1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #ifndef _INET_IP_H 29 #define _INET_IP_H 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #ifdef __cplusplus 34 extern "C" { 35 #endif 36 37 #include <sys/isa_defs.h> 38 #include <sys/types.h> 39 #include <inet/mib2.h> 40 #include <inet/nd.h> 41 #include <sys/atomic.h> 42 #include <net/if_dl.h> 43 #include <net/if.h> 44 #include <netinet/ip.h> 45 #include <netinet/igmp.h> 46 #include <sys/neti.h> 47 #include <sys/hook.h> 48 #include <sys/hook_event.h> 49 #include <sys/hook_impl.h> 50 #include <inet/ip_stack.h> 51 52 #ifdef _KERNEL 53 #include <netinet/ip6.h> 54 #include <sys/avl.h> 55 #include <sys/vmem.h> 56 #include <sys/squeue.h> 57 #include <net/route.h> 58 #include <sys/systm.h> 59 #include <sys/multidata.h> 60 #include <net/radix.h> 61 #include <sys/modhash.h> 62 63 #ifdef DEBUG 64 #define CONN_DEBUG 65 #endif 66 67 #define IP_DEBUG 68 /* 69 * The mt-streams(9F) flags for the IP module; put here so that other 70 * "drivers" that are actually IP (e.g., ICMP, UDP) can use the same set 71 * of flags. 72 */ 73 #define IP_DEVMTFLAGS D_MP 74 #endif /* _KERNEL */ 75 76 #define IP_MOD_NAME "ip" 77 #define IP_DEV_NAME "/dev/ip" 78 #define IP6_DEV_NAME "/dev/ip6" 79 80 #define UDP_MOD_NAME "udp" 81 #define UDP_DEV_NAME "/dev/udp" 82 #define UDP6_DEV_NAME "/dev/udp6" 83 84 #define TCP_MOD_NAME "tcp" 85 #define TCP_DEV_NAME "/dev/tcp" 86 #define TCP6_DEV_NAME "/dev/tcp6" 87 88 #define SCTP_MOD_NAME "sctp" 89 90 /* Minor numbers */ 91 #define IPV4_MINOR 0 92 #define IPV6_MINOR 1 93 #define TCP_MINOR 2 94 #define TCP_MINOR6 3 95 96 #ifndef _IPADDR_T 97 #define _IPADDR_T 98 typedef uint32_t ipaddr_t; 99 #endif 100 101 /* Number of bits in an address */ 102 #define IP_ABITS 32 103 #define IPV6_ABITS 128 104 105 #define IP_HOST_MASK (ipaddr_t)0xffffffffU 106 107 #define IP_CSUM(mp, off, sum) (~ip_cksum(mp, off, sum) & 0xFFFF) 108 #define IP_CSUM_PARTIAL(mp, off, sum) ip_cksum(mp, off, sum) 109 #define IP_BCSUM_PARTIAL(bp, len, sum) bcksum(bp, len, sum) 110 #define IP_MD_CSUM(pd, off, sum) (~ip_md_cksum(pd, off, sum) & 0xffff) 111 #define IP_MD_CSUM_PARTIAL(pd, off, sum) ip_md_cksum(pd, off, sum) 112 113 /* 114 * Flag to IP write side to indicate that the appln has sent in a pre-built 115 * IP header. Stored in ipha_ident (which is otherwise zero). 116 */ 117 #define IP_HDR_INCLUDED 0xFFFF 118 119 #define ILL_FRAG_HASH_TBL_COUNT ((unsigned int)64) 120 #define ILL_FRAG_HASH_TBL_SIZE (ILL_FRAG_HASH_TBL_COUNT * sizeof (ipfb_t)) 121 122 #define IPV4_ADDR_LEN 4 123 #define IP_ADDR_LEN IPV4_ADDR_LEN 124 #define IP_ARP_PROTO_TYPE 0x0800 125 126 #define IPV4_VERSION 4 127 #define IP_VERSION IPV4_VERSION 128 #define IP_SIMPLE_HDR_LENGTH_IN_WORDS 5 129 #define IP_SIMPLE_HDR_LENGTH 20 130 #define IP_MAX_HDR_LENGTH 60 131 132 #define IP_MAX_OPT_LENGTH (IP_MAX_HDR_LENGTH-IP_SIMPLE_HDR_LENGTH) 133 134 #define IP_MIN_MTU (IP_MAX_HDR_LENGTH + 8) /* 68 bytes */ 135 136 /* 137 * XXX IP_MAXPACKET is defined in <netinet/ip.h> as well. At some point the 138 * 2 files should be cleaned up to remove all redundant definitions. 139 */ 140 #define IP_MAXPACKET 65535 141 #define IP_SIMPLE_HDR_VERSION \ 142 ((IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS) 143 144 #define UDPH_SIZE 8 145 146 /* Leave room for ip_newroute to tack on the src and target addresses */ 147 #define OK_RESOLVER_MP(mp) \ 148 ((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN)) 149 150 /* 151 * Constants and type definitions to support IP IOCTL commands 152 */ 153 #define IP_IOCTL (('i'<<8)|'p') 154 #define IP_IOC_IRE_DELETE 4 155 #define IP_IOC_IRE_DELETE_NO_REPLY 5 156 #define IP_IOC_IRE_ADVISE_NO_REPLY 6 157 #define IP_IOC_RTS_REQUEST 7 158 159 /* Common definitions used by IP IOCTL data structures */ 160 typedef struct ipllcmd_s { 161 uint_t ipllc_cmd; 162 uint_t ipllc_name_offset; 163 uint_t ipllc_name_length; 164 } ipllc_t; 165 166 /* IP IRE Change Command Structure. */ 167 typedef struct ipic_s { 168 ipllc_t ipic_ipllc; 169 uint_t ipic_ire_type; 170 uint_t ipic_max_frag; 171 uint_t ipic_addr_offset; 172 uint_t ipic_addr_length; 173 uint_t ipic_mask_offset; 174 uint_t ipic_mask_length; 175 uint_t ipic_src_addr_offset; 176 uint_t ipic_src_addr_length; 177 uint_t ipic_ll_hdr_offset; 178 uint_t ipic_ll_hdr_length; 179 uint_t ipic_gateway_addr_offset; 180 uint_t ipic_gateway_addr_length; 181 clock_t ipic_rtt; 182 uint32_t ipic_ssthresh; 183 clock_t ipic_rtt_sd; 184 uchar_t ipic_ire_marks; 185 } ipic_t; 186 187 #define ipic_cmd ipic_ipllc.ipllc_cmd 188 #define ipic_ll_name_length ipic_ipllc.ipllc_name_length 189 #define ipic_ll_name_offset ipic_ipllc.ipllc_name_offset 190 191 /* IP IRE Delete Command Structure. */ 192 typedef struct ipid_s { 193 ipllc_t ipid_ipllc; 194 uint_t ipid_ire_type; 195 uint_t ipid_addr_offset; 196 uint_t ipid_addr_length; 197 uint_t ipid_mask_offset; 198 uint_t ipid_mask_length; 199 } ipid_t; 200 201 #define ipid_cmd ipid_ipllc.ipllc_cmd 202 203 #ifdef _KERNEL 204 /* 205 * Temporary state for ip options parser. 206 */ 207 typedef struct ipoptp_s 208 { 209 uint8_t *ipoptp_next; /* next option to look at */ 210 uint8_t *ipoptp_end; /* end of options */ 211 uint8_t *ipoptp_cur; /* start of current option */ 212 uint8_t ipoptp_len; /* length of current option */ 213 uint32_t ipoptp_flags; 214 } ipoptp_t; 215 216 /* 217 * Flag(s) for ipoptp_flags 218 */ 219 #define IPOPTP_ERROR 0x00000001 220 #endif /* _KERNEL */ 221 222 223 /* Controls forwarding of IP packets, set via ndd */ 224 #define IP_FORWARD_NEVER 0 225 #define IP_FORWARD_ALWAYS 1 226 227 #define WE_ARE_FORWARDING(ipst) ((ipst)->ips_ip_g_forward == IP_FORWARD_ALWAYS) 228 229 #define IPH_HDR_LENGTH(ipha) \ 230 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length & 0xF) << 2) 231 232 #define IPH_HDR_VERSION(ipha) \ 233 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length) >> 4) 234 235 #ifdef _KERNEL 236 /* 237 * IP reassembly macros. We hide starting and ending offsets in b_next and 238 * b_prev of messages on the reassembly queue. The messages are chained using 239 * b_cont. These macros are used in ip_reassemble() so we don't have to see 240 * the ugly casts and assignments. 241 * Note that the offsets are <= 64k i.e. a uint_t is sufficient to represent 242 * them. 243 */ 244 #define IP_REASS_START(mp) ((uint_t)(uintptr_t)((mp)->b_next)) 245 #define IP_REASS_SET_START(mp, u) \ 246 ((mp)->b_next = (mblk_t *)(uintptr_t)(u)) 247 #define IP_REASS_END(mp) ((uint_t)(uintptr_t)((mp)->b_prev)) 248 #define IP_REASS_SET_END(mp, u) \ 249 ((mp)->b_prev = (mblk_t *)(uintptr_t)(u)) 250 251 #define IP_REASS_COMPLETE 0x1 252 #define IP_REASS_PARTIAL 0x2 253 #define IP_REASS_FAILED 0x4 254 255 /* 256 * Test to determine whether this is a module instance of IP or a 257 * driver instance of IP. 258 */ 259 #define CONN_Q(q) (WR(q)->q_next == NULL) 260 261 #define Q_TO_CONN(q) ((conn_t *)(q)->q_ptr) 262 #define Q_TO_TCP(q) (Q_TO_CONN((q))->conn_tcp) 263 #define Q_TO_UDP(q) (Q_TO_CONN((q))->conn_udp) 264 265 /* 266 * The following two macros are used by IP to get the appropriate 267 * wq and rq for a conn. If it is a TCP conn, then we need 268 * tcp_wq/tcp_rq else, conn_wq/conn_rq. IP can use conn_wq and conn_rq 269 * from a conn directly if it knows that the conn is not TCP. 270 */ 271 #define CONNP_TO_WQ(connp) \ 272 (IPCL_IS_TCP(connp) ? (connp)->conn_tcp->tcp_wq : (connp)->conn_wq) 273 274 #define CONNP_TO_RQ(connp) RD(CONNP_TO_WQ(connp)) 275 276 #define GRAB_CONN_LOCK(q) { \ 277 if (q != NULL && CONN_Q(q)) \ 278 mutex_enter(&(Q_TO_CONN(q))->conn_lock); \ 279 } 280 281 #define RELEASE_CONN_LOCK(q) { \ 282 if (q != NULL && CONN_Q(q)) \ 283 mutex_exit(&(Q_TO_CONN(q))->conn_lock); \ 284 } 285 286 /* "Congestion controlled" protocol */ 287 #define IP_FLOW_CONTROLLED_ULP(p) ((p) == IPPROTO_TCP || (p) == IPPROTO_SCTP) 288 289 /* 290 * Complete the pending operation. Usually an ioctl. Can also 291 * be a bind or option management request that got enqueued 292 * in an ipsq_t. Called on completion of the operation. 293 */ 294 #define CONN_OPER_PENDING_DONE(connp) { \ 295 mutex_enter(&(connp)->conn_lock); \ 296 (connp)->conn_oper_pending_ill = NULL; \ 297 cv_broadcast(&(connp)->conn_refcv); \ 298 mutex_exit(&(connp)->conn_lock); \ 299 CONN_DEC_REF(connp); \ 300 } 301 302 /* Get the credential of an IP queue of unknown type */ 303 #define GET_QUEUE_CRED(wq) \ 304 ((wq)->q_next ? (((ill_t *)(wq)->q_ptr)->ill_credp) \ 305 : ((Q_TO_CONN((wq)))->conn_cred)) 306 307 /* 308 * Flags for the various ip_fanout_* routines. 309 */ 310 #define IP_FF_SEND_ICMP 0x01 /* Send an ICMP error */ 311 #define IP_FF_HDR_COMPLETE 0x02 /* Call ip_hdr_complete if error */ 312 #define IP_FF_CKSUM 0x04 /* Recompute ipha_cksum if error */ 313 #define IP_FF_RAWIP 0x08 /* Use rawip mib variable */ 314 #define IP_FF_SRC_QUENCH 0x10 /* OK to send ICMP_SOURCE_QUENCH */ 315 #define IP_FF_SYN_ADDIRE 0x20 /* Add IRE if TCP syn packet */ 316 #define IP_FF_IPINFO 0x80 /* Used for both V4 and V6 */ 317 #define IP_FF_SEND_SLLA 0x100 /* Send source link layer info ? */ 318 #define IPV6_REACHABILITY_CONFIRMATION 0x200 /* Flags for ip_xmit_v6 */ 319 #define IP_FF_NO_MCAST_LOOP 0x400 /* No multicasts for sending zone */ 320 321 /* 322 * Following flags are used by IPQoS to determine if policy processing is 323 * required. 324 */ 325 #define IP6_NO_IPPOLICY 0x800 /* Don't do IPQoS processing */ 326 #define IP6_IN_LLMCAST 0x1000 /* Multicast */ 327 328 #define IP_FF_LOOPBACK 0x2000 /* Loopback fanout */ 329 330 #ifndef IRE_DB_TYPE 331 #define IRE_DB_TYPE M_SIG 332 #endif 333 334 #ifndef IRE_DB_REQ_TYPE 335 #define IRE_DB_REQ_TYPE M_PCSIG 336 #endif 337 338 #ifndef IRE_ARPRESOLVE_TYPE 339 #define IRE_ARPRESOLVE_TYPE M_EVENT 340 #endif 341 342 /* 343 * Values for squeue switch: 344 */ 345 346 #define IP_SQUEUE_ENTER_NODRAIN 1 347 #define IP_SQUEUE_ENTER 2 348 /* 349 * This is part of the interface between Transport provider and 350 * IP which can be used to set policy information. This is usually 351 * accompanied with O_T_BIND_REQ/T_BIND_REQ.ip_bind assumes that 352 * only IPSEC_POLICY_SET is there when it is found in the chain. 353 * The information contained is an struct ipsec_req_t. On success 354 * or failure, either the T_BIND_ACK or the T_ERROR_ACK is returned. 355 * IPSEC_POLICY_SET is never returned. 356 */ 357 #define IPSEC_POLICY_SET M_SETOPTS 358 359 #define IRE_IS_LOCAL(ire) ((ire != NULL) && \ 360 ((ire)->ire_type & (IRE_LOCAL | IRE_LOOPBACK))) 361 362 #define IRE_IS_TARGET(ire) ((ire != NULL) && \ 363 ((ire)->ire_type != IRE_BROADCAST)) 364 365 /* IP Fragmentation Reassembly Header */ 366 typedef struct ipf_s { 367 struct ipf_s *ipf_hash_next; 368 struct ipf_s **ipf_ptphn; /* Pointer to previous hash next. */ 369 uint32_t ipf_ident; /* Ident to match. */ 370 uint8_t ipf_protocol; /* Protocol to match. */ 371 uchar_t ipf_last_frag_seen : 1; /* Last fragment seen ? */ 372 time_t ipf_timestamp; /* Reassembly start time. */ 373 mblk_t *ipf_mp; /* mblk we live in. */ 374 mblk_t *ipf_tail_mp; /* Frag queue tail pointer. */ 375 int ipf_hole_cnt; /* Number of holes (hard-case). */ 376 int ipf_end; /* Tail end offset (0 -> hard-case). */ 377 uint_t ipf_gen; /* Frag queue generation */ 378 size_t ipf_count; /* Count of bytes used by frag */ 379 uint_t ipf_nf_hdr_len; /* Length of nonfragmented header */ 380 in6_addr_t ipf_v6src; /* IPv6 source address */ 381 in6_addr_t ipf_v6dst; /* IPv6 dest address */ 382 uint_t ipf_prev_nexthdr_offset; /* Offset for nexthdr value */ 383 uint8_t ipf_ecn; /* ECN info for the fragments */ 384 uint8_t ipf_num_dups; /* Number of times dup frags recvd */ 385 uint16_t ipf_checksum_flags; /* Hardware checksum flags */ 386 uint32_t ipf_checksum; /* Partial checksum of fragment data */ 387 } ipf_t; 388 389 #define ipf_src V4_PART_OF_V6(ipf_v6src) 390 #define ipf_dst V4_PART_OF_V6(ipf_v6dst) 391 392 typedef enum { 393 IB_PKT = 0x01, 394 OB_PKT = 0x02 395 } ip_pkt_t; 396 397 #define UPDATE_IB_PKT_COUNT(ire)\ 398 { \ 399 (ire)->ire_ib_pkt_count++; \ 400 if ((ire)->ire_ipif != NULL) { \ 401 /* \ 402 * forwarding packet \ 403 */ \ 404 if ((ire)->ire_type & (IRE_LOCAL|IRE_BROADCAST)) \ 405 atomic_add_32(&(ire)->ire_ipif->ipif_ib_pkt_count, 1);\ 406 else \ 407 atomic_add_32(&(ire)->ire_ipif->ipif_fo_pkt_count, 1);\ 408 } \ 409 } 410 #define UPDATE_OB_PKT_COUNT(ire)\ 411 { \ 412 (ire)->ire_ob_pkt_count++;\ 413 if ((ire)->ire_ipif != NULL) { \ 414 atomic_add_32(&(ire)->ire_ipif->ipif_ob_pkt_count, 1); \ 415 } \ 416 } 417 418 419 #define IP_RPUT_LOCAL(q, mp, ipha, ire, recv_ill) \ 420 { \ 421 switch (ipha->ipha_protocol) { \ 422 case IPPROTO_UDP: \ 423 ip_udp_input(q, mp, ipha, ire, recv_ill); \ 424 break; \ 425 default: \ 426 ip_proto_input(q, mp, ipha, ire, recv_ill, B_FALSE); \ 427 break; \ 428 } \ 429 } 430 431 /* 432 * NCE_EXPIRED is TRUE when we have a non-permanent nce that was 433 * found to be REACHABLE more than ip_ire_arp_interval ms ago. 434 * This macro is used to age existing nce_t entries. The 435 * nce's will get cleaned up in the following circumstances: 436 * - ip_ire_trash_reclaim will free nce's using ndp_cache_reclaim 437 * when memory is low, 438 * - ip_arp_news, when updates are received. 439 * - if the nce is NCE_EXPIRED(), it will deleted, so that a new 440 * arp request will need to be triggered from an ND_INITIAL nce. 441 * 442 * Note that the nce state transition follows the pattern: 443 * ND_INITIAL -> ND_INCOMPLETE -> ND_REACHABLE 444 * after which the nce is deleted when it has expired. 445 * 446 * nce_last is the timestamp that indicates when the nce_res_mp in the 447 * nce_t was last updated to a valid link-layer address. nce_last gets 448 * modified/updated : 449 * - when the nce is created 450 * - every time we get a sane arp response for the nce. 451 */ 452 #define NCE_EXPIRED(nce, ipst) (nce->nce_last > 0 && \ 453 ((nce->nce_flags & NCE_F_PERMANENT) == 0) && \ 454 ((TICK_TO_MSEC(lbolt64) - nce->nce_last) > \ 455 (ipst)->ips_ip_ire_arp_interval)) 456 457 #endif /* _KERNEL */ 458 459 /* ICMP types */ 460 #define ICMP_ECHO_REPLY 0 461 #define ICMP_DEST_UNREACHABLE 3 462 #define ICMP_SOURCE_QUENCH 4 463 #define ICMP_REDIRECT 5 464 #define ICMP_ECHO_REQUEST 8 465 #define ICMP_ROUTER_ADVERTISEMENT 9 466 #define ICMP_ROUTER_SOLICITATION 10 467 #define ICMP_TIME_EXCEEDED 11 468 #define ICMP_PARAM_PROBLEM 12 469 #define ICMP_TIME_STAMP_REQUEST 13 470 #define ICMP_TIME_STAMP_REPLY 14 471 #define ICMP_INFO_REQUEST 15 472 #define ICMP_INFO_REPLY 16 473 #define ICMP_ADDRESS_MASK_REQUEST 17 474 #define ICMP_ADDRESS_MASK_REPLY 18 475 476 /* ICMP_TIME_EXCEEDED codes */ 477 #define ICMP_TTL_EXCEEDED 0 478 #define ICMP_REASSEMBLY_TIME_EXCEEDED 1 479 480 /* ICMP_DEST_UNREACHABLE codes */ 481 #define ICMP_NET_UNREACHABLE 0 482 #define ICMP_HOST_UNREACHABLE 1 483 #define ICMP_PROTOCOL_UNREACHABLE 2 484 #define ICMP_PORT_UNREACHABLE 3 485 #define ICMP_FRAGMENTATION_NEEDED 4 486 #define ICMP_SOURCE_ROUTE_FAILED 5 487 #define ICMP_DEST_NET_UNKNOWN 6 488 #define ICMP_DEST_HOST_UNKNOWN 7 489 #define ICMP_SRC_HOST_ISOLATED 8 490 #define ICMP_DEST_NET_UNREACH_ADMIN 9 491 #define ICMP_DEST_HOST_UNREACH_ADMIN 10 492 #define ICMP_DEST_NET_UNREACH_TOS 11 493 #define ICMP_DEST_HOST_UNREACH_TOS 12 494 495 /* ICMP Header Structure */ 496 typedef struct icmph_s { 497 uint8_t icmph_type; 498 uint8_t icmph_code; 499 uint16_t icmph_checksum; 500 union { 501 struct { /* ECHO request/response structure */ 502 uint16_t u_echo_ident; 503 uint16_t u_echo_seqnum; 504 } u_echo; 505 struct { /* Destination unreachable structure */ 506 uint16_t u_du_zero; 507 uint16_t u_du_mtu; 508 } u_du; 509 struct { /* Parameter problem structure */ 510 uint8_t u_pp_ptr; 511 uint8_t u_pp_rsvd[3]; 512 } u_pp; 513 struct { /* Redirect structure */ 514 ipaddr_t u_rd_gateway; 515 } u_rd; 516 } icmph_u; 517 } icmph_t; 518 519 #define icmph_echo_ident icmph_u.u_echo.u_echo_ident 520 #define icmph_echo_seqnum icmph_u.u_echo.u_echo_seqnum 521 #define icmph_du_zero icmph_u.u_du.u_du_zero 522 #define icmph_du_mtu icmph_u.u_du.u_du_mtu 523 #define icmph_pp_ptr icmph_u.u_pp.u_pp_ptr 524 #define icmph_rd_gateway icmph_u.u_rd.u_rd_gateway 525 526 #define ICMPH_SIZE 8 527 528 /* 529 * Minimum length of transport layer header included in an ICMP error 530 * message for it to be considered valid. 531 */ 532 #define ICMP_MIN_TP_HDR_LEN 8 533 534 /* Aligned IP header */ 535 typedef struct ipha_s { 536 uint8_t ipha_version_and_hdr_length; 537 uint8_t ipha_type_of_service; 538 uint16_t ipha_length; 539 uint16_t ipha_ident; 540 uint16_t ipha_fragment_offset_and_flags; 541 uint8_t ipha_ttl; 542 uint8_t ipha_protocol; 543 uint16_t ipha_hdr_checksum; 544 ipaddr_t ipha_src; 545 ipaddr_t ipha_dst; 546 } ipha_t; 547 548 #define IPH_DF 0x4000 /* Don't fragment */ 549 #define IPH_MF 0x2000 /* More fragments to come */ 550 #define IPH_OFFSET 0x1FFF /* Where the offset lives */ 551 #define IPH_FRAG_HDR 0x8000 /* IPv6 don't fragment bit */ 552 553 /* ECN code points for IPv4 TOS byte and IPv6 traffic class octet. */ 554 #define IPH_ECN_NECT 0x0 /* Not ECN-Capabable Transport */ 555 #define IPH_ECN_ECT1 0x1 /* ECN-Capable Transport, ECT(1) */ 556 #define IPH_ECN_ECT0 0x2 /* ECN-Capable Transport, ECT(0) */ 557 #define IPH_ECN_CE 0x3 /* ECN-Congestion Experienced (CE) */ 558 559 /* IP Mac info structure */ 560 typedef struct ip_m_s { 561 t_uscalar_t ip_m_mac_type; /* From <sys/dlpi.h> */ 562 int ip_m_type; /* From <net/if_types.h> */ 563 boolean_t (*ip_m_v4mapinfo)(uint_t, uint8_t *, uint8_t *, 564 uint32_t *, ipaddr_t *); 565 boolean_t (*ip_m_v6mapinfo)(uint_t, uint8_t *, uint8_t *, 566 uint32_t *, in6_addr_t *); 567 boolean_t (*ip_m_v6intfid)(uint_t, uint8_t *, in6_addr_t *); 568 } ip_m_t; 569 570 /* 571 * The following functions attempt to reduce the link layer dependency 572 * of the IP stack. The current set of link specific operations are: 573 * a. map from IPv4 class D (224.0/4) multicast address range to the link 574 * layer multicast address range. 575 * b. map from IPv6 multicast address range (ff00::/8) to the link 576 * layer multicast address range. 577 * c. derive the default IPv6 interface identifier from the link layer 578 * address. 579 */ 580 #define MEDIA_V4MINFO(ip_m, plen, bphys, maddr, hwxp, v4ptr) \ 581 (((ip_m)->ip_m_v4mapinfo != NULL) && \ 582 (*(ip_m)->ip_m_v4mapinfo)(plen, bphys, maddr, hwxp, v4ptr)) 583 #define MEDIA_V6INTFID(ip_m, plen, phys, v6ptr) \ 584 (((ip_m)->ip_m_v6intfid != NULL) && \ 585 (*(ip_m)->ip_m_v6intfid)(plen, phys, v6ptr)) 586 #define MEDIA_V6MINFO(ip_m, plen, bphys, maddr, hwxp, v6ptr) \ 587 (((ip_m)->ip_m_v6mapinfo != NULL) && \ 588 (*(ip_m)->ip_m_v6mapinfo)(plen, bphys, maddr, hwxp, v6ptr)) 589 590 /* Router entry types */ 591 #define IRE_BROADCAST 0x0001 /* Route entry for broadcast address */ 592 #define IRE_DEFAULT 0x0002 /* Route entry for default gateway */ 593 #define IRE_LOCAL 0x0004 /* Route entry for local address */ 594 #define IRE_LOOPBACK 0x0008 /* Route entry for loopback address */ 595 #define IRE_PREFIX 0x0010 /* Route entry for prefix routes */ 596 #define IRE_CACHE 0x0020 /* Cached Route entry */ 597 #define IRE_IF_NORESOLVER 0x0040 /* Route entry for local interface */ 598 /* net without any address mapping. */ 599 #define IRE_IF_RESOLVER 0x0080 /* Route entry for local interface */ 600 /* net with resolver. */ 601 #define IRE_HOST 0x0100 /* Host route entry */ 602 #define IRE_HOST_REDIRECT 0x0200 /* only used for T_SVR4_OPTMGMT_REQ */ 603 604 #define IRE_INTERFACE (IRE_IF_NORESOLVER | IRE_IF_RESOLVER) 605 #define IRE_OFFSUBNET (IRE_DEFAULT | IRE_PREFIX | IRE_HOST) 606 #define IRE_CACHETABLE (IRE_CACHE | IRE_BROADCAST | IRE_LOCAL | \ 607 IRE_LOOPBACK) 608 #define IRE_FORWARDTABLE (IRE_INTERFACE | IRE_OFFSUBNET) 609 610 /* 611 * If an IRE is marked with IRE_MARK_CONDEMNED, the last walker of 612 * the bucket should delete this IRE from this bucket. 613 */ 614 #define IRE_MARK_CONDEMNED 0x0001 615 /* 616 * If a broadcast IRE is marked with IRE_MARK_NORECV, ip_rput will drop the 617 * broadcast packets received on that interface. This is marked only 618 * on broadcast ires. Employed by IPMP, where we have multiple NICs on the 619 * same subnet receiving the same broadcast packet. 620 */ 621 #define IRE_MARK_NORECV 0x0002 622 /* 623 * IRE_CACHE marked this way won't be returned by ire_cache_lookup. Need 624 * to look specifically using MATCH_IRE_MARK_HIDDEN. Used by IPMP. 625 */ 626 #define IRE_MARK_HIDDEN 0x0004 /* Typically Used by in.mpathd */ 627 628 /* 629 * ire with IRE_MARK_NOADD is created in ip_newroute_ipif, when outgoing 630 * interface is specified by IP_XMIT_IF socket option. This ire is not 631 * added in IRE_CACHE. 632 */ 633 #define IRE_MARK_NOADD 0x0008 /* Mark not to add ire in cache */ 634 635 /* 636 * IRE marked with IRE_MARK_TEMPORARY means that this IRE has been used 637 * either for forwarding a packet or has not been used for sending 638 * traffic on TCP connections terminated on this system. In both 639 * cases, this IRE is the first to go when IRE is being cleaned up. 640 */ 641 #define IRE_MARK_TEMPORARY 0x0010 642 643 /* 644 * IRE marked with IRE_MARK_USESRC_CHECK means that while adding an IRE with 645 * this mark, additional atomic checks need to be performed. For eg: by the 646 * time an IRE_CACHE is created, sent up to ARP and then comes back to IP; the 647 * usesrc grouping could have changed in which case we want to fail adding 648 * the IRE_CACHE entry 649 */ 650 #define IRE_MARK_USESRC_CHECK 0x0020 651 652 /* 653 * IRE_MARK_PRIVATE_ADDR is used for IP_NEXTHOP. When IP_NEXTHOP is set, the 654 * routing table lookup for the destination is bypassed and the packet is 655 * sent directly to the specified nexthop. The associated IRE_CACHE entries 656 * should be marked with IRE_MARK_PRIVATE_ADDR flag so that they don't show up 657 * in regular ire cache lookups. 658 */ 659 #define IRE_MARK_PRIVATE_ADDR 0x0040 660 661 /* 662 * When we send an ARP resolution query for the nexthop gateway's ire, 663 * we use esballoc to create the ire_t in the AR_ENTRY_QUERY mblk 664 * chain, and mark its ire_marks with IRE_MARK_UNCACHED. This flag 665 * indicates that information from ARP has not been transferred to a 666 * permanent IRE_CACHE entry. The flag is reset only when the 667 * information is successfully transferred to an ire_cache entry (in 668 * ire_add()). Attempting to free the AR_ENTRY_QUERY mblk chain prior 669 * to ire_add (e.g., from arp, or from ip`ip_wput_nondata) will 670 * require that the resources (incomplete ire_cache and/or nce) must 671 * be cleaned up. The free callback routine (ire_freemblk()) checks 672 * for IRE_MARK_UNCACHED to see if any resources that are pinned down 673 * will need to be cleaned up or not. 674 */ 675 676 #define IRE_MARK_UNCACHED 0x0080 677 678 /* 679 * The comment below (and for other netstack_t references) refers 680 * to the fact that we only do netstack_hold in particular cases, 681 * such as the references from open streams (ill_t and conn_t's 682 * pointers). Internally within IP we rely on IP's ability to cleanup e.g. 683 * ire_t's when an ill goes away. 684 */ 685 typedef struct ire_expire_arg_s { 686 int iea_flush_flag; 687 ip_stack_t *iea_ipst; /* Does not have a netstack_hold */ 688 } ire_expire_arg_t; 689 690 /* Flags with ire_expire routine */ 691 #define FLUSH_ARP_TIME 0x0001 /* ARP info potentially stale timer */ 692 #define FLUSH_REDIRECT_TIME 0x0002 /* Redirects potentially stale */ 693 #define FLUSH_MTU_TIME 0x0004 /* Include path MTU per RFC 1191 */ 694 695 /* Arguments to ire_flush_cache() */ 696 #define IRE_FLUSH_DELETE 0 697 #define IRE_FLUSH_ADD 1 698 699 /* 700 * Open/close synchronization flags. 701 * These are kept in a separate field in the conn and the synchronization 702 * depends on the atomic 32 bit access to that field. 703 */ 704 #define CONN_CLOSING 0x01 /* ip_close waiting for ip_wsrv */ 705 #define CONN_IPSEC_LOAD_WAIT 0x02 /* waiting for load */ 706 #define CONN_CONDEMNED 0x04 /* conn is closing, no more refs */ 707 #define CONN_INCIPIENT 0x08 /* conn not yet visible, no refs */ 708 #define CONN_QUIESCED 0x10 /* conn is now quiescent */ 709 710 /* Used to check connection state flags before caching the IRE */ 711 #define CONN_CACHE_IRE(connp) \ 712 (!((connp)->conn_state_flags & (CONN_CLOSING|CONN_CONDEMNED))) 713 714 /* 715 * Parameter to ip_output giving the identity of the caller. 716 * IP_WSRV means the packet was enqueued in the STREAMS queue 717 * due to flow control and is now being reprocessed in the context of 718 * the STREAMS service procedure, consequent to flow control relief. 719 * IRE_SEND means the packet is being reprocessed consequent to an 720 * ire cache creation and addition and this may or may not be happening 721 * in the service procedure context. Anything other than the above 2 722 * cases is identified as IP_WPUT. Most commonly this is the case of 723 * packets coming down from the application. 724 */ 725 #ifdef _KERNEL 726 #define IP_WSRV 1 /* Called from ip_wsrv */ 727 #define IP_WPUT 2 /* Called from ip_wput */ 728 #define IRE_SEND 3 /* Called from ire_send */ 729 730 /* 731 * Extra structures need for per-src-addr filtering (IGMPv3/MLDv2) 732 */ 733 #define MAX_FILTER_SIZE 64 734 735 typedef struct slist_s { 736 int sl_numsrc; 737 in6_addr_t sl_addr[MAX_FILTER_SIZE]; 738 } slist_t; 739 740 /* 741 * Following struct is used to maintain retransmission state for 742 * a multicast group. One rtx_state_t struct is an in-line field 743 * of the ilm_t struct; the slist_ts in the rtx_state_t struct are 744 * alloc'd as needed. 745 */ 746 typedef struct rtx_state_s { 747 uint_t rtx_timer; /* retrans timer */ 748 int rtx_cnt; /* retrans count */ 749 int rtx_fmode_cnt; /* retrans count for fmode change */ 750 slist_t *rtx_allow; 751 slist_t *rtx_block; 752 } rtx_state_t; 753 754 /* 755 * Used to construct list of multicast address records that will be 756 * sent in a single listener report. 757 */ 758 typedef struct mrec_s { 759 struct mrec_s *mrec_next; 760 uint8_t mrec_type; 761 uint8_t mrec_auxlen; /* currently unused */ 762 in6_addr_t mrec_group; 763 slist_t mrec_srcs; 764 } mrec_t; 765 766 /* Group membership list per upper conn */ 767 /* 768 * XXX add ilg info for ifaddr/ifindex. 769 * XXX can we make ilg survive an ifconfig unplumb + plumb 770 * by setting the ipif/ill to NULL and recover that later? 771 * 772 * ilg_ipif is used by IPv4 as multicast groups are joined using an interface 773 * address (ipif). 774 * ilg_ill is used by IPv6 as multicast groups are joined using an interface 775 * index (phyint->phyint_ifindex). 776 * ilg_ill is NULL for IPv4 and ilg_ipif is NULL for IPv6. 777 * 778 * ilg records the state of multicast memberships of a socket end point. 779 * ilm records the state of multicast memberships with the driver and is 780 * maintained per interface. 781 * 782 * Notes : 783 * 784 * 1) There is no direct link between a given ilg and ilm. If the 785 * application has joined a group G with ifindex I, we will have 786 * an ilg with ilg_v6group and ilg_ill. There will be a corresponding 787 * ilm with ilm_ill/ilm_v6addr recording the multicast membership. 788 * To delete the membership, 789 * 790 * a) Search for ilg matching on G and I with ilg_v6group 791 * and ilg_ill. Delete ilg_ill. 792 * b) Search the corresponding ilm matching on G and I with 793 * ilm_v6addr and ilm_ill. Delete ilm. 794 * 795 * In IPv4, the only difference is, we look using ipifs instead of 796 * ills. 797 * 798 * 2) With IP multipathing, we want to keep receiving even after the 799 * interface has failed. We do this by moving multicast memberships 800 * to a new_ill within the group. This is acheived by sending 801 * DL_DISABMULTI_REQS on ilg_ill/ilm_ill and sending DL_ENABMULTIREQS 802 * on the new_ill and changing ilg_ill/ilm_ill to new_ill. But, we 803 * need to be able to delete memberships which will still come down 804 * with the ifindex of the old ill which is what the application 805 * knows of. Thus we store the ilm_/ilg_orig_ifindex to keep track 806 * of where we joined initially so that we can lookup even after we 807 * moved the membership. It is also used for moving back the membership 808 * when the old ill has been repaired. This is done by looking up for 809 * ilms with ilm_orig_ifindex matching on the old ill's ifindex. Only 810 * ilms actually move from old ill to new ill. ilgs don't move (just 811 * the ilg_ill is changed when it moves) as it just records the state 812 * of the application that has joined a group G where as ilm records 813 * the state joined with the driver. Thus when we send DL_XXXMULTI_REQs 814 * we also need to keep the ilm in the right ill. 815 * 816 * In IPv4, as ipifs move from old ill to new_ill, ilgs and ilms move 817 * implicitly as we use only ipifs in IPv4. Thus, one can always lookup 818 * a given ilm/ilg even after it fails without the support of 819 * orig_ifindex. We move ilms still to record the driver state as 820 * mentioned above. 821 */ 822 823 /* 824 * The ilg_t and ilm_t members are protected by ipsq. They can be changed only 825 * by a thread executing in the ipsq. In other words add/delete of a 826 * multicast group has to execute in the ipsq. 827 */ 828 #define ILG_DELETED 0x1 /* ilg_flags */ 829 typedef struct ilg_s { 830 in6_addr_t ilg_v6group; 831 struct ipif_s *ilg_ipif; /* Logical interface we are member on */ 832 struct ill_s *ilg_ill; /* Used by IPv6 */ 833 int ilg_orig_ifindex; /* Interface originally joined on */ 834 uint_t ilg_flags; 835 mcast_record_t ilg_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */ 836 slist_t *ilg_filter; 837 } ilg_t; 838 839 840 /* 841 * Multicast address list entry for lower ill. 842 * ilm_ipif is used by IPv4 as multicast groups are joined using ipif. 843 * ilm_ill is used by IPv6 as multicast groups are joined using ill. 844 * ilm_ill is NULL for IPv4 and ilm_ipif is NULL for IPv6. 845 * 846 * The comment below (and for other netstack_t references) refers 847 * to the fact that we only do netstack_hold in particular cases, 848 * such as the references from open streams (ill_t and conn_t's 849 * pointers). Internally within IP we rely on IP's ability to cleanup e.g. 850 * ire_t's when an ill goes away. 851 */ 852 #define ILM_DELETED 0x1 /* ilm_flags */ 853 typedef struct ilm_s { 854 in6_addr_t ilm_v6addr; 855 int ilm_refcnt; 856 uint_t ilm_timer; /* IGMP/MLD query resp timer, in msec */ 857 struct ipif_s *ilm_ipif; /* Back pointer to ipif for IPv4 */ 858 struct ilm_s *ilm_next; /* Linked list for each ill */ 859 uint_t ilm_state; /* state of the membership */ 860 struct ill_s *ilm_ill; /* Back pointer to ill for IPv6 */ 861 int ilm_orig_ifindex; /* V6_MULTICAST_IF/ilm_ipif index */ 862 uint_t ilm_flags; 863 boolean_t ilm_is_new; /* new ilm */ 864 boolean_t ilm_notify_driver; /* Need to notify the driver */ 865 zoneid_t ilm_zoneid; 866 int ilm_no_ilg_cnt; /* number of joins w/ no ilg */ 867 mcast_record_t ilm_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */ 868 slist_t *ilm_filter; /* source filter list */ 869 slist_t *ilm_pendsrcs; /* relevant src addrs for pending req */ 870 rtx_state_t ilm_rtx; /* SCR retransmission state */ 871 ip_stack_t *ilm_ipst; /* Does not have a netstack_hold */ 872 } ilm_t; 873 874 #define ilm_addr V4_PART_OF_V6(ilm_v6addr) 875 876 /* 877 * ilm_walker_cleanup needs to execute when the ilm_walker_cnt goes down to 878 * zero. In addition it needs to block new walkers while it is unlinking ilm's 879 * from the list. Thus simple atomics for the ill_ilm_walker_cnt don't suffice. 880 */ 881 #define ILM_WALKER_HOLD(ill) { \ 882 mutex_enter(&(ill)->ill_lock); \ 883 ill->ill_ilm_walker_cnt++; \ 884 mutex_exit(&(ill)->ill_lock); \ 885 } 886 887 #define ILM_WALKER_RELE(ill) { \ 888 mutex_enter(&(ill)->ill_lock); \ 889 (ill)->ill_ilm_walker_cnt--; \ 890 if ((ill)->ill_ilm_walker_cnt == 0 && (ill)->ill_ilm_cleanup_reqd) \ 891 ilm_walker_cleanup(ill); \ 892 mutex_exit(&(ill)->ill_lock); \ 893 } 894 895 /* 896 * Soft reference to an IPsec SA. 897 * 898 * On relative terms, conn's can be persistant (living as long as the 899 * processes which create them), while SA's are ephemeral (dying when 900 * they hit their time-based or byte-based lifetimes). 901 * 902 * We could hold a hard reference to an SA from an ipsec_latch_t, 903 * but this would cause expired SA's to linger for a potentially 904 * unbounded time. 905 * 906 * Instead, we remember the hash bucket number and bucket generation 907 * in addition to the pointer. The bucket generation is incremented on 908 * each deletion. 909 */ 910 typedef struct ipsa_ref_s 911 { 912 struct ipsa_s *ipsr_sa; 913 struct isaf_s *ipsr_bucket; 914 uint64_t ipsr_gen; 915 } ipsa_ref_t; 916 917 /* 918 * IPsec "latching" state. 919 * 920 * In the presence of IPsec policy, fully-bound conn's bind a connection 921 * to more than just the 5-tuple, but also a specific IPsec action and 922 * identity-pair. 923 * 924 * As an optimization, we also cache soft references to IPsec SA's 925 * here so that we can fast-path around most of the work needed for 926 * outbound IPsec SA selection. 927 * 928 * Were it not for TCP's detached connections, this state would be 929 * in-line in conn_t; instead, this is in a separate structure so it 930 * can be handed off to TCP when a connection is detached. 931 */ 932 typedef struct ipsec_latch_s 933 { 934 kmutex_t ipl_lock; 935 uint32_t ipl_refcnt; 936 937 uint64_t ipl_unique; 938 struct ipsec_policy_s *ipl_in_policy; /* latched policy (in) */ 939 struct ipsec_policy_s *ipl_out_policy; /* latched policy (out) */ 940 struct ipsec_action_s *ipl_in_action; /* latched action (in) */ 941 struct ipsec_action_s *ipl_out_action; /* latched action (out) */ 942 cred_t *ipl_local_id; 943 struct ipsid_s *ipl_local_cid; 944 struct ipsid_s *ipl_remote_cid; 945 unsigned int 946 ipl_out_action_latched : 1, 947 ipl_in_action_latched : 1, 948 ipl_out_policy_latched : 1, 949 ipl_in_policy_latched : 1, 950 951 ipl_ids_latched : 1, 952 953 ipl_pad_to_bit_31 : 27; 954 955 ipsa_ref_t ipl_ref[2]; /* 0: ESP, 1: AH */ 956 957 } ipsec_latch_t; 958 959 #define IPLATCH_REFHOLD(ipl) { \ 960 atomic_add_32(&(ipl)->ipl_refcnt, 1); \ 961 ASSERT((ipl)->ipl_refcnt != 0); \ 962 } 963 964 #define IPLATCH_REFRELE(ipl, ns) { \ 965 ASSERT((ipl)->ipl_refcnt != 0); \ 966 membar_exit(); \ 967 if (atomic_add_32_nv(&(ipl)->ipl_refcnt, -1) == 0) \ 968 iplatch_free(ipl, ns); \ 969 } 970 971 /* 972 * peer identity structure. 973 */ 974 975 typedef struct conn_s conn_t; 976 977 /* 978 * The old IP client structure "ipc_t" is gone. All the data is stored in the 979 * connection structure "conn_t" now. The mapping of old and new fields looks 980 * like this: 981 * 982 * ipc_ulp conn_ulp 983 * ipc_rq conn_rq 984 * ipc_wq conn_wq 985 * 986 * ipc_laddr conn_src 987 * ipc_faddr conn_rem 988 * ipc_v6laddr conn_srcv6 989 * ipc_v6faddr conn_remv6 990 * 991 * ipc_lport conn_lport 992 * ipc_fport conn_fport 993 * ipc_ports conn_ports 994 * 995 * ipc_policy conn_policy 996 * ipc_latch conn_latch 997 * 998 * ipc_irc_lock conn_lock 999 * ipc_ire_cache conn_ire_cache 1000 * 1001 * ipc_state_flags conn_state_flags 1002 * ipc_outgoing_ill conn_outgoing_ill 1003 * 1004 * ipc_dontroute conn_dontroute 1005 * ipc_loopback conn_loopback 1006 * ipc_broadcast conn_broadcast 1007 * ipc_reuseaddr conn_reuseaddr 1008 * 1009 * ipc_multicast_loop conn_multicast_loop 1010 * ipc_multi_router conn_multi_router 1011 * ipc_priv_stream conn_priv_stream 1012 * ipc_draining conn_draining 1013 * 1014 * ipc_did_putbq conn_did_putbq 1015 * ipc_unspec_src conn_unspec_src 1016 * ipc_policy_cached conn_policy_cached 1017 * 1018 * ipc_in_enforce_policy conn_in_enforce_policy 1019 * ipc_out_enforce_policy conn_out_enforce_policy 1020 * ipc_af_isv6 conn_af_isv6 1021 * ipc_pkt_isv6 conn_pkt_isv6 1022 * 1023 * ipc_ipv6_recvpktinfo conn_ipv6_recvpktinfo 1024 * 1025 * ipc_ipv6_recvhoplimit conn_ipv6_recvhoplimit 1026 * ipc_ipv6_recvhopopts conn_ipv6_recvhopopts 1027 * ipc_ipv6_recvdstopts conn_ipv6_recvdstopts 1028 * 1029 * ipc_ipv6_recvrthdr conn_ipv6_recvrthdr 1030 * ipc_ipv6_recvrtdstopts conn_ipv6_recvrtdstopts 1031 * ipc_fully_bound conn_fully_bound 1032 * 1033 * ipc_recvif conn_recvif 1034 * 1035 * ipc_recvslla conn_recvslla 1036 * ipc_acking_unbind conn_acking_unbind 1037 * ipc_pad_to_bit_31 conn_pad_to_bit_31 1038 * 1039 * ipc_xmit_if_ill conn_xmit_if_ill 1040 * ipc_nofailover_ill conn_nofailover_ill 1041 * 1042 * ipc_proto conn_proto 1043 * ipc_incoming_ill conn_incoming_ill 1044 * ipc_outgoing_pill conn_outgoing_pill 1045 * ipc_pending_ill conn_pending_ill 1046 * ipc_unbind_mp conn_unbind_mp 1047 * ipc_ilg conn_ilg 1048 * ipc_ilg_allocated conn_ilg_allocated 1049 * ipc_ilg_inuse conn_ilg_inuse 1050 * ipc_ilg_walker_cnt conn_ilg_walker_cnt 1051 * ipc_refcv conn_refcv 1052 * ipc_multicast_ipif conn_multicast_ipif 1053 * ipc_multicast_ill conn_multicast_ill 1054 * ipc_orig_bound_ifindex conn_orig_bound_ifindex 1055 * ipc_orig_multicast_ifindex conn_orig_multicast_ifindex 1056 * ipc_orig_xmit_ifindex conn_orig_xmit_ifindex 1057 * ipc_drain_next conn_drain_next 1058 * ipc_drain_prev conn_drain_prev 1059 * ipc_idl conn_idl 1060 */ 1061 1062 /* 1063 * This is used to match an inbound/outbound datagram with 1064 * policy. 1065 */ 1066 1067 typedef struct ipsec_selector { 1068 in6_addr_t ips_local_addr_v6; 1069 in6_addr_t ips_remote_addr_v6; 1070 uint16_t ips_local_port; 1071 uint16_t ips_remote_port; 1072 uint8_t ips_icmp_type; 1073 uint8_t ips_icmp_code; 1074 uint8_t ips_protocol; 1075 uint8_t ips_isv4 : 1, 1076 ips_is_icmp_inv_acq: 1; 1077 } ipsec_selector_t; 1078 1079 /* 1080 * Note that we put v4 addresses in the *first* 32-bit word of the 1081 * selector rather than the last to simplify the prefix match/mask code 1082 * in spd.c 1083 */ 1084 #define ips_local_addr_v4 ips_local_addr_v6.s6_addr32[0] 1085 #define ips_remote_addr_v4 ips_remote_addr_v6.s6_addr32[0] 1086 1087 /* Values used in IP by IPSEC Code */ 1088 #define IPSEC_OUTBOUND B_TRUE 1089 #define IPSEC_INBOUND B_FALSE 1090 1091 /* 1092 * There are two variants in policy failures. The packet may come in 1093 * secure when not needed (IPSEC_POLICY_???_NOT_NEEDED) or it may not 1094 * have the desired level of protection (IPSEC_POLICY_MISMATCH). 1095 */ 1096 #define IPSEC_POLICY_NOT_NEEDED 0 1097 #define IPSEC_POLICY_MISMATCH 1 1098 #define IPSEC_POLICY_AUTH_NOT_NEEDED 2 1099 #define IPSEC_POLICY_ENCR_NOT_NEEDED 3 1100 #define IPSEC_POLICY_SE_NOT_NEEDED 4 1101 #define IPSEC_POLICY_MAX 5 /* Always max + 1. */ 1102 1103 /* 1104 * Folowing macro is used whenever the code does not know whether there 1105 * is a M_CTL present in the front and it needs to examine the actual mp 1106 * i.e the IP header. As a M_CTL message could be in the front, this 1107 * extracts the packet into mp and the M_CTL mp into first_mp. If M_CTL 1108 * mp is not present, both first_mp and mp point to the same message. 1109 */ 1110 #define EXTRACT_PKT_MP(mp, first_mp, mctl_present) \ 1111 (first_mp) = (mp); \ 1112 if ((mp)->b_datap->db_type == M_CTL) { \ 1113 (mp) = (mp)->b_cont; \ 1114 (mctl_present) = B_TRUE; \ 1115 } else { \ 1116 (mctl_present) = B_FALSE; \ 1117 } 1118 1119 /* 1120 * Check with IPSEC inbound policy if 1121 * 1122 * 1) per-socket policy is present - indicated by conn_in_enforce_policy. 1123 * 2) Or if we have not cached policy on the conn and the global policy is 1124 * non-empty. 1125 */ 1126 #define CONN_INBOUND_POLICY_PRESENT(connp, ipss) \ 1127 ((connp)->conn_in_enforce_policy || \ 1128 (!((connp)->conn_policy_cached) && \ 1129 (ipss)->ipsec_inbound_v4_policy_present)) 1130 1131 #define CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) \ 1132 ((connp)->conn_in_enforce_policy || \ 1133 (!(connp)->conn_policy_cached && \ 1134 (ipss)->ipsec_inbound_v6_policy_present)) 1135 1136 #define CONN_OUTBOUND_POLICY_PRESENT(connp, ipss) \ 1137 ((connp)->conn_out_enforce_policy || \ 1138 (!((connp)->conn_policy_cached) && \ 1139 (ipss)->ipsec_outbound_v4_policy_present)) 1140 1141 #define CONN_OUTBOUND_POLICY_PRESENT_V6(connp, ipss) \ 1142 ((connp)->conn_out_enforce_policy || \ 1143 (!(connp)->conn_policy_cached && \ 1144 (ipss)->ipsec_outbound_v6_policy_present)) 1145 1146 /* 1147 * Information cached in IRE for upper layer protocol (ULP). 1148 * 1149 * Notice that ire_max_frag is not included in the iulp_t structure, which 1150 * it may seem that it should. But ire_max_frag cannot really be cached. It 1151 * is fixed for each interface. For MTU found by PMTUd, we may want to cache 1152 * it. But currently, we do not do that. 1153 */ 1154 typedef struct iulp_s { 1155 boolean_t iulp_set; /* Is any metric set? */ 1156 uint32_t iulp_ssthresh; /* Slow start threshold (TCP). */ 1157 clock_t iulp_rtt; /* Guestimate in millisecs. */ 1158 clock_t iulp_rtt_sd; /* Cached value of RTT variance. */ 1159 uint32_t iulp_spipe; /* Send pipe size. */ 1160 uint32_t iulp_rpipe; /* Receive pipe size. */ 1161 uint32_t iulp_rtomax; /* Max round trip timeout. */ 1162 uint32_t iulp_sack; /* Use SACK option (TCP)? */ 1163 uint32_t 1164 iulp_tstamp_ok : 1, /* Use timestamp option (TCP)? */ 1165 iulp_wscale_ok : 1, /* Use window scale option (TCP)? */ 1166 iulp_ecn_ok : 1, /* Enable ECN (for TCP)? */ 1167 iulp_pmtud_ok : 1, /* Enable PMTUd? */ 1168 1169 iulp_not_used : 28; 1170 } iulp_t; 1171 1172 /* Zero iulp_t. */ 1173 extern const iulp_t ire_uinfo_null; 1174 1175 /* 1176 * The conn drain list structure. 1177 * The list is protected by idl_lock. Each conn_t inserted in the list 1178 * points back at this idl_t using conn_idl. IP primes the draining of the 1179 * conns queued in these lists, by qenabling the 1st conn of each list. This 1180 * occurs when STREAMS backenables ip_wsrv on the IP module. Each conn instance 1181 * of ip_wsrv successively qenables the next conn in the list. 1182 * idl_lock protects all other members of idl_t and conn_drain_next 1183 * and conn_drain_prev of conn_t. The conn_lock protects IPCF_DRAIN_DISABLED 1184 * flag of the conn_t and conn_idl. 1185 */ 1186 typedef struct idl_s { 1187 conn_t *idl_conn; /* Head of drain list */ 1188 kmutex_t idl_lock; /* Lock for this list */ 1189 conn_t *idl_conn_draining; /* conn that is draining */ 1190 uint32_t 1191 idl_repeat : 1, /* Last conn must re-enable */ 1192 /* drain list again */ 1193 idl_unused : 31; 1194 } idl_t; 1195 1196 #define CONN_DRAIN_LIST_LOCK(connp) (&((connp)->conn_idl->idl_lock)) 1197 /* 1198 * Interface route structure which holds the necessary information to recreate 1199 * routes that are tied to an interface (namely where ire_ipif != NULL). 1200 * These routes which were initially created via a routing socket or via the 1201 * SIOCADDRT ioctl may be gateway routes (RTF_GATEWAY being set) or may be 1202 * traditional interface routes. When an interface comes back up after being 1203 * marked down, this information will be used to recreate the routes. These 1204 * are part of an mblk_t chain that hangs off of the IPIF (ipif_saved_ire_mp). 1205 */ 1206 typedef struct ifrt_s { 1207 ushort_t ifrt_type; /* Type of IRE */ 1208 in6_addr_t ifrt_v6addr; /* Address IRE represents. */ 1209 in6_addr_t ifrt_v6gateway_addr; /* Gateway if IRE_OFFSUBNET */ 1210 in6_addr_t ifrt_v6src_addr; /* Src addr if RTF_SETSRC */ 1211 in6_addr_t ifrt_v6mask; /* Mask for matching IRE. */ 1212 uint32_t ifrt_flags; /* flags related to route */ 1213 uint_t ifrt_max_frag; /* MTU (next hop or path). */ 1214 iulp_t ifrt_iulp_info; /* Cached IRE ULP info. */ 1215 } ifrt_t; 1216 1217 #define ifrt_addr V4_PART_OF_V6(ifrt_v6addr) 1218 #define ifrt_gateway_addr V4_PART_OF_V6(ifrt_v6gateway_addr) 1219 #define ifrt_src_addr V4_PART_OF_V6(ifrt_v6src_addr) 1220 #define ifrt_mask V4_PART_OF_V6(ifrt_v6mask) 1221 1222 /* Number of IP addresses that can be hosted on a physical interface */ 1223 #define MAX_ADDRS_PER_IF 8192 1224 /* 1225 * Number of Source addresses to be considered for source address 1226 * selection. Used by ipif_select_source[_v6]. 1227 */ 1228 #define MAX_IPIF_SELECT_SOURCE 50 1229 1230 #ifdef IP_DEBUG 1231 /* 1232 * Tracing refholds and refreleases for debugging. Existing tracing mechanisms 1233 * do not allow the granularity need to trace refrences to ipif/ill/ire's. This 1234 * mechanism should be revisited once dtrace is available. 1235 */ 1236 #define TR_STACK_DEPTH 14 1237 typedef struct tr_buf_s { 1238 int tr_depth; 1239 clock_t tr_time; 1240 pc_t tr_stack[TR_STACK_DEPTH]; 1241 } tr_buf_t; 1242 1243 typedef struct th_trace_s { 1244 int th_refcnt; 1245 uint_t th_trace_lastref; 1246 kthread_t *th_id; 1247 #define TR_BUF_MAX 38 1248 tr_buf_t th_trbuf[TR_BUF_MAX]; 1249 } th_trace_t; 1250 1251 typedef struct th_hash_s { 1252 list_node_t thh_link; 1253 mod_hash_t *thh_hash; 1254 ip_stack_t *thh_ipst; 1255 } th_hash_t; 1256 #endif 1257 1258 /* The following are ipif_state_flags */ 1259 #define IPIF_CONDEMNED 0x1 /* The ipif is being removed */ 1260 #define IPIF_CHANGING 0x2 /* A critcal ipif field is changing */ 1261 #define IPIF_MOVING 0x8 /* The ipif is being moved */ 1262 #define IPIF_SET_LINKLOCAL 0x10 /* transient flag during bringup */ 1263 #define IPIF_ZERO_SOURCE 0x20 /* transient flag during bringup */ 1264 1265 /* IP interface structure, one per local address */ 1266 typedef struct ipif_s { 1267 struct ipif_s *ipif_next; 1268 struct ill_s *ipif_ill; /* Back pointer to our ill */ 1269 int ipif_id; /* Logical unit number */ 1270 uint_t ipif_mtu; /* Starts at ipif_ill->ill_max_frag */ 1271 uint_t ipif_saved_mtu; /* Save of mtu during ipif_move() */ 1272 in6_addr_t ipif_v6lcl_addr; /* Local IP address for this if. */ 1273 in6_addr_t ipif_v6src_addr; /* Source IP address for this if. */ 1274 in6_addr_t ipif_v6subnet; /* Subnet prefix for this if. */ 1275 in6_addr_t ipif_v6net_mask; /* Net mask for this interface. */ 1276 in6_addr_t ipif_v6brd_addr; /* Broadcast addr for this interface. */ 1277 in6_addr_t ipif_v6pp_dst_addr; /* Point-to-point dest address. */ 1278 uint64_t ipif_flags; /* Interface flags. */ 1279 uint_t ipif_metric; /* BSD if metric, for compatibility. */ 1280 uint_t ipif_ire_type; /* IRE_LOCAL or IRE_LOOPBACK */ 1281 mblk_t *ipif_arp_del_mp; /* Allocated at time arp comes up, to */ 1282 /* prevent awkward out of mem */ 1283 /* condition later */ 1284 mblk_t *ipif_saved_ire_mp; /* Allocated for each extra */ 1285 /* IRE_IF_NORESOLVER/IRE_IF_RESOLVER */ 1286 /* on this interface so that they */ 1287 /* can survive ifconfig down. */ 1288 kmutex_t ipif_saved_ire_lock; /* Protects ipif_saved_ire_mp */ 1289 1290 mrec_t *ipif_igmp_rpt; /* List of group memberships which */ 1291 /* will be reported on. Used when */ 1292 /* handling an igmp timeout. */ 1293 1294 /* 1295 * The packet counts in the ipif contain the sum of the 1296 * packet counts in dead IREs that were affiliated with 1297 * this ipif. 1298 */ 1299 uint_t ipif_fo_pkt_count; /* Forwarded thru our dead IREs */ 1300 uint_t ipif_ib_pkt_count; /* Inbound packets for our dead IREs */ 1301 uint_t ipif_ob_pkt_count; /* Outbound packets to our dead IREs */ 1302 /* Exclusive bit fields, protected by ipsq_t */ 1303 unsigned int 1304 ipif_multicast_up : 1, /* We have joined the allhosts group */ 1305 ipif_replace_zero : 1, /* Replacement for zero */ 1306 ipif_was_up : 1, /* ipif was up before */ 1307 ipif_addr_ready : 1, /* DAD is done */ 1308 1309 ipif_was_dup : 1, /* DAD had failed */ 1310 ipif_pad_to_31 : 27; 1311 1312 int ipif_orig_ifindex; /* ifindex before SLIFFAILOVER */ 1313 uint_t ipif_seqid; /* unique index across all ills */ 1314 uint_t ipif_orig_ipifid; /* ipif_id before SLIFFAILOVER */ 1315 uint_t ipif_state_flags; /* See IPIF_* flag defs above */ 1316 uint_t ipif_refcnt; /* active consistent reader cnt */ 1317 uint_t ipif_ire_cnt; /* Number of ire's referencing ipif */ 1318 uint_t ipif_saved_ire_cnt; 1319 zoneid_t 1320 ipif_zoneid; /* zone ID number */ 1321 timeout_id_t ipif_recovery_id; /* Timer for DAD recovery */ 1322 boolean_t ipif_trace_disable; /* True when alloc fails */ 1323 } ipif_t; 1324 1325 /* 1326 * The following table lists the protection levels of the various members 1327 * of the ipif_t. The following notation is used. 1328 * 1329 * Write once - Written to only once at the time of bringing up 1330 * the interface and can be safely read after the bringup without any lock. 1331 * 1332 * ipsq - Need to execute in the ipsq to perform the indicated access. 1333 * 1334 * ill_lock - Need to hold this mutex to perform the indicated access. 1335 * 1336 * ill_g_lock - Need to hold this rw lock as reader/writer for read access or 1337 * write access respectively. 1338 * 1339 * down ill - Written to only when the ill is down (i.e all ipifs are down) 1340 * up ill - Read only when the ill is up (i.e. at least 1 ipif is up) 1341 * 1342 * Table of ipif_t members and their protection 1343 * 1344 * ipif_next ipsq + ill_lock + ipsq OR ill_lock OR 1345 * ill_g_lock ill_g_lock 1346 * ipif_ill ipsq + down ipif write once 1347 * ipif_id ipsq + down ipif write once 1348 * ipif_mtu ipsq 1349 * ipif_v6lcl_addr ipsq + down ipif up ipif 1350 * ipif_v6src_addr ipsq + down ipif up ipif 1351 * ipif_v6subnet ipsq + down ipif up ipif 1352 * ipif_v6net_mask ipsq + down ipif up ipif 1353 * 1354 * ipif_v6brd_addr 1355 * ipif_v6pp_dst_addr 1356 * ipif_flags ill_lock ill_lock 1357 * ipif_metric 1358 * ipif_ire_type ipsq + down ill up ill 1359 * 1360 * ipif_arp_del_mp ipsq ipsq 1361 * ipif_saved_ire_mp ipif_saved_ire_lock ipif_saved_ire_lock 1362 * ipif_igmp_rpt ipsq ipsq 1363 * 1364 * ipif_fo_pkt_count Approx 1365 * ipif_ib_pkt_count Approx 1366 * ipif_ob_pkt_count Approx 1367 * 1368 * bit fields ill_lock ill_lock 1369 * 1370 * ipif_orig_ifindex ipsq None 1371 * ipif_orig_ipifid ipsq None 1372 * ipif_seqid ipsq Write once 1373 * 1374 * ipif_state_flags ill_lock ill_lock 1375 * ipif_refcnt ill_lock ill_lock 1376 * ipif_ire_cnt ill_lock ill_lock 1377 * ipif_saved_ire_cnt 1378 */ 1379 1380 #define IP_TR_HASH(tid) ((((uintptr_t)tid) >> 6) & (IP_TR_HASH_MAX - 1)) 1381 1382 #ifdef DEBUG 1383 #define IPIF_TRACE_REF(ipif) ipif_trace_ref(ipif) 1384 #define ILL_TRACE_REF(ill) ill_trace_ref(ill) 1385 #define IPIF_UNTRACE_REF(ipif) ipif_untrace_ref(ipif) 1386 #define ILL_UNTRACE_REF(ill) ill_untrace_ref(ill) 1387 #else 1388 #define IPIF_TRACE_REF(ipif) 1389 #define ILL_TRACE_REF(ill) 1390 #define IPIF_UNTRACE_REF(ipif) 1391 #define ILL_UNTRACE_REF(ill) 1392 #endif 1393 1394 /* IPv4 compatability macros */ 1395 #define ipif_lcl_addr V4_PART_OF_V6(ipif_v6lcl_addr) 1396 #define ipif_src_addr V4_PART_OF_V6(ipif_v6src_addr) 1397 #define ipif_subnet V4_PART_OF_V6(ipif_v6subnet) 1398 #define ipif_net_mask V4_PART_OF_V6(ipif_v6net_mask) 1399 #define ipif_brd_addr V4_PART_OF_V6(ipif_v6brd_addr) 1400 #define ipif_pp_dst_addr V4_PART_OF_V6(ipif_v6pp_dst_addr) 1401 1402 /* Macros for easy backreferences to the ill. */ 1403 #define ipif_wq ipif_ill->ill_wq 1404 #define ipif_rq ipif_ill->ill_rq 1405 #define ipif_net_type ipif_ill->ill_net_type 1406 #define ipif_ipif_up_count ipif_ill->ill_ipif_up_count 1407 #define ipif_type ipif_ill->ill_type 1408 #define ipif_isv6 ipif_ill->ill_isv6 1409 1410 #define SIOCLIFADDR_NDX 112 /* ndx of SIOCLIFADDR in the ndx ioctl table */ 1411 1412 /* 1413 * mode value for ip_ioctl_finish for finishing an ioctl 1414 */ 1415 #define CONN_CLOSE 1 /* No mi_copy */ 1416 #define COPYOUT 2 /* do an mi_copyout if needed */ 1417 #define NO_COPYOUT 3 /* do an mi_copy_done */ 1418 #define IPI2MODE(ipi) ((ipi)->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT) 1419 1420 /* 1421 * The IP-MT design revolves around the serialization object ipsq_t. 1422 * It is associated with an IPMP group. If IPMP is not enabled, there is 1423 * 1 ipsq_t per phyint. Eg. an ipsq_t would cover both hme0's IPv4 stream 1424 * 1425 * ipsq_lock protects 1426 * ipsq_reentry_cnt, ipsq_writer, ipsq_xopq_mphead, ipsq_xopq_mptail, 1427 * ipsq_mphead, ipsq_mptail, ipsq_split 1428 * 1429 * ipsq_pending_ipif, ipsq_current_ipif, ipsq_pending_mp, ipsq_flags, 1430 * ipsq_waitfor 1431 * 1432 * The fields in the last line above below are set mostly by a writer thread 1433 * But there is an exception in the last call to ipif_ill_refrele_tail which 1434 * could also race with a conn close which could be cleaning up the 1435 * fields. So we choose to protect using ipsq_lock instead of depending on 1436 * the property of the writer. 1437 * ill_g_lock protects 1438 * ipsq_refs, ipsq_phyint_list 1439 */ 1440 typedef struct ipsq_s { 1441 kmutex_t ipsq_lock; 1442 int ipsq_reentry_cnt; 1443 kthread_t *ipsq_writer; /* current owner (thread id) */ 1444 int ipsq_flags; 1445 mblk_t *ipsq_xopq_mphead; /* list of excl ops mostly ioctls */ 1446 mblk_t *ipsq_xopq_mptail; 1447 mblk_t *ipsq_mphead; /* msgs on ipsq linked thru b_next */ 1448 mblk_t *ipsq_mptail; /* msgs on ipsq linked thru b_next */ 1449 int ipsq_current_ioctl; /* current ioctl, or 0 if no ioctl */ 1450 ipif_t *ipsq_current_ipif; /* ipif associated with current op */ 1451 ipif_t *ipsq_pending_ipif; /* ipif associated w. ipsq_pending_mp */ 1452 mblk_t *ipsq_pending_mp; /* current ioctl mp while waiting for */ 1453 /* response from another module */ 1454 struct ipsq_s *ipsq_next; /* list of all syncq's (ipsq_g_list) */ 1455 uint_t ipsq_refs; /* Number of phyints on this ipsq */ 1456 struct phyint *ipsq_phyint_list; /* List of phyints on this ipsq */ 1457 boolean_t ipsq_split; /* ipsq may need to be split */ 1458 int ipsq_waitfor; /* Values encoded below */ 1459 char ipsq_name[LIFNAMSIZ+1]; /* same as phyint_groupname */ 1460 ip_stack_t *ipsq_ipst; /* Does not have a netstack_hold */ 1461 1462 #ifdef DEBUG 1463 int ipsq_depth; /* debugging aid */ 1464 #define IPSQ_STACK_DEPTH 15 1465 pc_t ipsq_stack[IPSQ_STACK_DEPTH]; /* debugging aid */ 1466 #endif 1467 } ipsq_t; 1468 1469 /* ipsq_flags */ 1470 #define IPSQ_GROUP 0x1 /* This ipsq belongs to an IPMP group */ 1471 1472 /* 1473 * ipsq_waitfor: 1474 * 1475 * IPIF_DOWN 1 ipif_down waiting for refcnts to drop 1476 * ILL_DOWN 2 ill_down waiting for refcnts to drop 1477 * IPIF_FREE 3 ipif_free waiting for refcnts to drop 1478 * ILL_FREE 4 ill unplumb waiting for refcnts to drop 1479 * ILL_MOVE_OK 5 failover waiting for refcnts to drop 1480 */ 1481 1482 enum { IPIF_DOWN = 1, ILL_DOWN, IPIF_FREE, ILL_FREE, ILL_MOVE_OK }; 1483 1484 /* Flags passed to ipsq_try_enter */ 1485 #define CUR_OP 0 /* Current ioctl continuing again */ 1486 #define NEW_OP 1 /* New ioctl starting afresh */ 1487 1488 /* 1489 * phyint represents state that is common to both IPv4 and IPv6 interfaces. 1490 * There is a separate ill_t representing IPv4 and IPv6 which has a 1491 * backpointer to the phyint structure for acessing common state. 1492 * 1493 * NOTE : It just stores the group name as there is only one name for 1494 * IPv4 and IPv6 i.e it is a underlying link property. Actually 1495 * IPv4 and IPv6 ill are grouped together when their phyints have 1496 * the same name. 1497 */ 1498 typedef struct phyint { 1499 struct ill_s *phyint_illv4; 1500 struct ill_s *phyint_illv6; 1501 uint_t phyint_ifindex; /* SIOCLSLIFINDEX */ 1502 char *phyint_groupname; /* SIOCSLIFGROUPNAME */ 1503 uint_t phyint_groupname_len; 1504 uint64_t phyint_flags; 1505 avl_node_t phyint_avl_by_index; /* avl tree by index */ 1506 avl_node_t phyint_avl_by_name; /* avl tree by name */ 1507 kmutex_t phyint_lock; 1508 struct ipsq_s *phyint_ipsq; /* back pointer to ipsq */ 1509 struct phyint *phyint_ipsq_next; /* phyint list on this ipsq */ 1510 /* Once Clearview IPMP is added the follow two fields can be removed */ 1511 uint_t phyint_group_ifindex; /* index assigned to group */ 1512 uint_t phyint_hook_ifindex; /* index used with neti/hook */ 1513 } phyint_t; 1514 1515 #define CACHE_ALIGN_SIZE 64 1516 1517 #define CACHE_ALIGN(align_struct) P2ROUNDUP(sizeof (struct align_struct),\ 1518 CACHE_ALIGN_SIZE) 1519 struct _phyint_list_s_ { 1520 avl_tree_t phyint_list_avl_by_index; /* avl tree by index */ 1521 avl_tree_t phyint_list_avl_by_name; /* avl tree by name */ 1522 }; 1523 1524 typedef union phyint_list_u { 1525 struct _phyint_list_s_ phyint_list_s; 1526 char phyint_list_filler[CACHE_ALIGN(_phyint_list_s_)]; 1527 } phyint_list_t; 1528 1529 #define phyint_list_avl_by_index phyint_list_s.phyint_list_avl_by_index 1530 #define phyint_list_avl_by_name phyint_list_s.phyint_list_avl_by_name 1531 /* 1532 * ILL groups. We group ills, 1533 * 1534 * - if the ills have the same group name. (New way) 1535 * 1536 * ill_group locking notes: 1537 * 1538 * illgrp_lock protects ill_grp_ill_schednext. 1539 * 1540 * ill_g_lock protects ill_grp_next, illgrp_ill, illgrp_ill_count. 1541 * Holding ill_g_lock freezes the memberships of ills in IPMP groups. 1542 * It also freezes the global list of ills and all ipifs in all ills. 1543 * 1544 * To remove an ipif from the linked list of ipifs of that ill ipif_free_tail 1545 * holds both ill_g_lock, and ill_lock. Similarly to remove an ill from the 1546 * global list of ills, ill_glist_delete() holds ill_g_lock as writer. 1547 * This simplifies things for ipif_select_source, illgrp_scheduler etc. 1548 * that need to walk the members of an illgrp. They just hold ill_g_lock 1549 * as reader to do the walk. 1550 * 1551 */ 1552 typedef struct ill_group { 1553 kmutex_t illgrp_lock; 1554 struct ill_group *illgrp_next; /* Next ill_group */ 1555 struct ill_s *illgrp_ill_schednext; /* Next ill to be scheduled */ 1556 struct ill_s *illgrp_ill; /* First ill in the group */ 1557 int illgrp_ill_count; 1558 } ill_group_t; 1559 1560 /* 1561 * Fragmentation hash bucket 1562 */ 1563 typedef struct ipfb_s { 1564 struct ipf_s *ipfb_ipf; /* List of ... */ 1565 size_t ipfb_count; /* Count of bytes used by frag(s) */ 1566 kmutex_t ipfb_lock; /* Protect all ipf in list */ 1567 uint_t ipfb_frag_pkts; /* num of distinct fragmented pkts */ 1568 } ipfb_t; 1569 1570 /* 1571 * IRE bucket structure. Usually there is an array of such structures, 1572 * each pointing to a linked list of ires. irb_refcnt counts the number 1573 * of walkers of a given hash bucket. Usually the reference count is 1574 * bumped up if the walker wants no IRES to be DELETED while walking the 1575 * list. Bumping up does not PREVENT ADDITION. This allows walking a given 1576 * hash bucket without stumbling up on a free pointer. 1577 * 1578 * irb_t structures in ip_ftable are dynamically allocated and freed. 1579 * In order to identify the irb_t structures that can be safely kmem_free'd 1580 * we need to ensure that 1581 * - the irb_refcnt is quiescent, indicating no other walkers, 1582 * - no other threads or ire's are holding references to the irb, 1583 * i.e., irb_nire == 0, 1584 * - there are no active ire's in the bucket, i.e., irb_ire_cnt == 0 1585 */ 1586 typedef struct irb { 1587 struct ire_s *irb_ire; /* First ire in this bucket */ 1588 /* Should be first in this struct */ 1589 krwlock_t irb_lock; /* Protect this bucket */ 1590 uint_t irb_refcnt; /* Protected by irb_lock */ 1591 uchar_t irb_marks; /* CONDEMNED ires in this bucket ? */ 1592 #define IRB_MARK_CONDEMNED 0x0001 1593 #define IRB_MARK_FTABLE 0x0002 1594 uint_t irb_ire_cnt; /* Num of active IRE in this bucket */ 1595 uint_t irb_tmp_ire_cnt; /* Num of temporary IRE */ 1596 struct ire_s *irb_rr_origin; /* origin for round-robin */ 1597 int irb_nire; /* Num of ftable ire's that ref irb */ 1598 ip_stack_t *irb_ipst; /* Does not have a netstack_hold */ 1599 } irb_t; 1600 1601 #define IRB2RT(irb) (rt_t *)((caddr_t)(irb) - offsetof(rt_t, rt_irb)) 1602 1603 /* The following are return values of ip_xmit_v4() */ 1604 typedef enum { 1605 SEND_PASSED = 0, /* sent packet out on wire */ 1606 SEND_FAILED, /* sending of packet failed */ 1607 LOOKUP_IN_PROGRESS, /* ire cache found, ARP resolution in progress */ 1608 LLHDR_RESLV_FAILED /* macaddr resl of onlink dst or nexthop failed */ 1609 } ipxmit_state_t; 1610 1611 #define IP_V4_G_HEAD 0 1612 #define IP_V6_G_HEAD 1 1613 1614 #define MAX_G_HEADS 2 1615 1616 /* 1617 * unpadded ill_if structure 1618 */ 1619 struct _ill_if_s_ { 1620 union ill_if_u *illif_next; 1621 union ill_if_u *illif_prev; 1622 avl_tree_t illif_avl_by_ppa; /* AVL tree sorted on ppa */ 1623 vmem_t *illif_ppa_arena; /* ppa index space */ 1624 uint16_t illif_mcast_v1; /* hints for */ 1625 uint16_t illif_mcast_v2; /* [igmp|mld]_slowtimo */ 1626 int illif_name_len; /* name length */ 1627 char illif_name[LIFNAMSIZ]; /* name of interface type */ 1628 }; 1629 1630 /* cache aligned ill_if structure */ 1631 typedef union ill_if_u { 1632 struct _ill_if_s_ ill_if_s; 1633 char illif_filler[CACHE_ALIGN(_ill_if_s_)]; 1634 } ill_if_t; 1635 1636 #define illif_next ill_if_s.illif_next 1637 #define illif_prev ill_if_s.illif_prev 1638 #define illif_avl_by_ppa ill_if_s.illif_avl_by_ppa 1639 #define illif_ppa_arena ill_if_s.illif_ppa_arena 1640 #define illif_mcast_v1 ill_if_s.illif_mcast_v1 1641 #define illif_mcast_v2 ill_if_s.illif_mcast_v2 1642 #define illif_name ill_if_s.illif_name 1643 #define illif_name_len ill_if_s.illif_name_len 1644 1645 typedef struct ill_walk_context_s { 1646 int ctx_current_list; /* current list being searched */ 1647 int ctx_last_list; /* last list to search */ 1648 } ill_walk_context_t; 1649 1650 /* 1651 * ill_g_heads structure, one for IPV4 and one for IPV6 1652 */ 1653 struct _ill_g_head_s_ { 1654 ill_if_t *ill_g_list_head; 1655 ill_if_t *ill_g_list_tail; 1656 }; 1657 1658 typedef union ill_g_head_u { 1659 struct _ill_g_head_s_ ill_g_head_s; 1660 char ill_g_head_filler[CACHE_ALIGN(_ill_g_head_s_)]; 1661 } ill_g_head_t; 1662 1663 #define ill_g_list_head ill_g_head_s.ill_g_list_head 1664 #define ill_g_list_tail ill_g_head_s.ill_g_list_tail 1665 1666 #define IP_V4_ILL_G_LIST(ipst) \ 1667 (ipst)->ips_ill_g_heads[IP_V4_G_HEAD].ill_g_list_head 1668 #define IP_V6_ILL_G_LIST(ipst) \ 1669 (ipst)->ips_ill_g_heads[IP_V6_G_HEAD].ill_g_list_head 1670 #define IP_VX_ILL_G_LIST(i, ipst) \ 1671 (ipst)->ips_ill_g_heads[i].ill_g_list_head 1672 1673 #define ILL_START_WALK_V4(ctx_ptr, ipst) \ 1674 ill_first(IP_V4_G_HEAD, IP_V4_G_HEAD, ctx_ptr, ipst) 1675 #define ILL_START_WALK_V6(ctx_ptr, ipst) \ 1676 ill_first(IP_V6_G_HEAD, IP_V6_G_HEAD, ctx_ptr, ipst) 1677 #define ILL_START_WALK_ALL(ctx_ptr, ipst) \ 1678 ill_first(MAX_G_HEADS, MAX_G_HEADS, ctx_ptr, ipst) 1679 1680 /* 1681 * Capabilities, possible flags for ill_capabilities. 1682 */ 1683 1684 #define ILL_CAPAB_AH 0x01 /* IPsec AH acceleration */ 1685 #define ILL_CAPAB_ESP 0x02 /* IPsec ESP acceleration */ 1686 #define ILL_CAPAB_MDT 0x04 /* Multidata Transmit */ 1687 #define ILL_CAPAB_HCKSUM 0x08 /* Hardware checksumming */ 1688 #define ILL_CAPAB_ZEROCOPY 0x10 /* Zero-copy */ 1689 #define ILL_CAPAB_POLL 0x20 /* Polling Toggle */ 1690 #define ILL_CAPAB_SOFT_RING 0x40 /* Soft_Ring capability */ 1691 #define ILL_CAPAB_LSO 0x80 /* Large Segment Offload */ 1692 1693 /* 1694 * Per-ill Multidata Transmit capabilities. 1695 */ 1696 typedef struct ill_mdt_capab_s ill_mdt_capab_t; 1697 1698 /* 1699 * Per-ill IPsec capabilities. 1700 */ 1701 typedef struct ill_ipsec_capab_s ill_ipsec_capab_t; 1702 1703 /* 1704 * Per-ill Hardware Checksumming capbilities. 1705 */ 1706 typedef struct ill_hcksum_capab_s ill_hcksum_capab_t; 1707 1708 /* 1709 * Per-ill Zero-copy capabilities. 1710 */ 1711 typedef struct ill_zerocopy_capab_s ill_zerocopy_capab_t; 1712 1713 /* 1714 * Per-ill Polling/soft ring capbilities. 1715 */ 1716 typedef struct ill_dls_capab_s ill_dls_capab_t; 1717 1718 /* 1719 * Per-ill polling resource map. 1720 */ 1721 typedef struct ill_rx_ring ill_rx_ring_t; 1722 1723 /* 1724 * Per-ill Large Segment Offload capabilities. 1725 */ 1726 typedef struct ill_lso_capab_s ill_lso_capab_t; 1727 1728 /* The following are ill_state_flags */ 1729 #define ILL_LL_SUBNET_PENDING 0x01 /* Waiting for DL_INFO_ACK from drv */ 1730 #define ILL_CONDEMNED 0x02 /* No more new ref's to the ILL */ 1731 #define ILL_CHANGING 0x04 /* ILL not globally visible */ 1732 #define ILL_DL_UNBIND_IN_PROGRESS 0x08 /* UNBIND_REQ is sent */ 1733 #define ILL_SOFT_RING_ASSIGN 0x10 /* Makeing soft ring assigment */ 1734 1735 /* Is this an ILL whose source address is used by other ILL's ? */ 1736 #define IS_USESRC_ILL(ill) \ 1737 (((ill)->ill_usesrc_ifindex == 0) && \ 1738 ((ill)->ill_usesrc_grp_next != NULL)) 1739 1740 /* Is this a client/consumer of the usesrc ILL ? */ 1741 #define IS_USESRC_CLI_ILL(ill) \ 1742 (((ill)->ill_usesrc_ifindex != 0) && \ 1743 ((ill)->ill_usesrc_grp_next != NULL)) 1744 1745 /* Is this an virtual network interface (vni) ILL ? */ 1746 #define IS_VNI(ill) \ 1747 (((ill) != NULL) && \ 1748 (((ill)->ill_phyint->phyint_flags & (PHYI_LOOPBACK|PHYI_VIRTUAL)) == \ 1749 PHYI_VIRTUAL)) 1750 1751 /* Is this a loopback ILL? */ 1752 #define IS_LOOPBACK(ill) \ 1753 ((ill)->ill_phyint->phyint_flags & PHYI_LOOPBACK) 1754 1755 /* 1756 * IP Lower level Structure. 1757 * Instance data structure in ip_open when there is a device below us. 1758 */ 1759 typedef struct ill_s { 1760 ill_if_t *ill_ifptr; /* pointer to interface type */ 1761 queue_t *ill_rq; /* Read queue. */ 1762 queue_t *ill_wq; /* Write queue. */ 1763 1764 int ill_error; /* Error value sent up by device. */ 1765 1766 ipif_t *ill_ipif; /* Interface chain for this ILL. */ 1767 1768 uint_t ill_ipif_up_count; /* Number of IPIFs currently up. */ 1769 uint_t ill_max_frag; /* Max IDU from DLPI. */ 1770 char *ill_name; /* Our name. */ 1771 uint_t ill_ipif_dup_count; /* Number of duplicate addresses. */ 1772 uint_t ill_name_length; /* Name length, incl. terminator. */ 1773 char *ill_ndd_name; /* Name + ":ip?_forwarding" for NDD. */ 1774 uint_t ill_net_type; /* IRE_IF_RESOLVER/IRE_IF_NORESOLVER. */ 1775 /* 1776 * Physical Point of Attachment num. If DLPI style 1 provider 1777 * then this is derived from the devname. 1778 */ 1779 uint_t ill_ppa; 1780 t_uscalar_t ill_sap; 1781 t_scalar_t ill_sap_length; /* Including sign (for position) */ 1782 uint_t ill_phys_addr_length; /* Excluding the sap. */ 1783 uint_t ill_bcast_addr_length; /* Only set when the DL provider */ 1784 /* supports broadcast. */ 1785 t_uscalar_t ill_mactype; 1786 uint8_t *ill_frag_ptr; /* Reassembly state. */ 1787 timeout_id_t ill_frag_timer_id; /* timeout id for the frag timer */ 1788 ipfb_t *ill_frag_hash_tbl; /* Fragment hash list head. */ 1789 ipif_t *ill_pending_ipif; /* IPIF waiting for DL operation. */ 1790 1791 ilm_t *ill_ilm; /* Multicast mebership for lower ill */ 1792 uint_t ill_global_timer; /* for IGMPv3/MLDv2 general queries */ 1793 int ill_mcast_type; /* type of router which is querier */ 1794 /* on this interface */ 1795 uint16_t ill_mcast_v1_time; /* # slow timeouts since last v1 qry */ 1796 uint16_t ill_mcast_v2_time; /* # slow timeouts since last v2 qry */ 1797 uint8_t ill_mcast_v1_tset; /* 1 => timer is set; 0 => not set */ 1798 uint8_t ill_mcast_v2_tset; /* 1 => timer is set; 0 => not set */ 1799 1800 uint8_t ill_mcast_rv; /* IGMPv3/MLDv2 robustness variable */ 1801 int ill_mcast_qi; /* IGMPv3/MLDv2 query interval var */ 1802 1803 mblk_t *ill_pending_mp; /* IOCTL/DLPI awaiting completion. */ 1804 /* 1805 * All non-NULL cells between 'ill_first_mp_to_free' and 1806 * 'ill_last_mp_to_free' are freed in ill_delete. 1807 */ 1808 #define ill_first_mp_to_free ill_bcast_mp 1809 mblk_t *ill_bcast_mp; /* DLPI header for broadcasts. */ 1810 mblk_t *ill_resolver_mp; /* Resolver template. */ 1811 mblk_t *ill_unbind_mp; /* unbind mp from ill_dl_up() */ 1812 mblk_t *ill_dlpi_deferred; /* b_next chain of control messages */ 1813 mblk_t *ill_phys_addr_mp; /* mblk which holds ill_phys_addr */ 1814 #define ill_last_mp_to_free ill_phys_addr_mp 1815 1816 cred_t *ill_credp; /* opener's credentials */ 1817 uint8_t *ill_phys_addr; /* ill_phys_addr_mp->b_rptr + off */ 1818 1819 uint_t ill_state_flags; /* see ILL_* flags above */ 1820 1821 /* Following bit fields protected by ipsq_t */ 1822 uint_t 1823 ill_needs_attach : 1, 1824 ill_reserved : 1, 1825 ill_isv6 : 1, 1826 ill_dlpi_style_set : 1, 1827 1828 ill_ifname_pending : 1, 1829 ill_move_in_progress : 1, /* FAILOVER/FAILBACK in progress */ 1830 ill_join_allmulti : 1, 1831 ill_logical_down : 1, 1832 1833 ill_is_6to4tun : 1, /* Interface is a 6to4 tunnel */ 1834 ill_promisc_on_phys : 1, /* phys interface in promisc mode */ 1835 ill_dl_up : 1, 1836 ill_up_ipifs : 1, 1837 1838 ill_note_link : 1, /* supports link-up notification */ 1839 ill_capab_reneg : 1, /* capability renegotiation to be done */ 1840 ill_pad_to_bit_31 : 18; 1841 1842 /* Following bit fields protected by ill_lock */ 1843 uint_t 1844 ill_fragtimer_executing : 1, 1845 ill_fragtimer_needrestart : 1, 1846 ill_ilm_cleanup_reqd : 1, 1847 ill_arp_closing : 1, 1848 1849 ill_arp_bringup_pending : 1, 1850 ill_mtu_userspecified : 1, /* SIOCSLNKINFO has set the mtu */ 1851 ill_arp_extend : 1, /* ARP has DAD extensions */ 1852 ill_pad_bit_31 : 25; 1853 1854 /* 1855 * Used in SIOCSIFMUXID and SIOCGIFMUXID for 'ifconfig unplumb'. 1856 */ 1857 int ill_arp_muxid; /* muxid returned from plink for arp */ 1858 int ill_ip_muxid; /* muxid returned from plink for ip */ 1859 1860 /* 1861 * NIC event information attached, to be used by nic event hooks. 1862 */ 1863 hook_nic_event_t *ill_nic_event_info; 1864 1865 /* 1866 * Used for IP frag reassembly throttling on a per ILL basis. 1867 * 1868 * Note: frag_count is approximate, its added to and subtracted from 1869 * without any locking, so simultaneous load/modify/stores can 1870 * collide, also ill_frag_purge() recalculates its value by 1871 * summing all the ipfb_count's without locking out updates 1872 * to the ipfb's. 1873 */ 1874 uint_t ill_ipf_gen; /* Generation of next fragment queue */ 1875 uint_t ill_frag_count; /* Approx count of all mblk bytes */ 1876 uint_t ill_frag_free_num_pkts; /* num of fragmented packets to free */ 1877 clock_t ill_last_frag_clean_time; /* time when frag's were pruned */ 1878 int ill_type; /* From <net/if_types.h> */ 1879 uint_t ill_dlpi_multicast_state; /* See below IDS_* */ 1880 uint_t ill_dlpi_fastpath_state; /* See below IDS_* */ 1881 1882 /* 1883 * Capabilities related fields. 1884 */ 1885 uint_t ill_dlpi_capab_state; /* State of capability query, IDS_* */ 1886 uint64_t ill_capabilities; /* Enabled capabilities, ILL_CAPAB_* */ 1887 ill_mdt_capab_t *ill_mdt_capab; /* Multidata Transmit capabilities */ 1888 ill_ipsec_capab_t *ill_ipsec_capab_ah; /* IPsec AH capabilities */ 1889 ill_ipsec_capab_t *ill_ipsec_capab_esp; /* IPsec ESP capabilities */ 1890 ill_hcksum_capab_t *ill_hcksum_capab; /* H/W cksumming capabilities */ 1891 ill_zerocopy_capab_t *ill_zerocopy_capab; /* Zero-copy capabilities */ 1892 ill_dls_capab_t *ill_dls_capab; /* Polling, soft ring capabilities */ 1893 ill_lso_capab_t *ill_lso_capab; /* Large Segment Offload capabilities */ 1894 1895 /* 1896 * New fields for IPv6 1897 */ 1898 uint8_t ill_max_hops; /* Maximum hops for any logical interface */ 1899 uint_t ill_max_mtu; /* Maximum MTU for any logical interface */ 1900 uint32_t ill_reachable_time; /* Value for ND algorithm in msec */ 1901 uint32_t ill_reachable_retrans_time; /* Value for ND algorithm msec */ 1902 uint_t ill_max_buf; /* Max # of req to buffer for ND */ 1903 in6_addr_t ill_token; 1904 uint_t ill_token_length; 1905 uint32_t ill_xmit_count; /* ndp max multicast xmits */ 1906 mib2_ipIfStatsEntry_t *ill_ip_mib; /* ver indep. interface mib */ 1907 mib2_ipv6IfIcmpEntry_t *ill_icmp6_mib; /* Per interface mib */ 1908 /* 1909 * Following two mblks are allocated common to all 1910 * the ipifs when the first interface is coming up. 1911 * It is sent up to arp when the last ipif is coming 1912 * down. 1913 */ 1914 mblk_t *ill_arp_down_mp; 1915 mblk_t *ill_arp_del_mapping_mp; 1916 /* 1917 * Used for implementing IFF_NOARP. As IFF_NOARP is used 1918 * to turn off for all the logicals, it is here instead 1919 * of the ipif. 1920 */ 1921 mblk_t *ill_arp_on_mp; 1922 /* Peer ill of an IPMP move operation */ 1923 struct ill_s *ill_move_peer; 1924 1925 phyint_t *ill_phyint; 1926 uint64_t ill_flags; 1927 ill_group_t *ill_group; 1928 struct ill_s *ill_group_next; 1929 1930 kmutex_t ill_lock; /* Please see table below */ 1931 /* 1932 * The ill_nd_lla* fields handle the link layer address option 1933 * from neighbor discovery. This is used for external IPv6 1934 * address resolution. 1935 */ 1936 mblk_t *ill_nd_lla_mp; /* mblk which holds ill_nd_lla */ 1937 uint8_t *ill_nd_lla; /* Link Layer Address */ 1938 uint_t ill_nd_lla_len; /* Link Layer Address length */ 1939 /* 1940 * We now have 3 phys_addr_req's sent down. This field keeps track 1941 * of which one is pending. 1942 */ 1943 t_uscalar_t ill_phys_addr_pend; /* which dl_phys_addr_req pending */ 1944 /* 1945 * Used to save errors that occur during plumbing 1946 */ 1947 uint_t ill_ifname_pending_err; 1948 avl_node_t ill_avl_byppa; /* avl node based on ppa */ 1949 void *ill_fastpath_list; /* both ire and nce hang off this */ 1950 uint_t ill_refcnt; /* active refcnt by threads */ 1951 uint_t ill_ire_cnt; /* ires associated with this ill */ 1952 kcondvar_t ill_cv; 1953 uint_t ill_ilm_walker_cnt; /* snmp ilm walkers */ 1954 uint_t ill_nce_cnt; /* nces associated with this ill */ 1955 uint_t ill_waiters; /* threads waiting in ipsq_enter */ 1956 /* 1957 * Contains the upper read queue pointer of the module immediately 1958 * beneath IP. This field allows IP to validate sub-capability 1959 * acknowledgments coming up from downstream. 1960 */ 1961 queue_t *ill_lmod_rq; /* read queue pointer of module below */ 1962 uint_t ill_lmod_cnt; /* number of modules beneath IP */ 1963 ip_m_t *ill_media; /* media specific params/functions */ 1964 t_uscalar_t ill_dlpi_pending; /* Last DLPI primitive issued */ 1965 uint_t ill_usesrc_ifindex; /* use src addr from this ILL */ 1966 struct ill_s *ill_usesrc_grp_next; /* Next ILL in the usesrc group */ 1967 boolean_t ill_trace_disable; /* True when alloc fails */ 1968 zoneid_t ill_zoneid; 1969 ip_stack_t *ill_ipst; /* Corresponds to a netstack_hold */ 1970 } ill_t; 1971 1972 /* 1973 * The following table lists the protection levels of the various members 1974 * of the ill_t. Same notation as that used for ipif_t above is used. 1975 * 1976 * Write Read 1977 * 1978 * ill_ifptr ill_g_lock + s Write once 1979 * ill_rq ipsq Write once 1980 * ill_wq ipsq Write once 1981 * 1982 * ill_error ipsq None 1983 * ill_ipif ill_g_lock + ipsq ill_g_lock OR ipsq 1984 * ill_ipif_up_count ill_lock + ipsq ill_lock OR ipsq 1985 * ill_max_frag ipsq Write once 1986 * 1987 * ill_name ill_g_lock + ipsq Write once 1988 * ill_name_length ill_g_lock + ipsq Write once 1989 * ill_ndd_name ipsq Write once 1990 * ill_net_type ipsq Write once 1991 * ill_ppa ill_g_lock + ipsq Write once 1992 * ill_sap ipsq + down ill Write once 1993 * ill_sap_length ipsq + down ill Write once 1994 * ill_phys_addr_length ipsq + down ill Write once 1995 * 1996 * ill_bcast_addr_length ipsq ipsq 1997 * ill_mactype ipsq ipsq 1998 * ill_frag_ptr ipsq ipsq 1999 * 2000 * ill_frag_timer_id ill_lock ill_lock 2001 * ill_frag_hash_tbl ipsq up ill 2002 * ill_ilm ipsq + ill_lock ill_lock 2003 * ill_mcast_type ill_lock ill_lock 2004 * ill_mcast_v1_time ill_lock ill_lock 2005 * ill_mcast_v2_time ill_lock ill_lock 2006 * ill_mcast_v1_tset ill_lock ill_lock 2007 * ill_mcast_v2_tset ill_lock ill_lock 2008 * ill_mcast_rv ill_lock ill_lock 2009 * ill_mcast_qi ill_lock ill_lock 2010 * ill_pending_mp ill_lock ill_lock 2011 * 2012 * ill_bcast_mp ipsq ipsq 2013 * ill_resolver_mp ipsq only when ill is up 2014 * ill_down_mp ipsq ipsq 2015 * ill_dlpi_deferred ill_lock ill_lock 2016 * ill_dlpi_pending ill_lock ill_lock 2017 * ill_phys_addr_mp ipsq + down ill only when ill is up 2018 * ill_phys_addr ipsq + down ill only when ill is up 2019 * 2020 * ill_state_flags ill_lock ill_lock 2021 * exclusive bit flags ipsq_t ipsq_t 2022 * shared bit flags ill_lock ill_lock 2023 * 2024 * ill_arp_muxid ipsq Not atomic 2025 * ill_ip_muxid ipsq Not atomic 2026 * 2027 * ill_ipf_gen Not atomic 2028 * ill_frag_count Approx. not protected 2029 * ill_type ipsq + down ill only when ill is up 2030 * ill_dlpi_multicast_state ill_lock ill_lock 2031 * ill_dlpi_fastpath_state ill_lock ill_lock 2032 * ill_max_hops ipsq Not atomic 2033 * 2034 * ill_max_mtu 2035 * 2036 * ill_reachable_time ipsq + ill_lock ill_lock 2037 * ill_reachable_retrans_time ipsq + ill_lock ill_lock 2038 * ill_max_buf ipsq + ill_lock ill_lock 2039 * 2040 * Next 2 fields need ill_lock because of the get ioctls. They should not 2041 * report partially updated results without executing in the ipsq. 2042 * ill_token ipsq + ill_lock ill_lock 2043 * ill_token_length ipsq + ill_lock ill_lock 2044 * ill_xmit_count ipsq + down ill write once 2045 * ill_ip6_mib ipsq + down ill only when ill is up 2046 * ill_icmp6_mib ipsq + down ill only when ill is up 2047 * ill_arp_down_mp ipsq ipsq 2048 * ill_arp_del_mapping_mp ipsq ipsq 2049 * ill_arp_on_mp ipsq ipsq 2050 * ill_move_peer ipsq ipsq 2051 * 2052 * ill_phyint ipsq, ill_g_lock, ill_lock Any of them 2053 * ill_flags ill_lock ill_lock 2054 * ill_group ipsq, ill_g_lock, ill_lock Any of them 2055 * ill_group_next ipsq, ill_g_lock, ill_lock Any of them 2056 * ill_nd_lla_mp ipsq + down ill only when ill is up 2057 * ill_nd_lla ipsq + down ill only when ill is up 2058 * ill_nd_lla_len ipsq + down ill only when ill is up 2059 * ill_phys_addr_pend ipsq + down ill only when ill is up 2060 * ill_ifname_pending_err ipsq ipsq 2061 * ill_avl_byppa ipsq, ill_g_lock write once 2062 * 2063 * ill_fastpath_list ill_lock ill_lock 2064 * ill_refcnt ill_lock ill_lock 2065 * ill_ire_cnt ill_lock ill_lock 2066 * ill_cv ill_lock ill_lock 2067 * ill_ilm_walker_cnt ill_lock ill_lock 2068 * ill_nce_cnt ill_lock ill_lock 2069 * ill_trace ill_lock ill_lock 2070 * ill_usesrc_grp_next ill_g_usesrc_lock ill_g_usesrc_lock 2071 */ 2072 2073 /* 2074 * For ioctl restart mechanism see ip_reprocess_ioctl() 2075 */ 2076 struct ip_ioctl_cmd_s; 2077 2078 typedef int (*ifunc_t)(ipif_t *, struct sockaddr_in *, queue_t *, mblk_t *, 2079 struct ip_ioctl_cmd_s *, void *); 2080 2081 typedef struct ip_ioctl_cmd_s { 2082 int ipi_cmd; 2083 size_t ipi_copyin_size; 2084 uint_t ipi_flags; 2085 uint_t ipi_cmd_type; 2086 ifunc_t ipi_func; 2087 ifunc_t ipi_func_restart; 2088 } ip_ioctl_cmd_t; 2089 2090 /* 2091 * ipi_cmd_type: 2092 * 2093 * IF_CMD 1 old style ifreq cmd 2094 * LIF_CMD 2 new style lifreq cmd 2095 * TUN_CMD 3 tunnel related 2096 * ARP_CMD 4 arpreq cmd 2097 * XARP_CMD 5 xarpreq cmd 2098 * MSFILT_CMD 6 multicast source filter cmd 2099 * MISC_CMD 7 misc cmd (not a more specific one above) 2100 */ 2101 2102 enum { IF_CMD = 1, LIF_CMD, TUN_CMD, ARP_CMD, XARP_CMD, MSFILT_CMD, MISC_CMD }; 2103 2104 #define IPI_DONTCARE 0 /* For ioctl encoded values that don't matter */ 2105 2106 /* Flag values in ipi_flags */ 2107 #define IPI_PRIV 0x1 /* Root only command */ 2108 #define IPI_MODOK 0x2 /* Permitted on mod instance of IP */ 2109 #define IPI_WR 0x4 /* Need to grab writer access */ 2110 #define IPI_GET_CMD 0x8 /* branch to mi_copyout on success */ 2111 #define IPI_REPL 0x10 /* valid for replacement ipif created in MOVE */ 2112 #define IPI_NULL_BCONT 0x20 /* ioctl has not data and hence no b_cont */ 2113 #define IPI_PASS_DOWN 0x40 /* pass this ioctl down when a module only */ 2114 2115 extern ip_ioctl_cmd_t ip_ndx_ioctl_table[]; 2116 extern ip_ioctl_cmd_t ip_misc_ioctl_table[]; 2117 extern int ip_ndx_ioctl_count; 2118 extern int ip_misc_ioctl_count; 2119 2120 #define ILL_CLEAR_MOVE(ill) { \ 2121 ill_t *peer_ill; \ 2122 \ 2123 peer_ill = (ill)->ill_move_peer; \ 2124 ASSERT(peer_ill != NULL); \ 2125 (ill)->ill_move_in_progress = B_FALSE; \ 2126 peer_ill->ill_move_in_progress = B_FALSE; \ 2127 (ill)->ill_move_peer = NULL; \ 2128 peer_ill->ill_move_peer = NULL; \ 2129 } 2130 2131 /* Passed down by ARP to IP during I_PLINK/I_PUNLINK */ 2132 typedef struct ipmx_s { 2133 char ipmx_name[LIFNAMSIZ]; /* if name */ 2134 uint_t 2135 ipmx_arpdev_stream : 1, /* This is the arp stream */ 2136 ipmx_notused : 31; 2137 } ipmx_t; 2138 2139 /* 2140 * State for detecting if a driver supports certain features. 2141 * Support for DL_ENABMULTI_REQ uses ill_dlpi_multicast_state. 2142 * Support for DLPI M_DATA fastpath uses ill_dlpi_fastpath_state. 2143 * Support for DL_CAPABILITY_REQ uses ill_dlpi_capab_state. 2144 */ 2145 #define IDS_UNKNOWN 0 /* No DLPI request sent */ 2146 #define IDS_INPROGRESS 1 /* DLPI request sent */ 2147 #define IDS_OK 2 /* DLPI request completed successfully */ 2148 #define IDS_FAILED 3 /* DLPI request failed */ 2149 2150 /* Named Dispatch Parameter Management Structure */ 2151 typedef struct ipparam_s { 2152 uint_t ip_param_min; 2153 uint_t ip_param_max; 2154 uint_t ip_param_value; 2155 char *ip_param_name; 2156 } ipparam_t; 2157 2158 /* Extended NDP Management Structure */ 2159 typedef struct ipndp_s { 2160 ndgetf_t ip_ndp_getf; 2161 ndsetf_t ip_ndp_setf; 2162 caddr_t ip_ndp_data; 2163 char *ip_ndp_name; 2164 } ipndp_t; 2165 2166 /* 2167 * The kernel stores security attributes of all gateways in a database made 2168 * up of one or more tsol_gcdb_t elements. Each tsol_gcdb_t contains the 2169 * security-related credentials of the gateway. More than one gateways may 2170 * share entries in the database. 2171 * 2172 * The tsol_gc_t structure represents the gateway to credential association, 2173 * and refers to an entry in the database. One or more tsol_gc_t entities are 2174 * grouped together to form one or more tsol_gcgrp_t, each representing the 2175 * list of security attributes specific to the gateway. A gateway may be 2176 * associated with at most one credentials group. 2177 */ 2178 struct tsol_gcgrp_s; 2179 2180 extern uchar_t ip6opt_ls; /* TX IPv6 enabler */ 2181 2182 /* 2183 * Gateway security credential record. 2184 */ 2185 typedef struct tsol_gcdb_s { 2186 uint_t gcdb_refcnt; /* reference count */ 2187 struct rtsa_s gcdb_attr; /* security attributes */ 2188 #define gcdb_mask gcdb_attr.rtsa_mask 2189 #define gcdb_doi gcdb_attr.rtsa_doi 2190 #define gcdb_slrange gcdb_attr.rtsa_slrange 2191 } tsol_gcdb_t; 2192 2193 /* 2194 * Gateway to credential association. 2195 */ 2196 typedef struct tsol_gc_s { 2197 uint_t gc_refcnt; /* reference count */ 2198 struct tsol_gcgrp_s *gc_grp; /* pointer to group */ 2199 struct tsol_gc_s *gc_prev; /* previous in list */ 2200 struct tsol_gc_s *gc_next; /* next in list */ 2201 tsol_gcdb_t *gc_db; /* pointer to actual credentials */ 2202 } tsol_gc_t; 2203 2204 /* 2205 * Gateway credentials group address. 2206 */ 2207 typedef struct tsol_gcgrp_addr_s { 2208 int ga_af; /* address family */ 2209 in6_addr_t ga_addr; /* IPv4 mapped or IPv6 address */ 2210 } tsol_gcgrp_addr_t; 2211 2212 /* 2213 * Gateway credentials group. 2214 */ 2215 typedef struct tsol_gcgrp_s { 2216 uint_t gcgrp_refcnt; /* reference count */ 2217 krwlock_t gcgrp_rwlock; /* lock to protect following */ 2218 uint_t gcgrp_count; /* number of credentials */ 2219 tsol_gc_t *gcgrp_head; /* first credential in list */ 2220 tsol_gc_t *gcgrp_tail; /* last credential in list */ 2221 tsol_gcgrp_addr_t gcgrp_addr; /* next-hop gateway address */ 2222 } tsol_gcgrp_t; 2223 2224 extern kmutex_t gcgrp_lock; 2225 2226 #define GC_REFRELE(p) { \ 2227 ASSERT((p)->gc_grp != NULL); \ 2228 rw_enter(&(p)->gc_grp->gcgrp_rwlock, RW_WRITER); \ 2229 ASSERT((p)->gc_refcnt > 0); \ 2230 if (--((p)->gc_refcnt) == 0) \ 2231 gc_inactive(p); \ 2232 else \ 2233 rw_exit(&(p)->gc_grp->gcgrp_rwlock); \ 2234 } 2235 2236 #define GCGRP_REFHOLD(p) { \ 2237 mutex_enter(&gcgrp_lock); \ 2238 ++((p)->gcgrp_refcnt); \ 2239 ASSERT((p)->gcgrp_refcnt != 0); \ 2240 mutex_exit(&gcgrp_lock); \ 2241 } 2242 2243 #define GCGRP_REFRELE(p) { \ 2244 mutex_enter(&gcgrp_lock); \ 2245 ASSERT((p)->gcgrp_refcnt > 0); \ 2246 if (--((p)->gcgrp_refcnt) == 0) \ 2247 gcgrp_inactive(p); \ 2248 ASSERT(MUTEX_HELD(&gcgrp_lock)); \ 2249 mutex_exit(&gcgrp_lock); \ 2250 } 2251 2252 /* 2253 * IRE gateway security attributes structure, pointed to by tsol_ire_gw_secattr 2254 */ 2255 struct tsol_tnrhc; 2256 2257 typedef struct tsol_ire_gw_secattr_s { 2258 kmutex_t igsa_lock; /* lock to protect following */ 2259 struct tsol_tnrhc *igsa_rhc; /* host entry for gateway */ 2260 tsol_gc_t *igsa_gc; /* for prefix IREs */ 2261 tsol_gcgrp_t *igsa_gcgrp; /* for cache IREs */ 2262 } tsol_ire_gw_secattr_t; 2263 2264 /* 2265 * Following are the macros to increment/decrement the reference 2266 * count of the IREs and IRBs (ire bucket). 2267 * 2268 * 1) We bump up the reference count of an IRE to make sure that 2269 * it does not get deleted and freed while we are using it. 2270 * Typically all the lookup functions hold the bucket lock, 2271 * and look for the IRE. If it finds an IRE, it bumps up the 2272 * reference count before dropping the lock. Sometimes we *may* want 2273 * to bump up the reference count after we *looked* up i.e without 2274 * holding the bucket lock. So, the IRE_REFHOLD macro does not assert 2275 * on the bucket lock being held. Any thread trying to delete from 2276 * the hash bucket can still do so but cannot free the IRE if 2277 * ire_refcnt is not 0. 2278 * 2279 * 2) We bump up the reference count on the bucket where the IRE resides 2280 * (IRB), when we want to prevent the IREs getting deleted from a given 2281 * hash bucket. This makes life easier for ire_walk type functions which 2282 * wants to walk the IRE list, call a function, but needs to drop 2283 * the bucket lock to prevent recursive rw_enters. While the 2284 * lock is dropped, the list could be changed by other threads or 2285 * the same thread could end up deleting the ire or the ire pointed by 2286 * ire_next. IRE_REFHOLDing the ire or ire_next is not sufficient as 2287 * a delete will still remove the ire from the bucket while we have 2288 * dropped the lock and hence the ire_next would be NULL. Thus, we 2289 * need a mechanism to prevent deletions from a given bucket. 2290 * 2291 * To prevent deletions, we bump up the reference count on the 2292 * bucket. If the bucket is held, ire_delete just marks IRE_MARK_CONDEMNED 2293 * both on the ire's ire_marks and the bucket's irb_marks. When the 2294 * reference count on the bucket drops to zero, all the CONDEMNED ires 2295 * are deleted. We don't have to bump up the reference count on the 2296 * bucket if we are walking the bucket and never have to drop the bucket 2297 * lock. Note that IRB_REFHOLD does not prevent addition of new ires 2298 * in the list. It is okay because addition of new ires will not cause 2299 * ire_next to point to freed memory. We do IRB_REFHOLD only when 2300 * all of the 3 conditions are true : 2301 * 2302 * 1) The code needs to walk the IRE bucket from start to end. 2303 * 2) It may have to drop the bucket lock sometimes while doing (1) 2304 * 3) It does not want any ires to be deleted meanwhile. 2305 */ 2306 2307 /* 2308 * Bump up the reference count on the IRE. We cannot assert that the 2309 * bucket lock is being held as it is legal to bump up the reference 2310 * count after the first lookup has returned the IRE without 2311 * holding the lock. Currently ip_wput does this for caching IRE_CACHEs. 2312 */ 2313 2314 #ifdef DEBUG 2315 #define IRE_UNTRACE_REF(ire) ire_untrace_ref(ire); 2316 #define IRE_TRACE_REF(ire) ire_trace_ref(ire); 2317 #else 2318 #define IRE_UNTRACE_REF(ire) 2319 #define IRE_TRACE_REF(ire) 2320 #endif 2321 2322 #define IRE_REFHOLD_NOTR(ire) { \ 2323 atomic_add_32(&(ire)->ire_refcnt, 1); \ 2324 ASSERT((ire)->ire_refcnt != 0); \ 2325 } 2326 2327 #define IRE_REFHOLD(ire) { \ 2328 IRE_REFHOLD_NOTR(ire); \ 2329 IRE_TRACE_REF(ire); \ 2330 } 2331 2332 #define IRE_REFHOLD_LOCKED(ire) { \ 2333 IRE_TRACE_REF(ire); \ 2334 (ire)->ire_refcnt++; \ 2335 } 2336 2337 /* 2338 * Decrement the reference count on the IRE. 2339 * In architectures e.g sun4u, where atomic_add_32_nv is just 2340 * a cas, we need to maintain the right memory barrier semantics 2341 * as that of mutex_exit i.e all the loads and stores should complete 2342 * before the cas is executed. membar_exit() does that here. 2343 * 2344 * NOTE : This macro is used only in places where we want performance. 2345 * To avoid bloating the code, we use the function "ire_refrele" 2346 * which essentially calls the macro. 2347 */ 2348 #define IRE_REFRELE_NOTR(ire) { \ 2349 ASSERT((ire)->ire_refcnt != 0); \ 2350 membar_exit(); \ 2351 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \ 2352 ire_inactive(ire); \ 2353 } 2354 2355 #define IRE_REFRELE(ire) { \ 2356 if (ire->ire_bucket != NULL) { \ 2357 IRE_UNTRACE_REF(ire); \ 2358 } \ 2359 IRE_REFRELE_NOTR(ire); \ 2360 } 2361 2362 /* 2363 * Bump up the reference count on the hash bucket - IRB to 2364 * prevent ires from being deleted in this bucket. 2365 */ 2366 #define IRB_REFHOLD(irb) { \ 2367 rw_enter(&(irb)->irb_lock, RW_WRITER); \ 2368 (irb)->irb_refcnt++; \ 2369 ASSERT((irb)->irb_refcnt != 0); \ 2370 rw_exit(&(irb)->irb_lock); \ 2371 } 2372 #define IRB_REFHOLD_LOCKED(irb) { \ 2373 ASSERT(RW_WRITE_HELD(&(irb)->irb_lock)); \ 2374 (irb)->irb_refcnt++; \ 2375 ASSERT((irb)->irb_refcnt != 0); \ 2376 } 2377 2378 void irb_refrele_ftable(irb_t *); 2379 /* 2380 * Note: when IRB_MARK_FTABLE (i.e., IRE_CACHETABLE entry), the irb_t 2381 * is statically allocated, so that when the irb_refcnt goes to 0, 2382 * we simply clean up the ire list and continue. 2383 */ 2384 #define IRB_REFRELE(irb) { \ 2385 if ((irb)->irb_marks & IRB_MARK_FTABLE) { \ 2386 irb_refrele_ftable((irb)); \ 2387 } else { \ 2388 rw_enter(&(irb)->irb_lock, RW_WRITER); \ 2389 ASSERT((irb)->irb_refcnt != 0); \ 2390 if (--(irb)->irb_refcnt == 0 && \ 2391 ((irb)->irb_marks & IRE_MARK_CONDEMNED)) { \ 2392 ire_t *ire_list; \ 2393 \ 2394 ire_list = ire_unlink(irb); \ 2395 rw_exit(&(irb)->irb_lock); \ 2396 ASSERT(ire_list != NULL); \ 2397 ire_cleanup(ire_list); \ 2398 } else { \ 2399 rw_exit(&(irb)->irb_lock); \ 2400 } \ 2401 } \ 2402 } 2403 2404 extern struct kmem_cache *rt_entry_cache; 2405 2406 /* 2407 * Lock the fast path mp for access, since the fp_mp can be deleted 2408 * due a DL_NOTE_FASTPATH_FLUSH in the case of IRE_BROADCAST 2409 */ 2410 2411 #define LOCK_IRE_FP_MP(ire) { \ 2412 if ((ire)->ire_type == IRE_BROADCAST) \ 2413 mutex_enter(&ire->ire_nce->nce_lock); \ 2414 } 2415 #define UNLOCK_IRE_FP_MP(ire) { \ 2416 if ((ire)->ire_type == IRE_BROADCAST) \ 2417 mutex_exit(&ire->ire_nce->nce_lock); \ 2418 } 2419 2420 typedef struct ire4 { 2421 ipaddr_t ire4_src_addr; /* Source address to use. */ 2422 ipaddr_t ire4_mask; /* Mask for matching this IRE. */ 2423 ipaddr_t ire4_addr; /* Address this IRE represents. */ 2424 ipaddr_t ire4_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */ 2425 ipaddr_t ire4_cmask; /* Mask from parent prefix route */ 2426 } ire4_t; 2427 2428 typedef struct ire6 { 2429 in6_addr_t ire6_src_addr; /* Source address to use. */ 2430 in6_addr_t ire6_mask; /* Mask for matching this IRE. */ 2431 in6_addr_t ire6_addr; /* Address this IRE represents. */ 2432 in6_addr_t ire6_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */ 2433 in6_addr_t ire6_cmask; /* Mask from parent prefix route */ 2434 } ire6_t; 2435 2436 typedef union ire_addr { 2437 ire6_t ire6_u; 2438 ire4_t ire4_u; 2439 } ire_addr_u_t; 2440 2441 /* Internet Routing Entry */ 2442 typedef struct ire_s { 2443 struct ire_s *ire_next; /* The hash chain must be first. */ 2444 struct ire_s **ire_ptpn; /* Pointer to previous next. */ 2445 uint32_t ire_refcnt; /* Number of references */ 2446 mblk_t *ire_mp; /* Non-null if allocated as mblk */ 2447 queue_t *ire_rfq; /* recv from this queue */ 2448 queue_t *ire_stq; /* send to this queue */ 2449 union { 2450 uint_t *max_fragp; /* Used only during ire creation */ 2451 uint_t max_frag; /* MTU (next hop or path). */ 2452 } imf_u; 2453 #define ire_max_frag imf_u.max_frag 2454 #define ire_max_fragp imf_u.max_fragp 2455 uint32_t ire_frag_flag; /* IPH_DF or zero. */ 2456 uint32_t ire_ident; /* Per IRE IP ident. */ 2457 uint32_t ire_tire_mark; /* Used for reclaim of unused. */ 2458 uchar_t ire_ipversion; /* IPv4/IPv6 version */ 2459 uchar_t ire_marks; /* IRE_MARK_CONDEMNED etc. */ 2460 ushort_t ire_type; /* Type of IRE */ 2461 uint_t ire_ib_pkt_count; /* Inbound packets for ire_addr */ 2462 uint_t ire_ob_pkt_count; /* Outbound packets to ire_addr */ 2463 uint_t ire_ll_hdr_length; /* Non-zero if we do M_DATA prepends */ 2464 time_t ire_create_time; /* Time (in secs) IRE was created. */ 2465 uint32_t ire_phandle; /* Associate prefix IREs to cache */ 2466 uint32_t ire_ihandle; /* Associate interface IREs to cache */ 2467 ipif_t *ire_ipif; /* the interface that this ire uses */ 2468 uint32_t ire_flags; /* flags related to route (RTF_*) */ 2469 uint_t ire_ipsec_overhead; /* IPSEC overhead */ 2470 /* 2471 * Neighbor Cache Entry for IPv6; arp info for IPv4 2472 */ 2473 struct nce_s *ire_nce; 2474 uint_t ire_masklen; /* # bits in ire_mask{,_v6} */ 2475 ire_addr_u_t ire_u; /* IPv4/IPv6 address info. */ 2476 2477 irb_t *ire_bucket; /* Hash bucket when ire_ptphn is set */ 2478 iulp_t ire_uinfo; /* Upper layer protocol info. */ 2479 /* 2480 * Protects ire_uinfo, ire_max_frag, and ire_frag_flag. 2481 */ 2482 kmutex_t ire_lock; 2483 uint_t ire_ipif_seqid; /* ipif_seqid of ire_ipif */ 2484 clock_t ire_last_used_time; /* Last used time */ 2485 tsol_ire_gw_secattr_t *ire_gw_secattr; /* gateway security attributes */ 2486 zoneid_t ire_zoneid; /* for local address discrimination */ 2487 /* 2488 * ire's that are embedded inside mblk_t and sent to the external 2489 * resolver use the ire_stq_ifindex to track the ifindex of the 2490 * ire_stq, so that the ill (if it exists) can be correctly recovered 2491 * for cleanup in the esbfree routine when arp failure occurs 2492 */ 2493 uint_t ire_stq_ifindex; 2494 uint_t ire_defense_count; /* number of ARP conflicts */ 2495 uint_t ire_defense_time; /* last time defended (secs) */ 2496 boolean_t ire_trace_disable; /* True when alloc fails */ 2497 ip_stack_t *ire_ipst; /* Does not have a netstack_hold */ 2498 } ire_t; 2499 2500 /* IPv4 compatiblity macros */ 2501 #define ire_src_addr ire_u.ire4_u.ire4_src_addr 2502 #define ire_mask ire_u.ire4_u.ire4_mask 2503 #define ire_addr ire_u.ire4_u.ire4_addr 2504 #define ire_gateway_addr ire_u.ire4_u.ire4_gateway_addr 2505 #define ire_cmask ire_u.ire4_u.ire4_cmask 2506 2507 #define ire_src_addr_v6 ire_u.ire6_u.ire6_src_addr 2508 #define ire_mask_v6 ire_u.ire6_u.ire6_mask 2509 #define ire_addr_v6 ire_u.ire6_u.ire6_addr 2510 #define ire_gateway_addr_v6 ire_u.ire6_u.ire6_gateway_addr 2511 #define ire_cmask_v6 ire_u.ire6_u.ire6_cmask 2512 2513 /* Convenient typedefs for sockaddrs */ 2514 typedef struct sockaddr_in sin_t; 2515 typedef struct sockaddr_in6 sin6_t; 2516 2517 /* Address structure used for internal bind with IP */ 2518 typedef struct ipa_conn_s { 2519 ipaddr_t ac_laddr; 2520 ipaddr_t ac_faddr; 2521 uint16_t ac_fport; 2522 uint16_t ac_lport; 2523 } ipa_conn_t; 2524 2525 typedef struct ipa6_conn_s { 2526 in6_addr_t ac6_laddr; 2527 in6_addr_t ac6_faddr; 2528 uint16_t ac6_fport; 2529 uint16_t ac6_lport; 2530 } ipa6_conn_t; 2531 2532 /* 2533 * Using ipa_conn_x_t or ipa6_conn_x_t allows us to modify the behavior of IP's 2534 * bind handler. 2535 */ 2536 typedef struct ipa_conn_extended_s { 2537 uint64_t acx_flags; 2538 ipa_conn_t acx_conn; 2539 } ipa_conn_x_t; 2540 2541 typedef struct ipa6_conn_extended_s { 2542 uint64_t ac6x_flags; 2543 ipa6_conn_t ac6x_conn; 2544 } ipa6_conn_x_t; 2545 2546 /* flag values for ipa_conn_x_t and ipa6_conn_x_t. */ 2547 #define ACX_VERIFY_DST 0x1ULL /* verify destination address is reachable */ 2548 2549 /* Name/Value Descriptor. */ 2550 typedef struct nv_s { 2551 uint64_t nv_value; 2552 char *nv_name; 2553 } nv_t; 2554 2555 #define ILL_FRAG_HASH(s, i) \ 2556 ((ntohl(s) ^ ((i) ^ ((i) >> 8))) % ILL_FRAG_HASH_TBL_COUNT) 2557 2558 /* 2559 * The MAX number of allowed fragmented packets per hash bucket 2560 * calculation is based on the most common mtu size of 1500. This limit 2561 * will work well for other mtu sizes as well. 2562 */ 2563 #define COMMON_IP_MTU 1500 2564 #define MAX_FRAG_MIN 10 2565 #define MAX_FRAG_PKTS(ipst) \ 2566 MAX(MAX_FRAG_MIN, (2 * (ipst->ips_ip_reass_queue_bytes / \ 2567 (COMMON_IP_MTU * ILL_FRAG_HASH_TBL_COUNT)))) 2568 2569 /* 2570 * Maximum dups allowed per packet. 2571 */ 2572 extern uint_t ip_max_frag_dups; 2573 2574 /* 2575 * Per-packet information for received packets and transmitted. 2576 * Used by the transport protocols when converting between the packet 2577 * and ancillary data and socket options. 2578 * 2579 * Note: This private data structure and related IPPF_* constant 2580 * definitions are exposed to enable compilation of some debugging tools 2581 * like lsof which use struct tcp_t in <inet/tcp.h>. This is intended to be 2582 * a temporary hack and long term alternate interfaces should be defined 2583 * to support the needs of such tools and private definitions moved to 2584 * private headers. 2585 */ 2586 struct ip6_pkt_s { 2587 uint_t ipp_fields; /* Which fields are valid */ 2588 uint_t ipp_sticky_ignored; /* sticky fields to ignore */ 2589 uint_t ipp_ifindex; /* pktinfo ifindex */ 2590 in6_addr_t ipp_addr; /* pktinfo src/dst addr */ 2591 uint_t ipp_unicast_hops; /* IPV6_UNICAST_HOPS */ 2592 uint_t ipp_multicast_hops; /* IPV6_MULTICAST_HOPS */ 2593 uint_t ipp_hoplimit; /* IPV6_HOPLIMIT */ 2594 uint_t ipp_hopoptslen; 2595 uint_t ipp_rtdstoptslen; 2596 uint_t ipp_rthdrlen; 2597 uint_t ipp_dstoptslen; 2598 uint_t ipp_pathmtulen; 2599 uint_t ipp_fraghdrlen; 2600 ip6_hbh_t *ipp_hopopts; 2601 ip6_dest_t *ipp_rtdstopts; 2602 ip6_rthdr_t *ipp_rthdr; 2603 ip6_dest_t *ipp_dstopts; 2604 ip6_frag_t *ipp_fraghdr; 2605 struct ip6_mtuinfo *ipp_pathmtu; 2606 in6_addr_t ipp_nexthop; /* Transmit only */ 2607 uint8_t ipp_tclass; 2608 int8_t ipp_use_min_mtu; 2609 }; 2610 typedef struct ip6_pkt_s ip6_pkt_t; 2611 2612 extern void ip6_pkt_free(ip6_pkt_t *); /* free storage inside ip6_pkt_t */ 2613 2614 /* 2615 * This struct is used by ULP_opt_set() functions to return value of IPv4 2616 * ancillary options. Currently this is only used by udp and icmp and only 2617 * IP_PKTINFO option is supported. 2618 */ 2619 typedef struct ip4_pkt_s { 2620 uint_t ip4_ill_index; /* interface index */ 2621 ipaddr_t ip4_addr; /* source address */ 2622 } ip4_pkt_t; 2623 2624 /* 2625 * Used by ULP's to pass options info to ip_output 2626 * currently only IP_PKTINFO is supported. 2627 */ 2628 typedef struct ip_opt_info_s { 2629 uint_t ip_opt_ill_index; 2630 uint_t ip_opt_flags; 2631 } ip_opt_info_t; 2632 2633 /* 2634 * value for ip_opt_flags 2635 */ 2636 #define IP_VERIFY_SRC 0x1 2637 2638 /* 2639 * This structure is used to convey information from IP and the ULP. 2640 * Currently used for the IP_RECVSLLA, IP_RECVIF and IP_RECVPKTINFO options. 2641 * The type of information field is set to IN_PKTINFO (i.e inbound pkt info) 2642 */ 2643 typedef struct ip_pktinfo { 2644 uint32_t ip_pkt_ulp_type; /* type of info sent */ 2645 uint32_t ip_pkt_flags; /* what is sent up by IP */ 2646 uint32_t ip_pkt_ifindex; /* inbound interface index */ 2647 struct sockaddr_dl ip_pkt_slla; /* has source link layer addr */ 2648 struct in_addr ip_pkt_match_addr; /* matched address */ 2649 } ip_pktinfo_t; 2650 2651 /* 2652 * flags to tell UDP what IP is sending; in_pkt_flags 2653 */ 2654 #define IPF_RECVIF 0x01 /* inbound interface index */ 2655 #define IPF_RECVSLLA 0x02 /* source link layer address */ 2656 /* 2657 * Inbound interface index + matched address. 2658 * Used only by IPV4. 2659 */ 2660 #define IPF_RECVADDR 0x04 2661 2662 /* ipp_fields values */ 2663 #define IPPF_IFINDEX 0x0001 /* Part of in6_pktinfo: ifindex */ 2664 #define IPPF_ADDR 0x0002 /* Part of in6_pktinfo: src/dst addr */ 2665 #define IPPF_SCOPE_ID 0x0004 /* Add xmit ip6i_t for sin6_scope_id */ 2666 #define IPPF_NO_CKSUM 0x0008 /* Add xmit ip6i_t for IP6I_NO_*_CKSUM */ 2667 2668 #define IPPF_RAW_CKSUM 0x0010 /* Add xmit ip6i_t for IP6I_RAW_CHECKSUM */ 2669 #define IPPF_HOPLIMIT 0x0020 2670 #define IPPF_HOPOPTS 0x0040 2671 #define IPPF_RTHDR 0x0080 2672 2673 #define IPPF_RTDSTOPTS 0x0100 2674 #define IPPF_DSTOPTS 0x0200 2675 #define IPPF_NEXTHOP 0x0400 2676 #define IPPF_PATHMTU 0x0800 2677 2678 #define IPPF_TCLASS 0x1000 2679 #define IPPF_DONTFRAG 0x2000 2680 #define IPPF_USE_MIN_MTU 0x04000 2681 #define IPPF_MULTICAST_HOPS 0x08000 2682 2683 #define IPPF_UNICAST_HOPS 0x10000 2684 #define IPPF_FRAGHDR 0x20000 2685 2686 #define IPPF_HAS_IP6I \ 2687 (IPPF_IFINDEX|IPPF_ADDR|IPPF_NEXTHOP|IPPF_SCOPE_ID| \ 2688 IPPF_NO_CKSUM|IPPF_RAW_CKSUM|IPPF_HOPLIMIT|IPPF_DONTFRAG| \ 2689 IPPF_USE_MIN_MTU|IPPF_MULTICAST_HOPS|IPPF_UNICAST_HOPS) 2690 2691 #define TCP_PORTS_OFFSET 0 2692 #define UDP_PORTS_OFFSET 0 2693 2694 /* 2695 * lookups return the ill/ipif only if the flags are clear OR Iam writer. 2696 * ill / ipif lookup functions increment the refcnt on the ill / ipif only 2697 * after calling these macros. This ensures that the refcnt on the ipif or 2698 * ill will eventually drop down to zero. 2699 */ 2700 #define ILL_LOOKUP_FAILED 1 /* Used as error code */ 2701 #define IPIF_LOOKUP_FAILED 2 /* Used as error code */ 2702 2703 #define ILL_CAN_LOOKUP(ill) \ 2704 (!((ill)->ill_state_flags & (ILL_CONDEMNED | ILL_CHANGING)) || \ 2705 IAM_WRITER_ILL(ill)) 2706 2707 #define ILL_CAN_WAIT(ill, q) \ 2708 (((q) != NULL) && !((ill)->ill_state_flags & (ILL_CONDEMNED))) 2709 2710 #define ILL_CAN_LOOKUP_WALKER(ill) \ 2711 (!((ill)->ill_state_flags & ILL_CONDEMNED)) 2712 2713 #define IPIF_CAN_LOOKUP(ipif) \ 2714 (!((ipif)->ipif_state_flags & (IPIF_CONDEMNED | IPIF_CHANGING)) || \ 2715 IAM_WRITER_IPIF(ipif)) 2716 2717 /* 2718 * If the parameter 'q' is NULL, the caller is not interested in wait and 2719 * restart of the operation if the ILL or IPIF cannot be looked up when it is 2720 * marked as 'CHANGING'. Typically a thread that tries to send out data will 2721 * end up passing NULLs as the last 4 parameters to ill_lookup_on_ifindex and 2722 * in this case 'q' is NULL 2723 */ 2724 #define IPIF_CAN_WAIT(ipif, q) \ 2725 (((q) != NULL) && !((ipif)->ipif_state_flags & (IPIF_CONDEMNED))) 2726 2727 #define IPIF_CAN_LOOKUP_WALKER(ipif) \ 2728 (!((ipif)->ipif_state_flags & (IPIF_CONDEMNED)) || \ 2729 IAM_WRITER_IPIF(ipif)) 2730 2731 /* 2732 * These macros are used by critical set ioctls and failover ioctls to 2733 * mark the ipif appropriately before starting the operation and to clear the 2734 * marks after completing the operation. 2735 */ 2736 #define IPIF_UNMARK_MOVING(ipif) \ 2737 (ipif)->ipif_state_flags &= ~IPIF_MOVING & ~IPIF_CHANGING; 2738 2739 #define ILL_UNMARK_CHANGING(ill) \ 2740 (ill)->ill_state_flags &= ~ILL_CHANGING; 2741 2742 /* Macros used to assert that this thread is a writer */ 2743 #define IAM_WRITER_IPSQ(ipsq) ((ipsq)->ipsq_writer == curthread) 2744 #define IAM_WRITER_ILL(ill) \ 2745 ((ill)->ill_phyint->phyint_ipsq->ipsq_writer == curthread) 2746 #define IAM_WRITER_IPIF(ipif) \ 2747 ((ipif)->ipif_ill->ill_phyint->phyint_ipsq->ipsq_writer == curthread) 2748 2749 /* 2750 * Grab ill locks in the proper order. The order is highest addressed 2751 * ill is locked first. 2752 */ 2753 #define GRAB_ILL_LOCKS(ill_1, ill_2) \ 2754 { \ 2755 if ((ill_1) > (ill_2)) { \ 2756 if (ill_1 != NULL) \ 2757 mutex_enter(&(ill_1)->ill_lock); \ 2758 if (ill_2 != NULL) \ 2759 mutex_enter(&(ill_2)->ill_lock); \ 2760 } else { \ 2761 if (ill_2 != NULL) \ 2762 mutex_enter(&(ill_2)->ill_lock); \ 2763 if (ill_1 != NULL && ill_1 != ill_2) \ 2764 mutex_enter(&(ill_1)->ill_lock); \ 2765 } \ 2766 } 2767 2768 #define RELEASE_ILL_LOCKS(ill_1, ill_2) \ 2769 { \ 2770 if (ill_1 != NULL) \ 2771 mutex_exit(&(ill_1)->ill_lock); \ 2772 if (ill_2 != NULL && ill_2 != ill_1) \ 2773 mutex_exit(&(ill_2)->ill_lock); \ 2774 } 2775 2776 /* Get the other protocol instance ill */ 2777 #define ILL_OTHER(ill) \ 2778 ((ill)->ill_isv6 ? (ill)->ill_phyint->phyint_illv4 : \ 2779 (ill)->ill_phyint->phyint_illv6) 2780 2781 #define MATCH_V4_ONLY 0x1 2782 #define MATCH_V6_ONLY 0x2 2783 #define MATCH_ILL_ONLY 0x4 2784 2785 /* ioctl command info: Ioctl properties extracted and stored in here */ 2786 typedef struct cmd_info_s 2787 { 2788 char ci_groupname[LIFNAMSIZ + 1]; /* SIOCSLIFGROUPNAME */ 2789 ipif_t *ci_ipif; /* ipif associated with [l]ifreq ioctl's */ 2790 sin_t *ci_sin; /* the sin struct passed down */ 2791 sin6_t *ci_sin6; /* the sin6_t struct passed down */ 2792 struct lifreq *ci_lifr; /* the lifreq struct passed down */ 2793 } cmd_info_t; 2794 2795 /* 2796 * List of AH and ESP IPsec acceleration capable ills 2797 */ 2798 typedef struct ipsec_capab_ill_s { 2799 uint_t ill_index; 2800 boolean_t ill_isv6; 2801 struct ipsec_capab_ill_s *next; 2802 } ipsec_capab_ill_t; 2803 2804 extern struct kmem_cache *ire_cache; 2805 2806 extern ipaddr_t ip_g_all_ones; 2807 2808 extern uint_t ip_loopback_mtu; /* /etc/system */ 2809 2810 extern vmem_t *ip_minor_arena; 2811 2812 /* 2813 * ip_g_forward controls IP forwarding. It takes two values: 2814 * 0: IP_FORWARD_NEVER Don't forward packets ever. 2815 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 2816 * 2817 * RFC1122 says there must be a configuration switch to control forwarding, 2818 * but that the default MUST be to not forward packets ever. Implicit 2819 * control based on configuration of multiple interfaces MUST NOT be 2820 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 2821 * and, in fact, it was the default. That capability is now provided in the 2822 * /etc/rc2.d/S69inet script. 2823 */ 2824 2825 #define ips_ip_respond_to_address_mask_broadcast ips_param_arr[0].ip_param_value 2826 #define ips_ip_g_resp_to_echo_bcast ips_param_arr[1].ip_param_value 2827 #define ips_ip_g_resp_to_echo_mcast ips_param_arr[2].ip_param_value 2828 #define ips_ip_g_resp_to_timestamp ips_param_arr[3].ip_param_value 2829 #define ips_ip_g_resp_to_timestamp_bcast ips_param_arr[4].ip_param_value 2830 #define ips_ip_g_send_redirects ips_param_arr[5].ip_param_value 2831 #define ips_ip_g_forward_directed_bcast ips_param_arr[6].ip_param_value 2832 #define ips_ip_debug ips_param_arr[7].ip_param_value 2833 #define ips_ip_mrtdebug ips_param_arr[8].ip_param_value 2834 #define ips_ip_timer_interval ips_param_arr[9].ip_param_value 2835 #define ips_ip_ire_arp_interval ips_param_arr[10].ip_param_value 2836 #define ips_ip_ire_redir_interval ips_param_arr[11].ip_param_value 2837 #define ips_ip_def_ttl ips_param_arr[12].ip_param_value 2838 #define ips_ip_forward_src_routed ips_param_arr[13].ip_param_value 2839 #define ips_ip_wroff_extra ips_param_arr[14].ip_param_value 2840 #define ips_ip_ire_pathmtu_interval ips_param_arr[15].ip_param_value 2841 #define ips_ip_icmp_return ips_param_arr[16].ip_param_value 2842 #define ips_ip_path_mtu_discovery ips_param_arr[17].ip_param_value 2843 #define ips_ip_ignore_delete_time ips_param_arr[18].ip_param_value 2844 #define ips_ip_ignore_redirect ips_param_arr[19].ip_param_value 2845 #define ips_ip_output_queue ips_param_arr[20].ip_param_value 2846 #define ips_ip_broadcast_ttl ips_param_arr[21].ip_param_value 2847 #define ips_ip_icmp_err_interval ips_param_arr[22].ip_param_value 2848 #define ips_ip_icmp_err_burst ips_param_arr[23].ip_param_value 2849 #define ips_ip_reass_queue_bytes ips_param_arr[24].ip_param_value 2850 #define ips_ip_strict_dst_multihoming ips_param_arr[25].ip_param_value 2851 #define ips_ip_addrs_per_if ips_param_arr[26].ip_param_value 2852 #define ips_ipsec_override_persocket_policy ips_param_arr[27].ip_param_value 2853 #define ips_icmp_accept_clear_messages ips_param_arr[28].ip_param_value 2854 #define ips_igmp_accept_clear_messages ips_param_arr[29].ip_param_value 2855 2856 /* IPv6 configuration knobs */ 2857 #define ips_delay_first_probe_time ips_param_arr[30].ip_param_value 2858 #define ips_max_unicast_solicit ips_param_arr[31].ip_param_value 2859 #define ips_ipv6_def_hops ips_param_arr[32].ip_param_value 2860 #define ips_ipv6_icmp_return ips_param_arr[33].ip_param_value 2861 #define ips_ipv6_forward_src_routed ips_param_arr[34].ip_param_value 2862 #define ips_ipv6_resp_echo_mcast ips_param_arr[35].ip_param_value 2863 #define ips_ipv6_send_redirects ips_param_arr[36].ip_param_value 2864 #define ips_ipv6_ignore_redirect ips_param_arr[37].ip_param_value 2865 #define ips_ipv6_strict_dst_multihoming ips_param_arr[38].ip_param_value 2866 #define ips_ip_ire_reclaim_fraction ips_param_arr[39].ip_param_value 2867 #define ips_ipsec_policy_log_interval ips_param_arr[40].ip_param_value 2868 #define ips_pim_accept_clear_messages ips_param_arr[41].ip_param_value 2869 #define ips_ip_ndp_unsolicit_interval ips_param_arr[42].ip_param_value 2870 #define ips_ip_ndp_unsolicit_count ips_param_arr[43].ip_param_value 2871 #define ips_ipv6_ignore_home_address_opt ips_param_arr[44].ip_param_value 2872 #define ips_ip_policy_mask ips_param_arr[45].ip_param_value 2873 #define ips_ip_multirt_resolution_interval ips_param_arr[46].ip_param_value 2874 #define ips_ip_multirt_ttl ips_param_arr[47].ip_param_value 2875 #define ips_ip_multidata_outbound ips_param_arr[48].ip_param_value 2876 #define ips_ip_ndp_defense_interval ips_param_arr[49].ip_param_value 2877 #define ips_ip_max_temp_idle ips_param_arr[50].ip_param_value 2878 #define ips_ip_max_temp_defend ips_param_arr[51].ip_param_value 2879 #define ips_ip_max_defend ips_param_arr[52].ip_param_value 2880 #define ips_ip_defend_interval ips_param_arr[53].ip_param_value 2881 #define ips_ip_dup_recovery ips_param_arr[54].ip_param_value 2882 #define ips_ip_restrict_interzone_loopback ips_param_arr[55].ip_param_value 2883 #define ips_ip_lso_outbound ips_param_arr[56].ip_param_value 2884 #define ips_igmp_max_version ips_param_arr[57].ip_param_value 2885 #define ips_mld_max_version ips_param_arr[58].ip_param_value 2886 #define ips_ipv6_drop_inbound_icmpv6 ips_param_arr[59].ip_param_value 2887 2888 extern int dohwcksum; /* use h/w cksum if supported by the h/w */ 2889 #ifdef ZC_TEST 2890 extern int noswcksum; 2891 #endif 2892 2893 extern char ipif_loopback_name[]; 2894 2895 extern nv_t *ire_nv_tbl; 2896 2897 extern struct module_info ip_mod_info; 2898 2899 #define HOOKS4_INTERESTED_PHYSICAL_IN(ipst) \ 2900 ((ipst)->ips_ip4_physical_in_event.he_interested) 2901 #define HOOKS6_INTERESTED_PHYSICAL_IN(ipst) \ 2902 ((ipst)->ips_ip6_physical_in_event.he_interested) 2903 #define HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) \ 2904 ((ipst)->ips_ip4_physical_out_event.he_interested) 2905 #define HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) \ 2906 ((ipst)->ips_ip6_physical_out_event.he_interested) 2907 #define HOOKS4_INTERESTED_FORWARDING(ipst) \ 2908 ((ipst)->ips_ip4_forwarding_event.he_interested) 2909 #define HOOKS6_INTERESTED_FORWARDING(ipst) \ 2910 ((ipst)->ips_ip6_forwarding_event.he_interested) 2911 #define HOOKS4_INTERESTED_LOOPBACK_IN(ipst) \ 2912 ((ipst)->ips_ip4_loopback_in_event.he_interested) 2913 #define HOOKS6_INTERESTED_LOOPBACK_IN(ipst) \ 2914 ((ipst)->ips_ip6_loopback_in_event.he_interested) 2915 #define HOOKS4_INTERESTED_LOOPBACK_OUT(ipst) \ 2916 ((ipst)->ips_ip4_loopback_out_event.he_interested) 2917 #define HOOKS6_INTERESTED_LOOPBACK_OUT(ipst) \ 2918 ((ipst)->ips_ip6_loopback_out_event.he_interested) 2919 2920 /* 2921 * Hooks marcos used inside of ip 2922 */ 2923 #define IPHA_VHL ipha_version_and_hdr_length 2924 2925 #define FW_HOOKS(_hook, _event, _ilp, _olp, _iph, _fm, _m, ipst) \ 2926 \ 2927 if ((_hook).he_interested) { \ 2928 hook_pkt_event_t info; \ 2929 \ 2930 _NOTE(CONSTCOND) \ 2931 ASSERT((_ilp != NULL) || (_olp != NULL)); \ 2932 \ 2933 _NOTE(CONSTCOND) \ 2934 if ((_ilp != NULL) && \ 2935 (((ill_t *)(_ilp))->ill_phyint != NULL)) \ 2936 info.hpe_ifp = (phy_if_t)((ill_t *) \ 2937 (_ilp))->ill_phyint->phyint_hook_ifindex; \ 2938 else \ 2939 info.hpe_ifp = 0; \ 2940 \ 2941 _NOTE(CONSTCOND) \ 2942 if ((_olp != NULL) && \ 2943 (((ill_t *)(_olp))->ill_phyint != NULL)) \ 2944 info.hpe_ofp = (phy_if_t)((ill_t *) \ 2945 (_olp))->ill_phyint->phyint_hook_ifindex; \ 2946 else \ 2947 info.hpe_ofp = 0; \ 2948 info.hpe_hdr = _iph; \ 2949 info.hpe_mp = &(_fm); \ 2950 info.hpe_mb = _m; \ 2951 if (hook_run(_event, (hook_data_t)&info, \ 2952 ipst->ips_netstack) != 0) { \ 2953 ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\ 2954 (_hook).he_name, (void *)_fm, (void *)_m)); \ 2955 if (_fm != NULL) { \ 2956 freemsg(_fm); \ 2957 _fm = NULL; \ 2958 } \ 2959 _iph = NULL; \ 2960 _m = NULL; \ 2961 } else { \ 2962 _iph = info.hpe_hdr; \ 2963 _m = info.hpe_mb; \ 2964 } \ 2965 } 2966 2967 #define FW_HOOKS6(_hook, _event, _ilp, _olp, _iph, _fm, _m, ipst) \ 2968 \ 2969 if ((_hook).he_interested) { \ 2970 hook_pkt_event_t info; \ 2971 \ 2972 _NOTE(CONSTCOND) \ 2973 ASSERT((_ilp != NULL) || (_olp != NULL)); \ 2974 \ 2975 _NOTE(CONSTCOND) \ 2976 if ((_ilp != NULL) && \ 2977 (((ill_t *)(_ilp))->ill_phyint != NULL)) \ 2978 info.hpe_ifp = (phy_if_t)((ill_t *) \ 2979 (_ilp))->ill_phyint->phyint_hook_ifindex; \ 2980 else \ 2981 info.hpe_ifp = 0; \ 2982 \ 2983 _NOTE(CONSTCOND) \ 2984 if ((_olp != NULL) && \ 2985 (((ill_t *)(_olp))->ill_phyint != NULL)) \ 2986 info.hpe_ofp = (phy_if_t)((ill_t *) \ 2987 (_olp))->ill_phyint->phyint_hook_ifindex; \ 2988 else \ 2989 info.hpe_ofp = 0; \ 2990 info.hpe_hdr = _iph; \ 2991 info.hpe_mp = &(_fm); \ 2992 info.hpe_mb = _m; \ 2993 if (hook_run(_event, (hook_data_t)&info, \ 2994 ipst->ips_netstack) != 0) { \ 2995 ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\ 2996 (_hook).he_name, (void *)_fm, (void *)_m)); \ 2997 if (_fm != NULL) { \ 2998 freemsg(_fm); \ 2999 _fm = NULL; \ 3000 } \ 3001 _iph = NULL; \ 3002 _m = NULL; \ 3003 } else { \ 3004 _iph = info.hpe_hdr; \ 3005 _m = info.hpe_mb; \ 3006 } \ 3007 } 3008 3009 /* 3010 * Network byte order macros 3011 */ 3012 #ifdef _BIG_ENDIAN 3013 #define N_IN_CLASSD_NET IN_CLASSD_NET 3014 #define N_INADDR_UNSPEC_GROUP INADDR_UNSPEC_GROUP 3015 #else /* _BIG_ENDIAN */ 3016 #define N_IN_CLASSD_NET (ipaddr_t)0x000000f0U 3017 #define N_INADDR_UNSPEC_GROUP (ipaddr_t)0x000000e0U 3018 #endif /* _BIG_ENDIAN */ 3019 #define CLASSD(addr) (((addr) & N_IN_CLASSD_NET) == N_INADDR_UNSPEC_GROUP) 3020 3021 #define IP_LOOPBACK_ADDR(addr) \ 3022 ((ntohl(addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 3023 3024 #ifdef DEBUG 3025 /* IPsec HW acceleration debugging support */ 3026 3027 #define IPSECHW_CAPAB 0x0001 /* capability negotiation */ 3028 #define IPSECHW_SADB 0x0002 /* SADB exchange */ 3029 #define IPSECHW_PKT 0x0004 /* general packet flow */ 3030 #define IPSECHW_PKTIN 0x0008 /* driver in pkt processing details */ 3031 #define IPSECHW_PKTOUT 0x0010 /* driver out pkt processing details */ 3032 3033 #define IPSECHW_DEBUG(f, x) if (ipsechw_debug & (f)) { (void) printf x; } 3034 #define IPSECHW_CALL(f, r, x) if (ipsechw_debug & (f)) { (void) r x; } 3035 3036 extern uint32_t ipsechw_debug; 3037 #else 3038 #define IPSECHW_DEBUG(f, x) {} 3039 #define IPSECHW_CALL(f, r, x) {} 3040 #endif 3041 3042 extern int ip_debug; 3043 extern uint_t ip_thread_data; 3044 extern krwlock_t ip_thread_rwlock; 3045 extern list_t ip_thread_list; 3046 3047 #ifdef IP_DEBUG 3048 #include <sys/debug.h> 3049 #include <sys/promif.h> 3050 3051 #define ip0dbg(a) printf a 3052 #define ip1dbg(a) if (ip_debug > 2) printf a 3053 #define ip2dbg(a) if (ip_debug > 3) printf a 3054 #define ip3dbg(a) if (ip_debug > 4) printf a 3055 #else 3056 #define ip0dbg(a) /* */ 3057 #define ip1dbg(a) /* */ 3058 #define ip2dbg(a) /* */ 3059 #define ip3dbg(a) /* */ 3060 #endif /* IP_DEBUG */ 3061 3062 /* Default MAC-layer address string length for mac_colon_addr */ 3063 #define MAC_STR_LEN 128 3064 3065 struct ipsec_out_s; 3066 3067 struct mac_header_info_s; 3068 3069 extern boolean_t ip_assign_ifindex(uint_t *, ip_stack_t *); 3070 extern const char *dlpi_prim_str(int); 3071 extern const char *dlpi_err_str(int); 3072 extern void ill_frag_timer(void *); 3073 extern ill_t *ill_first(int, int, ill_walk_context_t *, ip_stack_t *); 3074 extern ill_t *ill_next(ill_walk_context_t *, ill_t *); 3075 extern void ill_frag_timer_start(ill_t *); 3076 extern void ill_nic_info_dispatch(ill_t *); 3077 extern void ill_nic_info_plumb(ill_t *, boolean_t); 3078 extern mblk_t *ip_carve_mp(mblk_t **, ssize_t); 3079 extern mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 3080 extern char *ip_dot_addr(ipaddr_t, char *); 3081 extern const char *mac_colon_addr(const uint8_t *, size_t, char *, size_t); 3082 extern void ip_lwput(queue_t *, mblk_t *); 3083 extern boolean_t icmp_err_rate_limit(ip_stack_t *); 3084 extern void icmp_time_exceeded(queue_t *, mblk_t *, uint8_t, zoneid_t, 3085 ip_stack_t *); 3086 extern void icmp_unreachable(queue_t *, mblk_t *, uint8_t, zoneid_t, 3087 ip_stack_t *); 3088 extern mblk_t *ip_add_info(mblk_t *, ill_t *, uint_t, zoneid_t, ip_stack_t *); 3089 extern mblk_t *ip_bind_v4(queue_t *, mblk_t *, conn_t *); 3090 extern int ip_bind_connected(conn_t *, mblk_t *, ipaddr_t *, uint16_t, 3091 ipaddr_t, uint16_t, boolean_t, boolean_t, boolean_t, 3092 boolean_t); 3093 extern boolean_t ip_bind_ipsec_policy_set(conn_t *, mblk_t *); 3094 extern int ip_bind_laddr(conn_t *, mblk_t *, ipaddr_t, uint16_t, 3095 boolean_t, boolean_t, boolean_t); 3096 extern uint_t ip_cksum(mblk_t *, int, uint32_t); 3097 extern int ip_close(queue_t *, int); 3098 extern uint16_t ip_csum_hdr(ipha_t *); 3099 extern void ip_proto_not_sup(queue_t *, mblk_t *, uint_t, zoneid_t, 3100 ip_stack_t *); 3101 extern void ip_ire_g_fini(void); 3102 extern void ip_ire_g_init(void); 3103 extern void ip_ire_fini(ip_stack_t *); 3104 extern void ip_ire_init(ip_stack_t *); 3105 extern int ip_open(queue_t *, dev_t *, int, int, cred_t *); 3106 extern int ip_reassemble(mblk_t *, ipf_t *, uint_t, boolean_t, ill_t *, 3107 size_t); 3108 extern int ip_opt_set_ill(conn_t *, int, boolean_t, boolean_t, 3109 int, int, mblk_t *); 3110 extern void ip_rput(queue_t *, mblk_t *); 3111 extern void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, 3112 struct mac_header_info_s *); 3113 extern void ip_rput_dlpi(queue_t *, mblk_t *); 3114 extern void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 3115 extern void ip_rput_forward_multicast(ipaddr_t, mblk_t *, ipif_t *); 3116 3117 extern int ip_snmpmod_close(queue_t *); 3118 extern void ip_snmpmod_wput(queue_t *, mblk_t *); 3119 extern void ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *, 3120 mib2_ipIfStatsEntry_t *); 3121 extern void ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *, 3122 mib2_ipv6IfIcmpEntry_t *); 3123 extern void ip_udp_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *); 3124 extern void ip_proto_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *, 3125 boolean_t); 3126 extern void ip_rput_other(ipsq_t *, queue_t *, mblk_t *, void *); 3127 extern ire_t *ip_check_multihome(void *, ire_t *, ill_t *); 3128 extern void ip_setqinfo(queue_t *, minor_t, boolean_t, ip_stack_t *); 3129 extern void ip_trash_ire_reclaim(void *); 3130 extern void ip_trash_timer_expire(void *); 3131 extern void ip_wput(queue_t *, mblk_t *); 3132 extern void ip_output(void *, mblk_t *, void *, int); 3133 extern void ip_output_options(void *, mblk_t *, void *, int, 3134 ip_opt_info_t *); 3135 3136 extern void ip_wput_ire(queue_t *, mblk_t *, ire_t *, conn_t *, int, 3137 zoneid_t); 3138 extern void ip_wput_local(queue_t *, ill_t *, ipha_t *, mblk_t *, ire_t *, 3139 int, zoneid_t); 3140 extern void ip_wput_multicast(queue_t *, mblk_t *, ipif_t *, zoneid_t); 3141 extern void ip_wput_nondata(ipsq_t *, queue_t *, mblk_t *, void *); 3142 extern void ip_wsrv(queue_t *); 3143 extern char *ip_nv_lookup(nv_t *, int); 3144 extern boolean_t ip_local_addr_ok_v6(const in6_addr_t *, const in6_addr_t *); 3145 extern boolean_t ip_remote_addr_ok_v6(const in6_addr_t *, const in6_addr_t *); 3146 extern ipaddr_t ip_massage_options(ipha_t *, netstack_t *); 3147 extern ipaddr_t ip_net_mask(ipaddr_t); 3148 extern void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 3149 ip_stack_t *); 3150 extern ipxmit_state_t ip_xmit_v4(mblk_t *, ire_t *, struct ipsec_out_s *, 3151 boolean_t); 3152 extern int ip_hdr_complete(ipha_t *, zoneid_t, ip_stack_t *); 3153 3154 extern struct qinit rinit_ipv6; 3155 extern struct qinit winit_ipv6; 3156 3157 extern void conn_drain_insert(conn_t *connp); 3158 extern int conn_ipsec_length(conn_t *connp); 3159 extern void ip_wput_ipsec_out(queue_t *, mblk_t *, ipha_t *, ill_t *, 3160 ire_t *); 3161 extern ipaddr_t ip_get_dst(ipha_t *); 3162 extern int ipsec_out_extra_length(mblk_t *); 3163 extern int ipsec_in_extra_length(mblk_t *); 3164 extern mblk_t *ipsec_in_alloc(boolean_t, netstack_t *); 3165 extern boolean_t ipsec_in_is_secure(mblk_t *); 3166 extern void ipsec_out_process(queue_t *, mblk_t *, ire_t *, uint_t); 3167 extern void ipsec_out_to_in(mblk_t *); 3168 extern void ip_fanout_proto_again(mblk_t *, ill_t *, ill_t *, ire_t *); 3169 3170 extern void ire_cleanup(ire_t *); 3171 extern void ire_inactive(ire_t *); 3172 extern boolean_t irb_inactive(irb_t *); 3173 extern ire_t *ire_unlink(irb_t *); 3174 3175 #ifdef DEBUG 3176 extern boolean_t th_trace_ref(const void *, ip_stack_t *); 3177 extern void th_trace_unref(const void *); 3178 extern void th_trace_cleanup(const void *, boolean_t); 3179 extern void ire_trace_ref(ire_t *); 3180 extern void ire_untrace_ref(ire_t *); 3181 #endif 3182 3183 extern int ip_srcid_insert(const in6_addr_t *, zoneid_t, ip_stack_t *); 3184 extern int ip_srcid_remove(const in6_addr_t *, zoneid_t, ip_stack_t *); 3185 extern void ip_srcid_find_id(uint_t, in6_addr_t *, zoneid_t, netstack_t *); 3186 extern uint_t ip_srcid_find_addr(const in6_addr_t *, zoneid_t, netstack_t *); 3187 extern int ip_srcid_report(queue_t *, mblk_t *, caddr_t, cred_t *); 3188 3189 extern uint8_t ipoptp_next(ipoptp_t *); 3190 extern uint8_t ipoptp_first(ipoptp_t *, ipha_t *); 3191 extern int ip_opt_get_user(const ipha_t *, uchar_t *); 3192 extern ill_t *ip_grab_attach_ill(ill_t *, mblk_t *, int, boolean_t, 3193 ip_stack_t *); 3194 extern ire_t *conn_set_outgoing_ill(conn_t *, ire_t *, ill_t **); 3195 extern int ipsec_req_from_conn(conn_t *, ipsec_req_t *, int); 3196 extern int ip_snmp_get(queue_t *q, mblk_t *mctl); 3197 extern int ip_snmp_set(queue_t *q, int, int, uchar_t *, int); 3198 extern void ip_process_ioctl(ipsq_t *, queue_t *, mblk_t *, void *); 3199 extern void ip_quiesce_conn(conn_t *); 3200 extern void ip_reprocess_ioctl(ipsq_t *, queue_t *, mblk_t *, void *); 3201 extern void ip_restart_optmgmt(ipsq_t *, queue_t *, mblk_t *, void *); 3202 extern void ip_ioctl_finish(queue_t *, mblk_t *, int, int, ipsq_t *); 3203 3204 extern boolean_t ip_cmpbuf(const void *, uint_t, boolean_t, const void *, 3205 uint_t); 3206 extern boolean_t ip_allocbuf(void **, uint_t *, boolean_t, const void *, 3207 uint_t); 3208 extern void ip_savebuf(void **, uint_t *, boolean_t, const void *, uint_t); 3209 3210 extern boolean_t ipsq_pending_mp_cleanup(ill_t *, conn_t *); 3211 extern void conn_ioctl_cleanup(conn_t *); 3212 extern ill_t *conn_get_held_ill(conn_t *, ill_t **, int *); 3213 extern ill_t *ip_newroute_get_dst_ill(ill_t *); 3214 3215 struct multidata_s; 3216 struct pdesc_s; 3217 3218 extern mblk_t *ip_mdinfo_alloc(ill_mdt_capab_t *); 3219 extern mblk_t *ip_mdinfo_return(ire_t *, conn_t *, char *, ill_mdt_capab_t *); 3220 extern mblk_t *ip_lsoinfo_alloc(ill_lso_capab_t *); 3221 extern mblk_t *ip_lsoinfo_return(ire_t *, conn_t *, char *, 3222 ill_lso_capab_t *); 3223 extern uint_t ip_md_cksum(struct pdesc_s *, int, uint_t); 3224 extern boolean_t ip_md_addr_attr(struct multidata_s *, struct pdesc_s *, 3225 const mblk_t *); 3226 extern boolean_t ip_md_hcksum_attr(struct multidata_s *, struct pdesc_s *, 3227 uint32_t, uint32_t, uint32_t, uint32_t); 3228 extern boolean_t ip_md_zcopy_attr(struct multidata_s *, struct pdesc_s *, 3229 uint_t); 3230 extern mblk_t *ip_unbind(queue_t *, mblk_t *); 3231 3232 extern phyint_t *phyint_lookup_group(char *, boolean_t, ip_stack_t *); 3233 extern phyint_t *phyint_lookup_group_ifindex(uint_t, ip_stack_t *); 3234 3235 extern void tnet_init(void); 3236 extern void tnet_fini(void); 3237 3238 /* Hooks for CGTP (multirt routes) filtering module */ 3239 #define CGTP_FILTER_REV_1 1 3240 #define CGTP_FILTER_REV_2 2 3241 #define CGTP_FILTER_REV_3 3 3242 #define CGTP_FILTER_REV CGTP_FILTER_REV_3 3243 3244 /* cfo_filter and cfo_filter_v6 hooks return values */ 3245 #define CGTP_IP_PKT_NOT_CGTP 0 3246 #define CGTP_IP_PKT_PREMIUM 1 3247 #define CGTP_IP_PKT_DUPLICATE 2 3248 3249 /* Version 3 of the filter interface */ 3250 typedef struct cgtp_filter_ops { 3251 int cfo_filter_rev; /* CGTP_FILTER_REV_3 */ 3252 int (*cfo_change_state)(netstackid_t, int); 3253 int (*cfo_add_dest_v4)(netstackid_t, ipaddr_t, ipaddr_t, 3254 ipaddr_t, ipaddr_t); 3255 int (*cfo_del_dest_v4)(netstackid_t, ipaddr_t, ipaddr_t); 3256 int (*cfo_add_dest_v6)(netstackid_t, in6_addr_t *, in6_addr_t *, 3257 in6_addr_t *, in6_addr_t *); 3258 int (*cfo_del_dest_v6)(netstackid_t, in6_addr_t *, in6_addr_t *); 3259 int (*cfo_filter)(netstackid_t, uint_t, mblk_t *); 3260 int (*cfo_filter_v6)(netstackid_t, uint_t, ip6_t *, 3261 ip6_frag_t *); 3262 } cgtp_filter_ops_t; 3263 3264 #define CGTP_MCAST_SUCCESS 1 3265 3266 /* 3267 * The separate CGTP module needs this global symbol so that it 3268 * can check the version and determine whether to use the old or the new 3269 * version of the filtering interface. 3270 */ 3271 extern int ip_cgtp_filter_rev; 3272 3273 extern int ip_cgtp_filter_supported(void); 3274 extern int ip_cgtp_filter_register(netstackid_t, cgtp_filter_ops_t *); 3275 extern int ip_cgtp_filter_unregister(netstackid_t); 3276 extern int ip_cgtp_filter_is_registered(netstackid_t); 3277 3278 /* Flags for ire_multirt_lookup() */ 3279 3280 #define MULTIRT_USESTAMP 0x0001 3281 #define MULTIRT_SETSTAMP 0x0002 3282 #define MULTIRT_CACHEGW 0x0004 3283 3284 /* Debug stuff for multirt route resolution. */ 3285 #if defined(DEBUG) && !defined(__lint) 3286 /* Our "don't send, rather drop" flag. */ 3287 #define MULTIRT_DEBUG_FLAG 0x8000 3288 3289 #define MULTIRT_TRACE(x) ip2dbg(x) 3290 3291 #define MULTIRT_DEBUG_TAG(mblk) \ 3292 do { \ 3293 ASSERT(mblk != NULL); \ 3294 MULTIRT_TRACE(("%s[%d]: tagging mblk %p, tag was %d\n", \ 3295 __FILE__, __LINE__, \ 3296 (void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \ 3297 (mblk)->b_flag |= MULTIRT_DEBUG_FLAG; \ 3298 } while (0) 3299 3300 #define MULTIRT_DEBUG_UNTAG(mblk) \ 3301 do { \ 3302 ASSERT(mblk != NULL); \ 3303 MULTIRT_TRACE(("%s[%d]: untagging mblk %p, tag was %d\n", \ 3304 __FILE__, __LINE__, \ 3305 (void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \ 3306 (mblk)->b_flag &= ~MULTIRT_DEBUG_FLAG; \ 3307 } while (0) 3308 3309 #define MULTIRT_DEBUG_TAGGED(mblk) \ 3310 (((mblk)->b_flag & MULTIRT_DEBUG_FLAG) ? B_TRUE : B_FALSE) 3311 #else 3312 #define MULTIRT_DEBUG_TAG(mblk) ASSERT(mblk != NULL) 3313 #define MULTIRT_DEBUG_UNTAG(mblk) ASSERT(mblk != NULL) 3314 #define MULTIRT_DEBUG_TAGGED(mblk) B_FALSE 3315 #endif 3316 3317 /* 3318 * Per-ILL Multidata Transmit capabilities. 3319 */ 3320 struct ill_mdt_capab_s { 3321 uint_t ill_mdt_version; /* interface version */ 3322 uint_t ill_mdt_on; /* on/off switch for MDT on this ILL */ 3323 uint_t ill_mdt_hdr_head; /* leading header fragment extra space */ 3324 uint_t ill_mdt_hdr_tail; /* trailing header fragment extra space */ 3325 uint_t ill_mdt_max_pld; /* maximum payload buffers per Multidata */ 3326 uint_t ill_mdt_span_limit; /* maximum payload span per packet */ 3327 }; 3328 3329 struct ill_hcksum_capab_s { 3330 uint_t ill_hcksum_version; /* interface version */ 3331 uint_t ill_hcksum_txflags; /* capabilities on transmit */ 3332 }; 3333 3334 struct ill_zerocopy_capab_s { 3335 uint_t ill_zerocopy_version; /* interface version */ 3336 uint_t ill_zerocopy_flags; /* capabilities */ 3337 }; 3338 3339 struct ill_lso_capab_s { 3340 uint_t ill_lso_version; /* interface version */ 3341 uint_t ill_lso_on; /* on/off switch for LSO on this ILL */ 3342 uint_t ill_lso_flags; /* capabilities */ 3343 uint_t ill_lso_max; /* maximum size of payload */ 3344 }; 3345 3346 /* Possible ill_states */ 3347 #define ILL_RING_INPROC 3 /* Being assigned to squeue */ 3348 #define ILL_RING_INUSE 2 /* Already Assigned to Rx Ring */ 3349 #define ILL_RING_BEING_FREED 1 /* Being Unassigned */ 3350 #define ILL_RING_FREE 0 /* Available to be assigned to Ring */ 3351 3352 #define ILL_MAX_RINGS 256 /* Max num of rx rings we can manage */ 3353 #define ILL_POLLING 0x01 /* Polling in use */ 3354 3355 /* 3356 * These functions pointer types are exported by the mac/dls layer. 3357 * we need to duplicate the definitions here because we cannot 3358 * include mac/dls header files here. 3359 */ 3360 typedef void (*ip_mac_blank_t)(void *, time_t, uint_t); 3361 typedef void (*ip_dld_tx_t)(void *, mblk_t *); 3362 3363 typedef void (*ip_dls_chg_soft_ring_t)(void *, int); 3364 typedef void (*ip_dls_bind_t)(void *, processorid_t); 3365 typedef void (*ip_dls_unbind_t)(void *); 3366 3367 struct ill_rx_ring { 3368 ip_mac_blank_t rr_blank; /* Driver interrupt blanking func */ 3369 void *rr_handle; /* Handle for Rx ring */ 3370 squeue_t *rr_sqp; /* Squeue the ring is bound to */ 3371 ill_t *rr_ill; /* back pointer to ill */ 3372 clock_t rr_poll_time; /* Last lbolt polling was used */ 3373 uint32_t rr_poll_state; /* polling state flags */ 3374 uint32_t rr_max_blank_time; /* Max interrupt blank */ 3375 uint32_t rr_min_blank_time; /* Min interrupt blank */ 3376 uint32_t rr_max_pkt_cnt; /* Max pkts before interrupt */ 3377 uint32_t rr_min_pkt_cnt; /* Mix pkts before interrupt */ 3378 uint32_t rr_normal_blank_time; /* Normal intr freq */ 3379 uint32_t rr_normal_pkt_cnt; /* Normal intr pkt cnt */ 3380 uint32_t rr_ring_state; /* State of this ring */ 3381 }; 3382 3383 struct ill_dls_capab_s { 3384 ip_dld_tx_t ill_tx; /* Driver Tx routine */ 3385 void *ill_tx_handle; /* Driver Tx handle */ 3386 ip_dls_chg_soft_ring_t ill_dls_change_status; 3387 /* change soft ring fanout */ 3388 ip_dls_bind_t ill_dls_bind; /* to add CPU affinity */ 3389 ip_dls_unbind_t ill_dls_unbind; /* remove CPU affinity */ 3390 ill_rx_ring_t *ill_ring_tbl; /* Ring to Sqp mapping table */ 3391 uint_t ill_dls_soft_ring_cnt; /* Number of soft ring */ 3392 conn_t *ill_unbind_conn; /* Conn used during unplumb */ 3393 }; 3394 3395 /* 3396 * This message is sent by an upper-layer protocol to tell IP that it knows all 3397 * about labels and will construct them itself. IP takes the slow path and 3398 * recomputes the label on every packet when this isn't true. 3399 */ 3400 #define IP_ULP_OUT_LABELED (('O' << 8) + 'L') 3401 typedef struct out_labeled_s { 3402 uint32_t out_labeled_type; /* OUT_LABELED */ 3403 queue_t *out_qnext; /* intermediate detection */ 3404 } out_labeled_t; 3405 3406 /* 3407 * IP squeues exports 3408 */ 3409 extern int ip_squeue_profile; 3410 extern int ip_squeue_bind; 3411 extern boolean_t ip_squeue_fanout; 3412 extern boolean_t ip_squeue_soft_ring; 3413 extern uint_t ip_threads_per_cpu; 3414 extern uint_t ip_squeues_per_cpu; 3415 extern uint_t ip_soft_rings_cnt; 3416 3417 typedef struct squeue_set_s { 3418 kmutex_t sqs_lock; 3419 struct squeue_s **sqs_list; 3420 int sqs_size; 3421 int sqs_max_size; 3422 processorid_t sqs_bind; 3423 } squeue_set_t; 3424 3425 #define IP_SQUEUE_GET(hint) \ 3426 ((!ip_squeue_fanout) ? (CPU->cpu_squeue_set->sqs_list[0]) : \ 3427 ip_squeue_random(hint)) 3428 3429 typedef void (*squeue_func_t)(squeue_t *, mblk_t *, sqproc_t, void *, uint8_t); 3430 3431 extern void ip_squeue_init(void (*)(squeue_t *)); 3432 extern squeue_t *ip_squeue_random(uint_t); 3433 extern squeue_t *ip_squeue_get(ill_rx_ring_t *); 3434 extern int ip_squeue_bind_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 3435 extern void ip_squeue_clean_all(ill_t *); 3436 extern void ip_soft_ring_assignment(ill_t *, ill_rx_ring_t *, 3437 mblk_t *, struct mac_header_info_s *); 3438 3439 extern void ip_resume_tcp_bind(void *, mblk_t *, void *); 3440 extern void tcp_wput(queue_t *, mblk_t *); 3441 3442 extern int ip_fill_mtuinfo(struct in6_addr *, in_port_t, 3443 struct ip6_mtuinfo *, netstack_t *); 3444 extern ipif_t *conn_get_held_ipif(conn_t *, ipif_t **, int *); 3445 3446 typedef void (*ipsq_func_t)(ipsq_t *, queue_t *, mblk_t *, void *); 3447 3448 /* 3449 * Squeue tags. Tags only need to be unique when the callback function is the 3450 * same to distinguish between different calls, but we use unique tags for 3451 * convenience anyway. 3452 */ 3453 #define SQTAG_IP_INPUT 1 3454 #define SQTAG_TCP_INPUT_ICMP_ERR 2 3455 #define SQTAG_TCP6_INPUT_ICMP_ERR 3 3456 #define SQTAG_IP_TCP_INPUT 4 3457 #define SQTAG_IP6_TCP_INPUT 5 3458 #define SQTAG_IP_TCP_CLOSE 6 3459 #define SQTAG_TCP_OUTPUT 7 3460 #define SQTAG_TCP_TIMER 8 3461 #define SQTAG_TCP_TIMEWAIT 9 3462 #define SQTAG_TCP_ACCEPT_FINISH 10 3463 #define SQTAG_TCP_ACCEPT_FINISH_Q0 11 3464 #define SQTAG_TCP_ACCEPT_PENDING 12 3465 #define SQTAG_TCP_LISTEN_DISCON 13 3466 #define SQTAG_TCP_CONN_REQ_1 14 3467 #define SQTAG_TCP_EAGER_BLOWOFF 15 3468 #define SQTAG_TCP_EAGER_CLEANUP 16 3469 #define SQTAG_TCP_EAGER_CLEANUP_Q0 17 3470 #define SQTAG_TCP_CONN_IND 18 3471 #define SQTAG_TCP_RSRV 19 3472 #define SQTAG_TCP_ABORT_BUCKET 20 3473 #define SQTAG_TCP_REINPUT 21 3474 #define SQTAG_TCP_REINPUT_EAGER 22 3475 #define SQTAG_TCP_INPUT_MCTL 23 3476 #define SQTAG_TCP_RPUTOTHER 24 3477 #define SQTAG_IP_PROTO_AGAIN 25 3478 #define SQTAG_IP_FANOUT_TCP 26 3479 #define SQTAG_IPSQ_CLEAN_RING 27 3480 #define SQTAG_TCP_WPUT_OTHER 28 3481 #define SQTAG_TCP_CONN_REQ_UNBOUND 29 3482 #define SQTAG_TCP_SEND_PENDING 30 3483 #define SQTAG_BIND_RETRY 31 3484 #define SQTAG_UDP_FANOUT 32 3485 #define SQTAG_UDP_INPUT 33 3486 #define SQTAG_UDP_WPUT 34 3487 #define SQTAG_UDP_OUTPUT 35 3488 #define SQTAG_TCP_KSSL_INPUT 36 3489 #define SQTAG_TCP_DROP_Q0 37 3490 #define SQTAG_TCP_CONN_REQ_2 38 3491 3492 #define NOT_OVER_IP(ip_wq) \ 3493 (ip_wq->q_next != NULL || \ 3494 (ip_wq->q_qinfo->qi_minfo->mi_idname) == NULL || \ 3495 strcmp(ip_wq->q_qinfo->qi_minfo->mi_idname, \ 3496 IP_MOD_NAME) != 0 || \ 3497 ip_wq->q_qinfo->qi_minfo->mi_idnum != IP_MOD_ID) 3498 3499 #endif /* _KERNEL */ 3500 3501 #ifdef __cplusplus 3502 } 3503 #endif 3504 3505 #endif /* _INET_IP_H */ 3506