xref: /titanic_50/usr/src/uts/common/inet/ip/ip.c (revision 023e71de9e5670cebc23dd51162833661d3d2d3b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/dlpi.h>
31 #include <sys/stropts.h>
32 #include <sys/sysmacros.h>
33 #include <sys/strsubr.h>
34 #include <sys/strlog.h>
35 #include <sys/strsun.h>
36 #include <sys/zone.h>
37 #define	_SUN_TPI_VERSION 2
38 #include <sys/tihdr.h>
39 #include <sys/xti_inet.h>
40 #include <sys/ddi.h>
41 #include <sys/suntpi.h>
42 #include <sys/cmn_err.h>
43 #include <sys/debug.h>
44 #include <sys/kobj.h>
45 #include <sys/modctl.h>
46 #include <sys/atomic.h>
47 #include <sys/policy.h>
48 #include <sys/priv.h>
49 #include <sys/taskq.h>
50 
51 #include <sys/systm.h>
52 #include <sys/param.h>
53 #include <sys/kmem.h>
54 #include <sys/sdt.h>
55 #include <sys/socket.h>
56 #include <sys/vtrace.h>
57 #include <sys/isa_defs.h>
58 #include <sys/mac.h>
59 #include <net/if.h>
60 #include <net/if_arp.h>
61 #include <net/route.h>
62 #include <sys/sockio.h>
63 #include <netinet/in.h>
64 #include <net/if_dl.h>
65 
66 #include <inet/common.h>
67 #include <inet/mi.h>
68 #include <inet/mib2.h>
69 #include <inet/nd.h>
70 #include <inet/arp.h>
71 #include <inet/snmpcom.h>
72 #include <inet/optcom.h>
73 #include <inet/kstatcom.h>
74 
75 #include <netinet/igmp_var.h>
76 #include <netinet/ip6.h>
77 #include <netinet/icmp6.h>
78 #include <netinet/sctp.h>
79 
80 #include <inet/ip.h>
81 #include <inet/ip_impl.h>
82 #include <inet/ip6.h>
83 #include <inet/ip6_asp.h>
84 #include <inet/tcp.h>
85 #include <inet/tcp_impl.h>
86 #include <inet/ip_multi.h>
87 #include <inet/ip_if.h>
88 #include <inet/ip_ire.h>
89 #include <inet/ip_ftable.h>
90 #include <inet/ip_rts.h>
91 #include <inet/ip_ndp.h>
92 #include <inet/ip_listutils.h>
93 #include <netinet/igmp.h>
94 #include <netinet/ip_mroute.h>
95 #include <inet/ipp_common.h>
96 
97 #include <net/pfkeyv2.h>
98 #include <inet/sadb.h>
99 #include <inet/ipsec_impl.h>
100 #include <inet/iptun/iptun_impl.h>
101 #include <inet/ipdrop.h>
102 #include <inet/ip_netinfo.h>
103 #include <inet/ilb_ip.h>
104 
105 #include <sys/ethernet.h>
106 #include <net/if_types.h>
107 #include <sys/cpuvar.h>
108 
109 #include <ipp/ipp.h>
110 #include <ipp/ipp_impl.h>
111 #include <ipp/ipgpc/ipgpc.h>
112 
113 #include <sys/pattr.h>
114 #include <inet/ipclassifier.h>
115 #include <inet/sctp_ip.h>
116 #include <inet/sctp/sctp_impl.h>
117 #include <inet/udp_impl.h>
118 #include <inet/rawip_impl.h>
119 #include <inet/rts_impl.h>
120 
121 #include <sys/tsol/label.h>
122 #include <sys/tsol/tnet.h>
123 
124 #include <sys/squeue_impl.h>
125 #include <inet/ip_arp.h>
126 
127 #include <sys/clock_impl.h>	/* For LBOLT_FASTPATH{,64} */
128 
129 /*
130  * Values for squeue switch:
131  * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN
132  * IP_SQUEUE_ENTER: SQ_PROCESS
133  * IP_SQUEUE_FILL: SQ_FILL
134  */
135 int ip_squeue_enter = IP_SQUEUE_ENTER;	/* Setable in /etc/system */
136 
137 int ip_squeue_flag;
138 
139 /*
140  * Setable in /etc/system
141  */
142 int ip_poll_normal_ms = 100;
143 int ip_poll_normal_ticks = 0;
144 int ip_modclose_ackwait_ms = 3000;
145 
146 /*
147  * It would be nice to have these present only in DEBUG systems, but the
148  * current design of the global symbol checking logic requires them to be
149  * unconditionally present.
150  */
151 uint_t ip_thread_data;			/* TSD key for debug support */
152 krwlock_t ip_thread_rwlock;
153 list_t	ip_thread_list;
154 
155 /*
156  * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions.
157  */
158 
159 struct listptr_s {
160 	mblk_t	*lp_head;	/* pointer to the head of the list */
161 	mblk_t	*lp_tail;	/* pointer to the tail of the list */
162 };
163 
164 typedef struct listptr_s listptr_t;
165 
166 /*
167  * This is used by ip_snmp_get_mib2_ip_route_media and
168  * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data.
169  */
170 typedef struct iproutedata_s {
171 	uint_t		ird_idx;
172 	uint_t		ird_flags;	/* see below */
173 	listptr_t	ird_route;	/* ipRouteEntryTable */
174 	listptr_t	ird_netmedia;	/* ipNetToMediaEntryTable */
175 	listptr_t	ird_attrs;	/* ipRouteAttributeTable */
176 } iproutedata_t;
177 
178 /* Include ire_testhidden and IRE_IF_CLONE routes */
179 #define	IRD_REPORT_ALL	0x01
180 
181 /*
182  * Cluster specific hooks. These should be NULL when booted as a non-cluster
183  */
184 
185 /*
186  * Hook functions to enable cluster networking
187  * On non-clustered systems these vectors must always be NULL.
188  *
189  * Hook function to Check ip specified ip address is a shared ip address
190  * in the cluster
191  *
192  */
193 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
194     sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL;
195 
196 /*
197  * Hook function to generate cluster wide ip fragment identifier
198  */
199 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
200     sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp,
201     void *args) = NULL;
202 
203 /*
204  * Hook function to generate cluster wide SPI.
205  */
206 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t,
207     void *) = NULL;
208 
209 /*
210  * Hook function to verify if the SPI is already utlized.
211  */
212 
213 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
214 
215 /*
216  * Hook function to delete the SPI from the cluster wide repository.
217  */
218 
219 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
220 
221 /*
222  * Hook function to inform the cluster when packet received on an IDLE SA
223  */
224 
225 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t,
226     in6_addr_t, in6_addr_t, void *) = NULL;
227 
228 /*
229  * Synchronization notes:
230  *
231  * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any
232  * MT level protection given by STREAMS. IP uses a combination of its own
233  * internal serialization mechanism and standard Solaris locking techniques.
234  * The internal serialization is per phyint.  This is used to serialize
235  * plumbing operations, IPMP operations, most set ioctls, etc.
236  *
237  * Plumbing is a long sequence of operations involving message
238  * exchanges between IP, ARP and device drivers. Many set ioctls are typically
239  * involved in plumbing operations. A natural model is to serialize these
240  * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in
241  * parallel without any interference. But various set ioctls on hme0 are best
242  * serialized, along with IPMP operations and processing of DLPI control
243  * messages received from drivers on a per phyint basis. This serialization is
244  * provided by the ipsq_t and primitives operating on this. Details can
245  * be found in ip_if.c above the core primitives operating on ipsq_t.
246  *
247  * Lookups of an ipif or ill by a thread return a refheld ipif / ill.
248  * Simiarly lookup of an ire by a thread also returns a refheld ire.
249  * In addition ipif's and ill's referenced by the ire are also indirectly
250  * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld
251  * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the
252  * address of an ipif has to go through the ipsq_t. This ensures that only
253  * one such exclusive operation proceeds at any time on the ipif. It then
254  * waits for all refcnts
255  * associated with this ipif to come down to zero. The address is changed
256  * only after the ipif has been quiesced. Then the ipif is brought up again.
257  * More details are described above the comment in ip_sioctl_flags.
258  *
259  * Packet processing is based mostly on IREs and are fully multi-threaded
260  * using standard Solaris MT techniques.
261  *
262  * There are explicit locks in IP to handle:
263  * - The ip_g_head list maintained by mi_open_link() and friends.
264  *
265  * - The reassembly data structures (one lock per hash bucket)
266  *
267  * - conn_lock is meant to protect conn_t fields. The fields actually
268  *   protected by conn_lock are documented in the conn_t definition.
269  *
270  * - ire_lock to protect some of the fields of the ire, IRE tables
271  *   (one lock per hash bucket). Refer to ip_ire.c for details.
272  *
273  * - ndp_g_lock and ncec_lock for protecting NCEs.
274  *
275  * - ill_lock protects fields of the ill and ipif. Details in ip.h
276  *
277  * - ill_g_lock: This is a global reader/writer lock. Protects the following
278  *	* The AVL tree based global multi list of all ills.
279  *	* The linked list of all ipifs of an ill
280  *	* The <ipsq-xop> mapping
281  *	* <ill-phyint> association
282  *   Insertion/deletion of an ill in the system, insertion/deletion of an ipif
283  *   into an ill, changing the <ipsq-xop> mapping of an ill, changing the
284  *   <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as
285  *   writer for the actual duration of the insertion/deletion/change.
286  *
287  * - ill_lock:  This is a per ill mutex.
288  *   It protects some members of the ill_t struct; see ip.h for details.
289  *   It also protects the <ill-phyint> assoc.
290  *   It also protects the list of ipifs hanging off the ill.
291  *
292  * - ipsq_lock: This is a per ipsq_t mutex lock.
293  *   This protects some members of the ipsq_t struct; see ip.h for details.
294  *   It also protects the <ipsq-ipxop> mapping
295  *
296  * - ipx_lock: This is a per ipxop_t mutex lock.
297  *   This protects some members of the ipxop_t struct; see ip.h for details.
298  *
299  * - phyint_lock: This is a per phyint mutex lock. Protects just the
300  *   phyint_flags
301  *
302  * - ip_g_nd_lock: This is a global reader/writer lock.
303  *   Any call to nd_load to load a new parameter to the ND table must hold the
304  *   lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock
305  *   as reader.
306  *
307  * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses.
308  *   This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the
309  *   uniqueness check also done atomically.
310  *
311  * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc
312  *   group list linked by ill_usesrc_grp_next. It also protects the
313  *   ill_usesrc_ifindex field. It is taken as a writer when a member of the
314  *   group is being added or deleted.  This lock is taken as a reader when
315  *   walking the list/group(eg: to get the number of members in a usesrc group).
316  *   Note, it is only necessary to take this lock if the ill_usesrc_grp_next
317  *   field is changing state i.e from NULL to non-NULL or vice-versa. For
318  *   example, it is not necessary to take this lock in the initial portion
319  *   of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these
320  *   operations are executed exclusively and that ensures that the "usesrc
321  *   group state" cannot change. The "usesrc group state" change can happen
322  *   only in the latter part of ip_sioctl_slifusesrc and in ill_delete.
323  *
324  * Changing <ill-phyint>, <ipsq-xop> assocications:
325  *
326  * To change the <ill-phyint> association, the ill_g_lock must be held
327  * as writer, and the ill_locks of both the v4 and v6 instance of the ill
328  * must be held.
329  *
330  * To change the <ipsq-xop> association, the ill_g_lock must be held as
331  * writer, the ipsq_lock must be held, and one must be writer on the ipsq.
332  * This is only done when ills are added or removed from IPMP groups.
333  *
334  * To add or delete an ipif from the list of ipifs hanging off the ill,
335  * ill_g_lock (writer) and ill_lock must be held and the thread must be
336  * a writer on the associated ipsq.
337  *
338  * To add or delete an ill to the system, the ill_g_lock must be held as
339  * writer and the thread must be a writer on the associated ipsq.
340  *
341  * To add or delete an ilm to an ill, the ill_lock must be held and the thread
342  * must be a writer on the associated ipsq.
343  *
344  * Lock hierarchy
345  *
346  * Some lock hierarchy scenarios are listed below.
347  *
348  * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock
349  * ill_g_lock -> ill_lock(s) -> phyint_lock
350  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock
351  * ill_g_lock -> ip_addr_avail_lock
352  * conn_lock -> irb_lock -> ill_lock -> ire_lock
353  * ill_g_lock -> ip_g_nd_lock
354  * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock
355  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock
356  * arl_lock -> ill_lock
357  * ips_ire_dep_lock -> irb_lock
358  *
359  * When more than 1 ill lock is needed to be held, all ill lock addresses
360  * are sorted on address and locked starting from highest addressed lock
361  * downward.
362  *
363  * Multicast scenarios
364  * ips_ill_g_lock -> ill_mcast_lock
365  * conn_ilg_lock -> ips_ill_g_lock -> ill_lock
366  * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock
367  * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock
368  * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock
369  * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock
370  *
371  * IPsec scenarios
372  *
373  * ipsa_lock -> ill_g_lock -> ill_lock
374  * ill_g_usesrc_lock -> ill_g_lock -> ill_lock
375  *
376  * Trusted Solaris scenarios
377  *
378  * igsa_lock -> gcgrp_rwlock -> gcgrp_lock
379  * igsa_lock -> gcdb_lock
380  * gcgrp_rwlock -> ire_lock
381  * gcgrp_rwlock -> gcdb_lock
382  *
383  * squeue(sq_lock), flow related (ft_lock, fe_lock) locking
384  *
385  * cpu_lock --> ill_lock --> sqset_lock --> sq_lock
386  * sq_lock -> conn_lock -> QLOCK(q)
387  * ill_lock -> ft_lock -> fe_lock
388  *
389  * Routing/forwarding table locking notes:
390  *
391  * Lock acquisition order: Radix tree lock, irb_lock.
392  * Requirements:
393  * i.  Walker must not hold any locks during the walker callback.
394  * ii  Walker must not see a truncated tree during the walk because of any node
395  *     deletion.
396  * iii Existing code assumes ire_bucket is valid if it is non-null and is used
397  *     in many places in the code to walk the irb list. Thus even if all the
398  *     ires in a bucket have been deleted, we still can't free the radix node
399  *     until the ires have actually been inactive'd (freed).
400  *
401  * Tree traversal - Need to hold the global tree lock in read mode.
402  * Before dropping the global tree lock, need to either increment the ire_refcnt
403  * to ensure that the radix node can't be deleted.
404  *
405  * Tree add - Need to hold the global tree lock in write mode to add a
406  * radix node. To prevent the node from being deleted, increment the
407  * irb_refcnt, after the node is added to the tree. The ire itself is
408  * added later while holding the irb_lock, but not the tree lock.
409  *
410  * Tree delete - Need to hold the global tree lock and irb_lock in write mode.
411  * All associated ires must be inactive (i.e. freed), and irb_refcnt
412  * must be zero.
413  *
414  * Walker - Increment irb_refcnt before calling the walker callback. Hold the
415  * global tree lock (read mode) for traversal.
416  *
417  * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele
418  * hence we will acquire irb_lock while holding ips_ire_dep_lock.
419  *
420  * IPsec notes :
421  *
422  * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes
423  * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the
424  * ip_xmit_attr_t has the
425  * information used by the IPsec code for applying the right level of
426  * protection. The information initialized by IP in the ip_xmit_attr_t
427  * is determined by the per-socket policy or global policy in the system.
428  * For inbound datagrams, the ip_recv_attr_t
429  * starts out with nothing in it. It gets filled
430  * with the right information if it goes through the AH/ESP code, which
431  * happens if the incoming packet is secure. The information initialized
432  * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether
433  * the policy requirements needed by per-socket policy or global policy
434  * is met or not.
435  *
436  * For fully connected sockets i.e dst, src [addr, port] is known,
437  * conn_policy_cached is set indicating that policy has been cached.
438  * conn_in_enforce_policy may or may not be set depending on whether
439  * there is a global policy match or per-socket policy match.
440  * Policy inheriting happpens in ip_policy_set once the destination is known.
441  * Once the right policy is set on the conn_t, policy cannot change for
442  * this socket. This makes life simpler for TCP (UDP ?) where
443  * re-transmissions go out with the same policy. For symmetry, policy
444  * is cached for fully connected UDP sockets also. Thus if policy is cached,
445  * it also implies that policy is latched i.e policy cannot change
446  * on these sockets. As we have the right policy on the conn, we don't
447  * have to lookup global policy for every outbound and inbound datagram
448  * and thus serving as an optimization. Note that a global policy change
449  * does not affect fully connected sockets if they have policy. If fully
450  * connected sockets did not have any policy associated with it, global
451  * policy change may affect them.
452  *
453  * IP Flow control notes:
454  * ---------------------
455  * Non-TCP streams are flow controlled by IP. The way this is accomplished
456  * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When
457  * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into
458  * GLDv3. Otherwise packets are sent down to lower layers using STREAMS
459  * functions.
460  *
461  * Per Tx ring udp flow control:
462  * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in
463  * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true).
464  *
465  * The underlying link can expose multiple Tx rings to the GLDv3 mac layer.
466  * To achieve best performance, outgoing traffic need to be fanned out among
467  * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send
468  * traffic out of the NIC and it takes a fanout hint. UDP connections pass
469  * the address of connp as fanout hint to mac_tx(). Under flow controlled
470  * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This
471  * cookie points to a specific Tx ring that is blocked. The cookie is used to
472  * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t
473  * point to drain_lists (idl_t's). These drain list will store the blocked UDP
474  * connp's. The drain list is not a single list but a configurable number of
475  * lists.
476  *
477  * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t
478  * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE
479  * which is equal to 128. This array in turn contains a pointer to idl_t[],
480  * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain
481  * list will point to the list of connp's that are flow controlled.
482  *
483  *                      ---------------   -------   -------   -------
484  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
485  *                   |  ---------------   -------   -------   -------
486  *                   |  ---------------   -------   -------   -------
487  *                   |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
488  * ----------------  |  ---------------   -------   -------   -------
489  * |idl_tx_list[0]|->|  ---------------   -------   -------   -------
490  * ----------------  |->|drain_list[2]|-->|connp|-->|connp|-->|connp|-->
491  *                   |  ---------------   -------   -------   -------
492  *                   .        .              .         .         .
493  *                   |  ---------------   -------   -------   -------
494  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
495  *                      ---------------   -------   -------   -------
496  *                      ---------------   -------   -------   -------
497  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
498  *                   |  ---------------   -------   -------   -------
499  *                   |  ---------------   -------   -------   -------
500  * ----------------  |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
501  * |idl_tx_list[1]|->|  ---------------   -------   -------   -------
502  * ----------------  |        .              .         .         .
503  *                   |  ---------------   -------   -------   -------
504  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
505  *                      ---------------   -------   -------   -------
506  *     .....
507  * ----------------
508  * |idl_tx_list[n]|-> ...
509  * ----------------
510  *
511  * When mac_tx() returns a cookie, the cookie is used to hash into a
512  * idl_tx_list in ips_idl_tx_list[] array. Then conn_drain_insert() is
513  * called passing idl_tx_list. The connp gets inserted in a drain list
514  * pointed to by idl_tx_list. conn_drain_list() asserts flow control for
515  * the sockets (non stream based) and sets QFULL condition on the conn_wq
516  * of streams sockets, or the su_txqfull for non-streams sockets.
517  * connp->conn_direct_blocked will be set to indicate the blocked
518  * condition.
519  *
520  * GLDv3 mac layer calls ill_flow_enable() when flow control is relieved.
521  * A cookie is passed in the call to ill_flow_enable() that identifies the
522  * blocked Tx ring. This cookie is used to get to the idl_tx_list that
523  * contains the blocked connp's. conn_walk_drain() uses the idl_tx_list_t
524  * and goes through each conn in the drain list and calls conn_idl_remove
525  * for the conn to clear the qfull condition for the conn, as well as to
526  * remove the conn from the idl list. In addition, streams based sockets
527  * will have the conn_wq enabled, causing ip_wsrv to run for the
528  * conn. ip_wsrv drains the queued messages, and removes the conn from the
529  * drain list, if all messages were drained. It also notifies the
530  * conn_upcalls for the conn to signal that flow-control has opened up.
531  *
532  * In reality the drain list is not a single list, but a configurable number
533  * of lists. conn_walk_drain() in the IP module, notifies the conn_upcalls for
534  * each conn in the list. conn_drain_insert and conn_drain_tail are the only
535  * functions that manipulate this drain list. conn_drain_insert is called in
536  * from the protocol layer when conn_ip_output returns EWOULDBLOCK.
537  * (as opposed to from ip_wsrv context for STREAMS
538  * case -- see below). The synchronization between drain insertion and flow
539  * control wakeup is handled by using idl_txl->txl_lock.
540  *
541  * Flow control using STREAMS:
542  * When ILL_DIRECT_CAPABLE() is not TRUE, STREAMS flow control mechanism
543  * is used. On the send side, if the packet cannot be sent down to the
544  * driver by IP, because of a canput failure, ip_xmit drops the packet
545  * and returns EWOULDBLOCK to the caller, who may then invoke
546  * ixa_check_drain_insert to insert the conn on the 0'th drain list.
547  * When ip_wsrv runs on the ill_wq because flow control has been relieved, the
548  * blocked conns in the * 0'th drain list is drained as with the
549  * non-STREAMS case.
550  *
551  * In both the STREAMS and non-STREAMS case, the sockfs upcall to set
552  * qfull is done when the conn is inserted into the drain list
553  * (conn_drain_insert()) and cleared when the conn is removed from the drain
554  * list (conn_idl_remove()).
555  *
556  * IPQOS notes:
557  *
558  * IPQoS Policies are applied to packets using IPPF (IP Policy framework)
559  * and IPQoS modules. IPPF includes hooks in IP at different control points
560  * (callout positions) which direct packets to IPQoS modules for policy
561  * processing. Policies, if present, are global.
562  *
563  * The callout positions are located in the following paths:
564  *		o local_in (packets destined for this host)
565  *		o local_out (packets orginating from this host )
566  *		o fwd_in  (packets forwarded by this m/c - inbound)
567  *		o fwd_out (packets forwarded by this m/c - outbound)
568  * Hooks at these callout points can be enabled/disabled using the ndd variable
569  * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions).
570  * By default all the callout positions are enabled.
571  *
572  * Outbound (local_out)
573  * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6.
574  *
575  * Inbound (local_in)
576  * Hooks are placed in ip_fanout_v4 and ip_fanout_v6.
577  *
578  * Forwarding (in and out)
579  * Hooks are placed in ire_recv_forward_v4/v6.
580  *
581  * IP Policy Framework processing (IPPF processing)
582  * Policy processing for a packet is initiated by ip_process, which ascertains
583  * that the classifier (ipgpc) is loaded and configured, failing which the
584  * packet resumes normal processing in IP. If the clasifier is present, the
585  * packet is acted upon by one or more IPQoS modules (action instances), per
586  * filters configured in ipgpc and resumes normal IP processing thereafter.
587  * An action instance can drop a packet in course of its processing.
588  *
589  * Zones notes:
590  *
591  * The partitioning rules for networking are as follows:
592  * 1) Packets coming from a zone must have a source address belonging to that
593  * zone.
594  * 2) Packets coming from a zone can only be sent on a physical interface on
595  * which the zone has an IP address.
596  * 3) Between two zones on the same machine, packet delivery is only allowed if
597  * there's a matching route for the destination and zone in the forwarding
598  * table.
599  * 4) The TCP and UDP port spaces are per-zone; that is, two processes in
600  * different zones can bind to the same port with the wildcard address
601  * (INADDR_ANY).
602  *
603  * The granularity of interface partitioning is at the logical interface level.
604  * Therefore, every zone has its own IP addresses, and incoming packets can be
605  * attributed to a zone unambiguously. A logical interface is placed into a zone
606  * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t
607  * structure. Rule (1) is implemented by modifying the source address selection
608  * algorithm so that the list of eligible addresses is filtered based on the
609  * sending process zone.
610  *
611  * The Internet Routing Entries (IREs) are either exclusive to a zone or shared
612  * across all zones, depending on their type. Here is the break-up:
613  *
614  * IRE type				Shared/exclusive
615  * --------				----------------
616  * IRE_BROADCAST			Exclusive
617  * IRE_DEFAULT (default routes)		Shared (*)
618  * IRE_LOCAL				Exclusive (x)
619  * IRE_LOOPBACK				Exclusive
620  * IRE_PREFIX (net routes)		Shared (*)
621  * IRE_IF_NORESOLVER (interface routes)	Exclusive
622  * IRE_IF_RESOLVER (interface routes)	Exclusive
623  * IRE_IF_CLONE (interface routes)	Exclusive
624  * IRE_HOST (host routes)		Shared (*)
625  *
626  * (*) A zone can only use a default or off-subnet route if the gateway is
627  * directly reachable from the zone, that is, if the gateway's address matches
628  * one of the zone's logical interfaces.
629  *
630  * (x) IRE_LOCAL are handled a bit differently.
631  * When ip_restrict_interzone_loopback is set (the default),
632  * ire_route_recursive restricts loopback using an IRE_LOCAL
633  * between zone to the case when L2 would have conceptually looped the packet
634  * back, i.e. the loopback which is required since neither Ethernet drivers
635  * nor Ethernet hardware loops them back. This is the case when the normal
636  * routes (ignoring IREs with different zoneids) would send out the packet on
637  * the same ill as the ill with which is IRE_LOCAL is associated.
638  *
639  * Multiple zones can share a common broadcast address; typically all zones
640  * share the 255.255.255.255 address. Incoming as well as locally originated
641  * broadcast packets must be dispatched to all the zones on the broadcast
642  * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial
643  * since some zones may not be on the 10.16.72/24 network. To handle this, each
644  * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are
645  * sent to every zone that has an IRE_BROADCAST entry for the destination
646  * address on the input ill, see ip_input_broadcast().
647  *
648  * Applications in different zones can join the same multicast group address.
649  * The same logic applies for multicast as for broadcast. ip_input_multicast
650  * dispatches packets to all zones that have members on the physical interface.
651  */
652 
653 /*
654  * Squeue Fanout flags:
655  *	0: No fanout.
656  *	1: Fanout across all squeues
657  */
658 boolean_t	ip_squeue_fanout = 0;
659 
660 /*
661  * Maximum dups allowed per packet.
662  */
663 uint_t ip_max_frag_dups = 10;
664 
665 /* RFC 1122 Conformance */
666 #define	IP_FORWARD_DEFAULT	IP_FORWARD_NEVER
667 
668 #define	ILL_MAX_NAMELEN			LIFNAMSIZ
669 
670 static int	ip_open(queue_t *q, dev_t *devp, int flag, int sflag,
671 		    cred_t *credp, boolean_t isv6);
672 static mblk_t	*ip_xmit_attach_llhdr(mblk_t *, nce_t *);
673 
674 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *);
675 static void	icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *);
676 static void	icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *,
677     ip_recv_attr_t *);
678 static void	icmp_options_update(ipha_t *);
679 static void	icmp_param_problem(mblk_t *, uint8_t,  ip_recv_attr_t *);
680 static void	icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *);
681 static mblk_t	*icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *);
682 static void	icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *,
683     ip_recv_attr_t *);
684 static void	icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *);
685 static void	icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *,
686     ip_recv_attr_t *);
687 
688 mblk_t		*ip_dlpi_alloc(size_t, t_uscalar_t);
689 char		*ip_dot_addr(ipaddr_t, char *);
690 mblk_t		*ip_carve_mp(mblk_t **, ssize_t);
691 int		ip_close(queue_t *, int);
692 static char	*ip_dot_saddr(uchar_t *, char *);
693 static void	ip_lrput(queue_t *, mblk_t *);
694 ipaddr_t	ip_net_mask(ipaddr_t);
695 char		*ip_nv_lookup(nv_t *, int);
696 static int	ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *);
697 static int	ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *);
698 static boolean_t	ip_param_register(IDP *ndp, ipparam_t *, size_t,
699     ipndp_t *, size_t);
700 static int	ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *);
701 void	ip_rput(queue_t *, mblk_t *);
702 static void	ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
703 		    void *dummy_arg);
704 int		ip_snmp_get(queue_t *, mblk_t *, int);
705 static mblk_t	*ip_snmp_get_mib2_ip(queue_t *, mblk_t *,
706 		    mib2_ipIfStatsEntry_t *, ip_stack_t *);
707 static mblk_t	*ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *,
708 		    ip_stack_t *);
709 static mblk_t	*ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *);
710 static mblk_t	*ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst);
711 static mblk_t	*ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst);
712 static mblk_t	*ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst);
713 static mblk_t	*ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst);
714 static mblk_t	*ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *,
715 		    ip_stack_t *ipst);
716 static mblk_t	*ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *,
717 		    ip_stack_t *ipst);
718 static mblk_t	*ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *,
719 		    ip_stack_t *ipst);
720 static mblk_t	*ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *,
721 		    ip_stack_t *ipst);
722 static mblk_t	*ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *,
723 		    ip_stack_t *ipst);
724 static mblk_t	*ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *,
725 		    ip_stack_t *ipst);
726 static mblk_t	*ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *,
727 		    ip_stack_t *ipst);
728 static mblk_t	*ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *,
729 		    ip_stack_t *ipst);
730 static mblk_t	*ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int,
731 		    ip_stack_t *ipst);
732 static mblk_t	*ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int,
733 		    ip_stack_t *ipst);
734 static void	ip_snmp_get2_v4(ire_t *, iproutedata_t *);
735 static void	ip_snmp_get2_v6_route(ire_t *, iproutedata_t *);
736 static int	ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *);
737 static int	ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *);
738 int		ip_snmp_set(queue_t *, int, int, uchar_t *, int);
739 
740 static mblk_t	*ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *,
741 		    mblk_t *);
742 
743 static void	conn_drain_init(ip_stack_t *);
744 static void	conn_drain_fini(ip_stack_t *);
745 static void	conn_drain_tail(conn_t *connp, boolean_t closing);
746 
747 static void	conn_walk_drain(ip_stack_t *, idl_tx_list_t *);
748 static void	conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *);
749 
750 static void	*ip_stack_init(netstackid_t stackid, netstack_t *ns);
751 static void	ip_stack_shutdown(netstackid_t stackid, void *arg);
752 static void	ip_stack_fini(netstackid_t stackid, void *arg);
753 
754 static int	ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *);
755 
756 static int	ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
757     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
758     ire_t *, conn_t *, boolean_t, const in6_addr_t *,  mcast_record_t,
759     const in6_addr_t *);
760 
761 static int	ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *);
762 static int	ip_cgtp_filter_set(queue_t *, mblk_t *, char *,
763     caddr_t, cred_t *);
764 static int	ip_input_proc_set(queue_t *q, mblk_t *mp, char *value,
765     caddr_t cp, cred_t *cr);
766 static int	ip_int_set(queue_t *, mblk_t *, char *, caddr_t,
767     cred_t *);
768 static int	ip_squeue_switch(int);
769 
770 static void	*ip_kstat_init(netstackid_t, ip_stack_t *);
771 static void	ip_kstat_fini(netstackid_t, kstat_t *);
772 static int	ip_kstat_update(kstat_t *kp, int rw);
773 static void	*icmp_kstat_init(netstackid_t);
774 static void	icmp_kstat_fini(netstackid_t, kstat_t *);
775 static int	icmp_kstat_update(kstat_t *kp, int rw);
776 static void	*ip_kstat2_init(netstackid_t, ip_stat_t *);
777 static void	ip_kstat2_fini(netstackid_t, kstat_t *);
778 
779 static void	ipobs_init(ip_stack_t *);
780 static void	ipobs_fini(ip_stack_t *);
781 
782 ipaddr_t	ip_g_all_ones = IP_HOST_MASK;
783 
784 /* How long, in seconds, we allow frags to hang around. */
785 #define	IP_FRAG_TIMEOUT		15
786 #define	IPV6_FRAG_TIMEOUT	60
787 
788 static long ip_rput_pullups;
789 int	dohwcksum = 1;	/* use h/w cksum if supported by the hardware */
790 
791 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */
792 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */
793 
794 int	ip_debug;
795 
796 /*
797  * Multirouting/CGTP stuff
798  */
799 int	ip_cgtp_filter_rev = CGTP_FILTER_REV;	/* CGTP hooks version */
800 
801 /*
802  * Named Dispatch Parameter Table.
803  * All of these are alterable, within the min/max values given, at run time.
804  */
805 static ipparam_t	lcl_param_arr[] = {
806 	/* min	max	value	name */
807 	{  0,	1,	0,	"ip_respond_to_address_mask_broadcast"},
808 	{  0,	1,	1,	"ip_respond_to_echo_broadcast"},
809 	{  0,	1,	1,	"ip_respond_to_echo_multicast"},
810 	{  0,	1,	0,	"ip_respond_to_timestamp"},
811 	{  0,	1,	0,	"ip_respond_to_timestamp_broadcast"},
812 	{  0,	1,	1,	"ip_send_redirects"},
813 	{  0,	1,	0,	"ip_forward_directed_broadcasts"},
814 	{  0,	10,	0,	"ip_mrtdebug"},
815 	{  1,	8,	3,	"ip_ire_reclaim_fraction" },
816 	{  1,	8,	3,	"ip_nce_reclaim_fraction" },
817 	{  1,	8,	3,	"ip_dce_reclaim_fraction" },
818 	{  1,	255,	255,	"ip_def_ttl" },
819 	{  0,	1,	0,	"ip_forward_src_routed"},
820 	{  0,	256,	32,	"ip_wroff_extra" },
821 	{  2, 999999999, 60*20, "ip_pathmtu_interval" },	/* In seconds */
822 	{  8,	65536,  64,	"ip_icmp_return_data_bytes" },
823 	{  0,	1,	1,	"ip_path_mtu_discovery" },
824 	{ 68,	65535,	576,	"ip_pmtu_min" },
825 	{  0,	1,	0,	"ip_ignore_redirect" },
826 	{  0,	1,	0,	"ip_arp_icmp_error" },
827 	{  1,	254,	1,	"ip_broadcast_ttl" },
828 	{  0,	99999,	100,	"ip_icmp_err_interval" },
829 	{  1,	99999,	10,	"ip_icmp_err_burst" },
830 	{  0,	999999999,	1000000, "ip_reass_queue_bytes" },
831 	{  0,	1,	0,	"ip_strict_dst_multihoming" },
832 	{  1,	MAX_ADDRS_PER_IF,	256,	"ip_addrs_per_if"},
833 	{  0,	1,	0,	"ipsec_override_persocket_policy" },
834 	{  0,	1,	1,	"icmp_accept_clear_messages" },
835 	{  0,	1,	1,	"igmp_accept_clear_messages" },
836 	{  2,	999999999, ND_DELAY_FIRST_PROBE_TIME,
837 				"ip_ndp_delay_first_probe_time"},
838 	{  1,	999999999, ND_MAX_UNICAST_SOLICIT,
839 				"ip_ndp_max_unicast_solicit"},
840 	{  1,	255,	IPV6_MAX_HOPS,	"ip6_def_hops" },
841 	{  8,	IPV6_MIN_MTU,	IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" },
842 	{  0,	1,	0,	"ip6_forward_src_routed"},
843 	{  0,	1,	1,	"ip6_respond_to_echo_multicast"},
844 	{  0,	1,	1,	"ip6_send_redirects"},
845 	{  0,	1,	0,	"ip6_ignore_redirect" },
846 	{  0,	1,	0,	"ip6_strict_dst_multihoming" },
847 
848 	{  0,	2,	2,	"ip_src_check" },
849 
850 	{  0,	999999,	1000,	"ipsec_policy_log_interval" },
851 
852 	{  0,	1,	1,	"pim_accept_clear_messages" },
853 	{  1000, 20000,	2000,	"ip_ndp_unsolicit_interval" },
854 	{  1,	20,	3,	"ip_ndp_unsolicit_count" },
855 	{  0,	1,	1,	"ip6_ignore_home_address_opt" },
856 	{  0,	15,	0,	"ip_policy_mask" },
857 	{  0,	2,	2,	"ip_ecmp_behavior" },
858 	{  0,	255,	1,	"ip_multirt_ttl" },
859 	{  0,	3600,	60,	"ip_ire_badcnt_lifetime" },	/* In seconds */
860 	{  0,	999999,	60*60*24, "ip_max_temp_idle" },
861 	{  0,	1000,	1,	"ip_max_temp_defend" },
862 	/*
863 	 * when a conflict of an active address is detected,
864 	 * defend up to ip_max_defend times, within any
865 	 * ip_defend_interval span.
866 	 */
867 	{  0,	1000,	3,	"ip_max_defend" },
868 	{  0,	999999,	30,	"ip_defend_interval" },
869 	{  0,	3600000, 300000, "ip_dup_recovery" },
870 	{  0,	1,	1,	"ip_restrict_interzone_loopback" },
871 	{  0,	1,	1,	"ip_lso_outbound" },
872 	{  IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" },
873 	{  MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" },
874 #ifdef DEBUG
875 	{  0,	1,	0,	"ip6_drop_inbound_icmpv6" },
876 #else
877 	{  0,	0,	0,	"" },
878 #endif
879 	/* delay before sending first probe: */
880 	{  0,	20000,	1000,	"arp_probe_delay" },
881 	{  0,	20000,	100,	"arp_fastprobe_delay" },
882 	/* interval at which DAD probes are sent: */
883 	{ 10,	20000,	1500,	"arp_probe_interval" },
884 	{ 10,	20000,	150,	"arp_fastprobe_interval" },
885 	/* setting probe count to 0 will disable ARP probing for DAD. */
886 	{  0,	20,	3,	"arp_probe_count" },
887 	{  0,	20,	3,	"arp_fastprobe_count" },
888 
889 	{  0,	3600000, 15000,	"ipv4_dad_announce_interval"},
890 	{  0,	3600000, 15000,	"ipv6_dad_announce_interval"},
891 	/*
892 	 * Rate limiting parameters for DAD defense used in
893 	 * ill_defend_rate_limit():
894 	 * defend_rate : pkts/hour permitted
895 	 * defend_interval : time that can elapse before we send out a
896 	 *			DAD defense.
897 	 * defend_period: denominator for defend_rate (in seconds).
898 	 */
899 	{  0,	3600000, 300000,	"arp_defend_interval"},
900 	{  0,	20000, 100,		"arp_defend_rate"},
901 	{  0,	3600000, 300000,	"ndp_defend_interval"},
902 	{  0,	20000, 100,		"ndp_defend_rate"},
903 	{  5,	86400,	3600,		"arp_defend_period"},
904 	{  5,	86400,	3600,		"ndp_defend_period"},
905 	{  0,	1,	1,		"ipv4_icmp_return_pmtu" },
906 	{  0,	1,	1,		"ipv6_icmp_return_pmtu" },
907 	/*
908 	 * publish count/interval values used to announce local addresses
909 	 * for IPv4, IPv6.
910 	 */
911 	{  1,	20,	5,	"ip_arp_publish_count" },
912 	{  1000, 20000,	2000,	"ip_arp_publish_interval" },
913 };
914 
915 /*
916  * Extended NDP table
917  * The addresses for the first two are filled in to be ips_ip_g_forward
918  * and ips_ipv6_forward at init time.
919  */
920 static ipndp_t	lcl_ndp_arr[] = {
921 	/* getf			setf		data			name */
922 #define	IPNDP_IP_FORWARDING_OFFSET	0
923 	{  ip_param_generic_get,	ip_forward_set,	NULL,
924 	    "ip_forwarding" },
925 #define	IPNDP_IP6_FORWARDING_OFFSET	1
926 	{  ip_param_generic_get,	ip_forward_set,	NULL,
927 	    "ip6_forwarding" },
928 	{ ip_param_generic_get, ip_input_proc_set,
929 	    (caddr_t)&ip_squeue_enter, "ip_squeue_enter" },
930 	{ ip_param_generic_get, ip_int_set,
931 	    (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" },
932 #define	IPNDP_CGTP_FILTER_OFFSET	4
933 	{  ip_cgtp_filter_get,	ip_cgtp_filter_set, NULL,
934 	    "ip_cgtp_filter" },
935 	{  ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug,
936 	    "ip_debug" },
937 };
938 
939 /*
940  * Table of IP ioctls encoding the various properties of the ioctl and
941  * indexed based on the last byte of the ioctl command. Occasionally there
942  * is a clash, and there is more than 1 ioctl with the same last byte.
943  * In such a case 1 ioctl is encoded in the ndx table and the remaining
944  * ioctls are encoded in the misc table. An entry in the ndx table is
945  * retrieved by indexing on the last byte of the ioctl command and comparing
946  * the ioctl command with the value in the ndx table. In the event of a
947  * mismatch the misc table is then searched sequentially for the desired
948  * ioctl command.
949  *
950  * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func>
951  */
952 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = {
953 	/* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
954 	/* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
955 	/* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
956 	/* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
957 	/* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
958 	/* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
959 	/* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
960 	/* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
961 	/* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
962 	/* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
963 
964 	/* 010 */ { SIOCADDRT,	sizeof (struct rtentry), IPI_PRIV,
965 			MISC_CMD, ip_siocaddrt, NULL },
966 	/* 011 */ { SIOCDELRT,	sizeof (struct rtentry), IPI_PRIV,
967 			MISC_CMD, ip_siocdelrt, NULL },
968 
969 	/* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
970 			IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
971 	/* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD,
972 			IF_CMD, ip_sioctl_get_addr, NULL },
973 
974 	/* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
975 			IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
976 	/* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq),
977 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL },
978 
979 	/* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq),
980 			IPI_PRIV | IPI_WR,
981 			IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
982 	/* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq),
983 			IPI_MODOK | IPI_GET_CMD,
984 			IF_CMD, ip_sioctl_get_flags, NULL },
985 
986 	/* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
987 	/* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
988 
989 	/* copyin size cannot be coded for SIOCGIFCONF */
990 	/* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD,
991 			MISC_CMD, ip_sioctl_get_ifconf, NULL },
992 
993 	/* 021 */ { SIOCSIFMTU,	sizeof (struct ifreq), IPI_PRIV | IPI_WR,
994 			IF_CMD, ip_sioctl_mtu, NULL },
995 	/* 022 */ { SIOCGIFMTU,	sizeof (struct ifreq), IPI_GET_CMD,
996 			IF_CMD, ip_sioctl_get_mtu, NULL },
997 	/* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq),
998 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL },
999 	/* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
1000 			IF_CMD, ip_sioctl_brdaddr, NULL },
1001 	/* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq),
1002 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL },
1003 	/* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
1004 			IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
1005 	/* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq),
1006 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL },
1007 	/* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV,
1008 			IF_CMD, ip_sioctl_metric, NULL },
1009 	/* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1010 
1011 	/* See 166-168 below for extended SIOC*XARP ioctls */
1012 	/* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
1013 			ARP_CMD, ip_sioctl_arp, NULL },
1014 	/* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD,
1015 			ARP_CMD, ip_sioctl_arp, NULL },
1016 	/* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
1017 			ARP_CMD, ip_sioctl_arp, NULL },
1018 
1019 	/* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1020 	/* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1021 	/* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1022 	/* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1023 	/* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1024 	/* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1025 	/* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1026 	/* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1027 	/* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1028 	/* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1029 	/* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1030 	/* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1031 	/* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1032 	/* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1033 	/* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1034 	/* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1035 	/* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1036 	/* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1037 	/* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1038 	/* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1039 	/* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1040 
1041 	/* 054 */ { IF_UNITSEL,	sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK,
1042 			MISC_CMD, if_unitsel, if_unitsel_restart },
1043 
1044 	/* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1045 	/* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1046 	/* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1047 	/* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1048 	/* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1049 	/* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1050 	/* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1051 	/* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1052 	/* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1053 	/* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1054 	/* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1055 	/* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1056 	/* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1057 	/* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1058 	/* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1059 	/* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1060 	/* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1061 	/* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1062 
1063 	/* 073 */ { SIOCSIFNAME, sizeof (struct ifreq),
1064 			IPI_PRIV | IPI_WR | IPI_MODOK,
1065 			IF_CMD, ip_sioctl_sifname, NULL },
1066 
1067 	/* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1068 	/* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1069 	/* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1070 	/* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1071 	/* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1072 	/* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1073 	/* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1074 	/* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1075 	/* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1076 	/* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1077 	/* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1078 	/* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1079 	/* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1080 
1081 	/* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD,
1082 			MISC_CMD, ip_sioctl_get_ifnum, NULL },
1083 	/* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD,
1084 			IF_CMD, ip_sioctl_get_muxid, NULL },
1085 	/* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq),
1086 			IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL },
1087 
1088 	/* Both if and lif variants share same func */
1089 	/* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD,
1090 			IF_CMD, ip_sioctl_get_lifindex, NULL },
1091 	/* Both if and lif variants share same func */
1092 	/* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq),
1093 			IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL },
1094 
1095 	/* copyin size cannot be coded for SIOCGIFCONF */
1096 	/* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD,
1097 			MISC_CMD, ip_sioctl_get_ifconf, NULL },
1098 	/* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1099 	/* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1100 	/* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1101 	/* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1102 	/* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1103 	/* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1104 	/* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1105 	/* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1106 	/* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1107 	/* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1108 	/* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1109 	/* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1110 	/* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1111 	/* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1112 	/* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1113 	/* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1114 	/* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1115 
1116 	/* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq),
1117 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif,
1118 			ip_sioctl_removeif_restart },
1119 	/* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq),
1120 			IPI_GET_CMD | IPI_PRIV | IPI_WR,
1121 			LIF_CMD, ip_sioctl_addif, NULL },
1122 #define	SIOCLIFADDR_NDX 112
1123 	/* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1124 			LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
1125 	/* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq),
1126 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL },
1127 	/* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1128 			LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
1129 	/* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq),
1130 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL },
1131 	/* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq),
1132 			IPI_PRIV | IPI_WR,
1133 			LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
1134 	/* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq),
1135 			IPI_GET_CMD | IPI_MODOK,
1136 			LIF_CMD, ip_sioctl_get_flags, NULL },
1137 
1138 	/* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1139 	/* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1140 
1141 	/* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
1142 			ip_sioctl_get_lifconf, NULL },
1143 	/* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1144 			LIF_CMD, ip_sioctl_mtu, NULL },
1145 	/* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD,
1146 			LIF_CMD, ip_sioctl_get_mtu, NULL },
1147 	/* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq),
1148 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL },
1149 	/* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1150 			LIF_CMD, ip_sioctl_brdaddr, NULL },
1151 	/* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq),
1152 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL },
1153 	/* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1154 			LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
1155 	/* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq),
1156 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL },
1157 	/* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1158 			LIF_CMD, ip_sioctl_metric, NULL },
1159 	/* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq),
1160 			IPI_PRIV | IPI_WR | IPI_MODOK,
1161 			LIF_CMD, ip_sioctl_slifname,
1162 			ip_sioctl_slifname_restart },
1163 
1164 	/* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD,
1165 			MISC_CMD, ip_sioctl_get_lifnum, NULL },
1166 	/* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq),
1167 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL },
1168 	/* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq),
1169 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL },
1170 	/* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq),
1171 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 },
1172 	/* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq),
1173 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 },
1174 	/* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1175 			LIF_CMD, ip_sioctl_token, NULL },
1176 	/* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq),
1177 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL },
1178 	/* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1179 			LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart },
1180 	/* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq),
1181 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL },
1182 	/* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1183 			LIF_CMD, ip_sioctl_lnkinfo, NULL },
1184 
1185 	/* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq),
1186 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL },
1187 	/* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV,
1188 			LIF_CMD, ip_siocdelndp_v6, NULL },
1189 	/* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD,
1190 			LIF_CMD, ip_siocqueryndp_v6, NULL },
1191 	/* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV,
1192 			LIF_CMD, ip_siocsetndp_v6, NULL },
1193 	/* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1194 			MISC_CMD, ip_sioctl_tmyaddr, NULL },
1195 	/* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1196 			MISC_CMD, ip_sioctl_tonlink, NULL },
1197 	/* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0,
1198 			MISC_CMD, ip_sioctl_tmysite, NULL },
1199 	/* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1200 	/* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1201 	/* IPSECioctls handled in ip_sioctl_copyin_setup itself */
1202 	/* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1203 	/* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1204 	/* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1205 	/* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1206 
1207 	/* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1208 
1209 	/* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD,
1210 			LIF_CMD, ip_sioctl_get_binding, NULL },
1211 	/* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq),
1212 			IPI_PRIV | IPI_WR,
1213 			LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname },
1214 	/* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq),
1215 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL },
1216 	/* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t),
1217 			IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL },
1218 
1219 	/* Leave 158-160 unused; used to be SIOC*IFARP ioctls */
1220 	/* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1221 	/* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1222 	/* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1223 
1224 	/* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1225 
1226 	/* These are handled in ip_sioctl_copyin_setup itself */
1227 	/* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT,
1228 			MISC_CMD, NULL, NULL },
1229 	/* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT,
1230 			MISC_CMD, NULL, NULL },
1231 	/* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL },
1232 
1233 	/* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
1234 			ip_sioctl_get_lifconf, NULL },
1235 
1236 	/* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1237 			XARP_CMD, ip_sioctl_arp, NULL },
1238 	/* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD,
1239 			XARP_CMD, ip_sioctl_arp, NULL },
1240 	/* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1241 			XARP_CMD, ip_sioctl_arp, NULL },
1242 
1243 	/* SIOCPOPSOCKFS is not handled by IP */
1244 	/* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL },
1245 
1246 	/* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq),
1247 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL },
1248 	/* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq),
1249 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone,
1250 			ip_sioctl_slifzone_restart },
1251 	/* 172-174 are SCTP ioctls and not handled by IP */
1252 	/* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1253 	/* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1254 	/* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1255 	/* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq),
1256 			IPI_GET_CMD, LIF_CMD,
1257 			ip_sioctl_get_lifusesrc, 0 },
1258 	/* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq),
1259 			IPI_PRIV | IPI_WR,
1260 			LIF_CMD, ip_sioctl_slifusesrc,
1261 			NULL },
1262 	/* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD,
1263 			ip_sioctl_get_lifsrcof, NULL },
1264 	/* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD,
1265 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1266 	/* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0,
1267 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1268 	/* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD,
1269 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1270 	/* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0,
1271 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1272 	/* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1273 	/* SIOCSENABLESDP is handled by SDP */
1274 	/* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL },
1275 	/* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL },
1276 	/* 185 */ { IPI_DONTCARE /* SIOCGIFHWADDR */, 0, 0, 0, NULL, NULL },
1277 	/* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL },
1278 	/* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD,
1279 			ip_sioctl_ilb_cmd, NULL },
1280 };
1281 
1282 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1283 
1284 ip_ioctl_cmd_t ip_misc_ioctl_table[] = {
1285 	{ I_LINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1286 	{ I_UNLINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1287 	{ I_PLINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1288 	{ I_PUNLINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1289 	{ ND_GET,	0, 0, 0, NULL, NULL },
1290 	{ ND_SET,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1291 	{ IP_IOCTL,	0, 0, 0, NULL, NULL },
1292 	{ SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD,
1293 		MISC_CMD, mrt_ioctl},
1294 	{ SIOCGETSGCNT,	sizeof (struct sioc_sg_req), IPI_GET_CMD,
1295 		MISC_CMD, mrt_ioctl},
1296 	{ SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD,
1297 		MISC_CMD, mrt_ioctl}
1298 };
1299 
1300 int ip_misc_ioctl_count =
1301     sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1302 
1303 int	conn_drain_nthreads;		/* Number of drainers reqd. */
1304 					/* Settable in /etc/system */
1305 /* Defined in ip_ire.c */
1306 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt;
1307 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt;
1308 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio;
1309 
1310 static nv_t	ire_nv_arr[] = {
1311 	{ IRE_BROADCAST, "BROADCAST" },
1312 	{ IRE_LOCAL, "LOCAL" },
1313 	{ IRE_LOOPBACK, "LOOPBACK" },
1314 	{ IRE_DEFAULT, "DEFAULT" },
1315 	{ IRE_PREFIX, "PREFIX" },
1316 	{ IRE_IF_NORESOLVER, "IF_NORESOL" },
1317 	{ IRE_IF_RESOLVER, "IF_RESOLV" },
1318 	{ IRE_IF_CLONE, "IF_CLONE" },
1319 	{ IRE_HOST, "HOST" },
1320 	{ IRE_MULTICAST, "MULTICAST" },
1321 	{ IRE_NOROUTE, "NOROUTE" },
1322 	{ 0 }
1323 };
1324 
1325 nv_t	*ire_nv_tbl = ire_nv_arr;
1326 
1327 /* Simple ICMP IP Header Template */
1328 static ipha_t icmp_ipha = {
1329 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
1330 };
1331 
1332 struct module_info ip_mod_info = {
1333 	IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT,
1334 	IP_MOD_LOWAT
1335 };
1336 
1337 /*
1338  * Duplicate static symbols within a module confuses mdb; so we avoid the
1339  * problem by making the symbols here distinct from those in udp.c.
1340  */
1341 
1342 /*
1343  * Entry points for IP as a device and as a module.
1344  * We have separate open functions for the /dev/ip and /dev/ip6 devices.
1345  */
1346 static struct qinit iprinitv4 = {
1347 	(pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL,
1348 	&ip_mod_info
1349 };
1350 
1351 struct qinit iprinitv6 = {
1352 	(pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL,
1353 	&ip_mod_info
1354 };
1355 
1356 static struct qinit ipwinit = {
1357 	(pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL,
1358 	&ip_mod_info
1359 };
1360 
1361 static struct qinit iplrinit = {
1362 	(pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL,
1363 	&ip_mod_info
1364 };
1365 
1366 static struct qinit iplwinit = {
1367 	(pfi_t)ip_lwput, NULL, NULL, NULL, NULL,
1368 	&ip_mod_info
1369 };
1370 
1371 /* For AF_INET aka /dev/ip */
1372 struct streamtab ipinfov4 = {
1373 	&iprinitv4, &ipwinit, &iplrinit, &iplwinit
1374 };
1375 
1376 /* For AF_INET6 aka /dev/ip6 */
1377 struct streamtab ipinfov6 = {
1378 	&iprinitv6, &ipwinit, &iplrinit, &iplwinit
1379 };
1380 
1381 #ifdef	DEBUG
1382 boolean_t skip_sctp_cksum = B_FALSE;
1383 #endif
1384 
1385 /*
1386  * Generate an ICMP fragmentation needed message.
1387  * When called from ip_output side a minimal ip_recv_attr_t needs to be
1388  * constructed by the caller.
1389  */
1390 void
1391 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira)
1392 {
1393 	icmph_t	icmph;
1394 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
1395 
1396 	mp = icmp_pkt_err_ok(mp, ira);
1397 	if (mp == NULL)
1398 		return;
1399 
1400 	bzero(&icmph, sizeof (icmph_t));
1401 	icmph.icmph_type = ICMP_DEST_UNREACHABLE;
1402 	icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED;
1403 	icmph.icmph_du_mtu = htons((uint16_t)mtu);
1404 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded);
1405 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
1406 
1407 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
1408 }
1409 
1410 /*
1411  * icmp_inbound_v4 deals with ICMP messages that are handled by IP.
1412  * If the ICMP message is consumed by IP, i.e., it should not be delivered
1413  * to any IPPROTO_ICMP raw sockets, then it returns NULL.
1414  * Likewise, if the ICMP error is misformed (too short, etc), then it
1415  * returns NULL. The caller uses this to determine whether or not to send
1416  * to raw sockets.
1417  *
1418  * All error messages are passed to the matching transport stream.
1419  *
1420  * The following cases are handled by icmp_inbound:
1421  * 1) It needs to send a reply back and possibly delivering it
1422  *    to the "interested" upper clients.
1423  * 2) Return the mblk so that the caller can pass it to the RAW socket clients.
1424  * 3) It needs to change some values in IP only.
1425  * 4) It needs to change some values in IP and upper layers e.g TCP
1426  *    by delivering an error to the upper layers.
1427  *
1428  * We handle the above three cases in the context of IPsec in the
1429  * following way :
1430  *
1431  * 1) Send the reply back in the same way as the request came in.
1432  *    If it came in encrypted, it goes out encrypted. If it came in
1433  *    clear, it goes out in clear. Thus, this will prevent chosen
1434  *    plain text attack.
1435  * 2) The client may or may not expect things to come in secure.
1436  *    If it comes in secure, the policy constraints are checked
1437  *    before delivering it to the upper layers. If it comes in
1438  *    clear, ipsec_inbound_accept_clear will decide whether to
1439  *    accept this in clear or not. In both the cases, if the returned
1440  *    message (IP header + 8 bytes) that caused the icmp message has
1441  *    AH/ESP headers, it is sent up to AH/ESP for validation before
1442  *    sending up. If there are only 8 bytes of returned message, then
1443  *    upper client will not be notified.
1444  * 3) Check with global policy to see whether it matches the constaints.
1445  *    But this will be done only if icmp_accept_messages_in_clear is
1446  *    zero.
1447  * 4) If we need to change both in IP and ULP, then the decision taken
1448  *    while affecting the values in IP and while delivering up to TCP
1449  *    should be the same.
1450  *
1451  * 	There are two cases.
1452  *
1453  * 	a) If we reject data at the IP layer (ipsec_check_global_policy()
1454  *	   failed), we will not deliver it to the ULP, even though they
1455  *	   are *willing* to accept in *clear*. This is fine as our global
1456  *	   disposition to icmp messages asks us reject the datagram.
1457  *
1458  *	b) If we accept data at the IP layer (ipsec_check_global_policy()
1459  *	   succeeded or icmp_accept_messages_in_clear is 1), and not able
1460  *	   to deliver it to ULP (policy failed), it can lead to
1461  *	   consistency problems. The cases known at this time are
1462  *	   ICMP_DESTINATION_UNREACHABLE  messages with following code
1463  *	   values :
1464  *
1465  *	   - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value
1466  *	     and Upper layer rejects. Then the communication will
1467  *	     come to a stop. This is solved by making similar decisions
1468  *	     at both levels. Currently, when we are unable to deliver
1469  *	     to the Upper Layer (due to policy failures) while IP has
1470  *	     adjusted dce_pmtu, the next outbound datagram would
1471  *	     generate a local ICMP_FRAGMENTATION_NEEDED message - which
1472  *	     will be with the right level of protection. Thus the right
1473  *	     value will be communicated even if we are not able to
1474  *	     communicate when we get from the wire initially. But this
1475  *	     assumes there would be at least one outbound datagram after
1476  *	     IP has adjusted its dce_pmtu value. To make things
1477  *	     simpler, we accept in clear after the validation of
1478  *	     AH/ESP headers.
1479  *
1480  *	   - Other ICMP ERRORS : We may not be able to deliver it to the
1481  *	     upper layer depending on the level of protection the upper
1482  *	     layer expects and the disposition in ipsec_inbound_accept_clear().
1483  *	     ipsec_inbound_accept_clear() decides whether a given ICMP error
1484  *	     should be accepted in clear when the Upper layer expects secure.
1485  *	     Thus the communication may get aborted by some bad ICMP
1486  *	     packets.
1487  */
1488 mblk_t *
1489 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira)
1490 {
1491 	icmph_t		*icmph;
1492 	ipha_t		*ipha;		/* Outer header */
1493 	int		ip_hdr_length;	/* Outer header length */
1494 	boolean_t	interested;
1495 	ipif_t		*ipif;
1496 	uint32_t	ts;
1497 	uint32_t	*tsp;
1498 	timestruc_t	now;
1499 	ill_t		*ill = ira->ira_ill;
1500 	ip_stack_t	*ipst = ill->ill_ipst;
1501 	zoneid_t	zoneid = ira->ira_zoneid;
1502 	int		len_needed;
1503 	mblk_t		*mp_ret = NULL;
1504 
1505 	ipha = (ipha_t *)mp->b_rptr;
1506 
1507 	BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs);
1508 
1509 	ip_hdr_length = ira->ira_ip_hdr_length;
1510 	if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) {
1511 		if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) {
1512 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1513 			ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1514 			freemsg(mp);
1515 			return (NULL);
1516 		}
1517 		/* Last chance to get real. */
1518 		ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira);
1519 		if (ipha == NULL) {
1520 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
1521 			freemsg(mp);
1522 			return (NULL);
1523 		}
1524 	}
1525 
1526 	/* The IP header will always be a multiple of four bytes */
1527 	icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1528 	ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type,
1529 	    icmph->icmph_code));
1530 
1531 	/*
1532 	 * We will set "interested" to "true" if we should pass a copy to
1533 	 * the transport or if we handle the packet locally.
1534 	 */
1535 	interested = B_FALSE;
1536 	switch (icmph->icmph_type) {
1537 	case ICMP_ECHO_REPLY:
1538 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps);
1539 		break;
1540 	case ICMP_DEST_UNREACHABLE:
1541 		if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED)
1542 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded);
1543 		interested = B_TRUE;	/* Pass up to transport */
1544 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs);
1545 		break;
1546 	case ICMP_SOURCE_QUENCH:
1547 		interested = B_TRUE;	/* Pass up to transport */
1548 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs);
1549 		break;
1550 	case ICMP_REDIRECT:
1551 		if (!ipst->ips_ip_ignore_redirect)
1552 			interested = B_TRUE;
1553 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects);
1554 		break;
1555 	case ICMP_ECHO_REQUEST:
1556 		/*
1557 		 * Whether to respond to echo requests that come in as IP
1558 		 * broadcasts or as IP multicast is subject to debate
1559 		 * (what isn't?).  We aim to please, you pick it.
1560 		 * Default is do it.
1561 		 */
1562 		if (ira->ira_flags & IRAF_MULTICAST) {
1563 			/* multicast: respond based on tunable */
1564 			interested = ipst->ips_ip_g_resp_to_echo_mcast;
1565 		} else if (ira->ira_flags & IRAF_BROADCAST) {
1566 			/* broadcast: respond based on tunable */
1567 			interested = ipst->ips_ip_g_resp_to_echo_bcast;
1568 		} else {
1569 			/* unicast: always respond */
1570 			interested = B_TRUE;
1571 		}
1572 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos);
1573 		if (!interested) {
1574 			/* We never pass these to RAW sockets */
1575 			freemsg(mp);
1576 			return (NULL);
1577 		}
1578 
1579 		/* Check db_ref to make sure we can modify the packet. */
1580 		if (mp->b_datap->db_ref > 1) {
1581 			mblk_t	*mp1;
1582 
1583 			mp1 = copymsg(mp);
1584 			freemsg(mp);
1585 			if (!mp1) {
1586 				BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1587 				return (NULL);
1588 			}
1589 			mp = mp1;
1590 			ipha = (ipha_t *)mp->b_rptr;
1591 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1592 		}
1593 		icmph->icmph_type = ICMP_ECHO_REPLY;
1594 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps);
1595 		icmp_send_reply_v4(mp, ipha, icmph, ira);
1596 		return (NULL);
1597 
1598 	case ICMP_ROUTER_ADVERTISEMENT:
1599 	case ICMP_ROUTER_SOLICITATION:
1600 		break;
1601 	case ICMP_TIME_EXCEEDED:
1602 		interested = B_TRUE;	/* Pass up to transport */
1603 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds);
1604 		break;
1605 	case ICMP_PARAM_PROBLEM:
1606 		interested = B_TRUE;	/* Pass up to transport */
1607 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs);
1608 		break;
1609 	case ICMP_TIME_STAMP_REQUEST:
1610 		/* Response to Time Stamp Requests is local policy. */
1611 		if (ipst->ips_ip_g_resp_to_timestamp) {
1612 			if (ira->ira_flags & IRAF_MULTIBROADCAST)
1613 				interested =
1614 				    ipst->ips_ip_g_resp_to_timestamp_bcast;
1615 			else
1616 				interested = B_TRUE;
1617 		}
1618 		if (!interested) {
1619 			/* We never pass these to RAW sockets */
1620 			freemsg(mp);
1621 			return (NULL);
1622 		}
1623 
1624 		/* Make sure we have enough of the packet */
1625 		len_needed = ip_hdr_length + ICMPH_SIZE +
1626 		    3 * sizeof (uint32_t);
1627 
1628 		if (mp->b_wptr - mp->b_rptr < len_needed) {
1629 			ipha = ip_pullup(mp, len_needed, ira);
1630 			if (ipha == NULL) {
1631 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1632 				ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1633 				    mp, ill);
1634 				freemsg(mp);
1635 				return (NULL);
1636 			}
1637 			/* Refresh following the pullup. */
1638 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1639 		}
1640 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps);
1641 		/* Check db_ref to make sure we can modify the packet. */
1642 		if (mp->b_datap->db_ref > 1) {
1643 			mblk_t	*mp1;
1644 
1645 			mp1 = copymsg(mp);
1646 			freemsg(mp);
1647 			if (!mp1) {
1648 				BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1649 				return (NULL);
1650 			}
1651 			mp = mp1;
1652 			ipha = (ipha_t *)mp->b_rptr;
1653 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1654 		}
1655 		icmph->icmph_type = ICMP_TIME_STAMP_REPLY;
1656 		tsp = (uint32_t *)&icmph[1];
1657 		tsp++;		/* Skip past 'originate time' */
1658 		/* Compute # of milliseconds since midnight */
1659 		gethrestime(&now);
1660 		ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
1661 		    now.tv_nsec / (NANOSEC / MILLISEC);
1662 		*tsp++ = htonl(ts);	/* Lay in 'receive time' */
1663 		*tsp++ = htonl(ts);	/* Lay in 'send time' */
1664 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps);
1665 		icmp_send_reply_v4(mp, ipha, icmph, ira);
1666 		return (NULL);
1667 
1668 	case ICMP_TIME_STAMP_REPLY:
1669 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps);
1670 		break;
1671 	case ICMP_INFO_REQUEST:
1672 		/* Per RFC 1122 3.2.2.7, ignore this. */
1673 	case ICMP_INFO_REPLY:
1674 		break;
1675 	case ICMP_ADDRESS_MASK_REQUEST:
1676 		if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1677 			interested =
1678 			    ipst->ips_ip_respond_to_address_mask_broadcast;
1679 		} else {
1680 			interested = B_TRUE;
1681 		}
1682 		if (!interested) {
1683 			/* We never pass these to RAW sockets */
1684 			freemsg(mp);
1685 			return (NULL);
1686 		}
1687 		len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN;
1688 		if (mp->b_wptr - mp->b_rptr < len_needed) {
1689 			ipha = ip_pullup(mp, len_needed, ira);
1690 			if (ipha == NULL) {
1691 				BUMP_MIB(ill->ill_ip_mib,
1692 				    ipIfStatsInTruncatedPkts);
1693 				ip_drop_input("ipIfStatsInTruncatedPkts", mp,
1694 				    ill);
1695 				freemsg(mp);
1696 				return (NULL);
1697 			}
1698 			/* Refresh following the pullup. */
1699 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1700 		}
1701 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks);
1702 		/* Check db_ref to make sure we can modify the packet. */
1703 		if (mp->b_datap->db_ref > 1) {
1704 			mblk_t	*mp1;
1705 
1706 			mp1 = copymsg(mp);
1707 			freemsg(mp);
1708 			if (!mp1) {
1709 				BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1710 				return (NULL);
1711 			}
1712 			mp = mp1;
1713 			ipha = (ipha_t *)mp->b_rptr;
1714 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1715 		}
1716 		/*
1717 		 * Need the ipif with the mask be the same as the source
1718 		 * address of the mask reply. For unicast we have a specific
1719 		 * ipif. For multicast/broadcast we only handle onlink
1720 		 * senders, and use the source address to pick an ipif.
1721 		 */
1722 		ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst);
1723 		if (ipif == NULL) {
1724 			/* Broadcast or multicast */
1725 			ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
1726 			if (ipif == NULL) {
1727 				freemsg(mp);
1728 				return (NULL);
1729 			}
1730 		}
1731 		icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
1732 		bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
1733 		ipif_refrele(ipif);
1734 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps);
1735 		icmp_send_reply_v4(mp, ipha, icmph, ira);
1736 		return (NULL);
1737 
1738 	case ICMP_ADDRESS_MASK_REPLY:
1739 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps);
1740 		break;
1741 	default:
1742 		interested = B_TRUE;	/* Pass up to transport */
1743 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns);
1744 		break;
1745 	}
1746 	/*
1747 	 * See if there is an ICMP client to avoid an extra copymsg/freemsg
1748 	 * if there isn't one.
1749 	 */
1750 	if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) {
1751 		/* If there is an ICMP client and we want one too, copy it. */
1752 
1753 		if (!interested) {
1754 			/* Caller will deliver to RAW sockets */
1755 			return (mp);
1756 		}
1757 		mp_ret = copymsg(mp);
1758 		if (mp_ret == NULL) {
1759 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1760 			ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1761 		}
1762 	} else if (!interested) {
1763 		/* Neither we nor raw sockets are interested. Drop packet now */
1764 		freemsg(mp);
1765 		return (NULL);
1766 	}
1767 
1768 	/*
1769 	 * ICMP error or redirect packet. Make sure we have enough of
1770 	 * the header and that db_ref == 1 since we might end up modifying
1771 	 * the packet.
1772 	 */
1773 	if (mp->b_cont != NULL) {
1774 		if (ip_pullup(mp, -1, ira) == NULL) {
1775 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1776 			ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1777 			    mp, ill);
1778 			freemsg(mp);
1779 			return (mp_ret);
1780 		}
1781 	}
1782 
1783 	if (mp->b_datap->db_ref > 1) {
1784 		mblk_t	*mp1;
1785 
1786 		mp1 = copymsg(mp);
1787 		if (mp1 == NULL) {
1788 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1789 			ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1790 			freemsg(mp);
1791 			return (mp_ret);
1792 		}
1793 		freemsg(mp);
1794 		mp = mp1;
1795 	}
1796 
1797 	/*
1798 	 * In case mp has changed, verify the message before any further
1799 	 * processes.
1800 	 */
1801 	ipha = (ipha_t *)mp->b_rptr;
1802 	icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1803 	if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
1804 		freemsg(mp);
1805 		return (mp_ret);
1806 	}
1807 
1808 	switch (icmph->icmph_type) {
1809 	case ICMP_REDIRECT:
1810 		icmp_redirect_v4(mp, ipha, icmph, ira);
1811 		break;
1812 	case ICMP_DEST_UNREACHABLE:
1813 		if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
1814 			/* Update DCE and adjust MTU is icmp header if needed */
1815 			icmp_inbound_too_big_v4(icmph, ira);
1816 		}
1817 		/* FALLTHRU */
1818 	default:
1819 		icmp_inbound_error_fanout_v4(mp, icmph, ira);
1820 		break;
1821 	}
1822 	return (mp_ret);
1823 }
1824 
1825 /*
1826  * Send an ICMP echo, timestamp or address mask reply.
1827  * The caller has already updated the payload part of the packet.
1828  * We handle the ICMP checksum, IP source address selection and feed
1829  * the packet into ip_output_simple.
1830  */
1831 static void
1832 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph,
1833     ip_recv_attr_t *ira)
1834 {
1835 	uint_t		ip_hdr_length = ira->ira_ip_hdr_length;
1836 	ill_t		*ill = ira->ira_ill;
1837 	ip_stack_t	*ipst = ill->ill_ipst;
1838 	ip_xmit_attr_t	ixas;
1839 
1840 	/* Send out an ICMP packet */
1841 	icmph->icmph_checksum = 0;
1842 	icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0);
1843 	/* Reset time to live. */
1844 	ipha->ipha_ttl = ipst->ips_ip_def_ttl;
1845 	{
1846 		/* Swap source and destination addresses */
1847 		ipaddr_t tmp;
1848 
1849 		tmp = ipha->ipha_src;
1850 		ipha->ipha_src = ipha->ipha_dst;
1851 		ipha->ipha_dst = tmp;
1852 	}
1853 	ipha->ipha_ident = 0;
1854 	if (!IS_SIMPLE_IPH(ipha))
1855 		icmp_options_update(ipha);
1856 
1857 	bzero(&ixas, sizeof (ixas));
1858 	ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
1859 	ixas.ixa_zoneid = ira->ira_zoneid;
1860 	ixas.ixa_cred = kcred;
1861 	ixas.ixa_cpid = NOPID;
1862 	ixas.ixa_tsl = ira->ira_tsl;	/* Behave as a multi-level responder */
1863 	ixas.ixa_ifindex = 0;
1864 	ixas.ixa_ipst = ipst;
1865 	ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1866 
1867 	if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
1868 		/*
1869 		 * This packet should go out the same way as it
1870 		 * came in i.e in clear, independent of the IPsec policy
1871 		 * for transmitting packets.
1872 		 */
1873 		ixas.ixa_flags |= IXAF_NO_IPSEC;
1874 	} else {
1875 		if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
1876 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1877 			/* Note: mp already consumed and ip_drop_packet done */
1878 			return;
1879 		}
1880 	}
1881 	if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1882 		/*
1883 		 * Not one or our addresses (IRE_LOCALs), thus we let
1884 		 * ip_output_simple pick the source.
1885 		 */
1886 		ipha->ipha_src = INADDR_ANY;
1887 		ixas.ixa_flags |= IXAF_SET_SOURCE;
1888 	}
1889 	/* Should we send with DF and use dce_pmtu? */
1890 	if (ipst->ips_ipv4_icmp_return_pmtu) {
1891 		ixas.ixa_flags |= IXAF_PMTU_DISCOVERY;
1892 		ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS;
1893 	}
1894 
1895 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
1896 
1897 	(void) ip_output_simple(mp, &ixas);
1898 	ixa_cleanup(&ixas);
1899 }
1900 
1901 /*
1902  * Verify the ICMP messages for either for ICMP error or redirect packet.
1903  * The caller should have fully pulled up the message. If it's a redirect
1904  * packet, only basic checks on IP header will be done; otherwise, verify
1905  * the packet by looking at the included ULP header.
1906  *
1907  * Called before icmp_inbound_error_fanout_v4 is called.
1908  */
1909 static boolean_t
1910 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
1911 {
1912 	ill_t		*ill = ira->ira_ill;
1913 	int		hdr_length;
1914 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
1915 	conn_t		*connp;
1916 	ipha_t		*ipha;	/* Inner IP header */
1917 
1918 	ipha = (ipha_t *)&icmph[1];
1919 	if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr)
1920 		goto truncated;
1921 
1922 	hdr_length = IPH_HDR_LENGTH(ipha);
1923 
1924 	if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION))
1925 		goto discard_pkt;
1926 
1927 	if (hdr_length < sizeof (ipha_t))
1928 		goto truncated;
1929 
1930 	if ((uchar_t *)ipha + hdr_length > mp->b_wptr)
1931 		goto truncated;
1932 
1933 	/*
1934 	 * Stop here for ICMP_REDIRECT.
1935 	 */
1936 	if (icmph->icmph_type == ICMP_REDIRECT)
1937 		return (B_TRUE);
1938 
1939 	/*
1940 	 * ICMP errors only.
1941 	 */
1942 	switch (ipha->ipha_protocol) {
1943 	case IPPROTO_UDP:
1944 		/*
1945 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1946 		 * transport header.
1947 		 */
1948 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1949 		    mp->b_wptr)
1950 			goto truncated;
1951 		break;
1952 	case IPPROTO_TCP: {
1953 		tcpha_t		*tcpha;
1954 
1955 		/*
1956 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1957 		 * transport header.
1958 		 */
1959 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1960 		    mp->b_wptr)
1961 			goto truncated;
1962 
1963 		tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
1964 		connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
1965 		    ipst);
1966 		if (connp == NULL)
1967 			goto discard_pkt;
1968 
1969 		if ((connp->conn_verifyicmp != NULL) &&
1970 		    !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) {
1971 			CONN_DEC_REF(connp);
1972 			goto discard_pkt;
1973 		}
1974 		CONN_DEC_REF(connp);
1975 		break;
1976 	}
1977 	case IPPROTO_SCTP:
1978 		/*
1979 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1980 		 * transport header.
1981 		 */
1982 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1983 		    mp->b_wptr)
1984 			goto truncated;
1985 		break;
1986 	case IPPROTO_ESP:
1987 	case IPPROTO_AH:
1988 		break;
1989 	case IPPROTO_ENCAP:
1990 		if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
1991 		    mp->b_wptr)
1992 			goto truncated;
1993 		break;
1994 	default:
1995 		break;
1996 	}
1997 
1998 	return (B_TRUE);
1999 
2000 discard_pkt:
2001 	/* Bogus ICMP error. */
2002 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2003 	return (B_FALSE);
2004 
2005 truncated:
2006 	/* We pulled up everthing already. Must be truncated */
2007 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
2008 	ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
2009 	return (B_FALSE);
2010 }
2011 
2012 /* Table from RFC 1191 */
2013 static int icmp_frag_size_table[] =
2014 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 };
2015 
2016 /*
2017  * Process received ICMP Packet too big.
2018  * Just handles the DCE create/update, including using the above table of
2019  * PMTU guesses. The caller is responsible for validating the packet before
2020  * passing it in and also to fanout the ICMP error to any matching transport
2021  * conns. Assumes the message has been fully pulled up and verified.
2022  *
2023  * Before getting here, the caller has called icmp_inbound_verify_v4()
2024  * that should have verified with ULP to prevent undoing the changes we're
2025  * going to make to DCE. For example, TCP might have verified that the packet
2026  * which generated error is in the send window.
2027  *
2028  * In some cases modified this MTU in the ICMP header packet; the caller
2029  * should pass to the matching ULP after this returns.
2030  */
2031 static void
2032 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira)
2033 {
2034 	dce_t		*dce;
2035 	int		old_mtu;
2036 	int		mtu, orig_mtu;
2037 	ipaddr_t	dst;
2038 	boolean_t	disable_pmtud;
2039 	ill_t		*ill = ira->ira_ill;
2040 	ip_stack_t	*ipst = ill->ill_ipst;
2041 	uint_t		hdr_length;
2042 	ipha_t		*ipha;
2043 
2044 	/* Caller already pulled up everything. */
2045 	ipha = (ipha_t *)&icmph[1];
2046 	ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
2047 	    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED);
2048 	ASSERT(ill != NULL);
2049 
2050 	hdr_length = IPH_HDR_LENGTH(ipha);
2051 
2052 	/*
2053 	 * We handle path MTU for source routed packets since the DCE
2054 	 * is looked up using the final destination.
2055 	 */
2056 	dst = ip_get_dst(ipha);
2057 
2058 	dce = dce_lookup_and_add_v4(dst, ipst);
2059 	if (dce == NULL) {
2060 		/* Couldn't add a unique one - ENOMEM */
2061 		ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n",
2062 		    ntohl(dst)));
2063 		return;
2064 	}
2065 
2066 	/* Check for MTU discovery advice as described in RFC 1191 */
2067 	mtu = ntohs(icmph->icmph_du_mtu);
2068 	orig_mtu = mtu;
2069 	disable_pmtud = B_FALSE;
2070 
2071 	mutex_enter(&dce->dce_lock);
2072 	if (dce->dce_flags & DCEF_PMTU)
2073 		old_mtu = dce->dce_pmtu;
2074 	else
2075 		old_mtu = ill->ill_mtu;
2076 
2077 	if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) {
2078 		uint32_t length;
2079 		int	i;
2080 
2081 		/*
2082 		 * Use the table from RFC 1191 to figure out
2083 		 * the next "plateau" based on the length in
2084 		 * the original IP packet.
2085 		 */
2086 		length = ntohs(ipha->ipha_length);
2087 		DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce,
2088 		    uint32_t, length);
2089 		if (old_mtu <= length &&
2090 		    old_mtu >= length - hdr_length) {
2091 			/*
2092 			 * Handle broken BSD 4.2 systems that
2093 			 * return the wrong ipha_length in ICMP
2094 			 * errors.
2095 			 */
2096 			ip1dbg(("Wrong mtu: sent %d, dce %d\n",
2097 			    length, old_mtu));
2098 			length -= hdr_length;
2099 		}
2100 		for (i = 0; i < A_CNT(icmp_frag_size_table); i++) {
2101 			if (length > icmp_frag_size_table[i])
2102 				break;
2103 		}
2104 		if (i == A_CNT(icmp_frag_size_table)) {
2105 			/* Smaller than IP_MIN_MTU! */
2106 			ip1dbg(("Too big for packet size %d\n",
2107 			    length));
2108 			disable_pmtud = B_TRUE;
2109 			mtu = ipst->ips_ip_pmtu_min;
2110 		} else {
2111 			mtu = icmp_frag_size_table[i];
2112 			ip1dbg(("Calculated mtu %d, packet size %d, "
2113 			    "before %d\n", mtu, length, old_mtu));
2114 			if (mtu < ipst->ips_ip_pmtu_min) {
2115 				mtu = ipst->ips_ip_pmtu_min;
2116 				disable_pmtud = B_TRUE;
2117 			}
2118 		}
2119 	}
2120 	if (disable_pmtud)
2121 		dce->dce_flags |= DCEF_TOO_SMALL_PMTU;
2122 	else
2123 		dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU;
2124 
2125 	dce->dce_pmtu = MIN(old_mtu, mtu);
2126 	/* Prepare to send the new max frag size for the ULP. */
2127 	icmph->icmph_du_zero = 0;
2128 	icmph->icmph_du_mtu =  htons((uint16_t)dce->dce_pmtu);
2129 	DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *,
2130 	    dce, int, orig_mtu, int, mtu);
2131 
2132 	/* We now have a PMTU for sure */
2133 	dce->dce_flags |= DCEF_PMTU;
2134 	dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
2135 	mutex_exit(&dce->dce_lock);
2136 	/*
2137 	 * After dropping the lock the new value is visible to everyone.
2138 	 * Then we bump the generation number so any cached values reinspect
2139 	 * the dce_t.
2140 	 */
2141 	dce_increment_generation(dce);
2142 	dce_refrele(dce);
2143 }
2144 
2145 /*
2146  * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4
2147  * calls this function.
2148  */
2149 static mblk_t *
2150 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha)
2151 {
2152 	int length;
2153 
2154 	ASSERT(mp->b_datap->db_type == M_DATA);
2155 
2156 	/* icmp_inbound_v4 has already pulled up the whole error packet */
2157 	ASSERT(mp->b_cont == NULL);
2158 
2159 	/*
2160 	 * The length that we want to overlay is the inner header
2161 	 * and what follows it.
2162 	 */
2163 	length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr);
2164 
2165 	/*
2166 	 * Overlay the inner header and whatever follows it over the
2167 	 * outer header.
2168 	 */
2169 	bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length);
2170 
2171 	/* Adjust for what we removed */
2172 	mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha;
2173 	return (mp);
2174 }
2175 
2176 /*
2177  * Try to pass the ICMP message upstream in case the ULP cares.
2178  *
2179  * If the packet that caused the ICMP error is secure, we send
2180  * it to AH/ESP to make sure that the attached packet has a
2181  * valid association. ipha in the code below points to the
2182  * IP header of the packet that caused the error.
2183  *
2184  * For IPsec cases, we let the next-layer-up (which has access to
2185  * cached policy on the conn_t, or can query the SPD directly)
2186  * subtract out any IPsec overhead if they must.  We therefore make no
2187  * adjustments here for IPsec overhead.
2188  *
2189  * IFN could have been generated locally or by some router.
2190  *
2191  * LOCAL : ire_send_wire (before calling ipsec_out_process) can call
2192  * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN.
2193  *	    This happens because IP adjusted its value of MTU on an
2194  *	    earlier IFN message and could not tell the upper layer,
2195  *	    the new adjusted value of MTU e.g. Packet was encrypted
2196  *	    or there was not enough information to fanout to upper
2197  *	    layers. Thus on the next outbound datagram, ire_send_wire
2198  *	    generates the IFN, where IPsec processing has *not* been
2199  *	    done.
2200  *
2201  *	    Note that we retain ixa_fragsize across IPsec thus once
2202  *	    we have picking ixa_fragsize and entered ipsec_out_process we do
2203  *	    no change the fragsize even if the path MTU changes before
2204  *	    we reach ip_output_post_ipsec.
2205  *
2206  *	    In the local case, IRAF_LOOPBACK will be set indicating
2207  *	    that IFN was generated locally.
2208  *
2209  * ROUTER : IFN could be secure or non-secure.
2210  *
2211  *	    * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the
2212  *	      packet in error has AH/ESP headers to validate the AH/ESP
2213  *	      headers. AH/ESP will verify whether there is a valid SA or
2214  *	      not and send it back. We will fanout again if we have more
2215  *	      data in the packet.
2216  *
2217  *	      If the packet in error does not have AH/ESP, we handle it
2218  *	      like any other case.
2219  *
2220  *	    * NON_SECURE : If the packet in error has AH/ESP headers, we send it
2221  *	      up to AH/ESP for validation. AH/ESP will verify whether there is a
2222  *	      valid SA or not and send it back. We will fanout again if
2223  *	      we have more data in the packet.
2224  *
2225  *	      If the packet in error does not have AH/ESP, we handle it
2226  *	      like any other case.
2227  *
2228  * The caller must have called icmp_inbound_verify_v4.
2229  */
2230 static void
2231 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
2232 {
2233 	uint16_t	*up;	/* Pointer to ports in ULP header */
2234 	uint32_t	ports;	/* reversed ports for fanout */
2235 	ipha_t		ripha;	/* With reversed addresses */
2236 	ipha_t		*ipha;  /* Inner IP header */
2237 	uint_t		hdr_length; /* Inner IP header length */
2238 	tcpha_t		*tcpha;
2239 	conn_t		*connp;
2240 	ill_t		*ill = ira->ira_ill;
2241 	ip_stack_t	*ipst = ill->ill_ipst;
2242 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
2243 	ill_t		*rill = ira->ira_rill;
2244 
2245 	/* Caller already pulled up everything. */
2246 	ipha = (ipha_t *)&icmph[1];
2247 	ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr);
2248 	ASSERT(mp->b_cont == NULL);
2249 
2250 	hdr_length = IPH_HDR_LENGTH(ipha);
2251 	ira->ira_protocol = ipha->ipha_protocol;
2252 
2253 	/*
2254 	 * We need a separate IP header with the source and destination
2255 	 * addresses reversed to do fanout/classification because the ipha in
2256 	 * the ICMP error is in the form we sent it out.
2257 	 */
2258 	ripha.ipha_src = ipha->ipha_dst;
2259 	ripha.ipha_dst = ipha->ipha_src;
2260 	ripha.ipha_protocol = ipha->ipha_protocol;
2261 	ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length;
2262 
2263 	ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n",
2264 	    ripha.ipha_protocol, ntohl(ipha->ipha_src),
2265 	    ntohl(ipha->ipha_dst),
2266 	    icmph->icmph_type, icmph->icmph_code));
2267 
2268 	switch (ipha->ipha_protocol) {
2269 	case IPPROTO_UDP:
2270 		up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2271 
2272 		/* Attempt to find a client stream based on port. */
2273 		ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n",
2274 		    ntohs(up[0]), ntohs(up[1])));
2275 
2276 		/* Note that we send error to all matches. */
2277 		ira->ira_flags |= IRAF_ICMP_ERROR;
2278 		ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira);
2279 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2280 		return;
2281 
2282 	case IPPROTO_TCP:
2283 		/*
2284 		 * Find a TCP client stream for this packet.
2285 		 * Note that we do a reverse lookup since the header is
2286 		 * in the form we sent it out.
2287 		 */
2288 		tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
2289 		connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
2290 		    ipst);
2291 		if (connp == NULL)
2292 			goto discard_pkt;
2293 
2294 		if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
2295 		    (ira->ira_flags & IRAF_IPSEC_SECURE)) {
2296 			mp = ipsec_check_inbound_policy(mp, connp,
2297 			    ipha, NULL, ira);
2298 			if (mp == NULL) {
2299 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2300 				/* Note that mp is NULL */
2301 				ip_drop_input("ipIfStatsInDiscards", mp, ill);
2302 				CONN_DEC_REF(connp);
2303 				return;
2304 			}
2305 		}
2306 
2307 		ira->ira_flags |= IRAF_ICMP_ERROR;
2308 		ira->ira_ill = ira->ira_rill = NULL;
2309 		if (IPCL_IS_TCP(connp)) {
2310 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2311 			    connp->conn_recvicmp, connp, ira, SQ_FILL,
2312 			    SQTAG_TCP_INPUT_ICMP_ERR);
2313 		} else {
2314 			/* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
2315 			(connp->conn_recv)(connp, mp, NULL, ira);
2316 			CONN_DEC_REF(connp);
2317 		}
2318 		ira->ira_ill = ill;
2319 		ira->ira_rill = rill;
2320 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2321 		return;
2322 
2323 	case IPPROTO_SCTP:
2324 		up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2325 		/* Find a SCTP client stream for this packet. */
2326 		((uint16_t *)&ports)[0] = up[1];
2327 		((uint16_t *)&ports)[1] = up[0];
2328 
2329 		ira->ira_flags |= IRAF_ICMP_ERROR;
2330 		ip_fanout_sctp(mp, &ripha, NULL, ports, ira);
2331 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2332 		return;
2333 
2334 	case IPPROTO_ESP:
2335 	case IPPROTO_AH:
2336 		if (!ipsec_loaded(ipss)) {
2337 			ip_proto_not_sup(mp, ira);
2338 			return;
2339 		}
2340 
2341 		if (ipha->ipha_protocol == IPPROTO_ESP)
2342 			mp = ipsecesp_icmp_error(mp, ira);
2343 		else
2344 			mp = ipsecah_icmp_error(mp, ira);
2345 		if (mp == NULL)
2346 			return;
2347 
2348 		/* Just in case ipsec didn't preserve the NULL b_cont */
2349 		if (mp->b_cont != NULL) {
2350 			if (!pullupmsg(mp, -1))
2351 				goto discard_pkt;
2352 		}
2353 
2354 		/*
2355 		 * Note that ira_pktlen and ira_ip_hdr_length are no longer
2356 		 * correct, but we don't use them any more here.
2357 		 *
2358 		 * If succesful, the mp has been modified to not include
2359 		 * the ESP/AH header so we can fanout to the ULP's icmp
2360 		 * error handler.
2361 		 */
2362 		if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2363 			goto truncated;
2364 
2365 		/* Verify the modified message before any further processes. */
2366 		ipha = (ipha_t *)mp->b_rptr;
2367 		hdr_length = IPH_HDR_LENGTH(ipha);
2368 		icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2369 		if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2370 			freemsg(mp);
2371 			return;
2372 		}
2373 
2374 		icmp_inbound_error_fanout_v4(mp, icmph, ira);
2375 		return;
2376 
2377 	case IPPROTO_ENCAP: {
2378 		/* Look for self-encapsulated packets that caused an error */
2379 		ipha_t *in_ipha;
2380 
2381 		/*
2382 		 * Caller has verified that length has to be
2383 		 * at least the size of IP header.
2384 		 */
2385 		ASSERT(hdr_length >= sizeof (ipha_t));
2386 		/*
2387 		 * Check the sanity of the inner IP header like
2388 		 * we did for the outer header.
2389 		 */
2390 		in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
2391 		if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) {
2392 			goto discard_pkt;
2393 		}
2394 		if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) {
2395 			goto discard_pkt;
2396 		}
2397 		/* Check for Self-encapsulated tunnels */
2398 		if (in_ipha->ipha_src == ipha->ipha_src &&
2399 		    in_ipha->ipha_dst == ipha->ipha_dst) {
2400 
2401 			mp = icmp_inbound_self_encap_error_v4(mp, ipha,
2402 			    in_ipha);
2403 			if (mp == NULL)
2404 				goto discard_pkt;
2405 
2406 			/*
2407 			 * Just in case self_encap didn't preserve the NULL
2408 			 * b_cont
2409 			 */
2410 			if (mp->b_cont != NULL) {
2411 				if (!pullupmsg(mp, -1))
2412 					goto discard_pkt;
2413 			}
2414 			/*
2415 			 * Note that ira_pktlen and ira_ip_hdr_length are no
2416 			 * longer correct, but we don't use them any more here.
2417 			 */
2418 			if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2419 				goto truncated;
2420 
2421 			/*
2422 			 * Verify the modified message before any further
2423 			 * processes.
2424 			 */
2425 			ipha = (ipha_t *)mp->b_rptr;
2426 			hdr_length = IPH_HDR_LENGTH(ipha);
2427 			icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2428 			if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2429 				freemsg(mp);
2430 				return;
2431 			}
2432 
2433 			/*
2434 			 * The packet in error is self-encapsualted.
2435 			 * And we are finding it further encapsulated
2436 			 * which we could not have possibly generated.
2437 			 */
2438 			if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2439 				goto discard_pkt;
2440 			}
2441 			icmp_inbound_error_fanout_v4(mp, icmph, ira);
2442 			return;
2443 		}
2444 		/* No self-encapsulated */
2445 		/* FALLTHRU */
2446 	}
2447 	case IPPROTO_IPV6:
2448 		if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src,
2449 		    &ripha.ipha_dst, ipst)) != NULL) {
2450 			ira->ira_flags |= IRAF_ICMP_ERROR;
2451 			connp->conn_recvicmp(connp, mp, NULL, ira);
2452 			CONN_DEC_REF(connp);
2453 			ira->ira_flags &= ~IRAF_ICMP_ERROR;
2454 			return;
2455 		}
2456 		/*
2457 		 * No IP tunnel is interested, fallthrough and see
2458 		 * if a raw socket will want it.
2459 		 */
2460 		/* FALLTHRU */
2461 	default:
2462 		ira->ira_flags |= IRAF_ICMP_ERROR;
2463 		ip_fanout_proto_v4(mp, &ripha, ira);
2464 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2465 		return;
2466 	}
2467 	/* NOTREACHED */
2468 discard_pkt:
2469 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2470 	ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n"));
2471 	ip_drop_input("ipIfStatsInDiscards", mp, ill);
2472 	freemsg(mp);
2473 	return;
2474 
2475 truncated:
2476 	/* We pulled up everthing already. Must be truncated */
2477 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
2478 	ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
2479 	freemsg(mp);
2480 }
2481 
2482 /*
2483  * Common IP options parser.
2484  *
2485  * Setup routine: fill in *optp with options-parsing state, then
2486  * tail-call ipoptp_next to return the first option.
2487  */
2488 uint8_t
2489 ipoptp_first(ipoptp_t *optp, ipha_t *ipha)
2490 {
2491 	uint32_t totallen; /* total length of all options */
2492 
2493 	totallen = ipha->ipha_version_and_hdr_length -
2494 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
2495 	totallen <<= 2;
2496 	optp->ipoptp_next = (uint8_t *)(&ipha[1]);
2497 	optp->ipoptp_end = optp->ipoptp_next + totallen;
2498 	optp->ipoptp_flags = 0;
2499 	return (ipoptp_next(optp));
2500 }
2501 
2502 /* Like above but without an ipha_t */
2503 uint8_t
2504 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt)
2505 {
2506 	optp->ipoptp_next = opt;
2507 	optp->ipoptp_end = optp->ipoptp_next + totallen;
2508 	optp->ipoptp_flags = 0;
2509 	return (ipoptp_next(optp));
2510 }
2511 
2512 /*
2513  * Common IP options parser: extract next option.
2514  */
2515 uint8_t
2516 ipoptp_next(ipoptp_t *optp)
2517 {
2518 	uint8_t *end = optp->ipoptp_end;
2519 	uint8_t *cur = optp->ipoptp_next;
2520 	uint8_t opt, len, pointer;
2521 
2522 	/*
2523 	 * If cur > end already, then the ipoptp_end or ipoptp_next pointer
2524 	 * has been corrupted.
2525 	 */
2526 	ASSERT(cur <= end);
2527 
2528 	if (cur == end)
2529 		return (IPOPT_EOL);
2530 
2531 	opt = cur[IPOPT_OPTVAL];
2532 
2533 	/*
2534 	 * Skip any NOP options.
2535 	 */
2536 	while (opt == IPOPT_NOP) {
2537 		cur++;
2538 		if (cur == end)
2539 			return (IPOPT_EOL);
2540 		opt = cur[IPOPT_OPTVAL];
2541 	}
2542 
2543 	if (opt == IPOPT_EOL)
2544 		return (IPOPT_EOL);
2545 
2546 	/*
2547 	 * Option requiring a length.
2548 	 */
2549 	if ((cur + 1) >= end) {
2550 		optp->ipoptp_flags |= IPOPTP_ERROR;
2551 		return (IPOPT_EOL);
2552 	}
2553 	len = cur[IPOPT_OLEN];
2554 	if (len < 2) {
2555 		optp->ipoptp_flags |= IPOPTP_ERROR;
2556 		return (IPOPT_EOL);
2557 	}
2558 	optp->ipoptp_cur = cur;
2559 	optp->ipoptp_len = len;
2560 	optp->ipoptp_next = cur + len;
2561 	if (cur + len > end) {
2562 		optp->ipoptp_flags |= IPOPTP_ERROR;
2563 		return (IPOPT_EOL);
2564 	}
2565 
2566 	/*
2567 	 * For the options which require a pointer field, make sure
2568 	 * its there, and make sure it points to either something
2569 	 * inside this option, or the end of the option.
2570 	 */
2571 	switch (opt) {
2572 	case IPOPT_RR:
2573 	case IPOPT_TS:
2574 	case IPOPT_LSRR:
2575 	case IPOPT_SSRR:
2576 		if (len <= IPOPT_OFFSET) {
2577 			optp->ipoptp_flags |= IPOPTP_ERROR;
2578 			return (opt);
2579 		}
2580 		pointer = cur[IPOPT_OFFSET];
2581 		if (pointer - 1 > len) {
2582 			optp->ipoptp_flags |= IPOPTP_ERROR;
2583 			return (opt);
2584 		}
2585 		break;
2586 	}
2587 
2588 	/*
2589 	 * Sanity check the pointer field based on the type of the
2590 	 * option.
2591 	 */
2592 	switch (opt) {
2593 	case IPOPT_RR:
2594 	case IPOPT_SSRR:
2595 	case IPOPT_LSRR:
2596 		if (pointer < IPOPT_MINOFF_SR)
2597 			optp->ipoptp_flags |= IPOPTP_ERROR;
2598 		break;
2599 	case IPOPT_TS:
2600 		if (pointer < IPOPT_MINOFF_IT)
2601 			optp->ipoptp_flags |= IPOPTP_ERROR;
2602 		/*
2603 		 * Note that the Internet Timestamp option also
2604 		 * contains two four bit fields (the Overflow field,
2605 		 * and the Flag field), which follow the pointer
2606 		 * field.  We don't need to check that these fields
2607 		 * fall within the length of the option because this
2608 		 * was implicitely done above.  We've checked that the
2609 		 * pointer value is at least IPOPT_MINOFF_IT, and that
2610 		 * it falls within the option.  Since IPOPT_MINOFF_IT >
2611 		 * IPOPT_POS_OV_FLG, we don't need the explicit check.
2612 		 */
2613 		ASSERT(len > IPOPT_POS_OV_FLG);
2614 		break;
2615 	}
2616 
2617 	return (opt);
2618 }
2619 
2620 /*
2621  * Use the outgoing IP header to create an IP_OPTIONS option the way
2622  * it was passed down from the application.
2623  *
2624  * This is compatible with BSD in that it returns
2625  * the reverse source route with the final destination
2626  * as the last entry. The first 4 bytes of the option
2627  * will contain the final destination.
2628  */
2629 int
2630 ip_opt_get_user(conn_t *connp, uchar_t *buf)
2631 {
2632 	ipoptp_t	opts;
2633 	uchar_t		*opt;
2634 	uint8_t		optval;
2635 	uint8_t		optlen;
2636 	uint32_t	len = 0;
2637 	uchar_t		*buf1 = buf;
2638 	uint32_t	totallen;
2639 	ipaddr_t	dst;
2640 	ip_pkt_t	*ipp = &connp->conn_xmit_ipp;
2641 
2642 	if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
2643 		return (0);
2644 
2645 	totallen = ipp->ipp_ipv4_options_len;
2646 	if (totallen & 0x3)
2647 		return (0);
2648 
2649 	buf += IP_ADDR_LEN;	/* Leave room for final destination */
2650 	len += IP_ADDR_LEN;
2651 	bzero(buf1, IP_ADDR_LEN);
2652 
2653 	dst = connp->conn_faddr_v4;
2654 
2655 	for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
2656 	    optval != IPOPT_EOL;
2657 	    optval = ipoptp_next(&opts)) {
2658 		int	off;
2659 
2660 		opt = opts.ipoptp_cur;
2661 		if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
2662 			break;
2663 		}
2664 		optlen = opts.ipoptp_len;
2665 
2666 		switch (optval) {
2667 		case IPOPT_SSRR:
2668 		case IPOPT_LSRR:
2669 
2670 			/*
2671 			 * Insert destination as the first entry in the source
2672 			 * route and move down the entries on step.
2673 			 * The last entry gets placed at buf1.
2674 			 */
2675 			buf[IPOPT_OPTVAL] = optval;
2676 			buf[IPOPT_OLEN] = optlen;
2677 			buf[IPOPT_OFFSET] = optlen;
2678 
2679 			off = optlen - IP_ADDR_LEN;
2680 			if (off < 0) {
2681 				/* No entries in source route */
2682 				break;
2683 			}
2684 			/* Last entry in source route if not already set */
2685 			if (dst == INADDR_ANY)
2686 				bcopy(opt + off, buf1, IP_ADDR_LEN);
2687 			off -= IP_ADDR_LEN;
2688 
2689 			while (off > 0) {
2690 				bcopy(opt + off,
2691 				    buf + off + IP_ADDR_LEN,
2692 				    IP_ADDR_LEN);
2693 				off -= IP_ADDR_LEN;
2694 			}
2695 			/* ipha_dst into first slot */
2696 			bcopy(&dst, buf + off + IP_ADDR_LEN,
2697 			    IP_ADDR_LEN);
2698 			buf += optlen;
2699 			len += optlen;
2700 			break;
2701 
2702 		default:
2703 			bcopy(opt, buf, optlen);
2704 			buf += optlen;
2705 			len += optlen;
2706 			break;
2707 		}
2708 	}
2709 done:
2710 	/* Pad the resulting options */
2711 	while (len & 0x3) {
2712 		*buf++ = IPOPT_EOL;
2713 		len++;
2714 	}
2715 	return (len);
2716 }
2717 
2718 /*
2719  * Update any record route or timestamp options to include this host.
2720  * Reverse any source route option.
2721  * This routine assumes that the options are well formed i.e. that they
2722  * have already been checked.
2723  */
2724 static void
2725 icmp_options_update(ipha_t *ipha)
2726 {
2727 	ipoptp_t	opts;
2728 	uchar_t		*opt;
2729 	uint8_t		optval;
2730 	ipaddr_t	src;		/* Our local address */
2731 	ipaddr_t	dst;
2732 
2733 	ip2dbg(("icmp_options_update\n"));
2734 	src = ipha->ipha_src;
2735 	dst = ipha->ipha_dst;
2736 
2737 	for (optval = ipoptp_first(&opts, ipha);
2738 	    optval != IPOPT_EOL;
2739 	    optval = ipoptp_next(&opts)) {
2740 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
2741 		opt = opts.ipoptp_cur;
2742 		ip2dbg(("icmp_options_update: opt %d, len %d\n",
2743 		    optval, opts.ipoptp_len));
2744 		switch (optval) {
2745 			int off1, off2;
2746 		case IPOPT_SSRR:
2747 		case IPOPT_LSRR:
2748 			/*
2749 			 * Reverse the source route.  The first entry
2750 			 * should be the next to last one in the current
2751 			 * source route (the last entry is our address).
2752 			 * The last entry should be the final destination.
2753 			 */
2754 			off1 = IPOPT_MINOFF_SR - 1;
2755 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
2756 			if (off2 < 0) {
2757 				/* No entries in source route */
2758 				ip1dbg((
2759 				    "icmp_options_update: bad src route\n"));
2760 				break;
2761 			}
2762 			bcopy((char *)opt + off2, &dst, IP_ADDR_LEN);
2763 			bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN);
2764 			bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN);
2765 			off2 -= IP_ADDR_LEN;
2766 
2767 			while (off1 < off2) {
2768 				bcopy((char *)opt + off1, &src, IP_ADDR_LEN);
2769 				bcopy((char *)opt + off2, (char *)opt + off1,
2770 				    IP_ADDR_LEN);
2771 				bcopy(&src, (char *)opt + off2, IP_ADDR_LEN);
2772 				off1 += IP_ADDR_LEN;
2773 				off2 -= IP_ADDR_LEN;
2774 			}
2775 			opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
2776 			break;
2777 		}
2778 	}
2779 }
2780 
2781 /*
2782  * Process received ICMP Redirect messages.
2783  * Assumes the caller has verified that the headers are in the pulled up mblk.
2784  * Consumes mp.
2785  */
2786 static void
2787 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira)
2788 {
2789 	ire_t		*ire, *nire;
2790 	ire_t		*prev_ire;
2791 	ipaddr_t  	src, dst, gateway;
2792 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
2793 	ipha_t		*inner_ipha;	/* Inner IP header */
2794 
2795 	/* Caller already pulled up everything. */
2796 	inner_ipha = (ipha_t *)&icmph[1];
2797 	src = ipha->ipha_src;
2798 	dst = inner_ipha->ipha_dst;
2799 	gateway = icmph->icmph_rd_gateway;
2800 	/* Make sure the new gateway is reachable somehow. */
2801 	ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL,
2802 	    ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
2803 	/*
2804 	 * Make sure we had a route for the dest in question and that
2805 	 * that route was pointing to the old gateway (the source of the
2806 	 * redirect packet.)
2807 	 * Note: this merely says that there is some IRE which matches that
2808 	 * gateway; not that the longest match matches that gateway.
2809 	 */
2810 	prev_ire = ire_ftable_lookup_v4(dst, 0, src, 0, NULL, ALL_ZONES,
2811 	    NULL, MATCH_IRE_GW, 0, ipst, NULL);
2812 	/*
2813 	 * Check that
2814 	 *	the redirect was not from ourselves
2815 	 *	the new gateway and the old gateway are directly reachable
2816 	 */
2817 	if (prev_ire == NULL || ire == NULL ||
2818 	    (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) ||
2819 	    (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
2820 	    !(ire->ire_type & IRE_IF_ALL)) {
2821 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2822 		ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill);
2823 		freemsg(mp);
2824 		if (ire != NULL)
2825 			ire_refrele(ire);
2826 		if (prev_ire != NULL)
2827 			ire_refrele(prev_ire);
2828 		return;
2829 	}
2830 
2831 	ire_refrele(prev_ire);
2832 	ire_refrele(ire);
2833 
2834 	/*
2835 	 * TODO: more precise handling for cases 0, 2, 3, the latter two
2836 	 * require TOS routing
2837 	 */
2838 	switch (icmph->icmph_code) {
2839 	case 0:
2840 	case 1:
2841 		/* TODO: TOS specificity for cases 2 and 3 */
2842 	case 2:
2843 	case 3:
2844 		break;
2845 	default:
2846 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2847 		ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill);
2848 		freemsg(mp);
2849 		return;
2850 	}
2851 	/*
2852 	 * Create a Route Association.  This will allow us to remember that
2853 	 * someone we believe told us to use the particular gateway.
2854 	 */
2855 	ire = ire_create(
2856 	    (uchar_t *)&dst,			/* dest addr */
2857 	    (uchar_t *)&ip_g_all_ones,		/* mask */
2858 	    (uchar_t *)&gateway,		/* gateway addr */
2859 	    IRE_HOST,
2860 	    NULL,				/* ill */
2861 	    ALL_ZONES,
2862 	    (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST),
2863 	    NULL,				/* tsol_gc_t */
2864 	    ipst);
2865 
2866 	if (ire == NULL) {
2867 		freemsg(mp);
2868 		return;
2869 	}
2870 	nire = ire_add(ire);
2871 	/* Check if it was a duplicate entry */
2872 	if (nire != NULL && nire != ire) {
2873 		ASSERT(nire->ire_identical_ref > 1);
2874 		ire_delete(nire);
2875 		ire_refrele(nire);
2876 		nire = NULL;
2877 	}
2878 	ire = nire;
2879 	if (ire != NULL) {
2880 		ire_refrele(ire);		/* Held in ire_add */
2881 
2882 		/* tell routing sockets that we received a redirect */
2883 		ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src,
2884 		    (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0,
2885 		    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst);
2886 	}
2887 
2888 	/*
2889 	 * Delete any existing IRE_HOST type redirect ires for this destination.
2890 	 * This together with the added IRE has the effect of
2891 	 * modifying an existing redirect.
2892 	 */
2893 	prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL,
2894 	    ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL);
2895 	if (prev_ire != NULL) {
2896 		if (prev_ire ->ire_flags & RTF_DYNAMIC)
2897 			ire_delete(prev_ire);
2898 		ire_refrele(prev_ire);
2899 	}
2900 
2901 	freemsg(mp);
2902 }
2903 
2904 /*
2905  * Generate an ICMP parameter problem message.
2906  * When called from ip_output side a minimal ip_recv_attr_t needs to be
2907  * constructed by the caller.
2908  */
2909 static void
2910 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira)
2911 {
2912 	icmph_t	icmph;
2913 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
2914 
2915 	mp = icmp_pkt_err_ok(mp, ira);
2916 	if (mp == NULL)
2917 		return;
2918 
2919 	bzero(&icmph, sizeof (icmph_t));
2920 	icmph.icmph_type = ICMP_PARAM_PROBLEM;
2921 	icmph.icmph_pp_ptr = ptr;
2922 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs);
2923 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
2924 }
2925 
2926 /*
2927  * Build and ship an IPv4 ICMP message using the packet data in mp, and
2928  * the ICMP header pointed to by "stuff".  (May be called as writer.)
2929  * Note: assumes that icmp_pkt_err_ok has been called to verify that
2930  * an icmp error packet can be sent.
2931  * Assigns an appropriate source address to the packet. If ipha_dst is
2932  * one of our addresses use it for source. Otherwise let ip_output_simple
2933  * pick the source address.
2934  */
2935 static void
2936 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira)
2937 {
2938 	ipaddr_t dst;
2939 	icmph_t	*icmph;
2940 	ipha_t	*ipha;
2941 	uint_t	len_needed;
2942 	size_t	msg_len;
2943 	mblk_t	*mp1;
2944 	ipaddr_t src;
2945 	ire_t	*ire;
2946 	ip_xmit_attr_t ixas;
2947 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2948 
2949 	ipha = (ipha_t *)mp->b_rptr;
2950 
2951 	bzero(&ixas, sizeof (ixas));
2952 	ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
2953 	ixas.ixa_zoneid = ira->ira_zoneid;
2954 	ixas.ixa_ifindex = 0;
2955 	ixas.ixa_ipst = ipst;
2956 	ixas.ixa_cred = kcred;
2957 	ixas.ixa_cpid = NOPID;
2958 	ixas.ixa_tsl = ira->ira_tsl;	/* Behave as a multi-level responder */
2959 	ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2960 
2961 	if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2962 		/*
2963 		 * Apply IPsec based on how IPsec was applied to
2964 		 * the packet that had the error.
2965 		 *
2966 		 * If it was an outbound packet that caused the ICMP
2967 		 * error, then the caller will have setup the IRA
2968 		 * appropriately.
2969 		 */
2970 		if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
2971 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2972 			/* Note: mp already consumed and ip_drop_packet done */
2973 			return;
2974 		}
2975 	} else {
2976 		/*
2977 		 * This is in clear. The icmp message we are building
2978 		 * here should go out in clear, independent of our policy.
2979 		 */
2980 		ixas.ixa_flags |= IXAF_NO_IPSEC;
2981 	}
2982 
2983 	/* Remember our eventual destination */
2984 	dst = ipha->ipha_src;
2985 
2986 	/*
2987 	 * If the packet was for one of our unicast addresses, make
2988 	 * sure we respond with that as the source. Otherwise
2989 	 * have ip_output_simple pick the source address.
2990 	 */
2991 	ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0,
2992 	    (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL,
2993 	    MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL);
2994 	if (ire != NULL) {
2995 		ire_refrele(ire);
2996 		src = ipha->ipha_dst;
2997 	} else {
2998 		src = INADDR_ANY;
2999 		ixas.ixa_flags |= IXAF_SET_SOURCE;
3000 	}
3001 
3002 	/*
3003 	 * Check if we can send back more then 8 bytes in addition to
3004 	 * the IP header.  We try to send 64 bytes of data and the internal
3005 	 * header in the special cases of ipv4 encapsulated ipv4 or ipv6.
3006 	 */
3007 	len_needed = IPH_HDR_LENGTH(ipha);
3008 	if (ipha->ipha_protocol == IPPROTO_ENCAP ||
3009 	    ipha->ipha_protocol == IPPROTO_IPV6) {
3010 		if (!pullupmsg(mp, -1)) {
3011 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
3012 			ip_drop_output("ipIfStatsOutDiscards", mp, NULL);
3013 			freemsg(mp);
3014 			return;
3015 		}
3016 		ipha = (ipha_t *)mp->b_rptr;
3017 
3018 		if (ipha->ipha_protocol == IPPROTO_ENCAP) {
3019 			len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha +
3020 			    len_needed));
3021 		} else {
3022 			ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed);
3023 
3024 			ASSERT(ipha->ipha_protocol == IPPROTO_IPV6);
3025 			len_needed += ip_hdr_length_v6(mp, ip6h);
3026 		}
3027 	}
3028 	len_needed += ipst->ips_ip_icmp_return;
3029 	msg_len = msgdsize(mp);
3030 	if (msg_len > len_needed) {
3031 		(void) adjmsg(mp, len_needed - msg_len);
3032 		msg_len = len_needed;
3033 	}
3034 	mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED);
3035 	if (mp1 == NULL) {
3036 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors);
3037 		freemsg(mp);
3038 		return;
3039 	}
3040 	mp1->b_cont = mp;
3041 	mp = mp1;
3042 
3043 	/*
3044 	 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this
3045 	 * node generates be accepted in peace by all on-host destinations.
3046 	 * If we do NOT assume that all on-host destinations trust
3047 	 * self-generated ICMP messages, then rework here, ip6.c, and spd.c.
3048 	 * (Look for IXAF_TRUSTED_ICMP).
3049 	 */
3050 	ixas.ixa_flags |= IXAF_TRUSTED_ICMP;
3051 
3052 	ipha = (ipha_t *)mp->b_rptr;
3053 	mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len);
3054 	*ipha = icmp_ipha;
3055 	ipha->ipha_src = src;
3056 	ipha->ipha_dst = dst;
3057 	ipha->ipha_ttl = ipst->ips_ip_def_ttl;
3058 	msg_len += sizeof (icmp_ipha) + len;
3059 	if (msg_len > IP_MAXPACKET) {
3060 		(void) adjmsg(mp, IP_MAXPACKET - msg_len);
3061 		msg_len = IP_MAXPACKET;
3062 	}
3063 	ipha->ipha_length = htons((uint16_t)msg_len);
3064 	icmph = (icmph_t *)&ipha[1];
3065 	bcopy(stuff, icmph, len);
3066 	icmph->icmph_checksum = 0;
3067 	icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0);
3068 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
3069 
3070 	(void) ip_output_simple(mp, &ixas);
3071 	ixa_cleanup(&ixas);
3072 }
3073 
3074 /*
3075  * Determine if an ICMP error packet can be sent given the rate limit.
3076  * The limit consists of an average frequency (icmp_pkt_err_interval measured
3077  * in milliseconds) and a burst size. Burst size number of packets can
3078  * be sent arbitrarely closely spaced.
3079  * The state is tracked using two variables to implement an approximate
3080  * token bucket filter:
3081  *	icmp_pkt_err_last - lbolt value when the last burst started
3082  *	icmp_pkt_err_sent - number of packets sent in current burst
3083  */
3084 boolean_t
3085 icmp_err_rate_limit(ip_stack_t *ipst)
3086 {
3087 	clock_t now = TICK_TO_MSEC(ddi_get_lbolt());
3088 	uint_t refilled; /* Number of packets refilled in tbf since last */
3089 	/* Guard against changes by loading into local variable */
3090 	uint_t err_interval = ipst->ips_ip_icmp_err_interval;
3091 
3092 	if (err_interval == 0)
3093 		return (B_FALSE);
3094 
3095 	if (ipst->ips_icmp_pkt_err_last > now) {
3096 		/* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */
3097 		ipst->ips_icmp_pkt_err_last = 0;
3098 		ipst->ips_icmp_pkt_err_sent = 0;
3099 	}
3100 	/*
3101 	 * If we are in a burst update the token bucket filter.
3102 	 * Update the "last" time to be close to "now" but make sure
3103 	 * we don't loose precision.
3104 	 */
3105 	if (ipst->ips_icmp_pkt_err_sent != 0) {
3106 		refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval;
3107 		if (refilled > ipst->ips_icmp_pkt_err_sent) {
3108 			ipst->ips_icmp_pkt_err_sent = 0;
3109 		} else {
3110 			ipst->ips_icmp_pkt_err_sent -= refilled;
3111 			ipst->ips_icmp_pkt_err_last += refilled * err_interval;
3112 		}
3113 	}
3114 	if (ipst->ips_icmp_pkt_err_sent == 0) {
3115 		/* Start of new burst */
3116 		ipst->ips_icmp_pkt_err_last = now;
3117 	}
3118 	if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) {
3119 		ipst->ips_icmp_pkt_err_sent++;
3120 		ip1dbg(("icmp_err_rate_limit: %d sent in burst\n",
3121 		    ipst->ips_icmp_pkt_err_sent));
3122 		return (B_FALSE);
3123 	}
3124 	ip1dbg(("icmp_err_rate_limit: dropped\n"));
3125 	return (B_TRUE);
3126 }
3127 
3128 /*
3129  * Check if it is ok to send an IPv4 ICMP error packet in
3130  * response to the IPv4 packet in mp.
3131  * Free the message and return null if no
3132  * ICMP error packet should be sent.
3133  */
3134 static mblk_t *
3135 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira)
3136 {
3137 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
3138 	icmph_t	*icmph;
3139 	ipha_t	*ipha;
3140 	uint_t	len_needed;
3141 
3142 	if (!mp)
3143 		return (NULL);
3144 	ipha = (ipha_t *)mp->b_rptr;
3145 	if (ip_csum_hdr(ipha)) {
3146 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs);
3147 		ip_drop_input("ipIfStatsInCksumErrs", mp, NULL);
3148 		freemsg(mp);
3149 		return (NULL);
3150 	}
3151 	if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST ||
3152 	    ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST ||
3153 	    CLASSD(ipha->ipha_dst) ||
3154 	    CLASSD(ipha->ipha_src) ||
3155 	    (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) {
3156 		/* Note: only errors to the fragment with offset 0 */
3157 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3158 		freemsg(mp);
3159 		return (NULL);
3160 	}
3161 	if (ipha->ipha_protocol == IPPROTO_ICMP) {
3162 		/*
3163 		 * Check the ICMP type.  RFC 1122 sez:  don't send ICMP
3164 		 * errors in response to any ICMP errors.
3165 		 */
3166 		len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE;
3167 		if (mp->b_wptr - mp->b_rptr < len_needed) {
3168 			if (!pullupmsg(mp, len_needed)) {
3169 				BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
3170 				freemsg(mp);
3171 				return (NULL);
3172 			}
3173 			ipha = (ipha_t *)mp->b_rptr;
3174 		}
3175 		icmph = (icmph_t *)
3176 		    (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]);
3177 		switch (icmph->icmph_type) {
3178 		case ICMP_DEST_UNREACHABLE:
3179 		case ICMP_SOURCE_QUENCH:
3180 		case ICMP_TIME_EXCEEDED:
3181 		case ICMP_PARAM_PROBLEM:
3182 		case ICMP_REDIRECT:
3183 			BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3184 			freemsg(mp);
3185 			return (NULL);
3186 		default:
3187 			break;
3188 		}
3189 	}
3190 	/*
3191 	 * If this is a labeled system, then check to see if we're allowed to
3192 	 * send a response to this particular sender.  If not, then just drop.
3193 	 */
3194 	if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) {
3195 		ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n"));
3196 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3197 		freemsg(mp);
3198 		return (NULL);
3199 	}
3200 	if (icmp_err_rate_limit(ipst)) {
3201 		/*
3202 		 * Only send ICMP error packets every so often.
3203 		 * This should be done on a per port/source basis,
3204 		 * but for now this will suffice.
3205 		 */
3206 		freemsg(mp);
3207 		return (NULL);
3208 	}
3209 	return (mp);
3210 }
3211 
3212 /*
3213  * Called when a packet was sent out the same link that it arrived on.
3214  * Check if it is ok to send a redirect and then send it.
3215  */
3216 void
3217 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire,
3218     ip_recv_attr_t *ira)
3219 {
3220 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
3221 	ipaddr_t	src, nhop;
3222 	mblk_t		*mp1;
3223 	ire_t		*nhop_ire;
3224 
3225 	/*
3226 	 * Check the source address to see if it originated
3227 	 * on the same logical subnet it is going back out on.
3228 	 * If so, we should be able to send it a redirect.
3229 	 * Avoid sending a redirect if the destination
3230 	 * is directly connected (i.e., we matched an IRE_ONLINK),
3231 	 * or if the packet was source routed out this interface.
3232 	 *
3233 	 * We avoid sending a redirect if the
3234 	 * destination is directly connected
3235 	 * because it is possible that multiple
3236 	 * IP subnets may have been configured on
3237 	 * the link, and the source may not
3238 	 * be on the same subnet as ip destination,
3239 	 * even though they are on the same
3240 	 * physical link.
3241 	 */
3242 	if ((ire->ire_type & IRE_ONLINK) ||
3243 	    ip_source_routed(ipha, ipst))
3244 		return;
3245 
3246 	nhop_ire = ire_nexthop(ire);
3247 	if (nhop_ire == NULL)
3248 		return;
3249 
3250 	nhop = nhop_ire->ire_addr;
3251 
3252 	if (nhop_ire->ire_type & IRE_IF_CLONE) {
3253 		ire_t	*ire2;
3254 
3255 		/* Follow ire_dep_parent to find non-clone IRE_INTERFACE */
3256 		mutex_enter(&nhop_ire->ire_lock);
3257 		ire2 = nhop_ire->ire_dep_parent;
3258 		if (ire2 != NULL)
3259 			ire_refhold(ire2);
3260 		mutex_exit(&nhop_ire->ire_lock);
3261 		ire_refrele(nhop_ire);
3262 		nhop_ire = ire2;
3263 	}
3264 	if (nhop_ire == NULL)
3265 		return;
3266 
3267 	ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE));
3268 
3269 	src = ipha->ipha_src;
3270 
3271 	/*
3272 	 * We look at the interface ire for the nexthop,
3273 	 * to see if ipha_src is in the same subnet
3274 	 * as the nexthop.
3275 	 */
3276 	if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) {
3277 		/*
3278 		 * The source is directly connected.
3279 		 */
3280 		mp1 = copymsg(mp);
3281 		if (mp1 != NULL) {
3282 			icmp_send_redirect(mp1, nhop, ira);
3283 		}
3284 	}
3285 	ire_refrele(nhop_ire);
3286 }
3287 
3288 /*
3289  * Generate an ICMP redirect message.
3290  */
3291 static void
3292 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira)
3293 {
3294 	icmph_t	icmph;
3295 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3296 
3297 	mp = icmp_pkt_err_ok(mp, ira);
3298 	if (mp == NULL)
3299 		return;
3300 
3301 	bzero(&icmph, sizeof (icmph_t));
3302 	icmph.icmph_type = ICMP_REDIRECT;
3303 	icmph.icmph_code = 1;
3304 	icmph.icmph_rd_gateway = gateway;
3305 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects);
3306 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3307 }
3308 
3309 /*
3310  * Generate an ICMP time exceeded message.
3311  */
3312 void
3313 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3314 {
3315 	icmph_t	icmph;
3316 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3317 
3318 	mp = icmp_pkt_err_ok(mp, ira);
3319 	if (mp == NULL)
3320 		return;
3321 
3322 	bzero(&icmph, sizeof (icmph_t));
3323 	icmph.icmph_type = ICMP_TIME_EXCEEDED;
3324 	icmph.icmph_code = code;
3325 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds);
3326 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3327 }
3328 
3329 /*
3330  * Generate an ICMP unreachable message.
3331  * When called from ip_output side a minimal ip_recv_attr_t needs to be
3332  * constructed by the caller.
3333  */
3334 void
3335 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3336 {
3337 	icmph_t	icmph;
3338 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3339 
3340 	mp = icmp_pkt_err_ok(mp, ira);
3341 	if (mp == NULL)
3342 		return;
3343 
3344 	bzero(&icmph, sizeof (icmph_t));
3345 	icmph.icmph_type = ICMP_DEST_UNREACHABLE;
3346 	icmph.icmph_code = code;
3347 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
3348 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3349 }
3350 
3351 /*
3352  * Latch in the IPsec state for a stream based the policy in the listener
3353  * and the actions in the ip_recv_attr_t.
3354  * Called directly from TCP and SCTP.
3355  */
3356 boolean_t
3357 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira)
3358 {
3359 	ASSERT(lconnp->conn_policy != NULL);
3360 	ASSERT(connp->conn_policy == NULL);
3361 
3362 	IPPH_REFHOLD(lconnp->conn_policy);
3363 	connp->conn_policy = lconnp->conn_policy;
3364 
3365 	if (ira->ira_ipsec_action != NULL) {
3366 		if (connp->conn_latch == NULL) {
3367 			connp->conn_latch = iplatch_create();
3368 			if (connp->conn_latch == NULL)
3369 				return (B_FALSE);
3370 		}
3371 		ipsec_latch_inbound(connp, ira);
3372 	}
3373 	return (B_TRUE);
3374 }
3375 
3376 /*
3377  * Verify whether or not the IP address is a valid local address.
3378  * Could be a unicast, including one for a down interface.
3379  * If allow_mcbc then a multicast or broadcast address is also
3380  * acceptable.
3381  *
3382  * In the case of a broadcast/multicast address, however, the
3383  * upper protocol is expected to reset the src address
3384  * to zero when we return IPVL_MCAST/IPVL_BCAST so that
3385  * no packets are emitted with broadcast/multicast address as
3386  * source address (that violates hosts requirements RFC 1122)
3387  * The addresses valid for bind are:
3388  *	(1) - INADDR_ANY (0)
3389  *	(2) - IP address of an UP interface
3390  *	(3) - IP address of a DOWN interface
3391  *	(4) - valid local IP broadcast addresses. In this case
3392  *	the conn will only receive packets destined to
3393  *	the specified broadcast address.
3394  *	(5) - a multicast address. In this case
3395  *	the conn will only receive packets destined to
3396  *	the specified multicast address. Note: the
3397  *	application still has to issue an
3398  *	IP_ADD_MEMBERSHIP socket option.
3399  *
3400  * In all the above cases, the bound address must be valid in the current zone.
3401  * When the address is loopback, multicast or broadcast, there might be many
3402  * matching IREs so bind has to look up based on the zone.
3403  */
3404 ip_laddr_t
3405 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid,
3406     ip_stack_t *ipst, boolean_t allow_mcbc)
3407 {
3408 	ire_t *src_ire;
3409 
3410 	ASSERT(src_addr != INADDR_ANY);
3411 
3412 	src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0,
3413 	    NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL);
3414 
3415 	/*
3416 	 * If an address other than in6addr_any is requested,
3417 	 * we verify that it is a valid address for bind
3418 	 * Note: Following code is in if-else-if form for
3419 	 * readability compared to a condition check.
3420 	 */
3421 	if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) {
3422 		/*
3423 		 * (2) Bind to address of local UP interface
3424 		 */
3425 		ire_refrele(src_ire);
3426 		return (IPVL_UNICAST_UP);
3427 	} else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) {
3428 		/*
3429 		 * (4) Bind to broadcast address
3430 		 */
3431 		ire_refrele(src_ire);
3432 		if (allow_mcbc)
3433 			return (IPVL_BCAST);
3434 		else
3435 			return (IPVL_BAD);
3436 	} else if (CLASSD(src_addr)) {
3437 		/* (5) bind to multicast address. */
3438 		if (src_ire != NULL)
3439 			ire_refrele(src_ire);
3440 
3441 		if (allow_mcbc)
3442 			return (IPVL_MCAST);
3443 		else
3444 			return (IPVL_BAD);
3445 	} else {
3446 		ipif_t *ipif;
3447 
3448 		/*
3449 		 * (3) Bind to address of local DOWN interface?
3450 		 * (ipif_lookup_addr() looks up all interfaces
3451 		 * but we do not get here for UP interfaces
3452 		 * - case (2) above)
3453 		 */
3454 		if (src_ire != NULL)
3455 			ire_refrele(src_ire);
3456 
3457 		ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst);
3458 		if (ipif == NULL)
3459 			return (IPVL_BAD);
3460 
3461 		/* Not a useful source? */
3462 		if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) {
3463 			ipif_refrele(ipif);
3464 			return (IPVL_BAD);
3465 		}
3466 		ipif_refrele(ipif);
3467 		return (IPVL_UNICAST_DOWN);
3468 	}
3469 }
3470 
3471 /*
3472  * Insert in the bind fanout for IPv4 and IPv6.
3473  * The caller should already have used ip_laddr_verify_v*() before calling
3474  * this.
3475  */
3476 int
3477 ip_laddr_fanout_insert(conn_t *connp)
3478 {
3479 	int		error;
3480 
3481 	/*
3482 	 * Allow setting new policies. For example, disconnects result
3483 	 * in us being called. As we would have set conn_policy_cached
3484 	 * to B_TRUE before, we should set it to B_FALSE, so that policy
3485 	 * can change after the disconnect.
3486 	 */
3487 	connp->conn_policy_cached = B_FALSE;
3488 
3489 	error = ipcl_bind_insert(connp);
3490 	if (error != 0) {
3491 		if (connp->conn_anon_port) {
3492 			(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
3493 			    connp->conn_mlp_type, connp->conn_proto,
3494 			    ntohs(connp->conn_lport), B_FALSE);
3495 		}
3496 		connp->conn_mlp_type = mlptSingle;
3497 	}
3498 	return (error);
3499 }
3500 
3501 /*
3502  * Verify that both the source and destination addresses are valid. If
3503  * IPDF_VERIFY_DST is not set, then the destination address may be unreachable,
3504  * i.e. have no route to it.  Protocols like TCP want to verify destination
3505  * reachability, while tunnels do not.
3506  *
3507  * Determine the route, the interface, and (optionally) the source address
3508  * to use to reach a given destination.
3509  * Note that we allow connect to broadcast and multicast addresses when
3510  * IPDF_ALLOW_MCBC is set.
3511  * first_hop and dst_addr are normally the same, but if source routing
3512  * they will differ; in that case the first_hop is what we'll use for the
3513  * routing lookup but the dce and label checks will be done on dst_addr,
3514  *
3515  * If uinfo is set, then we fill in the best available information
3516  * we have for the destination. This is based on (in priority order) any
3517  * metrics and path MTU stored in a dce_t, route metrics, and finally the
3518  * ill_mtu.
3519  *
3520  * Tsol note: If we have a source route then dst_addr != firsthop. But we
3521  * always do the label check on dst_addr.
3522  */
3523 int
3524 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop,
3525     ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode)
3526 {
3527 	ire_t		*ire = NULL;
3528 	int		error = 0;
3529 	ipaddr_t	setsrc;				/* RTF_SETSRC */
3530 	zoneid_t	zoneid = ixa->ixa_zoneid;	/* Honors SO_ALLZONES */
3531 	ip_stack_t	*ipst = ixa->ixa_ipst;
3532 	dce_t		*dce;
3533 	uint_t		pmtu;
3534 	uint_t		generation;
3535 	nce_t		*nce;
3536 	ill_t		*ill = NULL;
3537 	boolean_t	multirt = B_FALSE;
3538 
3539 	ASSERT(ixa->ixa_flags & IXAF_IS_IPV4);
3540 
3541 	/*
3542 	 * We never send to zero; the ULPs map it to the loopback address.
3543 	 * We can't allow it since we use zero to mean unitialized in some
3544 	 * places.
3545 	 */
3546 	ASSERT(dst_addr != INADDR_ANY);
3547 
3548 	if (is_system_labeled()) {
3549 		ts_label_t *tsl = NULL;
3550 
3551 		error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION,
3552 		    mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl);
3553 		if (error != 0)
3554 			return (error);
3555 		if (tsl != NULL) {
3556 			/* Update the label */
3557 			ip_xmit_attr_replace_tsl(ixa, tsl);
3558 		}
3559 	}
3560 
3561 	setsrc = INADDR_ANY;
3562 	/*
3563 	 * Select a route; For IPMP interfaces, we would only select
3564 	 * a "hidden" route (i.e., going through a specific under_ill)
3565 	 * if ixa_ifindex has been specified.
3566 	 */
3567 	ire = ip_select_route_v4(firsthop, ixa, &generation, &setsrc, &error,
3568 	    &multirt);
3569 	ASSERT(ire != NULL);	/* IRE_NOROUTE if none found */
3570 	if (error != 0)
3571 		goto bad_addr;
3572 
3573 	/*
3574 	 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set.
3575 	 * If IPDF_VERIFY_DST is set, the destination must be reachable;
3576 	 * Otherwise the destination needn't be reachable.
3577 	 *
3578 	 * If we match on a reject or black hole, then we've got a
3579 	 * local failure.  May as well fail out the connect() attempt,
3580 	 * since it's never going to succeed.
3581 	 */
3582 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
3583 		/*
3584 		 * If we're verifying destination reachability, we always want
3585 		 * to complain here.
3586 		 *
3587 		 * If we're not verifying destination reachability but the
3588 		 * destination has a route, we still want to fail on the
3589 		 * temporary address and broadcast address tests.
3590 		 *
3591 		 * In both cases do we let the code continue so some reasonable
3592 		 * information is returned to the caller. That enables the
3593 		 * caller to use (and even cache) the IRE. conn_ip_ouput will
3594 		 * use the generation mismatch path to check for the unreachable
3595 		 * case thereby avoiding any specific check in the main path.
3596 		 */
3597 		ASSERT(generation == IRE_GENERATION_VERIFY);
3598 		if (flags & IPDF_VERIFY_DST) {
3599 			/*
3600 			 * Set errno but continue to set up ixa_ire to be
3601 			 * the RTF_REJECT|RTF_BLACKHOLE IRE.
3602 			 * That allows callers to use ip_output to get an
3603 			 * ICMP error back.
3604 			 */
3605 			if (!(ire->ire_type & IRE_HOST))
3606 				error = ENETUNREACH;
3607 			else
3608 				error = EHOSTUNREACH;
3609 		}
3610 	}
3611 
3612 	if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) &&
3613 	    !(flags & IPDF_ALLOW_MCBC)) {
3614 		ire_refrele(ire);
3615 		ire = ire_reject(ipst, B_FALSE);
3616 		generation = IRE_GENERATION_VERIFY;
3617 		error = ENETUNREACH;
3618 	}
3619 
3620 	/* Cache things */
3621 	if (ixa->ixa_ire != NULL)
3622 		ire_refrele_notr(ixa->ixa_ire);
3623 #ifdef DEBUG
3624 	ire_refhold_notr(ire);
3625 	ire_refrele(ire);
3626 #endif
3627 	ixa->ixa_ire = ire;
3628 	ixa->ixa_ire_generation = generation;
3629 
3630 	/*
3631 	 * For multicast with multirt we have a flag passed back from
3632 	 * ire_lookup_multi_ill_v4 since we don't have an IRE for each
3633 	 * possible multicast address.
3634 	 * We also need a flag for multicast since we can't check
3635 	 * whether RTF_MULTIRT is set in ixa_ire for multicast.
3636 	 */
3637 	if (multirt) {
3638 		ixa->ixa_postfragfn = ip_postfrag_multirt_v4;
3639 		ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST;
3640 	} else {
3641 		ixa->ixa_postfragfn = ire->ire_postfragfn;
3642 		ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST;
3643 	}
3644 	if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3645 		/* Get an nce to cache. */
3646 		nce = ire_to_nce(ire, firsthop, NULL);
3647 		if (nce == NULL) {
3648 			/* Allocation failure? */
3649 			ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3650 		} else {
3651 			if (ixa->ixa_nce != NULL)
3652 				nce_refrele(ixa->ixa_nce);
3653 			ixa->ixa_nce = nce;
3654 		}
3655 	}
3656 
3657 	/*
3658 	 * If the source address is a loopback address, the
3659 	 * destination had best be local or multicast.
3660 	 * If we are sending to an IRE_LOCAL using a loopback source then
3661 	 * it had better be the same zoneid.
3662 	 */
3663 	if (*src_addrp == htonl(INADDR_LOOPBACK)) {
3664 		if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) {
3665 			ire = NULL;	/* Stored in ixa_ire */
3666 			error = EADDRNOTAVAIL;
3667 			goto bad_addr;
3668 		}
3669 		if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) {
3670 			ire = NULL;	/* Stored in ixa_ire */
3671 			error = EADDRNOTAVAIL;
3672 			goto bad_addr;
3673 		}
3674 	}
3675 	if (ire->ire_type & IRE_BROADCAST) {
3676 		/*
3677 		 * If the ULP didn't have a specified source, then we
3678 		 * make sure we reselect the source when sending
3679 		 * broadcasts out different interfaces.
3680 		 */
3681 		if (flags & IPDF_SELECT_SRC)
3682 			ixa->ixa_flags |= IXAF_SET_SOURCE;
3683 		else
3684 			ixa->ixa_flags &= ~IXAF_SET_SOURCE;
3685 	}
3686 
3687 	/*
3688 	 * Does the caller want us to pick a source address?
3689 	 */
3690 	if (flags & IPDF_SELECT_SRC) {
3691 		ipaddr_t	src_addr;
3692 
3693 		/*
3694 		 * We use use ire_nexthop_ill to avoid the under ipmp
3695 		 * interface for source address selection. Note that for ipmp
3696 		 * probe packets, ixa_ifindex would have been specified, and
3697 		 * the ip_select_route() invocation would have picked an ire
3698 		 * will ire_ill pointing at an under interface.
3699 		 */
3700 		ill = ire_nexthop_ill(ire);
3701 
3702 		/* If unreachable we have no ill but need some source */
3703 		if (ill == NULL) {
3704 			src_addr = htonl(INADDR_LOOPBACK);
3705 			/* Make sure we look for a better source address */
3706 			generation = SRC_GENERATION_VERIFY;
3707 		} else {
3708 			error = ip_select_source_v4(ill, setsrc, dst_addr,
3709 			    ixa->ixa_multicast_ifaddr, zoneid,
3710 			    ipst, &src_addr, &generation, NULL);
3711 			if (error != 0) {
3712 				ire = NULL;	/* Stored in ixa_ire */
3713 				goto bad_addr;
3714 			}
3715 		}
3716 
3717 		/*
3718 		 * We allow the source address to to down.
3719 		 * However, we check that we don't use the loopback address
3720 		 * as a source when sending out on the wire.
3721 		 */
3722 		if ((src_addr == htonl(INADDR_LOOPBACK)) &&
3723 		    !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) &&
3724 		    !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3725 			ire = NULL;	/* Stored in ixa_ire */
3726 			error = EADDRNOTAVAIL;
3727 			goto bad_addr;
3728 		}
3729 
3730 		*src_addrp = src_addr;
3731 		ixa->ixa_src_generation = generation;
3732 	}
3733 
3734 	if (flags & IPDF_UNIQUE_DCE) {
3735 		/* Fallback to the default dce if allocation fails */
3736 		dce = dce_lookup_and_add_v4(dst_addr, ipst);
3737 		if (dce != NULL)
3738 			generation = dce->dce_generation;
3739 		else
3740 			dce = dce_lookup_v4(dst_addr, ipst, &generation);
3741 	} else {
3742 		dce = dce_lookup_v4(dst_addr, ipst, &generation);
3743 	}
3744 	ASSERT(dce != NULL);
3745 	if (ixa->ixa_dce != NULL)
3746 		dce_refrele_notr(ixa->ixa_dce);
3747 #ifdef DEBUG
3748 	dce_refhold_notr(dce);
3749 	dce_refrele(dce);
3750 #endif
3751 	ixa->ixa_dce = dce;
3752 	ixa->ixa_dce_generation = generation;
3753 
3754 	/*
3755 	 * Make sure we don't leave an unreachable ixa_nce in place
3756 	 * since ip_select_route is used when we unplumb i.e., remove
3757 	 * references on ixa_ire, ixa_nce, and ixa_dce.
3758 	 */
3759 	nce = ixa->ixa_nce;
3760 	if (nce != NULL && nce->nce_is_condemned) {
3761 		nce_refrele(nce);
3762 		ixa->ixa_nce = NULL;
3763 		ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3764 	}
3765 
3766 	/*
3767 	 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired.
3768 	 * However, we can't do it for IPv4 multicast or broadcast.
3769 	 */
3770 	if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST))
3771 		ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3772 
3773 	/*
3774 	 * Set initial value for fragmentation limit. Either conn_ip_output
3775 	 * or ULP might updates it when there are routing changes.
3776 	 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT.
3777 	 */
3778 	pmtu = ip_get_pmtu(ixa);
3779 	ixa->ixa_fragsize = pmtu;
3780 	/* Make sure ixa_fragsize and ixa_pmtu remain identical */
3781 	if (ixa->ixa_flags & IXAF_VERIFY_PMTU)
3782 		ixa->ixa_pmtu = pmtu;
3783 
3784 	/*
3785 	 * Extract information useful for some transports.
3786 	 * First we look for DCE metrics. Then we take what we have in
3787 	 * the metrics in the route, where the offlink is used if we have
3788 	 * one.
3789 	 */
3790 	if (uinfo != NULL) {
3791 		bzero(uinfo, sizeof (*uinfo));
3792 
3793 		if (dce->dce_flags & DCEF_UINFO)
3794 			*uinfo = dce->dce_uinfo;
3795 
3796 		rts_merge_metrics(uinfo, &ire->ire_metrics);
3797 
3798 		/* Allow ire_metrics to decrease the path MTU from above */
3799 		if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu)
3800 			uinfo->iulp_mtu = pmtu;
3801 
3802 		uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0;
3803 		uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0;
3804 		uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0;
3805 	}
3806 
3807 	if (ill != NULL)
3808 		ill_refrele(ill);
3809 
3810 	return (error);
3811 
3812 bad_addr:
3813 	if (ire != NULL)
3814 		ire_refrele(ire);
3815 
3816 	if (ill != NULL)
3817 		ill_refrele(ill);
3818 
3819 	/*
3820 	 * Make sure we don't leave an unreachable ixa_nce in place
3821 	 * since ip_select_route is used when we unplumb i.e., remove
3822 	 * references on ixa_ire, ixa_nce, and ixa_dce.
3823 	 */
3824 	nce = ixa->ixa_nce;
3825 	if (nce != NULL && nce->nce_is_condemned) {
3826 		nce_refrele(nce);
3827 		ixa->ixa_nce = NULL;
3828 		ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3829 	}
3830 
3831 	return (error);
3832 }
3833 
3834 
3835 /*
3836  * Get the base MTU for the case when path MTU discovery is not used.
3837  * Takes the MTU of the IRE into account.
3838  */
3839 uint_t
3840 ip_get_base_mtu(ill_t *ill, ire_t *ire)
3841 {
3842 	uint_t mtu = ill->ill_mtu;
3843 	uint_t iremtu = ire->ire_metrics.iulp_mtu;
3844 
3845 	if (iremtu != 0 && iremtu < mtu)
3846 		mtu = iremtu;
3847 
3848 	return (mtu);
3849 }
3850 
3851 /*
3852  * Get the PMTU for the attributes. Handles both IPv4 and IPv6.
3853  * Assumes that ixa_ire, dce, and nce have already been set up.
3854  *
3855  * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired.
3856  * We avoid path MTU discovery if it is disabled with ndd.
3857  * Furtermore, if the path MTU is too small, then we don't set DF for IPv4.
3858  *
3859  * NOTE: We also used to turn it off for source routed packets. That
3860  * is no longer required since the dce is per final destination.
3861  */
3862 uint_t
3863 ip_get_pmtu(ip_xmit_attr_t *ixa)
3864 {
3865 	ip_stack_t	*ipst = ixa->ixa_ipst;
3866 	dce_t		*dce;
3867 	nce_t		*nce;
3868 	ire_t		*ire;
3869 	uint_t		pmtu;
3870 
3871 	ire = ixa->ixa_ire;
3872 	dce = ixa->ixa_dce;
3873 	nce = ixa->ixa_nce;
3874 
3875 	/*
3876 	 * If path MTU discovery has been turned off by ndd, then we ignore
3877 	 * any dce_pmtu and for IPv4 we will not set DF.
3878 	 */
3879 	if (!ipst->ips_ip_path_mtu_discovery)
3880 		ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3881 
3882 	pmtu = IP_MAXPACKET;
3883 	/*
3884 	 * Decide whether whether IPv4 sets DF
3885 	 * For IPv6 "no DF" means to use the 1280 mtu
3886 	 */
3887 	if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3888 		ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3889 	} else {
3890 		ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3891 		if (!(ixa->ixa_flags & IXAF_IS_IPV4))
3892 			pmtu = IPV6_MIN_MTU;
3893 	}
3894 
3895 	/* Check if the PMTU is to old before we use it */
3896 	if ((dce->dce_flags & DCEF_PMTU) &&
3897 	    TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time >
3898 	    ipst->ips_ip_pathmtu_interval) {
3899 		/*
3900 		 * Older than 20 minutes. Drop the path MTU information.
3901 		 */
3902 		mutex_enter(&dce->dce_lock);
3903 		dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU);
3904 		dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
3905 		mutex_exit(&dce->dce_lock);
3906 		dce_increment_generation(dce);
3907 	}
3908 
3909 	/* The metrics on the route can lower the path MTU */
3910 	if (ire->ire_metrics.iulp_mtu != 0 &&
3911 	    ire->ire_metrics.iulp_mtu < pmtu)
3912 		pmtu = ire->ire_metrics.iulp_mtu;
3913 
3914 	/*
3915 	 * If the path MTU is smaller than some minimum, we still use dce_pmtu
3916 	 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear
3917 	 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4.
3918 	 */
3919 	if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3920 		if (dce->dce_flags & DCEF_PMTU) {
3921 			if (dce->dce_pmtu < pmtu)
3922 				pmtu = dce->dce_pmtu;
3923 
3924 			if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) {
3925 				ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL;
3926 				ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3927 			} else {
3928 				ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3929 				ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3930 			}
3931 		} else {
3932 			ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3933 			ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3934 		}
3935 	}
3936 
3937 	/*
3938 	 * If we have an IRE_LOCAL we use the loopback mtu instead of
3939 	 * the ill for going out the wire i.e., IRE_LOCAL gets the same
3940 	 * mtu as IRE_LOOPBACK.
3941 	 */
3942 	if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
3943 		uint_t loopback_mtu;
3944 
3945 		loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ?
3946 		    ip_loopback_mtu_v6plus : ip_loopback_mtuplus;
3947 
3948 		if (loopback_mtu < pmtu)
3949 			pmtu = loopback_mtu;
3950 	} else if (nce != NULL) {
3951 		/*
3952 		 * Make sure we don't exceed the interface MTU.
3953 		 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have
3954 		 * an ill. We'd use the above IP_MAXPACKET in that case just
3955 		 * to tell the transport something larger than zero.
3956 		 */
3957 		if (nce->nce_common->ncec_ill->ill_mtu < pmtu)
3958 			pmtu = nce->nce_common->ncec_ill->ill_mtu;
3959 		if (nce->nce_common->ncec_ill != nce->nce_ill &&
3960 		    nce->nce_ill->ill_mtu < pmtu) {
3961 			/*
3962 			 * for interfaces in an IPMP group, the mtu of
3963 			 * the nce_ill (under_ill) could be different
3964 			 * from the mtu of the ncec_ill, so we take the
3965 			 * min of the two.
3966 			 */
3967 			pmtu = nce->nce_ill->ill_mtu;
3968 		}
3969 	}
3970 
3971 	/*
3972 	 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data.
3973 	 * Only applies to IPv6.
3974 	 */
3975 	if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3976 		if (ixa->ixa_flags & IXAF_USE_MIN_MTU) {
3977 			switch (ixa->ixa_use_min_mtu) {
3978 			case IPV6_USE_MIN_MTU_MULTICAST:
3979 				if (ire->ire_type & IRE_MULTICAST)
3980 					pmtu = IPV6_MIN_MTU;
3981 				break;
3982 			case IPV6_USE_MIN_MTU_ALWAYS:
3983 				pmtu = IPV6_MIN_MTU;
3984 				break;
3985 			case IPV6_USE_MIN_MTU_NEVER:
3986 				break;
3987 			}
3988 		} else {
3989 			/* Default is IPV6_USE_MIN_MTU_MULTICAST */
3990 			if (ire->ire_type & IRE_MULTICAST)
3991 				pmtu = IPV6_MIN_MTU;
3992 		}
3993 	}
3994 
3995 	/*
3996 	 * After receiving an ICMPv6 "packet too big" message with a
3997 	 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
3998 	 * will insert a 8-byte fragment header in every packet. We compensate
3999 	 * for those cases by returning a smaller path MTU to the ULP.
4000 	 *
4001 	 * In the case of CGTP then ip_output will add a fragment header.
4002 	 * Make sure there is room for it by telling a smaller number
4003 	 * to the transport.
4004 	 *
4005 	 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here
4006 	 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu()
4007 	 * which is the size of the packets it can send.
4008 	 */
4009 	if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
4010 		if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) ||
4011 		    (ire->ire_flags & RTF_MULTIRT) ||
4012 		    (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) {
4013 			pmtu -= sizeof (ip6_frag_t);
4014 			ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR;
4015 		}
4016 	}
4017 
4018 	return (pmtu);
4019 }
4020 
4021 /*
4022  * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping
4023  * the final piece where we don't.  Return a pointer to the first mblk in the
4024  * result, and update the pointer to the next mblk to chew on.  If anything
4025  * goes wrong (i.e., dupb fails), we waste everything in sight and return a
4026  * NULL pointer.
4027  */
4028 mblk_t *
4029 ip_carve_mp(mblk_t **mpp, ssize_t len)
4030 {
4031 	mblk_t	*mp0;
4032 	mblk_t	*mp1;
4033 	mblk_t	*mp2;
4034 
4035 	if (!len || !mpp || !(mp0 = *mpp))
4036 		return (NULL);
4037 	/* If we aren't going to consume the first mblk, we need a dup. */
4038 	if (mp0->b_wptr - mp0->b_rptr > len) {
4039 		mp1 = dupb(mp0);
4040 		if (mp1) {
4041 			/* Partition the data between the two mblks. */
4042 			mp1->b_wptr = mp1->b_rptr + len;
4043 			mp0->b_rptr = mp1->b_wptr;
4044 			/*
4045 			 * after adjustments if mblk not consumed is now
4046 			 * unaligned, try to align it. If this fails free
4047 			 * all messages and let upper layer recover.
4048 			 */
4049 			if (!OK_32PTR(mp0->b_rptr)) {
4050 				if (!pullupmsg(mp0, -1)) {
4051 					freemsg(mp0);
4052 					freemsg(mp1);
4053 					*mpp = NULL;
4054 					return (NULL);
4055 				}
4056 			}
4057 		}
4058 		return (mp1);
4059 	}
4060 	/* Eat through as many mblks as we need to get len bytes. */
4061 	len -= mp0->b_wptr - mp0->b_rptr;
4062 	for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) {
4063 		if (mp2->b_wptr - mp2->b_rptr > len) {
4064 			/*
4065 			 * We won't consume the entire last mblk.  Like
4066 			 * above, dup and partition it.
4067 			 */
4068 			mp1->b_cont = dupb(mp2);
4069 			mp1 = mp1->b_cont;
4070 			if (!mp1) {
4071 				/*
4072 				 * Trouble.  Rather than go to a lot of
4073 				 * trouble to clean up, we free the messages.
4074 				 * This won't be any worse than losing it on
4075 				 * the wire.
4076 				 */
4077 				freemsg(mp0);
4078 				freemsg(mp2);
4079 				*mpp = NULL;
4080 				return (NULL);
4081 			}
4082 			mp1->b_wptr = mp1->b_rptr + len;
4083 			mp2->b_rptr = mp1->b_wptr;
4084 			/*
4085 			 * after adjustments if mblk not consumed is now
4086 			 * unaligned, try to align it. If this fails free
4087 			 * all messages and let upper layer recover.
4088 			 */
4089 			if (!OK_32PTR(mp2->b_rptr)) {
4090 				if (!pullupmsg(mp2, -1)) {
4091 					freemsg(mp0);
4092 					freemsg(mp2);
4093 					*mpp = NULL;
4094 					return (NULL);
4095 				}
4096 			}
4097 			*mpp = mp2;
4098 			return (mp0);
4099 		}
4100 		/* Decrement len by the amount we just got. */
4101 		len -= mp2->b_wptr - mp2->b_rptr;
4102 	}
4103 	/*
4104 	 * len should be reduced to zero now.  If not our caller has
4105 	 * screwed up.
4106 	 */
4107 	if (len) {
4108 		/* Shouldn't happen! */
4109 		freemsg(mp0);
4110 		*mpp = NULL;
4111 		return (NULL);
4112 	}
4113 	/*
4114 	 * We consumed up to exactly the end of an mblk.  Detach the part
4115 	 * we are returning from the rest of the chain.
4116 	 */
4117 	mp1->b_cont = NULL;
4118 	*mpp = mp2;
4119 	return (mp0);
4120 }
4121 
4122 /* The ill stream is being unplumbed. Called from ip_close */
4123 int
4124 ip_modclose(ill_t *ill)
4125 {
4126 	boolean_t success;
4127 	ipsq_t	*ipsq;
4128 	ipif_t	*ipif;
4129 	queue_t	*q = ill->ill_rq;
4130 	ip_stack_t	*ipst = ill->ill_ipst;
4131 	int	i;
4132 	arl_ill_common_t *ai = ill->ill_common;
4133 
4134 	/*
4135 	 * The punlink prior to this may have initiated a capability
4136 	 * negotiation. But ipsq_enter will block until that finishes or
4137 	 * times out.
4138 	 */
4139 	success = ipsq_enter(ill, B_FALSE, NEW_OP);
4140 
4141 	/*
4142 	 * Open/close/push/pop is guaranteed to be single threaded
4143 	 * per stream by STREAMS. FS guarantees that all references
4144 	 * from top are gone before close is called. So there can't
4145 	 * be another close thread that has set CONDEMNED on this ill.
4146 	 * and cause ipsq_enter to return failure.
4147 	 */
4148 	ASSERT(success);
4149 	ipsq = ill->ill_phyint->phyint_ipsq;
4150 
4151 	/*
4152 	 * Mark it condemned. No new reference will be made to this ill.
4153 	 * Lookup functions will return an error. Threads that try to
4154 	 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures
4155 	 * that the refcnt will drop down to zero.
4156 	 */
4157 	mutex_enter(&ill->ill_lock);
4158 	ill->ill_state_flags |= ILL_CONDEMNED;
4159 	for (ipif = ill->ill_ipif; ipif != NULL;
4160 	    ipif = ipif->ipif_next) {
4161 		ipif->ipif_state_flags |= IPIF_CONDEMNED;
4162 	}
4163 	/*
4164 	 * Wake up anybody waiting to enter the ipsq. ipsq_enter
4165 	 * returns  error if ILL_CONDEMNED is set
4166 	 */
4167 	cv_broadcast(&ill->ill_cv);
4168 	mutex_exit(&ill->ill_lock);
4169 
4170 	/*
4171 	 * Send all the deferred DLPI messages downstream which came in
4172 	 * during the small window right before ipsq_enter(). We do this
4173 	 * without waiting for the ACKs because all the ACKs for M_PROTO
4174 	 * messages are ignored in ip_rput() when ILL_CONDEMNED is set.
4175 	 */
4176 	ill_dlpi_send_deferred(ill);
4177 
4178 	/*
4179 	 * Shut down fragmentation reassembly.
4180 	 * ill_frag_timer won't start a timer again.
4181 	 * Now cancel any existing timer
4182 	 */
4183 	(void) untimeout(ill->ill_frag_timer_id);
4184 	(void) ill_frag_timeout(ill, 0);
4185 
4186 	/*
4187 	 * Call ill_delete to bring down the ipifs, ilms and ill on
4188 	 * this ill. Then wait for the refcnts to drop to zero.
4189 	 * ill_is_freeable checks whether the ill is really quiescent.
4190 	 * Then make sure that threads that are waiting to enter the
4191 	 * ipsq have seen the error returned by ipsq_enter and have
4192 	 * gone away. Then we call ill_delete_tail which does the
4193 	 * DL_UNBIND_REQ with the driver and then qprocsoff.
4194 	 */
4195 	ill_delete(ill);
4196 	mutex_enter(&ill->ill_lock);
4197 	while (!ill_is_freeable(ill))
4198 		cv_wait(&ill->ill_cv, &ill->ill_lock);
4199 
4200 	while (ill->ill_waiters)
4201 		cv_wait(&ill->ill_cv, &ill->ill_lock);
4202 
4203 	mutex_exit(&ill->ill_lock);
4204 
4205 	/*
4206 	 * ill_delete_tail drops reference on ill_ipst, but we need to keep
4207 	 * it held until the end of the function since the cleanup
4208 	 * below needs to be able to use the ip_stack_t.
4209 	 */
4210 	netstack_hold(ipst->ips_netstack);
4211 
4212 	/* qprocsoff is done via ill_delete_tail */
4213 	ill_delete_tail(ill);
4214 	/*
4215 	 * synchronously wait for arp stream to unbind. After this, we
4216 	 * cannot get any data packets up from the driver.
4217 	 */
4218 	arp_unbind_complete(ill);
4219 	ASSERT(ill->ill_ipst == NULL);
4220 
4221 	/*
4222 	 * Walk through all conns and qenable those that have queued data.
4223 	 * Close synchronization needs this to
4224 	 * be done to ensure that all upper layers blocked
4225 	 * due to flow control to the closing device
4226 	 * get unblocked.
4227 	 */
4228 	ip1dbg(("ip_wsrv: walking\n"));
4229 	for (i = 0; i < TX_FANOUT_SIZE; i++) {
4230 		conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]);
4231 	}
4232 
4233 	/*
4234 	 * ai can be null if this is an IPv6 ill, or if the IPv4
4235 	 * stream is being torn down before ARP was plumbed (e.g.,
4236 	 * /sbin/ifconfig plumbing a stream twice, and encountering
4237 	 * an error
4238 	 */
4239 	if (ai != NULL) {
4240 		ASSERT(!ill->ill_isv6);
4241 		mutex_enter(&ai->ai_lock);
4242 		ai->ai_ill = NULL;
4243 		if (ai->ai_arl == NULL) {
4244 			mutex_destroy(&ai->ai_lock);
4245 			kmem_free(ai, sizeof (*ai));
4246 		} else {
4247 			cv_signal(&ai->ai_ill_unplumb_done);
4248 			mutex_exit(&ai->ai_lock);
4249 		}
4250 	}
4251 
4252 	mutex_enter(&ipst->ips_ip_mi_lock);
4253 	mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill);
4254 	mutex_exit(&ipst->ips_ip_mi_lock);
4255 
4256 	/*
4257 	 * credp could be null if the open didn't succeed and ip_modopen
4258 	 * itself calls ip_close.
4259 	 */
4260 	if (ill->ill_credp != NULL)
4261 		crfree(ill->ill_credp);
4262 
4263 	mutex_destroy(&ill->ill_saved_ire_lock);
4264 	mutex_destroy(&ill->ill_lock);
4265 	rw_destroy(&ill->ill_mcast_lock);
4266 	mutex_destroy(&ill->ill_mcast_serializer);
4267 	list_destroy(&ill->ill_nce);
4268 
4269 	/*
4270 	 * Now we are done with the module close pieces that
4271 	 * need the netstack_t.
4272 	 */
4273 	netstack_rele(ipst->ips_netstack);
4274 
4275 	mi_close_free((IDP)ill);
4276 	q->q_ptr = WR(q)->q_ptr = NULL;
4277 
4278 	ipsq_exit(ipsq);
4279 
4280 	return (0);
4281 }
4282 
4283 /*
4284  * This is called as part of close() for IP, UDP, ICMP, and RTS
4285  * in order to quiesce the conn.
4286  */
4287 void
4288 ip_quiesce_conn(conn_t *connp)
4289 {
4290 	boolean_t	drain_cleanup_reqd = B_FALSE;
4291 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4292 	boolean_t	ilg_cleanup_reqd = B_FALSE;
4293 	ip_stack_t	*ipst;
4294 
4295 	ASSERT(!IPCL_IS_TCP(connp));
4296 	ipst = connp->conn_netstack->netstack_ip;
4297 
4298 	/*
4299 	 * Mark the conn as closing, and this conn must not be
4300 	 * inserted in future into any list. Eg. conn_drain_insert(),
4301 	 * won't insert this conn into the conn_drain_list.
4302 	 *
4303 	 * conn_idl, and conn_ilg cannot get set henceforth.
4304 	 */
4305 	mutex_enter(&connp->conn_lock);
4306 	ASSERT(!(connp->conn_state_flags & CONN_QUIESCED));
4307 	connp->conn_state_flags |= CONN_CLOSING;
4308 	if (connp->conn_idl != NULL)
4309 		drain_cleanup_reqd = B_TRUE;
4310 	if (connp->conn_oper_pending_ill != NULL)
4311 		conn_ioctl_cleanup_reqd = B_TRUE;
4312 	if (connp->conn_dhcpinit_ill != NULL) {
4313 		ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0);
4314 		atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit);
4315 		ill_set_inputfn(connp->conn_dhcpinit_ill);
4316 		connp->conn_dhcpinit_ill = NULL;
4317 	}
4318 	if (connp->conn_ilg != NULL)
4319 		ilg_cleanup_reqd = B_TRUE;
4320 	mutex_exit(&connp->conn_lock);
4321 
4322 	if (conn_ioctl_cleanup_reqd)
4323 		conn_ioctl_cleanup(connp);
4324 
4325 	if (is_system_labeled() && connp->conn_anon_port) {
4326 		(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
4327 		    connp->conn_mlp_type, connp->conn_proto,
4328 		    ntohs(connp->conn_lport), B_FALSE);
4329 		connp->conn_anon_port = 0;
4330 	}
4331 	connp->conn_mlp_type = mlptSingle;
4332 
4333 	/*
4334 	 * Remove this conn from any fanout list it is on.
4335 	 * and then wait for any threads currently operating
4336 	 * on this endpoint to finish
4337 	 */
4338 	ipcl_hash_remove(connp);
4339 
4340 	/*
4341 	 * Remove this conn from the drain list, and do
4342 	 * any other cleanup that may be required.
4343 	 * (Only non-tcp conns may have a non-null conn_idl.
4344 	 * TCP conns are never flow controlled, and
4345 	 * conn_idl will be null)
4346 	 */
4347 	if (drain_cleanup_reqd && connp->conn_idl != NULL) {
4348 		mutex_enter(&connp->conn_idl->idl_lock);
4349 		conn_drain_tail(connp, B_TRUE);
4350 		mutex_exit(&connp->conn_idl->idl_lock);
4351 	}
4352 
4353 	if (connp == ipst->ips_ip_g_mrouter)
4354 		(void) ip_mrouter_done(ipst);
4355 
4356 	if (ilg_cleanup_reqd)
4357 		ilg_delete_all(connp);
4358 
4359 	/*
4360 	 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED.
4361 	 * callers from write side can't be there now because close
4362 	 * is in progress. The only other caller is ipcl_walk
4363 	 * which checks for the condemned flag.
4364 	 */
4365 	mutex_enter(&connp->conn_lock);
4366 	connp->conn_state_flags |= CONN_CONDEMNED;
4367 	while (connp->conn_ref != 1)
4368 		cv_wait(&connp->conn_cv, &connp->conn_lock);
4369 	connp->conn_state_flags |= CONN_QUIESCED;
4370 	mutex_exit(&connp->conn_lock);
4371 }
4372 
4373 /* ARGSUSED */
4374 int
4375 ip_close(queue_t *q, int flags)
4376 {
4377 	conn_t		*connp;
4378 
4379 	/*
4380 	 * Call the appropriate delete routine depending on whether this is
4381 	 * a module or device.
4382 	 */
4383 	if (WR(q)->q_next != NULL) {
4384 		/* This is a module close */
4385 		return (ip_modclose((ill_t *)q->q_ptr));
4386 	}
4387 
4388 	connp = q->q_ptr;
4389 	ip_quiesce_conn(connp);
4390 
4391 	qprocsoff(q);
4392 
4393 	/*
4394 	 * Now we are truly single threaded on this stream, and can
4395 	 * delete the things hanging off the connp, and finally the connp.
4396 	 * We removed this connp from the fanout list, it cannot be
4397 	 * accessed thru the fanouts, and we already waited for the
4398 	 * conn_ref to drop to 0. We are already in close, so
4399 	 * there cannot be any other thread from the top. qprocsoff
4400 	 * has completed, and service has completed or won't run in
4401 	 * future.
4402 	 */
4403 	ASSERT(connp->conn_ref == 1);
4404 
4405 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4406 
4407 	connp->conn_ref--;
4408 	ipcl_conn_destroy(connp);
4409 
4410 	q->q_ptr = WR(q)->q_ptr = NULL;
4411 	return (0);
4412 }
4413 
4414 /*
4415  * Wapper around putnext() so that ip_rts_request can merely use
4416  * conn_recv.
4417  */
4418 /*ARGSUSED2*/
4419 static void
4420 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4421 {
4422 	conn_t *connp = (conn_t *)arg1;
4423 
4424 	putnext(connp->conn_rq, mp);
4425 }
4426 
4427 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */
4428 /* ARGSUSED */
4429 static void
4430 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4431 {
4432 	freemsg(mp);
4433 }
4434 
4435 /*
4436  * Called when the module is about to be unloaded
4437  */
4438 void
4439 ip_ddi_destroy(void)
4440 {
4441 	tnet_fini();
4442 
4443 	icmp_ddi_g_destroy();
4444 	rts_ddi_g_destroy();
4445 	udp_ddi_g_destroy();
4446 	sctp_ddi_g_destroy();
4447 	tcp_ddi_g_destroy();
4448 	ilb_ddi_g_destroy();
4449 	dce_g_destroy();
4450 	ipsec_policy_g_destroy();
4451 	ipcl_g_destroy();
4452 	ip_net_g_destroy();
4453 	ip_ire_g_fini();
4454 	inet_minor_destroy(ip_minor_arena_sa);
4455 #if defined(_LP64)
4456 	inet_minor_destroy(ip_minor_arena_la);
4457 #endif
4458 
4459 #ifdef DEBUG
4460 	list_destroy(&ip_thread_list);
4461 	rw_destroy(&ip_thread_rwlock);
4462 	tsd_destroy(&ip_thread_data);
4463 #endif
4464 
4465 	netstack_unregister(NS_IP);
4466 }
4467 
4468 /*
4469  * First step in cleanup.
4470  */
4471 /* ARGSUSED */
4472 static void
4473 ip_stack_shutdown(netstackid_t stackid, void *arg)
4474 {
4475 	ip_stack_t *ipst = (ip_stack_t *)arg;
4476 
4477 #ifdef NS_DEBUG
4478 	printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid);
4479 #endif
4480 
4481 	/*
4482 	 * Perform cleanup for special interfaces (loopback and IPMP).
4483 	 */
4484 	ip_interface_cleanup(ipst);
4485 
4486 	/*
4487 	 * The *_hook_shutdown()s start the process of notifying any
4488 	 * consumers that things are going away.... nothing is destroyed.
4489 	 */
4490 	ipv4_hook_shutdown(ipst);
4491 	ipv6_hook_shutdown(ipst);
4492 	arp_hook_shutdown(ipst);
4493 
4494 	mutex_enter(&ipst->ips_capab_taskq_lock);
4495 	ipst->ips_capab_taskq_quit = B_TRUE;
4496 	cv_signal(&ipst->ips_capab_taskq_cv);
4497 	mutex_exit(&ipst->ips_capab_taskq_lock);
4498 }
4499 
4500 /*
4501  * Free the IP stack instance.
4502  */
4503 static void
4504 ip_stack_fini(netstackid_t stackid, void *arg)
4505 {
4506 	ip_stack_t *ipst = (ip_stack_t *)arg;
4507 	int ret;
4508 
4509 #ifdef NS_DEBUG
4510 	printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid);
4511 #endif
4512 	/*
4513 	 * At this point, all of the notifications that the events and
4514 	 * protocols are going away have been run, meaning that we can
4515 	 * now set about starting to clean things up.
4516 	 */
4517 	ipobs_fini(ipst);
4518 	ipv4_hook_destroy(ipst);
4519 	ipv6_hook_destroy(ipst);
4520 	arp_hook_destroy(ipst);
4521 	ip_net_destroy(ipst);
4522 
4523 	mutex_destroy(&ipst->ips_capab_taskq_lock);
4524 	cv_destroy(&ipst->ips_capab_taskq_cv);
4525 
4526 	ipmp_destroy(ipst);
4527 	rw_destroy(&ipst->ips_srcid_lock);
4528 
4529 	ip_kstat_fini(stackid, ipst->ips_ip_mibkp);
4530 	ipst->ips_ip_mibkp = NULL;
4531 	icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp);
4532 	ipst->ips_icmp_mibkp = NULL;
4533 	ip_kstat2_fini(stackid, ipst->ips_ip_kstat);
4534 	ipst->ips_ip_kstat = NULL;
4535 	bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics));
4536 	ip6_kstat_fini(stackid, ipst->ips_ip6_kstat);
4537 	ipst->ips_ip6_kstat = NULL;
4538 	bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics));
4539 
4540 	nd_free(&ipst->ips_ip_g_nd);
4541 	kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr));
4542 	ipst->ips_param_arr = NULL;
4543 	kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr));
4544 	ipst->ips_ndp_arr = NULL;
4545 
4546 	dce_stack_destroy(ipst);
4547 	ip_mrouter_stack_destroy(ipst);
4548 
4549 	mutex_destroy(&ipst->ips_ip_mi_lock);
4550 	rw_destroy(&ipst->ips_ill_g_usesrc_lock);
4551 	rw_destroy(&ipst->ips_ip_g_nd_lock);
4552 
4553 	ret = untimeout(ipst->ips_igmp_timeout_id);
4554 	if (ret == -1) {
4555 		ASSERT(ipst->ips_igmp_timeout_id == 0);
4556 	} else {
4557 		ASSERT(ipst->ips_igmp_timeout_id != 0);
4558 		ipst->ips_igmp_timeout_id = 0;
4559 	}
4560 	ret = untimeout(ipst->ips_igmp_slowtimeout_id);
4561 	if (ret == -1) {
4562 		ASSERT(ipst->ips_igmp_slowtimeout_id == 0);
4563 	} else {
4564 		ASSERT(ipst->ips_igmp_slowtimeout_id != 0);
4565 		ipst->ips_igmp_slowtimeout_id = 0;
4566 	}
4567 	ret = untimeout(ipst->ips_mld_timeout_id);
4568 	if (ret == -1) {
4569 		ASSERT(ipst->ips_mld_timeout_id == 0);
4570 	} else {
4571 		ASSERT(ipst->ips_mld_timeout_id != 0);
4572 		ipst->ips_mld_timeout_id = 0;
4573 	}
4574 	ret = untimeout(ipst->ips_mld_slowtimeout_id);
4575 	if (ret == -1) {
4576 		ASSERT(ipst->ips_mld_slowtimeout_id == 0);
4577 	} else {
4578 		ASSERT(ipst->ips_mld_slowtimeout_id != 0);
4579 		ipst->ips_mld_slowtimeout_id = 0;
4580 	}
4581 
4582 	mutex_destroy(&ipst->ips_igmp_timer_lock);
4583 	mutex_destroy(&ipst->ips_mld_timer_lock);
4584 	mutex_destroy(&ipst->ips_igmp_slowtimeout_lock);
4585 	mutex_destroy(&ipst->ips_mld_slowtimeout_lock);
4586 	mutex_destroy(&ipst->ips_ip_addr_avail_lock);
4587 	rw_destroy(&ipst->ips_ill_g_lock);
4588 
4589 	ip_ire_fini(ipst);
4590 	ip6_asp_free(ipst);
4591 	conn_drain_fini(ipst);
4592 	ipcl_destroy(ipst);
4593 
4594 	mutex_destroy(&ipst->ips_ndp4->ndp_g_lock);
4595 	mutex_destroy(&ipst->ips_ndp6->ndp_g_lock);
4596 	kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t));
4597 	ipst->ips_ndp4 = NULL;
4598 	kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t));
4599 	ipst->ips_ndp6 = NULL;
4600 
4601 	if (ipst->ips_loopback_ksp != NULL) {
4602 		kstat_delete_netstack(ipst->ips_loopback_ksp, stackid);
4603 		ipst->ips_loopback_ksp = NULL;
4604 	}
4605 
4606 	kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t));
4607 	ipst->ips_phyint_g_list = NULL;
4608 	kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS);
4609 	ipst->ips_ill_g_heads = NULL;
4610 
4611 	ldi_ident_release(ipst->ips_ldi_ident);
4612 	kmem_free(ipst, sizeof (*ipst));
4613 }
4614 
4615 /*
4616  * This function is called from the TSD destructor, and is used to debug
4617  * reference count issues in IP. See block comment in <inet/ip_if.h> for
4618  * details.
4619  */
4620 static void
4621 ip_thread_exit(void *phash)
4622 {
4623 	th_hash_t *thh = phash;
4624 
4625 	rw_enter(&ip_thread_rwlock, RW_WRITER);
4626 	list_remove(&ip_thread_list, thh);
4627 	rw_exit(&ip_thread_rwlock);
4628 	mod_hash_destroy_hash(thh->thh_hash);
4629 	kmem_free(thh, sizeof (*thh));
4630 }
4631 
4632 /*
4633  * Called when the IP kernel module is loaded into the kernel
4634  */
4635 void
4636 ip_ddi_init(void)
4637 {
4638 	ip_squeue_flag = ip_squeue_switch(ip_squeue_enter);
4639 
4640 	/*
4641 	 * For IP and TCP the minor numbers should start from 2 since we have 4
4642 	 * initial devices: ip, ip6, tcp, tcp6.
4643 	 */
4644 	/*
4645 	 * If this is a 64-bit kernel, then create two separate arenas -
4646 	 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the
4647 	 * other for socket apps in the range 2^^18 through 2^^32-1.
4648 	 */
4649 	ip_minor_arena_la = NULL;
4650 	ip_minor_arena_sa = NULL;
4651 #if defined(_LP64)
4652 	if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4653 	    INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) {
4654 		cmn_err(CE_PANIC,
4655 		    "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4656 	}
4657 	if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la",
4658 	    MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) {
4659 		cmn_err(CE_PANIC,
4660 		    "ip_ddi_init: ip_minor_arena_la creation failed\n");
4661 	}
4662 #else
4663 	if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4664 	    INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) {
4665 		cmn_err(CE_PANIC,
4666 		    "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4667 	}
4668 #endif
4669 	ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms);
4670 
4671 	ipcl_g_init();
4672 	ip_ire_g_init();
4673 	ip_net_g_init();
4674 
4675 #ifdef DEBUG
4676 	tsd_create(&ip_thread_data, ip_thread_exit);
4677 	rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL);
4678 	list_create(&ip_thread_list, sizeof (th_hash_t),
4679 	    offsetof(th_hash_t, thh_link));
4680 #endif
4681 	ipsec_policy_g_init();
4682 	tcp_ddi_g_init();
4683 	sctp_ddi_g_init();
4684 	dce_g_init();
4685 
4686 	/*
4687 	 * We want to be informed each time a stack is created or
4688 	 * destroyed in the kernel, so we can maintain the
4689 	 * set of udp_stack_t's.
4690 	 */
4691 	netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown,
4692 	    ip_stack_fini);
4693 
4694 	tnet_init();
4695 
4696 	udp_ddi_g_init();
4697 	rts_ddi_g_init();
4698 	icmp_ddi_g_init();
4699 	ilb_ddi_g_init();
4700 }
4701 
4702 /*
4703  * Initialize the IP stack instance.
4704  */
4705 static void *
4706 ip_stack_init(netstackid_t stackid, netstack_t *ns)
4707 {
4708 	ip_stack_t	*ipst;
4709 	ipparam_t	*pa;
4710 	ipndp_t		*na;
4711 	major_t		major;
4712 
4713 #ifdef NS_DEBUG
4714 	printf("ip_stack_init(stack %d)\n", stackid);
4715 #endif
4716 
4717 	ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP);
4718 	ipst->ips_netstack = ns;
4719 
4720 	ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS,
4721 	    KM_SLEEP);
4722 	ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t),
4723 	    KM_SLEEP);
4724 	ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4725 	ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4726 	mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4727 	mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4728 
4729 	rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL);
4730 	mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4731 	ipst->ips_igmp_deferred_next = INFINITY;
4732 	mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4733 	ipst->ips_mld_deferred_next = INFINITY;
4734 	mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4735 	mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4736 	mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL);
4737 	mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL);
4738 	rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL);
4739 	rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL);
4740 
4741 	ipcl_init(ipst);
4742 	ip_ire_init(ipst);
4743 	ip6_asp_init(ipst);
4744 	ipif_init(ipst);
4745 	conn_drain_init(ipst);
4746 	ip_mrouter_stack_init(ipst);
4747 	dce_stack_init(ipst);
4748 
4749 	ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT;
4750 	ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000;
4751 	ipst->ips_ipv6_frag_timeout = IPV6_FRAG_TIMEOUT;
4752 	ipst->ips_ipv6_frag_timo_ms = IPV6_FRAG_TIMEOUT * 1000;
4753 
4754 	ipst->ips_ip_multirt_log_interval = 1000;
4755 
4756 	ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT;
4757 	ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT;
4758 	ipst->ips_ill_index = 1;
4759 
4760 	ipst->ips_saved_ip_g_forward = -1;
4761 	ipst->ips_reg_vif_num = ALL_VIFS; 	/* Index to Register vif */
4762 
4763 	pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP);
4764 	ipst->ips_param_arr = pa;
4765 	bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr));
4766 
4767 	na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP);
4768 	ipst->ips_ndp_arr = na;
4769 	bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr));
4770 	ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data =
4771 	    (caddr_t)&ipst->ips_ip_g_forward;
4772 	ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data =
4773 	    (caddr_t)&ipst->ips_ipv6_forward;
4774 	ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name,
4775 	    "ip_cgtp_filter") == 0);
4776 	ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data =
4777 	    (caddr_t)&ipst->ips_ip_cgtp_filter;
4778 
4779 	(void) ip_param_register(&ipst->ips_ip_g_nd,
4780 	    ipst->ips_param_arr, A_CNT(lcl_param_arr),
4781 	    ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr));
4782 
4783 	ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst);
4784 	ipst->ips_icmp_mibkp = icmp_kstat_init(stackid);
4785 	ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics);
4786 	ipst->ips_ip6_kstat =
4787 	    ip6_kstat_init(stackid, &ipst->ips_ip6_statistics);
4788 
4789 	ipst->ips_ip_src_id = 1;
4790 	rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL);
4791 
4792 	ipst->ips_src_generation = SRC_GENERATION_INITIAL;
4793 
4794 	ip_net_init(ipst, ns);
4795 	ipv4_hook_init(ipst);
4796 	ipv6_hook_init(ipst);
4797 	arp_hook_init(ipst);
4798 	ipmp_init(ipst);
4799 	ipobs_init(ipst);
4800 
4801 	/*
4802 	 * Create the taskq dispatcher thread and initialize related stuff.
4803 	 */
4804 	ipst->ips_capab_taskq_thread = thread_create(NULL, 0,
4805 	    ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri);
4806 	mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
4807 	cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL);
4808 
4809 	major = mod_name_to_major(INET_NAME);
4810 	(void) ldi_ident_from_major(major, &ipst->ips_ldi_ident);
4811 	return (ipst);
4812 }
4813 
4814 /*
4815  * Allocate and initialize a DLPI template of the specified length.  (May be
4816  * called as writer.)
4817  */
4818 mblk_t *
4819 ip_dlpi_alloc(size_t len, t_uscalar_t prim)
4820 {
4821 	mblk_t	*mp;
4822 
4823 	mp = allocb(len, BPRI_MED);
4824 	if (!mp)
4825 		return (NULL);
4826 
4827 	/*
4828 	 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter
4829 	 * of which we don't seem to use) are sent with M_PCPROTO, and
4830 	 * that other DLPI are M_PROTO.
4831 	 */
4832 	if (prim == DL_INFO_REQ) {
4833 		mp->b_datap->db_type = M_PCPROTO;
4834 	} else {
4835 		mp->b_datap->db_type = M_PROTO;
4836 	}
4837 
4838 	mp->b_wptr = mp->b_rptr + len;
4839 	bzero(mp->b_rptr, len);
4840 	((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim;
4841 	return (mp);
4842 }
4843 
4844 /*
4845  * Allocate and initialize a DLPI notification.  (May be called as writer.)
4846  */
4847 mblk_t *
4848 ip_dlnotify_alloc(uint_t notification, uint_t data)
4849 {
4850 	dl_notify_ind_t	*notifyp;
4851 	mblk_t		*mp;
4852 
4853 	if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4854 		return (NULL);
4855 
4856 	notifyp = (dl_notify_ind_t *)mp->b_rptr;
4857 	notifyp->dl_notification = notification;
4858 	notifyp->dl_data = data;
4859 	return (mp);
4860 }
4861 
4862 /*
4863  * Debug formatting routine.  Returns a character string representation of the
4864  * addr in buf, of the form xxx.xxx.xxx.xxx.  This routine takes the address
4865  * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer.
4866  *
4867  * Once the ndd table-printing interfaces are removed, this can be changed to
4868  * standard dotted-decimal form.
4869  */
4870 char *
4871 ip_dot_addr(ipaddr_t addr, char *buf)
4872 {
4873 	uint8_t *ap = (uint8_t *)&addr;
4874 
4875 	(void) mi_sprintf(buf, "%03d.%03d.%03d.%03d",
4876 	    ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF);
4877 	return (buf);
4878 }
4879 
4880 /*
4881  * Write the given MAC address as a printable string in the usual colon-
4882  * separated format.
4883  */
4884 const char *
4885 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen)
4886 {
4887 	char *bp;
4888 
4889 	if (alen == 0 || buflen < 4)
4890 		return ("?");
4891 	bp = buf;
4892 	for (;;) {
4893 		/*
4894 		 * If there are more MAC address bytes available, but we won't
4895 		 * have any room to print them, then add "..." to the string
4896 		 * instead.  See below for the 'magic number' explanation.
4897 		 */
4898 		if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) {
4899 			(void) strcpy(bp, "...");
4900 			break;
4901 		}
4902 		(void) sprintf(bp, "%02x", *addr++);
4903 		bp += 2;
4904 		if (--alen == 0)
4905 			break;
4906 		*bp++ = ':';
4907 		buflen -= 3;
4908 		/*
4909 		 * At this point, based on the first 'if' statement above,
4910 		 * either alen == 1 and buflen >= 3, or alen > 1 and
4911 		 * buflen >= 4.  The first case leaves room for the final "xx"
4912 		 * number and trailing NUL byte.  The second leaves room for at
4913 		 * least "...".  Thus the apparently 'magic' numbers chosen for
4914 		 * that statement.
4915 		 */
4916 	}
4917 	return (buf);
4918 }
4919 
4920 /*
4921  * Called when it is conceptually a ULP that would sent the packet
4922  * e.g., port unreachable and protocol unreachable. Check that the packet
4923  * would have passed the IPsec global policy before sending the error.
4924  *
4925  * Send an ICMP error after patching up the packet appropriately.
4926  * Uses ip_drop_input and bumps the appropriate MIB.
4927  */
4928 void
4929 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code,
4930     ip_recv_attr_t *ira)
4931 {
4932 	ipha_t		*ipha;
4933 	boolean_t	secure;
4934 	ill_t		*ill = ira->ira_ill;
4935 	ip_stack_t	*ipst = ill->ill_ipst;
4936 	netstack_t	*ns = ipst->ips_netstack;
4937 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4938 
4939 	secure = ira->ira_flags & IRAF_IPSEC_SECURE;
4940 
4941 	/*
4942 	 * We are generating an icmp error for some inbound packet.
4943 	 * Called from all ip_fanout_(udp, tcp, proto) functions.
4944 	 * Before we generate an error, check with global policy
4945 	 * to see whether this is allowed to enter the system. As
4946 	 * there is no "conn", we are checking with global policy.
4947 	 */
4948 	ipha = (ipha_t *)mp->b_rptr;
4949 	if (secure || ipss->ipsec_inbound_v4_policy_present) {
4950 		mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns);
4951 		if (mp == NULL)
4952 			return;
4953 	}
4954 
4955 	/* We never send errors for protocols that we do implement */
4956 	if (ira->ira_protocol == IPPROTO_ICMP ||
4957 	    ira->ira_protocol == IPPROTO_IGMP) {
4958 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4959 		ip_drop_input("ip_fanout_send_icmp_v4", mp, ill);
4960 		freemsg(mp);
4961 		return;
4962 	}
4963 	/*
4964 	 * Have to correct checksum since
4965 	 * the packet might have been
4966 	 * fragmented and the reassembly code in ip_rput
4967 	 * does not restore the IP checksum.
4968 	 */
4969 	ipha->ipha_hdr_checksum = 0;
4970 	ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
4971 
4972 	switch (icmp_type) {
4973 	case ICMP_DEST_UNREACHABLE:
4974 		switch (icmp_code) {
4975 		case ICMP_PROTOCOL_UNREACHABLE:
4976 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos);
4977 			ip_drop_input("ipIfStatsInUnknownProtos", mp, ill);
4978 			break;
4979 		case ICMP_PORT_UNREACHABLE:
4980 			BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
4981 			ip_drop_input("ipIfStatsNoPorts", mp, ill);
4982 			break;
4983 		}
4984 
4985 		icmp_unreachable(mp, icmp_code, ira);
4986 		break;
4987 	default:
4988 #ifdef DEBUG
4989 		panic("ip_fanout_send_icmp_v4: wrong type");
4990 		/*NOTREACHED*/
4991 #else
4992 		freemsg(mp);
4993 		break;
4994 #endif
4995 	}
4996 }
4997 
4998 /*
4999  * Used to send an ICMP error message when a packet is received for
5000  * a protocol that is not supported. The mblk passed as argument
5001  * is consumed by this function.
5002  */
5003 void
5004 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira)
5005 {
5006 	ipha_t		*ipha;
5007 
5008 	ipha = (ipha_t *)mp->b_rptr;
5009 	if (ira->ira_flags & IRAF_IS_IPV4) {
5010 		ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION);
5011 		ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
5012 		    ICMP_PROTOCOL_UNREACHABLE, ira);
5013 	} else {
5014 		ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
5015 		ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB,
5016 		    ICMP6_PARAMPROB_NEXTHEADER, ira);
5017 	}
5018 }
5019 
5020 /*
5021  * Deliver a rawip packet to the given conn, possibly applying ipsec policy.
5022  * Handles IPv4 and IPv6.
5023  * We are responsible for disposing of mp, such as by freemsg() or putnext()
5024  * Caller is responsible for dropping references to the conn.
5025  */
5026 void
5027 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
5028     ip_recv_attr_t *ira)
5029 {
5030 	ill_t		*ill = ira->ira_ill;
5031 	ip_stack_t	*ipst = ill->ill_ipst;
5032 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5033 	boolean_t	secure;
5034 	uint_t		protocol = ira->ira_protocol;
5035 	iaflags_t	iraflags = ira->ira_flags;
5036 	queue_t		*rq;
5037 
5038 	secure = iraflags & IRAF_IPSEC_SECURE;
5039 
5040 	rq = connp->conn_rq;
5041 	if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
5042 		switch (protocol) {
5043 		case IPPROTO_ICMPV6:
5044 			BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows);
5045 			break;
5046 		case IPPROTO_ICMP:
5047 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows);
5048 			break;
5049 		default:
5050 			BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
5051 			break;
5052 		}
5053 		freemsg(mp);
5054 		return;
5055 	}
5056 
5057 	ASSERT(!(IPCL_IS_IPTUN(connp)));
5058 
5059 	if (((iraflags & IRAF_IS_IPV4) ?
5060 	    CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
5061 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
5062 	    secure) {
5063 		mp = ipsec_check_inbound_policy(mp, connp, ipha,
5064 		    ip6h, ira);
5065 		if (mp == NULL) {
5066 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5067 			/* Note that mp is NULL */
5068 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
5069 			return;
5070 		}
5071 	}
5072 
5073 	if (iraflags & IRAF_ICMP_ERROR) {
5074 		(connp->conn_recvicmp)(connp, mp, NULL, ira);
5075 	} else {
5076 		ill_t *rill = ira->ira_rill;
5077 
5078 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
5079 		ira->ira_ill = ira->ira_rill = NULL;
5080 		/* Send it upstream */
5081 		(connp->conn_recv)(connp, mp, NULL, ira);
5082 		ira->ira_ill = ill;
5083 		ira->ira_rill = rill;
5084 	}
5085 }
5086 
5087 /*
5088  * Handle protocols with which IP is less intimate.  There
5089  * can be more than one stream bound to a particular
5090  * protocol.  When this is the case, normally each one gets a copy
5091  * of any incoming packets.
5092  *
5093  * IPsec NOTE :
5094  *
5095  * Don't allow a secure packet going up a non-secure connection.
5096  * We don't allow this because
5097  *
5098  * 1) Reply might go out in clear which will be dropped at
5099  *    the sending side.
5100  * 2) If the reply goes out in clear it will give the
5101  *    adversary enough information for getting the key in
5102  *    most of the cases.
5103  *
5104  * Moreover getting a secure packet when we expect clear
5105  * implies that SA's were added without checking for
5106  * policy on both ends. This should not happen once ISAKMP
5107  * is used to negotiate SAs as SAs will be added only after
5108  * verifying the policy.
5109  *
5110  * Zones notes:
5111  * Earlier in ip_input on a system with multiple shared-IP zones we
5112  * duplicate the multicast and broadcast packets and send them up
5113  * with each explicit zoneid that exists on that ill.
5114  * This means that here we can match the zoneid with SO_ALLZONES being special.
5115  */
5116 void
5117 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
5118 {
5119 	mblk_t		*mp1;
5120 	ipaddr_t	laddr;
5121 	conn_t		*connp, *first_connp, *next_connp;
5122 	connf_t		*connfp;
5123 	ill_t		*ill = ira->ira_ill;
5124 	ip_stack_t	*ipst = ill->ill_ipst;
5125 
5126 	laddr = ipha->ipha_dst;
5127 
5128 	connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol];
5129 	mutex_enter(&connfp->connf_lock);
5130 	connp = connfp->connf_head;
5131 	for (connp = connfp->connf_head; connp != NULL;
5132 	    connp = connp->conn_next) {
5133 		/* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5134 		if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5135 		    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5136 		    tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) {
5137 			break;
5138 		}
5139 	}
5140 
5141 	if (connp == NULL) {
5142 		/*
5143 		 * No one bound to these addresses.  Is
5144 		 * there a client that wants all
5145 		 * unclaimed datagrams?
5146 		 */
5147 		mutex_exit(&connfp->connf_lock);
5148 		ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
5149 		    ICMP_PROTOCOL_UNREACHABLE, ira);
5150 		return;
5151 	}
5152 
5153 	ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5154 
5155 	CONN_INC_REF(connp);
5156 	first_connp = connp;
5157 	connp = connp->conn_next;
5158 
5159 	for (;;) {
5160 		while (connp != NULL) {
5161 			/* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5162 			if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5163 			    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5164 			    tsol_receive_local(mp, &laddr, IPV4_VERSION,
5165 			    ira, connp)))
5166 				break;
5167 			connp = connp->conn_next;
5168 		}
5169 
5170 		if (connp == NULL) {
5171 			/* No more interested clients */
5172 			connp = first_connp;
5173 			break;
5174 		}
5175 		if (((mp1 = dupmsg(mp)) == NULL) &&
5176 		    ((mp1 = copymsg(mp)) == NULL)) {
5177 			/* Memory allocation failed */
5178 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5179 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
5180 			connp = first_connp;
5181 			break;
5182 		}
5183 
5184 		CONN_INC_REF(connp);
5185 		mutex_exit(&connfp->connf_lock);
5186 
5187 		ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL,
5188 		    ira);
5189 
5190 		mutex_enter(&connfp->connf_lock);
5191 		/* Follow the next pointer before releasing the conn. */
5192 		next_connp = connp->conn_next;
5193 		CONN_DEC_REF(connp);
5194 		connp = next_connp;
5195 	}
5196 
5197 	/* Last one.  Send it upstream. */
5198 	mutex_exit(&connfp->connf_lock);
5199 
5200 	ip_fanout_proto_conn(connp, mp, ipha, NULL, ira);
5201 
5202 	CONN_DEC_REF(connp);
5203 }
5204 
5205 /*
5206  * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or
5207  * pass it along to ESP if the SPI is non-zero.  Returns the mblk if the mblk
5208  * is not consumed.
5209  *
5210  * One of three things can happen, all of which affect the passed-in mblk:
5211  *
5212  * 1.) The packet is stock UDP and gets its zero-SPI stripped.  Return mblk..
5213  *
5214  * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent
5215  *     ESP packet, and is passed along to ESP for consumption.  Return NULL.
5216  *
5217  * 3.) The packet is an ESP-in-UDP Keepalive.  Drop it and return NULL.
5218  */
5219 mblk_t *
5220 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira)
5221 {
5222 	int shift, plen, iph_len;
5223 	ipha_t *ipha;
5224 	udpha_t *udpha;
5225 	uint32_t *spi;
5226 	uint32_t esp_ports;
5227 	uint8_t *orptr;
5228 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
5229 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5230 
5231 	ipha = (ipha_t *)mp->b_rptr;
5232 	iph_len = ira->ira_ip_hdr_length;
5233 	plen = ira->ira_pktlen;
5234 
5235 	if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) {
5236 		/*
5237 		 * Most likely a keepalive for the benefit of an intervening
5238 		 * NAT.  These aren't for us, per se, so drop it.
5239 		 *
5240 		 * RFC 3947/8 doesn't say for sure what to do for 2-3
5241 		 * byte packets (keepalives are 1-byte), but we'll drop them
5242 		 * also.
5243 		 */
5244 		ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5245 		    DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper);
5246 		return (NULL);
5247 	}
5248 
5249 	if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) {
5250 		/* might as well pull it all up - it might be ESP. */
5251 		if (!pullupmsg(mp, -1)) {
5252 			ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5253 			    DROPPER(ipss, ipds_esp_nomem),
5254 			    &ipss->ipsec_dropper);
5255 			return (NULL);
5256 		}
5257 
5258 		ipha = (ipha_t *)mp->b_rptr;
5259 	}
5260 	spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t));
5261 	if (*spi == 0) {
5262 		/* UDP packet - remove 0-spi. */
5263 		shift = sizeof (uint32_t);
5264 	} else {
5265 		/* ESP-in-UDP packet - reduce to ESP. */
5266 		ipha->ipha_protocol = IPPROTO_ESP;
5267 		shift = sizeof (udpha_t);
5268 	}
5269 
5270 	/* Fix IP header */
5271 	ira->ira_pktlen = (plen - shift);
5272 	ipha->ipha_length = htons(ira->ira_pktlen);
5273 	ipha->ipha_hdr_checksum = 0;
5274 
5275 	orptr = mp->b_rptr;
5276 	mp->b_rptr += shift;
5277 
5278 	udpha = (udpha_t *)(orptr + iph_len);
5279 	if (*spi == 0) {
5280 		ASSERT((uint8_t *)ipha == orptr);
5281 		udpha->uha_length = htons(plen - shift - iph_len);
5282 		iph_len += sizeof (udpha_t);	/* For the call to ovbcopy(). */
5283 		esp_ports = 0;
5284 	} else {
5285 		esp_ports = *((uint32_t *)udpha);
5286 		ASSERT(esp_ports != 0);
5287 	}
5288 	ovbcopy(orptr, orptr + shift, iph_len);
5289 	if (esp_ports != 0) /* Punt up for ESP processing. */ {
5290 		ipha = (ipha_t *)(orptr + shift);
5291 
5292 		ira->ira_flags |= IRAF_ESP_UDP_PORTS;
5293 		ira->ira_esp_udp_ports = esp_ports;
5294 		ip_fanout_v4(mp, ipha, ira);
5295 		return (NULL);
5296 	}
5297 	return (mp);
5298 }
5299 
5300 /*
5301  * Deliver a udp packet to the given conn, possibly applying ipsec policy.
5302  * Handles IPv4 and IPv6.
5303  * We are responsible for disposing of mp, such as by freemsg() or putnext()
5304  * Caller is responsible for dropping references to the conn.
5305  */
5306 void
5307 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
5308     ip_recv_attr_t *ira)
5309 {
5310 	ill_t		*ill = ira->ira_ill;
5311 	ip_stack_t	*ipst = ill->ill_ipst;
5312 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5313 	boolean_t	secure;
5314 	iaflags_t	iraflags = ira->ira_flags;
5315 
5316 	secure = iraflags & IRAF_IPSEC_SECURE;
5317 
5318 	if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld :
5319 	    !canputnext(connp->conn_rq)) {
5320 		BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
5321 		freemsg(mp);
5322 		return;
5323 	}
5324 
5325 	if (((iraflags & IRAF_IS_IPV4) ?
5326 	    CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
5327 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
5328 	    secure) {
5329 		mp = ipsec_check_inbound_policy(mp, connp, ipha,
5330 		    ip6h, ira);
5331 		if (mp == NULL) {
5332 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5333 			/* Note that mp is NULL */
5334 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
5335 			return;
5336 		}
5337 	}
5338 
5339 	/*
5340 	 * Since this code is not used for UDP unicast we don't need a NAT_T
5341 	 * check. Only ip_fanout_v4 has that check.
5342 	 */
5343 	if (ira->ira_flags & IRAF_ICMP_ERROR) {
5344 		(connp->conn_recvicmp)(connp, mp, NULL, ira);
5345 	} else {
5346 		ill_t *rill = ira->ira_rill;
5347 
5348 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
5349 		ira->ira_ill = ira->ira_rill = NULL;
5350 		/* Send it upstream */
5351 		(connp->conn_recv)(connp, mp, NULL, ira);
5352 		ira->ira_ill = ill;
5353 		ira->ira_rill = rill;
5354 	}
5355 }
5356 
5357 /*
5358  * Fanout for UDP packets that are multicast or broadcast, and ICMP errors.
5359  * (Unicast fanout is handled in ip_input_v4.)
5360  *
5361  * If SO_REUSEADDR is set all multicast and broadcast packets
5362  * will be delivered to all conns bound to the same port.
5363  *
5364  * If there is at least one matching AF_INET receiver, then we will
5365  * ignore any AF_INET6 receivers.
5366  * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an
5367  * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4
5368  * packets.
5369  *
5370  * Zones notes:
5371  * Earlier in ip_input on a system with multiple shared-IP zones we
5372  * duplicate the multicast and broadcast packets and send them up
5373  * with each explicit zoneid that exists on that ill.
5374  * This means that here we can match the zoneid with SO_ALLZONES being special.
5375  */
5376 void
5377 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport,
5378     ip_recv_attr_t *ira)
5379 {
5380 	ipaddr_t	laddr;
5381 	in6_addr_t	v6faddr;
5382 	conn_t		*connp;
5383 	connf_t		*connfp;
5384 	ipaddr_t	faddr;
5385 	ill_t		*ill = ira->ira_ill;
5386 	ip_stack_t	*ipst = ill->ill_ipst;
5387 
5388 	ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR));
5389 
5390 	laddr = ipha->ipha_dst;
5391 	faddr = ipha->ipha_src;
5392 
5393 	connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5394 	mutex_enter(&connfp->connf_lock);
5395 	connp = connfp->connf_head;
5396 
5397 	/*
5398 	 * If SO_REUSEADDR has been set on the first we send the
5399 	 * packet to all clients that have joined the group and
5400 	 * match the port.
5401 	 */
5402 	while (connp != NULL) {
5403 		if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) &&
5404 		    conn_wantpacket(connp, ira, ipha) &&
5405 		    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5406 		    tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5407 			break;
5408 		connp = connp->conn_next;
5409 	}
5410 
5411 	if (connp == NULL)
5412 		goto notfound;
5413 
5414 	CONN_INC_REF(connp);
5415 
5416 	if (connp->conn_reuseaddr) {
5417 		conn_t		*first_connp = connp;
5418 		conn_t		*next_connp;
5419 		mblk_t		*mp1;
5420 
5421 		connp = connp->conn_next;
5422 		for (;;) {
5423 			while (connp != NULL) {
5424 				if (IPCL_UDP_MATCH(connp, lport, laddr,
5425 				    fport, faddr) &&
5426 				    conn_wantpacket(connp, ira, ipha) &&
5427 				    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5428 				    tsol_receive_local(mp, &laddr, IPV4_VERSION,
5429 				    ira, connp)))
5430 					break;
5431 				connp = connp->conn_next;
5432 			}
5433 			if (connp == NULL) {
5434 				/* No more interested clients */
5435 				connp = first_connp;
5436 				break;
5437 			}
5438 			if (((mp1 = dupmsg(mp)) == NULL) &&
5439 			    ((mp1 = copymsg(mp)) == NULL)) {
5440 				/* Memory allocation failed */
5441 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5442 				ip_drop_input("ipIfStatsInDiscards", mp, ill);
5443 				connp = first_connp;
5444 				break;
5445 			}
5446 			CONN_INC_REF(connp);
5447 			mutex_exit(&connfp->connf_lock);
5448 
5449 			IP_STAT(ipst, ip_udp_fanmb);
5450 			ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5451 			    NULL, ira);
5452 			mutex_enter(&connfp->connf_lock);
5453 			/* Follow the next pointer before releasing the conn */
5454 			next_connp = connp->conn_next;
5455 			CONN_DEC_REF(connp);
5456 			connp = next_connp;
5457 		}
5458 	}
5459 
5460 	/* Last one.  Send it upstream. */
5461 	mutex_exit(&connfp->connf_lock);
5462 	IP_STAT(ipst, ip_udp_fanmb);
5463 	ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5464 	CONN_DEC_REF(connp);
5465 	return;
5466 
5467 notfound:
5468 	mutex_exit(&connfp->connf_lock);
5469 	/*
5470 	 * IPv6 endpoints bound to multicast IPv4-mapped addresses
5471 	 * have already been matched above, since they live in the IPv4
5472 	 * fanout tables. This implies we only need to
5473 	 * check for IPv6 in6addr_any endpoints here.
5474 	 * Thus we compare using ipv6_all_zeros instead of the destination
5475 	 * address, except for the multicast group membership lookup which
5476 	 * uses the IPv4 destination.
5477 	 */
5478 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr);
5479 	connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5480 	mutex_enter(&connfp->connf_lock);
5481 	connp = connfp->connf_head;
5482 	/*
5483 	 * IPv4 multicast packet being delivered to an AF_INET6
5484 	 * in6addr_any endpoint.
5485 	 * Need to check conn_wantpacket(). Note that we use conn_wantpacket()
5486 	 * and not conn_wantpacket_v6() since any multicast membership is
5487 	 * for an IPv4-mapped multicast address.
5488 	 */
5489 	while (connp != NULL) {
5490 		if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros,
5491 		    fport, v6faddr) &&
5492 		    conn_wantpacket(connp, ira, ipha) &&
5493 		    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5494 		    tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5495 			break;
5496 		connp = connp->conn_next;
5497 	}
5498 
5499 	if (connp == NULL) {
5500 		/*
5501 		 * No one bound to this port.  Is
5502 		 * there a client that wants all
5503 		 * unclaimed datagrams?
5504 		 */
5505 		mutex_exit(&connfp->connf_lock);
5506 
5507 		if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head !=
5508 		    NULL) {
5509 			ASSERT(ira->ira_protocol == IPPROTO_UDP);
5510 			ip_fanout_proto_v4(mp, ipha, ira);
5511 		} else {
5512 			/*
5513 			 * We used to attempt to send an icmp error here, but
5514 			 * since this is known to be a multicast packet
5515 			 * and we don't send icmp errors in response to
5516 			 * multicast, just drop the packet and give up sooner.
5517 			 */
5518 			BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
5519 			freemsg(mp);
5520 		}
5521 		return;
5522 	}
5523 	ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5524 
5525 	/*
5526 	 * If SO_REUSEADDR has been set on the first we send the
5527 	 * packet to all clients that have joined the group and
5528 	 * match the port.
5529 	 */
5530 	if (connp->conn_reuseaddr) {
5531 		conn_t		*first_connp = connp;
5532 		conn_t		*next_connp;
5533 		mblk_t		*mp1;
5534 
5535 		CONN_INC_REF(connp);
5536 		connp = connp->conn_next;
5537 		for (;;) {
5538 			while (connp != NULL) {
5539 				if (IPCL_UDP_MATCH_V6(connp, lport,
5540 				    ipv6_all_zeros, fport, v6faddr) &&
5541 				    conn_wantpacket(connp, ira, ipha) &&
5542 				    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5543 				    tsol_receive_local(mp, &laddr, IPV4_VERSION,
5544 				    ira, connp)))
5545 					break;
5546 				connp = connp->conn_next;
5547 			}
5548 			if (connp == NULL) {
5549 				/* No more interested clients */
5550 				connp = first_connp;
5551 				break;
5552 			}
5553 			if (((mp1 = dupmsg(mp)) == NULL) &&
5554 			    ((mp1 = copymsg(mp)) == NULL)) {
5555 				/* Memory allocation failed */
5556 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5557 				ip_drop_input("ipIfStatsInDiscards", mp, ill);
5558 				connp = first_connp;
5559 				break;
5560 			}
5561 			CONN_INC_REF(connp);
5562 			mutex_exit(&connfp->connf_lock);
5563 
5564 			IP_STAT(ipst, ip_udp_fanmb);
5565 			ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5566 			    NULL, ira);
5567 			mutex_enter(&connfp->connf_lock);
5568 			/* Follow the next pointer before releasing the conn */
5569 			next_connp = connp->conn_next;
5570 			CONN_DEC_REF(connp);
5571 			connp = next_connp;
5572 		}
5573 	}
5574 
5575 	/* Last one.  Send it upstream. */
5576 	mutex_exit(&connfp->connf_lock);
5577 	IP_STAT(ipst, ip_udp_fanmb);
5578 	ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5579 	CONN_DEC_REF(connp);
5580 }
5581 
5582 /*
5583  * Split an incoming packet's IPv4 options into the label and the other options.
5584  * If 'allocate' is set it does memory allocation for the ip_pkt_t, including
5585  * clearing out any leftover label or options.
5586  * Otherwise it just makes ipp point into the packet.
5587  *
5588  * Returns zero if ok; ENOMEM if the buffer couldn't be allocated.
5589  */
5590 int
5591 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate)
5592 {
5593 	uchar_t		*opt;
5594 	uint32_t	totallen;
5595 	uint32_t	optval;
5596 	uint32_t	optlen;
5597 
5598 	ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR;
5599 	ipp->ipp_hoplimit = ipha->ipha_ttl;
5600 	ipp->ipp_type_of_service = ipha->ipha_type_of_service;
5601 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr);
5602 
5603 	/*
5604 	 * Get length (in 4 byte octets) of IP header options.
5605 	 */
5606 	totallen = ipha->ipha_version_and_hdr_length -
5607 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5608 
5609 	if (totallen == 0) {
5610 		if (!allocate)
5611 			return (0);
5612 
5613 		/* Clear out anything from a previous packet */
5614 		if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5615 			kmem_free(ipp->ipp_ipv4_options,
5616 			    ipp->ipp_ipv4_options_len);
5617 			ipp->ipp_ipv4_options = NULL;
5618 			ipp->ipp_ipv4_options_len = 0;
5619 			ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5620 		}
5621 		if (ipp->ipp_fields & IPPF_LABEL_V4) {
5622 			kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5623 			ipp->ipp_label_v4 = NULL;
5624 			ipp->ipp_label_len_v4 = 0;
5625 			ipp->ipp_fields &= ~IPPF_LABEL_V4;
5626 		}
5627 		return (0);
5628 	}
5629 
5630 	totallen <<= 2;
5631 	opt = (uchar_t *)&ipha[1];
5632 	if (!is_system_labeled()) {
5633 
5634 	copyall:
5635 		if (!allocate) {
5636 			if (totallen != 0) {
5637 				ipp->ipp_ipv4_options = opt;
5638 				ipp->ipp_ipv4_options_len = totallen;
5639 				ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5640 			}
5641 			return (0);
5642 		}
5643 		/* Just copy all of options */
5644 		if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5645 			if (totallen == ipp->ipp_ipv4_options_len) {
5646 				bcopy(opt, ipp->ipp_ipv4_options, totallen);
5647 				return (0);
5648 			}
5649 			kmem_free(ipp->ipp_ipv4_options,
5650 			    ipp->ipp_ipv4_options_len);
5651 			ipp->ipp_ipv4_options = NULL;
5652 			ipp->ipp_ipv4_options_len = 0;
5653 			ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5654 		}
5655 		if (totallen == 0)
5656 			return (0);
5657 
5658 		ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP);
5659 		if (ipp->ipp_ipv4_options == NULL)
5660 			return (ENOMEM);
5661 		ipp->ipp_ipv4_options_len = totallen;
5662 		ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5663 		bcopy(opt, ipp->ipp_ipv4_options, totallen);
5664 		return (0);
5665 	}
5666 
5667 	if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) {
5668 		kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5669 		ipp->ipp_label_v4 = NULL;
5670 		ipp->ipp_label_len_v4 = 0;
5671 		ipp->ipp_fields &= ~IPPF_LABEL_V4;
5672 	}
5673 
5674 	/*
5675 	 * Search for CIPSO option.
5676 	 * We assume CIPSO is first in options if it is present.
5677 	 * If it isn't, then ipp_opt_ipv4_options will not include the options
5678 	 * prior to the CIPSO option.
5679 	 */
5680 	while (totallen != 0) {
5681 		switch (optval = opt[IPOPT_OPTVAL]) {
5682 		case IPOPT_EOL:
5683 			return (0);
5684 		case IPOPT_NOP:
5685 			optlen = 1;
5686 			break;
5687 		default:
5688 			if (totallen <= IPOPT_OLEN)
5689 				return (EINVAL);
5690 			optlen = opt[IPOPT_OLEN];
5691 			if (optlen < 2)
5692 				return (EINVAL);
5693 		}
5694 		if (optlen > totallen)
5695 			return (EINVAL);
5696 
5697 		switch (optval) {
5698 		case IPOPT_COMSEC:
5699 			if (!allocate) {
5700 				ipp->ipp_label_v4 = opt;
5701 				ipp->ipp_label_len_v4 = optlen;
5702 				ipp->ipp_fields |= IPPF_LABEL_V4;
5703 			} else {
5704 				ipp->ipp_label_v4 = kmem_alloc(optlen,
5705 				    KM_NOSLEEP);
5706 				if (ipp->ipp_label_v4 == NULL)
5707 					return (ENOMEM);
5708 				ipp->ipp_label_len_v4 = optlen;
5709 				ipp->ipp_fields |= IPPF_LABEL_V4;
5710 				bcopy(opt, ipp->ipp_label_v4, optlen);
5711 			}
5712 			totallen -= optlen;
5713 			opt += optlen;
5714 
5715 			/* Skip padding bytes until we get to a multiple of 4 */
5716 			while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) {
5717 				totallen--;
5718 				opt++;
5719 			}
5720 			/* Remaining as ipp_ipv4_options */
5721 			goto copyall;
5722 		}
5723 		totallen -= optlen;
5724 		opt += optlen;
5725 	}
5726 	/* No CIPSO found; return everything as ipp_ipv4_options */
5727 	totallen = ipha->ipha_version_and_hdr_length -
5728 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5729 	totallen <<= 2;
5730 	opt = (uchar_t *)&ipha[1];
5731 	goto copyall;
5732 }
5733 
5734 /*
5735  * Efficient versions of lookup for an IRE when we only
5736  * match the address.
5737  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5738  * Does not handle multicast addresses.
5739  */
5740 uint_t
5741 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst)
5742 {
5743 	ire_t *ire;
5744 	uint_t result;
5745 
5746 	ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL);
5747 	ASSERT(ire != NULL);
5748 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5749 		result = IRE_NOROUTE;
5750 	else
5751 		result = ire->ire_type;
5752 	ire_refrele(ire);
5753 	return (result);
5754 }
5755 
5756 /*
5757  * Efficient versions of lookup for an IRE when we only
5758  * match the address.
5759  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5760  * Does not handle multicast addresses.
5761  */
5762 uint_t
5763 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst)
5764 {
5765 	ire_t *ire;
5766 	uint_t result;
5767 
5768 	ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL);
5769 	ASSERT(ire != NULL);
5770 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5771 		result = IRE_NOROUTE;
5772 	else
5773 		result = ire->ire_type;
5774 	ire_refrele(ire);
5775 	return (result);
5776 }
5777 
5778 /*
5779  * Nobody should be sending
5780  * packets up this stream
5781  */
5782 static void
5783 ip_lrput(queue_t *q, mblk_t *mp)
5784 {
5785 	switch (mp->b_datap->db_type) {
5786 	case M_FLUSH:
5787 		/* Turn around */
5788 		if (*mp->b_rptr & FLUSHW) {
5789 			*mp->b_rptr &= ~FLUSHR;
5790 			qreply(q, mp);
5791 			return;
5792 		}
5793 		break;
5794 	}
5795 	freemsg(mp);
5796 }
5797 
5798 /* Nobody should be sending packets down this stream */
5799 /* ARGSUSED */
5800 void
5801 ip_lwput(queue_t *q, mblk_t *mp)
5802 {
5803 	freemsg(mp);
5804 }
5805 
5806 /*
5807  * Move the first hop in any source route to ipha_dst and remove that part of
5808  * the source route.  Called by other protocols.  Errors in option formatting
5809  * are ignored - will be handled by ip_output_options. Return the final
5810  * destination (either ipha_dst or the last entry in a source route.)
5811  */
5812 ipaddr_t
5813 ip_massage_options(ipha_t *ipha, netstack_t *ns)
5814 {
5815 	ipoptp_t	opts;
5816 	uchar_t		*opt;
5817 	uint8_t		optval;
5818 	uint8_t		optlen;
5819 	ipaddr_t	dst;
5820 	int		i;
5821 	ip_stack_t	*ipst = ns->netstack_ip;
5822 
5823 	ip2dbg(("ip_massage_options\n"));
5824 	dst = ipha->ipha_dst;
5825 	for (optval = ipoptp_first(&opts, ipha);
5826 	    optval != IPOPT_EOL;
5827 	    optval = ipoptp_next(&opts)) {
5828 		opt = opts.ipoptp_cur;
5829 		switch (optval) {
5830 			uint8_t off;
5831 		case IPOPT_SSRR:
5832 		case IPOPT_LSRR:
5833 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
5834 				ip1dbg(("ip_massage_options: bad src route\n"));
5835 				break;
5836 			}
5837 			optlen = opts.ipoptp_len;
5838 			off = opt[IPOPT_OFFSET];
5839 			off--;
5840 		redo_srr:
5841 			if (optlen < IP_ADDR_LEN ||
5842 			    off > optlen - IP_ADDR_LEN) {
5843 				/* End of source route */
5844 				ip1dbg(("ip_massage_options: end of SR\n"));
5845 				break;
5846 			}
5847 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
5848 			ip1dbg(("ip_massage_options: next hop 0x%x\n",
5849 			    ntohl(dst)));
5850 			/*
5851 			 * Check if our address is present more than
5852 			 * once as consecutive hops in source route.
5853 			 * XXX verify per-interface ip_forwarding
5854 			 * for source route?
5855 			 */
5856 			if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
5857 				off += IP_ADDR_LEN;
5858 				goto redo_srr;
5859 			}
5860 			if (dst == htonl(INADDR_LOOPBACK)) {
5861 				ip1dbg(("ip_massage_options: loopback addr in "
5862 				    "source route!\n"));
5863 				break;
5864 			}
5865 			/*
5866 			 * Update ipha_dst to be the first hop and remove the
5867 			 * first hop from the source route (by overwriting
5868 			 * part of the option with NOP options).
5869 			 */
5870 			ipha->ipha_dst = dst;
5871 			/* Put the last entry in dst */
5872 			off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) +
5873 			    3;
5874 			bcopy(&opt[off], &dst, IP_ADDR_LEN);
5875 
5876 			ip1dbg(("ip_massage_options: last hop 0x%x\n",
5877 			    ntohl(dst)));
5878 			/* Move down and overwrite */
5879 			opt[IP_ADDR_LEN] = opt[0];
5880 			opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN;
5881 			opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET];
5882 			for (i = 0; i < IP_ADDR_LEN; i++)
5883 				opt[i] = IPOPT_NOP;
5884 			break;
5885 		}
5886 	}
5887 	return (dst);
5888 }
5889 
5890 /*
5891  * Return the network mask
5892  * associated with the specified address.
5893  */
5894 ipaddr_t
5895 ip_net_mask(ipaddr_t addr)
5896 {
5897 	uchar_t	*up = (uchar_t *)&addr;
5898 	ipaddr_t mask = 0;
5899 	uchar_t	*maskp = (uchar_t *)&mask;
5900 
5901 #if defined(__i386) || defined(__amd64)
5902 #define	TOTALLY_BRAIN_DAMAGED_C_COMPILER
5903 #endif
5904 #ifdef  TOTALLY_BRAIN_DAMAGED_C_COMPILER
5905 	maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0;
5906 #endif
5907 	if (CLASSD(addr)) {
5908 		maskp[0] = 0xF0;
5909 		return (mask);
5910 	}
5911 
5912 	/* We assume Class E default netmask to be 32 */
5913 	if (CLASSE(addr))
5914 		return (0xffffffffU);
5915 
5916 	if (addr == 0)
5917 		return (0);
5918 	maskp[0] = 0xFF;
5919 	if ((up[0] & 0x80) == 0)
5920 		return (mask);
5921 
5922 	maskp[1] = 0xFF;
5923 	if ((up[0] & 0xC0) == 0x80)
5924 		return (mask);
5925 
5926 	maskp[2] = 0xFF;
5927 	if ((up[0] & 0xE0) == 0xC0)
5928 		return (mask);
5929 
5930 	/* Otherwise return no mask */
5931 	return ((ipaddr_t)0);
5932 }
5933 
5934 /* Name/Value Table Lookup Routine */
5935 char *
5936 ip_nv_lookup(nv_t *nv, int value)
5937 {
5938 	if (!nv)
5939 		return (NULL);
5940 	for (; nv->nv_name; nv++) {
5941 		if (nv->nv_value == value)
5942 			return (nv->nv_name);
5943 	}
5944 	return ("unknown");
5945 }
5946 
5947 static int
5948 ip_wait_for_info_ack(ill_t *ill)
5949 {
5950 	int err;
5951 
5952 	mutex_enter(&ill->ill_lock);
5953 	while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) {
5954 		/*
5955 		 * Return value of 0 indicates a pending signal.
5956 		 */
5957 		err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock);
5958 		if (err == 0) {
5959 			mutex_exit(&ill->ill_lock);
5960 			return (EINTR);
5961 		}
5962 	}
5963 	mutex_exit(&ill->ill_lock);
5964 	/*
5965 	 * ip_rput_other could have set an error  in ill_error on
5966 	 * receipt of M_ERROR.
5967 	 */
5968 	return (ill->ill_error);
5969 }
5970 
5971 /*
5972  * This is a module open, i.e. this is a control stream for access
5973  * to a DLPI device.  We allocate an ill_t as the instance data in
5974  * this case.
5975  */
5976 static int
5977 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5978 {
5979 	ill_t	*ill;
5980 	int	err;
5981 	zoneid_t zoneid;
5982 	netstack_t *ns;
5983 	ip_stack_t *ipst;
5984 
5985 	/*
5986 	 * Prevent unprivileged processes from pushing IP so that
5987 	 * they can't send raw IP.
5988 	 */
5989 	if (secpolicy_net_rawaccess(credp) != 0)
5990 		return (EPERM);
5991 
5992 	ns = netstack_find_by_cred(credp);
5993 	ASSERT(ns != NULL);
5994 	ipst = ns->netstack_ip;
5995 	ASSERT(ipst != NULL);
5996 
5997 	/*
5998 	 * For exclusive stacks we set the zoneid to zero
5999 	 * to make IP operate as if in the global zone.
6000 	 */
6001 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
6002 		zoneid = GLOBAL_ZONEID;
6003 	else
6004 		zoneid = crgetzoneid(credp);
6005 
6006 	ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t));
6007 	q->q_ptr = WR(q)->q_ptr = ill;
6008 	ill->ill_ipst = ipst;
6009 	ill->ill_zoneid = zoneid;
6010 
6011 	/*
6012 	 * ill_init initializes the ill fields and then sends down
6013 	 * down a DL_INFO_REQ after calling qprocson.
6014 	 */
6015 	err = ill_init(q, ill);
6016 
6017 	if (err != 0) {
6018 		mi_free(ill);
6019 		netstack_rele(ipst->ips_netstack);
6020 		q->q_ptr = NULL;
6021 		WR(q)->q_ptr = NULL;
6022 		return (err);
6023 	}
6024 
6025 	/*
6026 	 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent.
6027 	 *
6028 	 * ill_init initializes the ipsq marking this thread as
6029 	 * writer
6030 	 */
6031 	ipsq_exit(ill->ill_phyint->phyint_ipsq);
6032 	err = ip_wait_for_info_ack(ill);
6033 	if (err == 0)
6034 		ill->ill_credp = credp;
6035 	else
6036 		goto fail;
6037 
6038 	crhold(credp);
6039 
6040 	mutex_enter(&ipst->ips_ip_mi_lock);
6041 	err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag,
6042 	    sflag, credp);
6043 	mutex_exit(&ipst->ips_ip_mi_lock);
6044 fail:
6045 	if (err) {
6046 		(void) ip_close(q, 0);
6047 		return (err);
6048 	}
6049 	return (0);
6050 }
6051 
6052 /* For /dev/ip aka AF_INET open */
6053 int
6054 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
6055 {
6056 	return (ip_open(q, devp, flag, sflag, credp, B_FALSE));
6057 }
6058 
6059 /* For /dev/ip6 aka AF_INET6 open */
6060 int
6061 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
6062 {
6063 	return (ip_open(q, devp, flag, sflag, credp, B_TRUE));
6064 }
6065 
6066 /* IP open routine. */
6067 int
6068 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
6069     boolean_t isv6)
6070 {
6071 	conn_t 		*connp;
6072 	major_t		maj;
6073 	zoneid_t	zoneid;
6074 	netstack_t	*ns;
6075 	ip_stack_t	*ipst;
6076 
6077 	/* Allow reopen. */
6078 	if (q->q_ptr != NULL)
6079 		return (0);
6080 
6081 	if (sflag & MODOPEN) {
6082 		/* This is a module open */
6083 		return (ip_modopen(q, devp, flag, sflag, credp));
6084 	}
6085 
6086 	if ((flag & ~(FKLYR)) == IP_HELPER_STR) {
6087 		/*
6088 		 * Non streams based socket looking for a stream
6089 		 * to access IP
6090 		 */
6091 		return (ip_helper_stream_setup(q, devp, flag, sflag,
6092 		    credp, isv6));
6093 	}
6094 
6095 	ns = netstack_find_by_cred(credp);
6096 	ASSERT(ns != NULL);
6097 	ipst = ns->netstack_ip;
6098 	ASSERT(ipst != NULL);
6099 
6100 	/*
6101 	 * For exclusive stacks we set the zoneid to zero
6102 	 * to make IP operate as if in the global zone.
6103 	 */
6104 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
6105 		zoneid = GLOBAL_ZONEID;
6106 	else
6107 		zoneid = crgetzoneid(credp);
6108 
6109 	/*
6110 	 * We are opening as a device. This is an IP client stream, and we
6111 	 * allocate an conn_t as the instance data.
6112 	 */
6113 	connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack);
6114 
6115 	/*
6116 	 * ipcl_conn_create did a netstack_hold. Undo the hold that was
6117 	 * done by netstack_find_by_cred()
6118 	 */
6119 	netstack_rele(ipst->ips_netstack);
6120 
6121 	connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM;
6122 	/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
6123 	connp->conn_ixa->ixa_zoneid = zoneid;
6124 	connp->conn_zoneid = zoneid;
6125 
6126 	connp->conn_rq = q;
6127 	q->q_ptr = WR(q)->q_ptr = connp;
6128 
6129 	/* Minor tells us which /dev entry was opened */
6130 	if (isv6) {
6131 		connp->conn_family = AF_INET6;
6132 		connp->conn_ipversion = IPV6_VERSION;
6133 		connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4;
6134 		connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
6135 	} else {
6136 		connp->conn_family = AF_INET;
6137 		connp->conn_ipversion = IPV4_VERSION;
6138 		connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4;
6139 	}
6140 
6141 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
6142 	    ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
6143 		connp->conn_minor_arena = ip_minor_arena_la;
6144 	} else {
6145 		/*
6146 		 * Either minor numbers in the large arena were exhausted
6147 		 * or a non socket application is doing the open.
6148 		 * Try to allocate from the small arena.
6149 		 */
6150 		if ((connp->conn_dev =
6151 		    inet_minor_alloc(ip_minor_arena_sa)) == 0) {
6152 			/* CONN_DEC_REF takes care of netstack_rele() */
6153 			q->q_ptr = WR(q)->q_ptr = NULL;
6154 			CONN_DEC_REF(connp);
6155 			return (EBUSY);
6156 		}
6157 		connp->conn_minor_arena = ip_minor_arena_sa;
6158 	}
6159 
6160 	maj = getemajor(*devp);
6161 	*devp = makedevice(maj, (minor_t)connp->conn_dev);
6162 
6163 	/*
6164 	 * connp->conn_cred is crfree()ed in ipcl_conn_destroy()
6165 	 */
6166 	connp->conn_cred = credp;
6167 	/* Cache things in ixa without an extra refhold */
6168 	connp->conn_ixa->ixa_cred = connp->conn_cred;
6169 	connp->conn_ixa->ixa_cpid = connp->conn_cpid;
6170 	if (is_system_labeled())
6171 		connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);
6172 
6173 	/*
6174 	 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv
6175 	 */
6176 	connp->conn_recv = ip_conn_input;
6177 	connp->conn_recvicmp = ip_conn_input_icmp;
6178 
6179 	crhold(connp->conn_cred);
6180 
6181 	/*
6182 	 * If the caller has the process-wide flag set, then default to MAC
6183 	 * exempt mode.  This allows read-down to unlabeled hosts.
6184 	 */
6185 	if (getpflags(NET_MAC_AWARE, credp) != 0)
6186 		connp->conn_mac_mode = CONN_MAC_AWARE;
6187 
6188 	connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
6189 
6190 	connp->conn_rq = q;
6191 	connp->conn_wq = WR(q);
6192 
6193 	/* Non-zero default values */
6194 	connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP;
6195 
6196 	/*
6197 	 * Make the conn globally visible to walkers
6198 	 */
6199 	ASSERT(connp->conn_ref == 1);
6200 	mutex_enter(&connp->conn_lock);
6201 	connp->conn_state_flags &= ~CONN_INCIPIENT;
6202 	mutex_exit(&connp->conn_lock);
6203 
6204 	qprocson(q);
6205 
6206 	return (0);
6207 }
6208 
6209 /*
6210  * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid,
6211  * all of them are copied to the conn_t. If the req is "zero", the policy is
6212  * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req
6213  * fields.
6214  * We keep only the latest setting of the policy and thus policy setting
6215  * is not incremental/cumulative.
6216  *
6217  * Requests to set policies with multiple alternative actions will
6218  * go through a different API.
6219  */
6220 int
6221 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req)
6222 {
6223 	uint_t ah_req = 0;
6224 	uint_t esp_req = 0;
6225 	uint_t se_req = 0;
6226 	ipsec_act_t *actp = NULL;
6227 	uint_t nact;
6228 	ipsec_policy_head_t *ph;
6229 	boolean_t is_pol_reset, is_pol_inserted = B_FALSE;
6230 	int error = 0;
6231 	netstack_t	*ns = connp->conn_netstack;
6232 	ip_stack_t	*ipst = ns->netstack_ip;
6233 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
6234 
6235 #define	REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER)
6236 
6237 	/*
6238 	 * The IP_SEC_OPT option does not allow variable length parameters,
6239 	 * hence a request cannot be NULL.
6240 	 */
6241 	if (req == NULL)
6242 		return (EINVAL);
6243 
6244 	ah_req = req->ipsr_ah_req;
6245 	esp_req = req->ipsr_esp_req;
6246 	se_req = req->ipsr_self_encap_req;
6247 
6248 	/* Don't allow setting self-encap without one or more of AH/ESP. */
6249 	if (se_req != 0 && esp_req == 0 && ah_req == 0)
6250 		return (EINVAL);
6251 
6252 	/*
6253 	 * Are we dealing with a request to reset the policy (i.e.
6254 	 * zero requests).
6255 	 */
6256 	is_pol_reset = ((ah_req & REQ_MASK) == 0 &&
6257 	    (esp_req & REQ_MASK) == 0 &&
6258 	    (se_req & REQ_MASK) == 0);
6259 
6260 	if (!is_pol_reset) {
6261 		/*
6262 		 * If we couldn't load IPsec, fail with "protocol
6263 		 * not supported".
6264 		 * IPsec may not have been loaded for a request with zero
6265 		 * policies, so we don't fail in this case.
6266 		 */
6267 		mutex_enter(&ipss->ipsec_loader_lock);
6268 		if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) {
6269 			mutex_exit(&ipss->ipsec_loader_lock);
6270 			return (EPROTONOSUPPORT);
6271 		}
6272 		mutex_exit(&ipss->ipsec_loader_lock);
6273 
6274 		/*
6275 		 * Test for valid requests. Invalid algorithms
6276 		 * need to be tested by IPsec code because new
6277 		 * algorithms can be added dynamically.
6278 		 */
6279 		if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6280 		    (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6281 		    (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) {
6282 			return (EINVAL);
6283 		}
6284 
6285 		/*
6286 		 * Only privileged users can issue these
6287 		 * requests.
6288 		 */
6289 		if (((ah_req & IPSEC_PREF_NEVER) ||
6290 		    (esp_req & IPSEC_PREF_NEVER) ||
6291 		    (se_req & IPSEC_PREF_NEVER)) &&
6292 		    secpolicy_ip_config(cr, B_FALSE) != 0) {
6293 			return (EPERM);
6294 		}
6295 
6296 		/*
6297 		 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER
6298 		 * are mutually exclusive.
6299 		 */
6300 		if (((ah_req & REQ_MASK) == REQ_MASK) ||
6301 		    ((esp_req & REQ_MASK) == REQ_MASK) ||
6302 		    ((se_req & REQ_MASK) == REQ_MASK)) {
6303 			/* Both of them are set */
6304 			return (EINVAL);
6305 		}
6306 	}
6307 
6308 	ASSERT(MUTEX_HELD(&connp->conn_lock));
6309 
6310 	/*
6311 	 * If we have already cached policies in conn_connect(), don't
6312 	 * let them change now. We cache policies for connections
6313 	 * whose src,dst [addr, port] is known.
6314 	 */
6315 	if (connp->conn_policy_cached) {
6316 		return (EINVAL);
6317 	}
6318 
6319 	/*
6320 	 * We have a zero policies, reset the connection policy if already
6321 	 * set. This will cause the connection to inherit the
6322 	 * global policy, if any.
6323 	 */
6324 	if (is_pol_reset) {
6325 		if (connp->conn_policy != NULL) {
6326 			IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack);
6327 			connp->conn_policy = NULL;
6328 		}
6329 		connp->conn_in_enforce_policy = B_FALSE;
6330 		connp->conn_out_enforce_policy = B_FALSE;
6331 		return (0);
6332 	}
6333 
6334 	ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy,
6335 	    ipst->ips_netstack);
6336 	if (ph == NULL)
6337 		goto enomem;
6338 
6339 	ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack);
6340 	if (actp == NULL)
6341 		goto enomem;
6342 
6343 	/*
6344 	 * Always insert IPv4 policy entries, since they can also apply to
6345 	 * ipv6 sockets being used in ipv4-compat mode.
6346 	 */
6347 	if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6348 	    IPSEC_TYPE_INBOUND, ns))
6349 		goto enomem;
6350 	is_pol_inserted = B_TRUE;
6351 	if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6352 	    IPSEC_TYPE_OUTBOUND, ns))
6353 		goto enomem;
6354 
6355 	/*
6356 	 * We're looking at a v6 socket, also insert the v6-specific
6357 	 * entries.
6358 	 */
6359 	if (connp->conn_family == AF_INET6) {
6360 		if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6361 		    IPSEC_TYPE_INBOUND, ns))
6362 			goto enomem;
6363 		if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6364 		    IPSEC_TYPE_OUTBOUND, ns))
6365 			goto enomem;
6366 	}
6367 
6368 	ipsec_actvec_free(actp, nact);
6369 
6370 	/*
6371 	 * If the requests need security, set enforce_policy.
6372 	 * If the requests are IPSEC_PREF_NEVER, one should
6373 	 * still set conn_out_enforce_policy so that ip_set_destination
6374 	 * marks the ip_xmit_attr_t appropriatly. This is needed so that
6375 	 * for connections that we don't cache policy in at connect time,
6376 	 * if global policy matches in ip_output_attach_policy, we
6377 	 * don't wrongly inherit global policy. Similarly, we need
6378 	 * to set conn_in_enforce_policy also so that we don't verify
6379 	 * policy wrongly.
6380 	 */
6381 	if ((ah_req & REQ_MASK) != 0 ||
6382 	    (esp_req & REQ_MASK) != 0 ||
6383 	    (se_req & REQ_MASK) != 0) {
6384 		connp->conn_in_enforce_policy = B_TRUE;
6385 		connp->conn_out_enforce_policy = B_TRUE;
6386 	}
6387 
6388 	return (error);
6389 #undef REQ_MASK
6390 
6391 	/*
6392 	 * Common memory-allocation-failure exit path.
6393 	 */
6394 enomem:
6395 	if (actp != NULL)
6396 		ipsec_actvec_free(actp, nact);
6397 	if (is_pol_inserted)
6398 		ipsec_polhead_flush(ph, ns);
6399 	return (ENOMEM);
6400 }
6401 
6402 /*
6403  * Set socket options for joining and leaving multicast groups.
6404  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6405  * The caller has already check that the option name is consistent with
6406  * the address family of the socket.
6407  */
6408 int
6409 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name,
6410     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6411 {
6412 	int		*i1 = (int *)invalp;
6413 	int		error = 0;
6414 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6415 	struct ip_mreq	*v4_mreqp;
6416 	struct ipv6_mreq *v6_mreqp;
6417 	struct group_req *greqp;
6418 	ire_t *ire;
6419 	boolean_t done = B_FALSE;
6420 	ipaddr_t ifaddr;
6421 	in6_addr_t v6group;
6422 	uint_t ifindex;
6423 	boolean_t mcast_opt = B_TRUE;
6424 	mcast_record_t fmode;
6425 	int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6426 	    ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6427 
6428 	switch (name) {
6429 	case IP_ADD_MEMBERSHIP:
6430 	case IPV6_JOIN_GROUP:
6431 		mcast_opt = B_FALSE;
6432 		/* FALLTHRU */
6433 	case MCAST_JOIN_GROUP:
6434 		fmode = MODE_IS_EXCLUDE;
6435 		optfn = ip_opt_add_group;
6436 		break;
6437 
6438 	case IP_DROP_MEMBERSHIP:
6439 	case IPV6_LEAVE_GROUP:
6440 		mcast_opt = B_FALSE;
6441 		/* FALLTHRU */
6442 	case MCAST_LEAVE_GROUP:
6443 		fmode = MODE_IS_INCLUDE;
6444 		optfn = ip_opt_delete_group;
6445 		break;
6446 	default:
6447 		ASSERT(0);
6448 	}
6449 
6450 	if (mcast_opt) {
6451 		struct sockaddr_in *sin;
6452 		struct sockaddr_in6 *sin6;
6453 
6454 		greqp = (struct group_req *)i1;
6455 		if (greqp->gr_group.ss_family == AF_INET) {
6456 			sin = (struct sockaddr_in *)&(greqp->gr_group);
6457 			IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group);
6458 		} else {
6459 			if (!inet6)
6460 				return (EINVAL);	/* Not on INET socket */
6461 
6462 			sin6 = (struct sockaddr_in6 *)&(greqp->gr_group);
6463 			v6group = sin6->sin6_addr;
6464 		}
6465 		ifaddr = INADDR_ANY;
6466 		ifindex = greqp->gr_interface;
6467 	} else if (inet6) {
6468 		v6_mreqp = (struct ipv6_mreq *)i1;
6469 		v6group = v6_mreqp->ipv6mr_multiaddr;
6470 		ifaddr = INADDR_ANY;
6471 		ifindex = v6_mreqp->ipv6mr_interface;
6472 	} else {
6473 		v4_mreqp = (struct ip_mreq *)i1;
6474 		IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group);
6475 		ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr;
6476 		ifindex = 0;
6477 	}
6478 
6479 	/*
6480 	 * In the multirouting case, we need to replicate
6481 	 * the request on all interfaces that will take part
6482 	 * in replication.  We do so because multirouting is
6483 	 * reflective, thus we will probably receive multi-
6484 	 * casts on those interfaces.
6485 	 * The ip_multirt_apply_membership() succeeds if
6486 	 * the operation succeeds on at least one interface.
6487 	 */
6488 	if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6489 		ipaddr_t group;
6490 
6491 		IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6492 
6493 		ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6494 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6495 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6496 	} else {
6497 		ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6498 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6499 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6500 	}
6501 	if (ire != NULL) {
6502 		if (ire->ire_flags & RTF_MULTIRT) {
6503 			error = ip_multirt_apply_membership(optfn, ire, connp,
6504 			    checkonly, &v6group, fmode, &ipv6_all_zeros);
6505 			done = B_TRUE;
6506 		}
6507 		ire_refrele(ire);
6508 	}
6509 
6510 	if (!done) {
6511 		error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6512 		    fmode, &ipv6_all_zeros);
6513 	}
6514 	return (error);
6515 }
6516 
6517 /*
6518  * Set socket options for joining and leaving multicast groups
6519  * for specific sources.
6520  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6521  * The caller has already check that the option name is consistent with
6522  * the address family of the socket.
6523  */
6524 int
6525 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name,
6526     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6527 {
6528 	int		*i1 = (int *)invalp;
6529 	int		error = 0;
6530 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6531 	struct ip_mreq_source *imreqp;
6532 	struct group_source_req *gsreqp;
6533 	in6_addr_t v6group, v6src;
6534 	uint32_t ifindex;
6535 	ipaddr_t ifaddr;
6536 	boolean_t mcast_opt = B_TRUE;
6537 	mcast_record_t fmode;
6538 	ire_t *ire;
6539 	boolean_t done = B_FALSE;
6540 	int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6541 	    ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6542 
6543 	switch (name) {
6544 	case IP_BLOCK_SOURCE:
6545 		mcast_opt = B_FALSE;
6546 		/* FALLTHRU */
6547 	case MCAST_BLOCK_SOURCE:
6548 		fmode = MODE_IS_EXCLUDE;
6549 		optfn = ip_opt_add_group;
6550 		break;
6551 
6552 	case IP_UNBLOCK_SOURCE:
6553 		mcast_opt = B_FALSE;
6554 		/* FALLTHRU */
6555 	case MCAST_UNBLOCK_SOURCE:
6556 		fmode = MODE_IS_EXCLUDE;
6557 		optfn = ip_opt_delete_group;
6558 		break;
6559 
6560 	case IP_ADD_SOURCE_MEMBERSHIP:
6561 		mcast_opt = B_FALSE;
6562 		/* FALLTHRU */
6563 	case MCAST_JOIN_SOURCE_GROUP:
6564 		fmode = MODE_IS_INCLUDE;
6565 		optfn = ip_opt_add_group;
6566 		break;
6567 
6568 	case IP_DROP_SOURCE_MEMBERSHIP:
6569 		mcast_opt = B_FALSE;
6570 		/* FALLTHRU */
6571 	case MCAST_LEAVE_SOURCE_GROUP:
6572 		fmode = MODE_IS_INCLUDE;
6573 		optfn = ip_opt_delete_group;
6574 		break;
6575 	default:
6576 		ASSERT(0);
6577 	}
6578 
6579 	if (mcast_opt) {
6580 		gsreqp = (struct group_source_req *)i1;
6581 		ifindex = gsreqp->gsr_interface;
6582 		if (gsreqp->gsr_group.ss_family == AF_INET) {
6583 			struct sockaddr_in *s;
6584 			s = (struct sockaddr_in *)&gsreqp->gsr_group;
6585 			IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group);
6586 			s = (struct sockaddr_in *)&gsreqp->gsr_source;
6587 			IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src);
6588 		} else {
6589 			struct sockaddr_in6 *s6;
6590 
6591 			if (!inet6)
6592 				return (EINVAL);	/* Not on INET socket */
6593 
6594 			s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group;
6595 			v6group = s6->sin6_addr;
6596 			s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source;
6597 			v6src = s6->sin6_addr;
6598 		}
6599 		ifaddr = INADDR_ANY;
6600 	} else {
6601 		imreqp = (struct ip_mreq_source *)i1;
6602 		IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group);
6603 		IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src);
6604 		ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr;
6605 		ifindex = 0;
6606 	}
6607 
6608 	/*
6609 	 * Handle src being mapped INADDR_ANY by changing it to unspecified.
6610 	 */
6611 	if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src))
6612 		v6src = ipv6_all_zeros;
6613 
6614 	/*
6615 	 * In the multirouting case, we need to replicate
6616 	 * the request as noted in the mcast cases above.
6617 	 */
6618 	if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6619 		ipaddr_t group;
6620 
6621 		IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6622 
6623 		ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6624 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6625 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6626 	} else {
6627 		ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6628 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6629 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6630 	}
6631 	if (ire != NULL) {
6632 		if (ire->ire_flags & RTF_MULTIRT) {
6633 			error = ip_multirt_apply_membership(optfn, ire, connp,
6634 			    checkonly, &v6group, fmode, &v6src);
6635 			done = B_TRUE;
6636 		}
6637 		ire_refrele(ire);
6638 	}
6639 	if (!done) {
6640 		error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6641 		    fmode, &v6src);
6642 	}
6643 	return (error);
6644 }
6645 
6646 /*
6647  * Given a destination address and a pointer to where to put the information
6648  * this routine fills in the mtuinfo.
6649  * The socket must be connected.
6650  * For sctp conn_faddr is the primary address.
6651  */
6652 int
6653 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo)
6654 {
6655 	uint32_t	pmtu = IP_MAXPACKET;
6656 	uint_t		scopeid;
6657 
6658 	if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6))
6659 		return (-1);
6660 
6661 	/* In case we never sent or called ip_set_destination_v4/v6 */
6662 	if (ixa->ixa_ire != NULL)
6663 		pmtu = ip_get_pmtu(ixa);
6664 
6665 	if (ixa->ixa_flags & IXAF_SCOPEID_SET)
6666 		scopeid = ixa->ixa_scopeid;
6667 	else
6668 		scopeid = 0;
6669 
6670 	bzero(mtuinfo, sizeof (*mtuinfo));
6671 	mtuinfo->ip6m_addr.sin6_family = AF_INET6;
6672 	mtuinfo->ip6m_addr.sin6_port = connp->conn_fport;
6673 	mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6;
6674 	mtuinfo->ip6m_addr.sin6_scope_id = scopeid;
6675 	mtuinfo->ip6m_mtu = pmtu;
6676 
6677 	return (sizeof (struct ip6_mtuinfo));
6678 }
6679 
6680 /* Named Dispatch routine to get a current value out of our parameter table. */
6681 /* ARGSUSED */
6682 static int
6683 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
6684 {
6685 	ipparam_t *ippa = (ipparam_t *)cp;
6686 
6687 	(void) mi_mpprintf(mp, "%d", ippa->ip_param_value);
6688 	return (0);
6689 }
6690 
6691 /* ARGSUSED */
6692 static int
6693 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
6694 {
6695 
6696 	(void) mi_mpprintf(mp, "%d", *(int *)cp);
6697 	return (0);
6698 }
6699 
6700 /*
6701  * Set ip{,6}_forwarding values.  This means walking through all of the
6702  * ill's and toggling their forwarding values.
6703  */
6704 /* ARGSUSED */
6705 static int
6706 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr)
6707 {
6708 	long new_value;
6709 	int *forwarding_value = (int *)cp;
6710 	ill_t *ill;
6711 	boolean_t isv6;
6712 	ill_walk_context_t ctx;
6713 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
6714 
6715 	isv6 = (forwarding_value == &ipst->ips_ipv6_forward);
6716 
6717 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
6718 	    new_value < 0 || new_value > 1) {
6719 		return (EINVAL);
6720 	}
6721 
6722 	*forwarding_value = new_value;
6723 
6724 	/*
6725 	 * Regardless of the current value of ip_forwarding, set all per-ill
6726 	 * values of ip_forwarding to the value being set.
6727 	 *
6728 	 * Bring all the ill's up to date with the new global value.
6729 	 */
6730 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6731 
6732 	if (isv6)
6733 		ill = ILL_START_WALK_V6(&ctx, ipst);
6734 	else
6735 		ill = ILL_START_WALK_V4(&ctx, ipst);
6736 
6737 	for (; ill != NULL; ill = ill_next(&ctx, ill))
6738 		(void) ill_forward_set(ill, new_value != 0);
6739 
6740 	rw_exit(&ipst->ips_ill_g_lock);
6741 	return (0);
6742 }
6743 
6744 /*
6745  * Walk through the param array specified registering each element with the
6746  * Named Dispatch handler. This is called only during init. So it is ok
6747  * not to acquire any locks
6748  */
6749 static boolean_t
6750 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt,
6751     ipndp_t *ipnd, size_t ipnd_cnt)
6752 {
6753 	for (; ippa_cnt-- > 0; ippa++) {
6754 		if (ippa->ip_param_name && ippa->ip_param_name[0]) {
6755 			if (!nd_load(ndp, ippa->ip_param_name,
6756 			    ip_param_get, ip_param_set, (caddr_t)ippa)) {
6757 				nd_free(ndp);
6758 				return (B_FALSE);
6759 			}
6760 		}
6761 	}
6762 
6763 	for (; ipnd_cnt-- > 0; ipnd++) {
6764 		if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) {
6765 			if (!nd_load(ndp, ipnd->ip_ndp_name,
6766 			    ipnd->ip_ndp_getf, ipnd->ip_ndp_setf,
6767 			    ipnd->ip_ndp_data)) {
6768 				nd_free(ndp);
6769 				return (B_FALSE);
6770 			}
6771 		}
6772 	}
6773 
6774 	return (B_TRUE);
6775 }
6776 
6777 /* Named Dispatch routine to negotiate a new value for one of our parameters. */
6778 /* ARGSUSED */
6779 static int
6780 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr)
6781 {
6782 	long		new_value;
6783 	ipparam_t	*ippa = (ipparam_t *)cp;
6784 
6785 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
6786 	    new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) {
6787 		return (EINVAL);
6788 	}
6789 	ippa->ip_param_value = new_value;
6790 	return (0);
6791 }
6792 
6793 /*
6794  * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases,
6795  * When an ipf is passed here for the first time, if
6796  * we already have in-order fragments on the queue, we convert from the fast-
6797  * path reassembly scheme to the hard-case scheme.  From then on, additional
6798  * fragments are reassembled here.  We keep track of the start and end offsets
6799  * of each piece, and the number of holes in the chain.  When the hole count
6800  * goes to zero, we are done!
6801  *
6802  * The ipf_count will be updated to account for any mblk(s) added (pointed to
6803  * by mp) or subtracted (freeb()ed dups), upon return the caller must update
6804  * ipfb_count and ill_frag_count by the difference of ipf_count before and
6805  * after the call to ip_reassemble().
6806  */
6807 int
6808 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill,
6809     size_t msg_len)
6810 {
6811 	uint_t	end;
6812 	mblk_t	*next_mp;
6813 	mblk_t	*mp1;
6814 	uint_t	offset;
6815 	boolean_t incr_dups = B_TRUE;
6816 	boolean_t offset_zero_seen = B_FALSE;
6817 	boolean_t pkt_boundary_checked = B_FALSE;
6818 
6819 	/* If start == 0 then ipf_nf_hdr_len has to be set. */
6820 	ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0);
6821 
6822 	/* Add in byte count */
6823 	ipf->ipf_count += msg_len;
6824 	if (ipf->ipf_end) {
6825 		/*
6826 		 * We were part way through in-order reassembly, but now there
6827 		 * is a hole.  We walk through messages already queued, and
6828 		 * mark them for hard case reassembly.  We know that up till
6829 		 * now they were in order starting from offset zero.
6830 		 */
6831 		offset = 0;
6832 		for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6833 			IP_REASS_SET_START(mp1, offset);
6834 			if (offset == 0) {
6835 				ASSERT(ipf->ipf_nf_hdr_len != 0);
6836 				offset = -ipf->ipf_nf_hdr_len;
6837 			}
6838 			offset += mp1->b_wptr - mp1->b_rptr;
6839 			IP_REASS_SET_END(mp1, offset);
6840 		}
6841 		/* One hole at the end. */
6842 		ipf->ipf_hole_cnt = 1;
6843 		/* Brand it as a hard case, forever. */
6844 		ipf->ipf_end = 0;
6845 	}
6846 	/* Walk through all the new pieces. */
6847 	do {
6848 		end = start + (mp->b_wptr - mp->b_rptr);
6849 		/*
6850 		 * If start is 0, decrease 'end' only for the first mblk of
6851 		 * the fragment. Otherwise 'end' can get wrong value in the
6852 		 * second pass of the loop if first mblk is exactly the
6853 		 * size of ipf_nf_hdr_len.
6854 		 */
6855 		if (start == 0 && !offset_zero_seen) {
6856 			/* First segment */
6857 			ASSERT(ipf->ipf_nf_hdr_len != 0);
6858 			end -= ipf->ipf_nf_hdr_len;
6859 			offset_zero_seen = B_TRUE;
6860 		}
6861 		next_mp = mp->b_cont;
6862 		/*
6863 		 * We are checking to see if there is any interesing data
6864 		 * to process.  If there isn't and the mblk isn't the
6865 		 * one which carries the unfragmentable header then we
6866 		 * drop it.  It's possible to have just the unfragmentable
6867 		 * header come through without any data.  That needs to be
6868 		 * saved.
6869 		 *
6870 		 * If the assert at the top of this function holds then the
6871 		 * term "ipf->ipf_nf_hdr_len != 0" isn't needed.  This code
6872 		 * is infrequently traveled enough that the test is left in
6873 		 * to protect against future code changes which break that
6874 		 * invariant.
6875 		 */
6876 		if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) {
6877 			/* Empty.  Blast it. */
6878 			IP_REASS_SET_START(mp, 0);
6879 			IP_REASS_SET_END(mp, 0);
6880 			/*
6881 			 * If the ipf points to the mblk we are about to free,
6882 			 * update ipf to point to the next mblk (or NULL
6883 			 * if none).
6884 			 */
6885 			if (ipf->ipf_mp->b_cont == mp)
6886 				ipf->ipf_mp->b_cont = next_mp;
6887 			freeb(mp);
6888 			continue;
6889 		}
6890 		mp->b_cont = NULL;
6891 		IP_REASS_SET_START(mp, start);
6892 		IP_REASS_SET_END(mp, end);
6893 		if (!ipf->ipf_tail_mp) {
6894 			ipf->ipf_tail_mp = mp;
6895 			ipf->ipf_mp->b_cont = mp;
6896 			if (start == 0 || !more) {
6897 				ipf->ipf_hole_cnt = 1;
6898 				/*
6899 				 * if the first fragment comes in more than one
6900 				 * mblk, this loop will be executed for each
6901 				 * mblk. Need to adjust hole count so exiting
6902 				 * this routine will leave hole count at 1.
6903 				 */
6904 				if (next_mp)
6905 					ipf->ipf_hole_cnt++;
6906 			} else
6907 				ipf->ipf_hole_cnt = 2;
6908 			continue;
6909 		} else if (ipf->ipf_last_frag_seen && !more &&
6910 		    !pkt_boundary_checked) {
6911 			/*
6912 			 * We check datagram boundary only if this fragment
6913 			 * claims to be the last fragment and we have seen a
6914 			 * last fragment in the past too. We do this only
6915 			 * once for a given fragment.
6916 			 *
6917 			 * start cannot be 0 here as fragments with start=0
6918 			 * and MF=0 gets handled as a complete packet. These
6919 			 * fragments should not reach here.
6920 			 */
6921 
6922 			if (start + msgdsize(mp) !=
6923 			    IP_REASS_END(ipf->ipf_tail_mp)) {
6924 				/*
6925 				 * We have two fragments both of which claim
6926 				 * to be the last fragment but gives conflicting
6927 				 * information about the whole datagram size.
6928 				 * Something fishy is going on. Drop the
6929 				 * fragment and free up the reassembly list.
6930 				 */
6931 				return (IP_REASS_FAILED);
6932 			}
6933 
6934 			/*
6935 			 * We shouldn't come to this code block again for this
6936 			 * particular fragment.
6937 			 */
6938 			pkt_boundary_checked = B_TRUE;
6939 		}
6940 
6941 		/* New stuff at or beyond tail? */
6942 		offset = IP_REASS_END(ipf->ipf_tail_mp);
6943 		if (start >= offset) {
6944 			if (ipf->ipf_last_frag_seen) {
6945 				/* current fragment is beyond last fragment */
6946 				return (IP_REASS_FAILED);
6947 			}
6948 			/* Link it on end. */
6949 			ipf->ipf_tail_mp->b_cont = mp;
6950 			ipf->ipf_tail_mp = mp;
6951 			if (more) {
6952 				if (start != offset)
6953 					ipf->ipf_hole_cnt++;
6954 			} else if (start == offset && next_mp == NULL)
6955 					ipf->ipf_hole_cnt--;
6956 			continue;
6957 		}
6958 		mp1 = ipf->ipf_mp->b_cont;
6959 		offset = IP_REASS_START(mp1);
6960 		/* New stuff at the front? */
6961 		if (start < offset) {
6962 			if (start == 0) {
6963 				if (end >= offset) {
6964 					/* Nailed the hole at the begining. */
6965 					ipf->ipf_hole_cnt--;
6966 				}
6967 			} else if (end < offset) {
6968 				/*
6969 				 * A hole, stuff, and a hole where there used
6970 				 * to be just a hole.
6971 				 */
6972 				ipf->ipf_hole_cnt++;
6973 			}
6974 			mp->b_cont = mp1;
6975 			/* Check for overlap. */
6976 			while (end > offset) {
6977 				if (end < IP_REASS_END(mp1)) {
6978 					mp->b_wptr -= end - offset;
6979 					IP_REASS_SET_END(mp, offset);
6980 					BUMP_MIB(ill->ill_ip_mib,
6981 					    ipIfStatsReasmPartDups);
6982 					break;
6983 				}
6984 				/* Did we cover another hole? */
6985 				if ((mp1->b_cont &&
6986 				    IP_REASS_END(mp1) !=
6987 				    IP_REASS_START(mp1->b_cont) &&
6988 				    end >= IP_REASS_START(mp1->b_cont)) ||
6989 				    (!ipf->ipf_last_frag_seen && !more)) {
6990 					ipf->ipf_hole_cnt--;
6991 				}
6992 				/* Clip out mp1. */
6993 				if ((mp->b_cont = mp1->b_cont) == NULL) {
6994 					/*
6995 					 * After clipping out mp1, this guy
6996 					 * is now hanging off the end.
6997 					 */
6998 					ipf->ipf_tail_mp = mp;
6999 				}
7000 				IP_REASS_SET_START(mp1, 0);
7001 				IP_REASS_SET_END(mp1, 0);
7002 				/* Subtract byte count */
7003 				ipf->ipf_count -= mp1->b_datap->db_lim -
7004 				    mp1->b_datap->db_base;
7005 				freeb(mp1);
7006 				BUMP_MIB(ill->ill_ip_mib,
7007 				    ipIfStatsReasmPartDups);
7008 				mp1 = mp->b_cont;
7009 				if (!mp1)
7010 					break;
7011 				offset = IP_REASS_START(mp1);
7012 			}
7013 			ipf->ipf_mp->b_cont = mp;
7014 			continue;
7015 		}
7016 		/*
7017 		 * The new piece starts somewhere between the start of the head
7018 		 * and before the end of the tail.
7019 		 */
7020 		for (; mp1; mp1 = mp1->b_cont) {
7021 			offset = IP_REASS_END(mp1);
7022 			if (start < offset) {
7023 				if (end <= offset) {
7024 					/* Nothing new. */
7025 					IP_REASS_SET_START(mp, 0);
7026 					IP_REASS_SET_END(mp, 0);
7027 					/* Subtract byte count */
7028 					ipf->ipf_count -= mp->b_datap->db_lim -
7029 					    mp->b_datap->db_base;
7030 					if (incr_dups) {
7031 						ipf->ipf_num_dups++;
7032 						incr_dups = B_FALSE;
7033 					}
7034 					freeb(mp);
7035 					BUMP_MIB(ill->ill_ip_mib,
7036 					    ipIfStatsReasmDuplicates);
7037 					break;
7038 				}
7039 				/*
7040 				 * Trim redundant stuff off beginning of new
7041 				 * piece.
7042 				 */
7043 				IP_REASS_SET_START(mp, offset);
7044 				mp->b_rptr += offset - start;
7045 				BUMP_MIB(ill->ill_ip_mib,
7046 				    ipIfStatsReasmPartDups);
7047 				start = offset;
7048 				if (!mp1->b_cont) {
7049 					/*
7050 					 * After trimming, this guy is now
7051 					 * hanging off the end.
7052 					 */
7053 					mp1->b_cont = mp;
7054 					ipf->ipf_tail_mp = mp;
7055 					if (!more) {
7056 						ipf->ipf_hole_cnt--;
7057 					}
7058 					break;
7059 				}
7060 			}
7061 			if (start >= IP_REASS_START(mp1->b_cont))
7062 				continue;
7063 			/* Fill a hole */
7064 			if (start > offset)
7065 				ipf->ipf_hole_cnt++;
7066 			mp->b_cont = mp1->b_cont;
7067 			mp1->b_cont = mp;
7068 			mp1 = mp->b_cont;
7069 			offset = IP_REASS_START(mp1);
7070 			if (end >= offset) {
7071 				ipf->ipf_hole_cnt--;
7072 				/* Check for overlap. */
7073 				while (end > offset) {
7074 					if (end < IP_REASS_END(mp1)) {
7075 						mp->b_wptr -= end - offset;
7076 						IP_REASS_SET_END(mp, offset);
7077 						/*
7078 						 * TODO we might bump
7079 						 * this up twice if there is
7080 						 * overlap at both ends.
7081 						 */
7082 						BUMP_MIB(ill->ill_ip_mib,
7083 						    ipIfStatsReasmPartDups);
7084 						break;
7085 					}
7086 					/* Did we cover another hole? */
7087 					if ((mp1->b_cont &&
7088 					    IP_REASS_END(mp1)
7089 					    != IP_REASS_START(mp1->b_cont) &&
7090 					    end >=
7091 					    IP_REASS_START(mp1->b_cont)) ||
7092 					    (!ipf->ipf_last_frag_seen &&
7093 					    !more)) {
7094 						ipf->ipf_hole_cnt--;
7095 					}
7096 					/* Clip out mp1. */
7097 					if ((mp->b_cont = mp1->b_cont) ==
7098 					    NULL) {
7099 						/*
7100 						 * After clipping out mp1,
7101 						 * this guy is now hanging
7102 						 * off the end.
7103 						 */
7104 						ipf->ipf_tail_mp = mp;
7105 					}
7106 					IP_REASS_SET_START(mp1, 0);
7107 					IP_REASS_SET_END(mp1, 0);
7108 					/* Subtract byte count */
7109 					ipf->ipf_count -=
7110 					    mp1->b_datap->db_lim -
7111 					    mp1->b_datap->db_base;
7112 					freeb(mp1);
7113 					BUMP_MIB(ill->ill_ip_mib,
7114 					    ipIfStatsReasmPartDups);
7115 					mp1 = mp->b_cont;
7116 					if (!mp1)
7117 						break;
7118 					offset = IP_REASS_START(mp1);
7119 				}
7120 			}
7121 			break;
7122 		}
7123 	} while (start = end, mp = next_mp);
7124 
7125 	/* Fragment just processed could be the last one. Remember this fact */
7126 	if (!more)
7127 		ipf->ipf_last_frag_seen = B_TRUE;
7128 
7129 	/* Still got holes? */
7130 	if (ipf->ipf_hole_cnt)
7131 		return (IP_REASS_PARTIAL);
7132 	/* Clean up overloaded fields to avoid upstream disasters. */
7133 	for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
7134 		IP_REASS_SET_START(mp1, 0);
7135 		IP_REASS_SET_END(mp1, 0);
7136 	}
7137 	return (IP_REASS_COMPLETE);
7138 }
7139 
7140 /*
7141  * Fragmentation reassembly.  Each ILL has a hash table for
7142  * queuing packets undergoing reassembly for all IPIFs
7143  * associated with the ILL.  The hash is based on the packet
7144  * IP ident field.  The ILL frag hash table was allocated
7145  * as a timer block at the time the ILL was created.  Whenever
7146  * there is anything on the reassembly queue, the timer will
7147  * be running.  Returns the reassembled packet if reassembly completes.
7148  */
7149 mblk_t *
7150 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
7151 {
7152 	uint32_t	frag_offset_flags;
7153 	mblk_t		*t_mp;
7154 	ipaddr_t	dst;
7155 	uint8_t		proto = ipha->ipha_protocol;
7156 	uint32_t	sum_val;
7157 	uint16_t	sum_flags;
7158 	ipf_t		*ipf;
7159 	ipf_t		**ipfp;
7160 	ipfb_t		*ipfb;
7161 	uint16_t	ident;
7162 	uint32_t	offset;
7163 	ipaddr_t	src;
7164 	uint_t		hdr_length;
7165 	uint32_t	end;
7166 	mblk_t		*mp1;
7167 	mblk_t		*tail_mp;
7168 	size_t		count;
7169 	size_t		msg_len;
7170 	uint8_t		ecn_info = 0;
7171 	uint32_t	packet_size;
7172 	boolean_t	pruned = B_FALSE;
7173 	ill_t		*ill = ira->ira_ill;
7174 	ip_stack_t	*ipst = ill->ill_ipst;
7175 
7176 	/*
7177 	 * Drop the fragmented as early as possible, if
7178 	 * we don't have resource(s) to re-assemble.
7179 	 */
7180 	if (ipst->ips_ip_reass_queue_bytes == 0) {
7181 		freemsg(mp);
7182 		return (NULL);
7183 	}
7184 
7185 	/* Check for fragmentation offset; return if there's none */
7186 	if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) &
7187 	    (IPH_MF | IPH_OFFSET)) == 0)
7188 		return (mp);
7189 
7190 	/*
7191 	 * We utilize hardware computed checksum info only for UDP since
7192 	 * IP fragmentation is a normal occurrence for the protocol.  In
7193 	 * addition, checksum offload support for IP fragments carrying
7194 	 * UDP payload is commonly implemented across network adapters.
7195 	 */
7196 	ASSERT(ira->ira_rill != NULL);
7197 	if (proto == IPPROTO_UDP && dohwcksum &&
7198 	    ILL_HCKSUM_CAPABLE(ira->ira_rill) &&
7199 	    (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) {
7200 		mblk_t *mp1 = mp->b_cont;
7201 		int32_t len;
7202 
7203 		/* Record checksum information from the packet */
7204 		sum_val = (uint32_t)DB_CKSUM16(mp);
7205 		sum_flags = DB_CKSUMFLAGS(mp);
7206 
7207 		/* IP payload offset from beginning of mblk */
7208 		offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr;
7209 
7210 		if ((sum_flags & HCK_PARTIALCKSUM) &&
7211 		    (mp1 == NULL || mp1->b_cont == NULL) &&
7212 		    offset >= DB_CKSUMSTART(mp) &&
7213 		    ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) {
7214 			uint32_t adj;
7215 			/*
7216 			 * Partial checksum has been calculated by hardware
7217 			 * and attached to the packet; in addition, any
7218 			 * prepended extraneous data is even byte aligned.
7219 			 * If any such data exists, we adjust the checksum;
7220 			 * this would also handle any postpended data.
7221 			 */
7222 			IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp),
7223 			    mp, mp1, len, adj);
7224 
7225 			/* One's complement subtract extraneous checksum */
7226 			if (adj >= sum_val)
7227 				sum_val = ~(adj - sum_val) & 0xFFFF;
7228 			else
7229 				sum_val -= adj;
7230 		}
7231 	} else {
7232 		sum_val = 0;
7233 		sum_flags = 0;
7234 	}
7235 
7236 	/* Clear hardware checksumming flag */
7237 	DB_CKSUMFLAGS(mp) = 0;
7238 
7239 	ident = ipha->ipha_ident;
7240 	offset = (frag_offset_flags << 3) & 0xFFFF;
7241 	src = ipha->ipha_src;
7242 	dst = ipha->ipha_dst;
7243 	hdr_length = IPH_HDR_LENGTH(ipha);
7244 	end = ntohs(ipha->ipha_length) - hdr_length;
7245 
7246 	/* If end == 0 then we have a packet with no data, so just free it */
7247 	if (end == 0) {
7248 		freemsg(mp);
7249 		return (NULL);
7250 	}
7251 
7252 	/* Record the ECN field info. */
7253 	ecn_info = (ipha->ipha_type_of_service & 0x3);
7254 	if (offset != 0) {
7255 		/*
7256 		 * If this isn't the first piece, strip the header, and
7257 		 * add the offset to the end value.
7258 		 */
7259 		mp->b_rptr += hdr_length;
7260 		end += offset;
7261 	}
7262 
7263 	/* Handle vnic loopback of fragments */
7264 	if (mp->b_datap->db_ref > 2)
7265 		msg_len = 0;
7266 	else
7267 		msg_len = MBLKSIZE(mp);
7268 
7269 	tail_mp = mp;
7270 	while (tail_mp->b_cont != NULL) {
7271 		tail_mp = tail_mp->b_cont;
7272 		if (tail_mp->b_datap->db_ref <= 2)
7273 			msg_len += MBLKSIZE(tail_mp);
7274 	}
7275 
7276 	/* If the reassembly list for this ILL will get too big, prune it */
7277 	if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >=
7278 	    ipst->ips_ip_reass_queue_bytes) {
7279 		DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len,
7280 		    uint_t, ill->ill_frag_count,
7281 		    uint_t, ipst->ips_ip_reass_queue_bytes);
7282 		ill_frag_prune(ill,
7283 		    (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 :
7284 		    (ipst->ips_ip_reass_queue_bytes - msg_len));
7285 		pruned = B_TRUE;
7286 	}
7287 
7288 	ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)];
7289 	mutex_enter(&ipfb->ipfb_lock);
7290 
7291 	ipfp = &ipfb->ipfb_ipf;
7292 	/* Try to find an existing fragment queue for this packet. */
7293 	for (;;) {
7294 		ipf = ipfp[0];
7295 		if (ipf != NULL) {
7296 			/*
7297 			 * It has to match on ident and src/dst address.
7298 			 */
7299 			if (ipf->ipf_ident == ident &&
7300 			    ipf->ipf_src == src &&
7301 			    ipf->ipf_dst == dst &&
7302 			    ipf->ipf_protocol == proto) {
7303 				/*
7304 				 * If we have received too many
7305 				 * duplicate fragments for this packet
7306 				 * free it.
7307 				 */
7308 				if (ipf->ipf_num_dups > ip_max_frag_dups) {
7309 					ill_frag_free_pkts(ill, ipfb, ipf, 1);
7310 					freemsg(mp);
7311 					mutex_exit(&ipfb->ipfb_lock);
7312 					return (NULL);
7313 				}
7314 				/* Found it. */
7315 				break;
7316 			}
7317 			ipfp = &ipf->ipf_hash_next;
7318 			continue;
7319 		}
7320 
7321 		/*
7322 		 * If we pruned the list, do we want to store this new
7323 		 * fragment?. We apply an optimization here based on the
7324 		 * fact that most fragments will be received in order.
7325 		 * So if the offset of this incoming fragment is zero,
7326 		 * it is the first fragment of a new packet. We will
7327 		 * keep it.  Otherwise drop the fragment, as we have
7328 		 * probably pruned the packet already (since the
7329 		 * packet cannot be found).
7330 		 */
7331 		if (pruned && offset != 0) {
7332 			mutex_exit(&ipfb->ipfb_lock);
7333 			freemsg(mp);
7334 			return (NULL);
7335 		}
7336 
7337 		if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst))  {
7338 			/*
7339 			 * Too many fragmented packets in this hash
7340 			 * bucket. Free the oldest.
7341 			 */
7342 			ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1);
7343 		}
7344 
7345 		/* New guy.  Allocate a frag message. */
7346 		mp1 = allocb(sizeof (*ipf), BPRI_MED);
7347 		if (mp1 == NULL) {
7348 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7349 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7350 			freemsg(mp);
7351 reass_done:
7352 			mutex_exit(&ipfb->ipfb_lock);
7353 			return (NULL);
7354 		}
7355 
7356 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds);
7357 		mp1->b_cont = mp;
7358 
7359 		/* Initialize the fragment header. */
7360 		ipf = (ipf_t *)mp1->b_rptr;
7361 		ipf->ipf_mp = mp1;
7362 		ipf->ipf_ptphn = ipfp;
7363 		ipfp[0] = ipf;
7364 		ipf->ipf_hash_next = NULL;
7365 		ipf->ipf_ident = ident;
7366 		ipf->ipf_protocol = proto;
7367 		ipf->ipf_src = src;
7368 		ipf->ipf_dst = dst;
7369 		ipf->ipf_nf_hdr_len = 0;
7370 		/* Record reassembly start time. */
7371 		ipf->ipf_timestamp = gethrestime_sec();
7372 		/* Record ipf generation and account for frag header */
7373 		ipf->ipf_gen = ill->ill_ipf_gen++;
7374 		ipf->ipf_count = MBLKSIZE(mp1);
7375 		ipf->ipf_last_frag_seen = B_FALSE;
7376 		ipf->ipf_ecn = ecn_info;
7377 		ipf->ipf_num_dups = 0;
7378 		ipfb->ipfb_frag_pkts++;
7379 		ipf->ipf_checksum = 0;
7380 		ipf->ipf_checksum_flags = 0;
7381 
7382 		/* Store checksum value in fragment header */
7383 		if (sum_flags != 0) {
7384 			sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7385 			sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7386 			ipf->ipf_checksum = sum_val;
7387 			ipf->ipf_checksum_flags = sum_flags;
7388 		}
7389 
7390 		/*
7391 		 * We handle reassembly two ways.  In the easy case,
7392 		 * where all the fragments show up in order, we do
7393 		 * minimal bookkeeping, and just clip new pieces on
7394 		 * the end.  If we ever see a hole, then we go off
7395 		 * to ip_reassemble which has to mark the pieces and
7396 		 * keep track of the number of holes, etc.  Obviously,
7397 		 * the point of having both mechanisms is so we can
7398 		 * handle the easy case as efficiently as possible.
7399 		 */
7400 		if (offset == 0) {
7401 			/* Easy case, in-order reassembly so far. */
7402 			ipf->ipf_count += msg_len;
7403 			ipf->ipf_tail_mp = tail_mp;
7404 			/*
7405 			 * Keep track of next expected offset in
7406 			 * ipf_end.
7407 			 */
7408 			ipf->ipf_end = end;
7409 			ipf->ipf_nf_hdr_len = hdr_length;
7410 		} else {
7411 			/* Hard case, hole at the beginning. */
7412 			ipf->ipf_tail_mp = NULL;
7413 			/*
7414 			 * ipf_end == 0 means that we have given up
7415 			 * on easy reassembly.
7416 			 */
7417 			ipf->ipf_end = 0;
7418 
7419 			/* Forget checksum offload from now on */
7420 			ipf->ipf_checksum_flags = 0;
7421 
7422 			/*
7423 			 * ipf_hole_cnt is set by ip_reassemble.
7424 			 * ipf_count is updated by ip_reassemble.
7425 			 * No need to check for return value here
7426 			 * as we don't expect reassembly to complete
7427 			 * or fail for the first fragment itself.
7428 			 */
7429 			(void) ip_reassemble(mp, ipf,
7430 			    (frag_offset_flags & IPH_OFFSET) << 3,
7431 			    (frag_offset_flags & IPH_MF), ill, msg_len);
7432 		}
7433 		/* Update per ipfb and ill byte counts */
7434 		ipfb->ipfb_count += ipf->ipf_count;
7435 		ASSERT(ipfb->ipfb_count > 0);	/* Wraparound */
7436 		atomic_add_32(&ill->ill_frag_count, ipf->ipf_count);
7437 		/* If the frag timer wasn't already going, start it. */
7438 		mutex_enter(&ill->ill_lock);
7439 		ill_frag_timer_start(ill);
7440 		mutex_exit(&ill->ill_lock);
7441 		goto reass_done;
7442 	}
7443 
7444 	/*
7445 	 * If the packet's flag has changed (it could be coming up
7446 	 * from an interface different than the previous, therefore
7447 	 * possibly different checksum capability), then forget about
7448 	 * any stored checksum states.  Otherwise add the value to
7449 	 * the existing one stored in the fragment header.
7450 	 */
7451 	if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) {
7452 		sum_val += ipf->ipf_checksum;
7453 		sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7454 		sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7455 		ipf->ipf_checksum = sum_val;
7456 	} else if (ipf->ipf_checksum_flags != 0) {
7457 		/* Forget checksum offload from now on */
7458 		ipf->ipf_checksum_flags = 0;
7459 	}
7460 
7461 	/*
7462 	 * We have a new piece of a datagram which is already being
7463 	 * reassembled.  Update the ECN info if all IP fragments
7464 	 * are ECN capable.  If there is one which is not, clear
7465 	 * all the info.  If there is at least one which has CE
7466 	 * code point, IP needs to report that up to transport.
7467 	 */
7468 	if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) {
7469 		if (ecn_info == IPH_ECN_CE)
7470 			ipf->ipf_ecn = IPH_ECN_CE;
7471 	} else {
7472 		ipf->ipf_ecn = IPH_ECN_NECT;
7473 	}
7474 	if (offset && ipf->ipf_end == offset) {
7475 		/* The new fragment fits at the end */
7476 		ipf->ipf_tail_mp->b_cont = mp;
7477 		/* Update the byte count */
7478 		ipf->ipf_count += msg_len;
7479 		/* Update per ipfb and ill byte counts */
7480 		ipfb->ipfb_count += msg_len;
7481 		ASSERT(ipfb->ipfb_count > 0);	/* Wraparound */
7482 		atomic_add_32(&ill->ill_frag_count, msg_len);
7483 		if (frag_offset_flags & IPH_MF) {
7484 			/* More to come. */
7485 			ipf->ipf_end = end;
7486 			ipf->ipf_tail_mp = tail_mp;
7487 			goto reass_done;
7488 		}
7489 	} else {
7490 		/* Go do the hard cases. */
7491 		int ret;
7492 
7493 		if (offset == 0)
7494 			ipf->ipf_nf_hdr_len = hdr_length;
7495 
7496 		/* Save current byte count */
7497 		count = ipf->ipf_count;
7498 		ret = ip_reassemble(mp, ipf,
7499 		    (frag_offset_flags & IPH_OFFSET) << 3,
7500 		    (frag_offset_flags & IPH_MF), ill, msg_len);
7501 		/* Count of bytes added and subtracted (freeb()ed) */
7502 		count = ipf->ipf_count - count;
7503 		if (count) {
7504 			/* Update per ipfb and ill byte counts */
7505 			ipfb->ipfb_count += count;
7506 			ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7507 			atomic_add_32(&ill->ill_frag_count, count);
7508 		}
7509 		if (ret == IP_REASS_PARTIAL) {
7510 			goto reass_done;
7511 		} else if (ret == IP_REASS_FAILED) {
7512 			/* Reassembly failed. Free up all resources */
7513 			ill_frag_free_pkts(ill, ipfb, ipf, 1);
7514 			for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) {
7515 				IP_REASS_SET_START(t_mp, 0);
7516 				IP_REASS_SET_END(t_mp, 0);
7517 			}
7518 			freemsg(mp);
7519 			goto reass_done;
7520 		}
7521 		/* We will reach here iff 'ret' is IP_REASS_COMPLETE */
7522 	}
7523 	/*
7524 	 * We have completed reassembly.  Unhook the frag header from
7525 	 * the reassembly list.
7526 	 *
7527 	 * Before we free the frag header, record the ECN info
7528 	 * to report back to the transport.
7529 	 */
7530 	ecn_info = ipf->ipf_ecn;
7531 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs);
7532 	ipfp = ipf->ipf_ptphn;
7533 
7534 	/* We need to supply these to caller */
7535 	if ((sum_flags = ipf->ipf_checksum_flags) != 0)
7536 		sum_val = ipf->ipf_checksum;
7537 	else
7538 		sum_val = 0;
7539 
7540 	mp1 = ipf->ipf_mp;
7541 	count = ipf->ipf_count;
7542 	ipf = ipf->ipf_hash_next;
7543 	if (ipf != NULL)
7544 		ipf->ipf_ptphn = ipfp;
7545 	ipfp[0] = ipf;
7546 	atomic_add_32(&ill->ill_frag_count, -count);
7547 	ASSERT(ipfb->ipfb_count >= count);
7548 	ipfb->ipfb_count -= count;
7549 	ipfb->ipfb_frag_pkts--;
7550 	mutex_exit(&ipfb->ipfb_lock);
7551 	/* Ditch the frag header. */
7552 	mp = mp1->b_cont;
7553 
7554 	freeb(mp1);
7555 
7556 	/* Restore original IP length in header. */
7557 	packet_size = (uint32_t)msgdsize(mp);
7558 	if (packet_size > IP_MAXPACKET) {
7559 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7560 		ip_drop_input("Reassembled packet too large", mp, ill);
7561 		freemsg(mp);
7562 		return (NULL);
7563 	}
7564 
7565 	if (DB_REF(mp) > 1) {
7566 		mblk_t *mp2 = copymsg(mp);
7567 
7568 		if (mp2 == NULL) {
7569 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7570 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7571 			freemsg(mp);
7572 			return (NULL);
7573 		}
7574 		freemsg(mp);
7575 		mp = mp2;
7576 	}
7577 	ipha = (ipha_t *)mp->b_rptr;
7578 
7579 	ipha->ipha_length = htons((uint16_t)packet_size);
7580 	/* We're now complete, zip the frag state */
7581 	ipha->ipha_fragment_offset_and_flags = 0;
7582 	/* Record the ECN info. */
7583 	ipha->ipha_type_of_service &= 0xFC;
7584 	ipha->ipha_type_of_service |= ecn_info;
7585 
7586 	/* Update the receive attributes */
7587 	ira->ira_pktlen = packet_size;
7588 	ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
7589 
7590 	/* Reassembly is successful; set checksum information in packet */
7591 	DB_CKSUM16(mp) = (uint16_t)sum_val;
7592 	DB_CKSUMFLAGS(mp) = sum_flags;
7593 	DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length;
7594 
7595 	return (mp);
7596 }
7597 
7598 /*
7599  * Pullup function that should be used for IP input in order to
7600  * ensure we do not loose the L2 source address; we need the l2 source
7601  * address for IP_RECVSLLA and for ndp_input.
7602  *
7603  * We return either NULL or b_rptr.
7604  */
7605 void *
7606 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira)
7607 {
7608 	ill_t		*ill = ira->ira_ill;
7609 
7610 	if (ip_rput_pullups++ == 0) {
7611 		(void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE,
7612 		    "ip_pullup: %s forced us to "
7613 		    " pullup pkt, hdr len %ld, hdr addr %p",
7614 		    ill->ill_name, len, (void *)mp->b_rptr);
7615 	}
7616 	if (!(ira->ira_flags & IRAF_L2SRC_SET))
7617 		ip_setl2src(mp, ira, ira->ira_rill);
7618 	ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7619 	if (!pullupmsg(mp, len))
7620 		return (NULL);
7621 	else
7622 		return (mp->b_rptr);
7623 }
7624 
7625 /*
7626  * Make sure ira_l2src has an address. If we don't have one fill with zeros.
7627  * When called from the ULP ira_rill will be NULL hence the caller has to
7628  * pass in the ill.
7629  */
7630 /* ARGSUSED */
7631 void
7632 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill)
7633 {
7634 	const uchar_t *addr;
7635 	int alen;
7636 
7637 	if (ira->ira_flags & IRAF_L2SRC_SET)
7638 		return;
7639 
7640 	ASSERT(ill != NULL);
7641 	alen = ill->ill_phys_addr_length;
7642 	ASSERT(alen <= sizeof (ira->ira_l2src));
7643 	if (ira->ira_mhip != NULL &&
7644 	    (addr = ira->ira_mhip->mhi_saddr) != NULL) {
7645 		bcopy(addr, ira->ira_l2src, alen);
7646 	} else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) &&
7647 	    (addr = ill->ill_phys_addr) != NULL) {
7648 		bcopy(addr, ira->ira_l2src, alen);
7649 	} else {
7650 		bzero(ira->ira_l2src, alen);
7651 	}
7652 	ira->ira_flags |= IRAF_L2SRC_SET;
7653 }
7654 
7655 /*
7656  * check ip header length and align it.
7657  */
7658 mblk_t *
7659 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira)
7660 {
7661 	ill_t	*ill = ira->ira_ill;
7662 	ssize_t len;
7663 
7664 	len = MBLKL(mp);
7665 
7666 	if (!OK_32PTR(mp->b_rptr))
7667 		IP_STAT(ill->ill_ipst, ip_notaligned);
7668 	else
7669 		IP_STAT(ill->ill_ipst, ip_recv_pullup);
7670 
7671 	/* Guard against bogus device drivers */
7672 	if (len < 0) {
7673 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7674 		ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7675 		freemsg(mp);
7676 		return (NULL);
7677 	}
7678 
7679 	if (len == 0) {
7680 		/* GLD sometimes sends up mblk with b_rptr == b_wptr! */
7681 		mblk_t *mp1 = mp->b_cont;
7682 
7683 		if (!(ira->ira_flags & IRAF_L2SRC_SET))
7684 			ip_setl2src(mp, ira, ira->ira_rill);
7685 		ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7686 
7687 		freeb(mp);
7688 		mp = mp1;
7689 		if (mp == NULL)
7690 			return (NULL);
7691 
7692 		if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size)
7693 			return (mp);
7694 	}
7695 	if (ip_pullup(mp, min_size, ira) == NULL) {
7696 		if (msgdsize(mp) < min_size) {
7697 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7698 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7699 		} else {
7700 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7701 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7702 		}
7703 		freemsg(mp);
7704 		return (NULL);
7705 	}
7706 	return (mp);
7707 }
7708 
7709 /*
7710  * Common code for IPv4 and IPv6 to check and pullup multi-mblks
7711  */
7712 mblk_t *
7713 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len,	uint_t pkt_len,
7714     uint_t min_size, ip_recv_attr_t *ira)
7715 {
7716 	ill_t	*ill = ira->ira_ill;
7717 
7718 	/*
7719 	 * Make sure we have data length consistent
7720 	 * with the IP header.
7721 	 */
7722 	if (mp->b_cont == NULL) {
7723 		/* pkt_len is based on ipha_len, not the mblk length */
7724 		if (pkt_len < min_size) {
7725 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7726 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7727 			freemsg(mp);
7728 			return (NULL);
7729 		}
7730 		if (len < 0) {
7731 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7732 			ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7733 			freemsg(mp);
7734 			return (NULL);
7735 		}
7736 		/* Drop any pad */
7737 		mp->b_wptr = rptr + pkt_len;
7738 	} else if ((len += msgdsize(mp->b_cont)) != 0) {
7739 		ASSERT(pkt_len >= min_size);
7740 		if (pkt_len < min_size) {
7741 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7742 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7743 			freemsg(mp);
7744 			return (NULL);
7745 		}
7746 		if (len < 0) {
7747 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7748 			ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7749 			freemsg(mp);
7750 			return (NULL);
7751 		}
7752 		/* Drop any pad */
7753 		(void) adjmsg(mp, -len);
7754 		/*
7755 		 * adjmsg may have freed an mblk from the chain, hence
7756 		 * invalidate any hw checksum here. This will force IP to
7757 		 * calculate the checksum in sw, but only for this packet.
7758 		 */
7759 		DB_CKSUMFLAGS(mp) = 0;
7760 		IP_STAT(ill->ill_ipst, ip_multimblk);
7761 	}
7762 	return (mp);
7763 }
7764 
7765 /*
7766  * Check that the IPv4 opt_len is consistent with the packet and pullup
7767  * the options.
7768  */
7769 mblk_t *
7770 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len,
7771     ip_recv_attr_t *ira)
7772 {
7773 	ill_t	*ill = ira->ira_ill;
7774 	ssize_t len;
7775 
7776 	/* Assume no IPv6 packets arrive over the IPv4 queue */
7777 	if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
7778 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7779 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion);
7780 		ip_drop_input("IPvN packet on IPv4 ill", mp, ill);
7781 		freemsg(mp);
7782 		return (NULL);
7783 	}
7784 
7785 	if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) {
7786 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7787 		ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7788 		freemsg(mp);
7789 		return (NULL);
7790 	}
7791 	/*
7792 	 * Recompute complete header length and make sure we
7793 	 * have access to all of it.
7794 	 */
7795 	len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2;
7796 	if (len > (mp->b_wptr - mp->b_rptr)) {
7797 		if (len > pkt_len) {
7798 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7799 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7800 			freemsg(mp);
7801 			return (NULL);
7802 		}
7803 		if (ip_pullup(mp, len, ira) == NULL) {
7804 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7805 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7806 			freemsg(mp);
7807 			return (NULL);
7808 		}
7809 	}
7810 	return (mp);
7811 }
7812 
7813 /*
7814  * Returns a new ire, or the same ire, or NULL.
7815  * If a different IRE is returned, then it is held; the caller
7816  * needs to release it.
7817  * In no case is there any hold/release on the ire argument.
7818  */
7819 ire_t *
7820 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill)
7821 {
7822 	ire_t		*new_ire;
7823 	ill_t		*ire_ill;
7824 	uint_t		ifindex;
7825 	ip_stack_t	*ipst = ill->ill_ipst;
7826 	boolean_t	strict_check = B_FALSE;
7827 
7828 	/*
7829 	 * IPMP common case: if IRE and ILL are in the same group, there's no
7830 	 * issue (e.g. packet received on an underlying interface matched an
7831 	 * IRE_LOCAL on its associated group interface).
7832 	 */
7833 	ASSERT(ire->ire_ill != NULL);
7834 	if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill))
7835 		return (ire);
7836 
7837 	/*
7838 	 * Do another ire lookup here, using the ingress ill, to see if the
7839 	 * interface is in a usesrc group.
7840 	 * As long as the ills belong to the same group, we don't consider
7841 	 * them to be arriving on the wrong interface. Thus, if the switch
7842 	 * is doing inbound load spreading, we won't drop packets when the
7843 	 * ip*_strict_dst_multihoming switch is on.
7844 	 * We also need to check for IPIF_UNNUMBERED point2point interfaces
7845 	 * where the local address may not be unique. In this case we were
7846 	 * at the mercy of the initial ire lookup and the IRE_LOCAL it
7847 	 * actually returned. The new lookup, which is more specific, should
7848 	 * only find the IRE_LOCAL associated with the ingress ill if one
7849 	 * exists.
7850 	 */
7851 	if (ire->ire_ipversion == IPV4_VERSION) {
7852 		if (ipst->ips_ip_strict_dst_multihoming)
7853 			strict_check = B_TRUE;
7854 		new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0,
7855 		    IRE_LOCAL, ill, ALL_ZONES, NULL,
7856 		    (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7857 	} else {
7858 		ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr));
7859 		if (ipst->ips_ipv6_strict_dst_multihoming)
7860 			strict_check = B_TRUE;
7861 		new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
7862 		    IRE_LOCAL, ill, ALL_ZONES, NULL,
7863 		    (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7864 	}
7865 	/*
7866 	 * If the same ire that was returned in ip_input() is found then this
7867 	 * is an indication that usesrc groups are in use. The packet
7868 	 * arrived on a different ill in the group than the one associated with
7869 	 * the destination address.  If a different ire was found then the same
7870 	 * IP address must be hosted on multiple ills. This is possible with
7871 	 * unnumbered point2point interfaces. We switch to use this new ire in
7872 	 * order to have accurate interface statistics.
7873 	 */
7874 	if (new_ire != NULL) {
7875 		/* Note: held in one case but not the other? Caller handles */
7876 		if (new_ire != ire)
7877 			return (new_ire);
7878 		/* Unchanged */
7879 		ire_refrele(new_ire);
7880 		return (ire);
7881 	}
7882 
7883 	/*
7884 	 * Chase pointers once and store locally.
7885 	 */
7886 	ASSERT(ire->ire_ill != NULL);
7887 	ire_ill = ire->ire_ill;
7888 	ifindex = ill->ill_usesrc_ifindex;
7889 
7890 	/*
7891 	 * Check if it's a legal address on the 'usesrc' interface.
7892 	 * For IPMP data addresses the IRE_LOCAL is the upper, hence we
7893 	 * can just check phyint_ifindex.
7894 	 */
7895 	if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) {
7896 		return (ire);
7897 	}
7898 
7899 	/*
7900 	 * If the ip*_strict_dst_multihoming switch is on then we can
7901 	 * only accept this packet if the interface is marked as routing.
7902 	 */
7903 	if (!(strict_check))
7904 		return (ire);
7905 
7906 	if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) {
7907 		return (ire);
7908 	}
7909 	return (NULL);
7910 }
7911 
7912 /*
7913  * This function is used to construct a mac_header_info_s from a
7914  * DL_UNITDATA_IND message.
7915  * The address fields in the mhi structure points into the message,
7916  * thus the caller can't use those fields after freeing the message.
7917  *
7918  * We determine whether the packet received is a non-unicast packet
7919  * and in doing so, determine whether or not it is broadcast vs multicast.
7920  * For it to be a broadcast packet, we must have the appropriate mblk_t
7921  * hanging off the ill_t.  If this is either not present or doesn't match
7922  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7923  * to be multicast.  Thus NICs that have no broadcast address (or no
7924  * capability for one, such as point to point links) cannot return as
7925  * the packet being broadcast.
7926  */
7927 void
7928 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip)
7929 {
7930 	dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr;
7931 	mblk_t *bmp;
7932 	uint_t extra_offset;
7933 
7934 	bzero(mhip, sizeof (struct mac_header_info_s));
7935 
7936 	mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7937 
7938 	if (ill->ill_sap_length < 0)
7939 		extra_offset = 0;
7940 	else
7941 		extra_offset = ill->ill_sap_length;
7942 
7943 	mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset +
7944 	    extra_offset;
7945 	mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset +
7946 	    extra_offset;
7947 
7948 	if (!ind->dl_group_address)
7949 		return;
7950 
7951 	/* Multicast or broadcast */
7952 	mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7953 
7954 	if (ind->dl_dest_addr_offset > sizeof (*ind) &&
7955 	    ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) &&
7956 	    (bmp = ill->ill_bcast_mp) != NULL) {
7957 		dl_unitdata_req_t *dlur;
7958 		uint8_t *bphys_addr;
7959 
7960 		dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7961 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
7962 		    extra_offset;
7963 
7964 		if (bcmp(mhip->mhi_daddr, bphys_addr,
7965 		    ind->dl_dest_addr_length) == 0)
7966 			mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7967 	}
7968 }
7969 
7970 /*
7971  * This function is used to construct a mac_header_info_s from a
7972  * M_DATA fastpath message from a DLPI driver.
7973  * The address fields in the mhi structure points into the message,
7974  * thus the caller can't use those fields after freeing the message.
7975  *
7976  * We determine whether the packet received is a non-unicast packet
7977  * and in doing so, determine whether or not it is broadcast vs multicast.
7978  * For it to be a broadcast packet, we must have the appropriate mblk_t
7979  * hanging off the ill_t.  If this is either not present or doesn't match
7980  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7981  * to be multicast.  Thus NICs that have no broadcast address (or no
7982  * capability for one, such as point to point links) cannot return as
7983  * the packet being broadcast.
7984  */
7985 void
7986 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip)
7987 {
7988 	mblk_t *bmp;
7989 	struct ether_header *pether;
7990 
7991 	bzero(mhip, sizeof (struct mac_header_info_s));
7992 
7993 	mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7994 
7995 	pether = (struct ether_header *)((char *)mp->b_rptr
7996 	    - sizeof (struct ether_header));
7997 
7998 	/*
7999 	 * Make sure the interface is an ethernet type, since we don't
8000 	 * know the header format for anything but Ethernet. Also make
8001 	 * sure we are pointing correctly above db_base.
8002 	 */
8003 	if (ill->ill_type != IFT_ETHER)
8004 		return;
8005 
8006 retry:
8007 	if ((uchar_t *)pether < mp->b_datap->db_base)
8008 		return;
8009 
8010 	/* Is there a VLAN tag? */
8011 	if (ill->ill_isv6) {
8012 		if (pether->ether_type != htons(ETHERTYPE_IPV6)) {
8013 			pether = (struct ether_header *)((char *)pether - 4);
8014 			goto retry;
8015 		}
8016 	} else {
8017 		if (pether->ether_type != htons(ETHERTYPE_IP)) {
8018 			pether = (struct ether_header *)((char *)pether - 4);
8019 			goto retry;
8020 		}
8021 	}
8022 	mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost;
8023 	mhip->mhi_saddr = (uchar_t *)&pether->ether_shost;
8024 
8025 	if (!(mhip->mhi_daddr[0] & 0x01))
8026 		return;
8027 
8028 	/* Multicast or broadcast */
8029 	mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
8030 
8031 	if ((bmp = ill->ill_bcast_mp) != NULL) {
8032 		dl_unitdata_req_t *dlur;
8033 		uint8_t *bphys_addr;
8034 		uint_t	addrlen;
8035 
8036 		dlur = (dl_unitdata_req_t *)bmp->b_rptr;
8037 		addrlen = dlur->dl_dest_addr_length;
8038 		if (ill->ill_sap_length < 0) {
8039 			bphys_addr = (uchar_t *)dlur +
8040 			    dlur->dl_dest_addr_offset;
8041 			addrlen += ill->ill_sap_length;
8042 		} else {
8043 			bphys_addr = (uchar_t *)dlur +
8044 			    dlur->dl_dest_addr_offset +
8045 			    ill->ill_sap_length;
8046 			addrlen -= ill->ill_sap_length;
8047 		}
8048 		if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0)
8049 			mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
8050 	}
8051 }
8052 
8053 /*
8054  * Handle anything but M_DATA messages
8055  * We see the DL_UNITDATA_IND which are part
8056  * of the data path, and also the other messages from the driver.
8057  */
8058 void
8059 ip_rput_notdata(ill_t *ill, mblk_t *mp)
8060 {
8061 	mblk_t		*first_mp;
8062 	struct iocblk   *iocp;
8063 	struct mac_header_info_s mhi;
8064 
8065 	switch (DB_TYPE(mp)) {
8066 	case M_PROTO:
8067 	case M_PCPROTO: {
8068 		if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive !=
8069 		    DL_UNITDATA_IND) {
8070 			/* Go handle anything other than data elsewhere. */
8071 			ip_rput_dlpi(ill, mp);
8072 			return;
8073 		}
8074 
8075 		first_mp = mp;
8076 		mp = first_mp->b_cont;
8077 		first_mp->b_cont = NULL;
8078 
8079 		if (mp == NULL) {
8080 			freeb(first_mp);
8081 			return;
8082 		}
8083 		ip_dlur_to_mhi(ill, first_mp, &mhi);
8084 		if (ill->ill_isv6)
8085 			ip_input_v6(ill, NULL, mp, &mhi);
8086 		else
8087 			ip_input(ill, NULL, mp, &mhi);
8088 
8089 		/* Ditch the DLPI header. */
8090 		freeb(first_mp);
8091 		return;
8092 	}
8093 	case M_IOCACK:
8094 		iocp = (struct iocblk *)mp->b_rptr;
8095 		switch (iocp->ioc_cmd) {
8096 		case DL_IOC_HDR_INFO:
8097 			ill_fastpath_ack(ill, mp);
8098 			return;
8099 		default:
8100 			putnext(ill->ill_rq, mp);
8101 			return;
8102 		}
8103 		/* FALLTHRU */
8104 	case M_ERROR:
8105 	case M_HANGUP:
8106 		mutex_enter(&ill->ill_lock);
8107 		if (ill->ill_state_flags & ILL_CONDEMNED) {
8108 			mutex_exit(&ill->ill_lock);
8109 			freemsg(mp);
8110 			return;
8111 		}
8112 		ill_refhold_locked(ill);
8113 		mutex_exit(&ill->ill_lock);
8114 		qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP,
8115 		    B_FALSE);
8116 		return;
8117 	case M_CTL:
8118 		putnext(ill->ill_rq, mp);
8119 		return;
8120 	case M_IOCNAK:
8121 		ip1dbg(("got iocnak "));
8122 		iocp = (struct iocblk *)mp->b_rptr;
8123 		switch (iocp->ioc_cmd) {
8124 		case DL_IOC_HDR_INFO:
8125 			ip_rput_other(NULL, ill->ill_rq, mp, NULL);
8126 			return;
8127 		default:
8128 			break;
8129 		}
8130 		/* FALLTHRU */
8131 	default:
8132 		putnext(ill->ill_rq, mp);
8133 		return;
8134 	}
8135 }
8136 
8137 /* Read side put procedure.  Packets coming from the wire arrive here. */
8138 void
8139 ip_rput(queue_t *q, mblk_t *mp)
8140 {
8141 	ill_t	*ill;
8142 	union DL_primitives *dl;
8143 
8144 	ill = (ill_t *)q->q_ptr;
8145 
8146 	if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) {
8147 		/*
8148 		 * If things are opening or closing, only accept high-priority
8149 		 * DLPI messages.  (On open ill->ill_ipif has not yet been
8150 		 * created; on close, things hanging off the ill may have been
8151 		 * freed already.)
8152 		 */
8153 		dl = (union DL_primitives *)mp->b_rptr;
8154 		if (DB_TYPE(mp) != M_PCPROTO ||
8155 		    dl->dl_primitive == DL_UNITDATA_IND) {
8156 			inet_freemsg(mp);
8157 			return;
8158 		}
8159 	}
8160 	if (DB_TYPE(mp) == M_DATA) {
8161 		struct mac_header_info_s mhi;
8162 
8163 		ip_mdata_to_mhi(ill, mp, &mhi);
8164 		ip_input(ill, NULL, mp, &mhi);
8165 	} else {
8166 		ip_rput_notdata(ill, mp);
8167 	}
8168 }
8169 
8170 /*
8171  * Move the information to a copy.
8172  */
8173 mblk_t *
8174 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira)
8175 {
8176 	mblk_t		*mp1;
8177 	ill_t		*ill = ira->ira_ill;
8178 	ip_stack_t	*ipst = ill->ill_ipst;
8179 
8180 	IP_STAT(ipst, ip_db_ref);
8181 
8182 	/* Make sure we have ira_l2src before we loose the original mblk */
8183 	if (!(ira->ira_flags & IRAF_L2SRC_SET))
8184 		ip_setl2src(mp, ira, ira->ira_rill);
8185 
8186 	mp1 = copymsg(mp);
8187 	if (mp1 == NULL) {
8188 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
8189 		ip_drop_input("ipIfStatsInDiscards", mp, ill);
8190 		freemsg(mp);
8191 		return (NULL);
8192 	}
8193 	/* preserve the hardware checksum flags and data, if present */
8194 	if (DB_CKSUMFLAGS(mp) != 0) {
8195 		DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
8196 		DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
8197 		DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
8198 		DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
8199 		DB_CKSUM16(mp1) = DB_CKSUM16(mp);
8200 	}
8201 	freemsg(mp);
8202 	return (mp1);
8203 }
8204 
8205 static void
8206 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err,
8207     t_uscalar_t err)
8208 {
8209 	if (dl_err == DL_SYSERR) {
8210 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8211 		    "%s: %s failed: DL_SYSERR (errno %u)\n",
8212 		    ill->ill_name, dl_primstr(prim), err);
8213 		return;
8214 	}
8215 
8216 	(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8217 	    "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim),
8218 	    dl_errstr(dl_err));
8219 }
8220 
8221 /*
8222  * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other
8223  * than DL_UNITDATA_IND messages. If we need to process this message
8224  * exclusively, we call qwriter_ip, in which case we also need to call
8225  * ill_refhold before that, since qwriter_ip does an ill_refrele.
8226  */
8227 void
8228 ip_rput_dlpi(ill_t *ill, mblk_t *mp)
8229 {
8230 	dl_ok_ack_t	*dloa = (dl_ok_ack_t *)mp->b_rptr;
8231 	dl_error_ack_t	*dlea = (dl_error_ack_t *)dloa;
8232 	queue_t		*q = ill->ill_rq;
8233 	t_uscalar_t	prim = dloa->dl_primitive;
8234 	t_uscalar_t	reqprim = DL_PRIM_INVAL;
8235 
8236 	DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi",
8237 	    char *, dl_primstr(prim), ill_t *, ill);
8238 	ip1dbg(("ip_rput_dlpi"));
8239 
8240 	/*
8241 	 * If we received an ACK but didn't send a request for it, then it
8242 	 * can't be part of any pending operation; discard up-front.
8243 	 */
8244 	switch (prim) {
8245 	case DL_ERROR_ACK:
8246 		reqprim = dlea->dl_error_primitive;
8247 		ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s "
8248 		    "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim),
8249 		    reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno,
8250 		    dlea->dl_unix_errno));
8251 		break;
8252 	case DL_OK_ACK:
8253 		reqprim = dloa->dl_correct_primitive;
8254 		break;
8255 	case DL_INFO_ACK:
8256 		reqprim = DL_INFO_REQ;
8257 		break;
8258 	case DL_BIND_ACK:
8259 		reqprim = DL_BIND_REQ;
8260 		break;
8261 	case DL_PHYS_ADDR_ACK:
8262 		reqprim = DL_PHYS_ADDR_REQ;
8263 		break;
8264 	case DL_NOTIFY_ACK:
8265 		reqprim = DL_NOTIFY_REQ;
8266 		break;
8267 	case DL_CAPABILITY_ACK:
8268 		reqprim = DL_CAPABILITY_REQ;
8269 		break;
8270 	}
8271 
8272 	if (prim != DL_NOTIFY_IND) {
8273 		if (reqprim == DL_PRIM_INVAL ||
8274 		    !ill_dlpi_pending(ill, reqprim)) {
8275 			/* Not a DLPI message we support or expected */
8276 			freemsg(mp);
8277 			return;
8278 		}
8279 		ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim),
8280 		    dl_primstr(reqprim)));
8281 	}
8282 
8283 	switch (reqprim) {
8284 	case DL_UNBIND_REQ:
8285 		/*
8286 		 * NOTE: we mark the unbind as complete even if we got a
8287 		 * DL_ERROR_ACK, since there's not much else we can do.
8288 		 */
8289 		mutex_enter(&ill->ill_lock);
8290 		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
8291 		cv_signal(&ill->ill_cv);
8292 		mutex_exit(&ill->ill_lock);
8293 		break;
8294 
8295 	case DL_ENABMULTI_REQ:
8296 		if (prim == DL_OK_ACK) {
8297 			if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8298 				ill->ill_dlpi_multicast_state = IDS_OK;
8299 		}
8300 		break;
8301 	}
8302 
8303 	/*
8304 	 * The message is one we're waiting for (or DL_NOTIFY_IND), but we
8305 	 * need to become writer to continue to process it.  Because an
8306 	 * exclusive operation doesn't complete until replies to all queued
8307 	 * DLPI messages have been received, we know we're in the middle of an
8308 	 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND).
8309 	 *
8310 	 * As required by qwriter_ip(), we refhold the ill; it will refrele.
8311 	 * Since this is on the ill stream we unconditionally bump up the
8312 	 * refcount without doing ILL_CAN_LOOKUP().
8313 	 */
8314 	ill_refhold(ill);
8315 	if (prim == DL_NOTIFY_IND)
8316 		qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE);
8317 	else
8318 		qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE);
8319 }
8320 
8321 /*
8322  * Handling of DLPI messages that require exclusive access to the ipsq.
8323  *
8324  * Need to do ipsq_pending_mp_get on ioctl completion, which could
8325  * happen here. (along with mi_copy_done)
8326  */
8327 /* ARGSUSED */
8328 static void
8329 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8330 {
8331 	dl_ok_ack_t	*dloa = (dl_ok_ack_t *)mp->b_rptr;
8332 	dl_error_ack_t	*dlea = (dl_error_ack_t *)dloa;
8333 	int		err = 0;
8334 	ill_t		*ill = (ill_t *)q->q_ptr;
8335 	ipif_t		*ipif = NULL;
8336 	mblk_t		*mp1 = NULL;
8337 	conn_t		*connp = NULL;
8338 	t_uscalar_t	paddrreq;
8339 	mblk_t		*mp_hw;
8340 	boolean_t	success;
8341 	boolean_t	ioctl_aborted = B_FALSE;
8342 	boolean_t	log = B_TRUE;
8343 
8344 	DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer",
8345 	    char *, dl_primstr(dloa->dl_primitive), ill_t *, ill);
8346 
8347 	ip1dbg(("ip_rput_dlpi_writer .."));
8348 	ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop);
8349 	ASSERT(IAM_WRITER_ILL(ill));
8350 
8351 	ipif = ipsq->ipsq_xop->ipx_pending_ipif;
8352 	/*
8353 	 * The current ioctl could have been aborted by the user and a new
8354 	 * ioctl to bring up another ill could have started. We could still
8355 	 * get a response from the driver later.
8356 	 */
8357 	if (ipif != NULL && ipif->ipif_ill != ill)
8358 		ioctl_aborted = B_TRUE;
8359 
8360 	switch (dloa->dl_primitive) {
8361 	case DL_ERROR_ACK:
8362 		ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n",
8363 		    dl_primstr(dlea->dl_error_primitive)));
8364 
8365 		DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error",
8366 		    char *, dl_primstr(dlea->dl_error_primitive),
8367 		    ill_t *, ill);
8368 
8369 		switch (dlea->dl_error_primitive) {
8370 		case DL_DISABMULTI_REQ:
8371 			ill_dlpi_done(ill, dlea->dl_error_primitive);
8372 			break;
8373 		case DL_PROMISCON_REQ:
8374 		case DL_PROMISCOFF_REQ:
8375 		case DL_UNBIND_REQ:
8376 		case DL_ATTACH_REQ:
8377 		case DL_INFO_REQ:
8378 			ill_dlpi_done(ill, dlea->dl_error_primitive);
8379 			break;
8380 		case DL_NOTIFY_REQ:
8381 			ill_dlpi_done(ill, DL_NOTIFY_REQ);
8382 			log = B_FALSE;
8383 			break;
8384 		case DL_PHYS_ADDR_REQ:
8385 			/*
8386 			 * For IPv6 only, there are two additional
8387 			 * phys_addr_req's sent to the driver to get the
8388 			 * IPv6 token and lla. This allows IP to acquire
8389 			 * the hardware address format for a given interface
8390 			 * without having built in knowledge of the hardware
8391 			 * address. ill_phys_addr_pend keeps track of the last
8392 			 * DL_PAR sent so we know which response we are
8393 			 * dealing with. ill_dlpi_done will update
8394 			 * ill_phys_addr_pend when it sends the next req.
8395 			 * We don't complete the IOCTL until all three DL_PARs
8396 			 * have been attempted, so set *_len to 0 and break.
8397 			 */
8398 			paddrreq = ill->ill_phys_addr_pend;
8399 			ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8400 			if (paddrreq == DL_IPV6_TOKEN) {
8401 				ill->ill_token_length = 0;
8402 				log = B_FALSE;
8403 				break;
8404 			} else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8405 				ill->ill_nd_lla_len = 0;
8406 				log = B_FALSE;
8407 				break;
8408 			}
8409 			/*
8410 			 * Something went wrong with the DL_PHYS_ADDR_REQ.
8411 			 * We presumably have an IOCTL hanging out waiting
8412 			 * for completion. Find it and complete the IOCTL
8413 			 * with the error noted.
8414 			 * However, ill_dl_phys was called on an ill queue
8415 			 * (from SIOCSLIFNAME), thus conn_pending_ill is not
8416 			 * set. But the ioctl is known to be pending on ill_wq.
8417 			 */
8418 			if (!ill->ill_ifname_pending)
8419 				break;
8420 			ill->ill_ifname_pending = 0;
8421 			if (!ioctl_aborted)
8422 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
8423 			if (mp1 != NULL) {
8424 				/*
8425 				 * This operation (SIOCSLIFNAME) must have
8426 				 * happened on the ill. Assert there is no conn
8427 				 */
8428 				ASSERT(connp == NULL);
8429 				q = ill->ill_wq;
8430 			}
8431 			break;
8432 		case DL_BIND_REQ:
8433 			ill_dlpi_done(ill, DL_BIND_REQ);
8434 			if (ill->ill_ifname_pending)
8435 				break;
8436 			/*
8437 			 * Something went wrong with the bind.  We presumably
8438 			 * have an IOCTL hanging out waiting for completion.
8439 			 * Find it, take down the interface that was coming
8440 			 * up, and complete the IOCTL with the error noted.
8441 			 */
8442 			if (!ioctl_aborted)
8443 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
8444 			if (mp1 != NULL) {
8445 				/*
8446 				 * This might be a result of a DL_NOTE_REPLUMB
8447 				 * notification. In that case, connp is NULL.
8448 				 */
8449 				if (connp != NULL)
8450 					q = CONNP_TO_WQ(connp);
8451 
8452 				(void) ipif_down(ipif, NULL, NULL);
8453 				/* error is set below the switch */
8454 			}
8455 			break;
8456 		case DL_ENABMULTI_REQ:
8457 			ill_dlpi_done(ill, DL_ENABMULTI_REQ);
8458 
8459 			if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8460 				ill->ill_dlpi_multicast_state = IDS_FAILED;
8461 			if (ill->ill_dlpi_multicast_state == IDS_FAILED) {
8462 
8463 				printf("ip: joining multicasts failed (%d)"
8464 				    " on %s - will use link layer "
8465 				    "broadcasts for multicast\n",
8466 				    dlea->dl_errno, ill->ill_name);
8467 
8468 				/*
8469 				 * Set up for multi_bcast; We are the
8470 				 * writer, so ok to access ill->ill_ipif
8471 				 * without any lock.
8472 				 */
8473 				mutex_enter(&ill->ill_phyint->phyint_lock);
8474 				ill->ill_phyint->phyint_flags |=
8475 				    PHYI_MULTI_BCAST;
8476 				mutex_exit(&ill->ill_phyint->phyint_lock);
8477 
8478 			}
8479 			freemsg(mp);	/* Don't want to pass this up */
8480 			return;
8481 		case DL_CAPABILITY_REQ:
8482 			ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for "
8483 			    "DL_CAPABILITY REQ\n"));
8484 			if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
8485 				ill->ill_dlpi_capab_state = IDCS_FAILED;
8486 			ill_capability_done(ill);
8487 			freemsg(mp);
8488 			return;
8489 		}
8490 		/*
8491 		 * Note the error for IOCTL completion (mp1 is set when
8492 		 * ready to complete ioctl). If ill_ifname_pending_err is
8493 		 * set, an error occured during plumbing (ill_ifname_pending),
8494 		 * so we want to report that error.
8495 		 *
8496 		 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's
8497 		 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are
8498 		 * expected to get errack'd if the driver doesn't support
8499 		 * these flags (e.g. ethernet). log will be set to B_FALSE
8500 		 * if these error conditions are encountered.
8501 		 */
8502 		if (mp1 != NULL) {
8503 			if (ill->ill_ifname_pending_err != 0)  {
8504 				err = ill->ill_ifname_pending_err;
8505 				ill->ill_ifname_pending_err = 0;
8506 			} else {
8507 				err = dlea->dl_unix_errno ?
8508 				    dlea->dl_unix_errno : ENXIO;
8509 			}
8510 		/*
8511 		 * If we're plumbing an interface and an error hasn't already
8512 		 * been saved, set ill_ifname_pending_err to the error passed
8513 		 * up. Ignore the error if log is B_FALSE (see comment above).
8514 		 */
8515 		} else if (log && ill->ill_ifname_pending &&
8516 		    ill->ill_ifname_pending_err == 0) {
8517 			ill->ill_ifname_pending_err = dlea->dl_unix_errno ?
8518 			    dlea->dl_unix_errno : ENXIO;
8519 		}
8520 
8521 		if (log)
8522 			ip_dlpi_error(ill, dlea->dl_error_primitive,
8523 			    dlea->dl_errno, dlea->dl_unix_errno);
8524 		break;
8525 	case DL_CAPABILITY_ACK:
8526 		ill_capability_ack(ill, mp);
8527 		/*
8528 		 * The message has been handed off to ill_capability_ack
8529 		 * and must not be freed below
8530 		 */
8531 		mp = NULL;
8532 		break;
8533 
8534 	case DL_INFO_ACK:
8535 		/* Call a routine to handle this one. */
8536 		ill_dlpi_done(ill, DL_INFO_REQ);
8537 		ip_ll_subnet_defaults(ill, mp);
8538 		ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock));
8539 		return;
8540 	case DL_BIND_ACK:
8541 		/*
8542 		 * We should have an IOCTL waiting on this unless
8543 		 * sent by ill_dl_phys, in which case just return
8544 		 */
8545 		ill_dlpi_done(ill, DL_BIND_REQ);
8546 		if (ill->ill_ifname_pending) {
8547 			DTRACE_PROBE2(ip__rput__dlpi__ifname__pending,
8548 			    ill_t *, ill, mblk_t *, mp);
8549 			break;
8550 		}
8551 		if (!ioctl_aborted)
8552 			mp1 = ipsq_pending_mp_get(ipsq, &connp);
8553 		if (mp1 == NULL) {
8554 			DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill);
8555 			break;
8556 		}
8557 		/*
8558 		 * mp1 was added by ill_dl_up(). if that is a result of
8559 		 * a DL_NOTE_REPLUMB notification, connp could be NULL.
8560 		 */
8561 		if (connp != NULL)
8562 			q = CONNP_TO_WQ(connp);
8563 		/*
8564 		 * We are exclusive. So nothing can change even after
8565 		 * we get the pending mp.
8566 		 */
8567 		ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name));
8568 		DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill);
8569 
8570 		mutex_enter(&ill->ill_lock);
8571 		ill->ill_dl_up = 1;
8572 		ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8573 		ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0);
8574 		mutex_exit(&ill->ill_lock);
8575 
8576 		/*
8577 		 * Now bring up the resolver; when that is complete, we'll
8578 		 * create IREs.  Note that we intentionally mirror what
8579 		 * ipif_up() would have done, because we got here by way of
8580 		 * ill_dl_up(), which stopped ipif_up()'s processing.
8581 		 */
8582 		if (ill->ill_isv6) {
8583 			/*
8584 			 * v6 interfaces.
8585 			 * Unlike ARP which has to do another bind
8586 			 * and attach, once we get here we are
8587 			 * done with NDP
8588 			 */
8589 			(void) ipif_resolver_up(ipif, Res_act_initial);
8590 			if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0)
8591 				err = ipif_up_done_v6(ipif);
8592 		} else if (ill->ill_net_type == IRE_IF_RESOLVER) {
8593 			/*
8594 			 * ARP and other v4 external resolvers.
8595 			 * Leave the pending mblk intact so that
8596 			 * the ioctl completes in ip_rput().
8597 			 */
8598 			if (connp != NULL)
8599 				mutex_enter(&connp->conn_lock);
8600 			mutex_enter(&ill->ill_lock);
8601 			success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0);
8602 			mutex_exit(&ill->ill_lock);
8603 			if (connp != NULL)
8604 				mutex_exit(&connp->conn_lock);
8605 			if (success) {
8606 				err = ipif_resolver_up(ipif, Res_act_initial);
8607 				if (err == EINPROGRESS) {
8608 					freemsg(mp);
8609 					return;
8610 				}
8611 				ASSERT(arp_no_defense || err != 0);
8612 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
8613 			} else {
8614 				/* The conn has started closing */
8615 				err = EINTR;
8616 			}
8617 		} else {
8618 			/*
8619 			 * This one is complete. Reply to pending ioctl.
8620 			 */
8621 			(void) ipif_resolver_up(ipif, Res_act_initial);
8622 			err = ipif_up_done(ipif);
8623 		}
8624 
8625 		if ((err == 0) && (ill->ill_up_ipifs)) {
8626 			err = ill_up_ipifs(ill, q, mp1);
8627 			if (err == EINPROGRESS) {
8628 				freemsg(mp);
8629 				return;
8630 			}
8631 		}
8632 
8633 		/*
8634 		 * If we have a moved ipif to bring up, and everything has
8635 		 * succeeded to this point, bring it up on the IPMP ill.
8636 		 * Otherwise, leave it down -- the admin can try to bring it
8637 		 * up by hand if need be.
8638 		 */
8639 		if (ill->ill_move_ipif != NULL) {
8640 			if (err != 0) {
8641 				ill->ill_move_ipif = NULL;
8642 			} else {
8643 				ipif = ill->ill_move_ipif;
8644 				ill->ill_move_ipif = NULL;
8645 				err = ipif_up(ipif, q, mp1);
8646 				if (err == EINPROGRESS) {
8647 					freemsg(mp);
8648 					return;
8649 				}
8650 			}
8651 		}
8652 		break;
8653 
8654 	case DL_NOTIFY_IND: {
8655 		dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr;
8656 		uint_t orig_mtu;
8657 
8658 		switch (notify->dl_notification) {
8659 		case DL_NOTE_PHYS_ADDR:
8660 			err = ill_set_phys_addr(ill, mp);
8661 			break;
8662 
8663 		case DL_NOTE_REPLUMB:
8664 			/*
8665 			 * Directly return after calling ill_replumb().
8666 			 * Note that we should not free mp as it is reused
8667 			 * in the ill_replumb() function.
8668 			 */
8669 			err = ill_replumb(ill, mp);
8670 			return;
8671 
8672 		case DL_NOTE_FASTPATH_FLUSH:
8673 			nce_flush(ill, B_FALSE);
8674 			break;
8675 
8676 		case DL_NOTE_SDU_SIZE:
8677 			/*
8678 			 * The dce and fragmentation code can cope with
8679 			 * this changing while packets are being sent.
8680 			 * When packets are sent ip_output will discover
8681 			 * a change.
8682 			 *
8683 			 * Change the MTU size of the interface.
8684 			 */
8685 			mutex_enter(&ill->ill_lock);
8686 			ill->ill_current_frag = (uint_t)notify->dl_data;
8687 			if (ill->ill_current_frag > ill->ill_max_frag)
8688 				ill->ill_max_frag = ill->ill_current_frag;
8689 
8690 			orig_mtu = ill->ill_mtu;
8691 			if (!(ill->ill_flags & ILLF_FIXEDMTU)) {
8692 				ill->ill_mtu = ill->ill_current_frag;
8693 
8694 				/*
8695 				 * If ill_user_mtu was set (via
8696 				 * SIOCSLIFLNKINFO), clamp ill_mtu at it.
8697 				 */
8698 				if (ill->ill_user_mtu != 0 &&
8699 				    ill->ill_user_mtu < ill->ill_mtu)
8700 					ill->ill_mtu = ill->ill_user_mtu;
8701 
8702 				if (ill->ill_isv6) {
8703 					if (ill->ill_mtu < IPV6_MIN_MTU)
8704 						ill->ill_mtu = IPV6_MIN_MTU;
8705 				} else {
8706 					if (ill->ill_mtu < IP_MIN_MTU)
8707 						ill->ill_mtu = IP_MIN_MTU;
8708 				}
8709 			}
8710 			mutex_exit(&ill->ill_lock);
8711 			/*
8712 			 * Make sure all dce_generation checks find out
8713 			 * that ill_mtu has changed.
8714 			 */
8715 			if (orig_mtu != ill->ill_mtu) {
8716 				dce_increment_all_generations(ill->ill_isv6,
8717 				    ill->ill_ipst);
8718 			}
8719 
8720 			/*
8721 			 * Refresh IPMP meta-interface MTU if necessary.
8722 			 */
8723 			if (IS_UNDER_IPMP(ill))
8724 				ipmp_illgrp_refresh_mtu(ill->ill_grp);
8725 			break;
8726 
8727 		case DL_NOTE_LINK_UP:
8728 		case DL_NOTE_LINK_DOWN: {
8729 			/*
8730 			 * We are writer. ill / phyint / ipsq assocs stable.
8731 			 * The RUNNING flag reflects the state of the link.
8732 			 */
8733 			phyint_t *phyint = ill->ill_phyint;
8734 			uint64_t new_phyint_flags;
8735 			boolean_t changed = B_FALSE;
8736 			boolean_t went_up;
8737 
8738 			went_up = notify->dl_notification == DL_NOTE_LINK_UP;
8739 			mutex_enter(&phyint->phyint_lock);
8740 
8741 			new_phyint_flags = went_up ?
8742 			    phyint->phyint_flags | PHYI_RUNNING :
8743 			    phyint->phyint_flags & ~PHYI_RUNNING;
8744 
8745 			if (IS_IPMP(ill)) {
8746 				new_phyint_flags = went_up ?
8747 				    new_phyint_flags & ~PHYI_FAILED :
8748 				    new_phyint_flags | PHYI_FAILED;
8749 			}
8750 
8751 			if (new_phyint_flags != phyint->phyint_flags) {
8752 				phyint->phyint_flags = new_phyint_flags;
8753 				changed = B_TRUE;
8754 			}
8755 			mutex_exit(&phyint->phyint_lock);
8756 			/*
8757 			 * ill_restart_dad handles the DAD restart and routing
8758 			 * socket notification logic.
8759 			 */
8760 			if (changed) {
8761 				ill_restart_dad(phyint->phyint_illv4, went_up);
8762 				ill_restart_dad(phyint->phyint_illv6, went_up);
8763 			}
8764 			break;
8765 		}
8766 		case DL_NOTE_PROMISC_ON_PHYS: {
8767 			phyint_t *phyint = ill->ill_phyint;
8768 
8769 			mutex_enter(&phyint->phyint_lock);
8770 			phyint->phyint_flags |= PHYI_PROMISC;
8771 			mutex_exit(&phyint->phyint_lock);
8772 			break;
8773 		}
8774 		case DL_NOTE_PROMISC_OFF_PHYS: {
8775 			phyint_t *phyint = ill->ill_phyint;
8776 
8777 			mutex_enter(&phyint->phyint_lock);
8778 			phyint->phyint_flags &= ~PHYI_PROMISC;
8779 			mutex_exit(&phyint->phyint_lock);
8780 			break;
8781 		}
8782 		case DL_NOTE_CAPAB_RENEG:
8783 			/*
8784 			 * Something changed on the driver side.
8785 			 * It wants us to renegotiate the capabilities
8786 			 * on this ill. One possible cause is the aggregation
8787 			 * interface under us where a port got added or
8788 			 * went away.
8789 			 *
8790 			 * If the capability negotiation is already done
8791 			 * or is in progress, reset the capabilities and
8792 			 * mark the ill's ill_capab_reneg to be B_TRUE,
8793 			 * so that when the ack comes back, we can start
8794 			 * the renegotiation process.
8795 			 *
8796 			 * Note that if ill_capab_reneg is already B_TRUE
8797 			 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case),
8798 			 * the capability resetting request has been sent
8799 			 * and the renegotiation has not been started yet;
8800 			 * nothing needs to be done in this case.
8801 			 */
8802 			ipsq_current_start(ipsq, ill->ill_ipif, 0);
8803 			ill_capability_reset(ill, B_TRUE);
8804 			ipsq_current_finish(ipsq);
8805 			break;
8806 		default:
8807 			ip0dbg(("ip_rput_dlpi_writer: unknown notification "
8808 			    "type 0x%x for DL_NOTIFY_IND\n",
8809 			    notify->dl_notification));
8810 			break;
8811 		}
8812 
8813 		/*
8814 		 * As this is an asynchronous operation, we
8815 		 * should not call ill_dlpi_done
8816 		 */
8817 		break;
8818 	}
8819 	case DL_NOTIFY_ACK: {
8820 		dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr;
8821 
8822 		if (noteack->dl_notifications & DL_NOTE_LINK_UP)
8823 			ill->ill_note_link = 1;
8824 		ill_dlpi_done(ill, DL_NOTIFY_REQ);
8825 		break;
8826 	}
8827 	case DL_PHYS_ADDR_ACK: {
8828 		/*
8829 		 * As part of plumbing the interface via SIOCSLIFNAME,
8830 		 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs,
8831 		 * whose answers we receive here.  As each answer is received,
8832 		 * we call ill_dlpi_done() to dispatch the next request as
8833 		 * we're processing the current one.  Once all answers have
8834 		 * been received, we use ipsq_pending_mp_get() to dequeue the
8835 		 * outstanding IOCTL and reply to it.  (Because ill_dl_phys()
8836 		 * is invoked from an ill queue, conn_oper_pending_ill is not
8837 		 * available, but we know the ioctl is pending on ill_wq.)
8838 		 */
8839 		uint_t	paddrlen, paddroff;
8840 		uint8_t	*addr;
8841 
8842 		paddrreq = ill->ill_phys_addr_pend;
8843 		paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length;
8844 		paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset;
8845 		addr = mp->b_rptr + paddroff;
8846 
8847 		ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8848 		if (paddrreq == DL_IPV6_TOKEN) {
8849 			/*
8850 			 * bcopy to low-order bits of ill_token
8851 			 *
8852 			 * XXX Temporary hack - currently, all known tokens
8853 			 * are 64 bits, so I'll cheat for the moment.
8854 			 */
8855 			bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen);
8856 			ill->ill_token_length = paddrlen;
8857 			break;
8858 		} else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8859 			ASSERT(ill->ill_nd_lla_mp == NULL);
8860 			ill_set_ndmp(ill, mp, paddroff, paddrlen);
8861 			mp = NULL;
8862 			break;
8863 		} else if (paddrreq == DL_CURR_DEST_ADDR) {
8864 			ASSERT(ill->ill_dest_addr_mp == NULL);
8865 			ill->ill_dest_addr_mp = mp;
8866 			ill->ill_dest_addr = addr;
8867 			mp = NULL;
8868 			if (ill->ill_isv6) {
8869 				ill_setdesttoken(ill);
8870 				ipif_setdestlinklocal(ill->ill_ipif);
8871 			}
8872 			break;
8873 		}
8874 
8875 		ASSERT(paddrreq == DL_CURR_PHYS_ADDR);
8876 		ASSERT(ill->ill_phys_addr_mp == NULL);
8877 		if (!ill->ill_ifname_pending)
8878 			break;
8879 		ill->ill_ifname_pending = 0;
8880 		if (!ioctl_aborted)
8881 			mp1 = ipsq_pending_mp_get(ipsq, &connp);
8882 		if (mp1 != NULL) {
8883 			ASSERT(connp == NULL);
8884 			q = ill->ill_wq;
8885 		}
8886 		/*
8887 		 * If any error acks received during the plumbing sequence,
8888 		 * ill_ifname_pending_err will be set. Break out and send up
8889 		 * the error to the pending ioctl.
8890 		 */
8891 		if (ill->ill_ifname_pending_err != 0) {
8892 			err = ill->ill_ifname_pending_err;
8893 			ill->ill_ifname_pending_err = 0;
8894 			break;
8895 		}
8896 
8897 		ill->ill_phys_addr_mp = mp;
8898 		ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr);
8899 		mp = NULL;
8900 
8901 		/*
8902 		 * If paddrlen or ill_phys_addr_length is zero, the DLPI
8903 		 * provider doesn't support physical addresses.  We check both
8904 		 * paddrlen and ill_phys_addr_length because sppp (PPP) does
8905 		 * not have physical addresses, but historically adversises a
8906 		 * physical address length of 0 in its DL_INFO_ACK, but 6 in
8907 		 * its DL_PHYS_ADDR_ACK.
8908 		 */
8909 		if (paddrlen == 0 || ill->ill_phys_addr_length == 0) {
8910 			ill->ill_phys_addr = NULL;
8911 		} else if (paddrlen != ill->ill_phys_addr_length) {
8912 			ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d",
8913 			    paddrlen, ill->ill_phys_addr_length));
8914 			err = EINVAL;
8915 			break;
8916 		}
8917 
8918 		if (ill->ill_nd_lla_mp == NULL) {
8919 			if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) {
8920 				err = ENOMEM;
8921 				break;
8922 			}
8923 			ill_set_ndmp(ill, mp_hw, paddroff, paddrlen);
8924 		}
8925 
8926 		if (ill->ill_isv6) {
8927 			ill_setdefaulttoken(ill);
8928 			ipif_setlinklocal(ill->ill_ipif);
8929 		}
8930 		break;
8931 	}
8932 	case DL_OK_ACK:
8933 		ip2dbg(("DL_OK_ACK %s (0x%x)\n",
8934 		    dl_primstr((int)dloa->dl_correct_primitive),
8935 		    dloa->dl_correct_primitive));
8936 		DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok",
8937 		    char *, dl_primstr(dloa->dl_correct_primitive),
8938 		    ill_t *, ill);
8939 
8940 		switch (dloa->dl_correct_primitive) {
8941 		case DL_ENABMULTI_REQ:
8942 		case DL_DISABMULTI_REQ:
8943 			ill_dlpi_done(ill, dloa->dl_correct_primitive);
8944 			break;
8945 		case DL_PROMISCON_REQ:
8946 		case DL_PROMISCOFF_REQ:
8947 		case DL_UNBIND_REQ:
8948 		case DL_ATTACH_REQ:
8949 			ill_dlpi_done(ill, dloa->dl_correct_primitive);
8950 			break;
8951 		}
8952 		break;
8953 	default:
8954 		break;
8955 	}
8956 
8957 	freemsg(mp);
8958 	if (mp1 == NULL)
8959 		return;
8960 
8961 	/*
8962 	 * The operation must complete without EINPROGRESS since
8963 	 * ipsq_pending_mp_get() has removed the mblk (mp1).  Otherwise,
8964 	 * the operation will be stuck forever inside the IPSQ.
8965 	 */
8966 	ASSERT(err != EINPROGRESS);
8967 
8968 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish",
8969 	    int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill,
8970 	    ipif_t *, NULL);
8971 
8972 	switch (ipsq->ipsq_xop->ipx_current_ioctl) {
8973 	case 0:
8974 		ipsq_current_finish(ipsq);
8975 		break;
8976 
8977 	case SIOCSLIFNAME:
8978 	case IF_UNITSEL: {
8979 		ill_t *ill_other = ILL_OTHER(ill);
8980 
8981 		/*
8982 		 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the
8983 		 * ill has a peer which is in an IPMP group, then place ill
8984 		 * into the same group.  One catch: although ifconfig plumbs
8985 		 * the appropriate IPMP meta-interface prior to plumbing this
8986 		 * ill, it is possible for multiple ifconfig applications to
8987 		 * race (or for another application to adjust plumbing), in
8988 		 * which case the IPMP meta-interface we need will be missing.
8989 		 * If so, kick the phyint out of the group.
8990 		 */
8991 		if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) {
8992 			ipmp_grp_t	*grp = ill->ill_phyint->phyint_grp;
8993 			ipmp_illgrp_t	*illg;
8994 
8995 			illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4;
8996 			if (illg == NULL)
8997 				ipmp_phyint_leave_grp(ill->ill_phyint);
8998 			else
8999 				ipmp_ill_join_illgrp(ill, illg);
9000 		}
9001 
9002 		if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL)
9003 			ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
9004 		else
9005 			ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
9006 		break;
9007 	}
9008 	case SIOCLIFADDIF:
9009 		ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
9010 		break;
9011 
9012 	default:
9013 		ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
9014 		break;
9015 	}
9016 }
9017 
9018 /*
9019  * ip_rput_other is called by ip_rput to handle messages modifying the global
9020  * state in IP.  If 'ipsq' is non-NULL, caller is writer on it.
9021  */
9022 /* ARGSUSED */
9023 void
9024 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
9025 {
9026 	ill_t		*ill = q->q_ptr;
9027 	struct iocblk	*iocp;
9028 
9029 	ip1dbg(("ip_rput_other "));
9030 	if (ipsq != NULL) {
9031 		ASSERT(IAM_WRITER_IPSQ(ipsq));
9032 		ASSERT(ipsq->ipsq_xop ==
9033 		    ill->ill_phyint->phyint_ipsq->ipsq_xop);
9034 	}
9035 
9036 	switch (mp->b_datap->db_type) {
9037 	case M_ERROR:
9038 	case M_HANGUP:
9039 		/*
9040 		 * The device has a problem.  We force the ILL down.  It can
9041 		 * be brought up again manually using SIOCSIFFLAGS (via
9042 		 * ifconfig or equivalent).
9043 		 */
9044 		ASSERT(ipsq != NULL);
9045 		if (mp->b_rptr < mp->b_wptr)
9046 			ill->ill_error = (int)(*mp->b_rptr & 0xFF);
9047 		if (ill->ill_error == 0)
9048 			ill->ill_error = ENXIO;
9049 		if (!ill_down_start(q, mp))
9050 			return;
9051 		ipif_all_down_tail(ipsq, q, mp, NULL);
9052 		break;
9053 	case M_IOCNAK: {
9054 		iocp = (struct iocblk *)mp->b_rptr;
9055 
9056 		ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO);
9057 		/*
9058 		 * If this was the first attempt, turn off the fastpath
9059 		 * probing.
9060 		 */
9061 		mutex_enter(&ill->ill_lock);
9062 		if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) {
9063 			ill->ill_dlpi_fastpath_state = IDS_FAILED;
9064 			mutex_exit(&ill->ill_lock);
9065 			/*
9066 			 * don't flush the nce_t entries: we use them
9067 			 * as an index to the ncec itself.
9068 			 */
9069 			ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n",
9070 			    ill->ill_name));
9071 		} else {
9072 			mutex_exit(&ill->ill_lock);
9073 		}
9074 		freemsg(mp);
9075 		break;
9076 	}
9077 	default:
9078 		ASSERT(0);
9079 		break;
9080 	}
9081 }
9082 
9083 /*
9084  * Update any source route, record route or timestamp options
9085  * When it fails it has consumed the message and BUMPed the MIB.
9086  */
9087 boolean_t
9088 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill,
9089     ip_recv_attr_t *ira)
9090 {
9091 	ipoptp_t	opts;
9092 	uchar_t		*opt;
9093 	uint8_t		optval;
9094 	uint8_t		optlen;
9095 	ipaddr_t	dst;
9096 	ipaddr_t	ifaddr;
9097 	uint32_t	ts;
9098 	timestruc_t	now;
9099 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
9100 
9101 	ip2dbg(("ip_forward_options\n"));
9102 	dst = ipha->ipha_dst;
9103 	for (optval = ipoptp_first(&opts, ipha);
9104 	    optval != IPOPT_EOL;
9105 	    optval = ipoptp_next(&opts)) {
9106 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9107 		opt = opts.ipoptp_cur;
9108 		optlen = opts.ipoptp_len;
9109 		ip2dbg(("ip_forward_options: opt %d, len %d\n",
9110 		    optval, opts.ipoptp_len));
9111 		switch (optval) {
9112 			uint32_t off;
9113 		case IPOPT_SSRR:
9114 		case IPOPT_LSRR:
9115 			/* Check if adminstratively disabled */
9116 			if (!ipst->ips_ip_forward_src_routed) {
9117 				BUMP_MIB(dst_ill->ill_ip_mib,
9118 				    ipIfStatsForwProhibits);
9119 				ip_drop_input("ICMP_SOURCE_ROUTE_FAILED",
9120 				    mp, dst_ill);
9121 				icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED,
9122 				    ira);
9123 				return (B_FALSE);
9124 			}
9125 			if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9126 				/*
9127 				 * Must be partial since ip_input_options
9128 				 * checked for strict.
9129 				 */
9130 				break;
9131 			}
9132 			off = opt[IPOPT_OFFSET];
9133 			off--;
9134 		redo_srr:
9135 			if (optlen < IP_ADDR_LEN ||
9136 			    off > optlen - IP_ADDR_LEN) {
9137 				/* End of source route */
9138 				ip1dbg((
9139 				    "ip_forward_options: end of SR\n"));
9140 				break;
9141 			}
9142 			/* Pick a reasonable address on the outbound if */
9143 			ASSERT(dst_ill != NULL);
9144 			if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9145 			    INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9146 			    NULL) != 0) {
9147 				/* No source! Shouldn't happen */
9148 				ifaddr = INADDR_ANY;
9149 			}
9150 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9151 			bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9152 			ip1dbg(("ip_forward_options: next hop 0x%x\n",
9153 			    ntohl(dst)));
9154 
9155 			/*
9156 			 * Check if our address is present more than
9157 			 * once as consecutive hops in source route.
9158 			 */
9159 			if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9160 				off += IP_ADDR_LEN;
9161 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9162 				goto redo_srr;
9163 			}
9164 			ipha->ipha_dst = dst;
9165 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9166 			break;
9167 		case IPOPT_RR:
9168 			off = opt[IPOPT_OFFSET];
9169 			off--;
9170 			if (optlen < IP_ADDR_LEN ||
9171 			    off > optlen - IP_ADDR_LEN) {
9172 				/* No more room - ignore */
9173 				ip1dbg((
9174 				    "ip_forward_options: end of RR\n"));
9175 				break;
9176 			}
9177 			/* Pick a reasonable address on the outbound if */
9178 			ASSERT(dst_ill != NULL);
9179 			if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9180 			    INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9181 			    NULL) != 0) {
9182 				/* No source! Shouldn't happen */
9183 				ifaddr = INADDR_ANY;
9184 			}
9185 			bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9186 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9187 			break;
9188 		case IPOPT_TS:
9189 			/* Insert timestamp if there is room */
9190 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9191 			case IPOPT_TS_TSONLY:
9192 				off = IPOPT_TS_TIMELEN;
9193 				break;
9194 			case IPOPT_TS_PRESPEC:
9195 			case IPOPT_TS_PRESPEC_RFC791:
9196 				/* Verify that the address matched */
9197 				off = opt[IPOPT_OFFSET] - 1;
9198 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9199 				if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9200 					/* Not for us */
9201 					break;
9202 				}
9203 				/* FALLTHRU */
9204 			case IPOPT_TS_TSANDADDR:
9205 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9206 				break;
9207 			default:
9208 				/*
9209 				 * ip_*put_options should have already
9210 				 * dropped this packet.
9211 				 */
9212 				cmn_err(CE_PANIC, "ip_forward_options: "
9213 				    "unknown IT - bug in ip_input_options?\n");
9214 				return (B_TRUE);	/* Keep "lint" happy */
9215 			}
9216 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9217 				/* Increase overflow counter */
9218 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9219 				opt[IPOPT_POS_OV_FLG] =
9220 				    (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9221 				    (off << 4));
9222 				break;
9223 			}
9224 			off = opt[IPOPT_OFFSET] - 1;
9225 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9226 			case IPOPT_TS_PRESPEC:
9227 			case IPOPT_TS_PRESPEC_RFC791:
9228 			case IPOPT_TS_TSANDADDR:
9229 				/* Pick a reasonable addr on the outbound if */
9230 				ASSERT(dst_ill != NULL);
9231 				if (ip_select_source_v4(dst_ill, INADDR_ANY,
9232 				    dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr,
9233 				    NULL, NULL) != 0) {
9234 					/* No source! Shouldn't happen */
9235 					ifaddr = INADDR_ANY;
9236 				}
9237 				bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9238 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9239 				/* FALLTHRU */
9240 			case IPOPT_TS_TSONLY:
9241 				off = opt[IPOPT_OFFSET] - 1;
9242 				/* Compute # of milliseconds since midnight */
9243 				gethrestime(&now);
9244 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9245 				    now.tv_nsec / (NANOSEC / MILLISEC);
9246 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9247 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9248 				break;
9249 			}
9250 			break;
9251 		}
9252 	}
9253 	return (B_TRUE);
9254 }
9255 
9256 /*
9257  * Call ill_frag_timeout to do garbage collection. ill_frag_timeout
9258  * returns 'true' if there are still fragments left on the queue, in
9259  * which case we restart the timer.
9260  */
9261 void
9262 ill_frag_timer(void *arg)
9263 {
9264 	ill_t	*ill = (ill_t *)arg;
9265 	boolean_t frag_pending;
9266 	ip_stack_t	*ipst = ill->ill_ipst;
9267 	time_t	timeout;
9268 
9269 	mutex_enter(&ill->ill_lock);
9270 	ASSERT(!ill->ill_fragtimer_executing);
9271 	if (ill->ill_state_flags & ILL_CONDEMNED) {
9272 		ill->ill_frag_timer_id = 0;
9273 		mutex_exit(&ill->ill_lock);
9274 		return;
9275 	}
9276 	ill->ill_fragtimer_executing = 1;
9277 	mutex_exit(&ill->ill_lock);
9278 
9279 	if (ill->ill_isv6)
9280 		timeout = ipst->ips_ipv6_frag_timeout;
9281 	else
9282 		timeout = ipst->ips_ip_g_frag_timeout;
9283 
9284 	frag_pending = ill_frag_timeout(ill, timeout);
9285 
9286 	/*
9287 	 * Restart the timer, if we have fragments pending or if someone
9288 	 * wanted us to be scheduled again.
9289 	 */
9290 	mutex_enter(&ill->ill_lock);
9291 	ill->ill_fragtimer_executing = 0;
9292 	ill->ill_frag_timer_id = 0;
9293 	if (frag_pending || ill->ill_fragtimer_needrestart)
9294 		ill_frag_timer_start(ill);
9295 	mutex_exit(&ill->ill_lock);
9296 }
9297 
9298 void
9299 ill_frag_timer_start(ill_t *ill)
9300 {
9301 	ip_stack_t	*ipst = ill->ill_ipst;
9302 	clock_t	timeo_ms;
9303 
9304 	ASSERT(MUTEX_HELD(&ill->ill_lock));
9305 
9306 	/* If the ill is closing or opening don't proceed */
9307 	if (ill->ill_state_flags & ILL_CONDEMNED)
9308 		return;
9309 
9310 	if (ill->ill_fragtimer_executing) {
9311 		/*
9312 		 * ill_frag_timer is currently executing. Just record the
9313 		 * the fact that we want the timer to be restarted.
9314 		 * ill_frag_timer will post a timeout before it returns,
9315 		 * ensuring it will be called again.
9316 		 */
9317 		ill->ill_fragtimer_needrestart = 1;
9318 		return;
9319 	}
9320 
9321 	if (ill->ill_frag_timer_id == 0) {
9322 		if (ill->ill_isv6)
9323 			timeo_ms = ipst->ips_ipv6_frag_timo_ms;
9324 		else
9325 			timeo_ms = ipst->ips_ip_g_frag_timo_ms;
9326 		/*
9327 		 * The timer is neither running nor is the timeout handler
9328 		 * executing. Post a timeout so that ill_frag_timer will be
9329 		 * called
9330 		 */
9331 		ill->ill_frag_timer_id = timeout(ill_frag_timer, ill,
9332 		    MSEC_TO_TICK(timeo_ms >> 1));
9333 		ill->ill_fragtimer_needrestart = 0;
9334 	}
9335 }
9336 
9337 /*
9338  * Update any source route, record route or timestamp options.
9339  * Check that we are at end of strict source route.
9340  * The options have already been checked for sanity in ip_input_options().
9341  */
9342 boolean_t
9343 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
9344 {
9345 	ipoptp_t	opts;
9346 	uchar_t		*opt;
9347 	uint8_t		optval;
9348 	uint8_t		optlen;
9349 	ipaddr_t	dst;
9350 	ipaddr_t	ifaddr;
9351 	uint32_t	ts;
9352 	timestruc_t	now;
9353 	ill_t		*ill = ira->ira_ill;
9354 	ip_stack_t	*ipst = ill->ill_ipst;
9355 
9356 	ip2dbg(("ip_input_local_options\n"));
9357 
9358 	for (optval = ipoptp_first(&opts, ipha);
9359 	    optval != IPOPT_EOL;
9360 	    optval = ipoptp_next(&opts)) {
9361 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9362 		opt = opts.ipoptp_cur;
9363 		optlen = opts.ipoptp_len;
9364 		ip2dbg(("ip_input_local_options: opt %d, len %d\n",
9365 		    optval, optlen));
9366 		switch (optval) {
9367 			uint32_t off;
9368 		case IPOPT_SSRR:
9369 		case IPOPT_LSRR:
9370 			off = opt[IPOPT_OFFSET];
9371 			off--;
9372 			if (optlen < IP_ADDR_LEN ||
9373 			    off > optlen - IP_ADDR_LEN) {
9374 				/* End of source route */
9375 				ip1dbg(("ip_input_local_options: end of SR\n"));
9376 				break;
9377 			}
9378 			/*
9379 			 * This will only happen if two consecutive entries
9380 			 * in the source route contains our address or if
9381 			 * it is a packet with a loose source route which
9382 			 * reaches us before consuming the whole source route
9383 			 */
9384 			ip1dbg(("ip_input_local_options: not end of SR\n"));
9385 			if (optval == IPOPT_SSRR) {
9386 				goto bad_src_route;
9387 			}
9388 			/*
9389 			 * Hack: instead of dropping the packet truncate the
9390 			 * source route to what has been used by filling the
9391 			 * rest with IPOPT_NOP.
9392 			 */
9393 			opt[IPOPT_OLEN] = (uint8_t)off;
9394 			while (off < optlen) {
9395 				opt[off++] = IPOPT_NOP;
9396 			}
9397 			break;
9398 		case IPOPT_RR:
9399 			off = opt[IPOPT_OFFSET];
9400 			off--;
9401 			if (optlen < IP_ADDR_LEN ||
9402 			    off > optlen - IP_ADDR_LEN) {
9403 				/* No more room - ignore */
9404 				ip1dbg((
9405 				    "ip_input_local_options: end of RR\n"));
9406 				break;
9407 			}
9408 			/* Pick a reasonable address on the outbound if */
9409 			if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst,
9410 			    INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9411 			    NULL) != 0) {
9412 				/* No source! Shouldn't happen */
9413 				ifaddr = INADDR_ANY;
9414 			}
9415 			bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9416 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9417 			break;
9418 		case IPOPT_TS:
9419 			/* Insert timestamp if there is romm */
9420 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9421 			case IPOPT_TS_TSONLY:
9422 				off = IPOPT_TS_TIMELEN;
9423 				break;
9424 			case IPOPT_TS_PRESPEC:
9425 			case IPOPT_TS_PRESPEC_RFC791:
9426 				/* Verify that the address matched */
9427 				off = opt[IPOPT_OFFSET] - 1;
9428 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9429 				if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9430 					/* Not for us */
9431 					break;
9432 				}
9433 				/* FALLTHRU */
9434 			case IPOPT_TS_TSANDADDR:
9435 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9436 				break;
9437 			default:
9438 				/*
9439 				 * ip_*put_options should have already
9440 				 * dropped this packet.
9441 				 */
9442 				cmn_err(CE_PANIC, "ip_input_local_options: "
9443 				    "unknown IT - bug in ip_input_options?\n");
9444 				return (B_TRUE);	/* Keep "lint" happy */
9445 			}
9446 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9447 				/* Increase overflow counter */
9448 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9449 				opt[IPOPT_POS_OV_FLG] =
9450 				    (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9451 				    (off << 4));
9452 				break;
9453 			}
9454 			off = opt[IPOPT_OFFSET] - 1;
9455 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9456 			case IPOPT_TS_PRESPEC:
9457 			case IPOPT_TS_PRESPEC_RFC791:
9458 			case IPOPT_TS_TSANDADDR:
9459 				/* Pick a reasonable addr on the outbound if */
9460 				if (ip_select_source_v4(ill, INADDR_ANY,
9461 				    ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst,
9462 				    &ifaddr, NULL, NULL) != 0) {
9463 					/* No source! Shouldn't happen */
9464 					ifaddr = INADDR_ANY;
9465 				}
9466 				bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9467 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9468 				/* FALLTHRU */
9469 			case IPOPT_TS_TSONLY:
9470 				off = opt[IPOPT_OFFSET] - 1;
9471 				/* Compute # of milliseconds since midnight */
9472 				gethrestime(&now);
9473 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9474 				    now.tv_nsec / (NANOSEC / MILLISEC);
9475 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9476 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9477 				break;
9478 			}
9479 			break;
9480 		}
9481 	}
9482 	return (B_TRUE);
9483 
9484 bad_src_route:
9485 	/* make sure we clear any indication of a hardware checksum */
9486 	DB_CKSUMFLAGS(mp) = 0;
9487 	ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
9488 	icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9489 	return (B_FALSE);
9490 
9491 }
9492 
9493 /*
9494  * Process IP options in an inbound packet.  Always returns the nexthop.
9495  * Normally this is the passed in nexthop, but if there is an option
9496  * that effects the nexthop (such as a source route) that will be returned.
9497  * Sets *errorp if there is an error, in which case an ICMP error has been sent
9498  * and mp freed.
9499  */
9500 ipaddr_t
9501 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp,
9502     ip_recv_attr_t *ira, int *errorp)
9503 {
9504 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
9505 	ipoptp_t	opts;
9506 	uchar_t		*opt;
9507 	uint8_t		optval;
9508 	uint8_t		optlen;
9509 	intptr_t	code = 0;
9510 	ire_t		*ire;
9511 
9512 	ip2dbg(("ip_input_options\n"));
9513 	*errorp = 0;
9514 	for (optval = ipoptp_first(&opts, ipha);
9515 	    optval != IPOPT_EOL;
9516 	    optval = ipoptp_next(&opts)) {
9517 		opt = opts.ipoptp_cur;
9518 		optlen = opts.ipoptp_len;
9519 		ip2dbg(("ip_input_options: opt %d, len %d\n",
9520 		    optval, optlen));
9521 		/*
9522 		 * Note: we need to verify the checksum before we
9523 		 * modify anything thus this routine only extracts the next
9524 		 * hop dst from any source route.
9525 		 */
9526 		switch (optval) {
9527 			uint32_t off;
9528 		case IPOPT_SSRR:
9529 		case IPOPT_LSRR:
9530 			if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9531 				if (optval == IPOPT_SSRR) {
9532 					ip1dbg(("ip_input_options: not next"
9533 					    " strict source route 0x%x\n",
9534 					    ntohl(dst)));
9535 					code = (char *)&ipha->ipha_dst -
9536 					    (char *)ipha;
9537 					goto param_prob; /* RouterReq's */
9538 				}
9539 				ip2dbg(("ip_input_options: "
9540 				    "not next source route 0x%x\n",
9541 				    ntohl(dst)));
9542 				break;
9543 			}
9544 
9545 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9546 				ip1dbg((
9547 				    "ip_input_options: bad option offset\n"));
9548 				code = (char *)&opt[IPOPT_OLEN] -
9549 				    (char *)ipha;
9550 				goto param_prob;
9551 			}
9552 			off = opt[IPOPT_OFFSET];
9553 			off--;
9554 		redo_srr:
9555 			if (optlen < IP_ADDR_LEN ||
9556 			    off > optlen - IP_ADDR_LEN) {
9557 				/* End of source route */
9558 				ip1dbg(("ip_input_options: end of SR\n"));
9559 				break;
9560 			}
9561 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9562 			ip1dbg(("ip_input_options: next hop 0x%x\n",
9563 			    ntohl(dst)));
9564 
9565 			/*
9566 			 * Check if our address is present more than
9567 			 * once as consecutive hops in source route.
9568 			 * XXX verify per-interface ip_forwarding
9569 			 * for source route?
9570 			 */
9571 			if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9572 				off += IP_ADDR_LEN;
9573 				goto redo_srr;
9574 			}
9575 
9576 			if (dst == htonl(INADDR_LOOPBACK)) {
9577 				ip1dbg(("ip_input_options: loopback addr in "
9578 				    "source route!\n"));
9579 				goto bad_src_route;
9580 			}
9581 			/*
9582 			 * For strict: verify that dst is directly
9583 			 * reachable.
9584 			 */
9585 			if (optval == IPOPT_SSRR) {
9586 				ire = ire_ftable_lookup_v4(dst, 0, 0,
9587 				    IRE_IF_ALL, NULL, ALL_ZONES,
9588 				    ira->ira_tsl,
9589 				    MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
9590 				    NULL);
9591 				if (ire == NULL) {
9592 					ip1dbg(("ip_input_options: SSRR not "
9593 					    "directly reachable: 0x%x\n",
9594 					    ntohl(dst)));
9595 					goto bad_src_route;
9596 				}
9597 				ire_refrele(ire);
9598 			}
9599 			/*
9600 			 * Defer update of the offset and the record route
9601 			 * until the packet is forwarded.
9602 			 */
9603 			break;
9604 		case IPOPT_RR:
9605 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9606 				ip1dbg((
9607 				    "ip_input_options: bad option offset\n"));
9608 				code = (char *)&opt[IPOPT_OLEN] -
9609 				    (char *)ipha;
9610 				goto param_prob;
9611 			}
9612 			break;
9613 		case IPOPT_TS:
9614 			/*
9615 			 * Verify that length >= 5 and that there is either
9616 			 * room for another timestamp or that the overflow
9617 			 * counter is not maxed out.
9618 			 */
9619 			code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
9620 			if (optlen < IPOPT_MINLEN_IT) {
9621 				goto param_prob;
9622 			}
9623 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9624 				ip1dbg((
9625 				    "ip_input_options: bad option offset\n"));
9626 				code = (char *)&opt[IPOPT_OFFSET] -
9627 				    (char *)ipha;
9628 				goto param_prob;
9629 			}
9630 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9631 			case IPOPT_TS_TSONLY:
9632 				off = IPOPT_TS_TIMELEN;
9633 				break;
9634 			case IPOPT_TS_TSANDADDR:
9635 			case IPOPT_TS_PRESPEC:
9636 			case IPOPT_TS_PRESPEC_RFC791:
9637 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9638 				break;
9639 			default:
9640 				code = (char *)&opt[IPOPT_POS_OV_FLG] -
9641 				    (char *)ipha;
9642 				goto param_prob;
9643 			}
9644 			if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
9645 			    (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
9646 				/*
9647 				 * No room and the overflow counter is 15
9648 				 * already.
9649 				 */
9650 				goto param_prob;
9651 			}
9652 			break;
9653 		}
9654 	}
9655 
9656 	if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) {
9657 		return (dst);
9658 	}
9659 
9660 	ip1dbg(("ip_input_options: error processing IP options."));
9661 	code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
9662 
9663 param_prob:
9664 	/* make sure we clear any indication of a hardware checksum */
9665 	DB_CKSUMFLAGS(mp) = 0;
9666 	ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill);
9667 	icmp_param_problem(mp, (uint8_t)code, ira);
9668 	*errorp = -1;
9669 	return (dst);
9670 
9671 bad_src_route:
9672 	/* make sure we clear any indication of a hardware checksum */
9673 	DB_CKSUMFLAGS(mp) = 0;
9674 	ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill);
9675 	icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9676 	*errorp = -1;
9677 	return (dst);
9678 }
9679 
9680 /*
9681  * IP & ICMP info in >=14 msg's ...
9682  *  - ip fixed part (mib2_ip_t)
9683  *  - icmp fixed part (mib2_icmp_t)
9684  *  - ipAddrEntryTable (ip 20)		all IPv4 ipifs
9685  *  - ipRouteEntryTable (ip 21)		all IPv4 IREs
9686  *  - ipNetToMediaEntryTable (ip 22)	all IPv4 Neighbor Cache entries
9687  *  - ipRouteAttributeTable (ip 102)	labeled routes
9688  *  - ip multicast membership (ip_member_t)
9689  *  - ip multicast source filtering (ip_grpsrc_t)
9690  *  - igmp fixed part (struct igmpstat)
9691  *  - multicast routing stats (struct mrtstat)
9692  *  - multicast routing vifs (array of struct vifctl)
9693  *  - multicast routing routes (array of struct mfcctl)
9694  *  - ip6 fixed part (mib2_ipv6IfStatsEntry_t)
9695  *					One per ill plus one generic
9696  *  - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t)
9697  *					One per ill plus one generic
9698  *  - ipv6RouteEntry			all IPv6 IREs
9699  *  - ipv6RouteAttributeTable (ip6 102)	labeled routes
9700  *  - ipv6NetToMediaEntry		all IPv6 Neighbor Cache entries
9701  *  - ipv6AddrEntry			all IPv6 ipifs
9702  *  - ipv6 multicast membership (ipv6_member_t)
9703  *  - ipv6 multicast source filtering (ipv6_grpsrc_t)
9704  *
9705  * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is
9706  * already filled in by the caller.
9707  * Return value of 0 indicates that no messages were sent and caller
9708  * should free mpctl.
9709  */
9710 int
9711 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level)
9712 {
9713 	ip_stack_t *ipst;
9714 	sctp_stack_t *sctps;
9715 
9716 	if (q->q_next != NULL) {
9717 		ipst = ILLQ_TO_IPST(q);
9718 	} else {
9719 		ipst = CONNQ_TO_IPST(q);
9720 	}
9721 	ASSERT(ipst != NULL);
9722 	sctps = ipst->ips_netstack->netstack_sctp;
9723 
9724 	if (mpctl == NULL || mpctl->b_cont == NULL) {
9725 		return (0);
9726 	}
9727 
9728 	/*
9729 	 * For the purposes of the (broken) packet shell use
9730 	 * of the level we make sure MIB2_TCP/MIB2_UDP can be used
9731 	 * to make TCP and UDP appear first in the list of mib items.
9732 	 * TBD: We could expand this and use it in netstat so that
9733 	 * the kernel doesn't have to produce large tables (connections,
9734 	 * routes, etc) when netstat only wants the statistics or a particular
9735 	 * table.
9736 	 */
9737 	if (!(level == MIB2_TCP || level == MIB2_UDP)) {
9738 		if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) {
9739 			return (1);
9740 		}
9741 	}
9742 
9743 	if (level != MIB2_TCP) {
9744 		if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) {
9745 			return (1);
9746 		}
9747 	}
9748 
9749 	if (level != MIB2_UDP) {
9750 		if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) {
9751 			return (1);
9752 		}
9753 	}
9754 
9755 	if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl,
9756 	    ipst)) == NULL) {
9757 		return (1);
9758 	}
9759 
9760 	if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) {
9761 		return (1);
9762 	}
9763 
9764 	if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) {
9765 		return (1);
9766 	}
9767 
9768 	if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) {
9769 		return (1);
9770 	}
9771 
9772 	if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) {
9773 		return (1);
9774 	}
9775 
9776 	if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) {
9777 		return (1);
9778 	}
9779 
9780 	if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) {
9781 		return (1);
9782 	}
9783 
9784 	if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) {
9785 		return (1);
9786 	}
9787 
9788 	if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) {
9789 		return (1);
9790 	}
9791 
9792 	if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) {
9793 		return (1);
9794 	}
9795 
9796 	if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) {
9797 		return (1);
9798 	}
9799 
9800 	if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) {
9801 		return (1);
9802 	}
9803 
9804 	if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) {
9805 		return (1);
9806 	}
9807 
9808 	if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) {
9809 		return (1);
9810 	}
9811 
9812 	mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst);
9813 	if (mpctl == NULL)
9814 		return (1);
9815 
9816 	mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst);
9817 	if (mpctl == NULL)
9818 		return (1);
9819 
9820 	if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) {
9821 		return (1);
9822 	}
9823 	if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) {
9824 		return (1);
9825 	}
9826 	freemsg(mpctl);
9827 	return (1);
9828 }
9829 
9830 /* Get global (legacy) IPv4 statistics */
9831 static mblk_t *
9832 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib,
9833     ip_stack_t *ipst)
9834 {
9835 	mib2_ip_t		old_ip_mib;
9836 	struct opthdr		*optp;
9837 	mblk_t			*mp2ctl;
9838 
9839 	/*
9840 	 * make a copy of the original message
9841 	 */
9842 	mp2ctl = copymsg(mpctl);
9843 
9844 	/* fixed length IP structure... */
9845 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9846 	optp->level = MIB2_IP;
9847 	optp->name = 0;
9848 	SET_MIB(old_ip_mib.ipForwarding,
9849 	    (WE_ARE_FORWARDING(ipst) ? 1 : 2));
9850 	SET_MIB(old_ip_mib.ipDefaultTTL,
9851 	    (uint32_t)ipst->ips_ip_def_ttl);
9852 	SET_MIB(old_ip_mib.ipReasmTimeout,
9853 	    ipst->ips_ip_g_frag_timeout);
9854 	SET_MIB(old_ip_mib.ipAddrEntrySize,
9855 	    sizeof (mib2_ipAddrEntry_t));
9856 	SET_MIB(old_ip_mib.ipRouteEntrySize,
9857 	    sizeof (mib2_ipRouteEntry_t));
9858 	SET_MIB(old_ip_mib.ipNetToMediaEntrySize,
9859 	    sizeof (mib2_ipNetToMediaEntry_t));
9860 	SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t));
9861 	SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t));
9862 	SET_MIB(old_ip_mib.ipRouteAttributeSize,
9863 	    sizeof (mib2_ipAttributeEntry_t));
9864 	SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t));
9865 	SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t));
9866 
9867 	/*
9868 	 * Grab the statistics from the new IP MIB
9869 	 */
9870 	SET_MIB(old_ip_mib.ipInReceives,
9871 	    (uint32_t)ipmib->ipIfStatsHCInReceives);
9872 	SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors);
9873 	SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors);
9874 	SET_MIB(old_ip_mib.ipForwDatagrams,
9875 	    (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams);
9876 	SET_MIB(old_ip_mib.ipInUnknownProtos,
9877 	    ipmib->ipIfStatsInUnknownProtos);
9878 	SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards);
9879 	SET_MIB(old_ip_mib.ipInDelivers,
9880 	    (uint32_t)ipmib->ipIfStatsHCInDelivers);
9881 	SET_MIB(old_ip_mib.ipOutRequests,
9882 	    (uint32_t)ipmib->ipIfStatsHCOutRequests);
9883 	SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards);
9884 	SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes);
9885 	SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds);
9886 	SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs);
9887 	SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails);
9888 	SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs);
9889 	SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails);
9890 	SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates);
9891 
9892 	/* ipRoutingDiscards is not being used */
9893 	SET_MIB(old_ip_mib.ipRoutingDiscards, 0);
9894 	SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs);
9895 	SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts);
9896 	SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs);
9897 	SET_MIB(old_ip_mib.ipReasmDuplicates,
9898 	    ipmib->ipIfStatsReasmDuplicates);
9899 	SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups);
9900 	SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits);
9901 	SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs);
9902 	SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows);
9903 	SET_MIB(old_ip_mib.rawipInOverflows,
9904 	    ipmib->rawipIfStatsInOverflows);
9905 
9906 	SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded);
9907 	SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed);
9908 	SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion);
9909 	SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion);
9910 	SET_MIB(old_ip_mib.ipOutSwitchIPv6,
9911 	    ipmib->ipIfStatsOutSwitchIPVersion);
9912 
9913 	if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib,
9914 	    (int)sizeof (old_ip_mib))) {
9915 		ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n",
9916 		    (uint_t)sizeof (old_ip_mib)));
9917 	}
9918 
9919 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9920 	ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n",
9921 	    (int)optp->level, (int)optp->name, (int)optp->len));
9922 	qreply(q, mpctl);
9923 	return (mp2ctl);
9924 }
9925 
9926 /* Per interface IPv4 statistics */
9927 static mblk_t *
9928 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9929 {
9930 	struct opthdr		*optp;
9931 	mblk_t			*mp2ctl;
9932 	ill_t			*ill;
9933 	ill_walk_context_t	ctx;
9934 	mblk_t			*mp_tail = NULL;
9935 	mib2_ipIfStatsEntry_t	global_ip_mib;
9936 
9937 	/*
9938 	 * Make a copy of the original message
9939 	 */
9940 	mp2ctl = copymsg(mpctl);
9941 
9942 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9943 	optp->level = MIB2_IP;
9944 	optp->name = MIB2_IP_TRAFFIC_STATS;
9945 	/* Include "unknown interface" ip_mib */
9946 	ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
9947 	ipst->ips_ip_mib.ipIfStatsIfIndex =
9948 	    MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
9949 	SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding,
9950 	    (ipst->ips_ip_g_forward ? 1 : 2));
9951 	SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL,
9952 	    (uint32_t)ipst->ips_ip_def_ttl);
9953 	SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize,
9954 	    sizeof (mib2_ipIfStatsEntry_t));
9955 	SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize,
9956 	    sizeof (mib2_ipAddrEntry_t));
9957 	SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize,
9958 	    sizeof (mib2_ipRouteEntry_t));
9959 	SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize,
9960 	    sizeof (mib2_ipNetToMediaEntry_t));
9961 	SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize,
9962 	    sizeof (ip_member_t));
9963 	SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize,
9964 	    sizeof (ip_grpsrc_t));
9965 
9966 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9967 	    (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) {
9968 		ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9969 		    "failed to allocate %u bytes\n",
9970 		    (uint_t)sizeof (ipst->ips_ip_mib)));
9971 	}
9972 
9973 	bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib));
9974 
9975 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9976 	ill = ILL_START_WALK_V4(&ctx, ipst);
9977 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9978 		ill->ill_ip_mib->ipIfStatsIfIndex =
9979 		    ill->ill_phyint->phyint_ifindex;
9980 		SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
9981 		    (ipst->ips_ip_g_forward ? 1 : 2));
9982 		SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL,
9983 		    (uint32_t)ipst->ips_ip_def_ttl);
9984 
9985 		ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib);
9986 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9987 		    (char *)ill->ill_ip_mib,
9988 		    (int)sizeof (*ill->ill_ip_mib))) {
9989 			ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9990 			    "failed to allocate %u bytes\n",
9991 			    (uint_t)sizeof (*ill->ill_ip_mib)));
9992 		}
9993 	}
9994 	rw_exit(&ipst->ips_ill_g_lock);
9995 
9996 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9997 	ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9998 	    "level %d, name %d, len %d\n",
9999 	    (int)optp->level, (int)optp->name, (int)optp->len));
10000 	qreply(q, mpctl);
10001 
10002 	if (mp2ctl == NULL)
10003 		return (NULL);
10004 
10005 	return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst));
10006 }
10007 
10008 /* Global IPv4 ICMP statistics */
10009 static mblk_t *
10010 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10011 {
10012 	struct opthdr		*optp;
10013 	mblk_t			*mp2ctl;
10014 
10015 	/*
10016 	 * Make a copy of the original message
10017 	 */
10018 	mp2ctl = copymsg(mpctl);
10019 
10020 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10021 	optp->level = MIB2_ICMP;
10022 	optp->name = 0;
10023 	if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib,
10024 	    (int)sizeof (ipst->ips_icmp_mib))) {
10025 		ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n",
10026 		    (uint_t)sizeof (ipst->ips_icmp_mib)));
10027 	}
10028 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10029 	ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n",
10030 	    (int)optp->level, (int)optp->name, (int)optp->len));
10031 	qreply(q, mpctl);
10032 	return (mp2ctl);
10033 }
10034 
10035 /* Global IPv4 IGMP statistics */
10036 static mblk_t *
10037 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10038 {
10039 	struct opthdr		*optp;
10040 	mblk_t			*mp2ctl;
10041 
10042 	/*
10043 	 * make a copy of the original message
10044 	 */
10045 	mp2ctl = copymsg(mpctl);
10046 
10047 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10048 	optp->level = EXPER_IGMP;
10049 	optp->name = 0;
10050 	if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat,
10051 	    (int)sizeof (ipst->ips_igmpstat))) {
10052 		ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n",
10053 		    (uint_t)sizeof (ipst->ips_igmpstat)));
10054 	}
10055 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10056 	ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n",
10057 	    (int)optp->level, (int)optp->name, (int)optp->len));
10058 	qreply(q, mpctl);
10059 	return (mp2ctl);
10060 }
10061 
10062 /* Global IPv4 Multicast Routing statistics */
10063 static mblk_t *
10064 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10065 {
10066 	struct opthdr		*optp;
10067 	mblk_t			*mp2ctl;
10068 
10069 	/*
10070 	 * make a copy of the original message
10071 	 */
10072 	mp2ctl = copymsg(mpctl);
10073 
10074 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10075 	optp->level = EXPER_DVMRP;
10076 	optp->name = 0;
10077 	if (!ip_mroute_stats(mpctl->b_cont, ipst)) {
10078 		ip0dbg(("ip_mroute_stats: failed\n"));
10079 	}
10080 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10081 	ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n",
10082 	    (int)optp->level, (int)optp->name, (int)optp->len));
10083 	qreply(q, mpctl);
10084 	return (mp2ctl);
10085 }
10086 
10087 /* IPv4 address information */
10088 static mblk_t *
10089 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10090 {
10091 	struct opthdr		*optp;
10092 	mblk_t			*mp2ctl;
10093 	mblk_t			*mp_tail = NULL;
10094 	ill_t			*ill;
10095 	ipif_t			*ipif;
10096 	uint_t			bitval;
10097 	mib2_ipAddrEntry_t	mae;
10098 	zoneid_t		zoneid;
10099 	ill_walk_context_t ctx;
10100 
10101 	/*
10102 	 * make a copy of the original message
10103 	 */
10104 	mp2ctl = copymsg(mpctl);
10105 
10106 	/* ipAddrEntryTable */
10107 
10108 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10109 	optp->level = MIB2_IP;
10110 	optp->name = MIB2_IP_ADDR;
10111 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10112 
10113 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10114 	ill = ILL_START_WALK_V4(&ctx, ipst);
10115 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10116 		for (ipif = ill->ill_ipif; ipif != NULL;
10117 		    ipif = ipif->ipif_next) {
10118 			if (ipif->ipif_zoneid != zoneid &&
10119 			    ipif->ipif_zoneid != ALL_ZONES)
10120 				continue;
10121 			/* Sum of count from dead IRE_LO* and our current */
10122 			mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10123 			if (ipif->ipif_ire_local != NULL) {
10124 				mae.ipAdEntInfo.ae_ibcnt +=
10125 				    ipif->ipif_ire_local->ire_ib_pkt_count;
10126 			}
10127 			mae.ipAdEntInfo.ae_obcnt = 0;
10128 			mae.ipAdEntInfo.ae_focnt = 0;
10129 
10130 			ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes,
10131 			    OCTET_LENGTH);
10132 			mae.ipAdEntIfIndex.o_length =
10133 			    mi_strlen(mae.ipAdEntIfIndex.o_bytes);
10134 			mae.ipAdEntAddr = ipif->ipif_lcl_addr;
10135 			mae.ipAdEntNetMask = ipif->ipif_net_mask;
10136 			mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet;
10137 			mae.ipAdEntInfo.ae_subnet_len =
10138 			    ip_mask_to_plen(ipif->ipif_net_mask);
10139 			mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr;
10140 			for (bitval = 1;
10141 			    bitval &&
10142 			    !(bitval & ipif->ipif_brd_addr);
10143 			    bitval <<= 1)
10144 				noop;
10145 			mae.ipAdEntBcastAddr = bitval;
10146 			mae.ipAdEntReasmMaxSize = IP_MAXPACKET;
10147 			mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10148 			mae.ipAdEntInfo.ae_metric  = ipif->ipif_metric;
10149 			mae.ipAdEntInfo.ae_broadcast_addr =
10150 			    ipif->ipif_brd_addr;
10151 			mae.ipAdEntInfo.ae_pp_dst_addr =
10152 			    ipif->ipif_pp_dst_addr;
10153 			mae.ipAdEntInfo.ae_flags = ipif->ipif_flags |
10154 			    ill->ill_flags | ill->ill_phyint->phyint_flags;
10155 			mae.ipAdEntRetransmitTime =
10156 			    ill->ill_reachable_retrans_time;
10157 
10158 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10159 			    (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) {
10160 				ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to "
10161 				    "allocate %u bytes\n",
10162 				    (uint_t)sizeof (mib2_ipAddrEntry_t)));
10163 			}
10164 		}
10165 	}
10166 	rw_exit(&ipst->ips_ill_g_lock);
10167 
10168 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10169 	ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n",
10170 	    (int)optp->level, (int)optp->name, (int)optp->len));
10171 	qreply(q, mpctl);
10172 	return (mp2ctl);
10173 }
10174 
10175 /* IPv6 address information */
10176 static mblk_t *
10177 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10178 {
10179 	struct opthdr		*optp;
10180 	mblk_t			*mp2ctl;
10181 	mblk_t			*mp_tail = NULL;
10182 	ill_t			*ill;
10183 	ipif_t			*ipif;
10184 	mib2_ipv6AddrEntry_t	mae6;
10185 	zoneid_t		zoneid;
10186 	ill_walk_context_t	ctx;
10187 
10188 	/*
10189 	 * make a copy of the original message
10190 	 */
10191 	mp2ctl = copymsg(mpctl);
10192 
10193 	/* ipv6AddrEntryTable */
10194 
10195 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10196 	optp->level = MIB2_IP6;
10197 	optp->name = MIB2_IP6_ADDR;
10198 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10199 
10200 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10201 	ill = ILL_START_WALK_V6(&ctx, ipst);
10202 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10203 		for (ipif = ill->ill_ipif; ipif != NULL;
10204 		    ipif = ipif->ipif_next) {
10205 			if (ipif->ipif_zoneid != zoneid &&
10206 			    ipif->ipif_zoneid != ALL_ZONES)
10207 				continue;
10208 			/* Sum of count from dead IRE_LO* and our current */
10209 			mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10210 			if (ipif->ipif_ire_local != NULL) {
10211 				mae6.ipv6AddrInfo.ae_ibcnt +=
10212 				    ipif->ipif_ire_local->ire_ib_pkt_count;
10213 			}
10214 			mae6.ipv6AddrInfo.ae_obcnt = 0;
10215 			mae6.ipv6AddrInfo.ae_focnt = 0;
10216 
10217 			ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes,
10218 			    OCTET_LENGTH);
10219 			mae6.ipv6AddrIfIndex.o_length =
10220 			    mi_strlen(mae6.ipv6AddrIfIndex.o_bytes);
10221 			mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr;
10222 			mae6.ipv6AddrPfxLength =
10223 			    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
10224 			mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet;
10225 			mae6.ipv6AddrInfo.ae_subnet_len =
10226 			    mae6.ipv6AddrPfxLength;
10227 			mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr;
10228 
10229 			/* Type: stateless(1), stateful(2), unknown(3) */
10230 			if (ipif->ipif_flags & IPIF_ADDRCONF)
10231 				mae6.ipv6AddrType = 1;
10232 			else
10233 				mae6.ipv6AddrType = 2;
10234 			/* Anycast: true(1), false(2) */
10235 			if (ipif->ipif_flags & IPIF_ANYCAST)
10236 				mae6.ipv6AddrAnycastFlag = 1;
10237 			else
10238 				mae6.ipv6AddrAnycastFlag = 2;
10239 
10240 			/*
10241 			 * Address status: preferred(1), deprecated(2),
10242 			 * invalid(3), inaccessible(4), unknown(5)
10243 			 */
10244 			if (ipif->ipif_flags & IPIF_NOLOCAL)
10245 				mae6.ipv6AddrStatus = 3;
10246 			else if (ipif->ipif_flags & IPIF_DEPRECATED)
10247 				mae6.ipv6AddrStatus = 2;
10248 			else
10249 				mae6.ipv6AddrStatus = 1;
10250 			mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10251 			mae6.ipv6AddrInfo.ae_metric  = ipif->ipif_metric;
10252 			mae6.ipv6AddrInfo.ae_pp_dst_addr =
10253 			    ipif->ipif_v6pp_dst_addr;
10254 			mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags |
10255 			    ill->ill_flags | ill->ill_phyint->phyint_flags;
10256 			mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET;
10257 			mae6.ipv6AddrIdentifier = ill->ill_token;
10258 			mae6.ipv6AddrIdentifierLen = ill->ill_token_length;
10259 			mae6.ipv6AddrReachableTime = ill->ill_reachable_time;
10260 			mae6.ipv6AddrRetransmitTime =
10261 			    ill->ill_reachable_retrans_time;
10262 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10263 			    (char *)&mae6,
10264 			    (int)sizeof (mib2_ipv6AddrEntry_t))) {
10265 				ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to "
10266 				    "allocate %u bytes\n",
10267 				    (uint_t)sizeof (mib2_ipv6AddrEntry_t)));
10268 			}
10269 		}
10270 	}
10271 	rw_exit(&ipst->ips_ill_g_lock);
10272 
10273 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10274 	ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n",
10275 	    (int)optp->level, (int)optp->name, (int)optp->len));
10276 	qreply(q, mpctl);
10277 	return (mp2ctl);
10278 }
10279 
10280 /* IPv4 multicast group membership. */
10281 static mblk_t *
10282 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10283 {
10284 	struct opthdr		*optp;
10285 	mblk_t			*mp2ctl;
10286 	ill_t			*ill;
10287 	ipif_t			*ipif;
10288 	ilm_t			*ilm;
10289 	ip_member_t		ipm;
10290 	mblk_t			*mp_tail = NULL;
10291 	ill_walk_context_t	ctx;
10292 	zoneid_t		zoneid;
10293 
10294 	/*
10295 	 * make a copy of the original message
10296 	 */
10297 	mp2ctl = copymsg(mpctl);
10298 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10299 
10300 	/* ipGroupMember table */
10301 	optp = (struct opthdr *)&mpctl->b_rptr[
10302 	    sizeof (struct T_optmgmt_ack)];
10303 	optp->level = MIB2_IP;
10304 	optp->name = EXPER_IP_GROUP_MEMBERSHIP;
10305 
10306 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10307 	ill = ILL_START_WALK_V4(&ctx, ipst);
10308 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10309 		/* Make sure the ill isn't going away. */
10310 		if (!ill_check_and_refhold(ill))
10311 			continue;
10312 		rw_exit(&ipst->ips_ill_g_lock);
10313 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10314 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10315 			if (ilm->ilm_zoneid != zoneid &&
10316 			    ilm->ilm_zoneid != ALL_ZONES)
10317 				continue;
10318 
10319 			/* Is there an ipif for ilm_ifaddr? */
10320 			for (ipif = ill->ill_ipif; ipif != NULL;
10321 			    ipif = ipif->ipif_next) {
10322 				if (!IPIF_IS_CONDEMNED(ipif) &&
10323 				    ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10324 				    ilm->ilm_ifaddr != INADDR_ANY)
10325 					break;
10326 			}
10327 			if (ipif != NULL) {
10328 				ipif_get_name(ipif,
10329 				    ipm.ipGroupMemberIfIndex.o_bytes,
10330 				    OCTET_LENGTH);
10331 			} else {
10332 				ill_get_name(ill,
10333 				    ipm.ipGroupMemberIfIndex.o_bytes,
10334 				    OCTET_LENGTH);
10335 			}
10336 			ipm.ipGroupMemberIfIndex.o_length =
10337 			    mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes);
10338 
10339 			ipm.ipGroupMemberAddress = ilm->ilm_addr;
10340 			ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt;
10341 			ipm.ipGroupMemberFilterMode = ilm->ilm_fmode;
10342 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10343 			    (char *)&ipm, (int)sizeof (ipm))) {
10344 				ip1dbg(("ip_snmp_get_mib2_ip_group: "
10345 				    "failed to allocate %u bytes\n",
10346 				    (uint_t)sizeof (ipm)));
10347 			}
10348 		}
10349 		rw_exit(&ill->ill_mcast_lock);
10350 		ill_refrele(ill);
10351 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10352 	}
10353 	rw_exit(&ipst->ips_ill_g_lock);
10354 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10355 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10356 	    (int)optp->level, (int)optp->name, (int)optp->len));
10357 	qreply(q, mpctl);
10358 	return (mp2ctl);
10359 }
10360 
10361 /* IPv6 multicast group membership. */
10362 static mblk_t *
10363 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10364 {
10365 	struct opthdr		*optp;
10366 	mblk_t			*mp2ctl;
10367 	ill_t			*ill;
10368 	ilm_t			*ilm;
10369 	ipv6_member_t		ipm6;
10370 	mblk_t			*mp_tail = NULL;
10371 	ill_walk_context_t	ctx;
10372 	zoneid_t		zoneid;
10373 
10374 	/*
10375 	 * make a copy of the original message
10376 	 */
10377 	mp2ctl = copymsg(mpctl);
10378 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10379 
10380 	/* ip6GroupMember table */
10381 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10382 	optp->level = MIB2_IP6;
10383 	optp->name = EXPER_IP6_GROUP_MEMBERSHIP;
10384 
10385 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10386 	ill = ILL_START_WALK_V6(&ctx, ipst);
10387 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10388 		/* Make sure the ill isn't going away. */
10389 		if (!ill_check_and_refhold(ill))
10390 			continue;
10391 		rw_exit(&ipst->ips_ill_g_lock);
10392 		/*
10393 		 * Normally we don't have any members on under IPMP interfaces.
10394 		 * We report them as a debugging aid.
10395 		 */
10396 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10397 		ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex;
10398 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10399 			if (ilm->ilm_zoneid != zoneid &&
10400 			    ilm->ilm_zoneid != ALL_ZONES)
10401 				continue;	/* not this zone */
10402 			ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr;
10403 			ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt;
10404 			ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode;
10405 			if (!snmp_append_data2(mpctl->b_cont,
10406 			    &mp_tail,
10407 			    (char *)&ipm6, (int)sizeof (ipm6))) {
10408 				ip1dbg(("ip_snmp_get_mib2_ip6_group: "
10409 				    "failed to allocate %u bytes\n",
10410 				    (uint_t)sizeof (ipm6)));
10411 			}
10412 		}
10413 		rw_exit(&ill->ill_mcast_lock);
10414 		ill_refrele(ill);
10415 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10416 	}
10417 	rw_exit(&ipst->ips_ill_g_lock);
10418 
10419 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10420 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10421 	    (int)optp->level, (int)optp->name, (int)optp->len));
10422 	qreply(q, mpctl);
10423 	return (mp2ctl);
10424 }
10425 
10426 /* IP multicast filtered sources */
10427 static mblk_t *
10428 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10429 {
10430 	struct opthdr		*optp;
10431 	mblk_t			*mp2ctl;
10432 	ill_t			*ill;
10433 	ipif_t			*ipif;
10434 	ilm_t			*ilm;
10435 	ip_grpsrc_t		ips;
10436 	mblk_t			*mp_tail = NULL;
10437 	ill_walk_context_t	ctx;
10438 	zoneid_t		zoneid;
10439 	int			i;
10440 	slist_t			*sl;
10441 
10442 	/*
10443 	 * make a copy of the original message
10444 	 */
10445 	mp2ctl = copymsg(mpctl);
10446 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10447 
10448 	/* ipGroupSource table */
10449 	optp = (struct opthdr *)&mpctl->b_rptr[
10450 	    sizeof (struct T_optmgmt_ack)];
10451 	optp->level = MIB2_IP;
10452 	optp->name = EXPER_IP_GROUP_SOURCES;
10453 
10454 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10455 	ill = ILL_START_WALK_V4(&ctx, ipst);
10456 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10457 		/* Make sure the ill isn't going away. */
10458 		if (!ill_check_and_refhold(ill))
10459 			continue;
10460 		rw_exit(&ipst->ips_ill_g_lock);
10461 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10462 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10463 			sl = ilm->ilm_filter;
10464 			if (ilm->ilm_zoneid != zoneid &&
10465 			    ilm->ilm_zoneid != ALL_ZONES)
10466 				continue;
10467 			if (SLIST_IS_EMPTY(sl))
10468 				continue;
10469 
10470 			/* Is there an ipif for ilm_ifaddr? */
10471 			for (ipif = ill->ill_ipif; ipif != NULL;
10472 			    ipif = ipif->ipif_next) {
10473 				if (!IPIF_IS_CONDEMNED(ipif) &&
10474 				    ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10475 				    ilm->ilm_ifaddr != INADDR_ANY)
10476 					break;
10477 			}
10478 			if (ipif != NULL) {
10479 				ipif_get_name(ipif,
10480 				    ips.ipGroupSourceIfIndex.o_bytes,
10481 				    OCTET_LENGTH);
10482 			} else {
10483 				ill_get_name(ill,
10484 				    ips.ipGroupSourceIfIndex.o_bytes,
10485 				    OCTET_LENGTH);
10486 			}
10487 			ips.ipGroupSourceIfIndex.o_length =
10488 			    mi_strlen(ips.ipGroupSourceIfIndex.o_bytes);
10489 
10490 			ips.ipGroupSourceGroup = ilm->ilm_addr;
10491 			for (i = 0; i < sl->sl_numsrc; i++) {
10492 				if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i]))
10493 					continue;
10494 				IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i],
10495 				    ips.ipGroupSourceAddress);
10496 				if (snmp_append_data2(mpctl->b_cont, &mp_tail,
10497 				    (char *)&ips, (int)sizeof (ips)) == 0) {
10498 					ip1dbg(("ip_snmp_get_mib2_ip_group_src:"
10499 					    " failed to allocate %u bytes\n",
10500 					    (uint_t)sizeof (ips)));
10501 				}
10502 			}
10503 		}
10504 		rw_exit(&ill->ill_mcast_lock);
10505 		ill_refrele(ill);
10506 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10507 	}
10508 	rw_exit(&ipst->ips_ill_g_lock);
10509 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10510 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10511 	    (int)optp->level, (int)optp->name, (int)optp->len));
10512 	qreply(q, mpctl);
10513 	return (mp2ctl);
10514 }
10515 
10516 /* IPv6 multicast filtered sources. */
10517 static mblk_t *
10518 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10519 {
10520 	struct opthdr		*optp;
10521 	mblk_t			*mp2ctl;
10522 	ill_t			*ill;
10523 	ilm_t			*ilm;
10524 	ipv6_grpsrc_t		ips6;
10525 	mblk_t			*mp_tail = NULL;
10526 	ill_walk_context_t	ctx;
10527 	zoneid_t		zoneid;
10528 	int			i;
10529 	slist_t			*sl;
10530 
10531 	/*
10532 	 * make a copy of the original message
10533 	 */
10534 	mp2ctl = copymsg(mpctl);
10535 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10536 
10537 	/* ip6GroupMember table */
10538 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10539 	optp->level = MIB2_IP6;
10540 	optp->name = EXPER_IP6_GROUP_SOURCES;
10541 
10542 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10543 	ill = ILL_START_WALK_V6(&ctx, ipst);
10544 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10545 		/* Make sure the ill isn't going away. */
10546 		if (!ill_check_and_refhold(ill))
10547 			continue;
10548 		rw_exit(&ipst->ips_ill_g_lock);
10549 		/*
10550 		 * Normally we don't have any members on under IPMP interfaces.
10551 		 * We report them as a debugging aid.
10552 		 */
10553 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10554 		ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex;
10555 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10556 			sl = ilm->ilm_filter;
10557 			if (ilm->ilm_zoneid != zoneid &&
10558 			    ilm->ilm_zoneid != ALL_ZONES)
10559 				continue;
10560 			if (SLIST_IS_EMPTY(sl))
10561 				continue;
10562 			ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr;
10563 			for (i = 0; i < sl->sl_numsrc; i++) {
10564 				ips6.ipv6GroupSourceAddress = sl->sl_addr[i];
10565 				if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10566 				    (char *)&ips6, (int)sizeof (ips6))) {
10567 					ip1dbg(("ip_snmp_get_mib2_ip6_"
10568 					    "group_src: failed to allocate "
10569 					    "%u bytes\n",
10570 					    (uint_t)sizeof (ips6)));
10571 				}
10572 			}
10573 		}
10574 		rw_exit(&ill->ill_mcast_lock);
10575 		ill_refrele(ill);
10576 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10577 	}
10578 	rw_exit(&ipst->ips_ill_g_lock);
10579 
10580 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10581 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10582 	    (int)optp->level, (int)optp->name, (int)optp->len));
10583 	qreply(q, mpctl);
10584 	return (mp2ctl);
10585 }
10586 
10587 /* Multicast routing virtual interface table. */
10588 static mblk_t *
10589 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10590 {
10591 	struct opthdr		*optp;
10592 	mblk_t			*mp2ctl;
10593 
10594 	/*
10595 	 * make a copy of the original message
10596 	 */
10597 	mp2ctl = copymsg(mpctl);
10598 
10599 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10600 	optp->level = EXPER_DVMRP;
10601 	optp->name = EXPER_DVMRP_VIF;
10602 	if (!ip_mroute_vif(mpctl->b_cont, ipst)) {
10603 		ip0dbg(("ip_mroute_vif: failed\n"));
10604 	}
10605 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10606 	ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n",
10607 	    (int)optp->level, (int)optp->name, (int)optp->len));
10608 	qreply(q, mpctl);
10609 	return (mp2ctl);
10610 }
10611 
10612 /* Multicast routing table. */
10613 static mblk_t *
10614 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10615 {
10616 	struct opthdr		*optp;
10617 	mblk_t			*mp2ctl;
10618 
10619 	/*
10620 	 * make a copy of the original message
10621 	 */
10622 	mp2ctl = copymsg(mpctl);
10623 
10624 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10625 	optp->level = EXPER_DVMRP;
10626 	optp->name = EXPER_DVMRP_MRT;
10627 	if (!ip_mroute_mrt(mpctl->b_cont, ipst)) {
10628 		ip0dbg(("ip_mroute_mrt: failed\n"));
10629 	}
10630 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10631 	ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n",
10632 	    (int)optp->level, (int)optp->name, (int)optp->len));
10633 	qreply(q, mpctl);
10634 	return (mp2ctl);
10635 }
10636 
10637 /*
10638  * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable
10639  * in one IRE walk.
10640  */
10641 static mblk_t *
10642 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level,
10643     ip_stack_t *ipst)
10644 {
10645 	struct opthdr	*optp;
10646 	mblk_t		*mp2ctl;	/* Returned */
10647 	mblk_t		*mp3ctl;	/* nettomedia */
10648 	mblk_t		*mp4ctl;	/* routeattrs */
10649 	iproutedata_t	ird;
10650 	zoneid_t	zoneid;
10651 
10652 	/*
10653 	 * make copies of the original message
10654 	 *	- mp2ctl is returned unchanged to the caller for his use
10655 	 *	- mpctl is sent upstream as ipRouteEntryTable
10656 	 *	- mp3ctl is sent upstream as ipNetToMediaEntryTable
10657 	 *	- mp4ctl is sent upstream as ipRouteAttributeTable
10658 	 */
10659 	mp2ctl = copymsg(mpctl);
10660 	mp3ctl = copymsg(mpctl);
10661 	mp4ctl = copymsg(mpctl);
10662 	if (mp3ctl == NULL || mp4ctl == NULL) {
10663 		freemsg(mp4ctl);
10664 		freemsg(mp3ctl);
10665 		freemsg(mp2ctl);
10666 		freemsg(mpctl);
10667 		return (NULL);
10668 	}
10669 
10670 	bzero(&ird, sizeof (ird));
10671 
10672 	ird.ird_route.lp_head = mpctl->b_cont;
10673 	ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10674 	ird.ird_attrs.lp_head = mp4ctl->b_cont;
10675 	/*
10676 	 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10677 	 * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10678 	 * intended a temporary solution until a proper MIB API is provided
10679 	 * that provides complete filtering/caller-opt-in.
10680 	 */
10681 	if (level == EXPER_IP_AND_ALL_IRES)
10682 		ird.ird_flags |= IRD_REPORT_ALL;
10683 
10684 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10685 	ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst);
10686 
10687 	/* ipRouteEntryTable in mpctl */
10688 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10689 	optp->level = MIB2_IP;
10690 	optp->name = MIB2_IP_ROUTE;
10691 	optp->len = msgdsize(ird.ird_route.lp_head);
10692 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10693 	    (int)optp->level, (int)optp->name, (int)optp->len));
10694 	qreply(q, mpctl);
10695 
10696 	/* ipNetToMediaEntryTable in mp3ctl */
10697 	ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst);
10698 
10699 	optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10700 	optp->level = MIB2_IP;
10701 	optp->name = MIB2_IP_MEDIA;
10702 	optp->len = msgdsize(ird.ird_netmedia.lp_head);
10703 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10704 	    (int)optp->level, (int)optp->name, (int)optp->len));
10705 	qreply(q, mp3ctl);
10706 
10707 	/* ipRouteAttributeTable in mp4ctl */
10708 	optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10709 	optp->level = MIB2_IP;
10710 	optp->name = EXPER_IP_RTATTR;
10711 	optp->len = msgdsize(ird.ird_attrs.lp_head);
10712 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10713 	    (int)optp->level, (int)optp->name, (int)optp->len));
10714 	if (optp->len == 0)
10715 		freemsg(mp4ctl);
10716 	else
10717 		qreply(q, mp4ctl);
10718 
10719 	return (mp2ctl);
10720 }
10721 
10722 /*
10723  * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and
10724  * ipv6NetToMediaEntryTable in an NDP walk.
10725  */
10726 static mblk_t *
10727 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level,
10728     ip_stack_t *ipst)
10729 {
10730 	struct opthdr	*optp;
10731 	mblk_t		*mp2ctl;	/* Returned */
10732 	mblk_t		*mp3ctl;	/* nettomedia */
10733 	mblk_t		*mp4ctl;	/* routeattrs */
10734 	iproutedata_t	ird;
10735 	zoneid_t	zoneid;
10736 
10737 	/*
10738 	 * make copies of the original message
10739 	 *	- mp2ctl is returned unchanged to the caller for his use
10740 	 *	- mpctl is sent upstream as ipv6RouteEntryTable
10741 	 *	- mp3ctl is sent upstream as ipv6NetToMediaEntryTable
10742 	 *	- mp4ctl is sent upstream as ipv6RouteAttributeTable
10743 	 */
10744 	mp2ctl = copymsg(mpctl);
10745 	mp3ctl = copymsg(mpctl);
10746 	mp4ctl = copymsg(mpctl);
10747 	if (mp3ctl == NULL || mp4ctl == NULL) {
10748 		freemsg(mp4ctl);
10749 		freemsg(mp3ctl);
10750 		freemsg(mp2ctl);
10751 		freemsg(mpctl);
10752 		return (NULL);
10753 	}
10754 
10755 	bzero(&ird, sizeof (ird));
10756 
10757 	ird.ird_route.lp_head = mpctl->b_cont;
10758 	ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10759 	ird.ird_attrs.lp_head = mp4ctl->b_cont;
10760 	/*
10761 	 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10762 	 * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10763 	 * intended a temporary solution until a proper MIB API is provided
10764 	 * that provides complete filtering/caller-opt-in.
10765 	 */
10766 	if (level == EXPER_IP_AND_ALL_IRES)
10767 		ird.ird_flags |= IRD_REPORT_ALL;
10768 
10769 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10770 	ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst);
10771 
10772 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10773 	optp->level = MIB2_IP6;
10774 	optp->name = MIB2_IP6_ROUTE;
10775 	optp->len = msgdsize(ird.ird_route.lp_head);
10776 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10777 	    (int)optp->level, (int)optp->name, (int)optp->len));
10778 	qreply(q, mpctl);
10779 
10780 	/* ipv6NetToMediaEntryTable in mp3ctl */
10781 	ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst);
10782 
10783 	optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10784 	optp->level = MIB2_IP6;
10785 	optp->name = MIB2_IP6_MEDIA;
10786 	optp->len = msgdsize(ird.ird_netmedia.lp_head);
10787 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10788 	    (int)optp->level, (int)optp->name, (int)optp->len));
10789 	qreply(q, mp3ctl);
10790 
10791 	/* ipv6RouteAttributeTable in mp4ctl */
10792 	optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10793 	optp->level = MIB2_IP6;
10794 	optp->name = EXPER_IP_RTATTR;
10795 	optp->len = msgdsize(ird.ird_attrs.lp_head);
10796 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10797 	    (int)optp->level, (int)optp->name, (int)optp->len));
10798 	if (optp->len == 0)
10799 		freemsg(mp4ctl);
10800 	else
10801 		qreply(q, mp4ctl);
10802 
10803 	return (mp2ctl);
10804 }
10805 
10806 /*
10807  * IPv6 mib: One per ill
10808  */
10809 static mblk_t *
10810 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10811 {
10812 	struct opthdr		*optp;
10813 	mblk_t			*mp2ctl;
10814 	ill_t			*ill;
10815 	ill_walk_context_t	ctx;
10816 	mblk_t			*mp_tail = NULL;
10817 
10818 	/*
10819 	 * Make a copy of the original message
10820 	 */
10821 	mp2ctl = copymsg(mpctl);
10822 
10823 	/* fixed length IPv6 structure ... */
10824 
10825 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10826 	optp->level = MIB2_IP6;
10827 	optp->name = 0;
10828 	/* Include "unknown interface" ip6_mib */
10829 	ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
10830 	ipst->ips_ip6_mib.ipIfStatsIfIndex =
10831 	    MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
10832 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding,
10833 	    ipst->ips_ipv6_forward ? 1 : 2);
10834 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit,
10835 	    ipst->ips_ipv6_def_hops);
10836 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize,
10837 	    sizeof (mib2_ipIfStatsEntry_t));
10838 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize,
10839 	    sizeof (mib2_ipv6AddrEntry_t));
10840 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize,
10841 	    sizeof (mib2_ipv6RouteEntry_t));
10842 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize,
10843 	    sizeof (mib2_ipv6NetToMediaEntry_t));
10844 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize,
10845 	    sizeof (ipv6_member_t));
10846 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize,
10847 	    sizeof (ipv6_grpsrc_t));
10848 
10849 	/*
10850 	 * Synchronize 64- and 32-bit counters
10851 	 */
10852 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives,
10853 	    ipIfStatsHCInReceives);
10854 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers,
10855 	    ipIfStatsHCInDelivers);
10856 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests,
10857 	    ipIfStatsHCOutRequests);
10858 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams,
10859 	    ipIfStatsHCOutForwDatagrams);
10860 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts,
10861 	    ipIfStatsHCOutMcastPkts);
10862 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts,
10863 	    ipIfStatsHCInMcastPkts);
10864 
10865 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10866 	    (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) {
10867 		ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n",
10868 		    (uint_t)sizeof (ipst->ips_ip6_mib)));
10869 	}
10870 
10871 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10872 	ill = ILL_START_WALK_V6(&ctx, ipst);
10873 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10874 		ill->ill_ip_mib->ipIfStatsIfIndex =
10875 		    ill->ill_phyint->phyint_ifindex;
10876 		SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
10877 		    ipst->ips_ipv6_forward ? 1 : 2);
10878 		SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit,
10879 		    ill->ill_max_hops);
10880 
10881 		/*
10882 		 * Synchronize 64- and 32-bit counters
10883 		 */
10884 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives,
10885 		    ipIfStatsHCInReceives);
10886 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers,
10887 		    ipIfStatsHCInDelivers);
10888 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests,
10889 		    ipIfStatsHCOutRequests);
10890 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams,
10891 		    ipIfStatsHCOutForwDatagrams);
10892 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts,
10893 		    ipIfStatsHCOutMcastPkts);
10894 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts,
10895 		    ipIfStatsHCInMcastPkts);
10896 
10897 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10898 		    (char *)ill->ill_ip_mib,
10899 		    (int)sizeof (*ill->ill_ip_mib))) {
10900 			ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate "
10901 			"%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib)));
10902 		}
10903 	}
10904 	rw_exit(&ipst->ips_ill_g_lock);
10905 
10906 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10907 	ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n",
10908 	    (int)optp->level, (int)optp->name, (int)optp->len));
10909 	qreply(q, mpctl);
10910 	return (mp2ctl);
10911 }
10912 
10913 /*
10914  * ICMPv6 mib: One per ill
10915  */
10916 static mblk_t *
10917 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10918 {
10919 	struct opthdr		*optp;
10920 	mblk_t			*mp2ctl;
10921 	ill_t			*ill;
10922 	ill_walk_context_t	ctx;
10923 	mblk_t			*mp_tail = NULL;
10924 	/*
10925 	 * Make a copy of the original message
10926 	 */
10927 	mp2ctl = copymsg(mpctl);
10928 
10929 	/* fixed length ICMPv6 structure ... */
10930 
10931 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10932 	optp->level = MIB2_ICMP6;
10933 	optp->name = 0;
10934 	/* Include "unknown interface" icmp6_mib */
10935 	ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex =
10936 	    MIB2_UNKNOWN_INTERFACE; /* netstat flag */
10937 	ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize =
10938 	    sizeof (mib2_ipv6IfIcmpEntry_t);
10939 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10940 	    (char *)&ipst->ips_icmp6_mib,
10941 	    (int)sizeof (ipst->ips_icmp6_mib))) {
10942 		ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n",
10943 		    (uint_t)sizeof (ipst->ips_icmp6_mib)));
10944 	}
10945 
10946 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10947 	ill = ILL_START_WALK_V6(&ctx, ipst);
10948 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10949 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
10950 		    ill->ill_phyint->phyint_ifindex;
10951 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10952 		    (char *)ill->ill_icmp6_mib,
10953 		    (int)sizeof (*ill->ill_icmp6_mib))) {
10954 			ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate "
10955 			    "%u bytes\n",
10956 			    (uint_t)sizeof (*ill->ill_icmp6_mib)));
10957 		}
10958 	}
10959 	rw_exit(&ipst->ips_ill_g_lock);
10960 
10961 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10962 	ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n",
10963 	    (int)optp->level, (int)optp->name, (int)optp->len));
10964 	qreply(q, mpctl);
10965 	return (mp2ctl);
10966 }
10967 
10968 /*
10969  * ire_walk routine to create both ipRouteEntryTable and
10970  * ipRouteAttributeTable in one IRE walk
10971  */
10972 static void
10973 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird)
10974 {
10975 	ill_t				*ill;
10976 	mib2_ipRouteEntry_t		*re;
10977 	mib2_ipAttributeEntry_t		iaes;
10978 	tsol_ire_gw_secattr_t		*attrp;
10979 	tsol_gc_t			*gc = NULL;
10980 	tsol_gcgrp_t			*gcgrp = NULL;
10981 	ip_stack_t			*ipst = ire->ire_ipst;
10982 
10983 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
10984 
10985 	if (!(ird->ird_flags & IRD_REPORT_ALL)) {
10986 		if (ire->ire_testhidden)
10987 			return;
10988 		if (ire->ire_type & IRE_IF_CLONE)
10989 			return;
10990 	}
10991 
10992 	if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
10993 		return;
10994 
10995 	if ((attrp = ire->ire_gw_secattr) != NULL) {
10996 		mutex_enter(&attrp->igsa_lock);
10997 		if ((gc = attrp->igsa_gc) != NULL) {
10998 			gcgrp = gc->gc_grp;
10999 			ASSERT(gcgrp != NULL);
11000 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
11001 		}
11002 		mutex_exit(&attrp->igsa_lock);
11003 	}
11004 	/*
11005 	 * Return all IRE types for route table... let caller pick and choose
11006 	 */
11007 	re->ipRouteDest = ire->ire_addr;
11008 	ill = ire->ire_ill;
11009 	re->ipRouteIfIndex.o_length = 0;
11010 	if (ill != NULL) {
11011 		ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH);
11012 		re->ipRouteIfIndex.o_length =
11013 		    mi_strlen(re->ipRouteIfIndex.o_bytes);
11014 	}
11015 	re->ipRouteMetric1 = -1;
11016 	re->ipRouteMetric2 = -1;
11017 	re->ipRouteMetric3 = -1;
11018 	re->ipRouteMetric4 = -1;
11019 
11020 	re->ipRouteNextHop = ire->ire_gateway_addr;
11021 	/* indirect(4), direct(3), or invalid(2) */
11022 	if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
11023 		re->ipRouteType = 2;
11024 	else if (ire->ire_type & IRE_ONLINK)
11025 		re->ipRouteType = 3;
11026 	else
11027 		re->ipRouteType = 4;
11028 
11029 	re->ipRouteProto = -1;
11030 	re->ipRouteAge = gethrestime_sec() - ire->ire_create_time;
11031 	re->ipRouteMask = ire->ire_mask;
11032 	re->ipRouteMetric5 = -1;
11033 	re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
11034 	if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0)
11035 		re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
11036 
11037 	re->ipRouteInfo.re_frag_flag	= 0;
11038 	re->ipRouteInfo.re_rtt		= 0;
11039 	re->ipRouteInfo.re_src_addr	= 0;
11040 	re->ipRouteInfo.re_ref		= ire->ire_refcnt;
11041 	re->ipRouteInfo.re_obpkt	= ire->ire_ob_pkt_count;
11042 	re->ipRouteInfo.re_ibpkt	= ire->ire_ib_pkt_count;
11043 	re->ipRouteInfo.re_flags	= ire->ire_flags;
11044 
11045 	/* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
11046 	if (ire->ire_type & IRE_INTERFACE) {
11047 		ire_t *child;
11048 
11049 		rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
11050 		child = ire->ire_dep_children;
11051 		while (child != NULL) {
11052 			re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count;
11053 			re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count;
11054 			child = child->ire_dep_sib_next;
11055 		}
11056 		rw_exit(&ipst->ips_ire_dep_lock);
11057 	}
11058 
11059 	if (ire->ire_flags & RTF_DYNAMIC) {
11060 		re->ipRouteInfo.re_ire_type	= IRE_HOST_REDIRECT;
11061 	} else {
11062 		re->ipRouteInfo.re_ire_type	= ire->ire_type;
11063 	}
11064 
11065 	if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11066 	    (char *)re, (int)sizeof (*re))) {
11067 		ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
11068 		    (uint_t)sizeof (*re)));
11069 	}
11070 
11071 	if (gc != NULL) {
11072 		iaes.iae_routeidx = ird->ird_idx;
11073 		iaes.iae_doi = gc->gc_db->gcdb_doi;
11074 		iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11075 
11076 		if (!snmp_append_data2(ird->ird_attrs.lp_head,
11077 		    &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11078 			ip1dbg(("ip_snmp_get2_v4: failed to allocate %u "
11079 			    "bytes\n", (uint_t)sizeof (iaes)));
11080 		}
11081 	}
11082 
11083 	/* bump route index for next pass */
11084 	ird->ird_idx++;
11085 
11086 	kmem_free(re, sizeof (*re));
11087 	if (gcgrp != NULL)
11088 		rw_exit(&gcgrp->gcgrp_rwlock);
11089 }
11090 
11091 /*
11092  * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable.
11093  */
11094 static void
11095 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird)
11096 {
11097 	ill_t				*ill;
11098 	mib2_ipv6RouteEntry_t		*re;
11099 	mib2_ipAttributeEntry_t		iaes;
11100 	tsol_ire_gw_secattr_t		*attrp;
11101 	tsol_gc_t			*gc = NULL;
11102 	tsol_gcgrp_t			*gcgrp = NULL;
11103 	ip_stack_t			*ipst = ire->ire_ipst;
11104 
11105 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
11106 
11107 	if (!(ird->ird_flags & IRD_REPORT_ALL)) {
11108 		if (ire->ire_testhidden)
11109 			return;
11110 		if (ire->ire_type & IRE_IF_CLONE)
11111 			return;
11112 	}
11113 
11114 	if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
11115 		return;
11116 
11117 	if ((attrp = ire->ire_gw_secattr) != NULL) {
11118 		mutex_enter(&attrp->igsa_lock);
11119 		if ((gc = attrp->igsa_gc) != NULL) {
11120 			gcgrp = gc->gc_grp;
11121 			ASSERT(gcgrp != NULL);
11122 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
11123 		}
11124 		mutex_exit(&attrp->igsa_lock);
11125 	}
11126 	/*
11127 	 * Return all IRE types for route table... let caller pick and choose
11128 	 */
11129 	re->ipv6RouteDest = ire->ire_addr_v6;
11130 	re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6);
11131 	re->ipv6RouteIndex = 0;	/* Unique when multiple with same dest/plen */
11132 	re->ipv6RouteIfIndex.o_length = 0;
11133 	ill = ire->ire_ill;
11134 	if (ill != NULL) {
11135 		ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH);
11136 		re->ipv6RouteIfIndex.o_length =
11137 		    mi_strlen(re->ipv6RouteIfIndex.o_bytes);
11138 	}
11139 
11140 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
11141 
11142 	mutex_enter(&ire->ire_lock);
11143 	re->ipv6RouteNextHop = ire->ire_gateway_addr_v6;
11144 	mutex_exit(&ire->ire_lock);
11145 
11146 	/* remote(4), local(3), or discard(2) */
11147 	if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
11148 		re->ipv6RouteType = 2;
11149 	else if (ire->ire_type & IRE_ONLINK)
11150 		re->ipv6RouteType = 3;
11151 	else
11152 		re->ipv6RouteType = 4;
11153 
11154 	re->ipv6RouteProtocol	= -1;
11155 	re->ipv6RoutePolicy	= 0;
11156 	re->ipv6RouteAge	= gethrestime_sec() - ire->ire_create_time;
11157 	re->ipv6RouteNextHopRDI	= 0;
11158 	re->ipv6RouteWeight	= 0;
11159 	re->ipv6RouteMetric	= 0;
11160 	re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
11161 	if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0)
11162 		re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
11163 
11164 	re->ipv6RouteInfo.re_frag_flag	= 0;
11165 	re->ipv6RouteInfo.re_rtt	= 0;
11166 	re->ipv6RouteInfo.re_src_addr	= ipv6_all_zeros;
11167 	re->ipv6RouteInfo.re_obpkt	= ire->ire_ob_pkt_count;
11168 	re->ipv6RouteInfo.re_ibpkt	= ire->ire_ib_pkt_count;
11169 	re->ipv6RouteInfo.re_ref	= ire->ire_refcnt;
11170 	re->ipv6RouteInfo.re_flags	= ire->ire_flags;
11171 
11172 	/* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
11173 	if (ire->ire_type & IRE_INTERFACE) {
11174 		ire_t *child;
11175 
11176 		rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
11177 		child = ire->ire_dep_children;
11178 		while (child != NULL) {
11179 			re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count;
11180 			re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count;
11181 			child = child->ire_dep_sib_next;
11182 		}
11183 		rw_exit(&ipst->ips_ire_dep_lock);
11184 	}
11185 	if (ire->ire_flags & RTF_DYNAMIC) {
11186 		re->ipv6RouteInfo.re_ire_type	= IRE_HOST_REDIRECT;
11187 	} else {
11188 		re->ipv6RouteInfo.re_ire_type	= ire->ire_type;
11189 	}
11190 
11191 	if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11192 	    (char *)re, (int)sizeof (*re))) {
11193 		ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
11194 		    (uint_t)sizeof (*re)));
11195 	}
11196 
11197 	if (gc != NULL) {
11198 		iaes.iae_routeidx = ird->ird_idx;
11199 		iaes.iae_doi = gc->gc_db->gcdb_doi;
11200 		iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11201 
11202 		if (!snmp_append_data2(ird->ird_attrs.lp_head,
11203 		    &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11204 			ip1dbg(("ip_snmp_get2_v6: failed to allocate %u "
11205 			    "bytes\n", (uint_t)sizeof (iaes)));
11206 		}
11207 	}
11208 
11209 	/* bump route index for next pass */
11210 	ird->ird_idx++;
11211 
11212 	kmem_free(re, sizeof (*re));
11213 	if (gcgrp != NULL)
11214 		rw_exit(&gcgrp->gcgrp_rwlock);
11215 }
11216 
11217 /*
11218  * ncec_walk routine to create ipv6NetToMediaEntryTable
11219  */
11220 static int
11221 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird)
11222 {
11223 	ill_t				*ill;
11224 	mib2_ipv6NetToMediaEntry_t	ntme;
11225 
11226 	ill = ncec->ncec_ill;
11227 	/* skip arpce entries, and loopback ncec entries */
11228 	if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK)
11229 		return (0);
11230 	/*
11231 	 * Neighbor cache entry attached to IRE with on-link
11232 	 * destination.
11233 	 * We report all IPMP groups on ncec_ill which is normally the upper.
11234 	 */
11235 	ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex;
11236 	ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr;
11237 	ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length;
11238 	if (ncec->ncec_lladdr != NULL) {
11239 		bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes,
11240 		    ntme.ipv6NetToMediaPhysAddress.o_length);
11241 	}
11242 	/*
11243 	 * Note: Returns ND_* states. Should be:
11244 	 * reachable(1), stale(2), delay(3), probe(4),
11245 	 * invalid(5), unknown(6)
11246 	 */
11247 	ntme.ipv6NetToMediaState = ncec->ncec_state;
11248 	ntme.ipv6NetToMediaLastUpdated = 0;
11249 
11250 	/* other(1), dynamic(2), static(3), local(4) */
11251 	if (NCE_MYADDR(ncec)) {
11252 		ntme.ipv6NetToMediaType = 4;
11253 	} else if (ncec->ncec_flags & NCE_F_PUBLISH) {
11254 		ntme.ipv6NetToMediaType = 1; /* proxy */
11255 	} else if (ncec->ncec_flags & NCE_F_STATIC) {
11256 		ntme.ipv6NetToMediaType = 3;
11257 	} else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) {
11258 		ntme.ipv6NetToMediaType = 1;
11259 	} else {
11260 		ntme.ipv6NetToMediaType = 2;
11261 	}
11262 
11263 	if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11264 	    &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11265 		ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n",
11266 		    (uint_t)sizeof (ntme)));
11267 	}
11268 	return (0);
11269 }
11270 
11271 int
11272 nce2ace(ncec_t *ncec)
11273 {
11274 	int flags = 0;
11275 
11276 	if (NCE_ISREACHABLE(ncec))
11277 		flags |= ACE_F_RESOLVED;
11278 	if (ncec->ncec_flags & NCE_F_AUTHORITY)
11279 		flags |= ACE_F_AUTHORITY;
11280 	if (ncec->ncec_flags & NCE_F_PUBLISH)
11281 		flags |= ACE_F_PUBLISH;
11282 	if ((ncec->ncec_flags & NCE_F_NONUD) != 0)
11283 		flags |= ACE_F_PERMANENT;
11284 	if (NCE_MYADDR(ncec))
11285 		flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY);
11286 	if (ncec->ncec_flags & NCE_F_UNVERIFIED)
11287 		flags |= ACE_F_UNVERIFIED;
11288 	if (ncec->ncec_flags & NCE_F_AUTHORITY)
11289 		flags |= ACE_F_AUTHORITY;
11290 	if (ncec->ncec_flags & NCE_F_DELAYED)
11291 		flags |= ACE_F_DELAYED;
11292 	return (flags);
11293 }
11294 
11295 /*
11296  * ncec_walk routine to create ipNetToMediaEntryTable
11297  */
11298 static int
11299 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird)
11300 {
11301 	ill_t				*ill;
11302 	mib2_ipNetToMediaEntry_t	ntme;
11303 	const char			*name = "unknown";
11304 	ipaddr_t			ncec_addr;
11305 
11306 	ill = ncec->ncec_ill;
11307 	if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) ||
11308 	    ill->ill_net_type == IRE_LOOPBACK)
11309 		return (0);
11310 
11311 	/* We report all IPMP groups on ncec_ill which is normally the upper. */
11312 	name = ill->ill_name;
11313 	/* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */
11314 	if (NCE_MYADDR(ncec)) {
11315 		ntme.ipNetToMediaType = 4;
11316 	} else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) {
11317 		ntme.ipNetToMediaType = 1;
11318 	} else {
11319 		ntme.ipNetToMediaType = 3;
11320 	}
11321 	ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name));
11322 	bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes,
11323 	    ntme.ipNetToMediaIfIndex.o_length);
11324 
11325 	IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr);
11326 	bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr));
11327 
11328 	ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t);
11329 	ncec_addr = INADDR_BROADCAST;
11330 	bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes,
11331 	    sizeof (ncec_addr));
11332 	/*
11333 	 * map all the flags to the ACE counterpart.
11334 	 */
11335 	ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec);
11336 
11337 	ntme.ipNetToMediaPhysAddress.o_length =
11338 	    MIN(OCTET_LENGTH, ill->ill_phys_addr_length);
11339 
11340 	if (!NCE_ISREACHABLE(ncec))
11341 		ntme.ipNetToMediaPhysAddress.o_length = 0;
11342 	else {
11343 		if (ncec->ncec_lladdr != NULL) {
11344 			bcopy(ncec->ncec_lladdr,
11345 			    ntme.ipNetToMediaPhysAddress.o_bytes,
11346 			    ntme.ipNetToMediaPhysAddress.o_length);
11347 		}
11348 	}
11349 
11350 	if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11351 	    &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11352 		ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n",
11353 		    (uint_t)sizeof (ntme)));
11354 	}
11355 	return (0);
11356 }
11357 
11358 /*
11359  * return (0) if invalid set request, 1 otherwise, including non-tcp requests
11360  */
11361 /* ARGSUSED */
11362 int
11363 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
11364 {
11365 	switch (level) {
11366 	case MIB2_IP:
11367 	case MIB2_ICMP:
11368 		switch (name) {
11369 		default:
11370 			break;
11371 		}
11372 		return (1);
11373 	default:
11374 		return (1);
11375 	}
11376 }
11377 
11378 /*
11379  * When there exists both a 64- and 32-bit counter of a particular type
11380  * (i.e., InReceives), only the 64-bit counters are added.
11381  */
11382 void
11383 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2)
11384 {
11385 	UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors);
11386 	UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors);
11387 	UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes);
11388 	UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors);
11389 	UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos);
11390 	UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts);
11391 	UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards);
11392 	UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards);
11393 	UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs);
11394 	UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails);
11395 	UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates);
11396 	UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds);
11397 	UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs);
11398 	UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails);
11399 	UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes);
11400 	UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates);
11401 	UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups);
11402 	UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits);
11403 	UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs);
11404 	UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows);
11405 	UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows);
11406 	UPDATE_MIB(o1, ipIfStatsInWrongIPVersion,
11407 	    o2->ipIfStatsInWrongIPVersion);
11408 	UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion,
11409 	    o2->ipIfStatsInWrongIPVersion);
11410 	UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion,
11411 	    o2->ipIfStatsOutSwitchIPVersion);
11412 	UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives);
11413 	UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets);
11414 	UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams,
11415 	    o2->ipIfStatsHCInForwDatagrams);
11416 	UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers);
11417 	UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests);
11418 	UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams,
11419 	    o2->ipIfStatsHCOutForwDatagrams);
11420 	UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds);
11421 	UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits);
11422 	UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets);
11423 	UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts);
11424 	UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets);
11425 	UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts);
11426 	UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets,
11427 	    o2->ipIfStatsHCOutMcastOctets);
11428 	UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts);
11429 	UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts);
11430 	UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded);
11431 	UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed);
11432 	UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs);
11433 	UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs);
11434 	UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts);
11435 }
11436 
11437 void
11438 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2)
11439 {
11440 	UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs);
11441 	UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors);
11442 	UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs);
11443 	UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs);
11444 	UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds);
11445 	UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems);
11446 	UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs);
11447 	UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos);
11448 	UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies);
11449 	UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits,
11450 	    o2->ipv6IfIcmpInRouterSolicits);
11451 	UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements,
11452 	    o2->ipv6IfIcmpInRouterAdvertisements);
11453 	UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits,
11454 	    o2->ipv6IfIcmpInNeighborSolicits);
11455 	UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements,
11456 	    o2->ipv6IfIcmpInNeighborAdvertisements);
11457 	UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects);
11458 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries,
11459 	    o2->ipv6IfIcmpInGroupMembQueries);
11460 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses,
11461 	    o2->ipv6IfIcmpInGroupMembResponses);
11462 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions,
11463 	    o2->ipv6IfIcmpInGroupMembReductions);
11464 	UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs);
11465 	UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors);
11466 	UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs,
11467 	    o2->ipv6IfIcmpOutDestUnreachs);
11468 	UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs,
11469 	    o2->ipv6IfIcmpOutAdminProhibs);
11470 	UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds);
11471 	UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems,
11472 	    o2->ipv6IfIcmpOutParmProblems);
11473 	UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs);
11474 	UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos);
11475 	UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies);
11476 	UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits,
11477 	    o2->ipv6IfIcmpOutRouterSolicits);
11478 	UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements,
11479 	    o2->ipv6IfIcmpOutRouterAdvertisements);
11480 	UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits,
11481 	    o2->ipv6IfIcmpOutNeighborSolicits);
11482 	UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements,
11483 	    o2->ipv6IfIcmpOutNeighborAdvertisements);
11484 	UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects);
11485 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries,
11486 	    o2->ipv6IfIcmpOutGroupMembQueries);
11487 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses,
11488 	    o2->ipv6IfIcmpOutGroupMembResponses);
11489 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions,
11490 	    o2->ipv6IfIcmpOutGroupMembReductions);
11491 	UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows);
11492 	UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit);
11493 	UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements,
11494 	    o2->ipv6IfIcmpInBadNeighborAdvertisements);
11495 	UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations,
11496 	    o2->ipv6IfIcmpInBadNeighborSolicitations);
11497 	UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects);
11498 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal,
11499 	    o2->ipv6IfIcmpInGroupMembTotal);
11500 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries,
11501 	    o2->ipv6IfIcmpInGroupMembBadQueries);
11502 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports,
11503 	    o2->ipv6IfIcmpInGroupMembBadReports);
11504 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports,
11505 	    o2->ipv6IfIcmpInGroupMembOurReports);
11506 }
11507 
11508 /*
11509  * Called before the options are updated to check if this packet will
11510  * be source routed from here.
11511  * This routine assumes that the options are well formed i.e. that they
11512  * have already been checked.
11513  */
11514 boolean_t
11515 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst)
11516 {
11517 	ipoptp_t	opts;
11518 	uchar_t		*opt;
11519 	uint8_t		optval;
11520 	uint8_t		optlen;
11521 	ipaddr_t	dst;
11522 
11523 	if (IS_SIMPLE_IPH(ipha)) {
11524 		ip2dbg(("not source routed\n"));
11525 		return (B_FALSE);
11526 	}
11527 	dst = ipha->ipha_dst;
11528 	for (optval = ipoptp_first(&opts, ipha);
11529 	    optval != IPOPT_EOL;
11530 	    optval = ipoptp_next(&opts)) {
11531 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11532 		opt = opts.ipoptp_cur;
11533 		optlen = opts.ipoptp_len;
11534 		ip2dbg(("ip_source_routed: opt %d, len %d\n",
11535 		    optval, optlen));
11536 		switch (optval) {
11537 			uint32_t off;
11538 		case IPOPT_SSRR:
11539 		case IPOPT_LSRR:
11540 			/*
11541 			 * If dst is one of our addresses and there are some
11542 			 * entries left in the source route return (true).
11543 			 */
11544 			if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11545 				ip2dbg(("ip_source_routed: not next"
11546 				    " source route 0x%x\n",
11547 				    ntohl(dst)));
11548 				return (B_FALSE);
11549 			}
11550 			off = opt[IPOPT_OFFSET];
11551 			off--;
11552 			if (optlen < IP_ADDR_LEN ||
11553 			    off > optlen - IP_ADDR_LEN) {
11554 				/* End of source route */
11555 				ip1dbg(("ip_source_routed: end of SR\n"));
11556 				return (B_FALSE);
11557 			}
11558 			return (B_TRUE);
11559 		}
11560 	}
11561 	ip2dbg(("not source routed\n"));
11562 	return (B_FALSE);
11563 }
11564 
11565 /*
11566  * ip_unbind is called by the transports to remove a conn from
11567  * the fanout table.
11568  */
11569 void
11570 ip_unbind(conn_t *connp)
11571 {
11572 
11573 	ASSERT(!MUTEX_HELD(&connp->conn_lock));
11574 
11575 	if (is_system_labeled() && connp->conn_anon_port) {
11576 		(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
11577 		    connp->conn_mlp_type, connp->conn_proto,
11578 		    ntohs(connp->conn_lport), B_FALSE);
11579 		connp->conn_anon_port = 0;
11580 	}
11581 	connp->conn_mlp_type = mlptSingle;
11582 
11583 	ipcl_hash_remove(connp);
11584 }
11585 
11586 /*
11587  * Used for deciding the MSS size for the upper layer. Thus
11588  * we need to check the outbound policy values in the conn.
11589  */
11590 int
11591 conn_ipsec_length(conn_t *connp)
11592 {
11593 	ipsec_latch_t *ipl;
11594 
11595 	ipl = connp->conn_latch;
11596 	if (ipl == NULL)
11597 		return (0);
11598 
11599 	if (connp->conn_ixa->ixa_ipsec_policy == NULL)
11600 		return (0);
11601 
11602 	return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd);
11603 }
11604 
11605 /*
11606  * Returns an estimate of the IPsec headers size. This is used if
11607  * we don't want to call into IPsec to get the exact size.
11608  */
11609 int
11610 ipsec_out_extra_length(ip_xmit_attr_t *ixa)
11611 {
11612 	ipsec_action_t *a;
11613 
11614 	if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
11615 		return (0);
11616 
11617 	a = ixa->ixa_ipsec_action;
11618 	if (a == NULL) {
11619 		ASSERT(ixa->ixa_ipsec_policy != NULL);
11620 		a = ixa->ixa_ipsec_policy->ipsp_act;
11621 	}
11622 	ASSERT(a != NULL);
11623 
11624 	return (a->ipa_ovhd);
11625 }
11626 
11627 /*
11628  * If there are any source route options, return the true final
11629  * destination. Otherwise, return the destination.
11630  */
11631 ipaddr_t
11632 ip_get_dst(ipha_t *ipha)
11633 {
11634 	ipoptp_t	opts;
11635 	uchar_t		*opt;
11636 	uint8_t		optval;
11637 	uint8_t		optlen;
11638 	ipaddr_t	dst;
11639 	uint32_t off;
11640 
11641 	dst = ipha->ipha_dst;
11642 
11643 	if (IS_SIMPLE_IPH(ipha))
11644 		return (dst);
11645 
11646 	for (optval = ipoptp_first(&opts, ipha);
11647 	    optval != IPOPT_EOL;
11648 	    optval = ipoptp_next(&opts)) {
11649 		opt = opts.ipoptp_cur;
11650 		optlen = opts.ipoptp_len;
11651 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11652 		switch (optval) {
11653 		case IPOPT_SSRR:
11654 		case IPOPT_LSRR:
11655 			off = opt[IPOPT_OFFSET];
11656 			/*
11657 			 * If one of the conditions is true, it means
11658 			 * end of options and dst already has the right
11659 			 * value.
11660 			 */
11661 			if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
11662 				off = optlen - IP_ADDR_LEN;
11663 				bcopy(&opt[off], &dst, IP_ADDR_LEN);
11664 			}
11665 			return (dst);
11666 		default:
11667 			break;
11668 		}
11669 	}
11670 
11671 	return (dst);
11672 }
11673 
11674 /*
11675  * Outbound IP fragmentation routine.
11676  * Assumes the caller has checked whether or not fragmentation should
11677  * be allowed. Here we copy the DF bit from the header to all the generated
11678  * fragments.
11679  */
11680 int
11681 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags,
11682     uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone,
11683     zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie)
11684 {
11685 	int		i1;
11686 	int		hdr_len;
11687 	mblk_t		*hdr_mp;
11688 	ipha_t		*ipha;
11689 	int		ip_data_end;
11690 	int		len;
11691 	mblk_t		*mp = mp_orig;
11692 	int		offset;
11693 	ill_t		*ill = nce->nce_ill;
11694 	ip_stack_t	*ipst = ill->ill_ipst;
11695 	mblk_t		*carve_mp;
11696 	uint32_t	frag_flag;
11697 	uint_t		priority = mp->b_band;
11698 	int		error = 0;
11699 
11700 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds);
11701 
11702 	if (pkt_len != msgdsize(mp)) {
11703 		ip0dbg(("Packet length mismatch: %d, %ld\n",
11704 		    pkt_len, msgdsize(mp)));
11705 		freemsg(mp);
11706 		return (EINVAL);
11707 	}
11708 
11709 	if (max_frag == 0) {
11710 		ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n"));
11711 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11712 		ip_drop_output("FragFails: zero max_frag", mp, ill);
11713 		freemsg(mp);
11714 		return (EINVAL);
11715 	}
11716 
11717 	ASSERT(MBLKL(mp) >= sizeof (ipha_t));
11718 	ipha = (ipha_t *)mp->b_rptr;
11719 	ASSERT(ntohs(ipha->ipha_length) == pkt_len);
11720 	frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF;
11721 
11722 	/*
11723 	 * Establish the starting offset.  May not be zero if we are fragging
11724 	 * a fragment that is being forwarded.
11725 	 */
11726 	offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET;
11727 
11728 	/* TODO why is this test needed? */
11729 	if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) {
11730 		/* TODO: notify ulp somehow */
11731 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11732 		ip_drop_output("FragFails: bad starting offset", mp, ill);
11733 		freemsg(mp);
11734 		return (EINVAL);
11735 	}
11736 
11737 	hdr_len = IPH_HDR_LENGTH(ipha);
11738 	ipha->ipha_hdr_checksum = 0;
11739 
11740 	/*
11741 	 * Establish the number of bytes maximum per frag, after putting
11742 	 * in the header.
11743 	 */
11744 	len = (max_frag - hdr_len) & ~7;
11745 
11746 	/* Get a copy of the header for the trailing frags */
11747 	hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst,
11748 	    mp);
11749 	if (hdr_mp == NULL) {
11750 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11751 		ip_drop_output("FragFails: no hdr_mp", mp, ill);
11752 		freemsg(mp);
11753 		return (ENOBUFS);
11754 	}
11755 
11756 	/* Store the starting offset, with the MoreFrags flag. */
11757 	i1 = offset | IPH_MF | frag_flag;
11758 	ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1);
11759 
11760 	/* Establish the ending byte offset, based on the starting offset. */
11761 	offset <<= 3;
11762 	ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len;
11763 
11764 	/* Store the length of the first fragment in the IP header. */
11765 	i1 = len + hdr_len;
11766 	ASSERT(i1 <= IP_MAXPACKET);
11767 	ipha->ipha_length = htons((uint16_t)i1);
11768 
11769 	/*
11770 	 * Compute the IP header checksum for the first frag.  We have to
11771 	 * watch out that we stop at the end of the header.
11772 	 */
11773 	ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11774 
11775 	/*
11776 	 * Now carve off the first frag.  Note that this will include the
11777 	 * original IP header.
11778 	 */
11779 	if (!(mp = ip_carve_mp(&mp_orig, i1))) {
11780 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11781 		ip_drop_output("FragFails: could not carve mp", mp_orig, ill);
11782 		freeb(hdr_mp);
11783 		freemsg(mp_orig);
11784 		return (ENOBUFS);
11785 	}
11786 
11787 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11788 
11789 	error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid,
11790 	    ixa_cookie);
11791 	if (error != 0 && error != EWOULDBLOCK) {
11792 		/* No point in sending the other fragments */
11793 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11794 		ip_drop_output("FragFails: postfragfn failed", mp_orig, ill);
11795 		freeb(hdr_mp);
11796 		freemsg(mp_orig);
11797 		return (error);
11798 	}
11799 
11800 	/* No need to redo state machine in loop */
11801 	ixaflags &= ~IXAF_REACH_CONF;
11802 
11803 	/* Advance the offset to the second frag starting point. */
11804 	offset += len;
11805 	/*
11806 	 * Update hdr_len from the copied header - there might be less options
11807 	 * in the later fragments.
11808 	 */
11809 	hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr);
11810 	/* Loop until done. */
11811 	for (;;) {
11812 		uint16_t	offset_and_flags;
11813 		uint16_t	ip_len;
11814 
11815 		if (ip_data_end - offset > len) {
11816 			/*
11817 			 * Carve off the appropriate amount from the original
11818 			 * datagram.
11819 			 */
11820 			if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11821 				mp = NULL;
11822 				break;
11823 			}
11824 			/*
11825 			 * More frags after this one.  Get another copy
11826 			 * of the header.
11827 			 */
11828 			if (carve_mp->b_datap->db_ref == 1 &&
11829 			    hdr_mp->b_wptr - hdr_mp->b_rptr <
11830 			    carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11831 				/* Inline IP header */
11832 				carve_mp->b_rptr -= hdr_mp->b_wptr -
11833 				    hdr_mp->b_rptr;
11834 				bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11835 				    hdr_mp->b_wptr - hdr_mp->b_rptr);
11836 				mp = carve_mp;
11837 			} else {
11838 				if (!(mp = copyb(hdr_mp))) {
11839 					freemsg(carve_mp);
11840 					break;
11841 				}
11842 				/* Get priority marking, if any. */
11843 				mp->b_band = priority;
11844 				mp->b_cont = carve_mp;
11845 			}
11846 			ipha = (ipha_t *)mp->b_rptr;
11847 			offset_and_flags = IPH_MF;
11848 		} else {
11849 			/*
11850 			 * Last frag.  Consume the header. Set len to
11851 			 * the length of this last piece.
11852 			 */
11853 			len = ip_data_end - offset;
11854 
11855 			/*
11856 			 * Carve off the appropriate amount from the original
11857 			 * datagram.
11858 			 */
11859 			if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11860 				mp = NULL;
11861 				break;
11862 			}
11863 			if (carve_mp->b_datap->db_ref == 1 &&
11864 			    hdr_mp->b_wptr - hdr_mp->b_rptr <
11865 			    carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11866 				/* Inline IP header */
11867 				carve_mp->b_rptr -= hdr_mp->b_wptr -
11868 				    hdr_mp->b_rptr;
11869 				bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11870 				    hdr_mp->b_wptr - hdr_mp->b_rptr);
11871 				mp = carve_mp;
11872 				freeb(hdr_mp);
11873 				hdr_mp = mp;
11874 			} else {
11875 				mp = hdr_mp;
11876 				/* Get priority marking, if any. */
11877 				mp->b_band = priority;
11878 				mp->b_cont = carve_mp;
11879 			}
11880 			ipha = (ipha_t *)mp->b_rptr;
11881 			/* A frag of a frag might have IPH_MF non-zero */
11882 			offset_and_flags =
11883 			    ntohs(ipha->ipha_fragment_offset_and_flags) &
11884 			    IPH_MF;
11885 		}
11886 		offset_and_flags |= (uint16_t)(offset >> 3);
11887 		offset_and_flags |= (uint16_t)frag_flag;
11888 		/* Store the offset and flags in the IP header. */
11889 		ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
11890 
11891 		/* Store the length in the IP header. */
11892 		ip_len = (uint16_t)(len + hdr_len);
11893 		ipha->ipha_length = htons(ip_len);
11894 
11895 		/*
11896 		 * Set the IP header checksum.	Note that mp is just
11897 		 * the header, so this is easy to pass to ip_csum.
11898 		 */
11899 		ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11900 
11901 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11902 
11903 		error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone,
11904 		    nolzid, ixa_cookie);
11905 		/* All done if we just consumed the hdr_mp. */
11906 		if (mp == hdr_mp) {
11907 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs);
11908 			return (error);
11909 		}
11910 		if (error != 0 && error != EWOULDBLOCK) {
11911 			DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill,
11912 			    mblk_t *, hdr_mp);
11913 			/* No point in sending the other fragments */
11914 			break;
11915 		}
11916 
11917 		/* Otherwise, advance and loop. */
11918 		offset += len;
11919 	}
11920 	/* Clean up following allocation failure. */
11921 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11922 	ip_drop_output("FragFails: loop ended", NULL, ill);
11923 	if (mp != hdr_mp)
11924 		freeb(hdr_mp);
11925 	if (mp != mp_orig)
11926 		freemsg(mp_orig);
11927 	return (error);
11928 }
11929 
11930 /*
11931  * Copy the header plus those options which have the copy bit set
11932  */
11933 static mblk_t *
11934 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst,
11935     mblk_t *src)
11936 {
11937 	mblk_t	*mp;
11938 	uchar_t	*up;
11939 
11940 	/*
11941 	 * Quick check if we need to look for options without the copy bit
11942 	 * set
11943 	 */
11944 	mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src);
11945 	if (!mp)
11946 		return (mp);
11947 	mp->b_rptr += ipst->ips_ip_wroff_extra;
11948 	if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) {
11949 		bcopy(rptr, mp->b_rptr, hdr_len);
11950 		mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra;
11951 		return (mp);
11952 	}
11953 	up  = mp->b_rptr;
11954 	bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH);
11955 	up += IP_SIMPLE_HDR_LENGTH;
11956 	rptr += IP_SIMPLE_HDR_LENGTH;
11957 	hdr_len -= IP_SIMPLE_HDR_LENGTH;
11958 	while (hdr_len > 0) {
11959 		uint32_t optval;
11960 		uint32_t optlen;
11961 
11962 		optval = *rptr;
11963 		if (optval == IPOPT_EOL)
11964 			break;
11965 		if (optval == IPOPT_NOP)
11966 			optlen = 1;
11967 		else
11968 			optlen = rptr[1];
11969 		if (optval & IPOPT_COPY) {
11970 			bcopy(rptr, up, optlen);
11971 			up += optlen;
11972 		}
11973 		rptr += optlen;
11974 		hdr_len -= optlen;
11975 	}
11976 	/*
11977 	 * Make sure that we drop an even number of words by filling
11978 	 * with EOL to the next word boundary.
11979 	 */
11980 	for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH);
11981 	    hdr_len & 0x3; hdr_len++)
11982 		*up++ = IPOPT_EOL;
11983 	mp->b_wptr = up;
11984 	/* Update header length */
11985 	mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2));
11986 	return (mp);
11987 }
11988 
11989 /*
11990  * Update any source route, record route, or timestamp options when
11991  * sending a packet back to ourselves.
11992  * Check that we are at end of strict source route.
11993  * The options have been sanity checked by ip_output_options().
11994  */
11995 void
11996 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst)
11997 {
11998 	ipoptp_t	opts;
11999 	uchar_t		*opt;
12000 	uint8_t		optval;
12001 	uint8_t		optlen;
12002 	ipaddr_t	dst;
12003 	uint32_t	ts;
12004 	timestruc_t	now;
12005 
12006 	for (optval = ipoptp_first(&opts, ipha);
12007 	    optval != IPOPT_EOL;
12008 	    optval = ipoptp_next(&opts)) {
12009 		opt = opts.ipoptp_cur;
12010 		optlen = opts.ipoptp_len;
12011 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
12012 		switch (optval) {
12013 			uint32_t off;
12014 		case IPOPT_SSRR:
12015 		case IPOPT_LSRR:
12016 			off = opt[IPOPT_OFFSET];
12017 			off--;
12018 			if (optlen < IP_ADDR_LEN ||
12019 			    off > optlen - IP_ADDR_LEN) {
12020 				/* End of source route */
12021 				break;
12022 			}
12023 			/*
12024 			 * This will only happen if two consecutive entries
12025 			 * in the source route contains our address or if
12026 			 * it is a packet with a loose source route which
12027 			 * reaches us before consuming the whole source route
12028 			 */
12029 
12030 			if (optval == IPOPT_SSRR) {
12031 				return;
12032 			}
12033 			/*
12034 			 * Hack: instead of dropping the packet truncate the
12035 			 * source route to what has been used by filling the
12036 			 * rest with IPOPT_NOP.
12037 			 */
12038 			opt[IPOPT_OLEN] = (uint8_t)off;
12039 			while (off < optlen) {
12040 				opt[off++] = IPOPT_NOP;
12041 			}
12042 			break;
12043 		case IPOPT_RR:
12044 			off = opt[IPOPT_OFFSET];
12045 			off--;
12046 			if (optlen < IP_ADDR_LEN ||
12047 			    off > optlen - IP_ADDR_LEN) {
12048 				/* No more room - ignore */
12049 				ip1dbg((
12050 				    "ip_output_local_options: end of RR\n"));
12051 				break;
12052 			}
12053 			dst = htonl(INADDR_LOOPBACK);
12054 			bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
12055 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
12056 			break;
12057 		case IPOPT_TS:
12058 			/* Insert timestamp if there is romm */
12059 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12060 			case IPOPT_TS_TSONLY:
12061 				off = IPOPT_TS_TIMELEN;
12062 				break;
12063 			case IPOPT_TS_PRESPEC:
12064 			case IPOPT_TS_PRESPEC_RFC791:
12065 				/* Verify that the address matched */
12066 				off = opt[IPOPT_OFFSET] - 1;
12067 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
12068 				if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
12069 					/* Not for us */
12070 					break;
12071 				}
12072 				/* FALLTHRU */
12073 			case IPOPT_TS_TSANDADDR:
12074 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
12075 				break;
12076 			default:
12077 				/*
12078 				 * ip_*put_options should have already
12079 				 * dropped this packet.
12080 				 */
12081 				cmn_err(CE_PANIC, "ip_output_local_options: "
12082 				    "unknown IT - bug in ip_output_options?\n");
12083 				return;	/* Keep "lint" happy */
12084 			}
12085 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
12086 				/* Increase overflow counter */
12087 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
12088 				opt[IPOPT_POS_OV_FLG] = (uint8_t)
12089 				    (opt[IPOPT_POS_OV_FLG] & 0x0F) |
12090 				    (off << 4);
12091 				break;
12092 			}
12093 			off = opt[IPOPT_OFFSET] - 1;
12094 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12095 			case IPOPT_TS_PRESPEC:
12096 			case IPOPT_TS_PRESPEC_RFC791:
12097 			case IPOPT_TS_TSANDADDR:
12098 				dst = htonl(INADDR_LOOPBACK);
12099 				bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
12100 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
12101 				/* FALLTHRU */
12102 			case IPOPT_TS_TSONLY:
12103 				off = opt[IPOPT_OFFSET] - 1;
12104 				/* Compute # of milliseconds since midnight */
12105 				gethrestime(&now);
12106 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
12107 				    now.tv_nsec / (NANOSEC / MILLISEC);
12108 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
12109 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
12110 				break;
12111 			}
12112 			break;
12113 		}
12114 	}
12115 }
12116 
12117 /*
12118  * Prepend an M_DATA fastpath header, and if none present prepend a
12119  * DL_UNITDATA_REQ. Frees the mblk on failure.
12120  *
12121  * nce_dlur_mp and nce_fp_mp can not disappear once they have been set.
12122  * If there is a change to them, the nce will be deleted (condemned) and
12123  * a new nce_t will be created when packets are sent. Thus we need no locks
12124  * to access those fields.
12125  *
12126  * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended
12127  * we place b_band in dl_priority.dl_max.
12128  */
12129 static mblk_t *
12130 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce)
12131 {
12132 	uint_t	hlen;
12133 	mblk_t *mp1;
12134 	uint_t	priority;
12135 	uchar_t *rptr;
12136 
12137 	rptr = mp->b_rptr;
12138 
12139 	ASSERT(DB_TYPE(mp) == M_DATA);
12140 	priority = mp->b_band;
12141 
12142 	ASSERT(nce != NULL);
12143 	if ((mp1 = nce->nce_fp_mp) != NULL) {
12144 		hlen = MBLKL(mp1);
12145 		/*
12146 		 * Check if we have enough room to prepend fastpath
12147 		 * header
12148 		 */
12149 		if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) {
12150 			rptr -= hlen;
12151 			bcopy(mp1->b_rptr, rptr, hlen);
12152 			/*
12153 			 * Set the b_rptr to the start of the link layer
12154 			 * header
12155 			 */
12156 			mp->b_rptr = rptr;
12157 			return (mp);
12158 		}
12159 		mp1 = copyb(mp1);
12160 		if (mp1 == NULL) {
12161 			ill_t *ill = nce->nce_ill;
12162 
12163 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12164 			ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12165 			freemsg(mp);
12166 			return (NULL);
12167 		}
12168 		mp1->b_band = priority;
12169 		mp1->b_cont = mp;
12170 		DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
12171 		DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
12172 		DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
12173 		DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
12174 		DB_LSOMSS(mp1) = DB_LSOMSS(mp);
12175 		DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1);
12176 		/*
12177 		 * XXX disable ICK_VALID and compute checksum
12178 		 * here; can happen if nce_fp_mp changes and
12179 		 * it can't be copied now due to insufficient
12180 		 * space. (unlikely, fp mp can change, but it
12181 		 * does not increase in length)
12182 		 */
12183 		return (mp1);
12184 	}
12185 	mp1 = copyb(nce->nce_dlur_mp);
12186 
12187 	if (mp1 == NULL) {
12188 		ill_t *ill = nce->nce_ill;
12189 
12190 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12191 		ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12192 		freemsg(mp);
12193 		return (NULL);
12194 	}
12195 	mp1->b_cont = mp;
12196 	if (priority != 0) {
12197 		mp1->b_band = priority;
12198 		((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max =
12199 		    priority;
12200 	}
12201 	return (mp1);
12202 #undef rptr
12203 }
12204 
12205 /*
12206  * Finish the outbound IPsec processing. This function is called from
12207  * ipsec_out_process() if the IPsec packet was processed
12208  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12209  * asynchronously.
12210  *
12211  * This is common to IPv4 and IPv6.
12212  */
12213 int
12214 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa)
12215 {
12216 	iaflags_t	ixaflags = ixa->ixa_flags;
12217 	uint_t		pktlen;
12218 
12219 
12220 	/* AH/ESP don't update ixa_pktlen when they modify the packet */
12221 	if (ixaflags & IXAF_IS_IPV4) {
12222 		ipha_t		*ipha = (ipha_t *)mp->b_rptr;
12223 
12224 		ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12225 		pktlen = ntohs(ipha->ipha_length);
12226 	} else {
12227 		ip6_t		*ip6h = (ip6_t *)mp->b_rptr;
12228 
12229 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12230 		pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12231 	}
12232 
12233 	/*
12234 	 * We release any hard reference on the SAs here to make
12235 	 * sure the SAs can be garbage collected. ipsr_sa has a soft reference
12236 	 * on the SAs.
12237 	 * If in the future we want the hard latching of the SAs in the
12238 	 * ip_xmit_attr_t then we should remove this.
12239 	 */
12240 	if (ixa->ixa_ipsec_esp_sa != NULL) {
12241 		IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12242 		ixa->ixa_ipsec_esp_sa = NULL;
12243 	}
12244 	if (ixa->ixa_ipsec_ah_sa != NULL) {
12245 		IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12246 		ixa->ixa_ipsec_ah_sa = NULL;
12247 	}
12248 
12249 	/* Do we need to fragment? */
12250 	if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) ||
12251 	    pktlen > ixa->ixa_fragsize) {
12252 		if (ixaflags & IXAF_IS_IPV4) {
12253 			ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR));
12254 			/*
12255 			 * We check for the DF case in ipsec_out_process
12256 			 * hence this only handles the non-DF case.
12257 			 */
12258 			return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags,
12259 			    pktlen, ixa->ixa_fragsize,
12260 			    ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12261 			    ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn,
12262 			    &ixa->ixa_cookie));
12263 		} else {
12264 			mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa);
12265 			if (mp == NULL) {
12266 				/* MIB and ip_drop_output already done */
12267 				return (ENOMEM);
12268 			}
12269 			pktlen += sizeof (ip6_frag_t);
12270 			if (pktlen > ixa->ixa_fragsize) {
12271 				return (ip_fragment_v6(mp, ixa->ixa_nce,
12272 				    ixa->ixa_flags, pktlen,
12273 				    ixa->ixa_fragsize, ixa->ixa_xmit_hint,
12274 				    ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid,
12275 				    ixa->ixa_postfragfn, &ixa->ixa_cookie));
12276 			}
12277 		}
12278 	}
12279 	return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags,
12280 	    pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12281 	    ixa->ixa_no_loop_zoneid, NULL));
12282 }
12283 
12284 /*
12285  * Finish the inbound IPsec processing. This function is called from
12286  * ipsec_out_process() if the IPsec packet was processed
12287  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12288  * asynchronously.
12289  *
12290  * This is common to IPv4 and IPv6.
12291  */
12292 void
12293 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira)
12294 {
12295 	iaflags_t	iraflags = ira->ira_flags;
12296 
12297 	/* Length might have changed */
12298 	if (iraflags & IRAF_IS_IPV4) {
12299 		ipha_t		*ipha = (ipha_t *)mp->b_rptr;
12300 
12301 		ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12302 		ira->ira_pktlen = ntohs(ipha->ipha_length);
12303 		ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
12304 		ira->ira_protocol = ipha->ipha_protocol;
12305 
12306 		ip_fanout_v4(mp, ipha, ira);
12307 	} else {
12308 		ip6_t		*ip6h = (ip6_t *)mp->b_rptr;
12309 		uint8_t		*nexthdrp;
12310 
12311 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12312 		ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12313 		if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length,
12314 		    &nexthdrp)) {
12315 			/* Malformed packet */
12316 			BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
12317 			ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill);
12318 			freemsg(mp);
12319 			return;
12320 		}
12321 		ira->ira_protocol = *nexthdrp;
12322 		ip_fanout_v6(mp, ip6h, ira);
12323 	}
12324 }
12325 
12326 /*
12327  * Select which AH & ESP SA's to use (if any) for the outbound packet.
12328  *
12329  * If this function returns B_TRUE, the requested SA's have been filled
12330  * into the ixa_ipsec_*_sa pointers.
12331  *
12332  * If the function returns B_FALSE, the packet has been "consumed", most
12333  * likely by an ACQUIRE sent up via PF_KEY to a key management daemon.
12334  *
12335  * The SA references created by the protocol-specific "select"
12336  * function will be released in ip_output_post_ipsec.
12337  */
12338 static boolean_t
12339 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa)
12340 {
12341 	boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE;
12342 	ipsec_policy_t *pp;
12343 	ipsec_action_t *ap;
12344 
12345 	ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12346 	ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12347 	    (ixa->ixa_ipsec_action != NULL));
12348 
12349 	ap = ixa->ixa_ipsec_action;
12350 	if (ap == NULL) {
12351 		pp = ixa->ixa_ipsec_policy;
12352 		ASSERT(pp != NULL);
12353 		ap = pp->ipsp_act;
12354 		ASSERT(ap != NULL);
12355 	}
12356 
12357 	/*
12358 	 * We have an action.  now, let's select SA's.
12359 	 * A side effect of setting ixa_ipsec_*_sa is that it will
12360 	 * be cached in the conn_t.
12361 	 */
12362 	if (ap->ipa_want_esp) {
12363 		if (ixa->ixa_ipsec_esp_sa == NULL) {
12364 			need_esp_acquire = !ipsec_outbound_sa(mp, ixa,
12365 			    IPPROTO_ESP);
12366 		}
12367 		ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL);
12368 	}
12369 
12370 	if (ap->ipa_want_ah) {
12371 		if (ixa->ixa_ipsec_ah_sa == NULL) {
12372 			need_ah_acquire = !ipsec_outbound_sa(mp, ixa,
12373 			    IPPROTO_AH);
12374 		}
12375 		ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL);
12376 		/*
12377 		 * The ESP and AH processing order needs to be preserved
12378 		 * when both protocols are required (ESP should be applied
12379 		 * before AH for an outbound packet). Force an ESP ACQUIRE
12380 		 * when both ESP and AH are required, and an AH ACQUIRE
12381 		 * is needed.
12382 		 */
12383 		if (ap->ipa_want_esp && need_ah_acquire)
12384 			need_esp_acquire = B_TRUE;
12385 	}
12386 
12387 	/*
12388 	 * Send an ACQUIRE (extended, regular, or both) if we need one.
12389 	 * Release SAs that got referenced, but will not be used until we
12390 	 * acquire _all_ of the SAs we need.
12391 	 */
12392 	if (need_ah_acquire || need_esp_acquire) {
12393 		if (ixa->ixa_ipsec_ah_sa != NULL) {
12394 			IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12395 			ixa->ixa_ipsec_ah_sa = NULL;
12396 		}
12397 		if (ixa->ixa_ipsec_esp_sa != NULL) {
12398 			IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12399 			ixa->ixa_ipsec_esp_sa = NULL;
12400 		}
12401 
12402 		sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire);
12403 		return (B_FALSE);
12404 	}
12405 
12406 	return (B_TRUE);
12407 }
12408 
12409 /*
12410  * Handle IPsec output processing.
12411  * This function is only entered once for a given packet.
12412  * We try to do things synchronously, but if we need to have user-level
12413  * set up SAs, or ESP or AH uses asynchronous kEF, then the operation
12414  * will be completed
12415  *  - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish
12416  *  - when asynchronous ESP is done it will do AH
12417  *
12418  * In all cases we come back in ip_output_post_ipsec() to fragment and
12419  * send out the packet.
12420  */
12421 int
12422 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa)
12423 {
12424 	ill_t		*ill = ixa->ixa_nce->nce_ill;
12425 	ip_stack_t	*ipst = ixa->ixa_ipst;
12426 	ipsec_stack_t	*ipss;
12427 	ipsec_policy_t	*pp;
12428 	ipsec_action_t	*ap;
12429 
12430 	ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12431 
12432 	ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12433 	    (ixa->ixa_ipsec_action != NULL));
12434 
12435 	ipss = ipst->ips_netstack->netstack_ipsec;
12436 	if (!ipsec_loaded(ipss)) {
12437 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12438 		ip_drop_packet(mp, B_TRUE, ill,
12439 		    DROPPER(ipss, ipds_ip_ipsec_not_loaded),
12440 		    &ipss->ipsec_dropper);
12441 		return (ENOTSUP);
12442 	}
12443 
12444 	ap = ixa->ixa_ipsec_action;
12445 	if (ap == NULL) {
12446 		pp = ixa->ixa_ipsec_policy;
12447 		ASSERT(pp != NULL);
12448 		ap = pp->ipsp_act;
12449 		ASSERT(ap != NULL);
12450 	}
12451 
12452 	/* Handle explicit drop action and bypass. */
12453 	switch (ap->ipa_act.ipa_type) {
12454 	case IPSEC_ACT_DISCARD:
12455 	case IPSEC_ACT_REJECT:
12456 		ip_drop_packet(mp, B_FALSE, ill,
12457 		    DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper);
12458 		return (EHOSTUNREACH);	/* IPsec policy failure */
12459 	case IPSEC_ACT_BYPASS:
12460 		return (ip_output_post_ipsec(mp, ixa));
12461 	}
12462 
12463 	/*
12464 	 * The order of processing is first insert a IP header if needed.
12465 	 * Then insert the ESP header and then the AH header.
12466 	 */
12467 	if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) {
12468 		/*
12469 		 * First get the outer IP header before sending
12470 		 * it to ESP.
12471 		 */
12472 		ipha_t *oipha, *iipha;
12473 		mblk_t *outer_mp, *inner_mp;
12474 
12475 		if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) {
12476 			(void) mi_strlog(ill->ill_rq, 0,
12477 			    SL_ERROR|SL_TRACE|SL_CONSOLE,
12478 			    "ipsec_out_process: "
12479 			    "Self-Encapsulation failed: Out of memory\n");
12480 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12481 			ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12482 			freemsg(mp);
12483 			return (ENOBUFS);
12484 		}
12485 		inner_mp = mp;
12486 		ASSERT(inner_mp->b_datap->db_type == M_DATA);
12487 		oipha = (ipha_t *)outer_mp->b_rptr;
12488 		iipha = (ipha_t *)inner_mp->b_rptr;
12489 		*oipha = *iipha;
12490 		outer_mp->b_wptr += sizeof (ipha_t);
12491 		oipha->ipha_length = htons(ntohs(iipha->ipha_length) +
12492 		    sizeof (ipha_t));
12493 		oipha->ipha_protocol = IPPROTO_ENCAP;
12494 		oipha->ipha_version_and_hdr_length =
12495 		    IP_SIMPLE_HDR_VERSION;
12496 		oipha->ipha_hdr_checksum = 0;
12497 		oipha->ipha_hdr_checksum = ip_csum_hdr(oipha);
12498 		outer_mp->b_cont = inner_mp;
12499 		mp = outer_mp;
12500 
12501 		ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
12502 	}
12503 
12504 	/* If we need to wait for a SA then we can't return any errno */
12505 	if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) ||
12506 	    (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) &&
12507 	    !ipsec_out_select_sa(mp, ixa))
12508 		return (0);
12509 
12510 	/*
12511 	 * By now, we know what SA's to use.  Toss over to ESP & AH
12512 	 * to do the heavy lifting.
12513 	 */
12514 	if (ap->ipa_want_esp) {
12515 		ASSERT(ixa->ixa_ipsec_esp_sa != NULL);
12516 
12517 		mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa);
12518 		if (mp == NULL) {
12519 			/*
12520 			 * Either it failed or is pending. In the former case
12521 			 * ipIfStatsInDiscards was increased.
12522 			 */
12523 			return (0);
12524 		}
12525 	}
12526 
12527 	if (ap->ipa_want_ah) {
12528 		ASSERT(ixa->ixa_ipsec_ah_sa != NULL);
12529 
12530 		mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa);
12531 		if (mp == NULL) {
12532 			/*
12533 			 * Either it failed or is pending. In the former case
12534 			 * ipIfStatsInDiscards was increased.
12535 			 */
12536 			return (0);
12537 		}
12538 	}
12539 	/*
12540 	 * We are done with IPsec processing. Send it over
12541 	 * the wire.
12542 	 */
12543 	return (ip_output_post_ipsec(mp, ixa));
12544 }
12545 
12546 /*
12547  * ioctls that go through a down/up sequence may need to wait for the down
12548  * to complete. This involves waiting for the ire and ipif refcnts to go down
12549  * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail.
12550  */
12551 /* ARGSUSED */
12552 void
12553 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
12554 {
12555 	struct iocblk *iocp;
12556 	mblk_t *mp1;
12557 	ip_ioctl_cmd_t *ipip;
12558 	int err;
12559 	sin_t	*sin;
12560 	struct lifreq *lifr;
12561 	struct ifreq *ifr;
12562 
12563 	iocp = (struct iocblk *)mp->b_rptr;
12564 	ASSERT(ipsq != NULL);
12565 	/* Existence of mp1 verified in ip_wput_nondata */
12566 	mp1 = mp->b_cont->b_cont;
12567 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12568 	if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) {
12569 		/*
12570 		 * Special case where ipx_current_ipif is not set:
12571 		 * ill_phyint_reinit merged the v4 and v6 into a single ipsq.
12572 		 * We are here as were not able to complete the operation in
12573 		 * ipif_set_values because we could not become exclusive on
12574 		 * the new ipsq.
12575 		 */
12576 		ill_t *ill = q->q_ptr;
12577 		ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd);
12578 	}
12579 	ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL);
12580 
12581 	if (ipip->ipi_cmd_type == IF_CMD) {
12582 		/* This a old style SIOC[GS]IF* command */
12583 		ifr = (struct ifreq *)mp1->b_rptr;
12584 		sin = (sin_t *)&ifr->ifr_addr;
12585 	} else if (ipip->ipi_cmd_type == LIF_CMD) {
12586 		/* This a new style SIOC[GS]LIF* command */
12587 		lifr = (struct lifreq *)mp1->b_rptr;
12588 		sin = (sin_t *)&lifr->lifr_addr;
12589 	} else {
12590 		sin = NULL;
12591 	}
12592 
12593 	err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin,
12594 	    q, mp, ipip, mp1->b_rptr);
12595 
12596 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish",
12597 	    int, ipip->ipi_cmd,
12598 	    ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill,
12599 	    ipif_t *, ipsq->ipsq_xop->ipx_current_ipif);
12600 
12601 	ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12602 }
12603 
12604 /*
12605  * ioctl processing
12606  *
12607  * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up
12608  * the ioctl command in the ioctl tables, determines the copyin data size
12609  * from the ipi_copyin_size field, and does an mi_copyin() of that size.
12610  *
12611  * ioctl processing then continues when the M_IOCDATA makes its way down to
12612  * ip_wput_nondata().  The ioctl is looked up again in the ioctl table, its
12613  * associated 'conn' is refheld till the end of the ioctl and the general
12614  * ioctl processing function ip_process_ioctl() is called to extract the
12615  * arguments and process the ioctl.  To simplify extraction, ioctl commands
12616  * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a
12617  * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq())
12618  * is used to extract the ioctl's arguments.
12619  *
12620  * ip_process_ioctl determines if the ioctl needs to be serialized, and if
12621  * so goes thru the serialization primitive ipsq_try_enter. Then the
12622  * appropriate function to handle the ioctl is called based on the entry in
12623  * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish
12624  * which also refreleases the 'conn' that was refheld at the start of the
12625  * ioctl. Finally ipsq_exit is called if needed to exit the ipsq.
12626  *
12627  * Many exclusive ioctls go thru an internal down up sequence as part of
12628  * the operation. For example an attempt to change the IP address of an
12629  * ipif entails ipif_down, set address, ipif_up. Bringing down the interface
12630  * does all the cleanup such as deleting all ires that use this address.
12631  * Then we need to wait till all references to the interface go away.
12632  */
12633 void
12634 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12635 {
12636 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
12637 	ip_ioctl_cmd_t *ipip = arg;
12638 	ip_extract_func_t *extract_funcp;
12639 	cmd_info_t ci;
12640 	int err;
12641 	boolean_t entered_ipsq = B_FALSE;
12642 
12643 	ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd));
12644 
12645 	if (ipip == NULL)
12646 		ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12647 
12648 	/*
12649 	 * SIOCLIFADDIF needs to go thru a special path since the
12650 	 * ill may not exist yet. This happens in the case of lo0
12651 	 * which is created using this ioctl.
12652 	 */
12653 	if (ipip->ipi_cmd == SIOCLIFADDIF) {
12654 		err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL);
12655 		DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish",
12656 		    int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12657 		ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12658 		return;
12659 	}
12660 
12661 	ci.ci_ipif = NULL;
12662 	switch (ipip->ipi_cmd_type) {
12663 	case MISC_CMD:
12664 	case MSFILT_CMD:
12665 		/*
12666 		 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF.
12667 		 */
12668 		if (ipip->ipi_cmd == IF_UNITSEL) {
12669 			/* ioctl comes down the ill */
12670 			ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif;
12671 			ipif_refhold(ci.ci_ipif);
12672 		}
12673 		err = 0;
12674 		ci.ci_sin = NULL;
12675 		ci.ci_sin6 = NULL;
12676 		ci.ci_lifr = NULL;
12677 		extract_funcp = NULL;
12678 		break;
12679 
12680 	case IF_CMD:
12681 	case LIF_CMD:
12682 		extract_funcp = ip_extract_lifreq;
12683 		break;
12684 
12685 	case ARP_CMD:
12686 	case XARP_CMD:
12687 		extract_funcp = ip_extract_arpreq;
12688 		break;
12689 
12690 	default:
12691 		ASSERT(0);
12692 	}
12693 
12694 	if (extract_funcp != NULL) {
12695 		err = (*extract_funcp)(q, mp, ipip, &ci);
12696 		if (err != 0) {
12697 			DTRACE_PROBE4(ipif__ioctl,
12698 			    char *, "ip_process_ioctl finish err",
12699 			    int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12700 			ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12701 			return;
12702 		}
12703 
12704 		/*
12705 		 * All of the extraction functions return a refheld ipif.
12706 		 */
12707 		ASSERT(ci.ci_ipif != NULL);
12708 	}
12709 
12710 	if (!(ipip->ipi_flags & IPI_WR)) {
12711 		/*
12712 		 * A return value of EINPROGRESS means the ioctl is
12713 		 * either queued and waiting for some reason or has
12714 		 * already completed.
12715 		 */
12716 		err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
12717 		    ci.ci_lifr);
12718 		if (ci.ci_ipif != NULL) {
12719 			DTRACE_PROBE4(ipif__ioctl,
12720 			    char *, "ip_process_ioctl finish RD",
12721 			    int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill,
12722 			    ipif_t *, ci.ci_ipif);
12723 			ipif_refrele(ci.ci_ipif);
12724 		} else {
12725 			DTRACE_PROBE4(ipif__ioctl,
12726 			    char *, "ip_process_ioctl finish RD",
12727 			    int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12728 		}
12729 		ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12730 		return;
12731 	}
12732 
12733 	ASSERT(ci.ci_ipif != NULL);
12734 
12735 	/*
12736 	 * If ipsq is non-NULL, we are already being called exclusively
12737 	 */
12738 	ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
12739 	if (ipsq == NULL) {
12740 		ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl,
12741 		    NEW_OP, B_TRUE);
12742 		if (ipsq == NULL) {
12743 			ipif_refrele(ci.ci_ipif);
12744 			return;
12745 		}
12746 		entered_ipsq = B_TRUE;
12747 	}
12748 	/*
12749 	 * Release the ipif so that ipif_down and friends that wait for
12750 	 * references to go away are not misled about the current ipif_refcnt
12751 	 * values. We are writer so we can access the ipif even after releasing
12752 	 * the ipif.
12753 	 */
12754 	ipif_refrele(ci.ci_ipif);
12755 
12756 	ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd);
12757 
12758 	/*
12759 	 * A return value of EINPROGRESS means the ioctl is
12760 	 * either queued and waiting for some reason or has
12761 	 * already completed.
12762 	 */
12763 	err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr);
12764 
12765 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR",
12766 	    int, ipip->ipi_cmd,
12767 	    ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill,
12768 	    ipif_t *, ci.ci_ipif);
12769 	ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12770 
12771 	if (entered_ipsq)
12772 		ipsq_exit(ipsq);
12773 }
12774 
12775 /*
12776  * Complete the ioctl. Typically ioctls use the mi package and need to
12777  * do mi_copyout/mi_copy_done.
12778  */
12779 void
12780 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq)
12781 {
12782 	conn_t	*connp = NULL;
12783 
12784 	if (err == EINPROGRESS)
12785 		return;
12786 
12787 	if (CONN_Q(q)) {
12788 		connp = Q_TO_CONN(q);
12789 		ASSERT(connp->conn_ref >= 2);
12790 	}
12791 
12792 	switch (mode) {
12793 	case COPYOUT:
12794 		if (err == 0)
12795 			mi_copyout(q, mp);
12796 		else
12797 			mi_copy_done(q, mp, err);
12798 		break;
12799 
12800 	case NO_COPYOUT:
12801 		mi_copy_done(q, mp, err);
12802 		break;
12803 
12804 	default:
12805 		ASSERT(mode == CONN_CLOSE);	/* aborted through CONN_CLOSE */
12806 		break;
12807 	}
12808 
12809 	/*
12810 	 * The refhold placed at the start of the ioctl is released here.
12811 	 */
12812 	if (connp != NULL)
12813 		CONN_OPER_PENDING_DONE(connp);
12814 
12815 	if (ipsq != NULL)
12816 		ipsq_current_finish(ipsq);
12817 }
12818 
12819 /* Handles all non data messages */
12820 void
12821 ip_wput_nondata(queue_t *q, mblk_t *mp)
12822 {
12823 	mblk_t		*mp1;
12824 	struct iocblk	*iocp;
12825 	ip_ioctl_cmd_t	*ipip;
12826 	conn_t		*connp;
12827 	cred_t		*cr;
12828 	char		*proto_str;
12829 
12830 	if (CONN_Q(q))
12831 		connp = Q_TO_CONN(q);
12832 	else
12833 		connp = NULL;
12834 
12835 	switch (DB_TYPE(mp)) {
12836 	case M_IOCTL:
12837 		/*
12838 		 * IOCTL processing begins in ip_sioctl_copyin_setup which
12839 		 * will arrange to copy in associated control structures.
12840 		 */
12841 		ip_sioctl_copyin_setup(q, mp);
12842 		return;
12843 	case M_IOCDATA:
12844 		/*
12845 		 * Ensure that this is associated with one of our trans-
12846 		 * parent ioctls.  If it's not ours, discard it if we're
12847 		 * running as a driver, or pass it on if we're a module.
12848 		 */
12849 		iocp = (struct iocblk *)mp->b_rptr;
12850 		ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12851 		if (ipip == NULL) {
12852 			if (q->q_next == NULL) {
12853 				goto nak;
12854 			} else {
12855 				putnext(q, mp);
12856 			}
12857 			return;
12858 		}
12859 		if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
12860 			/*
12861 			 * The ioctl is one we recognise, but is not consumed
12862 			 * by IP as a module and we are a module, so we drop
12863 			 */
12864 			goto nak;
12865 		}
12866 
12867 		/* IOCTL continuation following copyin or copyout. */
12868 		if (mi_copy_state(q, mp, NULL) == -1) {
12869 			/*
12870 			 * The copy operation failed.  mi_copy_state already
12871 			 * cleaned up, so we're out of here.
12872 			 */
12873 			return;
12874 		}
12875 		/*
12876 		 * If we just completed a copy in, we become writer and
12877 		 * continue processing in ip_sioctl_copyin_done.  If it
12878 		 * was a copy out, we call mi_copyout again.  If there is
12879 		 * nothing more to copy out, it will complete the IOCTL.
12880 		 */
12881 		if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) {
12882 			if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) {
12883 				mi_copy_done(q, mp, EPROTO);
12884 				return;
12885 			}
12886 			/*
12887 			 * Check for cases that need more copying.  A return
12888 			 * value of 0 means a second copyin has been started,
12889 			 * so we return; a return value of 1 means no more
12890 			 * copying is needed, so we continue.
12891 			 */
12892 			if (ipip->ipi_cmd_type == MSFILT_CMD &&
12893 			    MI_COPY_COUNT(mp) == 1) {
12894 				if (ip_copyin_msfilter(q, mp) == 0)
12895 					return;
12896 			}
12897 			/*
12898 			 * Refhold the conn, till the ioctl completes. This is
12899 			 * needed in case the ioctl ends up in the pending mp
12900 			 * list. Every mp in the ipx_pending_mp list
12901 			 * must have a refhold on the conn
12902 			 * to resume processing. The refhold is released when
12903 			 * the ioctl completes. (normally or abnormally)
12904 			 * In all cases ip_ioctl_finish is called to finish
12905 			 * the ioctl.
12906 			 */
12907 			if (connp != NULL) {
12908 				/* This is not a reentry */
12909 				CONN_INC_REF(connp);
12910 			} else {
12911 				if (!(ipip->ipi_flags & IPI_MODOK)) {
12912 					mi_copy_done(q, mp, EINVAL);
12913 					return;
12914 				}
12915 			}
12916 
12917 			ip_process_ioctl(NULL, q, mp, ipip);
12918 
12919 		} else {
12920 			mi_copyout(q, mp);
12921 		}
12922 		return;
12923 
12924 	case M_IOCNAK:
12925 		/*
12926 		 * The only way we could get here is if a resolver didn't like
12927 		 * an IOCTL we sent it.	 This shouldn't happen.
12928 		 */
12929 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
12930 		    "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x",
12931 		    ((struct iocblk *)mp->b_rptr)->ioc_cmd);
12932 		freemsg(mp);
12933 		return;
12934 	case M_IOCACK:
12935 		/* /dev/ip shouldn't see this */
12936 		goto nak;
12937 	case M_FLUSH:
12938 		if (*mp->b_rptr & FLUSHW)
12939 			flushq(q, FLUSHALL);
12940 		if (q->q_next) {
12941 			putnext(q, mp);
12942 			return;
12943 		}
12944 		if (*mp->b_rptr & FLUSHR) {
12945 			*mp->b_rptr &= ~FLUSHW;
12946 			qreply(q, mp);
12947 			return;
12948 		}
12949 		freemsg(mp);
12950 		return;
12951 	case M_CTL:
12952 		break;
12953 	case M_PROTO:
12954 	case M_PCPROTO:
12955 		/*
12956 		 * The only PROTO messages we expect are SNMP-related.
12957 		 */
12958 		switch (((union T_primitives *)mp->b_rptr)->type) {
12959 		case T_SVR4_OPTMGMT_REQ:
12960 			ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ "
12961 			    "flags %x\n",
12962 			    ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags));
12963 
12964 			if (connp == NULL) {
12965 				proto_str = "T_SVR4_OPTMGMT_REQ";
12966 				goto protonak;
12967 			}
12968 
12969 			/*
12970 			 * All Solaris components should pass a db_credp
12971 			 * for this TPI message, hence we ASSERT.
12972 			 * But in case there is some other M_PROTO that looks
12973 			 * like a TPI message sent by some other kernel
12974 			 * component, we check and return an error.
12975 			 */
12976 			cr = msg_getcred(mp, NULL);
12977 			ASSERT(cr != NULL);
12978 			if (cr == NULL) {
12979 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
12980 				if (mp != NULL)
12981 					qreply(q, mp);
12982 				return;
12983 			}
12984 
12985 			if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) {
12986 				proto_str = "Bad SNMPCOM request?";
12987 				goto protonak;
12988 			}
12989 			return;
12990 		default:
12991 			ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n",
12992 			    (int)*(uint_t *)mp->b_rptr));
12993 			freemsg(mp);
12994 			return;
12995 		}
12996 	default:
12997 		break;
12998 	}
12999 	if (q->q_next) {
13000 		putnext(q, mp);
13001 	} else
13002 		freemsg(mp);
13003 	return;
13004 
13005 nak:
13006 	iocp->ioc_error = EINVAL;
13007 	mp->b_datap->db_type = M_IOCNAK;
13008 	iocp->ioc_count = 0;
13009 	qreply(q, mp);
13010 	return;
13011 
13012 protonak:
13013 	cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str);
13014 	if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL)
13015 		qreply(q, mp);
13016 }
13017 
13018 /*
13019  * Process IP options in an outbound packet.  Verify that the nexthop in a
13020  * strict source route is onlink.
13021  * Returns non-zero if something fails in which case an ICMP error has been
13022  * sent and mp freed.
13023  *
13024  * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst.
13025  */
13026 int
13027 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill)
13028 {
13029 	ipoptp_t	opts;
13030 	uchar_t		*opt;
13031 	uint8_t		optval;
13032 	uint8_t		optlen;
13033 	ipaddr_t	dst;
13034 	intptr_t	code = 0;
13035 	ire_t		*ire;
13036 	ip_stack_t	*ipst = ixa->ixa_ipst;
13037 	ip_recv_attr_t	iras;
13038 
13039 	ip2dbg(("ip_output_options\n"));
13040 
13041 	dst = ipha->ipha_dst;
13042 	for (optval = ipoptp_first(&opts, ipha);
13043 	    optval != IPOPT_EOL;
13044 	    optval = ipoptp_next(&opts)) {
13045 		opt = opts.ipoptp_cur;
13046 		optlen = opts.ipoptp_len;
13047 		ip2dbg(("ip_output_options: opt %d, len %d\n",
13048 		    optval, optlen));
13049 		switch (optval) {
13050 			uint32_t off;
13051 		case IPOPT_SSRR:
13052 		case IPOPT_LSRR:
13053 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13054 				ip1dbg((
13055 				    "ip_output_options: bad option offset\n"));
13056 				code = (char *)&opt[IPOPT_OLEN] -
13057 				    (char *)ipha;
13058 				goto param_prob;
13059 			}
13060 			off = opt[IPOPT_OFFSET];
13061 			ip1dbg(("ip_output_options: next hop 0x%x\n",
13062 			    ntohl(dst)));
13063 			/*
13064 			 * For strict: verify that dst is directly
13065 			 * reachable.
13066 			 */
13067 			if (optval == IPOPT_SSRR) {
13068 				ire = ire_ftable_lookup_v4(dst, 0, 0,
13069 				    IRE_IF_ALL, NULL, ALL_ZONES, ixa->ixa_tsl,
13070 				    MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
13071 				    NULL);
13072 				if (ire == NULL) {
13073 					ip1dbg(("ip_output_options: SSRR not"
13074 					    " directly reachable: 0x%x\n",
13075 					    ntohl(dst)));
13076 					goto bad_src_route;
13077 				}
13078 				ire_refrele(ire);
13079 			}
13080 			break;
13081 		case IPOPT_RR:
13082 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13083 				ip1dbg((
13084 				    "ip_output_options: bad option offset\n"));
13085 				code = (char *)&opt[IPOPT_OLEN] -
13086 				    (char *)ipha;
13087 				goto param_prob;
13088 			}
13089 			break;
13090 		case IPOPT_TS:
13091 			/*
13092 			 * Verify that length >=5 and that there is either
13093 			 * room for another timestamp or that the overflow
13094 			 * counter is not maxed out.
13095 			 */
13096 			code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
13097 			if (optlen < IPOPT_MINLEN_IT) {
13098 				goto param_prob;
13099 			}
13100 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13101 				ip1dbg((
13102 				    "ip_output_options: bad option offset\n"));
13103 				code = (char *)&opt[IPOPT_OFFSET] -
13104 				    (char *)ipha;
13105 				goto param_prob;
13106 			}
13107 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
13108 			case IPOPT_TS_TSONLY:
13109 				off = IPOPT_TS_TIMELEN;
13110 				break;
13111 			case IPOPT_TS_TSANDADDR:
13112 			case IPOPT_TS_PRESPEC:
13113 			case IPOPT_TS_PRESPEC_RFC791:
13114 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
13115 				break;
13116 			default:
13117 				code = (char *)&opt[IPOPT_POS_OV_FLG] -
13118 				    (char *)ipha;
13119 				goto param_prob;
13120 			}
13121 			if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
13122 			    (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
13123 				/*
13124 				 * No room and the overflow counter is 15
13125 				 * already.
13126 				 */
13127 				goto param_prob;
13128 			}
13129 			break;
13130 		}
13131 	}
13132 
13133 	if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0)
13134 		return (0);
13135 
13136 	ip1dbg(("ip_output_options: error processing IP options."));
13137 	code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
13138 
13139 param_prob:
13140 	bzero(&iras, sizeof (iras));
13141 	iras.ira_ill = iras.ira_rill = ill;
13142 	iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13143 	iras.ira_rifindex = iras.ira_ruifindex;
13144 	iras.ira_flags = IRAF_IS_IPV4;
13145 
13146 	ip_drop_output("ip_output_options", mp, ill);
13147 	icmp_param_problem(mp, (uint8_t)code, &iras);
13148 	ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13149 	return (-1);
13150 
13151 bad_src_route:
13152 	bzero(&iras, sizeof (iras));
13153 	iras.ira_ill = iras.ira_rill = ill;
13154 	iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13155 	iras.ira_rifindex = iras.ira_ruifindex;
13156 	iras.ira_flags = IRAF_IS_IPV4;
13157 
13158 	ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
13159 	icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras);
13160 	ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13161 	return (-1);
13162 }
13163 
13164 /*
13165  * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT.
13166  * conn_drain_list_cnt can be changed by setting conn_drain_nthreads
13167  * thru /etc/system.
13168  */
13169 #define	CONN_MAXDRAINCNT	64
13170 
13171 static void
13172 conn_drain_init(ip_stack_t *ipst)
13173 {
13174 	int i, j;
13175 	idl_tx_list_t *itl_tx;
13176 
13177 	ipst->ips_conn_drain_list_cnt = conn_drain_nthreads;
13178 
13179 	if ((ipst->ips_conn_drain_list_cnt == 0) ||
13180 	    (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) {
13181 		/*
13182 		 * Default value of the number of drainers is the
13183 		 * number of cpus, subject to maximum of 8 drainers.
13184 		 */
13185 		if (boot_max_ncpus != -1)
13186 			ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8);
13187 		else
13188 			ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8);
13189 	}
13190 
13191 	ipst->ips_idl_tx_list =
13192 	    kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP);
13193 	for (i = 0; i < TX_FANOUT_SIZE; i++) {
13194 		itl_tx =  &ipst->ips_idl_tx_list[i];
13195 		itl_tx->txl_drain_list =
13196 		    kmem_zalloc(ipst->ips_conn_drain_list_cnt *
13197 		    sizeof (idl_t), KM_SLEEP);
13198 		mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL);
13199 		for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) {
13200 			mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL,
13201 			    MUTEX_DEFAULT, NULL);
13202 			itl_tx->txl_drain_list[j].idl_itl = itl_tx;
13203 		}
13204 	}
13205 }
13206 
13207 static void
13208 conn_drain_fini(ip_stack_t *ipst)
13209 {
13210 	int i;
13211 	idl_tx_list_t *itl_tx;
13212 
13213 	for (i = 0; i < TX_FANOUT_SIZE; i++) {
13214 		itl_tx =  &ipst->ips_idl_tx_list[i];
13215 		kmem_free(itl_tx->txl_drain_list,
13216 		    ipst->ips_conn_drain_list_cnt * sizeof (idl_t));
13217 	}
13218 	kmem_free(ipst->ips_idl_tx_list,
13219 	    TX_FANOUT_SIZE * sizeof (idl_tx_list_t));
13220 	ipst->ips_idl_tx_list = NULL;
13221 }
13222 
13223 /*
13224  * Note: For an overview of how flowcontrol is handled in IP please see the
13225  * IP Flowcontrol notes at the top of this file.
13226  *
13227  * Flow control has blocked us from proceeding. Insert the given conn in one
13228  * of the conn drain lists. These conn wq's will be qenabled later on when
13229  * STREAMS flow control does a backenable. conn_walk_drain will enable
13230  * the first conn in each of these drain lists. Each of these qenabled conns
13231  * in turn enables the next in the list, after it runs, or when it closes,
13232  * thus sustaining the drain process.
13233  */
13234 void
13235 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list)
13236 {
13237 	idl_t	*idl = tx_list->txl_drain_list;
13238 	uint_t	index;
13239 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
13240 
13241 	mutex_enter(&connp->conn_lock);
13242 	if (connp->conn_state_flags & CONN_CLOSING) {
13243 		/*
13244 		 * The conn is closing as a result of which CONN_CLOSING
13245 		 * is set. Return.
13246 		 */
13247 		mutex_exit(&connp->conn_lock);
13248 		return;
13249 	} else if (connp->conn_idl == NULL) {
13250 		/*
13251 		 * Assign the next drain list round robin. We dont' use
13252 		 * a lock, and thus it may not be strictly round robin.
13253 		 * Atomicity of load/stores is enough to make sure that
13254 		 * conn_drain_list_index is always within bounds.
13255 		 */
13256 		index = tx_list->txl_drain_index;
13257 		ASSERT(index < ipst->ips_conn_drain_list_cnt);
13258 		connp->conn_idl = &tx_list->txl_drain_list[index];
13259 		index++;
13260 		if (index == ipst->ips_conn_drain_list_cnt)
13261 			index = 0;
13262 		tx_list->txl_drain_index = index;
13263 	}
13264 	mutex_exit(&connp->conn_lock);
13265 
13266 	mutex_enter(CONN_DRAIN_LIST_LOCK(connp));
13267 	if ((connp->conn_drain_prev != NULL) ||
13268 	    (connp->conn_state_flags & CONN_CLOSING)) {
13269 		/*
13270 		 * The conn is already in the drain list, OR
13271 		 * the conn is closing. We need to check again for
13272 		 * the closing case again since close can happen
13273 		 * after we drop the conn_lock, and before we
13274 		 * acquire the CONN_DRAIN_LIST_LOCK.
13275 		 */
13276 		mutex_exit(CONN_DRAIN_LIST_LOCK(connp));
13277 		return;
13278 	} else {
13279 		idl = connp->conn_idl;
13280 	}
13281 
13282 	/*
13283 	 * The conn is not in the drain list. Insert it at the
13284 	 * tail of the drain list. The drain list is circular
13285 	 * and doubly linked. idl_conn points to the 1st element
13286 	 * in the list.
13287 	 */
13288 	if (idl->idl_conn == NULL) {
13289 		idl->idl_conn = connp;
13290 		connp->conn_drain_next = connp;
13291 		connp->conn_drain_prev = connp;
13292 	} else {
13293 		conn_t *head = idl->idl_conn;
13294 
13295 		connp->conn_drain_next = head;
13296 		connp->conn_drain_prev = head->conn_drain_prev;
13297 		head->conn_drain_prev->conn_drain_next = connp;
13298 		head->conn_drain_prev = connp;
13299 	}
13300 	/*
13301 	 * For non streams based sockets assert flow control.
13302 	 */
13303 	conn_setqfull(connp, NULL);
13304 	mutex_exit(CONN_DRAIN_LIST_LOCK(connp));
13305 }
13306 
13307 static void
13308 conn_idl_remove(conn_t *connp)
13309 {
13310 	idl_t *idl = connp->conn_idl;
13311 
13312 	if (idl != NULL) {
13313 		/*
13314 		 * Remove ourself from the drain list, if we did not do
13315 		 * a putq, or if the conn is closing.
13316 		 * Note: It is possible that q->q_first is non-null. It means
13317 		 * that these messages landed after we did a enableok() in
13318 		 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to
13319 		 * service them.
13320 		 */
13321 		if (connp->conn_drain_next == connp) {
13322 			/* Singleton in the list */
13323 			ASSERT(connp->conn_drain_prev == connp);
13324 			idl->idl_conn = NULL;
13325 		} else {
13326 			connp->conn_drain_prev->conn_drain_next =
13327 			    connp->conn_drain_next;
13328 			connp->conn_drain_next->conn_drain_prev =
13329 			    connp->conn_drain_prev;
13330 			if (idl->idl_conn == connp)
13331 				idl->idl_conn = connp->conn_drain_next;
13332 		}
13333 	}
13334 	connp->conn_drain_next = NULL;
13335 	connp->conn_drain_prev = NULL;
13336 
13337 	conn_clrqfull(connp, NULL);
13338 	/*
13339 	 * For streams based sockets open up flow control.
13340 	 */
13341 	if (!IPCL_IS_NONSTR(connp))
13342 		enableok(connp->conn_wq);
13343 }
13344 
13345 /*
13346  * This conn is closing, and we are called from ip_close. OR
13347  * this conn is draining because flow-control on the ill has been relieved.
13348  *
13349  * We must also need to remove conn's on this idl from the list, and also
13350  * inform the sockfs upcalls about the change in flow-control.
13351  */
13352 static void
13353 conn_drain_tail(conn_t *connp, boolean_t closing)
13354 {
13355 	idl_t *idl;
13356 	conn_t *next_connp;
13357 
13358 	/*
13359 	 * connp->conn_idl is stable at this point, and no lock is needed
13360 	 * to check it. If we are called from ip_close, close has already
13361 	 * set CONN_CLOSING, thus freezing the value of conn_idl, and
13362 	 * called us only because conn_idl is non-null. If we are called thru
13363 	 * service, conn_idl could be null, but it cannot change because
13364 	 * service is single-threaded per queue, and there cannot be another
13365 	 * instance of service trying to call conn_drain_insert on this conn
13366 	 * now.
13367 	 */
13368 	ASSERT(!closing || connp == NULL || connp->conn_idl != NULL);
13369 
13370 	/*
13371 	 * If connp->conn_idl is null, the conn has not been inserted into any
13372 	 * drain list even once since creation of the conn. Just return.
13373 	 */
13374 	if (connp == NULL || connp->conn_idl == NULL)
13375 		return;
13376 
13377 	if (connp->conn_drain_prev == NULL) {
13378 		/* This conn is currently not in the drain list.  */
13379 		return;
13380 	}
13381 	idl = connp->conn_idl;
13382 	if (!closing) {
13383 		/*
13384 		 * This conn is the current drainer. If this is the last conn
13385 		 * in the drain list, we need to do more checks, in the 'if'
13386 		 * below. Otherwwise we need to just qenable the next conn,
13387 		 * to sustain the draining, and is handled in the 'else'
13388 		 * below.
13389 		 */
13390 		next_connp = connp->conn_drain_next;
13391 		while (next_connp != connp) {
13392 			conn_t *delconnp = next_connp;
13393 
13394 			next_connp = next_connp->conn_drain_next;
13395 			conn_idl_remove(delconnp);
13396 		}
13397 		ASSERT(connp->conn_drain_next == idl->idl_conn);
13398 	}
13399 	conn_idl_remove(connp);
13400 
13401 }
13402 
13403 /*
13404  * Write service routine. Shared perimeter entry point.
13405  * The device queue's messages has fallen below the low water mark and STREAMS
13406  * has backenabled the ill_wq. Send sockfs notification about flow-control onx
13407  * each waiting conn.
13408  */
13409 void
13410 ip_wsrv(queue_t *q)
13411 {
13412 	ill_t	*ill;
13413 
13414 	ill = (ill_t *)q->q_ptr;
13415 	if (ill->ill_state_flags == 0) {
13416 		ip_stack_t *ipst = ill->ill_ipst;
13417 
13418 		/*
13419 		 * The device flow control has opened up.
13420 		 * Walk through conn drain lists and qenable the
13421 		 * first conn in each list. This makes sense only
13422 		 * if the stream is fully plumbed and setup.
13423 		 * Hence the ill_state_flags check above.
13424 		 */
13425 		ip1dbg(("ip_wsrv: walking\n"));
13426 		conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]);
13427 		enableok(ill->ill_wq);
13428 	}
13429 }
13430 
13431 /*
13432  * Callback to disable flow control in IP.
13433  *
13434  * This is a mac client callback added when the DLD_CAPAB_DIRECT capability
13435  * is enabled.
13436  *
13437  * When MAC_TX() is not able to send any more packets, dld sets its queue
13438  * to QFULL and enable the STREAMS flow control. Later, when the underlying
13439  * driver is able to continue to send packets, it calls mac_tx_(ring_)update()
13440  * function and wakes up corresponding mac worker threads, which in turn
13441  * calls this callback function, and disables flow control.
13442  */
13443 void
13444 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie)
13445 {
13446 	ill_t *ill = (ill_t *)arg;
13447 	ip_stack_t *ipst = ill->ill_ipst;
13448 	idl_tx_list_t *idl_txl;
13449 
13450 	idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)];
13451 	mutex_enter(&idl_txl->txl_lock);
13452 	/* add code to to set a flag to indicate idl_txl is enabled */
13453 	conn_walk_drain(ipst, idl_txl);
13454 	mutex_exit(&idl_txl->txl_lock);
13455 }
13456 
13457 /*
13458  * Flowcontrol has relieved, and STREAMS has backenabled us. For each list
13459  * of conns that need to be drained, check if drain is already in progress.
13460  * If so set the idl_repeat bit, indicating that the last conn in the list
13461  * needs to reinitiate the drain once again, for the list. If drain is not
13462  * in progress for the list, initiate the draining, by qenabling the 1st
13463  * conn in the list. The drain is self-sustaining, each qenabled conn will
13464  * in turn qenable the next conn, when it is done/blocked/closing.
13465  */
13466 static void
13467 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list)
13468 {
13469 	int i;
13470 	idl_t *idl;
13471 
13472 	IP_STAT(ipst, ip_conn_walk_drain);
13473 
13474 	for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) {
13475 		idl = &tx_list->txl_drain_list[i];
13476 		mutex_enter(&idl->idl_lock);
13477 		conn_drain_tail(idl->idl_conn, B_FALSE);
13478 		mutex_exit(&idl->idl_lock);
13479 	}
13480 }
13481 
13482 /*
13483  * Determine if the ill and multicast aspects of that packets
13484  * "matches" the conn.
13485  */
13486 boolean_t
13487 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha)
13488 {
13489 	ill_t		*ill = ira->ira_rill;
13490 	zoneid_t	zoneid = ira->ira_zoneid;
13491 	uint_t		in_ifindex;
13492 	ipaddr_t	dst, src;
13493 
13494 	dst = ipha->ipha_dst;
13495 	src = ipha->ipha_src;
13496 
13497 	/*
13498 	 * conn_incoming_ifindex is set by IP_BOUND_IF which limits
13499 	 * unicast, broadcast and multicast reception to
13500 	 * conn_incoming_ifindex.
13501 	 * conn_wantpacket is called for unicast, broadcast and
13502 	 * multicast packets.
13503 	 */
13504 	in_ifindex = connp->conn_incoming_ifindex;
13505 
13506 	/* mpathd can bind to the under IPMP interface, which we allow */
13507 	if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) {
13508 		if (!IS_UNDER_IPMP(ill))
13509 			return (B_FALSE);
13510 
13511 		if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill))
13512 			return (B_FALSE);
13513 	}
13514 
13515 	if (!IPCL_ZONE_MATCH(connp, zoneid))
13516 		return (B_FALSE);
13517 
13518 	if (!(ira->ira_flags & IRAF_MULTICAST))
13519 		return (B_TRUE);
13520 
13521 	if (connp->conn_multi_router) {
13522 		/* multicast packet and multicast router socket: send up */
13523 		return (B_TRUE);
13524 	}
13525 
13526 	if (ipha->ipha_protocol == IPPROTO_PIM ||
13527 	    ipha->ipha_protocol == IPPROTO_RSVP)
13528 		return (B_TRUE);
13529 
13530 	return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill));
13531 }
13532 
13533 void
13534 conn_setqfull(conn_t *connp, boolean_t *flow_stopped)
13535 {
13536 	if (IPCL_IS_NONSTR(connp)) {
13537 		(*connp->conn_upcalls->su_txq_full)
13538 		    (connp->conn_upper_handle, B_TRUE);
13539 		if (flow_stopped != NULL)
13540 			*flow_stopped = B_TRUE;
13541 	} else {
13542 		queue_t *q = connp->conn_wq;
13543 
13544 		ASSERT(q != NULL);
13545 		if (!(q->q_flag & QFULL)) {
13546 			mutex_enter(QLOCK(q));
13547 			if (!(q->q_flag & QFULL)) {
13548 				/* still need to set QFULL */
13549 				q->q_flag |= QFULL;
13550 				/* set flow_stopped to true under QLOCK */
13551 				if (flow_stopped != NULL)
13552 					*flow_stopped = B_TRUE;
13553 				mutex_exit(QLOCK(q));
13554 			} else {
13555 				/* flow_stopped is left unchanged */
13556 				mutex_exit(QLOCK(q));
13557 			}
13558 		}
13559 	}
13560 }
13561 
13562 void
13563 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped)
13564 {
13565 	if (IPCL_IS_NONSTR(connp)) {
13566 		(*connp->conn_upcalls->su_txq_full)
13567 		    (connp->conn_upper_handle, B_FALSE);
13568 		if (flow_stopped != NULL)
13569 			*flow_stopped = B_FALSE;
13570 	} else {
13571 		queue_t *q = connp->conn_wq;
13572 
13573 		ASSERT(q != NULL);
13574 		if (q->q_flag & QFULL) {
13575 			mutex_enter(QLOCK(q));
13576 			if (q->q_flag & QFULL) {
13577 				q->q_flag &= ~QFULL;
13578 				/* set flow_stopped to false under QLOCK */
13579 				if (flow_stopped != NULL)
13580 					*flow_stopped = B_FALSE;
13581 				mutex_exit(QLOCK(q));
13582 				if (q->q_flag & QWANTW)
13583 					qbackenable(q, 0);
13584 			} else {
13585 				/* flow_stopped is left unchanged */
13586 				mutex_exit(QLOCK(q));
13587 			}
13588 		}
13589 	}
13590 	connp->conn_direct_blocked = B_FALSE;
13591 }
13592 
13593 /*
13594  * Return the length in bytes of the IPv4 headers (base header, label, and
13595  * other IP options) that will be needed based on the
13596  * ip_pkt_t structure passed by the caller.
13597  *
13598  * The returned length does not include the length of the upper level
13599  * protocol (ULP) header.
13600  * The caller needs to check that the length doesn't exceed the max for IPv4.
13601  */
13602 int
13603 ip_total_hdrs_len_v4(const ip_pkt_t *ipp)
13604 {
13605 	int len;
13606 
13607 	len = IP_SIMPLE_HDR_LENGTH;
13608 	if (ipp->ipp_fields & IPPF_LABEL_V4) {
13609 		ASSERT(ipp->ipp_label_len_v4 != 0);
13610 		/* We need to round up here */
13611 		len += (ipp->ipp_label_len_v4 + 3) & ~3;
13612 	}
13613 
13614 	if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13615 		ASSERT(ipp->ipp_ipv4_options_len != 0);
13616 		ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13617 		len += ipp->ipp_ipv4_options_len;
13618 	}
13619 	return (len);
13620 }
13621 
13622 /*
13623  * All-purpose routine to build an IPv4 header with options based
13624  * on the abstract ip_pkt_t.
13625  *
13626  * The caller has to set the source and destination address as well as
13627  * ipha_length. The caller has to massage any source route and compensate
13628  * for the ULP pseudo-header checksum due to the source route.
13629  */
13630 void
13631 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp,
13632     uint8_t protocol)
13633 {
13634 	ipha_t	*ipha = (ipha_t *)buf;
13635 	uint8_t *cp;
13636 
13637 	/* Initialize IPv4 header */
13638 	ipha->ipha_type_of_service = ipp->ipp_type_of_service;
13639 	ipha->ipha_length = 0;	/* Caller will set later */
13640 	ipha->ipha_ident = 0;
13641 	ipha->ipha_fragment_offset_and_flags = 0;
13642 	ipha->ipha_ttl = ipp->ipp_unicast_hops;
13643 	ipha->ipha_protocol = protocol;
13644 	ipha->ipha_hdr_checksum = 0;
13645 
13646 	if ((ipp->ipp_fields & IPPF_ADDR) &&
13647 	    IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr))
13648 		ipha->ipha_src = ipp->ipp_addr_v4;
13649 
13650 	cp = (uint8_t *)&ipha[1];
13651 	if (ipp->ipp_fields & IPPF_LABEL_V4) {
13652 		ASSERT(ipp->ipp_label_len_v4 != 0);
13653 		bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4);
13654 		cp += ipp->ipp_label_len_v4;
13655 		/* We need to round up here */
13656 		while ((uintptr_t)cp & 0x3) {
13657 			*cp++ = IPOPT_NOP;
13658 		}
13659 	}
13660 
13661 	if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13662 		ASSERT(ipp->ipp_ipv4_options_len != 0);
13663 		ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13664 		bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len);
13665 		cp += ipp->ipp_ipv4_options_len;
13666 	}
13667 	ipha->ipha_version_and_hdr_length =
13668 	    (uint8_t)((IP_VERSION << 4) + buf_len / 4);
13669 
13670 	ASSERT((int)(cp - buf) == buf_len);
13671 }
13672 
13673 /* Allocate the private structure */
13674 static int
13675 ip_priv_alloc(void **bufp)
13676 {
13677 	void	*buf;
13678 
13679 	if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL)
13680 		return (ENOMEM);
13681 
13682 	*bufp = buf;
13683 	return (0);
13684 }
13685 
13686 /* Function to delete the private structure */
13687 void
13688 ip_priv_free(void *buf)
13689 {
13690 	ASSERT(buf != NULL);
13691 	kmem_free(buf, sizeof (ip_priv_t));
13692 }
13693 
13694 /*
13695  * The entry point for IPPF processing.
13696  * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the
13697  * routine just returns.
13698  *
13699  * When called, ip_process generates an ipp_packet_t structure
13700  * which holds the state information for this packet and invokes the
13701  * the classifier (via ipp_packet_process). The classification, depending on
13702  * configured filters, results in a list of actions for this packet. Invoking
13703  * an action may cause the packet to be dropped, in which case we return NULL.
13704  * proc indicates the callout position for
13705  * this packet and ill is the interface this packet arrived on or will leave
13706  * on (inbound and outbound resp.).
13707  *
13708  * We do the processing on the rill (mapped to the upper if ipmp), but MIB
13709  * on the ill corrsponding to the destination IP address.
13710  */
13711 mblk_t *
13712 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill)
13713 {
13714 	ip_priv_t	*priv;
13715 	ipp_action_id_t	aid;
13716 	int		rc = 0;
13717 	ipp_packet_t	*pp;
13718 
13719 	/* If the classifier is not loaded, return  */
13720 	if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) {
13721 		return (mp);
13722 	}
13723 
13724 	ASSERT(mp != NULL);
13725 
13726 	/* Allocate the packet structure */
13727 	rc = ipp_packet_alloc(&pp, "ip", aid);
13728 	if (rc != 0)
13729 		goto drop;
13730 
13731 	/* Allocate the private structure */
13732 	rc = ip_priv_alloc((void **)&priv);
13733 	if (rc != 0) {
13734 		ipp_packet_free(pp);
13735 		goto drop;
13736 	}
13737 	priv->proc = proc;
13738 	priv->ill_index = ill_get_upper_ifindex(rill);
13739 
13740 	ipp_packet_set_private(pp, priv, ip_priv_free);
13741 	ipp_packet_set_data(pp, mp);
13742 
13743 	/* Invoke the classifier */
13744 	rc = ipp_packet_process(&pp);
13745 	if (pp != NULL) {
13746 		mp = ipp_packet_get_data(pp);
13747 		ipp_packet_free(pp);
13748 		if (rc != 0)
13749 			goto drop;
13750 		return (mp);
13751 	} else {
13752 		/* No mp to trace in ip_drop_input/ip_drop_output  */
13753 		mp = NULL;
13754 	}
13755 drop:
13756 	if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) {
13757 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13758 		ip_drop_input("ip_process", mp, ill);
13759 	} else {
13760 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13761 		ip_drop_output("ip_process", mp, ill);
13762 	}
13763 	freemsg(mp);
13764 	return (NULL);
13765 }
13766 
13767 /*
13768  * Propagate a multicast group membership operation (add/drop) on
13769  * all the interfaces crossed by the related multirt routes.
13770  * The call is considered successful if the operation succeeds
13771  * on at least one interface.
13772  *
13773  * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the
13774  * multicast addresses with the ire argument being the first one.
13775  * We walk the bucket to find all the of those.
13776  *
13777  * Common to IPv4 and IPv6.
13778  */
13779 static int
13780 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
13781     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
13782     ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group,
13783     mcast_record_t fmode, const in6_addr_t *v6src)
13784 {
13785 	ire_t		*ire_gw;
13786 	irb_t		*irb;
13787 	int		ifindex;
13788 	int		error = 0;
13789 	int		result;
13790 	ip_stack_t	*ipst = ire->ire_ipst;
13791 	ipaddr_t	group;
13792 	boolean_t	isv6;
13793 	int		match_flags;
13794 
13795 	if (IN6_IS_ADDR_V4MAPPED(v6group)) {
13796 		IN6_V4MAPPED_TO_IPADDR(v6group, group);
13797 		isv6 = B_FALSE;
13798 	} else {
13799 		isv6 = B_TRUE;
13800 	}
13801 
13802 	irb = ire->ire_bucket;
13803 	ASSERT(irb != NULL);
13804 
13805 	result = 0;
13806 	irb_refhold(irb);
13807 	for (; ire != NULL; ire = ire->ire_next) {
13808 		if ((ire->ire_flags & RTF_MULTIRT) == 0)
13809 			continue;
13810 
13811 		/* We handle -ifp routes by matching on the ill if set */
13812 		match_flags = MATCH_IRE_TYPE;
13813 		if (ire->ire_ill != NULL)
13814 			match_flags |= MATCH_IRE_ILL;
13815 
13816 		if (isv6) {
13817 			if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group))
13818 				continue;
13819 
13820 			ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6,
13821 			    0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13822 			    match_flags, 0, ipst, NULL);
13823 		} else {
13824 			if (ire->ire_addr != group)
13825 				continue;
13826 
13827 			ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr,
13828 			    0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13829 			    match_flags, 0, ipst, NULL);
13830 		}
13831 		/* No interface route exists for the gateway; skip this ire. */
13832 		if (ire_gw == NULL)
13833 			continue;
13834 		if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
13835 			ire_refrele(ire_gw);
13836 			continue;
13837 		}
13838 		ASSERT(ire_gw->ire_ill != NULL);	/* IRE_INTERFACE */
13839 		ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex;
13840 
13841 		/*
13842 		 * The operation is considered a success if
13843 		 * it succeeds at least once on any one interface.
13844 		 */
13845 		error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex,
13846 		    fmode, v6src);
13847 		if (error == 0)
13848 			result = CGTP_MCAST_SUCCESS;
13849 
13850 		ire_refrele(ire_gw);
13851 	}
13852 	irb_refrele(irb);
13853 	/*
13854 	 * Consider the call as successful if we succeeded on at least
13855 	 * one interface. Otherwise, return the last encountered error.
13856 	 */
13857 	return (result == CGTP_MCAST_SUCCESS ? 0 : error);
13858 }
13859 
13860 /*
13861  * Get the CGTP (multirouting) filtering status.
13862  * If 0, the CGTP hooks are transparent.
13863  */
13864 /* ARGSUSED */
13865 static int
13866 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
13867 {
13868 	boolean_t	*ip_cgtp_filter_value = (boolean_t *)cp;
13869 
13870 	(void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value);
13871 	return (0);
13872 }
13873 
13874 /*
13875  * Set the CGTP (multirouting) filtering status.
13876  * If the status is changed from active to transparent
13877  * or from transparent to active, forward the new status
13878  * to the filtering module (if loaded).
13879  */
13880 /* ARGSUSED */
13881 static int
13882 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
13883     cred_t *ioc_cr)
13884 {
13885 	long		new_value;
13886 	boolean_t	*ip_cgtp_filter_value = (boolean_t *)cp;
13887 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
13888 
13889 	if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0)
13890 		return (EPERM);
13891 
13892 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
13893 	    new_value < 0 || new_value > 1) {
13894 		return (EINVAL);
13895 	}
13896 
13897 	if ((!*ip_cgtp_filter_value) && new_value) {
13898 		cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s",
13899 		    ipst->ips_ip_cgtp_filter_ops == NULL ?
13900 		    " (module not loaded)" : "");
13901 	}
13902 	if (*ip_cgtp_filter_value && (!new_value)) {
13903 		cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s",
13904 		    ipst->ips_ip_cgtp_filter_ops == NULL ?
13905 		    " (module not loaded)" : "");
13906 	}
13907 
13908 	if (ipst->ips_ip_cgtp_filter_ops != NULL) {
13909 		int	res;
13910 		netstackid_t stackid;
13911 
13912 		stackid = ipst->ips_netstack->netstack_stackid;
13913 		res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid,
13914 		    new_value);
13915 		if (res)
13916 			return (res);
13917 	}
13918 
13919 	*ip_cgtp_filter_value = (boolean_t)new_value;
13920 
13921 	ill_set_inputfn_all(ipst);
13922 	return (0);
13923 }
13924 
13925 /*
13926  * Return the expected CGTP hooks version number.
13927  */
13928 int
13929 ip_cgtp_filter_supported(void)
13930 {
13931 	return (ip_cgtp_filter_rev);
13932 }
13933 
13934 /*
13935  * CGTP hooks can be registered by invoking this function.
13936  * Checks that the version number matches.
13937  */
13938 int
13939 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops)
13940 {
13941 	netstack_t *ns;
13942 	ip_stack_t *ipst;
13943 
13944 	if (ops->cfo_filter_rev != CGTP_FILTER_REV)
13945 		return (ENOTSUP);
13946 
13947 	ns = netstack_find_by_stackid(stackid);
13948 	if (ns == NULL)
13949 		return (EINVAL);
13950 	ipst = ns->netstack_ip;
13951 	ASSERT(ipst != NULL);
13952 
13953 	if (ipst->ips_ip_cgtp_filter_ops != NULL) {
13954 		netstack_rele(ns);
13955 		return (EALREADY);
13956 	}
13957 
13958 	ipst->ips_ip_cgtp_filter_ops = ops;
13959 
13960 	ill_set_inputfn_all(ipst);
13961 
13962 	netstack_rele(ns);
13963 	return (0);
13964 }
13965 
13966 /*
13967  * CGTP hooks can be unregistered by invoking this function.
13968  * Returns ENXIO if there was no registration.
13969  * Returns EBUSY if the ndd variable has not been turned off.
13970  */
13971 int
13972 ip_cgtp_filter_unregister(netstackid_t stackid)
13973 {
13974 	netstack_t *ns;
13975 	ip_stack_t *ipst;
13976 
13977 	ns = netstack_find_by_stackid(stackid);
13978 	if (ns == NULL)
13979 		return (EINVAL);
13980 	ipst = ns->netstack_ip;
13981 	ASSERT(ipst != NULL);
13982 
13983 	if (ipst->ips_ip_cgtp_filter) {
13984 		netstack_rele(ns);
13985 		return (EBUSY);
13986 	}
13987 
13988 	if (ipst->ips_ip_cgtp_filter_ops == NULL) {
13989 		netstack_rele(ns);
13990 		return (ENXIO);
13991 	}
13992 	ipst->ips_ip_cgtp_filter_ops = NULL;
13993 
13994 	ill_set_inputfn_all(ipst);
13995 
13996 	netstack_rele(ns);
13997 	return (0);
13998 }
13999 
14000 /*
14001  * Check whether there is a CGTP filter registration.
14002  * Returns non-zero if there is a registration, otherwise returns zero.
14003  * Note: returns zero if bad stackid.
14004  */
14005 int
14006 ip_cgtp_filter_is_registered(netstackid_t stackid)
14007 {
14008 	netstack_t *ns;
14009 	ip_stack_t *ipst;
14010 	int ret;
14011 
14012 	ns = netstack_find_by_stackid(stackid);
14013 	if (ns == NULL)
14014 		return (0);
14015 	ipst = ns->netstack_ip;
14016 	ASSERT(ipst != NULL);
14017 
14018 	if (ipst->ips_ip_cgtp_filter_ops != NULL)
14019 		ret = 1;
14020 	else
14021 		ret = 0;
14022 
14023 	netstack_rele(ns);
14024 	return (ret);
14025 }
14026 
14027 static int
14028 ip_squeue_switch(int val)
14029 {
14030 	int rval;
14031 
14032 	switch (val) {
14033 	case IP_SQUEUE_ENTER_NODRAIN:
14034 		rval = SQ_NODRAIN;
14035 		break;
14036 	case IP_SQUEUE_ENTER:
14037 		rval = SQ_PROCESS;
14038 		break;
14039 	case IP_SQUEUE_FILL:
14040 	default:
14041 		rval = SQ_FILL;
14042 		break;
14043 	}
14044 	return (rval);
14045 }
14046 
14047 /* ARGSUSED */
14048 static int
14049 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value,
14050     caddr_t addr, cred_t *cr)
14051 {
14052 	int *v = (int *)addr;
14053 	long new_value;
14054 
14055 	if (secpolicy_net_config(cr, B_FALSE) != 0)
14056 		return (EPERM);
14057 
14058 	if (ddi_strtol(value, NULL, 10, &new_value) != 0)
14059 		return (EINVAL);
14060 
14061 	ip_squeue_flag = ip_squeue_switch(new_value);
14062 	*v = new_value;
14063 	return (0);
14064 }
14065 
14066 /*
14067  * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as
14068  * ip_debug.
14069  */
14070 /* ARGSUSED */
14071 static int
14072 ip_int_set(queue_t *q, mblk_t *mp, char *value,
14073     caddr_t addr, cred_t *cr)
14074 {
14075 	int *v = (int *)addr;
14076 	long new_value;
14077 
14078 	if (secpolicy_net_config(cr, B_FALSE) != 0)
14079 		return (EPERM);
14080 
14081 	if (ddi_strtol(value, NULL, 10, &new_value) != 0)
14082 		return (EINVAL);
14083 
14084 	*v = new_value;
14085 	return (0);
14086 }
14087 
14088 static void *
14089 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp)
14090 {
14091 	kstat_t *ksp;
14092 
14093 	ip_stat_t template = {
14094 		{ "ip_udp_fannorm", 		KSTAT_DATA_UINT64 },
14095 		{ "ip_udp_fanmb", 		KSTAT_DATA_UINT64 },
14096 		{ "ip_recv_pullup", 		KSTAT_DATA_UINT64 },
14097 		{ "ip_db_ref",			KSTAT_DATA_UINT64 },
14098 		{ "ip_notaligned",		KSTAT_DATA_UINT64 },
14099 		{ "ip_multimblk",		KSTAT_DATA_UINT64 },
14100 		{ "ip_opt",			KSTAT_DATA_UINT64 },
14101 		{ "ipsec_proto_ahesp",		KSTAT_DATA_UINT64 },
14102 		{ "ip_conn_flputbq",		KSTAT_DATA_UINT64 },
14103 		{ "ip_conn_walk_drain",		KSTAT_DATA_UINT64 },
14104 		{ "ip_out_sw_cksum",		KSTAT_DATA_UINT64 },
14105 		{ "ip_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
14106 		{ "ip_in_sw_cksum",		KSTAT_DATA_UINT64 },
14107 		{ "ip_ire_reclaim_calls",	KSTAT_DATA_UINT64 },
14108 		{ "ip_ire_reclaim_deleted",	KSTAT_DATA_UINT64 },
14109 		{ "ip_nce_reclaim_calls",	KSTAT_DATA_UINT64 },
14110 		{ "ip_nce_reclaim_deleted",	KSTAT_DATA_UINT64 },
14111 		{ "ip_dce_reclaim_calls",	KSTAT_DATA_UINT64 },
14112 		{ "ip_dce_reclaim_deleted",	KSTAT_DATA_UINT64 },
14113 		{ "ip_tcp_in_full_hw_cksum_err",	KSTAT_DATA_UINT64 },
14114 		{ "ip_tcp_in_part_hw_cksum_err",	KSTAT_DATA_UINT64 },
14115 		{ "ip_tcp_in_sw_cksum_err",		KSTAT_DATA_UINT64 },
14116 		{ "ip_udp_in_full_hw_cksum_err",	KSTAT_DATA_UINT64 },
14117 		{ "ip_udp_in_part_hw_cksum_err",	KSTAT_DATA_UINT64 },
14118 		{ "ip_udp_in_sw_cksum_err",	KSTAT_DATA_UINT64 },
14119 		{ "conn_in_recvdstaddr",	KSTAT_DATA_UINT64 },
14120 		{ "conn_in_recvopts",		KSTAT_DATA_UINT64 },
14121 		{ "conn_in_recvif",		KSTAT_DATA_UINT64 },
14122 		{ "conn_in_recvslla",		KSTAT_DATA_UINT64 },
14123 		{ "conn_in_recvucred",		KSTAT_DATA_UINT64 },
14124 		{ "conn_in_recvttl",		KSTAT_DATA_UINT64 },
14125 		{ "conn_in_recvhopopts",	KSTAT_DATA_UINT64 },
14126 		{ "conn_in_recvhoplimit",	KSTAT_DATA_UINT64 },
14127 		{ "conn_in_recvdstopts",	KSTAT_DATA_UINT64 },
14128 		{ "conn_in_recvrthdrdstopts",	KSTAT_DATA_UINT64 },
14129 		{ "conn_in_recvrthdr",		KSTAT_DATA_UINT64 },
14130 		{ "conn_in_recvpktinfo",	KSTAT_DATA_UINT64 },
14131 		{ "conn_in_recvtclass",		KSTAT_DATA_UINT64 },
14132 		{ "conn_in_timestamp",		KSTAT_DATA_UINT64 },
14133 	};
14134 
14135 	ksp = kstat_create_netstack("ip", 0, "ipstat", "net",
14136 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
14137 	    KSTAT_FLAG_VIRTUAL, stackid);
14138 
14139 	if (ksp == NULL)
14140 		return (NULL);
14141 
14142 	bcopy(&template, ip_statisticsp, sizeof (template));
14143 	ksp->ks_data = (void *)ip_statisticsp;
14144 	ksp->ks_private = (void *)(uintptr_t)stackid;
14145 
14146 	kstat_install(ksp);
14147 	return (ksp);
14148 }
14149 
14150 static void
14151 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
14152 {
14153 	if (ksp != NULL) {
14154 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14155 		kstat_delete_netstack(ksp, stackid);
14156 	}
14157 }
14158 
14159 static void *
14160 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst)
14161 {
14162 	kstat_t	*ksp;
14163 
14164 	ip_named_kstat_t template = {
14165 		{ "forwarding",		KSTAT_DATA_UINT32, 0 },
14166 		{ "defaultTTL",		KSTAT_DATA_UINT32, 0 },
14167 		{ "inReceives",		KSTAT_DATA_UINT64, 0 },
14168 		{ "inHdrErrors",	KSTAT_DATA_UINT32, 0 },
14169 		{ "inAddrErrors",	KSTAT_DATA_UINT32, 0 },
14170 		{ "forwDatagrams",	KSTAT_DATA_UINT64, 0 },
14171 		{ "inUnknownProtos",	KSTAT_DATA_UINT32, 0 },
14172 		{ "inDiscards",		KSTAT_DATA_UINT32, 0 },
14173 		{ "inDelivers",		KSTAT_DATA_UINT64, 0 },
14174 		{ "outRequests",	KSTAT_DATA_UINT64, 0 },
14175 		{ "outDiscards",	KSTAT_DATA_UINT32, 0 },
14176 		{ "outNoRoutes",	KSTAT_DATA_UINT32, 0 },
14177 		{ "reasmTimeout",	KSTAT_DATA_UINT32, 0 },
14178 		{ "reasmReqds",		KSTAT_DATA_UINT32, 0 },
14179 		{ "reasmOKs",		KSTAT_DATA_UINT32, 0 },
14180 		{ "reasmFails",		KSTAT_DATA_UINT32, 0 },
14181 		{ "fragOKs",		KSTAT_DATA_UINT32, 0 },
14182 		{ "fragFails",		KSTAT_DATA_UINT32, 0 },
14183 		{ "fragCreates",	KSTAT_DATA_UINT32, 0 },
14184 		{ "addrEntrySize",	KSTAT_DATA_INT32, 0 },
14185 		{ "routeEntrySize",	KSTAT_DATA_INT32, 0 },
14186 		{ "netToMediaEntrySize",	KSTAT_DATA_INT32, 0 },
14187 		{ "routingDiscards",	KSTAT_DATA_UINT32, 0 },
14188 		{ "inErrs",		KSTAT_DATA_UINT32, 0 },
14189 		{ "noPorts",		KSTAT_DATA_UINT32, 0 },
14190 		{ "inCksumErrs",	KSTAT_DATA_UINT32, 0 },
14191 		{ "reasmDuplicates",	KSTAT_DATA_UINT32, 0 },
14192 		{ "reasmPartDups",	KSTAT_DATA_UINT32, 0 },
14193 		{ "forwProhibits",	KSTAT_DATA_UINT32, 0 },
14194 		{ "udpInCksumErrs",	KSTAT_DATA_UINT32, 0 },
14195 		{ "udpInOverflows",	KSTAT_DATA_UINT32, 0 },
14196 		{ "rawipInOverflows",	KSTAT_DATA_UINT32, 0 },
14197 		{ "ipsecInSucceeded",	KSTAT_DATA_UINT32, 0 },
14198 		{ "ipsecInFailed",	KSTAT_DATA_INT32, 0 },
14199 		{ "memberEntrySize",	KSTAT_DATA_INT32, 0 },
14200 		{ "inIPv6",		KSTAT_DATA_UINT32, 0 },
14201 		{ "outIPv6",		KSTAT_DATA_UINT32, 0 },
14202 		{ "outSwitchIPv6",	KSTAT_DATA_UINT32, 0 },
14203 	};
14204 
14205 	ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED,
14206 	    NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid);
14207 	if (ksp == NULL || ksp->ks_data == NULL)
14208 		return (NULL);
14209 
14210 	template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2;
14211 	template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl;
14212 	template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout;
14213 	template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t);
14214 	template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t);
14215 
14216 	template.netToMediaEntrySize.value.i32 =
14217 	    sizeof (mib2_ipNetToMediaEntry_t);
14218 
14219 	template.memberEntrySize.value.i32 = sizeof (ipv6_member_t);
14220 
14221 	bcopy(&template, ksp->ks_data, sizeof (template));
14222 	ksp->ks_update = ip_kstat_update;
14223 	ksp->ks_private = (void *)(uintptr_t)stackid;
14224 
14225 	kstat_install(ksp);
14226 	return (ksp);
14227 }
14228 
14229 static void
14230 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14231 {
14232 	if (ksp != NULL) {
14233 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14234 		kstat_delete_netstack(ksp, stackid);
14235 	}
14236 }
14237 
14238 static int
14239 ip_kstat_update(kstat_t *kp, int rw)
14240 {
14241 	ip_named_kstat_t *ipkp;
14242 	mib2_ipIfStatsEntry_t ipmib;
14243 	ill_walk_context_t ctx;
14244 	ill_t *ill;
14245 	netstackid_t	stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14246 	netstack_t	*ns;
14247 	ip_stack_t	*ipst;
14248 
14249 	if (kp == NULL || kp->ks_data == NULL)
14250 		return (EIO);
14251 
14252 	if (rw == KSTAT_WRITE)
14253 		return (EACCES);
14254 
14255 	ns = netstack_find_by_stackid(stackid);
14256 	if (ns == NULL)
14257 		return (-1);
14258 	ipst = ns->netstack_ip;
14259 	if (ipst == NULL) {
14260 		netstack_rele(ns);
14261 		return (-1);
14262 	}
14263 	ipkp = (ip_named_kstat_t *)kp->ks_data;
14264 
14265 	bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib));
14266 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14267 	ill = ILL_START_WALK_V4(&ctx, ipst);
14268 	for (; ill != NULL; ill = ill_next(&ctx, ill))
14269 		ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib);
14270 	rw_exit(&ipst->ips_ill_g_lock);
14271 
14272 	ipkp->forwarding.value.ui32 =		ipmib.ipIfStatsForwarding;
14273 	ipkp->defaultTTL.value.ui32 =		ipmib.ipIfStatsDefaultTTL;
14274 	ipkp->inReceives.value.ui64 =		ipmib.ipIfStatsHCInReceives;
14275 	ipkp->inHdrErrors.value.ui32 =		ipmib.ipIfStatsInHdrErrors;
14276 	ipkp->inAddrErrors.value.ui32 =		ipmib.ipIfStatsInAddrErrors;
14277 	ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams;
14278 	ipkp->inUnknownProtos.value.ui32 =	ipmib.ipIfStatsInUnknownProtos;
14279 	ipkp->inDiscards.value.ui32 =		ipmib.ipIfStatsInDiscards;
14280 	ipkp->inDelivers.value.ui64 =		ipmib.ipIfStatsHCInDelivers;
14281 	ipkp->outRequests.value.ui64 =		ipmib.ipIfStatsHCOutRequests;
14282 	ipkp->outDiscards.value.ui32 =		ipmib.ipIfStatsOutDiscards;
14283 	ipkp->outNoRoutes.value.ui32 =		ipmib.ipIfStatsOutNoRoutes;
14284 	ipkp->reasmTimeout.value.ui32 =		ipst->ips_ip_g_frag_timeout;
14285 	ipkp->reasmReqds.value.ui32 =		ipmib.ipIfStatsReasmReqds;
14286 	ipkp->reasmOKs.value.ui32 =		ipmib.ipIfStatsReasmOKs;
14287 	ipkp->reasmFails.value.ui32 =		ipmib.ipIfStatsReasmFails;
14288 	ipkp->fragOKs.value.ui32 =		ipmib.ipIfStatsOutFragOKs;
14289 	ipkp->fragFails.value.ui32 =		ipmib.ipIfStatsOutFragFails;
14290 	ipkp->fragCreates.value.ui32 =		ipmib.ipIfStatsOutFragCreates;
14291 
14292 	ipkp->routingDiscards.value.ui32 =	0;
14293 	ipkp->inErrs.value.ui32 =		ipmib.tcpIfStatsInErrs;
14294 	ipkp->noPorts.value.ui32 =		ipmib.udpIfStatsNoPorts;
14295 	ipkp->inCksumErrs.value.ui32 =		ipmib.ipIfStatsInCksumErrs;
14296 	ipkp->reasmDuplicates.value.ui32 =	ipmib.ipIfStatsReasmDuplicates;
14297 	ipkp->reasmPartDups.value.ui32 =	ipmib.ipIfStatsReasmPartDups;
14298 	ipkp->forwProhibits.value.ui32 =	ipmib.ipIfStatsForwProhibits;
14299 	ipkp->udpInCksumErrs.value.ui32 =	ipmib.udpIfStatsInCksumErrs;
14300 	ipkp->udpInOverflows.value.ui32 =	ipmib.udpIfStatsInOverflows;
14301 	ipkp->rawipInOverflows.value.ui32 =	ipmib.rawipIfStatsInOverflows;
14302 	ipkp->ipsecInSucceeded.value.ui32 =	ipmib.ipsecIfStatsInSucceeded;
14303 	ipkp->ipsecInFailed.value.i32 =		ipmib.ipsecIfStatsInFailed;
14304 
14305 	ipkp->inIPv6.value.ui32 =	ipmib.ipIfStatsInWrongIPVersion;
14306 	ipkp->outIPv6.value.ui32 =	ipmib.ipIfStatsOutWrongIPVersion;
14307 	ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion;
14308 
14309 	netstack_rele(ns);
14310 
14311 	return (0);
14312 }
14313 
14314 static void *
14315 icmp_kstat_init(netstackid_t stackid)
14316 {
14317 	kstat_t	*ksp;
14318 
14319 	icmp_named_kstat_t template = {
14320 		{ "inMsgs",		KSTAT_DATA_UINT32 },
14321 		{ "inErrors",		KSTAT_DATA_UINT32 },
14322 		{ "inDestUnreachs",	KSTAT_DATA_UINT32 },
14323 		{ "inTimeExcds",	KSTAT_DATA_UINT32 },
14324 		{ "inParmProbs",	KSTAT_DATA_UINT32 },
14325 		{ "inSrcQuenchs",	KSTAT_DATA_UINT32 },
14326 		{ "inRedirects",	KSTAT_DATA_UINT32 },
14327 		{ "inEchos",		KSTAT_DATA_UINT32 },
14328 		{ "inEchoReps",		KSTAT_DATA_UINT32 },
14329 		{ "inTimestamps",	KSTAT_DATA_UINT32 },
14330 		{ "inTimestampReps",	KSTAT_DATA_UINT32 },
14331 		{ "inAddrMasks",	KSTAT_DATA_UINT32 },
14332 		{ "inAddrMaskReps",	KSTAT_DATA_UINT32 },
14333 		{ "outMsgs",		KSTAT_DATA_UINT32 },
14334 		{ "outErrors",		KSTAT_DATA_UINT32 },
14335 		{ "outDestUnreachs",	KSTAT_DATA_UINT32 },
14336 		{ "outTimeExcds",	KSTAT_DATA_UINT32 },
14337 		{ "outParmProbs",	KSTAT_DATA_UINT32 },
14338 		{ "outSrcQuenchs",	KSTAT_DATA_UINT32 },
14339 		{ "outRedirects",	KSTAT_DATA_UINT32 },
14340 		{ "outEchos",		KSTAT_DATA_UINT32 },
14341 		{ "outEchoReps",	KSTAT_DATA_UINT32 },
14342 		{ "outTimestamps",	KSTAT_DATA_UINT32 },
14343 		{ "outTimestampReps",	KSTAT_DATA_UINT32 },
14344 		{ "outAddrMasks",	KSTAT_DATA_UINT32 },
14345 		{ "outAddrMaskReps",	KSTAT_DATA_UINT32 },
14346 		{ "inChksumErrs",	KSTAT_DATA_UINT32 },
14347 		{ "inUnknowns",		KSTAT_DATA_UINT32 },
14348 		{ "inFragNeeded",	KSTAT_DATA_UINT32 },
14349 		{ "outFragNeeded",	KSTAT_DATA_UINT32 },
14350 		{ "outDrops",		KSTAT_DATA_UINT32 },
14351 		{ "inOverFlows",	KSTAT_DATA_UINT32 },
14352 		{ "inBadRedirects",	KSTAT_DATA_UINT32 },
14353 	};
14354 
14355 	ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED,
14356 	    NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid);
14357 	if (ksp == NULL || ksp->ks_data == NULL)
14358 		return (NULL);
14359 
14360 	bcopy(&template, ksp->ks_data, sizeof (template));
14361 
14362 	ksp->ks_update = icmp_kstat_update;
14363 	ksp->ks_private = (void *)(uintptr_t)stackid;
14364 
14365 	kstat_install(ksp);
14366 	return (ksp);
14367 }
14368 
14369 static void
14370 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14371 {
14372 	if (ksp != NULL) {
14373 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14374 		kstat_delete_netstack(ksp, stackid);
14375 	}
14376 }
14377 
14378 static int
14379 icmp_kstat_update(kstat_t *kp, int rw)
14380 {
14381 	icmp_named_kstat_t *icmpkp;
14382 	netstackid_t	stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14383 	netstack_t	*ns;
14384 	ip_stack_t	*ipst;
14385 
14386 	if ((kp == NULL) || (kp->ks_data == NULL))
14387 		return (EIO);
14388 
14389 	if (rw == KSTAT_WRITE)
14390 		return (EACCES);
14391 
14392 	ns = netstack_find_by_stackid(stackid);
14393 	if (ns == NULL)
14394 		return (-1);
14395 	ipst = ns->netstack_ip;
14396 	if (ipst == NULL) {
14397 		netstack_rele(ns);
14398 		return (-1);
14399 	}
14400 	icmpkp = (icmp_named_kstat_t *)kp->ks_data;
14401 
14402 	icmpkp->inMsgs.value.ui32 =	    ipst->ips_icmp_mib.icmpInMsgs;
14403 	icmpkp->inErrors.value.ui32 =	    ipst->ips_icmp_mib.icmpInErrors;
14404 	icmpkp->inDestUnreachs.value.ui32 =
14405 	    ipst->ips_icmp_mib.icmpInDestUnreachs;
14406 	icmpkp->inTimeExcds.value.ui32 =    ipst->ips_icmp_mib.icmpInTimeExcds;
14407 	icmpkp->inParmProbs.value.ui32 =    ipst->ips_icmp_mib.icmpInParmProbs;
14408 	icmpkp->inSrcQuenchs.value.ui32 =   ipst->ips_icmp_mib.icmpInSrcQuenchs;
14409 	icmpkp->inRedirects.value.ui32 =    ipst->ips_icmp_mib.icmpInRedirects;
14410 	icmpkp->inEchos.value.ui32 =	    ipst->ips_icmp_mib.icmpInEchos;
14411 	icmpkp->inEchoReps.value.ui32 =	    ipst->ips_icmp_mib.icmpInEchoReps;
14412 	icmpkp->inTimestamps.value.ui32 =   ipst->ips_icmp_mib.icmpInTimestamps;
14413 	icmpkp->inTimestampReps.value.ui32 =
14414 	    ipst->ips_icmp_mib.icmpInTimestampReps;
14415 	icmpkp->inAddrMasks.value.ui32 =    ipst->ips_icmp_mib.icmpInAddrMasks;
14416 	icmpkp->inAddrMaskReps.value.ui32 =
14417 	    ipst->ips_icmp_mib.icmpInAddrMaskReps;
14418 	icmpkp->outMsgs.value.ui32 =	    ipst->ips_icmp_mib.icmpOutMsgs;
14419 	icmpkp->outErrors.value.ui32 =	    ipst->ips_icmp_mib.icmpOutErrors;
14420 	icmpkp->outDestUnreachs.value.ui32 =
14421 	    ipst->ips_icmp_mib.icmpOutDestUnreachs;
14422 	icmpkp->outTimeExcds.value.ui32 =   ipst->ips_icmp_mib.icmpOutTimeExcds;
14423 	icmpkp->outParmProbs.value.ui32 =   ipst->ips_icmp_mib.icmpOutParmProbs;
14424 	icmpkp->outSrcQuenchs.value.ui32 =
14425 	    ipst->ips_icmp_mib.icmpOutSrcQuenchs;
14426 	icmpkp->outRedirects.value.ui32 =   ipst->ips_icmp_mib.icmpOutRedirects;
14427 	icmpkp->outEchos.value.ui32 =	    ipst->ips_icmp_mib.icmpOutEchos;
14428 	icmpkp->outEchoReps.value.ui32 =    ipst->ips_icmp_mib.icmpOutEchoReps;
14429 	icmpkp->outTimestamps.value.ui32 =
14430 	    ipst->ips_icmp_mib.icmpOutTimestamps;
14431 	icmpkp->outTimestampReps.value.ui32 =
14432 	    ipst->ips_icmp_mib.icmpOutTimestampReps;
14433 	icmpkp->outAddrMasks.value.ui32 =
14434 	    ipst->ips_icmp_mib.icmpOutAddrMasks;
14435 	icmpkp->outAddrMaskReps.value.ui32 =
14436 	    ipst->ips_icmp_mib.icmpOutAddrMaskReps;
14437 	icmpkp->inCksumErrs.value.ui32 =    ipst->ips_icmp_mib.icmpInCksumErrs;
14438 	icmpkp->inUnknowns.value.ui32 =	    ipst->ips_icmp_mib.icmpInUnknowns;
14439 	icmpkp->inFragNeeded.value.ui32 =   ipst->ips_icmp_mib.icmpInFragNeeded;
14440 	icmpkp->outFragNeeded.value.ui32 =
14441 	    ipst->ips_icmp_mib.icmpOutFragNeeded;
14442 	icmpkp->outDrops.value.ui32 =	    ipst->ips_icmp_mib.icmpOutDrops;
14443 	icmpkp->inOverflows.value.ui32 =    ipst->ips_icmp_mib.icmpInOverflows;
14444 	icmpkp->inBadRedirects.value.ui32 =
14445 	    ipst->ips_icmp_mib.icmpInBadRedirects;
14446 
14447 	netstack_rele(ns);
14448 	return (0);
14449 }
14450 
14451 /*
14452  * This is the fanout function for raw socket opened for SCTP.  Note
14453  * that it is called after SCTP checks that there is no socket which
14454  * wants a packet.  Then before SCTP handles this out of the blue packet,
14455  * this function is called to see if there is any raw socket for SCTP.
14456  * If there is and it is bound to the correct address, the packet will
14457  * be sent to that socket.  Note that only one raw socket can be bound to
14458  * a port.  This is assured in ipcl_sctp_hash_insert();
14459  */
14460 void
14461 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports,
14462     ip_recv_attr_t *ira)
14463 {
14464 	conn_t		*connp;
14465 	queue_t		*rq;
14466 	boolean_t	secure;
14467 	ill_t		*ill = ira->ira_ill;
14468 	ip_stack_t	*ipst = ill->ill_ipst;
14469 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
14470 	sctp_stack_t	*sctps = ipst->ips_netstack->netstack_sctp;
14471 	iaflags_t	iraflags = ira->ira_flags;
14472 	ill_t		*rill = ira->ira_rill;
14473 
14474 	secure = iraflags & IRAF_IPSEC_SECURE;
14475 
14476 	connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h,
14477 	    ira, ipst);
14478 	if (connp == NULL) {
14479 		/*
14480 		 * Although raw sctp is not summed, OOB chunks must be.
14481 		 * Drop the packet here if the sctp checksum failed.
14482 		 */
14483 		if (iraflags & IRAF_SCTP_CSUM_ERR) {
14484 			BUMP_MIB(&sctps->sctps_mib, sctpChecksumError);
14485 			freemsg(mp);
14486 			return;
14487 		}
14488 		ira->ira_ill = ira->ira_rill = NULL;
14489 		sctp_ootb_input(mp, ira, ipst);
14490 		ira->ira_ill = ill;
14491 		ira->ira_rill = rill;
14492 		return;
14493 	}
14494 	rq = connp->conn_rq;
14495 	if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
14496 		CONN_DEC_REF(connp);
14497 		BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
14498 		freemsg(mp);
14499 		return;
14500 	}
14501 	if (((iraflags & IRAF_IS_IPV4) ?
14502 	    CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
14503 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
14504 	    secure) {
14505 		mp = ipsec_check_inbound_policy(mp, connp, ipha,
14506 		    ip6h, ira);
14507 		if (mp == NULL) {
14508 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14509 			/* Note that mp is NULL */
14510 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
14511 			CONN_DEC_REF(connp);
14512 			return;
14513 		}
14514 	}
14515 
14516 	if (iraflags & IRAF_ICMP_ERROR) {
14517 		(connp->conn_recvicmp)(connp, mp, NULL, ira);
14518 	} else {
14519 		ill_t *rill = ira->ira_rill;
14520 
14521 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
14522 		/* This is the SOCK_RAW, IPPROTO_SCTP case. */
14523 		ira->ira_ill = ira->ira_rill = NULL;
14524 		(connp->conn_recv)(connp, mp, NULL, ira);
14525 		ira->ira_ill = ill;
14526 		ira->ira_rill = rill;
14527 	}
14528 	CONN_DEC_REF(connp);
14529 }
14530 
14531 /*
14532  * Free a packet that has the link-layer dl_unitdata_req_t or fast-path
14533  * header before the ip payload.
14534  */
14535 static void
14536 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len)
14537 {
14538 	int len = (mp->b_wptr - mp->b_rptr);
14539 	mblk_t *ip_mp;
14540 
14541 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14542 	if (is_fp_mp || len != fp_mp_len) {
14543 		if (len > fp_mp_len) {
14544 			/*
14545 			 * fastpath header and ip header in the first mblk
14546 			 */
14547 			mp->b_rptr += fp_mp_len;
14548 		} else {
14549 			/*
14550 			 * ip_xmit_attach_llhdr had to prepend an mblk to
14551 			 * attach the fastpath header before ip header.
14552 			 */
14553 			ip_mp = mp->b_cont;
14554 			freeb(mp);
14555 			mp = ip_mp;
14556 			mp->b_rptr += (fp_mp_len - len);
14557 		}
14558 	} else {
14559 		ip_mp = mp->b_cont;
14560 		freeb(mp);
14561 		mp = ip_mp;
14562 	}
14563 	ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill);
14564 	freemsg(mp);
14565 }
14566 
14567 /*
14568  * Normal post fragmentation function.
14569  *
14570  * Send a packet using the passed in nce. This handles both IPv4 and IPv6
14571  * using the same state machine.
14572  *
14573  * We return an error on failure. In particular we return EWOULDBLOCK
14574  * when the driver flow controls. In that case this ensures that ip_wsrv runs
14575  * (currently by canputnext failure resulting in backenabling from GLD.)
14576  * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an
14577  * indication that they can flow control until ip_wsrv() tells then to restart.
14578  *
14579  * If the nce passed by caller is incomplete, this function
14580  * queues the packet and if necessary, sends ARP request and bails.
14581  * If the Neighbor Cache passed is fully resolved, we simply prepend
14582  * the link-layer header to the packet, do ipsec hw acceleration
14583  * work if necessary, and send the packet out on the wire.
14584  */
14585 /* ARGSUSED6 */
14586 int
14587 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len,
14588     uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie)
14589 {
14590 	queue_t		*wq;
14591 	ill_t		*ill = nce->nce_ill;
14592 	ip_stack_t	*ipst = ill->ill_ipst;
14593 	uint64_t	delta;
14594 	boolean_t	isv6 = ill->ill_isv6;
14595 	boolean_t	fp_mp;
14596 	ncec_t		*ncec = nce->nce_common;
14597 	int64_t		now = LBOLT_FASTPATH64;
14598 
14599 	DTRACE_PROBE1(ip__xmit, nce_t *, nce);
14600 
14601 	ASSERT(mp != NULL);
14602 	ASSERT(mp->b_datap->db_type == M_DATA);
14603 	ASSERT(pkt_len == msgdsize(mp));
14604 
14605 	/*
14606 	 * If we have already been here and are coming back after ARP/ND.
14607 	 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs
14608 	 * in that case since they have seen the packet when it came here
14609 	 * the first time.
14610 	 */
14611 	if (ixaflags & IXAF_NO_TRACE)
14612 		goto sendit;
14613 
14614 	if (ixaflags & IXAF_IS_IPV4) {
14615 		ipha_t *ipha = (ipha_t *)mp->b_rptr;
14616 
14617 		ASSERT(!isv6);
14618 		ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length));
14619 		if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) &&
14620 		    !(ixaflags & IXAF_NO_PFHOOK)) {
14621 			int	error;
14622 
14623 			FW_HOOKS(ipst->ips_ip4_physical_out_event,
14624 			    ipst->ips_ipv4firewall_physical_out,
14625 			    NULL, ill, ipha, mp, mp, 0, ipst, error);
14626 			DTRACE_PROBE1(ip4__physical__out__end,
14627 			    mblk_t *, mp);
14628 			if (mp == NULL)
14629 				return (error);
14630 
14631 			/* The length could have changed */
14632 			pkt_len = msgdsize(mp);
14633 		}
14634 		if (ipst->ips_ip4_observe.he_interested) {
14635 			/*
14636 			 * Note that for TX the zoneid is the sending
14637 			 * zone, whether or not MLP is in play.
14638 			 * Since the szone argument is the IP zoneid (i.e.,
14639 			 * zero for exclusive-IP zones) and ipobs wants
14640 			 * the system zoneid, we map it here.
14641 			 */
14642 			szone = IP_REAL_ZONEID(szone, ipst);
14643 
14644 			/*
14645 			 * On the outbound path the destination zone will be
14646 			 * unknown as we're sending this packet out on the
14647 			 * wire.
14648 			 */
14649 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14650 			    ill, ipst);
14651 		}
14652 		DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14653 		    void_ip_t *, ipha,  __dtrace_ipsr_ill_t *, ill,
14654 		    ipha_t *, ipha, ip6_t *, NULL, int, 0);
14655 	} else {
14656 		ip6_t *ip6h = (ip6_t *)mp->b_rptr;
14657 
14658 		ASSERT(isv6);
14659 		ASSERT(pkt_len ==
14660 		    ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN);
14661 		if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) &&
14662 		    !(ixaflags & IXAF_NO_PFHOOK)) {
14663 			int	error;
14664 
14665 			FW_HOOKS6(ipst->ips_ip6_physical_out_event,
14666 			    ipst->ips_ipv6firewall_physical_out,
14667 			    NULL, ill, ip6h, mp, mp, 0, ipst, error);
14668 			DTRACE_PROBE1(ip6__physical__out__end,
14669 			    mblk_t *, mp);
14670 			if (mp == NULL)
14671 				return (error);
14672 
14673 			/* The length could have changed */
14674 			pkt_len = msgdsize(mp);
14675 		}
14676 		if (ipst->ips_ip6_observe.he_interested) {
14677 			/* See above */
14678 			szone = IP_REAL_ZONEID(szone, ipst);
14679 
14680 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14681 			    ill, ipst);
14682 		}
14683 		DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14684 		    void_ip_t *, ip6h,  __dtrace_ipsr_ill_t *, ill,
14685 		    ipha_t *, NULL, ip6_t *, ip6h, int, 0);
14686 	}
14687 
14688 sendit:
14689 	/*
14690 	 * We check the state without a lock because the state can never
14691 	 * move "backwards" to initial or incomplete.
14692 	 */
14693 	switch (ncec->ncec_state) {
14694 	case ND_REACHABLE:
14695 	case ND_STALE:
14696 	case ND_DELAY:
14697 	case ND_PROBE:
14698 		mp = ip_xmit_attach_llhdr(mp, nce);
14699 		if (mp == NULL) {
14700 			/*
14701 			 * ip_xmit_attach_llhdr has increased
14702 			 * ipIfStatsOutDiscards and called ip_drop_output()
14703 			 */
14704 			return (ENOBUFS);
14705 		}
14706 		/*
14707 		 * check if nce_fastpath completed and we tagged on a
14708 		 * copy of nce_fp_mp in ip_xmit_attach_llhdr().
14709 		 */
14710 		fp_mp = (mp->b_datap->db_type == M_DATA);
14711 
14712 		if (fp_mp &&
14713 		    (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) {
14714 			ill_dld_direct_t *idd;
14715 
14716 			idd = &ill->ill_dld_capab->idc_direct;
14717 			/*
14718 			 * Send the packet directly to DLD, where it
14719 			 * may be queued depending on the availability
14720 			 * of transmit resources at the media layer.
14721 			 * Return value should be taken into
14722 			 * account and flow control the TCP.
14723 			 */
14724 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14725 			UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14726 			    pkt_len);
14727 
14728 			if (ixaflags & IXAF_NO_DEV_FLOW_CTL) {
14729 				(void) idd->idd_tx_df(idd->idd_tx_dh, mp,
14730 				    (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC);
14731 			} else {
14732 				uintptr_t cookie;
14733 
14734 				if ((cookie = idd->idd_tx_df(idd->idd_tx_dh,
14735 				    mp, (uintptr_t)xmit_hint, 0)) != 0) {
14736 					if (ixacookie != NULL)
14737 						*ixacookie = cookie;
14738 					return (EWOULDBLOCK);
14739 				}
14740 			}
14741 		} else {
14742 			wq = ill->ill_wq;
14743 
14744 			if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) &&
14745 			    !canputnext(wq)) {
14746 				if (ixacookie != NULL)
14747 					*ixacookie = 0;
14748 				ip_xmit_flowctl_drop(ill, mp, fp_mp,
14749 				    nce->nce_fp_mp != NULL ?
14750 				    MBLKL(nce->nce_fp_mp) : 0);
14751 				return (EWOULDBLOCK);
14752 			}
14753 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14754 			UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14755 			    pkt_len);
14756 			putnext(wq, mp);
14757 		}
14758 
14759 		/*
14760 		 * The rest of this function implements Neighbor Unreachability
14761 		 * detection. Determine if the ncec is eligible for NUD.
14762 		 */
14763 		if (ncec->ncec_flags & NCE_F_NONUD)
14764 			return (0);
14765 
14766 		ASSERT(ncec->ncec_state != ND_INCOMPLETE);
14767 
14768 		/*
14769 		 * Check for upper layer advice
14770 		 */
14771 		if (ixaflags & IXAF_REACH_CONF) {
14772 			timeout_id_t tid;
14773 
14774 			/*
14775 			 * It should be o.k. to check the state without
14776 			 * a lock here, at most we lose an advice.
14777 			 */
14778 			ncec->ncec_last = TICK_TO_MSEC(now);
14779 			if (ncec->ncec_state != ND_REACHABLE) {
14780 				mutex_enter(&ncec->ncec_lock);
14781 				ncec->ncec_state = ND_REACHABLE;
14782 				tid = ncec->ncec_timeout_id;
14783 				ncec->ncec_timeout_id = 0;
14784 				mutex_exit(&ncec->ncec_lock);
14785 				(void) untimeout(tid);
14786 				if (ip_debug > 2) {
14787 					/* ip1dbg */
14788 					pr_addr_dbg("ip_xmit: state"
14789 					    " for %s changed to"
14790 					    " REACHABLE\n", AF_INET6,
14791 					    &ncec->ncec_addr);
14792 				}
14793 			}
14794 			return (0);
14795 		}
14796 
14797 		delta =  TICK_TO_MSEC(now) - ncec->ncec_last;
14798 		ip1dbg(("ip_xmit: delta = %" PRId64
14799 		    " ill_reachable_time = %d \n", delta,
14800 		    ill->ill_reachable_time));
14801 		if (delta > (uint64_t)ill->ill_reachable_time) {
14802 			mutex_enter(&ncec->ncec_lock);
14803 			switch (ncec->ncec_state) {
14804 			case ND_REACHABLE:
14805 				ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0);
14806 				/* FALLTHROUGH */
14807 			case ND_STALE:
14808 				/*
14809 				 * ND_REACHABLE is identical to
14810 				 * ND_STALE in this specific case. If
14811 				 * reachable time has expired for this
14812 				 * neighbor (delta is greater than
14813 				 * reachable time), conceptually, the
14814 				 * neighbor cache is no longer in
14815 				 * REACHABLE state, but already in
14816 				 * STALE state.  So the correct
14817 				 * transition here is to ND_DELAY.
14818 				 */
14819 				ncec->ncec_state = ND_DELAY;
14820 				mutex_exit(&ncec->ncec_lock);
14821 				nce_restart_timer(ncec,
14822 				    ipst->ips_delay_first_probe_time);
14823 				if (ip_debug > 3) {
14824 					/* ip2dbg */
14825 					pr_addr_dbg("ip_xmit: state"
14826 					    " for %s changed to"
14827 					    " DELAY\n", AF_INET6,
14828 					    &ncec->ncec_addr);
14829 				}
14830 				break;
14831 			case ND_DELAY:
14832 			case ND_PROBE:
14833 				mutex_exit(&ncec->ncec_lock);
14834 				/* Timers have already started */
14835 				break;
14836 			case ND_UNREACHABLE:
14837 				/*
14838 				 * nce_timer has detected that this ncec
14839 				 * is unreachable and initiated deleting
14840 				 * this ncec.
14841 				 * This is a harmless race where we found the
14842 				 * ncec before it was deleted and have
14843 				 * just sent out a packet using this
14844 				 * unreachable ncec.
14845 				 */
14846 				mutex_exit(&ncec->ncec_lock);
14847 				break;
14848 			default:
14849 				ASSERT(0);
14850 				mutex_exit(&ncec->ncec_lock);
14851 			}
14852 		}
14853 		return (0);
14854 
14855 	case ND_INCOMPLETE:
14856 		/*
14857 		 * the state could have changed since we didn't hold the lock.
14858 		 * Re-verify state under lock.
14859 		 */
14860 		mutex_enter(&ncec->ncec_lock);
14861 		if (NCE_ISREACHABLE(ncec)) {
14862 			mutex_exit(&ncec->ncec_lock);
14863 			goto sendit;
14864 		}
14865 		/* queue the packet */
14866 		nce_queue_mp(ncec, mp, ipmp_packet_is_probe(mp, nce->nce_ill));
14867 		mutex_exit(&ncec->ncec_lock);
14868 		DTRACE_PROBE2(ip__xmit__incomplete,
14869 		    (ncec_t *), ncec, (mblk_t *), mp);
14870 		return (0);
14871 
14872 	case ND_INITIAL:
14873 		/*
14874 		 * State could have changed since we didn't hold the lock, so
14875 		 * re-verify state.
14876 		 */
14877 		mutex_enter(&ncec->ncec_lock);
14878 		if (NCE_ISREACHABLE(ncec))  {
14879 			mutex_exit(&ncec->ncec_lock);
14880 			goto sendit;
14881 		}
14882 		nce_queue_mp(ncec, mp, ipmp_packet_is_probe(mp, nce->nce_ill));
14883 		if (ncec->ncec_state == ND_INITIAL) {
14884 			ncec->ncec_state = ND_INCOMPLETE;
14885 			mutex_exit(&ncec->ncec_lock);
14886 			/*
14887 			 * figure out the source we want to use
14888 			 * and resolve it.
14889 			 */
14890 			ip_ndp_resolve(ncec);
14891 		} else  {
14892 			mutex_exit(&ncec->ncec_lock);
14893 		}
14894 		return (0);
14895 
14896 	case ND_UNREACHABLE:
14897 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14898 		ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE",
14899 		    mp, ill);
14900 		freemsg(mp);
14901 		return (0);
14902 
14903 	default:
14904 		ASSERT(0);
14905 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14906 		ip_drop_output("ipIfStatsOutDiscards - ND_other",
14907 		    mp, ill);
14908 		freemsg(mp);
14909 		return (ENETUNREACH);
14910 	}
14911 }
14912 
14913 /*
14914  * Return B_TRUE if the buffers differ in length or content.
14915  * This is used for comparing extension header buffers.
14916  * Note that an extension header would be declared different
14917  * even if all that changed was the next header value in that header i.e.
14918  * what really changed is the next extension header.
14919  */
14920 boolean_t
14921 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf,
14922     uint_t blen)
14923 {
14924 	if (!b_valid)
14925 		blen = 0;
14926 
14927 	if (alen != blen)
14928 		return (B_TRUE);
14929 	if (alen == 0)
14930 		return (B_FALSE);	/* Both zero length */
14931 	return (bcmp(abuf, bbuf, alen));
14932 }
14933 
14934 /*
14935  * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok.
14936  * Return B_FALSE if memory allocation fails - don't change any state!
14937  */
14938 boolean_t
14939 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14940     const void *src, uint_t srclen)
14941 {
14942 	void *dst;
14943 
14944 	if (!src_valid)
14945 		srclen = 0;
14946 
14947 	ASSERT(*dstlenp == 0);
14948 	if (src != NULL && srclen != 0) {
14949 		dst = mi_alloc(srclen, BPRI_MED);
14950 		if (dst == NULL)
14951 			return (B_FALSE);
14952 	} else {
14953 		dst = NULL;
14954 	}
14955 	if (*dstp != NULL)
14956 		mi_free(*dstp);
14957 	*dstp = dst;
14958 	*dstlenp = dst == NULL ? 0 : srclen;
14959 	return (B_TRUE);
14960 }
14961 
14962 /*
14963  * Replace what is in *dst, *dstlen with the source.
14964  * Assumes ip_allocbuf has already been called.
14965  */
14966 void
14967 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14968     const void *src, uint_t srclen)
14969 {
14970 	if (!src_valid)
14971 		srclen = 0;
14972 
14973 	ASSERT(*dstlenp == srclen);
14974 	if (src != NULL && srclen != 0)
14975 		bcopy(src, *dstp, srclen);
14976 }
14977 
14978 /*
14979  * Free the storage pointed to by the members of an ip_pkt_t.
14980  */
14981 void
14982 ip_pkt_free(ip_pkt_t *ipp)
14983 {
14984 	uint_t	fields = ipp->ipp_fields;
14985 
14986 	if (fields & IPPF_HOPOPTS) {
14987 		kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
14988 		ipp->ipp_hopopts = NULL;
14989 		ipp->ipp_hopoptslen = 0;
14990 	}
14991 	if (fields & IPPF_RTHDRDSTOPTS) {
14992 		kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
14993 		ipp->ipp_rthdrdstopts = NULL;
14994 		ipp->ipp_rthdrdstoptslen = 0;
14995 	}
14996 	if (fields & IPPF_DSTOPTS) {
14997 		kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
14998 		ipp->ipp_dstopts = NULL;
14999 		ipp->ipp_dstoptslen = 0;
15000 	}
15001 	if (fields & IPPF_RTHDR) {
15002 		kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15003 		ipp->ipp_rthdr = NULL;
15004 		ipp->ipp_rthdrlen = 0;
15005 	}
15006 	if (fields & IPPF_IPV4_OPTIONS) {
15007 		kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len);
15008 		ipp->ipp_ipv4_options = NULL;
15009 		ipp->ipp_ipv4_options_len = 0;
15010 	}
15011 	if (fields & IPPF_LABEL_V4) {
15012 		kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
15013 		ipp->ipp_label_v4 = NULL;
15014 		ipp->ipp_label_len_v4 = 0;
15015 	}
15016 	if (fields & IPPF_LABEL_V6) {
15017 		kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6);
15018 		ipp->ipp_label_v6 = NULL;
15019 		ipp->ipp_label_len_v6 = 0;
15020 	}
15021 	ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
15022 	    IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
15023 }
15024 
15025 /*
15026  * Copy from src to dst and allocate as needed.
15027  * Returns zero or ENOMEM.
15028  *
15029  * The caller must initialize dst to zero.
15030  */
15031 int
15032 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag)
15033 {
15034 	uint_t	fields = src->ipp_fields;
15035 
15036 	/* Start with fields that don't require memory allocation */
15037 	dst->ipp_fields = fields &
15038 	    ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
15039 	    IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
15040 
15041 	dst->ipp_addr = src->ipp_addr;
15042 	dst->ipp_unicast_hops = src->ipp_unicast_hops;
15043 	dst->ipp_hoplimit = src->ipp_hoplimit;
15044 	dst->ipp_tclass = src->ipp_tclass;
15045 	dst->ipp_type_of_service = src->ipp_type_of_service;
15046 
15047 	if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
15048 	    IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6)))
15049 		return (0);
15050 
15051 	if (fields & IPPF_HOPOPTS) {
15052 		dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag);
15053 		if (dst->ipp_hopopts == NULL) {
15054 			ip_pkt_free(dst);
15055 			return (ENOMEM);
15056 		}
15057 		dst->ipp_fields |= IPPF_HOPOPTS;
15058 		bcopy(src->ipp_hopopts, dst->ipp_hopopts,
15059 		    src->ipp_hopoptslen);
15060 		dst->ipp_hopoptslen = src->ipp_hopoptslen;
15061 	}
15062 	if (fields & IPPF_RTHDRDSTOPTS) {
15063 		dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen,
15064 		    kmflag);
15065 		if (dst->ipp_rthdrdstopts == NULL) {
15066 			ip_pkt_free(dst);
15067 			return (ENOMEM);
15068 		}
15069 		dst->ipp_fields |= IPPF_RTHDRDSTOPTS;
15070 		bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts,
15071 		    src->ipp_rthdrdstoptslen);
15072 		dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen;
15073 	}
15074 	if (fields & IPPF_DSTOPTS) {
15075 		dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag);
15076 		if (dst->ipp_dstopts == NULL) {
15077 			ip_pkt_free(dst);
15078 			return (ENOMEM);
15079 		}
15080 		dst->ipp_fields |= IPPF_DSTOPTS;
15081 		bcopy(src->ipp_dstopts, dst->ipp_dstopts,
15082 		    src->ipp_dstoptslen);
15083 		dst->ipp_dstoptslen = src->ipp_dstoptslen;
15084 	}
15085 	if (fields & IPPF_RTHDR) {
15086 		dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag);
15087 		if (dst->ipp_rthdr == NULL) {
15088 			ip_pkt_free(dst);
15089 			return (ENOMEM);
15090 		}
15091 		dst->ipp_fields |= IPPF_RTHDR;
15092 		bcopy(src->ipp_rthdr, dst->ipp_rthdr,
15093 		    src->ipp_rthdrlen);
15094 		dst->ipp_rthdrlen = src->ipp_rthdrlen;
15095 	}
15096 	if (fields & IPPF_IPV4_OPTIONS) {
15097 		dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len,
15098 		    kmflag);
15099 		if (dst->ipp_ipv4_options == NULL) {
15100 			ip_pkt_free(dst);
15101 			return (ENOMEM);
15102 		}
15103 		dst->ipp_fields |= IPPF_IPV4_OPTIONS;
15104 		bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options,
15105 		    src->ipp_ipv4_options_len);
15106 		dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len;
15107 	}
15108 	if (fields & IPPF_LABEL_V4) {
15109 		dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag);
15110 		if (dst->ipp_label_v4 == NULL) {
15111 			ip_pkt_free(dst);
15112 			return (ENOMEM);
15113 		}
15114 		dst->ipp_fields |= IPPF_LABEL_V4;
15115 		bcopy(src->ipp_label_v4, dst->ipp_label_v4,
15116 		    src->ipp_label_len_v4);
15117 		dst->ipp_label_len_v4 = src->ipp_label_len_v4;
15118 	}
15119 	if (fields & IPPF_LABEL_V6) {
15120 		dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag);
15121 		if (dst->ipp_label_v6 == NULL) {
15122 			ip_pkt_free(dst);
15123 			return (ENOMEM);
15124 		}
15125 		dst->ipp_fields |= IPPF_LABEL_V6;
15126 		bcopy(src->ipp_label_v6, dst->ipp_label_v6,
15127 		    src->ipp_label_len_v6);
15128 		dst->ipp_label_len_v6 = src->ipp_label_len_v6;
15129 	}
15130 	if (fields & IPPF_FRAGHDR) {
15131 		dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag);
15132 		if (dst->ipp_fraghdr == NULL) {
15133 			ip_pkt_free(dst);
15134 			return (ENOMEM);
15135 		}
15136 		dst->ipp_fields |= IPPF_FRAGHDR;
15137 		bcopy(src->ipp_fraghdr, dst->ipp_fraghdr,
15138 		    src->ipp_fraghdrlen);
15139 		dst->ipp_fraghdrlen = src->ipp_fraghdrlen;
15140 	}
15141 	return (0);
15142 }
15143 
15144 /*
15145  * Returns INADDR_ANY if no source route
15146  */
15147 ipaddr_t
15148 ip_pkt_source_route_v4(const ip_pkt_t *ipp)
15149 {
15150 	ipaddr_t	nexthop = INADDR_ANY;
15151 	ipoptp_t	opts;
15152 	uchar_t		*opt;
15153 	uint8_t		optval;
15154 	uint8_t		optlen;
15155 	uint32_t	totallen;
15156 
15157 	if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
15158 		return (INADDR_ANY);
15159 
15160 	totallen = ipp->ipp_ipv4_options_len;
15161 	if (totallen & 0x3)
15162 		return (INADDR_ANY);
15163 
15164 	for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
15165 	    optval != IPOPT_EOL;
15166 	    optval = ipoptp_next(&opts)) {
15167 		opt = opts.ipoptp_cur;
15168 		switch (optval) {
15169 			uint8_t off;
15170 		case IPOPT_SSRR:
15171 		case IPOPT_LSRR:
15172 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15173 				break;
15174 			}
15175 			optlen = opts.ipoptp_len;
15176 			off = opt[IPOPT_OFFSET];
15177 			off--;
15178 			if (optlen < IP_ADDR_LEN ||
15179 			    off > optlen - IP_ADDR_LEN) {
15180 				/* End of source route */
15181 				break;
15182 			}
15183 			bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN);
15184 			if (nexthop == htonl(INADDR_LOOPBACK)) {
15185 				/* Ignore */
15186 				nexthop = INADDR_ANY;
15187 				break;
15188 			}
15189 			break;
15190 		}
15191 	}
15192 	return (nexthop);
15193 }
15194 
15195 /*
15196  * Reverse a source route.
15197  */
15198 void
15199 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp)
15200 {
15201 	ipaddr_t	tmp;
15202 	ipoptp_t	opts;
15203 	uchar_t		*opt;
15204 	uint8_t		optval;
15205 	uint32_t	totallen;
15206 
15207 	if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
15208 		return;
15209 
15210 	totallen = ipp->ipp_ipv4_options_len;
15211 	if (totallen & 0x3)
15212 		return;
15213 
15214 	for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
15215 	    optval != IPOPT_EOL;
15216 	    optval = ipoptp_next(&opts)) {
15217 		uint8_t off1, off2;
15218 
15219 		opt = opts.ipoptp_cur;
15220 		switch (optval) {
15221 		case IPOPT_SSRR:
15222 		case IPOPT_LSRR:
15223 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15224 				break;
15225 			}
15226 			off1 = IPOPT_MINOFF_SR - 1;
15227 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
15228 			while (off2 > off1) {
15229 				bcopy(opt + off2, &tmp, IP_ADDR_LEN);
15230 				bcopy(opt + off1, opt + off2, IP_ADDR_LEN);
15231 				bcopy(&tmp, opt + off2, IP_ADDR_LEN);
15232 				off2 -= IP_ADDR_LEN;
15233 				off1 += IP_ADDR_LEN;
15234 			}
15235 			opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
15236 			break;
15237 		}
15238 	}
15239 }
15240 
15241 /*
15242  * Returns NULL if no routing header
15243  */
15244 in6_addr_t *
15245 ip_pkt_source_route_v6(const ip_pkt_t *ipp)
15246 {
15247 	in6_addr_t	*nexthop = NULL;
15248 	ip6_rthdr0_t	*rthdr;
15249 
15250 	if (!(ipp->ipp_fields & IPPF_RTHDR))
15251 		return (NULL);
15252 
15253 	rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr;
15254 	if (rthdr->ip6r0_segleft == 0)
15255 		return (NULL);
15256 
15257 	nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr));
15258 	return (nexthop);
15259 }
15260 
15261 zoneid_t
15262 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira,
15263     zoneid_t lookup_zoneid)
15264 {
15265 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
15266 	ire_t		*ire;
15267 	int		ire_flags = MATCH_IRE_TYPE;
15268 	zoneid_t	zoneid = ALL_ZONES;
15269 
15270 	if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15271 		return (ALL_ZONES);
15272 
15273 	if (lookup_zoneid != ALL_ZONES)
15274 		ire_flags |= MATCH_IRE_ZONEONLY;
15275 	ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15276 	    NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15277 	if (ire != NULL) {
15278 		zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15279 		ire_refrele(ire);
15280 	}
15281 	return (zoneid);
15282 }
15283 
15284 zoneid_t
15285 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill,
15286     ip_recv_attr_t *ira, zoneid_t lookup_zoneid)
15287 {
15288 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
15289 	ire_t		*ire;
15290 	int		ire_flags = MATCH_IRE_TYPE;
15291 	zoneid_t	zoneid = ALL_ZONES;
15292 
15293 	if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15294 		return (ALL_ZONES);
15295 
15296 	if (IN6_IS_ADDR_LINKLOCAL(addr))
15297 		ire_flags |= MATCH_IRE_ILL;
15298 
15299 	if (lookup_zoneid != ALL_ZONES)
15300 		ire_flags |= MATCH_IRE_ZONEONLY;
15301 	ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15302 	    ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15303 	if (ire != NULL) {
15304 		zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15305 		ire_refrele(ire);
15306 	}
15307 	return (zoneid);
15308 }
15309 
15310 /*
15311  * IP obserability hook support functions.
15312  */
15313 static void
15314 ipobs_init(ip_stack_t *ipst)
15315 {
15316 	netid_t id;
15317 
15318 	id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid);
15319 
15320 	ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET);
15321 	VERIFY(ipst->ips_ip4_observe_pr != NULL);
15322 
15323 	ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6);
15324 	VERIFY(ipst->ips_ip6_observe_pr != NULL);
15325 }
15326 
15327 static void
15328 ipobs_fini(ip_stack_t *ipst)
15329 {
15330 
15331 	VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0);
15332 	VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0);
15333 }
15334 
15335 /*
15336  * hook_pkt_observe_t is composed in network byte order so that the
15337  * entire mblk_t chain handed into hook_run can be used as-is.
15338  * The caveat is that use of the fields, such as the zone fields,
15339  * requires conversion into host byte order first.
15340  */
15341 void
15342 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst,
15343     const ill_t *ill, ip_stack_t *ipst)
15344 {
15345 	hook_pkt_observe_t *hdr;
15346 	uint64_t grifindex;
15347 	mblk_t *imp;
15348 
15349 	imp = allocb(sizeof (*hdr), BPRI_HI);
15350 	if (imp == NULL)
15351 		return;
15352 
15353 	hdr = (hook_pkt_observe_t *)imp->b_rptr;
15354 	/*
15355 	 * b_wptr is set to make the apparent size of the data in the mblk_t
15356 	 * to exclude the pointers at the end of hook_pkt_observer_t.
15357 	 */
15358 	imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t);
15359 	imp->b_cont = mp;
15360 
15361 	ASSERT(DB_TYPE(mp) == M_DATA);
15362 
15363 	if (IS_UNDER_IPMP(ill))
15364 		grifindex = ipmp_ill_get_ipmp_ifindex(ill);
15365 	else
15366 		grifindex = 0;
15367 
15368 	hdr->hpo_version = 1;
15369 	hdr->hpo_htype = htype;
15370 	hdr->hpo_pktlen = htons((ushort_t)msgdsize(mp));
15371 	hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex);
15372 	hdr->hpo_grifindex = htonl(grifindex);
15373 	hdr->hpo_zsrc = htonl(zsrc);
15374 	hdr->hpo_zdst = htonl(zdst);
15375 	hdr->hpo_pkt = imp;
15376 	hdr->hpo_ctx = ipst->ips_netstack;
15377 
15378 	if (ill->ill_isv6) {
15379 		hdr->hpo_family = AF_INET6;
15380 		(void) hook_run(ipst->ips_ipv6_net_data->netd_hooks,
15381 		    ipst->ips_ipv6observing, (hook_data_t)hdr);
15382 	} else {
15383 		hdr->hpo_family = AF_INET;
15384 		(void) hook_run(ipst->ips_ipv4_net_data->netd_hooks,
15385 		    ipst->ips_ipv4observing, (hook_data_t)hdr);
15386 	}
15387 
15388 	imp->b_cont = NULL;
15389 	freemsg(imp);
15390 }
15391 
15392 /*
15393  * Utility routine that checks if `v4srcp' is a valid address on underlying
15394  * interface `ill'.  If `ipifp' is non-NULL, it's set to a held ipif
15395  * associated with `v4srcp' on success.  NOTE: if this is not called from
15396  * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the
15397  * group during or after this lookup.
15398  */
15399 boolean_t
15400 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp)
15401 {
15402 	ipif_t *ipif;
15403 
15404 	ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst);
15405 	if (ipif != NULL) {
15406 		if (ipifp != NULL)
15407 			*ipifp = ipif;
15408 		else
15409 			ipif_refrele(ipif);
15410 		return (B_TRUE);
15411 	}
15412 
15413 	ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n",
15414 	    *v4srcp));
15415 	return (B_FALSE);
15416 }
15417