards.value.ui32 = 0; 29181 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29182 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29183 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29184 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29185 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29186 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29187 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29188 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29189 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29190 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29191 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29192 29193 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29194 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29195 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29196 29197 netstack_rele(ns); 29198 29199 return (0); 29200 } 29201 29202 static void * 29203 icmp_kstat_init(netstackid_t stackid) 29204 { 29205 kstat_t *ksp; 29206 29207 icmp_named_kstat_t template = { 29208 { "inMsgs", KSTAT_DATA_UINT32 }, 29209 { "inErrors", KSTAT_DATA_UINT32 }, 29210 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29211 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29212 { "inParmProbs", KSTAT_DATA_UINT32 }, 29213 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29214 { "inRedirects", KSTAT_DATA_UINT32 }, 29215 { "inEchos", KSTAT_DATA_UINT32 }, 29216 { "inEchoReps", KSTAT_DATA_UINT32 }, 29217 { "inTimestamps", KSTAT_DATA_UINT32 }, 29218 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29219 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29220 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29221 { "outMsgs", KSTAT_DATA_UINT32 }, 29222 { "outErrors", KSTAT_DATA_UINT32 }, 29223 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29224 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29225 { "outParmProbs", KSTAT_DATA_UINT32 }, 29226 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29227 { "outRedirects", KSTAT_DATA_UINT32 }, 29228 { "outEchos", KSTAT_DATA_UINT32 }, 29229 { "outEchoReps", KSTAT_DATA_UINT32 }, 29230 { "outTimestamps", KSTAT_DATA_UINT32 }, 29231 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29232 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29233 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29234 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29235 { "inUnknowns", KSTAT_DATA_UINT32 }, 29236 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29237 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29238 { "outDrops", KSTAT_DATA_UINT32 }, 29239 { "inOverFlows", KSTAT_DATA_UINT32 }, 29240 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29241 }; 29242 29243 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29244 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29245 if (ksp == NULL || ksp->ks_data == NULL) 29246 return (NULL); 29247 29248 bcopy(&template, ksp->ks_data, sizeof (template)); 29249 29250 ksp->ks_update = icmp_kstat_update; 29251 ksp->ks_private = (void *)(uintptr_t)stackid; 29252 29253 kstat_install(ksp); 29254 return (ksp); 29255 } 29256 29257 static void 29258 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29259 { 29260 if (ksp != NULL) { 29261 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29262 kstat_delete_netstack(ksp, stackid); 29263 } 29264 } 29265 29266 static int 29267 icmp_kstat_update(kstat_t *kp, int rw) 29268 { 29269 icmp_named_kstat_t *icmpkp; 29270 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29271 netstack_t *ns; 29272 ip_stack_t *ipst; 29273 29274 if ((kp == NULL) || (kp->ks_data == NULL)) 29275 return (EIO); 29276 29277 if (rw == KSTAT_WRITE) 29278 return (EACCES); 29279 29280 ns = netstack_find_by_stackid(stackid); 29281 if (ns == NULL) 29282 return (-1); 29283 ipst = ns->netstack_ip; 29284 if (ipst == NULL) { 29285 netstack_rele(ns); 29286 return (-1); 29287 } 29288 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29289 29290 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29291 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29292 icmpkp->inDestUnreachs.value.ui32 = 29293 ipst->ips_icmp_mib.icmpInDestUnreachs; 29294 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29295 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29296 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29297 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29298 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29299 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29300 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29301 icmpkp->inTimestampReps.value.ui32 = 29302 ipst->ips_icmp_mib.icmpInTimestampReps; 29303 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29304 icmpkp->inAddrMaskReps.value.ui32 = 29305 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29306 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29307 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29308 icmpkp->outDestUnreachs.value.ui32 = 29309 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29310 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29311 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29312 icmpkp->outSrcQuenchs.value.ui32 = 29313 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29314 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29315 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29316 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29317 icmpkp->outTimestamps.value.ui32 = 29318 ipst->ips_icmp_mib.icmpOutTimestamps; 29319 icmpkp->outTimestampReps.value.ui32 = 29320 ipst->ips_icmp_mib.icmpOutTimestampReps; 29321 icmpkp->outAddrMasks.value.ui32 = 29322 ipst->ips_icmp_mib.icmpOutAddrMasks; 29323 icmpkp->outAddrMaskReps.value.ui32 = 29324 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29325 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29326 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29327 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29328 icmpkp->outFragNeeded.value.ui32 = 29329 ipst->ips_icmp_mib.icmpOutFragNeeded; 29330 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29331 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29332 icmpkp->inBadRedirects.value.ui32 = 29333 ipst->ips_icmp_mib.icmpInBadRedirects; 29334 29335 netstack_rele(ns); 29336 return (0); 29337 } 29338 29339 /* 29340 * This is the fanout function for raw socket opened for SCTP. Note 29341 * that it is called after SCTP checks that there is no socket which 29342 * wants a packet. Then before SCTP handles this out of the blue packet, 29343 * this function is called to see if there is any raw socket for SCTP. 29344 * If there is and it is bound to the correct address, the packet will 29345 * be sent to that socket. Note that only one raw socket can be bound to 29346 * a port. This is assured in ipcl_sctp_hash_insert(); 29347 */ 29348 void 29349 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29350 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29351 zoneid_t zoneid) 29352 { 29353 conn_t *connp; 29354 queue_t *rq; 29355 mblk_t *first_mp; 29356 boolean_t secure; 29357 ip6_t *ip6h; 29358 ip_stack_t *ipst = recv_ill->ill_ipst; 29359 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29360 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29361 boolean_t sctp_csum_err = B_FALSE; 29362 29363 if (flags & IP_FF_SCTP_CSUM_ERR) { 29364 sctp_csum_err = B_TRUE; 29365 flags &= ~IP_FF_SCTP_CSUM_ERR; 29366 } 29367 29368 first_mp = mp; 29369 if (mctl_present) { 29370 mp = first_mp->b_cont; 29371 secure = ipsec_in_is_secure(first_mp); 29372 ASSERT(mp != NULL); 29373 } else { 29374 secure = B_FALSE; 29375 } 29376 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29377 29378 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29379 if (connp == NULL) { 29380 /* 29381 * Although raw sctp is not summed, OOB chunks must be. 29382 * Drop the packet here if the sctp checksum failed. 29383 */ 29384 if (sctp_csum_err) { 29385 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29386 freemsg(first_mp); 29387 return; 29388 } 29389 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29390 return; 29391 } 29392 rq = connp->conn_rq; 29393 if (!canputnext(rq)) { 29394 CONN_DEC_REF(connp); 29395 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29396 freemsg(first_mp); 29397 return; 29398 } 29399 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29400 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29401 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29402 (isv4 ? ipha : NULL), ip6h, mctl_present); 29403 if (first_mp == NULL) { 29404 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29405 CONN_DEC_REF(connp); 29406 return; 29407 } 29408 } 29409 /* 29410 * We probably should not send M_CTL message up to 29411 * raw socket. 29412 */ 29413 if (mctl_present) 29414 freeb(first_mp); 29415 29416 /* Initiate IPPF processing here if needed. */ 29417 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29418 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29419 ip_process(IPP_LOCAL_IN, &mp, 29420 recv_ill->ill_phyint->phyint_ifindex); 29421 if (mp == NULL) { 29422 CONN_DEC_REF(connp); 29423 return; 29424 } 29425 } 29426 29427 if (connp->conn_recvif || connp->conn_recvslla || 29428 ((connp->conn_ip_recvpktinfo || 29429 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29430 (flags & IP_FF_IPINFO))) { 29431 int in_flags = 0; 29432 29433 /* 29434 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29435 * IPF_RECVIF. 29436 */ 29437 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29438 in_flags = IPF_RECVIF; 29439 } 29440 if (connp->conn_recvslla) { 29441 in_flags |= IPF_RECVSLLA; 29442 } 29443 if (isv4) { 29444 mp = ip_add_info(mp, recv_ill, in_flags, 29445 IPCL_ZONEID(connp), ipst); 29446 } else { 29447 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29448 if (mp == NULL) { 29449 BUMP_MIB(recv_ill->ill_ip_mib, 29450 ipIfStatsInDiscards); 29451 CONN_DEC_REF(connp); 29452 return; 29453 } 29454 } 29455 } 29456 29457 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29458 /* 29459 * We are sending the IPSEC_IN message also up. Refer 29460 * to comments above this function. 29461 * This is the SOCK_RAW, IPPROTO_SCTP case. 29462 */ 29463 (connp->conn_recv)(connp, mp, NULL); 29464 CONN_DEC_REF(connp); 29465 } 29466 29467 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29468 { \ 29469 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29470 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29471 } 29472 /* 29473 * This function should be called only if all packet processing 29474 * including fragmentation is complete. Callers of this function 29475 * must set mp->b_prev to one of these values: 29476 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29477 * prior to handing over the mp as first argument to this function. 29478 * 29479 * If the ire passed by caller is incomplete, this function 29480 * queues the packet and if necessary, sends ARP request and bails. 29481 * If the ire passed is fully resolved, we simply prepend 29482 * the link-layer header to the packet, do ipsec hw acceleration 29483 * work if necessary, and send the packet out on the wire. 29484 * 29485 * NOTE: IPsec will only call this function with fully resolved 29486 * ires if hw acceleration is involved. 29487 * TODO list : 29488 * a Handle M_MULTIDATA so that 29489 * tcp_multisend->tcp_multisend_data can 29490 * call ip_xmit_v4 directly 29491 * b Handle post-ARP work for fragments so that 29492 * ip_wput_frag can call this function. 29493 */ 29494 ipxmit_state_t 29495 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, 29496 boolean_t flow_ctl_enabled, conn_t *connp) 29497 { 29498 nce_t *arpce; 29499 ipha_t *ipha; 29500 queue_t *q; 29501 int ill_index; 29502 mblk_t *nxt_mp, *first_mp; 29503 boolean_t xmit_drop = B_FALSE; 29504 ip_proc_t proc; 29505 ill_t *out_ill; 29506 int pkt_len; 29507 29508 arpce = ire->ire_nce; 29509 ASSERT(arpce != NULL); 29510 29511 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29512 29513 mutex_enter(&arpce->nce_lock); 29514 switch (arpce->nce_state) { 29515 case ND_REACHABLE: 29516 /* If there are other queued packets, queue this packet */ 29517 if (arpce->nce_qd_mp != NULL) { 29518 if (mp != NULL) 29519 nce_queue_mp_common(arpce, mp, B_FALSE); 29520 mp = arpce->nce_qd_mp; 29521 } 29522 arpce->nce_qd_mp = NULL; 29523 mutex_exit(&arpce->nce_lock); 29524 29525 /* 29526 * Flush the queue. In the common case, where the 29527 * ARP is already resolved, it will go through the 29528 * while loop only once. 29529 */ 29530 while (mp != NULL) { 29531 29532 nxt_mp = mp->b_next; 29533 mp->b_next = NULL; 29534 ASSERT(mp->b_datap->db_type != M_CTL); 29535 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29536 /* 29537 * This info is needed for IPQOS to do COS marking 29538 * in ip_wput_attach_llhdr->ip_process. 29539 */ 29540 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29541 mp->b_prev = NULL; 29542 29543 /* set up ill index for outbound qos processing */ 29544 out_ill = ire_to_ill(ire); 29545 ill_index = out_ill->ill_phyint->phyint_ifindex; 29546 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29547 ill_index, &ipha); 29548 if (first_mp == NULL) { 29549 xmit_drop = B_TRUE; 29550 BUMP_MIB(out_ill->ill_ip_mib, 29551 ipIfStatsOutDiscards); 29552 goto next_mp; 29553 } 29554 29555 /* non-ipsec hw accel case */ 29556 if (io == NULL || !io->ipsec_out_accelerated) { 29557 /* send it */ 29558 q = ire->ire_stq; 29559 if (proc == IPP_FWD_OUT) { 29560 UPDATE_IB_PKT_COUNT(ire); 29561 } else { 29562 UPDATE_OB_PKT_COUNT(ire); 29563 } 29564 ire->ire_last_used_time = lbolt; 29565 29566 if (flow_ctl_enabled || canputnext(q)) { 29567 if (proc == IPP_FWD_OUT) { 29568 29569 BUMP_MIB(out_ill->ill_ip_mib, 29570 ipIfStatsHCOutForwDatagrams); 29571 29572 } 29573 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29574 pkt_len); 29575 29576 DTRACE_IP7(send, mblk_t *, first_mp, 29577 conn_t *, NULL, void_ip_t *, ipha, 29578 __dtrace_ipsr_ill_t *, out_ill, 29579 ipha_t *, ipha, ip6_t *, NULL, int, 29580 0); 29581 29582 ILL_SEND_TX(out_ill, 29583 ire, connp, first_mp, 0, connp); 29584 } else { 29585 BUMP_MIB(out_ill->ill_ip_mib, 29586 ipIfStatsOutDiscards); 29587 xmit_drop = B_TRUE; 29588 freemsg(first_mp); 29589 } 29590 } else { 29591 /* 29592 * Safety Pup says: make sure this 29593 * is going to the right interface! 29594 */ 29595 ill_t *ill1 = 29596 (ill_t *)ire->ire_stq->q_ptr; 29597 int ifindex = 29598 ill1->ill_phyint->phyint_ifindex; 29599 if (ifindex != 29600 io->ipsec_out_capab_ill_index) { 29601 xmit_drop = B_TRUE; 29602 freemsg(mp); 29603 } else { 29604 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29605 pkt_len); 29606 29607 DTRACE_IP7(send, mblk_t *, first_mp, 29608 conn_t *, NULL, void_ip_t *, ipha, 29609 __dtrace_ipsr_ill_t *, ill1, 29610 ipha_t *, ipha, ip6_t *, NULL, 29611 int, 0); 29612 29613 ipsec_hw_putnext(ire->ire_stq, mp); 29614 } 29615 } 29616 next_mp: 29617 mp = nxt_mp; 29618 } /* while (mp != NULL) */ 29619 if (xmit_drop) 29620 return (SEND_FAILED); 29621 else 29622 return (SEND_PASSED); 29623 29624 case ND_INITIAL: 29625 case ND_INCOMPLETE: 29626 29627 /* 29628 * While we do send off packets to dests that 29629 * use fully-resolved CGTP routes, we do not 29630 * handle unresolved CGTP routes. 29631 */ 29632 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29633 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29634 29635 if (mp != NULL) { 29636 /* queue the packet */ 29637 nce_queue_mp_common(arpce, mp, B_FALSE); 29638 } 29639 29640 if (arpce->nce_state == ND_INCOMPLETE) { 29641 mutex_exit(&arpce->nce_lock); 29642 DTRACE_PROBE3(ip__xmit__incomplete, 29643 (ire_t *), ire, (mblk_t *), mp, 29644 (ipsec_out_t *), io); 29645 return (LOOKUP_IN_PROGRESS); 29646 } 29647 29648 arpce->nce_state = ND_INCOMPLETE; 29649 mutex_exit(&arpce->nce_lock); 29650 29651 /* 29652 * Note that ire_add() (called from ire_forward()) 29653 * holds a ref on the ire until ARP is completed. 29654 */ 29655 ire_arpresolve(ire); 29656 return (LOOKUP_IN_PROGRESS); 29657 default: 29658 ASSERT(0); 29659 mutex_exit(&arpce->nce_lock); 29660 return (LLHDR_RESLV_FAILED); 29661 } 29662 } 29663 29664 #undef UPDATE_IP_MIB_OB_COUNTERS 29665 29666 /* 29667 * Return B_TRUE if the buffers differ in length or content. 29668 * This is used for comparing extension header buffers. 29669 * Note that an extension header would be declared different 29670 * even if all that changed was the next header value in that header i.e. 29671 * what really changed is the next extension header. 29672 */ 29673 boolean_t 29674 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29675 uint_t blen) 29676 { 29677 if (!b_valid) 29678 blen = 0; 29679 29680 if (alen != blen) 29681 return (B_TRUE); 29682 if (alen == 0) 29683 return (B_FALSE); /* Both zero length */ 29684 return (bcmp(abuf, bbuf, alen)); 29685 } 29686 29687 /* 29688 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29689 * Return B_FALSE if memory allocation fails - don't change any state! 29690 */ 29691 boolean_t 29692 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29693 const void *src, uint_t srclen) 29694 { 29695 void *dst; 29696 29697 if (!src_valid) 29698 srclen = 0; 29699 29700 ASSERT(*dstlenp == 0); 29701 if (src != NULL && srclen != 0) { 29702 dst = mi_alloc(srclen, BPRI_MED); 29703 if (dst == NULL) 29704 return (B_FALSE); 29705 } else { 29706 dst = NULL; 29707 } 29708 if (*dstp != NULL) 29709 mi_free(*dstp); 29710 *dstp = dst; 29711 *dstlenp = dst == NULL ? 0 : srclen; 29712 return (B_TRUE); 29713 } 29714 29715 /* 29716 * Replace what is in *dst, *dstlen with the source. 29717 * Assumes ip_allocbuf has already been called. 29718 */ 29719 void 29720 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29721 const void *src, uint_t srclen) 29722 { 29723 if (!src_valid) 29724 srclen = 0; 29725 29726 ASSERT(*dstlenp == srclen); 29727 if (src != NULL && srclen != 0) 29728 bcopy(src, *dstp, srclen); 29729 } 29730 29731 /* 29732 * Free the storage pointed to by the members of an ip6_pkt_t. 29733 */ 29734 void 29735 ip6_pkt_free(ip6_pkt_t *ipp) 29736 { 29737 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 29738 29739 if (ipp->ipp_fields & IPPF_HOPOPTS) { 29740 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 29741 ipp->ipp_hopopts = NULL; 29742 ipp->ipp_hopoptslen = 0; 29743 } 29744 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 29745 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 29746 ipp->ipp_rtdstopts = NULL; 29747 ipp->ipp_rtdstoptslen = 0; 29748 } 29749 if (ipp->ipp_fields & IPPF_DSTOPTS) { 29750 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 29751 ipp->ipp_dstopts = NULL; 29752 ipp->ipp_dstoptslen = 0; 29753 } 29754 if (ipp->ipp_fields & IPPF_RTHDR) { 29755 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 29756 ipp->ipp_rthdr = NULL; 29757 ipp->ipp_rthdrlen = 0; 29758 } 29759 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 29760 IPPF_RTHDR); 29761 } 29762 29763 zoneid_t 29764 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_stack_t *ipst, 29765 zoneid_t lookup_zoneid) 29766 { 29767 ire_t *ire; 29768 int ire_flags = MATCH_IRE_TYPE; 29769 zoneid_t zoneid = ALL_ZONES; 29770 29771 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 29772 return (ALL_ZONES); 29773 29774 if (lookup_zoneid != ALL_ZONES) 29775 ire_flags |= MATCH_IRE_ZONEONLY; 29776 ire = ire_ctable_lookup(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, NULL, 29777 lookup_zoneid, NULL, ire_flags, ipst); 29778 if (ire != NULL) { 29779 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 29780 ire_refrele(ire); 29781 } 29782 return (zoneid); 29783 } 29784 29785 zoneid_t 29786 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 29787 ip_stack_t *ipst, zoneid_t lookup_zoneid) 29788 { 29789 ire_t *ire; 29790 int ire_flags = MATCH_IRE_TYPE; 29791 zoneid_t zoneid = ALL_ZONES; 29792 ipif_t *ipif_arg = NULL; 29793 29794 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 29795 return (ALL_ZONES); 29796 29797 if (IN6_IS_ADDR_LINKLOCAL(addr)) { 29798 ire_flags |= MATCH_IRE_ILL; 29799 ipif_arg = ill->ill_ipif; 29800 } 29801 if (lookup_zoneid != ALL_ZONES) 29802 ire_flags |= MATCH_IRE_ZONEONLY; 29803 ire = ire_ctable_lookup_v6(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, 29804 ipif_arg, lookup_zoneid, NULL, ire_flags, ipst); 29805 if (ire != NULL) { 29806 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 29807 ire_refrele(ire); 29808 } 29809 return (zoneid); 29810 } 29811 29812 /* 29813 * IP obserability hook support functions. 29814 */ 29815 static void 29816 ipobs_init(ip_stack_t *ipst) 29817 { 29818 netid_t id; 29819 29820 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 29821 29822 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 29823 VERIFY(ipst->ips_ip4_observe_pr != NULL); 29824 29825 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 29826 VERIFY(ipst->ips_ip6_observe_pr != NULL); 29827 } 29828 29829 static void 29830 ipobs_fini(ip_stack_t *ipst) 29831 { 29832 29833 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 29834 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 29835 } 29836 29837 /* 29838 * hook_pkt_observe_t is composed in network byte order so that the 29839 * entire mblk_t chain handed into hook_run can be used as-is. 29840 * The caveat is that use of the fields, such as the zone fields, 29841 * requires conversion into host byte order first. 29842 */ 29843 void 29844 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 29845 const ill_t *ill, ip_stack_t *ipst) 29846 { 29847 hook_pkt_observe_t *hdr; 29848 uint64_t grifindex; 29849 mblk_t *imp; 29850 29851 imp = allocb(sizeof (*hdr), BPRI_HI); 29852 if (imp == NULL) 29853 return; 29854 29855 hdr = (hook_pkt_observe_t *)imp->b_rptr; 29856 /* 29857 * b_wptr is set to make the apparent size of the data in the mblk_t 29858 * to exclude the pointers at the end of hook_pkt_observer_t. 29859 */ 29860 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 29861 imp->b_cont = mp; 29862 29863 ASSERT(DB_TYPE(mp) == M_DATA); 29864 29865 if (IS_UNDER_IPMP(ill)) 29866 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 29867 else 29868 grifindex = 0; 29869 29870 hdr->hpo_version = 1; 29871 hdr->hpo_htype = htype; 29872 hdr->hpo_pktlen = htons((ushort_t)msgdsize(mp)); 29873 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 29874 hdr->hpo_grifindex = htonl(grifindex); 29875 hdr->hpo_zsrc = htonl(zsrc); 29876 hdr->hpo_zdst = htonl(zdst); 29877 hdr->hpo_pkt = imp; 29878 hdr->hpo_ctx = ipst->ips_netstack; 29879 29880 if (ill->ill_isv6) { 29881 hdr->hpo_family = AF_INET6; 29882 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 29883 ipst->ips_ipv6observing, (hook_data_t)hdr); 29884 } else { 29885 hdr->hpo_family = AF_INET; 29886 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 29887 ipst->ips_ipv4observing, (hook_data_t)hdr); 29888 } 29889 29890 imp->b_cont = NULL; 29891 freemsg(imp); 29892 } 29893