1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/fm/fs/zfs.h> 30 #include <sys/spa.h> 31 #include <sys/txg.h> 32 #include <sys/spa_impl.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/zio_impl.h> 35 #include <sys/zio_compress.h> 36 #include <sys/zio_checksum.h> 37 38 /* 39 * ========================================================================== 40 * I/O priority table 41 * ========================================================================== 42 */ 43 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = { 44 0, /* ZIO_PRIORITY_NOW */ 45 0, /* ZIO_PRIORITY_SYNC_READ */ 46 0, /* ZIO_PRIORITY_SYNC_WRITE */ 47 6, /* ZIO_PRIORITY_ASYNC_READ */ 48 4, /* ZIO_PRIORITY_ASYNC_WRITE */ 49 4, /* ZIO_PRIORITY_FREE */ 50 0, /* ZIO_PRIORITY_CACHE_FILL */ 51 0, /* ZIO_PRIORITY_LOG_WRITE */ 52 10, /* ZIO_PRIORITY_RESILVER */ 53 20, /* ZIO_PRIORITY_SCRUB */ 54 }; 55 56 /* 57 * ========================================================================== 58 * I/O type descriptions 59 * ========================================================================== 60 */ 61 char *zio_type_name[ZIO_TYPES] = { 62 "null", "read", "write", "free", "claim", "ioctl" }; 63 64 /* At or above this size, force gang blocking - for testing */ 65 uint64_t zio_gang_bang = SPA_MAXBLOCKSIZE + 1; 66 67 /* Force an allocation failure when non-zero */ 68 uint16_t zio_zil_fail_shift = 0; 69 uint16_t zio_io_fail_shift = 0; 70 71 /* Enable/disable the write-retry logic */ 72 int zio_write_retry = 1; 73 74 /* Taskq to handle reissuing of I/Os */ 75 taskq_t *zio_taskq; 76 int zio_resume_threads = 4; 77 78 typedef struct zio_sync_pass { 79 int zp_defer_free; /* defer frees after this pass */ 80 int zp_dontcompress; /* don't compress after this pass */ 81 int zp_rewrite; /* rewrite new bps after this pass */ 82 } zio_sync_pass_t; 83 84 zio_sync_pass_t zio_sync_pass = { 85 1, /* zp_defer_free */ 86 4, /* zp_dontcompress */ 87 1, /* zp_rewrite */ 88 }; 89 90 static boolean_t zio_io_should_fail(uint16_t); 91 92 /* 93 * ========================================================================== 94 * I/O kmem caches 95 * ========================================================================== 96 */ 97 kmem_cache_t *zio_cache; 98 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 99 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 100 101 #ifdef _KERNEL 102 extern vmem_t *zio_alloc_arena; 103 #endif 104 105 /* 106 * Determine if we are allowed to issue the IO based on the 107 * pool state. If we must wait then block until we are told 108 * that we may continue. 109 */ 110 #define ZIO_ENTER(spa) { \ 111 if (spa->spa_state == POOL_STATE_IO_FAILURE) { \ 112 mutex_enter(&spa->spa_zio_lock); \ 113 while (spa->spa_state == POOL_STATE_IO_FAILURE) \ 114 cv_wait(&spa->spa_zio_cv, &spa->spa_zio_lock); \ 115 mutex_exit(&spa->spa_zio_lock); \ 116 } \ 117 } 118 119 /* 120 * An allocation zio is one that either currently has the DVA allocate 121 * stage set or will have it later in it's lifetime. 122 */ 123 #define IO_IS_ALLOCATING(zio) \ 124 ((zio)->io_orig_pipeline == ZIO_WRITE_PIPELINE || \ 125 (zio)->io_pipeline & (1U << ZIO_STAGE_DVA_ALLOCATE)) 126 127 /* 128 * The only way to tell is by looking for the gang pipeline stage 129 */ 130 #define IO_IS_REWRITE(zio) \ 131 ((zio)->io_pipeline & (1U << ZIO_STAGE_GANG_PIPELINE)) 132 133 void 134 zio_init(void) 135 { 136 size_t c; 137 vmem_t *data_alloc_arena = NULL; 138 139 #ifdef _KERNEL 140 data_alloc_arena = zio_alloc_arena; 141 #endif 142 143 zio_cache = kmem_cache_create("zio_cache", sizeof (zio_t), 0, 144 NULL, NULL, NULL, NULL, NULL, 0); 145 146 /* 147 * For small buffers, we want a cache for each multiple of 148 * SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache 149 * for each quarter-power of 2. For large buffers, we want 150 * a cache for each multiple of PAGESIZE. 151 */ 152 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 153 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 154 size_t p2 = size; 155 size_t align = 0; 156 157 while (p2 & (p2 - 1)) 158 p2 &= p2 - 1; 159 160 if (size <= 4 * SPA_MINBLOCKSIZE) { 161 align = SPA_MINBLOCKSIZE; 162 } else if (P2PHASE(size, PAGESIZE) == 0) { 163 align = PAGESIZE; 164 } else if (P2PHASE(size, p2 >> 2) == 0) { 165 align = p2 >> 2; 166 } 167 168 if (align != 0) { 169 char name[36]; 170 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 171 zio_buf_cache[c] = kmem_cache_create(name, size, 172 align, NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG); 173 174 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 175 zio_data_buf_cache[c] = kmem_cache_create(name, size, 176 align, NULL, NULL, NULL, NULL, data_alloc_arena, 177 KMC_NODEBUG); 178 179 dprintf("creating cache for size %5lx align %5lx\n", 180 size, align); 181 } 182 } 183 184 while (--c != 0) { 185 ASSERT(zio_buf_cache[c] != NULL); 186 if (zio_buf_cache[c - 1] == NULL) 187 zio_buf_cache[c - 1] = zio_buf_cache[c]; 188 189 ASSERT(zio_data_buf_cache[c] != NULL); 190 if (zio_data_buf_cache[c - 1] == NULL) 191 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 192 } 193 194 zio_taskq = taskq_create("zio_taskq", zio_resume_threads, 195 maxclsyspri, 50, INT_MAX, TASKQ_PREPOPULATE); 196 197 zio_inject_init(); 198 } 199 200 void 201 zio_fini(void) 202 { 203 size_t c; 204 kmem_cache_t *last_cache = NULL; 205 kmem_cache_t *last_data_cache = NULL; 206 207 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 208 if (zio_buf_cache[c] != last_cache) { 209 last_cache = zio_buf_cache[c]; 210 kmem_cache_destroy(zio_buf_cache[c]); 211 } 212 zio_buf_cache[c] = NULL; 213 214 if (zio_data_buf_cache[c] != last_data_cache) { 215 last_data_cache = zio_data_buf_cache[c]; 216 kmem_cache_destroy(zio_data_buf_cache[c]); 217 } 218 zio_data_buf_cache[c] = NULL; 219 } 220 221 taskq_destroy(zio_taskq); 222 223 kmem_cache_destroy(zio_cache); 224 225 zio_inject_fini(); 226 } 227 228 /* 229 * ========================================================================== 230 * Allocate and free I/O buffers 231 * ========================================================================== 232 */ 233 234 /* 235 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 236 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 237 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 238 * excess / transient data in-core during a crashdump. 239 */ 240 void * 241 zio_buf_alloc(size_t size) 242 { 243 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 244 245 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 246 247 return (kmem_cache_alloc(zio_buf_cache[c], KM_SLEEP)); 248 } 249 250 /* 251 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 252 * crashdump if the kernel panics. This exists so that we will limit the amount 253 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 254 * of kernel heap dumped to disk when the kernel panics) 255 */ 256 void * 257 zio_data_buf_alloc(size_t size) 258 { 259 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 260 261 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 262 263 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_SLEEP)); 264 } 265 266 void 267 zio_buf_free(void *buf, size_t size) 268 { 269 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 270 271 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 272 273 kmem_cache_free(zio_buf_cache[c], buf); 274 } 275 276 void 277 zio_data_buf_free(void *buf, size_t size) 278 { 279 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 280 281 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 282 283 kmem_cache_free(zio_data_buf_cache[c], buf); 284 } 285 286 /* 287 * ========================================================================== 288 * Push and pop I/O transform buffers 289 * ========================================================================== 290 */ 291 static void 292 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize) 293 { 294 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 295 296 zt->zt_data = data; 297 zt->zt_size = size; 298 zt->zt_bufsize = bufsize; 299 300 zt->zt_next = zio->io_transform_stack; 301 zio->io_transform_stack = zt; 302 303 zio->io_data = data; 304 zio->io_size = size; 305 } 306 307 static void 308 zio_pop_transform(zio_t *zio, void **data, uint64_t *size, uint64_t *bufsize) 309 { 310 zio_transform_t *zt = zio->io_transform_stack; 311 312 *data = zt->zt_data; 313 *size = zt->zt_size; 314 *bufsize = zt->zt_bufsize; 315 316 zio->io_transform_stack = zt->zt_next; 317 kmem_free(zt, sizeof (zio_transform_t)); 318 319 if ((zt = zio->io_transform_stack) != NULL) { 320 zio->io_data = zt->zt_data; 321 zio->io_size = zt->zt_size; 322 } 323 } 324 325 static void 326 zio_clear_transform_stack(zio_t *zio) 327 { 328 void *data; 329 uint64_t size, bufsize; 330 331 ASSERT(zio->io_transform_stack != NULL); 332 333 zio_pop_transform(zio, &data, &size, &bufsize); 334 while (zio->io_transform_stack != NULL) { 335 zio_buf_free(data, bufsize); 336 zio_pop_transform(zio, &data, &size, &bufsize); 337 } 338 } 339 340 /* 341 * ========================================================================== 342 * Create the various types of I/O (read, write, free) 343 * ========================================================================== 344 */ 345 static zio_t * 346 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 347 void *data, uint64_t size, zio_done_func_t *done, void *private, 348 zio_type_t type, int priority, int flags, uint8_t stage, uint32_t pipeline) 349 { 350 zio_t *zio; 351 352 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 353 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 354 355 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 356 bzero(zio, sizeof (zio_t)); 357 zio->io_parent = pio; 358 zio->io_spa = spa; 359 zio->io_txg = txg; 360 zio->io_flags = flags; 361 if (bp != NULL) { 362 zio->io_bp = bp; 363 zio->io_bp_copy = *bp; 364 zio->io_bp_orig = *bp; 365 if (dmu_ot[BP_GET_TYPE(bp)].ot_metadata || 366 BP_GET_LEVEL(bp) != 0) 367 zio->io_flags |= ZIO_FLAG_METADATA; 368 } 369 zio->io_done = done; 370 zio->io_private = private; 371 zio->io_type = type; 372 zio->io_priority = priority; 373 zio->io_stage = stage; 374 zio->io_pipeline = pipeline; 375 zio->io_async_stages = ZIO_ASYNC_PIPELINE_STAGES; 376 zio->io_timestamp = lbolt64; 377 if (pio != NULL) 378 zio->io_flags |= (pio->io_flags & ZIO_FLAG_METADATA); 379 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 380 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 381 zio_push_transform(zio, data, size, size); 382 383 /* 384 * Note on config lock: 385 * 386 * If CONFIG_HELD is set, then the caller already has the config 387 * lock, so we don't need it for this io. 388 * 389 * We set CONFIG_GRABBED to indicate that we have grabbed the 390 * config lock on behalf of this io, so it should be released 391 * in zio_done. 392 * 393 * Unless CONFIG_HELD is set, we will grab the config lock for 394 * any top-level (parent-less) io, *except* NULL top-level ios. 395 * The NULL top-level ios rarely have any children, so we delay 396 * grabbing the lock until the first child is added (but it is 397 * still grabbed on behalf of the top-level i/o, so additional 398 * children don't need to also grab it). This greatly reduces 399 * contention on the config lock. 400 */ 401 if (pio == NULL) { 402 if (type != ZIO_TYPE_NULL && 403 !(flags & ZIO_FLAG_CONFIG_HELD)) { 404 spa_config_enter(zio->io_spa, RW_READER, zio); 405 zio->io_flags |= ZIO_FLAG_CONFIG_GRABBED; 406 } 407 zio->io_root = zio; 408 } else { 409 zio->io_root = pio->io_root; 410 if (!(flags & ZIO_FLAG_NOBOOKMARK)) 411 zio->io_logical = pio->io_logical; 412 mutex_enter(&pio->io_lock); 413 if (pio->io_parent == NULL && 414 pio->io_type == ZIO_TYPE_NULL && 415 !(pio->io_flags & ZIO_FLAG_CONFIG_GRABBED) && 416 !(pio->io_flags & ZIO_FLAG_CONFIG_HELD)) { 417 pio->io_flags |= ZIO_FLAG_CONFIG_GRABBED; 418 spa_config_enter(zio->io_spa, RW_READER, pio); 419 } 420 if (stage < ZIO_STAGE_READY) 421 pio->io_children_notready++; 422 pio->io_children_notdone++; 423 zio->io_sibling_next = pio->io_child; 424 zio->io_sibling_prev = NULL; 425 if (pio->io_child != NULL) 426 pio->io_child->io_sibling_prev = zio; 427 pio->io_child = zio; 428 zio->io_ndvas = pio->io_ndvas; 429 mutex_exit(&pio->io_lock); 430 } 431 432 /* 433 * Save off the original state incase we need to retry later. 434 */ 435 zio->io_orig_stage = zio->io_stage; 436 zio->io_orig_pipeline = zio->io_pipeline; 437 zio->io_orig_flags = zio->io_flags; 438 439 return (zio); 440 } 441 442 static void 443 zio_reset(zio_t *zio) 444 { 445 zio_clear_transform_stack(zio); 446 447 zio->io_flags = zio->io_orig_flags; 448 zio->io_stage = zio->io_orig_stage; 449 zio->io_pipeline = zio->io_orig_pipeline; 450 zio_push_transform(zio, zio->io_data, zio->io_size, zio->io_size); 451 } 452 453 zio_t * 454 zio_null(zio_t *pio, spa_t *spa, zio_done_func_t *done, void *private, 455 int flags) 456 { 457 zio_t *zio; 458 459 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 460 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, ZIO_STAGE_OPEN, 461 ZIO_WAIT_FOR_CHILDREN_PIPELINE); 462 463 return (zio); 464 } 465 466 zio_t * 467 zio_root(spa_t *spa, zio_done_func_t *done, void *private, int flags) 468 { 469 return (zio_null(NULL, spa, done, private, flags)); 470 } 471 472 zio_t * 473 zio_read(zio_t *pio, spa_t *spa, blkptr_t *bp, void *data, 474 uint64_t size, zio_done_func_t *done, void *private, 475 int priority, int flags, zbookmark_t *zb) 476 { 477 zio_t *zio; 478 479 ASSERT3U(size, ==, BP_GET_LSIZE(bp)); 480 481 /* 482 * If the user has specified that we allow I/Os to continue 483 * then attempt to satisfy the read. 484 */ 485 if (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) 486 ZIO_ENTER(spa); 487 488 zio = zio_create(pio, spa, bp->blk_birth, bp, data, size, done, private, 489 ZIO_TYPE_READ, priority, flags | ZIO_FLAG_USER, 490 ZIO_STAGE_OPEN, ZIO_READ_PIPELINE); 491 zio->io_bookmark = *zb; 492 493 zio->io_logical = zio; 494 495 /* 496 * Work off our copy of the bp so the caller can free it. 497 */ 498 zio->io_bp = &zio->io_bp_copy; 499 500 return (zio); 501 } 502 503 zio_t * 504 zio_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies, 505 uint64_t txg, blkptr_t *bp, void *data, uint64_t size, 506 zio_done_func_t *ready, zio_done_func_t *done, void *private, int priority, 507 int flags, zbookmark_t *zb) 508 { 509 zio_t *zio; 510 511 ASSERT(checksum >= ZIO_CHECKSUM_OFF && 512 checksum < ZIO_CHECKSUM_FUNCTIONS); 513 514 ASSERT(compress >= ZIO_COMPRESS_OFF && 515 compress < ZIO_COMPRESS_FUNCTIONS); 516 517 ZIO_ENTER(spa); 518 519 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 520 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_USER, 521 ZIO_STAGE_OPEN, ZIO_WRITE_PIPELINE); 522 523 zio->io_ready = ready; 524 525 zio->io_bookmark = *zb; 526 527 zio->io_logical = zio; 528 529 zio->io_checksum = checksum; 530 zio->io_compress = compress; 531 zio->io_ndvas = ncopies; 532 533 if (compress != ZIO_COMPRESS_OFF) 534 zio->io_async_stages |= 1U << ZIO_STAGE_WRITE_COMPRESS; 535 536 if (bp->blk_birth != txg) { 537 /* XXX the bp usually (always?) gets re-zeroed later */ 538 BP_ZERO(bp); 539 BP_SET_LSIZE(bp, size); 540 BP_SET_PSIZE(bp, size); 541 } else { 542 /* Make sure someone doesn't change their mind on overwrites */ 543 ASSERT(MIN(zio->io_ndvas + BP_IS_GANG(bp), 544 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 545 } 546 547 return (zio); 548 } 549 550 zio_t * 551 zio_rewrite(zio_t *pio, spa_t *spa, int checksum, 552 uint64_t txg, blkptr_t *bp, void *data, uint64_t size, 553 zio_done_func_t *done, void *private, int priority, int flags, 554 zbookmark_t *zb) 555 { 556 zio_t *zio; 557 558 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 559 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_USER, 560 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 561 562 zio->io_bookmark = *zb; 563 zio->io_checksum = checksum; 564 zio->io_compress = ZIO_COMPRESS_OFF; 565 566 if (pio != NULL) 567 ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(bp)); 568 569 return (zio); 570 } 571 572 static void 573 zio_write_allocate_ready(zio_t *zio) 574 { 575 /* Free up the previous block */ 576 if (!BP_IS_HOLE(&zio->io_bp_orig)) { 577 zio_nowait(zio_free(zio, zio->io_spa, zio->io_txg, 578 &zio->io_bp_orig, NULL, NULL)); 579 } 580 } 581 582 static zio_t * 583 zio_write_allocate(zio_t *pio, spa_t *spa, int checksum, 584 uint64_t txg, blkptr_t *bp, void *data, uint64_t size, 585 zio_done_func_t *done, void *private, int priority, int flags) 586 { 587 zio_t *zio; 588 589 BP_ZERO(bp); 590 BP_SET_LSIZE(bp, size); 591 BP_SET_PSIZE(bp, size); 592 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 593 594 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 595 ZIO_TYPE_WRITE, priority, flags, 596 ZIO_STAGE_OPEN, ZIO_WRITE_ALLOCATE_PIPELINE); 597 598 zio->io_checksum = checksum; 599 zio->io_compress = ZIO_COMPRESS_OFF; 600 zio->io_ready = zio_write_allocate_ready; 601 602 return (zio); 603 } 604 605 zio_t * 606 zio_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 607 zio_done_func_t *done, void *private) 608 { 609 zio_t *zio; 610 611 ASSERT(!BP_IS_HOLE(bp)); 612 613 if (txg == spa->spa_syncing_txg && 614 spa->spa_sync_pass > zio_sync_pass.zp_defer_free) { 615 bplist_enqueue_deferred(&spa->spa_sync_bplist, bp); 616 return (zio_null(pio, spa, NULL, NULL, 0)); 617 } 618 619 zio = zio_create(pio, spa, txg, bp, NULL, 0, done, private, 620 ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, ZIO_FLAG_USER, 621 ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE); 622 623 zio->io_bp = &zio->io_bp_copy; 624 625 return (zio); 626 } 627 628 zio_t * 629 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 630 zio_done_func_t *done, void *private) 631 { 632 zio_t *zio; 633 634 /* 635 * A claim is an allocation of a specific block. Claims are needed 636 * to support immediate writes in the intent log. The issue is that 637 * immediate writes contain committed data, but in a txg that was 638 * *not* committed. Upon opening the pool after an unclean shutdown, 639 * the intent log claims all blocks that contain immediate write data 640 * so that the SPA knows they're in use. 641 * 642 * All claims *must* be resolved in the first txg -- before the SPA 643 * starts allocating blocks -- so that nothing is allocated twice. 644 */ 645 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); 646 ASSERT3U(spa_first_txg(spa), <=, txg); 647 648 zio = zio_create(pio, spa, txg, bp, NULL, 0, done, private, 649 ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 0, 650 ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 651 652 zio->io_bp = &zio->io_bp_copy; 653 654 return (zio); 655 } 656 657 zio_t * 658 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 659 zio_done_func_t *done, void *private, int priority, int flags) 660 { 661 zio_t *zio; 662 int c; 663 664 if (vd->vdev_children == 0) { 665 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 666 ZIO_TYPE_IOCTL, priority, flags, 667 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 668 669 zio->io_vd = vd; 670 zio->io_cmd = cmd; 671 } else { 672 zio = zio_null(pio, spa, NULL, NULL, flags); 673 674 for (c = 0; c < vd->vdev_children; c++) 675 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 676 done, private, priority, flags)); 677 } 678 679 return (zio); 680 } 681 682 static void 683 zio_phys_bp_init(vdev_t *vd, blkptr_t *bp, uint64_t offset, uint64_t size, 684 int checksum) 685 { 686 ASSERT(vd->vdev_children == 0); 687 688 ASSERT(size <= SPA_MAXBLOCKSIZE); 689 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 690 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 691 692 ASSERT(offset + size <= VDEV_LABEL_START_SIZE || 693 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 694 ASSERT3U(offset + size, <=, vd->vdev_psize); 695 696 BP_ZERO(bp); 697 698 BP_SET_LSIZE(bp, size); 699 BP_SET_PSIZE(bp, size); 700 701 BP_SET_CHECKSUM(bp, checksum); 702 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 703 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 704 705 if (checksum != ZIO_CHECKSUM_OFF) 706 ZIO_SET_CHECKSUM(&bp->blk_cksum, offset, 0, 0, 0); 707 } 708 709 zio_t * 710 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 711 void *data, int checksum, zio_done_func_t *done, void *private, 712 int priority, int flags) 713 { 714 zio_t *zio; 715 blkptr_t blk; 716 717 ZIO_ENTER(vd->vdev_spa); 718 719 zio_phys_bp_init(vd, &blk, offset, size, checksum); 720 721 zio = zio_create(pio, vd->vdev_spa, 0, &blk, data, size, done, private, 722 ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, 723 ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 724 725 zio->io_vd = vd; 726 zio->io_offset = offset; 727 728 /* 729 * Work off our copy of the bp so the caller can free it. 730 */ 731 zio->io_bp = &zio->io_bp_copy; 732 733 return (zio); 734 } 735 736 zio_t * 737 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 738 void *data, int checksum, zio_done_func_t *done, void *private, 739 int priority, int flags) 740 { 741 zio_block_tail_t *zbt; 742 void *wbuf; 743 zio_t *zio; 744 blkptr_t blk; 745 746 ZIO_ENTER(vd->vdev_spa); 747 748 zio_phys_bp_init(vd, &blk, offset, size, checksum); 749 750 zio = zio_create(pio, vd->vdev_spa, 0, &blk, data, size, done, private, 751 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, 752 ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 753 754 zio->io_vd = vd; 755 zio->io_offset = offset; 756 757 zio->io_bp = &zio->io_bp_copy; 758 zio->io_checksum = checksum; 759 760 if (zio_checksum_table[checksum].ci_zbt) { 761 /* 762 * zbt checksums are necessarily destructive -- they modify 763 * one word of the write buffer to hold the verifier/checksum. 764 * Therefore, we must make a local copy in case the data is 765 * being written to multiple places. 766 */ 767 wbuf = zio_buf_alloc(size); 768 bcopy(data, wbuf, size); 769 zio_push_transform(zio, wbuf, size, size); 770 771 zbt = (zio_block_tail_t *)((char *)wbuf + size) - 1; 772 zbt->zbt_cksum = blk.blk_cksum; 773 } 774 775 return (zio); 776 } 777 778 /* 779 * Create a child I/O to do some work for us. It has no associated bp. 780 */ 781 zio_t * 782 zio_vdev_child_io(zio_t *zio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 783 void *data, uint64_t size, int type, int priority, int flags, 784 zio_done_func_t *done, void *private) 785 { 786 uint32_t pipeline = ZIO_VDEV_CHILD_PIPELINE; 787 zio_t *cio; 788 789 if (type == ZIO_TYPE_READ && bp != NULL) { 790 /* 791 * If we have the bp, then the child should perform the 792 * checksum and the parent need not. This pushes error 793 * detection as close to the leaves as possible and 794 * eliminates redundant checksums in the interior nodes. 795 */ 796 pipeline |= 1U << ZIO_STAGE_CHECKSUM_VERIFY; 797 zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 798 } 799 800 cio = zio_create(zio, zio->io_spa, zio->io_txg, bp, data, size, 801 done, private, type, priority, 802 (zio->io_flags & ZIO_FLAG_VDEV_INHERIT) | ZIO_FLAG_CANFAIL | flags, 803 ZIO_STAGE_VDEV_IO_START - 1, pipeline); 804 805 cio->io_vd = vd; 806 cio->io_offset = offset; 807 808 return (cio); 809 } 810 811 /* 812 * ========================================================================== 813 * Initiate I/O, either sync or async 814 * ========================================================================== 815 */ 816 int 817 zio_wait(zio_t *zio) 818 { 819 int error; 820 821 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 822 823 zio->io_waiter = curthread; 824 825 zio_next_stage_async(zio); 826 827 mutex_enter(&zio->io_lock); 828 while (zio->io_stalled != ZIO_STAGE_DONE) 829 cv_wait(&zio->io_cv, &zio->io_lock); 830 mutex_exit(&zio->io_lock); 831 832 error = zio->io_error; 833 mutex_destroy(&zio->io_lock); 834 cv_destroy(&zio->io_cv); 835 kmem_cache_free(zio_cache, zio); 836 837 return (error); 838 } 839 840 void 841 zio_nowait(zio_t *zio) 842 { 843 zio_next_stage_async(zio); 844 } 845 846 /* 847 * ========================================================================== 848 * I/O pipeline interlocks: parent/child dependency scoreboarding 849 * ========================================================================== 850 */ 851 static void 852 zio_wait_for_children(zio_t *zio, uint32_t stage, uint64_t *countp) 853 { 854 mutex_enter(&zio->io_lock); 855 if (*countp == 0) { 856 ASSERT(zio->io_stalled == 0); 857 mutex_exit(&zio->io_lock); 858 zio_next_stage(zio); 859 } else { 860 zio->io_stalled = stage; 861 mutex_exit(&zio->io_lock); 862 } 863 } 864 865 static void 866 zio_notify_parent(zio_t *zio, uint32_t stage, uint64_t *countp) 867 { 868 zio_t *pio = zio->io_parent; 869 870 mutex_enter(&pio->io_lock); 871 if (pio->io_error == 0 && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 872 pio->io_error = zio->io_error; 873 ASSERT3U(*countp, >, 0); 874 if (--*countp == 0 && pio->io_stalled == stage) { 875 pio->io_stalled = 0; 876 mutex_exit(&pio->io_lock); 877 zio_next_stage_async(pio); 878 } else { 879 mutex_exit(&pio->io_lock); 880 } 881 } 882 883 static void 884 zio_wait_children_ready(zio_t *zio) 885 { 886 zio_wait_for_children(zio, ZIO_STAGE_WAIT_CHILDREN_READY, 887 &zio->io_children_notready); 888 } 889 890 void 891 zio_wait_children_done(zio_t *zio) 892 { 893 zio_wait_for_children(zio, ZIO_STAGE_WAIT_CHILDREN_DONE, 894 &zio->io_children_notdone); 895 } 896 897 static void 898 zio_read_init(zio_t *zio) 899 { 900 if (BP_GET_COMPRESS(zio->io_bp) != ZIO_COMPRESS_OFF) { 901 uint64_t csize = BP_GET_PSIZE(zio->io_bp); 902 void *cbuf = zio_buf_alloc(csize); 903 904 zio_push_transform(zio, cbuf, csize, csize); 905 zio->io_pipeline |= 1U << ZIO_STAGE_READ_DECOMPRESS; 906 } 907 908 if (BP_IS_GANG(zio->io_bp)) { 909 uint64_t gsize = SPA_GANGBLOCKSIZE; 910 void *gbuf = zio_buf_alloc(gsize); 911 912 zio_push_transform(zio, gbuf, gsize, gsize); 913 zio->io_pipeline |= 1U << ZIO_STAGE_READ_GANG_MEMBERS; 914 } 915 zio_next_stage(zio); 916 } 917 918 static void 919 zio_ready(zio_t *zio) 920 { 921 zio_t *pio = zio->io_parent; 922 923 if (zio->io_ready) 924 zio->io_ready(zio); 925 926 if (pio != NULL) 927 zio_notify_parent(zio, ZIO_STAGE_WAIT_CHILDREN_READY, 928 &pio->io_children_notready); 929 930 if (zio->io_bp) 931 zio->io_bp_copy = *zio->io_bp; 932 933 zio_next_stage(zio); 934 } 935 936 static void 937 zio_vdev_retry_io(zio_t *zio) 938 { 939 zio_t *pio = zio->io_parent; 940 941 /* 942 * Preserve the failed bp so that the io_ready() callback can 943 * update the accounting accordingly. The callback will also be 944 * responsible for freeing the previously allocated block, if one 945 * exists. 946 */ 947 zio->io_bp_orig = *zio->io_bp; 948 949 /* 950 * We must zero out the old DVA and blk_birth before reallocating 951 * the bp. We don't want to do this if this is a rewrite however. 952 */ 953 if (!IO_IS_REWRITE(zio)) { 954 BP_ZERO_DVAS(zio->io_bp); 955 } 956 957 zio_reset(zio); 958 959 if (pio) { 960 /* 961 * Let the parent know that we will 962 * re-alloc the write (=> new bp info). 963 */ 964 mutex_enter(&pio->io_lock); 965 pio->io_children_notready++; 966 967 /* 968 * If the parent I/O is still in the open stage, then 969 * don't bother telling it to retry since it hasn't 970 * progressed far enough for it to care. 971 */ 972 if (pio->io_stage > ZIO_STAGE_OPEN && IO_IS_ALLOCATING(pio)) 973 pio->io_flags |= ZIO_FLAG_WRITE_RETRY; 974 975 ASSERT(pio->io_stage <= ZIO_STAGE_WAIT_CHILDREN_DONE); 976 mutex_exit(&pio->io_lock); 977 } 978 979 /* 980 * We are getting ready to process the retry request so clear 981 * the flag and the zio's current error status. 982 */ 983 zio->io_flags &= ~ZIO_FLAG_WRITE_RETRY; 984 zio->io_error = 0; 985 zio_next_stage_async(zio); 986 } 987 988 int 989 zio_vdev_resume_io(spa_t *spa) 990 { 991 zio_t *zio; 992 993 mutex_enter(&spa->spa_zio_lock); 994 995 /* 996 * Probe all of vdevs that have experienced an I/O error. 997 * If we are still unable to verify the integrity of the vdev 998 * then we prevent the resume from proceeeding. 999 */ 1000 for (zio = list_head(&spa->spa_zio_list); zio != NULL; 1001 zio = list_next(&spa->spa_zio_list, zio)) { 1002 int error = 0; 1003 1004 /* We only care about I/Os that must succeed */ 1005 if (zio->io_vd == NULL || zio->io_flags & ZIO_FLAG_CANFAIL) 1006 continue; 1007 error = vdev_probe(zio->io_vd); 1008 if (error) { 1009 mutex_exit(&spa->spa_zio_lock); 1010 return (error); 1011 } 1012 } 1013 1014 /* 1015 * Clear the vdev stats so that I/O can flow. 1016 */ 1017 vdev_clear(spa, NULL, B_FALSE); 1018 1019 spa->spa_state = POOL_STATE_ACTIVE; 1020 while ((zio = list_head(&spa->spa_zio_list)) != NULL) { 1021 list_remove(&spa->spa_zio_list, zio); 1022 zio->io_error = 0; 1023 1024 /* 1025 * If we are resuming an allocating I/O then we force it 1026 * to retry and let it resume operation where it left off. 1027 * Otherwise, go back to the ready stage and pick up from 1028 * there. 1029 */ 1030 if (zio_write_retry && IO_IS_ALLOCATING(zio)) { 1031 zio->io_flags |= ZIO_FLAG_WRITE_RETRY; 1032 zio->io_stage--; 1033 } else { 1034 zio->io_stage = ZIO_STAGE_READY; 1035 } 1036 1037 (void) taskq_dispatch(zio_taskq, zio_resubmit_stage_async, 1038 zio, TQ_SLEEP); 1039 } 1040 mutex_exit(&spa->spa_zio_lock); 1041 1042 /* 1043 * Wait for the taskqs to finish and recheck the pool state since 1044 * it's possible that a resumed I/O has failed again. 1045 */ 1046 taskq_wait(zio_taskq); 1047 if (spa_state(spa) == POOL_STATE_IO_FAILURE) 1048 return (EIO); 1049 1050 mutex_enter(&spa->spa_zio_lock); 1051 cv_broadcast(&spa->spa_zio_cv); 1052 mutex_exit(&spa->spa_zio_lock); 1053 1054 return (0); 1055 } 1056 1057 static void 1058 zio_vdev_suspend_io(zio_t *zio) 1059 { 1060 spa_t *spa = zio->io_spa; 1061 1062 /* 1063 * We've experienced an unrecoverable failure so 1064 * set the pool state accordingly and queue all 1065 * failed IOs. 1066 */ 1067 spa->spa_state = POOL_STATE_IO_FAILURE; 1068 1069 mutex_enter(&spa->spa_zio_lock); 1070 list_insert_tail(&spa->spa_zio_list, zio); 1071 1072 #ifndef _KERNEL 1073 /* Used to notify ztest that the pool has suspended */ 1074 cv_broadcast(&spa->spa_zio_cv); 1075 #endif 1076 mutex_exit(&spa->spa_zio_lock); 1077 } 1078 1079 static void 1080 zio_assess(zio_t *zio) 1081 { 1082 spa_t *spa = zio->io_spa; 1083 blkptr_t *bp = zio->io_bp; 1084 vdev_t *vd = zio->io_vd; 1085 1086 ASSERT(zio->io_children_notready == 0); 1087 ASSERT(zio->io_children_notdone == 0); 1088 1089 if (bp != NULL) { 1090 ASSERT(bp->blk_pad[0] == 0); 1091 ASSERT(bp->blk_pad[1] == 0); 1092 ASSERT(bp->blk_pad[2] == 0); 1093 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0); 1094 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 1095 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 1096 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 1097 if (zio->io_ndvas != 0) 1098 ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(bp)); 1099 ASSERT(BP_COUNT_GANG(bp) == 0 || 1100 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 1101 } 1102 } 1103 1104 /* 1105 * Some child I/O has indicated that a retry is necessary, so 1106 * we set an error on the I/O and let the logic below do the 1107 * rest. 1108 */ 1109 if (zio->io_flags & ZIO_FLAG_WRITE_RETRY) 1110 zio->io_error = ERESTART; 1111 1112 if (vd != NULL) 1113 vdev_stat_update(zio); 1114 1115 if (zio->io_error) { 1116 /* 1117 * If this I/O is attached to a particular vdev, 1118 * generate an error message describing the I/O failure 1119 * at the block level. We ignore these errors if the 1120 * device is currently unavailable. 1121 */ 1122 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 1123 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0); 1124 1125 if ((zio->io_error == EIO || 1126 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) && 1127 zio->io_logical == zio) { 1128 /* 1129 * For root I/O requests, tell the SPA to log the error 1130 * appropriately. Also, generate a logical data 1131 * ereport. 1132 */ 1133 spa_log_error(spa, zio); 1134 1135 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio, 1136 0, 0); 1137 } 1138 1139 /* 1140 * If we are an allocating I/O or have been told to retry 1141 * then attempt to reissue the I/O on another vdev unless 1142 * the pool is out of space. We handle this condition 1143 * based on the spa's failmode property. 1144 */ 1145 if (zio_write_retry && zio->io_error != ENOSPC && 1146 (IO_IS_ALLOCATING(zio) || 1147 zio->io_flags & ZIO_FLAG_WRITE_RETRY)) { 1148 zio_vdev_retry_io(zio); 1149 return; 1150 } 1151 ASSERT(!(zio->io_flags & ZIO_FLAG_WRITE_RETRY)); 1152 1153 /* 1154 * For I/O requests that cannot fail, we carry out 1155 * the requested behavior based on the failmode pool 1156 * property. 1157 * 1158 * XXX - Need to differentiate between an ENOSPC as 1159 * a result of vdev failures vs. a full pool. 1160 */ 1161 if (!(zio->io_flags & ZIO_FLAG_CANFAIL)) { 1162 char *blkbuf; 1163 1164 #ifdef ZFS_DEBUG 1165 blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_NOSLEEP); 1166 if (blkbuf) { 1167 sprintf_blkptr(blkbuf, BP_SPRINTF_LEN, 1168 bp ? bp : &zio->io_bp_copy); 1169 } 1170 cmn_err(CE_WARN, "ZFS: %s (%s on %s off %llx: zio %p " 1171 "%s): error %d", zio->io_error == ECKSUM ? 1172 "bad checksum" : "I/O failure", 1173 zio_type_name[zio->io_type], 1174 vdev_description(vd), 1175 (u_longlong_t)zio->io_offset, 1176 (void *)zio, blkbuf ? blkbuf : "", zio->io_error); 1177 #endif 1178 1179 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) { 1180 fm_panic("Pool '%s' has encountered an " 1181 "uncorrectable I/O failure and the " 1182 "failure mode property for this pool " 1183 "is set to panic.", spa_name(spa)); 1184 } else { 1185 cmn_err(CE_WARN, "Pool '%s' has encountered " 1186 "an uncorrectable I/O error. Manual " 1187 "intervention is required.", 1188 spa_name(spa)); 1189 zio_vdev_suspend_io(zio); 1190 } 1191 return; 1192 } 1193 } 1194 ASSERT(!(zio->io_flags & ZIO_FLAG_WRITE_RETRY)); 1195 ASSERT(zio->io_children_notready == 0); 1196 zio_next_stage(zio); 1197 } 1198 1199 static void 1200 zio_done(zio_t *zio) 1201 { 1202 zio_t *pio = zio->io_parent; 1203 spa_t *spa = zio->io_spa; 1204 1205 ASSERT(zio->io_children_notready == 0); 1206 ASSERT(zio->io_children_notdone == 0); 1207 1208 zio_clear_transform_stack(zio); 1209 1210 if (zio->io_done) 1211 zio->io_done(zio); 1212 1213 ASSERT(zio->io_delegate_list == NULL); 1214 ASSERT(zio->io_delegate_next == NULL); 1215 1216 if (pio != NULL) { 1217 zio_t *next, *prev; 1218 1219 mutex_enter(&pio->io_lock); 1220 next = zio->io_sibling_next; 1221 prev = zio->io_sibling_prev; 1222 if (next != NULL) 1223 next->io_sibling_prev = prev; 1224 if (prev != NULL) 1225 prev->io_sibling_next = next; 1226 if (pio->io_child == zio) 1227 pio->io_child = next; 1228 mutex_exit(&pio->io_lock); 1229 1230 zio_notify_parent(zio, ZIO_STAGE_WAIT_CHILDREN_DONE, 1231 &pio->io_children_notdone); 1232 } 1233 1234 /* 1235 * Note: this I/O is now done, and will shortly be freed, so there is no 1236 * need to clear this (or any other) flag. 1237 */ 1238 if (zio->io_flags & ZIO_FLAG_CONFIG_GRABBED) 1239 spa_config_exit(spa, zio); 1240 1241 if (zio->io_waiter != NULL) { 1242 mutex_enter(&zio->io_lock); 1243 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 1244 zio->io_stalled = zio->io_stage; 1245 cv_broadcast(&zio->io_cv); 1246 mutex_exit(&zio->io_lock); 1247 } else { 1248 mutex_destroy(&zio->io_lock); 1249 cv_destroy(&zio->io_cv); 1250 kmem_cache_free(zio_cache, zio); 1251 } 1252 } 1253 1254 /* 1255 * ========================================================================== 1256 * Compression support 1257 * ========================================================================== 1258 */ 1259 static void 1260 zio_write_compress(zio_t *zio) 1261 { 1262 int compress = zio->io_compress; 1263 blkptr_t *bp = zio->io_bp; 1264 void *cbuf; 1265 uint64_t lsize = zio->io_size; 1266 uint64_t csize = lsize; 1267 uint64_t cbufsize = 0; 1268 int pass; 1269 1270 if (bp->blk_birth == zio->io_txg) { 1271 /* 1272 * We're rewriting an existing block, which means we're 1273 * working on behalf of spa_sync(). For spa_sync() to 1274 * converge, it must eventually be the case that we don't 1275 * have to allocate new blocks. But compression changes 1276 * the blocksize, which forces a reallocate, and makes 1277 * convergence take longer. Therefore, after the first 1278 * few passes, stop compressing to ensure convergence. 1279 */ 1280 pass = spa_sync_pass(zio->io_spa); 1281 if (pass > zio_sync_pass.zp_dontcompress) 1282 compress = ZIO_COMPRESS_OFF; 1283 } else { 1284 ASSERT(BP_IS_HOLE(bp)); 1285 pass = 1; 1286 } 1287 1288 if (compress != ZIO_COMPRESS_OFF) 1289 if (!zio_compress_data(compress, zio->io_data, zio->io_size, 1290 &cbuf, &csize, &cbufsize)) 1291 compress = ZIO_COMPRESS_OFF; 1292 1293 if (compress != ZIO_COMPRESS_OFF && csize != 0) 1294 zio_push_transform(zio, cbuf, csize, cbufsize); 1295 1296 /* 1297 * The final pass of spa_sync() must be all rewrites, but the first 1298 * few passes offer a trade-off: allocating blocks defers convergence, 1299 * but newly allocated blocks are sequential, so they can be written 1300 * to disk faster. Therefore, we allow the first few passes of 1301 * spa_sync() to reallocate new blocks, but force rewrites after that. 1302 * There should only be a handful of blocks after pass 1 in any case. 1303 */ 1304 if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == csize && 1305 pass > zio_sync_pass.zp_rewrite) { 1306 ASSERT(csize != 0); 1307 BP_SET_LSIZE(bp, lsize); 1308 BP_SET_COMPRESS(bp, compress); 1309 zio->io_pipeline = ZIO_REWRITE_PIPELINE; 1310 } else { 1311 if (bp->blk_birth == zio->io_txg) 1312 BP_ZERO(bp); 1313 if (csize == 0) { 1314 BP_ZERO(bp); 1315 zio->io_pipeline = ZIO_WAIT_FOR_CHILDREN_PIPELINE; 1316 } else { 1317 ASSERT3U(BP_GET_NDVAS(bp), ==, 0); 1318 BP_SET_LSIZE(bp, lsize); 1319 BP_SET_PSIZE(bp, csize); 1320 BP_SET_COMPRESS(bp, compress); 1321 zio->io_pipeline = ZIO_WRITE_ALLOCATE_PIPELINE; 1322 } 1323 } 1324 1325 zio_next_stage(zio); 1326 } 1327 1328 static void 1329 zio_read_decompress(zio_t *zio) 1330 { 1331 blkptr_t *bp = zio->io_bp; 1332 void *data; 1333 uint64_t size; 1334 uint64_t bufsize; 1335 int compress = BP_GET_COMPRESS(bp); 1336 1337 ASSERT(compress != ZIO_COMPRESS_OFF); 1338 1339 zio_pop_transform(zio, &data, &size, &bufsize); 1340 1341 if (zio_decompress_data(compress, data, size, 1342 zio->io_data, zio->io_size)) 1343 zio->io_error = EIO; 1344 1345 zio_buf_free(data, bufsize); 1346 1347 zio_next_stage(zio); 1348 } 1349 1350 /* 1351 * ========================================================================== 1352 * Gang block support 1353 * ========================================================================== 1354 */ 1355 static void 1356 zio_gang_pipeline(zio_t *zio) 1357 { 1358 /* 1359 * By default, the pipeline assumes that we're dealing with a gang 1360 * block. If we're not, strip out any gang-specific stages. 1361 */ 1362 if (!BP_IS_GANG(zio->io_bp)) 1363 zio->io_pipeline &= ~ZIO_GANG_STAGES; 1364 1365 zio_next_stage(zio); 1366 } 1367 1368 static void 1369 zio_gang_byteswap(zio_t *zio) 1370 { 1371 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 1372 1373 if (BP_SHOULD_BYTESWAP(zio->io_bp)) 1374 byteswap_uint64_array(zio->io_data, zio->io_size); 1375 } 1376 1377 static void 1378 zio_get_gang_header(zio_t *zio) 1379 { 1380 blkptr_t *bp = zio->io_bp; 1381 uint64_t gsize = SPA_GANGBLOCKSIZE; 1382 void *gbuf = zio_buf_alloc(gsize); 1383 1384 ASSERT(BP_IS_GANG(bp)); 1385 1386 zio_push_transform(zio, gbuf, gsize, gsize); 1387 1388 zio_nowait(zio_create(zio, zio->io_spa, bp->blk_birth, bp, gbuf, gsize, 1389 NULL, NULL, ZIO_TYPE_READ, zio->io_priority, 1390 zio->io_flags & ZIO_FLAG_GANG_INHERIT, 1391 ZIO_STAGE_OPEN, ZIO_READ_GANG_PIPELINE)); 1392 1393 zio_wait_children_done(zio); 1394 } 1395 1396 static void 1397 zio_read_gang_members(zio_t *zio) 1398 { 1399 zio_gbh_phys_t *gbh; 1400 uint64_t gsize, gbufsize, loff, lsize; 1401 int i; 1402 1403 ASSERT(BP_IS_GANG(zio->io_bp)); 1404 1405 zio_gang_byteswap(zio); 1406 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1407 1408 for (loff = 0, i = 0; loff != zio->io_size; loff += lsize, i++) { 1409 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1410 lsize = BP_GET_PSIZE(gbp); 1411 1412 ASSERT(BP_GET_COMPRESS(gbp) == ZIO_COMPRESS_OFF); 1413 ASSERT3U(lsize, ==, BP_GET_LSIZE(gbp)); 1414 ASSERT3U(loff + lsize, <=, zio->io_size); 1415 ASSERT(i < SPA_GBH_NBLKPTRS); 1416 ASSERT(!BP_IS_HOLE(gbp)); 1417 1418 zio_nowait(zio_read(zio, zio->io_spa, gbp, 1419 (char *)zio->io_data + loff, lsize, NULL, NULL, 1420 zio->io_priority, zio->io_flags & ZIO_FLAG_GANG_INHERIT, 1421 &zio->io_bookmark)); 1422 } 1423 1424 zio_buf_free(gbh, gbufsize); 1425 zio_wait_children_done(zio); 1426 } 1427 1428 static void 1429 zio_rewrite_gang_members(zio_t *zio) 1430 { 1431 zio_gbh_phys_t *gbh; 1432 uint64_t gsize, gbufsize, loff, lsize; 1433 int i; 1434 1435 ASSERT(BP_IS_GANG(zio->io_bp)); 1436 ASSERT3U(zio->io_size, ==, SPA_GANGBLOCKSIZE); 1437 1438 zio_gang_byteswap(zio); 1439 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1440 1441 ASSERT(gsize == gbufsize); 1442 1443 for (loff = 0, i = 0; loff != zio->io_size; loff += lsize, i++) { 1444 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1445 lsize = BP_GET_PSIZE(gbp); 1446 1447 ASSERT(BP_GET_COMPRESS(gbp) == ZIO_COMPRESS_OFF); 1448 ASSERT3U(lsize, ==, BP_GET_LSIZE(gbp)); 1449 ASSERT3U(loff + lsize, <=, zio->io_size); 1450 ASSERT(i < SPA_GBH_NBLKPTRS); 1451 ASSERT(!BP_IS_HOLE(gbp)); 1452 1453 zio_nowait(zio_rewrite(zio, zio->io_spa, zio->io_checksum, 1454 zio->io_txg, gbp, (char *)zio->io_data + loff, lsize, 1455 NULL, NULL, zio->io_priority, zio->io_flags, 1456 &zio->io_bookmark)); 1457 } 1458 1459 zio_push_transform(zio, gbh, gsize, gbufsize); 1460 zio_wait_children_ready(zio); 1461 } 1462 1463 static void 1464 zio_free_gang_members(zio_t *zio) 1465 { 1466 zio_gbh_phys_t *gbh; 1467 uint64_t gsize, gbufsize; 1468 int i; 1469 1470 ASSERT(BP_IS_GANG(zio->io_bp)); 1471 1472 zio_gang_byteswap(zio); 1473 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1474 1475 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 1476 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1477 1478 if (BP_IS_HOLE(gbp)) 1479 continue; 1480 zio_nowait(zio_free(zio, zio->io_spa, zio->io_txg, 1481 gbp, NULL, NULL)); 1482 } 1483 1484 zio_buf_free(gbh, gbufsize); 1485 zio_next_stage(zio); 1486 } 1487 1488 static void 1489 zio_claim_gang_members(zio_t *zio) 1490 { 1491 zio_gbh_phys_t *gbh; 1492 uint64_t gsize, gbufsize; 1493 int i; 1494 1495 ASSERT(BP_IS_GANG(zio->io_bp)); 1496 1497 zio_gang_byteswap(zio); 1498 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1499 1500 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 1501 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1502 if (BP_IS_HOLE(gbp)) 1503 continue; 1504 zio_nowait(zio_claim(zio, zio->io_spa, zio->io_txg, 1505 gbp, NULL, NULL)); 1506 } 1507 1508 zio_buf_free(gbh, gbufsize); 1509 zio_next_stage(zio); 1510 } 1511 1512 static void 1513 zio_write_allocate_gang_member_done(zio_t *zio) 1514 { 1515 zio_t *pio = zio->io_parent; 1516 dva_t *cdva = zio->io_bp->blk_dva; 1517 dva_t *pdva = pio->io_bp->blk_dva; 1518 uint64_t asize; 1519 int d; 1520 1521 ASSERT3U(pio->io_ndvas, ==, zio->io_ndvas); 1522 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 1523 ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(zio->io_bp)); 1524 ASSERT3U(pio->io_ndvas, <=, BP_GET_NDVAS(pio->io_bp)); 1525 1526 mutex_enter(&pio->io_lock); 1527 for (d = 0; d < BP_GET_NDVAS(pio->io_bp); d++) { 1528 ASSERT(DVA_GET_GANG(&pdva[d])); 1529 asize = DVA_GET_ASIZE(&pdva[d]); 1530 asize += DVA_GET_ASIZE(&cdva[d]); 1531 DVA_SET_ASIZE(&pdva[d], asize); 1532 } 1533 mutex_exit(&pio->io_lock); 1534 } 1535 1536 static int 1537 zio_write_allocate_gang_members(zio_t *zio, metaslab_class_t *mc) 1538 { 1539 blkptr_t *bp = zio->io_bp; 1540 dva_t *dva = bp->blk_dva; 1541 spa_t *spa = zio->io_spa; 1542 zio_gbh_phys_t *gbh; 1543 uint64_t txg = zio->io_txg; 1544 uint64_t resid = zio->io_size; 1545 uint64_t maxalloc = P2ROUNDUP(zio->io_size >> 1, SPA_MINBLOCKSIZE); 1546 uint64_t gsize, loff, lsize; 1547 uint32_t gbps_left; 1548 int ndvas = zio->io_ndvas; 1549 int gbh_ndvas = MIN(ndvas + 1, spa_max_replication(spa)); 1550 int error; 1551 int i, d; 1552 1553 gsize = SPA_GANGBLOCKSIZE; 1554 gbps_left = SPA_GBH_NBLKPTRS; 1555 1556 error = metaslab_alloc(spa, mc, gsize, bp, gbh_ndvas, txg, NULL, 1557 B_FALSE); 1558 if (error) 1559 return (error); 1560 1561 for (d = 0; d < gbh_ndvas; d++) 1562 DVA_SET_GANG(&dva[d], 1); 1563 1564 bp->blk_birth = txg; 1565 1566 gbh = zio_buf_alloc(gsize); 1567 bzero(gbh, gsize); 1568 1569 /* We need to test multi-level gang blocks */ 1570 if (maxalloc >= zio_gang_bang && (lbolt & 0x1) == 0) 1571 maxalloc = MAX(maxalloc >> 2, SPA_MINBLOCKSIZE); 1572 1573 for (loff = 0, i = 0; loff != zio->io_size; 1574 loff += lsize, resid -= lsize, gbps_left--, i++) { 1575 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1576 dva = gbp->blk_dva; 1577 1578 ASSERT(gbps_left != 0); 1579 maxalloc = MIN(maxalloc, resid); 1580 1581 while (resid <= maxalloc * gbps_left) { 1582 error = metaslab_alloc(spa, mc, maxalloc, gbp, ndvas, 1583 txg, bp, B_FALSE); 1584 if (error == 0) 1585 break; 1586 ASSERT3U(error, ==, ENOSPC); 1587 /* XXX - free up previous allocations? */ 1588 if (maxalloc == SPA_MINBLOCKSIZE) 1589 return (error); 1590 maxalloc = P2ROUNDUP(maxalloc >> 1, SPA_MINBLOCKSIZE); 1591 } 1592 1593 if (resid <= maxalloc * gbps_left) { 1594 lsize = maxalloc; 1595 BP_SET_LSIZE(gbp, lsize); 1596 BP_SET_PSIZE(gbp, lsize); 1597 BP_SET_COMPRESS(gbp, ZIO_COMPRESS_OFF); 1598 gbp->blk_birth = txg; 1599 zio_nowait(zio_rewrite(zio, spa, 1600 zio->io_checksum, txg, gbp, 1601 (char *)zio->io_data + loff, lsize, 1602 zio_write_allocate_gang_member_done, NULL, 1603 zio->io_priority, zio->io_flags, 1604 &zio->io_bookmark)); 1605 } else { 1606 lsize = P2ROUNDUP(resid / gbps_left, SPA_MINBLOCKSIZE); 1607 ASSERT(lsize != SPA_MINBLOCKSIZE); 1608 zio_nowait(zio_write_allocate(zio, spa, 1609 zio->io_checksum, txg, gbp, 1610 (char *)zio->io_data + loff, lsize, 1611 zio_write_allocate_gang_member_done, NULL, 1612 zio->io_priority, zio->io_flags)); 1613 } 1614 } 1615 1616 ASSERT(resid == 0 && loff == zio->io_size); 1617 1618 zio->io_pipeline |= 1U << ZIO_STAGE_GANG_CHECKSUM_GENERATE; 1619 1620 zio_push_transform(zio, gbh, gsize, gsize); 1621 /* 1622 * As much as we'd like this to be zio_wait_children_ready(), 1623 * updating our ASIZE doesn't happen until the io_done callback, 1624 * so we have to wait for that to finish in order for our BP 1625 * to be stable. 1626 */ 1627 zio_wait_children_done(zio); 1628 return (0); 1629 } 1630 1631 /* 1632 * ========================================================================== 1633 * Allocate and free blocks 1634 * ========================================================================== 1635 */ 1636 static void 1637 zio_dva_allocate(zio_t *zio) 1638 { 1639 spa_t *spa = zio->io_spa; 1640 metaslab_class_t *mc = spa->spa_normal_class; 1641 blkptr_t *bp = zio->io_bp; 1642 int error; 1643 1644 ASSERT(BP_IS_HOLE(bp)); 1645 ASSERT3U(BP_GET_NDVAS(bp), ==, 0); 1646 ASSERT3U(zio->io_ndvas, >, 0); 1647 ASSERT3U(zio->io_ndvas, <=, spa_max_replication(spa)); 1648 1649 /* For testing, make some blocks above a certain size be gang blocks */ 1650 if (zio->io_size >= zio_gang_bang && (lbolt & 0x3) == 0) { 1651 error = zio_write_allocate_gang_members(zio, mc); 1652 if (error) 1653 zio->io_error = error; 1654 return; 1655 } 1656 1657 /* 1658 * For testing purposes, we force I/Os to retry. We don't allow 1659 * retries beyond the first pass since those I/Os are non-allocating 1660 * writes. We do this after the gang block testing block so that 1661 * they don't inherit the retry flag. 1662 */ 1663 if (zio_io_fail_shift && 1664 spa_sync_pass(zio->io_spa) <= zio_sync_pass.zp_rewrite && 1665 zio_io_should_fail(zio_io_fail_shift)) 1666 zio->io_flags |= ZIO_FLAG_WRITE_RETRY; 1667 1668 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 1669 1670 error = metaslab_alloc(spa, mc, zio->io_size, bp, zio->io_ndvas, 1671 zio->io_txg, NULL, B_FALSE); 1672 1673 if (error == 0) { 1674 bp->blk_birth = zio->io_txg; 1675 } else if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) { 1676 error = zio_write_allocate_gang_members(zio, mc); 1677 if (error == 0) 1678 return; 1679 zio->io_error = error; 1680 } else { 1681 zio->io_error = error; 1682 } 1683 zio_next_stage(zio); 1684 } 1685 1686 static void 1687 zio_dva_free(zio_t *zio) 1688 { 1689 blkptr_t *bp = zio->io_bp; 1690 1691 metaslab_free(zio->io_spa, bp, zio->io_txg, B_FALSE); 1692 1693 BP_ZERO(bp); 1694 1695 zio_next_stage(zio); 1696 } 1697 1698 static void 1699 zio_dva_claim(zio_t *zio) 1700 { 1701 zio->io_error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 1702 1703 zio_next_stage(zio); 1704 } 1705 1706 /* 1707 * ========================================================================== 1708 * Read and write to physical devices 1709 * ========================================================================== 1710 */ 1711 1712 static void 1713 zio_vdev_io_start(zio_t *zio) 1714 { 1715 vdev_t *vd = zio->io_vd; 1716 vdev_t *tvd = vd ? vd->vdev_top : NULL; 1717 blkptr_t *bp = zio->io_bp; 1718 uint64_t align; 1719 spa_t *spa = zio->io_spa; 1720 1721 /* 1722 * If the pool is already in a failure state then just suspend 1723 * this IO until the problem is resolved. We will reissue them 1724 * at that time. 1725 */ 1726 if (spa_state(spa) == POOL_STATE_IO_FAILURE && 1727 zio->io_type == ZIO_TYPE_WRITE) { 1728 zio_vdev_suspend_io(zio); 1729 return; 1730 } 1731 1732 if (vd == NULL) { 1733 /* The mirror_ops handle multiple DVAs in a single BP */ 1734 vdev_mirror_ops.vdev_op_io_start(zio); 1735 return; 1736 } 1737 1738 align = 1ULL << tvd->vdev_ashift; 1739 1740 if (zio->io_retries == 0 && vd == tvd) 1741 zio->io_flags |= ZIO_FLAG_FAILFAST; 1742 1743 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 1744 vd->vdev_children == 0) { 1745 zio->io_flags |= ZIO_FLAG_PHYSICAL; 1746 zio->io_offset += VDEV_LABEL_START_SIZE; 1747 } 1748 1749 if (P2PHASE(zio->io_size, align) != 0) { 1750 uint64_t asize = P2ROUNDUP(zio->io_size, align); 1751 char *abuf = zio_buf_alloc(asize); 1752 ASSERT(vd == tvd); 1753 if (zio->io_type == ZIO_TYPE_WRITE) { 1754 bcopy(zio->io_data, abuf, zio->io_size); 1755 bzero(abuf + zio->io_size, asize - zio->io_size); 1756 } 1757 zio_push_transform(zio, abuf, asize, asize); 1758 ASSERT(!(zio->io_flags & ZIO_FLAG_SUBBLOCK)); 1759 zio->io_flags |= ZIO_FLAG_SUBBLOCK; 1760 } 1761 1762 ASSERT(P2PHASE(zio->io_offset, align) == 0); 1763 ASSERT(P2PHASE(zio->io_size, align) == 0); 1764 ASSERT(bp == NULL || 1765 P2ROUNDUP(ZIO_GET_IOSIZE(zio), align) == zio->io_size); 1766 ASSERT(zio->io_type != ZIO_TYPE_WRITE || (spa_mode & FWRITE)); 1767 1768 vdev_io_start(zio); 1769 1770 /* zio_next_stage_async() gets called from io completion interrupt */ 1771 } 1772 1773 static void 1774 zio_vdev_io_done(zio_t *zio) 1775 { 1776 if (zio->io_vd == NULL) 1777 /* The mirror_ops handle multiple DVAs in a single BP */ 1778 vdev_mirror_ops.vdev_op_io_done(zio); 1779 else 1780 vdev_io_done(zio); 1781 } 1782 1783 /* XXPOLICY */ 1784 boolean_t 1785 zio_should_retry(zio_t *zio) 1786 { 1787 vdev_t *vd = zio->io_vd; 1788 1789 if (zio->io_error == 0) 1790 return (B_FALSE); 1791 if (zio->io_delegate_list != NULL) 1792 return (B_FALSE); 1793 if (vd && vd != vd->vdev_top) 1794 return (B_FALSE); 1795 if (zio->io_flags & ZIO_FLAG_DONT_RETRY) 1796 return (B_FALSE); 1797 if (zio->io_retries > 0) 1798 return (B_FALSE); 1799 1800 return (B_TRUE); 1801 } 1802 1803 static void 1804 zio_vdev_io_assess(zio_t *zio) 1805 { 1806 vdev_t *vd = zio->io_vd; 1807 vdev_t *tvd = vd ? vd->vdev_top : NULL; 1808 1809 ASSERT(zio->io_vsd == NULL); 1810 1811 if (zio->io_flags & ZIO_FLAG_SUBBLOCK) { 1812 void *abuf; 1813 uint64_t asize; 1814 ASSERT(vd == tvd); 1815 zio_pop_transform(zio, &abuf, &asize, &asize); 1816 if (zio->io_type == ZIO_TYPE_READ) 1817 bcopy(abuf, zio->io_data, zio->io_size); 1818 zio_buf_free(abuf, asize); 1819 zio->io_flags &= ~ZIO_FLAG_SUBBLOCK; 1820 } 1821 1822 if (zio_injection_enabled && !zio->io_error) 1823 zio->io_error = zio_handle_fault_injection(zio, EIO); 1824 1825 /* 1826 * If the I/O failed, determine whether we should attempt to retry it. 1827 */ 1828 /* XXPOLICY */ 1829 if (zio_should_retry(zio)) { 1830 ASSERT(tvd == vd); 1831 1832 zio->io_retries++; 1833 zio->io_error = 0; 1834 zio->io_flags &= ZIO_FLAG_VDEV_INHERIT | 1835 ZIO_FLAG_CONFIG_GRABBED; 1836 /* XXPOLICY */ 1837 zio->io_flags &= ~ZIO_FLAG_FAILFAST; 1838 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1839 zio->io_stage = ZIO_STAGE_VDEV_IO_START - 1; 1840 1841 dprintf("retry #%d for %s to %s offset %llx\n", 1842 zio->io_retries, zio_type_name[zio->io_type], 1843 vdev_description(vd), zio->io_offset); 1844 1845 zio_next_stage_async(zio); 1846 return; 1847 } 1848 1849 zio_next_stage(zio); 1850 } 1851 1852 void 1853 zio_vdev_io_reissue(zio_t *zio) 1854 { 1855 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1856 ASSERT(zio->io_error == 0); 1857 1858 zio->io_stage--; 1859 } 1860 1861 void 1862 zio_vdev_io_redone(zio_t *zio) 1863 { 1864 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 1865 1866 zio->io_stage--; 1867 } 1868 1869 void 1870 zio_vdev_io_bypass(zio_t *zio) 1871 { 1872 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1873 ASSERT(zio->io_error == 0); 1874 1875 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 1876 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS - 1; 1877 } 1878 1879 /* 1880 * ========================================================================== 1881 * Generate and verify checksums 1882 * ========================================================================== 1883 */ 1884 static void 1885 zio_checksum_generate(zio_t *zio) 1886 { 1887 int checksum = zio->io_checksum; 1888 blkptr_t *bp = zio->io_bp; 1889 1890 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 1891 1892 BP_SET_CHECKSUM(bp, checksum); 1893 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1894 1895 zio_checksum(checksum, &bp->blk_cksum, zio->io_data, zio->io_size); 1896 1897 zio_next_stage(zio); 1898 } 1899 1900 static void 1901 zio_gang_checksum_generate(zio_t *zio) 1902 { 1903 zio_cksum_t zc; 1904 zio_gbh_phys_t *gbh = zio->io_data; 1905 1906 ASSERT(BP_IS_GANG(zio->io_bp)); 1907 ASSERT3U(zio->io_size, ==, SPA_GANGBLOCKSIZE); 1908 1909 zio_set_gang_verifier(zio, &gbh->zg_tail.zbt_cksum); 1910 1911 zio_checksum(ZIO_CHECKSUM_GANG_HEADER, &zc, zio->io_data, zio->io_size); 1912 1913 zio_next_stage(zio); 1914 } 1915 1916 static void 1917 zio_checksum_verify(zio_t *zio) 1918 { 1919 if (zio->io_bp != NULL) { 1920 zio->io_error = zio_checksum_error(zio); 1921 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) 1922 zfs_ereport_post(FM_EREPORT_ZFS_CHECKSUM, 1923 zio->io_spa, zio->io_vd, zio, 0, 0); 1924 } 1925 1926 zio_next_stage(zio); 1927 } 1928 1929 /* 1930 * Called by RAID-Z to ensure we don't compute the checksum twice. 1931 */ 1932 void 1933 zio_checksum_verified(zio_t *zio) 1934 { 1935 zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 1936 } 1937 1938 /* 1939 * Set the external verifier for a gang block based on stuff in the bp 1940 */ 1941 void 1942 zio_set_gang_verifier(zio_t *zio, zio_cksum_t *zcp) 1943 { 1944 blkptr_t *bp = zio->io_bp; 1945 1946 zcp->zc_word[0] = DVA_GET_VDEV(BP_IDENTITY(bp)); 1947 zcp->zc_word[1] = DVA_GET_OFFSET(BP_IDENTITY(bp)); 1948 zcp->zc_word[2] = bp->blk_birth; 1949 zcp->zc_word[3] = 0; 1950 } 1951 1952 /* 1953 * ========================================================================== 1954 * Define the pipeline 1955 * ========================================================================== 1956 */ 1957 typedef void zio_pipe_stage_t(zio_t *zio); 1958 1959 static void 1960 zio_badop(zio_t *zio) 1961 { 1962 panic("Invalid I/O pipeline stage %u for zio %p", zio->io_stage, zio); 1963 } 1964 1965 zio_pipe_stage_t *zio_pipeline[ZIO_STAGE_DONE + 2] = { 1966 zio_badop, 1967 zio_wait_children_ready, 1968 zio_write_compress, 1969 zio_checksum_generate, 1970 zio_gang_pipeline, 1971 zio_get_gang_header, 1972 zio_rewrite_gang_members, 1973 zio_free_gang_members, 1974 zio_claim_gang_members, 1975 zio_dva_allocate, 1976 zio_dva_free, 1977 zio_dva_claim, 1978 zio_gang_checksum_generate, 1979 zio_ready, 1980 zio_read_init, 1981 zio_vdev_io_start, 1982 zio_vdev_io_done, 1983 zio_vdev_io_assess, 1984 zio_wait_children_done, 1985 zio_checksum_verify, 1986 zio_read_gang_members, 1987 zio_read_decompress, 1988 zio_assess, 1989 zio_done, 1990 zio_badop 1991 }; 1992 1993 /* 1994 * Move an I/O to the next stage of the pipeline and execute that stage. 1995 * There's no locking on io_stage because there's no legitimate way for 1996 * multiple threads to be attempting to process the same I/O. 1997 */ 1998 void 1999 zio_next_stage(zio_t *zio) 2000 { 2001 uint32_t pipeline = zio->io_pipeline; 2002 2003 ASSERT(!MUTEX_HELD(&zio->io_lock)); 2004 2005 if (zio->io_error) { 2006 dprintf("zio %p vdev %s offset %llx stage %d error %d\n", 2007 zio, vdev_description(zio->io_vd), 2008 zio->io_offset, zio->io_stage, zio->io_error); 2009 if (((1U << zio->io_stage) & ZIO_VDEV_IO_PIPELINE) == 0) 2010 pipeline &= ZIO_ERROR_PIPELINE_MASK; 2011 } 2012 2013 while (((1U << ++zio->io_stage) & pipeline) == 0) 2014 continue; 2015 2016 ASSERT(zio->io_stage <= ZIO_STAGE_DONE); 2017 ASSERT(zio->io_stalled == 0); 2018 2019 /* 2020 * See the comment in zio_next_stage_async() about per-CPU taskqs. 2021 */ 2022 if (((1U << zio->io_stage) & zio->io_async_stages) && 2023 (zio->io_stage == ZIO_STAGE_WRITE_COMPRESS) && 2024 !(zio->io_flags & ZIO_FLAG_METADATA)) { 2025 taskq_t *tq = zio->io_spa->spa_zio_issue_taskq[zio->io_type]; 2026 (void) taskq_dispatch(tq, 2027 (task_func_t *)zio_pipeline[zio->io_stage], zio, TQ_SLEEP); 2028 } else { 2029 zio_pipeline[zio->io_stage](zio); 2030 } 2031 } 2032 2033 void 2034 zio_next_stage_async(zio_t *zio) 2035 { 2036 taskq_t *tq; 2037 uint32_t pipeline = zio->io_pipeline; 2038 2039 ASSERT(!MUTEX_HELD(&zio->io_lock)); 2040 2041 if (zio->io_error) { 2042 dprintf("zio %p vdev %s offset %llx stage %d error %d\n", 2043 zio, vdev_description(zio->io_vd), 2044 zio->io_offset, zio->io_stage, zio->io_error); 2045 if (((1U << zio->io_stage) & ZIO_VDEV_IO_PIPELINE) == 0) 2046 pipeline &= ZIO_ERROR_PIPELINE_MASK; 2047 } 2048 2049 while (((1U << ++zio->io_stage) & pipeline) == 0) 2050 continue; 2051 2052 ASSERT(zio->io_stage <= ZIO_STAGE_DONE); 2053 ASSERT(zio->io_stalled == 0); 2054 2055 /* 2056 * For performance, we'll probably want two sets of task queues: 2057 * per-CPU issue taskqs and per-CPU completion taskqs. The per-CPU 2058 * part is for read performance: since we have to make a pass over 2059 * the data to checksum it anyway, we want to do this on the same CPU 2060 * that issued the read, because (assuming CPU scheduling affinity) 2061 * that thread is probably still there. Getting this optimization 2062 * right avoids performance-hostile cache-to-cache transfers. 2063 * 2064 * Note that having two sets of task queues is also necessary for 2065 * correctness: if all of the issue threads get bogged down waiting 2066 * for dependent reads (e.g. metaslab freelist) to complete, then 2067 * there won't be any threads available to service I/O completion 2068 * interrupts. 2069 */ 2070 if ((1U << zio->io_stage) & zio->io_async_stages) { 2071 if (zio->io_stage < ZIO_STAGE_VDEV_IO_DONE) 2072 tq = zio->io_spa->spa_zio_issue_taskq[zio->io_type]; 2073 else 2074 tq = zio->io_spa->spa_zio_intr_taskq[zio->io_type]; 2075 (void) taskq_dispatch(tq, 2076 (task_func_t *)zio_pipeline[zio->io_stage], zio, TQ_SLEEP); 2077 } else { 2078 zio_pipeline[zio->io_stage](zio); 2079 } 2080 } 2081 2082 void 2083 zio_resubmit_stage_async(void *arg) 2084 { 2085 zio_t *zio = (zio_t *)(uintptr_t)arg; 2086 2087 zio_next_stage_async(zio); 2088 } 2089 2090 static boolean_t 2091 zio_io_should_fail(uint16_t range) 2092 { 2093 static uint16_t allocs = 0; 2094 2095 return (P2PHASE(allocs++, 1U<<range) == 0); 2096 } 2097 2098 /* 2099 * Try to allocate an intent log block. Return 0 on success, errno on failure. 2100 */ 2101 int 2102 zio_alloc_blk(spa_t *spa, uint64_t size, blkptr_t *new_bp, blkptr_t *old_bp, 2103 uint64_t txg) 2104 { 2105 int error; 2106 2107 spa_config_enter(spa, RW_READER, FTAG); 2108 2109 if (zio_zil_fail_shift && zio_io_should_fail(zio_zil_fail_shift)) { 2110 spa_config_exit(spa, FTAG); 2111 return (ENOSPC); 2112 } 2113 2114 /* 2115 * We were passed the previous log block's DVA in bp->blk_dva[0]. 2116 * We use that as a hint for which vdev to allocate from next. 2117 */ 2118 error = metaslab_alloc(spa, spa->spa_log_class, size, 2119 new_bp, 1, txg, old_bp, B_TRUE); 2120 2121 if (error) 2122 error = metaslab_alloc(spa, spa->spa_normal_class, size, 2123 new_bp, 1, txg, old_bp, B_TRUE); 2124 2125 if (error == 0) { 2126 BP_SET_LSIZE(new_bp, size); 2127 BP_SET_PSIZE(new_bp, size); 2128 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 2129 BP_SET_CHECKSUM(new_bp, ZIO_CHECKSUM_ZILOG); 2130 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 2131 BP_SET_LEVEL(new_bp, 0); 2132 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 2133 new_bp->blk_birth = txg; 2134 } 2135 2136 spa_config_exit(spa, FTAG); 2137 2138 return (error); 2139 } 2140 2141 /* 2142 * Free an intent log block. We know it can't be a gang block, so there's 2143 * nothing to do except metaslab_free() it. 2144 */ 2145 void 2146 zio_free_blk(spa_t *spa, blkptr_t *bp, uint64_t txg) 2147 { 2148 ASSERT(!BP_IS_GANG(bp)); 2149 2150 spa_config_enter(spa, RW_READER, FTAG); 2151 2152 metaslab_free(spa, bp, txg, B_FALSE); 2153 2154 spa_config_exit(spa, FTAG); 2155 } 2156 2157 /* 2158 * start an async flush of the write cache for this vdev 2159 */ 2160 void 2161 zio_flush_vdev(spa_t *spa, uint64_t vdev, zio_t **zio) 2162 { 2163 vdev_t *vd; 2164 2165 /* 2166 * Lock out configuration changes. 2167 */ 2168 spa_config_enter(spa, RW_READER, FTAG); 2169 2170 if (*zio == NULL) 2171 *zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 2172 2173 vd = vdev_lookup_top(spa, vdev); 2174 ASSERT(vd); 2175 2176 (void) zio_nowait(zio_ioctl(*zio, spa, vd, DKIOCFLUSHWRITECACHE, 2177 NULL, NULL, ZIO_PRIORITY_NOW, 2178 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 2179 2180 spa_config_exit(spa, FTAG); 2181 } 2182