1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 */ 25 26 /* Portions Copyright 2010 Robert Milkowski */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa.h> 30 #include <sys/dmu.h> 31 #include <sys/zap.h> 32 #include <sys/arc.h> 33 #include <sys/stat.h> 34 #include <sys/resource.h> 35 #include <sys/zil.h> 36 #include <sys/zil_impl.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/vdev_impl.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/dsl_pool.h> 41 42 /* 43 * The zfs intent log (ZIL) saves transaction records of system calls 44 * that change the file system in memory with enough information 45 * to be able to replay them. These are stored in memory until 46 * either the DMU transaction group (txg) commits them to the stable pool 47 * and they can be discarded, or they are flushed to the stable log 48 * (also in the pool) due to a fsync, O_DSYNC or other synchronous 49 * requirement. In the event of a panic or power fail then those log 50 * records (transactions) are replayed. 51 * 52 * There is one ZIL per file system. Its on-disk (pool) format consists 53 * of 3 parts: 54 * 55 * - ZIL header 56 * - ZIL blocks 57 * - ZIL records 58 * 59 * A log record holds a system call transaction. Log blocks can 60 * hold many log records and the blocks are chained together. 61 * Each ZIL block contains a block pointer (blkptr_t) to the next 62 * ZIL block in the chain. The ZIL header points to the first 63 * block in the chain. Note there is not a fixed place in the pool 64 * to hold blocks. They are dynamically allocated and freed as 65 * needed from the blocks available. Figure X shows the ZIL structure: 66 */ 67 68 /* 69 * This global ZIL switch affects all pools 70 */ 71 int zil_replay_disable = 0; /* disable intent logging replay */ 72 73 /* 74 * Tunable parameter for debugging or performance analysis. Setting 75 * zfs_nocacheflush will cause corruption on power loss if a volatile 76 * out-of-order write cache is enabled. 77 */ 78 boolean_t zfs_nocacheflush = B_FALSE; 79 80 static kmem_cache_t *zil_lwb_cache; 81 82 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid); 83 84 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \ 85 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused)) 86 87 88 /* 89 * ziltest is by and large an ugly hack, but very useful in 90 * checking replay without tedious work. 91 * When running ziltest we want to keep all itx's and so maintain 92 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG 93 * We subtract TXG_CONCURRENT_STATES to allow for common code. 94 */ 95 #define ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES) 96 97 static int 98 zil_bp_compare(const void *x1, const void *x2) 99 { 100 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 101 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 102 103 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 104 return (-1); 105 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 106 return (1); 107 108 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 109 return (-1); 110 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 111 return (1); 112 113 return (0); 114 } 115 116 static void 117 zil_bp_tree_init(zilog_t *zilog) 118 { 119 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 120 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 121 } 122 123 static void 124 zil_bp_tree_fini(zilog_t *zilog) 125 { 126 avl_tree_t *t = &zilog->zl_bp_tree; 127 zil_bp_node_t *zn; 128 void *cookie = NULL; 129 130 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 131 kmem_free(zn, sizeof (zil_bp_node_t)); 132 133 avl_destroy(t); 134 } 135 136 int 137 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 138 { 139 avl_tree_t *t = &zilog->zl_bp_tree; 140 const dva_t *dva = BP_IDENTITY(bp); 141 zil_bp_node_t *zn; 142 avl_index_t where; 143 144 if (avl_find(t, dva, &where) != NULL) 145 return (EEXIST); 146 147 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 148 zn->zn_dva = *dva; 149 avl_insert(t, zn, where); 150 151 return (0); 152 } 153 154 static zil_header_t * 155 zil_header_in_syncing_context(zilog_t *zilog) 156 { 157 return ((zil_header_t *)zilog->zl_header); 158 } 159 160 static void 161 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 162 { 163 zio_cksum_t *zc = &bp->blk_cksum; 164 165 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 166 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 167 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 168 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 169 } 170 171 /* 172 * Read a log block and make sure it's valid. 173 */ 174 static int 175 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst, 176 char **end) 177 { 178 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 179 uint32_t aflags = ARC_WAIT; 180 arc_buf_t *abuf = NULL; 181 zbookmark_t zb; 182 int error; 183 184 if (zilog->zl_header->zh_claim_txg == 0) 185 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 186 187 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 188 zio_flags |= ZIO_FLAG_SPECULATIVE; 189 190 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 191 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 192 193 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 194 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 195 196 if (error == 0) { 197 zio_cksum_t cksum = bp->blk_cksum; 198 199 /* 200 * Validate the checksummed log block. 201 * 202 * Sequence numbers should be... sequential. The checksum 203 * verifier for the next block should be bp's checksum plus 1. 204 * 205 * Also check the log chain linkage and size used. 206 */ 207 cksum.zc_word[ZIL_ZC_SEQ]++; 208 209 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 210 zil_chain_t *zilc = abuf->b_data; 211 char *lr = (char *)(zilc + 1); 212 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); 213 214 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 215 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { 216 error = ECKSUM; 217 } else { 218 bcopy(lr, dst, len); 219 *end = (char *)dst + len; 220 *nbp = zilc->zc_next_blk; 221 } 222 } else { 223 char *lr = abuf->b_data; 224 uint64_t size = BP_GET_LSIZE(bp); 225 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 226 227 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 228 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || 229 (zilc->zc_nused > (size - sizeof (*zilc)))) { 230 error = ECKSUM; 231 } else { 232 bcopy(lr, dst, zilc->zc_nused); 233 *end = (char *)dst + zilc->zc_nused; 234 *nbp = zilc->zc_next_blk; 235 } 236 } 237 238 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 239 } 240 241 return (error); 242 } 243 244 /* 245 * Read a TX_WRITE log data block. 246 */ 247 static int 248 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 249 { 250 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 251 const blkptr_t *bp = &lr->lr_blkptr; 252 uint32_t aflags = ARC_WAIT; 253 arc_buf_t *abuf = NULL; 254 zbookmark_t zb; 255 int error; 256 257 if (BP_IS_HOLE(bp)) { 258 if (wbuf != NULL) 259 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 260 return (0); 261 } 262 263 if (zilog->zl_header->zh_claim_txg == 0) 264 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 265 266 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 267 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 268 269 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 270 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 271 272 if (error == 0) { 273 if (wbuf != NULL) 274 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf)); 275 (void) arc_buf_remove_ref(abuf, &abuf); 276 } 277 278 return (error); 279 } 280 281 /* 282 * Parse the intent log, and call parse_func for each valid record within. 283 */ 284 int 285 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 286 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 287 { 288 const zil_header_t *zh = zilog->zl_header; 289 boolean_t claimed = !!zh->zh_claim_txg; 290 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 291 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 292 uint64_t max_blk_seq = 0; 293 uint64_t max_lr_seq = 0; 294 uint64_t blk_count = 0; 295 uint64_t lr_count = 0; 296 blkptr_t blk, next_blk; 297 char *lrbuf, *lrp; 298 int error = 0; 299 300 /* 301 * Old logs didn't record the maximum zh_claim_lr_seq. 302 */ 303 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 304 claim_lr_seq = UINT64_MAX; 305 306 /* 307 * Starting at the block pointed to by zh_log we read the log chain. 308 * For each block in the chain we strongly check that block to 309 * ensure its validity. We stop when an invalid block is found. 310 * For each block pointer in the chain we call parse_blk_func(). 311 * For each record in each valid block we call parse_lr_func(). 312 * If the log has been claimed, stop if we encounter a sequence 313 * number greater than the highest claimed sequence number. 314 */ 315 lrbuf = zio_buf_alloc(SPA_MAXBLOCKSIZE); 316 zil_bp_tree_init(zilog); 317 318 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 319 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 320 int reclen; 321 char *end; 322 323 if (blk_seq > claim_blk_seq) 324 break; 325 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0) 326 break; 327 ASSERT3U(max_blk_seq, <, blk_seq); 328 max_blk_seq = blk_seq; 329 blk_count++; 330 331 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 332 break; 333 334 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end); 335 if (error) 336 break; 337 338 for (lrp = lrbuf; lrp < end; lrp += reclen) { 339 lr_t *lr = (lr_t *)lrp; 340 reclen = lr->lrc_reclen; 341 ASSERT3U(reclen, >=, sizeof (lr_t)); 342 if (lr->lrc_seq > claim_lr_seq) 343 goto done; 344 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0) 345 goto done; 346 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 347 max_lr_seq = lr->lrc_seq; 348 lr_count++; 349 } 350 } 351 done: 352 zilog->zl_parse_error = error; 353 zilog->zl_parse_blk_seq = max_blk_seq; 354 zilog->zl_parse_lr_seq = max_lr_seq; 355 zilog->zl_parse_blk_count = blk_count; 356 zilog->zl_parse_lr_count = lr_count; 357 358 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) || 359 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq)); 360 361 zil_bp_tree_fini(zilog); 362 zio_buf_free(lrbuf, SPA_MAXBLOCKSIZE); 363 364 return (error); 365 } 366 367 static int 368 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 369 { 370 /* 371 * Claim log block if not already committed and not already claimed. 372 * If tx == NULL, just verify that the block is claimable. 373 */ 374 if (bp->blk_birth < first_txg || zil_bp_tree_add(zilog, bp) != 0) 375 return (0); 376 377 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 378 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 379 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 380 } 381 382 static int 383 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 384 { 385 lr_write_t *lr = (lr_write_t *)lrc; 386 int error; 387 388 if (lrc->lrc_txtype != TX_WRITE) 389 return (0); 390 391 /* 392 * If the block is not readable, don't claim it. This can happen 393 * in normal operation when a log block is written to disk before 394 * some of the dmu_sync() blocks it points to. In this case, the 395 * transaction cannot have been committed to anyone (we would have 396 * waited for all writes to be stable first), so it is semantically 397 * correct to declare this the end of the log. 398 */ 399 if (lr->lr_blkptr.blk_birth >= first_txg && 400 (error = zil_read_log_data(zilog, lr, NULL)) != 0) 401 return (error); 402 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 403 } 404 405 /* ARGSUSED */ 406 static int 407 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 408 { 409 zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 410 411 return (0); 412 } 413 414 static int 415 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 416 { 417 lr_write_t *lr = (lr_write_t *)lrc; 418 blkptr_t *bp = &lr->lr_blkptr; 419 420 /* 421 * If we previously claimed it, we need to free it. 422 */ 423 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE && 424 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0) 425 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 426 427 return (0); 428 } 429 430 static lwb_t * 431 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg) 432 { 433 lwb_t *lwb; 434 435 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 436 lwb->lwb_zilog = zilog; 437 lwb->lwb_blk = *bp; 438 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); 439 lwb->lwb_max_txg = txg; 440 lwb->lwb_zio = NULL; 441 lwb->lwb_tx = NULL; 442 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 443 lwb->lwb_nused = sizeof (zil_chain_t); 444 lwb->lwb_sz = BP_GET_LSIZE(bp); 445 } else { 446 lwb->lwb_nused = 0; 447 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); 448 } 449 450 mutex_enter(&zilog->zl_lock); 451 list_insert_tail(&zilog->zl_lwb_list, lwb); 452 mutex_exit(&zilog->zl_lock); 453 454 return (lwb); 455 } 456 457 /* 458 * Called when we create in-memory log transactions so that we know 459 * to cleanup the itxs at the end of spa_sync(). 460 */ 461 void 462 zilog_dirty(zilog_t *zilog, uint64_t txg) 463 { 464 dsl_pool_t *dp = zilog->zl_dmu_pool; 465 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 466 467 if (dsl_dataset_is_snapshot(ds)) 468 panic("dirtying snapshot!"); 469 470 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg) == 0) { 471 /* up the hold count until we can be written out */ 472 dmu_buf_add_ref(ds->ds_dbuf, zilog); 473 } 474 } 475 476 boolean_t 477 zilog_is_dirty(zilog_t *zilog) 478 { 479 dsl_pool_t *dp = zilog->zl_dmu_pool; 480 481 for (int t = 0; t < TXG_SIZE; t++) { 482 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) 483 return (B_TRUE); 484 } 485 return (B_FALSE); 486 } 487 488 /* 489 * Create an on-disk intent log. 490 */ 491 static lwb_t * 492 zil_create(zilog_t *zilog) 493 { 494 const zil_header_t *zh = zilog->zl_header; 495 lwb_t *lwb = NULL; 496 uint64_t txg = 0; 497 dmu_tx_t *tx = NULL; 498 blkptr_t blk; 499 int error = 0; 500 501 /* 502 * Wait for any previous destroy to complete. 503 */ 504 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 505 506 ASSERT(zh->zh_claim_txg == 0); 507 ASSERT(zh->zh_replay_seq == 0); 508 509 blk = zh->zh_log; 510 511 /* 512 * Allocate an initial log block if: 513 * - there isn't one already 514 * - the existing block is the wrong endianess 515 */ 516 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 517 tx = dmu_tx_create(zilog->zl_os); 518 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 519 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 520 txg = dmu_tx_get_txg(tx); 521 522 if (!BP_IS_HOLE(&blk)) { 523 zio_free_zil(zilog->zl_spa, txg, &blk); 524 BP_ZERO(&blk); 525 } 526 527 error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL, 528 ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY); 529 530 if (error == 0) 531 zil_init_log_chain(zilog, &blk); 532 } 533 534 /* 535 * Allocate a log write buffer (lwb) for the first log block. 536 */ 537 if (error == 0) 538 lwb = zil_alloc_lwb(zilog, &blk, txg); 539 540 /* 541 * If we just allocated the first log block, commit our transaction 542 * and wait for zil_sync() to stuff the block poiner into zh_log. 543 * (zh is part of the MOS, so we cannot modify it in open context.) 544 */ 545 if (tx != NULL) { 546 dmu_tx_commit(tx); 547 txg_wait_synced(zilog->zl_dmu_pool, txg); 548 } 549 550 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 551 552 return (lwb); 553 } 554 555 /* 556 * In one tx, free all log blocks and clear the log header. 557 * If keep_first is set, then we're replaying a log with no content. 558 * We want to keep the first block, however, so that the first 559 * synchronous transaction doesn't require a txg_wait_synced() 560 * in zil_create(). We don't need to txg_wait_synced() here either 561 * when keep_first is set, because both zil_create() and zil_destroy() 562 * will wait for any in-progress destroys to complete. 563 */ 564 void 565 zil_destroy(zilog_t *zilog, boolean_t keep_first) 566 { 567 const zil_header_t *zh = zilog->zl_header; 568 lwb_t *lwb; 569 dmu_tx_t *tx; 570 uint64_t txg; 571 572 /* 573 * Wait for any previous destroy to complete. 574 */ 575 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 576 577 zilog->zl_old_header = *zh; /* debugging aid */ 578 579 if (BP_IS_HOLE(&zh->zh_log)) 580 return; 581 582 tx = dmu_tx_create(zilog->zl_os); 583 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 584 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 585 txg = dmu_tx_get_txg(tx); 586 587 mutex_enter(&zilog->zl_lock); 588 589 ASSERT3U(zilog->zl_destroy_txg, <, txg); 590 zilog->zl_destroy_txg = txg; 591 zilog->zl_keep_first = keep_first; 592 593 if (!list_is_empty(&zilog->zl_lwb_list)) { 594 ASSERT(zh->zh_claim_txg == 0); 595 VERIFY(!keep_first); 596 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 597 list_remove(&zilog->zl_lwb_list, lwb); 598 if (lwb->lwb_buf != NULL) 599 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 600 zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk); 601 kmem_cache_free(zil_lwb_cache, lwb); 602 } 603 } else if (!keep_first) { 604 zil_destroy_sync(zilog, tx); 605 } 606 mutex_exit(&zilog->zl_lock); 607 608 dmu_tx_commit(tx); 609 } 610 611 void 612 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) 613 { 614 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 615 (void) zil_parse(zilog, zil_free_log_block, 616 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg); 617 } 618 619 int 620 zil_claim(const char *osname, void *txarg) 621 { 622 dmu_tx_t *tx = txarg; 623 uint64_t first_txg = dmu_tx_get_txg(tx); 624 zilog_t *zilog; 625 zil_header_t *zh; 626 objset_t *os; 627 int error; 628 629 error = dmu_objset_hold(osname, FTAG, &os); 630 if (error) { 631 cmn_err(CE_WARN, "can't open objset for %s", osname); 632 return (0); 633 } 634 635 zilog = dmu_objset_zil(os); 636 zh = zil_header_in_syncing_context(zilog); 637 638 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) { 639 if (!BP_IS_HOLE(&zh->zh_log)) 640 zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log); 641 BP_ZERO(&zh->zh_log); 642 dsl_dataset_dirty(dmu_objset_ds(os), tx); 643 dmu_objset_rele(os, FTAG); 644 return (0); 645 } 646 647 /* 648 * Claim all log blocks if we haven't already done so, and remember 649 * the highest claimed sequence number. This ensures that if we can 650 * read only part of the log now (e.g. due to a missing device), 651 * but we can read the entire log later, we will not try to replay 652 * or destroy beyond the last block we successfully claimed. 653 */ 654 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 655 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 656 (void) zil_parse(zilog, zil_claim_log_block, 657 zil_claim_log_record, tx, first_txg); 658 zh->zh_claim_txg = first_txg; 659 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 660 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 661 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 662 zh->zh_flags |= ZIL_REPLAY_NEEDED; 663 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 664 dsl_dataset_dirty(dmu_objset_ds(os), tx); 665 } 666 667 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 668 dmu_objset_rele(os, FTAG); 669 return (0); 670 } 671 672 /* 673 * Check the log by walking the log chain. 674 * Checksum errors are ok as they indicate the end of the chain. 675 * Any other error (no device or read failure) returns an error. 676 */ 677 int 678 zil_check_log_chain(const char *osname, void *tx) 679 { 680 zilog_t *zilog; 681 objset_t *os; 682 blkptr_t *bp; 683 int error; 684 685 ASSERT(tx == NULL); 686 687 error = dmu_objset_hold(osname, FTAG, &os); 688 if (error) { 689 cmn_err(CE_WARN, "can't open objset for %s", osname); 690 return (0); 691 } 692 693 zilog = dmu_objset_zil(os); 694 bp = (blkptr_t *)&zilog->zl_header->zh_log; 695 696 /* 697 * Check the first block and determine if it's on a log device 698 * which may have been removed or faulted prior to loading this 699 * pool. If so, there's no point in checking the rest of the log 700 * as its content should have already been synced to the pool. 701 */ 702 if (!BP_IS_HOLE(bp)) { 703 vdev_t *vd; 704 boolean_t valid = B_TRUE; 705 706 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); 707 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); 708 if (vd->vdev_islog && vdev_is_dead(vd)) 709 valid = vdev_log_state_valid(vd); 710 spa_config_exit(os->os_spa, SCL_STATE, FTAG); 711 712 if (!valid) { 713 dmu_objset_rele(os, FTAG); 714 return (0); 715 } 716 } 717 718 /* 719 * Because tx == NULL, zil_claim_log_block() will not actually claim 720 * any blocks, but just determine whether it is possible to do so. 721 * In addition to checking the log chain, zil_claim_log_block() 722 * will invoke zio_claim() with a done func of spa_claim_notify(), 723 * which will update spa_max_claim_txg. See spa_load() for details. 724 */ 725 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 726 zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa)); 727 728 dmu_objset_rele(os, FTAG); 729 730 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 731 } 732 733 static int 734 zil_vdev_compare(const void *x1, const void *x2) 735 { 736 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 737 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 738 739 if (v1 < v2) 740 return (-1); 741 if (v1 > v2) 742 return (1); 743 744 return (0); 745 } 746 747 void 748 zil_add_block(zilog_t *zilog, const blkptr_t *bp) 749 { 750 avl_tree_t *t = &zilog->zl_vdev_tree; 751 avl_index_t where; 752 zil_vdev_node_t *zv, zvsearch; 753 int ndvas = BP_GET_NDVAS(bp); 754 int i; 755 756 if (zfs_nocacheflush) 757 return; 758 759 ASSERT(zilog->zl_writer); 760 761 /* 762 * Even though we're zl_writer, we still need a lock because the 763 * zl_get_data() callbacks may have dmu_sync() done callbacks 764 * that will run concurrently. 765 */ 766 mutex_enter(&zilog->zl_vdev_lock); 767 for (i = 0; i < ndvas; i++) { 768 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 769 if (avl_find(t, &zvsearch, &where) == NULL) { 770 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 771 zv->zv_vdev = zvsearch.zv_vdev; 772 avl_insert(t, zv, where); 773 } 774 } 775 mutex_exit(&zilog->zl_vdev_lock); 776 } 777 778 static void 779 zil_flush_vdevs(zilog_t *zilog) 780 { 781 spa_t *spa = zilog->zl_spa; 782 avl_tree_t *t = &zilog->zl_vdev_tree; 783 void *cookie = NULL; 784 zil_vdev_node_t *zv; 785 zio_t *zio; 786 787 ASSERT(zilog->zl_writer); 788 789 /* 790 * We don't need zl_vdev_lock here because we're the zl_writer, 791 * and all zl_get_data() callbacks are done. 792 */ 793 if (avl_numnodes(t) == 0) 794 return; 795 796 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 797 798 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 799 800 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 801 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 802 if (vd != NULL) 803 zio_flush(zio, vd); 804 kmem_free(zv, sizeof (*zv)); 805 } 806 807 /* 808 * Wait for all the flushes to complete. Not all devices actually 809 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. 810 */ 811 (void) zio_wait(zio); 812 813 spa_config_exit(spa, SCL_STATE, FTAG); 814 } 815 816 /* 817 * Function called when a log block write completes 818 */ 819 static void 820 zil_lwb_write_done(zio_t *zio) 821 { 822 lwb_t *lwb = zio->io_private; 823 zilog_t *zilog = lwb->lwb_zilog; 824 dmu_tx_t *tx = lwb->lwb_tx; 825 826 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 827 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 828 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 829 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 830 ASSERT(!BP_IS_GANG(zio->io_bp)); 831 ASSERT(!BP_IS_HOLE(zio->io_bp)); 832 ASSERT(zio->io_bp->blk_fill == 0); 833 834 /* 835 * Ensure the lwb buffer pointer is cleared before releasing 836 * the txg. If we have had an allocation failure and 837 * the txg is waiting to sync then we want want zil_sync() 838 * to remove the lwb so that it's not picked up as the next new 839 * one in zil_commit_writer(). zil_sync() will only remove 840 * the lwb if lwb_buf is null. 841 */ 842 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 843 mutex_enter(&zilog->zl_lock); 844 lwb->lwb_buf = NULL; 845 lwb->lwb_tx = NULL; 846 mutex_exit(&zilog->zl_lock); 847 848 /* 849 * Now that we've written this log block, we have a stable pointer 850 * to the next block in the chain, so it's OK to let the txg in 851 * which we allocated the next block sync. 852 */ 853 dmu_tx_commit(tx); 854 } 855 856 /* 857 * Initialize the io for a log block. 858 */ 859 static void 860 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) 861 { 862 zbookmark_t zb; 863 864 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 865 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 866 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 867 868 if (zilog->zl_root_zio == NULL) { 869 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL, 870 ZIO_FLAG_CANFAIL); 871 } 872 if (lwb->lwb_zio == NULL) { 873 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa, 874 0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk), 875 zil_lwb_write_done, lwb, ZIO_PRIORITY_LOG_WRITE, 876 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb); 877 } 878 } 879 880 /* 881 * Define a limited set of intent log block sizes. 882 * These must be a multiple of 4KB. Note only the amount used (again 883 * aligned to 4KB) actually gets written. However, we can't always just 884 * allocate SPA_MAXBLOCKSIZE as the slog space could be exhausted. 885 */ 886 uint64_t zil_block_buckets[] = { 887 4096, /* non TX_WRITE */ 888 8192+4096, /* data base */ 889 32*1024 + 4096, /* NFS writes */ 890 UINT64_MAX 891 }; 892 893 /* 894 * Use the slog as long as the logbias is 'latency' and the current commit size 895 * is less than the limit or the total list size is less than 2X the limit. 896 * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX. 897 */ 898 uint64_t zil_slog_limit = 1024 * 1024; 899 #define USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \ 900 (((zilog)->zl_cur_used < zil_slog_limit) || \ 901 ((zilog)->zl_itx_list_sz < (zil_slog_limit << 1)))) 902 903 /* 904 * Start a log block write and advance to the next log block. 905 * Calls are serialized. 906 */ 907 static lwb_t * 908 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) 909 { 910 lwb_t *nlwb = NULL; 911 zil_chain_t *zilc; 912 spa_t *spa = zilog->zl_spa; 913 blkptr_t *bp; 914 dmu_tx_t *tx; 915 uint64_t txg; 916 uint64_t zil_blksz, wsz; 917 int i, error; 918 919 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 920 zilc = (zil_chain_t *)lwb->lwb_buf; 921 bp = &zilc->zc_next_blk; 922 } else { 923 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); 924 bp = &zilc->zc_next_blk; 925 } 926 927 ASSERT(lwb->lwb_nused <= lwb->lwb_sz); 928 929 /* 930 * Allocate the next block and save its address in this block 931 * before writing it in order to establish the log chain. 932 * Note that if the allocation of nlwb synced before we wrote 933 * the block that points at it (lwb), we'd leak it if we crashed. 934 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done(). 935 * We dirty the dataset to ensure that zil_sync() will be called 936 * to clean up in the event of allocation failure or I/O failure. 937 */ 938 tx = dmu_tx_create(zilog->zl_os); 939 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 940 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 941 txg = dmu_tx_get_txg(tx); 942 943 lwb->lwb_tx = tx; 944 945 /* 946 * Log blocks are pre-allocated. Here we select the size of the next 947 * block, based on size used in the last block. 948 * - first find the smallest bucket that will fit the block from a 949 * limited set of block sizes. This is because it's faster to write 950 * blocks allocated from the same metaslab as they are adjacent or 951 * close. 952 * - next find the maximum from the new suggested size and an array of 953 * previous sizes. This lessens a picket fence effect of wrongly 954 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k 955 * requests. 956 * 957 * Note we only write what is used, but we can't just allocate 958 * the maximum block size because we can exhaust the available 959 * pool log space. 960 */ 961 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); 962 for (i = 0; zil_blksz > zil_block_buckets[i]; i++) 963 continue; 964 zil_blksz = zil_block_buckets[i]; 965 if (zil_blksz == UINT64_MAX) 966 zil_blksz = SPA_MAXBLOCKSIZE; 967 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; 968 for (i = 0; i < ZIL_PREV_BLKS; i++) 969 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); 970 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); 971 972 BP_ZERO(bp); 973 /* pass the old blkptr in order to spread log blocks across devs */ 974 error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, 975 USE_SLOG(zilog)); 976 if (!error) { 977 ASSERT3U(bp->blk_birth, ==, txg); 978 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 979 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 980 981 /* 982 * Allocate a new log write buffer (lwb). 983 */ 984 nlwb = zil_alloc_lwb(zilog, bp, txg); 985 986 /* Record the block for later vdev flushing */ 987 zil_add_block(zilog, &lwb->lwb_blk); 988 } 989 990 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 991 /* For Slim ZIL only write what is used. */ 992 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t); 993 ASSERT3U(wsz, <=, lwb->lwb_sz); 994 zio_shrink(lwb->lwb_zio, wsz); 995 996 } else { 997 wsz = lwb->lwb_sz; 998 } 999 1000 zilc->zc_pad = 0; 1001 zilc->zc_nused = lwb->lwb_nused; 1002 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 1003 1004 /* 1005 * clear unused data for security 1006 */ 1007 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused); 1008 1009 zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */ 1010 1011 /* 1012 * If there was an allocation failure then nlwb will be null which 1013 * forces a txg_wait_synced(). 1014 */ 1015 return (nlwb); 1016 } 1017 1018 static lwb_t * 1019 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 1020 { 1021 lr_t *lrc = &itx->itx_lr; /* common log record */ 1022 lr_write_t *lrw = (lr_write_t *)lrc; 1023 char *lr_buf; 1024 uint64_t txg = lrc->lrc_txg; 1025 uint64_t reclen = lrc->lrc_reclen; 1026 uint64_t dlen = 0; 1027 1028 if (lwb == NULL) 1029 return (NULL); 1030 1031 ASSERT(lwb->lwb_buf != NULL); 1032 ASSERT(zilog_is_dirty(zilog) || 1033 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); 1034 1035 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) 1036 dlen = P2ROUNDUP_TYPED( 1037 lrw->lr_length, sizeof (uint64_t), uint64_t); 1038 1039 zilog->zl_cur_used += (reclen + dlen); 1040 1041 zil_lwb_write_init(zilog, lwb); 1042 1043 /* 1044 * If this record won't fit in the current log block, start a new one. 1045 */ 1046 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) { 1047 lwb = zil_lwb_write_start(zilog, lwb); 1048 if (lwb == NULL) 1049 return (NULL); 1050 zil_lwb_write_init(zilog, lwb); 1051 ASSERT(LWB_EMPTY(lwb)); 1052 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) { 1053 txg_wait_synced(zilog->zl_dmu_pool, txg); 1054 return (lwb); 1055 } 1056 } 1057 1058 lr_buf = lwb->lwb_buf + lwb->lwb_nused; 1059 bcopy(lrc, lr_buf, reclen); 1060 lrc = (lr_t *)lr_buf; 1061 lrw = (lr_write_t *)lrc; 1062 1063 /* 1064 * If it's a write, fetch the data or get its blkptr as appropriate. 1065 */ 1066 if (lrc->lrc_txtype == TX_WRITE) { 1067 if (txg > spa_freeze_txg(zilog->zl_spa)) 1068 txg_wait_synced(zilog->zl_dmu_pool, txg); 1069 if (itx->itx_wr_state != WR_COPIED) { 1070 char *dbuf; 1071 int error; 1072 1073 if (dlen) { 1074 ASSERT(itx->itx_wr_state == WR_NEED_COPY); 1075 dbuf = lr_buf + reclen; 1076 lrw->lr_common.lrc_reclen += dlen; 1077 } else { 1078 ASSERT(itx->itx_wr_state == WR_INDIRECT); 1079 dbuf = NULL; 1080 } 1081 error = zilog->zl_get_data( 1082 itx->itx_private, lrw, dbuf, lwb->lwb_zio); 1083 if (error == EIO) { 1084 txg_wait_synced(zilog->zl_dmu_pool, txg); 1085 return (lwb); 1086 } 1087 if (error) { 1088 ASSERT(error == ENOENT || error == EEXIST || 1089 error == EALREADY); 1090 return (lwb); 1091 } 1092 } 1093 } 1094 1095 /* 1096 * We're actually making an entry, so update lrc_seq to be the 1097 * log record sequence number. Note that this is generally not 1098 * equal to the itx sequence number because not all transactions 1099 * are synchronous, and sometimes spa_sync() gets there first. 1100 */ 1101 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */ 1102 lwb->lwb_nused += reclen + dlen; 1103 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1104 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); 1105 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); 1106 1107 return (lwb); 1108 } 1109 1110 itx_t * 1111 zil_itx_create(uint64_t txtype, size_t lrsize) 1112 { 1113 itx_t *itx; 1114 1115 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 1116 1117 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 1118 itx->itx_lr.lrc_txtype = txtype; 1119 itx->itx_lr.lrc_reclen = lrsize; 1120 itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */ 1121 itx->itx_lr.lrc_seq = 0; /* defensive */ 1122 itx->itx_sync = B_TRUE; /* default is synchronous */ 1123 1124 return (itx); 1125 } 1126 1127 void 1128 zil_itx_destroy(itx_t *itx) 1129 { 1130 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); 1131 } 1132 1133 /* 1134 * Free up the sync and async itxs. The itxs_t has already been detached 1135 * so no locks are needed. 1136 */ 1137 static void 1138 zil_itxg_clean(itxs_t *itxs) 1139 { 1140 itx_t *itx; 1141 list_t *list; 1142 avl_tree_t *t; 1143 void *cookie; 1144 itx_async_node_t *ian; 1145 1146 list = &itxs->i_sync_list; 1147 while ((itx = list_head(list)) != NULL) { 1148 list_remove(list, itx); 1149 kmem_free(itx, offsetof(itx_t, itx_lr) + 1150 itx->itx_lr.lrc_reclen); 1151 } 1152 1153 cookie = NULL; 1154 t = &itxs->i_async_tree; 1155 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1156 list = &ian->ia_list; 1157 while ((itx = list_head(list)) != NULL) { 1158 list_remove(list, itx); 1159 kmem_free(itx, offsetof(itx_t, itx_lr) + 1160 itx->itx_lr.lrc_reclen); 1161 } 1162 list_destroy(list); 1163 kmem_free(ian, sizeof (itx_async_node_t)); 1164 } 1165 avl_destroy(t); 1166 1167 kmem_free(itxs, sizeof (itxs_t)); 1168 } 1169 1170 static int 1171 zil_aitx_compare(const void *x1, const void *x2) 1172 { 1173 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 1174 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 1175 1176 if (o1 < o2) 1177 return (-1); 1178 if (o1 > o2) 1179 return (1); 1180 1181 return (0); 1182 } 1183 1184 /* 1185 * Remove all async itx with the given oid. 1186 */ 1187 static void 1188 zil_remove_async(zilog_t *zilog, uint64_t oid) 1189 { 1190 uint64_t otxg, txg; 1191 itx_async_node_t *ian; 1192 avl_tree_t *t; 1193 avl_index_t where; 1194 list_t clean_list; 1195 itx_t *itx; 1196 1197 ASSERT(oid != 0); 1198 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 1199 1200 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1201 otxg = ZILTEST_TXG; 1202 else 1203 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1204 1205 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1206 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1207 1208 mutex_enter(&itxg->itxg_lock); 1209 if (itxg->itxg_txg != txg) { 1210 mutex_exit(&itxg->itxg_lock); 1211 continue; 1212 } 1213 1214 /* 1215 * Locate the object node and append its list. 1216 */ 1217 t = &itxg->itxg_itxs->i_async_tree; 1218 ian = avl_find(t, &oid, &where); 1219 if (ian != NULL) 1220 list_move_tail(&clean_list, &ian->ia_list); 1221 mutex_exit(&itxg->itxg_lock); 1222 } 1223 while ((itx = list_head(&clean_list)) != NULL) { 1224 list_remove(&clean_list, itx); 1225 kmem_free(itx, offsetof(itx_t, itx_lr) + 1226 itx->itx_lr.lrc_reclen); 1227 } 1228 list_destroy(&clean_list); 1229 } 1230 1231 void 1232 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 1233 { 1234 uint64_t txg; 1235 itxg_t *itxg; 1236 itxs_t *itxs, *clean = NULL; 1237 1238 /* 1239 * Object ids can be re-instantiated in the next txg so 1240 * remove any async transactions to avoid future leaks. 1241 * This can happen if a fsync occurs on the re-instantiated 1242 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets 1243 * the new file data and flushes a write record for the old object. 1244 */ 1245 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE) 1246 zil_remove_async(zilog, itx->itx_oid); 1247 1248 /* 1249 * Ensure the data of a renamed file is committed before the rename. 1250 */ 1251 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 1252 zil_async_to_sync(zilog, itx->itx_oid); 1253 1254 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 1255 txg = ZILTEST_TXG; 1256 else 1257 txg = dmu_tx_get_txg(tx); 1258 1259 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1260 mutex_enter(&itxg->itxg_lock); 1261 itxs = itxg->itxg_itxs; 1262 if (itxg->itxg_txg != txg) { 1263 if (itxs != NULL) { 1264 /* 1265 * The zil_clean callback hasn't got around to cleaning 1266 * this itxg. Save the itxs for release below. 1267 * This should be rare. 1268 */ 1269 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod); 1270 itxg->itxg_sod = 0; 1271 clean = itxg->itxg_itxs; 1272 } 1273 ASSERT(itxg->itxg_sod == 0); 1274 itxg->itxg_txg = txg; 1275 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP); 1276 1277 list_create(&itxs->i_sync_list, sizeof (itx_t), 1278 offsetof(itx_t, itx_node)); 1279 avl_create(&itxs->i_async_tree, zil_aitx_compare, 1280 sizeof (itx_async_node_t), 1281 offsetof(itx_async_node_t, ia_node)); 1282 } 1283 if (itx->itx_sync) { 1284 list_insert_tail(&itxs->i_sync_list, itx); 1285 atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod); 1286 itxg->itxg_sod += itx->itx_sod; 1287 } else { 1288 avl_tree_t *t = &itxs->i_async_tree; 1289 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid; 1290 itx_async_node_t *ian; 1291 avl_index_t where; 1292 1293 ian = avl_find(t, &foid, &where); 1294 if (ian == NULL) { 1295 ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP); 1296 list_create(&ian->ia_list, sizeof (itx_t), 1297 offsetof(itx_t, itx_node)); 1298 ian->ia_foid = foid; 1299 avl_insert(t, ian, where); 1300 } 1301 list_insert_tail(&ian->ia_list, itx); 1302 } 1303 1304 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 1305 zilog_dirty(zilog, txg); 1306 mutex_exit(&itxg->itxg_lock); 1307 1308 /* Release the old itxs now we've dropped the lock */ 1309 if (clean != NULL) 1310 zil_itxg_clean(clean); 1311 } 1312 1313 /* 1314 * If there are any in-memory intent log transactions which have now been 1315 * synced then start up a taskq to free them. We should only do this after we 1316 * have written out the uberblocks (i.e. txg has been comitted) so that 1317 * don't inadvertently clean out in-memory log records that would be required 1318 * by zil_commit(). 1319 */ 1320 void 1321 zil_clean(zilog_t *zilog, uint64_t synced_txg) 1322 { 1323 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 1324 itxs_t *clean_me; 1325 1326 mutex_enter(&itxg->itxg_lock); 1327 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 1328 mutex_exit(&itxg->itxg_lock); 1329 return; 1330 } 1331 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 1332 ASSERT(itxg->itxg_txg != 0); 1333 ASSERT(zilog->zl_clean_taskq != NULL); 1334 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod); 1335 itxg->itxg_sod = 0; 1336 clean_me = itxg->itxg_itxs; 1337 itxg->itxg_itxs = NULL; 1338 itxg->itxg_txg = 0; 1339 mutex_exit(&itxg->itxg_lock); 1340 /* 1341 * Preferably start a task queue to free up the old itxs but 1342 * if taskq_dispatch can't allocate resources to do that then 1343 * free it in-line. This should be rare. Note, using TQ_SLEEP 1344 * created a bad performance problem. 1345 */ 1346 if (taskq_dispatch(zilog->zl_clean_taskq, 1347 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL) 1348 zil_itxg_clean(clean_me); 1349 } 1350 1351 /* 1352 * Get the list of itxs to commit into zl_itx_commit_list. 1353 */ 1354 static void 1355 zil_get_commit_list(zilog_t *zilog) 1356 { 1357 uint64_t otxg, txg; 1358 list_t *commit_list = &zilog->zl_itx_commit_list; 1359 uint64_t push_sod = 0; 1360 1361 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1362 otxg = ZILTEST_TXG; 1363 else 1364 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1365 1366 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1367 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1368 1369 mutex_enter(&itxg->itxg_lock); 1370 if (itxg->itxg_txg != txg) { 1371 mutex_exit(&itxg->itxg_lock); 1372 continue; 1373 } 1374 1375 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); 1376 push_sod += itxg->itxg_sod; 1377 itxg->itxg_sod = 0; 1378 1379 mutex_exit(&itxg->itxg_lock); 1380 } 1381 atomic_add_64(&zilog->zl_itx_list_sz, -push_sod); 1382 } 1383 1384 /* 1385 * Move the async itxs for a specified object to commit into sync lists. 1386 */ 1387 static void 1388 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 1389 { 1390 uint64_t otxg, txg; 1391 itx_async_node_t *ian; 1392 avl_tree_t *t; 1393 avl_index_t where; 1394 1395 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1396 otxg = ZILTEST_TXG; 1397 else 1398 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1399 1400 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1401 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1402 1403 mutex_enter(&itxg->itxg_lock); 1404 if (itxg->itxg_txg != txg) { 1405 mutex_exit(&itxg->itxg_lock); 1406 continue; 1407 } 1408 1409 /* 1410 * If a foid is specified then find that node and append its 1411 * list. Otherwise walk the tree appending all the lists 1412 * to the sync list. We add to the end rather than the 1413 * beginning to ensure the create has happened. 1414 */ 1415 t = &itxg->itxg_itxs->i_async_tree; 1416 if (foid != 0) { 1417 ian = avl_find(t, &foid, &where); 1418 if (ian != NULL) { 1419 list_move_tail(&itxg->itxg_itxs->i_sync_list, 1420 &ian->ia_list); 1421 } 1422 } else { 1423 void *cookie = NULL; 1424 1425 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1426 list_move_tail(&itxg->itxg_itxs->i_sync_list, 1427 &ian->ia_list); 1428 list_destroy(&ian->ia_list); 1429 kmem_free(ian, sizeof (itx_async_node_t)); 1430 } 1431 } 1432 mutex_exit(&itxg->itxg_lock); 1433 } 1434 } 1435 1436 static void 1437 zil_commit_writer(zilog_t *zilog) 1438 { 1439 uint64_t txg; 1440 itx_t *itx; 1441 lwb_t *lwb; 1442 spa_t *spa = zilog->zl_spa; 1443 int error = 0; 1444 1445 ASSERT(zilog->zl_root_zio == NULL); 1446 1447 mutex_exit(&zilog->zl_lock); 1448 1449 zil_get_commit_list(zilog); 1450 1451 /* 1452 * Return if there's nothing to commit before we dirty the fs by 1453 * calling zil_create(). 1454 */ 1455 if (list_head(&zilog->zl_itx_commit_list) == NULL) { 1456 mutex_enter(&zilog->zl_lock); 1457 return; 1458 } 1459 1460 if (zilog->zl_suspend) { 1461 lwb = NULL; 1462 } else { 1463 lwb = list_tail(&zilog->zl_lwb_list); 1464 if (lwb == NULL) 1465 lwb = zil_create(zilog); 1466 } 1467 1468 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog); 1469 while (itx = list_head(&zilog->zl_itx_commit_list)) { 1470 txg = itx->itx_lr.lrc_txg; 1471 ASSERT(txg); 1472 1473 if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa)) 1474 lwb = zil_lwb_commit(zilog, itx, lwb); 1475 list_remove(&zilog->zl_itx_commit_list, itx); 1476 kmem_free(itx, offsetof(itx_t, itx_lr) 1477 + itx->itx_lr.lrc_reclen); 1478 } 1479 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog); 1480 1481 /* write the last block out */ 1482 if (lwb != NULL && lwb->lwb_zio != NULL) 1483 lwb = zil_lwb_write_start(zilog, lwb); 1484 1485 zilog->zl_cur_used = 0; 1486 1487 /* 1488 * Wait if necessary for the log blocks to be on stable storage. 1489 */ 1490 if (zilog->zl_root_zio) { 1491 error = zio_wait(zilog->zl_root_zio); 1492 zilog->zl_root_zio = NULL; 1493 zil_flush_vdevs(zilog); 1494 } 1495 1496 if (error || lwb == NULL) 1497 txg_wait_synced(zilog->zl_dmu_pool, 0); 1498 1499 mutex_enter(&zilog->zl_lock); 1500 1501 /* 1502 * Remember the highest committed log sequence number for ztest. 1503 * We only update this value when all the log writes succeeded, 1504 * because ztest wants to ASSERT that it got the whole log chain. 1505 */ 1506 if (error == 0 && lwb != NULL) 1507 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1508 } 1509 1510 /* 1511 * Commit zfs transactions to stable storage. 1512 * If foid is 0 push out all transactions, otherwise push only those 1513 * for that object or might reference that object. 1514 * 1515 * itxs are committed in batches. In a heavily stressed zil there will be 1516 * a commit writer thread who is writing out a bunch of itxs to the log 1517 * for a set of committing threads (cthreads) in the same batch as the writer. 1518 * Those cthreads are all waiting on the same cv for that batch. 1519 * 1520 * There will also be a different and growing batch of threads that are 1521 * waiting to commit (qthreads). When the committing batch completes 1522 * a transition occurs such that the cthreads exit and the qthreads become 1523 * cthreads. One of the new cthreads becomes the writer thread for the 1524 * batch. Any new threads arriving become new qthreads. 1525 * 1526 * Only 2 condition variables are needed and there's no transition 1527 * between the two cvs needed. They just flip-flop between qthreads 1528 * and cthreads. 1529 * 1530 * Using this scheme we can efficiently wakeup up only those threads 1531 * that have been committed. 1532 */ 1533 void 1534 zil_commit(zilog_t *zilog, uint64_t foid) 1535 { 1536 uint64_t mybatch; 1537 1538 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 1539 return; 1540 1541 /* move the async itxs for the foid to the sync queues */ 1542 zil_async_to_sync(zilog, foid); 1543 1544 mutex_enter(&zilog->zl_lock); 1545 mybatch = zilog->zl_next_batch; 1546 while (zilog->zl_writer) { 1547 cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock); 1548 if (mybatch <= zilog->zl_com_batch) { 1549 mutex_exit(&zilog->zl_lock); 1550 return; 1551 } 1552 } 1553 1554 zilog->zl_next_batch++; 1555 zilog->zl_writer = B_TRUE; 1556 zil_commit_writer(zilog); 1557 zilog->zl_com_batch = mybatch; 1558 zilog->zl_writer = B_FALSE; 1559 mutex_exit(&zilog->zl_lock); 1560 1561 /* wake up one thread to become the next writer */ 1562 cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]); 1563 1564 /* wake up all threads waiting for this batch to be committed */ 1565 cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]); 1566 } 1567 1568 /* 1569 * Called in syncing context to free committed log blocks and update log header. 1570 */ 1571 void 1572 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 1573 { 1574 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1575 uint64_t txg = dmu_tx_get_txg(tx); 1576 spa_t *spa = zilog->zl_spa; 1577 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 1578 lwb_t *lwb; 1579 1580 /* 1581 * We don't zero out zl_destroy_txg, so make sure we don't try 1582 * to destroy it twice. 1583 */ 1584 if (spa_sync_pass(spa) != 1) 1585 return; 1586 1587 mutex_enter(&zilog->zl_lock); 1588 1589 ASSERT(zilog->zl_stop_sync == 0); 1590 1591 if (*replayed_seq != 0) { 1592 ASSERT(zh->zh_replay_seq < *replayed_seq); 1593 zh->zh_replay_seq = *replayed_seq; 1594 *replayed_seq = 0; 1595 } 1596 1597 if (zilog->zl_destroy_txg == txg) { 1598 blkptr_t blk = zh->zh_log; 1599 1600 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 1601 1602 bzero(zh, sizeof (zil_header_t)); 1603 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); 1604 1605 if (zilog->zl_keep_first) { 1606 /* 1607 * If this block was part of log chain that couldn't 1608 * be claimed because a device was missing during 1609 * zil_claim(), but that device later returns, 1610 * then this block could erroneously appear valid. 1611 * To guard against this, assign a new GUID to the new 1612 * log chain so it doesn't matter what blk points to. 1613 */ 1614 zil_init_log_chain(zilog, &blk); 1615 zh->zh_log = blk; 1616 } 1617 } 1618 1619 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1620 zh->zh_log = lwb->lwb_blk; 1621 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 1622 break; 1623 list_remove(&zilog->zl_lwb_list, lwb); 1624 zio_free_zil(spa, txg, &lwb->lwb_blk); 1625 kmem_cache_free(zil_lwb_cache, lwb); 1626 1627 /* 1628 * If we don't have anything left in the lwb list then 1629 * we've had an allocation failure and we need to zero 1630 * out the zil_header blkptr so that we don't end 1631 * up freeing the same block twice. 1632 */ 1633 if (list_head(&zilog->zl_lwb_list) == NULL) 1634 BP_ZERO(&zh->zh_log); 1635 } 1636 mutex_exit(&zilog->zl_lock); 1637 } 1638 1639 void 1640 zil_init(void) 1641 { 1642 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 1643 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0); 1644 } 1645 1646 void 1647 zil_fini(void) 1648 { 1649 kmem_cache_destroy(zil_lwb_cache); 1650 } 1651 1652 void 1653 zil_set_sync(zilog_t *zilog, uint64_t sync) 1654 { 1655 zilog->zl_sync = sync; 1656 } 1657 1658 void 1659 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 1660 { 1661 zilog->zl_logbias = logbias; 1662 } 1663 1664 zilog_t * 1665 zil_alloc(objset_t *os, zil_header_t *zh_phys) 1666 { 1667 zilog_t *zilog; 1668 1669 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 1670 1671 zilog->zl_header = zh_phys; 1672 zilog->zl_os = os; 1673 zilog->zl_spa = dmu_objset_spa(os); 1674 zilog->zl_dmu_pool = dmu_objset_pool(os); 1675 zilog->zl_destroy_txg = TXG_INITIAL - 1; 1676 zilog->zl_logbias = dmu_objset_logbias(os); 1677 zilog->zl_sync = dmu_objset_syncprop(os); 1678 zilog->zl_next_batch = 1; 1679 1680 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 1681 1682 for (int i = 0; i < TXG_SIZE; i++) { 1683 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 1684 MUTEX_DEFAULT, NULL); 1685 } 1686 1687 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 1688 offsetof(lwb_t, lwb_node)); 1689 1690 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 1691 offsetof(itx_t, itx_node)); 1692 1693 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 1694 1695 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare, 1696 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 1697 1698 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL); 1699 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 1700 cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL); 1701 cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL); 1702 1703 return (zilog); 1704 } 1705 1706 void 1707 zil_free(zilog_t *zilog) 1708 { 1709 zilog->zl_stop_sync = 1; 1710 1711 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 1712 list_destroy(&zilog->zl_lwb_list); 1713 1714 avl_destroy(&zilog->zl_vdev_tree); 1715 mutex_destroy(&zilog->zl_vdev_lock); 1716 1717 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 1718 list_destroy(&zilog->zl_itx_commit_list); 1719 1720 for (int i = 0; i < TXG_SIZE; i++) { 1721 /* 1722 * It's possible for an itx to be generated that doesn't dirty 1723 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 1724 * callback to remove the entry. We remove those here. 1725 * 1726 * Also free up the ziltest itxs. 1727 */ 1728 if (zilog->zl_itxg[i].itxg_itxs) 1729 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 1730 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 1731 } 1732 1733 mutex_destroy(&zilog->zl_lock); 1734 1735 cv_destroy(&zilog->zl_cv_writer); 1736 cv_destroy(&zilog->zl_cv_suspend); 1737 cv_destroy(&zilog->zl_cv_batch[0]); 1738 cv_destroy(&zilog->zl_cv_batch[1]); 1739 1740 kmem_free(zilog, sizeof (zilog_t)); 1741 } 1742 1743 /* 1744 * Open an intent log. 1745 */ 1746 zilog_t * 1747 zil_open(objset_t *os, zil_get_data_t *get_data) 1748 { 1749 zilog_t *zilog = dmu_objset_zil(os); 1750 1751 ASSERT(zilog->zl_clean_taskq == NULL); 1752 ASSERT(zilog->zl_get_data == NULL); 1753 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 1754 1755 zilog->zl_get_data = get_data; 1756 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 1757 2, 2, TASKQ_PREPOPULATE); 1758 1759 return (zilog); 1760 } 1761 1762 /* 1763 * Close an intent log. 1764 */ 1765 void 1766 zil_close(zilog_t *zilog) 1767 { 1768 lwb_t *lwb; 1769 uint64_t txg = 0; 1770 1771 zil_commit(zilog, 0); /* commit all itx */ 1772 1773 /* 1774 * The lwb_max_txg for the stubby lwb will reflect the last activity 1775 * for the zil. After a txg_wait_synced() on the txg we know all the 1776 * callbacks have occurred that may clean the zil. Only then can we 1777 * destroy the zl_clean_taskq. 1778 */ 1779 mutex_enter(&zilog->zl_lock); 1780 lwb = list_tail(&zilog->zl_lwb_list); 1781 if (lwb != NULL) 1782 txg = lwb->lwb_max_txg; 1783 mutex_exit(&zilog->zl_lock); 1784 if (txg) 1785 txg_wait_synced(zilog->zl_dmu_pool, txg); 1786 ASSERT(!zilog_is_dirty(zilog)); 1787 1788 taskq_destroy(zilog->zl_clean_taskq); 1789 zilog->zl_clean_taskq = NULL; 1790 zilog->zl_get_data = NULL; 1791 1792 /* 1793 * We should have only one LWB left on the list; remove it now. 1794 */ 1795 mutex_enter(&zilog->zl_lock); 1796 lwb = list_head(&zilog->zl_lwb_list); 1797 if (lwb != NULL) { 1798 ASSERT(lwb == list_tail(&zilog->zl_lwb_list)); 1799 list_remove(&zilog->zl_lwb_list, lwb); 1800 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1801 kmem_cache_free(zil_lwb_cache, lwb); 1802 } 1803 mutex_exit(&zilog->zl_lock); 1804 } 1805 1806 /* 1807 * Suspend an intent log. While in suspended mode, we still honor 1808 * synchronous semantics, but we rely on txg_wait_synced() to do it. 1809 * We suspend the log briefly when taking a snapshot so that the snapshot 1810 * contains all the data it's supposed to, and has an empty intent log. 1811 */ 1812 int 1813 zil_suspend(zilog_t *zilog) 1814 { 1815 const zil_header_t *zh = zilog->zl_header; 1816 1817 mutex_enter(&zilog->zl_lock); 1818 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 1819 mutex_exit(&zilog->zl_lock); 1820 return (EBUSY); 1821 } 1822 if (zilog->zl_suspend++ != 0) { 1823 /* 1824 * Someone else already began a suspend. 1825 * Just wait for them to finish. 1826 */ 1827 while (zilog->zl_suspending) 1828 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 1829 mutex_exit(&zilog->zl_lock); 1830 return (0); 1831 } 1832 zilog->zl_suspending = B_TRUE; 1833 mutex_exit(&zilog->zl_lock); 1834 1835 zil_commit(zilog, 0); 1836 1837 zil_destroy(zilog, B_FALSE); 1838 1839 mutex_enter(&zilog->zl_lock); 1840 zilog->zl_suspending = B_FALSE; 1841 cv_broadcast(&zilog->zl_cv_suspend); 1842 mutex_exit(&zilog->zl_lock); 1843 1844 return (0); 1845 } 1846 1847 void 1848 zil_resume(zilog_t *zilog) 1849 { 1850 mutex_enter(&zilog->zl_lock); 1851 ASSERT(zilog->zl_suspend != 0); 1852 zilog->zl_suspend--; 1853 mutex_exit(&zilog->zl_lock); 1854 } 1855 1856 typedef struct zil_replay_arg { 1857 zil_replay_func_t **zr_replay; 1858 void *zr_arg; 1859 boolean_t zr_byteswap; 1860 char *zr_lr; 1861 } zil_replay_arg_t; 1862 1863 static int 1864 zil_replay_error(zilog_t *zilog, lr_t *lr, int error) 1865 { 1866 char name[MAXNAMELEN]; 1867 1868 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 1869 1870 dmu_objset_name(zilog->zl_os, name); 1871 1872 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 1873 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 1874 (u_longlong_t)lr->lrc_seq, 1875 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 1876 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 1877 1878 return (error); 1879 } 1880 1881 static int 1882 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 1883 { 1884 zil_replay_arg_t *zr = zra; 1885 const zil_header_t *zh = zilog->zl_header; 1886 uint64_t reclen = lr->lrc_reclen; 1887 uint64_t txtype = lr->lrc_txtype; 1888 int error = 0; 1889 1890 zilog->zl_replaying_seq = lr->lrc_seq; 1891 1892 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 1893 return (0); 1894 1895 if (lr->lrc_txg < claim_txg) /* already committed */ 1896 return (0); 1897 1898 /* Strip case-insensitive bit, still present in log record */ 1899 txtype &= ~TX_CI; 1900 1901 if (txtype == 0 || txtype >= TX_MAX_TYPE) 1902 return (zil_replay_error(zilog, lr, EINVAL)); 1903 1904 /* 1905 * If this record type can be logged out of order, the object 1906 * (lr_foid) may no longer exist. That's legitimate, not an error. 1907 */ 1908 if (TX_OOO(txtype)) { 1909 error = dmu_object_info(zilog->zl_os, 1910 ((lr_ooo_t *)lr)->lr_foid, NULL); 1911 if (error == ENOENT || error == EEXIST) 1912 return (0); 1913 } 1914 1915 /* 1916 * Make a copy of the data so we can revise and extend it. 1917 */ 1918 bcopy(lr, zr->zr_lr, reclen); 1919 1920 /* 1921 * If this is a TX_WRITE with a blkptr, suck in the data. 1922 */ 1923 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 1924 error = zil_read_log_data(zilog, (lr_write_t *)lr, 1925 zr->zr_lr + reclen); 1926 if (error) 1927 return (zil_replay_error(zilog, lr, error)); 1928 } 1929 1930 /* 1931 * The log block containing this lr may have been byteswapped 1932 * so that we can easily examine common fields like lrc_txtype. 1933 * However, the log is a mix of different record types, and only the 1934 * replay vectors know how to byteswap their records. Therefore, if 1935 * the lr was byteswapped, undo it before invoking the replay vector. 1936 */ 1937 if (zr->zr_byteswap) 1938 byteswap_uint64_array(zr->zr_lr, reclen); 1939 1940 /* 1941 * We must now do two things atomically: replay this log record, 1942 * and update the log header sequence number to reflect the fact that 1943 * we did so. At the end of each replay function the sequence number 1944 * is updated if we are in replay mode. 1945 */ 1946 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 1947 if (error) { 1948 /* 1949 * The DMU's dnode layer doesn't see removes until the txg 1950 * commits, so a subsequent claim can spuriously fail with 1951 * EEXIST. So if we receive any error we try syncing out 1952 * any removes then retry the transaction. Note that we 1953 * specify B_FALSE for byteswap now, so we don't do it twice. 1954 */ 1955 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 1956 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 1957 if (error) 1958 return (zil_replay_error(zilog, lr, error)); 1959 } 1960 return (0); 1961 } 1962 1963 /* ARGSUSED */ 1964 static int 1965 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1966 { 1967 zilog->zl_replay_blks++; 1968 1969 return (0); 1970 } 1971 1972 /* 1973 * If this dataset has a non-empty intent log, replay it and destroy it. 1974 */ 1975 void 1976 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]) 1977 { 1978 zilog_t *zilog = dmu_objset_zil(os); 1979 const zil_header_t *zh = zilog->zl_header; 1980 zil_replay_arg_t zr; 1981 1982 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 1983 zil_destroy(zilog, B_TRUE); 1984 return; 1985 } 1986 1987 zr.zr_replay = replay_func; 1988 zr.zr_arg = arg; 1989 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 1990 zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 1991 1992 /* 1993 * Wait for in-progress removes to sync before starting replay. 1994 */ 1995 txg_wait_synced(zilog->zl_dmu_pool, 0); 1996 1997 zilog->zl_replay = B_TRUE; 1998 zilog->zl_replay_time = ddi_get_lbolt(); 1999 ASSERT(zilog->zl_replay_blks == 0); 2000 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 2001 zh->zh_claim_txg); 2002 kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 2003 2004 zil_destroy(zilog, B_FALSE); 2005 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 2006 zilog->zl_replay = B_FALSE; 2007 } 2008 2009 boolean_t 2010 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 2011 { 2012 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 2013 return (B_TRUE); 2014 2015 if (zilog->zl_replay) { 2016 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 2017 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 2018 zilog->zl_replaying_seq; 2019 return (B_TRUE); 2020 } 2021 2022 return (B_FALSE); 2023 } 2024 2025 /* ARGSUSED */ 2026 int 2027 zil_vdev_offline(const char *osname, void *arg) 2028 { 2029 objset_t *os; 2030 zilog_t *zilog; 2031 int error; 2032 2033 error = dmu_objset_hold(osname, FTAG, &os); 2034 if (error) 2035 return (error); 2036 2037 zilog = dmu_objset_zil(os); 2038 if (zil_suspend(zilog) != 0) 2039 error = EEXIST; 2040 else 2041 zil_resume(zilog); 2042 dmu_objset_rele(os, FTAG); 2043 return (error); 2044 } 2045