1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/fm/fs/zfs.h> 29 #include <sys/spa.h> 30 #include <sys/txg.h> 31 #include <sys/spa_impl.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/zio_impl.h> 34 #include <sys/zio_compress.h> 35 #include <sys/zio_checksum.h> 36 #include <sys/dmu_objset.h> 37 #include <sys/arc.h> 38 #include <sys/ddt.h> 39 40 /* 41 * ========================================================================== 42 * I/O priority table 43 * ========================================================================== 44 */ 45 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = { 46 0, /* ZIO_PRIORITY_NOW */ 47 0, /* ZIO_PRIORITY_SYNC_READ */ 48 0, /* ZIO_PRIORITY_SYNC_WRITE */ 49 0, /* ZIO_PRIORITY_LOG_WRITE */ 50 1, /* ZIO_PRIORITY_CACHE_FILL */ 51 1, /* ZIO_PRIORITY_AGG */ 52 4, /* ZIO_PRIORITY_FREE */ 53 4, /* ZIO_PRIORITY_ASYNC_WRITE */ 54 6, /* ZIO_PRIORITY_ASYNC_READ */ 55 10, /* ZIO_PRIORITY_RESILVER */ 56 20, /* ZIO_PRIORITY_SCRUB */ 57 2, /* ZIO_PRIORITY_DDT_PREFETCH */ 58 }; 59 60 /* 61 * ========================================================================== 62 * I/O type descriptions 63 * ========================================================================== 64 */ 65 char *zio_type_name[ZIO_TYPES] = { 66 "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim", 67 "zio_ioctl" 68 }; 69 70 /* 71 * ========================================================================== 72 * I/O kmem caches 73 * ========================================================================== 74 */ 75 kmem_cache_t *zio_cache; 76 kmem_cache_t *zio_link_cache; 77 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 78 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 79 80 #ifdef _KERNEL 81 extern vmem_t *zio_alloc_arena; 82 #endif 83 extern int zfs_mg_alloc_failures; 84 85 /* 86 * The following actions directly effect the spa's sync-to-convergence logic. 87 * The values below define the sync pass when we start performing the action. 88 * Care should be taken when changing these values as they directly impact 89 * spa_sync() performance. Tuning these values may introduce subtle performance 90 * pathologies and should only be done in the context of performance analysis. 91 * These tunables will eventually be removed and replaced with #defines once 92 * enough analysis has been done to determine optimal values. 93 * 94 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 95 * regular blocks are not deferred. 96 */ 97 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ 98 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */ 99 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */ 100 101 /* 102 * An allocating zio is one that either currently has the DVA allocate 103 * stage set or will have it later in its lifetime. 104 */ 105 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 106 107 boolean_t zio_requeue_io_start_cut_in_line = B_TRUE; 108 109 #ifdef ZFS_DEBUG 110 int zio_buf_debug_limit = 16384; 111 #else 112 int zio_buf_debug_limit = 0; 113 #endif 114 115 void 116 zio_init(void) 117 { 118 size_t c; 119 vmem_t *data_alloc_arena = NULL; 120 121 #ifdef _KERNEL 122 data_alloc_arena = zio_alloc_arena; 123 #endif 124 zio_cache = kmem_cache_create("zio_cache", 125 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 126 zio_link_cache = kmem_cache_create("zio_link_cache", 127 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 128 129 /* 130 * For small buffers, we want a cache for each multiple of 131 * SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache 132 * for each quarter-power of 2. For large buffers, we want 133 * a cache for each multiple of PAGESIZE. 134 */ 135 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 136 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 137 size_t p2 = size; 138 size_t align = 0; 139 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0; 140 141 while (p2 & (p2 - 1)) 142 p2 &= p2 - 1; 143 144 #ifndef _KERNEL 145 /* 146 * If we are using watchpoints, put each buffer on its own page, 147 * to eliminate the performance overhead of trapping to the 148 * kernel when modifying a non-watched buffer that shares the 149 * page with a watched buffer. 150 */ 151 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 152 continue; 153 #endif 154 if (size <= 4 * SPA_MINBLOCKSIZE) { 155 align = SPA_MINBLOCKSIZE; 156 } else if (IS_P2ALIGNED(size, PAGESIZE)) { 157 align = PAGESIZE; 158 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 159 align = p2 >> 2; 160 } 161 162 if (align != 0) { 163 char name[36]; 164 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 165 zio_buf_cache[c] = kmem_cache_create(name, size, 166 align, NULL, NULL, NULL, NULL, NULL, cflags); 167 168 /* 169 * Since zio_data bufs do not appear in crash dumps, we 170 * pass KMC_NOTOUCH so that no allocator metadata is 171 * stored with the buffers. 172 */ 173 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 174 zio_data_buf_cache[c] = kmem_cache_create(name, size, 175 align, NULL, NULL, NULL, NULL, data_alloc_arena, 176 cflags | KMC_NOTOUCH); 177 } 178 } 179 180 while (--c != 0) { 181 ASSERT(zio_buf_cache[c] != NULL); 182 if (zio_buf_cache[c - 1] == NULL) 183 zio_buf_cache[c - 1] = zio_buf_cache[c]; 184 185 ASSERT(zio_data_buf_cache[c] != NULL); 186 if (zio_data_buf_cache[c - 1] == NULL) 187 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 188 } 189 190 /* 191 * The zio write taskqs have 1 thread per cpu, allow 1/2 of the taskqs 192 * to fail 3 times per txg or 8 failures, whichever is greater. 193 */ 194 zfs_mg_alloc_failures = MAX((3 * max_ncpus / 2), 8); 195 196 zio_inject_init(); 197 } 198 199 void 200 zio_fini(void) 201 { 202 size_t c; 203 kmem_cache_t *last_cache = NULL; 204 kmem_cache_t *last_data_cache = NULL; 205 206 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 207 if (zio_buf_cache[c] != last_cache) { 208 last_cache = zio_buf_cache[c]; 209 kmem_cache_destroy(zio_buf_cache[c]); 210 } 211 zio_buf_cache[c] = NULL; 212 213 if (zio_data_buf_cache[c] != last_data_cache) { 214 last_data_cache = zio_data_buf_cache[c]; 215 kmem_cache_destroy(zio_data_buf_cache[c]); 216 } 217 zio_data_buf_cache[c] = NULL; 218 } 219 220 kmem_cache_destroy(zio_link_cache); 221 kmem_cache_destroy(zio_cache); 222 223 zio_inject_fini(); 224 } 225 226 /* 227 * ========================================================================== 228 * Allocate and free I/O buffers 229 * ========================================================================== 230 */ 231 232 /* 233 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 234 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 235 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 236 * excess / transient data in-core during a crashdump. 237 */ 238 void * 239 zio_buf_alloc(size_t size) 240 { 241 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 242 243 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 244 245 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 246 } 247 248 /* 249 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 250 * crashdump if the kernel panics. This exists so that we will limit the amount 251 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 252 * of kernel heap dumped to disk when the kernel panics) 253 */ 254 void * 255 zio_data_buf_alloc(size_t size) 256 { 257 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 258 259 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 260 261 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 262 } 263 264 void 265 zio_buf_free(void *buf, size_t size) 266 { 267 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 268 269 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 270 271 kmem_cache_free(zio_buf_cache[c], buf); 272 } 273 274 void 275 zio_data_buf_free(void *buf, size_t size) 276 { 277 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 278 279 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 280 281 kmem_cache_free(zio_data_buf_cache[c], buf); 282 } 283 284 /* 285 * ========================================================================== 286 * Push and pop I/O transform buffers 287 * ========================================================================== 288 */ 289 static void 290 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize, 291 zio_transform_func_t *transform) 292 { 293 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 294 295 zt->zt_orig_data = zio->io_data; 296 zt->zt_orig_size = zio->io_size; 297 zt->zt_bufsize = bufsize; 298 zt->zt_transform = transform; 299 300 zt->zt_next = zio->io_transform_stack; 301 zio->io_transform_stack = zt; 302 303 zio->io_data = data; 304 zio->io_size = size; 305 } 306 307 static void 308 zio_pop_transforms(zio_t *zio) 309 { 310 zio_transform_t *zt; 311 312 while ((zt = zio->io_transform_stack) != NULL) { 313 if (zt->zt_transform != NULL) 314 zt->zt_transform(zio, 315 zt->zt_orig_data, zt->zt_orig_size); 316 317 if (zt->zt_bufsize != 0) 318 zio_buf_free(zio->io_data, zt->zt_bufsize); 319 320 zio->io_data = zt->zt_orig_data; 321 zio->io_size = zt->zt_orig_size; 322 zio->io_transform_stack = zt->zt_next; 323 324 kmem_free(zt, sizeof (zio_transform_t)); 325 } 326 } 327 328 /* 329 * ========================================================================== 330 * I/O transform callbacks for subblocks and decompression 331 * ========================================================================== 332 */ 333 static void 334 zio_subblock(zio_t *zio, void *data, uint64_t size) 335 { 336 ASSERT(zio->io_size > size); 337 338 if (zio->io_type == ZIO_TYPE_READ) 339 bcopy(zio->io_data, data, size); 340 } 341 342 static void 343 zio_decompress(zio_t *zio, void *data, uint64_t size) 344 { 345 if (zio->io_error == 0 && 346 zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 347 zio->io_data, data, zio->io_size, size) != 0) 348 zio->io_error = EIO; 349 } 350 351 /* 352 * ========================================================================== 353 * I/O parent/child relationships and pipeline interlocks 354 * ========================================================================== 355 */ 356 /* 357 * NOTE - Callers to zio_walk_parents() and zio_walk_children must 358 * continue calling these functions until they return NULL. 359 * Otherwise, the next caller will pick up the list walk in 360 * some indeterminate state. (Otherwise every caller would 361 * have to pass in a cookie to keep the state represented by 362 * io_walk_link, which gets annoying.) 363 */ 364 zio_t * 365 zio_walk_parents(zio_t *cio) 366 { 367 zio_link_t *zl = cio->io_walk_link; 368 list_t *pl = &cio->io_parent_list; 369 370 zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl); 371 cio->io_walk_link = zl; 372 373 if (zl == NULL) 374 return (NULL); 375 376 ASSERT(zl->zl_child == cio); 377 return (zl->zl_parent); 378 } 379 380 zio_t * 381 zio_walk_children(zio_t *pio) 382 { 383 zio_link_t *zl = pio->io_walk_link; 384 list_t *cl = &pio->io_child_list; 385 386 zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl); 387 pio->io_walk_link = zl; 388 389 if (zl == NULL) 390 return (NULL); 391 392 ASSERT(zl->zl_parent == pio); 393 return (zl->zl_child); 394 } 395 396 zio_t * 397 zio_unique_parent(zio_t *cio) 398 { 399 zio_t *pio = zio_walk_parents(cio); 400 401 VERIFY(zio_walk_parents(cio) == NULL); 402 return (pio); 403 } 404 405 void 406 zio_add_child(zio_t *pio, zio_t *cio) 407 { 408 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 409 410 /* 411 * Logical I/Os can have logical, gang, or vdev children. 412 * Gang I/Os can have gang or vdev children. 413 * Vdev I/Os can only have vdev children. 414 * The following ASSERT captures all of these constraints. 415 */ 416 ASSERT(cio->io_child_type <= pio->io_child_type); 417 418 zl->zl_parent = pio; 419 zl->zl_child = cio; 420 421 mutex_enter(&cio->io_lock); 422 mutex_enter(&pio->io_lock); 423 424 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 425 426 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 427 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 428 429 list_insert_head(&pio->io_child_list, zl); 430 list_insert_head(&cio->io_parent_list, zl); 431 432 pio->io_child_count++; 433 cio->io_parent_count++; 434 435 mutex_exit(&pio->io_lock); 436 mutex_exit(&cio->io_lock); 437 } 438 439 static void 440 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 441 { 442 ASSERT(zl->zl_parent == pio); 443 ASSERT(zl->zl_child == cio); 444 445 mutex_enter(&cio->io_lock); 446 mutex_enter(&pio->io_lock); 447 448 list_remove(&pio->io_child_list, zl); 449 list_remove(&cio->io_parent_list, zl); 450 451 pio->io_child_count--; 452 cio->io_parent_count--; 453 454 mutex_exit(&pio->io_lock); 455 mutex_exit(&cio->io_lock); 456 457 kmem_cache_free(zio_link_cache, zl); 458 } 459 460 static boolean_t 461 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait) 462 { 463 uint64_t *countp = &zio->io_children[child][wait]; 464 boolean_t waiting = B_FALSE; 465 466 mutex_enter(&zio->io_lock); 467 ASSERT(zio->io_stall == NULL); 468 if (*countp != 0) { 469 zio->io_stage >>= 1; 470 zio->io_stall = countp; 471 waiting = B_TRUE; 472 } 473 mutex_exit(&zio->io_lock); 474 475 return (waiting); 476 } 477 478 static void 479 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait) 480 { 481 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 482 int *errorp = &pio->io_child_error[zio->io_child_type]; 483 484 mutex_enter(&pio->io_lock); 485 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 486 *errorp = zio_worst_error(*errorp, zio->io_error); 487 pio->io_reexecute |= zio->io_reexecute; 488 ASSERT3U(*countp, >, 0); 489 if (--*countp == 0 && pio->io_stall == countp) { 490 pio->io_stall = NULL; 491 mutex_exit(&pio->io_lock); 492 zio_execute(pio); 493 } else { 494 mutex_exit(&pio->io_lock); 495 } 496 } 497 498 static void 499 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 500 { 501 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 502 zio->io_error = zio->io_child_error[c]; 503 } 504 505 /* 506 * ========================================================================== 507 * Create the various types of I/O (read, write, free, etc) 508 * ========================================================================== 509 */ 510 static zio_t * 511 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 512 void *data, uint64_t size, zio_done_func_t *done, void *private, 513 zio_type_t type, int priority, enum zio_flag flags, 514 vdev_t *vd, uint64_t offset, const zbookmark_t *zb, 515 enum zio_stage stage, enum zio_stage pipeline) 516 { 517 zio_t *zio; 518 519 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 520 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 521 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 522 523 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 524 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 525 ASSERT(vd || stage == ZIO_STAGE_OPEN); 526 527 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 528 bzero(zio, sizeof (zio_t)); 529 530 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 531 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 532 533 list_create(&zio->io_parent_list, sizeof (zio_link_t), 534 offsetof(zio_link_t, zl_parent_node)); 535 list_create(&zio->io_child_list, sizeof (zio_link_t), 536 offsetof(zio_link_t, zl_child_node)); 537 538 if (vd != NULL) 539 zio->io_child_type = ZIO_CHILD_VDEV; 540 else if (flags & ZIO_FLAG_GANG_CHILD) 541 zio->io_child_type = ZIO_CHILD_GANG; 542 else if (flags & ZIO_FLAG_DDT_CHILD) 543 zio->io_child_type = ZIO_CHILD_DDT; 544 else 545 zio->io_child_type = ZIO_CHILD_LOGICAL; 546 547 if (bp != NULL) { 548 zio->io_bp = (blkptr_t *)bp; 549 zio->io_bp_copy = *bp; 550 zio->io_bp_orig = *bp; 551 if (type != ZIO_TYPE_WRITE || 552 zio->io_child_type == ZIO_CHILD_DDT) 553 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 554 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 555 zio->io_logical = zio; 556 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 557 pipeline |= ZIO_GANG_STAGES; 558 } 559 560 zio->io_spa = spa; 561 zio->io_txg = txg; 562 zio->io_done = done; 563 zio->io_private = private; 564 zio->io_type = type; 565 zio->io_priority = priority; 566 zio->io_vd = vd; 567 zio->io_offset = offset; 568 zio->io_orig_data = zio->io_data = data; 569 zio->io_orig_size = zio->io_size = size; 570 zio->io_orig_flags = zio->io_flags = flags; 571 zio->io_orig_stage = zio->io_stage = stage; 572 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 573 574 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 575 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 576 577 if (zb != NULL) 578 zio->io_bookmark = *zb; 579 580 if (pio != NULL) { 581 if (zio->io_logical == NULL) 582 zio->io_logical = pio->io_logical; 583 if (zio->io_child_type == ZIO_CHILD_GANG) 584 zio->io_gang_leader = pio->io_gang_leader; 585 zio_add_child(pio, zio); 586 } 587 588 return (zio); 589 } 590 591 static void 592 zio_destroy(zio_t *zio) 593 { 594 list_destroy(&zio->io_parent_list); 595 list_destroy(&zio->io_child_list); 596 mutex_destroy(&zio->io_lock); 597 cv_destroy(&zio->io_cv); 598 kmem_cache_free(zio_cache, zio); 599 } 600 601 zio_t * 602 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 603 void *private, enum zio_flag flags) 604 { 605 zio_t *zio; 606 607 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 608 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 609 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 610 611 return (zio); 612 } 613 614 zio_t * 615 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) 616 { 617 return (zio_null(NULL, spa, NULL, done, private, flags)); 618 } 619 620 zio_t * 621 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 622 void *data, uint64_t size, zio_done_func_t *done, void *private, 623 int priority, enum zio_flag flags, const zbookmark_t *zb) 624 { 625 zio_t *zio; 626 627 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 628 data, size, done, private, 629 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 630 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 631 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 632 633 return (zio); 634 } 635 636 zio_t * 637 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 638 void *data, uint64_t size, const zio_prop_t *zp, 639 zio_done_func_t *ready, zio_done_func_t *done, void *private, 640 int priority, enum zio_flag flags, const zbookmark_t *zb) 641 { 642 zio_t *zio; 643 644 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 645 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 646 zp->zp_compress >= ZIO_COMPRESS_OFF && 647 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 648 DMU_OT_IS_VALID(zp->zp_type) && 649 zp->zp_level < 32 && 650 zp->zp_copies > 0 && 651 zp->zp_copies <= spa_max_replication(spa)); 652 653 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 654 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 655 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 656 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 657 658 zio->io_ready = ready; 659 zio->io_prop = *zp; 660 661 return (zio); 662 } 663 664 zio_t * 665 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data, 666 uint64_t size, zio_done_func_t *done, void *private, int priority, 667 enum zio_flag flags, zbookmark_t *zb) 668 { 669 zio_t *zio; 670 671 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 672 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 673 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 674 675 return (zio); 676 } 677 678 void 679 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) 680 { 681 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 682 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 683 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 684 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 685 686 /* 687 * We must reset the io_prop to match the values that existed 688 * when the bp was first written by dmu_sync() keeping in mind 689 * that nopwrite and dedup are mutually exclusive. 690 */ 691 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 692 zio->io_prop.zp_nopwrite = nopwrite; 693 zio->io_prop.zp_copies = copies; 694 zio->io_bp_override = bp; 695 } 696 697 void 698 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 699 { 700 metaslab_check_free(spa, bp); 701 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 702 } 703 704 zio_t * 705 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 706 enum zio_flag flags) 707 { 708 zio_t *zio; 709 710 dprintf_bp(bp, "freeing in txg %llu, pass %u", 711 (longlong_t)txg, spa->spa_sync_pass); 712 713 ASSERT(!BP_IS_HOLE(bp)); 714 ASSERT(spa_syncing_txg(spa) == txg); 715 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free); 716 717 metaslab_check_free(spa, bp); 718 719 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 720 NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags, 721 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE); 722 723 return (zio); 724 } 725 726 zio_t * 727 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 728 zio_done_func_t *done, void *private, enum zio_flag flags) 729 { 730 zio_t *zio; 731 732 /* 733 * A claim is an allocation of a specific block. Claims are needed 734 * to support immediate writes in the intent log. The issue is that 735 * immediate writes contain committed data, but in a txg that was 736 * *not* committed. Upon opening the pool after an unclean shutdown, 737 * the intent log claims all blocks that contain immediate write data 738 * so that the SPA knows they're in use. 739 * 740 * All claims *must* be resolved in the first txg -- before the SPA 741 * starts allocating blocks -- so that nothing is allocated twice. 742 * If txg == 0 we just verify that the block is claimable. 743 */ 744 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); 745 ASSERT(txg == spa_first_txg(spa) || txg == 0); 746 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */ 747 748 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 749 done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags, 750 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 751 752 return (zio); 753 } 754 755 zio_t * 756 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 757 zio_done_func_t *done, void *private, int priority, enum zio_flag flags) 758 { 759 zio_t *zio; 760 int c; 761 762 if (vd->vdev_children == 0) { 763 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 764 ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL, 765 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 766 767 zio->io_cmd = cmd; 768 } else { 769 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 770 771 for (c = 0; c < vd->vdev_children; c++) 772 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 773 done, private, priority, flags)); 774 } 775 776 return (zio); 777 } 778 779 zio_t * 780 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 781 void *data, int checksum, zio_done_func_t *done, void *private, 782 int priority, enum zio_flag flags, boolean_t labels) 783 { 784 zio_t *zio; 785 786 ASSERT(vd->vdev_children == 0); 787 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 788 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 789 ASSERT3U(offset + size, <=, vd->vdev_psize); 790 791 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, 792 ZIO_TYPE_READ, priority, flags, vd, offset, NULL, 793 ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 794 795 zio->io_prop.zp_checksum = checksum; 796 797 return (zio); 798 } 799 800 zio_t * 801 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 802 void *data, int checksum, zio_done_func_t *done, void *private, 803 int priority, enum zio_flag flags, boolean_t labels) 804 { 805 zio_t *zio; 806 807 ASSERT(vd->vdev_children == 0); 808 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 809 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 810 ASSERT3U(offset + size, <=, vd->vdev_psize); 811 812 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, 813 ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL, 814 ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 815 816 zio->io_prop.zp_checksum = checksum; 817 818 if (zio_checksum_table[checksum].ci_eck) { 819 /* 820 * zec checksums are necessarily destructive -- they modify 821 * the end of the write buffer to hold the verifier/checksum. 822 * Therefore, we must make a local copy in case the data is 823 * being written to multiple places in parallel. 824 */ 825 void *wbuf = zio_buf_alloc(size); 826 bcopy(data, wbuf, size); 827 zio_push_transform(zio, wbuf, size, size, NULL); 828 } 829 830 return (zio); 831 } 832 833 /* 834 * Create a child I/O to do some work for us. 835 */ 836 zio_t * 837 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 838 void *data, uint64_t size, int type, int priority, enum zio_flag flags, 839 zio_done_func_t *done, void *private) 840 { 841 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 842 zio_t *zio; 843 844 ASSERT(vd->vdev_parent == 845 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev)); 846 847 if (type == ZIO_TYPE_READ && bp != NULL) { 848 /* 849 * If we have the bp, then the child should perform the 850 * checksum and the parent need not. This pushes error 851 * detection as close to the leaves as possible and 852 * eliminates redundant checksums in the interior nodes. 853 */ 854 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 855 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 856 } 857 858 if (vd->vdev_children == 0) 859 offset += VDEV_LABEL_START_SIZE; 860 861 flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE; 862 863 /* 864 * If we've decided to do a repair, the write is not speculative -- 865 * even if the original read was. 866 */ 867 if (flags & ZIO_FLAG_IO_REPAIR) 868 flags &= ~ZIO_FLAG_SPECULATIVE; 869 870 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, 871 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 872 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 873 874 return (zio); 875 } 876 877 zio_t * 878 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size, 879 int type, int priority, enum zio_flag flags, 880 zio_done_func_t *done, void *private) 881 { 882 zio_t *zio; 883 884 ASSERT(vd->vdev_ops->vdev_op_leaf); 885 886 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 887 data, size, done, private, type, priority, 888 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY, 889 vd, offset, NULL, 890 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 891 892 return (zio); 893 } 894 895 void 896 zio_flush(zio_t *zio, vdev_t *vd) 897 { 898 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 899 NULL, NULL, ZIO_PRIORITY_NOW, 900 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 901 } 902 903 void 904 zio_shrink(zio_t *zio, uint64_t size) 905 { 906 ASSERT(zio->io_executor == NULL); 907 ASSERT(zio->io_orig_size == zio->io_size); 908 ASSERT(size <= zio->io_size); 909 910 /* 911 * We don't shrink for raidz because of problems with the 912 * reconstruction when reading back less than the block size. 913 * Note, BP_IS_RAIDZ() assumes no compression. 914 */ 915 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 916 if (!BP_IS_RAIDZ(zio->io_bp)) 917 zio->io_orig_size = zio->io_size = size; 918 } 919 920 /* 921 * ========================================================================== 922 * Prepare to read and write logical blocks 923 * ========================================================================== 924 */ 925 926 static int 927 zio_read_bp_init(zio_t *zio) 928 { 929 blkptr_t *bp = zio->io_bp; 930 931 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 932 zio->io_child_type == ZIO_CHILD_LOGICAL && 933 !(zio->io_flags & ZIO_FLAG_RAW)) { 934 uint64_t psize = BP_GET_PSIZE(bp); 935 void *cbuf = zio_buf_alloc(psize); 936 937 zio_push_transform(zio, cbuf, psize, psize, zio_decompress); 938 } 939 940 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 941 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 942 943 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 944 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 945 946 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 947 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 948 949 return (ZIO_PIPELINE_CONTINUE); 950 } 951 952 static int 953 zio_write_bp_init(zio_t *zio) 954 { 955 spa_t *spa = zio->io_spa; 956 zio_prop_t *zp = &zio->io_prop; 957 enum zio_compress compress = zp->zp_compress; 958 blkptr_t *bp = zio->io_bp; 959 uint64_t lsize = zio->io_size; 960 uint64_t psize = lsize; 961 int pass = 1; 962 963 /* 964 * If our children haven't all reached the ready stage, 965 * wait for them and then repeat this pipeline stage. 966 */ 967 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || 968 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY)) 969 return (ZIO_PIPELINE_STOP); 970 971 if (!IO_IS_ALLOCATING(zio)) 972 return (ZIO_PIPELINE_CONTINUE); 973 974 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 975 976 if (zio->io_bp_override) { 977 ASSERT(bp->blk_birth != zio->io_txg); 978 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); 979 980 *bp = *zio->io_bp_override; 981 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 982 983 /* 984 * If we've been overridden and nopwrite is set then 985 * set the flag accordingly to indicate that a nopwrite 986 * has already occurred. 987 */ 988 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 989 ASSERT(!zp->zp_dedup); 990 zio->io_flags |= ZIO_FLAG_NOPWRITE; 991 return (ZIO_PIPELINE_CONTINUE); 992 } 993 994 ASSERT(!zp->zp_nopwrite); 995 996 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 997 return (ZIO_PIPELINE_CONTINUE); 998 999 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup || 1000 zp->zp_dedup_verify); 1001 1002 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) { 1003 BP_SET_DEDUP(bp, 1); 1004 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1005 return (ZIO_PIPELINE_CONTINUE); 1006 } 1007 zio->io_bp_override = NULL; 1008 BP_ZERO(bp); 1009 } 1010 1011 if (bp->blk_birth == zio->io_txg) { 1012 /* 1013 * We're rewriting an existing block, which means we're 1014 * working on behalf of spa_sync(). For spa_sync() to 1015 * converge, it must eventually be the case that we don't 1016 * have to allocate new blocks. But compression changes 1017 * the blocksize, which forces a reallocate, and makes 1018 * convergence take longer. Therefore, after the first 1019 * few passes, stop compressing to ensure convergence. 1020 */ 1021 pass = spa_sync_pass(spa); 1022 1023 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1024 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1025 ASSERT(!BP_GET_DEDUP(bp)); 1026 1027 if (pass >= zfs_sync_pass_dont_compress) 1028 compress = ZIO_COMPRESS_OFF; 1029 1030 /* Make sure someone doesn't change their mind on overwrites */ 1031 ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp), 1032 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1033 } 1034 1035 if (compress != ZIO_COMPRESS_OFF) { 1036 void *cbuf = zio_buf_alloc(lsize); 1037 psize = zio_compress_data(compress, zio->io_data, cbuf, lsize); 1038 if (psize == 0 || psize == lsize) { 1039 compress = ZIO_COMPRESS_OFF; 1040 zio_buf_free(cbuf, lsize); 1041 } else { 1042 ASSERT(psize < lsize); 1043 zio_push_transform(zio, cbuf, psize, lsize, NULL); 1044 } 1045 } 1046 1047 /* 1048 * The final pass of spa_sync() must be all rewrites, but the first 1049 * few passes offer a trade-off: allocating blocks defers convergence, 1050 * but newly allocated blocks are sequential, so they can be written 1051 * to disk faster. Therefore, we allow the first few passes of 1052 * spa_sync() to allocate new blocks, but force rewrites after that. 1053 * There should only be a handful of blocks after pass 1 in any case. 1054 */ 1055 if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize && 1056 pass >= zfs_sync_pass_rewrite) { 1057 ASSERT(psize != 0); 1058 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1059 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1060 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1061 } else { 1062 BP_ZERO(bp); 1063 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1064 } 1065 1066 if (psize == 0) { 1067 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1068 } else { 1069 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1070 BP_SET_LSIZE(bp, lsize); 1071 BP_SET_PSIZE(bp, psize); 1072 BP_SET_COMPRESS(bp, compress); 1073 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1074 BP_SET_TYPE(bp, zp->zp_type); 1075 BP_SET_LEVEL(bp, zp->zp_level); 1076 BP_SET_DEDUP(bp, zp->zp_dedup); 1077 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1078 if (zp->zp_dedup) { 1079 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1080 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1081 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1082 } 1083 if (zp->zp_nopwrite) { 1084 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1085 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1086 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1087 } 1088 } 1089 1090 return (ZIO_PIPELINE_CONTINUE); 1091 } 1092 1093 static int 1094 zio_free_bp_init(zio_t *zio) 1095 { 1096 blkptr_t *bp = zio->io_bp; 1097 1098 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1099 if (BP_GET_DEDUP(bp)) 1100 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1101 } 1102 1103 return (ZIO_PIPELINE_CONTINUE); 1104 } 1105 1106 /* 1107 * ========================================================================== 1108 * Execute the I/O pipeline 1109 * ========================================================================== 1110 */ 1111 1112 static void 1113 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1114 { 1115 spa_t *spa = zio->io_spa; 1116 zio_type_t t = zio->io_type; 1117 int flags = (cutinline ? TQ_FRONT : 0); 1118 1119 /* 1120 * If we're a config writer or a probe, the normal issue and 1121 * interrupt threads may all be blocked waiting for the config lock. 1122 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1123 */ 1124 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1125 t = ZIO_TYPE_NULL; 1126 1127 /* 1128 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1129 */ 1130 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1131 t = ZIO_TYPE_NULL; 1132 1133 /* 1134 * If this is a high priority I/O, then use the high priority taskq if 1135 * available. 1136 */ 1137 if (zio->io_priority == ZIO_PRIORITY_NOW && 1138 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1139 q++; 1140 1141 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1142 1143 /* 1144 * NB: We are assuming that the zio can only be dispatched 1145 * to a single taskq at a time. It would be a grievous error 1146 * to dispatch the zio to another taskq at the same time. 1147 */ 1148 ASSERT(zio->io_tqent.tqent_next == NULL); 1149 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio, 1150 flags, &zio->io_tqent); 1151 } 1152 1153 static boolean_t 1154 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1155 { 1156 kthread_t *executor = zio->io_executor; 1157 spa_t *spa = zio->io_spa; 1158 1159 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1160 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1161 uint_t i; 1162 for (i = 0; i < tqs->stqs_count; i++) { 1163 if (taskq_member(tqs->stqs_taskq[i], executor)) 1164 return (B_TRUE); 1165 } 1166 } 1167 1168 return (B_FALSE); 1169 } 1170 1171 static int 1172 zio_issue_async(zio_t *zio) 1173 { 1174 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1175 1176 return (ZIO_PIPELINE_STOP); 1177 } 1178 1179 void 1180 zio_interrupt(zio_t *zio) 1181 { 1182 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1183 } 1184 1185 /* 1186 * Execute the I/O pipeline until one of the following occurs: 1187 * (1) the I/O completes; (2) the pipeline stalls waiting for 1188 * dependent child I/Os; (3) the I/O issues, so we're waiting 1189 * for an I/O completion interrupt; (4) the I/O is delegated by 1190 * vdev-level caching or aggregation; (5) the I/O is deferred 1191 * due to vdev-level queueing; (6) the I/O is handed off to 1192 * another thread. In all cases, the pipeline stops whenever 1193 * there's no CPU work; it never burns a thread in cv_wait(). 1194 * 1195 * There's no locking on io_stage because there's no legitimate way 1196 * for multiple threads to be attempting to process the same I/O. 1197 */ 1198 static zio_pipe_stage_t *zio_pipeline[]; 1199 1200 void 1201 zio_execute(zio_t *zio) 1202 { 1203 zio->io_executor = curthread; 1204 1205 while (zio->io_stage < ZIO_STAGE_DONE) { 1206 enum zio_stage pipeline = zio->io_pipeline; 1207 enum zio_stage stage = zio->io_stage; 1208 int rv; 1209 1210 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1211 ASSERT(ISP2(stage)); 1212 ASSERT(zio->io_stall == NULL); 1213 1214 do { 1215 stage <<= 1; 1216 } while ((stage & pipeline) == 0); 1217 1218 ASSERT(stage <= ZIO_STAGE_DONE); 1219 1220 /* 1221 * If we are in interrupt context and this pipeline stage 1222 * will grab a config lock that is held across I/O, 1223 * or may wait for an I/O that needs an interrupt thread 1224 * to complete, issue async to avoid deadlock. 1225 * 1226 * For VDEV_IO_START, we cut in line so that the io will 1227 * be sent to disk promptly. 1228 */ 1229 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 1230 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 1231 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 1232 zio_requeue_io_start_cut_in_line : B_FALSE; 1233 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 1234 return; 1235 } 1236 1237 zio->io_stage = stage; 1238 rv = zio_pipeline[highbit(stage) - 1](zio); 1239 1240 if (rv == ZIO_PIPELINE_STOP) 1241 return; 1242 1243 ASSERT(rv == ZIO_PIPELINE_CONTINUE); 1244 } 1245 } 1246 1247 /* 1248 * ========================================================================== 1249 * Initiate I/O, either sync or async 1250 * ========================================================================== 1251 */ 1252 int 1253 zio_wait(zio_t *zio) 1254 { 1255 int error; 1256 1257 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1258 ASSERT(zio->io_executor == NULL); 1259 1260 zio->io_waiter = curthread; 1261 1262 zio_execute(zio); 1263 1264 mutex_enter(&zio->io_lock); 1265 while (zio->io_executor != NULL) 1266 cv_wait(&zio->io_cv, &zio->io_lock); 1267 mutex_exit(&zio->io_lock); 1268 1269 error = zio->io_error; 1270 zio_destroy(zio); 1271 1272 return (error); 1273 } 1274 1275 void 1276 zio_nowait(zio_t *zio) 1277 { 1278 ASSERT(zio->io_executor == NULL); 1279 1280 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 1281 zio_unique_parent(zio) == NULL) { 1282 /* 1283 * This is a logical async I/O with no parent to wait for it. 1284 * We add it to the spa_async_root_zio "Godfather" I/O which 1285 * will ensure they complete prior to unloading the pool. 1286 */ 1287 spa_t *spa = zio->io_spa; 1288 1289 zio_add_child(spa->spa_async_zio_root, zio); 1290 } 1291 1292 zio_execute(zio); 1293 } 1294 1295 /* 1296 * ========================================================================== 1297 * Reexecute or suspend/resume failed I/O 1298 * ========================================================================== 1299 */ 1300 1301 static void 1302 zio_reexecute(zio_t *pio) 1303 { 1304 zio_t *cio, *cio_next; 1305 1306 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 1307 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 1308 ASSERT(pio->io_gang_leader == NULL); 1309 ASSERT(pio->io_gang_tree == NULL); 1310 1311 pio->io_flags = pio->io_orig_flags; 1312 pio->io_stage = pio->io_orig_stage; 1313 pio->io_pipeline = pio->io_orig_pipeline; 1314 pio->io_reexecute = 0; 1315 pio->io_flags |= ZIO_FLAG_REEXECUTED; 1316 pio->io_error = 0; 1317 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1318 pio->io_state[w] = 0; 1319 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 1320 pio->io_child_error[c] = 0; 1321 1322 if (IO_IS_ALLOCATING(pio)) 1323 BP_ZERO(pio->io_bp); 1324 1325 /* 1326 * As we reexecute pio's children, new children could be created. 1327 * New children go to the head of pio's io_child_list, however, 1328 * so we will (correctly) not reexecute them. The key is that 1329 * the remainder of pio's io_child_list, from 'cio_next' onward, 1330 * cannot be affected by any side effects of reexecuting 'cio'. 1331 */ 1332 for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) { 1333 cio_next = zio_walk_children(pio); 1334 mutex_enter(&pio->io_lock); 1335 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1336 pio->io_children[cio->io_child_type][w]++; 1337 mutex_exit(&pio->io_lock); 1338 zio_reexecute(cio); 1339 } 1340 1341 /* 1342 * Now that all children have been reexecuted, execute the parent. 1343 * We don't reexecute "The Godfather" I/O here as it's the 1344 * responsibility of the caller to wait on him. 1345 */ 1346 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) 1347 zio_execute(pio); 1348 } 1349 1350 void 1351 zio_suspend(spa_t *spa, zio_t *zio) 1352 { 1353 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 1354 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 1355 "failure and the failure mode property for this pool " 1356 "is set to panic.", spa_name(spa)); 1357 1358 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0); 1359 1360 mutex_enter(&spa->spa_suspend_lock); 1361 1362 if (spa->spa_suspend_zio_root == NULL) 1363 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 1364 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 1365 ZIO_FLAG_GODFATHER); 1366 1367 spa->spa_suspended = B_TRUE; 1368 1369 if (zio != NULL) { 1370 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 1371 ASSERT(zio != spa->spa_suspend_zio_root); 1372 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1373 ASSERT(zio_unique_parent(zio) == NULL); 1374 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 1375 zio_add_child(spa->spa_suspend_zio_root, zio); 1376 } 1377 1378 mutex_exit(&spa->spa_suspend_lock); 1379 } 1380 1381 int 1382 zio_resume(spa_t *spa) 1383 { 1384 zio_t *pio; 1385 1386 /* 1387 * Reexecute all previously suspended i/o. 1388 */ 1389 mutex_enter(&spa->spa_suspend_lock); 1390 spa->spa_suspended = B_FALSE; 1391 cv_broadcast(&spa->spa_suspend_cv); 1392 pio = spa->spa_suspend_zio_root; 1393 spa->spa_suspend_zio_root = NULL; 1394 mutex_exit(&spa->spa_suspend_lock); 1395 1396 if (pio == NULL) 1397 return (0); 1398 1399 zio_reexecute(pio); 1400 return (zio_wait(pio)); 1401 } 1402 1403 void 1404 zio_resume_wait(spa_t *spa) 1405 { 1406 mutex_enter(&spa->spa_suspend_lock); 1407 while (spa_suspended(spa)) 1408 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 1409 mutex_exit(&spa->spa_suspend_lock); 1410 } 1411 1412 /* 1413 * ========================================================================== 1414 * Gang blocks. 1415 * 1416 * A gang block is a collection of small blocks that looks to the DMU 1417 * like one large block. When zio_dva_allocate() cannot find a block 1418 * of the requested size, due to either severe fragmentation or the pool 1419 * being nearly full, it calls zio_write_gang_block() to construct the 1420 * block from smaller fragments. 1421 * 1422 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 1423 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 1424 * an indirect block: it's an array of block pointers. It consumes 1425 * only one sector and hence is allocatable regardless of fragmentation. 1426 * The gang header's bps point to its gang members, which hold the data. 1427 * 1428 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 1429 * as the verifier to ensure uniqueness of the SHA256 checksum. 1430 * Critically, the gang block bp's blk_cksum is the checksum of the data, 1431 * not the gang header. This ensures that data block signatures (needed for 1432 * deduplication) are independent of how the block is physically stored. 1433 * 1434 * Gang blocks can be nested: a gang member may itself be a gang block. 1435 * Thus every gang block is a tree in which root and all interior nodes are 1436 * gang headers, and the leaves are normal blocks that contain user data. 1437 * The root of the gang tree is called the gang leader. 1438 * 1439 * To perform any operation (read, rewrite, free, claim) on a gang block, 1440 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 1441 * in the io_gang_tree field of the original logical i/o by recursively 1442 * reading the gang leader and all gang headers below it. This yields 1443 * an in-core tree containing the contents of every gang header and the 1444 * bps for every constituent of the gang block. 1445 * 1446 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 1447 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 1448 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 1449 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 1450 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 1451 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 1452 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 1453 * of the gang header plus zio_checksum_compute() of the data to update the 1454 * gang header's blk_cksum as described above. 1455 * 1456 * The two-phase assemble/issue model solves the problem of partial failure -- 1457 * what if you'd freed part of a gang block but then couldn't read the 1458 * gang header for another part? Assembling the entire gang tree first 1459 * ensures that all the necessary gang header I/O has succeeded before 1460 * starting the actual work of free, claim, or write. Once the gang tree 1461 * is assembled, free and claim are in-memory operations that cannot fail. 1462 * 1463 * In the event that a gang write fails, zio_dva_unallocate() walks the 1464 * gang tree to immediately free (i.e. insert back into the space map) 1465 * everything we've allocated. This ensures that we don't get ENOSPC 1466 * errors during repeated suspend/resume cycles due to a flaky device. 1467 * 1468 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 1469 * the gang tree, we won't modify the block, so we can safely defer the free 1470 * (knowing that the block is still intact). If we *can* assemble the gang 1471 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 1472 * each constituent bp and we can allocate a new block on the next sync pass. 1473 * 1474 * In all cases, the gang tree allows complete recovery from partial failure. 1475 * ========================================================================== 1476 */ 1477 1478 static zio_t * 1479 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1480 { 1481 if (gn != NULL) 1482 return (pio); 1483 1484 return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp), 1485 NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1486 &pio->io_bookmark)); 1487 } 1488 1489 zio_t * 1490 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1491 { 1492 zio_t *zio; 1493 1494 if (gn != NULL) { 1495 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1496 gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority, 1497 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1498 /* 1499 * As we rewrite each gang header, the pipeline will compute 1500 * a new gang block header checksum for it; but no one will 1501 * compute a new data checksum, so we do that here. The one 1502 * exception is the gang leader: the pipeline already computed 1503 * its data checksum because that stage precedes gang assembly. 1504 * (Presently, nothing actually uses interior data checksums; 1505 * this is just good hygiene.) 1506 */ 1507 if (gn != pio->io_gang_leader->io_gang_tree) { 1508 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 1509 data, BP_GET_PSIZE(bp)); 1510 } 1511 /* 1512 * If we are here to damage data for testing purposes, 1513 * leave the GBH alone so that we can detect the damage. 1514 */ 1515 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 1516 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 1517 } else { 1518 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1519 data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority, 1520 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1521 } 1522 1523 return (zio); 1524 } 1525 1526 /* ARGSUSED */ 1527 zio_t * 1528 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1529 { 1530 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 1531 ZIO_GANG_CHILD_FLAGS(pio))); 1532 } 1533 1534 /* ARGSUSED */ 1535 zio_t * 1536 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1537 { 1538 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 1539 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 1540 } 1541 1542 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 1543 NULL, 1544 zio_read_gang, 1545 zio_rewrite_gang, 1546 zio_free_gang, 1547 zio_claim_gang, 1548 NULL 1549 }; 1550 1551 static void zio_gang_tree_assemble_done(zio_t *zio); 1552 1553 static zio_gang_node_t * 1554 zio_gang_node_alloc(zio_gang_node_t **gnpp) 1555 { 1556 zio_gang_node_t *gn; 1557 1558 ASSERT(*gnpp == NULL); 1559 1560 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 1561 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 1562 *gnpp = gn; 1563 1564 return (gn); 1565 } 1566 1567 static void 1568 zio_gang_node_free(zio_gang_node_t **gnpp) 1569 { 1570 zio_gang_node_t *gn = *gnpp; 1571 1572 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1573 ASSERT(gn->gn_child[g] == NULL); 1574 1575 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 1576 kmem_free(gn, sizeof (*gn)); 1577 *gnpp = NULL; 1578 } 1579 1580 static void 1581 zio_gang_tree_free(zio_gang_node_t **gnpp) 1582 { 1583 zio_gang_node_t *gn = *gnpp; 1584 1585 if (gn == NULL) 1586 return; 1587 1588 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1589 zio_gang_tree_free(&gn->gn_child[g]); 1590 1591 zio_gang_node_free(gnpp); 1592 } 1593 1594 static void 1595 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 1596 { 1597 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 1598 1599 ASSERT(gio->io_gang_leader == gio); 1600 ASSERT(BP_IS_GANG(bp)); 1601 1602 zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh, 1603 SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn, 1604 gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 1605 } 1606 1607 static void 1608 zio_gang_tree_assemble_done(zio_t *zio) 1609 { 1610 zio_t *gio = zio->io_gang_leader; 1611 zio_gang_node_t *gn = zio->io_private; 1612 blkptr_t *bp = zio->io_bp; 1613 1614 ASSERT(gio == zio_unique_parent(zio)); 1615 ASSERT(zio->io_child_count == 0); 1616 1617 if (zio->io_error) 1618 return; 1619 1620 if (BP_SHOULD_BYTESWAP(bp)) 1621 byteswap_uint64_array(zio->io_data, zio->io_size); 1622 1623 ASSERT(zio->io_data == gn->gn_gbh); 1624 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 1625 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 1626 1627 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1628 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1629 if (!BP_IS_GANG(gbp)) 1630 continue; 1631 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 1632 } 1633 } 1634 1635 static void 1636 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data) 1637 { 1638 zio_t *gio = pio->io_gang_leader; 1639 zio_t *zio; 1640 1641 ASSERT(BP_IS_GANG(bp) == !!gn); 1642 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 1643 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 1644 1645 /* 1646 * If you're a gang header, your data is in gn->gn_gbh. 1647 * If you're a gang member, your data is in 'data' and gn == NULL. 1648 */ 1649 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data); 1650 1651 if (gn != NULL) { 1652 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 1653 1654 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1655 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1656 if (BP_IS_HOLE(gbp)) 1657 continue; 1658 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data); 1659 data = (char *)data + BP_GET_PSIZE(gbp); 1660 } 1661 } 1662 1663 if (gn == gio->io_gang_tree) 1664 ASSERT3P((char *)gio->io_data + gio->io_size, ==, data); 1665 1666 if (zio != pio) 1667 zio_nowait(zio); 1668 } 1669 1670 static int 1671 zio_gang_assemble(zio_t *zio) 1672 { 1673 blkptr_t *bp = zio->io_bp; 1674 1675 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 1676 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 1677 1678 zio->io_gang_leader = zio; 1679 1680 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 1681 1682 return (ZIO_PIPELINE_CONTINUE); 1683 } 1684 1685 static int 1686 zio_gang_issue(zio_t *zio) 1687 { 1688 blkptr_t *bp = zio->io_bp; 1689 1690 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE)) 1691 return (ZIO_PIPELINE_STOP); 1692 1693 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 1694 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 1695 1696 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 1697 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data); 1698 else 1699 zio_gang_tree_free(&zio->io_gang_tree); 1700 1701 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1702 1703 return (ZIO_PIPELINE_CONTINUE); 1704 } 1705 1706 static void 1707 zio_write_gang_member_ready(zio_t *zio) 1708 { 1709 zio_t *pio = zio_unique_parent(zio); 1710 zio_t *gio = zio->io_gang_leader; 1711 dva_t *cdva = zio->io_bp->blk_dva; 1712 dva_t *pdva = pio->io_bp->blk_dva; 1713 uint64_t asize; 1714 1715 if (BP_IS_HOLE(zio->io_bp)) 1716 return; 1717 1718 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 1719 1720 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 1721 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 1722 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 1723 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 1724 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 1725 1726 mutex_enter(&pio->io_lock); 1727 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 1728 ASSERT(DVA_GET_GANG(&pdva[d])); 1729 asize = DVA_GET_ASIZE(&pdva[d]); 1730 asize += DVA_GET_ASIZE(&cdva[d]); 1731 DVA_SET_ASIZE(&pdva[d], asize); 1732 } 1733 mutex_exit(&pio->io_lock); 1734 } 1735 1736 static int 1737 zio_write_gang_block(zio_t *pio) 1738 { 1739 spa_t *spa = pio->io_spa; 1740 blkptr_t *bp = pio->io_bp; 1741 zio_t *gio = pio->io_gang_leader; 1742 zio_t *zio; 1743 zio_gang_node_t *gn, **gnpp; 1744 zio_gbh_phys_t *gbh; 1745 uint64_t txg = pio->io_txg; 1746 uint64_t resid = pio->io_size; 1747 uint64_t lsize; 1748 int copies = gio->io_prop.zp_copies; 1749 int gbh_copies = MIN(copies + 1, spa_max_replication(spa)); 1750 zio_prop_t zp; 1751 int error; 1752 1753 error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE, 1754 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, 1755 METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER); 1756 if (error) { 1757 pio->io_error = error; 1758 return (ZIO_PIPELINE_CONTINUE); 1759 } 1760 1761 if (pio == gio) { 1762 gnpp = &gio->io_gang_tree; 1763 } else { 1764 gnpp = pio->io_private; 1765 ASSERT(pio->io_ready == zio_write_gang_member_ready); 1766 } 1767 1768 gn = zio_gang_node_alloc(gnpp); 1769 gbh = gn->gn_gbh; 1770 bzero(gbh, SPA_GANGBLOCKSIZE); 1771 1772 /* 1773 * Create the gang header. 1774 */ 1775 zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL, 1776 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1777 1778 /* 1779 * Create and nowait the gang children. 1780 */ 1781 for (int g = 0; resid != 0; resid -= lsize, g++) { 1782 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 1783 SPA_MINBLOCKSIZE); 1784 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 1785 1786 zp.zp_checksum = gio->io_prop.zp_checksum; 1787 zp.zp_compress = ZIO_COMPRESS_OFF; 1788 zp.zp_type = DMU_OT_NONE; 1789 zp.zp_level = 0; 1790 zp.zp_copies = gio->io_prop.zp_copies; 1791 zp.zp_dedup = B_FALSE; 1792 zp.zp_dedup_verify = B_FALSE; 1793 zp.zp_nopwrite = B_FALSE; 1794 1795 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 1796 (char *)pio->io_data + (pio->io_size - resid), lsize, &zp, 1797 zio_write_gang_member_ready, NULL, &gn->gn_child[g], 1798 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1799 &pio->io_bookmark)); 1800 } 1801 1802 /* 1803 * Set pio's pipeline to just wait for zio to finish. 1804 */ 1805 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1806 1807 zio_nowait(zio); 1808 1809 return (ZIO_PIPELINE_CONTINUE); 1810 } 1811 1812 /* 1813 * The zio_nop_write stage in the pipeline determines if allocating 1814 * a new bp is necessary. By leveraging a cryptographically secure checksum, 1815 * such as SHA256, we can compare the checksums of the new data and the old 1816 * to determine if allocating a new block is required. The nopwrite 1817 * feature can handle writes in either syncing or open context (i.e. zil 1818 * writes) and as a result is mutually exclusive with dedup. 1819 */ 1820 static int 1821 zio_nop_write(zio_t *zio) 1822 { 1823 blkptr_t *bp = zio->io_bp; 1824 blkptr_t *bp_orig = &zio->io_bp_orig; 1825 zio_prop_t *zp = &zio->io_prop; 1826 1827 ASSERT(BP_GET_LEVEL(bp) == 0); 1828 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1829 ASSERT(zp->zp_nopwrite); 1830 ASSERT(!zp->zp_dedup); 1831 ASSERT(zio->io_bp_override == NULL); 1832 ASSERT(IO_IS_ALLOCATING(zio)); 1833 1834 /* 1835 * Check to see if the original bp and the new bp have matching 1836 * characteristics (i.e. same checksum, compression algorithms, etc). 1837 * If they don't then just continue with the pipeline which will 1838 * allocate a new bp. 1839 */ 1840 if (BP_IS_HOLE(bp_orig) || 1841 !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup || 1842 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 1843 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 1844 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 1845 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 1846 return (ZIO_PIPELINE_CONTINUE); 1847 1848 /* 1849 * If the checksums match then reset the pipeline so that we 1850 * avoid allocating a new bp and issuing any I/O. 1851 */ 1852 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 1853 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup); 1854 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 1855 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 1856 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 1857 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop, 1858 sizeof (uint64_t)) == 0); 1859 1860 *bp = *bp_orig; 1861 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1862 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1863 } 1864 1865 return (ZIO_PIPELINE_CONTINUE); 1866 } 1867 1868 /* 1869 * ========================================================================== 1870 * Dedup 1871 * ========================================================================== 1872 */ 1873 static void 1874 zio_ddt_child_read_done(zio_t *zio) 1875 { 1876 blkptr_t *bp = zio->io_bp; 1877 ddt_entry_t *dde = zio->io_private; 1878 ddt_phys_t *ddp; 1879 zio_t *pio = zio_unique_parent(zio); 1880 1881 mutex_enter(&pio->io_lock); 1882 ddp = ddt_phys_select(dde, bp); 1883 if (zio->io_error == 0) 1884 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 1885 if (zio->io_error == 0 && dde->dde_repair_data == NULL) 1886 dde->dde_repair_data = zio->io_data; 1887 else 1888 zio_buf_free(zio->io_data, zio->io_size); 1889 mutex_exit(&pio->io_lock); 1890 } 1891 1892 static int 1893 zio_ddt_read_start(zio_t *zio) 1894 { 1895 blkptr_t *bp = zio->io_bp; 1896 1897 ASSERT(BP_GET_DEDUP(bp)); 1898 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 1899 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1900 1901 if (zio->io_child_error[ZIO_CHILD_DDT]) { 1902 ddt_t *ddt = ddt_select(zio->io_spa, bp); 1903 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 1904 ddt_phys_t *ddp = dde->dde_phys; 1905 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 1906 blkptr_t blk; 1907 1908 ASSERT(zio->io_vsd == NULL); 1909 zio->io_vsd = dde; 1910 1911 if (ddp_self == NULL) 1912 return (ZIO_PIPELINE_CONTINUE); 1913 1914 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 1915 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 1916 continue; 1917 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 1918 &blk); 1919 zio_nowait(zio_read(zio, zio->io_spa, &blk, 1920 zio_buf_alloc(zio->io_size), zio->io_size, 1921 zio_ddt_child_read_done, dde, zio->io_priority, 1922 ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE, 1923 &zio->io_bookmark)); 1924 } 1925 return (ZIO_PIPELINE_CONTINUE); 1926 } 1927 1928 zio_nowait(zio_read(zio, zio->io_spa, bp, 1929 zio->io_data, zio->io_size, NULL, NULL, zio->io_priority, 1930 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 1931 1932 return (ZIO_PIPELINE_CONTINUE); 1933 } 1934 1935 static int 1936 zio_ddt_read_done(zio_t *zio) 1937 { 1938 blkptr_t *bp = zio->io_bp; 1939 1940 if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE)) 1941 return (ZIO_PIPELINE_STOP); 1942 1943 ASSERT(BP_GET_DEDUP(bp)); 1944 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 1945 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1946 1947 if (zio->io_child_error[ZIO_CHILD_DDT]) { 1948 ddt_t *ddt = ddt_select(zio->io_spa, bp); 1949 ddt_entry_t *dde = zio->io_vsd; 1950 if (ddt == NULL) { 1951 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 1952 return (ZIO_PIPELINE_CONTINUE); 1953 } 1954 if (dde == NULL) { 1955 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 1956 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1957 return (ZIO_PIPELINE_STOP); 1958 } 1959 if (dde->dde_repair_data != NULL) { 1960 bcopy(dde->dde_repair_data, zio->io_data, zio->io_size); 1961 zio->io_child_error[ZIO_CHILD_DDT] = 0; 1962 } 1963 ddt_repair_done(ddt, dde); 1964 zio->io_vsd = NULL; 1965 } 1966 1967 ASSERT(zio->io_vsd == NULL); 1968 1969 return (ZIO_PIPELINE_CONTINUE); 1970 } 1971 1972 static boolean_t 1973 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 1974 { 1975 spa_t *spa = zio->io_spa; 1976 1977 /* 1978 * Note: we compare the original data, not the transformed data, 1979 * because when zio->io_bp is an override bp, we will not have 1980 * pushed the I/O transforms. That's an important optimization 1981 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 1982 */ 1983 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 1984 zio_t *lio = dde->dde_lead_zio[p]; 1985 1986 if (lio != NULL) { 1987 return (lio->io_orig_size != zio->io_orig_size || 1988 bcmp(zio->io_orig_data, lio->io_orig_data, 1989 zio->io_orig_size) != 0); 1990 } 1991 } 1992 1993 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 1994 ddt_phys_t *ddp = &dde->dde_phys[p]; 1995 1996 if (ddp->ddp_phys_birth != 0) { 1997 arc_buf_t *abuf = NULL; 1998 uint32_t aflags = ARC_WAIT; 1999 blkptr_t blk = *zio->io_bp; 2000 int error; 2001 2002 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 2003 2004 ddt_exit(ddt); 2005 2006 error = arc_read(NULL, spa, &blk, 2007 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 2008 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2009 &aflags, &zio->io_bookmark); 2010 2011 if (error == 0) { 2012 if (arc_buf_size(abuf) != zio->io_orig_size || 2013 bcmp(abuf->b_data, zio->io_orig_data, 2014 zio->io_orig_size) != 0) 2015 error = EEXIST; 2016 VERIFY(arc_buf_remove_ref(abuf, &abuf)); 2017 } 2018 2019 ddt_enter(ddt); 2020 return (error != 0); 2021 } 2022 } 2023 2024 return (B_FALSE); 2025 } 2026 2027 static void 2028 zio_ddt_child_write_ready(zio_t *zio) 2029 { 2030 int p = zio->io_prop.zp_copies; 2031 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2032 ddt_entry_t *dde = zio->io_private; 2033 ddt_phys_t *ddp = &dde->dde_phys[p]; 2034 zio_t *pio; 2035 2036 if (zio->io_error) 2037 return; 2038 2039 ddt_enter(ddt); 2040 2041 ASSERT(dde->dde_lead_zio[p] == zio); 2042 2043 ddt_phys_fill(ddp, zio->io_bp); 2044 2045 while ((pio = zio_walk_parents(zio)) != NULL) 2046 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 2047 2048 ddt_exit(ddt); 2049 } 2050 2051 static void 2052 zio_ddt_child_write_done(zio_t *zio) 2053 { 2054 int p = zio->io_prop.zp_copies; 2055 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2056 ddt_entry_t *dde = zio->io_private; 2057 ddt_phys_t *ddp = &dde->dde_phys[p]; 2058 2059 ddt_enter(ddt); 2060 2061 ASSERT(ddp->ddp_refcnt == 0); 2062 ASSERT(dde->dde_lead_zio[p] == zio); 2063 dde->dde_lead_zio[p] = NULL; 2064 2065 if (zio->io_error == 0) { 2066 while (zio_walk_parents(zio) != NULL) 2067 ddt_phys_addref(ddp); 2068 } else { 2069 ddt_phys_clear(ddp); 2070 } 2071 2072 ddt_exit(ddt); 2073 } 2074 2075 static void 2076 zio_ddt_ditto_write_done(zio_t *zio) 2077 { 2078 int p = DDT_PHYS_DITTO; 2079 zio_prop_t *zp = &zio->io_prop; 2080 blkptr_t *bp = zio->io_bp; 2081 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2082 ddt_entry_t *dde = zio->io_private; 2083 ddt_phys_t *ddp = &dde->dde_phys[p]; 2084 ddt_key_t *ddk = &dde->dde_key; 2085 2086 ddt_enter(ddt); 2087 2088 ASSERT(ddp->ddp_refcnt == 0); 2089 ASSERT(dde->dde_lead_zio[p] == zio); 2090 dde->dde_lead_zio[p] = NULL; 2091 2092 if (zio->io_error == 0) { 2093 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum)); 2094 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP); 2095 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp)); 2096 if (ddp->ddp_phys_birth != 0) 2097 ddt_phys_free(ddt, ddk, ddp, zio->io_txg); 2098 ddt_phys_fill(ddp, bp); 2099 } 2100 2101 ddt_exit(ddt); 2102 } 2103 2104 static int 2105 zio_ddt_write(zio_t *zio) 2106 { 2107 spa_t *spa = zio->io_spa; 2108 blkptr_t *bp = zio->io_bp; 2109 uint64_t txg = zio->io_txg; 2110 zio_prop_t *zp = &zio->io_prop; 2111 int p = zp->zp_copies; 2112 int ditto_copies; 2113 zio_t *cio = NULL; 2114 zio_t *dio = NULL; 2115 ddt_t *ddt = ddt_select(spa, bp); 2116 ddt_entry_t *dde; 2117 ddt_phys_t *ddp; 2118 2119 ASSERT(BP_GET_DEDUP(bp)); 2120 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 2121 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 2122 2123 ddt_enter(ddt); 2124 dde = ddt_lookup(ddt, bp, B_TRUE); 2125 ddp = &dde->dde_phys[p]; 2126 2127 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 2128 /* 2129 * If we're using a weak checksum, upgrade to a strong checksum 2130 * and try again. If we're already using a strong checksum, 2131 * we can't resolve it, so just convert to an ordinary write. 2132 * (And automatically e-mail a paper to Nature?) 2133 */ 2134 if (!zio_checksum_table[zp->zp_checksum].ci_dedup) { 2135 zp->zp_checksum = spa_dedup_checksum(spa); 2136 zio_pop_transforms(zio); 2137 zio->io_stage = ZIO_STAGE_OPEN; 2138 BP_ZERO(bp); 2139 } else { 2140 zp->zp_dedup = B_FALSE; 2141 } 2142 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2143 ddt_exit(ddt); 2144 return (ZIO_PIPELINE_CONTINUE); 2145 } 2146 2147 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp); 2148 ASSERT(ditto_copies < SPA_DVAS_PER_BP); 2149 2150 if (ditto_copies > ddt_ditto_copies_present(dde) && 2151 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) { 2152 zio_prop_t czp = *zp; 2153 2154 czp.zp_copies = ditto_copies; 2155 2156 /* 2157 * If we arrived here with an override bp, we won't have run 2158 * the transform stack, so we won't have the data we need to 2159 * generate a child i/o. So, toss the override bp and restart. 2160 * This is safe, because using the override bp is just an 2161 * optimization; and it's rare, so the cost doesn't matter. 2162 */ 2163 if (zio->io_bp_override) { 2164 zio_pop_transforms(zio); 2165 zio->io_stage = ZIO_STAGE_OPEN; 2166 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2167 zio->io_bp_override = NULL; 2168 BP_ZERO(bp); 2169 ddt_exit(ddt); 2170 return (ZIO_PIPELINE_CONTINUE); 2171 } 2172 2173 dio = zio_write(zio, spa, txg, bp, zio->io_orig_data, 2174 zio->io_orig_size, &czp, NULL, 2175 zio_ddt_ditto_write_done, dde, zio->io_priority, 2176 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2177 2178 zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL); 2179 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio; 2180 } 2181 2182 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 2183 if (ddp->ddp_phys_birth != 0) 2184 ddt_bp_fill(ddp, bp, txg); 2185 if (dde->dde_lead_zio[p] != NULL) 2186 zio_add_child(zio, dde->dde_lead_zio[p]); 2187 else 2188 ddt_phys_addref(ddp); 2189 } else if (zio->io_bp_override) { 2190 ASSERT(bp->blk_birth == txg); 2191 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 2192 ddt_phys_fill(ddp, bp); 2193 ddt_phys_addref(ddp); 2194 } else { 2195 cio = zio_write(zio, spa, txg, bp, zio->io_orig_data, 2196 zio->io_orig_size, zp, zio_ddt_child_write_ready, 2197 zio_ddt_child_write_done, dde, zio->io_priority, 2198 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2199 2200 zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL); 2201 dde->dde_lead_zio[p] = cio; 2202 } 2203 2204 ddt_exit(ddt); 2205 2206 if (cio) 2207 zio_nowait(cio); 2208 if (dio) 2209 zio_nowait(dio); 2210 2211 return (ZIO_PIPELINE_CONTINUE); 2212 } 2213 2214 ddt_entry_t *freedde; /* for debugging */ 2215 2216 static int 2217 zio_ddt_free(zio_t *zio) 2218 { 2219 spa_t *spa = zio->io_spa; 2220 blkptr_t *bp = zio->io_bp; 2221 ddt_t *ddt = ddt_select(spa, bp); 2222 ddt_entry_t *dde; 2223 ddt_phys_t *ddp; 2224 2225 ASSERT(BP_GET_DEDUP(bp)); 2226 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2227 2228 ddt_enter(ddt); 2229 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 2230 ddp = ddt_phys_select(dde, bp); 2231 ddt_phys_decref(ddp); 2232 ddt_exit(ddt); 2233 2234 return (ZIO_PIPELINE_CONTINUE); 2235 } 2236 2237 /* 2238 * ========================================================================== 2239 * Allocate and free blocks 2240 * ========================================================================== 2241 */ 2242 static int 2243 zio_dva_allocate(zio_t *zio) 2244 { 2245 spa_t *spa = zio->io_spa; 2246 metaslab_class_t *mc = spa_normal_class(spa); 2247 blkptr_t *bp = zio->io_bp; 2248 int error; 2249 int flags = 0; 2250 2251 if (zio->io_gang_leader == NULL) { 2252 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2253 zio->io_gang_leader = zio; 2254 } 2255 2256 ASSERT(BP_IS_HOLE(bp)); 2257 ASSERT0(BP_GET_NDVAS(bp)); 2258 ASSERT3U(zio->io_prop.zp_copies, >, 0); 2259 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 2260 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 2261 2262 /* 2263 * The dump device does not support gang blocks so allocation on 2264 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid 2265 * the "fast" gang feature. 2266 */ 2267 flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0; 2268 flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ? 2269 METASLAB_GANG_CHILD : 0; 2270 error = metaslab_alloc(spa, mc, zio->io_size, bp, 2271 zio->io_prop.zp_copies, zio->io_txg, NULL, flags); 2272 2273 if (error) { 2274 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, " 2275 "size %llu, error %d", spa_name(spa), zio, zio->io_size, 2276 error); 2277 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) 2278 return (zio_write_gang_block(zio)); 2279 zio->io_error = error; 2280 } 2281 2282 return (ZIO_PIPELINE_CONTINUE); 2283 } 2284 2285 static int 2286 zio_dva_free(zio_t *zio) 2287 { 2288 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 2289 2290 return (ZIO_PIPELINE_CONTINUE); 2291 } 2292 2293 static int 2294 zio_dva_claim(zio_t *zio) 2295 { 2296 int error; 2297 2298 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 2299 if (error) 2300 zio->io_error = error; 2301 2302 return (ZIO_PIPELINE_CONTINUE); 2303 } 2304 2305 /* 2306 * Undo an allocation. This is used by zio_done() when an I/O fails 2307 * and we want to give back the block we just allocated. 2308 * This handles both normal blocks and gang blocks. 2309 */ 2310 static void 2311 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 2312 { 2313 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 2314 ASSERT(zio->io_bp_override == NULL); 2315 2316 if (!BP_IS_HOLE(bp)) 2317 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 2318 2319 if (gn != NULL) { 2320 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2321 zio_dva_unallocate(zio, gn->gn_child[g], 2322 &gn->gn_gbh->zg_blkptr[g]); 2323 } 2324 } 2325 } 2326 2327 /* 2328 * Try to allocate an intent log block. Return 0 on success, errno on failure. 2329 */ 2330 int 2331 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp, 2332 uint64_t size, boolean_t use_slog) 2333 { 2334 int error = 1; 2335 2336 ASSERT(txg > spa_syncing_txg(spa)); 2337 2338 /* 2339 * ZIL blocks are always contiguous (i.e. not gang blocks) so we 2340 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang" 2341 * when allocating them. 2342 */ 2343 if (use_slog) { 2344 error = metaslab_alloc(spa, spa_log_class(spa), size, 2345 new_bp, 1, txg, old_bp, 2346 METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID); 2347 } 2348 2349 if (error) { 2350 error = metaslab_alloc(spa, spa_normal_class(spa), size, 2351 new_bp, 1, txg, old_bp, 2352 METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID); 2353 } 2354 2355 if (error == 0) { 2356 BP_SET_LSIZE(new_bp, size); 2357 BP_SET_PSIZE(new_bp, size); 2358 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 2359 BP_SET_CHECKSUM(new_bp, 2360 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 2361 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 2362 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 2363 BP_SET_LEVEL(new_bp, 0); 2364 BP_SET_DEDUP(new_bp, 0); 2365 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 2366 } 2367 2368 return (error); 2369 } 2370 2371 /* 2372 * Free an intent log block. 2373 */ 2374 void 2375 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp) 2376 { 2377 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG); 2378 ASSERT(!BP_IS_GANG(bp)); 2379 2380 zio_free(spa, txg, bp); 2381 } 2382 2383 /* 2384 * ========================================================================== 2385 * Read and write to physical devices 2386 * ========================================================================== 2387 */ 2388 static int 2389 zio_vdev_io_start(zio_t *zio) 2390 { 2391 vdev_t *vd = zio->io_vd; 2392 uint64_t align; 2393 spa_t *spa = zio->io_spa; 2394 2395 ASSERT(zio->io_error == 0); 2396 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 2397 2398 if (vd == NULL) { 2399 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 2400 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 2401 2402 /* 2403 * The mirror_ops handle multiple DVAs in a single BP. 2404 */ 2405 return (vdev_mirror_ops.vdev_op_io_start(zio)); 2406 } 2407 2408 /* 2409 * We keep track of time-sensitive I/Os so that the scan thread 2410 * can quickly react to certain workloads. In particular, we care 2411 * about non-scrubbing, top-level reads and writes with the following 2412 * characteristics: 2413 * - synchronous writes of user data to non-slog devices 2414 * - any reads of user data 2415 * When these conditions are met, adjust the timestamp of spa_last_io 2416 * which allows the scan thread to adjust its workload accordingly. 2417 */ 2418 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL && 2419 vd == vd->vdev_top && !vd->vdev_islog && 2420 zio->io_bookmark.zb_objset != DMU_META_OBJSET && 2421 zio->io_txg != spa_syncing_txg(spa)) { 2422 uint64_t old = spa->spa_last_io; 2423 uint64_t new = ddi_get_lbolt64(); 2424 if (old != new) 2425 (void) atomic_cas_64(&spa->spa_last_io, old, new); 2426 } 2427 2428 align = 1ULL << vd->vdev_top->vdev_ashift; 2429 2430 if (P2PHASE(zio->io_size, align) != 0) { 2431 uint64_t asize = P2ROUNDUP(zio->io_size, align); 2432 char *abuf = zio_buf_alloc(asize); 2433 ASSERT(vd == vd->vdev_top); 2434 if (zio->io_type == ZIO_TYPE_WRITE) { 2435 bcopy(zio->io_data, abuf, zio->io_size); 2436 bzero(abuf + zio->io_size, asize - zio->io_size); 2437 } 2438 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 2439 } 2440 2441 ASSERT(P2PHASE(zio->io_offset, align) == 0); 2442 ASSERT(P2PHASE(zio->io_size, align) == 0); 2443 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 2444 2445 /* 2446 * If this is a repair I/O, and there's no self-healing involved -- 2447 * that is, we're just resilvering what we expect to resilver -- 2448 * then don't do the I/O unless zio's txg is actually in vd's DTL. 2449 * This prevents spurious resilvering with nested replication. 2450 * For example, given a mirror of mirrors, (A+B)+(C+D), if only 2451 * A is out of date, we'll read from C+D, then use the data to 2452 * resilver A+B -- but we don't actually want to resilver B, just A. 2453 * The top-level mirror has no way to know this, so instead we just 2454 * discard unnecessary repairs as we work our way down the vdev tree. 2455 * The same logic applies to any form of nested replication: 2456 * ditto + mirror, RAID-Z + replacing, etc. This covers them all. 2457 */ 2458 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 2459 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 2460 zio->io_txg != 0 && /* not a delegated i/o */ 2461 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 2462 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 2463 zio_vdev_io_bypass(zio); 2464 return (ZIO_PIPELINE_CONTINUE); 2465 } 2466 2467 if (vd->vdev_ops->vdev_op_leaf && 2468 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) { 2469 2470 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0) 2471 return (ZIO_PIPELINE_CONTINUE); 2472 2473 if ((zio = vdev_queue_io(zio)) == NULL) 2474 return (ZIO_PIPELINE_STOP); 2475 2476 if (!vdev_accessible(vd, zio)) { 2477 zio->io_error = ENXIO; 2478 zio_interrupt(zio); 2479 return (ZIO_PIPELINE_STOP); 2480 } 2481 } 2482 2483 return (vd->vdev_ops->vdev_op_io_start(zio)); 2484 } 2485 2486 static int 2487 zio_vdev_io_done(zio_t *zio) 2488 { 2489 vdev_t *vd = zio->io_vd; 2490 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 2491 boolean_t unexpected_error = B_FALSE; 2492 2493 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 2494 return (ZIO_PIPELINE_STOP); 2495 2496 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); 2497 2498 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { 2499 2500 vdev_queue_io_done(zio); 2501 2502 if (zio->io_type == ZIO_TYPE_WRITE) 2503 vdev_cache_write(zio); 2504 2505 if (zio_injection_enabled && zio->io_error == 0) 2506 zio->io_error = zio_handle_device_injection(vd, 2507 zio, EIO); 2508 2509 if (zio_injection_enabled && zio->io_error == 0) 2510 zio->io_error = zio_handle_label_injection(zio, EIO); 2511 2512 if (zio->io_error) { 2513 if (!vdev_accessible(vd, zio)) { 2514 zio->io_error = ENXIO; 2515 } else { 2516 unexpected_error = B_TRUE; 2517 } 2518 } 2519 } 2520 2521 ops->vdev_op_io_done(zio); 2522 2523 if (unexpected_error) 2524 VERIFY(vdev_probe(vd, zio) == NULL); 2525 2526 return (ZIO_PIPELINE_CONTINUE); 2527 } 2528 2529 /* 2530 * For non-raidz ZIOs, we can just copy aside the bad data read from the 2531 * disk, and use that to finish the checksum ereport later. 2532 */ 2533 static void 2534 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 2535 const void *good_buf) 2536 { 2537 /* no processing needed */ 2538 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 2539 } 2540 2541 /*ARGSUSED*/ 2542 void 2543 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored) 2544 { 2545 void *buf = zio_buf_alloc(zio->io_size); 2546 2547 bcopy(zio->io_data, buf, zio->io_size); 2548 2549 zcr->zcr_cbinfo = zio->io_size; 2550 zcr->zcr_cbdata = buf; 2551 zcr->zcr_finish = zio_vsd_default_cksum_finish; 2552 zcr->zcr_free = zio_buf_free; 2553 } 2554 2555 static int 2556 zio_vdev_io_assess(zio_t *zio) 2557 { 2558 vdev_t *vd = zio->io_vd; 2559 2560 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 2561 return (ZIO_PIPELINE_STOP); 2562 2563 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 2564 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 2565 2566 if (zio->io_vsd != NULL) { 2567 zio->io_vsd_ops->vsd_free(zio); 2568 zio->io_vsd = NULL; 2569 } 2570 2571 if (zio_injection_enabled && zio->io_error == 0) 2572 zio->io_error = zio_handle_fault_injection(zio, EIO); 2573 2574 /* 2575 * If the I/O failed, determine whether we should attempt to retry it. 2576 * 2577 * On retry, we cut in line in the issue queue, since we don't want 2578 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 2579 */ 2580 if (zio->io_error && vd == NULL && 2581 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 2582 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 2583 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 2584 zio->io_error = 0; 2585 zio->io_flags |= ZIO_FLAG_IO_RETRY | 2586 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 2587 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 2588 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 2589 zio_requeue_io_start_cut_in_line); 2590 return (ZIO_PIPELINE_STOP); 2591 } 2592 2593 /* 2594 * If we got an error on a leaf device, convert it to ENXIO 2595 * if the device is not accessible at all. 2596 */ 2597 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 2598 !vdev_accessible(vd, zio)) 2599 zio->io_error = ENXIO; 2600 2601 /* 2602 * If we can't write to an interior vdev (mirror or RAID-Z), 2603 * set vdev_cant_write so that we stop trying to allocate from it. 2604 */ 2605 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 2606 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 2607 vd->vdev_cant_write = B_TRUE; 2608 } 2609 2610 if (zio->io_error) 2611 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2612 2613 return (ZIO_PIPELINE_CONTINUE); 2614 } 2615 2616 void 2617 zio_vdev_io_reissue(zio_t *zio) 2618 { 2619 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 2620 ASSERT(zio->io_error == 0); 2621 2622 zio->io_stage >>= 1; 2623 } 2624 2625 void 2626 zio_vdev_io_redone(zio_t *zio) 2627 { 2628 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 2629 2630 zio->io_stage >>= 1; 2631 } 2632 2633 void 2634 zio_vdev_io_bypass(zio_t *zio) 2635 { 2636 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 2637 ASSERT(zio->io_error == 0); 2638 2639 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 2640 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 2641 } 2642 2643 /* 2644 * ========================================================================== 2645 * Generate and verify checksums 2646 * ========================================================================== 2647 */ 2648 static int 2649 zio_checksum_generate(zio_t *zio) 2650 { 2651 blkptr_t *bp = zio->io_bp; 2652 enum zio_checksum checksum; 2653 2654 if (bp == NULL) { 2655 /* 2656 * This is zio_write_phys(). 2657 * We're either generating a label checksum, or none at all. 2658 */ 2659 checksum = zio->io_prop.zp_checksum; 2660 2661 if (checksum == ZIO_CHECKSUM_OFF) 2662 return (ZIO_PIPELINE_CONTINUE); 2663 2664 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 2665 } else { 2666 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 2667 ASSERT(!IO_IS_ALLOCATING(zio)); 2668 checksum = ZIO_CHECKSUM_GANG_HEADER; 2669 } else { 2670 checksum = BP_GET_CHECKSUM(bp); 2671 } 2672 } 2673 2674 zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size); 2675 2676 return (ZIO_PIPELINE_CONTINUE); 2677 } 2678 2679 static int 2680 zio_checksum_verify(zio_t *zio) 2681 { 2682 zio_bad_cksum_t info; 2683 blkptr_t *bp = zio->io_bp; 2684 int error; 2685 2686 ASSERT(zio->io_vd != NULL); 2687 2688 if (bp == NULL) { 2689 /* 2690 * This is zio_read_phys(). 2691 * We're either verifying a label checksum, or nothing at all. 2692 */ 2693 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 2694 return (ZIO_PIPELINE_CONTINUE); 2695 2696 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); 2697 } 2698 2699 if ((error = zio_checksum_error(zio, &info)) != 0) { 2700 zio->io_error = error; 2701 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 2702 zfs_ereport_start_checksum(zio->io_spa, 2703 zio->io_vd, zio, zio->io_offset, 2704 zio->io_size, NULL, &info); 2705 } 2706 } 2707 2708 return (ZIO_PIPELINE_CONTINUE); 2709 } 2710 2711 /* 2712 * Called by RAID-Z to ensure we don't compute the checksum twice. 2713 */ 2714 void 2715 zio_checksum_verified(zio_t *zio) 2716 { 2717 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 2718 } 2719 2720 /* 2721 * ========================================================================== 2722 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 2723 * An error of 0 indictes success. ENXIO indicates whole-device failure, 2724 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO 2725 * indicate errors that are specific to one I/O, and most likely permanent. 2726 * Any other error is presumed to be worse because we weren't expecting it. 2727 * ========================================================================== 2728 */ 2729 int 2730 zio_worst_error(int e1, int e2) 2731 { 2732 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 2733 int r1, r2; 2734 2735 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 2736 if (e1 == zio_error_rank[r1]) 2737 break; 2738 2739 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 2740 if (e2 == zio_error_rank[r2]) 2741 break; 2742 2743 return (r1 > r2 ? e1 : e2); 2744 } 2745 2746 /* 2747 * ========================================================================== 2748 * I/O completion 2749 * ========================================================================== 2750 */ 2751 static int 2752 zio_ready(zio_t *zio) 2753 { 2754 blkptr_t *bp = zio->io_bp; 2755 zio_t *pio, *pio_next; 2756 2757 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || 2758 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY)) 2759 return (ZIO_PIPELINE_STOP); 2760 2761 if (zio->io_ready) { 2762 ASSERT(IO_IS_ALLOCATING(zio)); 2763 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 2764 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 2765 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 2766 2767 zio->io_ready(zio); 2768 } 2769 2770 if (bp != NULL && bp != &zio->io_bp_copy) 2771 zio->io_bp_copy = *bp; 2772 2773 if (zio->io_error) 2774 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2775 2776 mutex_enter(&zio->io_lock); 2777 zio->io_state[ZIO_WAIT_READY] = 1; 2778 pio = zio_walk_parents(zio); 2779 mutex_exit(&zio->io_lock); 2780 2781 /* 2782 * As we notify zio's parents, new parents could be added. 2783 * New parents go to the head of zio's io_parent_list, however, 2784 * so we will (correctly) not notify them. The remainder of zio's 2785 * io_parent_list, from 'pio_next' onward, cannot change because 2786 * all parents must wait for us to be done before they can be done. 2787 */ 2788 for (; pio != NULL; pio = pio_next) { 2789 pio_next = zio_walk_parents(zio); 2790 zio_notify_parent(pio, zio, ZIO_WAIT_READY); 2791 } 2792 2793 if (zio->io_flags & ZIO_FLAG_NODATA) { 2794 if (BP_IS_GANG(bp)) { 2795 zio->io_flags &= ~ZIO_FLAG_NODATA; 2796 } else { 2797 ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE); 2798 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 2799 } 2800 } 2801 2802 if (zio_injection_enabled && 2803 zio->io_spa->spa_syncing_txg == zio->io_txg) 2804 zio_handle_ignored_writes(zio); 2805 2806 return (ZIO_PIPELINE_CONTINUE); 2807 } 2808 2809 static int 2810 zio_done(zio_t *zio) 2811 { 2812 spa_t *spa = zio->io_spa; 2813 zio_t *lio = zio->io_logical; 2814 blkptr_t *bp = zio->io_bp; 2815 vdev_t *vd = zio->io_vd; 2816 uint64_t psize = zio->io_size; 2817 zio_t *pio, *pio_next; 2818 2819 /* 2820 * If our children haven't all completed, 2821 * wait for them and then repeat this pipeline stage. 2822 */ 2823 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) || 2824 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) || 2825 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) || 2826 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE)) 2827 return (ZIO_PIPELINE_STOP); 2828 2829 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 2830 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2831 ASSERT(zio->io_children[c][w] == 0); 2832 2833 if (bp != NULL) { 2834 ASSERT(bp->blk_pad[0] == 0); 2835 ASSERT(bp->blk_pad[1] == 0); 2836 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || 2837 (bp == zio_unique_parent(zio)->io_bp)); 2838 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 2839 zio->io_bp_override == NULL && 2840 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 2841 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 2842 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp)); 2843 ASSERT(BP_COUNT_GANG(bp) == 0 || 2844 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 2845 } 2846 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 2847 VERIFY(BP_EQUAL(bp, &zio->io_bp_orig)); 2848 } 2849 2850 /* 2851 * If there were child vdev/gang/ddt errors, they apply to us now. 2852 */ 2853 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 2854 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 2855 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 2856 2857 /* 2858 * If the I/O on the transformed data was successful, generate any 2859 * checksum reports now while we still have the transformed data. 2860 */ 2861 if (zio->io_error == 0) { 2862 while (zio->io_cksum_report != NULL) { 2863 zio_cksum_report_t *zcr = zio->io_cksum_report; 2864 uint64_t align = zcr->zcr_align; 2865 uint64_t asize = P2ROUNDUP(psize, align); 2866 char *abuf = zio->io_data; 2867 2868 if (asize != psize) { 2869 abuf = zio_buf_alloc(asize); 2870 bcopy(zio->io_data, abuf, psize); 2871 bzero(abuf + psize, asize - psize); 2872 } 2873 2874 zio->io_cksum_report = zcr->zcr_next; 2875 zcr->zcr_next = NULL; 2876 zcr->zcr_finish(zcr, abuf); 2877 zfs_ereport_free_checksum(zcr); 2878 2879 if (asize != psize) 2880 zio_buf_free(abuf, asize); 2881 } 2882 } 2883 2884 zio_pop_transforms(zio); /* note: may set zio->io_error */ 2885 2886 vdev_stat_update(zio, psize); 2887 2888 if (zio->io_error) { 2889 /* 2890 * If this I/O is attached to a particular vdev, 2891 * generate an error message describing the I/O failure 2892 * at the block level. We ignore these errors if the 2893 * device is currently unavailable. 2894 */ 2895 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 2896 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0); 2897 2898 if ((zio->io_error == EIO || !(zio->io_flags & 2899 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 2900 zio == lio) { 2901 /* 2902 * For logical I/O requests, tell the SPA to log the 2903 * error and generate a logical data ereport. 2904 */ 2905 spa_log_error(spa, zio); 2906 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio, 2907 0, 0); 2908 } 2909 } 2910 2911 if (zio->io_error && zio == lio) { 2912 /* 2913 * Determine whether zio should be reexecuted. This will 2914 * propagate all the way to the root via zio_notify_parent(). 2915 */ 2916 ASSERT(vd == NULL && bp != NULL); 2917 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2918 2919 if (IO_IS_ALLOCATING(zio) && 2920 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 2921 if (zio->io_error != ENOSPC) 2922 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 2923 else 2924 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 2925 } 2926 2927 if ((zio->io_type == ZIO_TYPE_READ || 2928 zio->io_type == ZIO_TYPE_FREE) && 2929 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 2930 zio->io_error == ENXIO && 2931 spa_load_state(spa) == SPA_LOAD_NONE && 2932 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) 2933 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 2934 2935 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 2936 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 2937 2938 /* 2939 * Here is a possibly good place to attempt to do 2940 * either combinatorial reconstruction or error correction 2941 * based on checksums. It also might be a good place 2942 * to send out preliminary ereports before we suspend 2943 * processing. 2944 */ 2945 } 2946 2947 /* 2948 * If there were logical child errors, they apply to us now. 2949 * We defer this until now to avoid conflating logical child 2950 * errors with errors that happened to the zio itself when 2951 * updating vdev stats and reporting FMA events above. 2952 */ 2953 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 2954 2955 if ((zio->io_error || zio->io_reexecute) && 2956 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 2957 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 2958 zio_dva_unallocate(zio, zio->io_gang_tree, bp); 2959 2960 zio_gang_tree_free(&zio->io_gang_tree); 2961 2962 /* 2963 * Godfather I/Os should never suspend. 2964 */ 2965 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 2966 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 2967 zio->io_reexecute = 0; 2968 2969 if (zio->io_reexecute) { 2970 /* 2971 * This is a logical I/O that wants to reexecute. 2972 * 2973 * Reexecute is top-down. When an i/o fails, if it's not 2974 * the root, it simply notifies its parent and sticks around. 2975 * The parent, seeing that it still has children in zio_done(), 2976 * does the same. This percolates all the way up to the root. 2977 * The root i/o will reexecute or suspend the entire tree. 2978 * 2979 * This approach ensures that zio_reexecute() honors 2980 * all the original i/o dependency relationships, e.g. 2981 * parents not executing until children are ready. 2982 */ 2983 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2984 2985 zio->io_gang_leader = NULL; 2986 2987 mutex_enter(&zio->io_lock); 2988 zio->io_state[ZIO_WAIT_DONE] = 1; 2989 mutex_exit(&zio->io_lock); 2990 2991 /* 2992 * "The Godfather" I/O monitors its children but is 2993 * not a true parent to them. It will track them through 2994 * the pipeline but severs its ties whenever they get into 2995 * trouble (e.g. suspended). This allows "The Godfather" 2996 * I/O to return status without blocking. 2997 */ 2998 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) { 2999 zio_link_t *zl = zio->io_walk_link; 3000 pio_next = zio_walk_parents(zio); 3001 3002 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 3003 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 3004 zio_remove_child(pio, zio, zl); 3005 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3006 } 3007 } 3008 3009 if ((pio = zio_unique_parent(zio)) != NULL) { 3010 /* 3011 * We're not a root i/o, so there's nothing to do 3012 * but notify our parent. Don't propagate errors 3013 * upward since we haven't permanently failed yet. 3014 */ 3015 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 3016 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 3017 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3018 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 3019 /* 3020 * We'd fail again if we reexecuted now, so suspend 3021 * until conditions improve (e.g. device comes online). 3022 */ 3023 zio_suspend(spa, zio); 3024 } else { 3025 /* 3026 * Reexecution is potentially a huge amount of work. 3027 * Hand it off to the otherwise-unused claim taskq. 3028 */ 3029 ASSERT(zio->io_tqent.tqent_next == NULL); 3030 spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM, 3031 ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio, 3032 0, &zio->io_tqent); 3033 } 3034 return (ZIO_PIPELINE_STOP); 3035 } 3036 3037 ASSERT(zio->io_child_count == 0); 3038 ASSERT(zio->io_reexecute == 0); 3039 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 3040 3041 /* 3042 * Report any checksum errors, since the I/O is complete. 3043 */ 3044 while (zio->io_cksum_report != NULL) { 3045 zio_cksum_report_t *zcr = zio->io_cksum_report; 3046 zio->io_cksum_report = zcr->zcr_next; 3047 zcr->zcr_next = NULL; 3048 zcr->zcr_finish(zcr, NULL); 3049 zfs_ereport_free_checksum(zcr); 3050 } 3051 3052 /* 3053 * It is the responsibility of the done callback to ensure that this 3054 * particular zio is no longer discoverable for adoption, and as 3055 * such, cannot acquire any new parents. 3056 */ 3057 if (zio->io_done) 3058 zio->io_done(zio); 3059 3060 mutex_enter(&zio->io_lock); 3061 zio->io_state[ZIO_WAIT_DONE] = 1; 3062 mutex_exit(&zio->io_lock); 3063 3064 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) { 3065 zio_link_t *zl = zio->io_walk_link; 3066 pio_next = zio_walk_parents(zio); 3067 zio_remove_child(pio, zio, zl); 3068 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3069 } 3070 3071 if (zio->io_waiter != NULL) { 3072 mutex_enter(&zio->io_lock); 3073 zio->io_executor = NULL; 3074 cv_broadcast(&zio->io_cv); 3075 mutex_exit(&zio->io_lock); 3076 } else { 3077 zio_destroy(zio); 3078 } 3079 3080 return (ZIO_PIPELINE_STOP); 3081 } 3082 3083 /* 3084 * ========================================================================== 3085 * I/O pipeline definition 3086 * ========================================================================== 3087 */ 3088 static zio_pipe_stage_t *zio_pipeline[] = { 3089 NULL, 3090 zio_read_bp_init, 3091 zio_free_bp_init, 3092 zio_issue_async, 3093 zio_write_bp_init, 3094 zio_checksum_generate, 3095 zio_nop_write, 3096 zio_ddt_read_start, 3097 zio_ddt_read_done, 3098 zio_ddt_write, 3099 zio_ddt_free, 3100 zio_gang_assemble, 3101 zio_gang_issue, 3102 zio_dva_allocate, 3103 zio_dva_free, 3104 zio_dva_claim, 3105 zio_ready, 3106 zio_vdev_io_start, 3107 zio_vdev_io_done, 3108 zio_vdev_io_assess, 3109 zio_checksum_verify, 3110 zio_done 3111 }; 3112 3113 /* dnp is the dnode for zb1->zb_object */ 3114 boolean_t 3115 zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_t *zb1, 3116 const zbookmark_t *zb2) 3117 { 3118 uint64_t zb1nextL0, zb2thisobj; 3119 3120 ASSERT(zb1->zb_objset == zb2->zb_objset); 3121 ASSERT(zb2->zb_level == 0); 3122 3123 /* 3124 * A bookmark in the deadlist is considered to be after 3125 * everything else. 3126 */ 3127 if (zb2->zb_object == DMU_DEADLIST_OBJECT) 3128 return (B_TRUE); 3129 3130 /* The objset_phys_t isn't before anything. */ 3131 if (dnp == NULL) 3132 return (B_FALSE); 3133 3134 zb1nextL0 = (zb1->zb_blkid + 1) << 3135 ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT)); 3136 3137 zb2thisobj = zb2->zb_object ? zb2->zb_object : 3138 zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT); 3139 3140 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 3141 uint64_t nextobj = zb1nextL0 * 3142 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT; 3143 return (nextobj <= zb2thisobj); 3144 } 3145 3146 if (zb1->zb_object < zb2thisobj) 3147 return (B_TRUE); 3148 if (zb1->zb_object > zb2thisobj) 3149 return (B_FALSE); 3150 if (zb2->zb_object == DMU_META_DNODE_OBJECT) 3151 return (B_FALSE); 3152 return (zb1nextL0 <= zb2->zb_blkid); 3153 } 3154