1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/fm/fs/zfs.h> 30 #include <sys/spa.h> 31 #include <sys/txg.h> 32 #include <sys/spa_impl.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/zio_impl.h> 35 #include <sys/zio_compress.h> 36 #include <sys/zio_checksum.h> 37 38 /* 39 * ========================================================================== 40 * I/O priority table 41 * ========================================================================== 42 */ 43 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = { 44 0, /* ZIO_PRIORITY_NOW */ 45 0, /* ZIO_PRIORITY_SYNC_READ */ 46 0, /* ZIO_PRIORITY_SYNC_WRITE */ 47 6, /* ZIO_PRIORITY_ASYNC_READ */ 48 4, /* ZIO_PRIORITY_ASYNC_WRITE */ 49 4, /* ZIO_PRIORITY_FREE */ 50 0, /* ZIO_PRIORITY_CACHE_FILL */ 51 0, /* ZIO_PRIORITY_LOG_WRITE */ 52 10, /* ZIO_PRIORITY_RESILVER */ 53 20, /* ZIO_PRIORITY_SCRUB */ 54 }; 55 56 /* 57 * ========================================================================== 58 * I/O type descriptions 59 * ========================================================================== 60 */ 61 char *zio_type_name[ZIO_TYPES] = { 62 "null", "read", "write", "free", "claim", "ioctl" }; 63 64 /* At or above this size, force gang blocking - for testing */ 65 uint64_t zio_gang_bang = SPA_MAXBLOCKSIZE + 1; 66 67 /* Force an allocation failure when non-zero */ 68 uint16_t zio_zil_fail_shift = 0; 69 70 typedef struct zio_sync_pass { 71 int zp_defer_free; /* defer frees after this pass */ 72 int zp_dontcompress; /* don't compress after this pass */ 73 int zp_rewrite; /* rewrite new bps after this pass */ 74 } zio_sync_pass_t; 75 76 zio_sync_pass_t zio_sync_pass = { 77 1, /* zp_defer_free */ 78 4, /* zp_dontcompress */ 79 1, /* zp_rewrite */ 80 }; 81 82 /* 83 * ========================================================================== 84 * I/O kmem caches 85 * ========================================================================== 86 */ 87 kmem_cache_t *zio_cache; 88 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 89 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 90 91 #ifdef _KERNEL 92 extern vmem_t *zio_alloc_arena; 93 #endif 94 95 void 96 zio_init(void) 97 { 98 size_t c; 99 vmem_t *data_alloc_arena = NULL; 100 101 #ifdef _KERNEL 102 data_alloc_arena = zio_alloc_arena; 103 #endif 104 105 zio_cache = kmem_cache_create("zio_cache", sizeof (zio_t), 0, 106 NULL, NULL, NULL, NULL, NULL, 0); 107 108 /* 109 * For small buffers, we want a cache for each multiple of 110 * SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache 111 * for each quarter-power of 2. For large buffers, we want 112 * a cache for each multiple of PAGESIZE. 113 */ 114 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 115 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 116 size_t p2 = size; 117 size_t align = 0; 118 119 while (p2 & (p2 - 1)) 120 p2 &= p2 - 1; 121 122 if (size <= 4 * SPA_MINBLOCKSIZE) { 123 align = SPA_MINBLOCKSIZE; 124 } else if (P2PHASE(size, PAGESIZE) == 0) { 125 align = PAGESIZE; 126 } else if (P2PHASE(size, p2 >> 2) == 0) { 127 align = p2 >> 2; 128 } 129 130 if (align != 0) { 131 char name[36]; 132 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 133 zio_buf_cache[c] = kmem_cache_create(name, size, 134 align, NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG); 135 136 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 137 zio_data_buf_cache[c] = kmem_cache_create(name, size, 138 align, NULL, NULL, NULL, NULL, data_alloc_arena, 139 KMC_NODEBUG); 140 141 dprintf("creating cache for size %5lx align %5lx\n", 142 size, align); 143 } 144 } 145 146 while (--c != 0) { 147 ASSERT(zio_buf_cache[c] != NULL); 148 if (zio_buf_cache[c - 1] == NULL) 149 zio_buf_cache[c - 1] = zio_buf_cache[c]; 150 151 ASSERT(zio_data_buf_cache[c] != NULL); 152 if (zio_data_buf_cache[c - 1] == NULL) 153 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 154 } 155 156 zio_inject_init(); 157 } 158 159 void 160 zio_fini(void) 161 { 162 size_t c; 163 kmem_cache_t *last_cache = NULL; 164 kmem_cache_t *last_data_cache = NULL; 165 166 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 167 if (zio_buf_cache[c] != last_cache) { 168 last_cache = zio_buf_cache[c]; 169 kmem_cache_destroy(zio_buf_cache[c]); 170 } 171 zio_buf_cache[c] = NULL; 172 173 if (zio_data_buf_cache[c] != last_data_cache) { 174 last_data_cache = zio_data_buf_cache[c]; 175 kmem_cache_destroy(zio_data_buf_cache[c]); 176 } 177 zio_data_buf_cache[c] = NULL; 178 } 179 180 kmem_cache_destroy(zio_cache); 181 182 zio_inject_fini(); 183 } 184 185 /* 186 * ========================================================================== 187 * Allocate and free I/O buffers 188 * ========================================================================== 189 */ 190 191 /* 192 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 193 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 194 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 195 * excess / transient data in-core during a crashdump. 196 */ 197 void * 198 zio_buf_alloc(size_t size) 199 { 200 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 201 202 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 203 204 return (kmem_cache_alloc(zio_buf_cache[c], KM_SLEEP)); 205 } 206 207 /* 208 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 209 * crashdump if the kernel panics. This exists so that we will limit the amount 210 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 211 * of kernel heap dumped to disk when the kernel panics) 212 */ 213 void * 214 zio_data_buf_alloc(size_t size) 215 { 216 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 217 218 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 219 220 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_SLEEP)); 221 } 222 223 void 224 zio_buf_free(void *buf, size_t size) 225 { 226 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 227 228 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 229 230 kmem_cache_free(zio_buf_cache[c], buf); 231 } 232 233 void 234 zio_data_buf_free(void *buf, size_t size) 235 { 236 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 237 238 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 239 240 kmem_cache_free(zio_data_buf_cache[c], buf); 241 } 242 243 /* 244 * ========================================================================== 245 * Push and pop I/O transform buffers 246 * ========================================================================== 247 */ 248 static void 249 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize) 250 { 251 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 252 253 zt->zt_data = data; 254 zt->zt_size = size; 255 zt->zt_bufsize = bufsize; 256 257 zt->zt_next = zio->io_transform_stack; 258 zio->io_transform_stack = zt; 259 260 zio->io_data = data; 261 zio->io_size = size; 262 } 263 264 static void 265 zio_pop_transform(zio_t *zio, void **data, uint64_t *size, uint64_t *bufsize) 266 { 267 zio_transform_t *zt = zio->io_transform_stack; 268 269 *data = zt->zt_data; 270 *size = zt->zt_size; 271 *bufsize = zt->zt_bufsize; 272 273 zio->io_transform_stack = zt->zt_next; 274 kmem_free(zt, sizeof (zio_transform_t)); 275 276 if ((zt = zio->io_transform_stack) != NULL) { 277 zio->io_data = zt->zt_data; 278 zio->io_size = zt->zt_size; 279 } 280 } 281 282 static void 283 zio_clear_transform_stack(zio_t *zio) 284 { 285 void *data; 286 uint64_t size, bufsize; 287 288 ASSERT(zio->io_transform_stack != NULL); 289 290 zio_pop_transform(zio, &data, &size, &bufsize); 291 while (zio->io_transform_stack != NULL) { 292 zio_buf_free(data, bufsize); 293 zio_pop_transform(zio, &data, &size, &bufsize); 294 } 295 } 296 297 /* 298 * ========================================================================== 299 * Create the various types of I/O (read, write, free) 300 * ========================================================================== 301 */ 302 static zio_t * 303 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 304 void *data, uint64_t size, zio_done_func_t *done, void *private, 305 zio_type_t type, int priority, int flags, uint8_t stage, uint32_t pipeline) 306 { 307 zio_t *zio; 308 309 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 310 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 311 312 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 313 bzero(zio, sizeof (zio_t)); 314 zio->io_parent = pio; 315 zio->io_spa = spa; 316 zio->io_txg = txg; 317 if (bp != NULL) { 318 zio->io_bp = bp; 319 zio->io_bp_copy = *bp; 320 zio->io_bp_orig = *bp; 321 } 322 zio->io_done = done; 323 zio->io_private = private; 324 zio->io_type = type; 325 zio->io_priority = priority; 326 zio->io_stage = stage; 327 zio->io_pipeline = pipeline; 328 zio->io_async_stages = ZIO_ASYNC_PIPELINE_STAGES; 329 zio->io_timestamp = lbolt64; 330 zio->io_flags = flags; 331 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 332 zio_push_transform(zio, data, size, size); 333 334 /* 335 * Note on config lock: 336 * 337 * If CONFIG_HELD is set, then the caller already has the config 338 * lock, so we don't need it for this io. 339 * 340 * We set CONFIG_GRABBED to indicate that we have grabbed the 341 * config lock on behalf of this io, so it should be released 342 * in zio_done. 343 * 344 * Unless CONFIG_HELD is set, we will grab the config lock for 345 * any top-level (parent-less) io, *except* NULL top-level ios. 346 * The NULL top-level ios rarely have any children, so we delay 347 * grabbing the lock until the first child is added (but it is 348 * still grabbed on behalf of the top-level i/o, so additional 349 * children don't need to also grab it). This greatly reduces 350 * contention on the config lock. 351 */ 352 if (pio == NULL) { 353 if (type != ZIO_TYPE_NULL && 354 !(flags & ZIO_FLAG_CONFIG_HELD)) { 355 spa_config_enter(zio->io_spa, RW_READER, zio); 356 zio->io_flags |= ZIO_FLAG_CONFIG_GRABBED; 357 } 358 zio->io_root = zio; 359 } else { 360 zio->io_root = pio->io_root; 361 if (!(flags & ZIO_FLAG_NOBOOKMARK)) 362 zio->io_logical = pio->io_logical; 363 mutex_enter(&pio->io_lock); 364 if (pio->io_parent == NULL && 365 pio->io_type == ZIO_TYPE_NULL && 366 !(pio->io_flags & ZIO_FLAG_CONFIG_GRABBED) && 367 !(pio->io_flags & ZIO_FLAG_CONFIG_HELD)) { 368 pio->io_flags |= ZIO_FLAG_CONFIG_GRABBED; 369 spa_config_enter(zio->io_spa, RW_READER, pio); 370 } 371 if (stage < ZIO_STAGE_READY) 372 pio->io_children_notready++; 373 pio->io_children_notdone++; 374 zio->io_sibling_next = pio->io_child; 375 zio->io_sibling_prev = NULL; 376 if (pio->io_child != NULL) 377 pio->io_child->io_sibling_prev = zio; 378 pio->io_child = zio; 379 zio->io_ndvas = pio->io_ndvas; 380 mutex_exit(&pio->io_lock); 381 } 382 383 return (zio); 384 } 385 386 zio_t * 387 zio_null(zio_t *pio, spa_t *spa, zio_done_func_t *done, void *private, 388 int flags) 389 { 390 zio_t *zio; 391 392 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 393 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, ZIO_STAGE_OPEN, 394 ZIO_WAIT_FOR_CHILDREN_PIPELINE); 395 396 return (zio); 397 } 398 399 zio_t * 400 zio_root(spa_t *spa, zio_done_func_t *done, void *private, int flags) 401 { 402 return (zio_null(NULL, spa, done, private, flags)); 403 } 404 405 zio_t * 406 zio_read(zio_t *pio, spa_t *spa, blkptr_t *bp, void *data, 407 uint64_t size, zio_done_func_t *done, void *private, 408 int priority, int flags, zbookmark_t *zb) 409 { 410 zio_t *zio; 411 412 ASSERT3U(size, ==, BP_GET_LSIZE(bp)); 413 414 zio = zio_create(pio, spa, bp->blk_birth, bp, data, size, done, private, 415 ZIO_TYPE_READ, priority, flags | ZIO_FLAG_USER, 416 ZIO_STAGE_OPEN, ZIO_READ_PIPELINE); 417 zio->io_bookmark = *zb; 418 419 zio->io_logical = zio; 420 421 /* 422 * Work off our copy of the bp so the caller can free it. 423 */ 424 zio->io_bp = &zio->io_bp_copy; 425 426 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 427 uint64_t csize = BP_GET_PSIZE(bp); 428 void *cbuf = zio_buf_alloc(csize); 429 430 zio_push_transform(zio, cbuf, csize, csize); 431 zio->io_pipeline |= 1U << ZIO_STAGE_READ_DECOMPRESS; 432 } 433 434 if (BP_IS_GANG(bp)) { 435 uint64_t gsize = SPA_GANGBLOCKSIZE; 436 void *gbuf = zio_buf_alloc(gsize); 437 438 zio_push_transform(zio, gbuf, gsize, gsize); 439 zio->io_pipeline |= 1U << ZIO_STAGE_READ_GANG_MEMBERS; 440 } 441 442 return (zio); 443 } 444 445 zio_t * 446 zio_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies, 447 uint64_t txg, blkptr_t *bp, void *data, uint64_t size, 448 zio_done_func_t *ready, zio_done_func_t *done, void *private, int priority, 449 int flags, zbookmark_t *zb) 450 { 451 zio_t *zio; 452 453 ASSERT(checksum >= ZIO_CHECKSUM_OFF && 454 checksum < ZIO_CHECKSUM_FUNCTIONS); 455 456 ASSERT(compress >= ZIO_COMPRESS_OFF && 457 compress < ZIO_COMPRESS_FUNCTIONS); 458 459 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 460 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_USER, 461 ZIO_STAGE_OPEN, ZIO_WRITE_PIPELINE); 462 463 zio->io_ready = ready; 464 465 zio->io_bookmark = *zb; 466 467 zio->io_logical = zio; 468 469 zio->io_checksum = checksum; 470 zio->io_compress = compress; 471 zio->io_ndvas = ncopies; 472 473 if (compress != ZIO_COMPRESS_OFF) 474 zio->io_async_stages |= 1U << ZIO_STAGE_WRITE_COMPRESS; 475 476 if (bp->blk_birth != txg) { 477 /* XXX the bp usually (always?) gets re-zeroed later */ 478 BP_ZERO(bp); 479 BP_SET_LSIZE(bp, size); 480 BP_SET_PSIZE(bp, size); 481 } else { 482 /* Make sure someone doesn't change their mind on overwrites */ 483 ASSERT(MIN(zio->io_ndvas + BP_IS_GANG(bp), 484 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 485 } 486 487 return (zio); 488 } 489 490 zio_t * 491 zio_rewrite(zio_t *pio, spa_t *spa, int checksum, 492 uint64_t txg, blkptr_t *bp, void *data, uint64_t size, 493 zio_done_func_t *done, void *private, int priority, int flags, 494 zbookmark_t *zb) 495 { 496 zio_t *zio; 497 498 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 499 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_USER, 500 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 501 502 zio->io_bookmark = *zb; 503 zio->io_checksum = checksum; 504 zio->io_compress = ZIO_COMPRESS_OFF; 505 506 if (pio != NULL) 507 ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(bp)); 508 509 return (zio); 510 } 511 512 static zio_t * 513 zio_write_allocate(zio_t *pio, spa_t *spa, int checksum, 514 uint64_t txg, blkptr_t *bp, void *data, uint64_t size, 515 zio_done_func_t *done, void *private, int priority, int flags) 516 { 517 zio_t *zio; 518 519 BP_ZERO(bp); 520 BP_SET_LSIZE(bp, size); 521 BP_SET_PSIZE(bp, size); 522 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 523 524 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 525 ZIO_TYPE_WRITE, priority, flags, 526 ZIO_STAGE_OPEN, ZIO_WRITE_ALLOCATE_PIPELINE); 527 528 zio->io_checksum = checksum; 529 zio->io_compress = ZIO_COMPRESS_OFF; 530 531 return (zio); 532 } 533 534 zio_t * 535 zio_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 536 zio_done_func_t *done, void *private) 537 { 538 zio_t *zio; 539 540 ASSERT(!BP_IS_HOLE(bp)); 541 542 if (txg == spa->spa_syncing_txg && 543 spa->spa_sync_pass > zio_sync_pass.zp_defer_free) { 544 bplist_enqueue_deferred(&spa->spa_sync_bplist, bp); 545 return (zio_null(pio, spa, NULL, NULL, 0)); 546 } 547 548 zio = zio_create(pio, spa, txg, bp, NULL, 0, done, private, 549 ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, ZIO_FLAG_USER, 550 ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE); 551 552 zio->io_bp = &zio->io_bp_copy; 553 554 return (zio); 555 } 556 557 zio_t * 558 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 559 zio_done_func_t *done, void *private) 560 { 561 zio_t *zio; 562 563 /* 564 * A claim is an allocation of a specific block. Claims are needed 565 * to support immediate writes in the intent log. The issue is that 566 * immediate writes contain committed data, but in a txg that was 567 * *not* committed. Upon opening the pool after an unclean shutdown, 568 * the intent log claims all blocks that contain immediate write data 569 * so that the SPA knows they're in use. 570 * 571 * All claims *must* be resolved in the first txg -- before the SPA 572 * starts allocating blocks -- so that nothing is allocated twice. 573 */ 574 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); 575 ASSERT3U(spa_first_txg(spa), <=, txg); 576 577 zio = zio_create(pio, spa, txg, bp, NULL, 0, done, private, 578 ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 0, 579 ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 580 581 zio->io_bp = &zio->io_bp_copy; 582 583 return (zio); 584 } 585 586 zio_t * 587 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 588 zio_done_func_t *done, void *private, int priority, int flags) 589 { 590 zio_t *zio; 591 int c; 592 593 if (vd->vdev_children == 0) { 594 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 595 ZIO_TYPE_IOCTL, priority, flags, 596 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 597 598 zio->io_vd = vd; 599 zio->io_cmd = cmd; 600 } else { 601 zio = zio_null(pio, spa, NULL, NULL, flags); 602 603 for (c = 0; c < vd->vdev_children; c++) 604 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 605 done, private, priority, flags)); 606 } 607 608 return (zio); 609 } 610 611 static void 612 zio_phys_bp_init(vdev_t *vd, blkptr_t *bp, uint64_t offset, uint64_t size, 613 int checksum) 614 { 615 ASSERT(vd->vdev_children == 0); 616 617 ASSERT(size <= SPA_MAXBLOCKSIZE); 618 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 619 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 620 621 ASSERT(offset + size <= VDEV_LABEL_START_SIZE || 622 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 623 ASSERT3U(offset + size, <=, vd->vdev_psize); 624 625 BP_ZERO(bp); 626 627 BP_SET_LSIZE(bp, size); 628 BP_SET_PSIZE(bp, size); 629 630 BP_SET_CHECKSUM(bp, checksum); 631 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 632 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 633 634 if (checksum != ZIO_CHECKSUM_OFF) 635 ZIO_SET_CHECKSUM(&bp->blk_cksum, offset, 0, 0, 0); 636 } 637 638 zio_t * 639 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 640 void *data, int checksum, zio_done_func_t *done, void *private, 641 int priority, int flags) 642 { 643 zio_t *zio; 644 blkptr_t blk; 645 646 zio_phys_bp_init(vd, &blk, offset, size, checksum); 647 648 zio = zio_create(pio, vd->vdev_spa, 0, &blk, data, size, done, private, 649 ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, 650 ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 651 652 zio->io_vd = vd; 653 zio->io_offset = offset; 654 655 /* 656 * Work off our copy of the bp so the caller can free it. 657 */ 658 zio->io_bp = &zio->io_bp_copy; 659 660 return (zio); 661 } 662 663 zio_t * 664 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 665 void *data, int checksum, zio_done_func_t *done, void *private, 666 int priority, int flags) 667 { 668 zio_block_tail_t *zbt; 669 void *wbuf; 670 zio_t *zio; 671 blkptr_t blk; 672 673 zio_phys_bp_init(vd, &blk, offset, size, checksum); 674 675 zio = zio_create(pio, vd->vdev_spa, 0, &blk, data, size, done, private, 676 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, 677 ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 678 679 zio->io_vd = vd; 680 zio->io_offset = offset; 681 682 zio->io_bp = &zio->io_bp_copy; 683 zio->io_checksum = checksum; 684 685 if (zio_checksum_table[checksum].ci_zbt) { 686 /* 687 * zbt checksums are necessarily destructive -- they modify 688 * one word of the write buffer to hold the verifier/checksum. 689 * Therefore, we must make a local copy in case the data is 690 * being written to multiple places. 691 */ 692 wbuf = zio_buf_alloc(size); 693 bcopy(data, wbuf, size); 694 zio_push_transform(zio, wbuf, size, size); 695 696 zbt = (zio_block_tail_t *)((char *)wbuf + size) - 1; 697 zbt->zbt_cksum = blk.blk_cksum; 698 } 699 700 return (zio); 701 } 702 703 /* 704 * Create a child I/O to do some work for us. It has no associated bp. 705 */ 706 zio_t * 707 zio_vdev_child_io(zio_t *zio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 708 void *data, uint64_t size, int type, int priority, int flags, 709 zio_done_func_t *done, void *private) 710 { 711 uint32_t pipeline = ZIO_VDEV_CHILD_PIPELINE; 712 zio_t *cio; 713 714 if (type == ZIO_TYPE_READ && bp != NULL) { 715 /* 716 * If we have the bp, then the child should perform the 717 * checksum and the parent need not. This pushes error 718 * detection as close to the leaves as possible and 719 * eliminates redundant checksums in the interior nodes. 720 */ 721 pipeline |= 1U << ZIO_STAGE_CHECKSUM_VERIFY; 722 zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 723 } 724 725 cio = zio_create(zio, zio->io_spa, zio->io_txg, bp, data, size, 726 done, private, type, priority, 727 (zio->io_flags & ZIO_FLAG_VDEV_INHERIT) | ZIO_FLAG_CANFAIL | flags, 728 ZIO_STAGE_VDEV_IO_START - 1, pipeline); 729 730 cio->io_vd = vd; 731 cio->io_offset = offset; 732 733 return (cio); 734 } 735 736 /* 737 * ========================================================================== 738 * Initiate I/O, either sync or async 739 * ========================================================================== 740 */ 741 int 742 zio_wait(zio_t *zio) 743 { 744 int error; 745 746 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 747 748 zio->io_waiter = curthread; 749 750 zio_next_stage_async(zio); 751 752 mutex_enter(&zio->io_lock); 753 while (zio->io_stalled != ZIO_STAGE_DONE) 754 cv_wait(&zio->io_cv, &zio->io_lock); 755 mutex_exit(&zio->io_lock); 756 757 error = zio->io_error; 758 mutex_destroy(&zio->io_lock); 759 kmem_cache_free(zio_cache, zio); 760 761 return (error); 762 } 763 764 void 765 zio_nowait(zio_t *zio) 766 { 767 zio_next_stage_async(zio); 768 } 769 770 /* 771 * ========================================================================== 772 * I/O pipeline interlocks: parent/child dependency scoreboarding 773 * ========================================================================== 774 */ 775 static void 776 zio_wait_for_children(zio_t *zio, uint32_t stage, uint64_t *countp) 777 { 778 mutex_enter(&zio->io_lock); 779 if (*countp == 0) { 780 ASSERT(zio->io_stalled == 0); 781 mutex_exit(&zio->io_lock); 782 zio_next_stage(zio); 783 } else { 784 zio->io_stalled = stage; 785 mutex_exit(&zio->io_lock); 786 } 787 } 788 789 static void 790 zio_notify_parent(zio_t *zio, uint32_t stage, uint64_t *countp) 791 { 792 zio_t *pio = zio->io_parent; 793 794 mutex_enter(&pio->io_lock); 795 if (pio->io_error == 0 && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 796 pio->io_error = zio->io_error; 797 if (--*countp == 0 && pio->io_stalled == stage) { 798 pio->io_stalled = 0; 799 mutex_exit(&pio->io_lock); 800 zio_next_stage_async(pio); 801 } else { 802 mutex_exit(&pio->io_lock); 803 } 804 } 805 806 static void 807 zio_wait_children_ready(zio_t *zio) 808 { 809 zio_wait_for_children(zio, ZIO_STAGE_WAIT_CHILDREN_READY, 810 &zio->io_children_notready); 811 } 812 813 void 814 zio_wait_children_done(zio_t *zio) 815 { 816 zio_wait_for_children(zio, ZIO_STAGE_WAIT_CHILDREN_DONE, 817 &zio->io_children_notdone); 818 } 819 820 static void 821 zio_ready(zio_t *zio) 822 { 823 zio_t *pio = zio->io_parent; 824 825 if (zio->io_ready) 826 zio->io_ready(zio); 827 828 if (pio != NULL) 829 zio_notify_parent(zio, ZIO_STAGE_WAIT_CHILDREN_READY, 830 &pio->io_children_notready); 831 832 if (zio->io_bp) 833 zio->io_bp_copy = *zio->io_bp; 834 835 zio_next_stage(zio); 836 } 837 838 static void 839 zio_done(zio_t *zio) 840 { 841 zio_t *pio = zio->io_parent; 842 spa_t *spa = zio->io_spa; 843 blkptr_t *bp = zio->io_bp; 844 vdev_t *vd = zio->io_vd; 845 846 ASSERT(zio->io_children_notready == 0); 847 ASSERT(zio->io_children_notdone == 0); 848 849 if (bp != NULL) { 850 ASSERT(bp->blk_pad[0] == 0); 851 ASSERT(bp->blk_pad[1] == 0); 852 ASSERT(bp->blk_pad[2] == 0); 853 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0); 854 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 855 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 856 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 857 if (zio->io_ndvas != 0) 858 ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(bp)); 859 ASSERT(BP_COUNT_GANG(bp) == 0 || 860 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 861 } 862 } 863 864 if (vd != NULL) 865 vdev_stat_update(zio); 866 867 if (zio->io_error) { 868 /* 869 * If this I/O is attached to a particular vdev, 870 * generate an error message describing the I/O failure 871 * at the block level. We ignore these errors if the 872 * device is currently unavailable. 873 */ 874 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 875 zfs_ereport_post(FM_EREPORT_ZFS_IO, 876 zio->io_spa, vd, zio, 0, 0); 877 878 if ((zio->io_error == EIO || 879 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) && 880 zio->io_logical == zio) { 881 /* 882 * For root I/O requests, tell the SPA to log the error 883 * appropriately. Also, generate a logical data 884 * ereport. 885 */ 886 spa_log_error(zio->io_spa, zio); 887 888 zfs_ereport_post(FM_EREPORT_ZFS_DATA, 889 zio->io_spa, NULL, zio, 0, 0); 890 } 891 892 /* 893 * For I/O requests that cannot fail, panic appropriately. 894 */ 895 if (!(zio->io_flags & ZIO_FLAG_CANFAIL)) { 896 char *blkbuf; 897 898 blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_NOSLEEP); 899 if (blkbuf) { 900 sprintf_blkptr(blkbuf, BP_SPRINTF_LEN, 901 bp ? bp : &zio->io_bp_copy); 902 } 903 panic("ZFS: %s (%s on %s off %llx: zio %p %s): error " 904 "%d", zio->io_error == ECKSUM ? 905 "bad checksum" : "I/O failure", 906 zio_type_name[zio->io_type], 907 vdev_description(vd), 908 (u_longlong_t)zio->io_offset, 909 zio, blkbuf ? blkbuf : "", zio->io_error); 910 } 911 } 912 zio_clear_transform_stack(zio); 913 914 if (zio->io_done) 915 zio->io_done(zio); 916 917 ASSERT(zio->io_delegate_list == NULL); 918 ASSERT(zio->io_delegate_next == NULL); 919 920 if (pio != NULL) { 921 zio_t *next, *prev; 922 923 mutex_enter(&pio->io_lock); 924 next = zio->io_sibling_next; 925 prev = zio->io_sibling_prev; 926 if (next != NULL) 927 next->io_sibling_prev = prev; 928 if (prev != NULL) 929 prev->io_sibling_next = next; 930 if (pio->io_child == zio) 931 pio->io_child = next; 932 mutex_exit(&pio->io_lock); 933 934 zio_notify_parent(zio, ZIO_STAGE_WAIT_CHILDREN_DONE, 935 &pio->io_children_notdone); 936 } 937 938 /* 939 * Note: this I/O is now done, and will shortly be freed, so there is no 940 * need to clear this (or any other) flag. 941 */ 942 if (zio->io_flags & ZIO_FLAG_CONFIG_GRABBED) 943 spa_config_exit(spa, zio); 944 945 if (zio->io_waiter != NULL) { 946 mutex_enter(&zio->io_lock); 947 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 948 zio->io_stalled = zio->io_stage; 949 cv_broadcast(&zio->io_cv); 950 mutex_exit(&zio->io_lock); 951 } else { 952 kmem_cache_free(zio_cache, zio); 953 } 954 } 955 956 /* 957 * ========================================================================== 958 * Compression support 959 * ========================================================================== 960 */ 961 static void 962 zio_write_compress(zio_t *zio) 963 { 964 int compress = zio->io_compress; 965 blkptr_t *bp = zio->io_bp; 966 void *cbuf; 967 uint64_t lsize = zio->io_size; 968 uint64_t csize = lsize; 969 uint64_t cbufsize = 0; 970 int pass; 971 972 if (bp->blk_birth == zio->io_txg) { 973 /* 974 * We're rewriting an existing block, which means we're 975 * working on behalf of spa_sync(). For spa_sync() to 976 * converge, it must eventually be the case that we don't 977 * have to allocate new blocks. But compression changes 978 * the blocksize, which forces a reallocate, and makes 979 * convergence take longer. Therefore, after the first 980 * few passes, stop compressing to ensure convergence. 981 */ 982 pass = spa_sync_pass(zio->io_spa); 983 if (pass > zio_sync_pass.zp_dontcompress) 984 compress = ZIO_COMPRESS_OFF; 985 } else { 986 ASSERT(BP_IS_HOLE(bp)); 987 pass = 1; 988 } 989 990 if (compress != ZIO_COMPRESS_OFF) 991 if (!zio_compress_data(compress, zio->io_data, zio->io_size, 992 &cbuf, &csize, &cbufsize)) 993 compress = ZIO_COMPRESS_OFF; 994 995 if (compress != ZIO_COMPRESS_OFF && csize != 0) 996 zio_push_transform(zio, cbuf, csize, cbufsize); 997 998 /* 999 * The final pass of spa_sync() must be all rewrites, but the first 1000 * few passes offer a trade-off: allocating blocks defers convergence, 1001 * but newly allocated blocks are sequential, so they can be written 1002 * to disk faster. Therefore, we allow the first few passes of 1003 * spa_sync() to reallocate new blocks, but force rewrites after that. 1004 * There should only be a handful of blocks after pass 1 in any case. 1005 */ 1006 if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == csize && 1007 pass > zio_sync_pass.zp_rewrite) { 1008 ASSERT(csize != 0); 1009 BP_SET_LSIZE(bp, lsize); 1010 BP_SET_COMPRESS(bp, compress); 1011 zio->io_pipeline = ZIO_REWRITE_PIPELINE; 1012 } else { 1013 if (bp->blk_birth == zio->io_txg) 1014 BP_ZERO(bp); 1015 if (csize == 0) { 1016 BP_ZERO(bp); 1017 zio->io_pipeline = ZIO_WAIT_FOR_CHILDREN_PIPELINE; 1018 } else { 1019 ASSERT3U(BP_GET_NDVAS(bp), ==, 0); 1020 BP_SET_LSIZE(bp, lsize); 1021 BP_SET_PSIZE(bp, csize); 1022 BP_SET_COMPRESS(bp, compress); 1023 zio->io_pipeline = ZIO_WRITE_ALLOCATE_PIPELINE; 1024 } 1025 } 1026 1027 zio_next_stage(zio); 1028 } 1029 1030 static void 1031 zio_read_decompress(zio_t *zio) 1032 { 1033 blkptr_t *bp = zio->io_bp; 1034 void *data; 1035 uint64_t size; 1036 uint64_t bufsize; 1037 int compress = BP_GET_COMPRESS(bp); 1038 1039 ASSERT(compress != ZIO_COMPRESS_OFF); 1040 1041 zio_pop_transform(zio, &data, &size, &bufsize); 1042 1043 if (zio_decompress_data(compress, data, size, 1044 zio->io_data, zio->io_size)) 1045 zio->io_error = EIO; 1046 1047 zio_buf_free(data, bufsize); 1048 1049 zio_next_stage(zio); 1050 } 1051 1052 /* 1053 * ========================================================================== 1054 * Gang block support 1055 * ========================================================================== 1056 */ 1057 static void 1058 zio_gang_pipeline(zio_t *zio) 1059 { 1060 /* 1061 * By default, the pipeline assumes that we're dealing with a gang 1062 * block. If we're not, strip out any gang-specific stages. 1063 */ 1064 if (!BP_IS_GANG(zio->io_bp)) 1065 zio->io_pipeline &= ~ZIO_GANG_STAGES; 1066 1067 zio_next_stage(zio); 1068 } 1069 1070 static void 1071 zio_gang_byteswap(zio_t *zio) 1072 { 1073 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 1074 1075 if (BP_SHOULD_BYTESWAP(zio->io_bp)) 1076 byteswap_uint64_array(zio->io_data, zio->io_size); 1077 } 1078 1079 static void 1080 zio_get_gang_header(zio_t *zio) 1081 { 1082 blkptr_t *bp = zio->io_bp; 1083 uint64_t gsize = SPA_GANGBLOCKSIZE; 1084 void *gbuf = zio_buf_alloc(gsize); 1085 1086 ASSERT(BP_IS_GANG(bp)); 1087 1088 zio_push_transform(zio, gbuf, gsize, gsize); 1089 1090 zio_nowait(zio_create(zio, zio->io_spa, bp->blk_birth, bp, gbuf, gsize, 1091 NULL, NULL, ZIO_TYPE_READ, zio->io_priority, 1092 zio->io_flags & ZIO_FLAG_GANG_INHERIT, 1093 ZIO_STAGE_OPEN, ZIO_READ_PIPELINE)); 1094 1095 zio_wait_children_done(zio); 1096 } 1097 1098 static void 1099 zio_read_gang_members(zio_t *zio) 1100 { 1101 zio_gbh_phys_t *gbh; 1102 uint64_t gsize, gbufsize, loff, lsize; 1103 int i; 1104 1105 ASSERT(BP_IS_GANG(zio->io_bp)); 1106 1107 zio_gang_byteswap(zio); 1108 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1109 1110 for (loff = 0, i = 0; loff != zio->io_size; loff += lsize, i++) { 1111 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1112 lsize = BP_GET_PSIZE(gbp); 1113 1114 ASSERT(BP_GET_COMPRESS(gbp) == ZIO_COMPRESS_OFF); 1115 ASSERT3U(lsize, ==, BP_GET_LSIZE(gbp)); 1116 ASSERT3U(loff + lsize, <=, zio->io_size); 1117 ASSERT(i < SPA_GBH_NBLKPTRS); 1118 ASSERT(!BP_IS_HOLE(gbp)); 1119 1120 zio_nowait(zio_read(zio, zio->io_spa, gbp, 1121 (char *)zio->io_data + loff, lsize, NULL, NULL, 1122 zio->io_priority, zio->io_flags & ZIO_FLAG_GANG_INHERIT, 1123 &zio->io_bookmark)); 1124 } 1125 1126 zio_buf_free(gbh, gbufsize); 1127 zio_wait_children_done(zio); 1128 } 1129 1130 static void 1131 zio_rewrite_gang_members(zio_t *zio) 1132 { 1133 zio_gbh_phys_t *gbh; 1134 uint64_t gsize, gbufsize, loff, lsize; 1135 int i; 1136 1137 ASSERT(BP_IS_GANG(zio->io_bp)); 1138 ASSERT3U(zio->io_size, ==, SPA_GANGBLOCKSIZE); 1139 1140 zio_gang_byteswap(zio); 1141 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1142 1143 ASSERT(gsize == gbufsize); 1144 1145 for (loff = 0, i = 0; loff != zio->io_size; loff += lsize, i++) { 1146 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1147 lsize = BP_GET_PSIZE(gbp); 1148 1149 ASSERT(BP_GET_COMPRESS(gbp) == ZIO_COMPRESS_OFF); 1150 ASSERT3U(lsize, ==, BP_GET_LSIZE(gbp)); 1151 ASSERT3U(loff + lsize, <=, zio->io_size); 1152 ASSERT(i < SPA_GBH_NBLKPTRS); 1153 ASSERT(!BP_IS_HOLE(gbp)); 1154 1155 zio_nowait(zio_rewrite(zio, zio->io_spa, zio->io_checksum, 1156 zio->io_txg, gbp, (char *)zio->io_data + loff, lsize, 1157 NULL, NULL, zio->io_priority, zio->io_flags, 1158 &zio->io_bookmark)); 1159 } 1160 1161 zio_push_transform(zio, gbh, gsize, gbufsize); 1162 zio_wait_children_ready(zio); 1163 } 1164 1165 static void 1166 zio_free_gang_members(zio_t *zio) 1167 { 1168 zio_gbh_phys_t *gbh; 1169 uint64_t gsize, gbufsize; 1170 int i; 1171 1172 ASSERT(BP_IS_GANG(zio->io_bp)); 1173 1174 zio_gang_byteswap(zio); 1175 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1176 1177 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 1178 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1179 1180 if (BP_IS_HOLE(gbp)) 1181 continue; 1182 zio_nowait(zio_free(zio, zio->io_spa, zio->io_txg, 1183 gbp, NULL, NULL)); 1184 } 1185 1186 zio_buf_free(gbh, gbufsize); 1187 zio_next_stage(zio); 1188 } 1189 1190 static void 1191 zio_claim_gang_members(zio_t *zio) 1192 { 1193 zio_gbh_phys_t *gbh; 1194 uint64_t gsize, gbufsize; 1195 int i; 1196 1197 ASSERT(BP_IS_GANG(zio->io_bp)); 1198 1199 zio_gang_byteswap(zio); 1200 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1201 1202 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 1203 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1204 if (BP_IS_HOLE(gbp)) 1205 continue; 1206 zio_nowait(zio_claim(zio, zio->io_spa, zio->io_txg, 1207 gbp, NULL, NULL)); 1208 } 1209 1210 zio_buf_free(gbh, gbufsize); 1211 zio_next_stage(zio); 1212 } 1213 1214 static void 1215 zio_write_allocate_gang_member_done(zio_t *zio) 1216 { 1217 zio_t *pio = zio->io_parent; 1218 dva_t *cdva = zio->io_bp->blk_dva; 1219 dva_t *pdva = pio->io_bp->blk_dva; 1220 uint64_t asize; 1221 int d; 1222 1223 ASSERT3U(pio->io_ndvas, ==, zio->io_ndvas); 1224 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 1225 ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(zio->io_bp)); 1226 ASSERT3U(pio->io_ndvas, <=, BP_GET_NDVAS(pio->io_bp)); 1227 1228 mutex_enter(&pio->io_lock); 1229 for (d = 0; d < BP_GET_NDVAS(pio->io_bp); d++) { 1230 ASSERT(DVA_GET_GANG(&pdva[d])); 1231 asize = DVA_GET_ASIZE(&pdva[d]); 1232 asize += DVA_GET_ASIZE(&cdva[d]); 1233 DVA_SET_ASIZE(&pdva[d], asize); 1234 } 1235 mutex_exit(&pio->io_lock); 1236 } 1237 1238 static void 1239 zio_write_allocate_gang_members(zio_t *zio) 1240 { 1241 blkptr_t *bp = zio->io_bp; 1242 dva_t *dva = bp->blk_dva; 1243 spa_t *spa = zio->io_spa; 1244 zio_gbh_phys_t *gbh; 1245 uint64_t txg = zio->io_txg; 1246 uint64_t resid = zio->io_size; 1247 uint64_t maxalloc = P2ROUNDUP(zio->io_size >> 1, SPA_MINBLOCKSIZE); 1248 uint64_t gsize, loff, lsize; 1249 uint32_t gbps_left; 1250 int ndvas = zio->io_ndvas; 1251 int gbh_ndvas = MIN(ndvas + 1, spa_max_replication(spa)); 1252 int error; 1253 int i, d; 1254 1255 gsize = SPA_GANGBLOCKSIZE; 1256 gbps_left = SPA_GBH_NBLKPTRS; 1257 1258 error = metaslab_alloc(spa, gsize, bp, gbh_ndvas, txg, NULL, B_FALSE); 1259 if (error == ENOSPC) 1260 panic("can't allocate gang block header"); 1261 ASSERT(error == 0); 1262 1263 for (d = 0; d < gbh_ndvas; d++) 1264 DVA_SET_GANG(&dva[d], 1); 1265 1266 bp->blk_birth = txg; 1267 1268 gbh = zio_buf_alloc(gsize); 1269 bzero(gbh, gsize); 1270 1271 /* We need to test multi-level gang blocks */ 1272 if (maxalloc >= zio_gang_bang && (lbolt & 0x1) == 0) 1273 maxalloc = MAX(maxalloc >> 2, SPA_MINBLOCKSIZE); 1274 1275 for (loff = 0, i = 0; loff != zio->io_size; 1276 loff += lsize, resid -= lsize, gbps_left--, i++) { 1277 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1278 dva = gbp->blk_dva; 1279 1280 ASSERT(gbps_left != 0); 1281 maxalloc = MIN(maxalloc, resid); 1282 1283 while (resid <= maxalloc * gbps_left) { 1284 error = metaslab_alloc(spa, maxalloc, gbp, ndvas, 1285 txg, bp, B_FALSE); 1286 if (error == 0) 1287 break; 1288 ASSERT3U(error, ==, ENOSPC); 1289 if (maxalloc == SPA_MINBLOCKSIZE) 1290 panic("really out of space"); 1291 maxalloc = P2ROUNDUP(maxalloc >> 1, SPA_MINBLOCKSIZE); 1292 } 1293 1294 if (resid <= maxalloc * gbps_left) { 1295 lsize = maxalloc; 1296 BP_SET_LSIZE(gbp, lsize); 1297 BP_SET_PSIZE(gbp, lsize); 1298 BP_SET_COMPRESS(gbp, ZIO_COMPRESS_OFF); 1299 gbp->blk_birth = txg; 1300 zio_nowait(zio_rewrite(zio, spa, 1301 zio->io_checksum, txg, gbp, 1302 (char *)zio->io_data + loff, lsize, 1303 zio_write_allocate_gang_member_done, NULL, 1304 zio->io_priority, zio->io_flags, 1305 &zio->io_bookmark)); 1306 } else { 1307 lsize = P2ROUNDUP(resid / gbps_left, SPA_MINBLOCKSIZE); 1308 ASSERT(lsize != SPA_MINBLOCKSIZE); 1309 zio_nowait(zio_write_allocate(zio, spa, 1310 zio->io_checksum, txg, gbp, 1311 (char *)zio->io_data + loff, lsize, 1312 zio_write_allocate_gang_member_done, NULL, 1313 zio->io_priority, zio->io_flags)); 1314 } 1315 } 1316 1317 ASSERT(resid == 0 && loff == zio->io_size); 1318 1319 zio->io_pipeline |= 1U << ZIO_STAGE_GANG_CHECKSUM_GENERATE; 1320 1321 zio_push_transform(zio, gbh, gsize, gsize); 1322 /* 1323 * As much as we'd like this to be zio_wait_children_ready(), 1324 * updating our ASIZE doesn't happen until the io_done callback, 1325 * so we have to wait for that to finish in order for our BP 1326 * to be stable. 1327 */ 1328 zio_wait_children_done(zio); 1329 } 1330 1331 /* 1332 * ========================================================================== 1333 * Allocate and free blocks 1334 * ========================================================================== 1335 */ 1336 static void 1337 zio_dva_allocate(zio_t *zio) 1338 { 1339 blkptr_t *bp = zio->io_bp; 1340 int error; 1341 1342 ASSERT(BP_IS_HOLE(bp)); 1343 ASSERT3U(BP_GET_NDVAS(bp), ==, 0); 1344 ASSERT3U(zio->io_ndvas, >, 0); 1345 ASSERT3U(zio->io_ndvas, <=, spa_max_replication(zio->io_spa)); 1346 1347 /* For testing, make some blocks above a certain size be gang blocks */ 1348 if (zio->io_size >= zio_gang_bang && (lbolt & 0x3) == 0) { 1349 zio_write_allocate_gang_members(zio); 1350 return; 1351 } 1352 1353 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 1354 1355 error = metaslab_alloc(zio->io_spa, zio->io_size, bp, zio->io_ndvas, 1356 zio->io_txg, NULL, B_FALSE); 1357 1358 if (error == 0) { 1359 bp->blk_birth = zio->io_txg; 1360 } else if (error == ENOSPC) { 1361 if (zio->io_size == SPA_MINBLOCKSIZE) 1362 panic("really, truly out of space"); 1363 zio_write_allocate_gang_members(zio); 1364 return; 1365 } else { 1366 zio->io_error = error; 1367 } 1368 zio_next_stage(zio); 1369 } 1370 1371 static void 1372 zio_dva_free(zio_t *zio) 1373 { 1374 blkptr_t *bp = zio->io_bp; 1375 1376 metaslab_free(zio->io_spa, bp, zio->io_txg, B_FALSE); 1377 1378 BP_ZERO(bp); 1379 1380 zio_next_stage(zio); 1381 } 1382 1383 static void 1384 zio_dva_claim(zio_t *zio) 1385 { 1386 zio->io_error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 1387 1388 zio_next_stage(zio); 1389 } 1390 1391 /* 1392 * ========================================================================== 1393 * Read and write to physical devices 1394 * ========================================================================== 1395 */ 1396 1397 static void 1398 zio_vdev_io_start(zio_t *zio) 1399 { 1400 vdev_t *vd = zio->io_vd; 1401 vdev_t *tvd = vd ? vd->vdev_top : NULL; 1402 blkptr_t *bp = zio->io_bp; 1403 uint64_t align; 1404 1405 if (vd == NULL) { 1406 /* The mirror_ops handle multiple DVAs in a single BP */ 1407 vdev_mirror_ops.vdev_op_io_start(zio); 1408 return; 1409 } 1410 1411 align = 1ULL << tvd->vdev_ashift; 1412 1413 if (zio->io_retries == 0 && vd == tvd) 1414 zio->io_flags |= ZIO_FLAG_FAILFAST; 1415 1416 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 1417 vd->vdev_children == 0) { 1418 zio->io_flags |= ZIO_FLAG_PHYSICAL; 1419 zio->io_offset += VDEV_LABEL_START_SIZE; 1420 } 1421 1422 if (P2PHASE(zio->io_size, align) != 0) { 1423 uint64_t asize = P2ROUNDUP(zio->io_size, align); 1424 char *abuf = zio_buf_alloc(asize); 1425 ASSERT(vd == tvd); 1426 if (zio->io_type == ZIO_TYPE_WRITE) { 1427 bcopy(zio->io_data, abuf, zio->io_size); 1428 bzero(abuf + zio->io_size, asize - zio->io_size); 1429 } 1430 zio_push_transform(zio, abuf, asize, asize); 1431 ASSERT(!(zio->io_flags & ZIO_FLAG_SUBBLOCK)); 1432 zio->io_flags |= ZIO_FLAG_SUBBLOCK; 1433 } 1434 1435 ASSERT(P2PHASE(zio->io_offset, align) == 0); 1436 ASSERT(P2PHASE(zio->io_size, align) == 0); 1437 ASSERT(bp == NULL || 1438 P2ROUNDUP(ZIO_GET_IOSIZE(zio), align) == zio->io_size); 1439 ASSERT(zio->io_type != ZIO_TYPE_WRITE || (spa_mode & FWRITE)); 1440 1441 vdev_io_start(zio); 1442 1443 /* zio_next_stage_async() gets called from io completion interrupt */ 1444 } 1445 1446 static void 1447 zio_vdev_io_done(zio_t *zio) 1448 { 1449 if (zio->io_vd == NULL) 1450 /* The mirror_ops handle multiple DVAs in a single BP */ 1451 vdev_mirror_ops.vdev_op_io_done(zio); 1452 else 1453 vdev_io_done(zio); 1454 } 1455 1456 /* XXPOLICY */ 1457 boolean_t 1458 zio_should_retry(zio_t *zio) 1459 { 1460 vdev_t *vd = zio->io_vd; 1461 1462 if (zio->io_error == 0) 1463 return (B_FALSE); 1464 if (zio->io_delegate_list != NULL) 1465 return (B_FALSE); 1466 if (vd && vd != vd->vdev_top) 1467 return (B_FALSE); 1468 if (zio->io_flags & ZIO_FLAG_DONT_RETRY) 1469 return (B_FALSE); 1470 if (zio->io_retries > 0) 1471 return (B_FALSE); 1472 1473 return (B_TRUE); 1474 } 1475 1476 static void 1477 zio_vdev_io_assess(zio_t *zio) 1478 { 1479 vdev_t *vd = zio->io_vd; 1480 vdev_t *tvd = vd ? vd->vdev_top : NULL; 1481 1482 ASSERT(zio->io_vsd == NULL); 1483 1484 if (zio->io_flags & ZIO_FLAG_SUBBLOCK) { 1485 void *abuf; 1486 uint64_t asize; 1487 ASSERT(vd == tvd); 1488 zio_pop_transform(zio, &abuf, &asize, &asize); 1489 if (zio->io_type == ZIO_TYPE_READ) 1490 bcopy(abuf, zio->io_data, zio->io_size); 1491 zio_buf_free(abuf, asize); 1492 zio->io_flags &= ~ZIO_FLAG_SUBBLOCK; 1493 } 1494 1495 if (zio_injection_enabled && !zio->io_error) 1496 zio->io_error = zio_handle_fault_injection(zio, EIO); 1497 1498 /* 1499 * If the I/O failed, determine whether we should attempt to retry it. 1500 */ 1501 /* XXPOLICY */ 1502 if (zio_should_retry(zio)) { 1503 ASSERT(tvd == vd); 1504 1505 zio->io_retries++; 1506 zio->io_error = 0; 1507 zio->io_flags &= ZIO_FLAG_VDEV_INHERIT | 1508 ZIO_FLAG_CONFIG_GRABBED; 1509 /* XXPOLICY */ 1510 zio->io_flags &= ~ZIO_FLAG_FAILFAST; 1511 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1512 zio->io_stage = ZIO_STAGE_VDEV_IO_START - 1; 1513 1514 dprintf("retry #%d for %s to %s offset %llx\n", 1515 zio->io_retries, zio_type_name[zio->io_type], 1516 vdev_description(vd), zio->io_offset); 1517 1518 zio_next_stage_async(zio); 1519 return; 1520 } 1521 1522 zio_next_stage(zio); 1523 } 1524 1525 void 1526 zio_vdev_io_reissue(zio_t *zio) 1527 { 1528 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1529 ASSERT(zio->io_error == 0); 1530 1531 zio->io_stage--; 1532 } 1533 1534 void 1535 zio_vdev_io_redone(zio_t *zio) 1536 { 1537 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 1538 1539 zio->io_stage--; 1540 } 1541 1542 void 1543 zio_vdev_io_bypass(zio_t *zio) 1544 { 1545 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1546 ASSERT(zio->io_error == 0); 1547 1548 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 1549 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS - 1; 1550 } 1551 1552 /* 1553 * ========================================================================== 1554 * Generate and verify checksums 1555 * ========================================================================== 1556 */ 1557 static void 1558 zio_checksum_generate(zio_t *zio) 1559 { 1560 int checksum = zio->io_checksum; 1561 blkptr_t *bp = zio->io_bp; 1562 1563 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 1564 1565 BP_SET_CHECKSUM(bp, checksum); 1566 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1567 1568 zio_checksum(checksum, &bp->blk_cksum, zio->io_data, zio->io_size); 1569 1570 zio_next_stage(zio); 1571 } 1572 1573 static void 1574 zio_gang_checksum_generate(zio_t *zio) 1575 { 1576 zio_cksum_t zc; 1577 zio_gbh_phys_t *gbh = zio->io_data; 1578 1579 ASSERT(BP_IS_GANG(zio->io_bp)); 1580 ASSERT3U(zio->io_size, ==, SPA_GANGBLOCKSIZE); 1581 1582 zio_set_gang_verifier(zio, &gbh->zg_tail.zbt_cksum); 1583 1584 zio_checksum(ZIO_CHECKSUM_GANG_HEADER, &zc, zio->io_data, zio->io_size); 1585 1586 zio_next_stage(zio); 1587 } 1588 1589 static void 1590 zio_checksum_verify(zio_t *zio) 1591 { 1592 if (zio->io_bp != NULL) { 1593 zio->io_error = zio_checksum_error(zio); 1594 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) 1595 zfs_ereport_post(FM_EREPORT_ZFS_CHECKSUM, 1596 zio->io_spa, zio->io_vd, zio, 0, 0); 1597 } 1598 1599 zio_next_stage(zio); 1600 } 1601 1602 /* 1603 * Called by RAID-Z to ensure we don't compute the checksum twice. 1604 */ 1605 void 1606 zio_checksum_verified(zio_t *zio) 1607 { 1608 zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 1609 } 1610 1611 /* 1612 * Set the external verifier for a gang block based on stuff in the bp 1613 */ 1614 void 1615 zio_set_gang_verifier(zio_t *zio, zio_cksum_t *zcp) 1616 { 1617 blkptr_t *bp = zio->io_bp; 1618 1619 zcp->zc_word[0] = DVA_GET_VDEV(BP_IDENTITY(bp)); 1620 zcp->zc_word[1] = DVA_GET_OFFSET(BP_IDENTITY(bp)); 1621 zcp->zc_word[2] = bp->blk_birth; 1622 zcp->zc_word[3] = 0; 1623 } 1624 1625 /* 1626 * ========================================================================== 1627 * Define the pipeline 1628 * ========================================================================== 1629 */ 1630 typedef void zio_pipe_stage_t(zio_t *zio); 1631 1632 static void 1633 zio_badop(zio_t *zio) 1634 { 1635 panic("Invalid I/O pipeline stage %u for zio %p", zio->io_stage, zio); 1636 } 1637 1638 zio_pipe_stage_t *zio_pipeline[ZIO_STAGE_DONE + 2] = { 1639 zio_badop, 1640 zio_wait_children_ready, 1641 zio_write_compress, 1642 zio_checksum_generate, 1643 zio_gang_pipeline, 1644 zio_get_gang_header, 1645 zio_rewrite_gang_members, 1646 zio_free_gang_members, 1647 zio_claim_gang_members, 1648 zio_dva_allocate, 1649 zio_dva_free, 1650 zio_dva_claim, 1651 zio_gang_checksum_generate, 1652 zio_ready, 1653 zio_vdev_io_start, 1654 zio_vdev_io_done, 1655 zio_vdev_io_assess, 1656 zio_wait_children_done, 1657 zio_checksum_verify, 1658 zio_read_gang_members, 1659 zio_read_decompress, 1660 zio_done, 1661 zio_badop 1662 }; 1663 1664 /* 1665 * Move an I/O to the next stage of the pipeline and execute that stage. 1666 * There's no locking on io_stage because there's no legitimate way for 1667 * multiple threads to be attempting to process the same I/O. 1668 */ 1669 void 1670 zio_next_stage(zio_t *zio) 1671 { 1672 uint32_t pipeline = zio->io_pipeline; 1673 1674 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1675 1676 if (zio->io_error) { 1677 dprintf("zio %p vdev %s offset %llx stage %d error %d\n", 1678 zio, vdev_description(zio->io_vd), 1679 zio->io_offset, zio->io_stage, zio->io_error); 1680 if (((1U << zio->io_stage) & ZIO_VDEV_IO_PIPELINE) == 0) 1681 pipeline &= ZIO_ERROR_PIPELINE_MASK; 1682 } 1683 1684 while (((1U << ++zio->io_stage) & pipeline) == 0) 1685 continue; 1686 1687 ASSERT(zio->io_stage <= ZIO_STAGE_DONE); 1688 ASSERT(zio->io_stalled == 0); 1689 1690 /* 1691 * See the comment in zio_next_stage_async() about per-CPU taskqs. 1692 */ 1693 if (((1U << zio->io_stage) & zio->io_async_stages) && 1694 (zio->io_stage == ZIO_STAGE_WRITE_COMPRESS) && 1695 !(zio->io_flags & ZIO_FLAG_METADATA)) { 1696 taskq_t *tq = zio->io_spa->spa_zio_issue_taskq[zio->io_type]; 1697 (void) taskq_dispatch(tq, 1698 (task_func_t *)zio_pipeline[zio->io_stage], zio, TQ_SLEEP); 1699 } else { 1700 zio_pipeline[zio->io_stage](zio); 1701 } 1702 } 1703 1704 void 1705 zio_next_stage_async(zio_t *zio) 1706 { 1707 taskq_t *tq; 1708 uint32_t pipeline = zio->io_pipeline; 1709 1710 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1711 1712 if (zio->io_error) { 1713 dprintf("zio %p vdev %s offset %llx stage %d error %d\n", 1714 zio, vdev_description(zio->io_vd), 1715 zio->io_offset, zio->io_stage, zio->io_error); 1716 if (((1U << zio->io_stage) & ZIO_VDEV_IO_PIPELINE) == 0) 1717 pipeline &= ZIO_ERROR_PIPELINE_MASK; 1718 } 1719 1720 while (((1U << ++zio->io_stage) & pipeline) == 0) 1721 continue; 1722 1723 ASSERT(zio->io_stage <= ZIO_STAGE_DONE); 1724 ASSERT(zio->io_stalled == 0); 1725 1726 /* 1727 * For performance, we'll probably want two sets of task queues: 1728 * per-CPU issue taskqs and per-CPU completion taskqs. The per-CPU 1729 * part is for read performance: since we have to make a pass over 1730 * the data to checksum it anyway, we want to do this on the same CPU 1731 * that issued the read, because (assuming CPU scheduling affinity) 1732 * that thread is probably still there. Getting this optimization 1733 * right avoids performance-hostile cache-to-cache transfers. 1734 * 1735 * Note that having two sets of task queues is also necessary for 1736 * correctness: if all of the issue threads get bogged down waiting 1737 * for dependent reads (e.g. metaslab freelist) to complete, then 1738 * there won't be any threads available to service I/O completion 1739 * interrupts. 1740 */ 1741 if ((1U << zio->io_stage) & zio->io_async_stages) { 1742 if (zio->io_stage < ZIO_STAGE_VDEV_IO_DONE) 1743 tq = zio->io_spa->spa_zio_issue_taskq[zio->io_type]; 1744 else 1745 tq = zio->io_spa->spa_zio_intr_taskq[zio->io_type]; 1746 (void) taskq_dispatch(tq, 1747 (task_func_t *)zio_pipeline[zio->io_stage], zio, TQ_SLEEP); 1748 } else { 1749 zio_pipeline[zio->io_stage](zio); 1750 } 1751 } 1752 1753 static boolean_t 1754 zio_alloc_should_fail(void) 1755 { 1756 static uint16_t allocs = 0; 1757 1758 return (P2PHASE(allocs++, 1U<<zio_zil_fail_shift) == 0); 1759 } 1760 1761 /* 1762 * Try to allocate an intent log block. Return 0 on success, errno on failure. 1763 */ 1764 int 1765 zio_alloc_blk(spa_t *spa, uint64_t size, blkptr_t *new_bp, blkptr_t *old_bp, 1766 uint64_t txg) 1767 { 1768 int error; 1769 1770 spa_config_enter(spa, RW_READER, FTAG); 1771 1772 if (zio_zil_fail_shift && zio_alloc_should_fail()) { 1773 spa_config_exit(spa, FTAG); 1774 return (ENOSPC); 1775 } 1776 1777 /* 1778 * We were passed the previous log blocks dva_t in bp->blk_dva[0]. 1779 */ 1780 error = metaslab_alloc(spa, size, new_bp, 1, txg, old_bp, B_TRUE); 1781 1782 if (error == 0) { 1783 BP_SET_LSIZE(new_bp, size); 1784 BP_SET_PSIZE(new_bp, size); 1785 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 1786 BP_SET_CHECKSUM(new_bp, ZIO_CHECKSUM_ZILOG); 1787 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 1788 BP_SET_LEVEL(new_bp, 0); 1789 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 1790 new_bp->blk_birth = txg; 1791 } 1792 1793 spa_config_exit(spa, FTAG); 1794 1795 return (error); 1796 } 1797 1798 /* 1799 * Free an intent log block. We know it can't be a gang block, so there's 1800 * nothing to do except metaslab_free() it. 1801 */ 1802 void 1803 zio_free_blk(spa_t *spa, blkptr_t *bp, uint64_t txg) 1804 { 1805 ASSERT(!BP_IS_GANG(bp)); 1806 1807 spa_config_enter(spa, RW_READER, FTAG); 1808 1809 metaslab_free(spa, bp, txg, B_FALSE); 1810 1811 spa_config_exit(spa, FTAG); 1812 } 1813 1814 /* 1815 * start an async flush of the write cache for this vdev 1816 */ 1817 void 1818 zio_flush_vdev(spa_t *spa, uint64_t vdev, zio_t **zio) 1819 { 1820 vdev_t *vd; 1821 1822 /* 1823 * Lock out configuration changes. 1824 */ 1825 spa_config_enter(spa, RW_READER, FTAG); 1826 1827 if (*zio == NULL) 1828 *zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1829 1830 vd = vdev_lookup_top(spa, vdev); 1831 ASSERT(vd); 1832 1833 (void) zio_nowait(zio_ioctl(*zio, spa, vd, DKIOCFLUSHWRITECACHE, 1834 NULL, NULL, ZIO_PRIORITY_NOW, 1835 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 1836 1837 spa_config_exit(spa, FTAG); 1838 } 1839