1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/kobj.h> 44 #include <sys/modctl.h> 45 #include <sys/atomic.h> 46 #include <sys/policy.h> 47 #include <sys/priv.h> 48 #include <sys/taskq.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/iptun/iptun_impl.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <inet/rawip_impl.h> 121 #include <inet/rts_impl.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 #include <sys/squeue_impl.h> 128 129 /* 130 * Values for squeue switch: 131 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 132 * IP_SQUEUE_ENTER: SQ_PROCESS 133 * IP_SQUEUE_FILL: SQ_FILL 134 */ 135 int ip_squeue_enter = 2; /* Setable in /etc/system */ 136 137 int ip_squeue_flag; 138 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 139 140 /* 141 * Setable in /etc/system 142 */ 143 int ip_poll_normal_ms = 100; 144 int ip_poll_normal_ticks = 0; 145 int ip_modclose_ackwait_ms = 3000; 146 147 /* 148 * It would be nice to have these present only in DEBUG systems, but the 149 * current design of the global symbol checking logic requires them to be 150 * unconditionally present. 151 */ 152 uint_t ip_thread_data; /* TSD key for debug support */ 153 krwlock_t ip_thread_rwlock; 154 list_t ip_thread_list; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 uint_t ird_flags; /* see below */ 174 listptr_t ird_route; /* ipRouteEntryTable */ 175 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 176 listptr_t ird_attrs; /* ipRouteAttributeTable */ 177 } iproutedata_t; 178 179 #define IRD_REPORT_TESTHIDDEN 0x01 /* include IRE_MARK_TESTHIDDEN routes */ 180 181 /* 182 * Cluster specific hooks. These should be NULL when booted as a non-cluster 183 */ 184 185 /* 186 * Hook functions to enable cluster networking 187 * On non-clustered systems these vectors must always be NULL. 188 * 189 * Hook function to Check ip specified ip address is a shared ip address 190 * in the cluster 191 * 192 */ 193 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 194 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 195 196 /* 197 * Hook function to generate cluster wide ip fragment identifier 198 */ 199 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 200 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 201 void *args) = NULL; 202 203 /* 204 * Hook function to generate cluster wide SPI. 205 */ 206 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 207 void *) = NULL; 208 209 /* 210 * Hook function to verify if the SPI is already utlized. 211 */ 212 213 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 214 215 /* 216 * Hook function to delete the SPI from the cluster wide repository. 217 */ 218 219 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 220 221 /* 222 * Hook function to inform the cluster when packet received on an IDLE SA 223 */ 224 225 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 226 in6_addr_t, in6_addr_t, void *) = NULL; 227 228 /* 229 * Synchronization notes: 230 * 231 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 232 * MT level protection given by STREAMS. IP uses a combination of its own 233 * internal serialization mechanism and standard Solaris locking techniques. 234 * The internal serialization is per phyint. This is used to serialize 235 * plumbing operations, certain multicast operations, most set ioctls, 236 * igmp/mld timers etc. 237 * 238 * Plumbing is a long sequence of operations involving message 239 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 240 * involved in plumbing operations. A natural model is to serialize these 241 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 242 * parallel without any interference. But various set ioctls on hme0 are best 243 * serialized, along with multicast join/leave operations, igmp/mld timer 244 * operations, and processing of DLPI control messages received from drivers 245 * on a per phyint basis. This serialization is provided by the ipsq_t and 246 * primitives operating on this. Details can be found in ip_if.c above the 247 * core primitives operating on ipsq_t. 248 * 249 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 250 * Simiarly lookup of an ire by a thread also returns a refheld ire. 251 * In addition ipif's and ill's referenced by the ire are also indirectly 252 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 253 * the ipif's address or netmask change as long as an ipif is refheld 254 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 255 * address of an ipif has to go through the ipsq_t. This ensures that only 256 * 1 such exclusive operation proceeds at any time on the ipif. It then 257 * deletes all ires associated with this ipif, and waits for all refcnts 258 * associated with this ipif to come down to zero. The address is changed 259 * only after the ipif has been quiesced. Then the ipif is brought up again. 260 * More details are described above the comment in ip_sioctl_flags. 261 * 262 * Packet processing is based mostly on IREs and are fully multi-threaded 263 * using standard Solaris MT techniques. 264 * 265 * There are explicit locks in IP to handle: 266 * - The ip_g_head list maintained by mi_open_link() and friends. 267 * 268 * - The reassembly data structures (one lock per hash bucket) 269 * 270 * - conn_lock is meant to protect conn_t fields. The fields actually 271 * protected by conn_lock are documented in the conn_t definition. 272 * 273 * - ire_lock to protect some of the fields of the ire, IRE tables 274 * (one lock per hash bucket). Refer to ip_ire.c for details. 275 * 276 * - ndp_g_lock and nce_lock for protecting NCEs. 277 * 278 * - ill_lock protects fields of the ill and ipif. Details in ip.h 279 * 280 * - ill_g_lock: This is a global reader/writer lock. Protects the following 281 * * The AVL tree based global multi list of all ills. 282 * * The linked list of all ipifs of an ill 283 * * The <ipsq-xop> mapping 284 * * <ill-phyint> association 285 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 286 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 287 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 288 * writer for the actual duration of the insertion/deletion/change. 289 * 290 * - ill_lock: This is a per ill mutex. 291 * It protects some members of the ill_t struct; see ip.h for details. 292 * It also protects the <ill-phyint> assoc. 293 * It also protects the list of ipifs hanging off the ill. 294 * 295 * - ipsq_lock: This is a per ipsq_t mutex lock. 296 * This protects some members of the ipsq_t struct; see ip.h for details. 297 * It also protects the <ipsq-ipxop> mapping 298 * 299 * - ipx_lock: This is a per ipxop_t mutex lock. 300 * This protects some members of the ipxop_t struct; see ip.h for details. 301 * 302 * - phyint_lock: This is a per phyint mutex lock. Protects just the 303 * phyint_flags 304 * 305 * - ip_g_nd_lock: This is a global reader/writer lock. 306 * Any call to nd_load to load a new parameter to the ND table must hold the 307 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 308 * as reader. 309 * 310 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 311 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 312 * uniqueness check also done atomically. 313 * 314 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 315 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 316 * as a writer when adding or deleting elements from these lists, and 317 * as a reader when walking these lists to send a SADB update to the 318 * IPsec capable ills. 319 * 320 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 321 * group list linked by ill_usesrc_grp_next. It also protects the 322 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 323 * group is being added or deleted. This lock is taken as a reader when 324 * walking the list/group(eg: to get the number of members in a usesrc group). 325 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 326 * field is changing state i.e from NULL to non-NULL or vice-versa. For 327 * example, it is not necessary to take this lock in the initial portion 328 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 329 * operations are executed exclusively and that ensures that the "usesrc 330 * group state" cannot change. The "usesrc group state" change can happen 331 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 332 * 333 * Changing <ill-phyint>, <ipsq-xop> assocications: 334 * 335 * To change the <ill-phyint> association, the ill_g_lock must be held 336 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 337 * must be held. 338 * 339 * To change the <ipsq-xop> association, the ill_g_lock must be held as 340 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 341 * This is only done when ills are added or removed from IPMP groups. 342 * 343 * To add or delete an ipif from the list of ipifs hanging off the ill, 344 * ill_g_lock (writer) and ill_lock must be held and the thread must be 345 * a writer on the associated ipsq. 346 * 347 * To add or delete an ill to the system, the ill_g_lock must be held as 348 * writer and the thread must be a writer on the associated ipsq. 349 * 350 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 351 * must be a writer on the associated ipsq. 352 * 353 * Lock hierarchy 354 * 355 * Some lock hierarchy scenarios are listed below. 356 * 357 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 358 * ill_g_lock -> ill_lock(s) -> phyint_lock 359 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 360 * ill_g_lock -> ip_addr_avail_lock 361 * conn_lock -> irb_lock -> ill_lock -> ire_lock 362 * ill_g_lock -> ip_g_nd_lock 363 * 364 * When more than 1 ill lock is needed to be held, all ill lock addresses 365 * are sorted on address and locked starting from highest addressed lock 366 * downward. 367 * 368 * IPsec scenarios 369 * 370 * ipsa_lock -> ill_g_lock -> ill_lock 371 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 372 * ipsec_capab_ills_lock -> ipsa_lock 373 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 374 * 375 * Trusted Solaris scenarios 376 * 377 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 378 * igsa_lock -> gcdb_lock 379 * gcgrp_rwlock -> ire_lock 380 * gcgrp_rwlock -> gcdb_lock 381 * 382 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 383 * 384 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 385 * sq_lock -> conn_lock -> QLOCK(q) 386 * ill_lock -> ft_lock -> fe_lock 387 * 388 * Routing/forwarding table locking notes: 389 * 390 * Lock acquisition order: Radix tree lock, irb_lock. 391 * Requirements: 392 * i. Walker must not hold any locks during the walker callback. 393 * ii Walker must not see a truncated tree during the walk because of any node 394 * deletion. 395 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 396 * in many places in the code to walk the irb list. Thus even if all the 397 * ires in a bucket have been deleted, we still can't free the radix node 398 * until the ires have actually been inactive'd (freed). 399 * 400 * Tree traversal - Need to hold the global tree lock in read mode. 401 * Before dropping the global tree lock, need to either increment the ire_refcnt 402 * to ensure that the radix node can't be deleted. 403 * 404 * Tree add - Need to hold the global tree lock in write mode to add a 405 * radix node. To prevent the node from being deleted, increment the 406 * irb_refcnt, after the node is added to the tree. The ire itself is 407 * added later while holding the irb_lock, but not the tree lock. 408 * 409 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 410 * All associated ires must be inactive (i.e. freed), and irb_refcnt 411 * must be zero. 412 * 413 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 414 * global tree lock (read mode) for traversal. 415 * 416 * IPsec notes : 417 * 418 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 419 * in front of the actual packet. For outbound datagrams, the M_CTL 420 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 421 * information used by the IPsec code for applying the right level of 422 * protection. The information initialized by IP in the ipsec_out_t 423 * is determined by the per-socket policy or global policy in the system. 424 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 425 * ipsec_info.h) which starts out with nothing in it. It gets filled 426 * with the right information if it goes through the AH/ESP code, which 427 * happens if the incoming packet is secure. The information initialized 428 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 429 * the policy requirements needed by per-socket policy or global policy 430 * is met or not. 431 * 432 * If there is both per-socket policy (set using setsockopt) and there 433 * is also global policy match for the 5 tuples of the socket, 434 * ipsec_override_policy() makes the decision of which one to use. 435 * 436 * For fully connected sockets i.e dst, src [addr, port] is known, 437 * conn_policy_cached is set indicating that policy has been cached. 438 * conn_in_enforce_policy may or may not be set depending on whether 439 * there is a global policy match or per-socket policy match. 440 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 441 * Once the right policy is set on the conn_t, policy cannot change for 442 * this socket. This makes life simpler for TCP (UDP ?) where 443 * re-transmissions go out with the same policy. For symmetry, policy 444 * is cached for fully connected UDP sockets also. Thus if policy is cached, 445 * it also implies that policy is latched i.e policy cannot change 446 * on these sockets. As we have the right policy on the conn, we don't 447 * have to lookup global policy for every outbound and inbound datagram 448 * and thus serving as an optimization. Note that a global policy change 449 * does not affect fully connected sockets if they have policy. If fully 450 * connected sockets did not have any policy associated with it, global 451 * policy change may affect them. 452 * 453 * IP Flow control notes: 454 * --------------------- 455 * Non-TCP streams are flow controlled by IP. The way this is accomplished 456 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 457 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 458 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 459 * functions. 460 * 461 * Per Tx ring udp flow control: 462 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 463 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 464 * 465 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 466 * To achieve best performance, outgoing traffic need to be fanned out among 467 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 468 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 469 * the address of connp as fanout hint to mac_tx(). Under flow controlled 470 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 471 * cookie points to a specific Tx ring that is blocked. The cookie is used to 472 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 473 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 474 * connp's. The drain list is not a single list but a configurable number of 475 * lists. 476 * 477 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 478 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 479 * which is equal to 128. This array in turn contains a pointer to idl_t[], 480 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 481 * list will point to the list of connp's that are flow controlled. 482 * 483 * --------------- ------- ------- ------- 484 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 485 * | --------------- ------- ------- ------- 486 * | --------------- ------- ------- ------- 487 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 488 * ---------------- | --------------- ------- ------- ------- 489 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 490 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 491 * | --------------- ------- ------- ------- 492 * . . . . . 493 * | --------------- ------- ------- ------- 494 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 495 * --------------- ------- ------- ------- 496 * --------------- ------- ------- ------- 497 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 498 * | --------------- ------- ------- ------- 499 * | --------------- ------- ------- ------- 500 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 501 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 502 * ---------------- | . . . . 503 * | --------------- ------- ------- ------- 504 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 505 * --------------- ------- ------- ------- 506 * ..... 507 * ---------------- 508 * |idl_tx_list[n]|-> ... 509 * ---------------- 510 * 511 * When mac_tx() returns a cookie, the cookie is used to hash into a 512 * idl_tx_list in ips_idl_tx_list[] array. Then conn_drain_insert() is 513 * called passing idl_tx_list. The connp gets inserted in a drain list 514 * pointed to by idl_tx_list. conn_drain_list() asserts flow control for 515 * the sockets (non stream based) and sets QFULL condition for conn_wq. 516 * connp->conn_direct_blocked will be set to indicate the blocked 517 * condition. 518 * 519 * GLDv3 mac layer calls ill_flow_enable() when flow control is relieved. 520 * A cookie is passed in the call to ill_flow_enable() that identifies the 521 * blocked Tx ring. This cookie is used to get to the idl_tx_list that 522 * contains the blocked connp's. conn_walk_drain() uses the idl_tx_list_t 523 * and goes through each of the drain list (q)enabling the conn_wq of the 524 * first conn in each of the drain list. This causes ip_wsrv to run for the 525 * conn. ip_wsrv drains the queued messages, and removes the conn from the 526 * drain list, if all messages were drained. It also qenables the next conn 527 * in the drain list to continue the drain process. 528 * 529 * In reality the drain list is not a single list, but a configurable number 530 * of lists. conn_drain_walk() in the IP module, qenables the first conn in 531 * each list. If the ip_wsrv of the next qenabled conn does not run, because 532 * the stream closes, ip_close takes responsibility to qenable the next conn 533 * in the drain list. conn_drain_insert and conn_drain_tail are the only 534 * functions that manipulate this drain list. conn_drain_insert is called in 535 * ip_wput context itself (as opposed to from ip_wsrv context for STREAMS 536 * case -- see below). The synchronization between drain insertion and flow 537 * control wakeup is handled by using idl_txl->txl_lock. 538 * 539 * Flow control using STREAMS: 540 * When ILL_DIRECT_CAPABLE() is not TRUE, STREAMS flow control mechanism 541 * is used. On the send side, if the packet cannot be sent down to the 542 * driver by IP, because of a canput failure, IP does a putq on the conn_wq. 543 * This will cause ip_wsrv to run on the conn_wq. ip_wsrv in turn, inserts 544 * the conn in a list of conn's that need to be drained when the flow 545 * control condition subsides. The blocked connps are put in first member 546 * of ips_idl_tx_list[] array. Ultimately STREAMS backenables the ip_wsrv 547 * on the IP module. It calls conn_walk_drain() passing ips_idl_tx_list[0]. 548 * ips_idl_tx_list[0] contains the drain lists of blocked conns. The 549 * conn_wq of the first conn in the drain lists is (q)enabled to run. 550 * ip_wsrv on this conn drains the queued messages, and removes the conn 551 * from the drain list, if all messages were drained. It also qenables the 552 * next conn in the drain list to continue the drain process. 553 * 554 * If the ip_wsrv of the next qenabled conn does not run, because the 555 * stream closes, ip_close takes responsibility to qenable the next conn in 556 * the drain list. The directly called ip_wput path always does a putq, if 557 * it cannot putnext. Thus synchronization problems are handled between 558 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 559 * functions that manipulate this drain list. Furthermore conn_drain_insert 560 * is called only from ip_wsrv for the STREAMS case, and there can be only 1 561 * instance of ip_wsrv running on a queue at any time. conn_drain_tail can 562 * be simultaneously called from both ip_wsrv and ip_close. 563 * 564 * IPQOS notes: 565 * 566 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 567 * and IPQoS modules. IPPF includes hooks in IP at different control points 568 * (callout positions) which direct packets to IPQoS modules for policy 569 * processing. Policies, if present, are global. 570 * 571 * The callout positions are located in the following paths: 572 * o local_in (packets destined for this host) 573 * o local_out (packets orginating from this host ) 574 * o fwd_in (packets forwarded by this m/c - inbound) 575 * o fwd_out (packets forwarded by this m/c - outbound) 576 * Hooks at these callout points can be enabled/disabled using the ndd variable 577 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 578 * By default all the callout positions are enabled. 579 * 580 * Outbound (local_out) 581 * Hooks are placed in ip_wput_ire and ipsec_out_process. 582 * 583 * Inbound (local_in) 584 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 585 * TCP and UDP fanout routines. 586 * 587 * Forwarding (in and out) 588 * Hooks are placed in ip_rput_forward. 589 * 590 * IP Policy Framework processing (IPPF processing) 591 * Policy processing for a packet is initiated by ip_process, which ascertains 592 * that the classifier (ipgpc) is loaded and configured, failing which the 593 * packet resumes normal processing in IP. If the clasifier is present, the 594 * packet is acted upon by one or more IPQoS modules (action instances), per 595 * filters configured in ipgpc and resumes normal IP processing thereafter. 596 * An action instance can drop a packet in course of its processing. 597 * 598 * A boolean variable, ip_policy, is used in all the fanout routines that can 599 * invoke ip_process for a packet. This variable indicates if the packet should 600 * to be sent for policy processing. The variable is set to B_TRUE by default, 601 * i.e. when the routines are invoked in the normal ip procesing path for a 602 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 603 * ip_policy is set to B_FALSE for all the routines called in these two 604 * functions because, in the former case, we don't process loopback traffic 605 * currently while in the latter, the packets have already been processed in 606 * icmp_inbound. 607 * 608 * Zones notes: 609 * 610 * The partitioning rules for networking are as follows: 611 * 1) Packets coming from a zone must have a source address belonging to that 612 * zone. 613 * 2) Packets coming from a zone can only be sent on a physical interface on 614 * which the zone has an IP address. 615 * 3) Between two zones on the same machine, packet delivery is only allowed if 616 * there's a matching route for the destination and zone in the forwarding 617 * table. 618 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 619 * different zones can bind to the same port with the wildcard address 620 * (INADDR_ANY). 621 * 622 * The granularity of interface partitioning is at the logical interface level. 623 * Therefore, every zone has its own IP addresses, and incoming packets can be 624 * attributed to a zone unambiguously. A logical interface is placed into a zone 625 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 626 * structure. Rule (1) is implemented by modifying the source address selection 627 * algorithm so that the list of eligible addresses is filtered based on the 628 * sending process zone. 629 * 630 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 631 * across all zones, depending on their type. Here is the break-up: 632 * 633 * IRE type Shared/exclusive 634 * -------- ---------------- 635 * IRE_BROADCAST Exclusive 636 * IRE_DEFAULT (default routes) Shared (*) 637 * IRE_LOCAL Exclusive (x) 638 * IRE_LOOPBACK Exclusive 639 * IRE_PREFIX (net routes) Shared (*) 640 * IRE_CACHE Exclusive 641 * IRE_IF_NORESOLVER (interface routes) Exclusive 642 * IRE_IF_RESOLVER (interface routes) Exclusive 643 * IRE_HOST (host routes) Shared (*) 644 * 645 * (*) A zone can only use a default or off-subnet route if the gateway is 646 * directly reachable from the zone, that is, if the gateway's address matches 647 * one of the zone's logical interfaces. 648 * 649 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 650 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 651 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 652 * address of the zone itself (the destination). Since IRE_LOCAL is used 653 * for communication between zones, ip_wput_ire has special logic to set 654 * the right source address when sending using an IRE_LOCAL. 655 * 656 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 657 * ire_cache_lookup restricts loopback using an IRE_LOCAL 658 * between zone to the case when L2 would have conceptually looped the packet 659 * back, i.e. the loopback which is required since neither Ethernet drivers 660 * nor Ethernet hardware loops them back. This is the case when the normal 661 * routes (ignoring IREs with different zoneids) would send out the packet on 662 * the same ill as the ill with which is IRE_LOCAL is associated. 663 * 664 * Multiple zones can share a common broadcast address; typically all zones 665 * share the 255.255.255.255 address. Incoming as well as locally originated 666 * broadcast packets must be dispatched to all the zones on the broadcast 667 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 668 * since some zones may not be on the 10.16.72/24 network. To handle this, each 669 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 670 * sent to every zone that has an IRE_BROADCAST entry for the destination 671 * address on the input ill, see conn_wantpacket(). 672 * 673 * Applications in different zones can join the same multicast group address. 674 * For IPv4, group memberships are per-logical interface, so they're already 675 * inherently part of a zone. For IPv6, group memberships are per-physical 676 * interface, so we distinguish IPv6 group memberships based on group address, 677 * interface and zoneid. In both cases, received multicast packets are sent to 678 * every zone for which a group membership entry exists. On IPv6 we need to 679 * check that the target zone still has an address on the receiving physical 680 * interface; it could have been removed since the application issued the 681 * IPV6_JOIN_GROUP. 682 */ 683 684 /* 685 * Squeue Fanout flags: 686 * 0: No fanout. 687 * 1: Fanout across all squeues 688 */ 689 boolean_t ip_squeue_fanout = 0; 690 691 /* 692 * Maximum dups allowed per packet. 693 */ 694 uint_t ip_max_frag_dups = 10; 695 696 #define IS_SIMPLE_IPH(ipha) \ 697 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 698 699 /* RFC 1122 Conformance */ 700 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 701 702 #define ILL_MAX_NAMELEN LIFNAMSIZ 703 704 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 705 706 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 707 cred_t *credp, boolean_t isv6); 708 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 709 ipha_t **); 710 711 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 712 ip_stack_t *); 713 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 714 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 715 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 716 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 717 mblk_t *, int, ip_stack_t *); 718 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 719 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 720 ill_t *, zoneid_t); 721 static void icmp_options_update(ipha_t *); 722 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 723 ip_stack_t *); 724 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 725 zoneid_t zoneid, ip_stack_t *); 726 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 727 static void icmp_redirect(ill_t *, mblk_t *); 728 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 729 ip_stack_t *); 730 731 static void ip_arp_news(queue_t *, mblk_t *); 732 static boolean_t ip_bind_get_ire_v4(mblk_t **, ire_t *, iulp_t *, ip_stack_t *); 733 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 734 char *ip_dot_addr(ipaddr_t, char *); 735 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 736 int ip_close(queue_t *, int); 737 static char *ip_dot_saddr(uchar_t *, char *); 738 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 739 boolean_t, boolean_t, ill_t *, zoneid_t); 740 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 741 boolean_t, boolean_t, zoneid_t); 742 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 743 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 744 static void ip_lrput(queue_t *, mblk_t *); 745 ipaddr_t ip_net_mask(ipaddr_t); 746 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 747 ip_stack_t *); 748 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 749 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 750 char *ip_nv_lookup(nv_t *, int); 751 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 752 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 753 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 754 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 755 ipndp_t *, size_t); 756 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 757 void ip_rput(queue_t *, mblk_t *); 758 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 759 void *dummy_arg); 760 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 761 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 762 ip_stack_t *); 763 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 764 ire_t *, ip_stack_t *); 765 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 766 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 767 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 768 ip_stack_t *); 769 static boolean_t ip_rput_fragment(ill_t *, ill_t *, mblk_t **, ipha_t *, 770 uint32_t *, uint16_t *); 771 int ip_snmp_get(queue_t *, mblk_t *, int); 772 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 773 mib2_ipIfStatsEntry_t *, ip_stack_t *); 774 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 775 ip_stack_t *); 776 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 777 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 778 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 779 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 780 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 781 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 782 ip_stack_t *ipst); 783 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 784 ip_stack_t *ipst); 785 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 786 ip_stack_t *ipst); 787 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 788 ip_stack_t *ipst); 789 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 790 ip_stack_t *ipst); 791 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 792 ip_stack_t *ipst); 793 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 794 ip_stack_t *ipst); 795 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 796 ip_stack_t *ipst); 797 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 798 ip_stack_t *ipst); 799 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 800 ip_stack_t *ipst); 801 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 802 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 803 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 804 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 805 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 806 static boolean_t ip_source_route_included(ipha_t *); 807 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 808 809 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 810 zoneid_t, ip_stack_t *, conn_t *); 811 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *, 812 mblk_t *); 813 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 814 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 815 zoneid_t, ip_stack_t *); 816 817 static void conn_drain_init(ip_stack_t *); 818 static void conn_drain_fini(ip_stack_t *); 819 static void conn_drain_tail(conn_t *connp, boolean_t closing); 820 821 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 822 static void conn_setqfull(conn_t *); 823 static void conn_clrqfull(conn_t *); 824 825 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 826 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 827 static void ip_stack_fini(netstackid_t stackid, void *arg); 828 829 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 830 zoneid_t); 831 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 832 void *dummy_arg); 833 834 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 835 836 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 837 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 838 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 839 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 840 841 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 842 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 843 caddr_t, cred_t *); 844 extern int ip_helper_stream_setup(queue_t *, dev_t *, int, int, 845 cred_t *, boolean_t); 846 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 847 caddr_t cp, cred_t *cr); 848 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 849 cred_t *); 850 static int ip_squeue_switch(int); 851 852 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 853 static void ip_kstat_fini(netstackid_t, kstat_t *); 854 static int ip_kstat_update(kstat_t *kp, int rw); 855 static void *icmp_kstat_init(netstackid_t); 856 static void icmp_kstat_fini(netstackid_t, kstat_t *); 857 static int icmp_kstat_update(kstat_t *kp, int rw); 858 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 859 static void ip_kstat2_fini(netstackid_t, kstat_t *); 860 861 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 862 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 863 864 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 865 ipha_t *, ill_t *, boolean_t, boolean_t); 866 867 static void ipobs_init(ip_stack_t *); 868 static void ipobs_fini(ip_stack_t *); 869 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 870 871 /* How long, in seconds, we allow frags to hang around. */ 872 #define IP_FRAG_TIMEOUT 15 873 #define IPV6_FRAG_TIMEOUT 60 874 875 /* 876 * Threshold which determines whether MDT should be used when 877 * generating IP fragments; payload size must be greater than 878 * this threshold for MDT to take place. 879 */ 880 #define IP_WPUT_FRAG_MDT_MIN 32768 881 882 /* Setable in /etc/system only */ 883 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 884 885 static long ip_rput_pullups; 886 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 887 888 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 889 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 890 891 int ip_debug; 892 893 #ifdef DEBUG 894 uint32_t ipsechw_debug = 0; 895 #endif 896 897 /* 898 * Multirouting/CGTP stuff 899 */ 900 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 901 902 /* 903 * XXX following really should only be in a header. Would need more 904 * header and .c clean up first. 905 */ 906 extern optdb_obj_t ip_opt_obj; 907 908 ulong_t ip_squeue_enter_unbound = 0; 909 910 /* 911 * Named Dispatch Parameter Table. 912 * All of these are alterable, within the min/max values given, at run time. 913 */ 914 static ipparam_t lcl_param_arr[] = { 915 /* min max value name */ 916 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 917 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 918 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 919 { 0, 1, 0, "ip_respond_to_timestamp"}, 920 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 921 { 0, 1, 1, "ip_send_redirects"}, 922 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 923 { 0, 10, 0, "ip_mrtdebug"}, 924 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 925 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 926 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 927 { 1, 255, 255, "ip_def_ttl" }, 928 { 0, 1, 0, "ip_forward_src_routed"}, 929 { 0, 256, 32, "ip_wroff_extra" }, 930 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 931 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 932 { 0, 1, 1, "ip_path_mtu_discovery" }, 933 { 0, 240, 30, "ip_ignore_delete_time" }, 934 { 0, 1, 0, "ip_ignore_redirect" }, 935 { 0, 1, 1, "ip_output_queue" }, 936 { 1, 254, 1, "ip_broadcast_ttl" }, 937 { 0, 99999, 100, "ip_icmp_err_interval" }, 938 { 1, 99999, 10, "ip_icmp_err_burst" }, 939 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 940 { 0, 1, 0, "ip_strict_dst_multihoming" }, 941 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 942 { 0, 1, 0, "ipsec_override_persocket_policy" }, 943 { 0, 1, 1, "icmp_accept_clear_messages" }, 944 { 0, 1, 1, "igmp_accept_clear_messages" }, 945 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 946 "ip_ndp_delay_first_probe_time"}, 947 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 948 "ip_ndp_max_unicast_solicit"}, 949 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 950 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 951 { 0, 1, 0, "ip6_forward_src_routed"}, 952 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 953 { 0, 1, 1, "ip6_send_redirects"}, 954 { 0, 1, 0, "ip6_ignore_redirect" }, 955 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 956 957 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 958 959 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 960 961 { 0, 1, 1, "pim_accept_clear_messages" }, 962 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 963 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 964 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 965 { 0, 15, 0, "ip_policy_mask" }, 966 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 967 { 0, 255, 1, "ip_multirt_ttl" }, 968 { 0, 1, 1, "ip_multidata_outbound" }, 969 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 970 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 971 { 0, 1000, 1, "ip_max_temp_defend" }, 972 { 0, 1000, 3, "ip_max_defend" }, 973 { 0, 999999, 30, "ip_defend_interval" }, 974 { 0, 3600000, 300000, "ip_dup_recovery" }, 975 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 976 { 0, 1, 1, "ip_lso_outbound" }, 977 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 978 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 979 { 68, 65535, 576, "ip_pmtu_min" }, 980 #ifdef DEBUG 981 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 982 #else 983 { 0, 0, 0, "" }, 984 #endif 985 }; 986 987 /* 988 * Extended NDP table 989 * The addresses for the first two are filled in to be ips_ip_g_forward 990 * and ips_ipv6_forward at init time. 991 */ 992 static ipndp_t lcl_ndp_arr[] = { 993 /* getf setf data name */ 994 #define IPNDP_IP_FORWARDING_OFFSET 0 995 { ip_param_generic_get, ip_forward_set, NULL, 996 "ip_forwarding" }, 997 #define IPNDP_IP6_FORWARDING_OFFSET 1 998 { ip_param_generic_get, ip_forward_set, NULL, 999 "ip6_forwarding" }, 1000 { ip_param_generic_get, ip_input_proc_set, 1001 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 1002 { ip_param_generic_get, ip_int_set, 1003 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 1004 #define IPNDP_CGTP_FILTER_OFFSET 4 1005 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 1006 "ip_cgtp_filter" }, 1007 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 1008 "ip_debug" }, 1009 }; 1010 1011 /* 1012 * Table of IP ioctls encoding the various properties of the ioctl and 1013 * indexed based on the last byte of the ioctl command. Occasionally there 1014 * is a clash, and there is more than 1 ioctl with the same last byte. 1015 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1016 * ioctls are encoded in the misc table. An entry in the ndx table is 1017 * retrieved by indexing on the last byte of the ioctl command and comparing 1018 * the ioctl command with the value in the ndx table. In the event of a 1019 * mismatch the misc table is then searched sequentially for the desired 1020 * ioctl command. 1021 * 1022 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1023 */ 1024 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1025 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 1036 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1037 MISC_CMD, ip_siocaddrt, NULL }, 1038 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1039 MISC_CMD, ip_siocdelrt, NULL }, 1040 1041 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1042 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1043 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 1044 IF_CMD, ip_sioctl_get_addr, NULL }, 1045 1046 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1047 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1048 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1049 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1050 1051 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1052 IPI_PRIV | IPI_WR, 1053 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1054 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1055 IPI_MODOK | IPI_GET_CMD, 1056 IF_CMD, ip_sioctl_get_flags, NULL }, 1057 1058 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 1061 /* copyin size cannot be coded for SIOCGIFCONF */ 1062 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 1063 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1064 1065 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1066 IF_CMD, ip_sioctl_mtu, NULL }, 1067 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 1068 IF_CMD, ip_sioctl_get_mtu, NULL }, 1069 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1070 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1071 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1072 IF_CMD, ip_sioctl_brdaddr, NULL }, 1073 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1074 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 1075 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1076 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1077 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1078 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 1079 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1080 IF_CMD, ip_sioctl_metric, NULL }, 1081 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 1083 /* See 166-168 below for extended SIOC*XARP ioctls */ 1084 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1085 ARP_CMD, ip_sioctl_arp, NULL }, 1086 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 1087 ARP_CMD, ip_sioctl_arp, NULL }, 1088 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1089 ARP_CMD, ip_sioctl_arp, NULL }, 1090 1091 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1092 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1093 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1094 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 1113 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1114 MISC_CMD, if_unitsel, if_unitsel_restart }, 1115 1116 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1129 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1131 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1132 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1133 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1134 1135 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1136 IPI_PRIV | IPI_WR | IPI_MODOK, 1137 IF_CMD, ip_sioctl_sifname, NULL }, 1138 1139 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 1153 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 1154 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1155 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 1156 IF_CMD, ip_sioctl_get_muxid, NULL }, 1157 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1158 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 1159 1160 /* Both if and lif variants share same func */ 1161 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 1162 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1163 /* Both if and lif variants share same func */ 1164 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1165 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 1166 1167 /* copyin size cannot be coded for SIOCGIFCONF */ 1168 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1169 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1170 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1180 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1181 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1182 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1183 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 1188 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1189 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 1190 ip_sioctl_removeif_restart }, 1191 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1192 IPI_GET_CMD | IPI_PRIV | IPI_WR, 1193 LIF_CMD, ip_sioctl_addif, NULL }, 1194 #define SIOCLIFADDR_NDX 112 1195 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1196 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1197 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1198 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 1199 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1200 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1201 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1202 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1203 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1204 IPI_PRIV | IPI_WR, 1205 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1206 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1207 IPI_GET_CMD | IPI_MODOK, 1208 LIF_CMD, ip_sioctl_get_flags, NULL }, 1209 1210 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1211 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1212 1213 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1214 ip_sioctl_get_lifconf, NULL }, 1215 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1216 LIF_CMD, ip_sioctl_mtu, NULL }, 1217 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 1218 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1219 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1220 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1221 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1222 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1223 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1224 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 1225 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1226 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1227 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1228 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 1229 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1230 LIF_CMD, ip_sioctl_metric, NULL }, 1231 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1232 IPI_PRIV | IPI_WR | IPI_MODOK, 1233 LIF_CMD, ip_sioctl_slifname, 1234 ip_sioctl_slifname_restart }, 1235 1236 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 1237 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1238 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1239 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 1240 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1241 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1242 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1243 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1244 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1245 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1246 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1247 LIF_CMD, ip_sioctl_token, NULL }, 1248 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1249 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1250 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1251 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1252 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1253 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1254 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1255 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1256 1257 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1258 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1259 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1260 LIF_CMD, ip_siocdelndp_v6, NULL }, 1261 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1262 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1263 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1264 LIF_CMD, ip_siocsetndp_v6, NULL }, 1265 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1266 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1267 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1268 MISC_CMD, ip_sioctl_tonlink, NULL }, 1269 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1270 MISC_CMD, ip_sioctl_tmysite, NULL }, 1271 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1272 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1273 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1274 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1275 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1276 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1277 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1278 1279 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1280 1281 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1282 LIF_CMD, ip_sioctl_get_binding, NULL }, 1283 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1284 IPI_PRIV | IPI_WR, 1285 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1286 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1287 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1288 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1289 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1290 1291 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1292 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1293 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1294 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1295 1296 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1297 1298 /* These are handled in ip_sioctl_copyin_setup itself */ 1299 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1300 MISC_CMD, NULL, NULL }, 1301 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1302 MISC_CMD, NULL, NULL }, 1303 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1304 1305 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1306 ip_sioctl_get_lifconf, NULL }, 1307 1308 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1309 XARP_CMD, ip_sioctl_arp, NULL }, 1310 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1311 XARP_CMD, ip_sioctl_arp, NULL }, 1312 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1313 XARP_CMD, ip_sioctl_arp, NULL }, 1314 1315 /* SIOCPOPSOCKFS is not handled by IP */ 1316 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1317 1318 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1319 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1320 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1321 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1322 ip_sioctl_slifzone_restart }, 1323 /* 172-174 are SCTP ioctls and not handled by IP */ 1324 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1325 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1326 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1327 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1328 IPI_GET_CMD, LIF_CMD, 1329 ip_sioctl_get_lifusesrc, 0 }, 1330 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1331 IPI_PRIV | IPI_WR, 1332 LIF_CMD, ip_sioctl_slifusesrc, 1333 NULL }, 1334 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1335 ip_sioctl_get_lifsrcof, NULL }, 1336 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1337 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1338 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1339 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1340 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1341 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1342 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1343 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1344 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1345 /* SIOCSENABLESDP is handled by SDP */ 1346 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1347 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1348 }; 1349 1350 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1351 1352 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1353 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1354 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1355 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1356 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1357 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1358 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1359 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1360 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1361 MISC_CMD, mrt_ioctl}, 1362 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1363 MISC_CMD, mrt_ioctl}, 1364 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1365 MISC_CMD, mrt_ioctl} 1366 }; 1367 1368 int ip_misc_ioctl_count = 1369 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1370 1371 int conn_drain_nthreads; /* Number of drainers reqd. */ 1372 /* Settable in /etc/system */ 1373 /* Defined in ip_ire.c */ 1374 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1375 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1376 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1377 1378 static nv_t ire_nv_arr[] = { 1379 { IRE_BROADCAST, "BROADCAST" }, 1380 { IRE_LOCAL, "LOCAL" }, 1381 { IRE_LOOPBACK, "LOOPBACK" }, 1382 { IRE_CACHE, "CACHE" }, 1383 { IRE_DEFAULT, "DEFAULT" }, 1384 { IRE_PREFIX, "PREFIX" }, 1385 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1386 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1387 { IRE_HOST, "HOST" }, 1388 { 0 } 1389 }; 1390 1391 nv_t *ire_nv_tbl = ire_nv_arr; 1392 1393 /* Simple ICMP IP Header Template */ 1394 static ipha_t icmp_ipha = { 1395 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1396 }; 1397 1398 struct module_info ip_mod_info = { 1399 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1400 IP_MOD_LOWAT 1401 }; 1402 1403 /* 1404 * Duplicate static symbols within a module confuses mdb; so we avoid the 1405 * problem by making the symbols here distinct from those in udp.c. 1406 */ 1407 1408 /* 1409 * Entry points for IP as a device and as a module. 1410 * FIXME: down the road we might want a separate module and driver qinit. 1411 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1412 */ 1413 static struct qinit iprinitv4 = { 1414 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1415 &ip_mod_info 1416 }; 1417 1418 struct qinit iprinitv6 = { 1419 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1420 &ip_mod_info 1421 }; 1422 1423 static struct qinit ipwinitv4 = { 1424 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1425 &ip_mod_info 1426 }; 1427 1428 struct qinit ipwinitv6 = { 1429 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1430 &ip_mod_info 1431 }; 1432 1433 static struct qinit iplrinit = { 1434 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1435 &ip_mod_info 1436 }; 1437 1438 static struct qinit iplwinit = { 1439 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1440 &ip_mod_info 1441 }; 1442 1443 /* For AF_INET aka /dev/ip */ 1444 struct streamtab ipinfov4 = { 1445 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1446 }; 1447 1448 /* For AF_INET6 aka /dev/ip6 */ 1449 struct streamtab ipinfov6 = { 1450 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1451 }; 1452 1453 #ifdef DEBUG 1454 static boolean_t skip_sctp_cksum = B_FALSE; 1455 #endif 1456 1457 /* 1458 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1459 * ip_rput_v6(), ip_output(), etc. If the message 1460 * block already has a M_CTL at the front of it, then simply set the zoneid 1461 * appropriately. 1462 */ 1463 mblk_t * 1464 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1465 { 1466 mblk_t *first_mp; 1467 ipsec_out_t *io; 1468 1469 ASSERT(zoneid != ALL_ZONES); 1470 if (mp->b_datap->db_type == M_CTL) { 1471 io = (ipsec_out_t *)mp->b_rptr; 1472 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1473 io->ipsec_out_zoneid = zoneid; 1474 return (mp); 1475 } 1476 1477 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1478 if (first_mp == NULL) 1479 return (NULL); 1480 io = (ipsec_out_t *)first_mp->b_rptr; 1481 /* This is not a secure packet */ 1482 io->ipsec_out_secure = B_FALSE; 1483 io->ipsec_out_zoneid = zoneid; 1484 first_mp->b_cont = mp; 1485 return (first_mp); 1486 } 1487 1488 /* 1489 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1490 */ 1491 mblk_t * 1492 ip_copymsg(mblk_t *mp) 1493 { 1494 mblk_t *nmp; 1495 ipsec_info_t *in; 1496 1497 if (mp->b_datap->db_type != M_CTL) 1498 return (copymsg(mp)); 1499 1500 in = (ipsec_info_t *)mp->b_rptr; 1501 1502 /* 1503 * Note that M_CTL is also used for delivering ICMP error messages 1504 * upstream to transport layers. 1505 */ 1506 if (in->ipsec_info_type != IPSEC_OUT && 1507 in->ipsec_info_type != IPSEC_IN) 1508 return (copymsg(mp)); 1509 1510 nmp = copymsg(mp->b_cont); 1511 1512 if (in->ipsec_info_type == IPSEC_OUT) { 1513 return (ipsec_out_tag(mp, nmp, 1514 ((ipsec_out_t *)in)->ipsec_out_ns)); 1515 } else { 1516 return (ipsec_in_tag(mp, nmp, 1517 ((ipsec_in_t *)in)->ipsec_in_ns)); 1518 } 1519 } 1520 1521 /* Generate an ICMP fragmentation needed message. */ 1522 static void 1523 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1524 ip_stack_t *ipst) 1525 { 1526 icmph_t icmph; 1527 mblk_t *first_mp; 1528 boolean_t mctl_present; 1529 1530 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1531 1532 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1533 if (mctl_present) 1534 freeb(first_mp); 1535 return; 1536 } 1537 1538 bzero(&icmph, sizeof (icmph_t)); 1539 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1540 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1541 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1542 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1543 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1544 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1545 ipst); 1546 } 1547 1548 /* 1549 * icmp_inbound deals with ICMP messages in the following ways. 1550 * 1551 * 1) It needs to send a reply back and possibly delivering it 1552 * to the "interested" upper clients. 1553 * 2) It needs to send it to the upper clients only. 1554 * 3) It needs to change some values in IP only. 1555 * 4) It needs to change some values in IP and upper layers e.g TCP. 1556 * 1557 * We need to accomodate icmp messages coming in clear until we get 1558 * everything secure from the wire. If icmp_accept_clear_messages 1559 * is zero we check with the global policy and act accordingly. If 1560 * it is non-zero, we accept the message without any checks. But 1561 * *this does not mean* that this will be delivered to the upper 1562 * clients. By accepting we might send replies back, change our MTU 1563 * value etc. but delivery to the ULP/clients depends on their policy 1564 * dispositions. 1565 * 1566 * We handle the above 4 cases in the context of IPsec in the 1567 * following way : 1568 * 1569 * 1) Send the reply back in the same way as the request came in. 1570 * If it came in encrypted, it goes out encrypted. If it came in 1571 * clear, it goes out in clear. Thus, this will prevent chosen 1572 * plain text attack. 1573 * 2) The client may or may not expect things to come in secure. 1574 * If it comes in secure, the policy constraints are checked 1575 * before delivering it to the upper layers. If it comes in 1576 * clear, ipsec_inbound_accept_clear will decide whether to 1577 * accept this in clear or not. In both the cases, if the returned 1578 * message (IP header + 8 bytes) that caused the icmp message has 1579 * AH/ESP headers, it is sent up to AH/ESP for validation before 1580 * sending up. If there are only 8 bytes of returned message, then 1581 * upper client will not be notified. 1582 * 3) Check with global policy to see whether it matches the constaints. 1583 * But this will be done only if icmp_accept_messages_in_clear is 1584 * zero. 1585 * 4) If we need to change both in IP and ULP, then the decision taken 1586 * while affecting the values in IP and while delivering up to TCP 1587 * should be the same. 1588 * 1589 * There are two cases. 1590 * 1591 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1592 * failed), we will not deliver it to the ULP, even though they 1593 * are *willing* to accept in *clear*. This is fine as our global 1594 * disposition to icmp messages asks us reject the datagram. 1595 * 1596 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1597 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1598 * to deliver it to ULP (policy failed), it can lead to 1599 * consistency problems. The cases known at this time are 1600 * ICMP_DESTINATION_UNREACHABLE messages with following code 1601 * values : 1602 * 1603 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1604 * and Upper layer rejects. Then the communication will 1605 * come to a stop. This is solved by making similar decisions 1606 * at both levels. Currently, when we are unable to deliver 1607 * to the Upper Layer (due to policy failures) while IP has 1608 * adjusted ire_max_frag, the next outbound datagram would 1609 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1610 * will be with the right level of protection. Thus the right 1611 * value will be communicated even if we are not able to 1612 * communicate when we get from the wire initially. But this 1613 * assumes there would be at least one outbound datagram after 1614 * IP has adjusted its ire_max_frag value. To make things 1615 * simpler, we accept in clear after the validation of 1616 * AH/ESP headers. 1617 * 1618 * - Other ICMP ERRORS : We may not be able to deliver it to the 1619 * upper layer depending on the level of protection the upper 1620 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1621 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1622 * should be accepted in clear when the Upper layer expects secure. 1623 * Thus the communication may get aborted by some bad ICMP 1624 * packets. 1625 * 1626 * IPQoS Notes: 1627 * The only instance when a packet is sent for processing is when there 1628 * isn't an ICMP client and if we are interested in it. 1629 * If there is a client, IPPF processing will take place in the 1630 * ip_fanout_proto routine. 1631 * 1632 * Zones notes: 1633 * The packet is only processed in the context of the specified zone: typically 1634 * only this zone will reply to an echo request, and only interested clients in 1635 * this zone will receive a copy of the packet. This means that the caller must 1636 * call icmp_inbound() for each relevant zone. 1637 */ 1638 static void 1639 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1640 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1641 ill_t *recv_ill, zoneid_t zoneid) 1642 { 1643 icmph_t *icmph; 1644 ipha_t *ipha; 1645 int iph_hdr_length; 1646 int hdr_length; 1647 boolean_t interested; 1648 uint32_t ts; 1649 uchar_t *wptr; 1650 ipif_t *ipif; 1651 mblk_t *first_mp; 1652 ipsec_in_t *ii; 1653 timestruc_t now; 1654 uint32_t ill_index; 1655 ip_stack_t *ipst; 1656 1657 ASSERT(ill != NULL); 1658 ipst = ill->ill_ipst; 1659 1660 first_mp = mp; 1661 if (mctl_present) { 1662 mp = first_mp->b_cont; 1663 ASSERT(mp != NULL); 1664 } 1665 1666 ipha = (ipha_t *)mp->b_rptr; 1667 if (ipst->ips_icmp_accept_clear_messages == 0) { 1668 first_mp = ipsec_check_global_policy(first_mp, NULL, 1669 ipha, NULL, mctl_present, ipst->ips_netstack); 1670 if (first_mp == NULL) 1671 return; 1672 } 1673 1674 /* 1675 * On a labeled system, we have to check whether the zone itself is 1676 * permitted to receive raw traffic. 1677 */ 1678 if (is_system_labeled()) { 1679 if (zoneid == ALL_ZONES) 1680 zoneid = tsol_packet_to_zoneid(mp); 1681 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1682 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1683 zoneid)); 1684 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1685 freemsg(first_mp); 1686 return; 1687 } 1688 } 1689 1690 /* 1691 * We have accepted the ICMP message. It means that we will 1692 * respond to the packet if needed. It may not be delivered 1693 * to the upper client depending on the policy constraints 1694 * and the disposition in ipsec_inbound_accept_clear. 1695 */ 1696 1697 ASSERT(ill != NULL); 1698 1699 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1700 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1701 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1702 /* Last chance to get real. */ 1703 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1704 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1705 freemsg(first_mp); 1706 return; 1707 } 1708 /* Refresh iph following the pullup. */ 1709 ipha = (ipha_t *)mp->b_rptr; 1710 } 1711 /* ICMP header checksum, including checksum field, should be zero. */ 1712 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1713 IP_CSUM(mp, iph_hdr_length, 0)) { 1714 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1715 freemsg(first_mp); 1716 return; 1717 } 1718 /* The IP header will always be a multiple of four bytes */ 1719 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1720 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1721 icmph->icmph_code)); 1722 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1723 /* We will set "interested" to "true" if we want a copy */ 1724 interested = B_FALSE; 1725 switch (icmph->icmph_type) { 1726 case ICMP_ECHO_REPLY: 1727 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1728 break; 1729 case ICMP_DEST_UNREACHABLE: 1730 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1731 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1732 interested = B_TRUE; /* Pass up to transport */ 1733 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1734 break; 1735 case ICMP_SOURCE_QUENCH: 1736 interested = B_TRUE; /* Pass up to transport */ 1737 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1738 break; 1739 case ICMP_REDIRECT: 1740 if (!ipst->ips_ip_ignore_redirect) 1741 interested = B_TRUE; 1742 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1743 break; 1744 case ICMP_ECHO_REQUEST: 1745 /* 1746 * Whether to respond to echo requests that come in as IP 1747 * broadcasts or as IP multicast is subject to debate 1748 * (what isn't?). We aim to please, you pick it. 1749 * Default is do it. 1750 */ 1751 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1752 /* unicast: always respond */ 1753 interested = B_TRUE; 1754 } else if (CLASSD(ipha->ipha_dst)) { 1755 /* multicast: respond based on tunable */ 1756 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1757 } else if (broadcast) { 1758 /* broadcast: respond based on tunable */ 1759 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1760 } 1761 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1762 break; 1763 case ICMP_ROUTER_ADVERTISEMENT: 1764 case ICMP_ROUTER_SOLICITATION: 1765 break; 1766 case ICMP_TIME_EXCEEDED: 1767 interested = B_TRUE; /* Pass up to transport */ 1768 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1769 break; 1770 case ICMP_PARAM_PROBLEM: 1771 interested = B_TRUE; /* Pass up to transport */ 1772 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1773 break; 1774 case ICMP_TIME_STAMP_REQUEST: 1775 /* Response to Time Stamp Requests is local policy. */ 1776 if (ipst->ips_ip_g_resp_to_timestamp && 1777 /* So is whether to respond if it was an IP broadcast. */ 1778 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1779 int tstamp_len = 3 * sizeof (uint32_t); 1780 1781 if (wptr + tstamp_len > mp->b_wptr) { 1782 if (!pullupmsg(mp, wptr + tstamp_len - 1783 mp->b_rptr)) { 1784 BUMP_MIB(ill->ill_ip_mib, 1785 ipIfStatsInDiscards); 1786 freemsg(first_mp); 1787 return; 1788 } 1789 /* Refresh ipha following the pullup. */ 1790 ipha = (ipha_t *)mp->b_rptr; 1791 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1792 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1793 } 1794 interested = B_TRUE; 1795 } 1796 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1797 break; 1798 case ICMP_TIME_STAMP_REPLY: 1799 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1800 break; 1801 case ICMP_INFO_REQUEST: 1802 /* Per RFC 1122 3.2.2.7, ignore this. */ 1803 case ICMP_INFO_REPLY: 1804 break; 1805 case ICMP_ADDRESS_MASK_REQUEST: 1806 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1807 !broadcast) && 1808 /* TODO m_pullup of complete header? */ 1809 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1810 interested = B_TRUE; 1811 } 1812 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1813 break; 1814 case ICMP_ADDRESS_MASK_REPLY: 1815 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1816 break; 1817 default: 1818 interested = B_TRUE; /* Pass up to transport */ 1819 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1820 break; 1821 } 1822 /* See if there is an ICMP client. */ 1823 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1824 /* If there is an ICMP client and we want one too, copy it. */ 1825 mblk_t *first_mp1; 1826 1827 if (!interested) { 1828 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1829 ip_policy, recv_ill, zoneid); 1830 return; 1831 } 1832 first_mp1 = ip_copymsg(first_mp); 1833 if (first_mp1 != NULL) { 1834 ip_fanout_proto(q, first_mp1, ill, ipha, 1835 0, mctl_present, ip_policy, recv_ill, zoneid); 1836 } 1837 } else if (!interested) { 1838 freemsg(first_mp); 1839 return; 1840 } else { 1841 /* 1842 * Initiate policy processing for this packet if ip_policy 1843 * is true. 1844 */ 1845 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1846 ill_index = ill->ill_phyint->phyint_ifindex; 1847 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1848 if (mp == NULL) { 1849 if (mctl_present) { 1850 freeb(first_mp); 1851 } 1852 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1853 return; 1854 } 1855 } 1856 } 1857 /* We want to do something with it. */ 1858 /* Check db_ref to make sure we can modify the packet. */ 1859 if (mp->b_datap->db_ref > 1) { 1860 mblk_t *first_mp1; 1861 1862 first_mp1 = ip_copymsg(first_mp); 1863 freemsg(first_mp); 1864 if (!first_mp1) { 1865 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1866 return; 1867 } 1868 first_mp = first_mp1; 1869 if (mctl_present) { 1870 mp = first_mp->b_cont; 1871 ASSERT(mp != NULL); 1872 } else { 1873 mp = first_mp; 1874 } 1875 ipha = (ipha_t *)mp->b_rptr; 1876 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1877 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1878 } 1879 switch (icmph->icmph_type) { 1880 case ICMP_ADDRESS_MASK_REQUEST: 1881 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1882 if (ipif == NULL) { 1883 freemsg(first_mp); 1884 return; 1885 } 1886 /* 1887 * outging interface must be IPv4 1888 */ 1889 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1890 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1891 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1892 ipif_refrele(ipif); 1893 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1894 break; 1895 case ICMP_ECHO_REQUEST: 1896 icmph->icmph_type = ICMP_ECHO_REPLY; 1897 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1898 break; 1899 case ICMP_TIME_STAMP_REQUEST: { 1900 uint32_t *tsp; 1901 1902 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1903 tsp = (uint32_t *)wptr; 1904 tsp++; /* Skip past 'originate time' */ 1905 /* Compute # of milliseconds since midnight */ 1906 gethrestime(&now); 1907 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1908 now.tv_nsec / (NANOSEC / MILLISEC); 1909 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1910 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1911 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1912 break; 1913 } 1914 default: 1915 ipha = (ipha_t *)&icmph[1]; 1916 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1917 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1918 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1919 freemsg(first_mp); 1920 return; 1921 } 1922 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1923 ipha = (ipha_t *)&icmph[1]; 1924 } 1925 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1926 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1927 freemsg(first_mp); 1928 return; 1929 } 1930 hdr_length = IPH_HDR_LENGTH(ipha); 1931 if (hdr_length < sizeof (ipha_t)) { 1932 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1933 freemsg(first_mp); 1934 return; 1935 } 1936 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1937 if (!pullupmsg(mp, 1938 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1939 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1940 freemsg(first_mp); 1941 return; 1942 } 1943 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1944 ipha = (ipha_t *)&icmph[1]; 1945 } 1946 switch (icmph->icmph_type) { 1947 case ICMP_REDIRECT: 1948 /* 1949 * As there is no upper client to deliver, we don't 1950 * need the first_mp any more. 1951 */ 1952 if (mctl_present) { 1953 freeb(first_mp); 1954 } 1955 icmp_redirect(ill, mp); 1956 return; 1957 case ICMP_DEST_UNREACHABLE: 1958 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1959 if (!icmp_inbound_too_big(icmph, ipha, ill, 1960 zoneid, mp, iph_hdr_length, ipst)) { 1961 freemsg(first_mp); 1962 return; 1963 } 1964 /* 1965 * icmp_inbound_too_big() may alter mp. 1966 * Resynch ipha and icmph accordingly. 1967 */ 1968 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1969 ipha = (ipha_t *)&icmph[1]; 1970 } 1971 /* FALLTHRU */ 1972 default : 1973 /* 1974 * IPQoS notes: Since we have already done IPQoS 1975 * processing we don't want to do it again in 1976 * the fanout routines called by 1977 * icmp_inbound_error_fanout, hence the last 1978 * argument, ip_policy, is B_FALSE. 1979 */ 1980 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1981 ipha, iph_hdr_length, hdr_length, mctl_present, 1982 B_FALSE, recv_ill, zoneid); 1983 } 1984 return; 1985 } 1986 /* Send out an ICMP packet */ 1987 icmph->icmph_checksum = 0; 1988 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1989 if (broadcast || CLASSD(ipha->ipha_dst)) { 1990 ipif_t *ipif_chosen; 1991 /* 1992 * Make it look like it was directed to us, so we don't look 1993 * like a fool with a broadcast or multicast source address. 1994 */ 1995 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1996 /* 1997 * Make sure that we haven't grabbed an interface that's DOWN. 1998 */ 1999 if (ipif != NULL) { 2000 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2001 ipha->ipha_src, zoneid); 2002 if (ipif_chosen != NULL) { 2003 ipif_refrele(ipif); 2004 ipif = ipif_chosen; 2005 } 2006 } 2007 if (ipif == NULL) { 2008 ip0dbg(("icmp_inbound: " 2009 "No source for broadcast/multicast:\n" 2010 "\tsrc 0x%x dst 0x%x ill %p " 2011 "ipif_lcl_addr 0x%x\n", 2012 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2013 (void *)ill, 2014 ill->ill_ipif->ipif_lcl_addr)); 2015 freemsg(first_mp); 2016 return; 2017 } 2018 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2019 ipha->ipha_dst = ipif->ipif_src_addr; 2020 ipif_refrele(ipif); 2021 } 2022 /* Reset time to live. */ 2023 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2024 { 2025 /* Swap source and destination addresses */ 2026 ipaddr_t tmp; 2027 2028 tmp = ipha->ipha_src; 2029 ipha->ipha_src = ipha->ipha_dst; 2030 ipha->ipha_dst = tmp; 2031 } 2032 ipha->ipha_ident = 0; 2033 if (!IS_SIMPLE_IPH(ipha)) 2034 icmp_options_update(ipha); 2035 2036 if (!mctl_present) { 2037 /* 2038 * This packet should go out the same way as it 2039 * came in i.e in clear. To make sure that global 2040 * policy will not be applied to this in ip_wput_ire, 2041 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2042 */ 2043 ASSERT(first_mp == mp); 2044 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2045 if (first_mp == NULL) { 2046 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2047 freemsg(mp); 2048 return; 2049 } 2050 ii = (ipsec_in_t *)first_mp->b_rptr; 2051 2052 /* This is not a secure packet */ 2053 ii->ipsec_in_secure = B_FALSE; 2054 first_mp->b_cont = mp; 2055 } else { 2056 ii = (ipsec_in_t *)first_mp->b_rptr; 2057 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2058 } 2059 ii->ipsec_in_zoneid = zoneid; 2060 ASSERT(zoneid != ALL_ZONES); 2061 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2062 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2063 return; 2064 } 2065 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2066 put(WR(q), first_mp); 2067 } 2068 2069 static ipaddr_t 2070 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2071 { 2072 conn_t *connp; 2073 connf_t *connfp; 2074 ipaddr_t nexthop_addr = INADDR_ANY; 2075 int hdr_length = IPH_HDR_LENGTH(ipha); 2076 uint16_t *up; 2077 uint32_t ports; 2078 ip_stack_t *ipst = ill->ill_ipst; 2079 2080 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2081 switch (ipha->ipha_protocol) { 2082 case IPPROTO_TCP: 2083 { 2084 tcph_t *tcph; 2085 2086 /* do a reverse lookup */ 2087 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2088 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2089 TCPS_LISTEN, ipst); 2090 break; 2091 } 2092 case IPPROTO_UDP: 2093 { 2094 uint32_t dstport, srcport; 2095 2096 ((uint16_t *)&ports)[0] = up[1]; 2097 ((uint16_t *)&ports)[1] = up[0]; 2098 2099 /* Extract ports in net byte order */ 2100 dstport = htons(ntohl(ports) & 0xFFFF); 2101 srcport = htons(ntohl(ports) >> 16); 2102 2103 connfp = &ipst->ips_ipcl_udp_fanout[ 2104 IPCL_UDP_HASH(dstport, ipst)]; 2105 mutex_enter(&connfp->connf_lock); 2106 connp = connfp->connf_head; 2107 2108 /* do a reverse lookup */ 2109 while ((connp != NULL) && 2110 (!IPCL_UDP_MATCH(connp, dstport, 2111 ipha->ipha_src, srcport, ipha->ipha_dst) || 2112 !IPCL_ZONE_MATCH(connp, zoneid))) { 2113 connp = connp->conn_next; 2114 } 2115 if (connp != NULL) 2116 CONN_INC_REF(connp); 2117 mutex_exit(&connfp->connf_lock); 2118 break; 2119 } 2120 case IPPROTO_SCTP: 2121 { 2122 in6_addr_t map_src, map_dst; 2123 2124 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2125 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2126 ((uint16_t *)&ports)[0] = up[1]; 2127 ((uint16_t *)&ports)[1] = up[0]; 2128 2129 connp = sctp_find_conn(&map_src, &map_dst, ports, 2130 zoneid, ipst->ips_netstack->netstack_sctp); 2131 if (connp == NULL) { 2132 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2133 zoneid, ports, ipha, ipst); 2134 } else { 2135 CONN_INC_REF(connp); 2136 SCTP_REFRELE(CONN2SCTP(connp)); 2137 } 2138 break; 2139 } 2140 default: 2141 { 2142 ipha_t ripha; 2143 2144 ripha.ipha_src = ipha->ipha_dst; 2145 ripha.ipha_dst = ipha->ipha_src; 2146 ripha.ipha_protocol = ipha->ipha_protocol; 2147 2148 connfp = &ipst->ips_ipcl_proto_fanout[ 2149 ipha->ipha_protocol]; 2150 mutex_enter(&connfp->connf_lock); 2151 connp = connfp->connf_head; 2152 for (connp = connfp->connf_head; connp != NULL; 2153 connp = connp->conn_next) { 2154 if (IPCL_PROTO_MATCH(connp, 2155 ipha->ipha_protocol, &ripha, ill, 2156 0, zoneid)) { 2157 CONN_INC_REF(connp); 2158 break; 2159 } 2160 } 2161 mutex_exit(&connfp->connf_lock); 2162 } 2163 } 2164 if (connp != NULL) { 2165 if (connp->conn_nexthop_set) 2166 nexthop_addr = connp->conn_nexthop_v4; 2167 CONN_DEC_REF(connp); 2168 } 2169 return (nexthop_addr); 2170 } 2171 2172 /* Table from RFC 1191 */ 2173 static int icmp_frag_size_table[] = 2174 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2175 2176 /* 2177 * Process received ICMP Packet too big. 2178 * After updating any IRE it does the fanout to any matching transport streams. 2179 * Assumes the message has been pulled up till the IP header that caused 2180 * the error. 2181 * 2182 * Returns B_FALSE on failure and B_TRUE on success. 2183 */ 2184 static boolean_t 2185 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2186 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2187 ip_stack_t *ipst) 2188 { 2189 ire_t *ire, *first_ire; 2190 int mtu, orig_mtu; 2191 int hdr_length; 2192 ipaddr_t nexthop_addr; 2193 boolean_t disable_pmtud; 2194 2195 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2196 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2197 ASSERT(ill != NULL); 2198 2199 hdr_length = IPH_HDR_LENGTH(ipha); 2200 2201 /* Drop if the original packet contained a source route */ 2202 if (ip_source_route_included(ipha)) { 2203 return (B_FALSE); 2204 } 2205 /* 2206 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2207 * header. 2208 */ 2209 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2210 mp->b_wptr) { 2211 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2212 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2213 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2214 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2215 return (B_FALSE); 2216 } 2217 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2218 ipha = (ipha_t *)&icmph[1]; 2219 } 2220 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2221 if (nexthop_addr != INADDR_ANY) { 2222 /* nexthop set */ 2223 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2224 nexthop_addr, 0, NULL, ALL_ZONES, msg_getlabel(mp), 2225 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2226 } else { 2227 /* nexthop not set */ 2228 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2229 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2230 } 2231 2232 if (!first_ire) { 2233 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2234 ntohl(ipha->ipha_dst))); 2235 return (B_FALSE); 2236 } 2237 2238 /* Check for MTU discovery advice as described in RFC 1191 */ 2239 mtu = ntohs(icmph->icmph_du_mtu); 2240 orig_mtu = mtu; 2241 disable_pmtud = B_FALSE; 2242 2243 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2244 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2245 ire = ire->ire_next) { 2246 /* 2247 * Look for the connection to which this ICMP message is 2248 * directed. If it has the IP_NEXTHOP option set, then the 2249 * search is limited to IREs with the MATCH_IRE_PRIVATE 2250 * option. Else the search is limited to regular IREs. 2251 */ 2252 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2253 (nexthop_addr != ire->ire_gateway_addr)) || 2254 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2255 (nexthop_addr != INADDR_ANY))) 2256 continue; 2257 2258 mutex_enter(&ire->ire_lock); 2259 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 2260 uint32_t length; 2261 int i; 2262 2263 /* 2264 * Use the table from RFC 1191 to figure out 2265 * the next "plateau" based on the length in 2266 * the original IP packet. 2267 */ 2268 length = ntohs(ipha->ipha_length); 2269 DTRACE_PROBE2(ip4__pmtu__guess, ire_t *, ire, 2270 uint32_t, length); 2271 if (ire->ire_max_frag <= length && 2272 ire->ire_max_frag >= length - hdr_length) { 2273 /* 2274 * Handle broken BSD 4.2 systems that 2275 * return the wrong iph_length in ICMP 2276 * errors. 2277 */ 2278 length -= hdr_length; 2279 } 2280 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2281 if (length > icmp_frag_size_table[i]) 2282 break; 2283 } 2284 if (i == A_CNT(icmp_frag_size_table)) { 2285 /* Smaller than 68! */ 2286 disable_pmtud = B_TRUE; 2287 mtu = ipst->ips_ip_pmtu_min; 2288 } else { 2289 mtu = icmp_frag_size_table[i]; 2290 if (mtu < ipst->ips_ip_pmtu_min) { 2291 mtu = ipst->ips_ip_pmtu_min; 2292 disable_pmtud = B_TRUE; 2293 } 2294 } 2295 /* Fool the ULP into believing our guessed PMTU. */ 2296 icmph->icmph_du_zero = 0; 2297 icmph->icmph_du_mtu = htons(mtu); 2298 } 2299 if (disable_pmtud) 2300 ire->ire_frag_flag = 0; 2301 /* Reduce the IRE max frag value as advised. */ 2302 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2303 if (ire->ire_max_frag == mtu) { 2304 /* Decreased it */ 2305 ire->ire_marks |= IRE_MARK_PMTU; 2306 } 2307 mutex_exit(&ire->ire_lock); 2308 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, ire_t *, 2309 ire, int, orig_mtu, int, mtu); 2310 } 2311 rw_exit(&first_ire->ire_bucket->irb_lock); 2312 ire_refrele(first_ire); 2313 return (B_TRUE); 2314 } 2315 2316 /* 2317 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2318 * calls this function. 2319 */ 2320 static mblk_t * 2321 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2322 { 2323 ipha_t *ipha; 2324 icmph_t *icmph; 2325 ipha_t *in_ipha; 2326 int length; 2327 2328 ASSERT(mp->b_datap->db_type == M_DATA); 2329 2330 /* 2331 * For Self-encapsulated packets, we added an extra IP header 2332 * without the options. Inner IP header is the one from which 2333 * the outer IP header was formed. Thus, we need to remove the 2334 * outer IP header. To do this, we pullup the whole message 2335 * and overlay whatever follows the outer IP header over the 2336 * outer IP header. 2337 */ 2338 2339 if (!pullupmsg(mp, -1)) 2340 return (NULL); 2341 2342 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2343 ipha = (ipha_t *)&icmph[1]; 2344 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2345 2346 /* 2347 * The length that we want to overlay is following the inner 2348 * IP header. Subtracting the IP header + icmp header + outer 2349 * IP header's length should give us the length that we want to 2350 * overlay. 2351 */ 2352 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2353 hdr_length; 2354 /* 2355 * Overlay whatever follows the inner header over the 2356 * outer header. 2357 */ 2358 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2359 2360 /* Set the wptr to account for the outer header */ 2361 mp->b_wptr -= hdr_length; 2362 return (mp); 2363 } 2364 2365 /* 2366 * Fanout for ICMP errors containing IP-in-IPv4 packets. Returns B_TRUE if a 2367 * tunnel consumed the message, and B_FALSE otherwise. 2368 */ 2369 static boolean_t 2370 icmp_inbound_iptun_fanout(mblk_t *first_mp, ipha_t *ripha, ill_t *ill, 2371 ip_stack_t *ipst) 2372 { 2373 conn_t *connp; 2374 2375 if ((connp = ipcl_iptun_classify_v4(&ripha->ipha_src, &ripha->ipha_dst, 2376 ipst)) == NULL) 2377 return (B_FALSE); 2378 2379 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 2380 connp->conn_recv(connp, first_mp, NULL); 2381 CONN_DEC_REF(connp); 2382 return (B_TRUE); 2383 } 2384 2385 /* 2386 * Try to pass the ICMP message upstream in case the ULP cares. 2387 * 2388 * If the packet that caused the ICMP error is secure, we send 2389 * it to AH/ESP to make sure that the attached packet has a 2390 * valid association. ipha in the code below points to the 2391 * IP header of the packet that caused the error. 2392 * 2393 * For IPsec cases, we let the next-layer-up (which has access to 2394 * cached policy on the conn_t, or can query the SPD directly) 2395 * subtract out any IPsec overhead if they must. We therefore make no 2396 * adjustments here for IPsec overhead. 2397 * 2398 * IFN could have been generated locally or by some router. 2399 * 2400 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2401 * This happens because IP adjusted its value of MTU on an 2402 * earlier IFN message and could not tell the upper layer, 2403 * the new adjusted value of MTU e.g. Packet was encrypted 2404 * or there was not enough information to fanout to upper 2405 * layers. Thus on the next outbound datagram, ip_wput_ire 2406 * generates the IFN, where IPsec processing has *not* been 2407 * done. 2408 * 2409 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2410 * could have generated this. This happens because ire_max_frag 2411 * value in IP was set to a new value, while the IPsec processing 2412 * was being done and after we made the fragmentation check in 2413 * ip_wput_ire. Thus on return from IPsec processing, 2414 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2415 * and generates the IFN. As IPsec processing is over, we fanout 2416 * to AH/ESP to remove the header. 2417 * 2418 * In both these cases, ipsec_in_loopback will be set indicating 2419 * that IFN was generated locally. 2420 * 2421 * ROUTER : IFN could be secure or non-secure. 2422 * 2423 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2424 * packet in error has AH/ESP headers to validate the AH/ESP 2425 * headers. AH/ESP will verify whether there is a valid SA or 2426 * not and send it back. We will fanout again if we have more 2427 * data in the packet. 2428 * 2429 * If the packet in error does not have AH/ESP, we handle it 2430 * like any other case. 2431 * 2432 * * NON_SECURE : If the packet in error has AH/ESP headers, 2433 * we attach a dummy ipsec_in and send it up to AH/ESP 2434 * for validation. AH/ESP will verify whether there is a 2435 * valid SA or not and send it back. We will fanout again if 2436 * we have more data in the packet. 2437 * 2438 * If the packet in error does not have AH/ESP, we handle it 2439 * like any other case. 2440 */ 2441 static void 2442 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2443 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2444 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2445 zoneid_t zoneid) 2446 { 2447 uint16_t *up; /* Pointer to ports in ULP header */ 2448 uint32_t ports; /* reversed ports for fanout */ 2449 ipha_t ripha; /* With reversed addresses */ 2450 mblk_t *first_mp; 2451 ipsec_in_t *ii; 2452 tcph_t *tcph; 2453 conn_t *connp; 2454 ip_stack_t *ipst; 2455 2456 ASSERT(ill != NULL); 2457 2458 ASSERT(recv_ill != NULL); 2459 ipst = recv_ill->ill_ipst; 2460 2461 first_mp = mp; 2462 if (mctl_present) { 2463 mp = first_mp->b_cont; 2464 ASSERT(mp != NULL); 2465 2466 ii = (ipsec_in_t *)first_mp->b_rptr; 2467 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2468 } else { 2469 ii = NULL; 2470 } 2471 2472 /* 2473 * We need a separate IP header with the source and destination 2474 * addresses reversed to do fanout/classification because the ipha in 2475 * the ICMP error is in the form we sent it out. 2476 */ 2477 ripha.ipha_src = ipha->ipha_dst; 2478 ripha.ipha_dst = ipha->ipha_src; 2479 ripha.ipha_protocol = ipha->ipha_protocol; 2480 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2481 2482 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2483 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2484 ntohl(ipha->ipha_dst), 2485 icmph->icmph_type, icmph->icmph_code)); 2486 2487 switch (ipha->ipha_protocol) { 2488 case IPPROTO_UDP: 2489 /* 2490 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2491 * transport header. 2492 */ 2493 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2494 mp->b_wptr) { 2495 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2496 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2497 goto discard_pkt; 2498 } 2499 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2500 ipha = (ipha_t *)&icmph[1]; 2501 } 2502 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2503 2504 /* Attempt to find a client stream based on port. */ 2505 ((uint16_t *)&ports)[0] = up[1]; 2506 ((uint16_t *)&ports)[1] = up[0]; 2507 ip2dbg(("icmp_inbound_error: UDP ports %d to %d\n", 2508 ntohs(up[0]), ntohs(up[1]))); 2509 2510 /* Have to change db_type after any pullupmsg */ 2511 DB_TYPE(mp) = M_CTL; 2512 2513 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2514 mctl_present, ip_policy, recv_ill, zoneid); 2515 return; 2516 2517 case IPPROTO_TCP: 2518 /* 2519 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2520 * transport header. 2521 */ 2522 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2523 mp->b_wptr) { 2524 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2525 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2526 goto discard_pkt; 2527 } 2528 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2529 ipha = (ipha_t *)&icmph[1]; 2530 } 2531 /* 2532 * Find a TCP client stream for this packet. 2533 * Note that we do a reverse lookup since the header is 2534 * in the form we sent it out. 2535 */ 2536 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2537 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2538 ipst); 2539 if (connp == NULL) 2540 goto discard_pkt; 2541 2542 /* Have to change db_type after any pullupmsg */ 2543 DB_TYPE(mp) = M_CTL; 2544 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, tcp_input, connp, 2545 SQ_FILL, SQTAG_TCP_INPUT_ICMP_ERR); 2546 return; 2547 2548 case IPPROTO_SCTP: 2549 /* 2550 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2551 * transport header. 2552 */ 2553 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2554 mp->b_wptr) { 2555 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2556 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2557 goto discard_pkt; 2558 } 2559 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2560 ipha = (ipha_t *)&icmph[1]; 2561 } 2562 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2563 /* Find a SCTP client stream for this packet. */ 2564 ((uint16_t *)&ports)[0] = up[1]; 2565 ((uint16_t *)&ports)[1] = up[0]; 2566 2567 /* Have to change db_type after any pullupmsg */ 2568 DB_TYPE(mp) = M_CTL; 2569 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2570 mctl_present, ip_policy, zoneid); 2571 return; 2572 2573 case IPPROTO_ESP: 2574 case IPPROTO_AH: { 2575 int ipsec_rc; 2576 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2577 2578 /* 2579 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2580 * We will re-use the IPSEC_IN if it is already present as 2581 * AH/ESP will not affect any fields in the IPSEC_IN for 2582 * ICMP errors. If there is no IPSEC_IN, allocate a new 2583 * one and attach it in the front. 2584 */ 2585 if (ii != NULL) { 2586 /* 2587 * ip_fanout_proto_again converts the ICMP errors 2588 * that come back from AH/ESP to M_DATA so that 2589 * if it is non-AH/ESP and we do a pullupmsg in 2590 * this function, it would work. Convert it back 2591 * to M_CTL before we send up as this is a ICMP 2592 * error. This could have been generated locally or 2593 * by some router. Validate the inner IPsec 2594 * headers. 2595 * 2596 * NOTE : ill_index is used by ip_fanout_proto_again 2597 * to locate the ill. 2598 */ 2599 ASSERT(ill != NULL); 2600 ii->ipsec_in_ill_index = 2601 ill->ill_phyint->phyint_ifindex; 2602 ii->ipsec_in_rill_index = 2603 recv_ill->ill_phyint->phyint_ifindex; 2604 DB_TYPE(first_mp->b_cont) = M_CTL; 2605 } else { 2606 /* 2607 * IPSEC_IN is not present. We attach a ipsec_in 2608 * message and send up to IPsec for validating 2609 * and removing the IPsec headers. Clear 2610 * ipsec_in_secure so that when we return 2611 * from IPsec, we don't mistakenly think that this 2612 * is a secure packet came from the network. 2613 * 2614 * NOTE : ill_index is used by ip_fanout_proto_again 2615 * to locate the ill. 2616 */ 2617 ASSERT(first_mp == mp); 2618 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2619 if (first_mp == NULL) { 2620 freemsg(mp); 2621 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2622 return; 2623 } 2624 ii = (ipsec_in_t *)first_mp->b_rptr; 2625 2626 /* This is not a secure packet */ 2627 ii->ipsec_in_secure = B_FALSE; 2628 first_mp->b_cont = mp; 2629 DB_TYPE(mp) = M_CTL; 2630 ASSERT(ill != NULL); 2631 ii->ipsec_in_ill_index = 2632 ill->ill_phyint->phyint_ifindex; 2633 ii->ipsec_in_rill_index = 2634 recv_ill->ill_phyint->phyint_ifindex; 2635 } 2636 2637 if (!ipsec_loaded(ipss)) { 2638 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2639 return; 2640 } 2641 2642 if (ipha->ipha_protocol == IPPROTO_ESP) 2643 ipsec_rc = ipsecesp_icmp_error(first_mp); 2644 else 2645 ipsec_rc = ipsecah_icmp_error(first_mp); 2646 if (ipsec_rc == IPSEC_STATUS_FAILED) 2647 return; 2648 2649 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2650 return; 2651 } 2652 case IPPROTO_ENCAP: 2653 case IPPROTO_IPV6: 2654 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2655 ipha_t *in_ipha; 2656 2657 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2658 mp->b_wptr) { 2659 if (!pullupmsg(mp, (uchar_t *)ipha + 2660 hdr_length + sizeof (ipha_t) - 2661 mp->b_rptr)) { 2662 goto discard_pkt; 2663 } 2664 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2665 ipha = (ipha_t *)&icmph[1]; 2666 } 2667 /* 2668 * Caller has verified that length has to be 2669 * at least the size of IP header. 2670 */ 2671 ASSERT(hdr_length >= sizeof (ipha_t)); 2672 /* 2673 * Check the sanity of the inner IP header like 2674 * we did for the outer header. 2675 */ 2676 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2677 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION) || 2678 IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) 2679 goto discard_pkt; 2680 /* Check for Self-encapsulated tunnels */ 2681 if (in_ipha->ipha_src == ipha->ipha_src && 2682 in_ipha->ipha_dst == ipha->ipha_dst) { 2683 2684 mp = icmp_inbound_self_encap_error(mp, 2685 iph_hdr_length, hdr_length); 2686 if (mp == NULL) 2687 goto discard_pkt; 2688 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2689 ipha = (ipha_t *)&icmph[1]; 2690 hdr_length = IPH_HDR_LENGTH(ipha); 2691 /* 2692 * The packet in error is self-encapsualted. 2693 * And we are finding it further encapsulated 2694 * which we could not have possibly generated. 2695 */ 2696 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2697 goto discard_pkt; 2698 } 2699 icmp_inbound_error_fanout(q, ill, first_mp, 2700 icmph, ipha, iph_hdr_length, hdr_length, 2701 mctl_present, ip_policy, recv_ill, zoneid); 2702 return; 2703 } 2704 } 2705 2706 DB_TYPE(mp) = M_CTL; 2707 if (icmp_inbound_iptun_fanout(first_mp, &ripha, ill, ipst)) 2708 return; 2709 /* 2710 * No IP tunnel is interested, fallthrough and see 2711 * if a raw socket will want it. 2712 */ 2713 /* FALLTHRU */ 2714 default: 2715 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2716 ip_policy, recv_ill, zoneid); 2717 return; 2718 } 2719 /* NOTREACHED */ 2720 discard_pkt: 2721 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2722 drop_pkt:; 2723 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2724 freemsg(first_mp); 2725 } 2726 2727 /* 2728 * Common IP options parser. 2729 * 2730 * Setup routine: fill in *optp with options-parsing state, then 2731 * tail-call ipoptp_next to return the first option. 2732 */ 2733 uint8_t 2734 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2735 { 2736 uint32_t totallen; /* total length of all options */ 2737 2738 totallen = ipha->ipha_version_and_hdr_length - 2739 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2740 totallen <<= 2; 2741 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2742 optp->ipoptp_end = optp->ipoptp_next + totallen; 2743 optp->ipoptp_flags = 0; 2744 return (ipoptp_next(optp)); 2745 } 2746 2747 /* 2748 * Common IP options parser: extract next option. 2749 */ 2750 uint8_t 2751 ipoptp_next(ipoptp_t *optp) 2752 { 2753 uint8_t *end = optp->ipoptp_end; 2754 uint8_t *cur = optp->ipoptp_next; 2755 uint8_t opt, len, pointer; 2756 2757 /* 2758 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2759 * has been corrupted. 2760 */ 2761 ASSERT(cur <= end); 2762 2763 if (cur == end) 2764 return (IPOPT_EOL); 2765 2766 opt = cur[IPOPT_OPTVAL]; 2767 2768 /* 2769 * Skip any NOP options. 2770 */ 2771 while (opt == IPOPT_NOP) { 2772 cur++; 2773 if (cur == end) 2774 return (IPOPT_EOL); 2775 opt = cur[IPOPT_OPTVAL]; 2776 } 2777 2778 if (opt == IPOPT_EOL) 2779 return (IPOPT_EOL); 2780 2781 /* 2782 * Option requiring a length. 2783 */ 2784 if ((cur + 1) >= end) { 2785 optp->ipoptp_flags |= IPOPTP_ERROR; 2786 return (IPOPT_EOL); 2787 } 2788 len = cur[IPOPT_OLEN]; 2789 if (len < 2) { 2790 optp->ipoptp_flags |= IPOPTP_ERROR; 2791 return (IPOPT_EOL); 2792 } 2793 optp->ipoptp_cur = cur; 2794 optp->ipoptp_len = len; 2795 optp->ipoptp_next = cur + len; 2796 if (cur + len > end) { 2797 optp->ipoptp_flags |= IPOPTP_ERROR; 2798 return (IPOPT_EOL); 2799 } 2800 2801 /* 2802 * For the options which require a pointer field, make sure 2803 * its there, and make sure it points to either something 2804 * inside this option, or the end of the option. 2805 */ 2806 switch (opt) { 2807 case IPOPT_RR: 2808 case IPOPT_TS: 2809 case IPOPT_LSRR: 2810 case IPOPT_SSRR: 2811 if (len <= IPOPT_OFFSET) { 2812 optp->ipoptp_flags |= IPOPTP_ERROR; 2813 return (opt); 2814 } 2815 pointer = cur[IPOPT_OFFSET]; 2816 if (pointer - 1 > len) { 2817 optp->ipoptp_flags |= IPOPTP_ERROR; 2818 return (opt); 2819 } 2820 break; 2821 } 2822 2823 /* 2824 * Sanity check the pointer field based on the type of the 2825 * option. 2826 */ 2827 switch (opt) { 2828 case IPOPT_RR: 2829 case IPOPT_SSRR: 2830 case IPOPT_LSRR: 2831 if (pointer < IPOPT_MINOFF_SR) 2832 optp->ipoptp_flags |= IPOPTP_ERROR; 2833 break; 2834 case IPOPT_TS: 2835 if (pointer < IPOPT_MINOFF_IT) 2836 optp->ipoptp_flags |= IPOPTP_ERROR; 2837 /* 2838 * Note that the Internet Timestamp option also 2839 * contains two four bit fields (the Overflow field, 2840 * and the Flag field), which follow the pointer 2841 * field. We don't need to check that these fields 2842 * fall within the length of the option because this 2843 * was implicitely done above. We've checked that the 2844 * pointer value is at least IPOPT_MINOFF_IT, and that 2845 * it falls within the option. Since IPOPT_MINOFF_IT > 2846 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2847 */ 2848 ASSERT(len > IPOPT_POS_OV_FLG); 2849 break; 2850 } 2851 2852 return (opt); 2853 } 2854 2855 /* 2856 * Use the outgoing IP header to create an IP_OPTIONS option the way 2857 * it was passed down from the application. 2858 */ 2859 int 2860 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2861 { 2862 ipoptp_t opts; 2863 const uchar_t *opt; 2864 uint8_t optval; 2865 uint8_t optlen; 2866 uint32_t len = 0; 2867 uchar_t *buf1 = buf; 2868 2869 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2870 len += IP_ADDR_LEN; 2871 bzero(buf1, IP_ADDR_LEN); 2872 2873 /* 2874 * OK to cast away const here, as we don't store through the returned 2875 * opts.ipoptp_cur pointer. 2876 */ 2877 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2878 optval != IPOPT_EOL; 2879 optval = ipoptp_next(&opts)) { 2880 int off; 2881 2882 opt = opts.ipoptp_cur; 2883 optlen = opts.ipoptp_len; 2884 switch (optval) { 2885 case IPOPT_SSRR: 2886 case IPOPT_LSRR: 2887 2888 /* 2889 * Insert ipha_dst as the first entry in the source 2890 * route and move down the entries on step. 2891 * The last entry gets placed at buf1. 2892 */ 2893 buf[IPOPT_OPTVAL] = optval; 2894 buf[IPOPT_OLEN] = optlen; 2895 buf[IPOPT_OFFSET] = optlen; 2896 2897 off = optlen - IP_ADDR_LEN; 2898 if (off < 0) { 2899 /* No entries in source route */ 2900 break; 2901 } 2902 /* Last entry in source route */ 2903 bcopy(opt + off, buf1, IP_ADDR_LEN); 2904 off -= IP_ADDR_LEN; 2905 2906 while (off > 0) { 2907 bcopy(opt + off, 2908 buf + off + IP_ADDR_LEN, 2909 IP_ADDR_LEN); 2910 off -= IP_ADDR_LEN; 2911 } 2912 /* ipha_dst into first slot */ 2913 bcopy(&ipha->ipha_dst, 2914 buf + off + IP_ADDR_LEN, 2915 IP_ADDR_LEN); 2916 buf += optlen; 2917 len += optlen; 2918 break; 2919 2920 case IPOPT_COMSEC: 2921 case IPOPT_SECURITY: 2922 /* if passing up a label is not ok, then remove */ 2923 if (is_system_labeled()) 2924 break; 2925 /* FALLTHROUGH */ 2926 default: 2927 bcopy(opt, buf, optlen); 2928 buf += optlen; 2929 len += optlen; 2930 break; 2931 } 2932 } 2933 done: 2934 /* Pad the resulting options */ 2935 while (len & 0x3) { 2936 *buf++ = IPOPT_EOL; 2937 len++; 2938 } 2939 return (len); 2940 } 2941 2942 /* 2943 * Update any record route or timestamp options to include this host. 2944 * Reverse any source route option. 2945 * This routine assumes that the options are well formed i.e. that they 2946 * have already been checked. 2947 */ 2948 static void 2949 icmp_options_update(ipha_t *ipha) 2950 { 2951 ipoptp_t opts; 2952 uchar_t *opt; 2953 uint8_t optval; 2954 ipaddr_t src; /* Our local address */ 2955 ipaddr_t dst; 2956 2957 ip2dbg(("icmp_options_update\n")); 2958 src = ipha->ipha_src; 2959 dst = ipha->ipha_dst; 2960 2961 for (optval = ipoptp_first(&opts, ipha); 2962 optval != IPOPT_EOL; 2963 optval = ipoptp_next(&opts)) { 2964 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2965 opt = opts.ipoptp_cur; 2966 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2967 optval, opts.ipoptp_len)); 2968 switch (optval) { 2969 int off1, off2; 2970 case IPOPT_SSRR: 2971 case IPOPT_LSRR: 2972 /* 2973 * Reverse the source route. The first entry 2974 * should be the next to last one in the current 2975 * source route (the last entry is our address). 2976 * The last entry should be the final destination. 2977 */ 2978 off1 = IPOPT_MINOFF_SR - 1; 2979 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2980 if (off2 < 0) { 2981 /* No entries in source route */ 2982 ip1dbg(( 2983 "icmp_options_update: bad src route\n")); 2984 break; 2985 } 2986 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2987 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2988 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2989 off2 -= IP_ADDR_LEN; 2990 2991 while (off1 < off2) { 2992 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2993 bcopy((char *)opt + off2, (char *)opt + off1, 2994 IP_ADDR_LEN); 2995 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2996 off1 += IP_ADDR_LEN; 2997 off2 -= IP_ADDR_LEN; 2998 } 2999 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3000 break; 3001 } 3002 } 3003 } 3004 3005 /* 3006 * Process received ICMP Redirect messages. 3007 */ 3008 static void 3009 icmp_redirect(ill_t *ill, mblk_t *mp) 3010 { 3011 ipha_t *ipha; 3012 int iph_hdr_length; 3013 icmph_t *icmph; 3014 ipha_t *ipha_err; 3015 ire_t *ire; 3016 ire_t *prev_ire; 3017 ire_t *save_ire; 3018 ipaddr_t src, dst, gateway; 3019 iulp_t ulp_info = { 0 }; 3020 int error; 3021 ip_stack_t *ipst; 3022 3023 ASSERT(ill != NULL); 3024 ipst = ill->ill_ipst; 3025 3026 ipha = (ipha_t *)mp->b_rptr; 3027 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3028 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3029 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3030 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3031 freemsg(mp); 3032 return; 3033 } 3034 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3035 ipha_err = (ipha_t *)&icmph[1]; 3036 src = ipha->ipha_src; 3037 dst = ipha_err->ipha_dst; 3038 gateway = icmph->icmph_rd_gateway; 3039 /* Make sure the new gateway is reachable somehow. */ 3040 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3041 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3042 /* 3043 * Make sure we had a route for the dest in question and that 3044 * that route was pointing to the old gateway (the source of the 3045 * redirect packet.) 3046 */ 3047 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3048 NULL, MATCH_IRE_GW, ipst); 3049 /* 3050 * Check that 3051 * the redirect was not from ourselves 3052 * the new gateway and the old gateway are directly reachable 3053 */ 3054 if (!prev_ire || 3055 !ire || 3056 ire->ire_type == IRE_LOCAL) { 3057 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3058 freemsg(mp); 3059 if (ire != NULL) 3060 ire_refrele(ire); 3061 if (prev_ire != NULL) 3062 ire_refrele(prev_ire); 3063 return; 3064 } 3065 3066 /* 3067 * Should we use the old ULP info to create the new gateway? From 3068 * a user's perspective, we should inherit the info so that it 3069 * is a "smooth" transition. If we do not do that, then new 3070 * connections going thru the new gateway will have no route metrics, 3071 * which is counter-intuitive to user. From a network point of 3072 * view, this may or may not make sense even though the new gateway 3073 * is still directly connected to us so the route metrics should not 3074 * change much. 3075 * 3076 * But if the old ire_uinfo is not initialized, we do another 3077 * recursive lookup on the dest using the new gateway. There may 3078 * be a route to that. If so, use it to initialize the redirect 3079 * route. 3080 */ 3081 if (prev_ire->ire_uinfo.iulp_set) { 3082 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3083 } else { 3084 ire_t *tmp_ire; 3085 ire_t *sire; 3086 3087 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3088 ALL_ZONES, 0, NULL, 3089 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3090 ipst); 3091 if (sire != NULL) { 3092 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3093 /* 3094 * If sire != NULL, ire_ftable_lookup() should not 3095 * return a NULL value. 3096 */ 3097 ASSERT(tmp_ire != NULL); 3098 ire_refrele(tmp_ire); 3099 ire_refrele(sire); 3100 } else if (tmp_ire != NULL) { 3101 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3102 sizeof (iulp_t)); 3103 ire_refrele(tmp_ire); 3104 } 3105 } 3106 if (prev_ire->ire_type == IRE_CACHE) 3107 ire_delete(prev_ire); 3108 ire_refrele(prev_ire); 3109 /* 3110 * TODO: more precise handling for cases 0, 2, 3, the latter two 3111 * require TOS routing 3112 */ 3113 switch (icmph->icmph_code) { 3114 case 0: 3115 case 1: 3116 /* TODO: TOS specificity for cases 2 and 3 */ 3117 case 2: 3118 case 3: 3119 break; 3120 default: 3121 freemsg(mp); 3122 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3123 ire_refrele(ire); 3124 return; 3125 } 3126 /* 3127 * Create a Route Association. This will allow us to remember that 3128 * someone we believe told us to use the particular gateway. 3129 */ 3130 save_ire = ire; 3131 ire = ire_create( 3132 (uchar_t *)&dst, /* dest addr */ 3133 (uchar_t *)&ip_g_all_ones, /* mask */ 3134 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3135 (uchar_t *)&gateway, /* gateway addr */ 3136 &save_ire->ire_max_frag, /* max frag */ 3137 NULL, /* no src nce */ 3138 NULL, /* no rfq */ 3139 NULL, /* no stq */ 3140 IRE_HOST, 3141 NULL, /* ipif */ 3142 0, /* cmask */ 3143 0, /* phandle */ 3144 0, /* ihandle */ 3145 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3146 &ulp_info, 3147 NULL, /* tsol_gc_t */ 3148 NULL, /* gcgrp */ 3149 ipst); 3150 3151 if (ire == NULL) { 3152 freemsg(mp); 3153 ire_refrele(save_ire); 3154 return; 3155 } 3156 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3157 ire_refrele(save_ire); 3158 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3159 3160 if (error == 0) { 3161 ire_refrele(ire); /* Held in ire_add_v4 */ 3162 /* tell routing sockets that we received a redirect */ 3163 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3164 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3165 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3166 } 3167 3168 /* 3169 * Delete any existing IRE_HOST type redirect ires for this destination. 3170 * This together with the added IRE has the effect of 3171 * modifying an existing redirect. 3172 */ 3173 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3174 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3175 if (prev_ire != NULL) { 3176 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3177 ire_delete(prev_ire); 3178 ire_refrele(prev_ire); 3179 } 3180 3181 freemsg(mp); 3182 } 3183 3184 /* 3185 * Generate an ICMP parameter problem message. 3186 */ 3187 static void 3188 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3189 ip_stack_t *ipst) 3190 { 3191 icmph_t icmph; 3192 boolean_t mctl_present; 3193 mblk_t *first_mp; 3194 3195 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3196 3197 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3198 if (mctl_present) 3199 freeb(first_mp); 3200 return; 3201 } 3202 3203 bzero(&icmph, sizeof (icmph_t)); 3204 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3205 icmph.icmph_pp_ptr = ptr; 3206 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3207 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3208 ipst); 3209 } 3210 3211 /* 3212 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3213 * the ICMP header pointed to by "stuff". (May be called as writer.) 3214 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3215 * an icmp error packet can be sent. 3216 * Assigns an appropriate source address to the packet. If ipha_dst is 3217 * one of our addresses use it for source. Otherwise pick a source based 3218 * on a route lookup back to ipha_src. 3219 * Note that ipha_src must be set here since the 3220 * packet is likely to arrive on an ill queue in ip_wput() which will 3221 * not set a source address. 3222 */ 3223 static void 3224 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3225 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3226 { 3227 ipaddr_t dst; 3228 icmph_t *icmph; 3229 ipha_t *ipha; 3230 uint_t len_needed; 3231 size_t msg_len; 3232 mblk_t *mp1; 3233 ipaddr_t src; 3234 ire_t *ire; 3235 mblk_t *ipsec_mp; 3236 ipsec_out_t *io = NULL; 3237 3238 if (mctl_present) { 3239 /* 3240 * If it is : 3241 * 3242 * 1) a IPSEC_OUT, then this is caused by outbound 3243 * datagram originating on this host. IPsec processing 3244 * may or may not have been done. Refer to comments above 3245 * icmp_inbound_error_fanout for details. 3246 * 3247 * 2) a IPSEC_IN if we are generating a icmp_message 3248 * for an incoming datagram destined for us i.e called 3249 * from ip_fanout_send_icmp. 3250 */ 3251 ipsec_info_t *in; 3252 ipsec_mp = mp; 3253 mp = ipsec_mp->b_cont; 3254 3255 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3256 ipha = (ipha_t *)mp->b_rptr; 3257 3258 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3259 in->ipsec_info_type == IPSEC_IN); 3260 3261 if (in->ipsec_info_type == IPSEC_IN) { 3262 /* 3263 * Convert the IPSEC_IN to IPSEC_OUT. 3264 */ 3265 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3266 BUMP_MIB(&ipst->ips_ip_mib, 3267 ipIfStatsOutDiscards); 3268 return; 3269 } 3270 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3271 } else { 3272 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3273 io = (ipsec_out_t *)in; 3274 /* 3275 * Clear out ipsec_out_proc_begin, so we do a fresh 3276 * ire lookup. 3277 */ 3278 io->ipsec_out_proc_begin = B_FALSE; 3279 } 3280 ASSERT(zoneid != ALL_ZONES); 3281 /* 3282 * The IPSEC_IN (now an IPSEC_OUT) didn't have its zoneid 3283 * initialized. We need to do that now. 3284 */ 3285 io->ipsec_out_zoneid = zoneid; 3286 } else { 3287 /* 3288 * This is in clear. The icmp message we are building 3289 * here should go out in clear. 3290 * 3291 * Pardon the convolution of it all, but it's easier to 3292 * allocate a "use cleartext" IPSEC_IN message and convert 3293 * it than it is to allocate a new one. 3294 */ 3295 ipsec_in_t *ii; 3296 ASSERT(DB_TYPE(mp) == M_DATA); 3297 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3298 if (ipsec_mp == NULL) { 3299 freemsg(mp); 3300 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3301 return; 3302 } 3303 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3304 3305 /* This is not a secure packet */ 3306 ii->ipsec_in_secure = B_FALSE; 3307 /* 3308 * For trusted extensions using a shared IP address we can 3309 * send using any zoneid. 3310 */ 3311 if (zoneid == ALL_ZONES) 3312 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3313 else 3314 ii->ipsec_in_zoneid = zoneid; 3315 ipsec_mp->b_cont = mp; 3316 ipha = (ipha_t *)mp->b_rptr; 3317 /* 3318 * Convert the IPSEC_IN to IPSEC_OUT. 3319 */ 3320 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3321 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3322 return; 3323 } 3324 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3325 } 3326 3327 /* Remember our eventual destination */ 3328 dst = ipha->ipha_src; 3329 3330 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3331 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3332 if (ire != NULL && 3333 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3334 src = ipha->ipha_dst; 3335 } else { 3336 if (ire != NULL) 3337 ire_refrele(ire); 3338 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3339 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3340 ipst); 3341 if (ire == NULL) { 3342 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3343 freemsg(ipsec_mp); 3344 return; 3345 } 3346 src = ire->ire_src_addr; 3347 } 3348 3349 if (ire != NULL) 3350 ire_refrele(ire); 3351 3352 /* 3353 * Check if we can send back more then 8 bytes in addition to 3354 * the IP header. We try to send 64 bytes of data and the internal 3355 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3356 */ 3357 len_needed = IPH_HDR_LENGTH(ipha); 3358 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3359 ipha->ipha_protocol == IPPROTO_IPV6) { 3360 3361 if (!pullupmsg(mp, -1)) { 3362 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3363 freemsg(ipsec_mp); 3364 return; 3365 } 3366 ipha = (ipha_t *)mp->b_rptr; 3367 3368 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3369 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3370 len_needed)); 3371 } else { 3372 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3373 3374 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3375 len_needed += ip_hdr_length_v6(mp, ip6h); 3376 } 3377 } 3378 len_needed += ipst->ips_ip_icmp_return; 3379 msg_len = msgdsize(mp); 3380 if (msg_len > len_needed) { 3381 (void) adjmsg(mp, len_needed - msg_len); 3382 msg_len = len_needed; 3383 } 3384 /* Make sure we propagate the cred/label for TX */ 3385 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3386 if (mp1 == NULL) { 3387 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3388 freemsg(ipsec_mp); 3389 return; 3390 } 3391 mp1->b_cont = mp; 3392 mp = mp1; 3393 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3394 ipsec_mp->b_rptr == (uint8_t *)io && 3395 io->ipsec_out_type == IPSEC_OUT); 3396 ipsec_mp->b_cont = mp; 3397 3398 /* 3399 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3400 * node generates be accepted in peace by all on-host destinations. 3401 * If we do NOT assume that all on-host destinations trust 3402 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3403 * (Look for ipsec_out_icmp_loopback). 3404 */ 3405 io->ipsec_out_icmp_loopback = B_TRUE; 3406 3407 ipha = (ipha_t *)mp->b_rptr; 3408 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3409 *ipha = icmp_ipha; 3410 ipha->ipha_src = src; 3411 ipha->ipha_dst = dst; 3412 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3413 msg_len += sizeof (icmp_ipha) + len; 3414 if (msg_len > IP_MAXPACKET) { 3415 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3416 msg_len = IP_MAXPACKET; 3417 } 3418 ipha->ipha_length = htons((uint16_t)msg_len); 3419 icmph = (icmph_t *)&ipha[1]; 3420 bcopy(stuff, icmph, len); 3421 icmph->icmph_checksum = 0; 3422 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3423 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3424 put(q, ipsec_mp); 3425 } 3426 3427 /* 3428 * Determine if an ICMP error packet can be sent given the rate limit. 3429 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3430 * in milliseconds) and a burst size. Burst size number of packets can 3431 * be sent arbitrarely closely spaced. 3432 * The state is tracked using two variables to implement an approximate 3433 * token bucket filter: 3434 * icmp_pkt_err_last - lbolt value when the last burst started 3435 * icmp_pkt_err_sent - number of packets sent in current burst 3436 */ 3437 boolean_t 3438 icmp_err_rate_limit(ip_stack_t *ipst) 3439 { 3440 clock_t now = TICK_TO_MSEC(lbolt); 3441 uint_t refilled; /* Number of packets refilled in tbf since last */ 3442 /* Guard against changes by loading into local variable */ 3443 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3444 3445 if (err_interval == 0) 3446 return (B_FALSE); 3447 3448 if (ipst->ips_icmp_pkt_err_last > now) { 3449 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3450 ipst->ips_icmp_pkt_err_last = 0; 3451 ipst->ips_icmp_pkt_err_sent = 0; 3452 } 3453 /* 3454 * If we are in a burst update the token bucket filter. 3455 * Update the "last" time to be close to "now" but make sure 3456 * we don't loose precision. 3457 */ 3458 if (ipst->ips_icmp_pkt_err_sent != 0) { 3459 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3460 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3461 ipst->ips_icmp_pkt_err_sent = 0; 3462 } else { 3463 ipst->ips_icmp_pkt_err_sent -= refilled; 3464 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3465 } 3466 } 3467 if (ipst->ips_icmp_pkt_err_sent == 0) { 3468 /* Start of new burst */ 3469 ipst->ips_icmp_pkt_err_last = now; 3470 } 3471 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3472 ipst->ips_icmp_pkt_err_sent++; 3473 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3474 ipst->ips_icmp_pkt_err_sent)); 3475 return (B_FALSE); 3476 } 3477 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3478 return (B_TRUE); 3479 } 3480 3481 /* 3482 * Check if it is ok to send an IPv4 ICMP error packet in 3483 * response to the IPv4 packet in mp. 3484 * Free the message and return null if no 3485 * ICMP error packet should be sent. 3486 */ 3487 static mblk_t * 3488 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3489 { 3490 icmph_t *icmph; 3491 ipha_t *ipha; 3492 uint_t len_needed; 3493 ire_t *src_ire; 3494 ire_t *dst_ire; 3495 3496 if (!mp) 3497 return (NULL); 3498 ipha = (ipha_t *)mp->b_rptr; 3499 if (ip_csum_hdr(ipha)) { 3500 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3501 freemsg(mp); 3502 return (NULL); 3503 } 3504 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3505 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3506 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3507 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3508 if (src_ire != NULL || dst_ire != NULL || 3509 CLASSD(ipha->ipha_dst) || 3510 CLASSD(ipha->ipha_src) || 3511 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3512 /* Note: only errors to the fragment with offset 0 */ 3513 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3514 freemsg(mp); 3515 if (src_ire != NULL) 3516 ire_refrele(src_ire); 3517 if (dst_ire != NULL) 3518 ire_refrele(dst_ire); 3519 return (NULL); 3520 } 3521 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3522 /* 3523 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3524 * errors in response to any ICMP errors. 3525 */ 3526 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3527 if (mp->b_wptr - mp->b_rptr < len_needed) { 3528 if (!pullupmsg(mp, len_needed)) { 3529 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3530 freemsg(mp); 3531 return (NULL); 3532 } 3533 ipha = (ipha_t *)mp->b_rptr; 3534 } 3535 icmph = (icmph_t *) 3536 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3537 switch (icmph->icmph_type) { 3538 case ICMP_DEST_UNREACHABLE: 3539 case ICMP_SOURCE_QUENCH: 3540 case ICMP_TIME_EXCEEDED: 3541 case ICMP_PARAM_PROBLEM: 3542 case ICMP_REDIRECT: 3543 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3544 freemsg(mp); 3545 return (NULL); 3546 default: 3547 break; 3548 } 3549 } 3550 /* 3551 * If this is a labeled system, then check to see if we're allowed to 3552 * send a response to this particular sender. If not, then just drop. 3553 */ 3554 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3555 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3556 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3557 freemsg(mp); 3558 return (NULL); 3559 } 3560 if (icmp_err_rate_limit(ipst)) { 3561 /* 3562 * Only send ICMP error packets every so often. 3563 * This should be done on a per port/source basis, 3564 * but for now this will suffice. 3565 */ 3566 freemsg(mp); 3567 return (NULL); 3568 } 3569 return (mp); 3570 } 3571 3572 /* 3573 * Generate an ICMP redirect message. 3574 */ 3575 static void 3576 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3577 { 3578 icmph_t icmph; 3579 3580 /* 3581 * We are called from ip_rput where we could 3582 * not have attached an IPSEC_IN. 3583 */ 3584 ASSERT(mp->b_datap->db_type == M_DATA); 3585 3586 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3587 return; 3588 } 3589 3590 bzero(&icmph, sizeof (icmph_t)); 3591 icmph.icmph_type = ICMP_REDIRECT; 3592 icmph.icmph_code = 1; 3593 icmph.icmph_rd_gateway = gateway; 3594 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3595 /* Redirects sent by router, and router is global zone */ 3596 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3597 } 3598 3599 /* 3600 * Generate an ICMP time exceeded message. 3601 */ 3602 void 3603 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3604 ip_stack_t *ipst) 3605 { 3606 icmph_t icmph; 3607 boolean_t mctl_present; 3608 mblk_t *first_mp; 3609 3610 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3611 3612 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3613 if (mctl_present) 3614 freeb(first_mp); 3615 return; 3616 } 3617 3618 bzero(&icmph, sizeof (icmph_t)); 3619 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3620 icmph.icmph_code = code; 3621 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3622 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3623 ipst); 3624 } 3625 3626 /* 3627 * Generate an ICMP unreachable message. 3628 */ 3629 void 3630 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3631 ip_stack_t *ipst) 3632 { 3633 icmph_t icmph; 3634 mblk_t *first_mp; 3635 boolean_t mctl_present; 3636 3637 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3638 3639 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3640 if (mctl_present) 3641 freeb(first_mp); 3642 return; 3643 } 3644 3645 bzero(&icmph, sizeof (icmph_t)); 3646 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3647 icmph.icmph_code = code; 3648 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3649 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3650 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3651 zoneid, ipst); 3652 } 3653 3654 /* 3655 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3656 * duplicate. As long as someone else holds the address, the interface will 3657 * stay down. When that conflict goes away, the interface is brought back up. 3658 * This is done so that accidental shutdowns of addresses aren't made 3659 * permanent. Your server will recover from a failure. 3660 * 3661 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3662 * user space process (dhcpagent). 3663 * 3664 * Recovery completes if ARP reports that the address is now ours (via 3665 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3666 * 3667 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3668 */ 3669 static void 3670 ipif_dup_recovery(void *arg) 3671 { 3672 ipif_t *ipif = arg; 3673 ill_t *ill = ipif->ipif_ill; 3674 mblk_t *arp_add_mp; 3675 mblk_t *arp_del_mp; 3676 ip_stack_t *ipst = ill->ill_ipst; 3677 3678 ipif->ipif_recovery_id = 0; 3679 3680 /* 3681 * No lock needed for moving or condemned check, as this is just an 3682 * optimization. 3683 */ 3684 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3685 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3686 (ipif->ipif_state_flags & (IPIF_CONDEMNED))) { 3687 /* No reason to try to bring this address back. */ 3688 return; 3689 } 3690 3691 /* ACE_F_UNVERIFIED restarts DAD */ 3692 if ((arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) 3693 goto alloc_fail; 3694 3695 if (ipif->ipif_arp_del_mp == NULL) { 3696 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3697 goto alloc_fail; 3698 ipif->ipif_arp_del_mp = arp_del_mp; 3699 } 3700 3701 putnext(ill->ill_rq, arp_add_mp); 3702 return; 3703 3704 alloc_fail: 3705 /* 3706 * On allocation failure, just restart the timer. Note that the ipif 3707 * is down here, so no other thread could be trying to start a recovery 3708 * timer. The ill_lock protects the condemned flag and the recovery 3709 * timer ID. 3710 */ 3711 freemsg(arp_add_mp); 3712 mutex_enter(&ill->ill_lock); 3713 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3714 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3715 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3716 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3717 } 3718 mutex_exit(&ill->ill_lock); 3719 } 3720 3721 /* 3722 * This is for exclusive changes due to ARP. Either tear down an interface due 3723 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3724 */ 3725 /* ARGSUSED */ 3726 static void 3727 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3728 { 3729 ill_t *ill = rq->q_ptr; 3730 arh_t *arh; 3731 ipaddr_t src; 3732 ipif_t *ipif; 3733 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3734 char hbuf[MAC_STR_LEN]; 3735 char sbuf[INET_ADDRSTRLEN]; 3736 const char *failtype; 3737 boolean_t bring_up; 3738 ip_stack_t *ipst = ill->ill_ipst; 3739 3740 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3741 case AR_CN_READY: 3742 failtype = NULL; 3743 bring_up = B_TRUE; 3744 break; 3745 case AR_CN_FAILED: 3746 failtype = "in use"; 3747 bring_up = B_FALSE; 3748 break; 3749 default: 3750 failtype = "claimed"; 3751 bring_up = B_FALSE; 3752 break; 3753 } 3754 3755 arh = (arh_t *)mp->b_cont->b_rptr; 3756 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3757 3758 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3759 sizeof (hbuf)); 3760 (void) ip_dot_addr(src, sbuf); 3761 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3762 3763 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3764 ipif->ipif_lcl_addr != src) { 3765 continue; 3766 } 3767 3768 /* 3769 * If we failed on a recovery probe, then restart the timer to 3770 * try again later. 3771 */ 3772 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3773 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3774 ill->ill_net_type == IRE_IF_RESOLVER && 3775 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3776 ipst->ips_ip_dup_recovery > 0 && 3777 ipif->ipif_recovery_id == 0) { 3778 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3779 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3780 continue; 3781 } 3782 3783 /* 3784 * If what we're trying to do has already been done, then do 3785 * nothing. 3786 */ 3787 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3788 continue; 3789 3790 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3791 3792 if (failtype == NULL) { 3793 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3794 ibuf); 3795 } else { 3796 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3797 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3798 } 3799 3800 if (bring_up) { 3801 ASSERT(ill->ill_dl_up); 3802 /* 3803 * Free up the ARP delete message so we can allocate 3804 * a fresh one through the normal path. 3805 */ 3806 freemsg(ipif->ipif_arp_del_mp); 3807 ipif->ipif_arp_del_mp = NULL; 3808 if (ipif_resolver_up(ipif, Res_act_initial) != 3809 EINPROGRESS) { 3810 ipif->ipif_addr_ready = 1; 3811 (void) ipif_up_done(ipif); 3812 ASSERT(ill->ill_move_ipif == NULL); 3813 } 3814 continue; 3815 } 3816 3817 mutex_enter(&ill->ill_lock); 3818 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3819 ipif->ipif_flags |= IPIF_DUPLICATE; 3820 ill->ill_ipif_dup_count++; 3821 mutex_exit(&ill->ill_lock); 3822 /* 3823 * Already exclusive on the ill; no need to handle deferred 3824 * processing here. 3825 */ 3826 (void) ipif_down(ipif, NULL, NULL); 3827 ipif_down_tail(ipif); 3828 mutex_enter(&ill->ill_lock); 3829 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3830 ill->ill_net_type == IRE_IF_RESOLVER && 3831 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3832 ipst->ips_ip_dup_recovery > 0) { 3833 ASSERT(ipif->ipif_recovery_id == 0); 3834 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3835 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3836 } 3837 mutex_exit(&ill->ill_lock); 3838 } 3839 freemsg(mp); 3840 } 3841 3842 /* ARGSUSED */ 3843 static void 3844 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3845 { 3846 ill_t *ill = rq->q_ptr; 3847 arh_t *arh; 3848 ipaddr_t src; 3849 ipif_t *ipif; 3850 3851 arh = (arh_t *)mp->b_cont->b_rptr; 3852 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3853 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3854 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3855 (void) ipif_resolver_up(ipif, Res_act_defend); 3856 } 3857 freemsg(mp); 3858 } 3859 3860 /* 3861 * News from ARP. ARP sends notification of interesting events down 3862 * to its clients using M_CTL messages with the interesting ARP packet 3863 * attached via b_cont. 3864 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3865 * queue as opposed to ARP sending the message to all the clients, i.e. all 3866 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3867 * table if a cache IRE is found to delete all the entries for the address in 3868 * the packet. 3869 */ 3870 static void 3871 ip_arp_news(queue_t *q, mblk_t *mp) 3872 { 3873 arcn_t *arcn; 3874 arh_t *arh; 3875 ire_t *ire = NULL; 3876 char hbuf[MAC_STR_LEN]; 3877 char sbuf[INET_ADDRSTRLEN]; 3878 ipaddr_t src; 3879 in6_addr_t v6src; 3880 boolean_t isv6 = B_FALSE; 3881 ipif_t *ipif; 3882 ill_t *ill; 3883 ip_stack_t *ipst; 3884 3885 if (CONN_Q(q)) { 3886 conn_t *connp = Q_TO_CONN(q); 3887 3888 ipst = connp->conn_netstack->netstack_ip; 3889 } else { 3890 ill_t *ill = (ill_t *)q->q_ptr; 3891 3892 ipst = ill->ill_ipst; 3893 } 3894 3895 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3896 if (q->q_next) { 3897 putnext(q, mp); 3898 } else 3899 freemsg(mp); 3900 return; 3901 } 3902 arh = (arh_t *)mp->b_cont->b_rptr; 3903 /* Is it one we are interested in? */ 3904 if (BE16_TO_U16(arh->arh_proto) == ETHERTYPE_IPV6) { 3905 isv6 = B_TRUE; 3906 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3907 IPV6_ADDR_LEN); 3908 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3909 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3910 IP_ADDR_LEN); 3911 } else { 3912 freemsg(mp); 3913 return; 3914 } 3915 3916 ill = q->q_ptr; 3917 3918 arcn = (arcn_t *)mp->b_rptr; 3919 switch (arcn->arcn_code) { 3920 case AR_CN_BOGON: 3921 /* 3922 * Someone is sending ARP packets with a source protocol 3923 * address that we have published and for which we believe our 3924 * entry is authoritative and (when ill_arp_extend is set) 3925 * verified to be unique on the network. 3926 * 3927 * The ARP module internally handles the cases where the sender 3928 * is just probing (for DAD) and where the hardware address of 3929 * a non-authoritative entry has changed. Thus, these are the 3930 * real conflicts, and we have to do resolution. 3931 * 3932 * We back away quickly from the address if it's from DHCP or 3933 * otherwise temporary and hasn't been used recently (or at 3934 * all). We'd like to include "deprecated" addresses here as 3935 * well (as there's no real reason to defend something we're 3936 * discarding), but IPMP "reuses" this flag to mean something 3937 * other than the standard meaning. 3938 * 3939 * If the ARP module above is not extended (meaning that it 3940 * doesn't know how to defend the address), then we just log 3941 * the problem as we always did and continue on. It's not 3942 * right, but there's little else we can do, and those old ATM 3943 * users are going away anyway. 3944 */ 3945 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3946 hbuf, sizeof (hbuf)); 3947 (void) ip_dot_addr(src, sbuf); 3948 if (isv6) { 3949 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3950 ipst); 3951 } else { 3952 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3953 } 3954 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3955 uint32_t now; 3956 uint32_t maxage; 3957 clock_t lused; 3958 uint_t maxdefense; 3959 uint_t defs; 3960 3961 /* 3962 * First, figure out if this address hasn't been used 3963 * in a while. If it hasn't, then it's a better 3964 * candidate for abandoning. 3965 */ 3966 ipif = ire->ire_ipif; 3967 ASSERT(ipif != NULL); 3968 now = gethrestime_sec(); 3969 maxage = now - ire->ire_create_time; 3970 if (maxage > ipst->ips_ip_max_temp_idle) 3971 maxage = ipst->ips_ip_max_temp_idle; 3972 lused = drv_hztousec(ddi_get_lbolt() - 3973 ire->ire_last_used_time) / MICROSEC + 1; 3974 if (lused >= maxage && (ipif->ipif_flags & 3975 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 3976 maxdefense = ipst->ips_ip_max_temp_defend; 3977 else 3978 maxdefense = ipst->ips_ip_max_defend; 3979 3980 /* 3981 * Now figure out how many times we've defended 3982 * ourselves. Ignore defenses that happened long in 3983 * the past. 3984 */ 3985 mutex_enter(&ire->ire_lock); 3986 if ((defs = ire->ire_defense_count) > 0 && 3987 now - ire->ire_defense_time > 3988 ipst->ips_ip_defend_interval) { 3989 ire->ire_defense_count = defs = 0; 3990 } 3991 ire->ire_defense_count++; 3992 ire->ire_defense_time = now; 3993 mutex_exit(&ire->ire_lock); 3994 ill_refhold(ill); 3995 ire_refrele(ire); 3996 3997 /* 3998 * If we've defended ourselves too many times already, 3999 * then give up and tear down the interface(s) using 4000 * this address. Otherwise, defend by sending out a 4001 * gratuitous ARP. 4002 */ 4003 if (defs >= maxdefense && ill->ill_arp_extend) { 4004 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4005 B_FALSE); 4006 } else { 4007 cmn_err(CE_WARN, 4008 "node %s is using our IP address %s on %s", 4009 hbuf, sbuf, ill->ill_name); 4010 /* 4011 * If this is an old (ATM) ARP module, then 4012 * don't try to defend the address. Remain 4013 * compatible with the old behavior. Defend 4014 * only with new ARP. 4015 */ 4016 if (ill->ill_arp_extend) { 4017 qwriter_ip(ill, q, mp, ip_arp_defend, 4018 NEW_OP, B_FALSE); 4019 } else { 4020 ill_refrele(ill); 4021 } 4022 } 4023 return; 4024 } 4025 cmn_err(CE_WARN, 4026 "proxy ARP problem? Node '%s' is using %s on %s", 4027 hbuf, sbuf, ill->ill_name); 4028 if (ire != NULL) 4029 ire_refrele(ire); 4030 break; 4031 case AR_CN_ANNOUNCE: 4032 if (isv6) { 4033 /* 4034 * For XRESOLV interfaces. 4035 * Delete the IRE cache entry and NCE for this 4036 * v6 address 4037 */ 4038 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4039 /* 4040 * If v6src is a non-zero, it's a router address 4041 * as below. Do the same sort of thing to clean 4042 * out off-net IRE_CACHE entries that go through 4043 * the router. 4044 */ 4045 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4046 ire_walk_v6(ire_delete_cache_gw_v6, 4047 (char *)&v6src, ALL_ZONES, ipst); 4048 } 4049 } else { 4050 nce_hw_map_t hwm; 4051 4052 /* 4053 * ARP gives us a copy of any packet where it thinks 4054 * the address has changed, so that we can update our 4055 * caches. We're responsible for caching known answers 4056 * in the current design. We check whether the 4057 * hardware address really has changed in all of our 4058 * entries that have cached this mapping, and if so, we 4059 * blow them away. This way we will immediately pick 4060 * up the rare case of a host changing hardware 4061 * address. 4062 */ 4063 if (src == 0) 4064 break; 4065 hwm.hwm_addr = src; 4066 hwm.hwm_hwlen = arh->arh_hlen; 4067 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4068 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4069 ndp_walk_common(ipst->ips_ndp4, NULL, 4070 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4071 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4072 } 4073 break; 4074 case AR_CN_READY: 4075 /* No external v6 resolver has a contract to use this */ 4076 if (isv6) 4077 break; 4078 /* If the link is down, we'll retry this later */ 4079 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4080 break; 4081 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4082 NULL, NULL, ipst); 4083 if (ipif != NULL) { 4084 /* 4085 * If this is a duplicate recovery, then we now need to 4086 * go exclusive to bring this thing back up. 4087 */ 4088 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4089 IPIF_DUPLICATE) { 4090 ipif_refrele(ipif); 4091 ill_refhold(ill); 4092 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4093 B_FALSE); 4094 return; 4095 } 4096 /* 4097 * If this is the first notice that this address is 4098 * ready, then let the user know now. 4099 */ 4100 if ((ipif->ipif_flags & IPIF_UP) && 4101 !ipif->ipif_addr_ready) { 4102 ipif_mask_reply(ipif); 4103 ipif_up_notify(ipif); 4104 } 4105 ipif->ipif_addr_ready = 1; 4106 ipif_refrele(ipif); 4107 } 4108 ire = ire_cache_lookup(src, ALL_ZONES, msg_getlabel(mp), ipst); 4109 if (ire != NULL) { 4110 ire->ire_defense_count = 0; 4111 ire_refrele(ire); 4112 } 4113 break; 4114 case AR_CN_FAILED: 4115 /* No external v6 resolver has a contract to use this */ 4116 if (isv6) 4117 break; 4118 if (!ill->ill_arp_extend) { 4119 (void) mac_colon_addr((uint8_t *)(arh + 1), 4120 arh->arh_hlen, hbuf, sizeof (hbuf)); 4121 (void) ip_dot_addr(src, sbuf); 4122 4123 cmn_err(CE_WARN, 4124 "node %s is using our IP address %s on %s", 4125 hbuf, sbuf, ill->ill_name); 4126 break; 4127 } 4128 ill_refhold(ill); 4129 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4130 return; 4131 } 4132 freemsg(mp); 4133 } 4134 4135 /* 4136 * Create a mblk suitable for carrying the interface index and/or source link 4137 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4138 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4139 * application. 4140 */ 4141 mblk_t * 4142 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4143 ip_stack_t *ipst) 4144 { 4145 mblk_t *mp; 4146 ip_pktinfo_t *pinfo; 4147 ipha_t *ipha; 4148 struct ether_header *pether; 4149 boolean_t ipmp_ill_held = B_FALSE; 4150 4151 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4152 if (mp == NULL) { 4153 ip1dbg(("ip_add_info: allocation failure.\n")); 4154 return (data_mp); 4155 } 4156 4157 ipha = (ipha_t *)data_mp->b_rptr; 4158 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4159 bzero(pinfo, sizeof (ip_pktinfo_t)); 4160 pinfo->ip_pkt_flags = (uchar_t)flags; 4161 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4162 4163 pether = (struct ether_header *)((char *)ipha 4164 - sizeof (struct ether_header)); 4165 4166 /* 4167 * Make sure the interface is an ethernet type, since this option 4168 * is currently supported only on this type of interface. Also make 4169 * sure we are pointing correctly above db_base. 4170 */ 4171 if ((flags & IPF_RECVSLLA) && 4172 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4173 (ill->ill_type == IFT_ETHER) && 4174 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4175 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4176 bcopy(pether->ether_shost.ether_addr_octet, 4177 pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4178 } else { 4179 /* 4180 * Clear the bit. Indicate to upper layer that IP is not 4181 * sending this ancillary info. 4182 */ 4183 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4184 } 4185 4186 /* 4187 * If `ill' is in an IPMP group, use the IPMP ill to determine 4188 * IPF_RECVIF and IPF_RECVADDR. (This currently assumes that 4189 * IPF_RECVADDR support on test addresses is not needed.) 4190 * 4191 * Note that `ill' may already be an IPMP ill if e.g. we're 4192 * processing a packet looped back to an IPMP data address 4193 * (since those IRE_LOCALs are tied to IPMP ills). 4194 */ 4195 if (IS_UNDER_IPMP(ill)) { 4196 if ((ill = ipmp_ill_hold_ipmp_ill(ill)) == NULL) { 4197 ip1dbg(("ip_add_info: cannot hold IPMP ill.\n")); 4198 freemsg(mp); 4199 return (data_mp); 4200 } 4201 ipmp_ill_held = B_TRUE; 4202 } 4203 4204 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4205 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4206 if (flags & IPF_RECVADDR) { 4207 ipif_t *ipif; 4208 ire_t *ire; 4209 4210 /* 4211 * Only valid for V4 4212 */ 4213 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4214 (IPV4_VERSION << 4)); 4215 4216 ipif = ipif_get_next_ipif(NULL, ill); 4217 if (ipif != NULL) { 4218 /* 4219 * Since a decision has already been made to deliver the 4220 * packet, there is no need to test for SECATTR and 4221 * ZONEONLY. 4222 * When a multicast packet is transmitted 4223 * a cache entry is created for the multicast address. 4224 * When delivering a copy of the packet or when new 4225 * packets are received we do not want to match on the 4226 * cached entry so explicitly match on 4227 * IRE_LOCAL and IRE_LOOPBACK 4228 */ 4229 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4230 IRE_LOCAL | IRE_LOOPBACK, 4231 ipif, zoneid, NULL, 4232 MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 4233 if (ire == NULL) { 4234 /* 4235 * packet must have come on a different 4236 * interface. 4237 * Since a decision has already been made to 4238 * deliver the packet, there is no need to test 4239 * for SECATTR and ZONEONLY. 4240 * Only match on local and broadcast ire's. 4241 * See detailed comment above. 4242 */ 4243 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4244 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4245 NULL, MATCH_IRE_TYPE, ipst); 4246 } 4247 4248 if (ire == NULL) { 4249 /* 4250 * This is either a multicast packet or 4251 * the address has been removed since 4252 * the packet was received. 4253 * Return INADDR_ANY so that normal source 4254 * selection occurs for the response. 4255 */ 4256 4257 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4258 } else { 4259 pinfo->ip_pkt_match_addr.s_addr = 4260 ire->ire_src_addr; 4261 ire_refrele(ire); 4262 } 4263 ipif_refrele(ipif); 4264 } else { 4265 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4266 } 4267 } 4268 4269 if (ipmp_ill_held) 4270 ill_refrele(ill); 4271 4272 mp->b_datap->db_type = M_CTL; 4273 mp->b_wptr += sizeof (ip_pktinfo_t); 4274 mp->b_cont = data_mp; 4275 4276 return (mp); 4277 } 4278 4279 /* 4280 * Used to determine the most accurate cred_t to use for TX. 4281 * First priority is SCM_UCRED having set the label in the message, 4282 * which is used for MLP on UDP. Second priority is the open credentials 4283 * with the peer's label (aka conn_effective_cred), which is needed for 4284 * MLP on TCP/SCTP and for MAC-Exempt. Last priority is the open credentials. 4285 */ 4286 cred_t * 4287 ip_best_cred(mblk_t *mp, conn_t *connp, pid_t *pidp) 4288 { 4289 cred_t *cr; 4290 4291 cr = msg_getcred(mp, pidp); 4292 if (cr != NULL && crgetlabel(cr) != NULL) 4293 return (cr); 4294 *pidp = NOPID; 4295 return (CONN_CRED(connp)); 4296 } 4297 4298 /* 4299 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4300 * part of the bind request. 4301 */ 4302 4303 boolean_t 4304 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4305 { 4306 ipsec_in_t *ii; 4307 4308 ASSERT(policy_mp != NULL); 4309 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4310 4311 ii = (ipsec_in_t *)policy_mp->b_rptr; 4312 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4313 4314 connp->conn_policy = ii->ipsec_in_policy; 4315 ii->ipsec_in_policy = NULL; 4316 4317 if (ii->ipsec_in_action != NULL) { 4318 if (connp->conn_latch == NULL) { 4319 connp->conn_latch = iplatch_create(); 4320 if (connp->conn_latch == NULL) 4321 return (B_FALSE); 4322 } 4323 ipsec_latch_inbound(connp->conn_latch, ii); 4324 } 4325 return (B_TRUE); 4326 } 4327 4328 /* 4329 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4330 * and to arrange for power-fanout assist. The ULP is identified by 4331 * adding a single byte at the end of the original bind message. 4332 * A ULP other than UDP or TCP that wishes to be recognized passes 4333 * down a bind with a zero length address. 4334 * 4335 * The binding works as follows: 4336 * - A zero byte address means just bind to the protocol. 4337 * - A four byte address is treated as a request to validate 4338 * that the address is a valid local address, appropriate for 4339 * an application to bind to. This does not affect any fanout 4340 * information in IP. 4341 * - A sizeof sin_t byte address is used to bind to only the local address 4342 * and port. 4343 * - A sizeof ipa_conn_t byte address contains complete fanout information 4344 * consisting of local and remote addresses and ports. In 4345 * this case, the addresses are both validated as appropriate 4346 * for this operation, and, if so, the information is retained 4347 * for use in the inbound fanout. 4348 * 4349 * The ULP (except in the zero-length bind) can append an 4350 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4351 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4352 * a copy of the source or destination IRE (source for local bind; 4353 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4354 * policy information contained should be copied on to the conn. 4355 * 4356 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4357 */ 4358 mblk_t * 4359 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4360 { 4361 ssize_t len; 4362 struct T_bind_req *tbr; 4363 sin_t *sin; 4364 ipa_conn_t *ac; 4365 uchar_t *ucp; 4366 int error = 0; 4367 int protocol; 4368 ipa_conn_x_t *acx; 4369 cred_t *cr; 4370 4371 /* 4372 * All Solaris components should pass a db_credp 4373 * for this TPI message, hence we ASSERT. 4374 * But in case there is some other M_PROTO that looks 4375 * like a TPI message sent by some other kernel 4376 * component, we check and return an error. 4377 */ 4378 cr = msg_getcred(mp, NULL); 4379 ASSERT(cr != NULL); 4380 if (cr == NULL) { 4381 error = EINVAL; 4382 goto bad_addr; 4383 } 4384 4385 ASSERT(!connp->conn_af_isv6); 4386 connp->conn_pkt_isv6 = B_FALSE; 4387 4388 len = MBLKL(mp); 4389 if (len < (sizeof (*tbr) + 1)) { 4390 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4391 "ip_bind: bogus msg, len %ld", len); 4392 /* XXX: Need to return something better */ 4393 goto bad_addr; 4394 } 4395 /* Back up and extract the protocol identifier. */ 4396 mp->b_wptr--; 4397 protocol = *mp->b_wptr & 0xFF; 4398 tbr = (struct T_bind_req *)mp->b_rptr; 4399 /* Reset the message type in preparation for shipping it back. */ 4400 DB_TYPE(mp) = M_PCPROTO; 4401 4402 connp->conn_ulp = (uint8_t)protocol; 4403 4404 /* 4405 * Check for a zero length address. This is from a protocol that 4406 * wants to register to receive all packets of its type. 4407 */ 4408 if (tbr->ADDR_length == 0) { 4409 /* 4410 * These protocols are now intercepted in ip_bind_v6(). 4411 * Reject protocol-level binds here for now. 4412 * 4413 * For SCTP raw socket, ICMP sends down a bind with sin_t 4414 * so that the protocol type cannot be SCTP. 4415 */ 4416 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4417 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4418 goto bad_addr; 4419 } 4420 4421 /* 4422 * 4423 * The udp module never sends down a zero-length address, 4424 * and allowing this on a labeled system will break MLP 4425 * functionality. 4426 */ 4427 if (is_system_labeled() && protocol == IPPROTO_UDP) 4428 goto bad_addr; 4429 4430 if (connp->conn_mac_exempt) 4431 goto bad_addr; 4432 4433 /* No hash here really. The table is big enough. */ 4434 connp->conn_srcv6 = ipv6_all_zeros; 4435 4436 ipcl_proto_insert(connp, protocol); 4437 4438 tbr->PRIM_type = T_BIND_ACK; 4439 return (mp); 4440 } 4441 4442 /* Extract the address pointer from the message. */ 4443 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4444 tbr->ADDR_length); 4445 if (ucp == NULL) { 4446 ip1dbg(("ip_bind: no address\n")); 4447 goto bad_addr; 4448 } 4449 if (!OK_32PTR(ucp)) { 4450 ip1dbg(("ip_bind: unaligned address\n")); 4451 goto bad_addr; 4452 } 4453 4454 switch (tbr->ADDR_length) { 4455 default: 4456 ip1dbg(("ip_bind: bad address length %d\n", 4457 (int)tbr->ADDR_length)); 4458 goto bad_addr; 4459 4460 case IP_ADDR_LEN: 4461 /* Verification of local address only */ 4462 error = ip_bind_laddr_v4(connp, &mp->b_cont, protocol, 4463 *(ipaddr_t *)ucp, 0, B_FALSE); 4464 break; 4465 4466 case sizeof (sin_t): 4467 sin = (sin_t *)ucp; 4468 error = ip_bind_laddr_v4(connp, &mp->b_cont, protocol, 4469 sin->sin_addr.s_addr, sin->sin_port, B_TRUE); 4470 break; 4471 4472 case sizeof (ipa_conn_t): 4473 ac = (ipa_conn_t *)ucp; 4474 /* For raw socket, the local port is not set. */ 4475 if (ac->ac_lport == 0) 4476 ac->ac_lport = connp->conn_lport; 4477 /* Always verify destination reachability. */ 4478 error = ip_bind_connected_v4(connp, &mp->b_cont, protocol, 4479 &ac->ac_laddr, ac->ac_lport, ac->ac_faddr, ac->ac_fport, 4480 B_TRUE, B_TRUE, cr); 4481 break; 4482 4483 case sizeof (ipa_conn_x_t): 4484 acx = (ipa_conn_x_t *)ucp; 4485 /* 4486 * Whether or not to verify destination reachability depends 4487 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4488 */ 4489 error = ip_bind_connected_v4(connp, &mp->b_cont, protocol, 4490 &acx->acx_conn.ac_laddr, acx->acx_conn.ac_lport, 4491 acx->acx_conn.ac_faddr, acx->acx_conn.ac_fport, 4492 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0, cr); 4493 break; 4494 } 4495 ASSERT(error != EINPROGRESS); 4496 if (error != 0) 4497 goto bad_addr; 4498 4499 /* Send it home. */ 4500 mp->b_datap->db_type = M_PCPROTO; 4501 tbr->PRIM_type = T_BIND_ACK; 4502 return (mp); 4503 4504 bad_addr: 4505 /* 4506 * If error = -1 then we generate a TBADADDR - otherwise error is 4507 * a unix errno. 4508 */ 4509 if (error > 0) 4510 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4511 else 4512 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4513 return (mp); 4514 } 4515 4516 /* 4517 * Here address is verified to be a valid local address. 4518 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4519 * address is also considered a valid local address. 4520 * In the case of a broadcast/multicast address, however, the 4521 * upper protocol is expected to reset the src address 4522 * to 0 if it sees a IRE_BROADCAST type returned so that 4523 * no packets are emitted with broadcast/multicast address as 4524 * source address (that violates hosts requirements RFC 1122) 4525 * The addresses valid for bind are: 4526 * (1) - INADDR_ANY (0) 4527 * (2) - IP address of an UP interface 4528 * (3) - IP address of a DOWN interface 4529 * (4) - valid local IP broadcast addresses. In this case 4530 * the conn will only receive packets destined to 4531 * the specified broadcast address. 4532 * (5) - a multicast address. In this case 4533 * the conn will only receive packets destined to 4534 * the specified multicast address. Note: the 4535 * application still has to issue an 4536 * IP_ADD_MEMBERSHIP socket option. 4537 * 4538 * On error, return -1 for TBADADDR otherwise pass the 4539 * errno with TSYSERR reply. 4540 * 4541 * In all the above cases, the bound address must be valid in the current zone. 4542 * When the address is loopback, multicast or broadcast, there might be many 4543 * matching IREs so bind has to look up based on the zone. 4544 * 4545 * Note: lport is in network byte order. 4546 * 4547 */ 4548 int 4549 ip_bind_laddr_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4550 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4551 { 4552 int error = 0; 4553 ire_t *src_ire; 4554 zoneid_t zoneid; 4555 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4556 mblk_t *mp = NULL; 4557 boolean_t ire_requested = B_FALSE; 4558 boolean_t ipsec_policy_set = B_FALSE; 4559 4560 if (mpp) 4561 mp = *mpp; 4562 4563 if (mp != NULL) { 4564 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4565 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4566 } 4567 4568 /* 4569 * If it was previously connected, conn_fully_bound would have 4570 * been set. 4571 */ 4572 connp->conn_fully_bound = B_FALSE; 4573 4574 src_ire = NULL; 4575 4576 zoneid = IPCL_ZONEID(connp); 4577 4578 if (src_addr) { 4579 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4580 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4581 /* 4582 * If an address other than 0.0.0.0 is requested, 4583 * we verify that it is a valid address for bind 4584 * Note: Following code is in if-else-if form for 4585 * readability compared to a condition check. 4586 */ 4587 /* LINTED - statement has no consequence */ 4588 if (IRE_IS_LOCAL(src_ire)) { 4589 /* 4590 * (2) Bind to address of local UP interface 4591 */ 4592 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4593 /* 4594 * (4) Bind to broadcast address 4595 * Note: permitted only from transports that 4596 * request IRE 4597 */ 4598 if (!ire_requested) 4599 error = EADDRNOTAVAIL; 4600 } else { 4601 /* 4602 * (3) Bind to address of local DOWN interface 4603 * (ipif_lookup_addr() looks up all interfaces 4604 * but we do not get here for UP interfaces 4605 * - case (2) above) 4606 */ 4607 /* LINTED - statement has no consequent */ 4608 if (ip_addr_exists(src_addr, zoneid, ipst)) { 4609 /* The address exists */ 4610 } else if (CLASSD(src_addr)) { 4611 error = 0; 4612 if (src_ire != NULL) 4613 ire_refrele(src_ire); 4614 /* 4615 * (5) bind to multicast address. 4616 * Fake out the IRE returned to upper 4617 * layer to be a broadcast IRE. 4618 */ 4619 src_ire = ire_ctable_lookup( 4620 INADDR_BROADCAST, INADDR_ANY, 4621 IRE_BROADCAST, NULL, zoneid, NULL, 4622 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4623 ipst); 4624 if (src_ire == NULL || !ire_requested) 4625 error = EADDRNOTAVAIL; 4626 } else { 4627 /* 4628 * Not a valid address for bind 4629 */ 4630 error = EADDRNOTAVAIL; 4631 } 4632 } 4633 if (error) { 4634 /* Red Alert! Attempting to be a bogon! */ 4635 ip1dbg(("ip_bind_laddr_v4: bad src address 0x%x\n", 4636 ntohl(src_addr))); 4637 goto bad_addr; 4638 } 4639 } 4640 4641 /* 4642 * Allow setting new policies. For example, disconnects come 4643 * down as ipa_t bind. As we would have set conn_policy_cached 4644 * to B_TRUE before, we should set it to B_FALSE, so that policy 4645 * can change after the disconnect. 4646 */ 4647 connp->conn_policy_cached = B_FALSE; 4648 4649 /* 4650 * If not fanout_insert this was just an address verification 4651 */ 4652 if (fanout_insert) { 4653 /* 4654 * The addresses have been verified. Time to insert in 4655 * the correct fanout list. 4656 */ 4657 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4658 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4659 connp->conn_lport = lport; 4660 connp->conn_fport = 0; 4661 /* 4662 * Do we need to add a check to reject Multicast packets 4663 */ 4664 error = ipcl_bind_insert(connp, protocol, src_addr, lport); 4665 } 4666 4667 if (error == 0) { 4668 if (ire_requested) { 4669 if (!ip_bind_get_ire_v4(mpp, src_ire, NULL, ipst)) { 4670 error = -1; 4671 /* Falls through to bad_addr */ 4672 } 4673 } else if (ipsec_policy_set) { 4674 if (!ip_bind_ipsec_policy_set(connp, mp)) { 4675 error = -1; 4676 /* Falls through to bad_addr */ 4677 } 4678 } 4679 } 4680 bad_addr: 4681 if (error != 0) { 4682 if (connp->conn_anon_port) { 4683 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4684 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4685 B_FALSE); 4686 } 4687 connp->conn_mlp_type = mlptSingle; 4688 } 4689 if (src_ire != NULL) 4690 IRE_REFRELE(src_ire); 4691 return (error); 4692 } 4693 4694 int 4695 ip_proto_bind_laddr_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 4696 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4697 { 4698 int error; 4699 4700 ASSERT(!connp->conn_af_isv6); 4701 connp->conn_pkt_isv6 = B_FALSE; 4702 connp->conn_ulp = protocol; 4703 4704 error = ip_bind_laddr_v4(connp, ire_mpp, protocol, src_addr, lport, 4705 fanout_insert); 4706 if (error < 0) 4707 error = -TBADADDR; 4708 return (error); 4709 } 4710 4711 /* 4712 * Verify that both the source and destination addresses 4713 * are valid. If verify_dst is false, then the destination address may be 4714 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4715 * destination reachability, while tunnels do not. 4716 * Note that we allow connect to broadcast and multicast 4717 * addresses when ire_requested is set. Thus the ULP 4718 * has to check for IRE_BROADCAST and multicast. 4719 * 4720 * Returns zero if ok. 4721 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4722 * (for use with TSYSERR reply). 4723 * 4724 * Note: lport and fport are in network byte order. 4725 */ 4726 int 4727 ip_bind_connected_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4728 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4729 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 4730 { 4731 4732 ire_t *src_ire; 4733 ire_t *dst_ire; 4734 int error = 0; 4735 ire_t *sire = NULL; 4736 ire_t *md_dst_ire = NULL; 4737 ire_t *lso_dst_ire = NULL; 4738 ill_t *ill = NULL; 4739 zoneid_t zoneid; 4740 ipaddr_t src_addr = *src_addrp; 4741 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4742 mblk_t *mp = NULL; 4743 boolean_t ire_requested = B_FALSE; 4744 boolean_t ipsec_policy_set = B_FALSE; 4745 ts_label_t *tsl = NULL; 4746 cred_t *effective_cred = NULL; 4747 4748 if (mpp) 4749 mp = *mpp; 4750 4751 if (mp != NULL) { 4752 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4753 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4754 } 4755 4756 src_ire = dst_ire = NULL; 4757 4758 /* 4759 * If we never got a disconnect before, clear it now. 4760 */ 4761 connp->conn_fully_bound = B_FALSE; 4762 4763 zoneid = IPCL_ZONEID(connp); 4764 4765 /* 4766 * Check whether Trusted Solaris policy allows communication with this 4767 * host, and pretend that the destination is unreachable if not. 4768 * 4769 * This is never a problem for TCP, since that transport is known to 4770 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4771 * handling. If the remote is unreachable, it will be detected at that 4772 * point, so there's no reason to check it here. 4773 * 4774 * Note that for sendto (and other datagram-oriented friends), this 4775 * check is done as part of the data path label computation instead. 4776 * The check here is just to make non-TCP connect() report the right 4777 * error. 4778 */ 4779 if (is_system_labeled() && !IPCL_IS_TCP(connp)) { 4780 if ((error = tsol_check_dest(cr, &dst_addr, IPV4_VERSION, 4781 connp->conn_mac_exempt, &effective_cred)) != 0) { 4782 if (ip_debug > 2) { 4783 pr_addr_dbg( 4784 "ip_bind_connected_v4:" 4785 " no label for dst %s\n", 4786 AF_INET, &dst_addr); 4787 } 4788 goto bad_addr; 4789 } 4790 4791 /* 4792 * tsol_check_dest() may have created a new cred with 4793 * a modified security label. Use that cred if it exists 4794 * for ire lookups. 4795 */ 4796 if (effective_cred == NULL) { 4797 tsl = crgetlabel(cr); 4798 } else { 4799 tsl = crgetlabel(effective_cred); 4800 } 4801 } 4802 4803 if (CLASSD(dst_addr)) { 4804 /* Pick up an IRE_BROADCAST */ 4805 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4806 NULL, zoneid, tsl, 4807 (MATCH_IRE_RECURSIVE | 4808 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4809 MATCH_IRE_SECATTR), ipst); 4810 } else { 4811 /* 4812 * If conn_dontroute is set or if conn_nexthop_set is set, 4813 * and onlink ipif is not found set ENETUNREACH error. 4814 */ 4815 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4816 ipif_t *ipif; 4817 4818 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4819 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4820 if (ipif == NULL) { 4821 error = ENETUNREACH; 4822 goto bad_addr; 4823 } 4824 ipif_refrele(ipif); 4825 } 4826 4827 if (connp->conn_nexthop_set) { 4828 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4829 0, 0, NULL, NULL, zoneid, tsl, 4830 MATCH_IRE_SECATTR, ipst); 4831 } else { 4832 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4833 &sire, zoneid, tsl, 4834 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4835 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4836 MATCH_IRE_SECATTR), ipst); 4837 } 4838 } 4839 /* 4840 * dst_ire can't be a broadcast when not ire_requested. 4841 * We also prevent ire's with src address INADDR_ANY to 4842 * be used, which are created temporarily for 4843 * sending out packets from endpoints that have 4844 * conn_unspec_src set. If verify_dst is true, the destination must be 4845 * reachable. If verify_dst is false, the destination needn't be 4846 * reachable. 4847 * 4848 * If we match on a reject or black hole, then we've got a 4849 * local failure. May as well fail out the connect() attempt, 4850 * since it's never going to succeed. 4851 */ 4852 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4853 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4854 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4855 /* 4856 * If we're verifying destination reachability, we always want 4857 * to complain here. 4858 * 4859 * If we're not verifying destination reachability but the 4860 * destination has a route, we still want to fail on the 4861 * temporary address and broadcast address tests. 4862 */ 4863 if (verify_dst || (dst_ire != NULL)) { 4864 if (ip_debug > 2) { 4865 pr_addr_dbg("ip_bind_connected_v4:" 4866 "bad connected dst %s\n", 4867 AF_INET, &dst_addr); 4868 } 4869 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4870 error = ENETUNREACH; 4871 else 4872 error = EHOSTUNREACH; 4873 goto bad_addr; 4874 } 4875 } 4876 4877 /* 4878 * If the app does a connect(), it means that it will most likely 4879 * send more than 1 packet to the destination. It makes sense 4880 * to clear the temporary flag. 4881 */ 4882 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4883 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4884 irb_t *irb = dst_ire->ire_bucket; 4885 4886 rw_enter(&irb->irb_lock, RW_WRITER); 4887 /* 4888 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4889 * the lock to guarantee irb_tmp_ire_cnt. 4890 */ 4891 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4892 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4893 irb->irb_tmp_ire_cnt--; 4894 } 4895 rw_exit(&irb->irb_lock); 4896 } 4897 4898 /* 4899 * See if we should notify ULP about LSO/MDT; we do this whether or not 4900 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4901 * eligibility tests for passive connects are handled separately 4902 * through tcp_adapt_ire(). We do this before the source address 4903 * selection, because dst_ire may change after a call to 4904 * ipif_select_source(). This is a best-effort check, as the 4905 * packet for this connection may not actually go through 4906 * dst_ire->ire_stq, and the exact IRE can only be known after 4907 * calling ip_newroute(). This is why we further check on the 4908 * IRE during LSO/Multidata packet transmission in 4909 * tcp_lsosend()/tcp_multisend(). 4910 */ 4911 if (!ipsec_policy_set && dst_ire != NULL && 4912 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4913 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4914 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4915 lso_dst_ire = dst_ire; 4916 IRE_REFHOLD(lso_dst_ire); 4917 } else if (ipst->ips_ip_multidata_outbound && 4918 ILL_MDT_CAPABLE(ill)) { 4919 md_dst_ire = dst_ire; 4920 IRE_REFHOLD(md_dst_ire); 4921 } 4922 } 4923 4924 if (dst_ire != NULL && dst_ire->ire_type == IRE_LOCAL && 4925 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4926 /* 4927 * If the IRE belongs to a different zone, look for a matching 4928 * route in the forwarding table and use the source address from 4929 * that route. 4930 */ 4931 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4932 zoneid, 0, NULL, 4933 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4934 MATCH_IRE_RJ_BHOLE, ipst); 4935 if (src_ire == NULL) { 4936 error = EHOSTUNREACH; 4937 goto bad_addr; 4938 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4939 if (!(src_ire->ire_type & IRE_HOST)) 4940 error = ENETUNREACH; 4941 else 4942 error = EHOSTUNREACH; 4943 goto bad_addr; 4944 } 4945 if (src_addr == INADDR_ANY) 4946 src_addr = src_ire->ire_src_addr; 4947 ire_refrele(src_ire); 4948 src_ire = NULL; 4949 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4950 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4951 src_addr = sire->ire_src_addr; 4952 ire_refrele(dst_ire); 4953 dst_ire = sire; 4954 sire = NULL; 4955 } else { 4956 /* 4957 * Pick a source address so that a proper inbound 4958 * load spreading would happen. 4959 */ 4960 ill_t *ire_ill = dst_ire->ire_ipif->ipif_ill; 4961 ipif_t *src_ipif = NULL; 4962 ire_t *ipif_ire; 4963 4964 /* 4965 * Supply a local source address such that inbound 4966 * load spreading happens. 4967 * 4968 * Determine the best source address on this ill for 4969 * the destination. 4970 * 4971 * 1) For broadcast, we should return a broadcast ire 4972 * found above so that upper layers know that the 4973 * destination address is a broadcast address. 4974 * 4975 * 2) If the ipif is DEPRECATED, select a better 4976 * source address. Similarly, if the ipif is on 4977 * the IPMP meta-interface, pick a source address 4978 * at random to improve inbound load spreading. 4979 * 4980 * 3) If the outgoing interface is part of a usesrc 4981 * group, then try selecting a source address from 4982 * the usesrc ILL. 4983 */ 4984 if ((dst_ire->ire_zoneid != zoneid && 4985 dst_ire->ire_zoneid != ALL_ZONES) || 4986 (!(dst_ire->ire_flags & RTF_SETSRC)) && 4987 (!(dst_ire->ire_type & IRE_BROADCAST) && 4988 (IS_IPMP(ire_ill) || 4989 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4990 (ire_ill->ill_usesrc_ifindex != 0)))) { 4991 /* 4992 * If the destination is reachable via a 4993 * given gateway, the selected source address 4994 * should be in the same subnet as the gateway. 4995 * Otherwise, the destination is not reachable. 4996 * 4997 * If there are no interfaces on the same subnet 4998 * as the destination, ipif_select_source gives 4999 * first non-deprecated interface which might be 5000 * on a different subnet than the gateway. 5001 * This is not desirable. Hence pass the dst_ire 5002 * source address to ipif_select_source. 5003 * It is sure that the destination is reachable 5004 * with the dst_ire source address subnet. 5005 * So passing dst_ire source address to 5006 * ipif_select_source will make sure that the 5007 * selected source will be on the same subnet 5008 * as dst_ire source address. 5009 */ 5010 ipaddr_t saddr = 5011 dst_ire->ire_ipif->ipif_src_addr; 5012 src_ipif = ipif_select_source(ire_ill, 5013 saddr, zoneid); 5014 if (src_ipif != NULL) { 5015 if (IS_VNI(src_ipif->ipif_ill)) { 5016 /* 5017 * For VNI there is no 5018 * interface route 5019 */ 5020 src_addr = 5021 src_ipif->ipif_src_addr; 5022 } else { 5023 ipif_ire = 5024 ipif_to_ire(src_ipif); 5025 if (ipif_ire != NULL) { 5026 IRE_REFRELE(dst_ire); 5027 dst_ire = ipif_ire; 5028 } 5029 src_addr = 5030 dst_ire->ire_src_addr; 5031 } 5032 ipif_refrele(src_ipif); 5033 } else { 5034 src_addr = dst_ire->ire_src_addr; 5035 } 5036 } else { 5037 src_addr = dst_ire->ire_src_addr; 5038 } 5039 } 5040 } 5041 5042 /* 5043 * We do ire_route_lookup() here (and not 5044 * interface lookup as we assert that 5045 * src_addr should only come from an 5046 * UP interface for hard binding. 5047 */ 5048 ASSERT(src_ire == NULL); 5049 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5050 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5051 /* src_ire must be a local|loopback */ 5052 if (!IRE_IS_LOCAL(src_ire)) { 5053 if (ip_debug > 2) { 5054 pr_addr_dbg("ip_bind_connected_v4: bad connected " 5055 "src %s\n", AF_INET, &src_addr); 5056 } 5057 error = EADDRNOTAVAIL; 5058 goto bad_addr; 5059 } 5060 5061 /* 5062 * If the source address is a loopback address, the 5063 * destination had best be local or multicast. 5064 * The transports that can't handle multicast will reject 5065 * those addresses. 5066 */ 5067 if (src_ire->ire_type == IRE_LOOPBACK && 5068 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5069 ip1dbg(("ip_bind_connected_v4: bad connected loopback\n")); 5070 error = -1; 5071 goto bad_addr; 5072 } 5073 5074 /* 5075 * Allow setting new policies. For example, disconnects come 5076 * down as ipa_t bind. As we would have set conn_policy_cached 5077 * to B_TRUE before, we should set it to B_FALSE, so that policy 5078 * can change after the disconnect. 5079 */ 5080 connp->conn_policy_cached = B_FALSE; 5081 5082 /* 5083 * Set the conn addresses/ports immediately, so the IPsec policy calls 5084 * can handle their passed-in conn's. 5085 */ 5086 5087 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5088 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5089 connp->conn_lport = lport; 5090 connp->conn_fport = fport; 5091 *src_addrp = src_addr; 5092 5093 ASSERT(!(ipsec_policy_set && ire_requested)); 5094 if (ire_requested) { 5095 iulp_t *ulp_info = NULL; 5096 5097 /* 5098 * Note that sire will not be NULL if this is an off-link 5099 * connection and there is not cache for that dest yet. 5100 * 5101 * XXX Because of an existing bug, if there are multiple 5102 * default routes, the IRE returned now may not be the actual 5103 * default route used (default routes are chosen in a 5104 * round robin fashion). So if the metrics for different 5105 * default routes are different, we may return the wrong 5106 * metrics. This will not be a problem if the existing 5107 * bug is fixed. 5108 */ 5109 if (sire != NULL) { 5110 ulp_info = &(sire->ire_uinfo); 5111 } 5112 if (!ip_bind_get_ire_v4(mpp, dst_ire, ulp_info, ipst)) { 5113 error = -1; 5114 goto bad_addr; 5115 } 5116 mp = *mpp; 5117 } else if (ipsec_policy_set) { 5118 if (!ip_bind_ipsec_policy_set(connp, mp)) { 5119 error = -1; 5120 goto bad_addr; 5121 } 5122 } 5123 5124 /* 5125 * Cache IPsec policy in this conn. If we have per-socket policy, 5126 * we'll cache that. If we don't, we'll inherit global policy. 5127 * 5128 * We can't insert until the conn reflects the policy. Note that 5129 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5130 * connections where we don't have a policy. This is to prevent 5131 * global policy lookups in the inbound path. 5132 * 5133 * If we insert before we set conn_policy_cached, 5134 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5135 * because global policy cound be non-empty. We normally call 5136 * ipsec_check_policy() for conn_policy_cached connections only if 5137 * ipc_in_enforce_policy is set. But in this case, 5138 * conn_policy_cached can get set anytime since we made the 5139 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5140 * called, which will make the above assumption false. Thus, we 5141 * need to insert after we set conn_policy_cached. 5142 */ 5143 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5144 goto bad_addr; 5145 5146 if (fanout_insert) { 5147 /* 5148 * The addresses have been verified. Time to insert in 5149 * the correct fanout list. 5150 */ 5151 error = ipcl_conn_insert(connp, protocol, src_addr, 5152 dst_addr, connp->conn_ports); 5153 } 5154 5155 if (error == 0) { 5156 connp->conn_fully_bound = B_TRUE; 5157 /* 5158 * Our initial checks for LSO/MDT have passed; the IRE is not 5159 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5160 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5161 * ip_xxinfo_return(), which performs further checks 5162 * against them and upon success, returns the LSO/MDT info 5163 * mblk which we will attach to the bind acknowledgment. 5164 */ 5165 if (lso_dst_ire != NULL) { 5166 mblk_t *lsoinfo_mp; 5167 5168 ASSERT(ill->ill_lso_capab != NULL); 5169 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5170 ill->ill_name, ill->ill_lso_capab)) != NULL) { 5171 if (mp == NULL) { 5172 *mpp = lsoinfo_mp; 5173 } else { 5174 linkb(mp, lsoinfo_mp); 5175 } 5176 } 5177 } else if (md_dst_ire != NULL) { 5178 mblk_t *mdinfo_mp; 5179 5180 ASSERT(ill->ill_mdt_capab != NULL); 5181 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5182 ill->ill_name, ill->ill_mdt_capab)) != NULL) { 5183 if (mp == NULL) { 5184 *mpp = mdinfo_mp; 5185 } else { 5186 linkb(mp, mdinfo_mp); 5187 } 5188 } 5189 } 5190 } 5191 bad_addr: 5192 if (ipsec_policy_set) { 5193 ASSERT(mp != NULL); 5194 freeb(mp); 5195 /* 5196 * As of now assume that nothing else accompanies 5197 * IPSEC_POLICY_SET. 5198 */ 5199 *mpp = NULL; 5200 } 5201 if (src_ire != NULL) 5202 IRE_REFRELE(src_ire); 5203 if (dst_ire != NULL) 5204 IRE_REFRELE(dst_ire); 5205 if (sire != NULL) 5206 IRE_REFRELE(sire); 5207 if (md_dst_ire != NULL) 5208 IRE_REFRELE(md_dst_ire); 5209 if (lso_dst_ire != NULL) 5210 IRE_REFRELE(lso_dst_ire); 5211 if (effective_cred != NULL) 5212 crfree(effective_cred); 5213 return (error); 5214 } 5215 5216 int 5217 ip_proto_bind_connected_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 5218 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 5219 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 5220 { 5221 int error; 5222 5223 ASSERT(!connp->conn_af_isv6); 5224 connp->conn_pkt_isv6 = B_FALSE; 5225 connp->conn_ulp = protocol; 5226 5227 /* For raw socket, the local port is not set. */ 5228 if (lport == 0) 5229 lport = connp->conn_lport; 5230 error = ip_bind_connected_v4(connp, ire_mpp, protocol, 5231 src_addrp, lport, dst_addr, fport, fanout_insert, verify_dst, cr); 5232 if (error < 0) 5233 error = -TBADADDR; 5234 return (error); 5235 } 5236 5237 /* 5238 * Get the ire in *mpp. Returns false if it fails (due to lack of space). 5239 * Prefers dst_ire over src_ire. 5240 */ 5241 static boolean_t 5242 ip_bind_get_ire_v4(mblk_t **mpp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5243 { 5244 mblk_t *mp = *mpp; 5245 ire_t *ret_ire; 5246 5247 ASSERT(mp != NULL); 5248 5249 if (ire != NULL) { 5250 /* 5251 * mp initialized above to IRE_DB_REQ_TYPE 5252 * appended mblk. Its <upper protocol>'s 5253 * job to make sure there is room. 5254 */ 5255 if ((mp->b_datap->db_lim - mp->b_rptr) < sizeof (ire_t)) 5256 return (B_FALSE); 5257 5258 mp->b_datap->db_type = IRE_DB_TYPE; 5259 mp->b_wptr = mp->b_rptr + sizeof (ire_t); 5260 bcopy(ire, mp->b_rptr, sizeof (ire_t)); 5261 ret_ire = (ire_t *)mp->b_rptr; 5262 /* 5263 * Pass the latest setting of the ip_path_mtu_discovery and 5264 * copy the ulp info if any. 5265 */ 5266 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5267 IPH_DF : 0; 5268 if (ulp_info != NULL) { 5269 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5270 sizeof (iulp_t)); 5271 } 5272 ret_ire->ire_mp = mp; 5273 } else { 5274 /* 5275 * No IRE was found. Remove IRE mblk. 5276 */ 5277 *mpp = mp->b_cont; 5278 freeb(mp); 5279 } 5280 return (B_TRUE); 5281 } 5282 5283 /* 5284 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5285 * the final piece where we don't. Return a pointer to the first mblk in the 5286 * result, and update the pointer to the next mblk to chew on. If anything 5287 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5288 * NULL pointer. 5289 */ 5290 mblk_t * 5291 ip_carve_mp(mblk_t **mpp, ssize_t len) 5292 { 5293 mblk_t *mp0; 5294 mblk_t *mp1; 5295 mblk_t *mp2; 5296 5297 if (!len || !mpp || !(mp0 = *mpp)) 5298 return (NULL); 5299 /* If we aren't going to consume the first mblk, we need a dup. */ 5300 if (mp0->b_wptr - mp0->b_rptr > len) { 5301 mp1 = dupb(mp0); 5302 if (mp1) { 5303 /* Partition the data between the two mblks. */ 5304 mp1->b_wptr = mp1->b_rptr + len; 5305 mp0->b_rptr = mp1->b_wptr; 5306 /* 5307 * after adjustments if mblk not consumed is now 5308 * unaligned, try to align it. If this fails free 5309 * all messages and let upper layer recover. 5310 */ 5311 if (!OK_32PTR(mp0->b_rptr)) { 5312 if (!pullupmsg(mp0, -1)) { 5313 freemsg(mp0); 5314 freemsg(mp1); 5315 *mpp = NULL; 5316 return (NULL); 5317 } 5318 } 5319 } 5320 return (mp1); 5321 } 5322 /* Eat through as many mblks as we need to get len bytes. */ 5323 len -= mp0->b_wptr - mp0->b_rptr; 5324 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5325 if (mp2->b_wptr - mp2->b_rptr > len) { 5326 /* 5327 * We won't consume the entire last mblk. Like 5328 * above, dup and partition it. 5329 */ 5330 mp1->b_cont = dupb(mp2); 5331 mp1 = mp1->b_cont; 5332 if (!mp1) { 5333 /* 5334 * Trouble. Rather than go to a lot of 5335 * trouble to clean up, we free the messages. 5336 * This won't be any worse than losing it on 5337 * the wire. 5338 */ 5339 freemsg(mp0); 5340 freemsg(mp2); 5341 *mpp = NULL; 5342 return (NULL); 5343 } 5344 mp1->b_wptr = mp1->b_rptr + len; 5345 mp2->b_rptr = mp1->b_wptr; 5346 /* 5347 * after adjustments if mblk not consumed is now 5348 * unaligned, try to align it. If this fails free 5349 * all messages and let upper layer recover. 5350 */ 5351 if (!OK_32PTR(mp2->b_rptr)) { 5352 if (!pullupmsg(mp2, -1)) { 5353 freemsg(mp0); 5354 freemsg(mp2); 5355 *mpp = NULL; 5356 return (NULL); 5357 } 5358 } 5359 *mpp = mp2; 5360 return (mp0); 5361 } 5362 /* Decrement len by the amount we just got. */ 5363 len -= mp2->b_wptr - mp2->b_rptr; 5364 } 5365 /* 5366 * len should be reduced to zero now. If not our caller has 5367 * screwed up. 5368 */ 5369 if (len) { 5370 /* Shouldn't happen! */ 5371 freemsg(mp0); 5372 *mpp = NULL; 5373 return (NULL); 5374 } 5375 /* 5376 * We consumed up to exactly the end of an mblk. Detach the part 5377 * we are returning from the rest of the chain. 5378 */ 5379 mp1->b_cont = NULL; 5380 *mpp = mp2; 5381 return (mp0); 5382 } 5383 5384 /* The ill stream is being unplumbed. Called from ip_close */ 5385 int 5386 ip_modclose(ill_t *ill) 5387 { 5388 boolean_t success; 5389 ipsq_t *ipsq; 5390 ipif_t *ipif; 5391 queue_t *q = ill->ill_rq; 5392 ip_stack_t *ipst = ill->ill_ipst; 5393 int i; 5394 5395 /* 5396 * The punlink prior to this may have initiated a capability 5397 * negotiation. But ipsq_enter will block until that finishes or 5398 * times out. 5399 */ 5400 success = ipsq_enter(ill, B_FALSE, NEW_OP); 5401 5402 /* 5403 * Open/close/push/pop is guaranteed to be single threaded 5404 * per stream by STREAMS. FS guarantees that all references 5405 * from top are gone before close is called. So there can't 5406 * be another close thread that has set CONDEMNED on this ill. 5407 * and cause ipsq_enter to return failure. 5408 */ 5409 ASSERT(success); 5410 ipsq = ill->ill_phyint->phyint_ipsq; 5411 5412 /* 5413 * Mark it condemned. No new reference will be made to this ill. 5414 * Lookup functions will return an error. Threads that try to 5415 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5416 * that the refcnt will drop down to zero. 5417 */ 5418 mutex_enter(&ill->ill_lock); 5419 ill->ill_state_flags |= ILL_CONDEMNED; 5420 for (ipif = ill->ill_ipif; ipif != NULL; 5421 ipif = ipif->ipif_next) { 5422 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5423 } 5424 /* 5425 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5426 * returns error if ILL_CONDEMNED is set 5427 */ 5428 cv_broadcast(&ill->ill_cv); 5429 mutex_exit(&ill->ill_lock); 5430 5431 /* 5432 * Send all the deferred DLPI messages downstream which came in 5433 * during the small window right before ipsq_enter(). We do this 5434 * without waiting for the ACKs because all the ACKs for M_PROTO 5435 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5436 */ 5437 ill_dlpi_send_deferred(ill); 5438 5439 /* 5440 * Shut down fragmentation reassembly. 5441 * ill_frag_timer won't start a timer again. 5442 * Now cancel any existing timer 5443 */ 5444 (void) untimeout(ill->ill_frag_timer_id); 5445 (void) ill_frag_timeout(ill, 0); 5446 5447 /* 5448 * Call ill_delete to bring down the ipifs, ilms and ill on 5449 * this ill. Then wait for the refcnts to drop to zero. 5450 * ill_is_freeable checks whether the ill is really quiescent. 5451 * Then make sure that threads that are waiting to enter the 5452 * ipsq have seen the error returned by ipsq_enter and have 5453 * gone away. Then we call ill_delete_tail which does the 5454 * DL_UNBIND_REQ with the driver and then qprocsoff. 5455 */ 5456 ill_delete(ill); 5457 mutex_enter(&ill->ill_lock); 5458 while (!ill_is_freeable(ill)) 5459 cv_wait(&ill->ill_cv, &ill->ill_lock); 5460 while (ill->ill_waiters) 5461 cv_wait(&ill->ill_cv, &ill->ill_lock); 5462 5463 mutex_exit(&ill->ill_lock); 5464 5465 /* 5466 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5467 * it held until the end of the function since the cleanup 5468 * below needs to be able to use the ip_stack_t. 5469 */ 5470 netstack_hold(ipst->ips_netstack); 5471 5472 /* qprocsoff is done via ill_delete_tail */ 5473 ill_delete_tail(ill); 5474 ASSERT(ill->ill_ipst == NULL); 5475 5476 /* 5477 * Walk through all upper (conn) streams and qenable 5478 * those that have queued data. 5479 * close synchronization needs this to 5480 * be done to ensure that all upper layers blocked 5481 * due to flow control to the closing device 5482 * get unblocked. 5483 */ 5484 ip1dbg(("ip_wsrv: walking\n")); 5485 for (i = 0; i < TX_FANOUT_SIZE; i++) { 5486 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 5487 } 5488 5489 mutex_enter(&ipst->ips_ip_mi_lock); 5490 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5491 mutex_exit(&ipst->ips_ip_mi_lock); 5492 5493 /* 5494 * credp could be null if the open didn't succeed and ip_modopen 5495 * itself calls ip_close. 5496 */ 5497 if (ill->ill_credp != NULL) 5498 crfree(ill->ill_credp); 5499 5500 /* 5501 * Now we are done with the module close pieces that 5502 * need the netstack_t. 5503 */ 5504 netstack_rele(ipst->ips_netstack); 5505 5506 mi_close_free((IDP)ill); 5507 q->q_ptr = WR(q)->q_ptr = NULL; 5508 5509 ipsq_exit(ipsq); 5510 5511 return (0); 5512 } 5513 5514 /* 5515 * This is called as part of close() for IP, UDP, ICMP, and RTS 5516 * in order to quiesce the conn. 5517 */ 5518 void 5519 ip_quiesce_conn(conn_t *connp) 5520 { 5521 boolean_t drain_cleanup_reqd = B_FALSE; 5522 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5523 boolean_t ilg_cleanup_reqd = B_FALSE; 5524 ip_stack_t *ipst; 5525 5526 ASSERT(!IPCL_IS_TCP(connp)); 5527 ipst = connp->conn_netstack->netstack_ip; 5528 5529 /* 5530 * Mark the conn as closing, and this conn must not be 5531 * inserted in future into any list. Eg. conn_drain_insert(), 5532 * won't insert this conn into the conn_drain_list. 5533 * Similarly ill_pending_mp_add() will not add any mp to 5534 * the pending mp list, after this conn has started closing. 5535 * 5536 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5537 * cannot get set henceforth. 5538 */ 5539 mutex_enter(&connp->conn_lock); 5540 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5541 connp->conn_state_flags |= CONN_CLOSING; 5542 if (connp->conn_idl != NULL) 5543 drain_cleanup_reqd = B_TRUE; 5544 if (connp->conn_oper_pending_ill != NULL) 5545 conn_ioctl_cleanup_reqd = B_TRUE; 5546 if (connp->conn_dhcpinit_ill != NULL) { 5547 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5548 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5549 connp->conn_dhcpinit_ill = NULL; 5550 } 5551 if (connp->conn_ilg_inuse != 0) 5552 ilg_cleanup_reqd = B_TRUE; 5553 mutex_exit(&connp->conn_lock); 5554 5555 if (conn_ioctl_cleanup_reqd) 5556 conn_ioctl_cleanup(connp); 5557 5558 if (is_system_labeled() && connp->conn_anon_port) { 5559 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5560 connp->conn_mlp_type, connp->conn_ulp, 5561 ntohs(connp->conn_lport), B_FALSE); 5562 connp->conn_anon_port = 0; 5563 } 5564 connp->conn_mlp_type = mlptSingle; 5565 5566 /* 5567 * Remove this conn from any fanout list it is on. 5568 * and then wait for any threads currently operating 5569 * on this endpoint to finish 5570 */ 5571 ipcl_hash_remove(connp); 5572 5573 /* 5574 * Remove this conn from the drain list, and do 5575 * any other cleanup that may be required. 5576 * (Only non-tcp streams may have a non-null conn_idl. 5577 * TCP streams are never flow controlled, and 5578 * conn_idl will be null) 5579 */ 5580 if (drain_cleanup_reqd) 5581 conn_drain_tail(connp, B_TRUE); 5582 5583 if (connp == ipst->ips_ip_g_mrouter) 5584 (void) ip_mrouter_done(NULL, ipst); 5585 5586 if (ilg_cleanup_reqd) 5587 ilg_delete_all(connp); 5588 5589 conn_delete_ire(connp, NULL); 5590 5591 /* 5592 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5593 * callers from write side can't be there now because close 5594 * is in progress. The only other caller is ipcl_walk 5595 * which checks for the condemned flag. 5596 */ 5597 mutex_enter(&connp->conn_lock); 5598 connp->conn_state_flags |= CONN_CONDEMNED; 5599 while (connp->conn_ref != 1) 5600 cv_wait(&connp->conn_cv, &connp->conn_lock); 5601 connp->conn_state_flags |= CONN_QUIESCED; 5602 mutex_exit(&connp->conn_lock); 5603 } 5604 5605 /* ARGSUSED */ 5606 int 5607 ip_close(queue_t *q, int flags) 5608 { 5609 conn_t *connp; 5610 5611 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5612 5613 /* 5614 * Call the appropriate delete routine depending on whether this is 5615 * a module or device. 5616 */ 5617 if (WR(q)->q_next != NULL) { 5618 /* This is a module close */ 5619 return (ip_modclose((ill_t *)q->q_ptr)); 5620 } 5621 5622 connp = q->q_ptr; 5623 ip_quiesce_conn(connp); 5624 5625 qprocsoff(q); 5626 5627 /* 5628 * Now we are truly single threaded on this stream, and can 5629 * delete the things hanging off the connp, and finally the connp. 5630 * We removed this connp from the fanout list, it cannot be 5631 * accessed thru the fanouts, and we already waited for the 5632 * conn_ref to drop to 0. We are already in close, so 5633 * there cannot be any other thread from the top. qprocsoff 5634 * has completed, and service has completed or won't run in 5635 * future. 5636 */ 5637 ASSERT(connp->conn_ref == 1); 5638 5639 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5640 5641 connp->conn_ref--; 5642 ipcl_conn_destroy(connp); 5643 5644 q->q_ptr = WR(q)->q_ptr = NULL; 5645 return (0); 5646 } 5647 5648 /* 5649 * Wapper around putnext() so that ip_rts_request can merely use 5650 * conn_recv. 5651 */ 5652 /*ARGSUSED2*/ 5653 static void 5654 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5655 { 5656 conn_t *connp = (conn_t *)arg1; 5657 5658 putnext(connp->conn_rq, mp); 5659 } 5660 5661 /* 5662 * Called when the module is about to be unloaded 5663 */ 5664 void 5665 ip_ddi_destroy(void) 5666 { 5667 tnet_fini(); 5668 5669 icmp_ddi_g_destroy(); 5670 rts_ddi_g_destroy(); 5671 udp_ddi_g_destroy(); 5672 sctp_ddi_g_destroy(); 5673 tcp_ddi_g_destroy(); 5674 ipsec_policy_g_destroy(); 5675 ipcl_g_destroy(); 5676 ip_net_g_destroy(); 5677 ip_ire_g_fini(); 5678 inet_minor_destroy(ip_minor_arena_sa); 5679 #if defined(_LP64) 5680 inet_minor_destroy(ip_minor_arena_la); 5681 #endif 5682 5683 #ifdef DEBUG 5684 list_destroy(&ip_thread_list); 5685 rw_destroy(&ip_thread_rwlock); 5686 tsd_destroy(&ip_thread_data); 5687 #endif 5688 5689 netstack_unregister(NS_IP); 5690 } 5691 5692 /* 5693 * First step in cleanup. 5694 */ 5695 /* ARGSUSED */ 5696 static void 5697 ip_stack_shutdown(netstackid_t stackid, void *arg) 5698 { 5699 ip_stack_t *ipst = (ip_stack_t *)arg; 5700 5701 #ifdef NS_DEBUG 5702 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5703 #endif 5704 5705 /* 5706 * Perform cleanup for special interfaces (loopback and IPMP). 5707 */ 5708 ip_interface_cleanup(ipst); 5709 5710 /* 5711 * The *_hook_shutdown()s start the process of notifying any 5712 * consumers that things are going away.... nothing is destroyed. 5713 */ 5714 ipv4_hook_shutdown(ipst); 5715 ipv6_hook_shutdown(ipst); 5716 5717 mutex_enter(&ipst->ips_capab_taskq_lock); 5718 ipst->ips_capab_taskq_quit = B_TRUE; 5719 cv_signal(&ipst->ips_capab_taskq_cv); 5720 mutex_exit(&ipst->ips_capab_taskq_lock); 5721 5722 mutex_enter(&ipst->ips_mrt_lock); 5723 ipst->ips_mrt_flags |= IP_MRT_STOP; 5724 cv_signal(&ipst->ips_mrt_cv); 5725 mutex_exit(&ipst->ips_mrt_lock); 5726 } 5727 5728 /* 5729 * Free the IP stack instance. 5730 */ 5731 static void 5732 ip_stack_fini(netstackid_t stackid, void *arg) 5733 { 5734 ip_stack_t *ipst = (ip_stack_t *)arg; 5735 int ret; 5736 5737 #ifdef NS_DEBUG 5738 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5739 #endif 5740 /* 5741 * At this point, all of the notifications that the events and 5742 * protocols are going away have been run, meaning that we can 5743 * now set about starting to clean things up. 5744 */ 5745 ipobs_fini(ipst); 5746 ipv4_hook_destroy(ipst); 5747 ipv6_hook_destroy(ipst); 5748 ip_net_destroy(ipst); 5749 5750 mutex_destroy(&ipst->ips_capab_taskq_lock); 5751 cv_destroy(&ipst->ips_capab_taskq_cv); 5752 5753 mutex_enter(&ipst->ips_mrt_lock); 5754 while (!(ipst->ips_mrt_flags & IP_MRT_DONE)) 5755 cv_wait(&ipst->ips_mrt_done_cv, &ipst->ips_mrt_lock); 5756 mutex_destroy(&ipst->ips_mrt_lock); 5757 cv_destroy(&ipst->ips_mrt_cv); 5758 cv_destroy(&ipst->ips_mrt_done_cv); 5759 5760 ipmp_destroy(ipst); 5761 rw_destroy(&ipst->ips_srcid_lock); 5762 5763 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5764 ipst->ips_ip_mibkp = NULL; 5765 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5766 ipst->ips_icmp_mibkp = NULL; 5767 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5768 ipst->ips_ip_kstat = NULL; 5769 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5770 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5771 ipst->ips_ip6_kstat = NULL; 5772 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5773 5774 nd_free(&ipst->ips_ip_g_nd); 5775 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5776 ipst->ips_param_arr = NULL; 5777 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5778 ipst->ips_ndp_arr = NULL; 5779 5780 ip_mrouter_stack_destroy(ipst); 5781 5782 mutex_destroy(&ipst->ips_ip_mi_lock); 5783 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5784 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5785 rw_destroy(&ipst->ips_ip_g_nd_lock); 5786 5787 ret = untimeout(ipst->ips_igmp_timeout_id); 5788 if (ret == -1) { 5789 ASSERT(ipst->ips_igmp_timeout_id == 0); 5790 } else { 5791 ASSERT(ipst->ips_igmp_timeout_id != 0); 5792 ipst->ips_igmp_timeout_id = 0; 5793 } 5794 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5795 if (ret == -1) { 5796 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5797 } else { 5798 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5799 ipst->ips_igmp_slowtimeout_id = 0; 5800 } 5801 ret = untimeout(ipst->ips_mld_timeout_id); 5802 if (ret == -1) { 5803 ASSERT(ipst->ips_mld_timeout_id == 0); 5804 } else { 5805 ASSERT(ipst->ips_mld_timeout_id != 0); 5806 ipst->ips_mld_timeout_id = 0; 5807 } 5808 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5809 if (ret == -1) { 5810 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5811 } else { 5812 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5813 ipst->ips_mld_slowtimeout_id = 0; 5814 } 5815 ret = untimeout(ipst->ips_ip_ire_expire_id); 5816 if (ret == -1) { 5817 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5818 } else { 5819 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5820 ipst->ips_ip_ire_expire_id = 0; 5821 } 5822 5823 mutex_destroy(&ipst->ips_igmp_timer_lock); 5824 mutex_destroy(&ipst->ips_mld_timer_lock); 5825 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5826 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5827 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5828 rw_destroy(&ipst->ips_ill_g_lock); 5829 5830 ip_ire_fini(ipst); 5831 ip6_asp_free(ipst); 5832 conn_drain_fini(ipst); 5833 ipcl_destroy(ipst); 5834 5835 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5836 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5837 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5838 ipst->ips_ndp4 = NULL; 5839 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5840 ipst->ips_ndp6 = NULL; 5841 5842 if (ipst->ips_loopback_ksp != NULL) { 5843 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5844 ipst->ips_loopback_ksp = NULL; 5845 } 5846 5847 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5848 ipst->ips_phyint_g_list = NULL; 5849 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5850 ipst->ips_ill_g_heads = NULL; 5851 5852 ldi_ident_release(ipst->ips_ldi_ident); 5853 kmem_free(ipst, sizeof (*ipst)); 5854 } 5855 5856 /* 5857 * This function is called from the TSD destructor, and is used to debug 5858 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5859 * details. 5860 */ 5861 static void 5862 ip_thread_exit(void *phash) 5863 { 5864 th_hash_t *thh = phash; 5865 5866 rw_enter(&ip_thread_rwlock, RW_WRITER); 5867 list_remove(&ip_thread_list, thh); 5868 rw_exit(&ip_thread_rwlock); 5869 mod_hash_destroy_hash(thh->thh_hash); 5870 kmem_free(thh, sizeof (*thh)); 5871 } 5872 5873 /* 5874 * Called when the IP kernel module is loaded into the kernel 5875 */ 5876 void 5877 ip_ddi_init(void) 5878 { 5879 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 5880 5881 /* 5882 * For IP and TCP the minor numbers should start from 2 since we have 4 5883 * initial devices: ip, ip6, tcp, tcp6. 5884 */ 5885 /* 5886 * If this is a 64-bit kernel, then create two separate arenas - 5887 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5888 * other for socket apps in the range 2^^18 through 2^^32-1. 5889 */ 5890 ip_minor_arena_la = NULL; 5891 ip_minor_arena_sa = NULL; 5892 #if defined(_LP64) 5893 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5894 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5895 cmn_err(CE_PANIC, 5896 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5897 } 5898 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5899 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5900 cmn_err(CE_PANIC, 5901 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5902 } 5903 #else 5904 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5905 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5906 cmn_err(CE_PANIC, 5907 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5908 } 5909 #endif 5910 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5911 5912 ipcl_g_init(); 5913 ip_ire_g_init(); 5914 ip_net_g_init(); 5915 5916 #ifdef DEBUG 5917 tsd_create(&ip_thread_data, ip_thread_exit); 5918 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5919 list_create(&ip_thread_list, sizeof (th_hash_t), 5920 offsetof(th_hash_t, thh_link)); 5921 #endif 5922 5923 /* 5924 * We want to be informed each time a stack is created or 5925 * destroyed in the kernel, so we can maintain the 5926 * set of udp_stack_t's. 5927 */ 5928 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5929 ip_stack_fini); 5930 5931 ipsec_policy_g_init(); 5932 tcp_ddi_g_init(); 5933 sctp_ddi_g_init(); 5934 5935 tnet_init(); 5936 5937 udp_ddi_g_init(); 5938 rts_ddi_g_init(); 5939 icmp_ddi_g_init(); 5940 } 5941 5942 /* 5943 * Initialize the IP stack instance. 5944 */ 5945 static void * 5946 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5947 { 5948 ip_stack_t *ipst; 5949 ipparam_t *pa; 5950 ipndp_t *na; 5951 major_t major; 5952 5953 #ifdef NS_DEBUG 5954 printf("ip_stack_init(stack %d)\n", stackid); 5955 #endif 5956 5957 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5958 ipst->ips_netstack = ns; 5959 5960 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5961 KM_SLEEP); 5962 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5963 KM_SLEEP); 5964 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5965 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5966 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5967 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5968 5969 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5970 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5971 ipst->ips_igmp_deferred_next = INFINITY; 5972 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5973 ipst->ips_mld_deferred_next = INFINITY; 5974 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5975 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5976 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5977 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5978 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5979 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5980 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5981 5982 ipcl_init(ipst); 5983 ip_ire_init(ipst); 5984 ip6_asp_init(ipst); 5985 ipif_init(ipst); 5986 conn_drain_init(ipst); 5987 ip_mrouter_stack_init(ipst); 5988 5989 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5990 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5991 ipst->ips_ipv6_frag_timeout = IPV6_FRAG_TIMEOUT; 5992 ipst->ips_ipv6_frag_timo_ms = IPV6_FRAG_TIMEOUT * 1000; 5993 5994 ipst->ips_ip_multirt_log_interval = 1000; 5995 5996 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5997 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5998 ipst->ips_ill_index = 1; 5999 6000 ipst->ips_saved_ip_g_forward = -1; 6001 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6002 6003 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6004 ipst->ips_param_arr = pa; 6005 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6006 6007 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6008 ipst->ips_ndp_arr = na; 6009 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6010 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6011 (caddr_t)&ipst->ips_ip_g_forward; 6012 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6013 (caddr_t)&ipst->ips_ipv6_forward; 6014 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6015 "ip_cgtp_filter") == 0); 6016 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6017 (caddr_t)&ipst->ips_ip_cgtp_filter; 6018 6019 (void) ip_param_register(&ipst->ips_ip_g_nd, 6020 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6021 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6022 6023 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6024 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6025 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6026 ipst->ips_ip6_kstat = 6027 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6028 6029 ipst->ips_ip_src_id = 1; 6030 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6031 6032 ip_net_init(ipst, ns); 6033 ipv4_hook_init(ipst); 6034 ipv6_hook_init(ipst); 6035 ipmp_init(ipst); 6036 ipobs_init(ipst); 6037 6038 /* 6039 * Create the taskq dispatcher thread and initialize related stuff. 6040 */ 6041 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 6042 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 6043 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 6044 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 6045 6046 /* 6047 * Create the mcast_restart_timers_thread() worker thread. 6048 */ 6049 mutex_init(&ipst->ips_mrt_lock, NULL, MUTEX_DEFAULT, NULL); 6050 cv_init(&ipst->ips_mrt_cv, NULL, CV_DEFAULT, NULL); 6051 cv_init(&ipst->ips_mrt_done_cv, NULL, CV_DEFAULT, NULL); 6052 ipst->ips_mrt_thread = thread_create(NULL, 0, 6053 mcast_restart_timers_thread, ipst, 0, &p0, TS_RUN, minclsyspri); 6054 6055 major = mod_name_to_major(INET_NAME); 6056 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 6057 return (ipst); 6058 } 6059 6060 /* 6061 * Allocate and initialize a DLPI template of the specified length. (May be 6062 * called as writer.) 6063 */ 6064 mblk_t * 6065 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6066 { 6067 mblk_t *mp; 6068 6069 mp = allocb(len, BPRI_MED); 6070 if (!mp) 6071 return (NULL); 6072 6073 /* 6074 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6075 * of which we don't seem to use) are sent with M_PCPROTO, and 6076 * that other DLPI are M_PROTO. 6077 */ 6078 if (prim == DL_INFO_REQ) { 6079 mp->b_datap->db_type = M_PCPROTO; 6080 } else { 6081 mp->b_datap->db_type = M_PROTO; 6082 } 6083 6084 mp->b_wptr = mp->b_rptr + len; 6085 bzero(mp->b_rptr, len); 6086 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6087 return (mp); 6088 } 6089 6090 /* 6091 * Allocate and initialize a DLPI notification. (May be called as writer.) 6092 */ 6093 mblk_t * 6094 ip_dlnotify_alloc(uint_t notification, uint_t data) 6095 { 6096 dl_notify_ind_t *notifyp; 6097 mblk_t *mp; 6098 6099 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 6100 return (NULL); 6101 6102 notifyp = (dl_notify_ind_t *)mp->b_rptr; 6103 notifyp->dl_notification = notification; 6104 notifyp->dl_data = data; 6105 return (mp); 6106 } 6107 6108 /* 6109 * Debug formatting routine. Returns a character string representation of the 6110 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6111 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6112 * 6113 * Once the ndd table-printing interfaces are removed, this can be changed to 6114 * standard dotted-decimal form. 6115 */ 6116 char * 6117 ip_dot_addr(ipaddr_t addr, char *buf) 6118 { 6119 uint8_t *ap = (uint8_t *)&addr; 6120 6121 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6122 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6123 return (buf); 6124 } 6125 6126 /* 6127 * Write the given MAC address as a printable string in the usual colon- 6128 * separated format. 6129 */ 6130 const char * 6131 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6132 { 6133 char *bp; 6134 6135 if (alen == 0 || buflen < 4) 6136 return ("?"); 6137 bp = buf; 6138 for (;;) { 6139 /* 6140 * If there are more MAC address bytes available, but we won't 6141 * have any room to print them, then add "..." to the string 6142 * instead. See below for the 'magic number' explanation. 6143 */ 6144 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6145 (void) strcpy(bp, "..."); 6146 break; 6147 } 6148 (void) sprintf(bp, "%02x", *addr++); 6149 bp += 2; 6150 if (--alen == 0) 6151 break; 6152 *bp++ = ':'; 6153 buflen -= 3; 6154 /* 6155 * At this point, based on the first 'if' statement above, 6156 * either alen == 1 and buflen >= 3, or alen > 1 and 6157 * buflen >= 4. The first case leaves room for the final "xx" 6158 * number and trailing NUL byte. The second leaves room for at 6159 * least "...". Thus the apparently 'magic' numbers chosen for 6160 * that statement. 6161 */ 6162 } 6163 return (buf); 6164 } 6165 6166 /* 6167 * Send an ICMP error after patching up the packet appropriately. Returns 6168 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6169 */ 6170 static boolean_t 6171 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6172 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6173 zoneid_t zoneid, ip_stack_t *ipst) 6174 { 6175 ipha_t *ipha; 6176 mblk_t *first_mp; 6177 boolean_t secure; 6178 unsigned char db_type; 6179 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6180 6181 first_mp = mp; 6182 if (mctl_present) { 6183 mp = mp->b_cont; 6184 secure = ipsec_in_is_secure(first_mp); 6185 ASSERT(mp != NULL); 6186 } else { 6187 /* 6188 * If this is an ICMP error being reported - which goes 6189 * up as M_CTLs, we need to convert them to M_DATA till 6190 * we finish checking with global policy because 6191 * ipsec_check_global_policy() assumes M_DATA as clear 6192 * and M_CTL as secure. 6193 */ 6194 db_type = DB_TYPE(mp); 6195 DB_TYPE(mp) = M_DATA; 6196 secure = B_FALSE; 6197 } 6198 /* 6199 * We are generating an icmp error for some inbound packet. 6200 * Called from all ip_fanout_(udp, tcp, proto) functions. 6201 * Before we generate an error, check with global policy 6202 * to see whether this is allowed to enter the system. As 6203 * there is no "conn", we are checking with global policy. 6204 */ 6205 ipha = (ipha_t *)mp->b_rptr; 6206 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6207 first_mp = ipsec_check_global_policy(first_mp, NULL, 6208 ipha, NULL, mctl_present, ipst->ips_netstack); 6209 if (first_mp == NULL) 6210 return (B_FALSE); 6211 } 6212 6213 if (!mctl_present) 6214 DB_TYPE(mp) = db_type; 6215 6216 if (flags & IP_FF_SEND_ICMP) { 6217 if (flags & IP_FF_HDR_COMPLETE) { 6218 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6219 freemsg(first_mp); 6220 return (B_TRUE); 6221 } 6222 } 6223 if (flags & IP_FF_CKSUM) { 6224 /* 6225 * Have to correct checksum since 6226 * the packet might have been 6227 * fragmented and the reassembly code in ip_rput 6228 * does not restore the IP checksum. 6229 */ 6230 ipha->ipha_hdr_checksum = 0; 6231 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6232 } 6233 switch (icmp_type) { 6234 case ICMP_DEST_UNREACHABLE: 6235 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6236 ipst); 6237 break; 6238 default: 6239 freemsg(first_mp); 6240 break; 6241 } 6242 } else { 6243 freemsg(first_mp); 6244 return (B_FALSE); 6245 } 6246 6247 return (B_TRUE); 6248 } 6249 6250 /* 6251 * Used to send an ICMP error message when a packet is received for 6252 * a protocol that is not supported. The mblk passed as argument 6253 * is consumed by this function. 6254 */ 6255 void 6256 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6257 ip_stack_t *ipst) 6258 { 6259 mblk_t *mp; 6260 ipha_t *ipha; 6261 ill_t *ill; 6262 ipsec_in_t *ii; 6263 6264 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6265 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6266 6267 mp = ipsec_mp->b_cont; 6268 ipsec_mp->b_cont = NULL; 6269 ipha = (ipha_t *)mp->b_rptr; 6270 /* Get ill from index in ipsec_in_t. */ 6271 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6272 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6273 ipst); 6274 if (ill != NULL) { 6275 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6276 if (ip_fanout_send_icmp(q, mp, flags, 6277 ICMP_DEST_UNREACHABLE, 6278 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6279 BUMP_MIB(ill->ill_ip_mib, 6280 ipIfStatsInUnknownProtos); 6281 } 6282 } else { 6283 if (ip_fanout_send_icmp_v6(q, mp, flags, 6284 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6285 0, B_FALSE, zoneid, ipst)) { 6286 BUMP_MIB(ill->ill_ip_mib, 6287 ipIfStatsInUnknownProtos); 6288 } 6289 } 6290 ill_refrele(ill); 6291 } else { /* re-link for the freemsg() below. */ 6292 ipsec_mp->b_cont = mp; 6293 } 6294 6295 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6296 freemsg(ipsec_mp); 6297 } 6298 6299 /* 6300 * See if the inbound datagram has had IPsec processing applied to it. 6301 */ 6302 boolean_t 6303 ipsec_in_is_secure(mblk_t *ipsec_mp) 6304 { 6305 ipsec_in_t *ii; 6306 6307 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6308 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6309 6310 if (ii->ipsec_in_loopback) { 6311 return (ii->ipsec_in_secure); 6312 } else { 6313 return (ii->ipsec_in_ah_sa != NULL || 6314 ii->ipsec_in_esp_sa != NULL || 6315 ii->ipsec_in_decaps); 6316 } 6317 } 6318 6319 /* 6320 * Handle protocols with which IP is less intimate. There 6321 * can be more than one stream bound to a particular 6322 * protocol. When this is the case, normally each one gets a copy 6323 * of any incoming packets. 6324 * 6325 * IPsec NOTE : 6326 * 6327 * Don't allow a secure packet going up a non-secure connection. 6328 * We don't allow this because 6329 * 6330 * 1) Reply might go out in clear which will be dropped at 6331 * the sending side. 6332 * 2) If the reply goes out in clear it will give the 6333 * adversary enough information for getting the key in 6334 * most of the cases. 6335 * 6336 * Moreover getting a secure packet when we expect clear 6337 * implies that SA's were added without checking for 6338 * policy on both ends. This should not happen once ISAKMP 6339 * is used to negotiate SAs as SAs will be added only after 6340 * verifying the policy. 6341 * 6342 * IPQoS Notes: 6343 * Once we have determined the client, invoke IPPF processing. 6344 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6345 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6346 * ip_policy will be false. 6347 * 6348 * Zones notes: 6349 * Currently only applications in the global zone can create raw sockets for 6350 * protocols other than ICMP. So unlike the broadcast / multicast case of 6351 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6352 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6353 */ 6354 static void 6355 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6356 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6357 zoneid_t zoneid) 6358 { 6359 queue_t *rq; 6360 mblk_t *mp1, *first_mp1; 6361 uint_t protocol = ipha->ipha_protocol; 6362 ipaddr_t dst; 6363 mblk_t *first_mp = mp; 6364 boolean_t secure; 6365 uint32_t ill_index; 6366 conn_t *connp, *first_connp, *next_connp; 6367 connf_t *connfp; 6368 boolean_t shared_addr; 6369 mib2_ipIfStatsEntry_t *mibptr; 6370 ip_stack_t *ipst = recv_ill->ill_ipst; 6371 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6372 6373 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6374 if (mctl_present) { 6375 mp = first_mp->b_cont; 6376 secure = ipsec_in_is_secure(first_mp); 6377 ASSERT(mp != NULL); 6378 } else { 6379 secure = B_FALSE; 6380 } 6381 dst = ipha->ipha_dst; 6382 shared_addr = (zoneid == ALL_ZONES); 6383 if (shared_addr) { 6384 /* 6385 * We don't allow multilevel ports for raw IP, so no need to 6386 * check for that here. 6387 */ 6388 zoneid = tsol_packet_to_zoneid(mp); 6389 } 6390 6391 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6392 mutex_enter(&connfp->connf_lock); 6393 connp = connfp->connf_head; 6394 for (connp = connfp->connf_head; connp != NULL; 6395 connp = connp->conn_next) { 6396 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6397 zoneid) && 6398 (!is_system_labeled() || 6399 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6400 connp))) { 6401 break; 6402 } 6403 } 6404 6405 if (connp == NULL) { 6406 /* 6407 * No one bound to these addresses. Is 6408 * there a client that wants all 6409 * unclaimed datagrams? 6410 */ 6411 mutex_exit(&connfp->connf_lock); 6412 /* 6413 * Check for IPPROTO_ENCAP... 6414 */ 6415 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6416 /* 6417 * If an IPsec mblk is here on a multicast 6418 * tunnel (using ip_mroute stuff), check policy here, 6419 * THEN ship off to ip_mroute_decap(). 6420 * 6421 * BTW, If I match a configured IP-in-IP 6422 * tunnel, this path will not be reached, and 6423 * ip_mroute_decap will never be called. 6424 */ 6425 first_mp = ipsec_check_global_policy(first_mp, connp, 6426 ipha, NULL, mctl_present, ipst->ips_netstack); 6427 if (first_mp != NULL) { 6428 if (mctl_present) 6429 freeb(first_mp); 6430 ip_mroute_decap(q, mp, ill); 6431 } /* Else we already freed everything! */ 6432 } else { 6433 /* 6434 * Otherwise send an ICMP protocol unreachable. 6435 */ 6436 if (ip_fanout_send_icmp(q, first_mp, flags, 6437 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6438 mctl_present, zoneid, ipst)) { 6439 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6440 } 6441 } 6442 return; 6443 } 6444 6445 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 6446 6447 CONN_INC_REF(connp); 6448 first_connp = connp; 6449 connp = connp->conn_next; 6450 6451 for (;;) { 6452 while (connp != NULL) { 6453 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6454 flags, zoneid) && 6455 (!is_system_labeled() || 6456 tsol_receive_local(mp, &dst, IPV4_VERSION, 6457 shared_addr, connp))) 6458 break; 6459 connp = connp->conn_next; 6460 } 6461 6462 /* 6463 * Copy the packet. 6464 */ 6465 if (connp == NULL || 6466 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6467 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6468 /* 6469 * No more interested clients or memory 6470 * allocation failed 6471 */ 6472 connp = first_connp; 6473 break; 6474 } 6475 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 6476 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6477 CONN_INC_REF(connp); 6478 mutex_exit(&connfp->connf_lock); 6479 rq = connp->conn_rq; 6480 6481 /* 6482 * Check flow control 6483 */ 6484 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6485 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6486 if (flags & IP_FF_RAWIP) { 6487 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6488 } else { 6489 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6490 } 6491 6492 freemsg(first_mp1); 6493 } else { 6494 /* 6495 * Enforce policy like any other conn_t. Note that 6496 * IP-in-IP packets don't come through here, but 6497 * through ip_iptun_input() or 6498 * icmp_inbound_iptun_fanout(). IPsec policy for such 6499 * packets is enforced in the iptun module. 6500 */ 6501 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6502 secure) { 6503 first_mp1 = ipsec_check_inbound_policy 6504 (first_mp1, connp, ipha, NULL, 6505 mctl_present); 6506 } 6507 if (first_mp1 != NULL) { 6508 int in_flags = 0; 6509 /* 6510 * ip_fanout_proto also gets called from 6511 * icmp_inbound_error_fanout, in which case 6512 * the msg type is M_CTL. Don't add info 6513 * in this case for the time being. In future 6514 * when there is a need for knowing the 6515 * inbound iface index for ICMP error msgs, 6516 * then this can be changed. 6517 */ 6518 if (connp->conn_recvif) 6519 in_flags = IPF_RECVIF; 6520 /* 6521 * The ULP may support IP_RECVPKTINFO for both 6522 * IP v4 and v6 so pass the appropriate argument 6523 * based on conn IP version. 6524 */ 6525 if (connp->conn_ip_recvpktinfo) { 6526 if (connp->conn_af_isv6) { 6527 /* 6528 * V6 only needs index 6529 */ 6530 in_flags |= IPF_RECVIF; 6531 } else { 6532 /* 6533 * V4 needs index + 6534 * matching address. 6535 */ 6536 in_flags |= IPF_RECVADDR; 6537 } 6538 } 6539 if ((in_flags != 0) && 6540 (mp->b_datap->db_type != M_CTL)) { 6541 /* 6542 * the actual data will be 6543 * contained in b_cont upon 6544 * successful return of the 6545 * following call else 6546 * original mblk is returned 6547 */ 6548 ASSERT(recv_ill != NULL); 6549 mp1 = ip_add_info(mp1, recv_ill, 6550 in_flags, IPCL_ZONEID(connp), ipst); 6551 } 6552 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6553 if (mctl_present) 6554 freeb(first_mp1); 6555 (connp->conn_recv)(connp, mp1, NULL); 6556 } 6557 } 6558 mutex_enter(&connfp->connf_lock); 6559 /* Follow the next pointer before releasing the conn. */ 6560 next_connp = connp->conn_next; 6561 CONN_DEC_REF(connp); 6562 connp = next_connp; 6563 } 6564 6565 /* Last one. Send it upstream. */ 6566 mutex_exit(&connfp->connf_lock); 6567 6568 /* 6569 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6570 * will be set to false. 6571 */ 6572 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6573 ill_index = ill->ill_phyint->phyint_ifindex; 6574 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6575 if (mp == NULL) { 6576 CONN_DEC_REF(connp); 6577 if (mctl_present) { 6578 freeb(first_mp); 6579 } 6580 return; 6581 } 6582 } 6583 6584 rq = connp->conn_rq; 6585 /* 6586 * Check flow control 6587 */ 6588 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6589 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6590 if (flags & IP_FF_RAWIP) { 6591 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6592 } else { 6593 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6594 } 6595 6596 freemsg(first_mp); 6597 } else { 6598 ASSERT(!IPCL_IS_IPTUN(connp)); 6599 6600 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6601 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6602 ipha, NULL, mctl_present); 6603 } 6604 6605 if (first_mp != NULL) { 6606 int in_flags = 0; 6607 6608 /* 6609 * ip_fanout_proto also gets called 6610 * from icmp_inbound_error_fanout, in 6611 * which case the msg type is M_CTL. 6612 * Don't add info in this case for time 6613 * being. In future when there is a 6614 * need for knowing the inbound iface 6615 * index for ICMP error msgs, then this 6616 * can be changed 6617 */ 6618 if (connp->conn_recvif) 6619 in_flags = IPF_RECVIF; 6620 if (connp->conn_ip_recvpktinfo) { 6621 if (connp->conn_af_isv6) { 6622 /* 6623 * V6 only needs index 6624 */ 6625 in_flags |= IPF_RECVIF; 6626 } else { 6627 /* 6628 * V4 needs index + 6629 * matching address. 6630 */ 6631 in_flags |= IPF_RECVADDR; 6632 } 6633 } 6634 if ((in_flags != 0) && 6635 (mp->b_datap->db_type != M_CTL)) { 6636 6637 /* 6638 * the actual data will be contained in 6639 * b_cont upon successful return 6640 * of the following call else original 6641 * mblk is returned 6642 */ 6643 ASSERT(recv_ill != NULL); 6644 mp = ip_add_info(mp, recv_ill, 6645 in_flags, IPCL_ZONEID(connp), ipst); 6646 } 6647 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6648 (connp->conn_recv)(connp, mp, NULL); 6649 if (mctl_present) 6650 freeb(first_mp); 6651 } 6652 } 6653 CONN_DEC_REF(connp); 6654 } 6655 6656 /* 6657 * Serialize tcp resets by calling tcp_xmit_reset_serialize through 6658 * SQUEUE_ENTER_ONE(SQ_FILL). We do this to ensure the reset is handled on 6659 * the correct squeue, in this case the same squeue as a valid listener with 6660 * no current connection state for the packet we are processing. The function 6661 * is called for synchronizing both IPv4 and IPv6. 6662 */ 6663 void 6664 ip_xmit_reset_serialize(mblk_t *mp, int hdrlen, zoneid_t zoneid, 6665 tcp_stack_t *tcps, conn_t *connp) 6666 { 6667 mblk_t *rst_mp; 6668 tcp_xmit_reset_event_t *eventp; 6669 6670 rst_mp = allocb(sizeof (tcp_xmit_reset_event_t), BPRI_HI); 6671 6672 if (rst_mp == NULL) { 6673 freemsg(mp); 6674 return; 6675 } 6676 6677 rst_mp->b_datap->db_type = M_PROTO; 6678 rst_mp->b_wptr += sizeof (tcp_xmit_reset_event_t); 6679 6680 eventp = (tcp_xmit_reset_event_t *)rst_mp->b_rptr; 6681 eventp->tcp_xre_event = TCP_XRE_EVENT_IP_FANOUT_TCP; 6682 eventp->tcp_xre_iphdrlen = hdrlen; 6683 eventp->tcp_xre_zoneid = zoneid; 6684 eventp->tcp_xre_tcps = tcps; 6685 6686 rst_mp->b_cont = mp; 6687 mp = rst_mp; 6688 6689 /* 6690 * Increment the connref, this ref will be released by the squeue 6691 * framework. 6692 */ 6693 CONN_INC_REF(connp); 6694 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_xmit_reset, connp, 6695 SQ_FILL, SQTAG_XMIT_EARLY_RESET); 6696 } 6697 6698 /* 6699 * Fanout for TCP packets 6700 * The caller puts <fport, lport> in the ports parameter. 6701 * 6702 * IPQoS Notes 6703 * Before sending it to the client, invoke IPPF processing. 6704 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6705 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6706 * ip_policy is false. 6707 */ 6708 static void 6709 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6710 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6711 { 6712 mblk_t *first_mp; 6713 boolean_t secure; 6714 uint32_t ill_index; 6715 int ip_hdr_len; 6716 tcph_t *tcph; 6717 boolean_t syn_present = B_FALSE; 6718 conn_t *connp; 6719 ip_stack_t *ipst = recv_ill->ill_ipst; 6720 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6721 6722 ASSERT(recv_ill != NULL); 6723 6724 first_mp = mp; 6725 if (mctl_present) { 6726 ASSERT(first_mp->b_datap->db_type == M_CTL); 6727 mp = first_mp->b_cont; 6728 secure = ipsec_in_is_secure(first_mp); 6729 ASSERT(mp != NULL); 6730 } else { 6731 secure = B_FALSE; 6732 } 6733 6734 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6735 6736 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6737 zoneid, ipst)) == NULL) { 6738 /* 6739 * No connected connection or listener. Send a 6740 * TH_RST via tcp_xmit_listeners_reset. 6741 */ 6742 6743 /* Initiate IPPf processing, if needed. */ 6744 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6745 uint32_t ill_index; 6746 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6747 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6748 if (first_mp == NULL) 6749 return; 6750 } 6751 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6752 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6753 zoneid)); 6754 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6755 ipst->ips_netstack->netstack_tcp, NULL); 6756 return; 6757 } 6758 6759 /* 6760 * Allocate the SYN for the TCP connection here itself 6761 */ 6762 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6763 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6764 if (IPCL_IS_TCP(connp)) { 6765 squeue_t *sqp; 6766 6767 /* 6768 * If the queue belongs to a conn, and fused tcp 6769 * loopback is enabled, assign the eager's squeue 6770 * to be that of the active connect's. Note that 6771 * we don't check for IP_FF_LOOPBACK here since this 6772 * routine gets called only for loopback (unlike the 6773 * IPv6 counterpart). 6774 */ 6775 if (do_tcp_fusion && 6776 CONN_Q(q) && IPCL_IS_TCP(Q_TO_CONN(q)) && 6777 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6778 !secure && 6779 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy) { 6780 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6781 sqp = Q_TO_CONN(q)->conn_sqp; 6782 } else { 6783 sqp = IP_SQUEUE_GET(lbolt); 6784 } 6785 6786 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6787 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6788 syn_present = B_TRUE; 6789 } 6790 } 6791 6792 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6793 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6794 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6795 if ((flags & TH_RST) || (flags & TH_URG)) { 6796 CONN_DEC_REF(connp); 6797 freemsg(first_mp); 6798 return; 6799 } 6800 if (flags & TH_ACK) { 6801 ip_xmit_reset_serialize(first_mp, ip_hdr_len, zoneid, 6802 ipst->ips_netstack->netstack_tcp, connp); 6803 CONN_DEC_REF(connp); 6804 return; 6805 } 6806 6807 CONN_DEC_REF(connp); 6808 freemsg(first_mp); 6809 return; 6810 } 6811 6812 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6813 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6814 NULL, mctl_present); 6815 if (first_mp == NULL) { 6816 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6817 CONN_DEC_REF(connp); 6818 return; 6819 } 6820 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6821 ASSERT(syn_present); 6822 if (mctl_present) { 6823 ASSERT(first_mp != mp); 6824 first_mp->b_datap->db_struioflag |= 6825 STRUIO_POLICY; 6826 } else { 6827 ASSERT(first_mp == mp); 6828 mp->b_datap->db_struioflag &= 6829 ~STRUIO_EAGER; 6830 mp->b_datap->db_struioflag |= 6831 STRUIO_POLICY; 6832 } 6833 } else { 6834 /* 6835 * Discard first_mp early since we're dealing with a 6836 * fully-connected conn_t and tcp doesn't do policy in 6837 * this case. 6838 */ 6839 if (mctl_present) { 6840 freeb(first_mp); 6841 mctl_present = B_FALSE; 6842 } 6843 first_mp = mp; 6844 } 6845 } 6846 6847 /* 6848 * Initiate policy processing here if needed. If we get here from 6849 * icmp_inbound_error_fanout, ip_policy is false. 6850 */ 6851 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6852 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6853 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6854 if (mp == NULL) { 6855 CONN_DEC_REF(connp); 6856 if (mctl_present) 6857 freeb(first_mp); 6858 return; 6859 } else if (mctl_present) { 6860 ASSERT(first_mp != mp); 6861 first_mp->b_cont = mp; 6862 } else { 6863 first_mp = mp; 6864 } 6865 } 6866 6867 /* Handle socket options. */ 6868 if (!syn_present && 6869 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6870 /* Add header */ 6871 ASSERT(recv_ill != NULL); 6872 /* 6873 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6874 * IPF_RECVIF. 6875 */ 6876 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6877 ipst); 6878 if (mp == NULL) { 6879 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6880 CONN_DEC_REF(connp); 6881 if (mctl_present) 6882 freeb(first_mp); 6883 return; 6884 } else if (mctl_present) { 6885 /* 6886 * ip_add_info might return a new mp. 6887 */ 6888 ASSERT(first_mp != mp); 6889 first_mp->b_cont = mp; 6890 } else { 6891 first_mp = mp; 6892 } 6893 } 6894 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6895 if (IPCL_IS_TCP(connp)) { 6896 /* do not drain, certain use cases can blow the stack */ 6897 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, connp->conn_recv, 6898 connp, SQ_NODRAIN, SQTAG_IP_FANOUT_TCP); 6899 } else { 6900 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6901 (connp->conn_recv)(connp, first_mp, NULL); 6902 CONN_DEC_REF(connp); 6903 } 6904 } 6905 6906 /* 6907 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6908 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6909 * is not consumed. 6910 * 6911 * One of four things can happen, all of which affect the passed-in mblk: 6912 * 6913 * 1.) ICMP messages that go through here just get returned TRUE. 6914 * 6915 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6916 * 6917 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6918 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6919 * 6920 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6921 */ 6922 static boolean_t 6923 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6924 ipsec_stack_t *ipss) 6925 { 6926 int shift, plen, iph_len; 6927 ipha_t *ipha; 6928 udpha_t *udpha; 6929 uint32_t *spi; 6930 uint32_t esp_ports; 6931 uint8_t *orptr; 6932 boolean_t free_ire; 6933 6934 if (DB_TYPE(mp) == M_CTL) { 6935 /* 6936 * ICMP message with UDP inside. Don't bother stripping, just 6937 * send it up. 6938 * 6939 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6940 * to ignore errors set by ICMP anyway ('cause they might be 6941 * forged), but that's the app's decision, not ours. 6942 */ 6943 6944 /* Bunch of reality checks for DEBUG kernels... */ 6945 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6946 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6947 6948 return (B_TRUE); 6949 } 6950 6951 ipha = (ipha_t *)mp->b_rptr; 6952 iph_len = IPH_HDR_LENGTH(ipha); 6953 plen = ntohs(ipha->ipha_length); 6954 6955 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6956 /* 6957 * Most likely a keepalive for the benefit of an intervening 6958 * NAT. These aren't for us, per se, so drop it. 6959 * 6960 * RFC 3947/8 doesn't say for sure what to do for 2-3 6961 * byte packets (keepalives are 1-byte), but we'll drop them 6962 * also. 6963 */ 6964 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6965 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6966 return (B_FALSE); 6967 } 6968 6969 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6970 /* might as well pull it all up - it might be ESP. */ 6971 if (!pullupmsg(mp, -1)) { 6972 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6973 DROPPER(ipss, ipds_esp_nomem), 6974 &ipss->ipsec_dropper); 6975 return (B_FALSE); 6976 } 6977 6978 ipha = (ipha_t *)mp->b_rptr; 6979 } 6980 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6981 if (*spi == 0) { 6982 /* UDP packet - remove 0-spi. */ 6983 shift = sizeof (uint32_t); 6984 } else { 6985 /* ESP-in-UDP packet - reduce to ESP. */ 6986 ipha->ipha_protocol = IPPROTO_ESP; 6987 shift = sizeof (udpha_t); 6988 } 6989 6990 /* Fix IP header */ 6991 ipha->ipha_length = htons(plen - shift); 6992 ipha->ipha_hdr_checksum = 0; 6993 6994 orptr = mp->b_rptr; 6995 mp->b_rptr += shift; 6996 6997 udpha = (udpha_t *)(orptr + iph_len); 6998 if (*spi == 0) { 6999 ASSERT((uint8_t *)ipha == orptr); 7000 udpha->uha_length = htons(plen - shift - iph_len); 7001 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 7002 esp_ports = 0; 7003 } else { 7004 esp_ports = *((uint32_t *)udpha); 7005 ASSERT(esp_ports != 0); 7006 } 7007 ovbcopy(orptr, orptr + shift, iph_len); 7008 if (esp_ports != 0) /* Punt up for ESP processing. */ { 7009 ipha = (ipha_t *)(orptr + shift); 7010 7011 free_ire = (ire == NULL); 7012 if (free_ire) { 7013 /* Re-acquire ire. */ 7014 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 7015 ipss->ipsec_netstack->netstack_ip); 7016 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 7017 if (ire != NULL) 7018 ire_refrele(ire); 7019 /* 7020 * Do a regular freemsg(), as this is an IP 7021 * error (no local route) not an IPsec one. 7022 */ 7023 freemsg(mp); 7024 } 7025 } 7026 7027 ip_proto_input(q, mp, ipha, ire, recv_ill, esp_ports); 7028 if (free_ire) 7029 ire_refrele(ire); 7030 } 7031 7032 return (esp_ports == 0); 7033 } 7034 7035 /* 7036 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 7037 * We are responsible for disposing of mp, such as by freemsg() or putnext() 7038 * Caller is responsible for dropping references to the conn, and freeing 7039 * first_mp. 7040 * 7041 * IPQoS Notes 7042 * Before sending it to the client, invoke IPPF processing. Policy processing 7043 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 7044 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 7045 * ip_wput_local, ip_policy is false. 7046 */ 7047 static void 7048 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 7049 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 7050 boolean_t ip_policy) 7051 { 7052 boolean_t mctl_present = (first_mp != NULL); 7053 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 7054 uint32_t ill_index; 7055 ip_stack_t *ipst = recv_ill->ill_ipst; 7056 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7057 7058 ASSERT(ill != NULL); 7059 7060 if (mctl_present) 7061 first_mp->b_cont = mp; 7062 else 7063 first_mp = mp; 7064 7065 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 7066 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 7067 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7068 freemsg(first_mp); 7069 return; 7070 } 7071 7072 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7073 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7074 NULL, mctl_present); 7075 /* Freed by ipsec_check_inbound_policy(). */ 7076 if (first_mp == NULL) { 7077 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7078 return; 7079 } 7080 } 7081 if (mctl_present) 7082 freeb(first_mp); 7083 7084 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7085 if (connp->conn_udp->udp_nat_t_endpoint) { 7086 if (mctl_present) { 7087 /* mctl_present *shouldn't* happen. */ 7088 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7089 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7090 &ipss->ipsec_dropper); 7091 return; 7092 } 7093 7094 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7095 return; 7096 } 7097 7098 /* Handle options. */ 7099 if (connp->conn_recvif) 7100 in_flags = IPF_RECVIF; 7101 /* 7102 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7103 * passed to ip_add_info is based on IP version of connp. 7104 */ 7105 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7106 if (connp->conn_af_isv6) { 7107 /* 7108 * V6 only needs index 7109 */ 7110 in_flags |= IPF_RECVIF; 7111 } else { 7112 /* 7113 * V4 needs index + matching address. 7114 */ 7115 in_flags |= IPF_RECVADDR; 7116 } 7117 } 7118 7119 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7120 in_flags |= IPF_RECVSLLA; 7121 7122 /* 7123 * Initiate IPPF processing here, if needed. Note first_mp won't be 7124 * freed if the packet is dropped. The caller will do so. 7125 */ 7126 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7127 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7128 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7129 if (mp == NULL) { 7130 return; 7131 } 7132 } 7133 if ((in_flags != 0) && 7134 (mp->b_datap->db_type != M_CTL)) { 7135 /* 7136 * The actual data will be contained in b_cont 7137 * upon successful return of the following call 7138 * else original mblk is returned 7139 */ 7140 ASSERT(recv_ill != NULL); 7141 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7142 ipst); 7143 } 7144 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7145 /* Send it upstream */ 7146 (connp->conn_recv)(connp, mp, NULL); 7147 } 7148 7149 /* 7150 * Fanout for UDP packets. 7151 * The caller puts <fport, lport> in the ports parameter. 7152 * 7153 * If SO_REUSEADDR is set all multicast and broadcast packets 7154 * will be delivered to all streams bound to the same port. 7155 * 7156 * Zones notes: 7157 * Multicast and broadcast packets will be distributed to streams in all zones. 7158 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7159 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7160 * packets. To maintain this behavior with multiple zones, the conns are grouped 7161 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7162 * each zone. If unset, all the following conns in the same zone are skipped. 7163 */ 7164 static void 7165 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7166 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7167 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7168 { 7169 uint32_t dstport, srcport; 7170 ipaddr_t dst; 7171 mblk_t *first_mp; 7172 boolean_t secure; 7173 in6_addr_t v6src; 7174 conn_t *connp; 7175 connf_t *connfp; 7176 conn_t *first_connp; 7177 conn_t *next_connp; 7178 mblk_t *mp1, *first_mp1; 7179 ipaddr_t src; 7180 zoneid_t last_zoneid; 7181 boolean_t reuseaddr; 7182 boolean_t shared_addr; 7183 boolean_t unlabeled; 7184 ip_stack_t *ipst; 7185 7186 ASSERT(recv_ill != NULL); 7187 ipst = recv_ill->ill_ipst; 7188 7189 first_mp = mp; 7190 if (mctl_present) { 7191 mp = first_mp->b_cont; 7192 first_mp->b_cont = NULL; 7193 secure = ipsec_in_is_secure(first_mp); 7194 ASSERT(mp != NULL); 7195 } else { 7196 first_mp = NULL; 7197 secure = B_FALSE; 7198 } 7199 7200 /* Extract ports in net byte order */ 7201 dstport = htons(ntohl(ports) & 0xFFFF); 7202 srcport = htons(ntohl(ports) >> 16); 7203 dst = ipha->ipha_dst; 7204 src = ipha->ipha_src; 7205 7206 unlabeled = B_FALSE; 7207 if (is_system_labeled()) 7208 /* Cred cannot be null on IPv4 */ 7209 unlabeled = (msg_getlabel(mp)->tsl_flags & 7210 TSLF_UNLABELED) != 0; 7211 shared_addr = (zoneid == ALL_ZONES); 7212 if (shared_addr) { 7213 /* 7214 * No need to handle exclusive-stack zones since ALL_ZONES 7215 * only applies to the shared stack. 7216 */ 7217 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7218 /* 7219 * If no shared MLP is found, tsol_mlp_findzone returns 7220 * ALL_ZONES. In that case, we assume it's SLP, and 7221 * search for the zone based on the packet label. 7222 * 7223 * If there is such a zone, we prefer to find a 7224 * connection in it. Otherwise, we look for a 7225 * MAC-exempt connection in any zone whose label 7226 * dominates the default label on the packet. 7227 */ 7228 if (zoneid == ALL_ZONES) 7229 zoneid = tsol_packet_to_zoneid(mp); 7230 else 7231 unlabeled = B_FALSE; 7232 } 7233 7234 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7235 mutex_enter(&connfp->connf_lock); 7236 connp = connfp->connf_head; 7237 if (!broadcast && !CLASSD(dst)) { 7238 /* 7239 * Not broadcast or multicast. Send to the one (first) 7240 * client we find. No need to check conn_wantpacket() 7241 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7242 * IPv4 unicast packets. 7243 */ 7244 while ((connp != NULL) && 7245 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7246 (!IPCL_ZONE_MATCH(connp, zoneid) && 7247 !(unlabeled && connp->conn_mac_exempt && shared_addr)))) { 7248 /* 7249 * We keep searching since the conn did not match, 7250 * or its zone did not match and it is not either 7251 * an allzones conn or a mac exempt conn (if the 7252 * sender is unlabeled.) 7253 */ 7254 connp = connp->conn_next; 7255 } 7256 7257 if (connp == NULL || 7258 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7259 goto notfound; 7260 7261 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7262 7263 if (is_system_labeled() && 7264 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7265 connp)) 7266 goto notfound; 7267 7268 CONN_INC_REF(connp); 7269 mutex_exit(&connfp->connf_lock); 7270 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7271 flags, recv_ill, ip_policy); 7272 IP_STAT(ipst, ip_udp_fannorm); 7273 CONN_DEC_REF(connp); 7274 return; 7275 } 7276 7277 /* 7278 * Broadcast and multicast case 7279 * 7280 * Need to check conn_wantpacket(). 7281 * If SO_REUSEADDR has been set on the first we send the 7282 * packet to all clients that have joined the group and 7283 * match the port. 7284 */ 7285 7286 while (connp != NULL) { 7287 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7288 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7289 (!is_system_labeled() || 7290 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7291 connp))) 7292 break; 7293 connp = connp->conn_next; 7294 } 7295 7296 if (connp == NULL || 7297 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7298 goto notfound; 7299 7300 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7301 7302 first_connp = connp; 7303 /* 7304 * When SO_REUSEADDR is not set, send the packet only to the first 7305 * matching connection in its zone by keeping track of the zoneid. 7306 */ 7307 reuseaddr = first_connp->conn_reuseaddr; 7308 last_zoneid = first_connp->conn_zoneid; 7309 7310 CONN_INC_REF(connp); 7311 connp = connp->conn_next; 7312 for (;;) { 7313 while (connp != NULL) { 7314 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7315 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7316 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7317 (!is_system_labeled() || 7318 tsol_receive_local(mp, &dst, IPV4_VERSION, 7319 shared_addr, connp))) 7320 break; 7321 connp = connp->conn_next; 7322 } 7323 /* 7324 * Just copy the data part alone. The mctl part is 7325 * needed just for verifying policy and it is never 7326 * sent up. 7327 */ 7328 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7329 ((mp1 = copymsg(mp)) == NULL))) { 7330 /* 7331 * No more interested clients or memory 7332 * allocation failed 7333 */ 7334 connp = first_connp; 7335 break; 7336 } 7337 if (connp->conn_zoneid != last_zoneid) { 7338 /* 7339 * Update the zoneid so that the packet isn't sent to 7340 * any more conns in the same zone unless SO_REUSEADDR 7341 * is set. 7342 */ 7343 reuseaddr = connp->conn_reuseaddr; 7344 last_zoneid = connp->conn_zoneid; 7345 } 7346 if (first_mp != NULL) { 7347 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7348 ipsec_info_type == IPSEC_IN); 7349 first_mp1 = ipsec_in_tag(first_mp, NULL, 7350 ipst->ips_netstack); 7351 if (first_mp1 == NULL) { 7352 freemsg(mp1); 7353 connp = first_connp; 7354 break; 7355 } 7356 } else { 7357 first_mp1 = NULL; 7358 } 7359 CONN_INC_REF(connp); 7360 mutex_exit(&connfp->connf_lock); 7361 /* 7362 * IPQoS notes: We don't send the packet for policy 7363 * processing here, will do it for the last one (below). 7364 * i.e. we do it per-packet now, but if we do policy 7365 * processing per-conn, then we would need to do it 7366 * here too. 7367 */ 7368 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7369 ipha, flags, recv_ill, B_FALSE); 7370 mutex_enter(&connfp->connf_lock); 7371 /* Follow the next pointer before releasing the conn. */ 7372 next_connp = connp->conn_next; 7373 IP_STAT(ipst, ip_udp_fanmb); 7374 CONN_DEC_REF(connp); 7375 connp = next_connp; 7376 } 7377 7378 /* Last one. Send it upstream. */ 7379 mutex_exit(&connfp->connf_lock); 7380 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7381 recv_ill, ip_policy); 7382 IP_STAT(ipst, ip_udp_fanmb); 7383 CONN_DEC_REF(connp); 7384 return; 7385 7386 notfound: 7387 7388 mutex_exit(&connfp->connf_lock); 7389 IP_STAT(ipst, ip_udp_fanothers); 7390 /* 7391 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7392 * have already been matched above, since they live in the IPv4 7393 * fanout tables. This implies we only need to 7394 * check for IPv6 in6addr_any endpoints here. 7395 * Thus we compare using ipv6_all_zeros instead of the destination 7396 * address, except for the multicast group membership lookup which 7397 * uses the IPv4 destination. 7398 */ 7399 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7400 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7401 mutex_enter(&connfp->connf_lock); 7402 connp = connfp->connf_head; 7403 if (!broadcast && !CLASSD(dst)) { 7404 while (connp != NULL) { 7405 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7406 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7407 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7408 !connp->conn_ipv6_v6only) 7409 break; 7410 connp = connp->conn_next; 7411 } 7412 7413 if (connp != NULL && is_system_labeled() && 7414 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7415 connp)) 7416 connp = NULL; 7417 7418 if (connp == NULL || 7419 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7420 /* 7421 * No one bound to this port. Is 7422 * there a client that wants all 7423 * unclaimed datagrams? 7424 */ 7425 mutex_exit(&connfp->connf_lock); 7426 7427 if (mctl_present) 7428 first_mp->b_cont = mp; 7429 else 7430 first_mp = mp; 7431 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7432 connf_head != NULL) { 7433 ip_fanout_proto(q, first_mp, ill, ipha, 7434 flags | IP_FF_RAWIP, mctl_present, 7435 ip_policy, recv_ill, zoneid); 7436 } else { 7437 if (ip_fanout_send_icmp(q, first_mp, flags, 7438 ICMP_DEST_UNREACHABLE, 7439 ICMP_PORT_UNREACHABLE, 7440 mctl_present, zoneid, ipst)) { 7441 BUMP_MIB(ill->ill_ip_mib, 7442 udpIfStatsNoPorts); 7443 } 7444 } 7445 return; 7446 } 7447 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7448 7449 CONN_INC_REF(connp); 7450 mutex_exit(&connfp->connf_lock); 7451 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7452 flags, recv_ill, ip_policy); 7453 CONN_DEC_REF(connp); 7454 return; 7455 } 7456 /* 7457 * IPv4 multicast packet being delivered to an AF_INET6 7458 * in6addr_any endpoint. 7459 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7460 * and not conn_wantpacket_v6() since any multicast membership is 7461 * for an IPv4-mapped multicast address. 7462 * The packet is sent to all clients in all zones that have joined the 7463 * group and match the port. 7464 */ 7465 while (connp != NULL) { 7466 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7467 srcport, v6src) && 7468 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7469 (!is_system_labeled() || 7470 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7471 connp))) 7472 break; 7473 connp = connp->conn_next; 7474 } 7475 7476 if (connp == NULL || 7477 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7478 /* 7479 * No one bound to this port. Is 7480 * there a client that wants all 7481 * unclaimed datagrams? 7482 */ 7483 mutex_exit(&connfp->connf_lock); 7484 7485 if (mctl_present) 7486 first_mp->b_cont = mp; 7487 else 7488 first_mp = mp; 7489 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7490 NULL) { 7491 ip_fanout_proto(q, first_mp, ill, ipha, 7492 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7493 recv_ill, zoneid); 7494 } else { 7495 /* 7496 * We used to attempt to send an icmp error here, but 7497 * since this is known to be a multicast packet 7498 * and we don't send icmp errors in response to 7499 * multicast, just drop the packet and give up sooner. 7500 */ 7501 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7502 freemsg(first_mp); 7503 } 7504 return; 7505 } 7506 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7507 7508 first_connp = connp; 7509 7510 CONN_INC_REF(connp); 7511 connp = connp->conn_next; 7512 for (;;) { 7513 while (connp != NULL) { 7514 if (IPCL_UDP_MATCH_V6(connp, dstport, 7515 ipv6_all_zeros, srcport, v6src) && 7516 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7517 (!is_system_labeled() || 7518 tsol_receive_local(mp, &dst, IPV4_VERSION, 7519 shared_addr, connp))) 7520 break; 7521 connp = connp->conn_next; 7522 } 7523 /* 7524 * Just copy the data part alone. The mctl part is 7525 * needed just for verifying policy and it is never 7526 * sent up. 7527 */ 7528 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7529 ((mp1 = copymsg(mp)) == NULL))) { 7530 /* 7531 * No more intested clients or memory 7532 * allocation failed 7533 */ 7534 connp = first_connp; 7535 break; 7536 } 7537 if (first_mp != NULL) { 7538 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7539 ipsec_info_type == IPSEC_IN); 7540 first_mp1 = ipsec_in_tag(first_mp, NULL, 7541 ipst->ips_netstack); 7542 if (first_mp1 == NULL) { 7543 freemsg(mp1); 7544 connp = first_connp; 7545 break; 7546 } 7547 } else { 7548 first_mp1 = NULL; 7549 } 7550 CONN_INC_REF(connp); 7551 mutex_exit(&connfp->connf_lock); 7552 /* 7553 * IPQoS notes: We don't send the packet for policy 7554 * processing here, will do it for the last one (below). 7555 * i.e. we do it per-packet now, but if we do policy 7556 * processing per-conn, then we would need to do it 7557 * here too. 7558 */ 7559 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7560 ipha, flags, recv_ill, B_FALSE); 7561 mutex_enter(&connfp->connf_lock); 7562 /* Follow the next pointer before releasing the conn. */ 7563 next_connp = connp->conn_next; 7564 CONN_DEC_REF(connp); 7565 connp = next_connp; 7566 } 7567 7568 /* Last one. Send it upstream. */ 7569 mutex_exit(&connfp->connf_lock); 7570 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7571 recv_ill, ip_policy); 7572 CONN_DEC_REF(connp); 7573 } 7574 7575 /* 7576 * Complete the ip_wput header so that it 7577 * is possible to generate ICMP 7578 * errors. 7579 */ 7580 int 7581 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7582 { 7583 ire_t *ire; 7584 7585 if (ipha->ipha_src == INADDR_ANY) { 7586 ire = ire_lookup_local(zoneid, ipst); 7587 if (ire == NULL) { 7588 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7589 return (1); 7590 } 7591 ipha->ipha_src = ire->ire_addr; 7592 ire_refrele(ire); 7593 } 7594 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7595 ipha->ipha_hdr_checksum = 0; 7596 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7597 return (0); 7598 } 7599 7600 /* 7601 * Nobody should be sending 7602 * packets up this stream 7603 */ 7604 static void 7605 ip_lrput(queue_t *q, mblk_t *mp) 7606 { 7607 mblk_t *mp1; 7608 7609 switch (mp->b_datap->db_type) { 7610 case M_FLUSH: 7611 /* Turn around */ 7612 if (*mp->b_rptr & FLUSHW) { 7613 *mp->b_rptr &= ~FLUSHR; 7614 qreply(q, mp); 7615 return; 7616 } 7617 break; 7618 } 7619 /* Could receive messages that passed through ar_rput */ 7620 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7621 mp1->b_prev = mp1->b_next = NULL; 7622 freemsg(mp); 7623 } 7624 7625 /* Nobody should be sending packets down this stream */ 7626 /* ARGSUSED */ 7627 void 7628 ip_lwput(queue_t *q, mblk_t *mp) 7629 { 7630 freemsg(mp); 7631 } 7632 7633 /* 7634 * Move the first hop in any source route to ipha_dst and remove that part of 7635 * the source route. Called by other protocols. Errors in option formatting 7636 * are ignored - will be handled by ip_wput_options Return the final 7637 * destination (either ipha_dst or the last entry in a source route.) 7638 */ 7639 ipaddr_t 7640 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7641 { 7642 ipoptp_t opts; 7643 uchar_t *opt; 7644 uint8_t optval; 7645 uint8_t optlen; 7646 ipaddr_t dst; 7647 int i; 7648 ire_t *ire; 7649 ip_stack_t *ipst = ns->netstack_ip; 7650 7651 ip2dbg(("ip_massage_options\n")); 7652 dst = ipha->ipha_dst; 7653 for (optval = ipoptp_first(&opts, ipha); 7654 optval != IPOPT_EOL; 7655 optval = ipoptp_next(&opts)) { 7656 opt = opts.ipoptp_cur; 7657 switch (optval) { 7658 uint8_t off; 7659 case IPOPT_SSRR: 7660 case IPOPT_LSRR: 7661 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7662 ip1dbg(("ip_massage_options: bad src route\n")); 7663 break; 7664 } 7665 optlen = opts.ipoptp_len; 7666 off = opt[IPOPT_OFFSET]; 7667 off--; 7668 redo_srr: 7669 if (optlen < IP_ADDR_LEN || 7670 off > optlen - IP_ADDR_LEN) { 7671 /* End of source route */ 7672 ip1dbg(("ip_massage_options: end of SR\n")); 7673 break; 7674 } 7675 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7676 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7677 ntohl(dst))); 7678 /* 7679 * Check if our address is present more than 7680 * once as consecutive hops in source route. 7681 * XXX verify per-interface ip_forwarding 7682 * for source route? 7683 */ 7684 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7685 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7686 if (ire != NULL) { 7687 ire_refrele(ire); 7688 off += IP_ADDR_LEN; 7689 goto redo_srr; 7690 } 7691 if (dst == htonl(INADDR_LOOPBACK)) { 7692 ip1dbg(("ip_massage_options: loopback addr in " 7693 "source route!\n")); 7694 break; 7695 } 7696 /* 7697 * Update ipha_dst to be the first hop and remove the 7698 * first hop from the source route (by overwriting 7699 * part of the option with NOP options). 7700 */ 7701 ipha->ipha_dst = dst; 7702 /* Put the last entry in dst */ 7703 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7704 3; 7705 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7706 7707 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7708 ntohl(dst))); 7709 /* Move down and overwrite */ 7710 opt[IP_ADDR_LEN] = opt[0]; 7711 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7712 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7713 for (i = 0; i < IP_ADDR_LEN; i++) 7714 opt[i] = IPOPT_NOP; 7715 break; 7716 } 7717 } 7718 return (dst); 7719 } 7720 7721 /* 7722 * Return the network mask 7723 * associated with the specified address. 7724 */ 7725 ipaddr_t 7726 ip_net_mask(ipaddr_t addr) 7727 { 7728 uchar_t *up = (uchar_t *)&addr; 7729 ipaddr_t mask = 0; 7730 uchar_t *maskp = (uchar_t *)&mask; 7731 7732 #if defined(__i386) || defined(__amd64) 7733 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7734 #endif 7735 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7736 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7737 #endif 7738 if (CLASSD(addr)) { 7739 maskp[0] = 0xF0; 7740 return (mask); 7741 } 7742 7743 /* We assume Class E default netmask to be 32 */ 7744 if (CLASSE(addr)) 7745 return (0xffffffffU); 7746 7747 if (addr == 0) 7748 return (0); 7749 maskp[0] = 0xFF; 7750 if ((up[0] & 0x80) == 0) 7751 return (mask); 7752 7753 maskp[1] = 0xFF; 7754 if ((up[0] & 0xC0) == 0x80) 7755 return (mask); 7756 7757 maskp[2] = 0xFF; 7758 if ((up[0] & 0xE0) == 0xC0) 7759 return (mask); 7760 7761 /* Otherwise return no mask */ 7762 return ((ipaddr_t)0); 7763 } 7764 7765 /* 7766 * Helper ill lookup function used by IPsec. 7767 */ 7768 ill_t * 7769 ip_grab_ill(mblk_t *first_mp, int ifindex, boolean_t isv6, ip_stack_t *ipst) 7770 { 7771 ill_t *ret_ill; 7772 7773 ASSERT(ifindex != 0); 7774 7775 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7776 ipst); 7777 if (ret_ill == NULL) { 7778 if (isv6) { 7779 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 7780 ip1dbg(("ip_grab_ill (IPv6): bad ifindex %d.\n", 7781 ifindex)); 7782 } else { 7783 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 7784 ip1dbg(("ip_grab_ill (IPv4): bad ifindex %d.\n", 7785 ifindex)); 7786 } 7787 freemsg(first_mp); 7788 return (NULL); 7789 } 7790 return (ret_ill); 7791 } 7792 7793 /* 7794 * IPv4 - 7795 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7796 * out a packet to a destination address for which we do not have specific 7797 * (or sufficient) routing information. 7798 * 7799 * NOTE : These are the scopes of some of the variables that point at IRE, 7800 * which needs to be followed while making any future modifications 7801 * to avoid memory leaks. 7802 * 7803 * - ire and sire are the entries looked up initially by 7804 * ire_ftable_lookup. 7805 * - ipif_ire is used to hold the interface ire associated with 7806 * the new cache ire. But it's scope is limited, so we always REFRELE 7807 * it before branching out to error paths. 7808 * - save_ire is initialized before ire_create, so that ire returned 7809 * by ire_create will not over-write the ire. We REFRELE save_ire 7810 * before breaking out of the switch. 7811 * 7812 * Thus on failures, we have to REFRELE only ire and sire, if they 7813 * are not NULL. 7814 */ 7815 void 7816 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7817 zoneid_t zoneid, ip_stack_t *ipst) 7818 { 7819 areq_t *areq; 7820 ipaddr_t gw = 0; 7821 ire_t *ire = NULL; 7822 mblk_t *res_mp; 7823 ipaddr_t *addrp; 7824 ipaddr_t nexthop_addr; 7825 ipif_t *src_ipif = NULL; 7826 ill_t *dst_ill = NULL; 7827 ipha_t *ipha; 7828 ire_t *sire = NULL; 7829 mblk_t *first_mp; 7830 ire_t *save_ire; 7831 ushort_t ire_marks = 0; 7832 boolean_t mctl_present; 7833 ipsec_out_t *io; 7834 mblk_t *saved_mp; 7835 mblk_t *copy_mp = NULL; 7836 mblk_t *xmit_mp = NULL; 7837 ipaddr_t save_dst; 7838 uint32_t multirt_flags = 7839 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7840 boolean_t multirt_is_resolvable; 7841 boolean_t multirt_resolve_next; 7842 boolean_t unspec_src; 7843 boolean_t ip_nexthop = B_FALSE; 7844 tsol_ire_gw_secattr_t *attrp = NULL; 7845 tsol_gcgrp_t *gcgrp = NULL; 7846 tsol_gcgrp_addr_t ga; 7847 int multirt_res_failures = 0; 7848 int multirt_res_attempts = 0; 7849 int multirt_already_resolved = 0; 7850 boolean_t multirt_no_icmp_error = B_FALSE; 7851 7852 if (ip_debug > 2) { 7853 /* ip1dbg */ 7854 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7855 } 7856 7857 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7858 if (mctl_present) { 7859 io = (ipsec_out_t *)first_mp->b_rptr; 7860 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7861 ASSERT(zoneid == io->ipsec_out_zoneid); 7862 ASSERT(zoneid != ALL_ZONES); 7863 } 7864 7865 ipha = (ipha_t *)mp->b_rptr; 7866 7867 /* All multicast lookups come through ip_newroute_ipif() */ 7868 if (CLASSD(dst)) { 7869 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7870 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7871 freemsg(first_mp); 7872 return; 7873 } 7874 7875 if (mctl_present && io->ipsec_out_ip_nexthop) { 7876 ip_nexthop = B_TRUE; 7877 nexthop_addr = io->ipsec_out_nexthop_addr; 7878 } 7879 /* 7880 * If this IRE is created for forwarding or it is not for 7881 * traffic for congestion controlled protocols, mark it as temporary. 7882 */ 7883 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7884 ire_marks |= IRE_MARK_TEMPORARY; 7885 7886 /* 7887 * Get what we can from ire_ftable_lookup which will follow an IRE 7888 * chain until it gets the most specific information available. 7889 * For example, we know that there is no IRE_CACHE for this dest, 7890 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7891 * ire_ftable_lookup will look up the gateway, etc. 7892 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7893 * to the destination, of equal netmask length in the forward table, 7894 * will be recursively explored. If no information is available 7895 * for the final gateway of that route, we force the returned ire 7896 * to be equal to sire using MATCH_IRE_PARENT. 7897 * At least, in this case we have a starting point (in the buckets) 7898 * to look for other routes to the destination in the forward table. 7899 * This is actually used only for multirouting, where a list 7900 * of routes has to be processed in sequence. 7901 * 7902 * In the process of coming up with the most specific information, 7903 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7904 * for the gateway (i.e., one for which the ire_nce->nce_state is 7905 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7906 * Two caveats when handling incomplete ire's in ip_newroute: 7907 * - we should be careful when accessing its ire_nce (specifically 7908 * the nce_res_mp) ast it might change underneath our feet, and, 7909 * - not all legacy code path callers are prepared to handle 7910 * incomplete ire's, so we should not create/add incomplete 7911 * ire_cache entries here. (See discussion about temporary solution 7912 * further below). 7913 * 7914 * In order to minimize packet dropping, and to preserve existing 7915 * behavior, we treat this case as if there were no IRE_CACHE for the 7916 * gateway, and instead use the IF_RESOLVER ire to send out 7917 * another request to ARP (this is achieved by passing the 7918 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7919 * arp response comes back in ip_wput_nondata, we will create 7920 * a per-dst ire_cache that has an ND_COMPLETE ire. 7921 * 7922 * Note that this is a temporary solution; the correct solution is 7923 * to create an incomplete per-dst ire_cache entry, and send the 7924 * packet out when the gw's nce is resolved. In order to achieve this, 7925 * all packet processing must have been completed prior to calling 7926 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7927 * to be modified to accomodate this solution. 7928 */ 7929 if (ip_nexthop) { 7930 /* 7931 * The first time we come here, we look for an IRE_INTERFACE 7932 * entry for the specified nexthop, set the dst to be the 7933 * nexthop address and create an IRE_CACHE entry for the 7934 * nexthop. The next time around, we are able to find an 7935 * IRE_CACHE entry for the nexthop, set the gateway to be the 7936 * nexthop address and create an IRE_CACHE entry for the 7937 * destination address via the specified nexthop. 7938 */ 7939 ire = ire_cache_lookup(nexthop_addr, zoneid, 7940 msg_getlabel(mp), ipst); 7941 if (ire != NULL) { 7942 gw = nexthop_addr; 7943 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7944 } else { 7945 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7946 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7947 msg_getlabel(mp), 7948 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7949 ipst); 7950 if (ire != NULL) { 7951 dst = nexthop_addr; 7952 } 7953 } 7954 } else { 7955 ire = ire_ftable_lookup(dst, 0, 0, 0, 7956 NULL, &sire, zoneid, 0, msg_getlabel(mp), 7957 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7958 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7959 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7960 ipst); 7961 } 7962 7963 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7964 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7965 7966 /* 7967 * This loop is run only once in most cases. 7968 * We loop to resolve further routes only when the destination 7969 * can be reached through multiple RTF_MULTIRT-flagged ires. 7970 */ 7971 do { 7972 /* Clear the previous iteration's values */ 7973 if (src_ipif != NULL) { 7974 ipif_refrele(src_ipif); 7975 src_ipif = NULL; 7976 } 7977 if (dst_ill != NULL) { 7978 ill_refrele(dst_ill); 7979 dst_ill = NULL; 7980 } 7981 7982 multirt_resolve_next = B_FALSE; 7983 /* 7984 * We check if packets have to be multirouted. 7985 * In this case, given the current <ire, sire> couple, 7986 * we look for the next suitable <ire, sire>. 7987 * This check is done in ire_multirt_lookup(), 7988 * which applies various criteria to find the next route 7989 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7990 * unchanged if it detects it has not been tried yet. 7991 */ 7992 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7993 ip3dbg(("ip_newroute: starting next_resolution " 7994 "with first_mp %p, tag %d\n", 7995 (void *)first_mp, 7996 MULTIRT_DEBUG_TAGGED(first_mp))); 7997 7998 ASSERT(sire != NULL); 7999 multirt_is_resolvable = 8000 ire_multirt_lookup(&ire, &sire, multirt_flags, 8001 &multirt_already_resolved, msg_getlabel(mp), ipst); 8002 8003 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8004 "multirt_already_resolved %d, " 8005 "multirt_res_attempts %d, multirt_res_failures %d, " 8006 "ire %p, sire %p\n", multirt_is_resolvable, 8007 multirt_already_resolved, multirt_res_attempts, 8008 multirt_res_failures, (void *)ire, (void *)sire)); 8009 8010 if (!multirt_is_resolvable) { 8011 /* 8012 * No more multirt route to resolve; give up 8013 * (all routes resolved or no more 8014 * resolvable routes). 8015 */ 8016 if (ire != NULL) { 8017 ire_refrele(ire); 8018 ire = NULL; 8019 } 8020 /* 8021 * Generate ICMP error only if all attempts to 8022 * resolve multirt route failed and there is no 8023 * already resolved one. Don't generate ICMP 8024 * error when: 8025 * 8026 * 1) there was no attempt to resolve 8027 * 2) at least one attempt passed 8028 * 3) a multirt route is already resolved 8029 * 8030 * Case 1) may occur due to multiple 8031 * resolution attempts during single 8032 * ip_multirt_resolution_interval. 8033 * 8034 * Case 2-3) means that CGTP destination is 8035 * reachable via one link so we don't want to 8036 * generate ICMP host unreachable error. 8037 */ 8038 if (multirt_res_attempts == 0 || 8039 multirt_res_failures < 8040 multirt_res_attempts || 8041 multirt_already_resolved > 0) 8042 multirt_no_icmp_error = B_TRUE; 8043 } else { 8044 ASSERT(sire != NULL); 8045 ASSERT(ire != NULL); 8046 8047 multirt_res_attempts++; 8048 } 8049 } 8050 8051 if (ire == NULL) { 8052 if (ip_debug > 3) { 8053 /* ip2dbg */ 8054 pr_addr_dbg("ip_newroute: " 8055 "can't resolve %s\n", AF_INET, &dst); 8056 } 8057 ip3dbg(("ip_newroute: " 8058 "ire %p, sire %p, multirt_no_icmp_error %d\n", 8059 (void *)ire, (void *)sire, 8060 (int)multirt_no_icmp_error)); 8061 8062 if (sire != NULL) { 8063 ire_refrele(sire); 8064 sire = NULL; 8065 } 8066 8067 if (multirt_no_icmp_error) { 8068 /* There is no need to report an ICMP error. */ 8069 MULTIRT_DEBUG_UNTAG(first_mp); 8070 freemsg(first_mp); 8071 return; 8072 } 8073 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8074 RTA_DST, ipst); 8075 goto icmp_err_ret; 8076 } 8077 8078 /* 8079 * Verify that the returned IRE does not have either 8080 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8081 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8082 */ 8083 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8084 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8085 goto icmp_err_ret; 8086 } 8087 /* 8088 * Increment the ire_ob_pkt_count field for ire if it is an 8089 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8090 * increment the same for the parent IRE, sire, if it is some 8091 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8092 */ 8093 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8094 UPDATE_OB_PKT_COUNT(ire); 8095 ire->ire_last_used_time = lbolt; 8096 } 8097 8098 if (sire != NULL) { 8099 gw = sire->ire_gateway_addr; 8100 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8101 IRE_INTERFACE)) == 0); 8102 UPDATE_OB_PKT_COUNT(sire); 8103 sire->ire_last_used_time = lbolt; 8104 } 8105 /* 8106 * We have a route to reach the destination. Find the 8107 * appropriate ill, then get a source address using 8108 * ipif_select_source(). 8109 * 8110 * If we are here trying to create an IRE_CACHE for an offlink 8111 * destination and have an IRE_CACHE entry for VNI, then use 8112 * ire_stq instead since VNI's queue is a black hole. 8113 */ 8114 if ((ire->ire_type == IRE_CACHE) && 8115 IS_VNI(ire->ire_ipif->ipif_ill)) { 8116 dst_ill = ire->ire_stq->q_ptr; 8117 ill_refhold(dst_ill); 8118 } else { 8119 ill_t *ill = ire->ire_ipif->ipif_ill; 8120 8121 if (IS_IPMP(ill)) { 8122 dst_ill = 8123 ipmp_illgrp_hold_next_ill(ill->ill_grp); 8124 } else { 8125 dst_ill = ill; 8126 ill_refhold(dst_ill); 8127 } 8128 } 8129 8130 if (dst_ill == NULL) { 8131 if (ip_debug > 2) { 8132 pr_addr_dbg("ip_newroute: no dst " 8133 "ill for dst %s\n", AF_INET, &dst); 8134 } 8135 goto icmp_err_ret; 8136 } 8137 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8138 8139 /* 8140 * Pick the best source address from dst_ill. 8141 * 8142 * 1) Try to pick the source address from the destination 8143 * route. Clustering assumes that when we have multiple 8144 * prefixes hosted on an interface, the prefix of the 8145 * source address matches the prefix of the destination 8146 * route. We do this only if the address is not 8147 * DEPRECATED. 8148 * 8149 * 2) If the conn is in a different zone than the ire, we 8150 * need to pick a source address from the right zone. 8151 */ 8152 ASSERT(src_ipif == NULL); 8153 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8154 /* 8155 * The RTF_SETSRC flag is set in the parent ire (sire). 8156 * Check that the ipif matching the requested source 8157 * address still exists. 8158 */ 8159 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8160 zoneid, NULL, NULL, NULL, NULL, ipst); 8161 } 8162 8163 unspec_src = (connp != NULL && connp->conn_unspec_src); 8164 8165 if (src_ipif == NULL && 8166 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8167 ire_marks |= IRE_MARK_USESRC_CHECK; 8168 if (!IS_UNDER_IPMP(ire->ire_ipif->ipif_ill) && 8169 IS_IPMP(ire->ire_ipif->ipif_ill) || 8170 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8171 (connp != NULL && ire->ire_zoneid != zoneid && 8172 ire->ire_zoneid != ALL_ZONES) || 8173 (dst_ill->ill_usesrc_ifindex != 0)) { 8174 /* 8175 * If the destination is reachable via a 8176 * given gateway, the selected source address 8177 * should be in the same subnet as the gateway. 8178 * Otherwise, the destination is not reachable. 8179 * 8180 * If there are no interfaces on the same subnet 8181 * as the destination, ipif_select_source gives 8182 * first non-deprecated interface which might be 8183 * on a different subnet than the gateway. 8184 * This is not desirable. Hence pass the dst_ire 8185 * source address to ipif_select_source. 8186 * It is sure that the destination is reachable 8187 * with the dst_ire source address subnet. 8188 * So passing dst_ire source address to 8189 * ipif_select_source will make sure that the 8190 * selected source will be on the same subnet 8191 * as dst_ire source address. 8192 */ 8193 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8194 8195 src_ipif = ipif_select_source(dst_ill, saddr, 8196 zoneid); 8197 if (src_ipif == NULL) { 8198 /* 8199 * In the case of multirouting, it may 8200 * happen that ipif_select_source fails 8201 * as DAD may disallow use of the 8202 * particular source interface. Anyway, 8203 * we need to continue and attempt to 8204 * resolve other multirt routes. 8205 */ 8206 if ((sire != NULL) && 8207 (sire->ire_flags & RTF_MULTIRT)) { 8208 ire_refrele(ire); 8209 ire = NULL; 8210 multirt_resolve_next = B_TRUE; 8211 multirt_res_failures++; 8212 continue; 8213 } 8214 8215 if (ip_debug > 2) { 8216 pr_addr_dbg("ip_newroute: " 8217 "no src for dst %s ", 8218 AF_INET, &dst); 8219 printf("on interface %s\n", 8220 dst_ill->ill_name); 8221 } 8222 goto icmp_err_ret; 8223 } 8224 } else { 8225 src_ipif = ire->ire_ipif; 8226 ASSERT(src_ipif != NULL); 8227 /* hold src_ipif for uniformity */ 8228 ipif_refhold(src_ipif); 8229 } 8230 } 8231 8232 /* 8233 * Assign a source address while we have the conn. 8234 * We can't have ip_wput_ire pick a source address when the 8235 * packet returns from arp since we need to look at 8236 * conn_unspec_src and conn_zoneid, and we lose the conn when 8237 * going through arp. 8238 * 8239 * NOTE : ip_newroute_v6 does not have this piece of code as 8240 * it uses ip6i to store this information. 8241 */ 8242 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8243 ipha->ipha_src = src_ipif->ipif_src_addr; 8244 8245 if (ip_debug > 3) { 8246 /* ip2dbg */ 8247 pr_addr_dbg("ip_newroute: first hop %s\n", 8248 AF_INET, &gw); 8249 } 8250 ip2dbg(("\tire type %s (%d)\n", 8251 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8252 8253 /* 8254 * The TTL of multirouted packets is bounded by the 8255 * ip_multirt_ttl ndd variable. 8256 */ 8257 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8258 /* Force TTL of multirouted packets */ 8259 if ((ipst->ips_ip_multirt_ttl > 0) && 8260 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8261 ip2dbg(("ip_newroute: forcing multirt TTL " 8262 "to %d (was %d), dst 0x%08x\n", 8263 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8264 ntohl(sire->ire_addr))); 8265 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8266 } 8267 } 8268 /* 8269 * At this point in ip_newroute(), ire is either the 8270 * IRE_CACHE of the next-hop gateway for an off-subnet 8271 * destination or an IRE_INTERFACE type that should be used 8272 * to resolve an on-subnet destination or an on-subnet 8273 * next-hop gateway. 8274 * 8275 * In the IRE_CACHE case, we have the following : 8276 * 8277 * 1) src_ipif - used for getting a source address. 8278 * 8279 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8280 * means packets using this IRE_CACHE will go out on 8281 * dst_ill. 8282 * 8283 * 3) The IRE sire will point to the prefix that is the 8284 * longest matching route for the destination. These 8285 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8286 * 8287 * The newly created IRE_CACHE entry for the off-subnet 8288 * destination is tied to both the prefix route and the 8289 * interface route used to resolve the next-hop gateway 8290 * via the ire_phandle and ire_ihandle fields, 8291 * respectively. 8292 * 8293 * In the IRE_INTERFACE case, we have the following : 8294 * 8295 * 1) src_ipif - used for getting a source address. 8296 * 8297 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8298 * means packets using the IRE_CACHE that we will build 8299 * here will go out on dst_ill. 8300 * 8301 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8302 * to be created will only be tied to the IRE_INTERFACE 8303 * that was derived from the ire_ihandle field. 8304 * 8305 * If sire is non-NULL, it means the destination is 8306 * off-link and we will first create the IRE_CACHE for the 8307 * gateway. Next time through ip_newroute, we will create 8308 * the IRE_CACHE for the final destination as described 8309 * above. 8310 * 8311 * In both cases, after the current resolution has been 8312 * completed (or possibly initialised, in the IRE_INTERFACE 8313 * case), the loop may be re-entered to attempt the resolution 8314 * of another RTF_MULTIRT route. 8315 * 8316 * When an IRE_CACHE entry for the off-subnet destination is 8317 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8318 * for further processing in emission loops. 8319 */ 8320 save_ire = ire; 8321 switch (ire->ire_type) { 8322 case IRE_CACHE: { 8323 ire_t *ipif_ire; 8324 8325 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8326 if (gw == 0) 8327 gw = ire->ire_gateway_addr; 8328 /* 8329 * We need 3 ire's to create a new cache ire for an 8330 * off-link destination from the cache ire of the 8331 * gateway. 8332 * 8333 * 1. The prefix ire 'sire' (Note that this does 8334 * not apply to the conn_nexthop_set case) 8335 * 2. The cache ire of the gateway 'ire' 8336 * 3. The interface ire 'ipif_ire' 8337 * 8338 * We have (1) and (2). We lookup (3) below. 8339 * 8340 * If there is no interface route to the gateway, 8341 * it is a race condition, where we found the cache 8342 * but the interface route has been deleted. 8343 */ 8344 if (ip_nexthop) { 8345 ipif_ire = ire_ihandle_lookup_onlink(ire); 8346 } else { 8347 ipif_ire = 8348 ire_ihandle_lookup_offlink(ire, sire); 8349 } 8350 if (ipif_ire == NULL) { 8351 ip1dbg(("ip_newroute: " 8352 "ire_ihandle_lookup_offlink failed\n")); 8353 goto icmp_err_ret; 8354 } 8355 8356 /* 8357 * Check cached gateway IRE for any security 8358 * attributes; if found, associate the gateway 8359 * credentials group to the destination IRE. 8360 */ 8361 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8362 mutex_enter(&attrp->igsa_lock); 8363 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8364 GCGRP_REFHOLD(gcgrp); 8365 mutex_exit(&attrp->igsa_lock); 8366 } 8367 8368 /* 8369 * XXX For the source of the resolver mp, 8370 * we are using the same DL_UNITDATA_REQ 8371 * (from save_ire->ire_nce->nce_res_mp) 8372 * though the save_ire is not pointing at the same ill. 8373 * This is incorrect. We need to send it up to the 8374 * resolver to get the right res_mp. For ethernets 8375 * this may be okay (ill_type == DL_ETHER). 8376 */ 8377 8378 ire = ire_create( 8379 (uchar_t *)&dst, /* dest address */ 8380 (uchar_t *)&ip_g_all_ones, /* mask */ 8381 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8382 (uchar_t *)&gw, /* gateway address */ 8383 &save_ire->ire_max_frag, 8384 save_ire->ire_nce, /* src nce */ 8385 dst_ill->ill_rq, /* recv-from queue */ 8386 dst_ill->ill_wq, /* send-to queue */ 8387 IRE_CACHE, /* IRE type */ 8388 src_ipif, 8389 (sire != NULL) ? 8390 sire->ire_mask : 0, /* Parent mask */ 8391 (sire != NULL) ? 8392 sire->ire_phandle : 0, /* Parent handle */ 8393 ipif_ire->ire_ihandle, /* Interface handle */ 8394 (sire != NULL) ? (sire->ire_flags & 8395 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8396 (sire != NULL) ? 8397 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8398 NULL, 8399 gcgrp, 8400 ipst); 8401 8402 if (ire == NULL) { 8403 if (gcgrp != NULL) { 8404 GCGRP_REFRELE(gcgrp); 8405 gcgrp = NULL; 8406 } 8407 ire_refrele(ipif_ire); 8408 ire_refrele(save_ire); 8409 break; 8410 } 8411 8412 /* reference now held by IRE */ 8413 gcgrp = NULL; 8414 8415 ire->ire_marks |= ire_marks; 8416 8417 /* 8418 * Prevent sire and ipif_ire from getting deleted. 8419 * The newly created ire is tied to both of them via 8420 * the phandle and ihandle respectively. 8421 */ 8422 if (sire != NULL) { 8423 IRB_REFHOLD(sire->ire_bucket); 8424 /* Has it been removed already ? */ 8425 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8426 IRB_REFRELE(sire->ire_bucket); 8427 ire_refrele(ipif_ire); 8428 ire_refrele(save_ire); 8429 break; 8430 } 8431 } 8432 8433 IRB_REFHOLD(ipif_ire->ire_bucket); 8434 /* Has it been removed already ? */ 8435 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8436 IRB_REFRELE(ipif_ire->ire_bucket); 8437 if (sire != NULL) 8438 IRB_REFRELE(sire->ire_bucket); 8439 ire_refrele(ipif_ire); 8440 ire_refrele(save_ire); 8441 break; 8442 } 8443 8444 xmit_mp = first_mp; 8445 /* 8446 * In the case of multirouting, a copy 8447 * of the packet is done before its sending. 8448 * The copy is used to attempt another 8449 * route resolution, in a next loop. 8450 */ 8451 if (ire->ire_flags & RTF_MULTIRT) { 8452 copy_mp = copymsg(first_mp); 8453 if (copy_mp != NULL) { 8454 xmit_mp = copy_mp; 8455 MULTIRT_DEBUG_TAG(first_mp); 8456 } 8457 } 8458 8459 ire_add_then_send(q, ire, xmit_mp); 8460 ire_refrele(save_ire); 8461 8462 /* Assert that sire is not deleted yet. */ 8463 if (sire != NULL) { 8464 ASSERT(sire->ire_ptpn != NULL); 8465 IRB_REFRELE(sire->ire_bucket); 8466 } 8467 8468 /* Assert that ipif_ire is not deleted yet. */ 8469 ASSERT(ipif_ire->ire_ptpn != NULL); 8470 IRB_REFRELE(ipif_ire->ire_bucket); 8471 ire_refrele(ipif_ire); 8472 8473 /* 8474 * If copy_mp is not NULL, multirouting was 8475 * requested. We loop to initiate a next 8476 * route resolution attempt, starting from sire. 8477 */ 8478 if (copy_mp != NULL) { 8479 /* 8480 * Search for the next unresolved 8481 * multirt route. 8482 */ 8483 copy_mp = NULL; 8484 ipif_ire = NULL; 8485 ire = NULL; 8486 multirt_resolve_next = B_TRUE; 8487 continue; 8488 } 8489 if (sire != NULL) 8490 ire_refrele(sire); 8491 ipif_refrele(src_ipif); 8492 ill_refrele(dst_ill); 8493 return; 8494 } 8495 case IRE_IF_NORESOLVER: { 8496 if (dst_ill->ill_resolver_mp == NULL) { 8497 ip1dbg(("ip_newroute: dst_ill %p " 8498 "for IRE_IF_NORESOLVER ire %p has " 8499 "no ill_resolver_mp\n", 8500 (void *)dst_ill, (void *)ire)); 8501 break; 8502 } 8503 8504 /* 8505 * TSol note: We are creating the ire cache for the 8506 * destination 'dst'. If 'dst' is offlink, going 8507 * through the first hop 'gw', the security attributes 8508 * of 'dst' must be set to point to the gateway 8509 * credentials of gateway 'gw'. If 'dst' is onlink, it 8510 * is possible that 'dst' is a potential gateway that is 8511 * referenced by some route that has some security 8512 * attributes. Thus in the former case, we need to do a 8513 * gcgrp_lookup of 'gw' while in the latter case we 8514 * need to do gcgrp_lookup of 'dst' itself. 8515 */ 8516 ga.ga_af = AF_INET; 8517 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8518 &ga.ga_addr); 8519 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8520 8521 ire = ire_create( 8522 (uchar_t *)&dst, /* dest address */ 8523 (uchar_t *)&ip_g_all_ones, /* mask */ 8524 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8525 (uchar_t *)&gw, /* gateway address */ 8526 &save_ire->ire_max_frag, 8527 NULL, /* no src nce */ 8528 dst_ill->ill_rq, /* recv-from queue */ 8529 dst_ill->ill_wq, /* send-to queue */ 8530 IRE_CACHE, 8531 src_ipif, 8532 save_ire->ire_mask, /* Parent mask */ 8533 (sire != NULL) ? /* Parent handle */ 8534 sire->ire_phandle : 0, 8535 save_ire->ire_ihandle, /* Interface handle */ 8536 (sire != NULL) ? sire->ire_flags & 8537 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8538 &(save_ire->ire_uinfo), 8539 NULL, 8540 gcgrp, 8541 ipst); 8542 8543 if (ire == NULL) { 8544 if (gcgrp != NULL) { 8545 GCGRP_REFRELE(gcgrp); 8546 gcgrp = NULL; 8547 } 8548 ire_refrele(save_ire); 8549 break; 8550 } 8551 8552 /* reference now held by IRE */ 8553 gcgrp = NULL; 8554 8555 ire->ire_marks |= ire_marks; 8556 8557 /* Prevent save_ire from getting deleted */ 8558 IRB_REFHOLD(save_ire->ire_bucket); 8559 /* Has it been removed already ? */ 8560 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8561 IRB_REFRELE(save_ire->ire_bucket); 8562 ire_refrele(save_ire); 8563 break; 8564 } 8565 8566 /* 8567 * In the case of multirouting, a copy 8568 * of the packet is made before it is sent. 8569 * The copy is used in the next 8570 * loop to attempt another resolution. 8571 */ 8572 xmit_mp = first_mp; 8573 if ((sire != NULL) && 8574 (sire->ire_flags & RTF_MULTIRT)) { 8575 copy_mp = copymsg(first_mp); 8576 if (copy_mp != NULL) { 8577 xmit_mp = copy_mp; 8578 MULTIRT_DEBUG_TAG(first_mp); 8579 } 8580 } 8581 ire_add_then_send(q, ire, xmit_mp); 8582 8583 /* Assert that it is not deleted yet. */ 8584 ASSERT(save_ire->ire_ptpn != NULL); 8585 IRB_REFRELE(save_ire->ire_bucket); 8586 ire_refrele(save_ire); 8587 8588 if (copy_mp != NULL) { 8589 /* 8590 * If we found a (no)resolver, we ignore any 8591 * trailing top priority IRE_CACHE in further 8592 * loops. This ensures that we do not omit any 8593 * (no)resolver. 8594 * This IRE_CACHE, if any, will be processed 8595 * by another thread entering ip_newroute(). 8596 * IRE_CACHE entries, if any, will be processed 8597 * by another thread entering ip_newroute(), 8598 * (upon resolver response, for instance). 8599 * This aims to force parallel multirt 8600 * resolutions as soon as a packet must be sent. 8601 * In the best case, after the tx of only one 8602 * packet, all reachable routes are resolved. 8603 * Otherwise, the resolution of all RTF_MULTIRT 8604 * routes would require several emissions. 8605 */ 8606 multirt_flags &= ~MULTIRT_CACHEGW; 8607 8608 /* 8609 * Search for the next unresolved multirt 8610 * route. 8611 */ 8612 copy_mp = NULL; 8613 save_ire = NULL; 8614 ire = NULL; 8615 multirt_resolve_next = B_TRUE; 8616 continue; 8617 } 8618 8619 /* 8620 * Don't need sire anymore 8621 */ 8622 if (sire != NULL) 8623 ire_refrele(sire); 8624 8625 ipif_refrele(src_ipif); 8626 ill_refrele(dst_ill); 8627 return; 8628 } 8629 case IRE_IF_RESOLVER: 8630 /* 8631 * We can't build an IRE_CACHE yet, but at least we 8632 * found a resolver that can help. 8633 */ 8634 res_mp = dst_ill->ill_resolver_mp; 8635 if (!OK_RESOLVER_MP(res_mp)) 8636 break; 8637 8638 /* 8639 * To be at this point in the code with a non-zero gw 8640 * means that dst is reachable through a gateway that 8641 * we have never resolved. By changing dst to the gw 8642 * addr we resolve the gateway first. 8643 * When ire_add_then_send() tries to put the IP dg 8644 * to dst, it will reenter ip_newroute() at which 8645 * time we will find the IRE_CACHE for the gw and 8646 * create another IRE_CACHE in case IRE_CACHE above. 8647 */ 8648 if (gw != INADDR_ANY) { 8649 /* 8650 * The source ipif that was determined above was 8651 * relative to the destination address, not the 8652 * gateway's. If src_ipif was not taken out of 8653 * the IRE_IF_RESOLVER entry, we'll need to call 8654 * ipif_select_source() again. 8655 */ 8656 if (src_ipif != ire->ire_ipif) { 8657 ipif_refrele(src_ipif); 8658 src_ipif = ipif_select_source(dst_ill, 8659 gw, zoneid); 8660 /* 8661 * In the case of multirouting, it may 8662 * happen that ipif_select_source fails 8663 * as DAD may disallow use of the 8664 * particular source interface. Anyway, 8665 * we need to continue and attempt to 8666 * resolve other multirt routes. 8667 */ 8668 if (src_ipif == NULL) { 8669 if (sire != NULL && 8670 (sire->ire_flags & 8671 RTF_MULTIRT)) { 8672 ire_refrele(ire); 8673 ire = NULL; 8674 multirt_resolve_next = 8675 B_TRUE; 8676 multirt_res_failures++; 8677 continue; 8678 } 8679 if (ip_debug > 2) { 8680 pr_addr_dbg( 8681 "ip_newroute: no " 8682 "src for gw %s ", 8683 AF_INET, &gw); 8684 printf("on " 8685 "interface %s\n", 8686 dst_ill->ill_name); 8687 } 8688 goto icmp_err_ret; 8689 } 8690 } 8691 save_dst = dst; 8692 dst = gw; 8693 gw = INADDR_ANY; 8694 } 8695 8696 /* 8697 * We obtain a partial IRE_CACHE which we will pass 8698 * along with the resolver query. When the response 8699 * comes back it will be there ready for us to add. 8700 * The ire_max_frag is atomically set under the 8701 * irebucket lock in ire_add_v[46]. 8702 */ 8703 8704 ire = ire_create_mp( 8705 (uchar_t *)&dst, /* dest address */ 8706 (uchar_t *)&ip_g_all_ones, /* mask */ 8707 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8708 (uchar_t *)&gw, /* gateway address */ 8709 NULL, /* ire_max_frag */ 8710 NULL, /* no src nce */ 8711 dst_ill->ill_rq, /* recv-from queue */ 8712 dst_ill->ill_wq, /* send-to queue */ 8713 IRE_CACHE, 8714 src_ipif, /* Interface ipif */ 8715 save_ire->ire_mask, /* Parent mask */ 8716 0, 8717 save_ire->ire_ihandle, /* Interface handle */ 8718 0, /* flags if any */ 8719 &(save_ire->ire_uinfo), 8720 NULL, 8721 NULL, 8722 ipst); 8723 8724 if (ire == NULL) { 8725 ire_refrele(save_ire); 8726 break; 8727 } 8728 8729 if ((sire != NULL) && 8730 (sire->ire_flags & RTF_MULTIRT)) { 8731 copy_mp = copymsg(first_mp); 8732 if (copy_mp != NULL) 8733 MULTIRT_DEBUG_TAG(copy_mp); 8734 } 8735 8736 ire->ire_marks |= ire_marks; 8737 8738 /* 8739 * Construct message chain for the resolver 8740 * of the form: 8741 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8742 * Packet could contain a IPSEC_OUT mp. 8743 * 8744 * NOTE : ire will be added later when the response 8745 * comes back from ARP. If the response does not 8746 * come back, ARP frees the packet. For this reason, 8747 * we can't REFHOLD the bucket of save_ire to prevent 8748 * deletions. We may not be able to REFRELE the bucket 8749 * if the response never comes back. Thus, before 8750 * adding the ire, ire_add_v4 will make sure that the 8751 * interface route does not get deleted. This is the 8752 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8753 * where we can always prevent deletions because of 8754 * the synchronous nature of adding IRES i.e 8755 * ire_add_then_send is called after creating the IRE. 8756 */ 8757 ASSERT(ire->ire_mp != NULL); 8758 ire->ire_mp->b_cont = first_mp; 8759 /* Have saved_mp handy, for cleanup if canput fails */ 8760 saved_mp = mp; 8761 mp = copyb(res_mp); 8762 if (mp == NULL) { 8763 /* Prepare for cleanup */ 8764 mp = saved_mp; /* pkt */ 8765 ire_delete(ire); /* ire_mp */ 8766 ire = NULL; 8767 ire_refrele(save_ire); 8768 if (copy_mp != NULL) { 8769 MULTIRT_DEBUG_UNTAG(copy_mp); 8770 freemsg(copy_mp); 8771 copy_mp = NULL; 8772 } 8773 break; 8774 } 8775 linkb(mp, ire->ire_mp); 8776 8777 /* 8778 * Fill in the source and dest addrs for the resolver. 8779 * NOTE: this depends on memory layouts imposed by 8780 * ill_init(). 8781 */ 8782 areq = (areq_t *)mp->b_rptr; 8783 addrp = (ipaddr_t *)((char *)areq + 8784 areq->areq_sender_addr_offset); 8785 *addrp = save_ire->ire_src_addr; 8786 8787 ire_refrele(save_ire); 8788 addrp = (ipaddr_t *)((char *)areq + 8789 areq->areq_target_addr_offset); 8790 *addrp = dst; 8791 /* Up to the resolver. */ 8792 if (canputnext(dst_ill->ill_rq) && 8793 !(dst_ill->ill_arp_closing)) { 8794 putnext(dst_ill->ill_rq, mp); 8795 ire = NULL; 8796 if (copy_mp != NULL) { 8797 /* 8798 * If we found a resolver, we ignore 8799 * any trailing top priority IRE_CACHE 8800 * in the further loops. This ensures 8801 * that we do not omit any resolver. 8802 * IRE_CACHE entries, if any, will be 8803 * processed next time we enter 8804 * ip_newroute(). 8805 */ 8806 multirt_flags &= ~MULTIRT_CACHEGW; 8807 /* 8808 * Search for the next unresolved 8809 * multirt route. 8810 */ 8811 first_mp = copy_mp; 8812 copy_mp = NULL; 8813 /* Prepare the next resolution loop. */ 8814 mp = first_mp; 8815 EXTRACT_PKT_MP(mp, first_mp, 8816 mctl_present); 8817 if (mctl_present) 8818 io = (ipsec_out_t *) 8819 first_mp->b_rptr; 8820 ipha = (ipha_t *)mp->b_rptr; 8821 8822 ASSERT(sire != NULL); 8823 8824 dst = save_dst; 8825 multirt_resolve_next = B_TRUE; 8826 continue; 8827 } 8828 8829 if (sire != NULL) 8830 ire_refrele(sire); 8831 8832 /* 8833 * The response will come back in ip_wput 8834 * with db_type IRE_DB_TYPE. 8835 */ 8836 ipif_refrele(src_ipif); 8837 ill_refrele(dst_ill); 8838 return; 8839 } else { 8840 /* Prepare for cleanup */ 8841 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8842 mp); 8843 mp->b_cont = NULL; 8844 freeb(mp); /* areq */ 8845 /* 8846 * this is an ire that is not added to the 8847 * cache. ire_freemblk will handle the release 8848 * of any resources associated with the ire. 8849 */ 8850 ire_delete(ire); /* ire_mp */ 8851 mp = saved_mp; /* pkt */ 8852 ire = NULL; 8853 if (copy_mp != NULL) { 8854 MULTIRT_DEBUG_UNTAG(copy_mp); 8855 freemsg(copy_mp); 8856 copy_mp = NULL; 8857 } 8858 break; 8859 } 8860 default: 8861 break; 8862 } 8863 } while (multirt_resolve_next); 8864 8865 ip1dbg(("ip_newroute: dropped\n")); 8866 /* Did this packet originate externally? */ 8867 if (mp->b_prev) { 8868 mp->b_next = NULL; 8869 mp->b_prev = NULL; 8870 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8871 } else { 8872 if (dst_ill != NULL) { 8873 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8874 } else { 8875 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8876 } 8877 } 8878 ASSERT(copy_mp == NULL); 8879 MULTIRT_DEBUG_UNTAG(first_mp); 8880 freemsg(first_mp); 8881 if (ire != NULL) 8882 ire_refrele(ire); 8883 if (sire != NULL) 8884 ire_refrele(sire); 8885 if (src_ipif != NULL) 8886 ipif_refrele(src_ipif); 8887 if (dst_ill != NULL) 8888 ill_refrele(dst_ill); 8889 return; 8890 8891 icmp_err_ret: 8892 ip1dbg(("ip_newroute: no route\n")); 8893 if (src_ipif != NULL) 8894 ipif_refrele(src_ipif); 8895 if (dst_ill != NULL) 8896 ill_refrele(dst_ill); 8897 if (sire != NULL) 8898 ire_refrele(sire); 8899 /* Did this packet originate externally? */ 8900 if (mp->b_prev) { 8901 mp->b_next = NULL; 8902 mp->b_prev = NULL; 8903 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8904 q = WR(q); 8905 } else { 8906 /* 8907 * There is no outgoing ill, so just increment the 8908 * system MIB. 8909 */ 8910 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8911 /* 8912 * Since ip_wput() isn't close to finished, we fill 8913 * in enough of the header for credible error reporting. 8914 */ 8915 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8916 /* Failed */ 8917 MULTIRT_DEBUG_UNTAG(first_mp); 8918 freemsg(first_mp); 8919 if (ire != NULL) 8920 ire_refrele(ire); 8921 return; 8922 } 8923 } 8924 8925 /* 8926 * At this point we will have ire only if RTF_BLACKHOLE 8927 * or RTF_REJECT flags are set on the IRE. It will not 8928 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8929 */ 8930 if (ire != NULL) { 8931 if (ire->ire_flags & RTF_BLACKHOLE) { 8932 ire_refrele(ire); 8933 MULTIRT_DEBUG_UNTAG(first_mp); 8934 freemsg(first_mp); 8935 return; 8936 } 8937 ire_refrele(ire); 8938 } 8939 if (ip_source_routed(ipha, ipst)) { 8940 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8941 zoneid, ipst); 8942 return; 8943 } 8944 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8945 } 8946 8947 ip_opt_info_t zero_info; 8948 8949 /* 8950 * IPv4 - 8951 * ip_newroute_ipif is called by ip_wput_multicast and 8952 * ip_rput_forward_multicast whenever we need to send 8953 * out a packet to a destination address for which we do not have specific 8954 * routing information. It is used when the packet will be sent out 8955 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8956 * socket option is set or icmp error message wants to go out on a particular 8957 * interface for a unicast packet. 8958 * 8959 * In most cases, the destination address is resolved thanks to the ipif 8960 * intrinsic resolver. However, there are some cases where the call to 8961 * ip_newroute_ipif must take into account the potential presence of 8962 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8963 * that uses the interface. This is specified through flags, 8964 * which can be a combination of: 8965 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8966 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8967 * and flags. Additionally, the packet source address has to be set to 8968 * the specified address. The caller is thus expected to set this flag 8969 * if the packet has no specific source address yet. 8970 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8971 * flag, the resulting ire will inherit the flag. All unresolved routes 8972 * to the destination must be explored in the same call to 8973 * ip_newroute_ipif(). 8974 */ 8975 static void 8976 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8977 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 8978 { 8979 areq_t *areq; 8980 ire_t *ire = NULL; 8981 mblk_t *res_mp; 8982 ipaddr_t *addrp; 8983 mblk_t *first_mp; 8984 ire_t *save_ire = NULL; 8985 ipif_t *src_ipif = NULL; 8986 ushort_t ire_marks = 0; 8987 ill_t *dst_ill = NULL; 8988 ipha_t *ipha; 8989 mblk_t *saved_mp; 8990 ire_t *fire = NULL; 8991 mblk_t *copy_mp = NULL; 8992 boolean_t multirt_resolve_next; 8993 boolean_t unspec_src; 8994 ipaddr_t ipha_dst; 8995 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 8996 8997 /* 8998 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 8999 * here for uniformity 9000 */ 9001 ipif_refhold(ipif); 9002 9003 /* 9004 * This loop is run only once in most cases. 9005 * We loop to resolve further routes only when the destination 9006 * can be reached through multiple RTF_MULTIRT-flagged ires. 9007 */ 9008 do { 9009 if (dst_ill != NULL) { 9010 ill_refrele(dst_ill); 9011 dst_ill = NULL; 9012 } 9013 if (src_ipif != NULL) { 9014 ipif_refrele(src_ipif); 9015 src_ipif = NULL; 9016 } 9017 multirt_resolve_next = B_FALSE; 9018 9019 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9020 ipif->ipif_ill->ill_name)); 9021 9022 first_mp = mp; 9023 if (DB_TYPE(mp) == M_CTL) 9024 mp = mp->b_cont; 9025 ipha = (ipha_t *)mp->b_rptr; 9026 9027 /* 9028 * Save the packet destination address, we may need it after 9029 * the packet has been consumed. 9030 */ 9031 ipha_dst = ipha->ipha_dst; 9032 9033 /* 9034 * If the interface is a pt-pt interface we look for an 9035 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9036 * local_address and the pt-pt destination address. Otherwise 9037 * we just match the local address. 9038 * NOTE: dst could be different than ipha->ipha_dst in case 9039 * of sending igmp multicast packets over a point-to-point 9040 * connection. 9041 * Thus we must be careful enough to check ipha_dst to be a 9042 * multicast address, otherwise it will take xmit_if path for 9043 * multicast packets resulting into kernel stack overflow by 9044 * repeated calls to ip_newroute_ipif from ire_send(). 9045 */ 9046 if (CLASSD(ipha_dst) && 9047 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9048 goto err_ret; 9049 } 9050 9051 /* 9052 * We check if an IRE_OFFSUBNET for the addr that goes through 9053 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9054 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9055 * propagate its flags to the new ire. 9056 */ 9057 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9058 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9059 ip2dbg(("ip_newroute_ipif: " 9060 "ipif_lookup_multi_ire(" 9061 "ipif %p, dst %08x) = fire %p\n", 9062 (void *)ipif, ntohl(dst), (void *)fire)); 9063 } 9064 9065 /* 9066 * Note: While we pick a dst_ill we are really only 9067 * interested in the ill for load spreading. The source 9068 * ipif is determined by source address selection below. 9069 */ 9070 if (IS_IPMP(ipif->ipif_ill)) { 9071 ipmp_illgrp_t *illg = ipif->ipif_ill->ill_grp; 9072 9073 if (CLASSD(ipha_dst)) 9074 dst_ill = ipmp_illgrp_hold_cast_ill(illg); 9075 else 9076 dst_ill = ipmp_illgrp_hold_next_ill(illg); 9077 } else { 9078 dst_ill = ipif->ipif_ill; 9079 ill_refhold(dst_ill); 9080 } 9081 9082 if (dst_ill == NULL) { 9083 if (ip_debug > 2) { 9084 pr_addr_dbg("ip_newroute_ipif: no dst ill " 9085 "for dst %s\n", AF_INET, &dst); 9086 } 9087 goto err_ret; 9088 } 9089 9090 /* 9091 * Pick a source address preferring non-deprecated ones. 9092 * Unlike ip_newroute, we don't do any source address 9093 * selection here since for multicast it really does not help 9094 * in inbound load spreading as in the unicast case. 9095 */ 9096 if ((flags & RTF_SETSRC) && (fire != NULL) && 9097 (fire->ire_flags & RTF_SETSRC)) { 9098 /* 9099 * As requested by flags, an IRE_OFFSUBNET was looked up 9100 * on that interface. This ire has RTF_SETSRC flag, so 9101 * the source address of the packet must be changed. 9102 * Check that the ipif matching the requested source 9103 * address still exists. 9104 */ 9105 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9106 zoneid, NULL, NULL, NULL, NULL, ipst); 9107 } 9108 9109 unspec_src = (connp != NULL && connp->conn_unspec_src); 9110 9111 if (!IS_UNDER_IPMP(ipif->ipif_ill) && 9112 (IS_IPMP(ipif->ipif_ill) || 9113 (!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9114 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9115 (connp != NULL && ipif->ipif_zoneid != zoneid && 9116 ipif->ipif_zoneid != ALL_ZONES)) && 9117 (src_ipif == NULL) && 9118 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9119 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9120 if (src_ipif == NULL) { 9121 if (ip_debug > 2) { 9122 /* ip1dbg */ 9123 pr_addr_dbg("ip_newroute_ipif: " 9124 "no src for dst %s", 9125 AF_INET, &dst); 9126 } 9127 ip1dbg((" on interface %s\n", 9128 dst_ill->ill_name)); 9129 goto err_ret; 9130 } 9131 ipif_refrele(ipif); 9132 ipif = src_ipif; 9133 ipif_refhold(ipif); 9134 } 9135 if (src_ipif == NULL) { 9136 src_ipif = ipif; 9137 ipif_refhold(src_ipif); 9138 } 9139 9140 /* 9141 * Assign a source address while we have the conn. 9142 * We can't have ip_wput_ire pick a source address when the 9143 * packet returns from arp since conn_unspec_src might be set 9144 * and we lose the conn when going through arp. 9145 */ 9146 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9147 ipha->ipha_src = src_ipif->ipif_src_addr; 9148 9149 /* 9150 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9151 * that the outgoing interface does not have an interface ire. 9152 */ 9153 if (CLASSD(ipha_dst) && (connp == NULL || 9154 connp->conn_outgoing_ill == NULL) && 9155 infop->ip_opt_ill_index == 0) { 9156 /* ipif_to_ire returns an held ire */ 9157 ire = ipif_to_ire(ipif); 9158 if (ire == NULL) 9159 goto err_ret; 9160 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9161 goto err_ret; 9162 save_ire = ire; 9163 9164 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9165 "flags %04x\n", 9166 (void *)ire, (void *)ipif, flags)); 9167 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9168 (fire->ire_flags & RTF_MULTIRT)) { 9169 /* 9170 * As requested by flags, an IRE_OFFSUBNET was 9171 * looked up on that interface. This ire has 9172 * RTF_MULTIRT flag, so the resolution loop will 9173 * be re-entered to resolve additional routes on 9174 * other interfaces. For that purpose, a copy of 9175 * the packet is performed at this point. 9176 */ 9177 fire->ire_last_used_time = lbolt; 9178 copy_mp = copymsg(first_mp); 9179 if (copy_mp) { 9180 MULTIRT_DEBUG_TAG(copy_mp); 9181 } 9182 } 9183 if ((flags & RTF_SETSRC) && (fire != NULL) && 9184 (fire->ire_flags & RTF_SETSRC)) { 9185 /* 9186 * As requested by flags, an IRE_OFFSUBET was 9187 * looked up on that interface. This ire has 9188 * RTF_SETSRC flag, so the source address of the 9189 * packet must be changed. 9190 */ 9191 ipha->ipha_src = fire->ire_src_addr; 9192 } 9193 } else { 9194 /* 9195 * The only ways we can come here are: 9196 * 1) IP_BOUND_IF socket option is set 9197 * 2) SO_DONTROUTE socket option is set 9198 * 3) IP_PKTINFO option is passed in as ancillary data. 9199 * In all cases, the new ire will not be added 9200 * into cache table. 9201 */ 9202 ASSERT(connp == NULL || connp->conn_dontroute || 9203 connp->conn_outgoing_ill != NULL || 9204 infop->ip_opt_ill_index != 0); 9205 ire_marks |= IRE_MARK_NOADD; 9206 } 9207 9208 switch (ipif->ipif_net_type) { 9209 case IRE_IF_NORESOLVER: { 9210 /* We have what we need to build an IRE_CACHE. */ 9211 9212 if (dst_ill->ill_resolver_mp == NULL) { 9213 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9214 "for IRE_IF_NORESOLVER ire %p has " 9215 "no ill_resolver_mp\n", 9216 (void *)dst_ill, (void *)ire)); 9217 break; 9218 } 9219 9220 /* 9221 * The new ire inherits the IRE_OFFSUBNET flags 9222 * and source address, if this was requested. 9223 */ 9224 ire = ire_create( 9225 (uchar_t *)&dst, /* dest address */ 9226 (uchar_t *)&ip_g_all_ones, /* mask */ 9227 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9228 NULL, /* gateway address */ 9229 &ipif->ipif_mtu, 9230 NULL, /* no src nce */ 9231 dst_ill->ill_rq, /* recv-from queue */ 9232 dst_ill->ill_wq, /* send-to queue */ 9233 IRE_CACHE, 9234 src_ipif, 9235 (save_ire != NULL ? save_ire->ire_mask : 0), 9236 (fire != NULL) ? /* Parent handle */ 9237 fire->ire_phandle : 0, 9238 (save_ire != NULL) ? /* Interface handle */ 9239 save_ire->ire_ihandle : 0, 9240 (fire != NULL) ? 9241 (fire->ire_flags & 9242 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9243 (save_ire == NULL ? &ire_uinfo_null : 9244 &save_ire->ire_uinfo), 9245 NULL, 9246 NULL, 9247 ipst); 9248 9249 if (ire == NULL) { 9250 if (save_ire != NULL) 9251 ire_refrele(save_ire); 9252 break; 9253 } 9254 9255 ire->ire_marks |= ire_marks; 9256 9257 /* 9258 * If IRE_MARK_NOADD is set then we need to convert 9259 * the max_fragp to a useable value now. This is 9260 * normally done in ire_add_v[46]. We also need to 9261 * associate the ire with an nce (normally would be 9262 * done in ip_wput_nondata()). 9263 * 9264 * Note that IRE_MARK_NOADD packets created here 9265 * do not have a non-null ire_mp pointer. The null 9266 * value of ire_bucket indicates that they were 9267 * never added. 9268 */ 9269 if (ire->ire_marks & IRE_MARK_NOADD) { 9270 uint_t max_frag; 9271 9272 max_frag = *ire->ire_max_fragp; 9273 ire->ire_max_fragp = NULL; 9274 ire->ire_max_frag = max_frag; 9275 9276 if ((ire->ire_nce = ndp_lookup_v4( 9277 ire_to_ill(ire), 9278 (ire->ire_gateway_addr != INADDR_ANY ? 9279 &ire->ire_gateway_addr : &ire->ire_addr), 9280 B_FALSE)) == NULL) { 9281 if (save_ire != NULL) 9282 ire_refrele(save_ire); 9283 break; 9284 } 9285 ASSERT(ire->ire_nce->nce_state == 9286 ND_REACHABLE); 9287 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9288 } 9289 9290 /* Prevent save_ire from getting deleted */ 9291 if (save_ire != NULL) { 9292 IRB_REFHOLD(save_ire->ire_bucket); 9293 /* Has it been removed already ? */ 9294 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9295 IRB_REFRELE(save_ire->ire_bucket); 9296 ire_refrele(save_ire); 9297 break; 9298 } 9299 } 9300 9301 ire_add_then_send(q, ire, first_mp); 9302 9303 /* Assert that save_ire is not deleted yet. */ 9304 if (save_ire != NULL) { 9305 ASSERT(save_ire->ire_ptpn != NULL); 9306 IRB_REFRELE(save_ire->ire_bucket); 9307 ire_refrele(save_ire); 9308 save_ire = NULL; 9309 } 9310 if (fire != NULL) { 9311 ire_refrele(fire); 9312 fire = NULL; 9313 } 9314 9315 /* 9316 * the resolution loop is re-entered if this 9317 * was requested through flags and if we 9318 * actually are in a multirouting case. 9319 */ 9320 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9321 boolean_t need_resolve = 9322 ire_multirt_need_resolve(ipha_dst, 9323 msg_getlabel(copy_mp), ipst); 9324 if (!need_resolve) { 9325 MULTIRT_DEBUG_UNTAG(copy_mp); 9326 freemsg(copy_mp); 9327 copy_mp = NULL; 9328 } else { 9329 /* 9330 * ipif_lookup_group() calls 9331 * ire_lookup_multi() that uses 9332 * ire_ftable_lookup() to find 9333 * an IRE_INTERFACE for the group. 9334 * In the multirt case, 9335 * ire_lookup_multi() then invokes 9336 * ire_multirt_lookup() to find 9337 * the next resolvable ire. 9338 * As a result, we obtain an new 9339 * interface, derived from the 9340 * next ire. 9341 */ 9342 ipif_refrele(ipif); 9343 ipif = ipif_lookup_group(ipha_dst, 9344 zoneid, ipst); 9345 ip2dbg(("ip_newroute_ipif: " 9346 "multirt dst %08x, ipif %p\n", 9347 htonl(dst), (void *)ipif)); 9348 if (ipif != NULL) { 9349 mp = copy_mp; 9350 copy_mp = NULL; 9351 multirt_resolve_next = B_TRUE; 9352 continue; 9353 } else { 9354 freemsg(copy_mp); 9355 } 9356 } 9357 } 9358 if (ipif != NULL) 9359 ipif_refrele(ipif); 9360 ill_refrele(dst_ill); 9361 ipif_refrele(src_ipif); 9362 return; 9363 } 9364 case IRE_IF_RESOLVER: 9365 /* 9366 * We can't build an IRE_CACHE yet, but at least 9367 * we found a resolver that can help. 9368 */ 9369 res_mp = dst_ill->ill_resolver_mp; 9370 if (!OK_RESOLVER_MP(res_mp)) 9371 break; 9372 9373 /* 9374 * We obtain a partial IRE_CACHE which we will pass 9375 * along with the resolver query. When the response 9376 * comes back it will be there ready for us to add. 9377 * The new ire inherits the IRE_OFFSUBNET flags 9378 * and source address, if this was requested. 9379 * The ire_max_frag is atomically set under the 9380 * irebucket lock in ire_add_v[46]. Only in the 9381 * case of IRE_MARK_NOADD, we set it here itself. 9382 */ 9383 ire = ire_create_mp( 9384 (uchar_t *)&dst, /* dest address */ 9385 (uchar_t *)&ip_g_all_ones, /* mask */ 9386 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9387 NULL, /* gateway address */ 9388 (ire_marks & IRE_MARK_NOADD) ? 9389 ipif->ipif_mtu : 0, /* max_frag */ 9390 NULL, /* no src nce */ 9391 dst_ill->ill_rq, /* recv-from queue */ 9392 dst_ill->ill_wq, /* send-to queue */ 9393 IRE_CACHE, 9394 src_ipif, 9395 (save_ire != NULL ? save_ire->ire_mask : 0), 9396 (fire != NULL) ? /* Parent handle */ 9397 fire->ire_phandle : 0, 9398 (save_ire != NULL) ? /* Interface handle */ 9399 save_ire->ire_ihandle : 0, 9400 (fire != NULL) ? /* flags if any */ 9401 (fire->ire_flags & 9402 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9403 (save_ire == NULL ? &ire_uinfo_null : 9404 &save_ire->ire_uinfo), 9405 NULL, 9406 NULL, 9407 ipst); 9408 9409 if (save_ire != NULL) { 9410 ire_refrele(save_ire); 9411 save_ire = NULL; 9412 } 9413 if (ire == NULL) 9414 break; 9415 9416 ire->ire_marks |= ire_marks; 9417 /* 9418 * Construct message chain for the resolver of the 9419 * form: 9420 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9421 * 9422 * NOTE : ire will be added later when the response 9423 * comes back from ARP. If the response does not 9424 * come back, ARP frees the packet. For this reason, 9425 * we can't REFHOLD the bucket of save_ire to prevent 9426 * deletions. We may not be able to REFRELE the 9427 * bucket if the response never comes back. 9428 * Thus, before adding the ire, ire_add_v4 will make 9429 * sure that the interface route does not get deleted. 9430 * This is the only case unlike ip_newroute_v6, 9431 * ip_newroute_ipif_v6 where we can always prevent 9432 * deletions because ire_add_then_send is called after 9433 * creating the IRE. 9434 * If IRE_MARK_NOADD is set, then ire_add_then_send 9435 * does not add this IRE into the IRE CACHE. 9436 */ 9437 ASSERT(ire->ire_mp != NULL); 9438 ire->ire_mp->b_cont = first_mp; 9439 /* Have saved_mp handy, for cleanup if canput fails */ 9440 saved_mp = mp; 9441 mp = copyb(res_mp); 9442 if (mp == NULL) { 9443 /* Prepare for cleanup */ 9444 mp = saved_mp; /* pkt */ 9445 ire_delete(ire); /* ire_mp */ 9446 ire = NULL; 9447 if (copy_mp != NULL) { 9448 MULTIRT_DEBUG_UNTAG(copy_mp); 9449 freemsg(copy_mp); 9450 copy_mp = NULL; 9451 } 9452 break; 9453 } 9454 linkb(mp, ire->ire_mp); 9455 9456 /* 9457 * Fill in the source and dest addrs for the resolver. 9458 * NOTE: this depends on memory layouts imposed by 9459 * ill_init(). There are corner cases above where we 9460 * might've created the IRE with an INADDR_ANY source 9461 * address (e.g., if the zeroth ipif on an underlying 9462 * ill in an IPMP group is 0.0.0.0, but another ipif 9463 * on the ill has a usable test address). If so, tell 9464 * ARP to use ipha_src as its sender address. 9465 */ 9466 areq = (areq_t *)mp->b_rptr; 9467 addrp = (ipaddr_t *)((char *)areq + 9468 areq->areq_sender_addr_offset); 9469 if (ire->ire_src_addr != INADDR_ANY) 9470 *addrp = ire->ire_src_addr; 9471 else 9472 *addrp = ipha->ipha_src; 9473 addrp = (ipaddr_t *)((char *)areq + 9474 areq->areq_target_addr_offset); 9475 *addrp = dst; 9476 /* Up to the resolver. */ 9477 if (canputnext(dst_ill->ill_rq) && 9478 !(dst_ill->ill_arp_closing)) { 9479 putnext(dst_ill->ill_rq, mp); 9480 /* 9481 * The response will come back in ip_wput 9482 * with db_type IRE_DB_TYPE. 9483 */ 9484 } else { 9485 mp->b_cont = NULL; 9486 freeb(mp); /* areq */ 9487 ire_delete(ire); /* ire_mp */ 9488 saved_mp->b_next = NULL; 9489 saved_mp->b_prev = NULL; 9490 freemsg(first_mp); /* pkt */ 9491 ip2dbg(("ip_newroute_ipif: dropped\n")); 9492 } 9493 9494 if (fire != NULL) { 9495 ire_refrele(fire); 9496 fire = NULL; 9497 } 9498 9499 /* 9500 * The resolution loop is re-entered if this was 9501 * requested through flags and we actually are 9502 * in a multirouting case. 9503 */ 9504 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9505 boolean_t need_resolve = 9506 ire_multirt_need_resolve(ipha_dst, 9507 msg_getlabel(copy_mp), ipst); 9508 if (!need_resolve) { 9509 MULTIRT_DEBUG_UNTAG(copy_mp); 9510 freemsg(copy_mp); 9511 copy_mp = NULL; 9512 } else { 9513 /* 9514 * ipif_lookup_group() calls 9515 * ire_lookup_multi() that uses 9516 * ire_ftable_lookup() to find 9517 * an IRE_INTERFACE for the group. 9518 * In the multirt case, 9519 * ire_lookup_multi() then invokes 9520 * ire_multirt_lookup() to find 9521 * the next resolvable ire. 9522 * As a result, we obtain an new 9523 * interface, derived from the 9524 * next ire. 9525 */ 9526 ipif_refrele(ipif); 9527 ipif = ipif_lookup_group(ipha_dst, 9528 zoneid, ipst); 9529 if (ipif != NULL) { 9530 mp = copy_mp; 9531 copy_mp = NULL; 9532 multirt_resolve_next = B_TRUE; 9533 continue; 9534 } else { 9535 freemsg(copy_mp); 9536 } 9537 } 9538 } 9539 if (ipif != NULL) 9540 ipif_refrele(ipif); 9541 ill_refrele(dst_ill); 9542 ipif_refrele(src_ipif); 9543 return; 9544 default: 9545 break; 9546 } 9547 } while (multirt_resolve_next); 9548 9549 err_ret: 9550 ip2dbg(("ip_newroute_ipif: dropped\n")); 9551 if (fire != NULL) 9552 ire_refrele(fire); 9553 ipif_refrele(ipif); 9554 /* Did this packet originate externally? */ 9555 if (dst_ill != NULL) 9556 ill_refrele(dst_ill); 9557 if (src_ipif != NULL) 9558 ipif_refrele(src_ipif); 9559 if (mp->b_prev || mp->b_next) { 9560 mp->b_next = NULL; 9561 mp->b_prev = NULL; 9562 } else { 9563 /* 9564 * Since ip_wput() isn't close to finished, we fill 9565 * in enough of the header for credible error reporting. 9566 */ 9567 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9568 /* Failed */ 9569 freemsg(first_mp); 9570 if (ire != NULL) 9571 ire_refrele(ire); 9572 return; 9573 } 9574 } 9575 /* 9576 * At this point we will have ire only if RTF_BLACKHOLE 9577 * or RTF_REJECT flags are set on the IRE. It will not 9578 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9579 */ 9580 if (ire != NULL) { 9581 if (ire->ire_flags & RTF_BLACKHOLE) { 9582 ire_refrele(ire); 9583 freemsg(first_mp); 9584 return; 9585 } 9586 ire_refrele(ire); 9587 } 9588 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9589 } 9590 9591 /* Name/Value Table Lookup Routine */ 9592 char * 9593 ip_nv_lookup(nv_t *nv, int value) 9594 { 9595 if (!nv) 9596 return (NULL); 9597 for (; nv->nv_name; nv++) { 9598 if (nv->nv_value == value) 9599 return (nv->nv_name); 9600 } 9601 return ("unknown"); 9602 } 9603 9604 /* 9605 * This is a module open, i.e. this is a control stream for access 9606 * to a DLPI device. We allocate an ill_t as the instance data in 9607 * this case. 9608 */ 9609 int 9610 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9611 { 9612 ill_t *ill; 9613 int err; 9614 zoneid_t zoneid; 9615 netstack_t *ns; 9616 ip_stack_t *ipst; 9617 9618 /* 9619 * Prevent unprivileged processes from pushing IP so that 9620 * they can't send raw IP. 9621 */ 9622 if (secpolicy_net_rawaccess(credp) != 0) 9623 return (EPERM); 9624 9625 ns = netstack_find_by_cred(credp); 9626 ASSERT(ns != NULL); 9627 ipst = ns->netstack_ip; 9628 ASSERT(ipst != NULL); 9629 9630 /* 9631 * For exclusive stacks we set the zoneid to zero 9632 * to make IP operate as if in the global zone. 9633 */ 9634 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9635 zoneid = GLOBAL_ZONEID; 9636 else 9637 zoneid = crgetzoneid(credp); 9638 9639 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9640 q->q_ptr = WR(q)->q_ptr = ill; 9641 ill->ill_ipst = ipst; 9642 ill->ill_zoneid = zoneid; 9643 9644 /* 9645 * ill_init initializes the ill fields and then sends down 9646 * down a DL_INFO_REQ after calling qprocson. 9647 */ 9648 err = ill_init(q, ill); 9649 if (err != 0) { 9650 mi_free(ill); 9651 netstack_rele(ipst->ips_netstack); 9652 q->q_ptr = NULL; 9653 WR(q)->q_ptr = NULL; 9654 return (err); 9655 } 9656 9657 /* ill_init initializes the ipsq marking this thread as writer */ 9658 ipsq_exit(ill->ill_phyint->phyint_ipsq); 9659 /* Wait for the DL_INFO_ACK */ 9660 mutex_enter(&ill->ill_lock); 9661 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9662 /* 9663 * Return value of 0 indicates a pending signal. 9664 */ 9665 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9666 if (err == 0) { 9667 mutex_exit(&ill->ill_lock); 9668 (void) ip_close(q, 0); 9669 return (EINTR); 9670 } 9671 } 9672 mutex_exit(&ill->ill_lock); 9673 9674 /* 9675 * ip_rput_other could have set an error in ill_error on 9676 * receipt of M_ERROR. 9677 */ 9678 9679 err = ill->ill_error; 9680 if (err != 0) { 9681 (void) ip_close(q, 0); 9682 return (err); 9683 } 9684 9685 ill->ill_credp = credp; 9686 crhold(credp); 9687 9688 mutex_enter(&ipst->ips_ip_mi_lock); 9689 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9690 credp); 9691 mutex_exit(&ipst->ips_ip_mi_lock); 9692 if (err) { 9693 (void) ip_close(q, 0); 9694 return (err); 9695 } 9696 return (0); 9697 } 9698 9699 /* For /dev/ip aka AF_INET open */ 9700 int 9701 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9702 { 9703 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9704 } 9705 9706 /* For /dev/ip6 aka AF_INET6 open */ 9707 int 9708 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9709 { 9710 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9711 } 9712 9713 /* IP open routine. */ 9714 int 9715 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9716 boolean_t isv6) 9717 { 9718 conn_t *connp; 9719 major_t maj; 9720 zoneid_t zoneid; 9721 netstack_t *ns; 9722 ip_stack_t *ipst; 9723 9724 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9725 9726 /* Allow reopen. */ 9727 if (q->q_ptr != NULL) 9728 return (0); 9729 9730 if (sflag & MODOPEN) { 9731 /* This is a module open */ 9732 return (ip_modopen(q, devp, flag, sflag, credp)); 9733 } 9734 9735 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 9736 /* 9737 * Non streams based socket looking for a stream 9738 * to access IP 9739 */ 9740 return (ip_helper_stream_setup(q, devp, flag, sflag, 9741 credp, isv6)); 9742 } 9743 9744 ns = netstack_find_by_cred(credp); 9745 ASSERT(ns != NULL); 9746 ipst = ns->netstack_ip; 9747 ASSERT(ipst != NULL); 9748 9749 /* 9750 * For exclusive stacks we set the zoneid to zero 9751 * to make IP operate as if in the global zone. 9752 */ 9753 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9754 zoneid = GLOBAL_ZONEID; 9755 else 9756 zoneid = crgetzoneid(credp); 9757 9758 /* 9759 * We are opening as a device. This is an IP client stream, and we 9760 * allocate an conn_t as the instance data. 9761 */ 9762 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9763 9764 /* 9765 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9766 * done by netstack_find_by_cred() 9767 */ 9768 netstack_rele(ipst->ips_netstack); 9769 9770 connp->conn_zoneid = zoneid; 9771 connp->conn_sqp = NULL; 9772 connp->conn_initial_sqp = NULL; 9773 connp->conn_final_sqp = NULL; 9774 9775 connp->conn_upq = q; 9776 q->q_ptr = WR(q)->q_ptr = connp; 9777 9778 if (flag & SO_SOCKSTR) 9779 connp->conn_flags |= IPCL_SOCKET; 9780 9781 /* Minor tells us which /dev entry was opened */ 9782 if (isv6) { 9783 connp->conn_af_isv6 = B_TRUE; 9784 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9785 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9786 } else { 9787 connp->conn_af_isv6 = B_FALSE; 9788 connp->conn_pkt_isv6 = B_FALSE; 9789 } 9790 9791 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9792 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9793 connp->conn_minor_arena = ip_minor_arena_la; 9794 } else { 9795 /* 9796 * Either minor numbers in the large arena were exhausted 9797 * or a non socket application is doing the open. 9798 * Try to allocate from the small arena. 9799 */ 9800 if ((connp->conn_dev = 9801 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9802 /* CONN_DEC_REF takes care of netstack_rele() */ 9803 q->q_ptr = WR(q)->q_ptr = NULL; 9804 CONN_DEC_REF(connp); 9805 return (EBUSY); 9806 } 9807 connp->conn_minor_arena = ip_minor_arena_sa; 9808 } 9809 9810 maj = getemajor(*devp); 9811 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9812 9813 /* 9814 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9815 */ 9816 connp->conn_cred = credp; 9817 9818 /* 9819 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9820 */ 9821 connp->conn_recv = ip_conn_input; 9822 9823 crhold(connp->conn_cred); 9824 9825 /* 9826 * If the caller has the process-wide flag set, then default to MAC 9827 * exempt mode. This allows read-down to unlabeled hosts. 9828 */ 9829 if (getpflags(NET_MAC_AWARE, credp) != 0) 9830 connp->conn_mac_exempt = B_TRUE; 9831 9832 connp->conn_rq = q; 9833 connp->conn_wq = WR(q); 9834 9835 /* Non-zero default values */ 9836 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9837 9838 /* 9839 * Make the conn globally visible to walkers 9840 */ 9841 ASSERT(connp->conn_ref == 1); 9842 mutex_enter(&connp->conn_lock); 9843 connp->conn_state_flags &= ~CONN_INCIPIENT; 9844 mutex_exit(&connp->conn_lock); 9845 9846 qprocson(q); 9847 9848 return (0); 9849 } 9850 9851 /* 9852 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9853 * Note that there is no race since either ip_output function works - it 9854 * is just an optimization to enter the best ip_output routine directly. 9855 */ 9856 void 9857 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9858 ip_stack_t *ipst) 9859 { 9860 if (isv6) { 9861 if (bump_mib) { 9862 BUMP_MIB(&ipst->ips_ip6_mib, 9863 ipIfStatsOutSwitchIPVersion); 9864 } 9865 connp->conn_send = ip_output_v6; 9866 connp->conn_pkt_isv6 = B_TRUE; 9867 } else { 9868 if (bump_mib) { 9869 BUMP_MIB(&ipst->ips_ip_mib, 9870 ipIfStatsOutSwitchIPVersion); 9871 } 9872 connp->conn_send = ip_output; 9873 connp->conn_pkt_isv6 = B_FALSE; 9874 } 9875 9876 } 9877 9878 /* 9879 * See if IPsec needs loading because of the options in mp. 9880 */ 9881 static boolean_t 9882 ipsec_opt_present(mblk_t *mp) 9883 { 9884 uint8_t *optcp, *next_optcp, *opt_endcp; 9885 struct opthdr *opt; 9886 struct T_opthdr *topt; 9887 int opthdr_len; 9888 t_uscalar_t optname, optlevel; 9889 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9890 ipsec_req_t *ipsr; 9891 9892 /* 9893 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9894 * return TRUE. 9895 */ 9896 9897 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9898 opt_endcp = optcp + tor->OPT_length; 9899 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9900 opthdr_len = sizeof (struct T_opthdr); 9901 } else { /* O_OPTMGMT_REQ */ 9902 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9903 opthdr_len = sizeof (struct opthdr); 9904 } 9905 for (; optcp < opt_endcp; optcp = next_optcp) { 9906 if (optcp + opthdr_len > opt_endcp) 9907 return (B_FALSE); /* Not enough option header. */ 9908 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9909 topt = (struct T_opthdr *)optcp; 9910 optlevel = topt->level; 9911 optname = topt->name; 9912 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9913 } else { 9914 opt = (struct opthdr *)optcp; 9915 optlevel = opt->level; 9916 optname = opt->name; 9917 next_optcp = optcp + opthdr_len + 9918 _TPI_ALIGN_OPT(opt->len); 9919 } 9920 if ((next_optcp < optcp) || /* wraparound pointer space */ 9921 ((next_optcp >= opt_endcp) && /* last option bad len */ 9922 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9923 return (B_FALSE); /* bad option buffer */ 9924 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9925 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9926 /* 9927 * Check to see if it's an all-bypass or all-zeroes 9928 * IPsec request. Don't bother loading IPsec if 9929 * the socket doesn't want to use it. (A good example 9930 * is a bypass request.) 9931 * 9932 * Basically, if any of the non-NEVER bits are set, 9933 * load IPsec. 9934 */ 9935 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9936 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9937 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9938 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9939 != 0) 9940 return (B_TRUE); 9941 } 9942 } 9943 return (B_FALSE); 9944 } 9945 9946 /* 9947 * If conn is is waiting for ipsec to finish loading, kick it. 9948 */ 9949 /* ARGSUSED */ 9950 static void 9951 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9952 { 9953 t_scalar_t optreq_prim; 9954 mblk_t *mp; 9955 cred_t *cr; 9956 int err = 0; 9957 9958 /* 9959 * This function is called, after ipsec loading is complete. 9960 * Since IP checks exclusively and atomically (i.e it prevents 9961 * ipsec load from completing until ip_optcom_req completes) 9962 * whether ipsec load is complete, there cannot be a race with IP 9963 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9964 */ 9965 mutex_enter(&connp->conn_lock); 9966 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9967 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9968 mp = connp->conn_ipsec_opt_mp; 9969 connp->conn_ipsec_opt_mp = NULL; 9970 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9971 mutex_exit(&connp->conn_lock); 9972 9973 /* 9974 * All Solaris components should pass a db_credp 9975 * for this TPI message, hence we ASSERT. 9976 * But in case there is some other M_PROTO that looks 9977 * like a TPI message sent by some other kernel 9978 * component, we check and return an error. 9979 */ 9980 cr = msg_getcred(mp, NULL); 9981 ASSERT(cr != NULL); 9982 if (cr == NULL) { 9983 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 9984 if (mp != NULL) 9985 qreply(connp->conn_wq, mp); 9986 return; 9987 } 9988 9989 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9990 9991 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9992 if (optreq_prim == T_OPTMGMT_REQ) { 9993 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9994 &ip_opt_obj, B_FALSE); 9995 } else { 9996 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 9997 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9998 &ip_opt_obj, B_FALSE); 9999 } 10000 if (err != EINPROGRESS) 10001 CONN_OPER_PENDING_DONE(connp); 10002 return; 10003 } 10004 mutex_exit(&connp->conn_lock); 10005 } 10006 10007 /* 10008 * Called from the ipsec_loader thread, outside any perimeter, to tell 10009 * ip qenable any of the queues waiting for the ipsec loader to 10010 * complete. 10011 */ 10012 void 10013 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10014 { 10015 netstack_t *ns = ipss->ipsec_netstack; 10016 10017 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10018 } 10019 10020 /* 10021 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10022 * determines the grp on which it has to become exclusive, queues the mp 10023 * and IPSQ draining restarts the optmgmt 10024 */ 10025 static boolean_t 10026 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10027 { 10028 conn_t *connp = Q_TO_CONN(q); 10029 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10030 10031 /* 10032 * Take IPsec requests and treat them special. 10033 */ 10034 if (ipsec_opt_present(mp)) { 10035 /* First check if IPsec is loaded. */ 10036 mutex_enter(&ipss->ipsec_loader_lock); 10037 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10038 mutex_exit(&ipss->ipsec_loader_lock); 10039 return (B_FALSE); 10040 } 10041 mutex_enter(&connp->conn_lock); 10042 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10043 10044 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10045 connp->conn_ipsec_opt_mp = mp; 10046 mutex_exit(&connp->conn_lock); 10047 mutex_exit(&ipss->ipsec_loader_lock); 10048 10049 ipsec_loader_loadnow(ipss); 10050 return (B_TRUE); 10051 } 10052 return (B_FALSE); 10053 } 10054 10055 /* 10056 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10057 * all of them are copied to the conn_t. If the req is "zero", the policy is 10058 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10059 * fields. 10060 * We keep only the latest setting of the policy and thus policy setting 10061 * is not incremental/cumulative. 10062 * 10063 * Requests to set policies with multiple alternative actions will 10064 * go through a different API. 10065 */ 10066 int 10067 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10068 { 10069 uint_t ah_req = 0; 10070 uint_t esp_req = 0; 10071 uint_t se_req = 0; 10072 ipsec_act_t *actp = NULL; 10073 uint_t nact; 10074 ipsec_policy_head_t *ph; 10075 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 10076 int error = 0; 10077 netstack_t *ns = connp->conn_netstack; 10078 ip_stack_t *ipst = ns->netstack_ip; 10079 ipsec_stack_t *ipss = ns->netstack_ipsec; 10080 10081 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10082 10083 /* 10084 * The IP_SEC_OPT option does not allow variable length parameters, 10085 * hence a request cannot be NULL. 10086 */ 10087 if (req == NULL) 10088 return (EINVAL); 10089 10090 ah_req = req->ipsr_ah_req; 10091 esp_req = req->ipsr_esp_req; 10092 se_req = req->ipsr_self_encap_req; 10093 10094 /* Don't allow setting self-encap without one or more of AH/ESP. */ 10095 if (se_req != 0 && esp_req == 0 && ah_req == 0) 10096 return (EINVAL); 10097 10098 /* 10099 * Are we dealing with a request to reset the policy (i.e. 10100 * zero requests). 10101 */ 10102 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10103 (esp_req & REQ_MASK) == 0 && 10104 (se_req & REQ_MASK) == 0); 10105 10106 if (!is_pol_reset) { 10107 /* 10108 * If we couldn't load IPsec, fail with "protocol 10109 * not supported". 10110 * IPsec may not have been loaded for a request with zero 10111 * policies, so we don't fail in this case. 10112 */ 10113 mutex_enter(&ipss->ipsec_loader_lock); 10114 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10115 mutex_exit(&ipss->ipsec_loader_lock); 10116 return (EPROTONOSUPPORT); 10117 } 10118 mutex_exit(&ipss->ipsec_loader_lock); 10119 10120 /* 10121 * Test for valid requests. Invalid algorithms 10122 * need to be tested by IPsec code because new 10123 * algorithms can be added dynamically. 10124 */ 10125 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10126 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10127 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10128 return (EINVAL); 10129 } 10130 10131 /* 10132 * Only privileged users can issue these 10133 * requests. 10134 */ 10135 if (((ah_req & IPSEC_PREF_NEVER) || 10136 (esp_req & IPSEC_PREF_NEVER) || 10137 (se_req & IPSEC_PREF_NEVER)) && 10138 secpolicy_ip_config(cr, B_FALSE) != 0) { 10139 return (EPERM); 10140 } 10141 10142 /* 10143 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10144 * are mutually exclusive. 10145 */ 10146 if (((ah_req & REQ_MASK) == REQ_MASK) || 10147 ((esp_req & REQ_MASK) == REQ_MASK) || 10148 ((se_req & REQ_MASK) == REQ_MASK)) { 10149 /* Both of them are set */ 10150 return (EINVAL); 10151 } 10152 } 10153 10154 mutex_enter(&connp->conn_lock); 10155 10156 /* 10157 * If we have already cached policies in ip_bind_connected*(), don't 10158 * let them change now. We cache policies for connections 10159 * whose src,dst [addr, port] is known. 10160 */ 10161 if (connp->conn_policy_cached) { 10162 mutex_exit(&connp->conn_lock); 10163 return (EINVAL); 10164 } 10165 10166 /* 10167 * We have a zero policies, reset the connection policy if already 10168 * set. This will cause the connection to inherit the 10169 * global policy, if any. 10170 */ 10171 if (is_pol_reset) { 10172 if (connp->conn_policy != NULL) { 10173 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10174 connp->conn_policy = NULL; 10175 } 10176 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10177 connp->conn_in_enforce_policy = B_FALSE; 10178 connp->conn_out_enforce_policy = B_FALSE; 10179 mutex_exit(&connp->conn_lock); 10180 return (0); 10181 } 10182 10183 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10184 ipst->ips_netstack); 10185 if (ph == NULL) 10186 goto enomem; 10187 10188 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10189 if (actp == NULL) 10190 goto enomem; 10191 10192 /* 10193 * Always insert IPv4 policy entries, since they can also apply to 10194 * ipv6 sockets being used in ipv4-compat mode. 10195 */ 10196 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 10197 IPSEC_TYPE_INBOUND, ns)) 10198 goto enomem; 10199 is_pol_inserted = B_TRUE; 10200 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 10201 IPSEC_TYPE_OUTBOUND, ns)) 10202 goto enomem; 10203 10204 /* 10205 * We're looking at a v6 socket, also insert the v6-specific 10206 * entries. 10207 */ 10208 if (connp->conn_af_isv6) { 10209 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 10210 IPSEC_TYPE_INBOUND, ns)) 10211 goto enomem; 10212 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 10213 IPSEC_TYPE_OUTBOUND, ns)) 10214 goto enomem; 10215 } 10216 10217 ipsec_actvec_free(actp, nact); 10218 10219 /* 10220 * If the requests need security, set enforce_policy. 10221 * If the requests are IPSEC_PREF_NEVER, one should 10222 * still set conn_out_enforce_policy so that an ipsec_out 10223 * gets attached in ip_wput. This is needed so that 10224 * for connections that we don't cache policy in ip_bind, 10225 * if global policy matches in ip_wput_attach_policy, we 10226 * don't wrongly inherit global policy. Similarly, we need 10227 * to set conn_in_enforce_policy also so that we don't verify 10228 * policy wrongly. 10229 */ 10230 if ((ah_req & REQ_MASK) != 0 || 10231 (esp_req & REQ_MASK) != 0 || 10232 (se_req & REQ_MASK) != 0) { 10233 connp->conn_in_enforce_policy = B_TRUE; 10234 connp->conn_out_enforce_policy = B_TRUE; 10235 connp->conn_flags |= IPCL_CHECK_POLICY; 10236 } 10237 10238 mutex_exit(&connp->conn_lock); 10239 return (error); 10240 #undef REQ_MASK 10241 10242 /* 10243 * Common memory-allocation-failure exit path. 10244 */ 10245 enomem: 10246 mutex_exit(&connp->conn_lock); 10247 if (actp != NULL) 10248 ipsec_actvec_free(actp, nact); 10249 if (is_pol_inserted) 10250 ipsec_polhead_flush(ph, ns); 10251 return (ENOMEM); 10252 } 10253 10254 /* 10255 * Only for options that pass in an IP addr. Currently only V4 options 10256 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10257 * So this function assumes level is IPPROTO_IP 10258 */ 10259 int 10260 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10261 mblk_t *first_mp) 10262 { 10263 ipif_t *ipif = NULL; 10264 int error; 10265 ill_t *ill; 10266 int zoneid; 10267 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10268 10269 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10270 10271 if (addr != INADDR_ANY || checkonly) { 10272 ASSERT(connp != NULL); 10273 zoneid = IPCL_ZONEID(connp); 10274 if (option == IP_NEXTHOP) { 10275 ipif = ipif_lookup_onlink_addr(addr, 10276 connp->conn_zoneid, ipst); 10277 } else { 10278 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10279 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10280 &error, ipst); 10281 } 10282 if (ipif == NULL) { 10283 if (error == EINPROGRESS) 10284 return (error); 10285 if ((option == IP_MULTICAST_IF) || 10286 (option == IP_NEXTHOP)) 10287 return (EHOSTUNREACH); 10288 else 10289 return (EINVAL); 10290 } else if (checkonly) { 10291 if (option == IP_MULTICAST_IF) { 10292 ill = ipif->ipif_ill; 10293 /* not supported by the virtual network iface */ 10294 if (IS_VNI(ill)) { 10295 ipif_refrele(ipif); 10296 return (EINVAL); 10297 } 10298 } 10299 ipif_refrele(ipif); 10300 return (0); 10301 } 10302 ill = ipif->ipif_ill; 10303 mutex_enter(&connp->conn_lock); 10304 mutex_enter(&ill->ill_lock); 10305 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10306 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10307 mutex_exit(&ill->ill_lock); 10308 mutex_exit(&connp->conn_lock); 10309 ipif_refrele(ipif); 10310 return (option == IP_MULTICAST_IF ? 10311 EHOSTUNREACH : EINVAL); 10312 } 10313 } else { 10314 mutex_enter(&connp->conn_lock); 10315 } 10316 10317 /* None of the options below are supported on the VNI */ 10318 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10319 mutex_exit(&ill->ill_lock); 10320 mutex_exit(&connp->conn_lock); 10321 ipif_refrele(ipif); 10322 return (EINVAL); 10323 } 10324 10325 switch (option) { 10326 case IP_MULTICAST_IF: 10327 connp->conn_multicast_ipif = ipif; 10328 break; 10329 case IP_NEXTHOP: 10330 connp->conn_nexthop_v4 = addr; 10331 connp->conn_nexthop_set = B_TRUE; 10332 break; 10333 } 10334 10335 if (ipif != NULL) { 10336 mutex_exit(&ill->ill_lock); 10337 mutex_exit(&connp->conn_lock); 10338 ipif_refrele(ipif); 10339 return (0); 10340 } 10341 mutex_exit(&connp->conn_lock); 10342 /* We succeded in cleared the option */ 10343 return (0); 10344 } 10345 10346 /* 10347 * For options that pass in an ifindex specifying the ill. V6 options always 10348 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10349 */ 10350 int 10351 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10352 int level, int option, mblk_t *first_mp) 10353 { 10354 ill_t *ill = NULL; 10355 int error = 0; 10356 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10357 10358 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10359 if (ifindex != 0) { 10360 ASSERT(connp != NULL); 10361 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10362 first_mp, ip_restart_optmgmt, &error, ipst); 10363 if (ill != NULL) { 10364 if (checkonly) { 10365 /* not supported by the virtual network iface */ 10366 if (IS_VNI(ill)) { 10367 ill_refrele(ill); 10368 return (EINVAL); 10369 } 10370 ill_refrele(ill); 10371 return (0); 10372 } 10373 if (!ipif_lookup_zoneid(ill, connp->conn_zoneid, 10374 0, NULL)) { 10375 ill_refrele(ill); 10376 ill = NULL; 10377 mutex_enter(&connp->conn_lock); 10378 goto setit; 10379 } 10380 mutex_enter(&connp->conn_lock); 10381 mutex_enter(&ill->ill_lock); 10382 if (ill->ill_state_flags & ILL_CONDEMNED) { 10383 mutex_exit(&ill->ill_lock); 10384 mutex_exit(&connp->conn_lock); 10385 ill_refrele(ill); 10386 ill = NULL; 10387 mutex_enter(&connp->conn_lock); 10388 } 10389 goto setit; 10390 } else if (error == EINPROGRESS) { 10391 return (error); 10392 } else { 10393 error = 0; 10394 } 10395 } 10396 mutex_enter(&connp->conn_lock); 10397 setit: 10398 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10399 10400 /* 10401 * The options below assume that the ILL (if any) transmits and/or 10402 * receives traffic. Neither of which is true for the virtual network 10403 * interface, so fail setting these on a VNI. 10404 */ 10405 if (IS_VNI(ill)) { 10406 ASSERT(ill != NULL); 10407 mutex_exit(&ill->ill_lock); 10408 mutex_exit(&connp->conn_lock); 10409 ill_refrele(ill); 10410 return (EINVAL); 10411 } 10412 10413 if (level == IPPROTO_IP) { 10414 switch (option) { 10415 case IP_BOUND_IF: 10416 connp->conn_incoming_ill = ill; 10417 connp->conn_outgoing_ill = ill; 10418 break; 10419 10420 case IP_MULTICAST_IF: 10421 /* 10422 * This option is an internal special. The socket 10423 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10424 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10425 * specifies an ifindex and we try first on V6 ill's. 10426 * If we don't find one, we they try using on v4 ill's 10427 * intenally and we come here. 10428 */ 10429 if (!checkonly && ill != NULL) { 10430 ipif_t *ipif; 10431 ipif = ill->ill_ipif; 10432 10433 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10434 mutex_exit(&ill->ill_lock); 10435 mutex_exit(&connp->conn_lock); 10436 ill_refrele(ill); 10437 ill = NULL; 10438 mutex_enter(&connp->conn_lock); 10439 } else { 10440 connp->conn_multicast_ipif = ipif; 10441 } 10442 } 10443 break; 10444 10445 case IP_DHCPINIT_IF: 10446 if (connp->conn_dhcpinit_ill != NULL) { 10447 /* 10448 * We've locked the conn so conn_cleanup_ill() 10449 * cannot clear conn_dhcpinit_ill -- so it's 10450 * safe to access the ill. 10451 */ 10452 ill_t *oill = connp->conn_dhcpinit_ill; 10453 10454 ASSERT(oill->ill_dhcpinit != 0); 10455 atomic_dec_32(&oill->ill_dhcpinit); 10456 connp->conn_dhcpinit_ill = NULL; 10457 } 10458 10459 if (ill != NULL) { 10460 connp->conn_dhcpinit_ill = ill; 10461 atomic_inc_32(&ill->ill_dhcpinit); 10462 } 10463 break; 10464 } 10465 } else { 10466 switch (option) { 10467 case IPV6_BOUND_IF: 10468 connp->conn_incoming_ill = ill; 10469 connp->conn_outgoing_ill = ill; 10470 break; 10471 10472 case IPV6_MULTICAST_IF: 10473 /* 10474 * Set conn_multicast_ill to be the IPv6 ill. 10475 * Set conn_multicast_ipif to be an IPv4 ipif 10476 * for ifindex to make IPv4 mapped addresses 10477 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10478 * Even if no IPv6 ill exists for the ifindex 10479 * we need to check for an IPv4 ifindex in order 10480 * for this to work with mapped addresses. In that 10481 * case only set conn_multicast_ipif. 10482 */ 10483 if (!checkonly) { 10484 if (ifindex == 0) { 10485 connp->conn_multicast_ill = NULL; 10486 connp->conn_multicast_ipif = NULL; 10487 } else if (ill != NULL) { 10488 connp->conn_multicast_ill = ill; 10489 } 10490 } 10491 break; 10492 } 10493 } 10494 10495 if (ill != NULL) { 10496 mutex_exit(&ill->ill_lock); 10497 mutex_exit(&connp->conn_lock); 10498 ill_refrele(ill); 10499 return (0); 10500 } 10501 mutex_exit(&connp->conn_lock); 10502 /* 10503 * We succeeded in clearing the option (ifindex == 0) or failed to 10504 * locate the ill and could not set the option (ifindex != 0) 10505 */ 10506 return (ifindex == 0 ? 0 : EINVAL); 10507 } 10508 10509 /* This routine sets socket options. */ 10510 /* ARGSUSED */ 10511 int 10512 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10513 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10514 void *dummy, cred_t *cr, mblk_t *first_mp) 10515 { 10516 int *i1 = (int *)invalp; 10517 conn_t *connp = Q_TO_CONN(q); 10518 int error = 0; 10519 boolean_t checkonly; 10520 ire_t *ire; 10521 boolean_t found; 10522 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10523 10524 switch (optset_context) { 10525 10526 case SETFN_OPTCOM_CHECKONLY: 10527 checkonly = B_TRUE; 10528 /* 10529 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10530 * inlen != 0 implies value supplied and 10531 * we have to "pretend" to set it. 10532 * inlen == 0 implies that there is no 10533 * value part in T_CHECK request and just validation 10534 * done elsewhere should be enough, we just return here. 10535 */ 10536 if (inlen == 0) { 10537 *outlenp = 0; 10538 return (0); 10539 } 10540 break; 10541 case SETFN_OPTCOM_NEGOTIATE: 10542 case SETFN_UD_NEGOTIATE: 10543 case SETFN_CONN_NEGOTIATE: 10544 checkonly = B_FALSE; 10545 break; 10546 default: 10547 /* 10548 * We should never get here 10549 */ 10550 *outlenp = 0; 10551 return (EINVAL); 10552 } 10553 10554 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10555 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10556 10557 /* 10558 * For fixed length options, no sanity check 10559 * of passed in length is done. It is assumed *_optcom_req() 10560 * routines do the right thing. 10561 */ 10562 10563 switch (level) { 10564 case SOL_SOCKET: 10565 /* 10566 * conn_lock protects the bitfields, and is used to 10567 * set the fields atomically. 10568 */ 10569 switch (name) { 10570 case SO_BROADCAST: 10571 if (!checkonly) { 10572 /* TODO: use value someplace? */ 10573 mutex_enter(&connp->conn_lock); 10574 connp->conn_broadcast = *i1 ? 1 : 0; 10575 mutex_exit(&connp->conn_lock); 10576 } 10577 break; /* goto sizeof (int) option return */ 10578 case SO_USELOOPBACK: 10579 if (!checkonly) { 10580 /* TODO: use value someplace? */ 10581 mutex_enter(&connp->conn_lock); 10582 connp->conn_loopback = *i1 ? 1 : 0; 10583 mutex_exit(&connp->conn_lock); 10584 } 10585 break; /* goto sizeof (int) option return */ 10586 case SO_DONTROUTE: 10587 if (!checkonly) { 10588 mutex_enter(&connp->conn_lock); 10589 connp->conn_dontroute = *i1 ? 1 : 0; 10590 mutex_exit(&connp->conn_lock); 10591 } 10592 break; /* goto sizeof (int) option return */ 10593 case SO_REUSEADDR: 10594 if (!checkonly) { 10595 mutex_enter(&connp->conn_lock); 10596 connp->conn_reuseaddr = *i1 ? 1 : 0; 10597 mutex_exit(&connp->conn_lock); 10598 } 10599 break; /* goto sizeof (int) option return */ 10600 case SO_PROTOTYPE: 10601 if (!checkonly) { 10602 mutex_enter(&connp->conn_lock); 10603 connp->conn_proto = *i1; 10604 mutex_exit(&connp->conn_lock); 10605 } 10606 break; /* goto sizeof (int) option return */ 10607 case SO_ALLZONES: 10608 if (!checkonly) { 10609 mutex_enter(&connp->conn_lock); 10610 if (IPCL_IS_BOUND(connp)) { 10611 mutex_exit(&connp->conn_lock); 10612 return (EINVAL); 10613 } 10614 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10615 mutex_exit(&connp->conn_lock); 10616 } 10617 break; /* goto sizeof (int) option return */ 10618 case SO_ANON_MLP: 10619 if (!checkonly) { 10620 mutex_enter(&connp->conn_lock); 10621 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10622 mutex_exit(&connp->conn_lock); 10623 } 10624 break; /* goto sizeof (int) option return */ 10625 case SO_MAC_EXEMPT: 10626 if (secpolicy_net_mac_aware(cr) != 0 || 10627 IPCL_IS_BOUND(connp)) 10628 return (EACCES); 10629 if (!checkonly) { 10630 mutex_enter(&connp->conn_lock); 10631 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10632 mutex_exit(&connp->conn_lock); 10633 } 10634 break; /* goto sizeof (int) option return */ 10635 default: 10636 /* 10637 * "soft" error (negative) 10638 * option not handled at this level 10639 * Note: Do not modify *outlenp 10640 */ 10641 return (-EINVAL); 10642 } 10643 break; 10644 case IPPROTO_IP: 10645 switch (name) { 10646 case IP_NEXTHOP: 10647 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10648 return (EPERM); 10649 /* FALLTHRU */ 10650 case IP_MULTICAST_IF: { 10651 ipaddr_t addr = *i1; 10652 10653 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10654 first_mp); 10655 if (error != 0) 10656 return (error); 10657 break; /* goto sizeof (int) option return */ 10658 } 10659 10660 case IP_MULTICAST_TTL: 10661 /* Recorded in transport above IP */ 10662 *outvalp = *invalp; 10663 *outlenp = sizeof (uchar_t); 10664 return (0); 10665 case IP_MULTICAST_LOOP: 10666 if (!checkonly) { 10667 mutex_enter(&connp->conn_lock); 10668 connp->conn_multicast_loop = *invalp ? 1 : 0; 10669 mutex_exit(&connp->conn_lock); 10670 } 10671 *outvalp = *invalp; 10672 *outlenp = sizeof (uchar_t); 10673 return (0); 10674 case IP_ADD_MEMBERSHIP: 10675 case MCAST_JOIN_GROUP: 10676 case IP_DROP_MEMBERSHIP: 10677 case MCAST_LEAVE_GROUP: { 10678 struct ip_mreq *mreqp; 10679 struct group_req *greqp; 10680 ire_t *ire; 10681 boolean_t done = B_FALSE; 10682 ipaddr_t group, ifaddr; 10683 struct sockaddr_in *sin; 10684 uint32_t *ifindexp; 10685 boolean_t mcast_opt = B_TRUE; 10686 mcast_record_t fmode; 10687 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10688 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10689 10690 switch (name) { 10691 case IP_ADD_MEMBERSHIP: 10692 mcast_opt = B_FALSE; 10693 /* FALLTHRU */ 10694 case MCAST_JOIN_GROUP: 10695 fmode = MODE_IS_EXCLUDE; 10696 optfn = ip_opt_add_group; 10697 break; 10698 10699 case IP_DROP_MEMBERSHIP: 10700 mcast_opt = B_FALSE; 10701 /* FALLTHRU */ 10702 case MCAST_LEAVE_GROUP: 10703 fmode = MODE_IS_INCLUDE; 10704 optfn = ip_opt_delete_group; 10705 break; 10706 } 10707 10708 if (mcast_opt) { 10709 greqp = (struct group_req *)i1; 10710 sin = (struct sockaddr_in *)&greqp->gr_group; 10711 if (sin->sin_family != AF_INET) { 10712 *outlenp = 0; 10713 return (ENOPROTOOPT); 10714 } 10715 group = (ipaddr_t)sin->sin_addr.s_addr; 10716 ifaddr = INADDR_ANY; 10717 ifindexp = &greqp->gr_interface; 10718 } else { 10719 mreqp = (struct ip_mreq *)i1; 10720 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10721 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10722 ifindexp = NULL; 10723 } 10724 10725 /* 10726 * In the multirouting case, we need to replicate 10727 * the request on all interfaces that will take part 10728 * in replication. We do so because multirouting is 10729 * reflective, thus we will probably receive multi- 10730 * casts on those interfaces. 10731 * The ip_multirt_apply_membership() succeeds if the 10732 * operation succeeds on at least one interface. 10733 */ 10734 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10735 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10736 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10737 if (ire != NULL) { 10738 if (ire->ire_flags & RTF_MULTIRT) { 10739 error = ip_multirt_apply_membership( 10740 optfn, ire, connp, checkonly, group, 10741 fmode, INADDR_ANY, first_mp); 10742 done = B_TRUE; 10743 } 10744 ire_refrele(ire); 10745 } 10746 if (!done) { 10747 error = optfn(connp, checkonly, group, ifaddr, 10748 ifindexp, fmode, INADDR_ANY, first_mp); 10749 } 10750 if (error) { 10751 /* 10752 * EINPROGRESS is a soft error, needs retry 10753 * so don't make *outlenp zero. 10754 */ 10755 if (error != EINPROGRESS) 10756 *outlenp = 0; 10757 return (error); 10758 } 10759 /* OK return - copy input buffer into output buffer */ 10760 if (invalp != outvalp) { 10761 /* don't trust bcopy for identical src/dst */ 10762 bcopy(invalp, outvalp, inlen); 10763 } 10764 *outlenp = inlen; 10765 return (0); 10766 } 10767 case IP_BLOCK_SOURCE: 10768 case IP_UNBLOCK_SOURCE: 10769 case IP_ADD_SOURCE_MEMBERSHIP: 10770 case IP_DROP_SOURCE_MEMBERSHIP: 10771 case MCAST_BLOCK_SOURCE: 10772 case MCAST_UNBLOCK_SOURCE: 10773 case MCAST_JOIN_SOURCE_GROUP: 10774 case MCAST_LEAVE_SOURCE_GROUP: { 10775 struct ip_mreq_source *imreqp; 10776 struct group_source_req *gsreqp; 10777 in_addr_t grp, src, ifaddr = INADDR_ANY; 10778 uint32_t ifindex = 0; 10779 mcast_record_t fmode; 10780 struct sockaddr_in *sin; 10781 ire_t *ire; 10782 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10783 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10784 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10785 10786 switch (name) { 10787 case IP_BLOCK_SOURCE: 10788 mcast_opt = B_FALSE; 10789 /* FALLTHRU */ 10790 case MCAST_BLOCK_SOURCE: 10791 fmode = MODE_IS_EXCLUDE; 10792 optfn = ip_opt_add_group; 10793 break; 10794 10795 case IP_UNBLOCK_SOURCE: 10796 mcast_opt = B_FALSE; 10797 /* FALLTHRU */ 10798 case MCAST_UNBLOCK_SOURCE: 10799 fmode = MODE_IS_EXCLUDE; 10800 optfn = ip_opt_delete_group; 10801 break; 10802 10803 case IP_ADD_SOURCE_MEMBERSHIP: 10804 mcast_opt = B_FALSE; 10805 /* FALLTHRU */ 10806 case MCAST_JOIN_SOURCE_GROUP: 10807 fmode = MODE_IS_INCLUDE; 10808 optfn = ip_opt_add_group; 10809 break; 10810 10811 case IP_DROP_SOURCE_MEMBERSHIP: 10812 mcast_opt = B_FALSE; 10813 /* FALLTHRU */ 10814 case MCAST_LEAVE_SOURCE_GROUP: 10815 fmode = MODE_IS_INCLUDE; 10816 optfn = ip_opt_delete_group; 10817 break; 10818 } 10819 10820 if (mcast_opt) { 10821 gsreqp = (struct group_source_req *)i1; 10822 if (gsreqp->gsr_group.ss_family != AF_INET) { 10823 *outlenp = 0; 10824 return (ENOPROTOOPT); 10825 } 10826 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10827 grp = (ipaddr_t)sin->sin_addr.s_addr; 10828 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10829 src = (ipaddr_t)sin->sin_addr.s_addr; 10830 ifindex = gsreqp->gsr_interface; 10831 } else { 10832 imreqp = (struct ip_mreq_source *)i1; 10833 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10834 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10835 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10836 } 10837 10838 /* 10839 * In the multirouting case, we need to replicate 10840 * the request as noted in the mcast cases above. 10841 */ 10842 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10843 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10844 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10845 if (ire != NULL) { 10846 if (ire->ire_flags & RTF_MULTIRT) { 10847 error = ip_multirt_apply_membership( 10848 optfn, ire, connp, checkonly, grp, 10849 fmode, src, first_mp); 10850 done = B_TRUE; 10851 } 10852 ire_refrele(ire); 10853 } 10854 if (!done) { 10855 error = optfn(connp, checkonly, grp, ifaddr, 10856 &ifindex, fmode, src, first_mp); 10857 } 10858 if (error != 0) { 10859 /* 10860 * EINPROGRESS is a soft error, needs retry 10861 * so don't make *outlenp zero. 10862 */ 10863 if (error != EINPROGRESS) 10864 *outlenp = 0; 10865 return (error); 10866 } 10867 /* OK return - copy input buffer into output buffer */ 10868 if (invalp != outvalp) { 10869 bcopy(invalp, outvalp, inlen); 10870 } 10871 *outlenp = inlen; 10872 return (0); 10873 } 10874 case IP_SEC_OPT: 10875 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10876 if (error != 0) { 10877 *outlenp = 0; 10878 return (error); 10879 } 10880 break; 10881 case IP_HDRINCL: 10882 case IP_OPTIONS: 10883 case T_IP_OPTIONS: 10884 case IP_TOS: 10885 case T_IP_TOS: 10886 case IP_TTL: 10887 case IP_RECVDSTADDR: 10888 case IP_RECVOPTS: 10889 /* OK return - copy input buffer into output buffer */ 10890 if (invalp != outvalp) { 10891 /* don't trust bcopy for identical src/dst */ 10892 bcopy(invalp, outvalp, inlen); 10893 } 10894 *outlenp = inlen; 10895 return (0); 10896 case IP_RECVIF: 10897 /* Retrieve the inbound interface index */ 10898 if (!checkonly) { 10899 mutex_enter(&connp->conn_lock); 10900 connp->conn_recvif = *i1 ? 1 : 0; 10901 mutex_exit(&connp->conn_lock); 10902 } 10903 break; /* goto sizeof (int) option return */ 10904 case IP_RECVPKTINFO: 10905 if (!checkonly) { 10906 mutex_enter(&connp->conn_lock); 10907 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 10908 mutex_exit(&connp->conn_lock); 10909 } 10910 break; /* goto sizeof (int) option return */ 10911 case IP_RECVSLLA: 10912 /* Retrieve the source link layer address */ 10913 if (!checkonly) { 10914 mutex_enter(&connp->conn_lock); 10915 connp->conn_recvslla = *i1 ? 1 : 0; 10916 mutex_exit(&connp->conn_lock); 10917 } 10918 break; /* goto sizeof (int) option return */ 10919 case MRT_INIT: 10920 case MRT_DONE: 10921 case MRT_ADD_VIF: 10922 case MRT_DEL_VIF: 10923 case MRT_ADD_MFC: 10924 case MRT_DEL_MFC: 10925 case MRT_ASSERT: 10926 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 10927 *outlenp = 0; 10928 return (error); 10929 } 10930 error = ip_mrouter_set((int)name, q, checkonly, 10931 (uchar_t *)invalp, inlen, first_mp); 10932 if (error) { 10933 *outlenp = 0; 10934 return (error); 10935 } 10936 /* OK return - copy input buffer into output buffer */ 10937 if (invalp != outvalp) { 10938 /* don't trust bcopy for identical src/dst */ 10939 bcopy(invalp, outvalp, inlen); 10940 } 10941 *outlenp = inlen; 10942 return (0); 10943 case IP_BOUND_IF: 10944 case IP_DHCPINIT_IF: 10945 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10946 level, name, first_mp); 10947 if (error != 0) 10948 return (error); 10949 break; /* goto sizeof (int) option return */ 10950 10951 case IP_UNSPEC_SRC: 10952 /* Allow sending with a zero source address */ 10953 if (!checkonly) { 10954 mutex_enter(&connp->conn_lock); 10955 connp->conn_unspec_src = *i1 ? 1 : 0; 10956 mutex_exit(&connp->conn_lock); 10957 } 10958 break; /* goto sizeof (int) option return */ 10959 default: 10960 /* 10961 * "soft" error (negative) 10962 * option not handled at this level 10963 * Note: Do not modify *outlenp 10964 */ 10965 return (-EINVAL); 10966 } 10967 break; 10968 case IPPROTO_IPV6: 10969 switch (name) { 10970 case IPV6_BOUND_IF: 10971 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10972 level, name, first_mp); 10973 if (error != 0) 10974 return (error); 10975 break; /* goto sizeof (int) option return */ 10976 10977 case IPV6_MULTICAST_IF: 10978 /* 10979 * The only possible errors are EINPROGRESS and 10980 * EINVAL. EINPROGRESS will be restarted and is not 10981 * a hard error. We call this option on both V4 and V6 10982 * If both return EINVAL, then this call returns 10983 * EINVAL. If at least one of them succeeds we 10984 * return success. 10985 */ 10986 found = B_FALSE; 10987 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10988 level, name, first_mp); 10989 if (error == EINPROGRESS) 10990 return (error); 10991 if (error == 0) 10992 found = B_TRUE; 10993 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10994 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 10995 if (error == 0) 10996 found = B_TRUE; 10997 if (!found) 10998 return (error); 10999 break; /* goto sizeof (int) option return */ 11000 11001 case IPV6_MULTICAST_HOPS: 11002 /* Recorded in transport above IP */ 11003 break; /* goto sizeof (int) option return */ 11004 case IPV6_MULTICAST_LOOP: 11005 if (!checkonly) { 11006 mutex_enter(&connp->conn_lock); 11007 connp->conn_multicast_loop = *i1; 11008 mutex_exit(&connp->conn_lock); 11009 } 11010 break; /* goto sizeof (int) option return */ 11011 case IPV6_JOIN_GROUP: 11012 case MCAST_JOIN_GROUP: 11013 case IPV6_LEAVE_GROUP: 11014 case MCAST_LEAVE_GROUP: { 11015 struct ipv6_mreq *ip_mreqp; 11016 struct group_req *greqp; 11017 ire_t *ire; 11018 boolean_t done = B_FALSE; 11019 in6_addr_t groupv6; 11020 uint32_t ifindex; 11021 boolean_t mcast_opt = B_TRUE; 11022 mcast_record_t fmode; 11023 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11024 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11025 11026 switch (name) { 11027 case IPV6_JOIN_GROUP: 11028 mcast_opt = B_FALSE; 11029 /* FALLTHRU */ 11030 case MCAST_JOIN_GROUP: 11031 fmode = MODE_IS_EXCLUDE; 11032 optfn = ip_opt_add_group_v6; 11033 break; 11034 11035 case IPV6_LEAVE_GROUP: 11036 mcast_opt = B_FALSE; 11037 /* FALLTHRU */ 11038 case MCAST_LEAVE_GROUP: 11039 fmode = MODE_IS_INCLUDE; 11040 optfn = ip_opt_delete_group_v6; 11041 break; 11042 } 11043 11044 if (mcast_opt) { 11045 struct sockaddr_in *sin; 11046 struct sockaddr_in6 *sin6; 11047 greqp = (struct group_req *)i1; 11048 if (greqp->gr_group.ss_family == AF_INET) { 11049 sin = (struct sockaddr_in *) 11050 &(greqp->gr_group); 11051 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11052 &groupv6); 11053 } else { 11054 sin6 = (struct sockaddr_in6 *) 11055 &(greqp->gr_group); 11056 groupv6 = sin6->sin6_addr; 11057 } 11058 ifindex = greqp->gr_interface; 11059 } else { 11060 ip_mreqp = (struct ipv6_mreq *)i1; 11061 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11062 ifindex = ip_mreqp->ipv6mr_interface; 11063 } 11064 /* 11065 * In the multirouting case, we need to replicate 11066 * the request on all interfaces that will take part 11067 * in replication. We do so because multirouting is 11068 * reflective, thus we will probably receive multi- 11069 * casts on those interfaces. 11070 * The ip_multirt_apply_membership_v6() succeeds if 11071 * the operation succeeds on at least one interface. 11072 */ 11073 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11074 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11075 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11076 if (ire != NULL) { 11077 if (ire->ire_flags & RTF_MULTIRT) { 11078 error = ip_multirt_apply_membership_v6( 11079 optfn, ire, connp, checkonly, 11080 &groupv6, fmode, &ipv6_all_zeros, 11081 first_mp); 11082 done = B_TRUE; 11083 } 11084 ire_refrele(ire); 11085 } 11086 if (!done) { 11087 error = optfn(connp, checkonly, &groupv6, 11088 ifindex, fmode, &ipv6_all_zeros, first_mp); 11089 } 11090 if (error) { 11091 /* 11092 * EINPROGRESS is a soft error, needs retry 11093 * so don't make *outlenp zero. 11094 */ 11095 if (error != EINPROGRESS) 11096 *outlenp = 0; 11097 return (error); 11098 } 11099 /* OK return - copy input buffer into output buffer */ 11100 if (invalp != outvalp) { 11101 /* don't trust bcopy for identical src/dst */ 11102 bcopy(invalp, outvalp, inlen); 11103 } 11104 *outlenp = inlen; 11105 return (0); 11106 } 11107 case MCAST_BLOCK_SOURCE: 11108 case MCAST_UNBLOCK_SOURCE: 11109 case MCAST_JOIN_SOURCE_GROUP: 11110 case MCAST_LEAVE_SOURCE_GROUP: { 11111 struct group_source_req *gsreqp; 11112 in6_addr_t v6grp, v6src; 11113 uint32_t ifindex; 11114 mcast_record_t fmode; 11115 ire_t *ire; 11116 boolean_t done = B_FALSE; 11117 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11118 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11119 11120 switch (name) { 11121 case MCAST_BLOCK_SOURCE: 11122 fmode = MODE_IS_EXCLUDE; 11123 optfn = ip_opt_add_group_v6; 11124 break; 11125 case MCAST_UNBLOCK_SOURCE: 11126 fmode = MODE_IS_EXCLUDE; 11127 optfn = ip_opt_delete_group_v6; 11128 break; 11129 case MCAST_JOIN_SOURCE_GROUP: 11130 fmode = MODE_IS_INCLUDE; 11131 optfn = ip_opt_add_group_v6; 11132 break; 11133 case MCAST_LEAVE_SOURCE_GROUP: 11134 fmode = MODE_IS_INCLUDE; 11135 optfn = ip_opt_delete_group_v6; 11136 break; 11137 } 11138 11139 gsreqp = (struct group_source_req *)i1; 11140 ifindex = gsreqp->gsr_interface; 11141 if (gsreqp->gsr_group.ss_family == AF_INET) { 11142 struct sockaddr_in *s; 11143 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11144 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11145 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11146 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11147 } else { 11148 struct sockaddr_in6 *s6; 11149 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11150 v6grp = s6->sin6_addr; 11151 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11152 v6src = s6->sin6_addr; 11153 } 11154 11155 /* 11156 * In the multirouting case, we need to replicate 11157 * the request as noted in the mcast cases above. 11158 */ 11159 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11160 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11161 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11162 if (ire != NULL) { 11163 if (ire->ire_flags & RTF_MULTIRT) { 11164 error = ip_multirt_apply_membership_v6( 11165 optfn, ire, connp, checkonly, 11166 &v6grp, fmode, &v6src, first_mp); 11167 done = B_TRUE; 11168 } 11169 ire_refrele(ire); 11170 } 11171 if (!done) { 11172 error = optfn(connp, checkonly, &v6grp, 11173 ifindex, fmode, &v6src, first_mp); 11174 } 11175 if (error != 0) { 11176 /* 11177 * EINPROGRESS is a soft error, needs retry 11178 * so don't make *outlenp zero. 11179 */ 11180 if (error != EINPROGRESS) 11181 *outlenp = 0; 11182 return (error); 11183 } 11184 /* OK return - copy input buffer into output buffer */ 11185 if (invalp != outvalp) { 11186 bcopy(invalp, outvalp, inlen); 11187 } 11188 *outlenp = inlen; 11189 return (0); 11190 } 11191 case IPV6_UNICAST_HOPS: 11192 /* Recorded in transport above IP */ 11193 break; /* goto sizeof (int) option return */ 11194 case IPV6_UNSPEC_SRC: 11195 /* Allow sending with a zero source address */ 11196 if (!checkonly) { 11197 mutex_enter(&connp->conn_lock); 11198 connp->conn_unspec_src = *i1 ? 1 : 0; 11199 mutex_exit(&connp->conn_lock); 11200 } 11201 break; /* goto sizeof (int) option return */ 11202 case IPV6_RECVPKTINFO: 11203 if (!checkonly) { 11204 mutex_enter(&connp->conn_lock); 11205 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11206 mutex_exit(&connp->conn_lock); 11207 } 11208 break; /* goto sizeof (int) option return */ 11209 case IPV6_RECVTCLASS: 11210 if (!checkonly) { 11211 if (*i1 < 0 || *i1 > 1) { 11212 return (EINVAL); 11213 } 11214 mutex_enter(&connp->conn_lock); 11215 connp->conn_ipv6_recvtclass = *i1; 11216 mutex_exit(&connp->conn_lock); 11217 } 11218 break; 11219 case IPV6_RECVPATHMTU: 11220 if (!checkonly) { 11221 if (*i1 < 0 || *i1 > 1) { 11222 return (EINVAL); 11223 } 11224 mutex_enter(&connp->conn_lock); 11225 connp->conn_ipv6_recvpathmtu = *i1; 11226 mutex_exit(&connp->conn_lock); 11227 } 11228 break; 11229 case IPV6_RECVHOPLIMIT: 11230 if (!checkonly) { 11231 mutex_enter(&connp->conn_lock); 11232 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11233 mutex_exit(&connp->conn_lock); 11234 } 11235 break; /* goto sizeof (int) option return */ 11236 case IPV6_RECVHOPOPTS: 11237 if (!checkonly) { 11238 mutex_enter(&connp->conn_lock); 11239 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11240 mutex_exit(&connp->conn_lock); 11241 } 11242 break; /* goto sizeof (int) option return */ 11243 case IPV6_RECVDSTOPTS: 11244 if (!checkonly) { 11245 mutex_enter(&connp->conn_lock); 11246 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11247 mutex_exit(&connp->conn_lock); 11248 } 11249 break; /* goto sizeof (int) option return */ 11250 case IPV6_RECVRTHDR: 11251 if (!checkonly) { 11252 mutex_enter(&connp->conn_lock); 11253 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11254 mutex_exit(&connp->conn_lock); 11255 } 11256 break; /* goto sizeof (int) option return */ 11257 case IPV6_RECVRTHDRDSTOPTS: 11258 if (!checkonly) { 11259 mutex_enter(&connp->conn_lock); 11260 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11261 mutex_exit(&connp->conn_lock); 11262 } 11263 break; /* goto sizeof (int) option return */ 11264 case IPV6_PKTINFO: 11265 if (inlen == 0) 11266 return (-EINVAL); /* clearing option */ 11267 error = ip6_set_pktinfo(cr, connp, 11268 (struct in6_pktinfo *)invalp); 11269 if (error != 0) 11270 *outlenp = 0; 11271 else 11272 *outlenp = inlen; 11273 return (error); 11274 case IPV6_NEXTHOP: { 11275 struct sockaddr_in6 *sin6; 11276 11277 /* Verify that the nexthop is reachable */ 11278 if (inlen == 0) 11279 return (-EINVAL); /* clearing option */ 11280 11281 sin6 = (struct sockaddr_in6 *)invalp; 11282 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11283 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11284 NULL, MATCH_IRE_DEFAULT, ipst); 11285 11286 if (ire == NULL) { 11287 *outlenp = 0; 11288 return (EHOSTUNREACH); 11289 } 11290 ire_refrele(ire); 11291 return (-EINVAL); 11292 } 11293 case IPV6_SEC_OPT: 11294 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11295 if (error != 0) { 11296 *outlenp = 0; 11297 return (error); 11298 } 11299 break; 11300 case IPV6_SRC_PREFERENCES: { 11301 /* 11302 * This is implemented strictly in the ip module 11303 * (here and in tcp_opt_*() to accomodate tcp 11304 * sockets). Modules above ip pass this option 11305 * down here since ip is the only one that needs to 11306 * be aware of source address preferences. 11307 * 11308 * This socket option only affects connected 11309 * sockets that haven't already bound to a specific 11310 * IPv6 address. In other words, sockets that 11311 * don't call bind() with an address other than the 11312 * unspecified address and that call connect(). 11313 * ip_bind_connected_v6() passes these preferences 11314 * to the ipif_select_source_v6() function. 11315 */ 11316 if (inlen != sizeof (uint32_t)) 11317 return (EINVAL); 11318 error = ip6_set_src_preferences(connp, 11319 *(uint32_t *)invalp); 11320 if (error != 0) { 11321 *outlenp = 0; 11322 return (error); 11323 } else { 11324 *outlenp = sizeof (uint32_t); 11325 } 11326 break; 11327 } 11328 case IPV6_V6ONLY: 11329 if (*i1 < 0 || *i1 > 1) { 11330 return (EINVAL); 11331 } 11332 mutex_enter(&connp->conn_lock); 11333 connp->conn_ipv6_v6only = *i1; 11334 mutex_exit(&connp->conn_lock); 11335 break; 11336 default: 11337 return (-EINVAL); 11338 } 11339 break; 11340 default: 11341 /* 11342 * "soft" error (negative) 11343 * option not handled at this level 11344 * Note: Do not modify *outlenp 11345 */ 11346 return (-EINVAL); 11347 } 11348 /* 11349 * Common case of return from an option that is sizeof (int) 11350 */ 11351 *(int *)outvalp = *i1; 11352 *outlenp = sizeof (int); 11353 return (0); 11354 } 11355 11356 /* 11357 * This routine gets default values of certain options whose default 11358 * values are maintained by protocol specific code 11359 */ 11360 /* ARGSUSED */ 11361 int 11362 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11363 { 11364 int *i1 = (int *)ptr; 11365 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11366 11367 switch (level) { 11368 case IPPROTO_IP: 11369 switch (name) { 11370 case IP_MULTICAST_TTL: 11371 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11372 return (sizeof (uchar_t)); 11373 case IP_MULTICAST_LOOP: 11374 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11375 return (sizeof (uchar_t)); 11376 default: 11377 return (-1); 11378 } 11379 case IPPROTO_IPV6: 11380 switch (name) { 11381 case IPV6_UNICAST_HOPS: 11382 *i1 = ipst->ips_ipv6_def_hops; 11383 return (sizeof (int)); 11384 case IPV6_MULTICAST_HOPS: 11385 *i1 = IP_DEFAULT_MULTICAST_TTL; 11386 return (sizeof (int)); 11387 case IPV6_MULTICAST_LOOP: 11388 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11389 return (sizeof (int)); 11390 case IPV6_V6ONLY: 11391 *i1 = 1; 11392 return (sizeof (int)); 11393 default: 11394 return (-1); 11395 } 11396 default: 11397 return (-1); 11398 } 11399 /* NOTREACHED */ 11400 } 11401 11402 /* 11403 * Given a destination address and a pointer to where to put the information 11404 * this routine fills in the mtuinfo. 11405 */ 11406 int 11407 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11408 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11409 { 11410 ire_t *ire; 11411 ip_stack_t *ipst = ns->netstack_ip; 11412 11413 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11414 return (-1); 11415 11416 bzero(mtuinfo, sizeof (*mtuinfo)); 11417 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11418 mtuinfo->ip6m_addr.sin6_port = port; 11419 mtuinfo->ip6m_addr.sin6_addr = *in6; 11420 11421 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11422 if (ire != NULL) { 11423 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11424 ire_refrele(ire); 11425 } else { 11426 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11427 } 11428 return (sizeof (struct ip6_mtuinfo)); 11429 } 11430 11431 /* 11432 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11433 * checking of cred and that ip_g_mrouter is set should be done and 11434 * isn't. This doesn't matter as the error checking is done properly for the 11435 * other MRT options coming in through ip_opt_set. 11436 */ 11437 int 11438 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11439 { 11440 conn_t *connp = Q_TO_CONN(q); 11441 ipsec_req_t *req = (ipsec_req_t *)ptr; 11442 11443 switch (level) { 11444 case IPPROTO_IP: 11445 switch (name) { 11446 case MRT_VERSION: 11447 case MRT_ASSERT: 11448 (void) ip_mrouter_get(name, q, ptr); 11449 return (sizeof (int)); 11450 case IP_SEC_OPT: 11451 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11452 case IP_NEXTHOP: 11453 if (connp->conn_nexthop_set) { 11454 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11455 return (sizeof (ipaddr_t)); 11456 } else 11457 return (0); 11458 case IP_RECVPKTINFO: 11459 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11460 return (sizeof (int)); 11461 default: 11462 break; 11463 } 11464 break; 11465 case IPPROTO_IPV6: 11466 switch (name) { 11467 case IPV6_SEC_OPT: 11468 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11469 case IPV6_SRC_PREFERENCES: { 11470 return (ip6_get_src_preferences(connp, 11471 (uint32_t *)ptr)); 11472 } 11473 case IPV6_V6ONLY: 11474 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11475 return (sizeof (int)); 11476 case IPV6_PATHMTU: 11477 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11478 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11479 default: 11480 break; 11481 } 11482 break; 11483 default: 11484 break; 11485 } 11486 return (-1); 11487 } 11488 /* Named Dispatch routine to get a current value out of our parameter table. */ 11489 /* ARGSUSED */ 11490 static int 11491 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11492 { 11493 ipparam_t *ippa = (ipparam_t *)cp; 11494 11495 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11496 return (0); 11497 } 11498 11499 /* ARGSUSED */ 11500 static int 11501 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11502 { 11503 11504 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11505 return (0); 11506 } 11507 11508 /* 11509 * Set ip{,6}_forwarding values. This means walking through all of the 11510 * ill's and toggling their forwarding values. 11511 */ 11512 /* ARGSUSED */ 11513 static int 11514 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11515 { 11516 long new_value; 11517 int *forwarding_value = (int *)cp; 11518 ill_t *ill; 11519 boolean_t isv6; 11520 ill_walk_context_t ctx; 11521 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11522 11523 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11524 11525 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11526 new_value < 0 || new_value > 1) { 11527 return (EINVAL); 11528 } 11529 11530 *forwarding_value = new_value; 11531 11532 /* 11533 * Regardless of the current value of ip_forwarding, set all per-ill 11534 * values of ip_forwarding to the value being set. 11535 * 11536 * Bring all the ill's up to date with the new global value. 11537 */ 11538 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11539 11540 if (isv6) 11541 ill = ILL_START_WALK_V6(&ctx, ipst); 11542 else 11543 ill = ILL_START_WALK_V4(&ctx, ipst); 11544 11545 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11546 (void) ill_forward_set(ill, new_value != 0); 11547 11548 rw_exit(&ipst->ips_ill_g_lock); 11549 return (0); 11550 } 11551 11552 /* 11553 * Walk through the param array specified registering each element with the 11554 * Named Dispatch handler. This is called only during init. So it is ok 11555 * not to acquire any locks 11556 */ 11557 static boolean_t 11558 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11559 ipndp_t *ipnd, size_t ipnd_cnt) 11560 { 11561 for (; ippa_cnt-- > 0; ippa++) { 11562 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11563 if (!nd_load(ndp, ippa->ip_param_name, 11564 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11565 nd_free(ndp); 11566 return (B_FALSE); 11567 } 11568 } 11569 } 11570 11571 for (; ipnd_cnt-- > 0; ipnd++) { 11572 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11573 if (!nd_load(ndp, ipnd->ip_ndp_name, 11574 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11575 ipnd->ip_ndp_data)) { 11576 nd_free(ndp); 11577 return (B_FALSE); 11578 } 11579 } 11580 } 11581 11582 return (B_TRUE); 11583 } 11584 11585 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11586 /* ARGSUSED */ 11587 static int 11588 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11589 { 11590 long new_value; 11591 ipparam_t *ippa = (ipparam_t *)cp; 11592 11593 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11594 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11595 return (EINVAL); 11596 } 11597 ippa->ip_param_value = new_value; 11598 return (0); 11599 } 11600 11601 /* 11602 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11603 * When an ipf is passed here for the first time, if 11604 * we already have in-order fragments on the queue, we convert from the fast- 11605 * path reassembly scheme to the hard-case scheme. From then on, additional 11606 * fragments are reassembled here. We keep track of the start and end offsets 11607 * of each piece, and the number of holes in the chain. When the hole count 11608 * goes to zero, we are done! 11609 * 11610 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11611 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11612 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11613 * after the call to ip_reassemble(). 11614 */ 11615 int 11616 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11617 size_t msg_len) 11618 { 11619 uint_t end; 11620 mblk_t *next_mp; 11621 mblk_t *mp1; 11622 uint_t offset; 11623 boolean_t incr_dups = B_TRUE; 11624 boolean_t offset_zero_seen = B_FALSE; 11625 boolean_t pkt_boundary_checked = B_FALSE; 11626 11627 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11628 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11629 11630 /* Add in byte count */ 11631 ipf->ipf_count += msg_len; 11632 if (ipf->ipf_end) { 11633 /* 11634 * We were part way through in-order reassembly, but now there 11635 * is a hole. We walk through messages already queued, and 11636 * mark them for hard case reassembly. We know that up till 11637 * now they were in order starting from offset zero. 11638 */ 11639 offset = 0; 11640 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11641 IP_REASS_SET_START(mp1, offset); 11642 if (offset == 0) { 11643 ASSERT(ipf->ipf_nf_hdr_len != 0); 11644 offset = -ipf->ipf_nf_hdr_len; 11645 } 11646 offset += mp1->b_wptr - mp1->b_rptr; 11647 IP_REASS_SET_END(mp1, offset); 11648 } 11649 /* One hole at the end. */ 11650 ipf->ipf_hole_cnt = 1; 11651 /* Brand it as a hard case, forever. */ 11652 ipf->ipf_end = 0; 11653 } 11654 /* Walk through all the new pieces. */ 11655 do { 11656 end = start + (mp->b_wptr - mp->b_rptr); 11657 /* 11658 * If start is 0, decrease 'end' only for the first mblk of 11659 * the fragment. Otherwise 'end' can get wrong value in the 11660 * second pass of the loop if first mblk is exactly the 11661 * size of ipf_nf_hdr_len. 11662 */ 11663 if (start == 0 && !offset_zero_seen) { 11664 /* First segment */ 11665 ASSERT(ipf->ipf_nf_hdr_len != 0); 11666 end -= ipf->ipf_nf_hdr_len; 11667 offset_zero_seen = B_TRUE; 11668 } 11669 next_mp = mp->b_cont; 11670 /* 11671 * We are checking to see if there is any interesing data 11672 * to process. If there isn't and the mblk isn't the 11673 * one which carries the unfragmentable header then we 11674 * drop it. It's possible to have just the unfragmentable 11675 * header come through without any data. That needs to be 11676 * saved. 11677 * 11678 * If the assert at the top of this function holds then the 11679 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11680 * is infrequently traveled enough that the test is left in 11681 * to protect against future code changes which break that 11682 * invariant. 11683 */ 11684 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11685 /* Empty. Blast it. */ 11686 IP_REASS_SET_START(mp, 0); 11687 IP_REASS_SET_END(mp, 0); 11688 /* 11689 * If the ipf points to the mblk we are about to free, 11690 * update ipf to point to the next mblk (or NULL 11691 * if none). 11692 */ 11693 if (ipf->ipf_mp->b_cont == mp) 11694 ipf->ipf_mp->b_cont = next_mp; 11695 freeb(mp); 11696 continue; 11697 } 11698 mp->b_cont = NULL; 11699 IP_REASS_SET_START(mp, start); 11700 IP_REASS_SET_END(mp, end); 11701 if (!ipf->ipf_tail_mp) { 11702 ipf->ipf_tail_mp = mp; 11703 ipf->ipf_mp->b_cont = mp; 11704 if (start == 0 || !more) { 11705 ipf->ipf_hole_cnt = 1; 11706 /* 11707 * if the first fragment comes in more than one 11708 * mblk, this loop will be executed for each 11709 * mblk. Need to adjust hole count so exiting 11710 * this routine will leave hole count at 1. 11711 */ 11712 if (next_mp) 11713 ipf->ipf_hole_cnt++; 11714 } else 11715 ipf->ipf_hole_cnt = 2; 11716 continue; 11717 } else if (ipf->ipf_last_frag_seen && !more && 11718 !pkt_boundary_checked) { 11719 /* 11720 * We check datagram boundary only if this fragment 11721 * claims to be the last fragment and we have seen a 11722 * last fragment in the past too. We do this only 11723 * once for a given fragment. 11724 * 11725 * start cannot be 0 here as fragments with start=0 11726 * and MF=0 gets handled as a complete packet. These 11727 * fragments should not reach here. 11728 */ 11729 11730 if (start + msgdsize(mp) != 11731 IP_REASS_END(ipf->ipf_tail_mp)) { 11732 /* 11733 * We have two fragments both of which claim 11734 * to be the last fragment but gives conflicting 11735 * information about the whole datagram size. 11736 * Something fishy is going on. Drop the 11737 * fragment and free up the reassembly list. 11738 */ 11739 return (IP_REASS_FAILED); 11740 } 11741 11742 /* 11743 * We shouldn't come to this code block again for this 11744 * particular fragment. 11745 */ 11746 pkt_boundary_checked = B_TRUE; 11747 } 11748 11749 /* New stuff at or beyond tail? */ 11750 offset = IP_REASS_END(ipf->ipf_tail_mp); 11751 if (start >= offset) { 11752 if (ipf->ipf_last_frag_seen) { 11753 /* current fragment is beyond last fragment */ 11754 return (IP_REASS_FAILED); 11755 } 11756 /* Link it on end. */ 11757 ipf->ipf_tail_mp->b_cont = mp; 11758 ipf->ipf_tail_mp = mp; 11759 if (more) { 11760 if (start != offset) 11761 ipf->ipf_hole_cnt++; 11762 } else if (start == offset && next_mp == NULL) 11763 ipf->ipf_hole_cnt--; 11764 continue; 11765 } 11766 mp1 = ipf->ipf_mp->b_cont; 11767 offset = IP_REASS_START(mp1); 11768 /* New stuff at the front? */ 11769 if (start < offset) { 11770 if (start == 0) { 11771 if (end >= offset) { 11772 /* Nailed the hole at the begining. */ 11773 ipf->ipf_hole_cnt--; 11774 } 11775 } else if (end < offset) { 11776 /* 11777 * A hole, stuff, and a hole where there used 11778 * to be just a hole. 11779 */ 11780 ipf->ipf_hole_cnt++; 11781 } 11782 mp->b_cont = mp1; 11783 /* Check for overlap. */ 11784 while (end > offset) { 11785 if (end < IP_REASS_END(mp1)) { 11786 mp->b_wptr -= end - offset; 11787 IP_REASS_SET_END(mp, offset); 11788 BUMP_MIB(ill->ill_ip_mib, 11789 ipIfStatsReasmPartDups); 11790 break; 11791 } 11792 /* Did we cover another hole? */ 11793 if ((mp1->b_cont && 11794 IP_REASS_END(mp1) != 11795 IP_REASS_START(mp1->b_cont) && 11796 end >= IP_REASS_START(mp1->b_cont)) || 11797 (!ipf->ipf_last_frag_seen && !more)) { 11798 ipf->ipf_hole_cnt--; 11799 } 11800 /* Clip out mp1. */ 11801 if ((mp->b_cont = mp1->b_cont) == NULL) { 11802 /* 11803 * After clipping out mp1, this guy 11804 * is now hanging off the end. 11805 */ 11806 ipf->ipf_tail_mp = mp; 11807 } 11808 IP_REASS_SET_START(mp1, 0); 11809 IP_REASS_SET_END(mp1, 0); 11810 /* Subtract byte count */ 11811 ipf->ipf_count -= mp1->b_datap->db_lim - 11812 mp1->b_datap->db_base; 11813 freeb(mp1); 11814 BUMP_MIB(ill->ill_ip_mib, 11815 ipIfStatsReasmPartDups); 11816 mp1 = mp->b_cont; 11817 if (!mp1) 11818 break; 11819 offset = IP_REASS_START(mp1); 11820 } 11821 ipf->ipf_mp->b_cont = mp; 11822 continue; 11823 } 11824 /* 11825 * The new piece starts somewhere between the start of the head 11826 * and before the end of the tail. 11827 */ 11828 for (; mp1; mp1 = mp1->b_cont) { 11829 offset = IP_REASS_END(mp1); 11830 if (start < offset) { 11831 if (end <= offset) { 11832 /* Nothing new. */ 11833 IP_REASS_SET_START(mp, 0); 11834 IP_REASS_SET_END(mp, 0); 11835 /* Subtract byte count */ 11836 ipf->ipf_count -= mp->b_datap->db_lim - 11837 mp->b_datap->db_base; 11838 if (incr_dups) { 11839 ipf->ipf_num_dups++; 11840 incr_dups = B_FALSE; 11841 } 11842 freeb(mp); 11843 BUMP_MIB(ill->ill_ip_mib, 11844 ipIfStatsReasmDuplicates); 11845 break; 11846 } 11847 /* 11848 * Trim redundant stuff off beginning of new 11849 * piece. 11850 */ 11851 IP_REASS_SET_START(mp, offset); 11852 mp->b_rptr += offset - start; 11853 BUMP_MIB(ill->ill_ip_mib, 11854 ipIfStatsReasmPartDups); 11855 start = offset; 11856 if (!mp1->b_cont) { 11857 /* 11858 * After trimming, this guy is now 11859 * hanging off the end. 11860 */ 11861 mp1->b_cont = mp; 11862 ipf->ipf_tail_mp = mp; 11863 if (!more) { 11864 ipf->ipf_hole_cnt--; 11865 } 11866 break; 11867 } 11868 } 11869 if (start >= IP_REASS_START(mp1->b_cont)) 11870 continue; 11871 /* Fill a hole */ 11872 if (start > offset) 11873 ipf->ipf_hole_cnt++; 11874 mp->b_cont = mp1->b_cont; 11875 mp1->b_cont = mp; 11876 mp1 = mp->b_cont; 11877 offset = IP_REASS_START(mp1); 11878 if (end >= offset) { 11879 ipf->ipf_hole_cnt--; 11880 /* Check for overlap. */ 11881 while (end > offset) { 11882 if (end < IP_REASS_END(mp1)) { 11883 mp->b_wptr -= end - offset; 11884 IP_REASS_SET_END(mp, offset); 11885 /* 11886 * TODO we might bump 11887 * this up twice if there is 11888 * overlap at both ends. 11889 */ 11890 BUMP_MIB(ill->ill_ip_mib, 11891 ipIfStatsReasmPartDups); 11892 break; 11893 } 11894 /* Did we cover another hole? */ 11895 if ((mp1->b_cont && 11896 IP_REASS_END(mp1) 11897 != IP_REASS_START(mp1->b_cont) && 11898 end >= 11899 IP_REASS_START(mp1->b_cont)) || 11900 (!ipf->ipf_last_frag_seen && 11901 !more)) { 11902 ipf->ipf_hole_cnt--; 11903 } 11904 /* Clip out mp1. */ 11905 if ((mp->b_cont = mp1->b_cont) == 11906 NULL) { 11907 /* 11908 * After clipping out mp1, 11909 * this guy is now hanging 11910 * off the end. 11911 */ 11912 ipf->ipf_tail_mp = mp; 11913 } 11914 IP_REASS_SET_START(mp1, 0); 11915 IP_REASS_SET_END(mp1, 0); 11916 /* Subtract byte count */ 11917 ipf->ipf_count -= 11918 mp1->b_datap->db_lim - 11919 mp1->b_datap->db_base; 11920 freeb(mp1); 11921 BUMP_MIB(ill->ill_ip_mib, 11922 ipIfStatsReasmPartDups); 11923 mp1 = mp->b_cont; 11924 if (!mp1) 11925 break; 11926 offset = IP_REASS_START(mp1); 11927 } 11928 } 11929 break; 11930 } 11931 } while (start = end, mp = next_mp); 11932 11933 /* Fragment just processed could be the last one. Remember this fact */ 11934 if (!more) 11935 ipf->ipf_last_frag_seen = B_TRUE; 11936 11937 /* Still got holes? */ 11938 if (ipf->ipf_hole_cnt) 11939 return (IP_REASS_PARTIAL); 11940 /* Clean up overloaded fields to avoid upstream disasters. */ 11941 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11942 IP_REASS_SET_START(mp1, 0); 11943 IP_REASS_SET_END(mp1, 0); 11944 } 11945 return (IP_REASS_COMPLETE); 11946 } 11947 11948 /* 11949 * ipsec processing for the fast path, used for input UDP Packets 11950 * Returns true if ready for passup to UDP. 11951 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 11952 * was an ESP-in-UDP packet, etc.). 11953 */ 11954 static boolean_t 11955 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 11956 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 11957 { 11958 uint32_t ill_index; 11959 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 11960 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 11961 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 11962 udp_t *udp = connp->conn_udp; 11963 11964 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11965 /* The ill_index of the incoming ILL */ 11966 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 11967 11968 /* pass packet up to the transport */ 11969 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 11970 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 11971 NULL, mctl_present); 11972 if (*first_mpp == NULL) { 11973 return (B_FALSE); 11974 } 11975 } 11976 11977 /* Initiate IPPF processing for fastpath UDP */ 11978 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 11979 ip_process(IPP_LOCAL_IN, mpp, ill_index); 11980 if (*mpp == NULL) { 11981 ip2dbg(("ip_input_ipsec_process: UDP pkt " 11982 "deferred/dropped during IPPF processing\n")); 11983 return (B_FALSE); 11984 } 11985 } 11986 /* 11987 * Remove 0-spi if it's 0, or move everything behind 11988 * the UDP header over it and forward to ESP via 11989 * ip_proto_input(). 11990 */ 11991 if (udp->udp_nat_t_endpoint) { 11992 if (mctl_present) { 11993 /* mctl_present *shouldn't* happen. */ 11994 ip_drop_packet(*first_mpp, B_TRUE, NULL, 11995 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 11996 &ipss->ipsec_dropper); 11997 *first_mpp = NULL; 11998 return (B_FALSE); 11999 } 12000 12001 /* "ill" is "recv_ill" in actuality. */ 12002 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12003 return (B_FALSE); 12004 12005 /* Else continue like a normal UDP packet. */ 12006 } 12007 12008 /* 12009 * We make the checks as below since we are in the fast path 12010 * and want to minimize the number of checks if the IP_RECVIF and/or 12011 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12012 */ 12013 if (connp->conn_recvif || connp->conn_recvslla || 12014 connp->conn_ip_recvpktinfo) { 12015 if (connp->conn_recvif) { 12016 in_flags = IPF_RECVIF; 12017 } 12018 /* 12019 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12020 * so the flag passed to ip_add_info is based on IP version 12021 * of connp. 12022 */ 12023 if (connp->conn_ip_recvpktinfo) { 12024 if (connp->conn_af_isv6) { 12025 /* 12026 * V6 only needs index 12027 */ 12028 in_flags |= IPF_RECVIF; 12029 } else { 12030 /* 12031 * V4 needs index + matching address. 12032 */ 12033 in_flags |= IPF_RECVADDR; 12034 } 12035 } 12036 if (connp->conn_recvslla) { 12037 in_flags |= IPF_RECVSLLA; 12038 } 12039 /* 12040 * since in_flags are being set ill will be 12041 * referenced in ip_add_info, so it better not 12042 * be NULL. 12043 */ 12044 /* 12045 * the actual data will be contained in b_cont 12046 * upon successful return of the following call. 12047 * If the call fails then the original mblk is 12048 * returned. 12049 */ 12050 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12051 ipst); 12052 } 12053 12054 return (B_TRUE); 12055 } 12056 12057 /* 12058 * Fragmentation reassembly. Each ILL has a hash table for 12059 * queuing packets undergoing reassembly for all IPIFs 12060 * associated with the ILL. The hash is based on the packet 12061 * IP ident field. The ILL frag hash table was allocated 12062 * as a timer block at the time the ILL was created. Whenever 12063 * there is anything on the reassembly queue, the timer will 12064 * be running. Returns B_TRUE if successful else B_FALSE; 12065 * frees mp on failure. 12066 */ 12067 static boolean_t 12068 ip_rput_fragment(ill_t *ill, ill_t *recv_ill, mblk_t **mpp, ipha_t *ipha, 12069 uint32_t *cksum_val, uint16_t *cksum_flags) 12070 { 12071 uint32_t frag_offset_flags; 12072 mblk_t *mp = *mpp; 12073 mblk_t *t_mp; 12074 ipaddr_t dst; 12075 uint8_t proto = ipha->ipha_protocol; 12076 uint32_t sum_val; 12077 uint16_t sum_flags; 12078 ipf_t *ipf; 12079 ipf_t **ipfp; 12080 ipfb_t *ipfb; 12081 uint16_t ident; 12082 uint32_t offset; 12083 ipaddr_t src; 12084 uint_t hdr_length; 12085 uint32_t end; 12086 mblk_t *mp1; 12087 mblk_t *tail_mp; 12088 size_t count; 12089 size_t msg_len; 12090 uint8_t ecn_info = 0; 12091 uint32_t packet_size; 12092 boolean_t pruned = B_FALSE; 12093 ip_stack_t *ipst = ill->ill_ipst; 12094 12095 if (cksum_val != NULL) 12096 *cksum_val = 0; 12097 if (cksum_flags != NULL) 12098 *cksum_flags = 0; 12099 12100 /* 12101 * Drop the fragmented as early as possible, if 12102 * we don't have resource(s) to re-assemble. 12103 */ 12104 if (ipst->ips_ip_reass_queue_bytes == 0) { 12105 freemsg(mp); 12106 return (B_FALSE); 12107 } 12108 12109 /* Check for fragmentation offset; return if there's none */ 12110 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12111 (IPH_MF | IPH_OFFSET)) == 0) 12112 return (B_TRUE); 12113 12114 /* 12115 * We utilize hardware computed checksum info only for UDP since 12116 * IP fragmentation is a normal occurrence for the protocol. In 12117 * addition, checksum offload support for IP fragments carrying 12118 * UDP payload is commonly implemented across network adapters. 12119 */ 12120 ASSERT(recv_ill != NULL); 12121 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(recv_ill) && 12122 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12123 mblk_t *mp1 = mp->b_cont; 12124 int32_t len; 12125 12126 /* Record checksum information from the packet */ 12127 sum_val = (uint32_t)DB_CKSUM16(mp); 12128 sum_flags = DB_CKSUMFLAGS(mp); 12129 12130 /* IP payload offset from beginning of mblk */ 12131 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12132 12133 if ((sum_flags & HCK_PARTIALCKSUM) && 12134 (mp1 == NULL || mp1->b_cont == NULL) && 12135 offset >= DB_CKSUMSTART(mp) && 12136 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12137 uint32_t adj; 12138 /* 12139 * Partial checksum has been calculated by hardware 12140 * and attached to the packet; in addition, any 12141 * prepended extraneous data is even byte aligned. 12142 * If any such data exists, we adjust the checksum; 12143 * this would also handle any postpended data. 12144 */ 12145 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12146 mp, mp1, len, adj); 12147 12148 /* One's complement subtract extraneous checksum */ 12149 if (adj >= sum_val) 12150 sum_val = ~(adj - sum_val) & 0xFFFF; 12151 else 12152 sum_val -= adj; 12153 } 12154 } else { 12155 sum_val = 0; 12156 sum_flags = 0; 12157 } 12158 12159 /* Clear hardware checksumming flag */ 12160 DB_CKSUMFLAGS(mp) = 0; 12161 12162 ident = ipha->ipha_ident; 12163 offset = (frag_offset_flags << 3) & 0xFFFF; 12164 src = ipha->ipha_src; 12165 dst = ipha->ipha_dst; 12166 hdr_length = IPH_HDR_LENGTH(ipha); 12167 end = ntohs(ipha->ipha_length) - hdr_length; 12168 12169 /* If end == 0 then we have a packet with no data, so just free it */ 12170 if (end == 0) { 12171 freemsg(mp); 12172 return (B_FALSE); 12173 } 12174 12175 /* Record the ECN field info. */ 12176 ecn_info = (ipha->ipha_type_of_service & 0x3); 12177 if (offset != 0) { 12178 /* 12179 * If this isn't the first piece, strip the header, and 12180 * add the offset to the end value. 12181 */ 12182 mp->b_rptr += hdr_length; 12183 end += offset; 12184 } 12185 12186 msg_len = MBLKSIZE(mp); 12187 tail_mp = mp; 12188 while (tail_mp->b_cont != NULL) { 12189 tail_mp = tail_mp->b_cont; 12190 msg_len += MBLKSIZE(tail_mp); 12191 } 12192 12193 /* If the reassembly list for this ILL will get too big, prune it */ 12194 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12195 ipst->ips_ip_reass_queue_bytes) { 12196 ill_frag_prune(ill, 12197 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12198 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12199 pruned = B_TRUE; 12200 } 12201 12202 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12203 mutex_enter(&ipfb->ipfb_lock); 12204 12205 ipfp = &ipfb->ipfb_ipf; 12206 /* Try to find an existing fragment queue for this packet. */ 12207 for (;;) { 12208 ipf = ipfp[0]; 12209 if (ipf != NULL) { 12210 /* 12211 * It has to match on ident and src/dst address. 12212 */ 12213 if (ipf->ipf_ident == ident && 12214 ipf->ipf_src == src && 12215 ipf->ipf_dst == dst && 12216 ipf->ipf_protocol == proto) { 12217 /* 12218 * If we have received too many 12219 * duplicate fragments for this packet 12220 * free it. 12221 */ 12222 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12223 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12224 freemsg(mp); 12225 mutex_exit(&ipfb->ipfb_lock); 12226 return (B_FALSE); 12227 } 12228 /* Found it. */ 12229 break; 12230 } 12231 ipfp = &ipf->ipf_hash_next; 12232 continue; 12233 } 12234 12235 /* 12236 * If we pruned the list, do we want to store this new 12237 * fragment?. We apply an optimization here based on the 12238 * fact that most fragments will be received in order. 12239 * So if the offset of this incoming fragment is zero, 12240 * it is the first fragment of a new packet. We will 12241 * keep it. Otherwise drop the fragment, as we have 12242 * probably pruned the packet already (since the 12243 * packet cannot be found). 12244 */ 12245 if (pruned && offset != 0) { 12246 mutex_exit(&ipfb->ipfb_lock); 12247 freemsg(mp); 12248 return (B_FALSE); 12249 } 12250 12251 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12252 /* 12253 * Too many fragmented packets in this hash 12254 * bucket. Free the oldest. 12255 */ 12256 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12257 } 12258 12259 /* New guy. Allocate a frag message. */ 12260 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12261 if (mp1 == NULL) { 12262 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12263 freemsg(mp); 12264 reass_done: 12265 mutex_exit(&ipfb->ipfb_lock); 12266 return (B_FALSE); 12267 } 12268 12269 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12270 mp1->b_cont = mp; 12271 12272 /* Initialize the fragment header. */ 12273 ipf = (ipf_t *)mp1->b_rptr; 12274 ipf->ipf_mp = mp1; 12275 ipf->ipf_ptphn = ipfp; 12276 ipfp[0] = ipf; 12277 ipf->ipf_hash_next = NULL; 12278 ipf->ipf_ident = ident; 12279 ipf->ipf_protocol = proto; 12280 ipf->ipf_src = src; 12281 ipf->ipf_dst = dst; 12282 ipf->ipf_nf_hdr_len = 0; 12283 /* Record reassembly start time. */ 12284 ipf->ipf_timestamp = gethrestime_sec(); 12285 /* Record ipf generation and account for frag header */ 12286 ipf->ipf_gen = ill->ill_ipf_gen++; 12287 ipf->ipf_count = MBLKSIZE(mp1); 12288 ipf->ipf_last_frag_seen = B_FALSE; 12289 ipf->ipf_ecn = ecn_info; 12290 ipf->ipf_num_dups = 0; 12291 ipfb->ipfb_frag_pkts++; 12292 ipf->ipf_checksum = 0; 12293 ipf->ipf_checksum_flags = 0; 12294 12295 /* Store checksum value in fragment header */ 12296 if (sum_flags != 0) { 12297 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12298 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12299 ipf->ipf_checksum = sum_val; 12300 ipf->ipf_checksum_flags = sum_flags; 12301 } 12302 12303 /* 12304 * We handle reassembly two ways. In the easy case, 12305 * where all the fragments show up in order, we do 12306 * minimal bookkeeping, and just clip new pieces on 12307 * the end. If we ever see a hole, then we go off 12308 * to ip_reassemble which has to mark the pieces and 12309 * keep track of the number of holes, etc. Obviously, 12310 * the point of having both mechanisms is so we can 12311 * handle the easy case as efficiently as possible. 12312 */ 12313 if (offset == 0) { 12314 /* Easy case, in-order reassembly so far. */ 12315 ipf->ipf_count += msg_len; 12316 ipf->ipf_tail_mp = tail_mp; 12317 /* 12318 * Keep track of next expected offset in 12319 * ipf_end. 12320 */ 12321 ipf->ipf_end = end; 12322 ipf->ipf_nf_hdr_len = hdr_length; 12323 } else { 12324 /* Hard case, hole at the beginning. */ 12325 ipf->ipf_tail_mp = NULL; 12326 /* 12327 * ipf_end == 0 means that we have given up 12328 * on easy reassembly. 12329 */ 12330 ipf->ipf_end = 0; 12331 12332 /* Forget checksum offload from now on */ 12333 ipf->ipf_checksum_flags = 0; 12334 12335 /* 12336 * ipf_hole_cnt is set by ip_reassemble. 12337 * ipf_count is updated by ip_reassemble. 12338 * No need to check for return value here 12339 * as we don't expect reassembly to complete 12340 * or fail for the first fragment itself. 12341 */ 12342 (void) ip_reassemble(mp, ipf, 12343 (frag_offset_flags & IPH_OFFSET) << 3, 12344 (frag_offset_flags & IPH_MF), ill, msg_len); 12345 } 12346 /* Update per ipfb and ill byte counts */ 12347 ipfb->ipfb_count += ipf->ipf_count; 12348 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12349 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12350 /* If the frag timer wasn't already going, start it. */ 12351 mutex_enter(&ill->ill_lock); 12352 ill_frag_timer_start(ill); 12353 mutex_exit(&ill->ill_lock); 12354 goto reass_done; 12355 } 12356 12357 /* 12358 * If the packet's flag has changed (it could be coming up 12359 * from an interface different than the previous, therefore 12360 * possibly different checksum capability), then forget about 12361 * any stored checksum states. Otherwise add the value to 12362 * the existing one stored in the fragment header. 12363 */ 12364 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12365 sum_val += ipf->ipf_checksum; 12366 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12367 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12368 ipf->ipf_checksum = sum_val; 12369 } else if (ipf->ipf_checksum_flags != 0) { 12370 /* Forget checksum offload from now on */ 12371 ipf->ipf_checksum_flags = 0; 12372 } 12373 12374 /* 12375 * We have a new piece of a datagram which is already being 12376 * reassembled. Update the ECN info if all IP fragments 12377 * are ECN capable. If there is one which is not, clear 12378 * all the info. If there is at least one which has CE 12379 * code point, IP needs to report that up to transport. 12380 */ 12381 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12382 if (ecn_info == IPH_ECN_CE) 12383 ipf->ipf_ecn = IPH_ECN_CE; 12384 } else { 12385 ipf->ipf_ecn = IPH_ECN_NECT; 12386 } 12387 if (offset && ipf->ipf_end == offset) { 12388 /* The new fragment fits at the end */ 12389 ipf->ipf_tail_mp->b_cont = mp; 12390 /* Update the byte count */ 12391 ipf->ipf_count += msg_len; 12392 /* Update per ipfb and ill byte counts */ 12393 ipfb->ipfb_count += msg_len; 12394 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12395 atomic_add_32(&ill->ill_frag_count, msg_len); 12396 if (frag_offset_flags & IPH_MF) { 12397 /* More to come. */ 12398 ipf->ipf_end = end; 12399 ipf->ipf_tail_mp = tail_mp; 12400 goto reass_done; 12401 } 12402 } else { 12403 /* Go do the hard cases. */ 12404 int ret; 12405 12406 if (offset == 0) 12407 ipf->ipf_nf_hdr_len = hdr_length; 12408 12409 /* Save current byte count */ 12410 count = ipf->ipf_count; 12411 ret = ip_reassemble(mp, ipf, 12412 (frag_offset_flags & IPH_OFFSET) << 3, 12413 (frag_offset_flags & IPH_MF), ill, msg_len); 12414 /* Count of bytes added and subtracted (freeb()ed) */ 12415 count = ipf->ipf_count - count; 12416 if (count) { 12417 /* Update per ipfb and ill byte counts */ 12418 ipfb->ipfb_count += count; 12419 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12420 atomic_add_32(&ill->ill_frag_count, count); 12421 } 12422 if (ret == IP_REASS_PARTIAL) { 12423 goto reass_done; 12424 } else if (ret == IP_REASS_FAILED) { 12425 /* Reassembly failed. Free up all resources */ 12426 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12427 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12428 IP_REASS_SET_START(t_mp, 0); 12429 IP_REASS_SET_END(t_mp, 0); 12430 } 12431 freemsg(mp); 12432 goto reass_done; 12433 } 12434 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12435 } 12436 /* 12437 * We have completed reassembly. Unhook the frag header from 12438 * the reassembly list. 12439 * 12440 * Before we free the frag header, record the ECN info 12441 * to report back to the transport. 12442 */ 12443 ecn_info = ipf->ipf_ecn; 12444 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12445 ipfp = ipf->ipf_ptphn; 12446 12447 /* We need to supply these to caller */ 12448 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12449 sum_val = ipf->ipf_checksum; 12450 else 12451 sum_val = 0; 12452 12453 mp1 = ipf->ipf_mp; 12454 count = ipf->ipf_count; 12455 ipf = ipf->ipf_hash_next; 12456 if (ipf != NULL) 12457 ipf->ipf_ptphn = ipfp; 12458 ipfp[0] = ipf; 12459 atomic_add_32(&ill->ill_frag_count, -count); 12460 ASSERT(ipfb->ipfb_count >= count); 12461 ipfb->ipfb_count -= count; 12462 ipfb->ipfb_frag_pkts--; 12463 mutex_exit(&ipfb->ipfb_lock); 12464 /* Ditch the frag header. */ 12465 mp = mp1->b_cont; 12466 12467 freeb(mp1); 12468 12469 /* Restore original IP length in header. */ 12470 packet_size = (uint32_t)msgdsize(mp); 12471 if (packet_size > IP_MAXPACKET) { 12472 freemsg(mp); 12473 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12474 return (B_FALSE); 12475 } 12476 12477 if (DB_REF(mp) > 1) { 12478 mblk_t *mp2 = copymsg(mp); 12479 12480 freemsg(mp); 12481 if (mp2 == NULL) { 12482 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12483 return (B_FALSE); 12484 } 12485 mp = mp2; 12486 } 12487 ipha = (ipha_t *)mp->b_rptr; 12488 12489 ipha->ipha_length = htons((uint16_t)packet_size); 12490 /* We're now complete, zip the frag state */ 12491 ipha->ipha_fragment_offset_and_flags = 0; 12492 /* Record the ECN info. */ 12493 ipha->ipha_type_of_service &= 0xFC; 12494 ipha->ipha_type_of_service |= ecn_info; 12495 *mpp = mp; 12496 12497 /* Reassembly is successful; return checksum information if needed */ 12498 if (cksum_val != NULL) 12499 *cksum_val = sum_val; 12500 if (cksum_flags != NULL) 12501 *cksum_flags = sum_flags; 12502 12503 return (B_TRUE); 12504 } 12505 12506 /* 12507 * Perform ip header check sum update local options. 12508 * return B_TRUE if all is well, else return B_FALSE and release 12509 * the mp. caller is responsible for decrementing ire ref cnt. 12510 */ 12511 static boolean_t 12512 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12513 ip_stack_t *ipst) 12514 { 12515 mblk_t *first_mp; 12516 boolean_t mctl_present; 12517 uint16_t sum; 12518 12519 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12520 /* 12521 * Don't do the checksum if it has gone through AH/ESP 12522 * processing. 12523 */ 12524 if (!mctl_present) { 12525 sum = ip_csum_hdr(ipha); 12526 if (sum != 0) { 12527 if (ill != NULL) { 12528 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12529 } else { 12530 BUMP_MIB(&ipst->ips_ip_mib, 12531 ipIfStatsInCksumErrs); 12532 } 12533 freemsg(first_mp); 12534 return (B_FALSE); 12535 } 12536 } 12537 12538 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12539 if (mctl_present) 12540 freeb(first_mp); 12541 return (B_FALSE); 12542 } 12543 12544 return (B_TRUE); 12545 } 12546 12547 /* 12548 * All udp packet are delivered to the local host via this routine. 12549 */ 12550 void 12551 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12552 ill_t *recv_ill) 12553 { 12554 uint32_t sum; 12555 uint32_t u1; 12556 boolean_t mctl_present; 12557 conn_t *connp; 12558 mblk_t *first_mp; 12559 uint16_t *up; 12560 ill_t *ill = (ill_t *)q->q_ptr; 12561 uint16_t reass_hck_flags = 0; 12562 ip_stack_t *ipst; 12563 12564 ASSERT(recv_ill != NULL); 12565 ipst = recv_ill->ill_ipst; 12566 12567 #define rptr ((uchar_t *)ipha) 12568 12569 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12570 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12571 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12572 ASSERT(ill != NULL); 12573 12574 /* 12575 * FAST PATH for udp packets 12576 */ 12577 12578 /* u1 is # words of IP options */ 12579 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12580 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12581 12582 /* IP options present */ 12583 if (u1 != 0) 12584 goto ipoptions; 12585 12586 /* Check the IP header checksum. */ 12587 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12588 /* Clear the IP header h/w cksum flag */ 12589 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12590 } else if (!mctl_present) { 12591 /* 12592 * Don't verify header checksum if this packet is coming 12593 * back from AH/ESP as we already did it. 12594 */ 12595 #define uph ((uint16_t *)ipha) 12596 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12597 uph[6] + uph[7] + uph[8] + uph[9]; 12598 #undef uph 12599 /* finish doing IP checksum */ 12600 sum = (sum & 0xFFFF) + (sum >> 16); 12601 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12602 if (sum != 0 && sum != 0xFFFF) { 12603 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12604 freemsg(first_mp); 12605 return; 12606 } 12607 } 12608 12609 /* 12610 * Count for SNMP of inbound packets for ire. 12611 * if mctl is present this might be a secure packet and 12612 * has already been counted for in ip_proto_input(). 12613 */ 12614 if (!mctl_present) { 12615 UPDATE_IB_PKT_COUNT(ire); 12616 ire->ire_last_used_time = lbolt; 12617 } 12618 12619 /* packet part of fragmented IP packet? */ 12620 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12621 if (u1 & (IPH_MF | IPH_OFFSET)) { 12622 goto fragmented; 12623 } 12624 12625 /* u1 = IP header length (20 bytes) */ 12626 u1 = IP_SIMPLE_HDR_LENGTH; 12627 12628 /* packet does not contain complete IP & UDP headers */ 12629 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12630 goto udppullup; 12631 12632 /* up points to UDP header */ 12633 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12634 #define iphs ((uint16_t *)ipha) 12635 12636 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12637 if (up[3] != 0) { 12638 mblk_t *mp1 = mp->b_cont; 12639 boolean_t cksum_err; 12640 uint16_t hck_flags = 0; 12641 12642 /* Pseudo-header checksum */ 12643 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12644 iphs[9] + up[2]; 12645 12646 /* 12647 * Revert to software checksum calculation if the interface 12648 * isn't capable of checksum offload or if IPsec is present. 12649 */ 12650 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 12651 hck_flags = DB_CKSUMFLAGS(mp); 12652 12653 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12654 IP_STAT(ipst, ip_in_sw_cksum); 12655 12656 IP_CKSUM_RECV(hck_flags, u1, 12657 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12658 (int32_t)((uchar_t *)up - rptr), 12659 mp, mp1, cksum_err); 12660 12661 if (cksum_err) { 12662 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12663 if (hck_flags & HCK_FULLCKSUM) 12664 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12665 else if (hck_flags & HCK_PARTIALCKSUM) 12666 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12667 else 12668 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12669 12670 freemsg(first_mp); 12671 return; 12672 } 12673 } 12674 12675 /* Non-fragmented broadcast or multicast packet? */ 12676 if (ire->ire_type == IRE_BROADCAST) 12677 goto udpslowpath; 12678 12679 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12680 ire->ire_zoneid, ipst)) != NULL) { 12681 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 12682 IP_STAT(ipst, ip_udp_fast_path); 12683 12684 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 12685 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 12686 freemsg(mp); 12687 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12688 } else { 12689 if (!mctl_present) { 12690 BUMP_MIB(ill->ill_ip_mib, 12691 ipIfStatsHCInDelivers); 12692 } 12693 /* 12694 * mp and first_mp can change. 12695 */ 12696 if (ip_udp_check(q, connp, recv_ill, 12697 ipha, &mp, &first_mp, mctl_present, ire)) { 12698 /* Send it upstream */ 12699 (connp->conn_recv)(connp, mp, NULL); 12700 } 12701 } 12702 /* 12703 * freeb() cannot deal with null mblk being passed 12704 * in and first_mp can be set to null in the call 12705 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12706 */ 12707 if (mctl_present && first_mp != NULL) { 12708 freeb(first_mp); 12709 } 12710 CONN_DEC_REF(connp); 12711 return; 12712 } 12713 12714 /* 12715 * if we got here we know the packet is not fragmented and 12716 * has no options. The classifier could not find a conn_t and 12717 * most likely its an icmp packet so send it through slow path. 12718 */ 12719 12720 goto udpslowpath; 12721 12722 ipoptions: 12723 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12724 goto slow_done; 12725 } 12726 12727 UPDATE_IB_PKT_COUNT(ire); 12728 ire->ire_last_used_time = lbolt; 12729 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12730 if (u1 & (IPH_MF | IPH_OFFSET)) { 12731 fragmented: 12732 /* 12733 * "sum" and "reass_hck_flags" are non-zero if the 12734 * reassembled packet has a valid hardware computed 12735 * checksum information associated with it. 12736 */ 12737 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, &sum, 12738 &reass_hck_flags)) { 12739 goto slow_done; 12740 } 12741 12742 /* 12743 * Make sure that first_mp points back to mp as 12744 * the mp we came in with could have changed in 12745 * ip_rput_fragment(). 12746 */ 12747 ASSERT(!mctl_present); 12748 ipha = (ipha_t *)mp->b_rptr; 12749 first_mp = mp; 12750 } 12751 12752 /* Now we have a complete datagram, destined for this machine. */ 12753 u1 = IPH_HDR_LENGTH(ipha); 12754 /* Pull up the UDP header, if necessary. */ 12755 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12756 udppullup: 12757 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12758 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12759 freemsg(first_mp); 12760 goto slow_done; 12761 } 12762 ipha = (ipha_t *)mp->b_rptr; 12763 } 12764 12765 /* 12766 * Validate the checksum for the reassembled packet; for the 12767 * pullup case we calculate the payload checksum in software. 12768 */ 12769 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12770 if (up[3] != 0) { 12771 boolean_t cksum_err; 12772 12773 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12774 IP_STAT(ipst, ip_in_sw_cksum); 12775 12776 IP_CKSUM_RECV_REASS(reass_hck_flags, 12777 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12778 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12779 iphs[9] + up[2], sum, cksum_err); 12780 12781 if (cksum_err) { 12782 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12783 12784 if (reass_hck_flags & HCK_FULLCKSUM) 12785 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12786 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12787 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12788 else 12789 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12790 12791 freemsg(first_mp); 12792 goto slow_done; 12793 } 12794 } 12795 udpslowpath: 12796 12797 /* Clear hardware checksum flag to be safe */ 12798 DB_CKSUMFLAGS(mp) = 0; 12799 12800 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12801 (ire->ire_type == IRE_BROADCAST), 12802 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12803 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12804 12805 slow_done: 12806 IP_STAT(ipst, ip_udp_slow_path); 12807 return; 12808 12809 #undef iphs 12810 #undef rptr 12811 } 12812 12813 static boolean_t 12814 ip_iptun_input(mblk_t *ipsec_mp, mblk_t *data_mp, ipha_t *ipha, ill_t *ill, 12815 ire_t *ire, ip_stack_t *ipst) 12816 { 12817 conn_t *connp; 12818 12819 ASSERT(ipsec_mp == NULL || ipsec_mp->b_cont == data_mp); 12820 12821 if ((connp = ipcl_classify_v4(data_mp, ipha->ipha_protocol, 12822 IP_SIMPLE_HDR_LENGTH, ire->ire_zoneid, ipst)) != NULL) { 12823 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 12824 connp->conn_recv(connp, ipsec_mp != NULL ? ipsec_mp : data_mp, 12825 NULL); 12826 CONN_DEC_REF(connp); 12827 return (B_TRUE); 12828 } 12829 return (B_FALSE); 12830 } 12831 12832 /* ARGSUSED */ 12833 static mblk_t * 12834 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12835 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12836 ill_rx_ring_t *ill_ring) 12837 { 12838 conn_t *connp; 12839 uint32_t sum; 12840 uint32_t u1; 12841 uint16_t *up; 12842 int offset; 12843 ssize_t len; 12844 mblk_t *mp1; 12845 boolean_t syn_present = B_FALSE; 12846 tcph_t *tcph; 12847 uint_t tcph_flags; 12848 uint_t ip_hdr_len; 12849 ill_t *ill = (ill_t *)q->q_ptr; 12850 zoneid_t zoneid = ire->ire_zoneid; 12851 boolean_t cksum_err; 12852 uint16_t hck_flags = 0; 12853 ip_stack_t *ipst = recv_ill->ill_ipst; 12854 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12855 12856 #define rptr ((uchar_t *)ipha) 12857 12858 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12859 ASSERT(ill != NULL); 12860 12861 /* 12862 * FAST PATH for tcp packets 12863 */ 12864 12865 /* u1 is # words of IP options */ 12866 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12867 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12868 12869 /* IP options present */ 12870 if (u1) { 12871 goto ipoptions; 12872 } else if (!mctl_present) { 12873 /* Check the IP header checksum. */ 12874 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12875 /* Clear the IP header h/w cksum flag */ 12876 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12877 } else if (!mctl_present) { 12878 /* 12879 * Don't verify header checksum if this packet 12880 * is coming back from AH/ESP as we already did it. 12881 */ 12882 #define uph ((uint16_t *)ipha) 12883 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12884 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12885 #undef uph 12886 /* finish doing IP checksum */ 12887 sum = (sum & 0xFFFF) + (sum >> 16); 12888 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12889 if (sum != 0 && sum != 0xFFFF) { 12890 BUMP_MIB(ill->ill_ip_mib, 12891 ipIfStatsInCksumErrs); 12892 goto error; 12893 } 12894 } 12895 } 12896 12897 if (!mctl_present) { 12898 UPDATE_IB_PKT_COUNT(ire); 12899 ire->ire_last_used_time = lbolt; 12900 } 12901 12902 /* packet part of fragmented IP packet? */ 12903 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12904 if (u1 & (IPH_MF | IPH_OFFSET)) { 12905 goto fragmented; 12906 } 12907 12908 /* u1 = IP header length (20 bytes) */ 12909 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12910 12911 /* does packet contain IP+TCP headers? */ 12912 len = mp->b_wptr - rptr; 12913 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12914 IP_STAT(ipst, ip_tcppullup); 12915 goto tcppullup; 12916 } 12917 12918 /* TCP options present? */ 12919 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12920 12921 /* 12922 * If options need to be pulled up, then goto tcpoptions. 12923 * otherwise we are still in the fast path 12924 */ 12925 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12926 IP_STAT(ipst, ip_tcpoptions); 12927 goto tcpoptions; 12928 } 12929 12930 /* multiple mblks of tcp data? */ 12931 if ((mp1 = mp->b_cont) != NULL) { 12932 IP_STAT(ipst, ip_multipkttcp); 12933 len += msgdsize(mp1); 12934 } 12935 12936 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12937 12938 /* part of pseudo checksum */ 12939 12940 /* TCP datagram length */ 12941 u1 = len - IP_SIMPLE_HDR_LENGTH; 12942 12943 #define iphs ((uint16_t *)ipha) 12944 12945 #ifdef _BIG_ENDIAN 12946 u1 += IPPROTO_TCP; 12947 #else 12948 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12949 #endif 12950 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12951 12952 /* 12953 * Revert to software checksum calculation if the interface 12954 * isn't capable of checksum offload or if IPsec is present. 12955 */ 12956 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 12957 hck_flags = DB_CKSUMFLAGS(mp); 12958 12959 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12960 IP_STAT(ipst, ip_in_sw_cksum); 12961 12962 IP_CKSUM_RECV(hck_flags, u1, 12963 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12964 (int32_t)((uchar_t *)up - rptr), 12965 mp, mp1, cksum_err); 12966 12967 if (cksum_err) { 12968 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 12969 12970 if (hck_flags & HCK_FULLCKSUM) 12971 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 12972 else if (hck_flags & HCK_PARTIALCKSUM) 12973 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 12974 else 12975 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 12976 12977 goto error; 12978 } 12979 12980 try_again: 12981 12982 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 12983 zoneid, ipst)) == NULL) { 12984 /* Send the TH_RST */ 12985 goto no_conn; 12986 } 12987 12988 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 12989 tcph_flags = tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG); 12990 12991 /* 12992 * TCP FAST PATH for AF_INET socket. 12993 * 12994 * TCP fast path to avoid extra work. An AF_INET socket type 12995 * does not have facility to receive extra information via 12996 * ip_process or ip_add_info. Also, when the connection was 12997 * established, we made a check if this connection is impacted 12998 * by any global IPsec policy or per connection policy (a 12999 * policy that comes in effect later will not apply to this 13000 * connection). Since all this can be determined at the 13001 * connection establishment time, a quick check of flags 13002 * can avoid extra work. 13003 */ 13004 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13005 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13006 ASSERT(first_mp == mp); 13007 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13008 if (tcph_flags != (TH_SYN | TH_ACK)) { 13009 SET_SQUEUE(mp, tcp_rput_data, connp); 13010 return (mp); 13011 } 13012 mp->b_datap->db_struioflag |= STRUIO_CONNECT; 13013 DB_CKSUMSTART(mp) = (intptr_t)ip_squeue_get(ill_ring); 13014 SET_SQUEUE(mp, tcp_input, connp); 13015 return (mp); 13016 } 13017 13018 if (tcph_flags == TH_SYN) { 13019 if (IPCL_IS_TCP(connp)) { 13020 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13021 DB_CKSUMSTART(mp) = 13022 (intptr_t)ip_squeue_get(ill_ring); 13023 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13024 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13025 BUMP_MIB(ill->ill_ip_mib, 13026 ipIfStatsHCInDelivers); 13027 SET_SQUEUE(mp, connp->conn_recv, connp); 13028 return (mp); 13029 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13030 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13031 BUMP_MIB(ill->ill_ip_mib, 13032 ipIfStatsHCInDelivers); 13033 ip_squeue_enter_unbound++; 13034 SET_SQUEUE(mp, tcp_conn_request_unbound, 13035 connp); 13036 return (mp); 13037 } 13038 syn_present = B_TRUE; 13039 } 13040 } 13041 13042 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13043 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13044 13045 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13046 /* No need to send this packet to TCP */ 13047 if ((flags & TH_RST) || (flags & TH_URG)) { 13048 CONN_DEC_REF(connp); 13049 freemsg(first_mp); 13050 return (NULL); 13051 } 13052 if (flags & TH_ACK) { 13053 ip_xmit_reset_serialize(first_mp, ip_hdr_len, zoneid, 13054 ipst->ips_netstack->netstack_tcp, connp); 13055 CONN_DEC_REF(connp); 13056 return (NULL); 13057 } 13058 13059 CONN_DEC_REF(connp); 13060 freemsg(first_mp); 13061 return (NULL); 13062 } 13063 13064 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13065 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13066 ipha, NULL, mctl_present); 13067 if (first_mp == NULL) { 13068 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13069 CONN_DEC_REF(connp); 13070 return (NULL); 13071 } 13072 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13073 ASSERT(syn_present); 13074 if (mctl_present) { 13075 ASSERT(first_mp != mp); 13076 first_mp->b_datap->db_struioflag |= 13077 STRUIO_POLICY; 13078 } else { 13079 ASSERT(first_mp == mp); 13080 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13081 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13082 } 13083 } else { 13084 /* 13085 * Discard first_mp early since we're dealing with a 13086 * fully-connected conn_t and tcp doesn't do policy in 13087 * this case. 13088 */ 13089 if (mctl_present) { 13090 freeb(first_mp); 13091 mctl_present = B_FALSE; 13092 } 13093 first_mp = mp; 13094 } 13095 } 13096 13097 /* Initiate IPPF processing for fastpath */ 13098 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13099 uint32_t ill_index; 13100 13101 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13102 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13103 if (mp == NULL) { 13104 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13105 "deferred/dropped during IPPF processing\n")); 13106 CONN_DEC_REF(connp); 13107 if (mctl_present) 13108 freeb(first_mp); 13109 return (NULL); 13110 } else if (mctl_present) { 13111 /* 13112 * ip_process might return a new mp. 13113 */ 13114 ASSERT(first_mp != mp); 13115 first_mp->b_cont = mp; 13116 } else { 13117 first_mp = mp; 13118 } 13119 13120 } 13121 13122 if (!syn_present && connp->conn_ip_recvpktinfo) { 13123 /* 13124 * TCP does not support IP_RECVPKTINFO for v4 so lets 13125 * make sure IPF_RECVIF is passed to ip_add_info. 13126 */ 13127 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13128 IPCL_ZONEID(connp), ipst); 13129 if (mp == NULL) { 13130 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13131 CONN_DEC_REF(connp); 13132 if (mctl_present) 13133 freeb(first_mp); 13134 return (NULL); 13135 } else if (mctl_present) { 13136 /* 13137 * ip_add_info might return a new mp. 13138 */ 13139 ASSERT(first_mp != mp); 13140 first_mp->b_cont = mp; 13141 } else { 13142 first_mp = mp; 13143 } 13144 } 13145 13146 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13147 if (IPCL_IS_TCP(connp)) { 13148 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13149 return (first_mp); 13150 } else { 13151 /* SOCK_RAW, IPPROTO_TCP case */ 13152 (connp->conn_recv)(connp, first_mp, NULL); 13153 CONN_DEC_REF(connp); 13154 return (NULL); 13155 } 13156 13157 no_conn: 13158 /* Initiate IPPf processing, if needed. */ 13159 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13160 uint32_t ill_index; 13161 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13162 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13163 if (first_mp == NULL) { 13164 return (NULL); 13165 } 13166 } 13167 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13168 13169 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13170 ipst->ips_netstack->netstack_tcp, NULL); 13171 return (NULL); 13172 ipoptions: 13173 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13174 goto slow_done; 13175 } 13176 13177 UPDATE_IB_PKT_COUNT(ire); 13178 ire->ire_last_used_time = lbolt; 13179 13180 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13181 if (u1 & (IPH_MF | IPH_OFFSET)) { 13182 fragmented: 13183 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) { 13184 if (mctl_present) 13185 freeb(first_mp); 13186 goto slow_done; 13187 } 13188 /* 13189 * Make sure that first_mp points back to mp as 13190 * the mp we came in with could have changed in 13191 * ip_rput_fragment(). 13192 */ 13193 ASSERT(!mctl_present); 13194 ipha = (ipha_t *)mp->b_rptr; 13195 first_mp = mp; 13196 } 13197 13198 /* Now we have a complete datagram, destined for this machine. */ 13199 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13200 13201 len = mp->b_wptr - mp->b_rptr; 13202 /* Pull up a minimal TCP header, if necessary. */ 13203 if (len < (u1 + 20)) { 13204 tcppullup: 13205 if (!pullupmsg(mp, u1 + 20)) { 13206 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13207 goto error; 13208 } 13209 ipha = (ipha_t *)mp->b_rptr; 13210 len = mp->b_wptr - mp->b_rptr; 13211 } 13212 13213 /* 13214 * Extract the offset field from the TCP header. As usual, we 13215 * try to help the compiler more than the reader. 13216 */ 13217 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13218 if (offset != 5) { 13219 tcpoptions: 13220 if (offset < 5) { 13221 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13222 goto error; 13223 } 13224 /* 13225 * There must be TCP options. 13226 * Make sure we can grab them. 13227 */ 13228 offset <<= 2; 13229 offset += u1; 13230 if (len < offset) { 13231 if (!pullupmsg(mp, offset)) { 13232 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13233 goto error; 13234 } 13235 ipha = (ipha_t *)mp->b_rptr; 13236 len = mp->b_wptr - rptr; 13237 } 13238 } 13239 13240 /* Get the total packet length in len, including headers. */ 13241 if (mp->b_cont) 13242 len = msgdsize(mp); 13243 13244 /* 13245 * Check the TCP checksum by pulling together the pseudo- 13246 * header checksum, and passing it to ip_csum to be added in 13247 * with the TCP datagram. 13248 * 13249 * Since we are not using the hwcksum if available we must 13250 * clear the flag. We may come here via tcppullup or tcpoptions. 13251 * If either of these fails along the way the mblk is freed. 13252 * If this logic ever changes and mblk is reused to say send 13253 * ICMP's back, then this flag may need to be cleared in 13254 * other places as well. 13255 */ 13256 DB_CKSUMFLAGS(mp) = 0; 13257 13258 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13259 13260 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13261 #ifdef _BIG_ENDIAN 13262 u1 += IPPROTO_TCP; 13263 #else 13264 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13265 #endif 13266 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13267 /* 13268 * Not M_DATA mblk or its a dup, so do the checksum now. 13269 */ 13270 IP_STAT(ipst, ip_in_sw_cksum); 13271 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13272 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13273 goto error; 13274 } 13275 13276 IP_STAT(ipst, ip_tcp_slow_path); 13277 goto try_again; 13278 #undef iphs 13279 #undef rptr 13280 13281 error: 13282 freemsg(first_mp); 13283 slow_done: 13284 return (NULL); 13285 } 13286 13287 /* ARGSUSED */ 13288 static void 13289 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13290 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13291 { 13292 conn_t *connp; 13293 uint32_t sum; 13294 uint32_t u1; 13295 ssize_t len; 13296 sctp_hdr_t *sctph; 13297 zoneid_t zoneid = ire->ire_zoneid; 13298 uint32_t pktsum; 13299 uint32_t calcsum; 13300 uint32_t ports; 13301 in6_addr_t map_src, map_dst; 13302 ill_t *ill = (ill_t *)q->q_ptr; 13303 ip_stack_t *ipst; 13304 sctp_stack_t *sctps; 13305 boolean_t sctp_csum_err = B_FALSE; 13306 13307 ASSERT(recv_ill != NULL); 13308 ipst = recv_ill->ill_ipst; 13309 sctps = ipst->ips_netstack->netstack_sctp; 13310 13311 #define rptr ((uchar_t *)ipha) 13312 13313 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13314 ASSERT(ill != NULL); 13315 13316 /* u1 is # words of IP options */ 13317 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13318 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13319 13320 /* IP options present */ 13321 if (u1 > 0) { 13322 goto ipoptions; 13323 } else { 13324 /* Check the IP header checksum. */ 13325 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill) && 13326 !mctl_present) { 13327 #define uph ((uint16_t *)ipha) 13328 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13329 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13330 #undef uph 13331 /* finish doing IP checksum */ 13332 sum = (sum & 0xFFFF) + (sum >> 16); 13333 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13334 /* 13335 * Don't verify header checksum if this packet 13336 * is coming back from AH/ESP as we already did it. 13337 */ 13338 if (sum != 0 && sum != 0xFFFF) { 13339 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13340 goto error; 13341 } 13342 } 13343 /* 13344 * Since there is no SCTP h/w cksum support yet, just 13345 * clear the flag. 13346 */ 13347 DB_CKSUMFLAGS(mp) = 0; 13348 } 13349 13350 /* 13351 * Don't verify header checksum if this packet is coming 13352 * back from AH/ESP as we already did it. 13353 */ 13354 if (!mctl_present) { 13355 UPDATE_IB_PKT_COUNT(ire); 13356 ire->ire_last_used_time = lbolt; 13357 } 13358 13359 /* packet part of fragmented IP packet? */ 13360 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13361 if (u1 & (IPH_MF | IPH_OFFSET)) 13362 goto fragmented; 13363 13364 /* u1 = IP header length (20 bytes) */ 13365 u1 = IP_SIMPLE_HDR_LENGTH; 13366 13367 find_sctp_client: 13368 /* Pullup if we don't have the sctp common header. */ 13369 len = MBLKL(mp); 13370 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13371 if (mp->b_cont == NULL || 13372 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13373 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13374 goto error; 13375 } 13376 ipha = (ipha_t *)mp->b_rptr; 13377 len = MBLKL(mp); 13378 } 13379 13380 sctph = (sctp_hdr_t *)(rptr + u1); 13381 #ifdef DEBUG 13382 if (!skip_sctp_cksum) { 13383 #endif 13384 pktsum = sctph->sh_chksum; 13385 sctph->sh_chksum = 0; 13386 calcsum = sctp_cksum(mp, u1); 13387 sctph->sh_chksum = pktsum; 13388 if (calcsum != pktsum) 13389 sctp_csum_err = B_TRUE; 13390 #ifdef DEBUG /* skip_sctp_cksum */ 13391 } 13392 #endif 13393 /* get the ports */ 13394 ports = *(uint32_t *)&sctph->sh_sport; 13395 13396 IRE_REFRELE(ire); 13397 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13398 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13399 if (sctp_csum_err) { 13400 /* 13401 * No potential sctp checksum errors go to the Sun 13402 * sctp stack however they might be Adler-32 summed 13403 * packets a userland stack bound to a raw IP socket 13404 * could reasonably use. Note though that Adler-32 is 13405 * a long deprecated algorithm and customer sctp 13406 * networks should eventually migrate to CRC-32 at 13407 * which time this facility should be removed. 13408 */ 13409 flags |= IP_FF_SCTP_CSUM_ERR; 13410 goto no_conn; 13411 } 13412 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13413 sctps)) == NULL) { 13414 /* Check for raw socket or OOTB handling */ 13415 goto no_conn; 13416 } 13417 13418 /* Found a client; up it goes */ 13419 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13420 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13421 return; 13422 13423 no_conn: 13424 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13425 ports, mctl_present, flags, B_TRUE, zoneid); 13426 return; 13427 13428 ipoptions: 13429 DB_CKSUMFLAGS(mp) = 0; 13430 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13431 goto slow_done; 13432 13433 UPDATE_IB_PKT_COUNT(ire); 13434 ire->ire_last_used_time = lbolt; 13435 13436 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13437 if (u1 & (IPH_MF | IPH_OFFSET)) { 13438 fragmented: 13439 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 13440 goto slow_done; 13441 /* 13442 * Make sure that first_mp points back to mp as 13443 * the mp we came in with could have changed in 13444 * ip_rput_fragment(). 13445 */ 13446 ASSERT(!mctl_present); 13447 ipha = (ipha_t *)mp->b_rptr; 13448 first_mp = mp; 13449 } 13450 13451 /* Now we have a complete datagram, destined for this machine. */ 13452 u1 = IPH_HDR_LENGTH(ipha); 13453 goto find_sctp_client; 13454 #undef iphs 13455 #undef rptr 13456 13457 error: 13458 freemsg(first_mp); 13459 slow_done: 13460 IRE_REFRELE(ire); 13461 } 13462 13463 #define VER_BITS 0xF0 13464 #define VERSION_6 0x60 13465 13466 static boolean_t 13467 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13468 ipaddr_t *dstp, ip_stack_t *ipst) 13469 { 13470 uint_t opt_len; 13471 ipha_t *ipha; 13472 ssize_t len; 13473 uint_t pkt_len; 13474 13475 ASSERT(ill != NULL); 13476 IP_STAT(ipst, ip_ipoptions); 13477 ipha = *iphapp; 13478 13479 #define rptr ((uchar_t *)ipha) 13480 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13481 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13482 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13483 freemsg(mp); 13484 return (B_FALSE); 13485 } 13486 13487 /* multiple mblk or too short */ 13488 pkt_len = ntohs(ipha->ipha_length); 13489 13490 /* Get the number of words of IP options in the IP header. */ 13491 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13492 if (opt_len) { 13493 /* IP Options present! Validate and process. */ 13494 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13495 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13496 goto done; 13497 } 13498 /* 13499 * Recompute complete header length and make sure we 13500 * have access to all of it. 13501 */ 13502 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13503 if (len > (mp->b_wptr - rptr)) { 13504 if (len > pkt_len) { 13505 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13506 goto done; 13507 } 13508 if (!pullupmsg(mp, len)) { 13509 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13510 goto done; 13511 } 13512 ipha = (ipha_t *)mp->b_rptr; 13513 } 13514 /* 13515 * Go off to ip_rput_options which returns the next hop 13516 * destination address, which may have been affected 13517 * by source routing. 13518 */ 13519 IP_STAT(ipst, ip_opt); 13520 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13521 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13522 return (B_FALSE); 13523 } 13524 } 13525 *iphapp = ipha; 13526 return (B_TRUE); 13527 done: 13528 /* clear b_prev - used by ip_mroute_decap */ 13529 mp->b_prev = NULL; 13530 freemsg(mp); 13531 return (B_FALSE); 13532 #undef rptr 13533 } 13534 13535 /* 13536 * Deal with the fact that there is no ire for the destination. 13537 */ 13538 static ire_t * 13539 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13540 { 13541 ipha_t *ipha; 13542 ill_t *ill; 13543 ire_t *ire; 13544 ip_stack_t *ipst; 13545 enum ire_forward_action ret_action; 13546 13547 ipha = (ipha_t *)mp->b_rptr; 13548 ill = (ill_t *)q->q_ptr; 13549 13550 ASSERT(ill != NULL); 13551 ipst = ill->ill_ipst; 13552 13553 /* 13554 * No IRE for this destination, so it can't be for us. 13555 * Unless we are forwarding, drop the packet. 13556 * We have to let source routed packets through 13557 * since we don't yet know if they are 'ping -l' 13558 * packets i.e. if they will go out over the 13559 * same interface as they came in on. 13560 */ 13561 if (ll_multicast) { 13562 freemsg(mp); 13563 return (NULL); 13564 } 13565 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13566 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13567 freemsg(mp); 13568 return (NULL); 13569 } 13570 13571 /* 13572 * Mark this packet as having originated externally. 13573 * 13574 * For non-forwarding code path, ire_send later double 13575 * checks this interface to see if it is still exists 13576 * post-ARP resolution. 13577 * 13578 * Also, IPQOS uses this to differentiate between 13579 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13580 * QOS packet processing in ip_wput_attach_llhdr(). 13581 * The QoS module can mark the b_band for a fastpath message 13582 * or the dl_priority field in a unitdata_req header for 13583 * CoS marking. This info can only be found in 13584 * ip_wput_attach_llhdr(). 13585 */ 13586 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13587 /* 13588 * Clear the indication that this may have a hardware checksum 13589 * as we are not using it 13590 */ 13591 DB_CKSUMFLAGS(mp) = 0; 13592 13593 ire = ire_forward(dst, &ret_action, NULL, NULL, 13594 msg_getlabel(mp), ipst); 13595 13596 if (ire == NULL && ret_action == Forward_check_multirt) { 13597 /* Let ip_newroute handle CGTP */ 13598 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13599 return (NULL); 13600 } 13601 13602 if (ire != NULL) 13603 return (ire); 13604 13605 mp->b_prev = mp->b_next = 0; 13606 13607 if (ret_action == Forward_blackhole) { 13608 freemsg(mp); 13609 return (NULL); 13610 } 13611 /* send icmp unreachable */ 13612 q = WR(q); 13613 /* Sent by forwarding path, and router is global zone */ 13614 if (ip_source_routed(ipha, ipst)) { 13615 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13616 GLOBAL_ZONEID, ipst); 13617 } else { 13618 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13619 ipst); 13620 } 13621 13622 return (NULL); 13623 13624 } 13625 13626 /* 13627 * check ip header length and align it. 13628 */ 13629 static boolean_t 13630 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13631 { 13632 ssize_t len; 13633 ill_t *ill; 13634 ipha_t *ipha; 13635 13636 len = MBLKL(mp); 13637 13638 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13639 ill = (ill_t *)q->q_ptr; 13640 13641 if (!OK_32PTR(mp->b_rptr)) 13642 IP_STAT(ipst, ip_notaligned1); 13643 else 13644 IP_STAT(ipst, ip_notaligned2); 13645 /* Guard against bogus device drivers */ 13646 if (len < 0) { 13647 /* clear b_prev - used by ip_mroute_decap */ 13648 mp->b_prev = NULL; 13649 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13650 freemsg(mp); 13651 return (B_FALSE); 13652 } 13653 13654 if (ip_rput_pullups++ == 0) { 13655 ipha = (ipha_t *)mp->b_rptr; 13656 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13657 "ip_check_and_align_header: %s forced us to " 13658 " pullup pkt, hdr len %ld, hdr addr %p", 13659 ill->ill_name, len, (void *)ipha); 13660 } 13661 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13662 /* clear b_prev - used by ip_mroute_decap */ 13663 mp->b_prev = NULL; 13664 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13665 freemsg(mp); 13666 return (B_FALSE); 13667 } 13668 } 13669 return (B_TRUE); 13670 } 13671 13672 /* 13673 * Handle the situation where a packet came in on `ill' but matched an IRE 13674 * whose ire_rfq doesn't match `ill'. We return the IRE that should be used 13675 * for interface statistics. 13676 */ 13677 ire_t * 13678 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13679 { 13680 ire_t *new_ire; 13681 ill_t *ire_ill; 13682 uint_t ifindex; 13683 ip_stack_t *ipst = ill->ill_ipst; 13684 boolean_t strict_check = B_FALSE; 13685 13686 /* 13687 * IPMP common case: if IRE and ILL are in the same group, there's no 13688 * issue (e.g. packet received on an underlying interface matched an 13689 * IRE_LOCAL on its associated group interface). 13690 */ 13691 if (ire->ire_rfq != NULL && 13692 IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr)) { 13693 return (ire); 13694 } 13695 13696 /* 13697 * Do another ire lookup here, using the ingress ill, to see if the 13698 * interface is in a usesrc group. 13699 * As long as the ills belong to the same group, we don't consider 13700 * them to be arriving on the wrong interface. Thus, if the switch 13701 * is doing inbound load spreading, we won't drop packets when the 13702 * ip*_strict_dst_multihoming switch is on. 13703 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13704 * where the local address may not be unique. In this case we were 13705 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13706 * actually returned. The new lookup, which is more specific, should 13707 * only find the IRE_LOCAL associated with the ingress ill if one 13708 * exists. 13709 */ 13710 13711 if (ire->ire_ipversion == IPV4_VERSION) { 13712 if (ipst->ips_ip_strict_dst_multihoming) 13713 strict_check = B_TRUE; 13714 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13715 ill->ill_ipif, ALL_ZONES, NULL, 13716 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13717 } else { 13718 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13719 if (ipst->ips_ipv6_strict_dst_multihoming) 13720 strict_check = B_TRUE; 13721 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13722 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13723 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13724 } 13725 /* 13726 * If the same ire that was returned in ip_input() is found then this 13727 * is an indication that usesrc groups are in use. The packet 13728 * arrived on a different ill in the group than the one associated with 13729 * the destination address. If a different ire was found then the same 13730 * IP address must be hosted on multiple ills. This is possible with 13731 * unnumbered point2point interfaces. We switch to use this new ire in 13732 * order to have accurate interface statistics. 13733 */ 13734 if (new_ire != NULL) { 13735 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13736 ire_refrele(ire); 13737 ire = new_ire; 13738 } else { 13739 ire_refrele(new_ire); 13740 } 13741 return (ire); 13742 } else if ((ire->ire_rfq == NULL) && 13743 (ire->ire_ipversion == IPV4_VERSION)) { 13744 /* 13745 * The best match could have been the original ire which 13746 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13747 * the strict multihoming checks are irrelevant as we consider 13748 * local addresses hosted on lo0 to be interface agnostic. We 13749 * only expect a null ire_rfq on IREs which are associated with 13750 * lo0 hence we can return now. 13751 */ 13752 return (ire); 13753 } 13754 13755 /* 13756 * Chase pointers once and store locally. 13757 */ 13758 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13759 (ill_t *)(ire->ire_rfq->q_ptr); 13760 ifindex = ill->ill_usesrc_ifindex; 13761 13762 /* 13763 * Check if it's a legal address on the 'usesrc' interface. 13764 */ 13765 if ((ifindex != 0) && (ire_ill != NULL) && 13766 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13767 return (ire); 13768 } 13769 13770 /* 13771 * If the ip*_strict_dst_multihoming switch is on then we can 13772 * only accept this packet if the interface is marked as routing. 13773 */ 13774 if (!(strict_check)) 13775 return (ire); 13776 13777 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13778 ILLF_ROUTER) != 0) { 13779 return (ire); 13780 } 13781 13782 ire_refrele(ire); 13783 return (NULL); 13784 } 13785 13786 /* 13787 * 13788 * This is the fast forward path. If we are here, we dont need to 13789 * worry about RSVP, CGTP, or TSol. Furthermore the ftable lookup 13790 * needed to find the nexthop in this case is much simpler 13791 */ 13792 ire_t * 13793 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13794 { 13795 ipha_t *ipha; 13796 ire_t *src_ire; 13797 ill_t *stq_ill; 13798 uint_t hlen; 13799 uint_t pkt_len; 13800 uint32_t sum; 13801 queue_t *dev_q; 13802 ip_stack_t *ipst = ill->ill_ipst; 13803 mblk_t *fpmp; 13804 enum ire_forward_action ret_action; 13805 13806 ipha = (ipha_t *)mp->b_rptr; 13807 13808 if (ire != NULL && 13809 ire->ire_zoneid != GLOBAL_ZONEID && 13810 ire->ire_zoneid != ALL_ZONES) { 13811 /* 13812 * Should only use IREs that are visible to the global 13813 * zone for forwarding. 13814 */ 13815 ire_refrele(ire); 13816 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 13817 /* 13818 * ire_cache_lookup() can return ire of IRE_LOCAL in 13819 * transient cases. In such case, just drop the packet 13820 */ 13821 if (ire != NULL && ire->ire_type != IRE_CACHE) 13822 goto indiscard; 13823 } 13824 13825 /* 13826 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13827 * The loopback address check for both src and dst has already 13828 * been checked in ip_input 13829 */ 13830 13831 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13832 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13833 goto drop; 13834 } 13835 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13836 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13837 13838 if (src_ire != NULL) { 13839 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13840 ire_refrele(src_ire); 13841 goto drop; 13842 } 13843 13844 /* No ire cache of nexthop. So first create one */ 13845 if (ire == NULL) { 13846 13847 ire = ire_forward_simple(dst, &ret_action, ipst); 13848 13849 /* 13850 * We only come to ip_fast_forward if ip_cgtp_filter 13851 * is not set. So ire_forward() should not return with 13852 * Forward_check_multirt as the next action. 13853 */ 13854 ASSERT(ret_action != Forward_check_multirt); 13855 if (ire == NULL) { 13856 /* An attempt was made to forward the packet */ 13857 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13858 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13859 mp->b_prev = mp->b_next = 0; 13860 /* send icmp unreachable */ 13861 /* Sent by forwarding path, and router is global zone */ 13862 if (ret_action == Forward_ret_icmp_err) { 13863 if (ip_source_routed(ipha, ipst)) { 13864 icmp_unreachable(ill->ill_wq, mp, 13865 ICMP_SOURCE_ROUTE_FAILED, 13866 GLOBAL_ZONEID, ipst); 13867 } else { 13868 icmp_unreachable(ill->ill_wq, mp, 13869 ICMP_HOST_UNREACHABLE, 13870 GLOBAL_ZONEID, ipst); 13871 } 13872 } else { 13873 freemsg(mp); 13874 } 13875 return (NULL); 13876 } 13877 } 13878 13879 /* 13880 * Forwarding fastpath exception case: 13881 * If any of the following are true, we take the slowpath: 13882 * o forwarding is not enabled 13883 * o incoming and outgoing interface are the same, or in the same 13884 * IPMP group. 13885 * o corresponding ire is in incomplete state 13886 * o packet needs fragmentation 13887 * o ARP cache is not resolved 13888 * 13889 * The codeflow from here on is thus: 13890 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13891 */ 13892 pkt_len = ntohs(ipha->ipha_length); 13893 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13894 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13895 (ill == stq_ill) || IS_IN_SAME_ILLGRP(ill, stq_ill) || 13896 (ire->ire_nce == NULL) || 13897 (pkt_len > ire->ire_max_frag) || 13898 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 13899 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 13900 ipha->ipha_ttl <= 1) { 13901 ip_rput_process_forward(ill->ill_rq, mp, ire, 13902 ipha, ill, B_FALSE, B_TRUE); 13903 return (ire); 13904 } 13905 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13906 13907 DTRACE_PROBE4(ip4__forwarding__start, 13908 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13909 13910 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13911 ipst->ips_ipv4firewall_forwarding, 13912 ill, stq_ill, ipha, mp, mp, 0, ipst); 13913 13914 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13915 13916 if (mp == NULL) 13917 goto drop; 13918 13919 mp->b_datap->db_struioun.cksum.flags = 0; 13920 /* Adjust the checksum to reflect the ttl decrement. */ 13921 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13922 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13923 ipha->ipha_ttl--; 13924 13925 /* 13926 * Write the link layer header. We can do this safely here, 13927 * because we have already tested to make sure that the IP 13928 * policy is not set, and that we have a fast path destination 13929 * header. 13930 */ 13931 mp->b_rptr -= hlen; 13932 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 13933 13934 UPDATE_IB_PKT_COUNT(ire); 13935 ire->ire_last_used_time = lbolt; 13936 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 13937 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 13938 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 13939 13940 if (!ILL_DIRECT_CAPABLE(stq_ill) || DB_TYPE(mp) != M_DATA) { 13941 dev_q = ire->ire_stq->q_next; 13942 if (DEV_Q_FLOW_BLOCKED(dev_q)) 13943 goto indiscard; 13944 } 13945 13946 DTRACE_PROBE4(ip4__physical__out__start, 13947 ill_t *, NULL, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13948 FW_HOOKS(ipst->ips_ip4_physical_out_event, 13949 ipst->ips_ipv4firewall_physical_out, 13950 NULL, stq_ill, ipha, mp, mp, 0, ipst); 13951 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 13952 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 13953 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 13954 ip6_t *, NULL, int, 0); 13955 13956 if (mp != NULL) { 13957 if (ipst->ips_ip4_observe.he_interested) { 13958 zoneid_t szone; 13959 13960 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 13961 ipst, ALL_ZONES); 13962 /* 13963 * The IP observability hook expects b_rptr to be 13964 * where the IP header starts, so advance past the 13965 * link layer header. 13966 */ 13967 mp->b_rptr += hlen; 13968 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 13969 ALL_ZONES, ill, ipst); 13970 mp->b_rptr -= hlen; 13971 } 13972 ILL_SEND_TX(stq_ill, ire, dst, mp, IP_DROP_ON_NO_DESC, NULL); 13973 } 13974 return (ire); 13975 13976 indiscard: 13977 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13978 drop: 13979 if (mp != NULL) 13980 freemsg(mp); 13981 return (ire); 13982 13983 } 13984 13985 /* 13986 * This function is called in the forwarding slowpath, when 13987 * either the ire lacks the link-layer address, or the packet needs 13988 * further processing(eg. fragmentation), before transmission. 13989 */ 13990 13991 static void 13992 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13993 ill_t *ill, boolean_t ll_multicast, boolean_t from_ip_fast_forward) 13994 { 13995 queue_t *dev_q; 13996 ire_t *src_ire; 13997 ip_stack_t *ipst = ill->ill_ipst; 13998 boolean_t same_illgrp = B_FALSE; 13999 14000 ASSERT(ire->ire_stq != NULL); 14001 14002 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14003 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14004 14005 /* 14006 * If the caller of this function is ip_fast_forward() skip the 14007 * next three checks as it does not apply. 14008 */ 14009 if (from_ip_fast_forward) 14010 goto skip; 14011 14012 if (ll_multicast != 0) { 14013 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14014 goto drop_pkt; 14015 } 14016 14017 /* 14018 * check if ipha_src is a broadcast address. Note that this 14019 * check is redundant when we get here from ip_fast_forward() 14020 * which has already done this check. However, since we can 14021 * also get here from ip_rput_process_broadcast() or, for 14022 * for the slow path through ip_fast_forward(), we perform 14023 * the check again for code-reusability 14024 */ 14025 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14026 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14027 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14028 if (src_ire != NULL) 14029 ire_refrele(src_ire); 14030 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14031 ip2dbg(("ip_rput_process_forward: Received packet with" 14032 " bad src/dst address on %s\n", ill->ill_name)); 14033 goto drop_pkt; 14034 } 14035 14036 /* 14037 * Check if we want to forward this one at this time. 14038 * We allow source routed packets on a host provided that 14039 * they go out the same ill or illgrp as they came in on. 14040 * 14041 * XXX To be quicker, we may wish to not chase pointers to 14042 * get the ILLF_ROUTER flag and instead store the 14043 * forwarding policy in the ire. An unfortunate 14044 * side-effect of that would be requiring an ire flush 14045 * whenever the ILLF_ROUTER flag changes. 14046 */ 14047 skip: 14048 same_illgrp = IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr); 14049 14050 if (((ill->ill_flags & 14051 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & ILLF_ROUTER) == 0) && 14052 !(ip_source_routed(ipha, ipst) && 14053 (ire->ire_rfq == q || same_illgrp))) { 14054 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14055 if (ip_source_routed(ipha, ipst)) { 14056 q = WR(q); 14057 /* 14058 * Clear the indication that this may have 14059 * hardware checksum as we are not using it. 14060 */ 14061 DB_CKSUMFLAGS(mp) = 0; 14062 /* Sent by forwarding path, and router is global zone */ 14063 icmp_unreachable(q, mp, 14064 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14065 return; 14066 } 14067 goto drop_pkt; 14068 } 14069 14070 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14071 14072 /* Packet is being forwarded. Turning off hwcksum flag. */ 14073 DB_CKSUMFLAGS(mp) = 0; 14074 if (ipst->ips_ip_g_send_redirects) { 14075 /* 14076 * Check whether the incoming interface and outgoing 14077 * interface is part of the same group. If so, 14078 * send redirects. 14079 * 14080 * Check the source address to see if it originated 14081 * on the same logical subnet it is going back out on. 14082 * If so, we should be able to send it a redirect. 14083 * Avoid sending a redirect if the destination 14084 * is directly connected (i.e., ipha_dst is the same 14085 * as ire_gateway_addr or the ire_addr of the 14086 * nexthop IRE_CACHE ), or if the packet was source 14087 * routed out this interface. 14088 */ 14089 ipaddr_t src, nhop; 14090 mblk_t *mp1; 14091 ire_t *nhop_ire = NULL; 14092 14093 /* 14094 * Check whether ire_rfq and q are from the same ill or illgrp. 14095 * If so, send redirects. 14096 */ 14097 if ((ire->ire_rfq == q || same_illgrp) && 14098 !ip_source_routed(ipha, ipst)) { 14099 14100 nhop = (ire->ire_gateway_addr != 0 ? 14101 ire->ire_gateway_addr : ire->ire_addr); 14102 14103 if (ipha->ipha_dst == nhop) { 14104 /* 14105 * We avoid sending a redirect if the 14106 * destination is directly connected 14107 * because it is possible that multiple 14108 * IP subnets may have been configured on 14109 * the link, and the source may not 14110 * be on the same subnet as ip destination, 14111 * even though they are on the same 14112 * physical link. 14113 */ 14114 goto sendit; 14115 } 14116 14117 src = ipha->ipha_src; 14118 14119 /* 14120 * We look up the interface ire for the nexthop, 14121 * to see if ipha_src is in the same subnet 14122 * as the nexthop. 14123 * 14124 * Note that, if, in the future, IRE_CACHE entries 14125 * are obsoleted, this lookup will not be needed, 14126 * as the ire passed to this function will be the 14127 * same as the nhop_ire computed below. 14128 */ 14129 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14130 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14131 0, NULL, MATCH_IRE_TYPE, ipst); 14132 14133 if (nhop_ire != NULL) { 14134 if ((src & nhop_ire->ire_mask) == 14135 (nhop & nhop_ire->ire_mask)) { 14136 /* 14137 * The source is directly connected. 14138 * Just copy the ip header (which is 14139 * in the first mblk) 14140 */ 14141 mp1 = copyb(mp); 14142 if (mp1 != NULL) { 14143 icmp_send_redirect(WR(q), mp1, 14144 nhop, ipst); 14145 } 14146 } 14147 ire_refrele(nhop_ire); 14148 } 14149 } 14150 } 14151 sendit: 14152 dev_q = ire->ire_stq->q_next; 14153 if (DEV_Q_FLOW_BLOCKED(dev_q)) { 14154 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14155 freemsg(mp); 14156 return; 14157 } 14158 14159 ip_rput_forward(ire, ipha, mp, ill); 14160 return; 14161 14162 drop_pkt: 14163 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14164 freemsg(mp); 14165 } 14166 14167 ire_t * 14168 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14169 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14170 { 14171 queue_t *q; 14172 uint16_t hcksumflags; 14173 ip_stack_t *ipst = ill->ill_ipst; 14174 14175 q = *qp; 14176 14177 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14178 14179 /* 14180 * Clear the indication that this may have hardware 14181 * checksum as we are not using it for forwarding. 14182 */ 14183 hcksumflags = DB_CKSUMFLAGS(mp); 14184 DB_CKSUMFLAGS(mp) = 0; 14185 14186 /* 14187 * Directed broadcast forwarding: if the packet came in over a 14188 * different interface then it is routed out over we can forward it. 14189 */ 14190 if (ipha->ipha_protocol == IPPROTO_TCP) { 14191 ire_refrele(ire); 14192 freemsg(mp); 14193 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14194 return (NULL); 14195 } 14196 /* 14197 * For multicast we have set dst to be INADDR_BROADCAST 14198 * for delivering to all STREAMS. 14199 */ 14200 if (!CLASSD(ipha->ipha_dst)) { 14201 ire_t *new_ire; 14202 ipif_t *ipif; 14203 14204 ipif = ipif_get_next_ipif(NULL, ill); 14205 if (ipif == NULL) { 14206 discard: ire_refrele(ire); 14207 freemsg(mp); 14208 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14209 return (NULL); 14210 } 14211 new_ire = ire_ctable_lookup(dst, 0, 0, 14212 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14213 ipif_refrele(ipif); 14214 14215 if (new_ire != NULL) { 14216 /* 14217 * If the matching IRE_BROADCAST is part of an IPMP 14218 * group, then drop the packet unless our ill has been 14219 * nominated to receive for the group. 14220 */ 14221 if (IS_IPMP(new_ire->ire_ipif->ipif_ill) && 14222 new_ire->ire_rfq != q) { 14223 ire_refrele(new_ire); 14224 goto discard; 14225 } 14226 14227 /* 14228 * In the special case of multirouted broadcast 14229 * packets, we unconditionally need to "gateway" 14230 * them to the appropriate interface here. 14231 * In the normal case, this cannot happen, because 14232 * there is no broadcast IRE tagged with the 14233 * RTF_MULTIRT flag. 14234 */ 14235 if (new_ire->ire_flags & RTF_MULTIRT) { 14236 ire_refrele(new_ire); 14237 if (ire->ire_rfq != NULL) { 14238 q = ire->ire_rfq; 14239 *qp = q; 14240 } 14241 } else { 14242 ire_refrele(ire); 14243 ire = new_ire; 14244 } 14245 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14246 if (!ipst->ips_ip_g_forward_directed_bcast) { 14247 /* 14248 * Free the message if 14249 * ip_g_forward_directed_bcast is turned 14250 * off for non-local broadcast. 14251 */ 14252 ire_refrele(ire); 14253 freemsg(mp); 14254 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14255 return (NULL); 14256 } 14257 } else { 14258 /* 14259 * This CGTP packet successfully passed the 14260 * CGTP filter, but the related CGTP 14261 * broadcast IRE has not been found, 14262 * meaning that the redundant ipif is 14263 * probably down. However, if we discarded 14264 * this packet, its duplicate would be 14265 * filtered out by the CGTP filter so none 14266 * of them would get through. So we keep 14267 * going with this one. 14268 */ 14269 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14270 if (ire->ire_rfq != NULL) { 14271 q = ire->ire_rfq; 14272 *qp = q; 14273 } 14274 } 14275 } 14276 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14277 /* 14278 * Verify that there are not more then one 14279 * IRE_BROADCAST with this broadcast address which 14280 * has ire_stq set. 14281 * TODO: simplify, loop over all IRE's 14282 */ 14283 ire_t *ire1; 14284 int num_stq = 0; 14285 mblk_t *mp1; 14286 14287 /* Find the first one with ire_stq set */ 14288 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14289 for (ire1 = ire; ire1 && 14290 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14291 ire1 = ire1->ire_next) 14292 ; 14293 if (ire1) { 14294 ire_refrele(ire); 14295 ire = ire1; 14296 IRE_REFHOLD(ire); 14297 } 14298 14299 /* Check if there are additional ones with stq set */ 14300 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14301 if (ire->ire_addr != ire1->ire_addr) 14302 break; 14303 if (ire1->ire_stq) { 14304 num_stq++; 14305 break; 14306 } 14307 } 14308 rw_exit(&ire->ire_bucket->irb_lock); 14309 if (num_stq == 1 && ire->ire_stq != NULL) { 14310 ip1dbg(("ip_rput_process_broadcast: directed " 14311 "broadcast to 0x%x\n", 14312 ntohl(ire->ire_addr))); 14313 mp1 = copymsg(mp); 14314 if (mp1) { 14315 switch (ipha->ipha_protocol) { 14316 case IPPROTO_UDP: 14317 ip_udp_input(q, mp1, ipha, ire, ill); 14318 break; 14319 default: 14320 ip_proto_input(q, mp1, ipha, ire, ill, 14321 0); 14322 break; 14323 } 14324 } 14325 /* 14326 * Adjust ttl to 2 (1+1 - the forward engine 14327 * will decrement it by one. 14328 */ 14329 if (ip_csum_hdr(ipha)) { 14330 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14331 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14332 freemsg(mp); 14333 ire_refrele(ire); 14334 return (NULL); 14335 } 14336 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14337 ipha->ipha_hdr_checksum = 0; 14338 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14339 ip_rput_process_forward(q, mp, ire, ipha, 14340 ill, ll_multicast, B_FALSE); 14341 ire_refrele(ire); 14342 return (NULL); 14343 } 14344 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14345 ntohl(ire->ire_addr))); 14346 } 14347 14348 /* Restore any hardware checksum flags */ 14349 DB_CKSUMFLAGS(mp) = hcksumflags; 14350 return (ire); 14351 } 14352 14353 /* ARGSUSED */ 14354 static boolean_t 14355 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14356 int *ll_multicast, ipaddr_t *dstp) 14357 { 14358 ip_stack_t *ipst = ill->ill_ipst; 14359 14360 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14361 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14362 ntohs(ipha->ipha_length)); 14363 14364 /* 14365 * So that we don't end up with dups, only one ill in an IPMP group is 14366 * nominated to receive multicast traffic. 14367 */ 14368 if (IS_UNDER_IPMP(ill) && !ill->ill_nom_cast) 14369 goto drop_pkt; 14370 14371 /* 14372 * Forward packets only if we have joined the allmulti 14373 * group on this interface. 14374 */ 14375 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14376 int retval; 14377 14378 /* 14379 * Clear the indication that this may have hardware 14380 * checksum as we are not using it. 14381 */ 14382 DB_CKSUMFLAGS(mp) = 0; 14383 retval = ip_mforward(ill, ipha, mp); 14384 /* ip_mforward updates mib variables if needed */ 14385 /* clear b_prev - used by ip_mroute_decap */ 14386 mp->b_prev = NULL; 14387 14388 switch (retval) { 14389 case 0: 14390 /* 14391 * pkt is okay and arrived on phyint. 14392 * 14393 * If we are running as a multicast router 14394 * we need to see all IGMP and/or PIM packets. 14395 */ 14396 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14397 (ipha->ipha_protocol == IPPROTO_PIM)) { 14398 goto done; 14399 } 14400 break; 14401 case -1: 14402 /* pkt is mal-formed, toss it */ 14403 goto drop_pkt; 14404 case 1: 14405 /* pkt is okay and arrived on a tunnel */ 14406 /* 14407 * If we are running a multicast router 14408 * we need to see all igmp packets. 14409 */ 14410 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14411 *dstp = INADDR_BROADCAST; 14412 *ll_multicast = 1; 14413 return (B_FALSE); 14414 } 14415 14416 goto drop_pkt; 14417 } 14418 } 14419 14420 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14421 /* 14422 * This might just be caused by the fact that 14423 * multiple IP Multicast addresses map to the same 14424 * link layer multicast - no need to increment counter! 14425 */ 14426 freemsg(mp); 14427 return (B_TRUE); 14428 } 14429 done: 14430 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14431 /* 14432 * This assumes the we deliver to all streams for multicast 14433 * and broadcast packets. 14434 */ 14435 *dstp = INADDR_BROADCAST; 14436 *ll_multicast = 1; 14437 return (B_FALSE); 14438 drop_pkt: 14439 ip2dbg(("ip_rput: drop pkt\n")); 14440 freemsg(mp); 14441 return (B_TRUE); 14442 } 14443 14444 /* 14445 * This function is used to both return an indication of whether or not 14446 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14447 * and in doing so, determine whether or not it is broadcast vs multicast. 14448 * For it to be a broadcast packet, we must have the appropriate mblk_t 14449 * hanging off the ill_t. If this is either not present or doesn't match 14450 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14451 * to be multicast. Thus NICs that have no broadcast address (or no 14452 * capability for one, such as point to point links) cannot return as 14453 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14454 * the return values simplifies the current use of the return value of this 14455 * function, which is to pass through the multicast/broadcast characteristic 14456 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14457 * changing the return value to some other symbol demands the appropriate 14458 * "translation" when hpe_flags is set prior to calling hook_run() for 14459 * packet events. 14460 */ 14461 int 14462 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14463 { 14464 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14465 mblk_t *bmp; 14466 14467 if (ind->dl_group_address) { 14468 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14469 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14470 MBLKL(mb) && 14471 (bmp = ill->ill_bcast_mp) != NULL) { 14472 dl_unitdata_req_t *dlur; 14473 uint8_t *bphys_addr; 14474 14475 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14476 if (ill->ill_sap_length < 0) 14477 bphys_addr = (uchar_t *)dlur + 14478 dlur->dl_dest_addr_offset; 14479 else 14480 bphys_addr = (uchar_t *)dlur + 14481 dlur->dl_dest_addr_offset + 14482 ill->ill_sap_length; 14483 14484 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14485 bphys_addr, ind->dl_dest_addr_length) == 0) { 14486 return (HPE_BROADCAST); 14487 } 14488 return (HPE_MULTICAST); 14489 } 14490 return (HPE_MULTICAST); 14491 } 14492 return (0); 14493 } 14494 14495 static boolean_t 14496 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14497 int *ll_multicast, mblk_t **mpp) 14498 { 14499 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14500 boolean_t must_copy = B_FALSE; 14501 struct iocblk *iocp; 14502 ipha_t *ipha; 14503 ip_stack_t *ipst = ill->ill_ipst; 14504 14505 #define rptr ((uchar_t *)ipha) 14506 14507 first_mp = *first_mpp; 14508 mp = *mpp; 14509 14510 ASSERT(first_mp == mp); 14511 14512 /* 14513 * if db_ref > 1 then copymsg and free original. Packet may be 14514 * changed and do not want other entity who has a reference to this 14515 * message to trip over the changes. This is a blind change because 14516 * trying to catch all places that might change packet is too 14517 * difficult (since it may be a module above this one) 14518 * 14519 * This corresponds to the non-fast path case. We walk down the full 14520 * chain in this case, and check the db_ref count of all the dblks, 14521 * and do a copymsg if required. It is possible that the db_ref counts 14522 * of the data blocks in the mblk chain can be different. 14523 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14524 * count of 1, followed by a M_DATA block with a ref count of 2, if 14525 * 'snoop' is running. 14526 */ 14527 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14528 if (mp1->b_datap->db_ref > 1) { 14529 must_copy = B_TRUE; 14530 break; 14531 } 14532 } 14533 14534 if (must_copy) { 14535 mp1 = copymsg(mp); 14536 if (mp1 == NULL) { 14537 for (mp1 = mp; mp1 != NULL; 14538 mp1 = mp1->b_cont) { 14539 mp1->b_next = NULL; 14540 mp1->b_prev = NULL; 14541 } 14542 freemsg(mp); 14543 if (ill != NULL) { 14544 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14545 } else { 14546 BUMP_MIB(&ipst->ips_ip_mib, 14547 ipIfStatsInDiscards); 14548 } 14549 return (B_TRUE); 14550 } 14551 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14552 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14553 /* Copy b_prev - used by ip_mroute_decap */ 14554 to_mp->b_prev = from_mp->b_prev; 14555 from_mp->b_prev = NULL; 14556 } 14557 *first_mpp = first_mp = mp1; 14558 freemsg(mp); 14559 mp = mp1; 14560 *mpp = mp1; 14561 } 14562 14563 ipha = (ipha_t *)mp->b_rptr; 14564 14565 /* 14566 * previous code has a case for M_DATA. 14567 * We want to check how that happens. 14568 */ 14569 ASSERT(first_mp->b_datap->db_type != M_DATA); 14570 switch (first_mp->b_datap->db_type) { 14571 case M_PROTO: 14572 case M_PCPROTO: 14573 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14574 DL_UNITDATA_IND) { 14575 /* Go handle anything other than data elsewhere. */ 14576 ip_rput_dlpi(q, mp); 14577 return (B_TRUE); 14578 } 14579 14580 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14581 /* Ditch the DLPI header. */ 14582 mp1 = mp->b_cont; 14583 ASSERT(first_mp == mp); 14584 *first_mpp = mp1; 14585 freeb(mp); 14586 *mpp = mp1; 14587 return (B_FALSE); 14588 case M_IOCACK: 14589 ip1dbg(("got iocack ")); 14590 iocp = (struct iocblk *)mp->b_rptr; 14591 switch (iocp->ioc_cmd) { 14592 case DL_IOC_HDR_INFO: 14593 ill = (ill_t *)q->q_ptr; 14594 ill_fastpath_ack(ill, mp); 14595 return (B_TRUE); 14596 default: 14597 putnext(q, mp); 14598 return (B_TRUE); 14599 } 14600 /* FALLTHRU */ 14601 case M_ERROR: 14602 case M_HANGUP: 14603 /* 14604 * Since this is on the ill stream we unconditionally 14605 * bump up the refcount 14606 */ 14607 ill_refhold(ill); 14608 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14609 return (B_TRUE); 14610 case M_CTL: 14611 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14612 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14613 IPHADA_M_CTL)) { 14614 /* 14615 * It's an IPsec accelerated packet. 14616 * Make sure that the ill from which we received the 14617 * packet has enabled IPsec hardware acceleration. 14618 */ 14619 if (!(ill->ill_capabilities & 14620 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14621 /* IPsec kstats: bean counter */ 14622 freemsg(mp); 14623 return (B_TRUE); 14624 } 14625 14626 /* 14627 * Make mp point to the mblk following the M_CTL, 14628 * then process according to type of mp. 14629 * After this processing, first_mp will point to 14630 * the data-attributes and mp to the pkt following 14631 * the M_CTL. 14632 */ 14633 mp = first_mp->b_cont; 14634 if (mp == NULL) { 14635 freemsg(first_mp); 14636 return (B_TRUE); 14637 } 14638 /* 14639 * A Hardware Accelerated packet can only be M_DATA 14640 * ESP or AH packet. 14641 */ 14642 if (mp->b_datap->db_type != M_DATA) { 14643 /* non-M_DATA IPsec accelerated packet */ 14644 IPSECHW_DEBUG(IPSECHW_PKT, 14645 ("non-M_DATA IPsec accelerated pkt\n")); 14646 freemsg(first_mp); 14647 return (B_TRUE); 14648 } 14649 ipha = (ipha_t *)mp->b_rptr; 14650 if (ipha->ipha_protocol != IPPROTO_AH && 14651 ipha->ipha_protocol != IPPROTO_ESP) { 14652 IPSECHW_DEBUG(IPSECHW_PKT, 14653 ("non-M_DATA IPsec accelerated pkt\n")); 14654 freemsg(first_mp); 14655 return (B_TRUE); 14656 } 14657 *mpp = mp; 14658 return (B_FALSE); 14659 } 14660 putnext(q, mp); 14661 return (B_TRUE); 14662 case M_IOCNAK: 14663 ip1dbg(("got iocnak ")); 14664 iocp = (struct iocblk *)mp->b_rptr; 14665 switch (iocp->ioc_cmd) { 14666 case DL_IOC_HDR_INFO: 14667 ip_rput_other(NULL, q, mp, NULL); 14668 return (B_TRUE); 14669 default: 14670 break; 14671 } 14672 /* FALLTHRU */ 14673 default: 14674 putnext(q, mp); 14675 return (B_TRUE); 14676 } 14677 } 14678 14679 /* Read side put procedure. Packets coming from the wire arrive here. */ 14680 void 14681 ip_rput(queue_t *q, mblk_t *mp) 14682 { 14683 ill_t *ill; 14684 union DL_primitives *dl; 14685 14686 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14687 14688 ill = (ill_t *)q->q_ptr; 14689 14690 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14691 /* 14692 * If things are opening or closing, only accept high-priority 14693 * DLPI messages. (On open ill->ill_ipif has not yet been 14694 * created; on close, things hanging off the ill may have been 14695 * freed already.) 14696 */ 14697 dl = (union DL_primitives *)mp->b_rptr; 14698 if (DB_TYPE(mp) != M_PCPROTO || 14699 dl->dl_primitive == DL_UNITDATA_IND) { 14700 inet_freemsg(mp); 14701 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14702 "ip_rput_end: q %p (%S)", q, "uninit"); 14703 return; 14704 } 14705 } 14706 14707 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14708 "ip_rput_end: q %p (%S)", q, "end"); 14709 14710 ip_input(ill, NULL, mp, NULL); 14711 } 14712 14713 static mblk_t * 14714 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14715 { 14716 mblk_t *mp1; 14717 boolean_t adjusted = B_FALSE; 14718 ip_stack_t *ipst = ill->ill_ipst; 14719 14720 IP_STAT(ipst, ip_db_ref); 14721 /* 14722 * The IP_RECVSLLA option depends on having the 14723 * link layer header. First check that: 14724 * a> the underlying device is of type ether, 14725 * since this option is currently supported only 14726 * over ethernet. 14727 * b> there is enough room to copy over the link 14728 * layer header. 14729 * 14730 * Once the checks are done, adjust rptr so that 14731 * the link layer header will be copied via 14732 * copymsg. Note that, IFT_ETHER may be returned 14733 * by some non-ethernet drivers but in this case 14734 * the second check will fail. 14735 */ 14736 if (ill->ill_type == IFT_ETHER && 14737 (mp->b_rptr - mp->b_datap->db_base) >= 14738 sizeof (struct ether_header)) { 14739 mp->b_rptr -= sizeof (struct ether_header); 14740 adjusted = B_TRUE; 14741 } 14742 mp1 = copymsg(mp); 14743 14744 if (mp1 == NULL) { 14745 mp->b_next = NULL; 14746 /* clear b_prev - used by ip_mroute_decap */ 14747 mp->b_prev = NULL; 14748 freemsg(mp); 14749 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14750 return (NULL); 14751 } 14752 14753 if (adjusted) { 14754 /* 14755 * Copy is done. Restore the pointer in 14756 * the _new_ mblk 14757 */ 14758 mp1->b_rptr += sizeof (struct ether_header); 14759 } 14760 14761 /* Copy b_prev - used by ip_mroute_decap */ 14762 mp1->b_prev = mp->b_prev; 14763 mp->b_prev = NULL; 14764 14765 /* preserve the hardware checksum flags and data, if present */ 14766 if (DB_CKSUMFLAGS(mp) != 0) { 14767 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14768 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14769 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14770 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14771 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14772 } 14773 14774 freemsg(mp); 14775 return (mp1); 14776 } 14777 14778 #define ADD_TO_CHAIN(head, tail, cnt, mp) { \ 14779 if (tail != NULL) \ 14780 tail->b_next = mp; \ 14781 else \ 14782 head = mp; \ 14783 tail = mp; \ 14784 cnt++; \ 14785 } 14786 14787 /* 14788 * Direct read side procedure capable of dealing with chains. GLDv3 based 14789 * drivers call this function directly with mblk chains while STREAMS 14790 * read side procedure ip_rput() calls this for single packet with ip_ring 14791 * set to NULL to process one packet at a time. 14792 * 14793 * The ill will always be valid if this function is called directly from 14794 * the driver. 14795 * 14796 * If ip_input() is called from GLDv3: 14797 * 14798 * - This must be a non-VLAN IP stream. 14799 * - 'mp' is either an untagged or a special priority-tagged packet. 14800 * - Any VLAN tag that was in the MAC header has been stripped. 14801 * 14802 * If the IP header in packet is not 32-bit aligned, every message in the 14803 * chain will be aligned before further operations. This is required on SPARC 14804 * platform. 14805 */ 14806 /* ARGSUSED */ 14807 void 14808 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14809 struct mac_header_info_s *mhip) 14810 { 14811 ipaddr_t dst = NULL; 14812 ipaddr_t prev_dst; 14813 ire_t *ire = NULL; 14814 ipha_t *ipha; 14815 uint_t pkt_len; 14816 ssize_t len; 14817 uint_t opt_len; 14818 int ll_multicast; 14819 int cgtp_flt_pkt; 14820 queue_t *q = ill->ill_rq; 14821 squeue_t *curr_sqp = NULL; 14822 mblk_t *head = NULL; 14823 mblk_t *tail = NULL; 14824 mblk_t *first_mp; 14825 int cnt = 0; 14826 ip_stack_t *ipst = ill->ill_ipst; 14827 mblk_t *mp; 14828 mblk_t *dmp; 14829 uint8_t tag; 14830 14831 ASSERT(mp_chain != NULL); 14832 ASSERT(ill != NULL); 14833 14834 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14835 14836 tag = (ip_ring != NULL) ? SQTAG_IP_INPUT_RX_RING : SQTAG_IP_INPUT; 14837 14838 #define rptr ((uchar_t *)ipha) 14839 14840 while (mp_chain != NULL) { 14841 mp = mp_chain; 14842 mp_chain = mp_chain->b_next; 14843 mp->b_next = NULL; 14844 ll_multicast = 0; 14845 14846 /* 14847 * We do ire caching from one iteration to 14848 * another. In the event the packet chain contains 14849 * all packets from the same dst, this caching saves 14850 * an ire_cache_lookup for each of the succeeding 14851 * packets in a packet chain. 14852 */ 14853 prev_dst = dst; 14854 14855 /* 14856 * if db_ref > 1 then copymsg and free original. Packet 14857 * may be changed and we do not want the other entity 14858 * who has a reference to this message to trip over the 14859 * changes. This is a blind change because trying to 14860 * catch all places that might change the packet is too 14861 * difficult. 14862 * 14863 * This corresponds to the fast path case, where we have 14864 * a chain of M_DATA mblks. We check the db_ref count 14865 * of only the 1st data block in the mblk chain. There 14866 * doesn't seem to be a reason why a device driver would 14867 * send up data with varying db_ref counts in the mblk 14868 * chain. In any case the Fast path is a private 14869 * interface, and our drivers don't do such a thing. 14870 * Given the above assumption, there is no need to walk 14871 * down the entire mblk chain (which could have a 14872 * potential performance problem) 14873 * 14874 * The "(DB_REF(mp) > 1)" check was moved from ip_rput() 14875 * to here because of exclusive ip stacks and vnics. 14876 * Packets transmitted from exclusive stack over vnic 14877 * can have db_ref > 1 and when it gets looped back to 14878 * another vnic in a different zone, you have ip_input() 14879 * getting dblks with db_ref > 1. So if someone 14880 * complains of TCP performance under this scenario, 14881 * take a serious look here on the impact of copymsg(). 14882 */ 14883 14884 if (DB_REF(mp) > 1) { 14885 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14886 continue; 14887 } 14888 14889 /* 14890 * Check and align the IP header. 14891 */ 14892 first_mp = mp; 14893 if (DB_TYPE(mp) == M_DATA) { 14894 dmp = mp; 14895 } else if (DB_TYPE(mp) == M_PROTO && 14896 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14897 dmp = mp->b_cont; 14898 } else { 14899 dmp = NULL; 14900 } 14901 if (dmp != NULL) { 14902 /* 14903 * IP header ptr not aligned? 14904 * OR IP header not complete in first mblk 14905 */ 14906 if (!OK_32PTR(dmp->b_rptr) || 14907 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14908 if (!ip_check_and_align_header(q, dmp, ipst)) 14909 continue; 14910 } 14911 } 14912 14913 /* 14914 * ip_input fast path 14915 */ 14916 14917 /* mblk type is not M_DATA */ 14918 if (DB_TYPE(mp) != M_DATA) { 14919 if (ip_rput_process_notdata(q, &first_mp, ill, 14920 &ll_multicast, &mp)) 14921 continue; 14922 14923 /* 14924 * The only way we can get here is if we had a 14925 * packet that was either a DL_UNITDATA_IND or 14926 * an M_CTL for an IPsec accelerated packet. 14927 * 14928 * In either case, the first_mp will point to 14929 * the leading M_PROTO or M_CTL. 14930 */ 14931 ASSERT(first_mp != NULL); 14932 } else if (mhip != NULL) { 14933 /* 14934 * ll_multicast is set here so that it is ready 14935 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 14936 * manipulates ll_multicast in the same fashion when 14937 * called from ip_rput_process_notdata. 14938 */ 14939 switch (mhip->mhi_dsttype) { 14940 case MAC_ADDRTYPE_MULTICAST : 14941 ll_multicast = HPE_MULTICAST; 14942 break; 14943 case MAC_ADDRTYPE_BROADCAST : 14944 ll_multicast = HPE_BROADCAST; 14945 break; 14946 default : 14947 break; 14948 } 14949 } 14950 14951 /* Only M_DATA can come here and it is always aligned */ 14952 ASSERT(DB_TYPE(mp) == M_DATA); 14953 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 14954 14955 ipha = (ipha_t *)mp->b_rptr; 14956 len = mp->b_wptr - rptr; 14957 pkt_len = ntohs(ipha->ipha_length); 14958 14959 /* 14960 * We must count all incoming packets, even if they end 14961 * up being dropped later on. 14962 */ 14963 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 14964 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 14965 14966 /* multiple mblk or too short */ 14967 len -= pkt_len; 14968 if (len != 0) { 14969 /* 14970 * Make sure we have data length consistent 14971 * with the IP header. 14972 */ 14973 if (mp->b_cont == NULL) { 14974 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14975 BUMP_MIB(ill->ill_ip_mib, 14976 ipIfStatsInHdrErrors); 14977 ip2dbg(("ip_input: drop pkt\n")); 14978 freemsg(mp); 14979 continue; 14980 } 14981 mp->b_wptr = rptr + pkt_len; 14982 } else if ((len += msgdsize(mp->b_cont)) != 0) { 14983 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14984 BUMP_MIB(ill->ill_ip_mib, 14985 ipIfStatsInHdrErrors); 14986 ip2dbg(("ip_input: drop pkt\n")); 14987 freemsg(mp); 14988 continue; 14989 } 14990 (void) adjmsg(mp, -len); 14991 /* 14992 * adjmsg may have freed an mblk from the chain, 14993 * hence invalidate any hw checksum here. This 14994 * will force IP to calculate the checksum in 14995 * sw, but only for this packet. 14996 */ 14997 DB_CKSUMFLAGS(mp) = 0; 14998 IP_STAT(ipst, ip_multimblk3); 14999 } 15000 } 15001 15002 /* Obtain the dst of the current packet */ 15003 dst = ipha->ipha_dst; 15004 15005 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 15006 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 15007 ipha, ip6_t *, NULL, int, 0); 15008 15009 /* 15010 * The following test for loopback is faster than 15011 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15012 * operations. 15013 * Note that these addresses are always in network byte order 15014 */ 15015 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15016 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15017 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15018 freemsg(mp); 15019 continue; 15020 } 15021 15022 /* 15023 * The event for packets being received from a 'physical' 15024 * interface is placed after validation of the source and/or 15025 * destination address as being local so that packets can be 15026 * redirected to loopback addresses using ipnat. 15027 */ 15028 DTRACE_PROBE4(ip4__physical__in__start, 15029 ill_t *, ill, ill_t *, NULL, 15030 ipha_t *, ipha, mblk_t *, first_mp); 15031 15032 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15033 ipst->ips_ipv4firewall_physical_in, 15034 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15035 15036 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15037 15038 if (first_mp == NULL) { 15039 continue; 15040 } 15041 dst = ipha->ipha_dst; 15042 /* 15043 * Attach any necessary label information to 15044 * this packet 15045 */ 15046 if (is_system_labeled() && 15047 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15048 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15049 freemsg(mp); 15050 continue; 15051 } 15052 15053 if (ipst->ips_ip4_observe.he_interested) { 15054 zoneid_t dzone; 15055 15056 /* 15057 * On the inbound path the src zone will be unknown as 15058 * this packet has come from the wire. 15059 */ 15060 dzone = ip_get_zoneid_v4(dst, mp, ipst, ALL_ZONES); 15061 ipobs_hook(mp, IPOBS_HOOK_INBOUND, ALL_ZONES, dzone, 15062 ill, ipst); 15063 } 15064 15065 /* 15066 * Reuse the cached ire only if the ipha_dst of the previous 15067 * packet is the same as the current packet AND it is not 15068 * INADDR_ANY. 15069 */ 15070 if (!(dst == prev_dst && dst != INADDR_ANY) && 15071 (ire != NULL)) { 15072 ire_refrele(ire); 15073 ire = NULL; 15074 } 15075 15076 opt_len = ipha->ipha_version_and_hdr_length - 15077 IP_SIMPLE_HDR_VERSION; 15078 15079 /* 15080 * Check to see if we can take the fastpath. 15081 * That is possible if the following conditions are met 15082 * o Tsol disabled 15083 * o CGTP disabled 15084 * o ipp_action_count is 0 15085 * o no options in the packet 15086 * o not a RSVP packet 15087 * o not a multicast packet 15088 * o ill not in IP_DHCPINIT_IF mode 15089 */ 15090 if (!is_system_labeled() && 15091 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15092 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15093 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15094 if (ire == NULL) 15095 ire = ire_cache_lookup_simple(dst, ipst); 15096 /* 15097 * Unless forwarding is enabled, dont call 15098 * ip_fast_forward(). Incoming packet is for forwarding 15099 */ 15100 if ((ill->ill_flags & ILLF_ROUTER) && 15101 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15102 ire = ip_fast_forward(ire, dst, ill, mp); 15103 continue; 15104 } 15105 /* incoming packet is for local consumption */ 15106 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15107 goto local; 15108 } 15109 15110 /* 15111 * Disable ire caching for anything more complex 15112 * than the simple fast path case we checked for above. 15113 */ 15114 if (ire != NULL) { 15115 ire_refrele(ire); 15116 ire = NULL; 15117 } 15118 15119 /* 15120 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15121 * server to unicast DHCP packets to a DHCP client using the 15122 * IP address it is offering to the client. This can be 15123 * disabled through the "broadcast bit", but not all DHCP 15124 * servers honor that bit. Therefore, to interoperate with as 15125 * many DHCP servers as possible, the DHCP client allows the 15126 * server to unicast, but we treat those packets as broadcast 15127 * here. Note that we don't rewrite the packet itself since 15128 * (a) that would mess up the checksums and (b) the DHCP 15129 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15130 * hand it the packet regardless. 15131 */ 15132 if (ill->ill_dhcpinit != 0 && 15133 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15134 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15135 udpha_t *udpha; 15136 15137 /* 15138 * Reload ipha since pullupmsg() can change b_rptr. 15139 */ 15140 ipha = (ipha_t *)mp->b_rptr; 15141 udpha = (udpha_t *)&ipha[1]; 15142 15143 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15144 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15145 mblk_t *, mp); 15146 dst = INADDR_BROADCAST; 15147 } 15148 } 15149 15150 /* Full-blown slow path */ 15151 if (opt_len != 0) { 15152 if (len != 0) 15153 IP_STAT(ipst, ip_multimblk4); 15154 else 15155 IP_STAT(ipst, ip_ipoptions); 15156 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15157 &dst, ipst)) 15158 continue; 15159 } 15160 15161 /* 15162 * Invoke the CGTP (multirouting) filtering module to process 15163 * the incoming packet. Packets identified as duplicates 15164 * must be discarded. Filtering is active only if the 15165 * the ip_cgtp_filter ndd variable is non-zero. 15166 */ 15167 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15168 if (ipst->ips_ip_cgtp_filter && 15169 ipst->ips_ip_cgtp_filter_ops != NULL) { 15170 netstackid_t stackid; 15171 15172 stackid = ipst->ips_netstack->netstack_stackid; 15173 cgtp_flt_pkt = 15174 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15175 ill->ill_phyint->phyint_ifindex, mp); 15176 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15177 freemsg(first_mp); 15178 continue; 15179 } 15180 } 15181 15182 /* 15183 * If rsvpd is running, let RSVP daemon handle its processing 15184 * and forwarding of RSVP multicast/unicast packets. 15185 * If rsvpd is not running but mrouted is running, RSVP 15186 * multicast packets are forwarded as multicast traffic 15187 * and RSVP unicast packets are forwarded by unicast router. 15188 * If neither rsvpd nor mrouted is running, RSVP multicast 15189 * packets are not forwarded, but the unicast packets are 15190 * forwarded like unicast traffic. 15191 */ 15192 if (ipha->ipha_protocol == IPPROTO_RSVP && 15193 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15194 NULL) { 15195 /* RSVP packet and rsvpd running. Treat as ours */ 15196 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15197 /* 15198 * This assumes that we deliver to all streams for 15199 * multicast and broadcast packets. 15200 * We have to force ll_multicast to 1 to handle the 15201 * M_DATA messages passed in from ip_mroute_decap. 15202 */ 15203 dst = INADDR_BROADCAST; 15204 ll_multicast = 1; 15205 } else if (CLASSD(dst)) { 15206 /* packet is multicast */ 15207 mp->b_next = NULL; 15208 if (ip_rput_process_multicast(q, mp, ill, ipha, 15209 &ll_multicast, &dst)) 15210 continue; 15211 } 15212 15213 if (ire == NULL) { 15214 ire = ire_cache_lookup(dst, ALL_ZONES, 15215 msg_getlabel(mp), ipst); 15216 } 15217 15218 if (ire != NULL && ire->ire_stq != NULL && 15219 ire->ire_zoneid != GLOBAL_ZONEID && 15220 ire->ire_zoneid != ALL_ZONES) { 15221 /* 15222 * Should only use IREs that are visible from the 15223 * global zone for forwarding. 15224 */ 15225 ire_refrele(ire); 15226 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15227 msg_getlabel(mp), ipst); 15228 } 15229 15230 if (ire == NULL) { 15231 /* 15232 * No IRE for this destination, so it can't be for us. 15233 * Unless we are forwarding, drop the packet. 15234 * We have to let source routed packets through 15235 * since we don't yet know if they are 'ping -l' 15236 * packets i.e. if they will go out over the 15237 * same interface as they came in on. 15238 */ 15239 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15240 if (ire == NULL) 15241 continue; 15242 } 15243 15244 /* 15245 * Broadcast IRE may indicate either broadcast or 15246 * multicast packet 15247 */ 15248 if (ire->ire_type == IRE_BROADCAST) { 15249 /* 15250 * Skip broadcast checks if packet is UDP multicast; 15251 * we'd rather not enter ip_rput_process_broadcast() 15252 * unless the packet is broadcast for real, since 15253 * that routine is a no-op for multicast. 15254 */ 15255 if (ipha->ipha_protocol != IPPROTO_UDP || 15256 !CLASSD(ipha->ipha_dst)) { 15257 ire = ip_rput_process_broadcast(&q, mp, 15258 ire, ipha, ill, dst, cgtp_flt_pkt, 15259 ll_multicast); 15260 if (ire == NULL) 15261 continue; 15262 } 15263 } else if (ire->ire_stq != NULL) { 15264 /* fowarding? */ 15265 ip_rput_process_forward(q, mp, ire, ipha, ill, 15266 ll_multicast, B_FALSE); 15267 /* ip_rput_process_forward consumed the packet */ 15268 continue; 15269 } 15270 15271 local: 15272 /* 15273 * If the queue in the ire is different to the ingress queue 15274 * then we need to check to see if we can accept the packet. 15275 * Note that for multicast packets and broadcast packets sent 15276 * to a broadcast address which is shared between multiple 15277 * interfaces we should not do this since we just got a random 15278 * broadcast ire. 15279 */ 15280 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15281 ire = ip_check_multihome(&ipha->ipha_dst, ire, ill); 15282 if (ire == NULL) { 15283 /* Drop packet */ 15284 BUMP_MIB(ill->ill_ip_mib, 15285 ipIfStatsForwProhibits); 15286 freemsg(mp); 15287 continue; 15288 } 15289 if (ire->ire_rfq != NULL) 15290 q = ire->ire_rfq; 15291 } 15292 15293 switch (ipha->ipha_protocol) { 15294 case IPPROTO_TCP: 15295 ASSERT(first_mp == mp); 15296 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15297 mp, 0, q, ip_ring)) != NULL) { 15298 if (curr_sqp == NULL) { 15299 curr_sqp = GET_SQUEUE(mp); 15300 ASSERT(cnt == 0); 15301 cnt++; 15302 head = tail = mp; 15303 } else if (curr_sqp == GET_SQUEUE(mp)) { 15304 ASSERT(tail != NULL); 15305 cnt++; 15306 tail->b_next = mp; 15307 tail = mp; 15308 } else { 15309 /* 15310 * A different squeue. Send the 15311 * chain for the previous squeue on 15312 * its way. This shouldn't happen 15313 * often unless interrupt binding 15314 * changes. 15315 */ 15316 IP_STAT(ipst, ip_input_multi_squeue); 15317 SQUEUE_ENTER(curr_sqp, head, 15318 tail, cnt, SQ_PROCESS, tag); 15319 curr_sqp = GET_SQUEUE(mp); 15320 head = mp; 15321 tail = mp; 15322 cnt = 1; 15323 } 15324 } 15325 continue; 15326 case IPPROTO_UDP: 15327 ASSERT(first_mp == mp); 15328 ip_udp_input(q, mp, ipha, ire, ill); 15329 continue; 15330 case IPPROTO_SCTP: 15331 ASSERT(first_mp == mp); 15332 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15333 q, dst); 15334 /* ire has been released by ip_sctp_input */ 15335 ire = NULL; 15336 continue; 15337 case IPPROTO_ENCAP: 15338 case IPPROTO_IPV6: 15339 ASSERT(first_mp == mp); 15340 if (ip_iptun_input(NULL, mp, ipha, ill, ire, ipst)) 15341 break; 15342 /* 15343 * If there was no IP tunnel data-link bound to 15344 * receive this packet, then we fall through to 15345 * allow potential raw sockets bound to either of 15346 * these protocols to pick it up. 15347 */ 15348 default: 15349 ip_proto_input(q, first_mp, ipha, ire, ill, 0); 15350 continue; 15351 } 15352 } 15353 15354 if (ire != NULL) 15355 ire_refrele(ire); 15356 15357 if (head != NULL) 15358 SQUEUE_ENTER(curr_sqp, head, tail, cnt, SQ_PROCESS, tag); 15359 15360 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15361 "ip_input_end: q %p (%S)", q, "end"); 15362 #undef rptr 15363 } 15364 15365 /* 15366 * ip_accept_tcp() - This function is called by the squeue when it retrieves 15367 * a chain of packets in the poll mode. The packets have gone through the 15368 * data link processing but not IP processing. For performance and latency 15369 * reasons, the squeue wants to process the chain in line instead of feeding 15370 * it back via ip_input path. 15371 * 15372 * So this is a light weight function which checks to see if the packets 15373 * retrived are indeed TCP packets (TCP squeue always polls TCP soft ring 15374 * but we still do the paranoid check) meant for local machine and we don't 15375 * have labels etc enabled. Packets that meet the criterion are returned to 15376 * the squeue and processed inline while the rest go via ip_input path. 15377 */ 15378 /*ARGSUSED*/ 15379 mblk_t * 15380 ip_accept_tcp(ill_t *ill, ill_rx_ring_t *ip_ring, squeue_t *target_sqp, 15381 mblk_t *mp_chain, mblk_t **last, uint_t *cnt) 15382 { 15383 mblk_t *mp; 15384 ipaddr_t dst = NULL; 15385 ipaddr_t prev_dst; 15386 ire_t *ire = NULL; 15387 ipha_t *ipha; 15388 uint_t pkt_len; 15389 ssize_t len; 15390 uint_t opt_len; 15391 queue_t *q = ill->ill_rq; 15392 squeue_t *curr_sqp; 15393 mblk_t *ahead = NULL; /* Accepted head */ 15394 mblk_t *atail = NULL; /* Accepted tail */ 15395 uint_t acnt = 0; /* Accepted count */ 15396 mblk_t *utail = NULL; /* Unaccepted head */ 15397 mblk_t *uhead = NULL; /* Unaccepted tail */ 15398 uint_t ucnt = 0; /* Unaccepted cnt */ 15399 ip_stack_t *ipst = ill->ill_ipst; 15400 15401 *cnt = 0; 15402 15403 ASSERT(ill != NULL); 15404 ASSERT(ip_ring != NULL); 15405 15406 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_accept_tcp: q %p", q); 15407 15408 #define rptr ((uchar_t *)ipha) 15409 15410 while (mp_chain != NULL) { 15411 mp = mp_chain; 15412 mp_chain = mp_chain->b_next; 15413 mp->b_next = NULL; 15414 15415 /* 15416 * We do ire caching from one iteration to 15417 * another. In the event the packet chain contains 15418 * all packets from the same dst, this caching saves 15419 * an ire_cache_lookup for each of the succeeding 15420 * packets in a packet chain. 15421 */ 15422 prev_dst = dst; 15423 15424 ipha = (ipha_t *)mp->b_rptr; 15425 len = mp->b_wptr - rptr; 15426 15427 ASSERT(!MBLK_RX_FANOUT_SLOWPATH(mp, ipha)); 15428 15429 /* 15430 * If it is a non TCP packet, or doesn't have H/W cksum, 15431 * or doesn't have min len, reject. 15432 */ 15433 if ((ipha->ipha_protocol != IPPROTO_TCP) || (len < 15434 (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH))) { 15435 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15436 continue; 15437 } 15438 15439 pkt_len = ntohs(ipha->ipha_length); 15440 if (len != pkt_len) { 15441 if (len > pkt_len) { 15442 mp->b_wptr = rptr + pkt_len; 15443 } else { 15444 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15445 continue; 15446 } 15447 } 15448 15449 opt_len = ipha->ipha_version_and_hdr_length - 15450 IP_SIMPLE_HDR_VERSION; 15451 dst = ipha->ipha_dst; 15452 15453 /* IP version bad or there are IP options */ 15454 if (opt_len && (!ip_rput_multimblk_ipoptions(q, ill, 15455 mp, &ipha, &dst, ipst))) 15456 continue; 15457 15458 if (is_system_labeled() || (ill->ill_dhcpinit != 0) || 15459 (ipst->ips_ip_cgtp_filter && 15460 ipst->ips_ip_cgtp_filter_ops != NULL)) { 15461 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15462 continue; 15463 } 15464 15465 /* 15466 * Reuse the cached ire only if the ipha_dst of the previous 15467 * packet is the same as the current packet AND it is not 15468 * INADDR_ANY. 15469 */ 15470 if (!(dst == prev_dst && dst != INADDR_ANY) && 15471 (ire != NULL)) { 15472 ire_refrele(ire); 15473 ire = NULL; 15474 } 15475 15476 if (ire == NULL) 15477 ire = ire_cache_lookup_simple(dst, ipst); 15478 15479 /* 15480 * Unless forwarding is enabled, dont call 15481 * ip_fast_forward(). Incoming packet is for forwarding 15482 */ 15483 if ((ill->ill_flags & ILLF_ROUTER) && 15484 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15485 15486 DTRACE_PROBE4(ip4__physical__in__start, 15487 ill_t *, ill, ill_t *, NULL, 15488 ipha_t *, ipha, mblk_t *, mp); 15489 15490 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15491 ipst->ips_ipv4firewall_physical_in, 15492 ill, NULL, ipha, mp, mp, 0, ipst); 15493 15494 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15495 15496 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15497 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, 15498 pkt_len); 15499 15500 if (mp != NULL) 15501 ire = ip_fast_forward(ire, dst, ill, mp); 15502 continue; 15503 } 15504 15505 /* incoming packet is for local consumption */ 15506 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15507 goto local_accept; 15508 15509 /* 15510 * Disable ire caching for anything more complex 15511 * than the simple fast path case we checked for above. 15512 */ 15513 if (ire != NULL) { 15514 ire_refrele(ire); 15515 ire = NULL; 15516 } 15517 15518 ire = ire_cache_lookup(dst, ALL_ZONES, msg_getlabel(mp), 15519 ipst); 15520 if (ire == NULL || ire->ire_type == IRE_BROADCAST || 15521 ire->ire_stq != NULL) { 15522 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15523 if (ire != NULL) { 15524 ire_refrele(ire); 15525 ire = NULL; 15526 } 15527 continue; 15528 } 15529 15530 local_accept: 15531 15532 if (ire->ire_rfq != q) { 15533 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15534 if (ire != NULL) { 15535 ire_refrele(ire); 15536 ire = NULL; 15537 } 15538 continue; 15539 } 15540 15541 /* 15542 * The event for packets being received from a 'physical' 15543 * interface is placed after validation of the source and/or 15544 * destination address as being local so that packets can be 15545 * redirected to loopback addresses using ipnat. 15546 */ 15547 DTRACE_PROBE4(ip4__physical__in__start, 15548 ill_t *, ill, ill_t *, NULL, 15549 ipha_t *, ipha, mblk_t *, mp); 15550 15551 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15552 ipst->ips_ipv4firewall_physical_in, 15553 ill, NULL, ipha, mp, mp, 0, ipst); 15554 15555 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15556 15557 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15558 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15559 15560 if (mp != NULL && 15561 (mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, mp, 15562 0, q, ip_ring)) != NULL) { 15563 if ((curr_sqp = GET_SQUEUE(mp)) == target_sqp) { 15564 ADD_TO_CHAIN(ahead, atail, acnt, mp); 15565 } else { 15566 SQUEUE_ENTER(curr_sqp, mp, mp, 1, 15567 SQ_FILL, SQTAG_IP_INPUT); 15568 } 15569 } 15570 } 15571 15572 if (ire != NULL) 15573 ire_refrele(ire); 15574 15575 if (uhead != NULL) 15576 ip_input(ill, ip_ring, uhead, NULL); 15577 15578 if (ahead != NULL) { 15579 *last = atail; 15580 *cnt = acnt; 15581 return (ahead); 15582 } 15583 15584 return (NULL); 15585 #undef rptr 15586 } 15587 15588 static void 15589 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15590 t_uscalar_t err) 15591 { 15592 if (dl_err == DL_SYSERR) { 15593 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15594 "%s: %s failed: DL_SYSERR (errno %u)\n", 15595 ill->ill_name, dl_primstr(prim), err); 15596 return; 15597 } 15598 15599 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15600 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15601 dl_errstr(dl_err)); 15602 } 15603 15604 /* 15605 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15606 * than DL_UNITDATA_IND messages. If we need to process this message 15607 * exclusively, we call qwriter_ip, in which case we also need to call 15608 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15609 */ 15610 void 15611 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15612 { 15613 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15614 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15615 ill_t *ill = q->q_ptr; 15616 t_uscalar_t prim = dloa->dl_primitive; 15617 t_uscalar_t reqprim = DL_PRIM_INVAL; 15618 15619 ip1dbg(("ip_rput_dlpi")); 15620 15621 /* 15622 * If we received an ACK but didn't send a request for it, then it 15623 * can't be part of any pending operation; discard up-front. 15624 */ 15625 switch (prim) { 15626 case DL_ERROR_ACK: 15627 reqprim = dlea->dl_error_primitive; 15628 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 15629 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 15630 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 15631 dlea->dl_unix_errno)); 15632 break; 15633 case DL_OK_ACK: 15634 reqprim = dloa->dl_correct_primitive; 15635 break; 15636 case DL_INFO_ACK: 15637 reqprim = DL_INFO_REQ; 15638 break; 15639 case DL_BIND_ACK: 15640 reqprim = DL_BIND_REQ; 15641 break; 15642 case DL_PHYS_ADDR_ACK: 15643 reqprim = DL_PHYS_ADDR_REQ; 15644 break; 15645 case DL_NOTIFY_ACK: 15646 reqprim = DL_NOTIFY_REQ; 15647 break; 15648 case DL_CONTROL_ACK: 15649 reqprim = DL_CONTROL_REQ; 15650 break; 15651 case DL_CAPABILITY_ACK: 15652 reqprim = DL_CAPABILITY_REQ; 15653 break; 15654 } 15655 15656 if (prim != DL_NOTIFY_IND) { 15657 if (reqprim == DL_PRIM_INVAL || 15658 !ill_dlpi_pending(ill, reqprim)) { 15659 /* Not a DLPI message we support or expected */ 15660 freemsg(mp); 15661 return; 15662 } 15663 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 15664 dl_primstr(reqprim))); 15665 } 15666 15667 switch (reqprim) { 15668 case DL_UNBIND_REQ: 15669 /* 15670 * NOTE: we mark the unbind as complete even if we got a 15671 * DL_ERROR_ACK, since there's not much else we can do. 15672 */ 15673 mutex_enter(&ill->ill_lock); 15674 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15675 cv_signal(&ill->ill_cv); 15676 mutex_exit(&ill->ill_lock); 15677 break; 15678 15679 case DL_ENABMULTI_REQ: 15680 if (prim == DL_OK_ACK) { 15681 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15682 ill->ill_dlpi_multicast_state = IDS_OK; 15683 } 15684 break; 15685 } 15686 15687 /* 15688 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15689 * need to become writer to continue to process it. Because an 15690 * exclusive operation doesn't complete until replies to all queued 15691 * DLPI messages have been received, we know we're in the middle of an 15692 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15693 * 15694 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15695 * Since this is on the ill stream we unconditionally bump up the 15696 * refcount without doing ILL_CAN_LOOKUP(). 15697 */ 15698 ill_refhold(ill); 15699 if (prim == DL_NOTIFY_IND) 15700 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15701 else 15702 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15703 } 15704 15705 /* 15706 * Handling of DLPI messages that require exclusive access to the ipsq. 15707 * 15708 * Need to do ill_pending_mp_release on ioctl completion, which could 15709 * happen here. (along with mi_copy_done) 15710 */ 15711 /* ARGSUSED */ 15712 static void 15713 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15714 { 15715 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15716 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15717 int err = 0; 15718 ill_t *ill; 15719 ipif_t *ipif = NULL; 15720 mblk_t *mp1 = NULL; 15721 conn_t *connp = NULL; 15722 t_uscalar_t paddrreq; 15723 mblk_t *mp_hw; 15724 boolean_t success; 15725 boolean_t ioctl_aborted = B_FALSE; 15726 boolean_t log = B_TRUE; 15727 ip_stack_t *ipst; 15728 15729 ip1dbg(("ip_rput_dlpi_writer ..")); 15730 ill = (ill_t *)q->q_ptr; 15731 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 15732 ASSERT(IAM_WRITER_ILL(ill)); 15733 15734 ipst = ill->ill_ipst; 15735 15736 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 15737 /* 15738 * The current ioctl could have been aborted by the user and a new 15739 * ioctl to bring up another ill could have started. We could still 15740 * get a response from the driver later. 15741 */ 15742 if (ipif != NULL && ipif->ipif_ill != ill) 15743 ioctl_aborted = B_TRUE; 15744 15745 switch (dloa->dl_primitive) { 15746 case DL_ERROR_ACK: 15747 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15748 dl_primstr(dlea->dl_error_primitive))); 15749 15750 switch (dlea->dl_error_primitive) { 15751 case DL_DISABMULTI_REQ: 15752 ill_dlpi_done(ill, dlea->dl_error_primitive); 15753 break; 15754 case DL_PROMISCON_REQ: 15755 case DL_PROMISCOFF_REQ: 15756 case DL_UNBIND_REQ: 15757 case DL_ATTACH_REQ: 15758 case DL_INFO_REQ: 15759 ill_dlpi_done(ill, dlea->dl_error_primitive); 15760 break; 15761 case DL_NOTIFY_REQ: 15762 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15763 log = B_FALSE; 15764 break; 15765 case DL_PHYS_ADDR_REQ: 15766 /* 15767 * For IPv6 only, there are two additional 15768 * phys_addr_req's sent to the driver to get the 15769 * IPv6 token and lla. This allows IP to acquire 15770 * the hardware address format for a given interface 15771 * without having built in knowledge of the hardware 15772 * address. ill_phys_addr_pend keeps track of the last 15773 * DL_PAR sent so we know which response we are 15774 * dealing with. ill_dlpi_done will update 15775 * ill_phys_addr_pend when it sends the next req. 15776 * We don't complete the IOCTL until all three DL_PARs 15777 * have been attempted, so set *_len to 0 and break. 15778 */ 15779 paddrreq = ill->ill_phys_addr_pend; 15780 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15781 if (paddrreq == DL_IPV6_TOKEN) { 15782 ill->ill_token_length = 0; 15783 log = B_FALSE; 15784 break; 15785 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15786 ill->ill_nd_lla_len = 0; 15787 log = B_FALSE; 15788 break; 15789 } 15790 /* 15791 * Something went wrong with the DL_PHYS_ADDR_REQ. 15792 * We presumably have an IOCTL hanging out waiting 15793 * for completion. Find it and complete the IOCTL 15794 * with the error noted. 15795 * However, ill_dl_phys was called on an ill queue 15796 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15797 * set. But the ioctl is known to be pending on ill_wq. 15798 */ 15799 if (!ill->ill_ifname_pending) 15800 break; 15801 ill->ill_ifname_pending = 0; 15802 if (!ioctl_aborted) 15803 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15804 if (mp1 != NULL) { 15805 /* 15806 * This operation (SIOCSLIFNAME) must have 15807 * happened on the ill. Assert there is no conn 15808 */ 15809 ASSERT(connp == NULL); 15810 q = ill->ill_wq; 15811 } 15812 break; 15813 case DL_BIND_REQ: 15814 ill_dlpi_done(ill, DL_BIND_REQ); 15815 if (ill->ill_ifname_pending) 15816 break; 15817 /* 15818 * Something went wrong with the bind. We presumably 15819 * have an IOCTL hanging out waiting for completion. 15820 * Find it, take down the interface that was coming 15821 * up, and complete the IOCTL with the error noted. 15822 */ 15823 if (!ioctl_aborted) 15824 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15825 if (mp1 != NULL) { 15826 /* 15827 * This might be a result of a DL_NOTE_REPLUMB 15828 * notification. In that case, connp is NULL. 15829 */ 15830 if (connp != NULL) 15831 q = CONNP_TO_WQ(connp); 15832 15833 (void) ipif_down(ipif, NULL, NULL); 15834 /* error is set below the switch */ 15835 } 15836 break; 15837 case DL_ENABMULTI_REQ: 15838 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15839 15840 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15841 ill->ill_dlpi_multicast_state = IDS_FAILED; 15842 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15843 ipif_t *ipif; 15844 15845 printf("ip: joining multicasts failed (%d)" 15846 " on %s - will use link layer " 15847 "broadcasts for multicast\n", 15848 dlea->dl_errno, ill->ill_name); 15849 15850 /* 15851 * Set up the multicast mapping alone. 15852 * writer, so ok to access ill->ill_ipif 15853 * without any lock. 15854 */ 15855 ipif = ill->ill_ipif; 15856 mutex_enter(&ill->ill_phyint->phyint_lock); 15857 ill->ill_phyint->phyint_flags |= 15858 PHYI_MULTI_BCAST; 15859 mutex_exit(&ill->ill_phyint->phyint_lock); 15860 15861 if (!ill->ill_isv6) { 15862 (void) ipif_arp_setup_multicast(ipif, 15863 NULL); 15864 } else { 15865 (void) ipif_ndp_setup_multicast(ipif, 15866 NULL); 15867 } 15868 } 15869 freemsg(mp); /* Don't want to pass this up */ 15870 return; 15871 case DL_CONTROL_REQ: 15872 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15873 "DL_CONTROL_REQ\n")); 15874 ill_dlpi_done(ill, dlea->dl_error_primitive); 15875 freemsg(mp); 15876 return; 15877 case DL_CAPABILITY_REQ: 15878 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15879 "DL_CAPABILITY REQ\n")); 15880 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 15881 ill->ill_dlpi_capab_state = IDCS_FAILED; 15882 ill_capability_done(ill); 15883 freemsg(mp); 15884 return; 15885 } 15886 /* 15887 * Note the error for IOCTL completion (mp1 is set when 15888 * ready to complete ioctl). If ill_ifname_pending_err is 15889 * set, an error occured during plumbing (ill_ifname_pending), 15890 * so we want to report that error. 15891 * 15892 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15893 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15894 * expected to get errack'd if the driver doesn't support 15895 * these flags (e.g. ethernet). log will be set to B_FALSE 15896 * if these error conditions are encountered. 15897 */ 15898 if (mp1 != NULL) { 15899 if (ill->ill_ifname_pending_err != 0) { 15900 err = ill->ill_ifname_pending_err; 15901 ill->ill_ifname_pending_err = 0; 15902 } else { 15903 err = dlea->dl_unix_errno ? 15904 dlea->dl_unix_errno : ENXIO; 15905 } 15906 /* 15907 * If we're plumbing an interface and an error hasn't already 15908 * been saved, set ill_ifname_pending_err to the error passed 15909 * up. Ignore the error if log is B_FALSE (see comment above). 15910 */ 15911 } else if (log && ill->ill_ifname_pending && 15912 ill->ill_ifname_pending_err == 0) { 15913 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15914 dlea->dl_unix_errno : ENXIO; 15915 } 15916 15917 if (log) 15918 ip_dlpi_error(ill, dlea->dl_error_primitive, 15919 dlea->dl_errno, dlea->dl_unix_errno); 15920 break; 15921 case DL_CAPABILITY_ACK: 15922 ill_capability_ack(ill, mp); 15923 /* 15924 * The message has been handed off to ill_capability_ack 15925 * and must not be freed below 15926 */ 15927 mp = NULL; 15928 break; 15929 15930 case DL_CONTROL_ACK: 15931 /* We treat all of these as "fire and forget" */ 15932 ill_dlpi_done(ill, DL_CONTROL_REQ); 15933 break; 15934 case DL_INFO_ACK: 15935 /* Call a routine to handle this one. */ 15936 ill_dlpi_done(ill, DL_INFO_REQ); 15937 ip_ll_subnet_defaults(ill, mp); 15938 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15939 return; 15940 case DL_BIND_ACK: 15941 /* 15942 * We should have an IOCTL waiting on this unless 15943 * sent by ill_dl_phys, in which case just return 15944 */ 15945 ill_dlpi_done(ill, DL_BIND_REQ); 15946 if (ill->ill_ifname_pending) 15947 break; 15948 15949 if (!ioctl_aborted) 15950 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15951 if (mp1 == NULL) 15952 break; 15953 /* 15954 * mp1 was added by ill_dl_up(). if that is a result of 15955 * a DL_NOTE_REPLUMB notification, connp could be NULL. 15956 */ 15957 if (connp != NULL) 15958 q = CONNP_TO_WQ(connp); 15959 15960 /* 15961 * We are exclusive. So nothing can change even after 15962 * we get the pending mp. If need be we can put it back 15963 * and restart, as in calling ipif_arp_up() below. 15964 */ 15965 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15966 15967 mutex_enter(&ill->ill_lock); 15968 ill->ill_dl_up = 1; 15969 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 15970 mutex_exit(&ill->ill_lock); 15971 15972 /* 15973 * Now bring up the resolver; when that is complete, we'll 15974 * create IREs. Note that we intentionally mirror what 15975 * ipif_up() would have done, because we got here by way of 15976 * ill_dl_up(), which stopped ipif_up()'s processing. 15977 */ 15978 if (ill->ill_isv6) { 15979 if (ill->ill_flags & ILLF_XRESOLV) { 15980 if (connp != NULL) 15981 mutex_enter(&connp->conn_lock); 15982 mutex_enter(&ill->ill_lock); 15983 success = ipsq_pending_mp_add(connp, ipif, q, 15984 mp1, 0); 15985 mutex_exit(&ill->ill_lock); 15986 if (connp != NULL) 15987 mutex_exit(&connp->conn_lock); 15988 if (success) { 15989 err = ipif_resolver_up(ipif, 15990 Res_act_initial); 15991 if (err == EINPROGRESS) { 15992 freemsg(mp); 15993 return; 15994 } 15995 ASSERT(err != 0); 15996 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15997 ASSERT(mp1 != NULL); 15998 } else { 15999 /* conn has started closing */ 16000 err = EINTR; 16001 } 16002 } else { /* Non XRESOLV interface */ 16003 (void) ipif_resolver_up(ipif, Res_act_initial); 16004 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 16005 err = ipif_up_done_v6(ipif); 16006 } 16007 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 16008 /* 16009 * ARP and other v4 external resolvers. 16010 * Leave the pending mblk intact so that 16011 * the ioctl completes in ip_rput(). 16012 */ 16013 if (connp != NULL) 16014 mutex_enter(&connp->conn_lock); 16015 mutex_enter(&ill->ill_lock); 16016 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 16017 mutex_exit(&ill->ill_lock); 16018 if (connp != NULL) 16019 mutex_exit(&connp->conn_lock); 16020 if (success) { 16021 err = ipif_resolver_up(ipif, Res_act_initial); 16022 if (err == EINPROGRESS) { 16023 freemsg(mp); 16024 return; 16025 } 16026 ASSERT(err != 0); 16027 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16028 } else { 16029 /* The conn has started closing */ 16030 err = EINTR; 16031 } 16032 } else { 16033 /* 16034 * This one is complete. Reply to pending ioctl. 16035 */ 16036 (void) ipif_resolver_up(ipif, Res_act_initial); 16037 err = ipif_up_done(ipif); 16038 } 16039 16040 if ((err == 0) && (ill->ill_up_ipifs)) { 16041 err = ill_up_ipifs(ill, q, mp1); 16042 if (err == EINPROGRESS) { 16043 freemsg(mp); 16044 return; 16045 } 16046 } 16047 16048 /* 16049 * If we have a moved ipif to bring up, and everything has 16050 * succeeded to this point, bring it up on the IPMP ill. 16051 * Otherwise, leave it down -- the admin can try to bring it 16052 * up by hand if need be. 16053 */ 16054 if (ill->ill_move_ipif != NULL) { 16055 if (err != 0) { 16056 ill->ill_move_ipif = NULL; 16057 } else { 16058 ipif = ill->ill_move_ipif; 16059 ill->ill_move_ipif = NULL; 16060 err = ipif_up(ipif, q, mp1); 16061 if (err == EINPROGRESS) { 16062 freemsg(mp); 16063 return; 16064 } 16065 } 16066 } 16067 break; 16068 16069 case DL_NOTIFY_IND: { 16070 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16071 ire_t *ire; 16072 uint_t orig_mtu; 16073 boolean_t need_ire_walk_v4 = B_FALSE; 16074 boolean_t need_ire_walk_v6 = B_FALSE; 16075 16076 switch (notify->dl_notification) { 16077 case DL_NOTE_PHYS_ADDR: 16078 err = ill_set_phys_addr(ill, mp); 16079 break; 16080 16081 case DL_NOTE_REPLUMB: 16082 /* 16083 * Directly return after calling ill_replumb(). 16084 * Note that we should not free mp as it is reused 16085 * in the ill_replumb() function. 16086 */ 16087 err = ill_replumb(ill, mp); 16088 return; 16089 16090 case DL_NOTE_FASTPATH_FLUSH: 16091 ill_fastpath_flush(ill); 16092 break; 16093 16094 case DL_NOTE_SDU_SIZE: 16095 /* 16096 * Change the MTU size of the interface, of all 16097 * attached ipif's, and of all relevant ire's. The 16098 * new value's a uint32_t at notify->dl_data. 16099 * Mtu change Vs. new ire creation - protocol below. 16100 * 16101 * a Mark the ipif as IPIF_CHANGING. 16102 * b Set the new mtu in the ipif. 16103 * c Change the ire_max_frag on all affected ires 16104 * d Unmark the IPIF_CHANGING 16105 * 16106 * To see how the protocol works, assume an interface 16107 * route is also being added simultaneously by 16108 * ip_rt_add and let 'ipif' be the ipif referenced by 16109 * the ire. If the ire is created before step a, 16110 * it will be cleaned up by step c. If the ire is 16111 * created after step d, it will see the new value of 16112 * ipif_mtu. Any attempt to create the ire between 16113 * steps a to d will fail because of the IPIF_CHANGING 16114 * flag. Note that ire_create() is passed a pointer to 16115 * the ipif_mtu, and not the value. During ire_add 16116 * under the bucket lock, the ire_max_frag of the 16117 * new ire being created is set from the ipif/ire from 16118 * which it is being derived. 16119 */ 16120 mutex_enter(&ill->ill_lock); 16121 16122 orig_mtu = ill->ill_max_mtu; 16123 ill->ill_max_frag = (uint_t)notify->dl_data; 16124 ill->ill_max_mtu = (uint_t)notify->dl_data; 16125 16126 /* 16127 * If ill_user_mtu was set (via SIOCSLIFLNKINFO), 16128 * clamp ill_max_mtu at it. 16129 */ 16130 if (ill->ill_user_mtu != 0 && 16131 ill->ill_user_mtu < ill->ill_max_mtu) 16132 ill->ill_max_mtu = ill->ill_user_mtu; 16133 16134 /* 16135 * If the MTU is unchanged, we're done. 16136 */ 16137 if (orig_mtu == ill->ill_max_mtu) { 16138 mutex_exit(&ill->ill_lock); 16139 break; 16140 } 16141 16142 if (ill->ill_isv6) { 16143 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16144 ill->ill_max_mtu = IPV6_MIN_MTU; 16145 } else { 16146 if (ill->ill_max_mtu < IP_MIN_MTU) 16147 ill->ill_max_mtu = IP_MIN_MTU; 16148 } 16149 for (ipif = ill->ill_ipif; ipif != NULL; 16150 ipif = ipif->ipif_next) { 16151 /* 16152 * Don't override the mtu if the user 16153 * has explicitly set it. 16154 */ 16155 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16156 continue; 16157 ipif->ipif_mtu = (uint_t)notify->dl_data; 16158 if (ipif->ipif_isv6) 16159 ire = ipif_to_ire_v6(ipif); 16160 else 16161 ire = ipif_to_ire(ipif); 16162 if (ire != NULL) { 16163 ire->ire_max_frag = ipif->ipif_mtu; 16164 ire_refrele(ire); 16165 } 16166 if (ipif->ipif_flags & IPIF_UP) { 16167 if (ill->ill_isv6) 16168 need_ire_walk_v6 = B_TRUE; 16169 else 16170 need_ire_walk_v4 = B_TRUE; 16171 } 16172 } 16173 mutex_exit(&ill->ill_lock); 16174 if (need_ire_walk_v4) 16175 ire_walk_v4(ill_mtu_change, (char *)ill, 16176 ALL_ZONES, ipst); 16177 if (need_ire_walk_v6) 16178 ire_walk_v6(ill_mtu_change, (char *)ill, 16179 ALL_ZONES, ipst); 16180 16181 /* 16182 * Refresh IPMP meta-interface MTU if necessary. 16183 */ 16184 if (IS_UNDER_IPMP(ill)) 16185 ipmp_illgrp_refresh_mtu(ill->ill_grp); 16186 break; 16187 16188 case DL_NOTE_LINK_UP: 16189 case DL_NOTE_LINK_DOWN: { 16190 /* 16191 * We are writer. ill / phyint / ipsq assocs stable. 16192 * The RUNNING flag reflects the state of the link. 16193 */ 16194 phyint_t *phyint = ill->ill_phyint; 16195 uint64_t new_phyint_flags; 16196 boolean_t changed = B_FALSE; 16197 boolean_t went_up; 16198 16199 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16200 mutex_enter(&phyint->phyint_lock); 16201 16202 new_phyint_flags = went_up ? 16203 phyint->phyint_flags | PHYI_RUNNING : 16204 phyint->phyint_flags & ~PHYI_RUNNING; 16205 16206 if (IS_IPMP(ill)) { 16207 new_phyint_flags = went_up ? 16208 new_phyint_flags & ~PHYI_FAILED : 16209 new_phyint_flags | PHYI_FAILED; 16210 } 16211 16212 if (new_phyint_flags != phyint->phyint_flags) { 16213 phyint->phyint_flags = new_phyint_flags; 16214 changed = B_TRUE; 16215 } 16216 mutex_exit(&phyint->phyint_lock); 16217 /* 16218 * ill_restart_dad handles the DAD restart and routing 16219 * socket notification logic. 16220 */ 16221 if (changed) { 16222 ill_restart_dad(phyint->phyint_illv4, went_up); 16223 ill_restart_dad(phyint->phyint_illv6, went_up); 16224 } 16225 break; 16226 } 16227 case DL_NOTE_PROMISC_ON_PHYS: { 16228 phyint_t *phyint = ill->ill_phyint; 16229 16230 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16231 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16232 mutex_enter(&phyint->phyint_lock); 16233 phyint->phyint_flags |= PHYI_PROMISC; 16234 mutex_exit(&phyint->phyint_lock); 16235 break; 16236 } 16237 case DL_NOTE_PROMISC_OFF_PHYS: { 16238 phyint_t *phyint = ill->ill_phyint; 16239 16240 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16241 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16242 mutex_enter(&phyint->phyint_lock); 16243 phyint->phyint_flags &= ~PHYI_PROMISC; 16244 mutex_exit(&phyint->phyint_lock); 16245 break; 16246 } 16247 case DL_NOTE_CAPAB_RENEG: 16248 /* 16249 * Something changed on the driver side. 16250 * It wants us to renegotiate the capabilities 16251 * on this ill. One possible cause is the aggregation 16252 * interface under us where a port got added or 16253 * went away. 16254 * 16255 * If the capability negotiation is already done 16256 * or is in progress, reset the capabilities and 16257 * mark the ill's ill_capab_reneg to be B_TRUE, 16258 * so that when the ack comes back, we can start 16259 * the renegotiation process. 16260 * 16261 * Note that if ill_capab_reneg is already B_TRUE 16262 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16263 * the capability resetting request has been sent 16264 * and the renegotiation has not been started yet; 16265 * nothing needs to be done in this case. 16266 */ 16267 ipsq_current_start(ipsq, ill->ill_ipif, 0); 16268 ill_capability_reset(ill, B_TRUE); 16269 ipsq_current_finish(ipsq); 16270 break; 16271 default: 16272 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16273 "type 0x%x for DL_NOTIFY_IND\n", 16274 notify->dl_notification)); 16275 break; 16276 } 16277 16278 /* 16279 * As this is an asynchronous operation, we 16280 * should not call ill_dlpi_done 16281 */ 16282 break; 16283 } 16284 case DL_NOTIFY_ACK: { 16285 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16286 16287 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16288 ill->ill_note_link = 1; 16289 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16290 break; 16291 } 16292 case DL_PHYS_ADDR_ACK: { 16293 /* 16294 * As part of plumbing the interface via SIOCSLIFNAME, 16295 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16296 * whose answers we receive here. As each answer is received, 16297 * we call ill_dlpi_done() to dispatch the next request as 16298 * we're processing the current one. Once all answers have 16299 * been received, we use ipsq_pending_mp_get() to dequeue the 16300 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16301 * is invoked from an ill queue, conn_oper_pending_ill is not 16302 * available, but we know the ioctl is pending on ill_wq.) 16303 */ 16304 uint_t paddrlen, paddroff; 16305 uint8_t *addr; 16306 16307 paddrreq = ill->ill_phys_addr_pend; 16308 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16309 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16310 addr = mp->b_rptr + paddroff; 16311 16312 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16313 if (paddrreq == DL_IPV6_TOKEN) { 16314 /* 16315 * bcopy to low-order bits of ill_token 16316 * 16317 * XXX Temporary hack - currently, all known tokens 16318 * are 64 bits, so I'll cheat for the moment. 16319 */ 16320 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 16321 ill->ill_token_length = paddrlen; 16322 break; 16323 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16324 ASSERT(ill->ill_nd_lla_mp == NULL); 16325 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16326 mp = NULL; 16327 break; 16328 } else if (paddrreq == DL_CURR_DEST_ADDR) { 16329 ASSERT(ill->ill_dest_addr_mp == NULL); 16330 ill->ill_dest_addr_mp = mp; 16331 ill->ill_dest_addr = addr; 16332 mp = NULL; 16333 if (ill->ill_isv6) { 16334 ill_setdesttoken(ill); 16335 ipif_setdestlinklocal(ill->ill_ipif); 16336 } 16337 break; 16338 } 16339 16340 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16341 ASSERT(ill->ill_phys_addr_mp == NULL); 16342 if (!ill->ill_ifname_pending) 16343 break; 16344 ill->ill_ifname_pending = 0; 16345 if (!ioctl_aborted) 16346 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16347 if (mp1 != NULL) { 16348 ASSERT(connp == NULL); 16349 q = ill->ill_wq; 16350 } 16351 /* 16352 * If any error acks received during the plumbing sequence, 16353 * ill_ifname_pending_err will be set. Break out and send up 16354 * the error to the pending ioctl. 16355 */ 16356 if (ill->ill_ifname_pending_err != 0) { 16357 err = ill->ill_ifname_pending_err; 16358 ill->ill_ifname_pending_err = 0; 16359 break; 16360 } 16361 16362 ill->ill_phys_addr_mp = mp; 16363 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 16364 mp = NULL; 16365 16366 /* 16367 * If paddrlen or ill_phys_addr_length is zero, the DLPI 16368 * provider doesn't support physical addresses. We check both 16369 * paddrlen and ill_phys_addr_length because sppp (PPP) does 16370 * not have physical addresses, but historically adversises a 16371 * physical address length of 0 in its DL_INFO_ACK, but 6 in 16372 * its DL_PHYS_ADDR_ACK. 16373 */ 16374 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 16375 ill->ill_phys_addr = NULL; 16376 } else if (paddrlen != ill->ill_phys_addr_length) { 16377 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16378 paddrlen, ill->ill_phys_addr_length)); 16379 err = EINVAL; 16380 break; 16381 } 16382 16383 if (ill->ill_nd_lla_mp == NULL) { 16384 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16385 err = ENOMEM; 16386 break; 16387 } 16388 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16389 } 16390 16391 if (ill->ill_isv6) { 16392 ill_setdefaulttoken(ill); 16393 ipif_setlinklocal(ill->ill_ipif); 16394 } 16395 break; 16396 } 16397 case DL_OK_ACK: 16398 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16399 dl_primstr((int)dloa->dl_correct_primitive), 16400 dloa->dl_correct_primitive)); 16401 switch (dloa->dl_correct_primitive) { 16402 case DL_ENABMULTI_REQ: 16403 case DL_DISABMULTI_REQ: 16404 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16405 break; 16406 case DL_PROMISCON_REQ: 16407 case DL_PROMISCOFF_REQ: 16408 case DL_UNBIND_REQ: 16409 case DL_ATTACH_REQ: 16410 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16411 break; 16412 } 16413 break; 16414 default: 16415 break; 16416 } 16417 16418 freemsg(mp); 16419 if (mp1 == NULL) 16420 return; 16421 16422 /* 16423 * The operation must complete without EINPROGRESS since 16424 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 16425 * the operation will be stuck forever inside the IPSQ. 16426 */ 16427 ASSERT(err != EINPROGRESS); 16428 16429 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 16430 case 0: 16431 ipsq_current_finish(ipsq); 16432 break; 16433 16434 case SIOCSLIFNAME: 16435 case IF_UNITSEL: { 16436 ill_t *ill_other = ILL_OTHER(ill); 16437 16438 /* 16439 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 16440 * ill has a peer which is in an IPMP group, then place ill 16441 * into the same group. One catch: although ifconfig plumbs 16442 * the appropriate IPMP meta-interface prior to plumbing this 16443 * ill, it is possible for multiple ifconfig applications to 16444 * race (or for another application to adjust plumbing), in 16445 * which case the IPMP meta-interface we need will be missing. 16446 * If so, kick the phyint out of the group. 16447 */ 16448 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 16449 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 16450 ipmp_illgrp_t *illg; 16451 16452 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 16453 if (illg == NULL) 16454 ipmp_phyint_leave_grp(ill->ill_phyint); 16455 else 16456 ipmp_ill_join_illgrp(ill, illg); 16457 } 16458 16459 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 16460 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16461 else 16462 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16463 break; 16464 } 16465 case SIOCLIFADDIF: 16466 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16467 break; 16468 16469 default: 16470 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16471 break; 16472 } 16473 } 16474 16475 /* 16476 * ip_rput_other is called by ip_rput to handle messages modifying the global 16477 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 16478 */ 16479 /* ARGSUSED */ 16480 void 16481 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16482 { 16483 ill_t *ill = q->q_ptr; 16484 struct iocblk *iocp; 16485 16486 ip1dbg(("ip_rput_other ")); 16487 if (ipsq != NULL) { 16488 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16489 ASSERT(ipsq->ipsq_xop == 16490 ill->ill_phyint->phyint_ipsq->ipsq_xop); 16491 } 16492 16493 switch (mp->b_datap->db_type) { 16494 case M_ERROR: 16495 case M_HANGUP: 16496 /* 16497 * The device has a problem. We force the ILL down. It can 16498 * be brought up again manually using SIOCSIFFLAGS (via 16499 * ifconfig or equivalent). 16500 */ 16501 ASSERT(ipsq != NULL); 16502 if (mp->b_rptr < mp->b_wptr) 16503 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16504 if (ill->ill_error == 0) 16505 ill->ill_error = ENXIO; 16506 if (!ill_down_start(q, mp)) 16507 return; 16508 ipif_all_down_tail(ipsq, q, mp, NULL); 16509 break; 16510 case M_IOCNAK: { 16511 iocp = (struct iocblk *)mp->b_rptr; 16512 16513 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 16514 /* 16515 * If this was the first attempt, turn off the fastpath 16516 * probing. 16517 */ 16518 mutex_enter(&ill->ill_lock); 16519 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16520 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16521 mutex_exit(&ill->ill_lock); 16522 ill_fastpath_nack(ill); 16523 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 16524 ill->ill_name)); 16525 } else { 16526 mutex_exit(&ill->ill_lock); 16527 } 16528 freemsg(mp); 16529 break; 16530 } 16531 default: 16532 ASSERT(0); 16533 break; 16534 } 16535 } 16536 16537 /* 16538 * NOTE : This function does not ire_refrele the ire argument passed in. 16539 * 16540 * IPQoS notes 16541 * IP policy is invoked twice for a forwarded packet, once on the read side 16542 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16543 * enabled. An additional parameter, in_ill, has been added for this purpose. 16544 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16545 * because ip_mroute drops this information. 16546 * 16547 */ 16548 void 16549 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16550 { 16551 uint32_t old_pkt_len; 16552 uint32_t pkt_len; 16553 queue_t *q; 16554 uint32_t sum; 16555 #define rptr ((uchar_t *)ipha) 16556 uint32_t max_frag; 16557 uint32_t ill_index; 16558 ill_t *out_ill; 16559 mib2_ipIfStatsEntry_t *mibptr; 16560 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16561 16562 /* Get the ill_index of the incoming ILL */ 16563 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16564 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16565 16566 /* Initiate Read side IPPF processing */ 16567 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16568 ip_process(IPP_FWD_IN, &mp, ill_index); 16569 if (mp == NULL) { 16570 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16571 "during IPPF processing\n")); 16572 return; 16573 } 16574 } 16575 16576 /* Adjust the checksum to reflect the ttl decrement. */ 16577 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16578 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16579 16580 if (ipha->ipha_ttl-- <= 1) { 16581 if (ip_csum_hdr(ipha)) { 16582 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16583 goto drop_pkt; 16584 } 16585 /* 16586 * Note: ire_stq this will be NULL for multicast 16587 * datagrams using the long path through arp (the IRE 16588 * is not an IRE_CACHE). This should not cause 16589 * problems since we don't generate ICMP errors for 16590 * multicast packets. 16591 */ 16592 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16593 q = ire->ire_stq; 16594 if (q != NULL) { 16595 /* Sent by forwarding path, and router is global zone */ 16596 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16597 GLOBAL_ZONEID, ipst); 16598 } else 16599 freemsg(mp); 16600 return; 16601 } 16602 16603 /* 16604 * Don't forward if the interface is down 16605 */ 16606 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16607 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16608 ip2dbg(("ip_rput_forward:interface is down\n")); 16609 goto drop_pkt; 16610 } 16611 16612 /* Get the ill_index of the outgoing ILL */ 16613 out_ill = ire_to_ill(ire); 16614 ill_index = out_ill->ill_phyint->phyint_ifindex; 16615 16616 DTRACE_PROBE4(ip4__forwarding__start, 16617 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16618 16619 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16620 ipst->ips_ipv4firewall_forwarding, 16621 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16622 16623 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16624 16625 if (mp == NULL) 16626 return; 16627 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16628 16629 if (is_system_labeled()) { 16630 mblk_t *mp1; 16631 16632 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16633 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16634 goto drop_pkt; 16635 } 16636 /* Size may have changed */ 16637 mp = mp1; 16638 ipha = (ipha_t *)mp->b_rptr; 16639 pkt_len = ntohs(ipha->ipha_length); 16640 } 16641 16642 /* Check if there are options to update */ 16643 if (!IS_SIMPLE_IPH(ipha)) { 16644 if (ip_csum_hdr(ipha)) { 16645 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16646 goto drop_pkt; 16647 } 16648 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16649 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16650 return; 16651 } 16652 16653 ipha->ipha_hdr_checksum = 0; 16654 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16655 } 16656 max_frag = ire->ire_max_frag; 16657 if (pkt_len > max_frag) { 16658 /* 16659 * It needs fragging on its way out. We haven't 16660 * verified the header checksum yet. Since we 16661 * are going to put a surely good checksum in the 16662 * outgoing header, we have to make sure that it 16663 * was good coming in. 16664 */ 16665 if (ip_csum_hdr(ipha)) { 16666 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16667 goto drop_pkt; 16668 } 16669 /* Initiate Write side IPPF processing */ 16670 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16671 ip_process(IPP_FWD_OUT, &mp, ill_index); 16672 if (mp == NULL) { 16673 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16674 " during IPPF processing\n")); 16675 return; 16676 } 16677 } 16678 /* 16679 * Handle labeled packet resizing. 16680 * 16681 * If we have added a label, inform ip_wput_frag() of its 16682 * effect on the MTU for ICMP messages. 16683 */ 16684 if (pkt_len > old_pkt_len) { 16685 uint32_t secopt_size; 16686 16687 secopt_size = pkt_len - old_pkt_len; 16688 if (secopt_size < max_frag) 16689 max_frag -= secopt_size; 16690 } 16691 16692 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, 16693 GLOBAL_ZONEID, ipst, NULL); 16694 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16695 return; 16696 } 16697 16698 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16699 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16700 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16701 ipst->ips_ipv4firewall_physical_out, 16702 NULL, out_ill, ipha, mp, mp, 0, ipst); 16703 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16704 if (mp == NULL) 16705 return; 16706 16707 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16708 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16709 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE, NULL); 16710 /* ip_xmit_v4 always consumes the packet */ 16711 return; 16712 16713 drop_pkt:; 16714 ip1dbg(("ip_rput_forward: drop pkt\n")); 16715 freemsg(mp); 16716 #undef rptr 16717 } 16718 16719 void 16720 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16721 { 16722 ire_t *ire; 16723 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16724 16725 ASSERT(!ipif->ipif_isv6); 16726 /* 16727 * Find an IRE which matches the destination and the outgoing 16728 * queue in the cache table. All we need is an IRE_CACHE which 16729 * is pointing at ipif->ipif_ill. 16730 */ 16731 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16732 dst = ipif->ipif_pp_dst_addr; 16733 16734 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, msg_getlabel(mp), 16735 MATCH_IRE_ILL | MATCH_IRE_SECATTR, ipst); 16736 if (ire == NULL) { 16737 /* 16738 * Mark this packet to make it be delivered to 16739 * ip_rput_forward after the new ire has been 16740 * created. 16741 */ 16742 mp->b_prev = NULL; 16743 mp->b_next = mp; 16744 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16745 NULL, 0, GLOBAL_ZONEID, &zero_info); 16746 } else { 16747 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16748 IRE_REFRELE(ire); 16749 } 16750 } 16751 16752 /* Update any source route, record route or timestamp options */ 16753 static int 16754 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16755 { 16756 ipoptp_t opts; 16757 uchar_t *opt; 16758 uint8_t optval; 16759 uint8_t optlen; 16760 ipaddr_t dst; 16761 uint32_t ts; 16762 ire_t *dst_ire = NULL; 16763 ire_t *tmp_ire = NULL; 16764 timestruc_t now; 16765 16766 ip2dbg(("ip_rput_forward_options\n")); 16767 dst = ipha->ipha_dst; 16768 for (optval = ipoptp_first(&opts, ipha); 16769 optval != IPOPT_EOL; 16770 optval = ipoptp_next(&opts)) { 16771 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16772 opt = opts.ipoptp_cur; 16773 optlen = opts.ipoptp_len; 16774 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16775 optval, opts.ipoptp_len)); 16776 switch (optval) { 16777 uint32_t off; 16778 case IPOPT_SSRR: 16779 case IPOPT_LSRR: 16780 /* Check if adminstratively disabled */ 16781 if (!ipst->ips_ip_forward_src_routed) { 16782 if (ire->ire_stq != NULL) { 16783 /* 16784 * Sent by forwarding path, and router 16785 * is global zone 16786 */ 16787 icmp_unreachable(ire->ire_stq, mp, 16788 ICMP_SOURCE_ROUTE_FAILED, 16789 GLOBAL_ZONEID, ipst); 16790 } else { 16791 ip0dbg(("ip_rput_forward_options: " 16792 "unable to send unreach\n")); 16793 freemsg(mp); 16794 } 16795 return (-1); 16796 } 16797 16798 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16799 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16800 if (dst_ire == NULL) { 16801 /* 16802 * Must be partial since ip_rput_options 16803 * checked for strict. 16804 */ 16805 break; 16806 } 16807 off = opt[IPOPT_OFFSET]; 16808 off--; 16809 redo_srr: 16810 if (optlen < IP_ADDR_LEN || 16811 off > optlen - IP_ADDR_LEN) { 16812 /* End of source route */ 16813 ip1dbg(( 16814 "ip_rput_forward_options: end of SR\n")); 16815 ire_refrele(dst_ire); 16816 break; 16817 } 16818 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16819 bcopy(&ire->ire_src_addr, (char *)opt + off, 16820 IP_ADDR_LEN); 16821 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16822 ntohl(dst))); 16823 16824 /* 16825 * Check if our address is present more than 16826 * once as consecutive hops in source route. 16827 */ 16828 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16829 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16830 if (tmp_ire != NULL) { 16831 ire_refrele(tmp_ire); 16832 off += IP_ADDR_LEN; 16833 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16834 goto redo_srr; 16835 } 16836 ipha->ipha_dst = dst; 16837 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16838 ire_refrele(dst_ire); 16839 break; 16840 case IPOPT_RR: 16841 off = opt[IPOPT_OFFSET]; 16842 off--; 16843 if (optlen < IP_ADDR_LEN || 16844 off > optlen - IP_ADDR_LEN) { 16845 /* No more room - ignore */ 16846 ip1dbg(( 16847 "ip_rput_forward_options: end of RR\n")); 16848 break; 16849 } 16850 bcopy(&ire->ire_src_addr, (char *)opt + off, 16851 IP_ADDR_LEN); 16852 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16853 break; 16854 case IPOPT_TS: 16855 /* Insert timestamp if there is room */ 16856 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16857 case IPOPT_TS_TSONLY: 16858 off = IPOPT_TS_TIMELEN; 16859 break; 16860 case IPOPT_TS_PRESPEC: 16861 case IPOPT_TS_PRESPEC_RFC791: 16862 /* Verify that the address matched */ 16863 off = opt[IPOPT_OFFSET] - 1; 16864 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16865 dst_ire = ire_ctable_lookup(dst, 0, 16866 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16867 MATCH_IRE_TYPE, ipst); 16868 if (dst_ire == NULL) { 16869 /* Not for us */ 16870 break; 16871 } 16872 ire_refrele(dst_ire); 16873 /* FALLTHRU */ 16874 case IPOPT_TS_TSANDADDR: 16875 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16876 break; 16877 default: 16878 /* 16879 * ip_*put_options should have already 16880 * dropped this packet. 16881 */ 16882 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16883 "unknown IT - bug in ip_rput_options?\n"); 16884 return (0); /* Keep "lint" happy */ 16885 } 16886 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16887 /* Increase overflow counter */ 16888 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16889 opt[IPOPT_POS_OV_FLG] = 16890 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16891 (off << 4)); 16892 break; 16893 } 16894 off = opt[IPOPT_OFFSET] - 1; 16895 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16896 case IPOPT_TS_PRESPEC: 16897 case IPOPT_TS_PRESPEC_RFC791: 16898 case IPOPT_TS_TSANDADDR: 16899 bcopy(&ire->ire_src_addr, 16900 (char *)opt + off, IP_ADDR_LEN); 16901 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16902 /* FALLTHRU */ 16903 case IPOPT_TS_TSONLY: 16904 off = opt[IPOPT_OFFSET] - 1; 16905 /* Compute # of milliseconds since midnight */ 16906 gethrestime(&now); 16907 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16908 now.tv_nsec / (NANOSEC / MILLISEC); 16909 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16910 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16911 break; 16912 } 16913 break; 16914 } 16915 } 16916 return (0); 16917 } 16918 16919 /* 16920 * This is called after processing at least one of AH/ESP headers. 16921 * 16922 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16923 * the actual, physical interface on which the packet was received, 16924 * but, when ip_strict_dst_multihoming is set to 1, could be the 16925 * interface which had the ipha_dst configured when the packet went 16926 * through ip_rput. The ill_index corresponding to the recv_ill 16927 * is saved in ipsec_in_rill_index 16928 * 16929 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16930 * cannot assume "ire" points to valid data for any IPv6 cases. 16931 */ 16932 void 16933 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16934 { 16935 mblk_t *mp; 16936 ipaddr_t dst; 16937 in6_addr_t *v6dstp; 16938 ipha_t *ipha; 16939 ip6_t *ip6h; 16940 ipsec_in_t *ii; 16941 boolean_t ill_need_rele = B_FALSE; 16942 boolean_t rill_need_rele = B_FALSE; 16943 boolean_t ire_need_rele = B_FALSE; 16944 netstack_t *ns; 16945 ip_stack_t *ipst; 16946 16947 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16948 ASSERT(ii->ipsec_in_ill_index != 0); 16949 ns = ii->ipsec_in_ns; 16950 ASSERT(ii->ipsec_in_ns != NULL); 16951 ipst = ns->netstack_ip; 16952 16953 mp = ipsec_mp->b_cont; 16954 ASSERT(mp != NULL); 16955 16956 if (ill == NULL) { 16957 ASSERT(recv_ill == NULL); 16958 /* 16959 * We need to get the original queue on which ip_rput_local 16960 * or ip_rput_data_v6 was called. 16961 */ 16962 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16963 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16964 ill_need_rele = B_TRUE; 16965 16966 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16967 recv_ill = ill_lookup_on_ifindex( 16968 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16969 NULL, NULL, NULL, NULL, ipst); 16970 rill_need_rele = B_TRUE; 16971 } else { 16972 recv_ill = ill; 16973 } 16974 16975 if ((ill == NULL) || (recv_ill == NULL)) { 16976 ip0dbg(("ip_fanout_proto_again: interface " 16977 "disappeared\n")); 16978 if (ill != NULL) 16979 ill_refrele(ill); 16980 if (recv_ill != NULL) 16981 ill_refrele(recv_ill); 16982 freemsg(ipsec_mp); 16983 return; 16984 } 16985 } 16986 16987 ASSERT(ill != NULL && recv_ill != NULL); 16988 16989 if (mp->b_datap->db_type == M_CTL) { 16990 /* 16991 * AH/ESP is returning the ICMP message after 16992 * removing their headers. Fanout again till 16993 * it gets to the right protocol. 16994 */ 16995 if (ii->ipsec_in_v4) { 16996 icmph_t *icmph; 16997 int iph_hdr_length; 16998 int hdr_length; 16999 17000 ipha = (ipha_t *)mp->b_rptr; 17001 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17002 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17003 ipha = (ipha_t *)&icmph[1]; 17004 hdr_length = IPH_HDR_LENGTH(ipha); 17005 /* 17006 * icmp_inbound_error_fanout may need to do pullupmsg. 17007 * Reset the type to M_DATA. 17008 */ 17009 mp->b_datap->db_type = M_DATA; 17010 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17011 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17012 B_FALSE, ill, ii->ipsec_in_zoneid); 17013 } else { 17014 icmp6_t *icmp6; 17015 int hdr_length; 17016 17017 ip6h = (ip6_t *)mp->b_rptr; 17018 /* Don't call hdr_length_v6() unless you have to. */ 17019 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17020 hdr_length = ip_hdr_length_v6(mp, ip6h); 17021 else 17022 hdr_length = IPV6_HDR_LEN; 17023 17024 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17025 /* 17026 * icmp_inbound_error_fanout_v6 may need to do 17027 * pullupmsg. Reset the type to M_DATA. 17028 */ 17029 mp->b_datap->db_type = M_DATA; 17030 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17031 ip6h, icmp6, ill, recv_ill, B_TRUE, 17032 ii->ipsec_in_zoneid); 17033 } 17034 if (ill_need_rele) 17035 ill_refrele(ill); 17036 if (rill_need_rele) 17037 ill_refrele(recv_ill); 17038 return; 17039 } 17040 17041 if (ii->ipsec_in_v4) { 17042 ipha = (ipha_t *)mp->b_rptr; 17043 dst = ipha->ipha_dst; 17044 if (CLASSD(dst)) { 17045 /* 17046 * Multicast has to be delivered to all streams. 17047 */ 17048 dst = INADDR_BROADCAST; 17049 } 17050 17051 if (ire == NULL) { 17052 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17053 msg_getlabel(mp), ipst); 17054 if (ire == NULL) { 17055 if (ill_need_rele) 17056 ill_refrele(ill); 17057 if (rill_need_rele) 17058 ill_refrele(recv_ill); 17059 ip1dbg(("ip_fanout_proto_again: " 17060 "IRE not found")); 17061 freemsg(ipsec_mp); 17062 return; 17063 } 17064 ire_need_rele = B_TRUE; 17065 } 17066 17067 switch (ipha->ipha_protocol) { 17068 case IPPROTO_UDP: 17069 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17070 recv_ill); 17071 if (ire_need_rele) 17072 ire_refrele(ire); 17073 break; 17074 case IPPROTO_TCP: 17075 if (!ire_need_rele) 17076 IRE_REFHOLD(ire); 17077 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17078 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17079 IRE_REFRELE(ire); 17080 if (mp != NULL) { 17081 SQUEUE_ENTER(GET_SQUEUE(mp), mp, 17082 mp, 1, SQ_PROCESS, 17083 SQTAG_IP_PROTO_AGAIN); 17084 } 17085 break; 17086 case IPPROTO_SCTP: 17087 if (!ire_need_rele) 17088 IRE_REFHOLD(ire); 17089 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17090 ipsec_mp, 0, ill->ill_rq, dst); 17091 break; 17092 case IPPROTO_ENCAP: 17093 case IPPROTO_IPV6: 17094 if (ip_iptun_input(ipsec_mp, mp, ipha, ill, ire, 17095 ill->ill_ipst)) { 17096 /* 17097 * If we made it here, we don't need to worry 17098 * about the raw-socket/protocol fanout. 17099 */ 17100 if (ire_need_rele) 17101 ire_refrele(ire); 17102 break; 17103 } 17104 /* else FALLTHRU */ 17105 default: 17106 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17107 recv_ill, 0); 17108 if (ire_need_rele) 17109 ire_refrele(ire); 17110 break; 17111 } 17112 } else { 17113 uint32_t rput_flags = 0; 17114 17115 ip6h = (ip6_t *)mp->b_rptr; 17116 v6dstp = &ip6h->ip6_dst; 17117 /* 17118 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17119 * address. 17120 * 17121 * Currently, we don't store that state in the IPSEC_IN 17122 * message, and we may need to. 17123 */ 17124 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17125 IP6_IN_LLMCAST : 0); 17126 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17127 NULL, NULL); 17128 } 17129 if (ill_need_rele) 17130 ill_refrele(ill); 17131 if (rill_need_rele) 17132 ill_refrele(recv_ill); 17133 } 17134 17135 /* 17136 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17137 * returns 'true' if there are still fragments left on the queue, in 17138 * which case we restart the timer. 17139 */ 17140 void 17141 ill_frag_timer(void *arg) 17142 { 17143 ill_t *ill = (ill_t *)arg; 17144 boolean_t frag_pending; 17145 ip_stack_t *ipst = ill->ill_ipst; 17146 time_t timeout; 17147 17148 mutex_enter(&ill->ill_lock); 17149 ASSERT(!ill->ill_fragtimer_executing); 17150 if (ill->ill_state_flags & ILL_CONDEMNED) { 17151 ill->ill_frag_timer_id = 0; 17152 mutex_exit(&ill->ill_lock); 17153 return; 17154 } 17155 ill->ill_fragtimer_executing = 1; 17156 mutex_exit(&ill->ill_lock); 17157 17158 if (ill->ill_isv6) 17159 timeout = ipst->ips_ipv6_frag_timeout; 17160 else 17161 timeout = ipst->ips_ip_g_frag_timeout; 17162 17163 frag_pending = ill_frag_timeout(ill, timeout); 17164 17165 /* 17166 * Restart the timer, if we have fragments pending or if someone 17167 * wanted us to be scheduled again. 17168 */ 17169 mutex_enter(&ill->ill_lock); 17170 ill->ill_fragtimer_executing = 0; 17171 ill->ill_frag_timer_id = 0; 17172 if (frag_pending || ill->ill_fragtimer_needrestart) 17173 ill_frag_timer_start(ill); 17174 mutex_exit(&ill->ill_lock); 17175 } 17176 17177 void 17178 ill_frag_timer_start(ill_t *ill) 17179 { 17180 ip_stack_t *ipst = ill->ill_ipst; 17181 clock_t timeo_ms; 17182 17183 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17184 17185 /* If the ill is closing or opening don't proceed */ 17186 if (ill->ill_state_flags & ILL_CONDEMNED) 17187 return; 17188 17189 if (ill->ill_fragtimer_executing) { 17190 /* 17191 * ill_frag_timer is currently executing. Just record the 17192 * the fact that we want the timer to be restarted. 17193 * ill_frag_timer will post a timeout before it returns, 17194 * ensuring it will be called again. 17195 */ 17196 ill->ill_fragtimer_needrestart = 1; 17197 return; 17198 } 17199 17200 if (ill->ill_frag_timer_id == 0) { 17201 if (ill->ill_isv6) 17202 timeo_ms = ipst->ips_ipv6_frag_timo_ms; 17203 else 17204 timeo_ms = ipst->ips_ip_g_frag_timo_ms; 17205 /* 17206 * The timer is neither running nor is the timeout handler 17207 * executing. Post a timeout so that ill_frag_timer will be 17208 * called 17209 */ 17210 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17211 MSEC_TO_TICK(timeo_ms >> 1)); 17212 ill->ill_fragtimer_needrestart = 0; 17213 } 17214 } 17215 17216 /* 17217 * This routine is needed for loopback when forwarding multicasts. 17218 * 17219 * IPQoS Notes: 17220 * IPPF processing is done in fanout routines. 17221 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17222 * processing for IPsec packets is done when it comes back in clear. 17223 * NOTE : The callers of this function need to do the ire_refrele for the 17224 * ire that is being passed in. 17225 */ 17226 void 17227 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17228 ill_t *recv_ill, uint32_t esp_udp_ports) 17229 { 17230 boolean_t esp_in_udp_packet = (esp_udp_ports != 0); 17231 ill_t *ill = (ill_t *)q->q_ptr; 17232 uint32_t sum; 17233 uint32_t u1; 17234 uint32_t u2; 17235 int hdr_length; 17236 boolean_t mctl_present; 17237 mblk_t *first_mp = mp; 17238 mblk_t *hada_mp = NULL; 17239 ipha_t *inner_ipha; 17240 ip_stack_t *ipst; 17241 17242 ASSERT(recv_ill != NULL); 17243 ipst = recv_ill->ill_ipst; 17244 17245 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17246 "ip_rput_locl_start: q %p", q); 17247 17248 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17249 ASSERT(ill != NULL); 17250 17251 #define rptr ((uchar_t *)ipha) 17252 #define iphs ((uint16_t *)ipha) 17253 17254 /* 17255 * no UDP or TCP packet should come here anymore. 17256 */ 17257 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17258 ipha->ipha_protocol != IPPROTO_UDP); 17259 17260 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17261 if (mctl_present && 17262 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17263 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17264 17265 /* 17266 * It's an IPsec accelerated packet. 17267 * Keep a pointer to the data attributes around until 17268 * we allocate the ipsec_info_t. 17269 */ 17270 IPSECHW_DEBUG(IPSECHW_PKT, 17271 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17272 hada_mp = first_mp; 17273 hada_mp->b_cont = NULL; 17274 /* 17275 * Since it is accelerated, it comes directly from 17276 * the ill and the data attributes is followed by 17277 * the packet data. 17278 */ 17279 ASSERT(mp->b_datap->db_type != M_CTL); 17280 first_mp = mp; 17281 mctl_present = B_FALSE; 17282 } 17283 17284 /* 17285 * IF M_CTL is not present, then ipsec_in_is_secure 17286 * should return B_TRUE. There is a case where loopback 17287 * packets has an M_CTL in the front with all the 17288 * IPsec options set to IPSEC_PREF_NEVER - which means 17289 * ipsec_in_is_secure will return B_FALSE. As loopback 17290 * packets never comes here, it is safe to ASSERT the 17291 * following. 17292 */ 17293 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17294 17295 /* 17296 * Also, we should never have an mctl_present if this is an 17297 * ESP-in-UDP packet. 17298 */ 17299 ASSERT(!mctl_present || !esp_in_udp_packet); 17300 17301 /* u1 is # words of IP options */ 17302 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17303 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17304 17305 /* 17306 * Don't verify header checksum if we just removed UDP header or 17307 * packet is coming back from AH/ESP. 17308 */ 17309 if (!esp_in_udp_packet && !mctl_present) { 17310 if (u1) { 17311 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17312 if (hada_mp != NULL) 17313 freemsg(hada_mp); 17314 return; 17315 } 17316 } else { 17317 /* Check the IP header checksum. */ 17318 #define uph ((uint16_t *)ipha) 17319 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17320 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17321 #undef uph 17322 /* finish doing IP checksum */ 17323 sum = (sum & 0xFFFF) + (sum >> 16); 17324 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17325 if (sum && sum != 0xFFFF) { 17326 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17327 goto drop_pkt; 17328 } 17329 } 17330 } 17331 17332 /* 17333 * Count for SNMP of inbound packets for ire. As ip_proto_input 17334 * might be called more than once for secure packets, count only 17335 * the first time. 17336 */ 17337 if (!mctl_present) { 17338 UPDATE_IB_PKT_COUNT(ire); 17339 ire->ire_last_used_time = lbolt; 17340 } 17341 17342 /* Check for fragmentation offset. */ 17343 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17344 u1 = u2 & (IPH_MF | IPH_OFFSET); 17345 if (u1) { 17346 /* 17347 * We re-assemble fragments before we do the AH/ESP 17348 * processing. Thus, M_CTL should not be present 17349 * while we are re-assembling. 17350 */ 17351 ASSERT(!mctl_present); 17352 ASSERT(first_mp == mp); 17353 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 17354 return; 17355 17356 /* 17357 * Make sure that first_mp points back to mp as 17358 * the mp we came in with could have changed in 17359 * ip_rput_fragment(). 17360 */ 17361 ipha = (ipha_t *)mp->b_rptr; 17362 first_mp = mp; 17363 } 17364 17365 /* 17366 * Clear hardware checksumming flag as it is currently only 17367 * used by TCP and UDP. 17368 */ 17369 DB_CKSUMFLAGS(mp) = 0; 17370 17371 /* Now we have a complete datagram, destined for this machine. */ 17372 u1 = IPH_HDR_LENGTH(ipha); 17373 switch (ipha->ipha_protocol) { 17374 case IPPROTO_ICMP: { 17375 ire_t *ire_zone; 17376 ilm_t *ilm; 17377 mblk_t *mp1; 17378 zoneid_t last_zoneid; 17379 ilm_walker_t ilw; 17380 17381 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17382 ASSERT(ire->ire_type == IRE_BROADCAST); 17383 17384 /* 17385 * In the multicast case, applications may have joined 17386 * the group from different zones, so we need to deliver 17387 * the packet to each of them. Loop through the 17388 * multicast memberships structures (ilm) on the receive 17389 * ill and send a copy of the packet up each matching 17390 * one. However, we don't do this for multicasts sent on 17391 * the loopback interface (PHYI_LOOPBACK flag set) as 17392 * they must stay in the sender's zone. 17393 * 17394 * ilm_add_v6() ensures that ilms in the same zone are 17395 * contiguous in the ill_ilm list. We use this property 17396 * to avoid sending duplicates needed when two 17397 * applications in the same zone join the same group on 17398 * different logical interfaces: we ignore the ilm if 17399 * its zoneid is the same as the last matching one. 17400 * In addition, the sending of the packet for 17401 * ire_zoneid is delayed until all of the other ilms 17402 * have been exhausted. 17403 */ 17404 last_zoneid = -1; 17405 ilm = ilm_walker_start(&ilw, recv_ill); 17406 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 17407 if (ipha->ipha_dst != ilm->ilm_addr || 17408 ilm->ilm_zoneid == last_zoneid || 17409 ilm->ilm_zoneid == ire->ire_zoneid || 17410 ilm->ilm_zoneid == ALL_ZONES || 17411 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17412 continue; 17413 mp1 = ip_copymsg(first_mp); 17414 if (mp1 == NULL) 17415 continue; 17416 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 17417 0, sum, mctl_present, B_TRUE, 17418 recv_ill, ilm->ilm_zoneid); 17419 last_zoneid = ilm->ilm_zoneid; 17420 } 17421 ilm_walker_finish(&ilw); 17422 } else if (ire->ire_type == IRE_BROADCAST) { 17423 /* 17424 * In the broadcast case, there may be many zones 17425 * which need a copy of the packet delivered to them. 17426 * There is one IRE_BROADCAST per broadcast address 17427 * and per zone; we walk those using a helper function. 17428 * In addition, the sending of the packet for ire is 17429 * delayed until all of the other ires have been 17430 * processed. 17431 */ 17432 IRB_REFHOLD(ire->ire_bucket); 17433 ire_zone = NULL; 17434 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17435 ire)) != NULL) { 17436 mp1 = ip_copymsg(first_mp); 17437 if (mp1 == NULL) 17438 continue; 17439 17440 UPDATE_IB_PKT_COUNT(ire_zone); 17441 ire_zone->ire_last_used_time = lbolt; 17442 icmp_inbound(q, mp1, B_TRUE, ill, 17443 0, sum, mctl_present, B_TRUE, 17444 recv_ill, ire_zone->ire_zoneid); 17445 } 17446 IRB_REFRELE(ire->ire_bucket); 17447 } 17448 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17449 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17450 ire->ire_zoneid); 17451 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17452 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17453 return; 17454 } 17455 case IPPROTO_IGMP: 17456 /* 17457 * If we are not willing to accept IGMP packets in clear, 17458 * then check with global policy. 17459 */ 17460 if (ipst->ips_igmp_accept_clear_messages == 0) { 17461 first_mp = ipsec_check_global_policy(first_mp, NULL, 17462 ipha, NULL, mctl_present, ipst->ips_netstack); 17463 if (first_mp == NULL) 17464 return; 17465 } 17466 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17467 freemsg(first_mp); 17468 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17469 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17470 return; 17471 } 17472 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17473 /* Bad packet - discarded by igmp_input */ 17474 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17475 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17476 if (mctl_present) 17477 freeb(first_mp); 17478 return; 17479 } 17480 /* 17481 * igmp_input() may have returned the pulled up message. 17482 * So first_mp and ipha need to be reinitialized. 17483 */ 17484 ipha = (ipha_t *)mp->b_rptr; 17485 if (mctl_present) 17486 first_mp->b_cont = mp; 17487 else 17488 first_mp = mp; 17489 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17490 connf_head != NULL) { 17491 /* No user-level listener for IGMP packets */ 17492 goto drop_pkt; 17493 } 17494 /* deliver to local raw users */ 17495 break; 17496 case IPPROTO_PIM: 17497 /* 17498 * If we are not willing to accept PIM packets in clear, 17499 * then check with global policy. 17500 */ 17501 if (ipst->ips_pim_accept_clear_messages == 0) { 17502 first_mp = ipsec_check_global_policy(first_mp, NULL, 17503 ipha, NULL, mctl_present, ipst->ips_netstack); 17504 if (first_mp == NULL) 17505 return; 17506 } 17507 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17508 freemsg(first_mp); 17509 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17510 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17511 return; 17512 } 17513 if (pim_input(q, mp, ill) != 0) { 17514 /* Bad packet - discarded by pim_input */ 17515 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17516 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17517 if (mctl_present) 17518 freeb(first_mp); 17519 return; 17520 } 17521 17522 /* 17523 * pim_input() may have pulled up the message so ipha needs to 17524 * be reinitialized. 17525 */ 17526 ipha = (ipha_t *)mp->b_rptr; 17527 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17528 connf_head != NULL) { 17529 /* No user-level listener for PIM packets */ 17530 goto drop_pkt; 17531 } 17532 /* deliver to local raw users */ 17533 break; 17534 case IPPROTO_ENCAP: 17535 /* 17536 * Handle self-encapsulated packets (IP-in-IP where 17537 * the inner addresses == the outer addresses). 17538 */ 17539 hdr_length = IPH_HDR_LENGTH(ipha); 17540 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17541 mp->b_wptr) { 17542 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17543 sizeof (ipha_t) - mp->b_rptr)) { 17544 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17545 freemsg(first_mp); 17546 return; 17547 } 17548 ipha = (ipha_t *)mp->b_rptr; 17549 } 17550 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17551 /* 17552 * Check the sanity of the inner IP header. 17553 */ 17554 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17555 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17556 freemsg(first_mp); 17557 return; 17558 } 17559 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17560 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17561 freemsg(first_mp); 17562 return; 17563 } 17564 if (inner_ipha->ipha_src == ipha->ipha_src && 17565 inner_ipha->ipha_dst == ipha->ipha_dst) { 17566 ipsec_in_t *ii; 17567 17568 /* 17569 * Self-encapsulated tunnel packet. Remove 17570 * the outer IP header and fanout again. 17571 * We also need to make sure that the inner 17572 * header is pulled up until options. 17573 */ 17574 mp->b_rptr = (uchar_t *)inner_ipha; 17575 ipha = inner_ipha; 17576 hdr_length = IPH_HDR_LENGTH(ipha); 17577 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17578 if (!pullupmsg(mp, (uchar_t *)ipha + 17579 + hdr_length - mp->b_rptr)) { 17580 freemsg(first_mp); 17581 return; 17582 } 17583 ipha = (ipha_t *)mp->b_rptr; 17584 } 17585 if (hdr_length > sizeof (ipha_t)) { 17586 /* We got options on the inner packet. */ 17587 ipaddr_t dst = ipha->ipha_dst; 17588 17589 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17590 -1) { 17591 /* Bad options! */ 17592 return; 17593 } 17594 if (dst != ipha->ipha_dst) { 17595 /* 17596 * Someone put a source-route in 17597 * the inside header of a self- 17598 * encapsulated packet. Drop it 17599 * with extreme prejudice and let 17600 * the sender know. 17601 */ 17602 icmp_unreachable(q, first_mp, 17603 ICMP_SOURCE_ROUTE_FAILED, 17604 recv_ill->ill_zoneid, ipst); 17605 return; 17606 } 17607 } 17608 if (!mctl_present) { 17609 ASSERT(first_mp == mp); 17610 /* 17611 * This means that somebody is sending 17612 * Self-encapsualted packets without AH/ESP. 17613 * If AH/ESP was present, we would have already 17614 * allocated the first_mp. 17615 * 17616 * Send this packet to find a tunnel endpoint. 17617 * if I can't find one, an ICMP 17618 * PROTOCOL_UNREACHABLE will get sent. 17619 */ 17620 goto fanout; 17621 } 17622 /* 17623 * We generally store the ill_index if we need to 17624 * do IPsec processing as we lose the ill queue when 17625 * we come back. But in this case, we never should 17626 * have to store the ill_index here as it should have 17627 * been stored previously when we processed the 17628 * AH/ESP header in this routine or for non-ipsec 17629 * cases, we still have the queue. But for some bad 17630 * packets from the wire, we can get to IPsec after 17631 * this and we better store the index for that case. 17632 */ 17633 ill = (ill_t *)q->q_ptr; 17634 ii = (ipsec_in_t *)first_mp->b_rptr; 17635 ii->ipsec_in_ill_index = 17636 ill->ill_phyint->phyint_ifindex; 17637 ii->ipsec_in_rill_index = 17638 recv_ill->ill_phyint->phyint_ifindex; 17639 if (ii->ipsec_in_decaps) { 17640 /* 17641 * This packet is self-encapsulated multiple 17642 * times. We don't want to recurse infinitely. 17643 * To keep it simple, drop the packet. 17644 */ 17645 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17646 freemsg(first_mp); 17647 return; 17648 } 17649 ii->ipsec_in_decaps = B_TRUE; 17650 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17651 ire); 17652 return; 17653 } 17654 break; 17655 case IPPROTO_AH: 17656 case IPPROTO_ESP: { 17657 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17658 17659 /* 17660 * Fast path for AH/ESP. If this is the first time 17661 * we are sending a datagram to AH/ESP, allocate 17662 * a IPSEC_IN message and prepend it. Otherwise, 17663 * just fanout. 17664 */ 17665 17666 int ipsec_rc; 17667 ipsec_in_t *ii; 17668 netstack_t *ns = ipst->ips_netstack; 17669 17670 IP_STAT(ipst, ipsec_proto_ahesp); 17671 if (!mctl_present) { 17672 ASSERT(first_mp == mp); 17673 first_mp = ipsec_in_alloc(B_TRUE, ns); 17674 if (first_mp == NULL) { 17675 ip1dbg(("ip_proto_input: IPSEC_IN " 17676 "allocation failure.\n")); 17677 freemsg(hada_mp); /* okay ifnull */ 17678 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17679 freemsg(mp); 17680 return; 17681 } 17682 /* 17683 * Store the ill_index so that when we come back 17684 * from IPsec we ride on the same queue. 17685 */ 17686 ill = (ill_t *)q->q_ptr; 17687 ii = (ipsec_in_t *)first_mp->b_rptr; 17688 ii->ipsec_in_ill_index = 17689 ill->ill_phyint->phyint_ifindex; 17690 ii->ipsec_in_rill_index = 17691 recv_ill->ill_phyint->phyint_ifindex; 17692 first_mp->b_cont = mp; 17693 /* 17694 * Cache hardware acceleration info. 17695 */ 17696 if (hada_mp != NULL) { 17697 IPSECHW_DEBUG(IPSECHW_PKT, 17698 ("ip_rput_local: caching data attr.\n")); 17699 ii->ipsec_in_accelerated = B_TRUE; 17700 ii->ipsec_in_da = hada_mp; 17701 hada_mp = NULL; 17702 } 17703 } else { 17704 ii = (ipsec_in_t *)first_mp->b_rptr; 17705 } 17706 17707 ii->ipsec_in_esp_udp_ports = esp_udp_ports; 17708 17709 if (!ipsec_loaded(ipss)) { 17710 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17711 ire->ire_zoneid, ipst); 17712 return; 17713 } 17714 17715 ns = ipst->ips_netstack; 17716 /* select inbound SA and have IPsec process the pkt */ 17717 if (ipha->ipha_protocol == IPPROTO_ESP) { 17718 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17719 boolean_t esp_in_udp_sa; 17720 if (esph == NULL) 17721 return; 17722 ASSERT(ii->ipsec_in_esp_sa != NULL); 17723 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17724 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17725 IPSA_F_NATT) != 0); 17726 /* 17727 * The following is a fancy, but quick, way of saying: 17728 * ESP-in-UDP SA and Raw ESP packet --> drop 17729 * OR 17730 * ESP SA and ESP-in-UDP packet --> drop 17731 */ 17732 if (esp_in_udp_sa != esp_in_udp_packet) { 17733 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17734 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17735 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17736 &ns->netstack_ipsec->ipsec_dropper); 17737 return; 17738 } 17739 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17740 first_mp, esph); 17741 } else { 17742 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17743 if (ah == NULL) 17744 return; 17745 ASSERT(ii->ipsec_in_ah_sa != NULL); 17746 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17747 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17748 first_mp, ah); 17749 } 17750 17751 switch (ipsec_rc) { 17752 case IPSEC_STATUS_SUCCESS: 17753 break; 17754 case IPSEC_STATUS_FAILED: 17755 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17756 /* FALLTHRU */ 17757 case IPSEC_STATUS_PENDING: 17758 return; 17759 } 17760 /* we're done with IPsec processing, send it up */ 17761 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17762 return; 17763 } 17764 default: 17765 break; 17766 } 17767 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17768 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17769 ire->ire_zoneid)); 17770 goto drop_pkt; 17771 } 17772 /* 17773 * Handle protocols with which IP is less intimate. There 17774 * can be more than one stream bound to a particular 17775 * protocol. When this is the case, each one gets a copy 17776 * of any incoming packets. 17777 */ 17778 fanout: 17779 ip_fanout_proto(q, first_mp, ill, ipha, 17780 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17781 B_TRUE, recv_ill, ire->ire_zoneid); 17782 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17783 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17784 return; 17785 17786 drop_pkt: 17787 freemsg(first_mp); 17788 if (hada_mp != NULL) 17789 freeb(hada_mp); 17790 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17791 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17792 #undef rptr 17793 #undef iphs 17794 17795 } 17796 17797 /* 17798 * Update any source route, record route or timestamp options. 17799 * Check that we are at end of strict source route. 17800 * The options have already been checked for sanity in ip_rput_options(). 17801 */ 17802 static boolean_t 17803 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17804 ip_stack_t *ipst) 17805 { 17806 ipoptp_t opts; 17807 uchar_t *opt; 17808 uint8_t optval; 17809 uint8_t optlen; 17810 ipaddr_t dst; 17811 uint32_t ts; 17812 ire_t *dst_ire; 17813 timestruc_t now; 17814 zoneid_t zoneid; 17815 ill_t *ill; 17816 17817 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17818 17819 ip2dbg(("ip_rput_local_options\n")); 17820 17821 for (optval = ipoptp_first(&opts, ipha); 17822 optval != IPOPT_EOL; 17823 optval = ipoptp_next(&opts)) { 17824 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17825 opt = opts.ipoptp_cur; 17826 optlen = opts.ipoptp_len; 17827 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17828 optval, optlen)); 17829 switch (optval) { 17830 uint32_t off; 17831 case IPOPT_SSRR: 17832 case IPOPT_LSRR: 17833 off = opt[IPOPT_OFFSET]; 17834 off--; 17835 if (optlen < IP_ADDR_LEN || 17836 off > optlen - IP_ADDR_LEN) { 17837 /* End of source route */ 17838 ip1dbg(("ip_rput_local_options: end of SR\n")); 17839 break; 17840 } 17841 /* 17842 * This will only happen if two consecutive entries 17843 * in the source route contains our address or if 17844 * it is a packet with a loose source route which 17845 * reaches us before consuming the whole source route 17846 */ 17847 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17848 if (optval == IPOPT_SSRR) { 17849 goto bad_src_route; 17850 } 17851 /* 17852 * Hack: instead of dropping the packet truncate the 17853 * source route to what has been used by filling the 17854 * rest with IPOPT_NOP. 17855 */ 17856 opt[IPOPT_OLEN] = (uint8_t)off; 17857 while (off < optlen) { 17858 opt[off++] = IPOPT_NOP; 17859 } 17860 break; 17861 case IPOPT_RR: 17862 off = opt[IPOPT_OFFSET]; 17863 off--; 17864 if (optlen < IP_ADDR_LEN || 17865 off > optlen - IP_ADDR_LEN) { 17866 /* No more room - ignore */ 17867 ip1dbg(( 17868 "ip_rput_local_options: end of RR\n")); 17869 break; 17870 } 17871 bcopy(&ire->ire_src_addr, (char *)opt + off, 17872 IP_ADDR_LEN); 17873 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17874 break; 17875 case IPOPT_TS: 17876 /* Insert timestamp if there is romm */ 17877 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17878 case IPOPT_TS_TSONLY: 17879 off = IPOPT_TS_TIMELEN; 17880 break; 17881 case IPOPT_TS_PRESPEC: 17882 case IPOPT_TS_PRESPEC_RFC791: 17883 /* Verify that the address matched */ 17884 off = opt[IPOPT_OFFSET] - 1; 17885 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17886 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17887 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17888 ipst); 17889 if (dst_ire == NULL) { 17890 /* Not for us */ 17891 break; 17892 } 17893 ire_refrele(dst_ire); 17894 /* FALLTHRU */ 17895 case IPOPT_TS_TSANDADDR: 17896 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17897 break; 17898 default: 17899 /* 17900 * ip_*put_options should have already 17901 * dropped this packet. 17902 */ 17903 cmn_err(CE_PANIC, "ip_rput_local_options: " 17904 "unknown IT - bug in ip_rput_options?\n"); 17905 return (B_TRUE); /* Keep "lint" happy */ 17906 } 17907 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17908 /* Increase overflow counter */ 17909 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17910 opt[IPOPT_POS_OV_FLG] = 17911 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17912 (off << 4)); 17913 break; 17914 } 17915 off = opt[IPOPT_OFFSET] - 1; 17916 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17917 case IPOPT_TS_PRESPEC: 17918 case IPOPT_TS_PRESPEC_RFC791: 17919 case IPOPT_TS_TSANDADDR: 17920 bcopy(&ire->ire_src_addr, (char *)opt + off, 17921 IP_ADDR_LEN); 17922 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17923 /* FALLTHRU */ 17924 case IPOPT_TS_TSONLY: 17925 off = opt[IPOPT_OFFSET] - 1; 17926 /* Compute # of milliseconds since midnight */ 17927 gethrestime(&now); 17928 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17929 now.tv_nsec / (NANOSEC / MILLISEC); 17930 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17931 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17932 break; 17933 } 17934 break; 17935 } 17936 } 17937 return (B_TRUE); 17938 17939 bad_src_route: 17940 q = WR(q); 17941 if (q->q_next != NULL) 17942 ill = q->q_ptr; 17943 else 17944 ill = NULL; 17945 17946 /* make sure we clear any indication of a hardware checksum */ 17947 DB_CKSUMFLAGS(mp) = 0; 17948 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17949 if (zoneid == ALL_ZONES) 17950 freemsg(mp); 17951 else 17952 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17953 return (B_FALSE); 17954 17955 } 17956 17957 /* 17958 * Process IP options in an inbound packet. If an option affects the 17959 * effective destination address, return the next hop address via dstp. 17960 * Returns -1 if something fails in which case an ICMP error has been sent 17961 * and mp freed. 17962 */ 17963 static int 17964 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17965 ip_stack_t *ipst) 17966 { 17967 ipoptp_t opts; 17968 uchar_t *opt; 17969 uint8_t optval; 17970 uint8_t optlen; 17971 ipaddr_t dst; 17972 intptr_t code = 0; 17973 ire_t *ire = NULL; 17974 zoneid_t zoneid; 17975 ill_t *ill; 17976 17977 ip2dbg(("ip_rput_options\n")); 17978 dst = ipha->ipha_dst; 17979 for (optval = ipoptp_first(&opts, ipha); 17980 optval != IPOPT_EOL; 17981 optval = ipoptp_next(&opts)) { 17982 opt = opts.ipoptp_cur; 17983 optlen = opts.ipoptp_len; 17984 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17985 optval, optlen)); 17986 /* 17987 * Note: we need to verify the checksum before we 17988 * modify anything thus this routine only extracts the next 17989 * hop dst from any source route. 17990 */ 17991 switch (optval) { 17992 uint32_t off; 17993 case IPOPT_SSRR: 17994 case IPOPT_LSRR: 17995 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17996 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17997 if (ire == NULL) { 17998 if (optval == IPOPT_SSRR) { 17999 ip1dbg(("ip_rput_options: not next" 18000 " strict source route 0x%x\n", 18001 ntohl(dst))); 18002 code = (char *)&ipha->ipha_dst - 18003 (char *)ipha; 18004 goto param_prob; /* RouterReq's */ 18005 } 18006 ip2dbg(("ip_rput_options: " 18007 "not next source route 0x%x\n", 18008 ntohl(dst))); 18009 break; 18010 } 18011 ire_refrele(ire); 18012 18013 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18014 ip1dbg(( 18015 "ip_rput_options: bad option offset\n")); 18016 code = (char *)&opt[IPOPT_OLEN] - 18017 (char *)ipha; 18018 goto param_prob; 18019 } 18020 off = opt[IPOPT_OFFSET]; 18021 off--; 18022 redo_srr: 18023 if (optlen < IP_ADDR_LEN || 18024 off > optlen - IP_ADDR_LEN) { 18025 /* End of source route */ 18026 ip1dbg(("ip_rput_options: end of SR\n")); 18027 break; 18028 } 18029 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18030 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18031 ntohl(dst))); 18032 18033 /* 18034 * Check if our address is present more than 18035 * once as consecutive hops in source route. 18036 * XXX verify per-interface ip_forwarding 18037 * for source route? 18038 */ 18039 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18040 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18041 18042 if (ire != NULL) { 18043 ire_refrele(ire); 18044 off += IP_ADDR_LEN; 18045 goto redo_srr; 18046 } 18047 18048 if (dst == htonl(INADDR_LOOPBACK)) { 18049 ip1dbg(("ip_rput_options: loopback addr in " 18050 "source route!\n")); 18051 goto bad_src_route; 18052 } 18053 /* 18054 * For strict: verify that dst is directly 18055 * reachable. 18056 */ 18057 if (optval == IPOPT_SSRR) { 18058 ire = ire_ftable_lookup(dst, 0, 0, 18059 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18060 msg_getlabel(mp), 18061 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18062 if (ire == NULL) { 18063 ip1dbg(("ip_rput_options: SSRR not " 18064 "directly reachable: 0x%x\n", 18065 ntohl(dst))); 18066 goto bad_src_route; 18067 } 18068 ire_refrele(ire); 18069 } 18070 /* 18071 * Defer update of the offset and the record route 18072 * until the packet is forwarded. 18073 */ 18074 break; 18075 case IPOPT_RR: 18076 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18077 ip1dbg(( 18078 "ip_rput_options: bad option offset\n")); 18079 code = (char *)&opt[IPOPT_OLEN] - 18080 (char *)ipha; 18081 goto param_prob; 18082 } 18083 break; 18084 case IPOPT_TS: 18085 /* 18086 * Verify that length >= 5 and that there is either 18087 * room for another timestamp or that the overflow 18088 * counter is not maxed out. 18089 */ 18090 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18091 if (optlen < IPOPT_MINLEN_IT) { 18092 goto param_prob; 18093 } 18094 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18095 ip1dbg(( 18096 "ip_rput_options: bad option offset\n")); 18097 code = (char *)&opt[IPOPT_OFFSET] - 18098 (char *)ipha; 18099 goto param_prob; 18100 } 18101 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18102 case IPOPT_TS_TSONLY: 18103 off = IPOPT_TS_TIMELEN; 18104 break; 18105 case IPOPT_TS_TSANDADDR: 18106 case IPOPT_TS_PRESPEC: 18107 case IPOPT_TS_PRESPEC_RFC791: 18108 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18109 break; 18110 default: 18111 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18112 (char *)ipha; 18113 goto param_prob; 18114 } 18115 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18116 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18117 /* 18118 * No room and the overflow counter is 15 18119 * already. 18120 */ 18121 goto param_prob; 18122 } 18123 break; 18124 } 18125 } 18126 18127 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18128 *dstp = dst; 18129 return (0); 18130 } 18131 18132 ip1dbg(("ip_rput_options: error processing IP options.")); 18133 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18134 18135 param_prob: 18136 q = WR(q); 18137 if (q->q_next != NULL) 18138 ill = q->q_ptr; 18139 else 18140 ill = NULL; 18141 18142 /* make sure we clear any indication of a hardware checksum */ 18143 DB_CKSUMFLAGS(mp) = 0; 18144 /* Don't know whether this is for non-global or global/forwarding */ 18145 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18146 if (zoneid == ALL_ZONES) 18147 freemsg(mp); 18148 else 18149 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18150 return (-1); 18151 18152 bad_src_route: 18153 q = WR(q); 18154 if (q->q_next != NULL) 18155 ill = q->q_ptr; 18156 else 18157 ill = NULL; 18158 18159 /* make sure we clear any indication of a hardware checksum */ 18160 DB_CKSUMFLAGS(mp) = 0; 18161 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18162 if (zoneid == ALL_ZONES) 18163 freemsg(mp); 18164 else 18165 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18166 return (-1); 18167 } 18168 18169 /* 18170 * IP & ICMP info in >=14 msg's ... 18171 * - ip fixed part (mib2_ip_t) 18172 * - icmp fixed part (mib2_icmp_t) 18173 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18174 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18175 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18176 * - ipRouteAttributeTable (ip 102) labeled routes 18177 * - ip multicast membership (ip_member_t) 18178 * - ip multicast source filtering (ip_grpsrc_t) 18179 * - igmp fixed part (struct igmpstat) 18180 * - multicast routing stats (struct mrtstat) 18181 * - multicast routing vifs (array of struct vifctl) 18182 * - multicast routing routes (array of struct mfcctl) 18183 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18184 * One per ill plus one generic 18185 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18186 * One per ill plus one generic 18187 * - ipv6RouteEntry all IPv6 IREs 18188 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18189 * - ipv6NetToMediaEntry all Neighbor Cache entries 18190 * - ipv6AddrEntry all IPv6 ipifs 18191 * - ipv6 multicast membership (ipv6_member_t) 18192 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18193 * 18194 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18195 * 18196 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18197 * already filled in by the caller. 18198 * Return value of 0 indicates that no messages were sent and caller 18199 * should free mpctl. 18200 */ 18201 int 18202 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18203 { 18204 ip_stack_t *ipst; 18205 sctp_stack_t *sctps; 18206 18207 if (q->q_next != NULL) { 18208 ipst = ILLQ_TO_IPST(q); 18209 } else { 18210 ipst = CONNQ_TO_IPST(q); 18211 } 18212 ASSERT(ipst != NULL); 18213 sctps = ipst->ips_netstack->netstack_sctp; 18214 18215 if (mpctl == NULL || mpctl->b_cont == NULL) { 18216 return (0); 18217 } 18218 18219 /* 18220 * For the purposes of the (broken) packet shell use 18221 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18222 * to make TCP and UDP appear first in the list of mib items. 18223 * TBD: We could expand this and use it in netstat so that 18224 * the kernel doesn't have to produce large tables (connections, 18225 * routes, etc) when netstat only wants the statistics or a particular 18226 * table. 18227 */ 18228 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18229 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18230 return (1); 18231 } 18232 } 18233 18234 if (level != MIB2_TCP) { 18235 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18236 return (1); 18237 } 18238 } 18239 18240 if (level != MIB2_UDP) { 18241 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18242 return (1); 18243 } 18244 } 18245 18246 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18247 ipst)) == NULL) { 18248 return (1); 18249 } 18250 18251 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18252 return (1); 18253 } 18254 18255 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18256 return (1); 18257 } 18258 18259 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18260 return (1); 18261 } 18262 18263 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18264 return (1); 18265 } 18266 18267 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18268 return (1); 18269 } 18270 18271 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18272 return (1); 18273 } 18274 18275 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18276 return (1); 18277 } 18278 18279 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18280 return (1); 18281 } 18282 18283 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18284 return (1); 18285 } 18286 18287 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18288 return (1); 18289 } 18290 18291 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18292 return (1); 18293 } 18294 18295 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18296 return (1); 18297 } 18298 18299 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18300 return (1); 18301 } 18302 18303 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 18304 if (mpctl == NULL) 18305 return (1); 18306 18307 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 18308 if (mpctl == NULL) 18309 return (1); 18310 18311 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18312 return (1); 18313 } 18314 freemsg(mpctl); 18315 return (1); 18316 } 18317 18318 /* Get global (legacy) IPv4 statistics */ 18319 static mblk_t * 18320 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18321 ip_stack_t *ipst) 18322 { 18323 mib2_ip_t old_ip_mib; 18324 struct opthdr *optp; 18325 mblk_t *mp2ctl; 18326 18327 /* 18328 * make a copy of the original message 18329 */ 18330 mp2ctl = copymsg(mpctl); 18331 18332 /* fixed length IP structure... */ 18333 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18334 optp->level = MIB2_IP; 18335 optp->name = 0; 18336 SET_MIB(old_ip_mib.ipForwarding, 18337 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18338 SET_MIB(old_ip_mib.ipDefaultTTL, 18339 (uint32_t)ipst->ips_ip_def_ttl); 18340 SET_MIB(old_ip_mib.ipReasmTimeout, 18341 ipst->ips_ip_g_frag_timeout); 18342 SET_MIB(old_ip_mib.ipAddrEntrySize, 18343 sizeof (mib2_ipAddrEntry_t)); 18344 SET_MIB(old_ip_mib.ipRouteEntrySize, 18345 sizeof (mib2_ipRouteEntry_t)); 18346 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18347 sizeof (mib2_ipNetToMediaEntry_t)); 18348 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18349 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18350 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18351 sizeof (mib2_ipAttributeEntry_t)); 18352 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18353 18354 /* 18355 * Grab the statistics from the new IP MIB 18356 */ 18357 SET_MIB(old_ip_mib.ipInReceives, 18358 (uint32_t)ipmib->ipIfStatsHCInReceives); 18359 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18360 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18361 SET_MIB(old_ip_mib.ipForwDatagrams, 18362 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18363 SET_MIB(old_ip_mib.ipInUnknownProtos, 18364 ipmib->ipIfStatsInUnknownProtos); 18365 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18366 SET_MIB(old_ip_mib.ipInDelivers, 18367 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18368 SET_MIB(old_ip_mib.ipOutRequests, 18369 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18370 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18371 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18372 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18373 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18374 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18375 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18376 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18377 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18378 18379 /* ipRoutingDiscards is not being used */ 18380 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18381 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18382 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18383 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18384 SET_MIB(old_ip_mib.ipReasmDuplicates, 18385 ipmib->ipIfStatsReasmDuplicates); 18386 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18387 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18388 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18389 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18390 SET_MIB(old_ip_mib.rawipInOverflows, 18391 ipmib->rawipIfStatsInOverflows); 18392 18393 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18394 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18395 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18396 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18397 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18398 ipmib->ipIfStatsOutSwitchIPVersion); 18399 18400 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18401 (int)sizeof (old_ip_mib))) { 18402 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18403 (uint_t)sizeof (old_ip_mib))); 18404 } 18405 18406 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18407 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18408 (int)optp->level, (int)optp->name, (int)optp->len)); 18409 qreply(q, mpctl); 18410 return (mp2ctl); 18411 } 18412 18413 /* Per interface IPv4 statistics */ 18414 static mblk_t * 18415 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18416 { 18417 struct opthdr *optp; 18418 mblk_t *mp2ctl; 18419 ill_t *ill; 18420 ill_walk_context_t ctx; 18421 mblk_t *mp_tail = NULL; 18422 mib2_ipIfStatsEntry_t global_ip_mib; 18423 18424 /* 18425 * Make a copy of the original message 18426 */ 18427 mp2ctl = copymsg(mpctl); 18428 18429 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18430 optp->level = MIB2_IP; 18431 optp->name = MIB2_IP_TRAFFIC_STATS; 18432 /* Include "unknown interface" ip_mib */ 18433 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18434 ipst->ips_ip_mib.ipIfStatsIfIndex = 18435 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18436 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18437 (ipst->ips_ip_g_forward ? 1 : 2)); 18438 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18439 (uint32_t)ipst->ips_ip_def_ttl); 18440 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18441 sizeof (mib2_ipIfStatsEntry_t)); 18442 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18443 sizeof (mib2_ipAddrEntry_t)); 18444 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18445 sizeof (mib2_ipRouteEntry_t)); 18446 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18447 sizeof (mib2_ipNetToMediaEntry_t)); 18448 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18449 sizeof (ip_member_t)); 18450 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18451 sizeof (ip_grpsrc_t)); 18452 18453 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18454 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18455 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18456 "failed to allocate %u bytes\n", 18457 (uint_t)sizeof (ipst->ips_ip_mib))); 18458 } 18459 18460 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18461 18462 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18463 ill = ILL_START_WALK_V4(&ctx, ipst); 18464 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18465 ill->ill_ip_mib->ipIfStatsIfIndex = 18466 ill->ill_phyint->phyint_ifindex; 18467 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18468 (ipst->ips_ip_g_forward ? 1 : 2)); 18469 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18470 (uint32_t)ipst->ips_ip_def_ttl); 18471 18472 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18473 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18474 (char *)ill->ill_ip_mib, 18475 (int)sizeof (*ill->ill_ip_mib))) { 18476 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18477 "failed to allocate %u bytes\n", 18478 (uint_t)sizeof (*ill->ill_ip_mib))); 18479 } 18480 } 18481 rw_exit(&ipst->ips_ill_g_lock); 18482 18483 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18484 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18485 "level %d, name %d, len %d\n", 18486 (int)optp->level, (int)optp->name, (int)optp->len)); 18487 qreply(q, mpctl); 18488 18489 if (mp2ctl == NULL) 18490 return (NULL); 18491 18492 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18493 } 18494 18495 /* Global IPv4 ICMP statistics */ 18496 static mblk_t * 18497 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18498 { 18499 struct opthdr *optp; 18500 mblk_t *mp2ctl; 18501 18502 /* 18503 * Make a copy of the original message 18504 */ 18505 mp2ctl = copymsg(mpctl); 18506 18507 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18508 optp->level = MIB2_ICMP; 18509 optp->name = 0; 18510 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18511 (int)sizeof (ipst->ips_icmp_mib))) { 18512 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18513 (uint_t)sizeof (ipst->ips_icmp_mib))); 18514 } 18515 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18516 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18517 (int)optp->level, (int)optp->name, (int)optp->len)); 18518 qreply(q, mpctl); 18519 return (mp2ctl); 18520 } 18521 18522 /* Global IPv4 IGMP statistics */ 18523 static mblk_t * 18524 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18525 { 18526 struct opthdr *optp; 18527 mblk_t *mp2ctl; 18528 18529 /* 18530 * make a copy of the original message 18531 */ 18532 mp2ctl = copymsg(mpctl); 18533 18534 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18535 optp->level = EXPER_IGMP; 18536 optp->name = 0; 18537 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18538 (int)sizeof (ipst->ips_igmpstat))) { 18539 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18540 (uint_t)sizeof (ipst->ips_igmpstat))); 18541 } 18542 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18543 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18544 (int)optp->level, (int)optp->name, (int)optp->len)); 18545 qreply(q, mpctl); 18546 return (mp2ctl); 18547 } 18548 18549 /* Global IPv4 Multicast Routing statistics */ 18550 static mblk_t * 18551 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18552 { 18553 struct opthdr *optp; 18554 mblk_t *mp2ctl; 18555 18556 /* 18557 * make a copy of the original message 18558 */ 18559 mp2ctl = copymsg(mpctl); 18560 18561 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18562 optp->level = EXPER_DVMRP; 18563 optp->name = 0; 18564 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18565 ip0dbg(("ip_mroute_stats: failed\n")); 18566 } 18567 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18568 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18569 (int)optp->level, (int)optp->name, (int)optp->len)); 18570 qreply(q, mpctl); 18571 return (mp2ctl); 18572 } 18573 18574 /* IPv4 address information */ 18575 static mblk_t * 18576 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18577 { 18578 struct opthdr *optp; 18579 mblk_t *mp2ctl; 18580 mblk_t *mp_tail = NULL; 18581 ill_t *ill; 18582 ipif_t *ipif; 18583 uint_t bitval; 18584 mib2_ipAddrEntry_t mae; 18585 zoneid_t zoneid; 18586 ill_walk_context_t ctx; 18587 18588 /* 18589 * make a copy of the original message 18590 */ 18591 mp2ctl = copymsg(mpctl); 18592 18593 /* ipAddrEntryTable */ 18594 18595 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18596 optp->level = MIB2_IP; 18597 optp->name = MIB2_IP_ADDR; 18598 zoneid = Q_TO_CONN(q)->conn_zoneid; 18599 18600 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18601 ill = ILL_START_WALK_V4(&ctx, ipst); 18602 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18603 for (ipif = ill->ill_ipif; ipif != NULL; 18604 ipif = ipif->ipif_next) { 18605 if (ipif->ipif_zoneid != zoneid && 18606 ipif->ipif_zoneid != ALL_ZONES) 18607 continue; 18608 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18609 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18610 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18611 18612 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18613 OCTET_LENGTH); 18614 mae.ipAdEntIfIndex.o_length = 18615 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18616 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18617 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18618 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18619 mae.ipAdEntInfo.ae_subnet_len = 18620 ip_mask_to_plen(ipif->ipif_net_mask); 18621 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18622 for (bitval = 1; 18623 bitval && 18624 !(bitval & ipif->ipif_brd_addr); 18625 bitval <<= 1) 18626 noop; 18627 mae.ipAdEntBcastAddr = bitval; 18628 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18629 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18630 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18631 mae.ipAdEntInfo.ae_broadcast_addr = 18632 ipif->ipif_brd_addr; 18633 mae.ipAdEntInfo.ae_pp_dst_addr = 18634 ipif->ipif_pp_dst_addr; 18635 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18636 ill->ill_flags | ill->ill_phyint->phyint_flags; 18637 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18638 18639 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18640 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18641 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18642 "allocate %u bytes\n", 18643 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18644 } 18645 } 18646 } 18647 rw_exit(&ipst->ips_ill_g_lock); 18648 18649 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18650 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18651 (int)optp->level, (int)optp->name, (int)optp->len)); 18652 qreply(q, mpctl); 18653 return (mp2ctl); 18654 } 18655 18656 /* IPv6 address information */ 18657 static mblk_t * 18658 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18659 { 18660 struct opthdr *optp; 18661 mblk_t *mp2ctl; 18662 mblk_t *mp_tail = NULL; 18663 ill_t *ill; 18664 ipif_t *ipif; 18665 mib2_ipv6AddrEntry_t mae6; 18666 zoneid_t zoneid; 18667 ill_walk_context_t ctx; 18668 18669 /* 18670 * make a copy of the original message 18671 */ 18672 mp2ctl = copymsg(mpctl); 18673 18674 /* ipv6AddrEntryTable */ 18675 18676 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18677 optp->level = MIB2_IP6; 18678 optp->name = MIB2_IP6_ADDR; 18679 zoneid = Q_TO_CONN(q)->conn_zoneid; 18680 18681 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18682 ill = ILL_START_WALK_V6(&ctx, ipst); 18683 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18684 for (ipif = ill->ill_ipif; ipif != NULL; 18685 ipif = ipif->ipif_next) { 18686 if (ipif->ipif_zoneid != zoneid && 18687 ipif->ipif_zoneid != ALL_ZONES) 18688 continue; 18689 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18690 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18691 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18692 18693 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18694 OCTET_LENGTH); 18695 mae6.ipv6AddrIfIndex.o_length = 18696 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18697 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18698 mae6.ipv6AddrPfxLength = 18699 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18700 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18701 mae6.ipv6AddrInfo.ae_subnet_len = 18702 mae6.ipv6AddrPfxLength; 18703 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18704 18705 /* Type: stateless(1), stateful(2), unknown(3) */ 18706 if (ipif->ipif_flags & IPIF_ADDRCONF) 18707 mae6.ipv6AddrType = 1; 18708 else 18709 mae6.ipv6AddrType = 2; 18710 /* Anycast: true(1), false(2) */ 18711 if (ipif->ipif_flags & IPIF_ANYCAST) 18712 mae6.ipv6AddrAnycastFlag = 1; 18713 else 18714 mae6.ipv6AddrAnycastFlag = 2; 18715 18716 /* 18717 * Address status: preferred(1), deprecated(2), 18718 * invalid(3), inaccessible(4), unknown(5) 18719 */ 18720 if (ipif->ipif_flags & IPIF_NOLOCAL) 18721 mae6.ipv6AddrStatus = 3; 18722 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18723 mae6.ipv6AddrStatus = 2; 18724 else 18725 mae6.ipv6AddrStatus = 1; 18726 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18727 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18728 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18729 ipif->ipif_v6pp_dst_addr; 18730 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18731 ill->ill_flags | ill->ill_phyint->phyint_flags; 18732 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18733 mae6.ipv6AddrIdentifier = ill->ill_token; 18734 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18735 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18736 mae6.ipv6AddrRetransmitTime = 18737 ill->ill_reachable_retrans_time; 18738 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18739 (char *)&mae6, 18740 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18741 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18742 "allocate %u bytes\n", 18743 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18744 } 18745 } 18746 } 18747 rw_exit(&ipst->ips_ill_g_lock); 18748 18749 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18750 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18751 (int)optp->level, (int)optp->name, (int)optp->len)); 18752 qreply(q, mpctl); 18753 return (mp2ctl); 18754 } 18755 18756 /* IPv4 multicast group membership. */ 18757 static mblk_t * 18758 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18759 { 18760 struct opthdr *optp; 18761 mblk_t *mp2ctl; 18762 ill_t *ill; 18763 ipif_t *ipif; 18764 ilm_t *ilm; 18765 ip_member_t ipm; 18766 mblk_t *mp_tail = NULL; 18767 ill_walk_context_t ctx; 18768 zoneid_t zoneid; 18769 ilm_walker_t ilw; 18770 18771 /* 18772 * make a copy of the original message 18773 */ 18774 mp2ctl = copymsg(mpctl); 18775 zoneid = Q_TO_CONN(q)->conn_zoneid; 18776 18777 /* ipGroupMember table */ 18778 optp = (struct opthdr *)&mpctl->b_rptr[ 18779 sizeof (struct T_optmgmt_ack)]; 18780 optp->level = MIB2_IP; 18781 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18782 18783 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18784 ill = ILL_START_WALK_V4(&ctx, ipst); 18785 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18786 if (IS_UNDER_IPMP(ill)) 18787 continue; 18788 18789 ilm = ilm_walker_start(&ilw, ill); 18790 for (ipif = ill->ill_ipif; ipif != NULL; 18791 ipif = ipif->ipif_next) { 18792 if (ipif->ipif_zoneid != zoneid && 18793 ipif->ipif_zoneid != ALL_ZONES) 18794 continue; /* not this zone */ 18795 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18796 OCTET_LENGTH); 18797 ipm.ipGroupMemberIfIndex.o_length = 18798 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18799 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18800 ASSERT(ilm->ilm_ipif != NULL); 18801 ASSERT(ilm->ilm_ill == NULL); 18802 if (ilm->ilm_ipif != ipif) 18803 continue; 18804 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18805 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18806 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18807 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18808 (char *)&ipm, (int)sizeof (ipm))) { 18809 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18810 "failed to allocate %u bytes\n", 18811 (uint_t)sizeof (ipm))); 18812 } 18813 } 18814 } 18815 ilm_walker_finish(&ilw); 18816 } 18817 rw_exit(&ipst->ips_ill_g_lock); 18818 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18819 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18820 (int)optp->level, (int)optp->name, (int)optp->len)); 18821 qreply(q, mpctl); 18822 return (mp2ctl); 18823 } 18824 18825 /* IPv6 multicast group membership. */ 18826 static mblk_t * 18827 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18828 { 18829 struct opthdr *optp; 18830 mblk_t *mp2ctl; 18831 ill_t *ill; 18832 ilm_t *ilm; 18833 ipv6_member_t ipm6; 18834 mblk_t *mp_tail = NULL; 18835 ill_walk_context_t ctx; 18836 zoneid_t zoneid; 18837 ilm_walker_t ilw; 18838 18839 /* 18840 * make a copy of the original message 18841 */ 18842 mp2ctl = copymsg(mpctl); 18843 zoneid = Q_TO_CONN(q)->conn_zoneid; 18844 18845 /* ip6GroupMember table */ 18846 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18847 optp->level = MIB2_IP6; 18848 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18849 18850 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18851 ill = ILL_START_WALK_V6(&ctx, ipst); 18852 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18853 if (IS_UNDER_IPMP(ill)) 18854 continue; 18855 18856 ilm = ilm_walker_start(&ilw, ill); 18857 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18858 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18859 ASSERT(ilm->ilm_ipif == NULL); 18860 ASSERT(ilm->ilm_ill != NULL); 18861 if (ilm->ilm_zoneid != zoneid) 18862 continue; /* not this zone */ 18863 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18864 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18865 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18866 if (!snmp_append_data2(mpctl->b_cont, 18867 &mp_tail, 18868 (char *)&ipm6, (int)sizeof (ipm6))) { 18869 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18870 "failed to allocate %u bytes\n", 18871 (uint_t)sizeof (ipm6))); 18872 } 18873 } 18874 ilm_walker_finish(&ilw); 18875 } 18876 rw_exit(&ipst->ips_ill_g_lock); 18877 18878 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18879 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18880 (int)optp->level, (int)optp->name, (int)optp->len)); 18881 qreply(q, mpctl); 18882 return (mp2ctl); 18883 } 18884 18885 /* IP multicast filtered sources */ 18886 static mblk_t * 18887 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18888 { 18889 struct opthdr *optp; 18890 mblk_t *mp2ctl; 18891 ill_t *ill; 18892 ipif_t *ipif; 18893 ilm_t *ilm; 18894 ip_grpsrc_t ips; 18895 mblk_t *mp_tail = NULL; 18896 ill_walk_context_t ctx; 18897 zoneid_t zoneid; 18898 int i; 18899 slist_t *sl; 18900 ilm_walker_t ilw; 18901 18902 /* 18903 * make a copy of the original message 18904 */ 18905 mp2ctl = copymsg(mpctl); 18906 zoneid = Q_TO_CONN(q)->conn_zoneid; 18907 18908 /* ipGroupSource table */ 18909 optp = (struct opthdr *)&mpctl->b_rptr[ 18910 sizeof (struct T_optmgmt_ack)]; 18911 optp->level = MIB2_IP; 18912 optp->name = EXPER_IP_GROUP_SOURCES; 18913 18914 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18915 ill = ILL_START_WALK_V4(&ctx, ipst); 18916 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18917 if (IS_UNDER_IPMP(ill)) 18918 continue; 18919 18920 ilm = ilm_walker_start(&ilw, ill); 18921 for (ipif = ill->ill_ipif; ipif != NULL; 18922 ipif = ipif->ipif_next) { 18923 if (ipif->ipif_zoneid != zoneid) 18924 continue; /* not this zone */ 18925 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18926 OCTET_LENGTH); 18927 ips.ipGroupSourceIfIndex.o_length = 18928 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18929 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18930 ASSERT(ilm->ilm_ipif != NULL); 18931 ASSERT(ilm->ilm_ill == NULL); 18932 sl = ilm->ilm_filter; 18933 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18934 continue; 18935 ips.ipGroupSourceGroup = ilm->ilm_addr; 18936 for (i = 0; i < sl->sl_numsrc; i++) { 18937 if (!IN6_IS_ADDR_V4MAPPED( 18938 &sl->sl_addr[i])) 18939 continue; 18940 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18941 ips.ipGroupSourceAddress); 18942 if (snmp_append_data2(mpctl->b_cont, 18943 &mp_tail, (char *)&ips, 18944 (int)sizeof (ips)) == 0) { 18945 ip1dbg(("ip_snmp_get_mib2_" 18946 "ip_group_src: failed to " 18947 "allocate %u bytes\n", 18948 (uint_t)sizeof (ips))); 18949 } 18950 } 18951 } 18952 } 18953 ilm_walker_finish(&ilw); 18954 } 18955 rw_exit(&ipst->ips_ill_g_lock); 18956 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18957 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18958 (int)optp->level, (int)optp->name, (int)optp->len)); 18959 qreply(q, mpctl); 18960 return (mp2ctl); 18961 } 18962 18963 /* IPv6 multicast filtered sources. */ 18964 static mblk_t * 18965 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18966 { 18967 struct opthdr *optp; 18968 mblk_t *mp2ctl; 18969 ill_t *ill; 18970 ilm_t *ilm; 18971 ipv6_grpsrc_t ips6; 18972 mblk_t *mp_tail = NULL; 18973 ill_walk_context_t ctx; 18974 zoneid_t zoneid; 18975 int i; 18976 slist_t *sl; 18977 ilm_walker_t ilw; 18978 18979 /* 18980 * make a copy of the original message 18981 */ 18982 mp2ctl = copymsg(mpctl); 18983 zoneid = Q_TO_CONN(q)->conn_zoneid; 18984 18985 /* ip6GroupMember table */ 18986 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18987 optp->level = MIB2_IP6; 18988 optp->name = EXPER_IP6_GROUP_SOURCES; 18989 18990 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18991 ill = ILL_START_WALK_V6(&ctx, ipst); 18992 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18993 if (IS_UNDER_IPMP(ill)) 18994 continue; 18995 18996 ilm = ilm_walker_start(&ilw, ill); 18997 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18998 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18999 ASSERT(ilm->ilm_ipif == NULL); 19000 ASSERT(ilm->ilm_ill != NULL); 19001 sl = ilm->ilm_filter; 19002 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 19003 continue; 19004 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 19005 for (i = 0; i < sl->sl_numsrc; i++) { 19006 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 19007 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19008 (char *)&ips6, (int)sizeof (ips6))) { 19009 ip1dbg(("ip_snmp_get_mib2_ip6_" 19010 "group_src: failed to allocate " 19011 "%u bytes\n", 19012 (uint_t)sizeof (ips6))); 19013 } 19014 } 19015 } 19016 ilm_walker_finish(&ilw); 19017 } 19018 rw_exit(&ipst->ips_ill_g_lock); 19019 19020 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19021 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19022 (int)optp->level, (int)optp->name, (int)optp->len)); 19023 qreply(q, mpctl); 19024 return (mp2ctl); 19025 } 19026 19027 /* Multicast routing virtual interface table. */ 19028 static mblk_t * 19029 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19030 { 19031 struct opthdr *optp; 19032 mblk_t *mp2ctl; 19033 19034 /* 19035 * make a copy of the original message 19036 */ 19037 mp2ctl = copymsg(mpctl); 19038 19039 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19040 optp->level = EXPER_DVMRP; 19041 optp->name = EXPER_DVMRP_VIF; 19042 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 19043 ip0dbg(("ip_mroute_vif: failed\n")); 19044 } 19045 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19046 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 19047 (int)optp->level, (int)optp->name, (int)optp->len)); 19048 qreply(q, mpctl); 19049 return (mp2ctl); 19050 } 19051 19052 /* Multicast routing table. */ 19053 static mblk_t * 19054 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19055 { 19056 struct opthdr *optp; 19057 mblk_t *mp2ctl; 19058 19059 /* 19060 * make a copy of the original message 19061 */ 19062 mp2ctl = copymsg(mpctl); 19063 19064 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19065 optp->level = EXPER_DVMRP; 19066 optp->name = EXPER_DVMRP_MRT; 19067 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19068 ip0dbg(("ip_mroute_mrt: failed\n")); 19069 } 19070 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19071 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19072 (int)optp->level, (int)optp->name, (int)optp->len)); 19073 qreply(q, mpctl); 19074 return (mp2ctl); 19075 } 19076 19077 /* 19078 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19079 * in one IRE walk. 19080 */ 19081 static mblk_t * 19082 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 19083 ip_stack_t *ipst) 19084 { 19085 struct opthdr *optp; 19086 mblk_t *mp2ctl; /* Returned */ 19087 mblk_t *mp3ctl; /* nettomedia */ 19088 mblk_t *mp4ctl; /* routeattrs */ 19089 iproutedata_t ird; 19090 zoneid_t zoneid; 19091 19092 /* 19093 * make copies of the original message 19094 * - mp2ctl is returned unchanged to the caller for his use 19095 * - mpctl is sent upstream as ipRouteEntryTable 19096 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19097 * - mp4ctl is sent upstream as ipRouteAttributeTable 19098 */ 19099 mp2ctl = copymsg(mpctl); 19100 mp3ctl = copymsg(mpctl); 19101 mp4ctl = copymsg(mpctl); 19102 if (mp3ctl == NULL || mp4ctl == NULL) { 19103 freemsg(mp4ctl); 19104 freemsg(mp3ctl); 19105 freemsg(mp2ctl); 19106 freemsg(mpctl); 19107 return (NULL); 19108 } 19109 19110 bzero(&ird, sizeof (ird)); 19111 19112 ird.ird_route.lp_head = mpctl->b_cont; 19113 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19114 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19115 /* 19116 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19117 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19118 * intended a temporary solution until a proper MIB API is provided 19119 * that provides complete filtering/caller-opt-in. 19120 */ 19121 if (level == EXPER_IP_AND_TESTHIDDEN) 19122 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19123 19124 zoneid = Q_TO_CONN(q)->conn_zoneid; 19125 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19126 19127 /* ipRouteEntryTable in mpctl */ 19128 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19129 optp->level = MIB2_IP; 19130 optp->name = MIB2_IP_ROUTE; 19131 optp->len = msgdsize(ird.ird_route.lp_head); 19132 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19133 (int)optp->level, (int)optp->name, (int)optp->len)); 19134 qreply(q, mpctl); 19135 19136 /* ipNetToMediaEntryTable in mp3ctl */ 19137 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19138 optp->level = MIB2_IP; 19139 optp->name = MIB2_IP_MEDIA; 19140 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19141 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19142 (int)optp->level, (int)optp->name, (int)optp->len)); 19143 qreply(q, mp3ctl); 19144 19145 /* ipRouteAttributeTable in mp4ctl */ 19146 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19147 optp->level = MIB2_IP; 19148 optp->name = EXPER_IP_RTATTR; 19149 optp->len = msgdsize(ird.ird_attrs.lp_head); 19150 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19151 (int)optp->level, (int)optp->name, (int)optp->len)); 19152 if (optp->len == 0) 19153 freemsg(mp4ctl); 19154 else 19155 qreply(q, mp4ctl); 19156 19157 return (mp2ctl); 19158 } 19159 19160 /* 19161 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19162 * ipv6NetToMediaEntryTable in an NDP walk. 19163 */ 19164 static mblk_t * 19165 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 19166 ip_stack_t *ipst) 19167 { 19168 struct opthdr *optp; 19169 mblk_t *mp2ctl; /* Returned */ 19170 mblk_t *mp3ctl; /* nettomedia */ 19171 mblk_t *mp4ctl; /* routeattrs */ 19172 iproutedata_t ird; 19173 zoneid_t zoneid; 19174 19175 /* 19176 * make copies of the original message 19177 * - mp2ctl is returned unchanged to the caller for his use 19178 * - mpctl is sent upstream as ipv6RouteEntryTable 19179 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19180 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19181 */ 19182 mp2ctl = copymsg(mpctl); 19183 mp3ctl = copymsg(mpctl); 19184 mp4ctl = copymsg(mpctl); 19185 if (mp3ctl == NULL || mp4ctl == NULL) { 19186 freemsg(mp4ctl); 19187 freemsg(mp3ctl); 19188 freemsg(mp2ctl); 19189 freemsg(mpctl); 19190 return (NULL); 19191 } 19192 19193 bzero(&ird, sizeof (ird)); 19194 19195 ird.ird_route.lp_head = mpctl->b_cont; 19196 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19197 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19198 /* 19199 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19200 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19201 * intended a temporary solution until a proper MIB API is provided 19202 * that provides complete filtering/caller-opt-in. 19203 */ 19204 if (level == EXPER_IP_AND_TESTHIDDEN) 19205 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19206 19207 zoneid = Q_TO_CONN(q)->conn_zoneid; 19208 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19209 19210 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19211 optp->level = MIB2_IP6; 19212 optp->name = MIB2_IP6_ROUTE; 19213 optp->len = msgdsize(ird.ird_route.lp_head); 19214 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19215 (int)optp->level, (int)optp->name, (int)optp->len)); 19216 qreply(q, mpctl); 19217 19218 /* ipv6NetToMediaEntryTable in mp3ctl */ 19219 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19220 19221 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19222 optp->level = MIB2_IP6; 19223 optp->name = MIB2_IP6_MEDIA; 19224 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19225 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19226 (int)optp->level, (int)optp->name, (int)optp->len)); 19227 qreply(q, mp3ctl); 19228 19229 /* ipv6RouteAttributeTable in mp4ctl */ 19230 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19231 optp->level = MIB2_IP6; 19232 optp->name = EXPER_IP_RTATTR; 19233 optp->len = msgdsize(ird.ird_attrs.lp_head); 19234 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19235 (int)optp->level, (int)optp->name, (int)optp->len)); 19236 if (optp->len == 0) 19237 freemsg(mp4ctl); 19238 else 19239 qreply(q, mp4ctl); 19240 19241 return (mp2ctl); 19242 } 19243 19244 /* 19245 * IPv6 mib: One per ill 19246 */ 19247 static mblk_t * 19248 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19249 { 19250 struct opthdr *optp; 19251 mblk_t *mp2ctl; 19252 ill_t *ill; 19253 ill_walk_context_t ctx; 19254 mblk_t *mp_tail = NULL; 19255 19256 /* 19257 * Make a copy of the original message 19258 */ 19259 mp2ctl = copymsg(mpctl); 19260 19261 /* fixed length IPv6 structure ... */ 19262 19263 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19264 optp->level = MIB2_IP6; 19265 optp->name = 0; 19266 /* Include "unknown interface" ip6_mib */ 19267 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19268 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19269 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19270 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19271 ipst->ips_ipv6_forward ? 1 : 2); 19272 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19273 ipst->ips_ipv6_def_hops); 19274 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19275 sizeof (mib2_ipIfStatsEntry_t)); 19276 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19277 sizeof (mib2_ipv6AddrEntry_t)); 19278 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19279 sizeof (mib2_ipv6RouteEntry_t)); 19280 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19281 sizeof (mib2_ipv6NetToMediaEntry_t)); 19282 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19283 sizeof (ipv6_member_t)); 19284 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19285 sizeof (ipv6_grpsrc_t)); 19286 19287 /* 19288 * Synchronize 64- and 32-bit counters 19289 */ 19290 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19291 ipIfStatsHCInReceives); 19292 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19293 ipIfStatsHCInDelivers); 19294 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19295 ipIfStatsHCOutRequests); 19296 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19297 ipIfStatsHCOutForwDatagrams); 19298 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19299 ipIfStatsHCOutMcastPkts); 19300 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19301 ipIfStatsHCInMcastPkts); 19302 19303 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19304 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19305 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19306 (uint_t)sizeof (ipst->ips_ip6_mib))); 19307 } 19308 19309 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19310 ill = ILL_START_WALK_V6(&ctx, ipst); 19311 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19312 ill->ill_ip_mib->ipIfStatsIfIndex = 19313 ill->ill_phyint->phyint_ifindex; 19314 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19315 ipst->ips_ipv6_forward ? 1 : 2); 19316 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19317 ill->ill_max_hops); 19318 19319 /* 19320 * Synchronize 64- and 32-bit counters 19321 */ 19322 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19323 ipIfStatsHCInReceives); 19324 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19325 ipIfStatsHCInDelivers); 19326 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19327 ipIfStatsHCOutRequests); 19328 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19329 ipIfStatsHCOutForwDatagrams); 19330 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19331 ipIfStatsHCOutMcastPkts); 19332 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19333 ipIfStatsHCInMcastPkts); 19334 19335 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19336 (char *)ill->ill_ip_mib, 19337 (int)sizeof (*ill->ill_ip_mib))) { 19338 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19339 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19340 } 19341 } 19342 rw_exit(&ipst->ips_ill_g_lock); 19343 19344 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19345 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19346 (int)optp->level, (int)optp->name, (int)optp->len)); 19347 qreply(q, mpctl); 19348 return (mp2ctl); 19349 } 19350 19351 /* 19352 * ICMPv6 mib: One per ill 19353 */ 19354 static mblk_t * 19355 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19356 { 19357 struct opthdr *optp; 19358 mblk_t *mp2ctl; 19359 ill_t *ill; 19360 ill_walk_context_t ctx; 19361 mblk_t *mp_tail = NULL; 19362 /* 19363 * Make a copy of the original message 19364 */ 19365 mp2ctl = copymsg(mpctl); 19366 19367 /* fixed length ICMPv6 structure ... */ 19368 19369 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19370 optp->level = MIB2_ICMP6; 19371 optp->name = 0; 19372 /* Include "unknown interface" icmp6_mib */ 19373 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19374 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19375 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19376 sizeof (mib2_ipv6IfIcmpEntry_t); 19377 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19378 (char *)&ipst->ips_icmp6_mib, 19379 (int)sizeof (ipst->ips_icmp6_mib))) { 19380 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19381 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19382 } 19383 19384 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19385 ill = ILL_START_WALK_V6(&ctx, ipst); 19386 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19387 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19388 ill->ill_phyint->phyint_ifindex; 19389 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19390 (char *)ill->ill_icmp6_mib, 19391 (int)sizeof (*ill->ill_icmp6_mib))) { 19392 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19393 "%u bytes\n", 19394 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19395 } 19396 } 19397 rw_exit(&ipst->ips_ill_g_lock); 19398 19399 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19400 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19401 (int)optp->level, (int)optp->name, (int)optp->len)); 19402 qreply(q, mpctl); 19403 return (mp2ctl); 19404 } 19405 19406 /* 19407 * ire_walk routine to create both ipRouteEntryTable and 19408 * ipRouteAttributeTable in one IRE walk 19409 */ 19410 static void 19411 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19412 { 19413 ill_t *ill; 19414 ipif_t *ipif; 19415 mib2_ipRouteEntry_t *re; 19416 mib2_ipAttributeEntry_t *iae, *iaeptr; 19417 ipaddr_t gw_addr; 19418 tsol_ire_gw_secattr_t *attrp; 19419 tsol_gc_t *gc = NULL; 19420 tsol_gcgrp_t *gcgrp = NULL; 19421 uint_t sacnt = 0; 19422 int i; 19423 19424 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19425 19426 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19427 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19428 return; 19429 } 19430 19431 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19432 return; 19433 19434 if ((attrp = ire->ire_gw_secattr) != NULL) { 19435 mutex_enter(&attrp->igsa_lock); 19436 if ((gc = attrp->igsa_gc) != NULL) { 19437 gcgrp = gc->gc_grp; 19438 ASSERT(gcgrp != NULL); 19439 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19440 sacnt = 1; 19441 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19442 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19443 gc = gcgrp->gcgrp_head; 19444 sacnt = gcgrp->gcgrp_count; 19445 } 19446 mutex_exit(&attrp->igsa_lock); 19447 19448 /* do nothing if there's no gc to report */ 19449 if (gc == NULL) { 19450 ASSERT(sacnt == 0); 19451 if (gcgrp != NULL) { 19452 /* we might as well drop the lock now */ 19453 rw_exit(&gcgrp->gcgrp_rwlock); 19454 gcgrp = NULL; 19455 } 19456 attrp = NULL; 19457 } 19458 19459 ASSERT(gc == NULL || (gcgrp != NULL && 19460 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19461 } 19462 ASSERT(sacnt == 0 || gc != NULL); 19463 19464 if (sacnt != 0 && 19465 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19466 kmem_free(re, sizeof (*re)); 19467 rw_exit(&gcgrp->gcgrp_rwlock); 19468 return; 19469 } 19470 19471 /* 19472 * Return all IRE types for route table... let caller pick and choose 19473 */ 19474 re->ipRouteDest = ire->ire_addr; 19475 ipif = ire->ire_ipif; 19476 re->ipRouteIfIndex.o_length = 0; 19477 if (ire->ire_type == IRE_CACHE) { 19478 ill = (ill_t *)ire->ire_stq->q_ptr; 19479 re->ipRouteIfIndex.o_length = 19480 ill->ill_name_length == 0 ? 0 : 19481 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19482 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19483 re->ipRouteIfIndex.o_length); 19484 } else if (ipif != NULL) { 19485 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19486 re->ipRouteIfIndex.o_length = 19487 mi_strlen(re->ipRouteIfIndex.o_bytes); 19488 } 19489 re->ipRouteMetric1 = -1; 19490 re->ipRouteMetric2 = -1; 19491 re->ipRouteMetric3 = -1; 19492 re->ipRouteMetric4 = -1; 19493 19494 gw_addr = ire->ire_gateway_addr; 19495 19496 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19497 re->ipRouteNextHop = ire->ire_src_addr; 19498 else 19499 re->ipRouteNextHop = gw_addr; 19500 /* indirect(4), direct(3), or invalid(2) */ 19501 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19502 re->ipRouteType = 2; 19503 else 19504 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19505 re->ipRouteProto = -1; 19506 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19507 re->ipRouteMask = ire->ire_mask; 19508 re->ipRouteMetric5 = -1; 19509 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19510 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19511 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19512 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19513 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19514 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19515 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19516 re->ipRouteInfo.re_flags = ire->ire_flags; 19517 19518 if (ire->ire_flags & RTF_DYNAMIC) { 19519 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19520 } else { 19521 re->ipRouteInfo.re_ire_type = ire->ire_type; 19522 } 19523 19524 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19525 (char *)re, (int)sizeof (*re))) { 19526 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19527 (uint_t)sizeof (*re))); 19528 } 19529 19530 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19531 iaeptr->iae_routeidx = ird->ird_idx; 19532 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19533 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19534 } 19535 19536 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19537 (char *)iae, sacnt * sizeof (*iae))) { 19538 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19539 (unsigned)(sacnt * sizeof (*iae)))); 19540 } 19541 19542 /* bump route index for next pass */ 19543 ird->ird_idx++; 19544 19545 kmem_free(re, sizeof (*re)); 19546 if (sacnt != 0) 19547 kmem_free(iae, sacnt * sizeof (*iae)); 19548 19549 if (gcgrp != NULL) 19550 rw_exit(&gcgrp->gcgrp_rwlock); 19551 } 19552 19553 /* 19554 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19555 */ 19556 static void 19557 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19558 { 19559 ill_t *ill; 19560 ipif_t *ipif; 19561 mib2_ipv6RouteEntry_t *re; 19562 mib2_ipAttributeEntry_t *iae, *iaeptr; 19563 in6_addr_t gw_addr_v6; 19564 tsol_ire_gw_secattr_t *attrp; 19565 tsol_gc_t *gc = NULL; 19566 tsol_gcgrp_t *gcgrp = NULL; 19567 uint_t sacnt = 0; 19568 int i; 19569 19570 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19571 19572 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19573 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19574 return; 19575 } 19576 19577 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19578 return; 19579 19580 if ((attrp = ire->ire_gw_secattr) != NULL) { 19581 mutex_enter(&attrp->igsa_lock); 19582 if ((gc = attrp->igsa_gc) != NULL) { 19583 gcgrp = gc->gc_grp; 19584 ASSERT(gcgrp != NULL); 19585 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19586 sacnt = 1; 19587 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19588 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19589 gc = gcgrp->gcgrp_head; 19590 sacnt = gcgrp->gcgrp_count; 19591 } 19592 mutex_exit(&attrp->igsa_lock); 19593 19594 /* do nothing if there's no gc to report */ 19595 if (gc == NULL) { 19596 ASSERT(sacnt == 0); 19597 if (gcgrp != NULL) { 19598 /* we might as well drop the lock now */ 19599 rw_exit(&gcgrp->gcgrp_rwlock); 19600 gcgrp = NULL; 19601 } 19602 attrp = NULL; 19603 } 19604 19605 ASSERT(gc == NULL || (gcgrp != NULL && 19606 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19607 } 19608 ASSERT(sacnt == 0 || gc != NULL); 19609 19610 if (sacnt != 0 && 19611 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19612 kmem_free(re, sizeof (*re)); 19613 rw_exit(&gcgrp->gcgrp_rwlock); 19614 return; 19615 } 19616 19617 /* 19618 * Return all IRE types for route table... let caller pick and choose 19619 */ 19620 re->ipv6RouteDest = ire->ire_addr_v6; 19621 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19622 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19623 re->ipv6RouteIfIndex.o_length = 0; 19624 ipif = ire->ire_ipif; 19625 if (ire->ire_type == IRE_CACHE) { 19626 ill = (ill_t *)ire->ire_stq->q_ptr; 19627 re->ipv6RouteIfIndex.o_length = 19628 ill->ill_name_length == 0 ? 0 : 19629 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19630 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19631 re->ipv6RouteIfIndex.o_length); 19632 } else if (ipif != NULL) { 19633 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19634 re->ipv6RouteIfIndex.o_length = 19635 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19636 } 19637 19638 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19639 19640 mutex_enter(&ire->ire_lock); 19641 gw_addr_v6 = ire->ire_gateway_addr_v6; 19642 mutex_exit(&ire->ire_lock); 19643 19644 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19645 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19646 else 19647 re->ipv6RouteNextHop = gw_addr_v6; 19648 19649 /* remote(4), local(3), or discard(2) */ 19650 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19651 re->ipv6RouteType = 2; 19652 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19653 re->ipv6RouteType = 3; 19654 else 19655 re->ipv6RouteType = 4; 19656 19657 re->ipv6RouteProtocol = -1; 19658 re->ipv6RoutePolicy = 0; 19659 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19660 re->ipv6RouteNextHopRDI = 0; 19661 re->ipv6RouteWeight = 0; 19662 re->ipv6RouteMetric = 0; 19663 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19664 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19665 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19666 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19667 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19668 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19669 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19670 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19671 19672 if (ire->ire_flags & RTF_DYNAMIC) { 19673 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19674 } else { 19675 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19676 } 19677 19678 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19679 (char *)re, (int)sizeof (*re))) { 19680 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19681 (uint_t)sizeof (*re))); 19682 } 19683 19684 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19685 iaeptr->iae_routeidx = ird->ird_idx; 19686 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19687 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19688 } 19689 19690 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19691 (char *)iae, sacnt * sizeof (*iae))) { 19692 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19693 (unsigned)(sacnt * sizeof (*iae)))); 19694 } 19695 19696 /* bump route index for next pass */ 19697 ird->ird_idx++; 19698 19699 kmem_free(re, sizeof (*re)); 19700 if (sacnt != 0) 19701 kmem_free(iae, sacnt * sizeof (*iae)); 19702 19703 if (gcgrp != NULL) 19704 rw_exit(&gcgrp->gcgrp_rwlock); 19705 } 19706 19707 /* 19708 * ndp_walk routine to create ipv6NetToMediaEntryTable 19709 */ 19710 static int 19711 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19712 { 19713 ill_t *ill; 19714 mib2_ipv6NetToMediaEntry_t ntme; 19715 dl_unitdata_req_t *dl; 19716 19717 ill = nce->nce_ill; 19718 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19719 return (0); 19720 19721 /* 19722 * Neighbor cache entry attached to IRE with on-link 19723 * destination. 19724 */ 19725 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19726 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19727 if ((ill->ill_flags & ILLF_XRESOLV) && 19728 (nce->nce_res_mp != NULL)) { 19729 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19730 ntme.ipv6NetToMediaPhysAddress.o_length = 19731 dl->dl_dest_addr_length; 19732 } else { 19733 ntme.ipv6NetToMediaPhysAddress.o_length = 19734 ill->ill_phys_addr_length; 19735 } 19736 if (nce->nce_res_mp != NULL) { 19737 bcopy((char *)nce->nce_res_mp->b_rptr + 19738 NCE_LL_ADDR_OFFSET(ill), 19739 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19740 ntme.ipv6NetToMediaPhysAddress.o_length); 19741 } else { 19742 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19743 ill->ill_phys_addr_length); 19744 } 19745 /* 19746 * Note: Returns ND_* states. Should be: 19747 * reachable(1), stale(2), delay(3), probe(4), 19748 * invalid(5), unknown(6) 19749 */ 19750 ntme.ipv6NetToMediaState = nce->nce_state; 19751 ntme.ipv6NetToMediaLastUpdated = 0; 19752 19753 /* other(1), dynamic(2), static(3), local(4) */ 19754 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19755 ntme.ipv6NetToMediaType = 4; 19756 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19757 ntme.ipv6NetToMediaType = 1; 19758 } else { 19759 ntme.ipv6NetToMediaType = 2; 19760 } 19761 19762 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19763 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19764 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19765 (uint_t)sizeof (ntme))); 19766 } 19767 return (0); 19768 } 19769 19770 /* 19771 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19772 */ 19773 /* ARGSUSED */ 19774 int 19775 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19776 { 19777 switch (level) { 19778 case MIB2_IP: 19779 case MIB2_ICMP: 19780 switch (name) { 19781 default: 19782 break; 19783 } 19784 return (1); 19785 default: 19786 return (1); 19787 } 19788 } 19789 19790 /* 19791 * When there exists both a 64- and 32-bit counter of a particular type 19792 * (i.e., InReceives), only the 64-bit counters are added. 19793 */ 19794 void 19795 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19796 { 19797 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19798 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19799 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19800 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19801 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19802 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19803 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19804 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19805 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19806 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19807 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19808 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19809 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19810 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19811 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19812 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19813 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19814 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19815 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19816 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19817 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19818 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19819 o2->ipIfStatsInWrongIPVersion); 19820 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19821 o2->ipIfStatsInWrongIPVersion); 19822 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19823 o2->ipIfStatsOutSwitchIPVersion); 19824 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19825 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19826 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19827 o2->ipIfStatsHCInForwDatagrams); 19828 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19829 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19830 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19831 o2->ipIfStatsHCOutForwDatagrams); 19832 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19833 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19834 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19835 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19836 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19837 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19838 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19839 o2->ipIfStatsHCOutMcastOctets); 19840 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19841 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19842 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19843 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19844 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19845 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19846 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19847 } 19848 19849 void 19850 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19851 { 19852 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19853 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19854 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19855 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19856 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19857 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19858 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19859 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19860 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19861 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19862 o2->ipv6IfIcmpInRouterSolicits); 19863 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19864 o2->ipv6IfIcmpInRouterAdvertisements); 19865 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19866 o2->ipv6IfIcmpInNeighborSolicits); 19867 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19868 o2->ipv6IfIcmpInNeighborAdvertisements); 19869 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19870 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19871 o2->ipv6IfIcmpInGroupMembQueries); 19872 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19873 o2->ipv6IfIcmpInGroupMembResponses); 19874 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19875 o2->ipv6IfIcmpInGroupMembReductions); 19876 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19877 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19878 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19879 o2->ipv6IfIcmpOutDestUnreachs); 19880 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19881 o2->ipv6IfIcmpOutAdminProhibs); 19882 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19883 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19884 o2->ipv6IfIcmpOutParmProblems); 19885 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19886 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19887 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19888 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19889 o2->ipv6IfIcmpOutRouterSolicits); 19890 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19891 o2->ipv6IfIcmpOutRouterAdvertisements); 19892 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19893 o2->ipv6IfIcmpOutNeighborSolicits); 19894 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19895 o2->ipv6IfIcmpOutNeighborAdvertisements); 19896 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19897 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19898 o2->ipv6IfIcmpOutGroupMembQueries); 19899 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19900 o2->ipv6IfIcmpOutGroupMembResponses); 19901 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19902 o2->ipv6IfIcmpOutGroupMembReductions); 19903 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19904 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19905 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19906 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19907 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19908 o2->ipv6IfIcmpInBadNeighborSolicitations); 19909 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19910 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19911 o2->ipv6IfIcmpInGroupMembTotal); 19912 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19913 o2->ipv6IfIcmpInGroupMembBadQueries); 19914 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19915 o2->ipv6IfIcmpInGroupMembBadReports); 19916 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19917 o2->ipv6IfIcmpInGroupMembOurReports); 19918 } 19919 19920 /* 19921 * Called before the options are updated to check if this packet will 19922 * be source routed from here. 19923 * This routine assumes that the options are well formed i.e. that they 19924 * have already been checked. 19925 */ 19926 static boolean_t 19927 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19928 { 19929 ipoptp_t opts; 19930 uchar_t *opt; 19931 uint8_t optval; 19932 uint8_t optlen; 19933 ipaddr_t dst; 19934 ire_t *ire; 19935 19936 if (IS_SIMPLE_IPH(ipha)) { 19937 ip2dbg(("not source routed\n")); 19938 return (B_FALSE); 19939 } 19940 dst = ipha->ipha_dst; 19941 for (optval = ipoptp_first(&opts, ipha); 19942 optval != IPOPT_EOL; 19943 optval = ipoptp_next(&opts)) { 19944 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19945 opt = opts.ipoptp_cur; 19946 optlen = opts.ipoptp_len; 19947 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19948 optval, optlen)); 19949 switch (optval) { 19950 uint32_t off; 19951 case IPOPT_SSRR: 19952 case IPOPT_LSRR: 19953 /* 19954 * If dst is one of our addresses and there are some 19955 * entries left in the source route return (true). 19956 */ 19957 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19958 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19959 if (ire == NULL) { 19960 ip2dbg(("ip_source_routed: not next" 19961 " source route 0x%x\n", 19962 ntohl(dst))); 19963 return (B_FALSE); 19964 } 19965 ire_refrele(ire); 19966 off = opt[IPOPT_OFFSET]; 19967 off--; 19968 if (optlen < IP_ADDR_LEN || 19969 off > optlen - IP_ADDR_LEN) { 19970 /* End of source route */ 19971 ip1dbg(("ip_source_routed: end of SR\n")); 19972 return (B_FALSE); 19973 } 19974 return (B_TRUE); 19975 } 19976 } 19977 ip2dbg(("not source routed\n")); 19978 return (B_FALSE); 19979 } 19980 19981 /* 19982 * Check if the packet contains any source route. 19983 */ 19984 static boolean_t 19985 ip_source_route_included(ipha_t *ipha) 19986 { 19987 ipoptp_t opts; 19988 uint8_t optval; 19989 19990 if (IS_SIMPLE_IPH(ipha)) 19991 return (B_FALSE); 19992 for (optval = ipoptp_first(&opts, ipha); 19993 optval != IPOPT_EOL; 19994 optval = ipoptp_next(&opts)) { 19995 switch (optval) { 19996 case IPOPT_SSRR: 19997 case IPOPT_LSRR: 19998 return (B_TRUE); 19999 } 20000 } 20001 return (B_FALSE); 20002 } 20003 20004 /* 20005 * Called when the IRE expiration timer fires. 20006 */ 20007 void 20008 ip_trash_timer_expire(void *args) 20009 { 20010 int flush_flag = 0; 20011 ire_expire_arg_t iea; 20012 ip_stack_t *ipst = (ip_stack_t *)args; 20013 20014 iea.iea_ipst = ipst; /* No netstack_hold */ 20015 20016 /* 20017 * ip_ire_expire_id is protected by ip_trash_timer_lock. 20018 * This lock makes sure that a new invocation of this function 20019 * that occurs due to an almost immediate timer firing will not 20020 * progress beyond this point until the current invocation is done 20021 */ 20022 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20023 ipst->ips_ip_ire_expire_id = 0; 20024 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20025 20026 /* Periodic timer */ 20027 if (ipst->ips_ip_ire_arp_time_elapsed >= 20028 ipst->ips_ip_ire_arp_interval) { 20029 /* 20030 * Remove all IRE_CACHE entries since they might 20031 * contain arp information. 20032 */ 20033 flush_flag |= FLUSH_ARP_TIME; 20034 ipst->ips_ip_ire_arp_time_elapsed = 0; 20035 IP_STAT(ipst, ip_ire_arp_timer_expired); 20036 } 20037 if (ipst->ips_ip_ire_rd_time_elapsed >= 20038 ipst->ips_ip_ire_redir_interval) { 20039 /* Remove all redirects */ 20040 flush_flag |= FLUSH_REDIRECT_TIME; 20041 ipst->ips_ip_ire_rd_time_elapsed = 0; 20042 IP_STAT(ipst, ip_ire_redirect_timer_expired); 20043 } 20044 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 20045 ipst->ips_ip_ire_pathmtu_interval) { 20046 /* Increase path mtu */ 20047 flush_flag |= FLUSH_MTU_TIME; 20048 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 20049 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 20050 } 20051 20052 /* 20053 * Optimize for the case when there are no redirects in the 20054 * ftable, that is, no need to walk the ftable in that case. 20055 */ 20056 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20057 iea.iea_flush_flag = flush_flag; 20058 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20059 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20060 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20061 NULL, ALL_ZONES, ipst); 20062 } 20063 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20064 ipst->ips_ip_redirect_cnt > 0) { 20065 iea.iea_flush_flag = flush_flag; 20066 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20067 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20068 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20069 } 20070 if (flush_flag & FLUSH_MTU_TIME) { 20071 /* 20072 * Walk all IPv6 IRE's and update them 20073 * Note that ARP and redirect timers are not 20074 * needed since NUD handles stale entries. 20075 */ 20076 flush_flag = FLUSH_MTU_TIME; 20077 iea.iea_flush_flag = flush_flag; 20078 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20079 ALL_ZONES, ipst); 20080 } 20081 20082 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20083 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20084 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20085 20086 /* 20087 * Hold the lock to serialize timeout calls and prevent 20088 * stale values in ip_ire_expire_id. Otherwise it is possible 20089 * for the timer to fire and a new invocation of this function 20090 * to start before the return value of timeout has been stored 20091 * in ip_ire_expire_id by the current invocation. 20092 */ 20093 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20094 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20095 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20096 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20097 } 20098 20099 /* 20100 * Called by the memory allocator subsystem directly, when the system 20101 * is running low on memory. 20102 */ 20103 /* ARGSUSED */ 20104 void 20105 ip_trash_ire_reclaim(void *args) 20106 { 20107 netstack_handle_t nh; 20108 netstack_t *ns; 20109 20110 netstack_next_init(&nh); 20111 while ((ns = netstack_next(&nh)) != NULL) { 20112 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20113 netstack_rele(ns); 20114 } 20115 netstack_next_fini(&nh); 20116 } 20117 20118 static void 20119 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20120 { 20121 ire_cache_count_t icc; 20122 ire_cache_reclaim_t icr; 20123 ncc_cache_count_t ncc; 20124 nce_cache_reclaim_t ncr; 20125 uint_t delete_cnt; 20126 /* 20127 * Memory reclaim call back. 20128 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20129 * Then, with a target of freeing 1/Nth of IRE_CACHE 20130 * entries, determine what fraction to free for 20131 * each category of IRE_CACHE entries giving absolute priority 20132 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20133 * entry will be freed unless all offlink entries are freed). 20134 */ 20135 icc.icc_total = 0; 20136 icc.icc_unused = 0; 20137 icc.icc_offlink = 0; 20138 icc.icc_pmtu = 0; 20139 icc.icc_onlink = 0; 20140 ire_walk(ire_cache_count, (char *)&icc, ipst); 20141 20142 /* 20143 * Free NCEs for IPv6 like the onlink ires. 20144 */ 20145 ncc.ncc_total = 0; 20146 ncc.ncc_host = 0; 20147 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20148 20149 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20150 icc.icc_pmtu + icc.icc_onlink); 20151 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20152 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20153 if (delete_cnt == 0) 20154 return; 20155 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20156 /* Always delete all unused offlink entries */ 20157 icr.icr_ipst = ipst; 20158 icr.icr_unused = 1; 20159 if (delete_cnt <= icc.icc_unused) { 20160 /* 20161 * Only need to free unused entries. In other words, 20162 * there are enough unused entries to free to meet our 20163 * target number of freed ire cache entries. 20164 */ 20165 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20166 ncr.ncr_host = 0; 20167 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20168 /* 20169 * Only need to free unused entries, plus a fraction of offlink 20170 * entries. It follows from the first if statement that 20171 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20172 */ 20173 delete_cnt -= icc.icc_unused; 20174 /* Round up # deleted by truncating fraction */ 20175 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20176 icr.icr_pmtu = icr.icr_onlink = 0; 20177 ncr.ncr_host = 0; 20178 } else if (delete_cnt <= 20179 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20180 /* 20181 * Free all unused and offlink entries, plus a fraction of 20182 * pmtu entries. It follows from the previous if statement 20183 * that icc_pmtu is non-zero, and that 20184 * delete_cnt != icc_unused + icc_offlink. 20185 */ 20186 icr.icr_offlink = 1; 20187 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20188 /* Round up # deleted by truncating fraction */ 20189 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20190 icr.icr_onlink = 0; 20191 ncr.ncr_host = 0; 20192 } else { 20193 /* 20194 * Free all unused, offlink, and pmtu entries, plus a fraction 20195 * of onlink entries. If we're here, then we know that 20196 * icc_onlink is non-zero, and that 20197 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20198 */ 20199 icr.icr_offlink = icr.icr_pmtu = 1; 20200 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20201 icc.icc_pmtu; 20202 /* Round up # deleted by truncating fraction */ 20203 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20204 /* Using the same delete fraction as for onlink IREs */ 20205 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20206 } 20207 #ifdef DEBUG 20208 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20209 "fractions %d/%d/%d/%d\n", 20210 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20211 icc.icc_unused, icc.icc_offlink, 20212 icc.icc_pmtu, icc.icc_onlink, 20213 icr.icr_unused, icr.icr_offlink, 20214 icr.icr_pmtu, icr.icr_onlink)); 20215 #endif 20216 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20217 if (ncr.ncr_host != 0) 20218 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20219 (uchar_t *)&ncr, ipst); 20220 #ifdef DEBUG 20221 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20222 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20223 ire_walk(ire_cache_count, (char *)&icc, ipst); 20224 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20225 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20226 icc.icc_pmtu, icc.icc_onlink)); 20227 #endif 20228 } 20229 20230 /* 20231 * ip_unbind is called when a copy of an unbind request is received from the 20232 * upper level protocol. We remove this conn from any fanout hash list it is 20233 * on, and zero out the bind information. No reply is expected up above. 20234 */ 20235 void 20236 ip_unbind(conn_t *connp) 20237 { 20238 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20239 20240 if (is_system_labeled() && connp->conn_anon_port) { 20241 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20242 connp->conn_mlp_type, connp->conn_ulp, 20243 ntohs(connp->conn_lport), B_FALSE); 20244 connp->conn_anon_port = 0; 20245 } 20246 connp->conn_mlp_type = mlptSingle; 20247 20248 ipcl_hash_remove(connp); 20249 } 20250 20251 /* 20252 * Write side put procedure. Outbound data, IOCTLs, responses from 20253 * resolvers, etc, come down through here. 20254 * 20255 * arg2 is always a queue_t *. 20256 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20257 * the zoneid. 20258 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20259 */ 20260 void 20261 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20262 { 20263 ip_output_options(arg, mp, arg2, caller, &zero_info); 20264 } 20265 20266 void 20267 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20268 ip_opt_info_t *infop) 20269 { 20270 conn_t *connp = NULL; 20271 queue_t *q = (queue_t *)arg2; 20272 ipha_t *ipha; 20273 #define rptr ((uchar_t *)ipha) 20274 ire_t *ire = NULL; 20275 ire_t *sctp_ire = NULL; 20276 uint32_t v_hlen_tos_len; 20277 ipaddr_t dst; 20278 mblk_t *first_mp = NULL; 20279 boolean_t mctl_present; 20280 ipsec_out_t *io; 20281 int match_flags; 20282 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20283 ipif_t *dst_ipif; 20284 boolean_t multirt_need_resolve = B_FALSE; 20285 mblk_t *copy_mp = NULL; 20286 int err = 0; 20287 zoneid_t zoneid; 20288 boolean_t need_decref = B_FALSE; 20289 boolean_t ignore_dontroute = B_FALSE; 20290 boolean_t ignore_nexthop = B_FALSE; 20291 boolean_t ip_nexthop = B_FALSE; 20292 ipaddr_t nexthop_addr; 20293 ip_stack_t *ipst; 20294 20295 #ifdef _BIG_ENDIAN 20296 #define V_HLEN (v_hlen_tos_len >> 24) 20297 #else 20298 #define V_HLEN (v_hlen_tos_len & 0xFF) 20299 #endif 20300 20301 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20302 "ip_wput_start: q %p", q); 20303 20304 /* 20305 * ip_wput fast path 20306 */ 20307 20308 /* is packet from ARP ? */ 20309 if (q->q_next != NULL) { 20310 zoneid = (zoneid_t)(uintptr_t)arg; 20311 goto qnext; 20312 } 20313 20314 connp = (conn_t *)arg; 20315 ASSERT(connp != NULL); 20316 zoneid = connp->conn_zoneid; 20317 ipst = connp->conn_netstack->netstack_ip; 20318 ASSERT(ipst != NULL); 20319 20320 /* is queue flow controlled? */ 20321 if ((q->q_first != NULL || connp->conn_draining) && 20322 (caller == IP_WPUT)) { 20323 ASSERT(!need_decref); 20324 ASSERT(!IP_FLOW_CONTROLLED_ULP(connp->conn_ulp)); 20325 (void) putq(q, mp); 20326 return; 20327 } 20328 20329 /* Multidata transmit? */ 20330 if (DB_TYPE(mp) == M_MULTIDATA) { 20331 /* 20332 * We should never get here, since all Multidata messages 20333 * originating from tcp should have been directed over to 20334 * tcp_multisend() in the first place. 20335 */ 20336 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20337 freemsg(mp); 20338 return; 20339 } else if (DB_TYPE(mp) != M_DATA) 20340 goto notdata; 20341 20342 if (mp->b_flag & MSGHASREF) { 20343 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20344 mp->b_flag &= ~MSGHASREF; 20345 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20346 need_decref = B_TRUE; 20347 } 20348 ipha = (ipha_t *)mp->b_rptr; 20349 20350 /* is IP header non-aligned or mblk smaller than basic IP header */ 20351 #ifndef SAFETY_BEFORE_SPEED 20352 if (!OK_32PTR(rptr) || 20353 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20354 goto hdrtoosmall; 20355 #endif 20356 20357 ASSERT(OK_32PTR(ipha)); 20358 20359 /* 20360 * This function assumes that mp points to an IPv4 packet. If it's the 20361 * wrong version, we'll catch it again in ip_output_v6. 20362 * 20363 * Note that this is *only* locally-generated output here, and never 20364 * forwarded data, and that we need to deal only with transports that 20365 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20366 * label.) 20367 */ 20368 if (is_system_labeled() && 20369 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20370 !connp->conn_ulp_labeled) { 20371 cred_t *credp; 20372 pid_t pid; 20373 20374 credp = BEST_CRED(mp, connp, &pid); 20375 err = tsol_check_label(credp, &mp, 20376 connp->conn_mac_exempt, ipst, pid); 20377 ipha = (ipha_t *)mp->b_rptr; 20378 if (err != 0) { 20379 first_mp = mp; 20380 if (err == EINVAL) 20381 goto icmp_parameter_problem; 20382 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20383 goto discard_pkt; 20384 } 20385 } 20386 20387 ASSERT(infop != NULL); 20388 20389 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20390 /* 20391 * IP_PKTINFO ancillary option is present. 20392 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20393 * allows using address of any zone as the source address. 20394 */ 20395 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20396 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20397 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20398 if (ire == NULL) 20399 goto drop_pkt; 20400 ire_refrele(ire); 20401 ire = NULL; 20402 } 20403 20404 /* 20405 * IP_BOUND_IF has precedence over the ill index passed in IP_PKTINFO. 20406 */ 20407 if (infop->ip_opt_ill_index != 0 && connp->conn_outgoing_ill == NULL) { 20408 xmit_ill = ill_lookup_on_ifindex(infop->ip_opt_ill_index, 20409 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20410 20411 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20412 goto drop_pkt; 20413 /* 20414 * check that there is an ipif belonging 20415 * to our zone. IPCL_ZONEID is not used because 20416 * IP_ALLZONES option is valid only when the ill is 20417 * accessible from all zones i.e has a valid ipif in 20418 * all zones. 20419 */ 20420 if (!ipif_lookup_zoneid(xmit_ill, zoneid, 0, NULL)) { 20421 goto drop_pkt; 20422 } 20423 } 20424 20425 /* 20426 * If there is a policy, try to attach an ipsec_out in 20427 * the front. At the end, first_mp either points to a 20428 * M_DATA message or IPSEC_OUT message linked to a 20429 * M_DATA message. We have to do it now as we might 20430 * lose the "conn" if we go through ip_newroute. 20431 */ 20432 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20433 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20434 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20435 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20436 if (need_decref) 20437 CONN_DEC_REF(connp); 20438 return; 20439 } else { 20440 ASSERT(mp->b_datap->db_type == M_CTL); 20441 first_mp = mp; 20442 mp = mp->b_cont; 20443 mctl_present = B_TRUE; 20444 } 20445 } else { 20446 first_mp = mp; 20447 mctl_present = B_FALSE; 20448 } 20449 20450 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20451 20452 /* is wrong version or IP options present */ 20453 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20454 goto version_hdrlen_check; 20455 dst = ipha->ipha_dst; 20456 20457 /* If IP_BOUND_IF has been set, use that ill. */ 20458 if (connp->conn_outgoing_ill != NULL) { 20459 xmit_ill = conn_get_held_ill(connp, 20460 &connp->conn_outgoing_ill, &err); 20461 if (err == ILL_LOOKUP_FAILED) 20462 goto drop_pkt; 20463 20464 goto send_from_ill; 20465 } 20466 20467 /* is packet multicast? */ 20468 if (CLASSD(dst)) 20469 goto multicast; 20470 20471 /* 20472 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20473 * takes precedence over conn_dontroute and conn_nexthop_set 20474 */ 20475 if (xmit_ill != NULL) 20476 goto send_from_ill; 20477 20478 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20479 /* 20480 * If the destination is a broadcast, local, or loopback 20481 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20482 * standard path. 20483 */ 20484 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20485 if ((ire == NULL) || (ire->ire_type & 20486 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20487 if (ire != NULL) { 20488 ire_refrele(ire); 20489 /* No more access to ire */ 20490 ire = NULL; 20491 } 20492 /* 20493 * bypass routing checks and go directly to interface. 20494 */ 20495 if (connp->conn_dontroute) 20496 goto dontroute; 20497 20498 ASSERT(connp->conn_nexthop_set); 20499 ip_nexthop = B_TRUE; 20500 nexthop_addr = connp->conn_nexthop_v4; 20501 goto send_from_ill; 20502 } 20503 20504 /* Must be a broadcast, a loopback or a local ire */ 20505 ire_refrele(ire); 20506 /* No more access to ire */ 20507 ire = NULL; 20508 } 20509 20510 /* 20511 * We cache IRE_CACHEs to avoid lookups. We don't do 20512 * this for the tcp global queue and listen end point 20513 * as it does not really have a real destination to 20514 * talk to. This is also true for SCTP. 20515 */ 20516 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20517 !connp->conn_fully_bound) { 20518 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20519 if (ire == NULL) 20520 goto noirefound; 20521 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20522 "ip_wput_end: q %p (%S)", q, "end"); 20523 20524 /* 20525 * Check if the ire has the RTF_MULTIRT flag, inherited 20526 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20527 */ 20528 if (ire->ire_flags & RTF_MULTIRT) { 20529 20530 /* 20531 * Force the TTL of multirouted packets if required. 20532 * The TTL of such packets is bounded by the 20533 * ip_multirt_ttl ndd variable. 20534 */ 20535 if ((ipst->ips_ip_multirt_ttl > 0) && 20536 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20537 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20538 "(was %d), dst 0x%08x\n", 20539 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20540 ntohl(ire->ire_addr))); 20541 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20542 } 20543 /* 20544 * We look at this point if there are pending 20545 * unresolved routes. ire_multirt_resolvable() 20546 * checks in O(n) that all IRE_OFFSUBNET ire 20547 * entries for the packet's destination and 20548 * flagged RTF_MULTIRT are currently resolved. 20549 * If some remain unresolved, we make a copy 20550 * of the current message. It will be used 20551 * to initiate additional route resolutions. 20552 */ 20553 multirt_need_resolve = 20554 ire_multirt_need_resolve(ire->ire_addr, 20555 msg_getlabel(first_mp), ipst); 20556 ip2dbg(("ip_wput[TCP]: ire %p, " 20557 "multirt_need_resolve %d, first_mp %p\n", 20558 (void *)ire, multirt_need_resolve, 20559 (void *)first_mp)); 20560 if (multirt_need_resolve) { 20561 copy_mp = copymsg(first_mp); 20562 if (copy_mp != NULL) { 20563 MULTIRT_DEBUG_TAG(copy_mp); 20564 } 20565 } 20566 } 20567 20568 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20569 20570 /* 20571 * Try to resolve another multiroute if 20572 * ire_multirt_need_resolve() deemed it necessary. 20573 */ 20574 if (copy_mp != NULL) 20575 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20576 if (need_decref) 20577 CONN_DEC_REF(connp); 20578 return; 20579 } 20580 20581 /* 20582 * Access to conn_ire_cache. (protected by conn_lock) 20583 * 20584 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20585 * the ire bucket lock here to check for CONDEMNED as it is okay to 20586 * send a packet or two with the IRE_CACHE that is going away. 20587 * Access to the ire requires an ire refhold on the ire prior to 20588 * its use since an interface unplumb thread may delete the cached 20589 * ire and release the refhold at any time. 20590 * 20591 * Caching an ire in the conn_ire_cache 20592 * 20593 * o Caching an ire pointer in the conn requires a strict check for 20594 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20595 * ires before cleaning up the conns. So the caching of an ire pointer 20596 * in the conn is done after making sure under the bucket lock that the 20597 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20598 * caching an ire after the unplumb thread has cleaned up the conn. 20599 * If the conn does not send a packet subsequently the unplumb thread 20600 * will be hanging waiting for the ire count to drop to zero. 20601 * 20602 * o We also need to atomically test for a null conn_ire_cache and 20603 * set the conn_ire_cache under the the protection of the conn_lock 20604 * to avoid races among concurrent threads trying to simultaneously 20605 * cache an ire in the conn_ire_cache. 20606 */ 20607 mutex_enter(&connp->conn_lock); 20608 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20609 20610 if (ire != NULL && ire->ire_addr == dst && 20611 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20612 20613 IRE_REFHOLD(ire); 20614 mutex_exit(&connp->conn_lock); 20615 20616 } else { 20617 boolean_t cached = B_FALSE; 20618 connp->conn_ire_cache = NULL; 20619 mutex_exit(&connp->conn_lock); 20620 /* Release the old ire */ 20621 if (ire != NULL && sctp_ire == NULL) 20622 IRE_REFRELE_NOTR(ire); 20623 20624 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20625 if (ire == NULL) 20626 goto noirefound; 20627 IRE_REFHOLD_NOTR(ire); 20628 20629 mutex_enter(&connp->conn_lock); 20630 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20631 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20632 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20633 if (connp->conn_ulp == IPPROTO_TCP) 20634 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20635 connp->conn_ire_cache = ire; 20636 cached = B_TRUE; 20637 } 20638 rw_exit(&ire->ire_bucket->irb_lock); 20639 } 20640 mutex_exit(&connp->conn_lock); 20641 20642 /* 20643 * We can continue to use the ire but since it was 20644 * not cached, we should drop the extra reference. 20645 */ 20646 if (!cached) 20647 IRE_REFRELE_NOTR(ire); 20648 } 20649 20650 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20651 "ip_wput_end: q %p (%S)", q, "end"); 20652 20653 /* 20654 * Check if the ire has the RTF_MULTIRT flag, inherited 20655 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20656 */ 20657 if (ire->ire_flags & RTF_MULTIRT) { 20658 /* 20659 * Force the TTL of multirouted packets if required. 20660 * The TTL of such packets is bounded by the 20661 * ip_multirt_ttl ndd variable. 20662 */ 20663 if ((ipst->ips_ip_multirt_ttl > 0) && 20664 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20665 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20666 "(was %d), dst 0x%08x\n", 20667 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20668 ntohl(ire->ire_addr))); 20669 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20670 } 20671 20672 /* 20673 * At this point, we check to see if there are any pending 20674 * unresolved routes. ire_multirt_resolvable() 20675 * checks in O(n) that all IRE_OFFSUBNET ire 20676 * entries for the packet's destination and 20677 * flagged RTF_MULTIRT are currently resolved. 20678 * If some remain unresolved, we make a copy 20679 * of the current message. It will be used 20680 * to initiate additional route resolutions. 20681 */ 20682 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20683 msg_getlabel(first_mp), ipst); 20684 ip2dbg(("ip_wput[not TCP]: ire %p, " 20685 "multirt_need_resolve %d, first_mp %p\n", 20686 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20687 if (multirt_need_resolve) { 20688 copy_mp = copymsg(first_mp); 20689 if (copy_mp != NULL) { 20690 MULTIRT_DEBUG_TAG(copy_mp); 20691 } 20692 } 20693 } 20694 20695 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20696 20697 /* 20698 * Try to resolve another multiroute if 20699 * ire_multirt_resolvable() deemed it necessary 20700 */ 20701 if (copy_mp != NULL) 20702 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20703 if (need_decref) 20704 CONN_DEC_REF(connp); 20705 return; 20706 20707 qnext: 20708 /* 20709 * Upper Level Protocols pass down complete IP datagrams 20710 * as M_DATA messages. Everything else is a sideshow. 20711 * 20712 * 1) We could be re-entering ip_wput because of ip_neworute 20713 * in which case we could have a IPSEC_OUT message. We 20714 * need to pass through ip_wput like other datagrams and 20715 * hence cannot branch to ip_wput_nondata. 20716 * 20717 * 2) ARP, AH, ESP, and other clients who are on the module 20718 * instance of IP stream, give us something to deal with. 20719 * We will handle AH and ESP here and rest in ip_wput_nondata. 20720 * 20721 * 3) ICMP replies also could come here. 20722 */ 20723 ipst = ILLQ_TO_IPST(q); 20724 20725 if (DB_TYPE(mp) != M_DATA) { 20726 notdata: 20727 if (DB_TYPE(mp) == M_CTL) { 20728 /* 20729 * M_CTL messages are used by ARP, AH and ESP to 20730 * communicate with IP. We deal with IPSEC_IN and 20731 * IPSEC_OUT here. ip_wput_nondata handles other 20732 * cases. 20733 */ 20734 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20735 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20736 first_mp = mp->b_cont; 20737 first_mp->b_flag &= ~MSGHASREF; 20738 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20739 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20740 CONN_DEC_REF(connp); 20741 connp = NULL; 20742 } 20743 if (ii->ipsec_info_type == IPSEC_IN) { 20744 /* 20745 * Either this message goes back to 20746 * IPsec for further processing or to 20747 * ULP after policy checks. 20748 */ 20749 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20750 return; 20751 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20752 io = (ipsec_out_t *)ii; 20753 if (io->ipsec_out_proc_begin) { 20754 /* 20755 * IPsec processing has already started. 20756 * Complete it. 20757 * IPQoS notes: We don't care what is 20758 * in ipsec_out_ill_index since this 20759 * won't be processed for IPQoS policies 20760 * in ipsec_out_process. 20761 */ 20762 ipsec_out_process(q, mp, NULL, 20763 io->ipsec_out_ill_index); 20764 return; 20765 } else { 20766 connp = (q->q_next != NULL) ? 20767 NULL : Q_TO_CONN(q); 20768 first_mp = mp; 20769 mp = mp->b_cont; 20770 mctl_present = B_TRUE; 20771 } 20772 zoneid = io->ipsec_out_zoneid; 20773 ASSERT(zoneid != ALL_ZONES); 20774 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20775 /* 20776 * It's an IPsec control message requesting 20777 * an SADB update to be sent to the IPsec 20778 * hardware acceleration capable ills. 20779 */ 20780 ipsec_ctl_t *ipsec_ctl = 20781 (ipsec_ctl_t *)mp->b_rptr; 20782 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20783 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20784 mblk_t *cmp = mp->b_cont; 20785 20786 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20787 ASSERT(cmp != NULL); 20788 20789 freeb(mp); 20790 ill_ipsec_capab_send_all(satype, cmp, sa, 20791 ipst->ips_netstack); 20792 return; 20793 } else { 20794 /* 20795 * This must be ARP or special TSOL signaling. 20796 */ 20797 ip_wput_nondata(NULL, q, mp, NULL); 20798 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20799 "ip_wput_end: q %p (%S)", q, "nondata"); 20800 return; 20801 } 20802 } else { 20803 /* 20804 * This must be non-(ARP/AH/ESP) messages. 20805 */ 20806 ASSERT(!need_decref); 20807 ip_wput_nondata(NULL, q, mp, NULL); 20808 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20809 "ip_wput_end: q %p (%S)", q, "nondata"); 20810 return; 20811 } 20812 } else { 20813 first_mp = mp; 20814 mctl_present = B_FALSE; 20815 } 20816 20817 ASSERT(first_mp != NULL); 20818 20819 if (mctl_present) { 20820 io = (ipsec_out_t *)first_mp->b_rptr; 20821 if (io->ipsec_out_ip_nexthop) { 20822 /* 20823 * We may have lost the conn context if we are 20824 * coming here from ip_newroute(). Copy the 20825 * nexthop information. 20826 */ 20827 ip_nexthop = B_TRUE; 20828 nexthop_addr = io->ipsec_out_nexthop_addr; 20829 20830 ipha = (ipha_t *)mp->b_rptr; 20831 dst = ipha->ipha_dst; 20832 goto send_from_ill; 20833 } 20834 } 20835 20836 ASSERT(xmit_ill == NULL); 20837 20838 /* We have a complete IP datagram heading outbound. */ 20839 ipha = (ipha_t *)mp->b_rptr; 20840 20841 #ifndef SPEED_BEFORE_SAFETY 20842 /* 20843 * Make sure we have a full-word aligned message and that at least 20844 * a simple IP header is accessible in the first message. If not, 20845 * try a pullup. For labeled systems we need to always take this 20846 * path as M_CTLs are "notdata" but have trailing data to process. 20847 */ 20848 if (!OK_32PTR(rptr) || 20849 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 20850 hdrtoosmall: 20851 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20852 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20853 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20854 if (first_mp == NULL) 20855 first_mp = mp; 20856 goto discard_pkt; 20857 } 20858 20859 /* This function assumes that mp points to an IPv4 packet. */ 20860 if (is_system_labeled() && 20861 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20862 (connp == NULL || !connp->conn_ulp_labeled)) { 20863 cred_t *credp; 20864 pid_t pid; 20865 20866 if (connp != NULL) { 20867 credp = BEST_CRED(mp, connp, &pid); 20868 err = tsol_check_label(credp, &mp, 20869 connp->conn_mac_exempt, ipst, pid); 20870 } else if ((credp = msg_getcred(mp, &pid)) != NULL) { 20871 err = tsol_check_label(credp, &mp, 20872 B_FALSE, ipst, pid); 20873 } 20874 ipha = (ipha_t *)mp->b_rptr; 20875 if (mctl_present) 20876 first_mp->b_cont = mp; 20877 else 20878 first_mp = mp; 20879 if (err != 0) { 20880 if (err == EINVAL) 20881 goto icmp_parameter_problem; 20882 ip2dbg(("ip_wput: label check failed (%d)\n", 20883 err)); 20884 goto discard_pkt; 20885 } 20886 } 20887 20888 ipha = (ipha_t *)mp->b_rptr; 20889 if (first_mp == NULL) { 20890 ASSERT(xmit_ill == NULL); 20891 /* 20892 * If we got here because of "goto hdrtoosmall" 20893 * We need to attach a IPSEC_OUT. 20894 */ 20895 if (connp->conn_out_enforce_policy) { 20896 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20897 NULL, ipha->ipha_protocol, 20898 ipst->ips_netstack)) == NULL)) { 20899 BUMP_MIB(&ipst->ips_ip_mib, 20900 ipIfStatsOutDiscards); 20901 if (need_decref) 20902 CONN_DEC_REF(connp); 20903 return; 20904 } else { 20905 ASSERT(mp->b_datap->db_type == M_CTL); 20906 first_mp = mp; 20907 mp = mp->b_cont; 20908 mctl_present = B_TRUE; 20909 } 20910 } else { 20911 first_mp = mp; 20912 mctl_present = B_FALSE; 20913 } 20914 } 20915 } 20916 #endif 20917 20918 /* Most of the code below is written for speed, not readability */ 20919 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20920 20921 /* 20922 * If ip_newroute() fails, we're going to need a full 20923 * header for the icmp wraparound. 20924 */ 20925 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20926 uint_t v_hlen; 20927 version_hdrlen_check: 20928 ASSERT(first_mp != NULL); 20929 v_hlen = V_HLEN; 20930 /* 20931 * siphon off IPv6 packets coming down from transport 20932 * layer modules here. 20933 * Note: high-order bit carries NUD reachability confirmation 20934 */ 20935 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20936 /* 20937 * FIXME: assume that callers of ip_output* call 20938 * the right version? 20939 */ 20940 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20941 ASSERT(xmit_ill == NULL); 20942 if (need_decref) 20943 mp->b_flag |= MSGHASREF; 20944 (void) ip_output_v6(arg, first_mp, arg2, caller); 20945 return; 20946 } 20947 20948 if ((v_hlen >> 4) != IP_VERSION) { 20949 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20950 "ip_wput_end: q %p (%S)", q, "badvers"); 20951 goto discard_pkt; 20952 } 20953 /* 20954 * Is the header length at least 20 bytes? 20955 * 20956 * Are there enough bytes accessible in the header? If 20957 * not, try a pullup. 20958 */ 20959 v_hlen &= 0xF; 20960 v_hlen <<= 2; 20961 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20962 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20963 "ip_wput_end: q %p (%S)", q, "badlen"); 20964 goto discard_pkt; 20965 } 20966 if (v_hlen > (mp->b_wptr - rptr)) { 20967 if (!pullupmsg(mp, v_hlen)) { 20968 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20969 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20970 goto discard_pkt; 20971 } 20972 ipha = (ipha_t *)mp->b_rptr; 20973 } 20974 /* 20975 * Move first entry from any source route into ipha_dst and 20976 * verify the options 20977 */ 20978 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20979 zoneid, ipst)) { 20980 ASSERT(xmit_ill == NULL); 20981 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20982 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20983 "ip_wput_end: q %p (%S)", q, "badopts"); 20984 if (need_decref) 20985 CONN_DEC_REF(connp); 20986 return; 20987 } 20988 } 20989 dst = ipha->ipha_dst; 20990 20991 /* 20992 * Try to get an IRE_CACHE for the destination address. If we can't, 20993 * we have to run the packet through ip_newroute which will take 20994 * the appropriate action to arrange for an IRE_CACHE, such as querying 20995 * a resolver, or assigning a default gateway, etc. 20996 */ 20997 if (CLASSD(dst)) { 20998 ipif_t *ipif; 20999 uint32_t setsrc = 0; 21000 21001 multicast: 21002 ASSERT(first_mp != NULL); 21003 ip2dbg(("ip_wput: CLASSD\n")); 21004 if (connp == NULL) { 21005 /* 21006 * Use the first good ipif on the ill. 21007 * XXX Should this ever happen? (Appears 21008 * to show up with just ppp and no ethernet due 21009 * to in.rdisc.) 21010 * However, ire_send should be able to 21011 * call ip_wput_ire directly. 21012 * 21013 * XXX Also, this can happen for ICMP and other packets 21014 * with multicast source addresses. Perhaps we should 21015 * fix things so that we drop the packet in question, 21016 * but for now, just run with it. 21017 */ 21018 ill_t *ill = (ill_t *)q->q_ptr; 21019 21020 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21021 if (ipif == NULL) { 21022 if (need_decref) 21023 CONN_DEC_REF(connp); 21024 freemsg(first_mp); 21025 return; 21026 } 21027 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21028 ntohl(dst), ill->ill_name)); 21029 } else { 21030 /* 21031 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 21032 * and IP_MULTICAST_IF. The block comment above this 21033 * function explains the locking mechanism used here. 21034 */ 21035 if (xmit_ill == NULL) { 21036 xmit_ill = conn_get_held_ill(connp, 21037 &connp->conn_outgoing_ill, &err); 21038 if (err == ILL_LOOKUP_FAILED) { 21039 ip1dbg(("ip_wput: No ill for " 21040 "IP_BOUND_IF\n")); 21041 BUMP_MIB(&ipst->ips_ip_mib, 21042 ipIfStatsOutNoRoutes); 21043 goto drop_pkt; 21044 } 21045 } 21046 21047 if (xmit_ill == NULL) { 21048 ipif = conn_get_held_ipif(connp, 21049 &connp->conn_multicast_ipif, &err); 21050 if (err == IPIF_LOOKUP_FAILED) { 21051 ip1dbg(("ip_wput: No ipif for " 21052 "multicast\n")); 21053 BUMP_MIB(&ipst->ips_ip_mib, 21054 ipIfStatsOutNoRoutes); 21055 goto drop_pkt; 21056 } 21057 } 21058 if (xmit_ill != NULL) { 21059 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21060 if (ipif == NULL) { 21061 ip1dbg(("ip_wput: No ipif for " 21062 "xmit_ill\n")); 21063 BUMP_MIB(&ipst->ips_ip_mib, 21064 ipIfStatsOutNoRoutes); 21065 goto drop_pkt; 21066 } 21067 } else if (ipif == NULL || ipif->ipif_isv6) { 21068 /* 21069 * We must do this ipif determination here 21070 * else we could pass through ip_newroute 21071 * and come back here without the conn context. 21072 * 21073 * Note: we do late binding i.e. we bind to 21074 * the interface when the first packet is sent. 21075 * For performance reasons we do not rebind on 21076 * each packet but keep the binding until the 21077 * next IP_MULTICAST_IF option. 21078 * 21079 * conn_multicast_{ipif,ill} are shared between 21080 * IPv4 and IPv6 and AF_INET6 sockets can 21081 * send both IPv4 and IPv6 packets. Hence 21082 * we have to check that "isv6" matches above. 21083 */ 21084 if (ipif != NULL) 21085 ipif_refrele(ipif); 21086 ipif = ipif_lookup_group(dst, zoneid, ipst); 21087 if (ipif == NULL) { 21088 ip1dbg(("ip_wput: No ipif for " 21089 "multicast\n")); 21090 BUMP_MIB(&ipst->ips_ip_mib, 21091 ipIfStatsOutNoRoutes); 21092 goto drop_pkt; 21093 } 21094 err = conn_set_held_ipif(connp, 21095 &connp->conn_multicast_ipif, ipif); 21096 if (err == IPIF_LOOKUP_FAILED) { 21097 ipif_refrele(ipif); 21098 ip1dbg(("ip_wput: No ipif for " 21099 "multicast\n")); 21100 BUMP_MIB(&ipst->ips_ip_mib, 21101 ipIfStatsOutNoRoutes); 21102 goto drop_pkt; 21103 } 21104 } 21105 } 21106 ASSERT(!ipif->ipif_isv6); 21107 /* 21108 * As we may lose the conn by the time we reach ip_wput_ire, 21109 * we copy conn_multicast_loop and conn_dontroute on to an 21110 * ipsec_out. In case if this datagram goes out secure, 21111 * we need the ill_index also. Copy that also into the 21112 * ipsec_out. 21113 */ 21114 if (mctl_present) { 21115 io = (ipsec_out_t *)first_mp->b_rptr; 21116 ASSERT(first_mp->b_datap->db_type == M_CTL); 21117 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21118 } else { 21119 ASSERT(mp == first_mp); 21120 if ((first_mp = allocb(sizeof (ipsec_info_t), 21121 BPRI_HI)) == NULL) { 21122 ipif_refrele(ipif); 21123 first_mp = mp; 21124 goto discard_pkt; 21125 } 21126 first_mp->b_datap->db_type = M_CTL; 21127 first_mp->b_wptr += sizeof (ipsec_info_t); 21128 /* ipsec_out_secure is B_FALSE now */ 21129 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21130 io = (ipsec_out_t *)first_mp->b_rptr; 21131 io->ipsec_out_type = IPSEC_OUT; 21132 io->ipsec_out_len = sizeof (ipsec_out_t); 21133 io->ipsec_out_use_global_policy = B_TRUE; 21134 io->ipsec_out_ns = ipst->ips_netstack; 21135 first_mp->b_cont = mp; 21136 mctl_present = B_TRUE; 21137 } 21138 21139 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21140 io->ipsec_out_ill_index = 21141 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21142 21143 if (connp != NULL) { 21144 io->ipsec_out_multicast_loop = 21145 connp->conn_multicast_loop; 21146 io->ipsec_out_dontroute = connp->conn_dontroute; 21147 io->ipsec_out_zoneid = connp->conn_zoneid; 21148 } 21149 /* 21150 * If the application uses IP_MULTICAST_IF with 21151 * different logical addresses of the same ILL, we 21152 * need to make sure that the soruce address of 21153 * the packet matches the logical IP address used 21154 * in the option. We do it by initializing ipha_src 21155 * here. This should keep IPsec also happy as 21156 * when we return from IPsec processing, we don't 21157 * have to worry about getting the right address on 21158 * the packet. Thus it is sufficient to look for 21159 * IRE_CACHE using MATCH_IRE_ILL rathen than 21160 * MATCH_IRE_IPIF. 21161 * 21162 * NOTE : We need to do it for non-secure case also as 21163 * this might go out secure if there is a global policy 21164 * match in ip_wput_ire. 21165 * 21166 * As we do not have the ire yet, it is possible that 21167 * we set the source address here and then later discover 21168 * that the ire implies the source address to be assigned 21169 * through the RTF_SETSRC flag. 21170 * In that case, the setsrc variable will remind us 21171 * that overwritting the source address by the one 21172 * of the RTF_SETSRC-flagged ire is allowed. 21173 */ 21174 if (ipha->ipha_src == INADDR_ANY && 21175 (connp == NULL || !connp->conn_unspec_src)) { 21176 ipha->ipha_src = ipif->ipif_src_addr; 21177 setsrc = RTF_SETSRC; 21178 } 21179 /* 21180 * Find an IRE which matches the destination and the outgoing 21181 * queue (i.e. the outgoing interface.) 21182 * For loopback use a unicast IP address for 21183 * the ire lookup. 21184 */ 21185 if (IS_LOOPBACK(ipif->ipif_ill)) 21186 dst = ipif->ipif_lcl_addr; 21187 21188 /* 21189 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21190 * We don't need to lookup ire in ctable as the packet 21191 * needs to be sent to the destination through the specified 21192 * ill irrespective of ires in the cache table. 21193 */ 21194 ire = NULL; 21195 if (xmit_ill == NULL) { 21196 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21197 zoneid, msg_getlabel(mp), match_flags, ipst); 21198 } 21199 21200 if (ire == NULL) { 21201 /* 21202 * Multicast loopback and multicast forwarding is 21203 * done in ip_wput_ire. 21204 * 21205 * Mark this packet to make it be delivered to 21206 * ip_wput_ire after the new ire has been 21207 * created. 21208 * 21209 * The call to ip_newroute_ipif takes into account 21210 * the setsrc reminder. In any case, we take care 21211 * of the RTF_MULTIRT flag. 21212 */ 21213 mp->b_prev = mp->b_next = NULL; 21214 if (xmit_ill == NULL || 21215 xmit_ill->ill_ipif_up_count > 0) { 21216 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21217 setsrc | RTF_MULTIRT, zoneid, infop); 21218 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21219 "ip_wput_end: q %p (%S)", q, "noire"); 21220 } else { 21221 freemsg(first_mp); 21222 } 21223 ipif_refrele(ipif); 21224 if (xmit_ill != NULL) 21225 ill_refrele(xmit_ill); 21226 if (need_decref) 21227 CONN_DEC_REF(connp); 21228 return; 21229 } 21230 21231 ipif_refrele(ipif); 21232 ipif = NULL; 21233 ASSERT(xmit_ill == NULL); 21234 21235 /* 21236 * Honor the RTF_SETSRC flag for multicast packets, 21237 * if allowed by the setsrc reminder. 21238 */ 21239 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21240 ipha->ipha_src = ire->ire_src_addr; 21241 } 21242 21243 /* 21244 * Unconditionally force the TTL to 1 for 21245 * multirouted multicast packets: 21246 * multirouted multicast should not cross 21247 * multicast routers. 21248 */ 21249 if (ire->ire_flags & RTF_MULTIRT) { 21250 if (ipha->ipha_ttl > 1) { 21251 ip2dbg(("ip_wput: forcing multicast " 21252 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21253 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21254 ipha->ipha_ttl = 1; 21255 } 21256 } 21257 } else { 21258 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 21259 if ((ire != NULL) && (ire->ire_type & 21260 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21261 ignore_dontroute = B_TRUE; 21262 ignore_nexthop = B_TRUE; 21263 } 21264 if (ire != NULL) { 21265 ire_refrele(ire); 21266 ire = NULL; 21267 } 21268 /* 21269 * Guard against coming in from arp in which case conn is NULL. 21270 * Also guard against non M_DATA with dontroute set but 21271 * destined to local, loopback or broadcast addresses. 21272 */ 21273 if (connp != NULL && connp->conn_dontroute && 21274 !ignore_dontroute) { 21275 dontroute: 21276 /* 21277 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21278 * routing protocols from seeing false direct 21279 * connectivity. 21280 */ 21281 ipha->ipha_ttl = 1; 21282 /* If suitable ipif not found, drop packet */ 21283 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21284 if (dst_ipif == NULL) { 21285 noroute: 21286 ip1dbg(("ip_wput: no route for dst using" 21287 " SO_DONTROUTE\n")); 21288 BUMP_MIB(&ipst->ips_ip_mib, 21289 ipIfStatsOutNoRoutes); 21290 mp->b_prev = mp->b_next = NULL; 21291 if (first_mp == NULL) 21292 first_mp = mp; 21293 goto drop_pkt; 21294 } else { 21295 /* 21296 * If suitable ipif has been found, set 21297 * xmit_ill to the corresponding 21298 * ipif_ill because we'll be using the 21299 * send_from_ill logic below. 21300 */ 21301 ASSERT(xmit_ill == NULL); 21302 xmit_ill = dst_ipif->ipif_ill; 21303 mutex_enter(&xmit_ill->ill_lock); 21304 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21305 mutex_exit(&xmit_ill->ill_lock); 21306 xmit_ill = NULL; 21307 ipif_refrele(dst_ipif); 21308 goto noroute; 21309 } 21310 ill_refhold_locked(xmit_ill); 21311 mutex_exit(&xmit_ill->ill_lock); 21312 ipif_refrele(dst_ipif); 21313 } 21314 } 21315 21316 send_from_ill: 21317 if (xmit_ill != NULL) { 21318 ipif_t *ipif; 21319 21320 /* 21321 * Mark this packet as originated locally 21322 */ 21323 mp->b_prev = mp->b_next = NULL; 21324 21325 /* 21326 * Could be SO_DONTROUTE case also. 21327 * Verify that at least one ipif is up on the ill. 21328 */ 21329 if (xmit_ill->ill_ipif_up_count == 0) { 21330 ip1dbg(("ip_output: xmit_ill %s is down\n", 21331 xmit_ill->ill_name)); 21332 goto drop_pkt; 21333 } 21334 21335 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21336 if (ipif == NULL) { 21337 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21338 xmit_ill->ill_name)); 21339 goto drop_pkt; 21340 } 21341 21342 match_flags = 0; 21343 if (IS_UNDER_IPMP(xmit_ill)) 21344 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 21345 21346 /* 21347 * Look for a ire that is part of the group, 21348 * if found use it else call ip_newroute_ipif. 21349 * IPCL_ZONEID is not used for matching because 21350 * IP_ALLZONES option is valid only when the 21351 * ill is accessible from all zones i.e has a 21352 * valid ipif in all zones. 21353 */ 21354 match_flags |= MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21355 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21356 msg_getlabel(mp), match_flags, ipst); 21357 /* 21358 * If an ire exists use it or else create 21359 * an ire but don't add it to the cache. 21360 * Adding an ire may cause issues with 21361 * asymmetric routing. 21362 * In case of multiroute always act as if 21363 * ire does not exist. 21364 */ 21365 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21366 if (ire != NULL) 21367 ire_refrele(ire); 21368 ip_newroute_ipif(q, first_mp, ipif, 21369 dst, connp, 0, zoneid, infop); 21370 ipif_refrele(ipif); 21371 ip1dbg(("ip_output: xmit_ill via %s\n", 21372 xmit_ill->ill_name)); 21373 ill_refrele(xmit_ill); 21374 if (need_decref) 21375 CONN_DEC_REF(connp); 21376 return; 21377 } 21378 ipif_refrele(ipif); 21379 } else if (ip_nexthop || (connp != NULL && 21380 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21381 if (!ip_nexthop) { 21382 ip_nexthop = B_TRUE; 21383 nexthop_addr = connp->conn_nexthop_v4; 21384 } 21385 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21386 MATCH_IRE_GW; 21387 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21388 NULL, zoneid, msg_getlabel(mp), match_flags, ipst); 21389 } else { 21390 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), 21391 ipst); 21392 } 21393 if (!ire) { 21394 if (ip_nexthop && !ignore_nexthop) { 21395 if (mctl_present) { 21396 io = (ipsec_out_t *)first_mp->b_rptr; 21397 ASSERT(first_mp->b_datap->db_type == 21398 M_CTL); 21399 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21400 } else { 21401 ASSERT(mp == first_mp); 21402 first_mp = allocb( 21403 sizeof (ipsec_info_t), BPRI_HI); 21404 if (first_mp == NULL) { 21405 first_mp = mp; 21406 goto discard_pkt; 21407 } 21408 first_mp->b_datap->db_type = M_CTL; 21409 first_mp->b_wptr += 21410 sizeof (ipsec_info_t); 21411 /* ipsec_out_secure is B_FALSE now */ 21412 bzero(first_mp->b_rptr, 21413 sizeof (ipsec_info_t)); 21414 io = (ipsec_out_t *)first_mp->b_rptr; 21415 io->ipsec_out_type = IPSEC_OUT; 21416 io->ipsec_out_len = 21417 sizeof (ipsec_out_t); 21418 io->ipsec_out_use_global_policy = 21419 B_TRUE; 21420 io->ipsec_out_ns = ipst->ips_netstack; 21421 first_mp->b_cont = mp; 21422 mctl_present = B_TRUE; 21423 } 21424 io->ipsec_out_ip_nexthop = ip_nexthop; 21425 io->ipsec_out_nexthop_addr = nexthop_addr; 21426 } 21427 noirefound: 21428 /* 21429 * Mark this packet as having originated on 21430 * this machine. This will be noted in 21431 * ire_add_then_send, which needs to know 21432 * whether to run it back through ip_wput or 21433 * ip_rput following successful resolution. 21434 */ 21435 mp->b_prev = NULL; 21436 mp->b_next = NULL; 21437 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21438 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21439 "ip_wput_end: q %p (%S)", q, "newroute"); 21440 if (xmit_ill != NULL) 21441 ill_refrele(xmit_ill); 21442 if (need_decref) 21443 CONN_DEC_REF(connp); 21444 return; 21445 } 21446 } 21447 21448 /* We now know where we are going with it. */ 21449 21450 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21451 "ip_wput_end: q %p (%S)", q, "end"); 21452 21453 /* 21454 * Check if the ire has the RTF_MULTIRT flag, inherited 21455 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21456 */ 21457 if (ire->ire_flags & RTF_MULTIRT) { 21458 /* 21459 * Force the TTL of multirouted packets if required. 21460 * The TTL of such packets is bounded by the 21461 * ip_multirt_ttl ndd variable. 21462 */ 21463 if ((ipst->ips_ip_multirt_ttl > 0) && 21464 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21465 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21466 "(was %d), dst 0x%08x\n", 21467 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21468 ntohl(ire->ire_addr))); 21469 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21470 } 21471 /* 21472 * At this point, we check to see if there are any pending 21473 * unresolved routes. ire_multirt_resolvable() 21474 * checks in O(n) that all IRE_OFFSUBNET ire 21475 * entries for the packet's destination and 21476 * flagged RTF_MULTIRT are currently resolved. 21477 * If some remain unresolved, we make a copy 21478 * of the current message. It will be used 21479 * to initiate additional route resolutions. 21480 */ 21481 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21482 msg_getlabel(first_mp), ipst); 21483 ip2dbg(("ip_wput[noirefound]: ire %p, " 21484 "multirt_need_resolve %d, first_mp %p\n", 21485 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21486 if (multirt_need_resolve) { 21487 copy_mp = copymsg(first_mp); 21488 if (copy_mp != NULL) { 21489 MULTIRT_DEBUG_TAG(copy_mp); 21490 } 21491 } 21492 } 21493 21494 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21495 /* 21496 * Try to resolve another multiroute if 21497 * ire_multirt_resolvable() deemed it necessary. 21498 * At this point, we need to distinguish 21499 * multicasts from other packets. For multicasts, 21500 * we call ip_newroute_ipif() and request that both 21501 * multirouting and setsrc flags are checked. 21502 */ 21503 if (copy_mp != NULL) { 21504 if (CLASSD(dst)) { 21505 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21506 if (ipif) { 21507 ASSERT(infop->ip_opt_ill_index == 0); 21508 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21509 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21510 ipif_refrele(ipif); 21511 } else { 21512 MULTIRT_DEBUG_UNTAG(copy_mp); 21513 freemsg(copy_mp); 21514 copy_mp = NULL; 21515 } 21516 } else { 21517 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21518 } 21519 } 21520 if (xmit_ill != NULL) 21521 ill_refrele(xmit_ill); 21522 if (need_decref) 21523 CONN_DEC_REF(connp); 21524 return; 21525 21526 icmp_parameter_problem: 21527 /* could not have originated externally */ 21528 ASSERT(mp->b_prev == NULL); 21529 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21530 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21531 /* it's the IP header length that's in trouble */ 21532 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21533 first_mp = NULL; 21534 } 21535 21536 discard_pkt: 21537 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21538 drop_pkt: 21539 ip1dbg(("ip_wput: dropped packet\n")); 21540 if (ire != NULL) 21541 ire_refrele(ire); 21542 if (need_decref) 21543 CONN_DEC_REF(connp); 21544 freemsg(first_mp); 21545 if (xmit_ill != NULL) 21546 ill_refrele(xmit_ill); 21547 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21548 "ip_wput_end: q %p (%S)", q, "droppkt"); 21549 } 21550 21551 /* 21552 * If this is a conn_t queue, then we pass in the conn. This includes the 21553 * zoneid. 21554 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21555 * in which case we use the global zoneid since those are all part of 21556 * the global zone. 21557 */ 21558 void 21559 ip_wput(queue_t *q, mblk_t *mp) 21560 { 21561 if (CONN_Q(q)) 21562 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21563 else 21564 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21565 } 21566 21567 /* 21568 * 21569 * The following rules must be observed when accessing any ipif or ill 21570 * that has been cached in the conn. Typically conn_outgoing_ill, 21571 * conn_multicast_ipif and conn_multicast_ill. 21572 * 21573 * Access: The ipif or ill pointed to from the conn can be accessed under 21574 * the protection of the conn_lock or after it has been refheld under the 21575 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21576 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21577 * The reason for this is that a concurrent unplumb could actually be 21578 * cleaning up these cached pointers by walking the conns and might have 21579 * finished cleaning up the conn in question. The macros check that an 21580 * unplumb has not yet started on the ipif or ill. 21581 * 21582 * Caching: An ipif or ill pointer may be cached in the conn only after 21583 * making sure that an unplumb has not started. So the caching is done 21584 * while holding both the conn_lock and the ill_lock and after using the 21585 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21586 * flag before starting the cleanup of conns. 21587 * 21588 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21589 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21590 * or a reference to the ipif or a reference to an ire that references the 21591 * ipif. An ipif only changes its ill when migrating from an underlying ill 21592 * to an IPMP ill in ipif_up(). 21593 */ 21594 ipif_t * 21595 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21596 { 21597 ipif_t *ipif; 21598 ill_t *ill; 21599 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21600 21601 *err = 0; 21602 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21603 mutex_enter(&connp->conn_lock); 21604 ipif = *ipifp; 21605 if (ipif != NULL) { 21606 ill = ipif->ipif_ill; 21607 mutex_enter(&ill->ill_lock); 21608 if (IPIF_CAN_LOOKUP(ipif)) { 21609 ipif_refhold_locked(ipif); 21610 mutex_exit(&ill->ill_lock); 21611 mutex_exit(&connp->conn_lock); 21612 rw_exit(&ipst->ips_ill_g_lock); 21613 return (ipif); 21614 } else { 21615 *err = IPIF_LOOKUP_FAILED; 21616 } 21617 mutex_exit(&ill->ill_lock); 21618 } 21619 mutex_exit(&connp->conn_lock); 21620 rw_exit(&ipst->ips_ill_g_lock); 21621 return (NULL); 21622 } 21623 21624 ill_t * 21625 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21626 { 21627 ill_t *ill; 21628 21629 *err = 0; 21630 mutex_enter(&connp->conn_lock); 21631 ill = *illp; 21632 if (ill != NULL) { 21633 mutex_enter(&ill->ill_lock); 21634 if (ILL_CAN_LOOKUP(ill)) { 21635 ill_refhold_locked(ill); 21636 mutex_exit(&ill->ill_lock); 21637 mutex_exit(&connp->conn_lock); 21638 return (ill); 21639 } else { 21640 *err = ILL_LOOKUP_FAILED; 21641 } 21642 mutex_exit(&ill->ill_lock); 21643 } 21644 mutex_exit(&connp->conn_lock); 21645 return (NULL); 21646 } 21647 21648 static int 21649 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21650 { 21651 ill_t *ill; 21652 21653 ill = ipif->ipif_ill; 21654 mutex_enter(&connp->conn_lock); 21655 mutex_enter(&ill->ill_lock); 21656 if (IPIF_CAN_LOOKUP(ipif)) { 21657 *ipifp = ipif; 21658 mutex_exit(&ill->ill_lock); 21659 mutex_exit(&connp->conn_lock); 21660 return (0); 21661 } 21662 mutex_exit(&ill->ill_lock); 21663 mutex_exit(&connp->conn_lock); 21664 return (IPIF_LOOKUP_FAILED); 21665 } 21666 21667 /* 21668 * This is called if the outbound datagram needs fragmentation. 21669 * 21670 * NOTE : This function does not ire_refrele the ire argument passed in. 21671 */ 21672 static void 21673 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21674 ip_stack_t *ipst, conn_t *connp) 21675 { 21676 ipha_t *ipha; 21677 mblk_t *mp; 21678 uint32_t v_hlen_tos_len; 21679 uint32_t max_frag; 21680 uint32_t frag_flag; 21681 boolean_t dont_use; 21682 21683 if (ipsec_mp->b_datap->db_type == M_CTL) { 21684 mp = ipsec_mp->b_cont; 21685 } else { 21686 mp = ipsec_mp; 21687 } 21688 21689 ipha = (ipha_t *)mp->b_rptr; 21690 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21691 21692 #ifdef _BIG_ENDIAN 21693 #define V_HLEN (v_hlen_tos_len >> 24) 21694 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21695 #else 21696 #define V_HLEN (v_hlen_tos_len & 0xFF) 21697 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21698 #endif 21699 21700 #ifndef SPEED_BEFORE_SAFETY 21701 /* 21702 * Check that ipha_length is consistent with 21703 * the mblk length 21704 */ 21705 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21706 ip0dbg(("Packet length mismatch: %d, %ld\n", 21707 LENGTH, msgdsize(mp))); 21708 freemsg(ipsec_mp); 21709 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21710 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21711 "packet length mismatch"); 21712 return; 21713 } 21714 #endif 21715 /* 21716 * Don't use frag_flag if pre-built packet or source 21717 * routed or if multicast (since multicast packets do not solicit 21718 * ICMP "packet too big" messages). Get the values of 21719 * max_frag and frag_flag atomically by acquiring the 21720 * ire_lock. 21721 */ 21722 mutex_enter(&ire->ire_lock); 21723 max_frag = ire->ire_max_frag; 21724 frag_flag = ire->ire_frag_flag; 21725 mutex_exit(&ire->ire_lock); 21726 21727 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21728 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21729 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21730 21731 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21732 (dont_use ? 0 : frag_flag), zoneid, ipst, connp); 21733 } 21734 21735 /* 21736 * Used for deciding the MSS size for the upper layer. Thus 21737 * we need to check the outbound policy values in the conn. 21738 */ 21739 int 21740 conn_ipsec_length(conn_t *connp) 21741 { 21742 ipsec_latch_t *ipl; 21743 21744 ipl = connp->conn_latch; 21745 if (ipl == NULL) 21746 return (0); 21747 21748 if (ipl->ipl_out_policy == NULL) 21749 return (0); 21750 21751 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21752 } 21753 21754 /* 21755 * Returns an estimate of the IPsec headers size. This is used if 21756 * we don't want to call into IPsec to get the exact size. 21757 */ 21758 int 21759 ipsec_out_extra_length(mblk_t *ipsec_mp) 21760 { 21761 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21762 ipsec_action_t *a; 21763 21764 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21765 if (!io->ipsec_out_secure) 21766 return (0); 21767 21768 a = io->ipsec_out_act; 21769 21770 if (a == NULL) { 21771 ASSERT(io->ipsec_out_policy != NULL); 21772 a = io->ipsec_out_policy->ipsp_act; 21773 } 21774 ASSERT(a != NULL); 21775 21776 return (a->ipa_ovhd); 21777 } 21778 21779 /* 21780 * Returns an estimate of the IPsec headers size. This is used if 21781 * we don't want to call into IPsec to get the exact size. 21782 */ 21783 int 21784 ipsec_in_extra_length(mblk_t *ipsec_mp) 21785 { 21786 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21787 ipsec_action_t *a; 21788 21789 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21790 21791 a = ii->ipsec_in_action; 21792 return (a == NULL ? 0 : a->ipa_ovhd); 21793 } 21794 21795 /* 21796 * If there are any source route options, return the true final 21797 * destination. Otherwise, return the destination. 21798 */ 21799 ipaddr_t 21800 ip_get_dst(ipha_t *ipha) 21801 { 21802 ipoptp_t opts; 21803 uchar_t *opt; 21804 uint8_t optval; 21805 uint8_t optlen; 21806 ipaddr_t dst; 21807 uint32_t off; 21808 21809 dst = ipha->ipha_dst; 21810 21811 if (IS_SIMPLE_IPH(ipha)) 21812 return (dst); 21813 21814 for (optval = ipoptp_first(&opts, ipha); 21815 optval != IPOPT_EOL; 21816 optval = ipoptp_next(&opts)) { 21817 opt = opts.ipoptp_cur; 21818 optlen = opts.ipoptp_len; 21819 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21820 switch (optval) { 21821 case IPOPT_SSRR: 21822 case IPOPT_LSRR: 21823 off = opt[IPOPT_OFFSET]; 21824 /* 21825 * If one of the conditions is true, it means 21826 * end of options and dst already has the right 21827 * value. 21828 */ 21829 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21830 off = optlen - IP_ADDR_LEN; 21831 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21832 } 21833 return (dst); 21834 default: 21835 break; 21836 } 21837 } 21838 21839 return (dst); 21840 } 21841 21842 mblk_t * 21843 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21844 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21845 { 21846 ipsec_out_t *io; 21847 mblk_t *first_mp; 21848 boolean_t policy_present; 21849 ip_stack_t *ipst; 21850 ipsec_stack_t *ipss; 21851 21852 ASSERT(ire != NULL); 21853 ipst = ire->ire_ipst; 21854 ipss = ipst->ips_netstack->netstack_ipsec; 21855 21856 first_mp = mp; 21857 if (mp->b_datap->db_type == M_CTL) { 21858 io = (ipsec_out_t *)first_mp->b_rptr; 21859 /* 21860 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21861 * 21862 * 1) There is per-socket policy (including cached global 21863 * policy) or a policy on the IP-in-IP tunnel. 21864 * 2) There is no per-socket policy, but it is 21865 * a multicast packet that needs to go out 21866 * on a specific interface. This is the case 21867 * where (ip_wput and ip_wput_multicast) attaches 21868 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21869 * 21870 * In case (2) we check with global policy to 21871 * see if there is a match and set the ill_index 21872 * appropriately so that we can lookup the ire 21873 * properly in ip_wput_ipsec_out. 21874 */ 21875 21876 /* 21877 * ipsec_out_use_global_policy is set to B_FALSE 21878 * in ipsec_in_to_out(). Refer to that function for 21879 * details. 21880 */ 21881 if ((io->ipsec_out_latch == NULL) && 21882 (io->ipsec_out_use_global_policy)) { 21883 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21884 ire, connp, unspec_src, zoneid)); 21885 } 21886 if (!io->ipsec_out_secure) { 21887 /* 21888 * If this is not a secure packet, drop 21889 * the IPSEC_OUT mp and treat it as a clear 21890 * packet. This happens when we are sending 21891 * a ICMP reply back to a clear packet. See 21892 * ipsec_in_to_out() for details. 21893 */ 21894 mp = first_mp->b_cont; 21895 freeb(first_mp); 21896 } 21897 return (mp); 21898 } 21899 /* 21900 * See whether we need to attach a global policy here. We 21901 * don't depend on the conn (as it could be null) for deciding 21902 * what policy this datagram should go through because it 21903 * should have happened in ip_wput if there was some 21904 * policy. This normally happens for connections which are not 21905 * fully bound preventing us from caching policies in 21906 * ip_bind. Packets coming from the TCP listener/global queue 21907 * - which are non-hard_bound - could also be affected by 21908 * applying policy here. 21909 * 21910 * If this packet is coming from tcp global queue or listener, 21911 * we will be applying policy here. This may not be *right* 21912 * if these packets are coming from the detached connection as 21913 * it could have gone in clear before. This happens only if a 21914 * TCP connection started when there is no policy and somebody 21915 * added policy before it became detached. Thus packets of the 21916 * detached connection could go out secure and the other end 21917 * would drop it because it will be expecting in clear. The 21918 * converse is not true i.e if somebody starts a TCP 21919 * connection and deletes the policy, all the packets will 21920 * still go out with the policy that existed before deleting 21921 * because ip_unbind sends up policy information which is used 21922 * by TCP on subsequent ip_wputs. The right solution is to fix 21923 * TCP to attach a dummy IPSEC_OUT and set 21924 * ipsec_out_use_global_policy to B_FALSE. As this might 21925 * affect performance for normal cases, we are not doing it. 21926 * Thus, set policy before starting any TCP connections. 21927 * 21928 * NOTE - We might apply policy even for a hard bound connection 21929 * - for which we cached policy in ip_bind - if somebody added 21930 * global policy after we inherited the policy in ip_bind. 21931 * This means that the packets that were going out in clear 21932 * previously would start going secure and hence get dropped 21933 * on the other side. To fix this, TCP attaches a dummy 21934 * ipsec_out and make sure that we don't apply global policy. 21935 */ 21936 if (ipha != NULL) 21937 policy_present = ipss->ipsec_outbound_v4_policy_present; 21938 else 21939 policy_present = ipss->ipsec_outbound_v6_policy_present; 21940 if (!policy_present) 21941 return (mp); 21942 21943 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21944 zoneid)); 21945 } 21946 21947 /* 21948 * This function does the ire_refrele of the ire passed in as the 21949 * argument. As this function looks up more ires i.e broadcast ires, 21950 * it needs to REFRELE them. Currently, for simplicity we don't 21951 * differentiate the one passed in and looked up here. We always 21952 * REFRELE. 21953 * IPQoS Notes: 21954 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21955 * IPsec packets are done in ipsec_out_process. 21956 */ 21957 void 21958 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21959 zoneid_t zoneid) 21960 { 21961 ipha_t *ipha; 21962 #define rptr ((uchar_t *)ipha) 21963 queue_t *stq; 21964 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21965 uint32_t v_hlen_tos_len; 21966 uint32_t ttl_protocol; 21967 ipaddr_t src; 21968 ipaddr_t dst; 21969 uint32_t cksum; 21970 ipaddr_t orig_src; 21971 ire_t *ire1; 21972 mblk_t *next_mp; 21973 uint_t hlen; 21974 uint16_t *up; 21975 uint32_t max_frag = ire->ire_max_frag; 21976 ill_t *ill = ire_to_ill(ire); 21977 int clusterwide; 21978 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21979 int ipsec_len; 21980 mblk_t *first_mp; 21981 ipsec_out_t *io; 21982 boolean_t conn_dontroute; /* conn value for multicast */ 21983 boolean_t conn_multicast_loop; /* conn value for multicast */ 21984 boolean_t multicast_forward; /* Should we forward ? */ 21985 boolean_t unspec_src; 21986 ill_t *conn_outgoing_ill = NULL; 21987 ill_t *ire_ill; 21988 ill_t *ire1_ill; 21989 ill_t *out_ill; 21990 uint32_t ill_index = 0; 21991 boolean_t multirt_send = B_FALSE; 21992 int err; 21993 ipxmit_state_t pktxmit_state; 21994 ip_stack_t *ipst = ire->ire_ipst; 21995 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 21996 21997 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 21998 "ip_wput_ire_start: q %p", q); 21999 22000 multicast_forward = B_FALSE; 22001 unspec_src = (connp != NULL && connp->conn_unspec_src); 22002 22003 if (ire->ire_flags & RTF_MULTIRT) { 22004 /* 22005 * Multirouting case. The bucket where ire is stored 22006 * probably holds other RTF_MULTIRT flagged ire 22007 * to the destination. In this call to ip_wput_ire, 22008 * we attempt to send the packet through all 22009 * those ires. Thus, we first ensure that ire is the 22010 * first RTF_MULTIRT ire in the bucket, 22011 * before walking the ire list. 22012 */ 22013 ire_t *first_ire; 22014 irb_t *irb = ire->ire_bucket; 22015 ASSERT(irb != NULL); 22016 22017 /* Make sure we do not omit any multiroute ire. */ 22018 IRB_REFHOLD(irb); 22019 for (first_ire = irb->irb_ire; 22020 first_ire != NULL; 22021 first_ire = first_ire->ire_next) { 22022 if ((first_ire->ire_flags & RTF_MULTIRT) && 22023 (first_ire->ire_addr == ire->ire_addr) && 22024 !(first_ire->ire_marks & 22025 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 22026 break; 22027 } 22028 22029 if ((first_ire != NULL) && (first_ire != ire)) { 22030 IRE_REFHOLD(first_ire); 22031 ire_refrele(ire); 22032 ire = first_ire; 22033 ill = ire_to_ill(ire); 22034 } 22035 IRB_REFRELE(irb); 22036 } 22037 22038 /* 22039 * conn_outgoing_ill variable is used only in the broadcast loop. 22040 * for performance we don't grab the mutexs in the fastpath 22041 */ 22042 if (ire->ire_type == IRE_BROADCAST && connp != NULL && 22043 connp->conn_outgoing_ill != NULL) { 22044 conn_outgoing_ill = conn_get_held_ill(connp, 22045 &connp->conn_outgoing_ill, &err); 22046 if (err == ILL_LOOKUP_FAILED) { 22047 ire_refrele(ire); 22048 freemsg(mp); 22049 return; 22050 } 22051 } 22052 22053 if (mp->b_datap->db_type != M_CTL) { 22054 ipha = (ipha_t *)mp->b_rptr; 22055 } else { 22056 io = (ipsec_out_t *)mp->b_rptr; 22057 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22058 ASSERT(zoneid == io->ipsec_out_zoneid); 22059 ASSERT(zoneid != ALL_ZONES); 22060 ipha = (ipha_t *)mp->b_cont->b_rptr; 22061 dst = ipha->ipha_dst; 22062 /* 22063 * For the multicast case, ipsec_out carries conn_dontroute and 22064 * conn_multicast_loop as conn may not be available here. We 22065 * need this for multicast loopback and forwarding which is done 22066 * later in the code. 22067 */ 22068 if (CLASSD(dst)) { 22069 conn_dontroute = io->ipsec_out_dontroute; 22070 conn_multicast_loop = io->ipsec_out_multicast_loop; 22071 /* 22072 * If conn_dontroute is not set or conn_multicast_loop 22073 * is set, we need to do forwarding/loopback. For 22074 * datagrams from ip_wput_multicast, conn_dontroute is 22075 * set to B_TRUE and conn_multicast_loop is set to 22076 * B_FALSE so that we neither do forwarding nor 22077 * loopback. 22078 */ 22079 if (!conn_dontroute || conn_multicast_loop) 22080 multicast_forward = B_TRUE; 22081 } 22082 } 22083 22084 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22085 ire->ire_zoneid != ALL_ZONES) { 22086 /* 22087 * When a zone sends a packet to another zone, we try to deliver 22088 * the packet under the same conditions as if the destination 22089 * was a real node on the network. To do so, we look for a 22090 * matching route in the forwarding table. 22091 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22092 * ip_newroute() does. 22093 * Note that IRE_LOCAL are special, since they are used 22094 * when the zoneid doesn't match in some cases. This means that 22095 * we need to handle ipha_src differently since ire_src_addr 22096 * belongs to the receiving zone instead of the sending zone. 22097 * When ip_restrict_interzone_loopback is set, then 22098 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22099 * for loopback between zones when the logical "Ethernet" would 22100 * have looped them back. 22101 */ 22102 ire_t *src_ire; 22103 22104 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22105 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22106 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22107 if (src_ire != NULL && 22108 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22109 (!ipst->ips_ip_restrict_interzone_loopback || 22110 ire_local_same_lan(ire, src_ire))) { 22111 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22112 ipha->ipha_src = src_ire->ire_src_addr; 22113 ire_refrele(src_ire); 22114 } else { 22115 ire_refrele(ire); 22116 if (conn_outgoing_ill != NULL) 22117 ill_refrele(conn_outgoing_ill); 22118 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22119 if (src_ire != NULL) { 22120 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22121 ire_refrele(src_ire); 22122 freemsg(mp); 22123 return; 22124 } 22125 ire_refrele(src_ire); 22126 } 22127 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22128 /* Failed */ 22129 freemsg(mp); 22130 return; 22131 } 22132 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22133 ipst); 22134 return; 22135 } 22136 } 22137 22138 if (mp->b_datap->db_type == M_CTL || 22139 ipss->ipsec_outbound_v4_policy_present) { 22140 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22141 unspec_src, zoneid); 22142 if (mp == NULL) { 22143 ire_refrele(ire); 22144 if (conn_outgoing_ill != NULL) 22145 ill_refrele(conn_outgoing_ill); 22146 return; 22147 } 22148 /* 22149 * Trusted Extensions supports all-zones interfaces, so 22150 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22151 * the global zone. 22152 */ 22153 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22154 io = (ipsec_out_t *)mp->b_rptr; 22155 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22156 zoneid = io->ipsec_out_zoneid; 22157 } 22158 } 22159 22160 first_mp = mp; 22161 ipsec_len = 0; 22162 22163 if (first_mp->b_datap->db_type == M_CTL) { 22164 io = (ipsec_out_t *)first_mp->b_rptr; 22165 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22166 mp = first_mp->b_cont; 22167 ipsec_len = ipsec_out_extra_length(first_mp); 22168 ASSERT(ipsec_len >= 0); 22169 /* We already picked up the zoneid from the M_CTL above */ 22170 ASSERT(zoneid == io->ipsec_out_zoneid); 22171 ASSERT(zoneid != ALL_ZONES); 22172 22173 /* 22174 * Drop M_CTL here if IPsec processing is not needed. 22175 * (Non-IPsec use of M_CTL extracted any information it 22176 * needed above). 22177 */ 22178 if (ipsec_len == 0) { 22179 freeb(first_mp); 22180 first_mp = mp; 22181 } 22182 } 22183 22184 /* 22185 * Fast path for ip_wput_ire 22186 */ 22187 22188 ipha = (ipha_t *)mp->b_rptr; 22189 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22190 dst = ipha->ipha_dst; 22191 22192 /* 22193 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22194 * if the socket is a SOCK_RAW type. The transport checksum should 22195 * be provided in the pre-built packet, so we don't need to compute it. 22196 * Also, other application set flags, like DF, should not be altered. 22197 * Other transport MUST pass down zero. 22198 */ 22199 ip_hdr_included = ipha->ipha_ident; 22200 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22201 22202 if (CLASSD(dst)) { 22203 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22204 ntohl(dst), 22205 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22206 ntohl(ire->ire_addr))); 22207 } 22208 22209 /* Macros to extract header fields from data already in registers */ 22210 #ifdef _BIG_ENDIAN 22211 #define V_HLEN (v_hlen_tos_len >> 24) 22212 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22213 #define PROTO (ttl_protocol & 0xFF) 22214 #else 22215 #define V_HLEN (v_hlen_tos_len & 0xFF) 22216 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22217 #define PROTO (ttl_protocol >> 8) 22218 #endif 22219 22220 orig_src = src = ipha->ipha_src; 22221 /* (The loop back to "another" is explained down below.) */ 22222 another:; 22223 /* 22224 * Assign an ident value for this packet. We assign idents on 22225 * a per destination basis out of the IRE. There could be 22226 * other threads targeting the same destination, so we have to 22227 * arrange for a atomic increment. Note that we use a 32-bit 22228 * atomic add because it has better performance than its 22229 * 16-bit sibling. 22230 * 22231 * If running in cluster mode and if the source address 22232 * belongs to a replicated service then vector through 22233 * cl_inet_ipident vector to allocate ip identifier 22234 * NOTE: This is a contract private interface with the 22235 * clustering group. 22236 */ 22237 clusterwide = 0; 22238 if (cl_inet_ipident) { 22239 ASSERT(cl_inet_isclusterwide); 22240 netstackid_t stack_id = ipst->ips_netstack->netstack_stackid; 22241 22242 if ((*cl_inet_isclusterwide)(stack_id, IPPROTO_IP, 22243 AF_INET, (uint8_t *)(uintptr_t)src, NULL)) { 22244 ipha->ipha_ident = (*cl_inet_ipident)(stack_id, 22245 IPPROTO_IP, AF_INET, (uint8_t *)(uintptr_t)src, 22246 (uint8_t *)(uintptr_t)dst, NULL); 22247 clusterwide = 1; 22248 } 22249 } 22250 if (!clusterwide) { 22251 ipha->ipha_ident = 22252 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22253 } 22254 22255 #ifndef _BIG_ENDIAN 22256 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22257 #endif 22258 22259 /* 22260 * Set source address unless sent on an ill or conn_unspec_src is set. 22261 * This is needed to obey conn_unspec_src when packets go through 22262 * ip_newroute + arp. 22263 * Assumes ip_newroute{,_multi} sets the source address as well. 22264 */ 22265 if (src == INADDR_ANY && !unspec_src) { 22266 /* 22267 * Assign the appropriate source address from the IRE if none 22268 * was specified. 22269 */ 22270 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22271 22272 src = ire->ire_src_addr; 22273 if (connp == NULL) { 22274 ip1dbg(("ip_wput_ire: no connp and no src " 22275 "address for dst 0x%x, using src 0x%x\n", 22276 ntohl(dst), 22277 ntohl(src))); 22278 } 22279 ipha->ipha_src = src; 22280 } 22281 stq = ire->ire_stq; 22282 22283 /* 22284 * We only allow ire chains for broadcasts since there will 22285 * be multiple IRE_CACHE entries for the same multicast 22286 * address (one per ipif). 22287 */ 22288 next_mp = NULL; 22289 22290 /* broadcast packet */ 22291 if (ire->ire_type == IRE_BROADCAST) 22292 goto broadcast; 22293 22294 /* loopback ? */ 22295 if (stq == NULL) 22296 goto nullstq; 22297 22298 /* The ill_index for outbound ILL */ 22299 ill_index = Q_TO_INDEX(stq); 22300 22301 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22302 ttl_protocol = ((uint16_t *)ipha)[4]; 22303 22304 /* pseudo checksum (do it in parts for IP header checksum) */ 22305 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22306 22307 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22308 queue_t *dev_q = stq->q_next; 22309 22310 /* 22311 * For DIRECT_CAPABLE, we do flow control at 22312 * the time of sending the packet. See 22313 * ILL_SEND_TX(). 22314 */ 22315 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 22316 (DEV_Q_FLOW_BLOCKED(dev_q))) 22317 goto blocked; 22318 22319 if ((PROTO == IPPROTO_UDP) && 22320 (ip_hdr_included != IP_HDR_INCLUDED)) { 22321 hlen = (V_HLEN & 0xF) << 2; 22322 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22323 if (*up != 0) { 22324 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22325 hlen, LENGTH, max_frag, ipsec_len, cksum); 22326 /* Software checksum? */ 22327 if (DB_CKSUMFLAGS(mp) == 0) { 22328 IP_STAT(ipst, ip_out_sw_cksum); 22329 IP_STAT_UPDATE(ipst, 22330 ip_udp_out_sw_cksum_bytes, 22331 LENGTH - hlen); 22332 } 22333 } 22334 } 22335 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22336 hlen = (V_HLEN & 0xF) << 2; 22337 if (PROTO == IPPROTO_TCP) { 22338 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22339 /* 22340 * The packet header is processed once and for all, even 22341 * in the multirouting case. We disable hardware 22342 * checksum if the packet is multirouted, as it will be 22343 * replicated via several interfaces, and not all of 22344 * them may have this capability. 22345 */ 22346 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22347 LENGTH, max_frag, ipsec_len, cksum); 22348 /* Software checksum? */ 22349 if (DB_CKSUMFLAGS(mp) == 0) { 22350 IP_STAT(ipst, ip_out_sw_cksum); 22351 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22352 LENGTH - hlen); 22353 } 22354 } else { 22355 sctp_hdr_t *sctph; 22356 22357 ASSERT(PROTO == IPPROTO_SCTP); 22358 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22359 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22360 /* 22361 * Zero out the checksum field to ensure proper 22362 * checksum calculation. 22363 */ 22364 sctph->sh_chksum = 0; 22365 #ifdef DEBUG 22366 if (!skip_sctp_cksum) 22367 #endif 22368 sctph->sh_chksum = sctp_cksum(mp, hlen); 22369 } 22370 } 22371 22372 /* 22373 * If this is a multicast packet and originated from ip_wput 22374 * we need to do loopback and forwarding checks. If it comes 22375 * from ip_wput_multicast, we SHOULD not do this. 22376 */ 22377 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22378 22379 /* checksum */ 22380 cksum += ttl_protocol; 22381 22382 /* fragment the packet */ 22383 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22384 goto fragmentit; 22385 /* 22386 * Don't use frag_flag if packet is pre-built or source 22387 * routed or if multicast (since multicast packets do 22388 * not solicit ICMP "packet too big" messages). 22389 */ 22390 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22391 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22392 !ip_source_route_included(ipha)) && 22393 !CLASSD(ipha->ipha_dst)) 22394 ipha->ipha_fragment_offset_and_flags |= 22395 htons(ire->ire_frag_flag); 22396 22397 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22398 /* calculate IP header checksum */ 22399 cksum += ipha->ipha_ident; 22400 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22401 cksum += ipha->ipha_fragment_offset_and_flags; 22402 22403 /* IP options present */ 22404 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22405 if (hlen) 22406 goto checksumoptions; 22407 22408 /* calculate hdr checksum */ 22409 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22410 cksum = ~(cksum + (cksum >> 16)); 22411 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22412 } 22413 if (ipsec_len != 0) { 22414 /* 22415 * We will do the rest of the processing after 22416 * we come back from IPsec in ip_wput_ipsec_out(). 22417 */ 22418 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22419 22420 io = (ipsec_out_t *)first_mp->b_rptr; 22421 io->ipsec_out_ill_index = 22422 ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 22423 ipsec_out_process(q, first_mp, ire, 0); 22424 ire_refrele(ire); 22425 if (conn_outgoing_ill != NULL) 22426 ill_refrele(conn_outgoing_ill); 22427 return; 22428 } 22429 22430 /* 22431 * In most cases, the emission loop below is entered only 22432 * once. Only in the case where the ire holds the 22433 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22434 * flagged ires in the bucket, and send the packet 22435 * through all crossed RTF_MULTIRT routes. 22436 */ 22437 if (ire->ire_flags & RTF_MULTIRT) { 22438 multirt_send = B_TRUE; 22439 } 22440 do { 22441 if (multirt_send) { 22442 irb_t *irb; 22443 /* 22444 * We are in a multiple send case, need to get 22445 * the next ire and make a duplicate of the packet. 22446 * ire1 holds here the next ire to process in the 22447 * bucket. If multirouting is expected, 22448 * any non-RTF_MULTIRT ire that has the 22449 * right destination address is ignored. 22450 */ 22451 irb = ire->ire_bucket; 22452 ASSERT(irb != NULL); 22453 22454 IRB_REFHOLD(irb); 22455 for (ire1 = ire->ire_next; 22456 ire1 != NULL; 22457 ire1 = ire1->ire_next) { 22458 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22459 continue; 22460 if (ire1->ire_addr != ire->ire_addr) 22461 continue; 22462 if (ire1->ire_marks & 22463 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 22464 continue; 22465 22466 /* Got one */ 22467 IRE_REFHOLD(ire1); 22468 break; 22469 } 22470 IRB_REFRELE(irb); 22471 22472 if (ire1 != NULL) { 22473 next_mp = copyb(mp); 22474 if ((next_mp == NULL) || 22475 ((mp->b_cont != NULL) && 22476 ((next_mp->b_cont = 22477 dupmsg(mp->b_cont)) == NULL))) { 22478 freemsg(next_mp); 22479 next_mp = NULL; 22480 ire_refrele(ire1); 22481 ire1 = NULL; 22482 } 22483 } 22484 22485 /* Last multiroute ire; don't loop anymore. */ 22486 if (ire1 == NULL) { 22487 multirt_send = B_FALSE; 22488 } 22489 } 22490 22491 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22492 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22493 mblk_t *, mp); 22494 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22495 ipst->ips_ipv4firewall_physical_out, 22496 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22497 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22498 22499 if (mp == NULL) 22500 goto release_ire_and_ill; 22501 22502 if (ipst->ips_ip4_observe.he_interested) { 22503 zoneid_t szone; 22504 22505 /* 22506 * On the outbound path the destination zone will be 22507 * unknown as we're sending this packet out on the 22508 * wire. 22509 */ 22510 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 22511 ALL_ZONES); 22512 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 22513 ire->ire_ipif->ipif_ill, ipst); 22514 } 22515 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22516 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22517 22518 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE, connp); 22519 22520 if ((pktxmit_state == SEND_FAILED) || 22521 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22522 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22523 "- packet dropped\n")); 22524 release_ire_and_ill: 22525 ire_refrele(ire); 22526 if (next_mp != NULL) { 22527 freemsg(next_mp); 22528 ire_refrele(ire1); 22529 } 22530 if (conn_outgoing_ill != NULL) 22531 ill_refrele(conn_outgoing_ill); 22532 return; 22533 } 22534 22535 if (CLASSD(dst)) { 22536 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22537 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22538 LENGTH); 22539 } 22540 22541 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22542 "ip_wput_ire_end: q %p (%S)", 22543 q, "last copy out"); 22544 IRE_REFRELE(ire); 22545 22546 if (multirt_send) { 22547 ASSERT(ire1); 22548 /* 22549 * Proceed with the next RTF_MULTIRT ire, 22550 * Also set up the send-to queue accordingly. 22551 */ 22552 ire = ire1; 22553 ire1 = NULL; 22554 stq = ire->ire_stq; 22555 mp = next_mp; 22556 next_mp = NULL; 22557 ipha = (ipha_t *)mp->b_rptr; 22558 ill_index = Q_TO_INDEX(stq); 22559 ill = (ill_t *)stq->q_ptr; 22560 } 22561 } while (multirt_send); 22562 if (conn_outgoing_ill != NULL) 22563 ill_refrele(conn_outgoing_ill); 22564 return; 22565 22566 /* 22567 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22568 */ 22569 broadcast: 22570 { 22571 /* 22572 * To avoid broadcast storms, we usually set the TTL to 1 for 22573 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22574 * can be overridden stack-wide through the ip_broadcast_ttl 22575 * ndd tunable, or on a per-connection basis through the 22576 * IP_BROADCAST_TTL socket option. 22577 * 22578 * In the event that we are replying to incoming ICMP packets, 22579 * connp could be NULL. 22580 */ 22581 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22582 if (connp != NULL) { 22583 if (connp->conn_dontroute) 22584 ipha->ipha_ttl = 1; 22585 else if (connp->conn_broadcast_ttl != 0) 22586 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22587 } 22588 22589 /* 22590 * Note that we are not doing a IRB_REFHOLD here. 22591 * Actually we don't care if the list changes i.e 22592 * if somebody deletes an IRE from the list while 22593 * we drop the lock, the next time we come around 22594 * ire_next will be NULL and hence we won't send 22595 * out multiple copies which is fine. 22596 */ 22597 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22598 ire1 = ire->ire_next; 22599 if (conn_outgoing_ill != NULL) { 22600 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22601 ASSERT(ire1 == ire->ire_next); 22602 if (ire1 != NULL && ire1->ire_addr == dst) { 22603 ire_refrele(ire); 22604 ire = ire1; 22605 IRE_REFHOLD(ire); 22606 ire1 = ire->ire_next; 22607 continue; 22608 } 22609 rw_exit(&ire->ire_bucket->irb_lock); 22610 /* Did not find a matching ill */ 22611 ip1dbg(("ip_wput_ire: broadcast with no " 22612 "matching IP_BOUND_IF ill %s dst %x\n", 22613 conn_outgoing_ill->ill_name, dst)); 22614 freemsg(first_mp); 22615 if (ire != NULL) 22616 ire_refrele(ire); 22617 ill_refrele(conn_outgoing_ill); 22618 return; 22619 } 22620 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22621 /* 22622 * If the next IRE has the same address and is not one 22623 * of the two copies that we need to send, try to see 22624 * whether this copy should be sent at all. This 22625 * assumes that we insert loopbacks first and then 22626 * non-loopbacks. This is acheived by inserting the 22627 * loopback always before non-loopback. 22628 * This is used to send a single copy of a broadcast 22629 * packet out all physical interfaces that have an 22630 * matching IRE_BROADCAST while also looping 22631 * back one copy (to ip_wput_local) for each 22632 * matching physical interface. However, we avoid 22633 * sending packets out different logical that match by 22634 * having ipif_up/ipif_down supress duplicate 22635 * IRE_BROADCASTS. 22636 * 22637 * This feature is currently used to get broadcasts 22638 * sent to multiple interfaces, when the broadcast 22639 * address being used applies to multiple interfaces. 22640 * For example, a whole net broadcast will be 22641 * replicated on every connected subnet of 22642 * the target net. 22643 * 22644 * Each zone has its own set of IRE_BROADCASTs, so that 22645 * we're able to distribute inbound packets to multiple 22646 * zones who share a broadcast address. We avoid looping 22647 * back outbound packets in different zones but on the 22648 * same ill, as the application would see duplicates. 22649 * 22650 * This logic assumes that ire_add_v4() groups the 22651 * IRE_BROADCAST entries so that those with the same 22652 * ire_addr are kept together. 22653 */ 22654 ire_ill = ire->ire_ipif->ipif_ill; 22655 if (ire->ire_stq != NULL || ire1->ire_stq == NULL) { 22656 while (ire1 != NULL && ire1->ire_addr == dst) { 22657 ire1_ill = ire1->ire_ipif->ipif_ill; 22658 if (ire1_ill != ire_ill) 22659 break; 22660 ire1 = ire1->ire_next; 22661 } 22662 } 22663 } 22664 ASSERT(multirt_send == B_FALSE); 22665 if (ire1 != NULL && ire1->ire_addr == dst) { 22666 if ((ire->ire_flags & RTF_MULTIRT) && 22667 (ire1->ire_flags & RTF_MULTIRT)) { 22668 /* 22669 * We are in the multirouting case. 22670 * The message must be sent at least 22671 * on both ires. These ires have been 22672 * inserted AFTER the standard ones 22673 * in ip_rt_add(). There are thus no 22674 * other ire entries for the destination 22675 * address in the rest of the bucket 22676 * that do not have the RTF_MULTIRT 22677 * flag. We don't process a copy 22678 * of the message here. This will be 22679 * done in the final sending loop. 22680 */ 22681 multirt_send = B_TRUE; 22682 } else { 22683 next_mp = ip_copymsg(first_mp); 22684 if (next_mp != NULL) 22685 IRE_REFHOLD(ire1); 22686 } 22687 } 22688 rw_exit(&ire->ire_bucket->irb_lock); 22689 } 22690 22691 if (stq) { 22692 /* 22693 * A non-NULL send-to queue means this packet is going 22694 * out of this machine. 22695 */ 22696 out_ill = (ill_t *)stq->q_ptr; 22697 22698 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22699 ttl_protocol = ((uint16_t *)ipha)[4]; 22700 /* 22701 * We accumulate the pseudo header checksum in cksum. 22702 * This is pretty hairy code, so watch close. One 22703 * thing to keep in mind is that UDP and TCP have 22704 * stored their respective datagram lengths in their 22705 * checksum fields. This lines things up real nice. 22706 */ 22707 cksum = (dst >> 16) + (dst & 0xFFFF) + 22708 (src >> 16) + (src & 0xFFFF); 22709 /* 22710 * We assume the udp checksum field contains the 22711 * length, so to compute the pseudo header checksum, 22712 * all we need is the protocol number and src/dst. 22713 */ 22714 /* Provide the checksums for UDP and TCP. */ 22715 if ((PROTO == IPPROTO_TCP) && 22716 (ip_hdr_included != IP_HDR_INCLUDED)) { 22717 /* hlen gets the number of uchar_ts in the IP header */ 22718 hlen = (V_HLEN & 0xF) << 2; 22719 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22720 IP_STAT(ipst, ip_out_sw_cksum); 22721 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22722 LENGTH - hlen); 22723 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22724 } else if (PROTO == IPPROTO_SCTP && 22725 (ip_hdr_included != IP_HDR_INCLUDED)) { 22726 sctp_hdr_t *sctph; 22727 22728 hlen = (V_HLEN & 0xF) << 2; 22729 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22730 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22731 sctph->sh_chksum = 0; 22732 #ifdef DEBUG 22733 if (!skip_sctp_cksum) 22734 #endif 22735 sctph->sh_chksum = sctp_cksum(mp, hlen); 22736 } else { 22737 queue_t *dev_q = stq->q_next; 22738 22739 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 22740 (DEV_Q_FLOW_BLOCKED(dev_q))) { 22741 blocked: 22742 ipha->ipha_ident = ip_hdr_included; 22743 /* 22744 * If we don't have a conn to apply 22745 * backpressure, free the message. 22746 * In the ire_send path, we don't know 22747 * the position to requeue the packet. Rather 22748 * than reorder packets, we just drop this 22749 * packet. 22750 */ 22751 if (ipst->ips_ip_output_queue && 22752 connp != NULL && 22753 caller != IRE_SEND) { 22754 if (caller == IP_WSRV) { 22755 idl_tx_list_t *idl_txl; 22756 22757 idl_txl = 22758 &ipst->ips_idl_tx_list[0]; 22759 connp->conn_did_putbq = 1; 22760 (void) putbq(connp->conn_wq, 22761 first_mp); 22762 conn_drain_insert(connp, 22763 idl_txl); 22764 /* 22765 * This is the service thread, 22766 * and the queue is already 22767 * noenabled. The check for 22768 * canput and the putbq is not 22769 * atomic. So we need to check 22770 * again. 22771 */ 22772 if (canput(stq->q_next)) 22773 connp->conn_did_putbq 22774 = 0; 22775 IP_STAT(ipst, ip_conn_flputbq); 22776 } else { 22777 /* 22778 * We are not the service proc. 22779 * ip_wsrv will be scheduled or 22780 * is already running. 22781 */ 22782 22783 (void) putq(connp->conn_wq, 22784 first_mp); 22785 } 22786 } else { 22787 out_ill = (ill_t *)stq->q_ptr; 22788 BUMP_MIB(out_ill->ill_ip_mib, 22789 ipIfStatsOutDiscards); 22790 freemsg(first_mp); 22791 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22792 "ip_wput_ire_end: q %p (%S)", 22793 q, "discard"); 22794 } 22795 ire_refrele(ire); 22796 if (next_mp) { 22797 ire_refrele(ire1); 22798 freemsg(next_mp); 22799 } 22800 if (conn_outgoing_ill != NULL) 22801 ill_refrele(conn_outgoing_ill); 22802 return; 22803 } 22804 if ((PROTO == IPPROTO_UDP) && 22805 (ip_hdr_included != IP_HDR_INCLUDED)) { 22806 /* 22807 * hlen gets the number of uchar_ts in the 22808 * IP header 22809 */ 22810 hlen = (V_HLEN & 0xF) << 2; 22811 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22812 max_frag = ire->ire_max_frag; 22813 if (*up != 0) { 22814 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22815 up, PROTO, hlen, LENGTH, max_frag, 22816 ipsec_len, cksum); 22817 /* Software checksum? */ 22818 if (DB_CKSUMFLAGS(mp) == 0) { 22819 IP_STAT(ipst, ip_out_sw_cksum); 22820 IP_STAT_UPDATE(ipst, 22821 ip_udp_out_sw_cksum_bytes, 22822 LENGTH - hlen); 22823 } 22824 } 22825 } 22826 } 22827 /* 22828 * Need to do this even when fragmenting. The local 22829 * loopback can be done without computing checksums 22830 * but forwarding out other interface must be done 22831 * after the IP checksum (and ULP checksums) have been 22832 * computed. 22833 * 22834 * NOTE : multicast_forward is set only if this packet 22835 * originated from ip_wput. For packets originating from 22836 * ip_wput_multicast, it is not set. 22837 */ 22838 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22839 multi_loopback: 22840 ip2dbg(("ip_wput: multicast, loop %d\n", 22841 conn_multicast_loop)); 22842 22843 /* Forget header checksum offload */ 22844 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22845 22846 /* 22847 * Local loopback of multicasts? Check the 22848 * ill. 22849 * 22850 * Note that the loopback function will not come 22851 * in through ip_rput - it will only do the 22852 * client fanout thus we need to do an mforward 22853 * as well. The is different from the BSD 22854 * logic. 22855 */ 22856 if (ill != NULL) { 22857 if (ilm_lookup_ill(ill, ipha->ipha_dst, 22858 ALL_ZONES) != NULL) { 22859 /* 22860 * Pass along the virtual output q. 22861 * ip_wput_local() will distribute the 22862 * packet to all the matching zones, 22863 * except the sending zone when 22864 * IP_MULTICAST_LOOP is false. 22865 */ 22866 ip_multicast_loopback(q, ill, first_mp, 22867 conn_multicast_loop ? 0 : 22868 IP_FF_NO_MCAST_LOOP, zoneid); 22869 } 22870 } 22871 if (ipha->ipha_ttl == 0) { 22872 /* 22873 * 0 => only to this host i.e. we are 22874 * done. We are also done if this was the 22875 * loopback interface since it is sufficient 22876 * to loopback one copy of a multicast packet. 22877 */ 22878 freemsg(first_mp); 22879 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22880 "ip_wput_ire_end: q %p (%S)", 22881 q, "loopback"); 22882 ire_refrele(ire); 22883 if (conn_outgoing_ill != NULL) 22884 ill_refrele(conn_outgoing_ill); 22885 return; 22886 } 22887 /* 22888 * ILLF_MULTICAST is checked in ip_newroute 22889 * i.e. we don't need to check it here since 22890 * all IRE_CACHEs come from ip_newroute. 22891 * For multicast traffic, SO_DONTROUTE is interpreted 22892 * to mean only send the packet out the interface 22893 * (optionally specified with IP_MULTICAST_IF) 22894 * and do not forward it out additional interfaces. 22895 * RSVP and the rsvp daemon is an example of a 22896 * protocol and user level process that 22897 * handles it's own routing. Hence, it uses the 22898 * SO_DONTROUTE option to accomplish this. 22899 */ 22900 22901 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 22902 ill != NULL) { 22903 /* Unconditionally redo the checksum */ 22904 ipha->ipha_hdr_checksum = 0; 22905 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22906 22907 /* 22908 * If this needs to go out secure, we need 22909 * to wait till we finish the IPsec 22910 * processing. 22911 */ 22912 if (ipsec_len == 0 && 22913 ip_mforward(ill, ipha, mp)) { 22914 freemsg(first_mp); 22915 ip1dbg(("ip_wput: mforward failed\n")); 22916 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22917 "ip_wput_ire_end: q %p (%S)", 22918 q, "mforward failed"); 22919 ire_refrele(ire); 22920 if (conn_outgoing_ill != NULL) 22921 ill_refrele(conn_outgoing_ill); 22922 return; 22923 } 22924 } 22925 } 22926 max_frag = ire->ire_max_frag; 22927 cksum += ttl_protocol; 22928 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 22929 /* No fragmentation required for this one. */ 22930 /* 22931 * Don't use frag_flag if packet is pre-built or source 22932 * routed or if multicast (since multicast packets do 22933 * not solicit ICMP "packet too big" messages). 22934 */ 22935 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22936 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22937 !ip_source_route_included(ipha)) && 22938 !CLASSD(ipha->ipha_dst)) 22939 ipha->ipha_fragment_offset_and_flags |= 22940 htons(ire->ire_frag_flag); 22941 22942 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22943 /* Complete the IP header checksum. */ 22944 cksum += ipha->ipha_ident; 22945 cksum += (v_hlen_tos_len >> 16)+ 22946 (v_hlen_tos_len & 0xFFFF); 22947 cksum += ipha->ipha_fragment_offset_and_flags; 22948 hlen = (V_HLEN & 0xF) - 22949 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22950 if (hlen) { 22951 checksumoptions: 22952 /* 22953 * Account for the IP Options in the IP 22954 * header checksum. 22955 */ 22956 up = (uint16_t *)(rptr+ 22957 IP_SIMPLE_HDR_LENGTH); 22958 do { 22959 cksum += up[0]; 22960 cksum += up[1]; 22961 up += 2; 22962 } while (--hlen); 22963 } 22964 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22965 cksum = ~(cksum + (cksum >> 16)); 22966 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22967 } 22968 if (ipsec_len != 0) { 22969 ipsec_out_process(q, first_mp, ire, ill_index); 22970 if (!next_mp) { 22971 ire_refrele(ire); 22972 if (conn_outgoing_ill != NULL) 22973 ill_refrele(conn_outgoing_ill); 22974 return; 22975 } 22976 goto next; 22977 } 22978 22979 /* 22980 * multirt_send has already been handled 22981 * for broadcast, but not yet for multicast 22982 * or IP options. 22983 */ 22984 if (next_mp == NULL) { 22985 if (ire->ire_flags & RTF_MULTIRT) { 22986 multirt_send = B_TRUE; 22987 } 22988 } 22989 22990 /* 22991 * In most cases, the emission loop below is 22992 * entered only once. Only in the case where 22993 * the ire holds the RTF_MULTIRT flag, do we loop 22994 * to process all RTF_MULTIRT ires in the bucket, 22995 * and send the packet through all crossed 22996 * RTF_MULTIRT routes. 22997 */ 22998 do { 22999 if (multirt_send) { 23000 irb_t *irb; 23001 23002 irb = ire->ire_bucket; 23003 ASSERT(irb != NULL); 23004 /* 23005 * We are in a multiple send case, 23006 * need to get the next IRE and make 23007 * a duplicate of the packet. 23008 */ 23009 IRB_REFHOLD(irb); 23010 for (ire1 = ire->ire_next; 23011 ire1 != NULL; 23012 ire1 = ire1->ire_next) { 23013 if (!(ire1->ire_flags & 23014 RTF_MULTIRT)) 23015 continue; 23016 23017 if (ire1->ire_addr != 23018 ire->ire_addr) 23019 continue; 23020 23021 if (ire1->ire_marks & 23022 (IRE_MARK_CONDEMNED | 23023 IRE_MARK_TESTHIDDEN)) 23024 continue; 23025 23026 /* Got one */ 23027 IRE_REFHOLD(ire1); 23028 break; 23029 } 23030 IRB_REFRELE(irb); 23031 23032 if (ire1 != NULL) { 23033 next_mp = copyb(mp); 23034 if ((next_mp == NULL) || 23035 ((mp->b_cont != NULL) && 23036 ((next_mp->b_cont = 23037 dupmsg(mp->b_cont)) 23038 == NULL))) { 23039 freemsg(next_mp); 23040 next_mp = NULL; 23041 ire_refrele(ire1); 23042 ire1 = NULL; 23043 } 23044 } 23045 23046 /* 23047 * Last multiroute ire; don't loop 23048 * anymore. The emission is over 23049 * and next_mp is NULL. 23050 */ 23051 if (ire1 == NULL) { 23052 multirt_send = B_FALSE; 23053 } 23054 } 23055 23056 out_ill = ire_to_ill(ire); 23057 DTRACE_PROBE4(ip4__physical__out__start, 23058 ill_t *, NULL, 23059 ill_t *, out_ill, 23060 ipha_t *, ipha, mblk_t *, mp); 23061 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23062 ipst->ips_ipv4firewall_physical_out, 23063 NULL, out_ill, ipha, mp, mp, 0, ipst); 23064 DTRACE_PROBE1(ip4__physical__out__end, 23065 mblk_t *, mp); 23066 if (mp == NULL) 23067 goto release_ire_and_ill_2; 23068 23069 ASSERT(ipsec_len == 0); 23070 mp->b_prev = 23071 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23072 DTRACE_PROBE2(ip__xmit__2, 23073 mblk_t *, mp, ire_t *, ire); 23074 pktxmit_state = ip_xmit_v4(mp, ire, 23075 NULL, B_TRUE, connp); 23076 if ((pktxmit_state == SEND_FAILED) || 23077 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23078 release_ire_and_ill_2: 23079 if (next_mp) { 23080 freemsg(next_mp); 23081 ire_refrele(ire1); 23082 } 23083 ire_refrele(ire); 23084 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23085 "ip_wput_ire_end: q %p (%S)", 23086 q, "discard MDATA"); 23087 if (conn_outgoing_ill != NULL) 23088 ill_refrele(conn_outgoing_ill); 23089 return; 23090 } 23091 23092 if (CLASSD(dst)) { 23093 BUMP_MIB(out_ill->ill_ip_mib, 23094 ipIfStatsHCOutMcastPkts); 23095 UPDATE_MIB(out_ill->ill_ip_mib, 23096 ipIfStatsHCOutMcastOctets, 23097 LENGTH); 23098 } else if (ire->ire_type == IRE_BROADCAST) { 23099 BUMP_MIB(out_ill->ill_ip_mib, 23100 ipIfStatsHCOutBcastPkts); 23101 } 23102 23103 if (multirt_send) { 23104 /* 23105 * We are in a multiple send case, 23106 * need to re-enter the sending loop 23107 * using the next ire. 23108 */ 23109 ire_refrele(ire); 23110 ire = ire1; 23111 stq = ire->ire_stq; 23112 mp = next_mp; 23113 next_mp = NULL; 23114 ipha = (ipha_t *)mp->b_rptr; 23115 ill_index = Q_TO_INDEX(stq); 23116 } 23117 } while (multirt_send); 23118 23119 if (!next_mp) { 23120 /* 23121 * Last copy going out (the ultra-common 23122 * case). Note that we intentionally replicate 23123 * the putnext rather than calling it before 23124 * the next_mp check in hopes of a little 23125 * tail-call action out of the compiler. 23126 */ 23127 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23128 "ip_wput_ire_end: q %p (%S)", 23129 q, "last copy out(1)"); 23130 ire_refrele(ire); 23131 if (conn_outgoing_ill != NULL) 23132 ill_refrele(conn_outgoing_ill); 23133 return; 23134 } 23135 /* More copies going out below. */ 23136 } else { 23137 int offset; 23138 fragmentit: 23139 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23140 /* 23141 * If this would generate a icmp_frag_needed message, 23142 * we need to handle it before we do the IPsec 23143 * processing. Otherwise, we need to strip the IPsec 23144 * headers before we send up the message to the ULPs 23145 * which becomes messy and difficult. 23146 */ 23147 if (ipsec_len != 0) { 23148 if ((max_frag < (unsigned int)(LENGTH + 23149 ipsec_len)) && (offset & IPH_DF)) { 23150 out_ill = (ill_t *)stq->q_ptr; 23151 BUMP_MIB(out_ill->ill_ip_mib, 23152 ipIfStatsOutFragFails); 23153 BUMP_MIB(out_ill->ill_ip_mib, 23154 ipIfStatsOutFragReqds); 23155 ipha->ipha_hdr_checksum = 0; 23156 ipha->ipha_hdr_checksum = 23157 (uint16_t)ip_csum_hdr(ipha); 23158 icmp_frag_needed(ire->ire_stq, first_mp, 23159 max_frag, zoneid, ipst); 23160 if (!next_mp) { 23161 ire_refrele(ire); 23162 if (conn_outgoing_ill != NULL) { 23163 ill_refrele( 23164 conn_outgoing_ill); 23165 } 23166 return; 23167 } 23168 } else { 23169 /* 23170 * This won't cause a icmp_frag_needed 23171 * message. to be generated. Send it on 23172 * the wire. Note that this could still 23173 * cause fragmentation and all we 23174 * do is the generation of the message 23175 * to the ULP if needed before IPsec. 23176 */ 23177 if (!next_mp) { 23178 ipsec_out_process(q, first_mp, 23179 ire, ill_index); 23180 TRACE_2(TR_FAC_IP, 23181 TR_IP_WPUT_IRE_END, 23182 "ip_wput_ire_end: q %p " 23183 "(%S)", q, 23184 "last ipsec_out_process"); 23185 ire_refrele(ire); 23186 if (conn_outgoing_ill != NULL) { 23187 ill_refrele( 23188 conn_outgoing_ill); 23189 } 23190 return; 23191 } 23192 ipsec_out_process(q, first_mp, 23193 ire, ill_index); 23194 } 23195 } else { 23196 /* 23197 * Initiate IPPF processing. For 23198 * fragmentable packets we finish 23199 * all QOS packet processing before 23200 * calling: 23201 * ip_wput_ire_fragmentit->ip_wput_frag 23202 */ 23203 23204 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23205 ip_process(IPP_LOCAL_OUT, &mp, 23206 ill_index); 23207 if (mp == NULL) { 23208 out_ill = (ill_t *)stq->q_ptr; 23209 BUMP_MIB(out_ill->ill_ip_mib, 23210 ipIfStatsOutDiscards); 23211 if (next_mp != NULL) { 23212 freemsg(next_mp); 23213 ire_refrele(ire1); 23214 } 23215 ire_refrele(ire); 23216 TRACE_2(TR_FAC_IP, 23217 TR_IP_WPUT_IRE_END, 23218 "ip_wput_ire: q %p (%S)", 23219 q, "discard MDATA"); 23220 if (conn_outgoing_ill != NULL) { 23221 ill_refrele( 23222 conn_outgoing_ill); 23223 } 23224 return; 23225 } 23226 } 23227 if (!next_mp) { 23228 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23229 "ip_wput_ire_end: q %p (%S)", 23230 q, "last fragmentation"); 23231 ip_wput_ire_fragmentit(mp, ire, 23232 zoneid, ipst, connp); 23233 ire_refrele(ire); 23234 if (conn_outgoing_ill != NULL) 23235 ill_refrele(conn_outgoing_ill); 23236 return; 23237 } 23238 ip_wput_ire_fragmentit(mp, ire, 23239 zoneid, ipst, connp); 23240 } 23241 } 23242 } else { 23243 nullstq: 23244 /* A NULL stq means the destination address is local. */ 23245 UPDATE_OB_PKT_COUNT(ire); 23246 ire->ire_last_used_time = lbolt; 23247 ASSERT(ire->ire_ipif != NULL); 23248 if (!next_mp) { 23249 /* 23250 * Is there an "in" and "out" for traffic local 23251 * to a host (loopback)? The code in Solaris doesn't 23252 * explicitly draw a line in its code for in vs out, 23253 * so we've had to draw a line in the sand: ip_wput_ire 23254 * is considered to be the "output" side and 23255 * ip_wput_local to be the "input" side. 23256 */ 23257 out_ill = ire_to_ill(ire); 23258 23259 /* 23260 * DTrace this as ip:::send. A blocked packet will 23261 * fire the send probe, but not the receive probe. 23262 */ 23263 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23264 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23265 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23266 23267 DTRACE_PROBE4(ip4__loopback__out__start, 23268 ill_t *, NULL, ill_t *, out_ill, 23269 ipha_t *, ipha, mblk_t *, first_mp); 23270 23271 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23272 ipst->ips_ipv4firewall_loopback_out, 23273 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23274 23275 DTRACE_PROBE1(ip4__loopback__out_end, 23276 mblk_t *, first_mp); 23277 23278 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23279 "ip_wput_ire_end: q %p (%S)", 23280 q, "local address"); 23281 23282 if (first_mp != NULL) 23283 ip_wput_local(q, out_ill, ipha, 23284 first_mp, ire, 0, ire->ire_zoneid); 23285 ire_refrele(ire); 23286 if (conn_outgoing_ill != NULL) 23287 ill_refrele(conn_outgoing_ill); 23288 return; 23289 } 23290 23291 out_ill = ire_to_ill(ire); 23292 23293 /* 23294 * DTrace this as ip:::send. A blocked packet will fire the 23295 * send probe, but not the receive probe. 23296 */ 23297 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23298 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23299 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23300 23301 DTRACE_PROBE4(ip4__loopback__out__start, 23302 ill_t *, NULL, ill_t *, out_ill, 23303 ipha_t *, ipha, mblk_t *, first_mp); 23304 23305 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23306 ipst->ips_ipv4firewall_loopback_out, 23307 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23308 23309 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23310 23311 if (first_mp != NULL) 23312 ip_wput_local(q, out_ill, ipha, 23313 first_mp, ire, 0, ire->ire_zoneid); 23314 } 23315 next: 23316 /* 23317 * More copies going out to additional interfaces. 23318 * ire1 has already been held. We don't need the 23319 * "ire" anymore. 23320 */ 23321 ire_refrele(ire); 23322 ire = ire1; 23323 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23324 mp = next_mp; 23325 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23326 ill = ire_to_ill(ire); 23327 first_mp = mp; 23328 if (ipsec_len != 0) { 23329 ASSERT(first_mp->b_datap->db_type == M_CTL); 23330 mp = mp->b_cont; 23331 } 23332 dst = ire->ire_addr; 23333 ipha = (ipha_t *)mp->b_rptr; 23334 /* 23335 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23336 * Restore ipha_ident "no checksum" flag. 23337 */ 23338 src = orig_src; 23339 ipha->ipha_ident = ip_hdr_included; 23340 goto another; 23341 23342 #undef rptr 23343 #undef Q_TO_INDEX 23344 } 23345 23346 /* 23347 * Routine to allocate a message that is used to notify the ULP about MDT. 23348 * The caller may provide a pointer to the link-layer MDT capabilities, 23349 * or NULL if MDT is to be disabled on the stream. 23350 */ 23351 mblk_t * 23352 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23353 { 23354 mblk_t *mp; 23355 ip_mdt_info_t *mdti; 23356 ill_mdt_capab_t *idst; 23357 23358 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23359 DB_TYPE(mp) = M_CTL; 23360 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23361 mdti = (ip_mdt_info_t *)mp->b_rptr; 23362 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23363 idst = &(mdti->mdt_capab); 23364 23365 /* 23366 * If the caller provides us with the capability, copy 23367 * it over into our notification message; otherwise 23368 * we zero out the capability portion. 23369 */ 23370 if (isrc != NULL) 23371 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23372 else 23373 bzero((caddr_t)idst, sizeof (*idst)); 23374 } 23375 return (mp); 23376 } 23377 23378 /* 23379 * Routine which determines whether MDT can be enabled on the destination 23380 * IRE and IPC combination, and if so, allocates and returns the MDT 23381 * notification mblk that may be used by ULP. We also check if we need to 23382 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23383 * MDT usage in the past have been lifted. This gets called during IP 23384 * and ULP binding. 23385 */ 23386 mblk_t * 23387 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23388 ill_mdt_capab_t *mdt_cap) 23389 { 23390 mblk_t *mp; 23391 boolean_t rc = B_FALSE; 23392 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23393 23394 ASSERT(dst_ire != NULL); 23395 ASSERT(connp != NULL); 23396 ASSERT(mdt_cap != NULL); 23397 23398 /* 23399 * Currently, we only support simple TCP/{IPv4,IPv6} with 23400 * Multidata, which is handled in tcp_multisend(). This 23401 * is the reason why we do all these checks here, to ensure 23402 * that we don't enable Multidata for the cases which we 23403 * can't handle at the moment. 23404 */ 23405 do { 23406 /* Only do TCP at the moment */ 23407 if (connp->conn_ulp != IPPROTO_TCP) 23408 break; 23409 23410 /* 23411 * IPsec outbound policy present? Note that we get here 23412 * after calling ipsec_conn_cache_policy() where the global 23413 * policy checking is performed. conn_latch will be 23414 * non-NULL as long as there's a policy defined, 23415 * i.e. conn_out_enforce_policy may be NULL in such case 23416 * when the connection is non-secure, and hence we check 23417 * further if the latch refers to an outbound policy. 23418 */ 23419 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23420 break; 23421 23422 /* CGTP (multiroute) is enabled? */ 23423 if (dst_ire->ire_flags & RTF_MULTIRT) 23424 break; 23425 23426 /* Outbound IPQoS enabled? */ 23427 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23428 /* 23429 * In this case, we disable MDT for this and all 23430 * future connections going over the interface. 23431 */ 23432 mdt_cap->ill_mdt_on = 0; 23433 break; 23434 } 23435 23436 /* socket option(s) present? */ 23437 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23438 break; 23439 23440 rc = B_TRUE; 23441 /* CONSTCOND */ 23442 } while (0); 23443 23444 /* Remember the result */ 23445 connp->conn_mdt_ok = rc; 23446 23447 if (!rc) 23448 return (NULL); 23449 else if (!mdt_cap->ill_mdt_on) { 23450 /* 23451 * If MDT has been previously turned off in the past, and we 23452 * currently can do MDT (due to IPQoS policy removal, etc.) 23453 * then enable it for this interface. 23454 */ 23455 mdt_cap->ill_mdt_on = 1; 23456 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23457 "interface %s\n", ill_name)); 23458 } 23459 23460 /* Allocate the MDT info mblk */ 23461 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23462 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23463 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23464 return (NULL); 23465 } 23466 return (mp); 23467 } 23468 23469 /* 23470 * Routine to allocate a message that is used to notify the ULP about LSO. 23471 * The caller may provide a pointer to the link-layer LSO capabilities, 23472 * or NULL if LSO is to be disabled on the stream. 23473 */ 23474 mblk_t * 23475 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23476 { 23477 mblk_t *mp; 23478 ip_lso_info_t *lsoi; 23479 ill_lso_capab_t *idst; 23480 23481 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23482 DB_TYPE(mp) = M_CTL; 23483 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23484 lsoi = (ip_lso_info_t *)mp->b_rptr; 23485 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23486 idst = &(lsoi->lso_capab); 23487 23488 /* 23489 * If the caller provides us with the capability, copy 23490 * it over into our notification message; otherwise 23491 * we zero out the capability portion. 23492 */ 23493 if (isrc != NULL) 23494 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23495 else 23496 bzero((caddr_t)idst, sizeof (*idst)); 23497 } 23498 return (mp); 23499 } 23500 23501 /* 23502 * Routine which determines whether LSO can be enabled on the destination 23503 * IRE and IPC combination, and if so, allocates and returns the LSO 23504 * notification mblk that may be used by ULP. We also check if we need to 23505 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23506 * LSO usage in the past have been lifted. This gets called during IP 23507 * and ULP binding. 23508 */ 23509 mblk_t * 23510 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23511 ill_lso_capab_t *lso_cap) 23512 { 23513 mblk_t *mp; 23514 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23515 23516 ASSERT(dst_ire != NULL); 23517 ASSERT(connp != NULL); 23518 ASSERT(lso_cap != NULL); 23519 23520 connp->conn_lso_ok = B_TRUE; 23521 23522 if ((connp->conn_ulp != IPPROTO_TCP) || 23523 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23524 (dst_ire->ire_flags & RTF_MULTIRT) || 23525 !CONN_IS_LSO_MD_FASTPATH(connp) || 23526 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23527 connp->conn_lso_ok = B_FALSE; 23528 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23529 /* 23530 * Disable LSO for this and all future connections going 23531 * over the interface. 23532 */ 23533 lso_cap->ill_lso_on = 0; 23534 } 23535 } 23536 23537 if (!connp->conn_lso_ok) 23538 return (NULL); 23539 else if (!lso_cap->ill_lso_on) { 23540 /* 23541 * If LSO has been previously turned off in the past, and we 23542 * currently can do LSO (due to IPQoS policy removal, etc.) 23543 * then enable it for this interface. 23544 */ 23545 lso_cap->ill_lso_on = 1; 23546 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23547 ill_name)); 23548 } 23549 23550 /* Allocate the LSO info mblk */ 23551 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23552 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23553 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23554 23555 return (mp); 23556 } 23557 23558 /* 23559 * Create destination address attribute, and fill it with the physical 23560 * destination address and SAP taken from the template DL_UNITDATA_REQ 23561 * message block. 23562 */ 23563 boolean_t 23564 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23565 { 23566 dl_unitdata_req_t *dlurp; 23567 pattr_t *pa; 23568 pattrinfo_t pa_info; 23569 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23570 uint_t das_len, das_off; 23571 23572 ASSERT(dlmp != NULL); 23573 23574 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23575 das_len = dlurp->dl_dest_addr_length; 23576 das_off = dlurp->dl_dest_addr_offset; 23577 23578 pa_info.type = PATTR_DSTADDRSAP; 23579 pa_info.len = sizeof (**das) + das_len - 1; 23580 23581 /* create and associate the attribute */ 23582 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23583 if (pa != NULL) { 23584 ASSERT(*das != NULL); 23585 (*das)->addr_is_group = 0; 23586 (*das)->addr_len = (uint8_t)das_len; 23587 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23588 } 23589 23590 return (pa != NULL); 23591 } 23592 23593 /* 23594 * Create hardware checksum attribute and fill it with the values passed. 23595 */ 23596 boolean_t 23597 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23598 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23599 { 23600 pattr_t *pa; 23601 pattrinfo_t pa_info; 23602 23603 ASSERT(mmd != NULL); 23604 23605 pa_info.type = PATTR_HCKSUM; 23606 pa_info.len = sizeof (pattr_hcksum_t); 23607 23608 /* create and associate the attribute */ 23609 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23610 if (pa != NULL) { 23611 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23612 23613 hck->hcksum_start_offset = start_offset; 23614 hck->hcksum_stuff_offset = stuff_offset; 23615 hck->hcksum_end_offset = end_offset; 23616 hck->hcksum_flags = flags; 23617 } 23618 return (pa != NULL); 23619 } 23620 23621 /* 23622 * Create zerocopy attribute and fill it with the specified flags 23623 */ 23624 boolean_t 23625 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23626 { 23627 pattr_t *pa; 23628 pattrinfo_t pa_info; 23629 23630 ASSERT(mmd != NULL); 23631 pa_info.type = PATTR_ZCOPY; 23632 pa_info.len = sizeof (pattr_zcopy_t); 23633 23634 /* create and associate the attribute */ 23635 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23636 if (pa != NULL) { 23637 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23638 23639 zcopy->zcopy_flags = flags; 23640 } 23641 return (pa != NULL); 23642 } 23643 23644 /* 23645 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23646 * block chain. We could rewrite to handle arbitrary message block chains but 23647 * that would make the code complicated and slow. Right now there three 23648 * restrictions: 23649 * 23650 * 1. The first message block must contain the complete IP header and 23651 * at least 1 byte of payload data. 23652 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23653 * so that we can use a single Multidata message. 23654 * 3. No frag must be distributed over two or more message blocks so 23655 * that we don't need more than two packet descriptors per frag. 23656 * 23657 * The above restrictions allow us to support userland applications (which 23658 * will send down a single message block) and NFS over UDP (which will 23659 * send down a chain of at most three message blocks). 23660 * 23661 * We also don't use MDT for payloads with less than or equal to 23662 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23663 */ 23664 boolean_t 23665 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23666 { 23667 int blocks; 23668 ssize_t total, missing, size; 23669 23670 ASSERT(mp != NULL); 23671 ASSERT(hdr_len > 0); 23672 23673 size = MBLKL(mp) - hdr_len; 23674 if (size <= 0) 23675 return (B_FALSE); 23676 23677 /* The first mblk contains the header and some payload. */ 23678 blocks = 1; 23679 total = size; 23680 size %= len; 23681 missing = (size == 0) ? 0 : (len - size); 23682 mp = mp->b_cont; 23683 23684 while (mp != NULL) { 23685 /* 23686 * Give up if we encounter a zero length message block. 23687 * In practice, this should rarely happen and therefore 23688 * not worth the trouble of freeing and re-linking the 23689 * mblk from the chain to handle such case. 23690 */ 23691 if ((size = MBLKL(mp)) == 0) 23692 return (B_FALSE); 23693 23694 /* Too many payload buffers for a single Multidata message? */ 23695 if (++blocks > MULTIDATA_MAX_PBUFS) 23696 return (B_FALSE); 23697 23698 total += size; 23699 /* Is a frag distributed over two or more message blocks? */ 23700 if (missing > size) 23701 return (B_FALSE); 23702 size -= missing; 23703 23704 size %= len; 23705 missing = (size == 0) ? 0 : (len - size); 23706 23707 mp = mp->b_cont; 23708 } 23709 23710 return (total > ip_wput_frag_mdt_min); 23711 } 23712 23713 /* 23714 * Outbound IPv4 fragmentation routine using MDT. 23715 */ 23716 static void 23717 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23718 uint32_t frag_flag, int offset) 23719 { 23720 ipha_t *ipha_orig; 23721 int i1, ip_data_end; 23722 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23723 mblk_t *hdr_mp, *md_mp = NULL; 23724 unsigned char *hdr_ptr, *pld_ptr; 23725 multidata_t *mmd; 23726 ip_pdescinfo_t pdi; 23727 ill_t *ill; 23728 ip_stack_t *ipst = ire->ire_ipst; 23729 23730 ASSERT(DB_TYPE(mp) == M_DATA); 23731 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23732 23733 ill = ire_to_ill(ire); 23734 ASSERT(ill != NULL); 23735 23736 ipha_orig = (ipha_t *)mp->b_rptr; 23737 mp->b_rptr += sizeof (ipha_t); 23738 23739 /* Calculate how many packets we will send out */ 23740 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23741 pkts = (i1 + len - 1) / len; 23742 ASSERT(pkts > 1); 23743 23744 /* Allocate a message block which will hold all the IP Headers. */ 23745 wroff = ipst->ips_ip_wroff_extra; 23746 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23747 23748 i1 = pkts * hdr_chunk_len; 23749 /* 23750 * Create the header buffer, Multidata and destination address 23751 * and SAP attribute that should be associated with it. 23752 */ 23753 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23754 ((hdr_mp->b_wptr += i1), 23755 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23756 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23757 freemsg(mp); 23758 if (md_mp == NULL) { 23759 freemsg(hdr_mp); 23760 } else { 23761 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23762 freemsg(md_mp); 23763 } 23764 IP_STAT(ipst, ip_frag_mdt_allocfail); 23765 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23766 return; 23767 } 23768 IP_STAT(ipst, ip_frag_mdt_allocd); 23769 23770 /* 23771 * Add a payload buffer to the Multidata; this operation must not 23772 * fail, or otherwise our logic in this routine is broken. There 23773 * is no memory allocation done by the routine, so any returned 23774 * failure simply tells us that we've done something wrong. 23775 * 23776 * A failure tells us that either we're adding the same payload 23777 * buffer more than once, or we're trying to add more buffers than 23778 * allowed. None of the above cases should happen, and we panic 23779 * because either there's horrible heap corruption, and/or 23780 * programming mistake. 23781 */ 23782 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23783 goto pbuf_panic; 23784 23785 hdr_ptr = hdr_mp->b_rptr; 23786 pld_ptr = mp->b_rptr; 23787 23788 /* Establish the ending byte offset, based on the starting offset. */ 23789 offset <<= 3; 23790 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23791 IP_SIMPLE_HDR_LENGTH; 23792 23793 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23794 23795 while (pld_ptr < mp->b_wptr) { 23796 ipha_t *ipha; 23797 uint16_t offset_and_flags; 23798 uint16_t ip_len; 23799 int error; 23800 23801 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23802 ipha = (ipha_t *)(hdr_ptr + wroff); 23803 ASSERT(OK_32PTR(ipha)); 23804 *ipha = *ipha_orig; 23805 23806 if (ip_data_end - offset > len) { 23807 offset_and_flags = IPH_MF; 23808 } else { 23809 /* 23810 * Last frag. Set len to the length of this last piece. 23811 */ 23812 len = ip_data_end - offset; 23813 /* A frag of a frag might have IPH_MF non-zero */ 23814 offset_and_flags = 23815 ntohs(ipha->ipha_fragment_offset_and_flags) & 23816 IPH_MF; 23817 } 23818 offset_and_flags |= (uint16_t)(offset >> 3); 23819 offset_and_flags |= (uint16_t)frag_flag; 23820 /* Store the offset and flags in the IP header. */ 23821 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23822 23823 /* Store the length in the IP header. */ 23824 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23825 ipha->ipha_length = htons(ip_len); 23826 23827 /* 23828 * Set the IP header checksum. Note that mp is just 23829 * the header, so this is easy to pass to ip_csum. 23830 */ 23831 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23832 23833 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 23834 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 23835 NULL, int, 0); 23836 23837 /* 23838 * Record offset and size of header and data of the next packet 23839 * in the multidata message. 23840 */ 23841 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23842 PDESC_PLD_INIT(&pdi); 23843 i1 = MIN(mp->b_wptr - pld_ptr, len); 23844 ASSERT(i1 > 0); 23845 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23846 if (i1 == len) { 23847 pld_ptr += len; 23848 } else { 23849 i1 = len - i1; 23850 mp = mp->b_cont; 23851 ASSERT(mp != NULL); 23852 ASSERT(MBLKL(mp) >= i1); 23853 /* 23854 * Attach the next payload message block to the 23855 * multidata message. 23856 */ 23857 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23858 goto pbuf_panic; 23859 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23860 pld_ptr = mp->b_rptr + i1; 23861 } 23862 23863 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23864 KM_NOSLEEP)) == NULL) { 23865 /* 23866 * Any failure other than ENOMEM indicates that we 23867 * have passed in invalid pdesc info or parameters 23868 * to mmd_addpdesc, which must not happen. 23869 * 23870 * EINVAL is a result of failure on boundary checks 23871 * against the pdesc info contents. It should not 23872 * happen, and we panic because either there's 23873 * horrible heap corruption, and/or programming 23874 * mistake. 23875 */ 23876 if (error != ENOMEM) { 23877 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23878 "pdesc logic error detected for " 23879 "mmd %p pinfo %p (%d)\n", 23880 (void *)mmd, (void *)&pdi, error); 23881 /* NOTREACHED */ 23882 } 23883 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 23884 /* Free unattached payload message blocks as well */ 23885 md_mp->b_cont = mp->b_cont; 23886 goto free_mmd; 23887 } 23888 23889 /* Advance fragment offset. */ 23890 offset += len; 23891 23892 /* Advance to location for next header in the buffer. */ 23893 hdr_ptr += hdr_chunk_len; 23894 23895 /* Did we reach the next payload message block? */ 23896 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23897 mp = mp->b_cont; 23898 /* 23899 * Attach the next message block with payload 23900 * data to the multidata message. 23901 */ 23902 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23903 goto pbuf_panic; 23904 pld_ptr = mp->b_rptr; 23905 } 23906 } 23907 23908 ASSERT(hdr_mp->b_wptr == hdr_ptr); 23909 ASSERT(mp->b_wptr == pld_ptr); 23910 23911 /* Update IP statistics */ 23912 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 23913 23914 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 23915 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 23916 23917 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 23918 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 23919 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 23920 23921 if (pkt_type == OB_PKT) { 23922 ire->ire_ob_pkt_count += pkts; 23923 if (ire->ire_ipif != NULL) 23924 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 23925 } else { 23926 /* The type is IB_PKT in the forwarding path. */ 23927 ire->ire_ib_pkt_count += pkts; 23928 ASSERT(!IRE_IS_LOCAL(ire)); 23929 if (ire->ire_type & IRE_BROADCAST) { 23930 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 23931 } else { 23932 UPDATE_MIB(ill->ill_ip_mib, 23933 ipIfStatsHCOutForwDatagrams, pkts); 23934 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 23935 } 23936 } 23937 ire->ire_last_used_time = lbolt; 23938 /* Send it down */ 23939 putnext(ire->ire_stq, md_mp); 23940 return; 23941 23942 pbuf_panic: 23943 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 23944 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 23945 pbuf_idx); 23946 /* NOTREACHED */ 23947 } 23948 23949 /* 23950 * Outbound IP fragmentation routine. 23951 * 23952 * NOTE : This routine does not ire_refrele the ire that is passed in 23953 * as the argument. 23954 */ 23955 static void 23956 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 23957 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst, conn_t *connp) 23958 { 23959 int i1; 23960 mblk_t *ll_hdr_mp; 23961 int ll_hdr_len; 23962 int hdr_len; 23963 mblk_t *hdr_mp; 23964 ipha_t *ipha; 23965 int ip_data_end; 23966 int len; 23967 mblk_t *mp = mp_orig, *mp1; 23968 int offset; 23969 queue_t *q; 23970 uint32_t v_hlen_tos_len; 23971 mblk_t *first_mp; 23972 boolean_t mctl_present; 23973 ill_t *ill; 23974 ill_t *out_ill; 23975 mblk_t *xmit_mp; 23976 mblk_t *carve_mp; 23977 ire_t *ire1 = NULL; 23978 ire_t *save_ire = NULL; 23979 mblk_t *next_mp = NULL; 23980 boolean_t last_frag = B_FALSE; 23981 boolean_t multirt_send = B_FALSE; 23982 ire_t *first_ire = NULL; 23983 irb_t *irb = NULL; 23984 mib2_ipIfStatsEntry_t *mibptr = NULL; 23985 23986 ill = ire_to_ill(ire); 23987 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 23988 23989 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 23990 23991 if (max_frag == 0) { 23992 ip1dbg(("ip_wput_frag: ire frag size is 0" 23993 " - dropping packet\n")); 23994 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 23995 freemsg(mp); 23996 return; 23997 } 23998 23999 /* 24000 * IPsec does not allow hw accelerated packets to be fragmented 24001 * This check is made in ip_wput_ipsec_out prior to coming here 24002 * via ip_wput_ire_fragmentit. 24003 * 24004 * If at this point we have an ire whose ARP request has not 24005 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24006 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24007 * This packet and all fragmentable packets for this ire will 24008 * continue to get dropped while ire_nce->nce_state remains in 24009 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24010 * ND_REACHABLE, all subsquent large packets for this ire will 24011 * get fragemented and sent out by this function. 24012 */ 24013 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24014 /* If nce_state is ND_INITIAL, trigger ARP query */ 24015 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 24016 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24017 " - dropping packet\n")); 24018 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24019 freemsg(mp); 24020 return; 24021 } 24022 24023 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24024 "ip_wput_frag_start:"); 24025 24026 if (mp->b_datap->db_type == M_CTL) { 24027 first_mp = mp; 24028 mp_orig = mp = mp->b_cont; 24029 mctl_present = B_TRUE; 24030 } else { 24031 first_mp = mp; 24032 mctl_present = B_FALSE; 24033 } 24034 24035 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24036 ipha = (ipha_t *)mp->b_rptr; 24037 24038 /* 24039 * If the Don't Fragment flag is on, generate an ICMP destination 24040 * unreachable, fragmentation needed. 24041 */ 24042 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24043 if (offset & IPH_DF) { 24044 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24045 if (is_system_labeled()) { 24046 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24047 ire->ire_max_frag - max_frag, AF_INET); 24048 } 24049 /* 24050 * Need to compute hdr checksum if called from ip_wput_ire. 24051 * Note that ip_rput_forward verifies the checksum before 24052 * calling this routine so in that case this is a noop. 24053 */ 24054 ipha->ipha_hdr_checksum = 0; 24055 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24056 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24057 ipst); 24058 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24059 "ip_wput_frag_end:(%S)", 24060 "don't fragment"); 24061 return; 24062 } 24063 /* 24064 * Labeled systems adjust max_frag if they add a label 24065 * to send the correct path mtu. We need the real mtu since we 24066 * are fragmenting the packet after label adjustment. 24067 */ 24068 if (is_system_labeled()) 24069 max_frag = ire->ire_max_frag; 24070 if (mctl_present) 24071 freeb(first_mp); 24072 /* 24073 * Establish the starting offset. May not be zero if we are fragging 24074 * a fragment that is being forwarded. 24075 */ 24076 offset = offset & IPH_OFFSET; 24077 24078 /* TODO why is this test needed? */ 24079 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24080 if (((max_frag - LENGTH) & ~7) < 8) { 24081 /* TODO: notify ulp somehow */ 24082 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24083 freemsg(mp); 24084 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24085 "ip_wput_frag_end:(%S)", 24086 "len < 8"); 24087 return; 24088 } 24089 24090 hdr_len = (V_HLEN & 0xF) << 2; 24091 24092 ipha->ipha_hdr_checksum = 0; 24093 24094 /* 24095 * Establish the number of bytes maximum per frag, after putting 24096 * in the header. 24097 */ 24098 len = (max_frag - hdr_len) & ~7; 24099 24100 /* Check if we can use MDT to send out the frags. */ 24101 ASSERT(!IRE_IS_LOCAL(ire)); 24102 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24103 ipst->ips_ip_multidata_outbound && 24104 !(ire->ire_flags & RTF_MULTIRT) && 24105 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24106 ill != NULL && ILL_MDT_CAPABLE(ill) && 24107 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24108 ASSERT(ill->ill_mdt_capab != NULL); 24109 if (!ill->ill_mdt_capab->ill_mdt_on) { 24110 /* 24111 * If MDT has been previously turned off in the past, 24112 * and we currently can do MDT (due to IPQoS policy 24113 * removal, etc.) then enable it for this interface. 24114 */ 24115 ill->ill_mdt_capab->ill_mdt_on = 1; 24116 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24117 ill->ill_name)); 24118 } 24119 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24120 offset); 24121 return; 24122 } 24123 24124 /* Get a copy of the header for the trailing frags */ 24125 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 24126 mp); 24127 if (!hdr_mp) { 24128 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24129 freemsg(mp); 24130 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24131 "ip_wput_frag_end:(%S)", 24132 "couldn't copy hdr"); 24133 return; 24134 } 24135 24136 /* Store the starting offset, with the MoreFrags flag. */ 24137 i1 = offset | IPH_MF | frag_flag; 24138 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24139 24140 /* Establish the ending byte offset, based on the starting offset. */ 24141 offset <<= 3; 24142 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24143 24144 /* Store the length of the first fragment in the IP header. */ 24145 i1 = len + hdr_len; 24146 ASSERT(i1 <= IP_MAXPACKET); 24147 ipha->ipha_length = htons((uint16_t)i1); 24148 24149 /* 24150 * Compute the IP header checksum for the first frag. We have to 24151 * watch out that we stop at the end of the header. 24152 */ 24153 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24154 24155 /* 24156 * Now carve off the first frag. Note that this will include the 24157 * original IP header. 24158 */ 24159 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24160 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24161 freeb(hdr_mp); 24162 freemsg(mp_orig); 24163 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24164 "ip_wput_frag_end:(%S)", 24165 "couldn't carve first"); 24166 return; 24167 } 24168 24169 /* 24170 * Multirouting case. Each fragment is replicated 24171 * via all non-condemned RTF_MULTIRT routes 24172 * currently resolved. 24173 * We ensure that first_ire is the first RTF_MULTIRT 24174 * ire in the bucket. 24175 */ 24176 if (ire->ire_flags & RTF_MULTIRT) { 24177 irb = ire->ire_bucket; 24178 ASSERT(irb != NULL); 24179 24180 multirt_send = B_TRUE; 24181 24182 /* Make sure we do not omit any multiroute ire. */ 24183 IRB_REFHOLD(irb); 24184 for (first_ire = irb->irb_ire; 24185 first_ire != NULL; 24186 first_ire = first_ire->ire_next) { 24187 if ((first_ire->ire_flags & RTF_MULTIRT) && 24188 (first_ire->ire_addr == ire->ire_addr) && 24189 !(first_ire->ire_marks & 24190 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 24191 break; 24192 } 24193 24194 if (first_ire != NULL) { 24195 if (first_ire != ire) { 24196 IRE_REFHOLD(first_ire); 24197 /* 24198 * Do not release the ire passed in 24199 * as the argument. 24200 */ 24201 ire = first_ire; 24202 } else { 24203 first_ire = NULL; 24204 } 24205 } 24206 IRB_REFRELE(irb); 24207 24208 /* 24209 * Save the first ire; we will need to restore it 24210 * for the trailing frags. 24211 * We REFHOLD save_ire, as each iterated ire will be 24212 * REFRELEd. 24213 */ 24214 save_ire = ire; 24215 IRE_REFHOLD(save_ire); 24216 } 24217 24218 /* 24219 * First fragment emission loop. 24220 * In most cases, the emission loop below is entered only 24221 * once. Only in the case where the ire holds the RTF_MULTIRT 24222 * flag, do we loop to process all RTF_MULTIRT ires in the 24223 * bucket, and send the fragment through all crossed 24224 * RTF_MULTIRT routes. 24225 */ 24226 do { 24227 if (ire->ire_flags & RTF_MULTIRT) { 24228 /* 24229 * We are in a multiple send case, need to get 24230 * the next ire and make a copy of the packet. 24231 * ire1 holds here the next ire to process in the 24232 * bucket. If multirouting is expected, 24233 * any non-RTF_MULTIRT ire that has the 24234 * right destination address is ignored. 24235 * 24236 * We have to take into account the MTU of 24237 * each walked ire. max_frag is set by the 24238 * the caller and generally refers to 24239 * the primary ire entry. Here we ensure that 24240 * no route with a lower MTU will be used, as 24241 * fragments are carved once for all ires, 24242 * then replicated. 24243 */ 24244 ASSERT(irb != NULL); 24245 IRB_REFHOLD(irb); 24246 for (ire1 = ire->ire_next; 24247 ire1 != NULL; 24248 ire1 = ire1->ire_next) { 24249 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24250 continue; 24251 if (ire1->ire_addr != ire->ire_addr) 24252 continue; 24253 if (ire1->ire_marks & 24254 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 24255 continue; 24256 /* 24257 * Ensure we do not exceed the MTU 24258 * of the next route. 24259 */ 24260 if (ire1->ire_max_frag < max_frag) { 24261 ip_multirt_bad_mtu(ire1, max_frag); 24262 continue; 24263 } 24264 24265 /* Got one. */ 24266 IRE_REFHOLD(ire1); 24267 break; 24268 } 24269 IRB_REFRELE(irb); 24270 24271 if (ire1 != NULL) { 24272 next_mp = copyb(mp); 24273 if ((next_mp == NULL) || 24274 ((mp->b_cont != NULL) && 24275 ((next_mp->b_cont = 24276 dupmsg(mp->b_cont)) == NULL))) { 24277 freemsg(next_mp); 24278 next_mp = NULL; 24279 ire_refrele(ire1); 24280 ire1 = NULL; 24281 } 24282 } 24283 24284 /* Last multiroute ire; don't loop anymore. */ 24285 if (ire1 == NULL) { 24286 multirt_send = B_FALSE; 24287 } 24288 } 24289 24290 ll_hdr_len = 0; 24291 LOCK_IRE_FP_MP(ire); 24292 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24293 if (ll_hdr_mp != NULL) { 24294 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24295 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24296 } else { 24297 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24298 } 24299 24300 /* If there is a transmit header, get a copy for this frag. */ 24301 /* 24302 * TODO: should check db_ref before calling ip_carve_mp since 24303 * it might give us a dup. 24304 */ 24305 if (!ll_hdr_mp) { 24306 /* No xmit header. */ 24307 xmit_mp = mp; 24308 24309 /* We have a link-layer header that can fit in our mblk. */ 24310 } else if (mp->b_datap->db_ref == 1 && 24311 ll_hdr_len != 0 && 24312 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24313 /* M_DATA fastpath */ 24314 mp->b_rptr -= ll_hdr_len; 24315 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24316 xmit_mp = mp; 24317 24318 /* Corner case if copyb has failed */ 24319 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24320 UNLOCK_IRE_FP_MP(ire); 24321 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24322 freeb(hdr_mp); 24323 freemsg(mp); 24324 freemsg(mp_orig); 24325 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24326 "ip_wput_frag_end:(%S)", 24327 "discard"); 24328 24329 if (multirt_send) { 24330 ASSERT(ire1); 24331 ASSERT(next_mp); 24332 24333 freemsg(next_mp); 24334 ire_refrele(ire1); 24335 } 24336 if (save_ire != NULL) 24337 IRE_REFRELE(save_ire); 24338 24339 if (first_ire != NULL) 24340 ire_refrele(first_ire); 24341 return; 24342 24343 /* 24344 * Case of res_mp OR the fastpath mp can't fit 24345 * in the mblk 24346 */ 24347 } else { 24348 xmit_mp->b_cont = mp; 24349 24350 /* 24351 * Get priority marking, if any. 24352 * We propagate the CoS marking from the 24353 * original packet that went to QoS processing 24354 * in ip_wput_ire to the newly carved mp. 24355 */ 24356 if (DB_TYPE(xmit_mp) == M_DATA) 24357 xmit_mp->b_band = mp->b_band; 24358 } 24359 UNLOCK_IRE_FP_MP(ire); 24360 24361 q = ire->ire_stq; 24362 out_ill = (ill_t *)q->q_ptr; 24363 24364 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24365 24366 DTRACE_PROBE4(ip4__physical__out__start, 24367 ill_t *, NULL, ill_t *, out_ill, 24368 ipha_t *, ipha, mblk_t *, xmit_mp); 24369 24370 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24371 ipst->ips_ipv4firewall_physical_out, 24372 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24373 24374 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24375 24376 if (xmit_mp != NULL) { 24377 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24378 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24379 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24380 24381 ILL_SEND_TX(out_ill, ire, connp, xmit_mp, 0, connp); 24382 24383 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24384 UPDATE_MIB(out_ill->ill_ip_mib, 24385 ipIfStatsHCOutOctets, i1); 24386 24387 if (pkt_type != OB_PKT) { 24388 /* 24389 * Update the packet count and MIB stats 24390 * of trailing RTF_MULTIRT ires. 24391 */ 24392 UPDATE_OB_PKT_COUNT(ire); 24393 BUMP_MIB(out_ill->ill_ip_mib, 24394 ipIfStatsOutFragReqds); 24395 } 24396 } 24397 24398 if (multirt_send) { 24399 /* 24400 * We are in a multiple send case; look for 24401 * the next ire and re-enter the loop. 24402 */ 24403 ASSERT(ire1); 24404 ASSERT(next_mp); 24405 /* REFRELE the current ire before looping */ 24406 ire_refrele(ire); 24407 ire = ire1; 24408 ire1 = NULL; 24409 mp = next_mp; 24410 next_mp = NULL; 24411 } 24412 } while (multirt_send); 24413 24414 ASSERT(ire1 == NULL); 24415 24416 /* Restore the original ire; we need it for the trailing frags */ 24417 if (save_ire != NULL) { 24418 /* REFRELE the last iterated ire */ 24419 ire_refrele(ire); 24420 /* save_ire has been REFHOLDed */ 24421 ire = save_ire; 24422 save_ire = NULL; 24423 q = ire->ire_stq; 24424 } 24425 24426 if (pkt_type == OB_PKT) { 24427 UPDATE_OB_PKT_COUNT(ire); 24428 } else { 24429 out_ill = (ill_t *)q->q_ptr; 24430 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24431 UPDATE_IB_PKT_COUNT(ire); 24432 } 24433 24434 /* Advance the offset to the second frag starting point. */ 24435 offset += len; 24436 /* 24437 * Update hdr_len from the copied header - there might be less options 24438 * in the later fragments. 24439 */ 24440 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24441 /* Loop until done. */ 24442 for (;;) { 24443 uint16_t offset_and_flags; 24444 uint16_t ip_len; 24445 24446 if (ip_data_end - offset > len) { 24447 /* 24448 * Carve off the appropriate amount from the original 24449 * datagram. 24450 */ 24451 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24452 mp = NULL; 24453 break; 24454 } 24455 /* 24456 * More frags after this one. Get another copy 24457 * of the header. 24458 */ 24459 if (carve_mp->b_datap->db_ref == 1 && 24460 hdr_mp->b_wptr - hdr_mp->b_rptr < 24461 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24462 /* Inline IP header */ 24463 carve_mp->b_rptr -= hdr_mp->b_wptr - 24464 hdr_mp->b_rptr; 24465 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24466 hdr_mp->b_wptr - hdr_mp->b_rptr); 24467 mp = carve_mp; 24468 } else { 24469 if (!(mp = copyb(hdr_mp))) { 24470 freemsg(carve_mp); 24471 break; 24472 } 24473 /* Get priority marking, if any. */ 24474 mp->b_band = carve_mp->b_band; 24475 mp->b_cont = carve_mp; 24476 } 24477 ipha = (ipha_t *)mp->b_rptr; 24478 offset_and_flags = IPH_MF; 24479 } else { 24480 /* 24481 * Last frag. Consume the header. Set len to 24482 * the length of this last piece. 24483 */ 24484 len = ip_data_end - offset; 24485 24486 /* 24487 * Carve off the appropriate amount from the original 24488 * datagram. 24489 */ 24490 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24491 mp = NULL; 24492 break; 24493 } 24494 if (carve_mp->b_datap->db_ref == 1 && 24495 hdr_mp->b_wptr - hdr_mp->b_rptr < 24496 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24497 /* Inline IP header */ 24498 carve_mp->b_rptr -= hdr_mp->b_wptr - 24499 hdr_mp->b_rptr; 24500 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24501 hdr_mp->b_wptr - hdr_mp->b_rptr); 24502 mp = carve_mp; 24503 freeb(hdr_mp); 24504 hdr_mp = mp; 24505 } else { 24506 mp = hdr_mp; 24507 /* Get priority marking, if any. */ 24508 mp->b_band = carve_mp->b_band; 24509 mp->b_cont = carve_mp; 24510 } 24511 ipha = (ipha_t *)mp->b_rptr; 24512 /* A frag of a frag might have IPH_MF non-zero */ 24513 offset_and_flags = 24514 ntohs(ipha->ipha_fragment_offset_and_flags) & 24515 IPH_MF; 24516 } 24517 offset_and_flags |= (uint16_t)(offset >> 3); 24518 offset_and_flags |= (uint16_t)frag_flag; 24519 /* Store the offset and flags in the IP header. */ 24520 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24521 24522 /* Store the length in the IP header. */ 24523 ip_len = (uint16_t)(len + hdr_len); 24524 ipha->ipha_length = htons(ip_len); 24525 24526 /* 24527 * Set the IP header checksum. Note that mp is just 24528 * the header, so this is easy to pass to ip_csum. 24529 */ 24530 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24531 24532 /* Attach a transmit header, if any, and ship it. */ 24533 if (pkt_type == OB_PKT) { 24534 UPDATE_OB_PKT_COUNT(ire); 24535 } else { 24536 out_ill = (ill_t *)q->q_ptr; 24537 BUMP_MIB(out_ill->ill_ip_mib, 24538 ipIfStatsHCOutForwDatagrams); 24539 UPDATE_IB_PKT_COUNT(ire); 24540 } 24541 24542 if (ire->ire_flags & RTF_MULTIRT) { 24543 irb = ire->ire_bucket; 24544 ASSERT(irb != NULL); 24545 24546 multirt_send = B_TRUE; 24547 24548 /* 24549 * Save the original ire; we will need to restore it 24550 * for the tailing frags. 24551 */ 24552 save_ire = ire; 24553 IRE_REFHOLD(save_ire); 24554 } 24555 /* 24556 * Emission loop for this fragment, similar 24557 * to what is done for the first fragment. 24558 */ 24559 do { 24560 if (multirt_send) { 24561 /* 24562 * We are in a multiple send case, need to get 24563 * the next ire and make a copy of the packet. 24564 */ 24565 ASSERT(irb != NULL); 24566 IRB_REFHOLD(irb); 24567 for (ire1 = ire->ire_next; 24568 ire1 != NULL; 24569 ire1 = ire1->ire_next) { 24570 if (!(ire1->ire_flags & RTF_MULTIRT)) 24571 continue; 24572 if (ire1->ire_addr != ire->ire_addr) 24573 continue; 24574 if (ire1->ire_marks & 24575 (IRE_MARK_CONDEMNED | 24576 IRE_MARK_TESTHIDDEN)) 24577 continue; 24578 /* 24579 * Ensure we do not exceed the MTU 24580 * of the next route. 24581 */ 24582 if (ire1->ire_max_frag < max_frag) { 24583 ip_multirt_bad_mtu(ire1, 24584 max_frag); 24585 continue; 24586 } 24587 24588 /* Got one. */ 24589 IRE_REFHOLD(ire1); 24590 break; 24591 } 24592 IRB_REFRELE(irb); 24593 24594 if (ire1 != NULL) { 24595 next_mp = copyb(mp); 24596 if ((next_mp == NULL) || 24597 ((mp->b_cont != NULL) && 24598 ((next_mp->b_cont = 24599 dupmsg(mp->b_cont)) == NULL))) { 24600 freemsg(next_mp); 24601 next_mp = NULL; 24602 ire_refrele(ire1); 24603 ire1 = NULL; 24604 } 24605 } 24606 24607 /* Last multiroute ire; don't loop anymore. */ 24608 if (ire1 == NULL) { 24609 multirt_send = B_FALSE; 24610 } 24611 } 24612 24613 /* Update transmit header */ 24614 ll_hdr_len = 0; 24615 LOCK_IRE_FP_MP(ire); 24616 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24617 if (ll_hdr_mp != NULL) { 24618 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24619 ll_hdr_len = MBLKL(ll_hdr_mp); 24620 } else { 24621 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24622 } 24623 24624 if (!ll_hdr_mp) { 24625 xmit_mp = mp; 24626 24627 /* 24628 * We have link-layer header that can fit in 24629 * our mblk. 24630 */ 24631 } else if (mp->b_datap->db_ref == 1 && 24632 ll_hdr_len != 0 && 24633 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24634 /* M_DATA fastpath */ 24635 mp->b_rptr -= ll_hdr_len; 24636 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24637 ll_hdr_len); 24638 xmit_mp = mp; 24639 24640 /* 24641 * Case of res_mp OR the fastpath mp can't fit 24642 * in the mblk 24643 */ 24644 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24645 xmit_mp->b_cont = mp; 24646 /* Get priority marking, if any. */ 24647 if (DB_TYPE(xmit_mp) == M_DATA) 24648 xmit_mp->b_band = mp->b_band; 24649 24650 /* Corner case if copyb failed */ 24651 } else { 24652 /* 24653 * Exit both the replication and 24654 * fragmentation loops. 24655 */ 24656 UNLOCK_IRE_FP_MP(ire); 24657 goto drop_pkt; 24658 } 24659 UNLOCK_IRE_FP_MP(ire); 24660 24661 mp1 = mp; 24662 out_ill = (ill_t *)q->q_ptr; 24663 24664 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24665 24666 DTRACE_PROBE4(ip4__physical__out__start, 24667 ill_t *, NULL, ill_t *, out_ill, 24668 ipha_t *, ipha, mblk_t *, xmit_mp); 24669 24670 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24671 ipst->ips_ipv4firewall_physical_out, 24672 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24673 24674 DTRACE_PROBE1(ip4__physical__out__end, 24675 mblk_t *, xmit_mp); 24676 24677 if (mp != mp1 && hdr_mp == mp1) 24678 hdr_mp = mp; 24679 if (mp != mp1 && mp_orig == mp1) 24680 mp_orig = mp; 24681 24682 if (xmit_mp != NULL) { 24683 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 24684 NULL, void_ip_t *, ipha, 24685 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 24686 ipha, ip6_t *, NULL, int, 0); 24687 24688 ILL_SEND_TX(out_ill, ire, connp, 24689 xmit_mp, 0, connp); 24690 24691 BUMP_MIB(out_ill->ill_ip_mib, 24692 ipIfStatsHCOutTransmits); 24693 UPDATE_MIB(out_ill->ill_ip_mib, 24694 ipIfStatsHCOutOctets, ip_len); 24695 24696 if (pkt_type != OB_PKT) { 24697 /* 24698 * Update the packet count of trailing 24699 * RTF_MULTIRT ires. 24700 */ 24701 UPDATE_OB_PKT_COUNT(ire); 24702 } 24703 } 24704 24705 /* All done if we just consumed the hdr_mp. */ 24706 if (mp == hdr_mp) { 24707 last_frag = B_TRUE; 24708 BUMP_MIB(out_ill->ill_ip_mib, 24709 ipIfStatsOutFragOKs); 24710 } 24711 24712 if (multirt_send) { 24713 /* 24714 * We are in a multiple send case; look for 24715 * the next ire and re-enter the loop. 24716 */ 24717 ASSERT(ire1); 24718 ASSERT(next_mp); 24719 /* REFRELE the current ire before looping */ 24720 ire_refrele(ire); 24721 ire = ire1; 24722 ire1 = NULL; 24723 q = ire->ire_stq; 24724 mp = next_mp; 24725 next_mp = NULL; 24726 } 24727 } while (multirt_send); 24728 /* 24729 * Restore the original ire; we need it for the 24730 * trailing frags 24731 */ 24732 if (save_ire != NULL) { 24733 ASSERT(ire1 == NULL); 24734 /* REFRELE the last iterated ire */ 24735 ire_refrele(ire); 24736 /* save_ire has been REFHOLDed */ 24737 ire = save_ire; 24738 q = ire->ire_stq; 24739 save_ire = NULL; 24740 } 24741 24742 if (last_frag) { 24743 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24744 "ip_wput_frag_end:(%S)", 24745 "consumed hdr_mp"); 24746 24747 if (first_ire != NULL) 24748 ire_refrele(first_ire); 24749 return; 24750 } 24751 /* Otherwise, advance and loop. */ 24752 offset += len; 24753 } 24754 24755 drop_pkt: 24756 /* Clean up following allocation failure. */ 24757 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24758 freemsg(mp); 24759 if (mp != hdr_mp) 24760 freeb(hdr_mp); 24761 if (mp != mp_orig) 24762 freemsg(mp_orig); 24763 24764 if (save_ire != NULL) 24765 IRE_REFRELE(save_ire); 24766 if (first_ire != NULL) 24767 ire_refrele(first_ire); 24768 24769 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24770 "ip_wput_frag_end:(%S)", 24771 "end--alloc failure"); 24772 } 24773 24774 /* 24775 * Copy the header plus those options which have the copy bit set 24776 * src is the template to make sure we preserve the cred for TX purposes. 24777 */ 24778 static mblk_t * 24779 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 24780 mblk_t *src) 24781 { 24782 mblk_t *mp; 24783 uchar_t *up; 24784 24785 /* 24786 * Quick check if we need to look for options without the copy bit 24787 * set 24788 */ 24789 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 24790 if (!mp) 24791 return (mp); 24792 mp->b_rptr += ipst->ips_ip_wroff_extra; 24793 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24794 bcopy(rptr, mp->b_rptr, hdr_len); 24795 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24796 return (mp); 24797 } 24798 up = mp->b_rptr; 24799 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24800 up += IP_SIMPLE_HDR_LENGTH; 24801 rptr += IP_SIMPLE_HDR_LENGTH; 24802 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24803 while (hdr_len > 0) { 24804 uint32_t optval; 24805 uint32_t optlen; 24806 24807 optval = *rptr; 24808 if (optval == IPOPT_EOL) 24809 break; 24810 if (optval == IPOPT_NOP) 24811 optlen = 1; 24812 else 24813 optlen = rptr[1]; 24814 if (optval & IPOPT_COPY) { 24815 bcopy(rptr, up, optlen); 24816 up += optlen; 24817 } 24818 rptr += optlen; 24819 hdr_len -= optlen; 24820 } 24821 /* 24822 * Make sure that we drop an even number of words by filling 24823 * with EOL to the next word boundary. 24824 */ 24825 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24826 hdr_len & 0x3; hdr_len++) 24827 *up++ = IPOPT_EOL; 24828 mp->b_wptr = up; 24829 /* Update header length */ 24830 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24831 return (mp); 24832 } 24833 24834 /* 24835 * Delivery to local recipients including fanout to multiple recipients. 24836 * Does not do checksumming of UDP/TCP. 24837 * Note: q should be the read side queue for either the ill or conn. 24838 * Note: rq should be the read side q for the lower (ill) stream. 24839 * We don't send packets to IPPF processing, thus the last argument 24840 * to all the fanout calls are B_FALSE. 24841 */ 24842 void 24843 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24844 int fanout_flags, zoneid_t zoneid) 24845 { 24846 uint32_t protocol; 24847 mblk_t *first_mp; 24848 boolean_t mctl_present; 24849 int ire_type; 24850 #define rptr ((uchar_t *)ipha) 24851 ip_stack_t *ipst = ill->ill_ipst; 24852 24853 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24854 "ip_wput_local_start: q %p", q); 24855 24856 if (ire != NULL) { 24857 ire_type = ire->ire_type; 24858 } else { 24859 /* 24860 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24861 * packet is not multicast, we can't tell the ire type. 24862 */ 24863 ASSERT(CLASSD(ipha->ipha_dst)); 24864 ire_type = IRE_BROADCAST; 24865 } 24866 24867 first_mp = mp; 24868 if (first_mp->b_datap->db_type == M_CTL) { 24869 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24870 if (!io->ipsec_out_secure) { 24871 /* 24872 * This ipsec_out_t was allocated in ip_wput 24873 * for multicast packets to store the ill_index. 24874 * As this is being delivered locally, we don't 24875 * need this anymore. 24876 */ 24877 mp = first_mp->b_cont; 24878 freeb(first_mp); 24879 first_mp = mp; 24880 mctl_present = B_FALSE; 24881 } else { 24882 /* 24883 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24884 * security properties for the looped-back packet. 24885 */ 24886 mctl_present = B_TRUE; 24887 mp = first_mp->b_cont; 24888 ASSERT(mp != NULL); 24889 ipsec_out_to_in(first_mp); 24890 } 24891 } else { 24892 mctl_present = B_FALSE; 24893 } 24894 24895 DTRACE_PROBE4(ip4__loopback__in__start, 24896 ill_t *, ill, ill_t *, NULL, 24897 ipha_t *, ipha, mblk_t *, first_mp); 24898 24899 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 24900 ipst->ips_ipv4firewall_loopback_in, 24901 ill, NULL, ipha, first_mp, mp, 0, ipst); 24902 24903 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24904 24905 if (first_mp == NULL) 24906 return; 24907 24908 if (ipst->ips_ip4_observe.he_interested) { 24909 zoneid_t szone, dzone, lookup_zoneid = ALL_ZONES; 24910 zoneid_t stackzoneid = netstackid_to_zoneid( 24911 ipst->ips_netstack->netstack_stackid); 24912 24913 dzone = (stackzoneid == GLOBAL_ZONEID) ? zoneid : stackzoneid; 24914 /* 24915 * 127.0.0.1 is special, as we cannot lookup its zoneid by 24916 * address. Restrict the lookup below to the destination zone. 24917 */ 24918 if (ipha->ipha_src == ntohl(INADDR_LOOPBACK)) 24919 lookup_zoneid = zoneid; 24920 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 24921 lookup_zoneid); 24922 ipobs_hook(mp, IPOBS_HOOK_LOCAL, szone, dzone, ill, ipst); 24923 } 24924 24925 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 24926 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 24927 int, 1); 24928 24929 ipst->ips_loopback_packets++; 24930 24931 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 24932 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 24933 if (!IS_SIMPLE_IPH(ipha)) { 24934 ip_wput_local_options(ipha, ipst); 24935 } 24936 24937 protocol = ipha->ipha_protocol; 24938 switch (protocol) { 24939 case IPPROTO_ICMP: { 24940 ire_t *ire_zone; 24941 ilm_t *ilm; 24942 mblk_t *mp1; 24943 zoneid_t last_zoneid; 24944 ilm_walker_t ilw; 24945 24946 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 24947 ASSERT(ire_type == IRE_BROADCAST); 24948 /* 24949 * In the multicast case, applications may have joined 24950 * the group from different zones, so we need to deliver 24951 * the packet to each of them. Loop through the 24952 * multicast memberships structures (ilm) on the receive 24953 * ill and send a copy of the packet up each matching 24954 * one. However, we don't do this for multicasts sent on 24955 * the loopback interface (PHYI_LOOPBACK flag set) as 24956 * they must stay in the sender's zone. 24957 * 24958 * ilm_add_v6() ensures that ilms in the same zone are 24959 * contiguous in the ill_ilm list. We use this property 24960 * to avoid sending duplicates needed when two 24961 * applications in the same zone join the same group on 24962 * different logical interfaces: we ignore the ilm if 24963 * it's zoneid is the same as the last matching one. 24964 * In addition, the sending of the packet for 24965 * ire_zoneid is delayed until all of the other ilms 24966 * have been exhausted. 24967 */ 24968 last_zoneid = -1; 24969 ilm = ilm_walker_start(&ilw, ill); 24970 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 24971 if (ipha->ipha_dst != ilm->ilm_addr || 24972 ilm->ilm_zoneid == last_zoneid || 24973 ilm->ilm_zoneid == zoneid || 24974 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 24975 continue; 24976 mp1 = ip_copymsg(first_mp); 24977 if (mp1 == NULL) 24978 continue; 24979 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 24980 0, 0, mctl_present, B_FALSE, ill, 24981 ilm->ilm_zoneid); 24982 last_zoneid = ilm->ilm_zoneid; 24983 } 24984 ilm_walker_finish(&ilw); 24985 /* 24986 * Loopback case: the sending endpoint has 24987 * IP_MULTICAST_LOOP disabled, therefore we don't 24988 * dispatch the multicast packet to the sending zone. 24989 */ 24990 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 24991 freemsg(first_mp); 24992 return; 24993 } 24994 } else if (ire_type == IRE_BROADCAST) { 24995 /* 24996 * In the broadcast case, there may be many zones 24997 * which need a copy of the packet delivered to them. 24998 * There is one IRE_BROADCAST per broadcast address 24999 * and per zone; we walk those using a helper function. 25000 * In addition, the sending of the packet for zoneid is 25001 * delayed until all of the other ires have been 25002 * processed. 25003 */ 25004 IRB_REFHOLD(ire->ire_bucket); 25005 ire_zone = NULL; 25006 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25007 ire)) != NULL) { 25008 mp1 = ip_copymsg(first_mp); 25009 if (mp1 == NULL) 25010 continue; 25011 25012 UPDATE_IB_PKT_COUNT(ire_zone); 25013 ire_zone->ire_last_used_time = lbolt; 25014 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25015 mctl_present, B_FALSE, ill, 25016 ire_zone->ire_zoneid); 25017 } 25018 IRB_REFRELE(ire->ire_bucket); 25019 } 25020 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25021 0, mctl_present, B_FALSE, ill, zoneid); 25022 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25023 "ip_wput_local_end: q %p (%S)", 25024 q, "icmp"); 25025 return; 25026 } 25027 case IPPROTO_IGMP: 25028 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25029 /* Bad packet - discarded by igmp_input */ 25030 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25031 "ip_wput_local_end: q %p (%S)", 25032 q, "igmp_input--bad packet"); 25033 if (mctl_present) 25034 freeb(first_mp); 25035 return; 25036 } 25037 /* 25038 * igmp_input() may have returned the pulled up message. 25039 * So first_mp and ipha need to be reinitialized. 25040 */ 25041 ipha = (ipha_t *)mp->b_rptr; 25042 if (mctl_present) 25043 first_mp->b_cont = mp; 25044 else 25045 first_mp = mp; 25046 /* deliver to local raw users */ 25047 break; 25048 case IPPROTO_ENCAP: 25049 /* 25050 * This case is covered by either ip_fanout_proto, or by 25051 * the above security processing for self-tunneled packets. 25052 */ 25053 break; 25054 case IPPROTO_UDP: { 25055 uint16_t *up; 25056 uint32_t ports; 25057 25058 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25059 UDP_PORTS_OFFSET); 25060 /* Force a 'valid' checksum. */ 25061 up[3] = 0; 25062 25063 ports = *(uint32_t *)up; 25064 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25065 (ire_type == IRE_BROADCAST), 25066 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25067 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25068 ill, zoneid); 25069 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25070 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25071 return; 25072 } 25073 case IPPROTO_TCP: { 25074 25075 /* 25076 * For TCP, discard broadcast packets. 25077 */ 25078 if ((ushort_t)ire_type == IRE_BROADCAST) { 25079 freemsg(first_mp); 25080 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25081 ip2dbg(("ip_wput_local: discard broadcast\n")); 25082 return; 25083 } 25084 25085 if (mp->b_datap->db_type == M_DATA) { 25086 /* 25087 * M_DATA mblk, so init mblk (chain) for no struio(). 25088 */ 25089 mblk_t *mp1 = mp; 25090 25091 do { 25092 mp1->b_datap->db_struioflag = 0; 25093 } while ((mp1 = mp1->b_cont) != NULL); 25094 } 25095 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25096 <= mp->b_wptr); 25097 ip_fanout_tcp(q, first_mp, ill, ipha, 25098 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25099 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25100 mctl_present, B_FALSE, zoneid); 25101 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25102 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25103 return; 25104 } 25105 case IPPROTO_SCTP: 25106 { 25107 uint32_t ports; 25108 25109 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25110 ip_fanout_sctp(first_mp, ill, ipha, ports, 25111 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25112 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25113 return; 25114 } 25115 25116 default: 25117 break; 25118 } 25119 /* 25120 * Find a client for some other protocol. We give 25121 * copies to multiple clients, if more than one is 25122 * bound. 25123 */ 25124 ip_fanout_proto(q, first_mp, ill, ipha, 25125 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25126 mctl_present, B_FALSE, ill, zoneid); 25127 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25128 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25129 #undef rptr 25130 } 25131 25132 /* 25133 * Update any source route, record route, or timestamp options. 25134 * Check that we are at end of strict source route. 25135 * The options have been sanity checked by ip_wput_options(). 25136 */ 25137 static void 25138 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25139 { 25140 ipoptp_t opts; 25141 uchar_t *opt; 25142 uint8_t optval; 25143 uint8_t optlen; 25144 ipaddr_t dst; 25145 uint32_t ts; 25146 ire_t *ire; 25147 timestruc_t now; 25148 25149 ip2dbg(("ip_wput_local_options\n")); 25150 for (optval = ipoptp_first(&opts, ipha); 25151 optval != IPOPT_EOL; 25152 optval = ipoptp_next(&opts)) { 25153 opt = opts.ipoptp_cur; 25154 optlen = opts.ipoptp_len; 25155 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25156 switch (optval) { 25157 uint32_t off; 25158 case IPOPT_SSRR: 25159 case IPOPT_LSRR: 25160 off = opt[IPOPT_OFFSET]; 25161 off--; 25162 if (optlen < IP_ADDR_LEN || 25163 off > optlen - IP_ADDR_LEN) { 25164 /* End of source route */ 25165 break; 25166 } 25167 /* 25168 * This will only happen if two consecutive entries 25169 * in the source route contains our address or if 25170 * it is a packet with a loose source route which 25171 * reaches us before consuming the whole source route 25172 */ 25173 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25174 if (optval == IPOPT_SSRR) { 25175 return; 25176 } 25177 /* 25178 * Hack: instead of dropping the packet truncate the 25179 * source route to what has been used by filling the 25180 * rest with IPOPT_NOP. 25181 */ 25182 opt[IPOPT_OLEN] = (uint8_t)off; 25183 while (off < optlen) { 25184 opt[off++] = IPOPT_NOP; 25185 } 25186 break; 25187 case IPOPT_RR: 25188 off = opt[IPOPT_OFFSET]; 25189 off--; 25190 if (optlen < IP_ADDR_LEN || 25191 off > optlen - IP_ADDR_LEN) { 25192 /* No more room - ignore */ 25193 ip1dbg(( 25194 "ip_wput_forward_options: end of RR\n")); 25195 break; 25196 } 25197 dst = htonl(INADDR_LOOPBACK); 25198 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25199 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25200 break; 25201 case IPOPT_TS: 25202 /* Insert timestamp if there is romm */ 25203 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25204 case IPOPT_TS_TSONLY: 25205 off = IPOPT_TS_TIMELEN; 25206 break; 25207 case IPOPT_TS_PRESPEC: 25208 case IPOPT_TS_PRESPEC_RFC791: 25209 /* Verify that the address matched */ 25210 off = opt[IPOPT_OFFSET] - 1; 25211 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25212 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25213 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25214 ipst); 25215 if (ire == NULL) { 25216 /* Not for us */ 25217 break; 25218 } 25219 ire_refrele(ire); 25220 /* FALLTHRU */ 25221 case IPOPT_TS_TSANDADDR: 25222 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25223 break; 25224 default: 25225 /* 25226 * ip_*put_options should have already 25227 * dropped this packet. 25228 */ 25229 cmn_err(CE_PANIC, "ip_wput_local_options: " 25230 "unknown IT - bug in ip_wput_options?\n"); 25231 return; /* Keep "lint" happy */ 25232 } 25233 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25234 /* Increase overflow counter */ 25235 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25236 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25237 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25238 (off << 4); 25239 break; 25240 } 25241 off = opt[IPOPT_OFFSET] - 1; 25242 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25243 case IPOPT_TS_PRESPEC: 25244 case IPOPT_TS_PRESPEC_RFC791: 25245 case IPOPT_TS_TSANDADDR: 25246 dst = htonl(INADDR_LOOPBACK); 25247 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25248 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25249 /* FALLTHRU */ 25250 case IPOPT_TS_TSONLY: 25251 off = opt[IPOPT_OFFSET] - 1; 25252 /* Compute # of milliseconds since midnight */ 25253 gethrestime(&now); 25254 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25255 now.tv_nsec / (NANOSEC / MILLISEC); 25256 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25257 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25258 break; 25259 } 25260 break; 25261 } 25262 } 25263 } 25264 25265 /* 25266 * Send out a multicast packet on interface ipif. 25267 * The sender does not have an conn. 25268 * Caller verifies that this isn't a PHYI_LOOPBACK. 25269 */ 25270 void 25271 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25272 { 25273 ipha_t *ipha; 25274 ire_t *ire; 25275 ipaddr_t dst; 25276 mblk_t *first_mp; 25277 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25278 25279 /* igmp_sendpkt always allocates a ipsec_out_t */ 25280 ASSERT(mp->b_datap->db_type == M_CTL); 25281 ASSERT(!ipif->ipif_isv6); 25282 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25283 25284 first_mp = mp; 25285 mp = first_mp->b_cont; 25286 ASSERT(mp->b_datap->db_type == M_DATA); 25287 ipha = (ipha_t *)mp->b_rptr; 25288 25289 /* 25290 * Find an IRE which matches the destination and the outgoing 25291 * queue (i.e. the outgoing interface.) 25292 */ 25293 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25294 dst = ipif->ipif_pp_dst_addr; 25295 else 25296 dst = ipha->ipha_dst; 25297 /* 25298 * The source address has already been initialized by the 25299 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25300 * be sufficient rather than MATCH_IRE_IPIF. 25301 * 25302 * This function is used for sending IGMP packets. For IPMP, 25303 * we sidestep IGMP snooping issues by sending all multicast 25304 * traffic on a single interface in the IPMP group. 25305 */ 25306 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25307 MATCH_IRE_ILL, ipst); 25308 if (!ire) { 25309 /* 25310 * Mark this packet to make it be delivered to 25311 * ip_wput_ire after the new ire has been 25312 * created. 25313 */ 25314 mp->b_prev = NULL; 25315 mp->b_next = NULL; 25316 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25317 zoneid, &zero_info); 25318 return; 25319 } 25320 25321 /* 25322 * Honor the RTF_SETSRC flag; this is the only case 25323 * where we force this addr whatever the current src addr is, 25324 * because this address is set by igmp_sendpkt(), and 25325 * cannot be specified by any user. 25326 */ 25327 if (ire->ire_flags & RTF_SETSRC) { 25328 ipha->ipha_src = ire->ire_src_addr; 25329 } 25330 25331 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25332 } 25333 25334 /* 25335 * NOTE : This function does not ire_refrele the ire argument passed in. 25336 * 25337 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25338 * failure. The nce_fp_mp can vanish any time in the case of 25339 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25340 * the ire_lock to access the nce_fp_mp in this case. 25341 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25342 * prepending a fastpath message IPQoS processing must precede it, we also set 25343 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25344 * (IPQoS might have set the b_band for CoS marking). 25345 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25346 * must follow it so that IPQoS can mark the dl_priority field for CoS 25347 * marking, if needed. 25348 */ 25349 static mblk_t * 25350 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25351 uint32_t ill_index, ipha_t **iphap) 25352 { 25353 uint_t hlen; 25354 ipha_t *ipha; 25355 mblk_t *mp1; 25356 boolean_t qos_done = B_FALSE; 25357 uchar_t *ll_hdr; 25358 ip_stack_t *ipst = ire->ire_ipst; 25359 25360 #define rptr ((uchar_t *)ipha) 25361 25362 ipha = (ipha_t *)mp->b_rptr; 25363 hlen = 0; 25364 LOCK_IRE_FP_MP(ire); 25365 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25366 ASSERT(DB_TYPE(mp1) == M_DATA); 25367 /* Initiate IPPF processing */ 25368 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25369 UNLOCK_IRE_FP_MP(ire); 25370 ip_process(proc, &mp, ill_index); 25371 if (mp == NULL) 25372 return (NULL); 25373 25374 ipha = (ipha_t *)mp->b_rptr; 25375 LOCK_IRE_FP_MP(ire); 25376 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25377 qos_done = B_TRUE; 25378 goto no_fp_mp; 25379 } 25380 ASSERT(DB_TYPE(mp1) == M_DATA); 25381 } 25382 hlen = MBLKL(mp1); 25383 /* 25384 * Check if we have enough room to prepend fastpath 25385 * header 25386 */ 25387 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25388 ll_hdr = rptr - hlen; 25389 bcopy(mp1->b_rptr, ll_hdr, hlen); 25390 /* 25391 * Set the b_rptr to the start of the link layer 25392 * header 25393 */ 25394 mp->b_rptr = ll_hdr; 25395 mp1 = mp; 25396 } else { 25397 mp1 = copyb(mp1); 25398 if (mp1 == NULL) 25399 goto unlock_err; 25400 mp1->b_band = mp->b_band; 25401 mp1->b_cont = mp; 25402 /* 25403 * XXX disable ICK_VALID and compute checksum 25404 * here; can happen if nce_fp_mp changes and 25405 * it can't be copied now due to insufficient 25406 * space. (unlikely, fp mp can change, but it 25407 * does not increase in length) 25408 */ 25409 } 25410 UNLOCK_IRE_FP_MP(ire); 25411 } else { 25412 no_fp_mp: 25413 mp1 = copyb(ire->ire_nce->nce_res_mp); 25414 if (mp1 == NULL) { 25415 unlock_err: 25416 UNLOCK_IRE_FP_MP(ire); 25417 freemsg(mp); 25418 return (NULL); 25419 } 25420 UNLOCK_IRE_FP_MP(ire); 25421 mp1->b_cont = mp; 25422 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25423 ip_process(proc, &mp1, ill_index); 25424 if (mp1 == NULL) 25425 return (NULL); 25426 25427 if (mp1->b_cont == NULL) 25428 ipha = NULL; 25429 else 25430 ipha = (ipha_t *)mp1->b_cont->b_rptr; 25431 } 25432 } 25433 25434 *iphap = ipha; 25435 return (mp1); 25436 #undef rptr 25437 } 25438 25439 /* 25440 * Finish the outbound IPsec processing for an IPv6 packet. This function 25441 * is called from ipsec_out_process() if the IPsec packet was processed 25442 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25443 * asynchronously. 25444 */ 25445 void 25446 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25447 ire_t *ire_arg) 25448 { 25449 in6_addr_t *v6dstp; 25450 ire_t *ire; 25451 mblk_t *mp; 25452 ip6_t *ip6h1; 25453 uint_t ill_index; 25454 ipsec_out_t *io; 25455 boolean_t hwaccel; 25456 uint32_t flags = IP6_NO_IPPOLICY; 25457 int match_flags; 25458 zoneid_t zoneid; 25459 boolean_t ill_need_rele = B_FALSE; 25460 boolean_t ire_need_rele = B_FALSE; 25461 ip_stack_t *ipst; 25462 25463 mp = ipsec_mp->b_cont; 25464 ip6h1 = (ip6_t *)mp->b_rptr; 25465 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25466 ASSERT(io->ipsec_out_ns != NULL); 25467 ipst = io->ipsec_out_ns->netstack_ip; 25468 ill_index = io->ipsec_out_ill_index; 25469 if (io->ipsec_out_reachable) { 25470 flags |= IPV6_REACHABILITY_CONFIRMATION; 25471 } 25472 hwaccel = io->ipsec_out_accelerated; 25473 zoneid = io->ipsec_out_zoneid; 25474 ASSERT(zoneid != ALL_ZONES); 25475 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25476 /* Multicast addresses should have non-zero ill_index. */ 25477 v6dstp = &ip6h->ip6_dst; 25478 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25479 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25480 25481 if (ill == NULL && ill_index != 0) { 25482 ill = ip_grab_ill(ipsec_mp, ill_index, B_TRUE, ipst); 25483 /* Failure case frees things for us. */ 25484 if (ill == NULL) 25485 return; 25486 25487 ill_need_rele = B_TRUE; 25488 } 25489 ASSERT(mp != NULL); 25490 25491 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25492 boolean_t unspec_src; 25493 ipif_t *ipif; 25494 25495 /* 25496 * Use the ill_index to get the right ill. 25497 */ 25498 unspec_src = io->ipsec_out_unspec_src; 25499 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25500 if (ipif == NULL) { 25501 if (ill_need_rele) 25502 ill_refrele(ill); 25503 freemsg(ipsec_mp); 25504 return; 25505 } 25506 25507 if (ire_arg != NULL) { 25508 ire = ire_arg; 25509 } else { 25510 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25511 zoneid, msg_getlabel(mp), match_flags, ipst); 25512 ire_need_rele = B_TRUE; 25513 } 25514 if (ire != NULL) { 25515 ipif_refrele(ipif); 25516 /* 25517 * XXX Do the multicast forwarding now, as the IPsec 25518 * processing has been done. 25519 */ 25520 goto send; 25521 } 25522 25523 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25524 mp->b_prev = NULL; 25525 mp->b_next = NULL; 25526 25527 /* 25528 * If the IPsec packet was processed asynchronously, 25529 * drop it now. 25530 */ 25531 if (q == NULL) { 25532 if (ill_need_rele) 25533 ill_refrele(ill); 25534 freemsg(ipsec_mp); 25535 return; 25536 } 25537 25538 ip_newroute_ipif_v6(q, ipsec_mp, ipif, v6dstp, &ip6h->ip6_src, 25539 unspec_src, zoneid); 25540 ipif_refrele(ipif); 25541 } else { 25542 if (ire_arg != NULL) { 25543 ire = ire_arg; 25544 } else { 25545 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, ipst); 25546 ire_need_rele = B_TRUE; 25547 } 25548 if (ire != NULL) 25549 goto send; 25550 /* 25551 * ire disappeared underneath. 25552 * 25553 * What we need to do here is the ip_newroute 25554 * logic to get the ire without doing the IPsec 25555 * processing. Follow the same old path. But this 25556 * time, ip_wput or ire_add_then_send will call us 25557 * directly as all the IPsec operations are done. 25558 */ 25559 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25560 mp->b_prev = NULL; 25561 mp->b_next = NULL; 25562 25563 /* 25564 * If the IPsec packet was processed asynchronously, 25565 * drop it now. 25566 */ 25567 if (q == NULL) { 25568 if (ill_need_rele) 25569 ill_refrele(ill); 25570 freemsg(ipsec_mp); 25571 return; 25572 } 25573 25574 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25575 zoneid, ipst); 25576 } 25577 if (ill != NULL && ill_need_rele) 25578 ill_refrele(ill); 25579 return; 25580 send: 25581 if (ill != NULL && ill_need_rele) 25582 ill_refrele(ill); 25583 25584 /* Local delivery */ 25585 if (ire->ire_stq == NULL) { 25586 ill_t *out_ill; 25587 ASSERT(q != NULL); 25588 25589 /* PFHooks: LOOPBACK_OUT */ 25590 out_ill = ire_to_ill(ire); 25591 25592 /* 25593 * DTrace this as ip:::send. A blocked packet will fire the 25594 * send probe, but not the receive probe. 25595 */ 25596 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25597 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 25598 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 25599 25600 DTRACE_PROBE4(ip6__loopback__out__start, 25601 ill_t *, NULL, ill_t *, out_ill, 25602 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25603 25604 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25605 ipst->ips_ipv6firewall_loopback_out, 25606 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25607 25608 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25609 25610 if (ipsec_mp != NULL) { 25611 ip_wput_local_v6(RD(q), out_ill, 25612 ip6h, ipsec_mp, ire, 0, zoneid); 25613 } 25614 if (ire_need_rele) 25615 ire_refrele(ire); 25616 return; 25617 } 25618 /* 25619 * Everything is done. Send it out on the wire. 25620 * We force the insertion of a fragment header using the 25621 * IPH_FRAG_HDR flag in two cases: 25622 * - after reception of an ICMPv6 "packet too big" message 25623 * with a MTU < 1280 (cf. RFC 2460 section 5) 25624 * - for multirouted IPv6 packets, so that the receiver can 25625 * discard duplicates according to their fragment identifier 25626 */ 25627 /* XXX fix flow control problems. */ 25628 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25629 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25630 if (hwaccel) { 25631 /* 25632 * hardware acceleration does not handle these 25633 * "slow path" cases. 25634 */ 25635 /* IPsec KSTATS: should bump bean counter here. */ 25636 if (ire_need_rele) 25637 ire_refrele(ire); 25638 freemsg(ipsec_mp); 25639 return; 25640 } 25641 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25642 (mp->b_cont ? msgdsize(mp) : 25643 mp->b_wptr - (uchar_t *)ip6h)) { 25644 /* IPsec KSTATS: should bump bean counter here. */ 25645 ip0dbg(("Packet length mismatch: %d, %ld\n", 25646 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25647 msgdsize(mp))); 25648 if (ire_need_rele) 25649 ire_refrele(ire); 25650 freemsg(ipsec_mp); 25651 return; 25652 } 25653 ASSERT(mp->b_prev == NULL); 25654 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25655 ntohs(ip6h->ip6_plen) + 25656 IPV6_HDR_LEN, ire->ire_max_frag)); 25657 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25658 ire->ire_max_frag); 25659 } else { 25660 UPDATE_OB_PKT_COUNT(ire); 25661 ire->ire_last_used_time = lbolt; 25662 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25663 } 25664 if (ire_need_rele) 25665 ire_refrele(ire); 25666 freeb(ipsec_mp); 25667 } 25668 25669 void 25670 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25671 { 25672 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25673 da_ipsec_t *hada; /* data attributes */ 25674 ill_t *ill = (ill_t *)q->q_ptr; 25675 25676 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25677 25678 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25679 /* IPsec KSTATS: Bump lose counter here! */ 25680 freemsg(mp); 25681 return; 25682 } 25683 25684 /* 25685 * It's an IPsec packet that must be 25686 * accelerated by the Provider, and the 25687 * outbound ill is IPsec acceleration capable. 25688 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25689 * to the ill. 25690 * IPsec KSTATS: should bump packet counter here. 25691 */ 25692 25693 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25694 if (hada_mp == NULL) { 25695 /* IPsec KSTATS: should bump packet counter here. */ 25696 freemsg(mp); 25697 return; 25698 } 25699 25700 hada_mp->b_datap->db_type = M_CTL; 25701 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25702 hada_mp->b_cont = mp; 25703 25704 hada = (da_ipsec_t *)hada_mp->b_rptr; 25705 bzero(hada, sizeof (da_ipsec_t)); 25706 hada->da_type = IPHADA_M_CTL; 25707 25708 putnext(q, hada_mp); 25709 } 25710 25711 /* 25712 * Finish the outbound IPsec processing. This function is called from 25713 * ipsec_out_process() if the IPsec packet was processed 25714 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25715 * asynchronously. 25716 */ 25717 void 25718 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25719 ire_t *ire_arg) 25720 { 25721 uint32_t v_hlen_tos_len; 25722 ipaddr_t dst; 25723 ipif_t *ipif = NULL; 25724 ire_t *ire; 25725 ire_t *ire1 = NULL; 25726 mblk_t *next_mp = NULL; 25727 uint32_t max_frag; 25728 boolean_t multirt_send = B_FALSE; 25729 mblk_t *mp; 25730 ipha_t *ipha1; 25731 uint_t ill_index; 25732 ipsec_out_t *io; 25733 int match_flags; 25734 irb_t *irb = NULL; 25735 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25736 zoneid_t zoneid; 25737 ipxmit_state_t pktxmit_state; 25738 ip_stack_t *ipst; 25739 25740 #ifdef _BIG_ENDIAN 25741 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25742 #else 25743 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25744 #endif 25745 25746 mp = ipsec_mp->b_cont; 25747 ipha1 = (ipha_t *)mp->b_rptr; 25748 ASSERT(mp != NULL); 25749 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25750 dst = ipha->ipha_dst; 25751 25752 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25753 ill_index = io->ipsec_out_ill_index; 25754 zoneid = io->ipsec_out_zoneid; 25755 ASSERT(zoneid != ALL_ZONES); 25756 ipst = io->ipsec_out_ns->netstack_ip; 25757 ASSERT(io->ipsec_out_ns != NULL); 25758 25759 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25760 if (ill == NULL && ill_index != 0) { 25761 ill = ip_grab_ill(ipsec_mp, ill_index, B_FALSE, ipst); 25762 /* Failure case frees things for us. */ 25763 if (ill == NULL) 25764 return; 25765 25766 ill_need_rele = B_TRUE; 25767 } 25768 25769 if (CLASSD(dst)) { 25770 boolean_t conn_dontroute; 25771 /* 25772 * Use the ill_index to get the right ipif. 25773 */ 25774 conn_dontroute = io->ipsec_out_dontroute; 25775 if (ill_index == 0) 25776 ipif = ipif_lookup_group(dst, zoneid, ipst); 25777 else 25778 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25779 if (ipif == NULL) { 25780 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25781 " multicast\n")); 25782 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25783 freemsg(ipsec_mp); 25784 goto done; 25785 } 25786 /* 25787 * ipha_src has already been intialized with the 25788 * value of the ipif in ip_wput. All we need now is 25789 * an ire to send this downstream. 25790 */ 25791 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25792 msg_getlabel(mp), match_flags, ipst); 25793 if (ire != NULL) { 25794 ill_t *ill1; 25795 /* 25796 * Do the multicast forwarding now, as the IPsec 25797 * processing has been done. 25798 */ 25799 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25800 (ill1 = ire_to_ill(ire))) { 25801 if (ip_mforward(ill1, ipha, mp)) { 25802 freemsg(ipsec_mp); 25803 ip1dbg(("ip_wput_ipsec_out: mforward " 25804 "failed\n")); 25805 ire_refrele(ire); 25806 goto done; 25807 } 25808 } 25809 goto send; 25810 } 25811 25812 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25813 mp->b_prev = NULL; 25814 mp->b_next = NULL; 25815 25816 /* 25817 * If the IPsec packet was processed asynchronously, 25818 * drop it now. 25819 */ 25820 if (q == NULL) { 25821 freemsg(ipsec_mp); 25822 goto done; 25823 } 25824 25825 /* 25826 * We may be using a wrong ipif to create the ire. 25827 * But it is okay as the source address is assigned 25828 * for the packet already. Next outbound packet would 25829 * create the IRE with the right IPIF in ip_wput. 25830 * 25831 * Also handle RTF_MULTIRT routes. 25832 */ 25833 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25834 zoneid, &zero_info); 25835 } else { 25836 if (ire_arg != NULL) { 25837 ire = ire_arg; 25838 ire_need_rele = B_FALSE; 25839 } else { 25840 ire = ire_cache_lookup(dst, zoneid, 25841 msg_getlabel(mp), ipst); 25842 } 25843 if (ire != NULL) { 25844 goto send; 25845 } 25846 25847 /* 25848 * ire disappeared underneath. 25849 * 25850 * What we need to do here is the ip_newroute 25851 * logic to get the ire without doing the IPsec 25852 * processing. Follow the same old path. But this 25853 * time, ip_wput or ire_add_then_put will call us 25854 * directly as all the IPsec operations are done. 25855 */ 25856 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25857 mp->b_prev = NULL; 25858 mp->b_next = NULL; 25859 25860 /* 25861 * If the IPsec packet was processed asynchronously, 25862 * drop it now. 25863 */ 25864 if (q == NULL) { 25865 freemsg(ipsec_mp); 25866 goto done; 25867 } 25868 25869 /* 25870 * Since we're going through ip_newroute() again, we 25871 * need to make sure we don't: 25872 * 25873 * 1.) Trigger the ASSERT() with the ipha_ident 25874 * overloading. 25875 * 2.) Redo transport-layer checksumming, since we've 25876 * already done all that to get this far. 25877 * 25878 * The easiest way not do either of the above is to set 25879 * the ipha_ident field to IP_HDR_INCLUDED. 25880 */ 25881 ipha->ipha_ident = IP_HDR_INCLUDED; 25882 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 25883 zoneid, ipst); 25884 } 25885 goto done; 25886 send: 25887 if (ire->ire_stq == NULL) { 25888 ill_t *out_ill; 25889 /* 25890 * Loopbacks go through ip_wput_local except for one case. 25891 * We come here if we generate a icmp_frag_needed message 25892 * after IPsec processing is over. When this function calls 25893 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 25894 * icmp_frag_needed. The message generated comes back here 25895 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 25896 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 25897 * source address as it is usually set in ip_wput_ire. As 25898 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 25899 * and we end up here. We can't enter ip_wput_ire once the 25900 * IPsec processing is over and hence we need to do it here. 25901 */ 25902 ASSERT(q != NULL); 25903 UPDATE_OB_PKT_COUNT(ire); 25904 ire->ire_last_used_time = lbolt; 25905 if (ipha->ipha_src == 0) 25906 ipha->ipha_src = ire->ire_src_addr; 25907 25908 /* PFHooks: LOOPBACK_OUT */ 25909 out_ill = ire_to_ill(ire); 25910 25911 /* 25912 * DTrace this as ip:::send. A blocked packet will fire the 25913 * send probe, but not the receive probe. 25914 */ 25915 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25916 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 25917 ipha_t *, ipha, ip6_t *, NULL, int, 1); 25918 25919 DTRACE_PROBE4(ip4__loopback__out__start, 25920 ill_t *, NULL, ill_t *, out_ill, 25921 ipha_t *, ipha1, mblk_t *, ipsec_mp); 25922 25923 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 25924 ipst->ips_ipv4firewall_loopback_out, 25925 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 25926 25927 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 25928 25929 if (ipsec_mp != NULL) 25930 ip_wput_local(RD(q), out_ill, 25931 ipha, ipsec_mp, ire, 0, zoneid); 25932 if (ire_need_rele) 25933 ire_refrele(ire); 25934 goto done; 25935 } 25936 25937 if (ire->ire_max_frag < (unsigned int)LENGTH) { 25938 /* 25939 * We are through with IPsec processing. 25940 * Fragment this and send it on the wire. 25941 */ 25942 if (io->ipsec_out_accelerated) { 25943 /* 25944 * The packet has been accelerated but must 25945 * be fragmented. This should not happen 25946 * since AH and ESP must not accelerate 25947 * packets that need fragmentation, however 25948 * the configuration could have changed 25949 * since the AH or ESP processing. 25950 * Drop packet. 25951 * IPsec KSTATS: bump bean counter here. 25952 */ 25953 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 25954 "fragmented accelerated packet!\n")); 25955 freemsg(ipsec_mp); 25956 } else { 25957 ip_wput_ire_fragmentit(ipsec_mp, ire, 25958 zoneid, ipst, NULL); 25959 } 25960 if (ire_need_rele) 25961 ire_refrele(ire); 25962 goto done; 25963 } 25964 25965 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 25966 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 25967 (void *)ire->ire_ipif, (void *)ipif)); 25968 25969 /* 25970 * Multiroute the secured packet. 25971 */ 25972 if (ire->ire_flags & RTF_MULTIRT) { 25973 ire_t *first_ire; 25974 irb = ire->ire_bucket; 25975 ASSERT(irb != NULL); 25976 /* 25977 * This ire has been looked up as the one that 25978 * goes through the given ipif; 25979 * make sure we do not omit any other multiroute ire 25980 * that may be present in the bucket before this one. 25981 */ 25982 IRB_REFHOLD(irb); 25983 for (first_ire = irb->irb_ire; 25984 first_ire != NULL; 25985 first_ire = first_ire->ire_next) { 25986 if ((first_ire->ire_flags & RTF_MULTIRT) && 25987 (first_ire->ire_addr == ire->ire_addr) && 25988 !(first_ire->ire_marks & 25989 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 25990 break; 25991 } 25992 25993 if ((first_ire != NULL) && (first_ire != ire)) { 25994 /* 25995 * Don't change the ire if the packet must 25996 * be fragmented if sent via this new one. 25997 */ 25998 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 25999 IRE_REFHOLD(first_ire); 26000 if (ire_need_rele) 26001 ire_refrele(ire); 26002 else 26003 ire_need_rele = B_TRUE; 26004 ire = first_ire; 26005 } 26006 } 26007 IRB_REFRELE(irb); 26008 26009 multirt_send = B_TRUE; 26010 max_frag = ire->ire_max_frag; 26011 } 26012 26013 /* 26014 * In most cases, the emission loop below is entered only once. 26015 * Only in the case where the ire holds the RTF_MULTIRT 26016 * flag, we loop to process all RTF_MULTIRT ires in the 26017 * bucket, and send the packet through all crossed 26018 * RTF_MULTIRT routes. 26019 */ 26020 do { 26021 if (multirt_send) { 26022 /* 26023 * ire1 holds here the next ire to process in the 26024 * bucket. If multirouting is expected, 26025 * any non-RTF_MULTIRT ire that has the 26026 * right destination address is ignored. 26027 */ 26028 ASSERT(irb != NULL); 26029 IRB_REFHOLD(irb); 26030 for (ire1 = ire->ire_next; 26031 ire1 != NULL; 26032 ire1 = ire1->ire_next) { 26033 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26034 continue; 26035 if (ire1->ire_addr != ire->ire_addr) 26036 continue; 26037 if (ire1->ire_marks & 26038 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 26039 continue; 26040 /* No loopback here */ 26041 if (ire1->ire_stq == NULL) 26042 continue; 26043 /* 26044 * Ensure we do not exceed the MTU 26045 * of the next route. 26046 */ 26047 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26048 ip_multirt_bad_mtu(ire1, max_frag); 26049 continue; 26050 } 26051 26052 IRE_REFHOLD(ire1); 26053 break; 26054 } 26055 IRB_REFRELE(irb); 26056 if (ire1 != NULL) { 26057 /* 26058 * We are in a multiple send case, need to 26059 * make a copy of the packet. 26060 */ 26061 next_mp = copymsg(ipsec_mp); 26062 if (next_mp == NULL) { 26063 ire_refrele(ire1); 26064 ire1 = NULL; 26065 } 26066 } 26067 } 26068 /* 26069 * Everything is done. Send it out on the wire 26070 * 26071 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26072 * either send it on the wire or, in the case of 26073 * HW acceleration, call ipsec_hw_putnext. 26074 */ 26075 if (ire->ire_nce && 26076 ire->ire_nce->nce_state != ND_REACHABLE) { 26077 DTRACE_PROBE2(ip__wput__ipsec__bail, 26078 (ire_t *), ire, (mblk_t *), ipsec_mp); 26079 /* 26080 * If ire's link-layer is unresolved (this 26081 * would only happen if the incomplete ire 26082 * was added to cachetable via forwarding path) 26083 * don't bother going to ip_xmit_v4. Just drop the 26084 * packet. 26085 * There is a slight risk here, in that, if we 26086 * have the forwarding path create an incomplete 26087 * IRE, then until the IRE is completed, any 26088 * transmitted IPsec packets will be dropped 26089 * instead of being queued waiting for resolution. 26090 * 26091 * But the likelihood of a forwarding packet and a wput 26092 * packet sending to the same dst at the same time 26093 * and there not yet be an ARP entry for it is small. 26094 * Furthermore, if this actually happens, it might 26095 * be likely that wput would generate multiple 26096 * packets (and forwarding would also have a train 26097 * of packets) for that destination. If this is 26098 * the case, some of them would have been dropped 26099 * anyway, since ARP only queues a few packets while 26100 * waiting for resolution 26101 * 26102 * NOTE: We should really call ip_xmit_v4, 26103 * and let it queue the packet and send the 26104 * ARP query and have ARP come back thus: 26105 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26106 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26107 * hw accel work. But it's too complex to get 26108 * the IPsec hw acceleration approach to fit 26109 * well with ip_xmit_v4 doing ARP without 26110 * doing IPsec simplification. For now, we just 26111 * poke ip_xmit_v4 to trigger the arp resolve, so 26112 * that we can continue with the send on the next 26113 * attempt. 26114 * 26115 * XXX THis should be revisited, when 26116 * the IPsec/IP interaction is cleaned up 26117 */ 26118 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26119 " - dropping packet\n")); 26120 freemsg(ipsec_mp); 26121 /* 26122 * Call ip_xmit_v4() to trigger ARP query 26123 * in case the nce_state is ND_INITIAL 26124 */ 26125 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 26126 goto drop_pkt; 26127 } 26128 26129 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26130 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26131 mblk_t *, ipsec_mp); 26132 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26133 ipst->ips_ipv4firewall_physical_out, NULL, 26134 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26135 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26136 if (ipsec_mp == NULL) 26137 goto drop_pkt; 26138 26139 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26140 pktxmit_state = ip_xmit_v4(mp, ire, 26141 (io->ipsec_out_accelerated ? io : NULL), B_FALSE, NULL); 26142 26143 if ((pktxmit_state == SEND_FAILED) || 26144 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26145 26146 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26147 drop_pkt: 26148 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26149 ipIfStatsOutDiscards); 26150 if (ire_need_rele) 26151 ire_refrele(ire); 26152 if (ire1 != NULL) { 26153 ire_refrele(ire1); 26154 freemsg(next_mp); 26155 } 26156 goto done; 26157 } 26158 26159 freeb(ipsec_mp); 26160 if (ire_need_rele) 26161 ire_refrele(ire); 26162 26163 if (ire1 != NULL) { 26164 ire = ire1; 26165 ire_need_rele = B_TRUE; 26166 ASSERT(next_mp); 26167 ipsec_mp = next_mp; 26168 mp = ipsec_mp->b_cont; 26169 ire1 = NULL; 26170 next_mp = NULL; 26171 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26172 } else { 26173 multirt_send = B_FALSE; 26174 } 26175 } while (multirt_send); 26176 done: 26177 if (ill != NULL && ill_need_rele) 26178 ill_refrele(ill); 26179 if (ipif != NULL) 26180 ipif_refrele(ipif); 26181 } 26182 26183 /* 26184 * Get the ill corresponding to the specified ire, and compare its 26185 * capabilities with the protocol and algorithms specified by the 26186 * the SA obtained from ipsec_out. If they match, annotate the 26187 * ipsec_out structure to indicate that the packet needs acceleration. 26188 * 26189 * 26190 * A packet is eligible for outbound hardware acceleration if the 26191 * following conditions are satisfied: 26192 * 26193 * 1. the packet will not be fragmented 26194 * 2. the provider supports the algorithm 26195 * 3. there is no pending control message being exchanged 26196 * 4. snoop is not attached 26197 * 5. the destination address is not a broadcast or multicast address. 26198 * 26199 * Rationale: 26200 * - Hardware drivers do not support fragmentation with 26201 * the current interface. 26202 * - snoop, multicast, and broadcast may result in exposure of 26203 * a cleartext datagram. 26204 * We check all five of these conditions here. 26205 * 26206 * XXX would like to nuke "ire_t *" parameter here; problem is that 26207 * IRE is only way to figure out if a v4 address is a broadcast and 26208 * thus ineligible for acceleration... 26209 */ 26210 static void 26211 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26212 { 26213 ipsec_out_t *io; 26214 mblk_t *data_mp; 26215 uint_t plen, overhead; 26216 ip_stack_t *ipst; 26217 phyint_t *phyint; 26218 26219 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26220 return; 26221 26222 if (ill == NULL) 26223 return; 26224 ipst = ill->ill_ipst; 26225 phyint = ill->ill_phyint; 26226 26227 /* 26228 * Destination address is a broadcast or multicast. Punt. 26229 */ 26230 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26231 IRE_LOCAL))) 26232 return; 26233 26234 data_mp = ipsec_mp->b_cont; 26235 26236 if (ill->ill_isv6) { 26237 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26238 26239 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26240 return; 26241 26242 plen = ip6h->ip6_plen; 26243 } else { 26244 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26245 26246 if (CLASSD(ipha->ipha_dst)) 26247 return; 26248 26249 plen = ipha->ipha_length; 26250 } 26251 /* 26252 * Is there a pending DLPI control message being exchanged 26253 * between IP/IPsec and the DLS Provider? If there is, it 26254 * could be a SADB update, and the state of the DLS Provider 26255 * SADB might not be in sync with the SADB maintained by 26256 * IPsec. To avoid dropping packets or using the wrong keying 26257 * material, we do not accelerate this packet. 26258 */ 26259 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26260 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26261 "ill_dlpi_pending! don't accelerate packet\n")); 26262 return; 26263 } 26264 26265 /* 26266 * Is the Provider in promiscous mode? If it does, we don't 26267 * accelerate the packet since it will bounce back up to the 26268 * listeners in the clear. 26269 */ 26270 if (phyint->phyint_flags & PHYI_PROMISC) { 26271 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26272 "ill in promiscous mode, don't accelerate packet\n")); 26273 return; 26274 } 26275 26276 /* 26277 * Will the packet require fragmentation? 26278 */ 26279 26280 /* 26281 * IPsec ESP note: this is a pessimistic estimate, but the same 26282 * as is used elsewhere. 26283 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26284 * + 2-byte trailer 26285 */ 26286 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26287 IPSEC_BASE_ESP_HDR_SIZE(sa); 26288 26289 if ((plen + overhead) > ill->ill_max_mtu) 26290 return; 26291 26292 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26293 26294 /* 26295 * Can the ill accelerate this IPsec protocol and algorithm 26296 * specified by the SA? 26297 */ 26298 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26299 ill->ill_isv6, sa, ipst->ips_netstack)) { 26300 return; 26301 } 26302 26303 /* 26304 * Tell AH or ESP that the outbound ill is capable of 26305 * accelerating this packet. 26306 */ 26307 io->ipsec_out_is_capab_ill = B_TRUE; 26308 } 26309 26310 /* 26311 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26312 * 26313 * If this function returns B_TRUE, the requested SA's have been filled 26314 * into the ipsec_out_*_sa pointers. 26315 * 26316 * If the function returns B_FALSE, the packet has been "consumed", most 26317 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26318 * 26319 * The SA references created by the protocol-specific "select" 26320 * function will be released when the ipsec_mp is freed, thanks to the 26321 * ipsec_out_free destructor -- see spd.c. 26322 */ 26323 static boolean_t 26324 ipsec_out_select_sa(mblk_t *ipsec_mp) 26325 { 26326 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26327 ipsec_out_t *io; 26328 ipsec_policy_t *pp; 26329 ipsec_action_t *ap; 26330 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26331 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26332 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26333 26334 if (!io->ipsec_out_secure) { 26335 /* 26336 * We came here by mistake. 26337 * Don't bother with ipsec processing 26338 * We should "discourage" this path in the future. 26339 */ 26340 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26341 return (B_FALSE); 26342 } 26343 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26344 ASSERT((io->ipsec_out_policy != NULL) || 26345 (io->ipsec_out_act != NULL)); 26346 26347 ASSERT(io->ipsec_out_failed == B_FALSE); 26348 26349 /* 26350 * IPsec processing has started. 26351 */ 26352 io->ipsec_out_proc_begin = B_TRUE; 26353 ap = io->ipsec_out_act; 26354 if (ap == NULL) { 26355 pp = io->ipsec_out_policy; 26356 ASSERT(pp != NULL); 26357 ap = pp->ipsp_act; 26358 ASSERT(ap != NULL); 26359 } 26360 26361 /* 26362 * We have an action. now, let's select SA's. 26363 * (In the future, we can cache this in the conn_t..) 26364 */ 26365 if (ap->ipa_want_esp) { 26366 if (io->ipsec_out_esp_sa == NULL) { 26367 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26368 IPPROTO_ESP); 26369 } 26370 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26371 } 26372 26373 if (ap->ipa_want_ah) { 26374 if (io->ipsec_out_ah_sa == NULL) { 26375 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26376 IPPROTO_AH); 26377 } 26378 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26379 /* 26380 * The ESP and AH processing order needs to be preserved 26381 * when both protocols are required (ESP should be applied 26382 * before AH for an outbound packet). Force an ESP ACQUIRE 26383 * when both ESP and AH are required, and an AH ACQUIRE 26384 * is needed. 26385 */ 26386 if (ap->ipa_want_esp && need_ah_acquire) 26387 need_esp_acquire = B_TRUE; 26388 } 26389 26390 /* 26391 * Send an ACQUIRE (extended, regular, or both) if we need one. 26392 * Release SAs that got referenced, but will not be used until we 26393 * acquire _all_ of the SAs we need. 26394 */ 26395 if (need_ah_acquire || need_esp_acquire) { 26396 if (io->ipsec_out_ah_sa != NULL) { 26397 IPSA_REFRELE(io->ipsec_out_ah_sa); 26398 io->ipsec_out_ah_sa = NULL; 26399 } 26400 if (io->ipsec_out_esp_sa != NULL) { 26401 IPSA_REFRELE(io->ipsec_out_esp_sa); 26402 io->ipsec_out_esp_sa = NULL; 26403 } 26404 26405 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26406 return (B_FALSE); 26407 } 26408 26409 return (B_TRUE); 26410 } 26411 26412 /* 26413 * Process an IPSEC_OUT message and see what you can 26414 * do with it. 26415 * IPQoS Notes: 26416 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26417 * IPsec. 26418 * XXX would like to nuke ire_t. 26419 * XXX ill_index better be "real" 26420 */ 26421 void 26422 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26423 { 26424 ipsec_out_t *io; 26425 ipsec_policy_t *pp; 26426 ipsec_action_t *ap; 26427 ipha_t *ipha; 26428 ip6_t *ip6h; 26429 mblk_t *mp; 26430 ill_t *ill; 26431 zoneid_t zoneid; 26432 ipsec_status_t ipsec_rc; 26433 boolean_t ill_need_rele = B_FALSE; 26434 ip_stack_t *ipst; 26435 ipsec_stack_t *ipss; 26436 26437 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26438 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26439 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26440 ipst = io->ipsec_out_ns->netstack_ip; 26441 mp = ipsec_mp->b_cont; 26442 26443 /* 26444 * Initiate IPPF processing. We do it here to account for packets 26445 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26446 * We can check for ipsec_out_proc_begin even for such packets, as 26447 * they will always be false (asserted below). 26448 */ 26449 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26450 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26451 io->ipsec_out_ill_index : ill_index); 26452 if (mp == NULL) { 26453 ip2dbg(("ipsec_out_process: packet dropped "\ 26454 "during IPPF processing\n")); 26455 freeb(ipsec_mp); 26456 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26457 return; 26458 } 26459 } 26460 26461 if (!io->ipsec_out_secure) { 26462 /* 26463 * We came here by mistake. 26464 * Don't bother with ipsec processing 26465 * Should "discourage" this path in the future. 26466 */ 26467 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26468 goto done; 26469 } 26470 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26471 ASSERT((io->ipsec_out_policy != NULL) || 26472 (io->ipsec_out_act != NULL)); 26473 ASSERT(io->ipsec_out_failed == B_FALSE); 26474 26475 ipss = ipst->ips_netstack->netstack_ipsec; 26476 if (!ipsec_loaded(ipss)) { 26477 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26478 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26479 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26480 } else { 26481 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26482 } 26483 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26484 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26485 &ipss->ipsec_dropper); 26486 return; 26487 } 26488 26489 /* 26490 * IPsec processing has started. 26491 */ 26492 io->ipsec_out_proc_begin = B_TRUE; 26493 ap = io->ipsec_out_act; 26494 if (ap == NULL) { 26495 pp = io->ipsec_out_policy; 26496 ASSERT(pp != NULL); 26497 ap = pp->ipsp_act; 26498 ASSERT(ap != NULL); 26499 } 26500 26501 /* 26502 * Save the outbound ill index. When the packet comes back 26503 * from IPsec, we make sure the ill hasn't changed or disappeared 26504 * before sending it the accelerated packet. 26505 */ 26506 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26507 ill = ire_to_ill(ire); 26508 io->ipsec_out_capab_ill_index = ill->ill_phyint->phyint_ifindex; 26509 } 26510 26511 /* 26512 * The order of processing is first insert a IP header if needed. 26513 * Then insert the ESP header and then the AH header. 26514 */ 26515 if ((io->ipsec_out_se_done == B_FALSE) && 26516 (ap->ipa_want_se)) { 26517 /* 26518 * First get the outer IP header before sending 26519 * it to ESP. 26520 */ 26521 ipha_t *oipha, *iipha; 26522 mblk_t *outer_mp, *inner_mp; 26523 26524 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26525 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26526 "ipsec_out_process: " 26527 "Self-Encapsulation failed: Out of memory\n"); 26528 freemsg(ipsec_mp); 26529 if (ill != NULL) { 26530 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26531 } else { 26532 BUMP_MIB(&ipst->ips_ip_mib, 26533 ipIfStatsOutDiscards); 26534 } 26535 return; 26536 } 26537 inner_mp = ipsec_mp->b_cont; 26538 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26539 oipha = (ipha_t *)outer_mp->b_rptr; 26540 iipha = (ipha_t *)inner_mp->b_rptr; 26541 *oipha = *iipha; 26542 outer_mp->b_wptr += sizeof (ipha_t); 26543 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26544 sizeof (ipha_t)); 26545 oipha->ipha_protocol = IPPROTO_ENCAP; 26546 oipha->ipha_version_and_hdr_length = 26547 IP_SIMPLE_HDR_VERSION; 26548 oipha->ipha_hdr_checksum = 0; 26549 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26550 outer_mp->b_cont = inner_mp; 26551 ipsec_mp->b_cont = outer_mp; 26552 26553 io->ipsec_out_se_done = B_TRUE; 26554 io->ipsec_out_tunnel = B_TRUE; 26555 } 26556 26557 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26558 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26559 !ipsec_out_select_sa(ipsec_mp)) 26560 return; 26561 26562 /* 26563 * By now, we know what SA's to use. Toss over to ESP & AH 26564 * to do the heavy lifting. 26565 */ 26566 zoneid = io->ipsec_out_zoneid; 26567 ASSERT(zoneid != ALL_ZONES); 26568 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26569 ASSERT(io->ipsec_out_esp_sa != NULL); 26570 io->ipsec_out_esp_done = B_TRUE; 26571 /* 26572 * Note that since hw accel can only apply one transform, 26573 * not two, we skip hw accel for ESP if we also have AH 26574 * This is an design limitation of the interface 26575 * which should be revisited. 26576 */ 26577 ASSERT(ire != NULL); 26578 if (io->ipsec_out_ah_sa == NULL) { 26579 ill = (ill_t *)ire->ire_stq->q_ptr; 26580 ipsec_out_is_accelerated(ipsec_mp, 26581 io->ipsec_out_esp_sa, ill, ire); 26582 } 26583 26584 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26585 switch (ipsec_rc) { 26586 case IPSEC_STATUS_SUCCESS: 26587 break; 26588 case IPSEC_STATUS_FAILED: 26589 if (ill != NULL) { 26590 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26591 } else { 26592 BUMP_MIB(&ipst->ips_ip_mib, 26593 ipIfStatsOutDiscards); 26594 } 26595 /* FALLTHRU */ 26596 case IPSEC_STATUS_PENDING: 26597 return; 26598 } 26599 } 26600 26601 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26602 ASSERT(io->ipsec_out_ah_sa != NULL); 26603 io->ipsec_out_ah_done = B_TRUE; 26604 if (ire == NULL) { 26605 int idx = io->ipsec_out_capab_ill_index; 26606 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26607 NULL, NULL, NULL, NULL, ipst); 26608 ill_need_rele = B_TRUE; 26609 } else { 26610 ill = (ill_t *)ire->ire_stq->q_ptr; 26611 } 26612 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26613 ire); 26614 26615 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26616 switch (ipsec_rc) { 26617 case IPSEC_STATUS_SUCCESS: 26618 break; 26619 case IPSEC_STATUS_FAILED: 26620 if (ill != NULL) { 26621 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26622 } else { 26623 BUMP_MIB(&ipst->ips_ip_mib, 26624 ipIfStatsOutDiscards); 26625 } 26626 /* FALLTHRU */ 26627 case IPSEC_STATUS_PENDING: 26628 if (ill != NULL && ill_need_rele) 26629 ill_refrele(ill); 26630 return; 26631 } 26632 } 26633 /* 26634 * We are done with IPsec processing. Send it over the wire. 26635 */ 26636 done: 26637 mp = ipsec_mp->b_cont; 26638 ipha = (ipha_t *)mp->b_rptr; 26639 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26640 ip_wput_ipsec_out(q, ipsec_mp, ipha, ire->ire_ipif->ipif_ill, 26641 ire); 26642 } else { 26643 ip6h = (ip6_t *)ipha; 26644 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ire->ire_ipif->ipif_ill, 26645 ire); 26646 } 26647 if (ill != NULL && ill_need_rele) 26648 ill_refrele(ill); 26649 } 26650 26651 /* ARGSUSED */ 26652 void 26653 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26654 { 26655 opt_restart_t *or; 26656 int err; 26657 conn_t *connp; 26658 cred_t *cr; 26659 26660 ASSERT(CONN_Q(q)); 26661 connp = Q_TO_CONN(q); 26662 26663 ASSERT(first_mp->b_datap->db_type == M_CTL); 26664 or = (opt_restart_t *)first_mp->b_rptr; 26665 /* 26666 * We checked for a db_credp the first time svr4_optcom_req 26667 * was called (from ip_wput_nondata). So we can just ASSERT here. 26668 */ 26669 cr = msg_getcred(first_mp, NULL); 26670 ASSERT(cr != NULL); 26671 26672 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26673 err = svr4_optcom_req(q, first_mp, cr, 26674 &ip_opt_obj, B_FALSE); 26675 } else { 26676 ASSERT(or->or_type == T_OPTMGMT_REQ); 26677 err = tpi_optcom_req(q, first_mp, cr, 26678 &ip_opt_obj, B_FALSE); 26679 } 26680 if (err != EINPROGRESS) { 26681 /* operation is done */ 26682 CONN_OPER_PENDING_DONE(connp); 26683 } 26684 } 26685 26686 /* 26687 * ioctls that go through a down/up sequence may need to wait for the down 26688 * to complete. This involves waiting for the ire and ipif refcnts to go down 26689 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26690 */ 26691 /* ARGSUSED */ 26692 void 26693 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26694 { 26695 struct iocblk *iocp; 26696 mblk_t *mp1; 26697 ip_ioctl_cmd_t *ipip; 26698 int err; 26699 sin_t *sin; 26700 struct lifreq *lifr; 26701 struct ifreq *ifr; 26702 26703 iocp = (struct iocblk *)mp->b_rptr; 26704 ASSERT(ipsq != NULL); 26705 /* Existence of mp1 verified in ip_wput_nondata */ 26706 mp1 = mp->b_cont->b_cont; 26707 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26708 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26709 /* 26710 * Special case where ipx_current_ipif is not set: 26711 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26712 * We are here as were not able to complete the operation in 26713 * ipif_set_values because we could not become exclusive on 26714 * the new ipsq. 26715 */ 26716 ill_t *ill = q->q_ptr; 26717 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26718 } 26719 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 26720 26721 if (ipip->ipi_cmd_type == IF_CMD) { 26722 /* This a old style SIOC[GS]IF* command */ 26723 ifr = (struct ifreq *)mp1->b_rptr; 26724 sin = (sin_t *)&ifr->ifr_addr; 26725 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26726 /* This a new style SIOC[GS]LIF* command */ 26727 lifr = (struct lifreq *)mp1->b_rptr; 26728 sin = (sin_t *)&lifr->lifr_addr; 26729 } else { 26730 sin = NULL; 26731 } 26732 26733 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 26734 q, mp, ipip, mp1->b_rptr); 26735 26736 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26737 } 26738 26739 /* 26740 * ioctl processing 26741 * 26742 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26743 * the ioctl command in the ioctl tables, determines the copyin data size 26744 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26745 * 26746 * ioctl processing then continues when the M_IOCDATA makes its way down to 26747 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26748 * associated 'conn' is refheld till the end of the ioctl and the general 26749 * ioctl processing function ip_process_ioctl() is called to extract the 26750 * arguments and process the ioctl. To simplify extraction, ioctl commands 26751 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26752 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26753 * is used to extract the ioctl's arguments. 26754 * 26755 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26756 * so goes thru the serialization primitive ipsq_try_enter. Then the 26757 * appropriate function to handle the ioctl is called based on the entry in 26758 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26759 * which also refreleases the 'conn' that was refheld at the start of the 26760 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26761 * 26762 * Many exclusive ioctls go thru an internal down up sequence as part of 26763 * the operation. For example an attempt to change the IP address of an 26764 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26765 * does all the cleanup such as deleting all ires that use this address. 26766 * Then we need to wait till all references to the interface go away. 26767 */ 26768 void 26769 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26770 { 26771 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26772 ip_ioctl_cmd_t *ipip = arg; 26773 ip_extract_func_t *extract_funcp; 26774 cmd_info_t ci; 26775 int err; 26776 boolean_t entered_ipsq = B_FALSE; 26777 26778 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26779 26780 if (ipip == NULL) 26781 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26782 26783 /* 26784 * SIOCLIFADDIF needs to go thru a special path since the 26785 * ill may not exist yet. This happens in the case of lo0 26786 * which is created using this ioctl. 26787 */ 26788 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26789 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26790 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26791 return; 26792 } 26793 26794 ci.ci_ipif = NULL; 26795 if (ipip->ipi_cmd_type == MISC_CMD) { 26796 /* 26797 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26798 */ 26799 if (ipip->ipi_cmd == IF_UNITSEL) { 26800 /* ioctl comes down the ill */ 26801 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26802 ipif_refhold(ci.ci_ipif); 26803 } 26804 err = 0; 26805 ci.ci_sin = NULL; 26806 ci.ci_sin6 = NULL; 26807 ci.ci_lifr = NULL; 26808 } else { 26809 switch (ipip->ipi_cmd_type) { 26810 case IF_CMD: 26811 case LIF_CMD: 26812 extract_funcp = ip_extract_lifreq; 26813 break; 26814 26815 case ARP_CMD: 26816 case XARP_CMD: 26817 extract_funcp = ip_extract_arpreq; 26818 break; 26819 26820 case MSFILT_CMD: 26821 extract_funcp = ip_extract_msfilter; 26822 break; 26823 26824 default: 26825 ASSERT(0); 26826 } 26827 26828 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 26829 if (err != 0) { 26830 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26831 return; 26832 } 26833 26834 /* 26835 * All of the extraction functions return a refheld ipif. 26836 */ 26837 ASSERT(ci.ci_ipif != NULL); 26838 } 26839 26840 if (!(ipip->ipi_flags & IPI_WR)) { 26841 /* 26842 * A return value of EINPROGRESS means the ioctl is 26843 * either queued and waiting for some reason or has 26844 * already completed. 26845 */ 26846 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26847 ci.ci_lifr); 26848 if (ci.ci_ipif != NULL) 26849 ipif_refrele(ci.ci_ipif); 26850 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26851 return; 26852 } 26853 26854 ASSERT(ci.ci_ipif != NULL); 26855 26856 /* 26857 * If ipsq is non-NULL, we are already being called exclusively. 26858 */ 26859 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26860 if (ipsq == NULL) { 26861 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 26862 NEW_OP, B_TRUE); 26863 if (ipsq == NULL) { 26864 ipif_refrele(ci.ci_ipif); 26865 return; 26866 } 26867 entered_ipsq = B_TRUE; 26868 } 26869 26870 /* 26871 * Release the ipif so that ipif_down and friends that wait for 26872 * references to go away are not misled about the current ipif_refcnt 26873 * values. We are writer so we can access the ipif even after releasing 26874 * the ipif. 26875 */ 26876 ipif_refrele(ci.ci_ipif); 26877 26878 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 26879 26880 /* 26881 * A return value of EINPROGRESS means the ioctl is 26882 * either queued and waiting for some reason or has 26883 * already completed. 26884 */ 26885 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 26886 26887 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26888 26889 if (entered_ipsq) 26890 ipsq_exit(ipsq); 26891 } 26892 26893 /* 26894 * Complete the ioctl. Typically ioctls use the mi package and need to 26895 * do mi_copyout/mi_copy_done. 26896 */ 26897 void 26898 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 26899 { 26900 conn_t *connp = NULL; 26901 26902 if (err == EINPROGRESS) 26903 return; 26904 26905 if (CONN_Q(q)) { 26906 connp = Q_TO_CONN(q); 26907 ASSERT(connp->conn_ref >= 2); 26908 } 26909 26910 switch (mode) { 26911 case COPYOUT: 26912 if (err == 0) 26913 mi_copyout(q, mp); 26914 else 26915 mi_copy_done(q, mp, err); 26916 break; 26917 26918 case NO_COPYOUT: 26919 mi_copy_done(q, mp, err); 26920 break; 26921 26922 default: 26923 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 26924 break; 26925 } 26926 26927 /* 26928 * The refhold placed at the start of the ioctl is released here. 26929 */ 26930 if (connp != NULL) 26931 CONN_OPER_PENDING_DONE(connp); 26932 26933 if (ipsq != NULL) 26934 ipsq_current_finish(ipsq); 26935 } 26936 26937 /* Called from ip_wput for all non data messages */ 26938 /* ARGSUSED */ 26939 void 26940 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26941 { 26942 mblk_t *mp1; 26943 ire_t *ire, *fake_ire; 26944 ill_t *ill; 26945 struct iocblk *iocp; 26946 ip_ioctl_cmd_t *ipip; 26947 cred_t *cr; 26948 conn_t *connp; 26949 int err; 26950 nce_t *nce; 26951 ipif_t *ipif; 26952 ip_stack_t *ipst; 26953 char *proto_str; 26954 26955 if (CONN_Q(q)) { 26956 connp = Q_TO_CONN(q); 26957 ipst = connp->conn_netstack->netstack_ip; 26958 } else { 26959 connp = NULL; 26960 ipst = ILLQ_TO_IPST(q); 26961 } 26962 26963 switch (DB_TYPE(mp)) { 26964 case M_IOCTL: 26965 /* 26966 * IOCTL processing begins in ip_sioctl_copyin_setup which 26967 * will arrange to copy in associated control structures. 26968 */ 26969 ip_sioctl_copyin_setup(q, mp); 26970 return; 26971 case M_IOCDATA: 26972 /* 26973 * Ensure that this is associated with one of our trans- 26974 * parent ioctls. If it's not ours, discard it if we're 26975 * running as a driver, or pass it on if we're a module. 26976 */ 26977 iocp = (struct iocblk *)mp->b_rptr; 26978 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26979 if (ipip == NULL) { 26980 if (q->q_next == NULL) { 26981 goto nak; 26982 } else { 26983 putnext(q, mp); 26984 } 26985 return; 26986 } 26987 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 26988 /* 26989 * the ioctl is one we recognise, but is not 26990 * consumed by IP as a module, pass M_IOCDATA 26991 * for processing downstream, but only for 26992 * common Streams ioctls. 26993 */ 26994 if (ipip->ipi_flags & IPI_PASS_DOWN) { 26995 putnext(q, mp); 26996 return; 26997 } else { 26998 goto nak; 26999 } 27000 } 27001 27002 /* IOCTL continuation following copyin or copyout. */ 27003 if (mi_copy_state(q, mp, NULL) == -1) { 27004 /* 27005 * The copy operation failed. mi_copy_state already 27006 * cleaned up, so we're out of here. 27007 */ 27008 return; 27009 } 27010 /* 27011 * If we just completed a copy in, we become writer and 27012 * continue processing in ip_sioctl_copyin_done. If it 27013 * was a copy out, we call mi_copyout again. If there is 27014 * nothing more to copy out, it will complete the IOCTL. 27015 */ 27016 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27017 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27018 mi_copy_done(q, mp, EPROTO); 27019 return; 27020 } 27021 /* 27022 * Check for cases that need more copying. A return 27023 * value of 0 means a second copyin has been started, 27024 * so we return; a return value of 1 means no more 27025 * copying is needed, so we continue. 27026 */ 27027 if (ipip->ipi_cmd_type == MSFILT_CMD && 27028 MI_COPY_COUNT(mp) == 1) { 27029 if (ip_copyin_msfilter(q, mp) == 0) 27030 return; 27031 } 27032 /* 27033 * Refhold the conn, till the ioctl completes. This is 27034 * needed in case the ioctl ends up in the pending mp 27035 * list. Every mp in the ill_pending_mp list and 27036 * the ipx_pending_mp must have a refhold on the conn 27037 * to resume processing. The refhold is released when 27038 * the ioctl completes. (normally or abnormally) 27039 * In all cases ip_ioctl_finish is called to finish 27040 * the ioctl. 27041 */ 27042 if (connp != NULL) { 27043 /* This is not a reentry */ 27044 ASSERT(ipsq == NULL); 27045 CONN_INC_REF(connp); 27046 } else { 27047 if (!(ipip->ipi_flags & IPI_MODOK)) { 27048 mi_copy_done(q, mp, EINVAL); 27049 return; 27050 } 27051 } 27052 27053 ip_process_ioctl(ipsq, q, mp, ipip); 27054 27055 } else { 27056 mi_copyout(q, mp); 27057 } 27058 return; 27059 nak: 27060 iocp->ioc_error = EINVAL; 27061 mp->b_datap->db_type = M_IOCNAK; 27062 iocp->ioc_count = 0; 27063 qreply(q, mp); 27064 return; 27065 27066 case M_IOCNAK: 27067 /* 27068 * The only way we could get here is if a resolver didn't like 27069 * an IOCTL we sent it. This shouldn't happen. 27070 */ 27071 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27072 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27073 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27074 freemsg(mp); 27075 return; 27076 case M_IOCACK: 27077 /* /dev/ip shouldn't see this */ 27078 if (CONN_Q(q)) 27079 goto nak; 27080 27081 /* 27082 * Finish socket ioctls passed through to ARP. We use the 27083 * ioc_cmd values we set in ip_sioctl_arp() to decide whether 27084 * we need to become writer before calling ip_sioctl_iocack(). 27085 * Note that qwriter_ip() will release the refhold, and that a 27086 * refhold is OK without ILL_CAN_LOOKUP() since we're on the 27087 * ill stream. 27088 */ 27089 iocp = (struct iocblk *)mp->b_rptr; 27090 if (iocp->ioc_cmd == AR_ENTRY_SQUERY) { 27091 ip_sioctl_iocack(NULL, q, mp, NULL); 27092 return; 27093 } 27094 27095 ASSERT(iocp->ioc_cmd == AR_ENTRY_DELETE || 27096 iocp->ioc_cmd == AR_ENTRY_ADD); 27097 ill = q->q_ptr; 27098 ill_refhold(ill); 27099 qwriter_ip(ill, q, mp, ip_sioctl_iocack, CUR_OP, B_FALSE); 27100 return; 27101 case M_FLUSH: 27102 if (*mp->b_rptr & FLUSHW) 27103 flushq(q, FLUSHALL); 27104 if (q->q_next) { 27105 putnext(q, mp); 27106 return; 27107 } 27108 if (*mp->b_rptr & FLUSHR) { 27109 *mp->b_rptr &= ~FLUSHW; 27110 qreply(q, mp); 27111 return; 27112 } 27113 freemsg(mp); 27114 return; 27115 case IRE_DB_REQ_TYPE: 27116 if (connp == NULL) { 27117 proto_str = "IRE_DB_REQ_TYPE"; 27118 goto protonak; 27119 } 27120 /* An Upper Level Protocol wants a copy of an IRE. */ 27121 ip_ire_req(q, mp); 27122 return; 27123 case M_CTL: 27124 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27125 break; 27126 27127 /* M_CTL messages are used by ARP to tell us things. */ 27128 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27129 break; 27130 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27131 case AR_ENTRY_SQUERY: 27132 putnext(q, mp); 27133 return; 27134 case AR_CLIENT_NOTIFY: 27135 ip_arp_news(q, mp); 27136 return; 27137 case AR_DLPIOP_DONE: 27138 ASSERT(q->q_next != NULL); 27139 ill = (ill_t *)q->q_ptr; 27140 /* qwriter_ip releases the refhold */ 27141 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27142 ill_refhold(ill); 27143 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27144 return; 27145 case AR_ARP_CLOSING: 27146 /* 27147 * ARP (above us) is closing. If no ARP bringup is 27148 * currently pending, ack the message so that ARP 27149 * can complete its close. Also mark ill_arp_closing 27150 * so that new ARP bringups will fail. If any 27151 * ARP bringup is currently in progress, we will 27152 * ack this when the current ARP bringup completes. 27153 */ 27154 ASSERT(q->q_next != NULL); 27155 ill = (ill_t *)q->q_ptr; 27156 mutex_enter(&ill->ill_lock); 27157 ill->ill_arp_closing = 1; 27158 if (!ill->ill_arp_bringup_pending) { 27159 mutex_exit(&ill->ill_lock); 27160 qreply(q, mp); 27161 } else { 27162 mutex_exit(&ill->ill_lock); 27163 freemsg(mp); 27164 } 27165 return; 27166 case AR_ARP_EXTEND: 27167 /* 27168 * The ARP module above us is capable of duplicate 27169 * address detection. Old ATM drivers will not send 27170 * this message. 27171 */ 27172 ASSERT(q->q_next != NULL); 27173 ill = (ill_t *)q->q_ptr; 27174 ill->ill_arp_extend = B_TRUE; 27175 freemsg(mp); 27176 return; 27177 default: 27178 break; 27179 } 27180 break; 27181 case M_PROTO: 27182 case M_PCPROTO: 27183 /* 27184 * The only PROTO messages we expect are copies of option 27185 * negotiation acknowledgements, AH and ESP bind requests 27186 * are also expected. 27187 */ 27188 switch (((union T_primitives *)mp->b_rptr)->type) { 27189 case O_T_BIND_REQ: 27190 case T_BIND_REQ: { 27191 /* Request can get queued in bind */ 27192 if (connp == NULL) { 27193 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27194 goto protonak; 27195 } 27196 /* 27197 * The transports except SCTP call ip_bind_{v4,v6}() 27198 * directly instead of a a putnext. SCTP doesn't 27199 * generate any T_BIND_REQ since it has its own 27200 * fanout data structures. However, ESP and AH 27201 * come in for regular binds; all other cases are 27202 * bind retries. 27203 */ 27204 ASSERT(!IPCL_IS_SCTP(connp)); 27205 27206 /* Don't increment refcnt if this is a re-entry */ 27207 if (ipsq == NULL) 27208 CONN_INC_REF(connp); 27209 27210 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27211 connp, NULL) : ip_bind_v4(q, mp, connp); 27212 ASSERT(mp != NULL); 27213 27214 ASSERT(!IPCL_IS_TCP(connp)); 27215 ASSERT(!IPCL_IS_UDP(connp)); 27216 ASSERT(!IPCL_IS_RAWIP(connp)); 27217 ASSERT(!IPCL_IS_IPTUN(connp)); 27218 27219 /* The case of AH and ESP */ 27220 qreply(q, mp); 27221 CONN_OPER_PENDING_DONE(connp); 27222 return; 27223 } 27224 case T_SVR4_OPTMGMT_REQ: 27225 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27226 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27227 27228 if (connp == NULL) { 27229 proto_str = "T_SVR4_OPTMGMT_REQ"; 27230 goto protonak; 27231 } 27232 27233 /* 27234 * All Solaris components should pass a db_credp 27235 * for this TPI message, hence we ASSERT. 27236 * But in case there is some other M_PROTO that looks 27237 * like a TPI message sent by some other kernel 27238 * component, we check and return an error. 27239 */ 27240 cr = msg_getcred(mp, NULL); 27241 ASSERT(cr != NULL); 27242 if (cr == NULL) { 27243 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27244 if (mp != NULL) 27245 qreply(q, mp); 27246 return; 27247 } 27248 27249 if (!snmpcom_req(q, mp, ip_snmp_set, 27250 ip_snmp_get, cr)) { 27251 /* 27252 * Call svr4_optcom_req so that it can 27253 * generate the ack. We don't come here 27254 * if this operation is being restarted. 27255 * ip_restart_optmgmt will drop the conn ref. 27256 * In the case of ipsec option after the ipsec 27257 * load is complete conn_restart_ipsec_waiter 27258 * drops the conn ref. 27259 */ 27260 ASSERT(ipsq == NULL); 27261 CONN_INC_REF(connp); 27262 if (ip_check_for_ipsec_opt(q, mp)) 27263 return; 27264 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27265 B_FALSE); 27266 if (err != EINPROGRESS) { 27267 /* Operation is done */ 27268 CONN_OPER_PENDING_DONE(connp); 27269 } 27270 } 27271 return; 27272 case T_OPTMGMT_REQ: 27273 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27274 /* 27275 * Note: No snmpcom_req support through new 27276 * T_OPTMGMT_REQ. 27277 * Call tpi_optcom_req so that it can 27278 * generate the ack. 27279 */ 27280 if (connp == NULL) { 27281 proto_str = "T_OPTMGMT_REQ"; 27282 goto protonak; 27283 } 27284 27285 /* 27286 * All Solaris components should pass a db_credp 27287 * for this TPI message, hence we ASSERT. 27288 * But in case there is some other M_PROTO that looks 27289 * like a TPI message sent by some other kernel 27290 * component, we check and return an error. 27291 */ 27292 cr = msg_getcred(mp, NULL); 27293 ASSERT(cr != NULL); 27294 if (cr == NULL) { 27295 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27296 if (mp != NULL) 27297 qreply(q, mp); 27298 return; 27299 } 27300 ASSERT(ipsq == NULL); 27301 /* 27302 * We don't come here for restart. ip_restart_optmgmt 27303 * will drop the conn ref. In the case of ipsec option 27304 * after the ipsec load is complete 27305 * conn_restart_ipsec_waiter drops the conn ref. 27306 */ 27307 CONN_INC_REF(connp); 27308 if (ip_check_for_ipsec_opt(q, mp)) 27309 return; 27310 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27311 if (err != EINPROGRESS) { 27312 /* Operation is done */ 27313 CONN_OPER_PENDING_DONE(connp); 27314 } 27315 return; 27316 case T_UNBIND_REQ: 27317 if (connp == NULL) { 27318 proto_str = "T_UNBIND_REQ"; 27319 goto protonak; 27320 } 27321 ip_unbind(Q_TO_CONN(q)); 27322 mp = mi_tpi_ok_ack_alloc(mp); 27323 qreply(q, mp); 27324 return; 27325 default: 27326 /* 27327 * Have to drop any DLPI messages coming down from 27328 * arp (such as an info_req which would cause ip 27329 * to receive an extra info_ack if it was passed 27330 * through. 27331 */ 27332 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27333 (int)*(uint_t *)mp->b_rptr)); 27334 freemsg(mp); 27335 return; 27336 } 27337 /* NOTREACHED */ 27338 case IRE_DB_TYPE: { 27339 nce_t *nce; 27340 ill_t *ill; 27341 in6_addr_t gw_addr_v6; 27342 27343 /* 27344 * This is a response back from a resolver. It 27345 * consists of a message chain containing: 27346 * IRE_MBLK-->LL_HDR_MBLK->pkt 27347 * The IRE_MBLK is the one we allocated in ip_newroute. 27348 * The LL_HDR_MBLK is the DLPI header to use to get 27349 * the attached packet, and subsequent ones for the 27350 * same destination, transmitted. 27351 */ 27352 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27353 break; 27354 /* 27355 * First, check to make sure the resolution succeeded. 27356 * If it failed, the second mblk will be empty. 27357 * If it is, free the chain, dropping the packet. 27358 * (We must ire_delete the ire; that frees the ire mblk) 27359 * We're doing this now to support PVCs for ATM; it's 27360 * a partial xresolv implementation. When we fully implement 27361 * xresolv interfaces, instead of freeing everything here 27362 * we'll initiate neighbor discovery. 27363 * 27364 * For v4 (ARP and other external resolvers) the resolver 27365 * frees the message, so no check is needed. This check 27366 * is required, though, for a full xresolve implementation. 27367 * Including this code here now both shows how external 27368 * resolvers can NACK a resolution request using an 27369 * existing design that has no specific provisions for NACKs, 27370 * and also takes into account that the current non-ARP 27371 * external resolver has been coded to use this method of 27372 * NACKing for all IPv6 (xresolv) cases, 27373 * whether our xresolv implementation is complete or not. 27374 * 27375 */ 27376 ire = (ire_t *)mp->b_rptr; 27377 ill = ire_to_ill(ire); 27378 mp1 = mp->b_cont; /* dl_unitdata_req */ 27379 if (mp1->b_rptr == mp1->b_wptr) { 27380 if (ire->ire_ipversion == IPV6_VERSION) { 27381 /* 27382 * XRESOLV interface. 27383 */ 27384 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27385 mutex_enter(&ire->ire_lock); 27386 gw_addr_v6 = ire->ire_gateway_addr_v6; 27387 mutex_exit(&ire->ire_lock); 27388 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27389 nce = ndp_lookup_v6(ill, B_FALSE, 27390 &ire->ire_addr_v6, B_FALSE); 27391 } else { 27392 nce = ndp_lookup_v6(ill, B_FALSE, 27393 &gw_addr_v6, B_FALSE); 27394 } 27395 if (nce != NULL) { 27396 nce_resolv_failed(nce); 27397 ndp_delete(nce); 27398 NCE_REFRELE(nce); 27399 } 27400 } 27401 mp->b_cont = NULL; 27402 freemsg(mp1); /* frees the pkt as well */ 27403 ASSERT(ire->ire_nce == NULL); 27404 ire_delete((ire_t *)mp->b_rptr); 27405 return; 27406 } 27407 27408 /* 27409 * Split them into IRE_MBLK and pkt and feed it into 27410 * ire_add_then_send. Then in ire_add_then_send 27411 * the IRE will be added, and then the packet will be 27412 * run back through ip_wput. This time it will make 27413 * it to the wire. 27414 */ 27415 mp->b_cont = NULL; 27416 mp = mp1->b_cont; /* now, mp points to pkt */ 27417 mp1->b_cont = NULL; 27418 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27419 if (ire->ire_ipversion == IPV6_VERSION) { 27420 /* 27421 * XRESOLV interface. Find the nce and put a copy 27422 * of the dl_unitdata_req in nce_res_mp 27423 */ 27424 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27425 mutex_enter(&ire->ire_lock); 27426 gw_addr_v6 = ire->ire_gateway_addr_v6; 27427 mutex_exit(&ire->ire_lock); 27428 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27429 nce = ndp_lookup_v6(ill, B_FALSE, 27430 &ire->ire_addr_v6, B_FALSE); 27431 } else { 27432 nce = ndp_lookup_v6(ill, B_FALSE, 27433 &gw_addr_v6, B_FALSE); 27434 } 27435 if (nce != NULL) { 27436 /* 27437 * We have to protect nce_res_mp here 27438 * from being accessed by other threads 27439 * while we change the mblk pointer. 27440 * Other functions will also lock the nce when 27441 * accessing nce_res_mp. 27442 * 27443 * The reason we change the mblk pointer 27444 * here rather than copying the resolved address 27445 * into the template is that, unlike with 27446 * ethernet, we have no guarantee that the 27447 * resolved address length will be 27448 * smaller than or equal to the lla length 27449 * with which the template was allocated, 27450 * (for ethernet, they're equal) 27451 * so we have to use the actual resolved 27452 * address mblk - which holds the real 27453 * dl_unitdata_req with the resolved address. 27454 * 27455 * Doing this is the same behavior as was 27456 * previously used in the v4 ARP case. 27457 */ 27458 mutex_enter(&nce->nce_lock); 27459 if (nce->nce_res_mp != NULL) 27460 freemsg(nce->nce_res_mp); 27461 nce->nce_res_mp = mp1; 27462 mutex_exit(&nce->nce_lock); 27463 /* 27464 * We do a fastpath probe here because 27465 * we have resolved the address without 27466 * using Neighbor Discovery. 27467 * In the non-XRESOLV v6 case, the fastpath 27468 * probe is done right after neighbor 27469 * discovery completes. 27470 */ 27471 if (nce->nce_res_mp != NULL) { 27472 int res; 27473 nce_fastpath_list_add(nce); 27474 res = ill_fastpath_probe(ill, 27475 nce->nce_res_mp); 27476 if (res != 0 && res != EAGAIN) 27477 nce_fastpath_list_delete(nce); 27478 } 27479 27480 ire_add_then_send(q, ire, mp); 27481 /* 27482 * Now we have to clean out any packets 27483 * that may have been queued on the nce 27484 * while it was waiting for address resolution 27485 * to complete. 27486 */ 27487 mutex_enter(&nce->nce_lock); 27488 mp1 = nce->nce_qd_mp; 27489 nce->nce_qd_mp = NULL; 27490 mutex_exit(&nce->nce_lock); 27491 while (mp1 != NULL) { 27492 mblk_t *nxt_mp; 27493 queue_t *fwdq = NULL; 27494 ill_t *inbound_ill; 27495 uint_t ifindex; 27496 27497 nxt_mp = mp1->b_next; 27498 mp1->b_next = NULL; 27499 /* 27500 * Retrieve ifindex stored in 27501 * ip_rput_data_v6() 27502 */ 27503 ifindex = 27504 (uint_t)(uintptr_t)mp1->b_prev; 27505 inbound_ill = 27506 ill_lookup_on_ifindex(ifindex, 27507 B_TRUE, NULL, NULL, NULL, 27508 NULL, ipst); 27509 mp1->b_prev = NULL; 27510 if (inbound_ill != NULL) 27511 fwdq = inbound_ill->ill_rq; 27512 27513 if (fwdq != NULL) { 27514 put(fwdq, mp1); 27515 ill_refrele(inbound_ill); 27516 } else 27517 put(WR(ill->ill_rq), mp1); 27518 mp1 = nxt_mp; 27519 } 27520 NCE_REFRELE(nce); 27521 } else { /* nce is NULL; clean up */ 27522 ire_delete(ire); 27523 freemsg(mp); 27524 freemsg(mp1); 27525 return; 27526 } 27527 } else { 27528 nce_t *arpce; 27529 /* 27530 * Link layer resolution succeeded. Recompute the 27531 * ire_nce. 27532 */ 27533 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27534 if ((arpce = ndp_lookup_v4(ill, 27535 (ire->ire_gateway_addr != INADDR_ANY ? 27536 &ire->ire_gateway_addr : &ire->ire_addr), 27537 B_FALSE)) == NULL) { 27538 freeb(ire->ire_mp); 27539 freeb(mp1); 27540 freemsg(mp); 27541 return; 27542 } 27543 mutex_enter(&arpce->nce_lock); 27544 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27545 if (arpce->nce_state == ND_REACHABLE) { 27546 /* 27547 * Someone resolved this before us; 27548 * cleanup the res_mp. Since ire has 27549 * not been added yet, the call to ire_add_v4 27550 * from ire_add_then_send (when a dup is 27551 * detected) will clean up the ire. 27552 */ 27553 freeb(mp1); 27554 } else { 27555 ASSERT(arpce->nce_res_mp == NULL); 27556 arpce->nce_res_mp = mp1; 27557 arpce->nce_state = ND_REACHABLE; 27558 } 27559 mutex_exit(&arpce->nce_lock); 27560 if (ire->ire_marks & IRE_MARK_NOADD) { 27561 /* 27562 * this ire will not be added to the ire 27563 * cache table, so we can set the ire_nce 27564 * here, as there are no atomicity constraints. 27565 */ 27566 ire->ire_nce = arpce; 27567 /* 27568 * We are associating this nce with the ire 27569 * so change the nce ref taken in 27570 * ndp_lookup_v4() from 27571 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27572 */ 27573 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27574 } else { 27575 NCE_REFRELE(arpce); 27576 } 27577 ire_add_then_send(q, ire, mp); 27578 } 27579 return; /* All is well, the packet has been sent. */ 27580 } 27581 case IRE_ARPRESOLVE_TYPE: { 27582 27583 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27584 break; 27585 mp1 = mp->b_cont; /* dl_unitdata_req */ 27586 mp->b_cont = NULL; 27587 /* 27588 * First, check to make sure the resolution succeeded. 27589 * If it failed, the second mblk will be empty. 27590 */ 27591 if (mp1->b_rptr == mp1->b_wptr) { 27592 /* cleanup the incomplete ire, free queued packets */ 27593 freemsg(mp); /* fake ire */ 27594 freeb(mp1); /* dl_unitdata response */ 27595 return; 27596 } 27597 27598 /* 27599 * Update any incomplete nce_t found. We search the ctable 27600 * and find the nce from the ire->ire_nce because we need 27601 * to pass the ire to ip_xmit_v4 later, and can find both 27602 * ire and nce in one lookup. 27603 */ 27604 fake_ire = (ire_t *)mp->b_rptr; 27605 27606 /* 27607 * By the time we come back here from ARP the logical outgoing 27608 * interface of the incomplete ire we added in ire_forward() 27609 * could have disappeared, causing the incomplete ire to also 27610 * disappear. So we need to retreive the proper ipif for the 27611 * ire before looking in ctable. In the case of IPMP, the 27612 * ipif may be on the IPMP ill, so look it up based on the 27613 * ire_ipif_ifindex we stashed back in ire_init_common(). 27614 * Then, we can verify that ire_ipif_seqid still exists. 27615 */ 27616 ill = ill_lookup_on_ifindex(fake_ire->ire_ipif_ifindex, B_FALSE, 27617 NULL, NULL, NULL, NULL, ipst); 27618 if (ill == NULL) { 27619 ip1dbg(("ill for incomplete ire vanished\n")); 27620 freemsg(mp); /* fake ire */ 27621 freeb(mp1); /* dl_unitdata response */ 27622 return; 27623 } 27624 27625 /* Get the outgoing ipif */ 27626 mutex_enter(&ill->ill_lock); 27627 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27628 if (ipif == NULL) { 27629 mutex_exit(&ill->ill_lock); 27630 ill_refrele(ill); 27631 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27632 freemsg(mp); /* fake_ire */ 27633 freeb(mp1); /* dl_unitdata response */ 27634 return; 27635 } 27636 27637 ipif_refhold_locked(ipif); 27638 mutex_exit(&ill->ill_lock); 27639 ill_refrele(ill); 27640 ire = ire_arpresolve_lookup(fake_ire->ire_addr, 27641 fake_ire->ire_gateway_addr, ipif, fake_ire->ire_zoneid, 27642 ipst, ((ill_t *)q->q_ptr)->ill_wq); 27643 ipif_refrele(ipif); 27644 if (ire == NULL) { 27645 /* 27646 * no ire was found; check if there is an nce 27647 * for this lookup; if it has no ire's pointing at it 27648 * cleanup. 27649 */ 27650 if ((nce = ndp_lookup_v4(q->q_ptr, 27651 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27652 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27653 B_FALSE)) != NULL) { 27654 /* 27655 * cleanup: 27656 * We check for refcnt 2 (one for the nce 27657 * hash list + 1 for the ref taken by 27658 * ndp_lookup_v4) to check that there are 27659 * no ire's pointing at the nce. 27660 */ 27661 if (nce->nce_refcnt == 2) 27662 ndp_delete(nce); 27663 NCE_REFRELE(nce); 27664 } 27665 freeb(mp1); /* dl_unitdata response */ 27666 freemsg(mp); /* fake ire */ 27667 return; 27668 } 27669 27670 nce = ire->ire_nce; 27671 DTRACE_PROBE2(ire__arpresolve__type, 27672 ire_t *, ire, nce_t *, nce); 27673 mutex_enter(&nce->nce_lock); 27674 nce->nce_last = TICK_TO_MSEC(lbolt64); 27675 if (nce->nce_state == ND_REACHABLE) { 27676 /* 27677 * Someone resolved this before us; 27678 * our response is not needed any more. 27679 */ 27680 mutex_exit(&nce->nce_lock); 27681 freeb(mp1); /* dl_unitdata response */ 27682 } else { 27683 ASSERT(nce->nce_res_mp == NULL); 27684 nce->nce_res_mp = mp1; 27685 nce->nce_state = ND_REACHABLE; 27686 mutex_exit(&nce->nce_lock); 27687 nce_fastpath(nce); 27688 } 27689 /* 27690 * The cached nce_t has been updated to be reachable; 27691 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27692 */ 27693 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27694 freemsg(mp); 27695 /* 27696 * send out queued packets. 27697 */ 27698 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 27699 27700 IRE_REFRELE(ire); 27701 return; 27702 } 27703 default: 27704 break; 27705 } 27706 if (q->q_next) { 27707 putnext(q, mp); 27708 } else 27709 freemsg(mp); 27710 return; 27711 27712 protonak: 27713 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27714 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27715 qreply(q, mp); 27716 } 27717 27718 /* 27719 * Process IP options in an outbound packet. Modify the destination if there 27720 * is a source route option. 27721 * Returns non-zero if something fails in which case an ICMP error has been 27722 * sent and mp freed. 27723 */ 27724 static int 27725 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27726 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27727 { 27728 ipoptp_t opts; 27729 uchar_t *opt; 27730 uint8_t optval; 27731 uint8_t optlen; 27732 ipaddr_t dst; 27733 intptr_t code = 0; 27734 mblk_t *mp; 27735 ire_t *ire = NULL; 27736 27737 ip2dbg(("ip_wput_options\n")); 27738 mp = ipsec_mp; 27739 if (mctl_present) { 27740 mp = ipsec_mp->b_cont; 27741 } 27742 27743 dst = ipha->ipha_dst; 27744 for (optval = ipoptp_first(&opts, ipha); 27745 optval != IPOPT_EOL; 27746 optval = ipoptp_next(&opts)) { 27747 opt = opts.ipoptp_cur; 27748 optlen = opts.ipoptp_len; 27749 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27750 optval, optlen)); 27751 switch (optval) { 27752 uint32_t off; 27753 case IPOPT_SSRR: 27754 case IPOPT_LSRR: 27755 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27756 ip1dbg(( 27757 "ip_wput_options: bad option offset\n")); 27758 code = (char *)&opt[IPOPT_OLEN] - 27759 (char *)ipha; 27760 goto param_prob; 27761 } 27762 off = opt[IPOPT_OFFSET]; 27763 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27764 ntohl(dst))); 27765 /* 27766 * For strict: verify that dst is directly 27767 * reachable. 27768 */ 27769 if (optval == IPOPT_SSRR) { 27770 ire = ire_ftable_lookup(dst, 0, 0, 27771 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27772 msg_getlabel(mp), 27773 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27774 if (ire == NULL) { 27775 ip1dbg(("ip_wput_options: SSRR not" 27776 " directly reachable: 0x%x\n", 27777 ntohl(dst))); 27778 goto bad_src_route; 27779 } 27780 ire_refrele(ire); 27781 } 27782 break; 27783 case IPOPT_RR: 27784 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27785 ip1dbg(( 27786 "ip_wput_options: bad option offset\n")); 27787 code = (char *)&opt[IPOPT_OLEN] - 27788 (char *)ipha; 27789 goto param_prob; 27790 } 27791 break; 27792 case IPOPT_TS: 27793 /* 27794 * Verify that length >=5 and that there is either 27795 * room for another timestamp or that the overflow 27796 * counter is not maxed out. 27797 */ 27798 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27799 if (optlen < IPOPT_MINLEN_IT) { 27800 goto param_prob; 27801 } 27802 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27803 ip1dbg(( 27804 "ip_wput_options: bad option offset\n")); 27805 code = (char *)&opt[IPOPT_OFFSET] - 27806 (char *)ipha; 27807 goto param_prob; 27808 } 27809 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27810 case IPOPT_TS_TSONLY: 27811 off = IPOPT_TS_TIMELEN; 27812 break; 27813 case IPOPT_TS_TSANDADDR: 27814 case IPOPT_TS_PRESPEC: 27815 case IPOPT_TS_PRESPEC_RFC791: 27816 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27817 break; 27818 default: 27819 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27820 (char *)ipha; 27821 goto param_prob; 27822 } 27823 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27824 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27825 /* 27826 * No room and the overflow counter is 15 27827 * already. 27828 */ 27829 goto param_prob; 27830 } 27831 break; 27832 } 27833 } 27834 27835 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27836 return (0); 27837 27838 ip1dbg(("ip_wput_options: error processing IP options.")); 27839 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27840 27841 param_prob: 27842 /* 27843 * Since ip_wput() isn't close to finished, we fill 27844 * in enough of the header for credible error reporting. 27845 */ 27846 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27847 /* Failed */ 27848 freemsg(ipsec_mp); 27849 return (-1); 27850 } 27851 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 27852 return (-1); 27853 27854 bad_src_route: 27855 /* 27856 * Since ip_wput() isn't close to finished, we fill 27857 * in enough of the header for credible error reporting. 27858 */ 27859 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27860 /* Failed */ 27861 freemsg(ipsec_mp); 27862 return (-1); 27863 } 27864 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 27865 return (-1); 27866 } 27867 27868 /* 27869 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 27870 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 27871 * thru /etc/system. 27872 */ 27873 #define CONN_MAXDRAINCNT 64 27874 27875 static void 27876 conn_drain_init(ip_stack_t *ipst) 27877 { 27878 int i, j; 27879 idl_tx_list_t *itl_tx; 27880 27881 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 27882 27883 if ((ipst->ips_conn_drain_list_cnt == 0) || 27884 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 27885 /* 27886 * Default value of the number of drainers is the 27887 * number of cpus, subject to maximum of 8 drainers. 27888 */ 27889 if (boot_max_ncpus != -1) 27890 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 27891 else 27892 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 27893 } 27894 27895 ipst->ips_idl_tx_list = 27896 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 27897 for (i = 0; i < TX_FANOUT_SIZE; i++) { 27898 itl_tx = &ipst->ips_idl_tx_list[i]; 27899 itl_tx->txl_drain_list = 27900 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 27901 sizeof (idl_t), KM_SLEEP); 27902 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 27903 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 27904 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 27905 MUTEX_DEFAULT, NULL); 27906 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 27907 } 27908 } 27909 } 27910 27911 static void 27912 conn_drain_fini(ip_stack_t *ipst) 27913 { 27914 int i; 27915 idl_tx_list_t *itl_tx; 27916 27917 for (i = 0; i < TX_FANOUT_SIZE; i++) { 27918 itl_tx = &ipst->ips_idl_tx_list[i]; 27919 kmem_free(itl_tx->txl_drain_list, 27920 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 27921 } 27922 kmem_free(ipst->ips_idl_tx_list, 27923 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 27924 ipst->ips_idl_tx_list = NULL; 27925 } 27926 27927 /* 27928 * Note: For an overview of how flowcontrol is handled in IP please see the 27929 * IP Flowcontrol notes at the top of this file. 27930 * 27931 * Flow control has blocked us from proceeding. Insert the given conn in one 27932 * of the conn drain lists. These conn wq's will be qenabled later on when 27933 * STREAMS flow control does a backenable. conn_walk_drain will enable 27934 * the first conn in each of these drain lists. Each of these qenabled conns 27935 * in turn enables the next in the list, after it runs, or when it closes, 27936 * thus sustaining the drain process. 27937 */ 27938 void 27939 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 27940 { 27941 idl_t *idl = tx_list->txl_drain_list; 27942 uint_t index; 27943 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 27944 27945 mutex_enter(&connp->conn_lock); 27946 if (connp->conn_state_flags & CONN_CLOSING) { 27947 /* 27948 * The conn is closing as a result of which CONN_CLOSING 27949 * is set. Return. 27950 */ 27951 mutex_exit(&connp->conn_lock); 27952 return; 27953 } else if (connp->conn_idl == NULL) { 27954 /* 27955 * Assign the next drain list round robin. We dont' use 27956 * a lock, and thus it may not be strictly round robin. 27957 * Atomicity of load/stores is enough to make sure that 27958 * conn_drain_list_index is always within bounds. 27959 */ 27960 index = tx_list->txl_drain_index; 27961 ASSERT(index < ipst->ips_conn_drain_list_cnt); 27962 connp->conn_idl = &tx_list->txl_drain_list[index]; 27963 index++; 27964 if (index == ipst->ips_conn_drain_list_cnt) 27965 index = 0; 27966 tx_list->txl_drain_index = index; 27967 } 27968 mutex_exit(&connp->conn_lock); 27969 27970 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 27971 if ((connp->conn_drain_prev != NULL) || 27972 (connp->conn_state_flags & CONN_CLOSING)) { 27973 /* 27974 * The conn is already in the drain list, OR 27975 * the conn is closing. We need to check again for 27976 * the closing case again since close can happen 27977 * after we drop the conn_lock, and before we 27978 * acquire the CONN_DRAIN_LIST_LOCK. 27979 */ 27980 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27981 return; 27982 } else { 27983 idl = connp->conn_idl; 27984 } 27985 27986 /* 27987 * The conn is not in the drain list. Insert it at the 27988 * tail of the drain list. The drain list is circular 27989 * and doubly linked. idl_conn points to the 1st element 27990 * in the list. 27991 */ 27992 if (idl->idl_conn == NULL) { 27993 idl->idl_conn = connp; 27994 connp->conn_drain_next = connp; 27995 connp->conn_drain_prev = connp; 27996 } else { 27997 conn_t *head = idl->idl_conn; 27998 27999 connp->conn_drain_next = head; 28000 connp->conn_drain_prev = head->conn_drain_prev; 28001 head->conn_drain_prev->conn_drain_next = connp; 28002 head->conn_drain_prev = connp; 28003 } 28004 /* 28005 * For non streams based sockets assert flow control. 28006 */ 28007 if (IPCL_IS_NONSTR(connp)) { 28008 DTRACE_PROBE1(su__txq__full, conn_t *, connp); 28009 (*connp->conn_upcalls->su_txq_full) 28010 (connp->conn_upper_handle, B_TRUE); 28011 } else { 28012 conn_setqfull(connp); 28013 noenable(connp->conn_wq); 28014 } 28015 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28016 } 28017 28018 /* 28019 * This conn is closing, and we are called from ip_close. OR 28020 * This conn has been serviced by ip_wsrv, and we need to do the tail 28021 * processing. 28022 * If this conn is part of the drain list, we may need to sustain the drain 28023 * process by qenabling the next conn in the drain list. We may also need to 28024 * remove this conn from the list, if it is done. 28025 */ 28026 static void 28027 conn_drain_tail(conn_t *connp, boolean_t closing) 28028 { 28029 idl_t *idl; 28030 28031 /* 28032 * connp->conn_idl is stable at this point, and no lock is needed 28033 * to check it. If we are called from ip_close, close has already 28034 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28035 * called us only because conn_idl is non-null. If we are called thru 28036 * service, conn_idl could be null, but it cannot change because 28037 * service is single-threaded per queue, and there cannot be another 28038 * instance of service trying to call conn_drain_insert on this conn 28039 * now. 28040 */ 28041 ASSERT(!closing || (connp->conn_idl != NULL)); 28042 28043 /* 28044 * If connp->conn_idl is null, the conn has not been inserted into any 28045 * drain list even once since creation of the conn. Just return. 28046 */ 28047 if (connp->conn_idl == NULL) 28048 return; 28049 28050 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28051 28052 if (connp->conn_drain_prev == NULL) { 28053 /* This conn is currently not in the drain list. */ 28054 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28055 return; 28056 } 28057 idl = connp->conn_idl; 28058 if (idl->idl_conn_draining == connp) { 28059 /* 28060 * This conn is the current drainer. If this is the last conn 28061 * in the drain list, we need to do more checks, in the 'if' 28062 * below. Otherwwise we need to just qenable the next conn, 28063 * to sustain the draining, and is handled in the 'else' 28064 * below. 28065 */ 28066 if (connp->conn_drain_next == idl->idl_conn) { 28067 /* 28068 * This conn is the last in this list. This round 28069 * of draining is complete. If idl_repeat is set, 28070 * it means another flow enabling has happened from 28071 * the driver/streams and we need to another round 28072 * of draining. 28073 * If there are more than 2 conns in the drain list, 28074 * do a left rotate by 1, so that all conns except the 28075 * conn at the head move towards the head by 1, and the 28076 * the conn at the head goes to the tail. This attempts 28077 * a more even share for all queues that are being 28078 * drained. 28079 */ 28080 if ((connp->conn_drain_next != connp) && 28081 (idl->idl_conn->conn_drain_next != connp)) { 28082 idl->idl_conn = idl->idl_conn->conn_drain_next; 28083 } 28084 if (idl->idl_repeat) { 28085 qenable(idl->idl_conn->conn_wq); 28086 idl->idl_conn_draining = idl->idl_conn; 28087 idl->idl_repeat = 0; 28088 } else { 28089 idl->idl_conn_draining = NULL; 28090 } 28091 } else { 28092 /* 28093 * If the next queue that we are now qenable'ing, 28094 * is closing, it will remove itself from this list 28095 * and qenable the subsequent queue in ip_close(). 28096 * Serialization is acheived thru idl_lock. 28097 */ 28098 qenable(connp->conn_drain_next->conn_wq); 28099 idl->idl_conn_draining = connp->conn_drain_next; 28100 } 28101 } 28102 if (!connp->conn_did_putbq || closing) { 28103 /* 28104 * Remove ourself from the drain list, if we did not do 28105 * a putbq, or if the conn is closing. 28106 * Note: It is possible that q->q_first is non-null. It means 28107 * that these messages landed after we did a enableok() in 28108 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28109 * service them. 28110 */ 28111 if (connp->conn_drain_next == connp) { 28112 /* Singleton in the list */ 28113 ASSERT(connp->conn_drain_prev == connp); 28114 idl->idl_conn = NULL; 28115 idl->idl_conn_draining = NULL; 28116 } else { 28117 connp->conn_drain_prev->conn_drain_next = 28118 connp->conn_drain_next; 28119 connp->conn_drain_next->conn_drain_prev = 28120 connp->conn_drain_prev; 28121 if (idl->idl_conn == connp) 28122 idl->idl_conn = connp->conn_drain_next; 28123 ASSERT(idl->idl_conn_draining != connp); 28124 28125 } 28126 connp->conn_drain_next = NULL; 28127 connp->conn_drain_prev = NULL; 28128 28129 /* 28130 * For non streams based sockets open up flow control. 28131 */ 28132 if (IPCL_IS_NONSTR(connp)) { 28133 (*connp->conn_upcalls->su_txq_full) 28134 (connp->conn_upper_handle, B_FALSE); 28135 } else { 28136 conn_clrqfull(connp); 28137 enableok(connp->conn_wq); 28138 } 28139 } 28140 28141 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28142 } 28143 28144 /* 28145 * Write service routine. Shared perimeter entry point. 28146 * ip_wsrv can be called in any of the following ways. 28147 * 1. The device queue's messages has fallen below the low water mark 28148 * and STREAMS has backenabled the ill_wq. We walk thru all the 28149 * the drain lists and backenable the first conn in each list. 28150 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28151 * qenabled non-tcp upper layers. We start dequeing messages and call 28152 * ip_wput for each message. 28153 */ 28154 28155 void 28156 ip_wsrv(queue_t *q) 28157 { 28158 conn_t *connp; 28159 ill_t *ill; 28160 mblk_t *mp; 28161 28162 if (q->q_next) { 28163 ill = (ill_t *)q->q_ptr; 28164 if (ill->ill_state_flags == 0) { 28165 ip_stack_t *ipst = ill->ill_ipst; 28166 28167 /* 28168 * The device flow control has opened up. 28169 * Walk through conn drain lists and qenable the 28170 * first conn in each list. This makes sense only 28171 * if the stream is fully plumbed and setup. 28172 * Hence the if check above. 28173 */ 28174 ip1dbg(("ip_wsrv: walking\n")); 28175 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 28176 } 28177 return; 28178 } 28179 28180 connp = Q_TO_CONN(q); 28181 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28182 28183 /* 28184 * 1. Set conn_draining flag to signal that service is active. 28185 * 28186 * 2. ip_output determines whether it has been called from service, 28187 * based on the last parameter. If it is IP_WSRV it concludes it 28188 * has been called from service. 28189 * 28190 * 3. Message ordering is preserved by the following logic. 28191 * i. A directly called ip_output (i.e. not thru service) will queue 28192 * the message at the tail, if conn_draining is set (i.e. service 28193 * is running) or if q->q_first is non-null. 28194 * 28195 * ii. If ip_output is called from service, and if ip_output cannot 28196 * putnext due to flow control, it does a putbq. 28197 * 28198 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28199 * (causing an infinite loop). 28200 */ 28201 ASSERT(!connp->conn_did_putbq); 28202 28203 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28204 connp->conn_draining = 1; 28205 noenable(q); 28206 while ((mp = getq(q)) != NULL) { 28207 ASSERT(CONN_Q(q)); 28208 28209 DTRACE_PROBE1(ip__wsrv__ip__output, conn_t *, connp); 28210 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28211 if (connp->conn_did_putbq) { 28212 /* ip_wput did a putbq */ 28213 break; 28214 } 28215 } 28216 /* 28217 * At this point, a thread coming down from top, calling 28218 * ip_wput, may end up queueing the message. We have not yet 28219 * enabled the queue, so ip_wsrv won't be called again. 28220 * To avoid this race, check q->q_first again (in the loop) 28221 * If the other thread queued the message before we call 28222 * enableok(), we will catch it in the q->q_first check. 28223 * If the other thread queues the message after we call 28224 * enableok(), ip_wsrv will be called again by STREAMS. 28225 */ 28226 connp->conn_draining = 0; 28227 enableok(q); 28228 } 28229 28230 /* Enable the next conn for draining */ 28231 conn_drain_tail(connp, B_FALSE); 28232 28233 /* 28234 * conn_direct_blocked is used to indicate blocked 28235 * condition for direct path (ILL_DIRECT_CAPABLE()). 28236 * This is the only place where it is set without 28237 * checking for ILL_DIRECT_CAPABLE() and setting it 28238 * to 0 is ok even if it is not ILL_DIRECT_CAPABLE(). 28239 */ 28240 if (!connp->conn_did_putbq && connp->conn_direct_blocked) { 28241 DTRACE_PROBE1(ip__wsrv__direct__blocked, conn_t *, connp); 28242 connp->conn_direct_blocked = B_FALSE; 28243 } 28244 28245 connp->conn_did_putbq = 0; 28246 } 28247 28248 /* 28249 * Callback to disable flow control in IP. 28250 * 28251 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 28252 * is enabled. 28253 * 28254 * When MAC_TX() is not able to send any more packets, dld sets its queue 28255 * to QFULL and enable the STREAMS flow control. Later, when the underlying 28256 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 28257 * function and wakes up corresponding mac worker threads, which in turn 28258 * calls this callback function, and disables flow control. 28259 */ 28260 void 28261 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 28262 { 28263 ill_t *ill = (ill_t *)arg; 28264 ip_stack_t *ipst = ill->ill_ipst; 28265 idl_tx_list_t *idl_txl; 28266 28267 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 28268 mutex_enter(&idl_txl->txl_lock); 28269 /* add code to to set a flag to indicate idl_txl is enabled */ 28270 conn_walk_drain(ipst, idl_txl); 28271 mutex_exit(&idl_txl->txl_lock); 28272 } 28273 28274 /* 28275 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28276 * of conns that need to be drained, check if drain is already in progress. 28277 * If so set the idl_repeat bit, indicating that the last conn in the list 28278 * needs to reinitiate the drain once again, for the list. If drain is not 28279 * in progress for the list, initiate the draining, by qenabling the 1st 28280 * conn in the list. The drain is self-sustaining, each qenabled conn will 28281 * in turn qenable the next conn, when it is done/blocked/closing. 28282 */ 28283 static void 28284 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 28285 { 28286 int i; 28287 idl_t *idl; 28288 28289 IP_STAT(ipst, ip_conn_walk_drain); 28290 28291 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28292 idl = &tx_list->txl_drain_list[i]; 28293 mutex_enter(&idl->idl_lock); 28294 if (idl->idl_conn == NULL) { 28295 mutex_exit(&idl->idl_lock); 28296 continue; 28297 } 28298 /* 28299 * If this list is not being drained currently by 28300 * an ip_wsrv thread, start the process. 28301 */ 28302 if (idl->idl_conn_draining == NULL) { 28303 ASSERT(idl->idl_repeat == 0); 28304 qenable(idl->idl_conn->conn_wq); 28305 idl->idl_conn_draining = idl->idl_conn; 28306 } else { 28307 idl->idl_repeat = 1; 28308 } 28309 mutex_exit(&idl->idl_lock); 28310 } 28311 } 28312 28313 /* 28314 * Determine if the ill and multicast aspects of that packets 28315 * "matches" the conn. 28316 */ 28317 boolean_t 28318 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28319 zoneid_t zoneid) 28320 { 28321 ill_t *bound_ill; 28322 boolean_t found; 28323 ipif_t *ipif; 28324 ire_t *ire; 28325 ipaddr_t dst, src; 28326 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28327 28328 dst = ipha->ipha_dst; 28329 src = ipha->ipha_src; 28330 28331 /* 28332 * conn_incoming_ill is set by IP_BOUND_IF which limits 28333 * unicast, broadcast and multicast reception to 28334 * conn_incoming_ill. conn_wantpacket itself is called 28335 * only for BROADCAST and multicast. 28336 */ 28337 bound_ill = connp->conn_incoming_ill; 28338 if (bound_ill != NULL) { 28339 if (IS_IPMP(bound_ill)) { 28340 if (bound_ill->ill_grp != ill->ill_grp) 28341 return (B_FALSE); 28342 } else { 28343 if (bound_ill != ill) 28344 return (B_FALSE); 28345 } 28346 } 28347 28348 if (!CLASSD(dst)) { 28349 if (IPCL_ZONE_MATCH(connp, zoneid)) 28350 return (B_TRUE); 28351 /* 28352 * The conn is in a different zone; we need to check that this 28353 * broadcast address is configured in the application's zone. 28354 */ 28355 ipif = ipif_get_next_ipif(NULL, ill); 28356 if (ipif == NULL) 28357 return (B_FALSE); 28358 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28359 connp->conn_zoneid, NULL, 28360 (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 28361 ipif_refrele(ipif); 28362 if (ire != NULL) { 28363 ire_refrele(ire); 28364 return (B_TRUE); 28365 } else { 28366 return (B_FALSE); 28367 } 28368 } 28369 28370 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28371 connp->conn_zoneid == zoneid) { 28372 /* 28373 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28374 * disabled, therefore we don't dispatch the multicast packet to 28375 * the sending zone. 28376 */ 28377 return (B_FALSE); 28378 } 28379 28380 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28381 /* 28382 * Multicast packet on the loopback interface: we only match 28383 * conns who joined the group in the specified zone. 28384 */ 28385 return (B_FALSE); 28386 } 28387 28388 if (connp->conn_multi_router) { 28389 /* multicast packet and multicast router socket: send up */ 28390 return (B_TRUE); 28391 } 28392 28393 mutex_enter(&connp->conn_lock); 28394 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28395 mutex_exit(&connp->conn_lock); 28396 return (found); 28397 } 28398 28399 static void 28400 conn_setqfull(conn_t *connp) 28401 { 28402 queue_t *q = connp->conn_wq; 28403 28404 if (!(q->q_flag & QFULL)) { 28405 mutex_enter(QLOCK(q)); 28406 if (!(q->q_flag & QFULL)) { 28407 /* still need to set QFULL */ 28408 q->q_flag |= QFULL; 28409 mutex_exit(QLOCK(q)); 28410 } else { 28411 mutex_exit(QLOCK(q)); 28412 } 28413 } 28414 } 28415 28416 static void 28417 conn_clrqfull(conn_t *connp) 28418 { 28419 queue_t *q = connp->conn_wq; 28420 28421 if (q->q_flag & QFULL) { 28422 mutex_enter(QLOCK(q)); 28423 if (q->q_flag & QFULL) { 28424 q->q_flag &= ~QFULL; 28425 mutex_exit(QLOCK(q)); 28426 if (q->q_flag & QWANTW) 28427 qbackenable(q, 0); 28428 } else { 28429 mutex_exit(QLOCK(q)); 28430 } 28431 } 28432 } 28433 28434 /* 28435 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28436 */ 28437 /* ARGSUSED */ 28438 static void 28439 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28440 { 28441 ill_t *ill = (ill_t *)q->q_ptr; 28442 mblk_t *mp1, *mp2; 28443 ipif_t *ipif; 28444 int err = 0; 28445 conn_t *connp = NULL; 28446 ipsq_t *ipsq; 28447 arc_t *arc; 28448 28449 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28450 28451 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28452 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28453 28454 ASSERT(IAM_WRITER_ILL(ill)); 28455 mp2 = mp->b_cont; 28456 mp->b_cont = NULL; 28457 28458 /* 28459 * We have now received the arp bringup completion message 28460 * from ARP. Mark the arp bringup as done. Also if the arp 28461 * stream has already started closing, send up the AR_ARP_CLOSING 28462 * ack now since ARP is waiting in close for this ack. 28463 */ 28464 mutex_enter(&ill->ill_lock); 28465 ill->ill_arp_bringup_pending = 0; 28466 if (ill->ill_arp_closing) { 28467 mutex_exit(&ill->ill_lock); 28468 /* Let's reuse the mp for sending the ack */ 28469 arc = (arc_t *)mp->b_rptr; 28470 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28471 arc->arc_cmd = AR_ARP_CLOSING; 28472 qreply(q, mp); 28473 } else { 28474 mutex_exit(&ill->ill_lock); 28475 freeb(mp); 28476 } 28477 28478 ipsq = ill->ill_phyint->phyint_ipsq; 28479 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 28480 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28481 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28482 if (mp1 == NULL) { 28483 /* bringup was aborted by the user */ 28484 freemsg(mp2); 28485 return; 28486 } 28487 28488 /* 28489 * If an IOCTL is waiting on this (ipx_current_ioctl != 0), then we 28490 * must have an associated conn_t. Otherwise, we're bringing this 28491 * interface back up as part of handling an asynchronous event (e.g., 28492 * physical address change). 28493 */ 28494 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 28495 ASSERT(connp != NULL); 28496 q = CONNP_TO_WQ(connp); 28497 } else { 28498 ASSERT(connp == NULL); 28499 q = ill->ill_rq; 28500 } 28501 28502 /* 28503 * If the DL_BIND_REQ fails, it is noted 28504 * in arc_name_offset. 28505 */ 28506 err = *((int *)mp2->b_rptr); 28507 if (err == 0) { 28508 if (ipif->ipif_isv6) { 28509 if ((err = ipif_up_done_v6(ipif)) != 0) 28510 ip0dbg(("ip_arp_done: init failed\n")); 28511 } else { 28512 if ((err = ipif_up_done(ipif)) != 0) 28513 ip0dbg(("ip_arp_done: init failed\n")); 28514 } 28515 } else { 28516 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28517 } 28518 28519 freemsg(mp2); 28520 28521 if ((err == 0) && (ill->ill_up_ipifs)) { 28522 err = ill_up_ipifs(ill, q, mp1); 28523 if (err == EINPROGRESS) 28524 return; 28525 } 28526 28527 /* 28528 * If we have a moved ipif to bring up, and everything has succeeded 28529 * to this point, bring it up on the IPMP ill. Otherwise, leave it 28530 * down -- the admin can try to bring it up by hand if need be. 28531 */ 28532 if (ill->ill_move_ipif != NULL) { 28533 ipif = ill->ill_move_ipif; 28534 ill->ill_move_ipif = NULL; 28535 if (err == 0) { 28536 err = ipif_up(ipif, q, mp1); 28537 if (err == EINPROGRESS) 28538 return; 28539 } 28540 } 28541 28542 /* 28543 * The operation must complete without EINPROGRESS since 28544 * ipsq_pending_mp_get() has removed the mblk. Otherwise, the 28545 * operation will be stuck forever in the ipsq. 28546 */ 28547 ASSERT(err != EINPROGRESS); 28548 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) 28549 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28550 else 28551 ipsq_current_finish(ipsq); 28552 } 28553 28554 /* Allocate the private structure */ 28555 static int 28556 ip_priv_alloc(void **bufp) 28557 { 28558 void *buf; 28559 28560 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28561 return (ENOMEM); 28562 28563 *bufp = buf; 28564 return (0); 28565 } 28566 28567 /* Function to delete the private structure */ 28568 void 28569 ip_priv_free(void *buf) 28570 { 28571 ASSERT(buf != NULL); 28572 kmem_free(buf, sizeof (ip_priv_t)); 28573 } 28574 28575 /* 28576 * The entry point for IPPF processing. 28577 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28578 * routine just returns. 28579 * 28580 * When called, ip_process generates an ipp_packet_t structure 28581 * which holds the state information for this packet and invokes the 28582 * the classifier (via ipp_packet_process). The classification, depending on 28583 * configured filters, results in a list of actions for this packet. Invoking 28584 * an action may cause the packet to be dropped, in which case the resulting 28585 * mblk (*mpp) is NULL. proc indicates the callout position for 28586 * this packet and ill_index is the interface this packet on or will leave 28587 * on (inbound and outbound resp.). 28588 */ 28589 void 28590 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28591 { 28592 mblk_t *mp; 28593 ip_priv_t *priv; 28594 ipp_action_id_t aid; 28595 int rc = 0; 28596 ipp_packet_t *pp; 28597 #define IP_CLASS "ip" 28598 28599 /* If the classifier is not loaded, return */ 28600 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28601 return; 28602 } 28603 28604 mp = *mpp; 28605 ASSERT(mp != NULL); 28606 28607 /* Allocate the packet structure */ 28608 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28609 if (rc != 0) { 28610 *mpp = NULL; 28611 freemsg(mp); 28612 return; 28613 } 28614 28615 /* Allocate the private structure */ 28616 rc = ip_priv_alloc((void **)&priv); 28617 if (rc != 0) { 28618 *mpp = NULL; 28619 freemsg(mp); 28620 ipp_packet_free(pp); 28621 return; 28622 } 28623 priv->proc = proc; 28624 priv->ill_index = ill_index; 28625 ipp_packet_set_private(pp, priv, ip_priv_free); 28626 ipp_packet_set_data(pp, mp); 28627 28628 /* Invoke the classifier */ 28629 rc = ipp_packet_process(&pp); 28630 if (pp != NULL) { 28631 mp = ipp_packet_get_data(pp); 28632 ipp_packet_free(pp); 28633 if (rc != 0) { 28634 freemsg(mp); 28635 *mpp = NULL; 28636 } 28637 } else { 28638 *mpp = NULL; 28639 } 28640 #undef IP_CLASS 28641 } 28642 28643 /* 28644 * Propagate a multicast group membership operation (add/drop) on 28645 * all the interfaces crossed by the related multirt routes. 28646 * The call is considered successful if the operation succeeds 28647 * on at least one interface. 28648 */ 28649 static int 28650 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28651 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28652 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28653 mblk_t *first_mp) 28654 { 28655 ire_t *ire_gw; 28656 irb_t *irb; 28657 int error = 0; 28658 opt_restart_t *or; 28659 ip_stack_t *ipst = ire->ire_ipst; 28660 28661 irb = ire->ire_bucket; 28662 ASSERT(irb != NULL); 28663 28664 ASSERT(DB_TYPE(first_mp) == M_CTL); 28665 28666 or = (opt_restart_t *)first_mp->b_rptr; 28667 IRB_REFHOLD(irb); 28668 for (; ire != NULL; ire = ire->ire_next) { 28669 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28670 continue; 28671 if (ire->ire_addr != group) 28672 continue; 28673 28674 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28675 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28676 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28677 /* No resolver exists for the gateway; skip this ire. */ 28678 if (ire_gw == NULL) 28679 continue; 28680 28681 /* 28682 * This function can return EINPROGRESS. If so the operation 28683 * will be restarted from ip_restart_optmgmt which will 28684 * call ip_opt_set and option processing will restart for 28685 * this option. So we may end up calling 'fn' more than once. 28686 * This requires that 'fn' is idempotent except for the 28687 * return value. The operation is considered a success if 28688 * it succeeds at least once on any one interface. 28689 */ 28690 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28691 NULL, fmode, src, first_mp); 28692 if (error == 0) 28693 or->or_private = CGTP_MCAST_SUCCESS; 28694 28695 if (ip_debug > 0) { 28696 ulong_t off; 28697 char *ksym; 28698 ksym = kobj_getsymname((uintptr_t)fn, &off); 28699 ip2dbg(("ip_multirt_apply_membership: " 28700 "called %s, multirt group 0x%08x via itf 0x%08x, " 28701 "error %d [success %u]\n", 28702 ksym ? ksym : "?", 28703 ntohl(group), ntohl(ire_gw->ire_src_addr), 28704 error, or->or_private)); 28705 } 28706 28707 ire_refrele(ire_gw); 28708 if (error == EINPROGRESS) { 28709 IRB_REFRELE(irb); 28710 return (error); 28711 } 28712 } 28713 IRB_REFRELE(irb); 28714 /* 28715 * Consider the call as successful if we succeeded on at least 28716 * one interface. Otherwise, return the last encountered error. 28717 */ 28718 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28719 } 28720 28721 /* 28722 * Issue a warning regarding a route crossing an interface with an 28723 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28724 * amount of time is logged. 28725 */ 28726 static void 28727 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28728 { 28729 hrtime_t current = gethrtime(); 28730 char buf[INET_ADDRSTRLEN]; 28731 ip_stack_t *ipst = ire->ire_ipst; 28732 28733 /* Convert interval in ms to hrtime in ns */ 28734 if (ipst->ips_multirt_bad_mtu_last_time + 28735 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28736 current) { 28737 cmn_err(CE_WARN, "ip: ignoring multiroute " 28738 "to %s, incorrect MTU %u (expected %u)\n", 28739 ip_dot_addr(ire->ire_addr, buf), 28740 ire->ire_max_frag, max_frag); 28741 28742 ipst->ips_multirt_bad_mtu_last_time = current; 28743 } 28744 } 28745 28746 /* 28747 * Get the CGTP (multirouting) filtering status. 28748 * If 0, the CGTP hooks are transparent. 28749 */ 28750 /* ARGSUSED */ 28751 static int 28752 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28753 { 28754 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28755 28756 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28757 return (0); 28758 } 28759 28760 /* 28761 * Set the CGTP (multirouting) filtering status. 28762 * If the status is changed from active to transparent 28763 * or from transparent to active, forward the new status 28764 * to the filtering module (if loaded). 28765 */ 28766 /* ARGSUSED */ 28767 static int 28768 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28769 cred_t *ioc_cr) 28770 { 28771 long new_value; 28772 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28773 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28774 28775 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 28776 return (EPERM); 28777 28778 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28779 new_value < 0 || new_value > 1) { 28780 return (EINVAL); 28781 } 28782 28783 if ((!*ip_cgtp_filter_value) && new_value) { 28784 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28785 ipst->ips_ip_cgtp_filter_ops == NULL ? 28786 " (module not loaded)" : ""); 28787 } 28788 if (*ip_cgtp_filter_value && (!new_value)) { 28789 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28790 ipst->ips_ip_cgtp_filter_ops == NULL ? 28791 " (module not loaded)" : ""); 28792 } 28793 28794 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28795 int res; 28796 netstackid_t stackid; 28797 28798 stackid = ipst->ips_netstack->netstack_stackid; 28799 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 28800 new_value); 28801 if (res) 28802 return (res); 28803 } 28804 28805 *ip_cgtp_filter_value = (boolean_t)new_value; 28806 28807 return (0); 28808 } 28809 28810 /* 28811 * Return the expected CGTP hooks version number. 28812 */ 28813 int 28814 ip_cgtp_filter_supported(void) 28815 { 28816 return (ip_cgtp_filter_rev); 28817 } 28818 28819 /* 28820 * CGTP hooks can be registered by invoking this function. 28821 * Checks that the version number matches. 28822 */ 28823 int 28824 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 28825 { 28826 netstack_t *ns; 28827 ip_stack_t *ipst; 28828 28829 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 28830 return (ENOTSUP); 28831 28832 ns = netstack_find_by_stackid(stackid); 28833 if (ns == NULL) 28834 return (EINVAL); 28835 ipst = ns->netstack_ip; 28836 ASSERT(ipst != NULL); 28837 28838 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28839 netstack_rele(ns); 28840 return (EALREADY); 28841 } 28842 28843 ipst->ips_ip_cgtp_filter_ops = ops; 28844 netstack_rele(ns); 28845 return (0); 28846 } 28847 28848 /* 28849 * CGTP hooks can be unregistered by invoking this function. 28850 * Returns ENXIO if there was no registration. 28851 * Returns EBUSY if the ndd variable has not been turned off. 28852 */ 28853 int 28854 ip_cgtp_filter_unregister(netstackid_t stackid) 28855 { 28856 netstack_t *ns; 28857 ip_stack_t *ipst; 28858 28859 ns = netstack_find_by_stackid(stackid); 28860 if (ns == NULL) 28861 return (EINVAL); 28862 ipst = ns->netstack_ip; 28863 ASSERT(ipst != NULL); 28864 28865 if (ipst->ips_ip_cgtp_filter) { 28866 netstack_rele(ns); 28867 return (EBUSY); 28868 } 28869 28870 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 28871 netstack_rele(ns); 28872 return (ENXIO); 28873 } 28874 ipst->ips_ip_cgtp_filter_ops = NULL; 28875 netstack_rele(ns); 28876 return (0); 28877 } 28878 28879 /* 28880 * Check whether there is a CGTP filter registration. 28881 * Returns non-zero if there is a registration, otherwise returns zero. 28882 * Note: returns zero if bad stackid. 28883 */ 28884 int 28885 ip_cgtp_filter_is_registered(netstackid_t stackid) 28886 { 28887 netstack_t *ns; 28888 ip_stack_t *ipst; 28889 int ret; 28890 28891 ns = netstack_find_by_stackid(stackid); 28892 if (ns == NULL) 28893 return (0); 28894 ipst = ns->netstack_ip; 28895 ASSERT(ipst != NULL); 28896 28897 if (ipst->ips_ip_cgtp_filter_ops != NULL) 28898 ret = 1; 28899 else 28900 ret = 0; 28901 28902 netstack_rele(ns); 28903 return (ret); 28904 } 28905 28906 static int 28907 ip_squeue_switch(int val) 28908 { 28909 int rval = SQ_FILL; 28910 28911 switch (val) { 28912 case IP_SQUEUE_ENTER_NODRAIN: 28913 rval = SQ_NODRAIN; 28914 break; 28915 case IP_SQUEUE_ENTER: 28916 rval = SQ_PROCESS; 28917 break; 28918 default: 28919 break; 28920 } 28921 return (rval); 28922 } 28923 28924 /* ARGSUSED */ 28925 static int 28926 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 28927 caddr_t addr, cred_t *cr) 28928 { 28929 int *v = (int *)addr; 28930 long new_value; 28931 28932 if (secpolicy_net_config(cr, B_FALSE) != 0) 28933 return (EPERM); 28934 28935 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28936 return (EINVAL); 28937 28938 ip_squeue_flag = ip_squeue_switch(new_value); 28939 *v = new_value; 28940 return (0); 28941 } 28942 28943 /* 28944 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 28945 * ip_debug. 28946 */ 28947 /* ARGSUSED */ 28948 static int 28949 ip_int_set(queue_t *q, mblk_t *mp, char *value, 28950 caddr_t addr, cred_t *cr) 28951 { 28952 int *v = (int *)addr; 28953 long new_value; 28954 28955 if (secpolicy_net_config(cr, B_FALSE) != 0) 28956 return (EPERM); 28957 28958 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28959 return (EINVAL); 28960 28961 *v = new_value; 28962 return (0); 28963 } 28964 28965 static void * 28966 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 28967 { 28968 kstat_t *ksp; 28969 28970 ip_stat_t template = { 28971 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 28972 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 28973 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 28974 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 28975 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 28976 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 28977 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 28978 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 28979 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 28980 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 28981 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 28982 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 28983 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 28984 { "ip_db_ref", KSTAT_DATA_UINT64 }, 28985 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 28986 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 28987 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 28988 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 28989 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 28990 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 28991 { "ip_opt", KSTAT_DATA_UINT64 }, 28992 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 28993 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 28994 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 28995 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 28996 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 28997 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 28998 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 28999 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29000 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29001 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29002 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29003 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29004 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29005 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29006 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29007 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29008 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29009 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29010 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29011 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29012 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29013 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29014 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29015 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29016 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29017 }; 29018 29019 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29020 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29021 KSTAT_FLAG_VIRTUAL, stackid); 29022 29023 if (ksp == NULL) 29024 return (NULL); 29025 29026 bcopy(&template, ip_statisticsp, sizeof (template)); 29027 ksp->ks_data = (void *)ip_statisticsp; 29028 ksp->ks_private = (void *)(uintptr_t)stackid; 29029 29030 kstat_install(ksp); 29031 return (ksp); 29032 } 29033 29034 static void 29035 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29036 { 29037 if (ksp != NULL) { 29038 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29039 kstat_delete_netstack(ksp, stackid); 29040 } 29041 } 29042 29043 static void * 29044 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29045 { 29046 kstat_t *ksp; 29047 29048 ip_named_kstat_t template = { 29049 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29050 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29051 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29052 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29053 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29054 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29055 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29056 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29057 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29058 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29059 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29060 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29061 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29062 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29063 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29064 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29065 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29066 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29067 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29068 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29069 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29070 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29071 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29072 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29073 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29074 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29075 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29076 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29077 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29078 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29079 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29080 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29081 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29082 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29083 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29084 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29085 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29086 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29087 }; 29088 29089 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29090 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29091 if (ksp == NULL || ksp->ks_data == NULL) 29092 return (NULL); 29093 29094 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29095 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29096 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29097 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29098 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29099 29100 template.netToMediaEntrySize.value.i32 = 29101 sizeof (mib2_ipNetToMediaEntry_t); 29102 29103 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29104 29105 bcopy(&template, ksp->ks_data, sizeof (template)); 29106 ksp->ks_update = ip_kstat_update; 29107 ksp->ks_private = (void *)(uintptr_t)stackid; 29108 29109 kstat_install(ksp); 29110 return (ksp); 29111 } 29112 29113 static void 29114 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29115 { 29116 if (ksp != NULL) { 29117 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29118 kstat_delete_netstack(ksp, stackid); 29119 } 29120 } 29121 29122 static int 29123 ip_kstat_update(kstat_t *kp, int rw) 29124 { 29125 ip_named_kstat_t *ipkp; 29126 mib2_ipIfStatsEntry_t ipmib; 29127 ill_walk_context_t ctx; 29128 ill_t *ill; 29129 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29130 netstack_t *ns; 29131 ip_stack_t *ipst; 29132 29133 if (kp == NULL || kp->ks_data == NULL) 29134 return (EIO); 29135 29136 if (rw == KSTAT_WRITE) 29137 return (EACCES); 29138 29139 ns = netstack_find_by_stackid(stackid); 29140 if (ns == NULL) 29141 return (-1); 29142 ipst = ns->netstack_ip; 29143 if (ipst == NULL) { 29144 netstack_rele(ns); 29145 return (-1); 29146 } 29147 ipkp = (ip_named_kstat_t *)kp->ks_data; 29148 29149 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29150 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29151 ill = ILL_START_WALK_V4(&ctx, ipst); 29152 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29153 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29154 rw_exit(&ipst->ips_ill_g_lock); 29155 29156 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29157 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29158 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29159 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29160 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29161 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29162 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29163 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29164 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29165 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29166 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29167 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29168 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29169 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29170 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29171 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29172 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29173 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29174 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29175 29176 ipkp->routingDiscards.value.ui32 = 0; 29177 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29178 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29179 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29180 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29181 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29182 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29183 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29184 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29185 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29186 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29187 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29188 29189 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29190 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29191 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29192 29193 netstack_rele(ns); 29194 29195 return (0); 29196 } 29197 29198 static void * 29199 icmp_kstat_init(netstackid_t stackid) 29200 { 29201 kstat_t *ksp; 29202 29203 icmp_named_kstat_t template = { 29204 { "inMsgs", KSTAT_DATA_UINT32 }, 29205 { "inErrors", KSTAT_DATA_UINT32 }, 29206 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29207 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29208 { "inParmProbs", KSTAT_DATA_UINT32 }, 29209 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29210 { "inRedirects", KSTAT_DATA_UINT32 }, 29211 { "inEchos", KSTAT_DATA_UINT32 }, 29212 { "inEchoReps", KSTAT_DATA_UINT32 }, 29213 { "inTimestamps", KSTAT_DATA_UINT32 }, 29214 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29215 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29216 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29217 { "outMsgs", KSTAT_DATA_UINT32 }, 29218 { "outErrors", KSTAT_DATA_UINT32 }, 29219 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29220 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29221 { "outParmProbs", KSTAT_DATA_UINT32 }, 29222 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29223 { "outRedirects", KSTAT_DATA_UINT32 }, 29224 { "outEchos", KSTAT_DATA_UINT32 }, 29225 { "outEchoReps", KSTAT_DATA_UINT32 }, 29226 { "outTimestamps", KSTAT_DATA_UINT32 }, 29227 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29228 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29229 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29230 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29231 { "inUnknowns", KSTAT_DATA_UINT32 }, 29232 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29233 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29234 { "outDrops", KSTAT_DATA_UINT32 }, 29235 { "inOverFlows", KSTAT_DATA_UINT32 }, 29236 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29237 }; 29238 29239 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29240 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29241 if (ksp == NULL || ksp->ks_data == NULL) 29242 return (NULL); 29243 29244 bcopy(&template, ksp->ks_data, sizeof (template)); 29245 29246 ksp->ks_update = icmp_kstat_update; 29247 ksp->ks_private = (void *)(uintptr_t)stackid; 29248 29249 kstat_install(ksp); 29250 return (ksp); 29251 } 29252 29253 static void 29254 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29255 { 29256 if (ksp != NULL) { 29257 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29258 kstat_delete_netstack(ksp, stackid); 29259 } 29260 } 29261 29262 static int 29263 icmp_kstat_update(kstat_t *kp, int rw) 29264 { 29265 icmp_named_kstat_t *icmpkp; 29266 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29267 netstack_t *ns; 29268 ip_stack_t *ipst; 29269 29270 if ((kp == NULL) || (kp->ks_data == NULL)) 29271 return (EIO); 29272 29273 if (rw == KSTAT_WRITE) 29274 return (EACCES); 29275 29276 ns = netstack_find_by_stackid(stackid); 29277 if (ns == NULL) 29278 return (-1); 29279 ipst = ns->netstack_ip; 29280 if (ipst == NULL) { 29281 netstack_rele(ns); 29282 return (-1); 29283 } 29284 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29285 29286 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29287 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29288 icmpkp->inDestUnreachs.value.ui32 = 29289 ipst->ips_icmp_mib.icmpInDestUnreachs; 29290 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29291 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29292 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29293 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29294 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29295 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29296 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29297 icmpkp->inTimestampReps.value.ui32 = 29298 ipst->ips_icmp_mib.icmpInTimestampReps; 29299 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29300 icmpkp->inAddrMaskReps.value.ui32 = 29301 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29302 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29303 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29304 icmpkp->outDestUnreachs.value.ui32 = 29305 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29306 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29307 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29308 icmpkp->outSrcQuenchs.value.ui32 = 29309 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29310 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29311 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29312 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29313 icmpkp->outTimestamps.value.ui32 = 29314 ipst->ips_icmp_mib.icmpOutTimestamps; 29315 icmpkp->outTimestampReps.value.ui32 = 29316 ipst->ips_icmp_mib.icmpOutTimestampReps; 29317 icmpkp->outAddrMasks.value.ui32 = 29318 ipst->ips_icmp_mib.icmpOutAddrMasks; 29319 icmpkp->outAddrMaskReps.value.ui32 = 29320 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29321 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29322 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29323 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29324 icmpkp->outFragNeeded.value.ui32 = 29325 ipst->ips_icmp_mib.icmpOutFragNeeded; 29326 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29327 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29328 icmpkp->inBadRedirects.value.ui32 = 29329 ipst->ips_icmp_mib.icmpInBadRedirects; 29330 29331 netstack_rele(ns); 29332 return (0); 29333 } 29334 29335 /* 29336 * This is the fanout function for raw socket opened for SCTP. Note 29337 * that it is called after SCTP checks that there is no socket which 29338 * wants a packet. Then before SCTP handles this out of the blue packet, 29339 * this function is called to see if there is any raw socket for SCTP. 29340 * If there is and it is bound to the correct address, the packet will 29341 * be sent to that socket. Note that only one raw socket can be bound to 29342 * a port. This is assured in ipcl_sctp_hash_insert(); 29343 */ 29344 void 29345 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29346 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29347 zoneid_t zoneid) 29348 { 29349 conn_t *connp; 29350 queue_t *rq; 29351 mblk_t *first_mp; 29352 boolean_t secure; 29353 ip6_t *ip6h; 29354 ip_stack_t *ipst = recv_ill->ill_ipst; 29355 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29356 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29357 boolean_t sctp_csum_err = B_FALSE; 29358 29359 if (flags & IP_FF_SCTP_CSUM_ERR) { 29360 sctp_csum_err = B_TRUE; 29361 flags &= ~IP_FF_SCTP_CSUM_ERR; 29362 } 29363 29364 first_mp = mp; 29365 if (mctl_present) { 29366 mp = first_mp->b_cont; 29367 secure = ipsec_in_is_secure(first_mp); 29368 ASSERT(mp != NULL); 29369 } else { 29370 secure = B_FALSE; 29371 } 29372 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29373 29374 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29375 if (connp == NULL) { 29376 /* 29377 * Although raw sctp is not summed, OOB chunks must be. 29378 * Drop the packet here if the sctp checksum failed. 29379 */ 29380 if (sctp_csum_err) { 29381 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29382 freemsg(first_mp); 29383 return; 29384 } 29385 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29386 return; 29387 } 29388 rq = connp->conn_rq; 29389 if (!canputnext(rq)) { 29390 CONN_DEC_REF(connp); 29391 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29392 freemsg(first_mp); 29393 return; 29394 } 29395 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29396 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29397 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29398 (isv4 ? ipha : NULL), ip6h, mctl_present); 29399 if (first_mp == NULL) { 29400 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29401 CONN_DEC_REF(connp); 29402 return; 29403 } 29404 } 29405 /* 29406 * We probably should not send M_CTL message up to 29407 * raw socket. 29408 */ 29409 if (mctl_present) 29410 freeb(first_mp); 29411 29412 /* Initiate IPPF processing here if needed. */ 29413 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29414 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29415 ip_process(IPP_LOCAL_IN, &mp, 29416 recv_ill->ill_phyint->phyint_ifindex); 29417 if (mp == NULL) { 29418 CONN_DEC_REF(connp); 29419 return; 29420 } 29421 } 29422 29423 if (connp->conn_recvif || connp->conn_recvslla || 29424 ((connp->conn_ip_recvpktinfo || 29425 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29426 (flags & IP_FF_IPINFO))) { 29427 int in_flags = 0; 29428 29429 /* 29430 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29431 * IPF_RECVIF. 29432 */ 29433 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29434 in_flags = IPF_RECVIF; 29435 } 29436 if (connp->conn_recvslla) { 29437 in_flags |= IPF_RECVSLLA; 29438 } 29439 if (isv4) { 29440 mp = ip_add_info(mp, recv_ill, in_flags, 29441 IPCL_ZONEID(connp), ipst); 29442 } else { 29443 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29444 if (mp == NULL) { 29445 BUMP_MIB(recv_ill->ill_ip_mib, 29446 ipIfStatsInDiscards); 29447 CONN_DEC_REF(connp); 29448 return; 29449 } 29450 } 29451 } 29452 29453 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29454 /* 29455 * We are sending the IPSEC_IN message also up. Refer 29456 * to comments above this function. 29457 * This is the SOCK_RAW, IPPROTO_SCTP case. 29458 */ 29459 (connp->conn_recv)(connp, mp, NULL); 29460 CONN_DEC_REF(connp); 29461 } 29462 29463 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29464 { \ 29465 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29466 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29467 } 29468 /* 29469 * This function should be called only if all packet processing 29470 * including fragmentation is complete. Callers of this function 29471 * must set mp->b_prev to one of these values: 29472 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29473 * prior to handing over the mp as first argument to this function. 29474 * 29475 * If the ire passed by caller is incomplete, this function 29476 * queues the packet and if necessary, sends ARP request and bails. 29477 * If the ire passed is fully resolved, we simply prepend 29478 * the link-layer header to the packet, do ipsec hw acceleration 29479 * work if necessary, and send the packet out on the wire. 29480 * 29481 * NOTE: IPsec will only call this function with fully resolved 29482 * ires if hw acceleration is involved. 29483 * TODO list : 29484 * a Handle M_MULTIDATA so that 29485 * tcp_multisend->tcp_multisend_data can 29486 * call ip_xmit_v4 directly 29487 * b Handle post-ARP work for fragments so that 29488 * ip_wput_frag can call this function. 29489 */ 29490 ipxmit_state_t 29491 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, 29492 boolean_t flow_ctl_enabled, conn_t *connp) 29493 { 29494 nce_t *arpce; 29495 ipha_t *ipha; 29496 queue_t *q; 29497 int ill_index; 29498 mblk_t *nxt_mp, *first_mp; 29499 boolean_t xmit_drop = B_FALSE; 29500 ip_proc_t proc; 29501 ill_t *out_ill; 29502 int pkt_len; 29503 29504 arpce = ire->ire_nce; 29505 ASSERT(arpce != NULL); 29506 29507 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29508 29509 mutex_enter(&arpce->nce_lock); 29510 switch (arpce->nce_state) { 29511 case ND_REACHABLE: 29512 /* If there are other queued packets, queue this packet */ 29513 if (arpce->nce_qd_mp != NULL) { 29514 if (mp != NULL) 29515 nce_queue_mp_common(arpce, mp, B_FALSE); 29516 mp = arpce->nce_qd_mp; 29517 } 29518 arpce->nce_qd_mp = NULL; 29519 mutex_exit(&arpce->nce_lock); 29520 29521 /* 29522 * Flush the queue. In the common case, where the 29523 * ARP is already resolved, it will go through the 29524 * while loop only once. 29525 */ 29526 while (mp != NULL) { 29527 29528 nxt_mp = mp->b_next; 29529 mp->b_next = NULL; 29530 ASSERT(mp->b_datap->db_type != M_CTL); 29531 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29532 /* 29533 * This info is needed for IPQOS to do COS marking 29534 * in ip_wput_attach_llhdr->ip_process. 29535 */ 29536 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29537 mp->b_prev = NULL; 29538 29539 /* set up ill index for outbound qos processing */ 29540 out_ill = ire_to_ill(ire); 29541 ill_index = out_ill->ill_phyint->phyint_ifindex; 29542 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29543 ill_index, &ipha); 29544 if (first_mp == NULL) { 29545 xmit_drop = B_TRUE; 29546 BUMP_MIB(out_ill->ill_ip_mib, 29547 ipIfStatsOutDiscards); 29548 goto next_mp; 29549 } 29550 29551 /* non-ipsec hw accel case */ 29552 if (io == NULL || !io->ipsec_out_accelerated) { 29553 /* send it */ 29554 q = ire->ire_stq; 29555 if (proc == IPP_FWD_OUT) { 29556 UPDATE_IB_PKT_COUNT(ire); 29557 } else { 29558 UPDATE_OB_PKT_COUNT(ire); 29559 } 29560 ire->ire_last_used_time = lbolt; 29561 29562 if (flow_ctl_enabled || canputnext(q)) { 29563 if (proc == IPP_FWD_OUT) { 29564 29565 BUMP_MIB(out_ill->ill_ip_mib, 29566 ipIfStatsHCOutForwDatagrams); 29567 29568 } 29569 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29570 pkt_len); 29571 29572 DTRACE_IP7(send, mblk_t *, first_mp, 29573 conn_t *, NULL, void_ip_t *, ipha, 29574 __dtrace_ipsr_ill_t *, out_ill, 29575 ipha_t *, ipha, ip6_t *, NULL, int, 29576 0); 29577 29578 ILL_SEND_TX(out_ill, 29579 ire, connp, first_mp, 0, connp); 29580 } else { 29581 BUMP_MIB(out_ill->ill_ip_mib, 29582 ipIfStatsOutDiscards); 29583 xmit_drop = B_TRUE; 29584 freemsg(first_mp); 29585 } 29586 } else { 29587 /* 29588 * Safety Pup says: make sure this 29589 * is going to the right interface! 29590 */ 29591 ill_t *ill1 = 29592 (ill_t *)ire->ire_stq->q_ptr; 29593 int ifindex = 29594 ill1->ill_phyint->phyint_ifindex; 29595 if (ifindex != 29596 io->ipsec_out_capab_ill_index) { 29597 xmit_drop = B_TRUE; 29598 freemsg(mp); 29599 } else { 29600 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29601 pkt_len); 29602 29603 DTRACE_IP7(send, mblk_t *, first_mp, 29604 conn_t *, NULL, void_ip_t *, ipha, 29605 __dtrace_ipsr_ill_t *, ill1, 29606 ipha_t *, ipha, ip6_t *, NULL, 29607 int, 0); 29608 29609 ipsec_hw_putnext(ire->ire_stq, mp); 29610 } 29611 } 29612 next_mp: 29613 mp = nxt_mp; 29614 } /* while (mp != NULL) */ 29615 if (xmit_drop) 29616 return (SEND_FAILED); 29617 else 29618 return (SEND_PASSED); 29619 29620 case ND_INITIAL: 29621 case ND_INCOMPLETE: 29622 29623 /* 29624 * While we do send off packets to dests that 29625 * use fully-resolved CGTP routes, we do not 29626 * handle unresolved CGTP routes. 29627 */ 29628 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29629 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29630 29631 if (mp != NULL) { 29632 /* queue the packet */ 29633 nce_queue_mp_common(arpce, mp, B_FALSE); 29634 } 29635 29636 if (arpce->nce_state == ND_INCOMPLETE) { 29637 mutex_exit(&arpce->nce_lock); 29638 DTRACE_PROBE3(ip__xmit__incomplete, 29639 (ire_t *), ire, (mblk_t *), mp, 29640 (ipsec_out_t *), io); 29641 return (LOOKUP_IN_PROGRESS); 29642 } 29643 29644 arpce->nce_state = ND_INCOMPLETE; 29645 mutex_exit(&arpce->nce_lock); 29646 29647 /* 29648 * Note that ire_add() (called from ire_forward()) 29649 * holds a ref on the ire until ARP is completed. 29650 */ 29651 ire_arpresolve(ire); 29652 return (LOOKUP_IN_PROGRESS); 29653 default: 29654 ASSERT(0); 29655 mutex_exit(&arpce->nce_lock); 29656 return (LLHDR_RESLV_FAILED); 29657 } 29658 } 29659 29660 #undef UPDATE_IP_MIB_OB_COUNTERS 29661 29662 /* 29663 * Return B_TRUE if the buffers differ in length or content. 29664 * This is used for comparing extension header buffers. 29665 * Note that an extension header would be declared different 29666 * even if all that changed was the next header value in that header i.e. 29667 * what really changed is the next extension header. 29668 */ 29669 boolean_t 29670 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29671 uint_t blen) 29672 { 29673 if (!b_valid) 29674 blen = 0; 29675 29676 if (alen != blen) 29677 return (B_TRUE); 29678 if (alen == 0) 29679 return (B_FALSE); /* Both zero length */ 29680 return (bcmp(abuf, bbuf, alen)); 29681 } 29682 29683 /* 29684 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29685 * Return B_FALSE if memory allocation fails - don't change any state! 29686 */ 29687 boolean_t 29688 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29689 const void *src, uint_t srclen) 29690 { 29691 void *dst; 29692 29693 if (!src_valid) 29694 srclen = 0; 29695 29696 ASSERT(*dstlenp == 0); 29697 if (src != NULL && srclen != 0) { 29698 dst = mi_alloc(srclen, BPRI_MED); 29699 if (dst == NULL) 29700 return (B_FALSE); 29701 } else { 29702 dst = NULL; 29703 } 29704 if (*dstp != NULL) 29705 mi_free(*dstp); 29706 *dstp = dst; 29707 *dstlenp = dst == NULL ? 0 : srclen; 29708 return (B_TRUE); 29709 } 29710 29711 /* 29712 * Replace what is in *dst, *dstlen with the source. 29713 * Assumes ip_allocbuf has already been called. 29714 */ 29715 void 29716 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29717 const void *src, uint_t srclen) 29718 { 29719 if (!src_valid) 29720 srclen = 0; 29721 29722 ASSERT(*dstlenp == srclen); 29723 if (src != NULL && srclen != 0) 29724 bcopy(src, *dstp, srclen); 29725 } 29726 29727 /* 29728 * Free the storage pointed to by the members of an ip6_pkt_t. 29729 */ 29730 void 29731 ip6_pkt_free(ip6_pkt_t *ipp) 29732 { 29733 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 29734 29735 if (ipp->ipp_fields & IPPF_HOPOPTS) { 29736 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 29737 ipp->ipp_hopopts = NULL; 29738 ipp->ipp_hopoptslen = 0; 29739 } 29740 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 29741 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 29742 ipp->ipp_rtdstopts = NULL; 29743 ipp->ipp_rtdstoptslen = 0; 29744 } 29745 if (ipp->ipp_fields & IPPF_DSTOPTS) { 29746 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 29747 ipp->ipp_dstopts = NULL; 29748 ipp->ipp_dstoptslen = 0; 29749 } 29750 if (ipp->ipp_fields & IPPF_RTHDR) { 29751 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 29752 ipp->ipp_rthdr = NULL; 29753 ipp->ipp_rthdrlen = 0; 29754 } 29755 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 29756 IPPF_RTHDR); 29757 } 29758 29759 zoneid_t 29760 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_stack_t *ipst, 29761 zoneid_t lookup_zoneid) 29762 { 29763 ire_t *ire; 29764 int ire_flags = MATCH_IRE_TYPE; 29765 zoneid_t zoneid = ALL_ZONES; 29766 29767 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 29768 return (ALL_ZONES); 29769 29770 if (lookup_zoneid != ALL_ZONES) 29771 ire_flags |= MATCH_IRE_ZONEONLY; 29772 ire = ire_ctable_lookup(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, NULL, 29773 lookup_zoneid, NULL, ire_flags, ipst); 29774 if (ire != NULL) { 29775 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 29776 ire_refrele(ire); 29777 } 29778 return (zoneid); 29779 } 29780 29781 zoneid_t 29782 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 29783 ip_stack_t *ipst, zoneid_t lookup_zoneid) 29784 { 29785 ire_t *ire; 29786 int ire_flags = MATCH_IRE_TYPE; 29787 zoneid_t zoneid = ALL_ZONES; 29788 ipif_t *ipif_arg = NULL; 29789 29790 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 29791 return (ALL_ZONES); 29792 29793 if (IN6_IS_ADDR_LINKLOCAL(addr)) { 29794 ire_flags |= MATCH_IRE_ILL; 29795 ipif_arg = ill->ill_ipif; 29796 } 29797 if (lookup_zoneid != ALL_ZONES) 29798 ire_flags |= MATCH_IRE_ZONEONLY; 29799 ire = ire_ctable_lookup_v6(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, 29800 ipif_arg, lookup_zoneid, NULL, ire_flags, ipst); 29801 if (ire != NULL) { 29802 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 29803 ire_refrele(ire); 29804 } 29805 return (zoneid); 29806 } 29807 29808 /* 29809 * IP obserability hook support functions. 29810 */ 29811 static void 29812 ipobs_init(ip_stack_t *ipst) 29813 { 29814 netid_t id; 29815 29816 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 29817 29818 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 29819 VERIFY(ipst->ips_ip4_observe_pr != NULL); 29820 29821 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 29822 VERIFY(ipst->ips_ip6_observe_pr != NULL); 29823 } 29824 29825 static void 29826 ipobs_fini(ip_stack_t *ipst) 29827 { 29828 29829 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 29830 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 29831 } 29832 29833 /* 29834 * hook_pkt_observe_t is composed in network byte order so that the 29835 * entire mblk_t chain handed into hook_run can be used as-is. 29836 * The caveat is that use of the fields, such as the zone fields, 29837 * requires conversion into host byte order first. 29838 */ 29839 void 29840 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 29841 const ill_t *ill, ip_stack_t *ipst) 29842 { 29843 hook_pkt_observe_t *hdr; 29844 uint64_t grifindex; 29845 mblk_t *imp; 29846 29847 imp = allocb(sizeof (*hdr), BPRI_HI); 29848 if (imp == NULL) 29849 return; 29850 29851 hdr = (hook_pkt_observe_t *)imp->b_rptr; 29852 /* 29853 * b_wptr is set to make the apparent size of the data in the mblk_t 29854 * to exclude the pointers at the end of hook_pkt_observer_t. 29855 */ 29856 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 29857 imp->b_cont = mp; 29858 29859 ASSERT(DB_TYPE(mp) == M_DATA); 29860 29861 if (IS_UNDER_IPMP(ill)) 29862 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 29863 else 29864 grifindex = 0; 29865 29866 hdr->hpo_version = 1; 29867 hdr->hpo_htype = htype; 29868 hdr->hpo_pktlen = htons((ushort_t)msgdsize(mp)); 29869 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 29870 hdr->hpo_grifindex = htonl(grifindex); 29871 hdr->hpo_zsrc = htonl(zsrc); 29872 hdr->hpo_zdst = htonl(zdst); 29873 hdr->hpo_pkt = imp; 29874 hdr->hpo_ctx = ipst->ips_netstack; 29875 29876 if (ill->ill_isv6) { 29877 hdr->hpo_family = AF_INET6; 29878 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 29879 ipst->ips_ipv6observing, (hook_data_t)hdr); 29880 } else { 29881 hdr->hpo_family = AF_INET; 29882 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 29883 ipst->ips_ipv4observing, (hook_data_t)hdr); 29884 } 29885 29886 imp->b_cont = NULL; 29887 freemsg(imp); 29888 } 29889