xref: /titanic_50/usr/src/uts/common/fs/zfs/zil.c (revision 6bb0858833ad931216a3c40682436131bec0007f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa.h>
30 #include <sys/dmu.h>
31 #include <sys/zap.h>
32 #include <sys/arc.h>
33 #include <sys/stat.h>
34 #include <sys/resource.h>
35 #include <sys/zil.h>
36 #include <sys/zil_impl.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/vdev.h>
39 #include <sys/dmu_tx.h>
40 
41 /*
42  * The zfs intent log (ZIL) saves transaction records of system calls
43  * that change the file system in memory with enough information
44  * to be able to replay them. These are stored in memory until
45  * either the DMU transaction group (txg) commits them to the stable pool
46  * and they can be discarded, or they are flushed to the stable log
47  * (also in the pool) due to a fsync, O_DSYNC or other synchronous
48  * requirement. In the event of a panic or power fail then those log
49  * records (transactions) are replayed.
50  *
51  * There is one ZIL per file system. Its on-disk (pool) format consists
52  * of 3 parts:
53  *
54  * 	- ZIL header
55  * 	- ZIL blocks
56  * 	- ZIL records
57  *
58  * A log record holds a system call transaction. Log blocks can
59  * hold many log records and the blocks are chained together.
60  * Each ZIL block contains a block pointer (blkptr_t) to the next
61  * ZIL block in the chain. The ZIL header points to the first
62  * block in the chain. Note there is not a fixed place in the pool
63  * to hold blocks. They are dynamically allocated and freed as
64  * needed from the blocks available. Figure X shows the ZIL structure:
65  */
66 
67 /*
68  * This global ZIL switch affects all pools
69  */
70 int zil_disable = 0;	/* disable intent logging */
71 
72 /*
73  * Tunable parameter for debugging or performance analysis.  Setting
74  * zfs_nocacheflush will cause corruption on power loss if a volatile
75  * out-of-order write cache is enabled.
76  */
77 boolean_t zfs_nocacheflush = B_FALSE;
78 
79 static kmem_cache_t *zil_lwb_cache;
80 
81 static int
82 zil_dva_compare(const void *x1, const void *x2)
83 {
84 	const dva_t *dva1 = x1;
85 	const dva_t *dva2 = x2;
86 
87 	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
88 		return (-1);
89 	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
90 		return (1);
91 
92 	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
93 		return (-1);
94 	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
95 		return (1);
96 
97 	return (0);
98 }
99 
100 static void
101 zil_dva_tree_init(avl_tree_t *t)
102 {
103 	avl_create(t, zil_dva_compare, sizeof (zil_dva_node_t),
104 	    offsetof(zil_dva_node_t, zn_node));
105 }
106 
107 static void
108 zil_dva_tree_fini(avl_tree_t *t)
109 {
110 	zil_dva_node_t *zn;
111 	void *cookie = NULL;
112 
113 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
114 		kmem_free(zn, sizeof (zil_dva_node_t));
115 
116 	avl_destroy(t);
117 }
118 
119 static int
120 zil_dva_tree_add(avl_tree_t *t, dva_t *dva)
121 {
122 	zil_dva_node_t *zn;
123 	avl_index_t where;
124 
125 	if (avl_find(t, dva, &where) != NULL)
126 		return (EEXIST);
127 
128 	zn = kmem_alloc(sizeof (zil_dva_node_t), KM_SLEEP);
129 	zn->zn_dva = *dva;
130 	avl_insert(t, zn, where);
131 
132 	return (0);
133 }
134 
135 static zil_header_t *
136 zil_header_in_syncing_context(zilog_t *zilog)
137 {
138 	return ((zil_header_t *)zilog->zl_header);
139 }
140 
141 static void
142 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
143 {
144 	zio_cksum_t *zc = &bp->blk_cksum;
145 
146 	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
147 	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
148 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
149 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
150 }
151 
152 /*
153  * Read a log block, make sure it's valid, and byteswap it if necessary.
154  */
155 static int
156 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, arc_buf_t **abufpp)
157 {
158 	blkptr_t blk = *bp;
159 	zbookmark_t zb;
160 	uint32_t aflags = ARC_WAIT;
161 	int error;
162 
163 	zb.zb_objset = bp->blk_cksum.zc_word[ZIL_ZC_OBJSET];
164 	zb.zb_object = 0;
165 	zb.zb_level = -1;
166 	zb.zb_blkid = bp->blk_cksum.zc_word[ZIL_ZC_SEQ];
167 
168 	*abufpp = NULL;
169 
170 	error = arc_read(NULL, zilog->zl_spa, &blk, byteswap_uint64_array,
171 	    arc_getbuf_func, abufpp, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL |
172 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB, &aflags, &zb);
173 
174 	if (error == 0) {
175 		char *data = (*abufpp)->b_data;
176 		uint64_t blksz = BP_GET_LSIZE(bp);
177 		zil_trailer_t *ztp = (zil_trailer_t *)(data + blksz) - 1;
178 		zio_cksum_t cksum = bp->blk_cksum;
179 
180 		/*
181 		 * Sequence numbers should be... sequential.  The checksum
182 		 * verifier for the next block should be bp's checksum plus 1.
183 		 */
184 		cksum.zc_word[ZIL_ZC_SEQ]++;
185 
186 		if (bcmp(&cksum, &ztp->zit_next_blk.blk_cksum, sizeof (cksum)))
187 			error = ESTALE;
188 		else if (BP_IS_HOLE(&ztp->zit_next_blk))
189 			error = ENOENT;
190 		else if (ztp->zit_nused > (blksz - sizeof (zil_trailer_t)))
191 			error = EOVERFLOW;
192 
193 		if (error) {
194 			VERIFY(arc_buf_remove_ref(*abufpp, abufpp) == 1);
195 			*abufpp = NULL;
196 		}
197 	}
198 
199 	dprintf("error %d on %llu:%llu\n", error, zb.zb_objset, zb.zb_blkid);
200 
201 	return (error);
202 }
203 
204 /*
205  * Parse the intent log, and call parse_func for each valid record within.
206  * Return the highest sequence number.
207  */
208 uint64_t
209 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
210     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
211 {
212 	const zil_header_t *zh = zilog->zl_header;
213 	uint64_t claim_seq = zh->zh_claim_seq;
214 	uint64_t seq = 0;
215 	uint64_t max_seq = 0;
216 	blkptr_t blk = zh->zh_log;
217 	arc_buf_t *abuf;
218 	char *lrbuf, *lrp;
219 	zil_trailer_t *ztp;
220 	int reclen, error;
221 
222 	if (BP_IS_HOLE(&blk))
223 		return (max_seq);
224 
225 	/*
226 	 * Starting at the block pointed to by zh_log we read the log chain.
227 	 * For each block in the chain we strongly check that block to
228 	 * ensure its validity.  We stop when an invalid block is found.
229 	 * For each block pointer in the chain we call parse_blk_func().
230 	 * For each record in each valid block we call parse_lr_func().
231 	 * If the log has been claimed, stop if we encounter a sequence
232 	 * number greater than the highest claimed sequence number.
233 	 */
234 	zil_dva_tree_init(&zilog->zl_dva_tree);
235 	for (;;) {
236 		seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
237 
238 		if (claim_seq != 0 && seq > claim_seq)
239 			break;
240 
241 		ASSERT(max_seq < seq);
242 		max_seq = seq;
243 
244 		error = zil_read_log_block(zilog, &blk, &abuf);
245 
246 		if (parse_blk_func != NULL)
247 			parse_blk_func(zilog, &blk, arg, txg);
248 
249 		if (error)
250 			break;
251 
252 		lrbuf = abuf->b_data;
253 		ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1;
254 		blk = ztp->zit_next_blk;
255 
256 		if (parse_lr_func == NULL) {
257 			VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
258 			continue;
259 		}
260 
261 		for (lrp = lrbuf; lrp < lrbuf + ztp->zit_nused; lrp += reclen) {
262 			lr_t *lr = (lr_t *)lrp;
263 			reclen = lr->lrc_reclen;
264 			ASSERT3U(reclen, >=, sizeof (lr_t));
265 			parse_lr_func(zilog, lr, arg, txg);
266 		}
267 		VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
268 	}
269 	zil_dva_tree_fini(&zilog->zl_dva_tree);
270 
271 	return (max_seq);
272 }
273 
274 /* ARGSUSED */
275 static void
276 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
277 {
278 	spa_t *spa = zilog->zl_spa;
279 	int err;
280 
281 	/*
282 	 * Claim log block if not already committed and not already claimed.
283 	 */
284 	if (bp->blk_birth >= first_txg &&
285 	    zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp)) == 0) {
286 		err = zio_wait(zio_claim(NULL, spa, first_txg, bp, NULL, NULL));
287 		ASSERT(err == 0);
288 	}
289 }
290 
291 static void
292 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
293 {
294 	if (lrc->lrc_txtype == TX_WRITE) {
295 		lr_write_t *lr = (lr_write_t *)lrc;
296 		zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg);
297 	}
298 }
299 
300 /* ARGSUSED */
301 static void
302 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
303 {
304 	zio_free_blk(zilog->zl_spa, bp, dmu_tx_get_txg(tx));
305 }
306 
307 static void
308 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
309 {
310 	/*
311 	 * If we previously claimed it, we need to free it.
312 	 */
313 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE) {
314 		lr_write_t *lr = (lr_write_t *)lrc;
315 		blkptr_t *bp = &lr->lr_blkptr;
316 		if (bp->blk_birth >= claim_txg &&
317 		    !zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp))) {
318 			(void) arc_free(NULL, zilog->zl_spa,
319 			    dmu_tx_get_txg(tx), bp, NULL, NULL, ARC_WAIT);
320 		}
321 	}
322 }
323 
324 /*
325  * Create an on-disk intent log.
326  */
327 static void
328 zil_create(zilog_t *zilog)
329 {
330 	const zil_header_t *zh = zilog->zl_header;
331 	lwb_t *lwb;
332 	uint64_t txg = 0;
333 	dmu_tx_t *tx = NULL;
334 	blkptr_t blk;
335 	int error = 0;
336 
337 	/*
338 	 * Wait for any previous destroy to complete.
339 	 */
340 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
341 
342 	ASSERT(zh->zh_claim_txg == 0);
343 	ASSERT(zh->zh_replay_seq == 0);
344 
345 	blk = zh->zh_log;
346 
347 	/*
348 	 * If we don't already have an initial log block, allocate one now.
349 	 */
350 	if (BP_IS_HOLE(&blk)) {
351 		tx = dmu_tx_create(zilog->zl_os);
352 		(void) dmu_tx_assign(tx, TXG_WAIT);
353 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
354 		txg = dmu_tx_get_txg(tx);
355 
356 		error = zio_alloc_blk(zilog->zl_spa, ZIL_MIN_BLKSZ, &blk,
357 		    NULL, txg);
358 
359 		if (error == 0)
360 			zil_init_log_chain(zilog, &blk);
361 	}
362 
363 	/*
364 	 * Allocate a log write buffer (lwb) for the first log block.
365 	 */
366 	if (error == 0) {
367 		lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
368 		lwb->lwb_zilog = zilog;
369 		lwb->lwb_blk = blk;
370 		lwb->lwb_nused = 0;
371 		lwb->lwb_sz = BP_GET_LSIZE(&lwb->lwb_blk);
372 		lwb->lwb_buf = zio_buf_alloc(lwb->lwb_sz);
373 		lwb->lwb_max_txg = txg;
374 		lwb->lwb_zio = NULL;
375 
376 		mutex_enter(&zilog->zl_lock);
377 		list_insert_tail(&zilog->zl_lwb_list, lwb);
378 		mutex_exit(&zilog->zl_lock);
379 	}
380 
381 	/*
382 	 * If we just allocated the first log block, commit our transaction
383 	 * and wait for zil_sync() to stuff the block poiner into zh_log.
384 	 * (zh is part of the MOS, so we cannot modify it in open context.)
385 	 */
386 	if (tx != NULL) {
387 		dmu_tx_commit(tx);
388 		txg_wait_synced(zilog->zl_dmu_pool, txg);
389 	}
390 
391 	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
392 }
393 
394 /*
395  * In one tx, free all log blocks and clear the log header.
396  * If keep_first is set, then we're replaying a log with no content.
397  * We want to keep the first block, however, so that the first
398  * synchronous transaction doesn't require a txg_wait_synced()
399  * in zil_create().  We don't need to txg_wait_synced() here either
400  * when keep_first is set, because both zil_create() and zil_destroy()
401  * will wait for any in-progress destroys to complete.
402  */
403 void
404 zil_destroy(zilog_t *zilog, boolean_t keep_first)
405 {
406 	const zil_header_t *zh = zilog->zl_header;
407 	lwb_t *lwb;
408 	dmu_tx_t *tx;
409 	uint64_t txg;
410 
411 	/*
412 	 * Wait for any previous destroy to complete.
413 	 */
414 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
415 
416 	if (BP_IS_HOLE(&zh->zh_log))
417 		return;
418 
419 	tx = dmu_tx_create(zilog->zl_os);
420 	(void) dmu_tx_assign(tx, TXG_WAIT);
421 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
422 	txg = dmu_tx_get_txg(tx);
423 
424 	mutex_enter(&zilog->zl_lock);
425 
426 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
427 	zilog->zl_destroy_txg = txg;
428 	zilog->zl_keep_first = keep_first;
429 
430 	if (!list_is_empty(&zilog->zl_lwb_list)) {
431 		ASSERT(zh->zh_claim_txg == 0);
432 		ASSERT(!keep_first);
433 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
434 			list_remove(&zilog->zl_lwb_list, lwb);
435 			if (lwb->lwb_buf != NULL)
436 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
437 			zio_free_blk(zilog->zl_spa, &lwb->lwb_blk, txg);
438 			kmem_cache_free(zil_lwb_cache, lwb);
439 		}
440 	} else {
441 		if (!keep_first) {
442 			(void) zil_parse(zilog, zil_free_log_block,
443 			    zil_free_log_record, tx, zh->zh_claim_txg);
444 		}
445 	}
446 	mutex_exit(&zilog->zl_lock);
447 
448 	dmu_tx_commit(tx);
449 
450 	if (keep_first)			/* no need to wait in this case */
451 		return;
452 
453 	txg_wait_synced(zilog->zl_dmu_pool, txg);
454 	ASSERT(BP_IS_HOLE(&zh->zh_log));
455 }
456 
457 int
458 zil_claim(char *osname, void *txarg)
459 {
460 	dmu_tx_t *tx = txarg;
461 	uint64_t first_txg = dmu_tx_get_txg(tx);
462 	zilog_t *zilog;
463 	zil_header_t *zh;
464 	objset_t *os;
465 	int error;
466 
467 	error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_STANDARD, &os);
468 	if (error) {
469 		cmn_err(CE_WARN, "can't process intent log for %s", osname);
470 		return (0);
471 	}
472 
473 	zilog = dmu_objset_zil(os);
474 	zh = zil_header_in_syncing_context(zilog);
475 
476 	/*
477 	 * Claim all log blocks if we haven't already done so, and remember
478 	 * the highest claimed sequence number.  This ensures that if we can
479 	 * read only part of the log now (e.g. due to a missing device),
480 	 * but we can read the entire log later, we will not try to replay
481 	 * or destroy beyond the last block we successfully claimed.
482 	 */
483 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
484 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
485 		zh->zh_claim_txg = first_txg;
486 		zh->zh_claim_seq = zil_parse(zilog, zil_claim_log_block,
487 		    zil_claim_log_record, tx, first_txg);
488 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
489 	}
490 
491 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
492 	dmu_objset_close(os);
493 	return (0);
494 }
495 
496 void
497 zil_add_vdev(zilog_t *zilog, uint64_t vdev)
498 {
499 	zil_vdev_t *zv, *new;
500 	uint64_t bmap_sz = sizeof (zilog->zl_vdev_bmap) << 3;
501 	uchar_t *cp;
502 
503 	if (zfs_nocacheflush)
504 		return;
505 
506 	if (vdev < bmap_sz) {
507 		cp = zilog->zl_vdev_bmap + (vdev / 8);
508 		atomic_or_8(cp, 1 << (vdev % 8));
509 	} else  {
510 		/*
511 		 * insert into ordered list
512 		 */
513 		mutex_enter(&zilog->zl_lock);
514 		for (zv = list_head(&zilog->zl_vdev_list); zv != NULL;
515 		    zv = list_next(&zilog->zl_vdev_list, zv)) {
516 			if (zv->vdev == vdev) {
517 				/* duplicate found - just return */
518 				mutex_exit(&zilog->zl_lock);
519 				return;
520 			}
521 			if (zv->vdev > vdev) {
522 				/* insert before this entry */
523 				new = kmem_alloc(sizeof (zil_vdev_t),
524 				    KM_SLEEP);
525 				new->vdev = vdev;
526 				list_insert_before(&zilog->zl_vdev_list,
527 				    zv, new);
528 				mutex_exit(&zilog->zl_lock);
529 				return;
530 			}
531 		}
532 		/* ran off end of list, insert at the end */
533 		ASSERT(zv == NULL);
534 		new = kmem_alloc(sizeof (zil_vdev_t), KM_SLEEP);
535 		new->vdev = vdev;
536 		list_insert_tail(&zilog->zl_vdev_list, new);
537 		mutex_exit(&zilog->zl_lock);
538 	}
539 }
540 
541 /* start an async flush of the write cache for this vdev */
542 void
543 zil_flush_vdev(spa_t *spa, uint64_t vdev, zio_t **zio)
544 {
545 	vdev_t *vd;
546 
547 	if (*zio == NULL)
548 		*zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
549 
550 	vd = vdev_lookup_top(spa, vdev);
551 	ASSERT(vd);
552 
553 	(void) zio_nowait(zio_ioctl(*zio, spa, vd, DKIOCFLUSHWRITECACHE,
554 	    NULL, NULL, ZIO_PRIORITY_NOW,
555 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
556 }
557 
558 void
559 zil_flush_vdevs(zilog_t *zilog)
560 {
561 	zil_vdev_t *zv;
562 	zio_t *zio = NULL;
563 	spa_t *spa = zilog->zl_spa;
564 	uint64_t vdev;
565 	uint8_t b;
566 	int i, j;
567 
568 	ASSERT(zilog->zl_writer);
569 
570 	for (i = 0; i < sizeof (zilog->zl_vdev_bmap); i++) {
571 		b = zilog->zl_vdev_bmap[i];
572 		if (b == 0)
573 			continue;
574 		for (j = 0; j < 8; j++) {
575 			if (b & (1 << j)) {
576 				vdev = (i << 3) + j;
577 				zil_flush_vdev(spa, vdev, &zio);
578 			}
579 		}
580 		zilog->zl_vdev_bmap[i] = 0;
581 	}
582 
583 	while ((zv = list_head(&zilog->zl_vdev_list)) != NULL) {
584 		zil_flush_vdev(spa, zv->vdev, &zio);
585 		list_remove(&zilog->zl_vdev_list, zv);
586 		kmem_free(zv, sizeof (zil_vdev_t));
587 	}
588 	/*
589 	 * Wait for all the flushes to complete.  Not all devices actually
590 	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
591 	 */
592 	if (zio)
593 		(void) zio_wait(zio);
594 }
595 
596 /*
597  * Function called when a log block write completes
598  */
599 static void
600 zil_lwb_write_done(zio_t *zio)
601 {
602 	lwb_t *lwb = zio->io_private;
603 	zilog_t *zilog = lwb->lwb_zilog;
604 
605 	/*
606 	 * Now that we've written this log block, we have a stable pointer
607 	 * to the next block in the chain, so it's OK to let the txg in
608 	 * which we allocated the next block sync.
609 	 */
610 	txg_rele_to_sync(&lwb->lwb_txgh);
611 
612 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
613 	mutex_enter(&zilog->zl_lock);
614 	lwb->lwb_buf = NULL;
615 	if (zio->io_error) {
616 		zilog->zl_log_error = B_TRUE;
617 		mutex_exit(&zilog->zl_lock);
618 		return;
619 	}
620 	mutex_exit(&zilog->zl_lock);
621 }
622 
623 /*
624  * Initialize the io for a log block.
625  *
626  * Note, we should not initialize the IO until we are about
627  * to use it, since zio_rewrite() does a spa_config_enter().
628  */
629 static void
630 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
631 {
632 	zbookmark_t zb;
633 
634 	zb.zb_objset = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET];
635 	zb.zb_object = 0;
636 	zb.zb_level = -1;
637 	zb.zb_blkid = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
638 
639 	if (zilog->zl_root_zio == NULL) {
640 		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
641 		    ZIO_FLAG_CANFAIL);
642 	}
643 	if (lwb->lwb_zio == NULL) {
644 		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
645 		    ZIO_CHECKSUM_ZILOG, 0, &lwb->lwb_blk, lwb->lwb_buf,
646 		    lwb->lwb_sz, zil_lwb_write_done, lwb,
647 		    ZIO_PRIORITY_LOG_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
648 	}
649 }
650 
651 /*
652  * Start a log block write and advance to the next log block.
653  * Calls are serialized.
654  */
655 static lwb_t *
656 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
657 {
658 	lwb_t *nlwb;
659 	zil_trailer_t *ztp = (zil_trailer_t *)(lwb->lwb_buf + lwb->lwb_sz) - 1;
660 	spa_t *spa = zilog->zl_spa;
661 	blkptr_t *bp = &ztp->zit_next_blk;
662 	uint64_t txg;
663 	uint64_t zil_blksz;
664 	int error;
665 
666 	ASSERT(lwb->lwb_nused <= ZIL_BLK_DATA_SZ(lwb));
667 
668 	/*
669 	 * Allocate the next block and save its address in this block
670 	 * before writing it in order to establish the log chain.
671 	 * Note that if the allocation of nlwb synced before we wrote
672 	 * the block that points at it (lwb), we'd leak it if we crashed.
673 	 * Therefore, we don't do txg_rele_to_sync() until zil_lwb_write_done().
674 	 */
675 	txg = txg_hold_open(zilog->zl_dmu_pool, &lwb->lwb_txgh);
676 	txg_rele_to_quiesce(&lwb->lwb_txgh);
677 
678 	/*
679 	 * Pick a ZIL blocksize. We request a size that is the
680 	 * maximum of the previous used size, the current used size and
681 	 * the amount waiting in the queue.
682 	 */
683 	zil_blksz = MAX(zilog->zl_prev_used,
684 	    zilog->zl_cur_used + sizeof (*ztp));
685 	zil_blksz = MAX(zil_blksz, zilog->zl_itx_list_sz + sizeof (*ztp));
686 	zil_blksz = P2ROUNDUP_TYPED(zil_blksz, ZIL_MIN_BLKSZ, uint64_t);
687 	if (zil_blksz > ZIL_MAX_BLKSZ)
688 		zil_blksz = ZIL_MAX_BLKSZ;
689 
690 	BP_ZERO(bp);
691 	/* pass the old blkptr in order to spread log blocks across devs */
692 	error = zio_alloc_blk(spa, zil_blksz, bp, &lwb->lwb_blk, txg);
693 	if (error) {
694 		dmu_tx_t *tx = dmu_tx_create_assigned(zilog->zl_dmu_pool, txg);
695 
696 		/*
697 		 * We dirty the dataset to ensure that zil_sync() will
698 		 * be called to remove this lwb from our zl_lwb_list.
699 		 * Failing to do so, may leave an lwb with a NULL lwb_buf
700 		 * hanging around on the zl_lwb_list.
701 		 */
702 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
703 		dmu_tx_commit(tx);
704 
705 		/*
706 		 * Since we've just experienced an allocation failure so we
707 		 * terminate the current lwb and send it on its way.
708 		 */
709 		ztp->zit_pad = 0;
710 		ztp->zit_nused = lwb->lwb_nused;
711 		ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum;
712 		zio_nowait(lwb->lwb_zio);
713 
714 		/*
715 		 * By returning NULL the caller will call tx_wait_synced()
716 		 */
717 		return (NULL);
718 	}
719 
720 	ASSERT3U(bp->blk_birth, ==, txg);
721 	ztp->zit_pad = 0;
722 	ztp->zit_nused = lwb->lwb_nused;
723 	ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum;
724 	bp->blk_cksum = lwb->lwb_blk.blk_cksum;
725 	bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
726 
727 	/*
728 	 * Allocate a new log write buffer (lwb).
729 	 */
730 	nlwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
731 
732 	nlwb->lwb_zilog = zilog;
733 	nlwb->lwb_blk = *bp;
734 	nlwb->lwb_nused = 0;
735 	nlwb->lwb_sz = BP_GET_LSIZE(&nlwb->lwb_blk);
736 	nlwb->lwb_buf = zio_buf_alloc(nlwb->lwb_sz);
737 	nlwb->lwb_max_txg = txg;
738 	nlwb->lwb_zio = NULL;
739 
740 	/*
741 	 * Put new lwb at the end of the log chain
742 	 */
743 	mutex_enter(&zilog->zl_lock);
744 	list_insert_tail(&zilog->zl_lwb_list, nlwb);
745 	mutex_exit(&zilog->zl_lock);
746 
747 	/* Record the vdev for later flushing */
748 	zil_add_vdev(zilog, DVA_GET_VDEV(BP_IDENTITY(&(lwb->lwb_blk))));
749 
750 	/*
751 	 * kick off the write for the old log block
752 	 */
753 	dprintf_bp(&lwb->lwb_blk, "lwb %p txg %llu: ", lwb, txg);
754 	ASSERT(lwb->lwb_zio);
755 	zio_nowait(lwb->lwb_zio);
756 
757 	return (nlwb);
758 }
759 
760 static lwb_t *
761 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
762 {
763 	lr_t *lrc = &itx->itx_lr; /* common log record */
764 	lr_write_t *lr = (lr_write_t *)lrc;
765 	uint64_t txg = lrc->lrc_txg;
766 	uint64_t reclen = lrc->lrc_reclen;
767 	uint64_t dlen;
768 
769 	if (lwb == NULL)
770 		return (NULL);
771 	ASSERT(lwb->lwb_buf != NULL);
772 
773 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
774 		dlen = P2ROUNDUP_TYPED(
775 		    lr->lr_length, sizeof (uint64_t), uint64_t);
776 	else
777 		dlen = 0;
778 
779 	zilog->zl_cur_used += (reclen + dlen);
780 
781 	zil_lwb_write_init(zilog, lwb);
782 
783 	/*
784 	 * If this record won't fit in the current log block, start a new one.
785 	 */
786 	if (lwb->lwb_nused + reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) {
787 		lwb = zil_lwb_write_start(zilog, lwb);
788 		if (lwb == NULL)
789 			return (NULL);
790 		zil_lwb_write_init(zilog, lwb);
791 		ASSERT(lwb->lwb_nused == 0);
792 		if (reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) {
793 			txg_wait_synced(zilog->zl_dmu_pool, txg);
794 			return (lwb);
795 		}
796 	}
797 
798 	/*
799 	 * Update the lrc_seq, to be log record sequence number. See zil.h
800 	 * Then copy the record to the log buffer.
801 	 */
802 	lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
803 	bcopy(lrc, lwb->lwb_buf + lwb->lwb_nused, reclen);
804 
805 	/*
806 	 * If it's a write, fetch the data or get its blkptr as appropriate.
807 	 */
808 	if (lrc->lrc_txtype == TX_WRITE) {
809 		if (txg > spa_freeze_txg(zilog->zl_spa))
810 			txg_wait_synced(zilog->zl_dmu_pool, txg);
811 		if (itx->itx_wr_state != WR_COPIED) {
812 			char *dbuf;
813 			int error;
814 
815 			/* alignment is guaranteed */
816 			lr = (lr_write_t *)(lwb->lwb_buf + lwb->lwb_nused);
817 			if (dlen) {
818 				ASSERT(itx->itx_wr_state == WR_NEED_COPY);
819 				dbuf = lwb->lwb_buf + lwb->lwb_nused + reclen;
820 				lr->lr_common.lrc_reclen += dlen;
821 			} else {
822 				ASSERT(itx->itx_wr_state == WR_INDIRECT);
823 				dbuf = NULL;
824 			}
825 			error = zilog->zl_get_data(
826 			    itx->itx_private, lr, dbuf, lwb->lwb_zio);
827 			if (error) {
828 				ASSERT(error == ENOENT || error == EEXIST ||
829 				    error == EALREADY);
830 				return (lwb);
831 			}
832 		}
833 	}
834 
835 	lwb->lwb_nused += reclen + dlen;
836 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
837 	ASSERT3U(lwb->lwb_nused, <=, ZIL_BLK_DATA_SZ(lwb));
838 	ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0);
839 
840 	return (lwb);
841 }
842 
843 itx_t *
844 zil_itx_create(int txtype, size_t lrsize)
845 {
846 	itx_t *itx;
847 
848 	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
849 
850 	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
851 	itx->itx_lr.lrc_txtype = txtype;
852 	itx->itx_lr.lrc_reclen = lrsize;
853 	itx->itx_lr.lrc_seq = 0;	/* defensive */
854 
855 	return (itx);
856 }
857 
858 uint64_t
859 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
860 {
861 	uint64_t seq;
862 
863 	ASSERT(itx->itx_lr.lrc_seq == 0);
864 
865 	mutex_enter(&zilog->zl_lock);
866 	list_insert_tail(&zilog->zl_itx_list, itx);
867 	zilog->zl_itx_list_sz += itx->itx_lr.lrc_reclen;
868 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
869 	itx->itx_lr.lrc_seq = seq = ++zilog->zl_itx_seq;
870 	mutex_exit(&zilog->zl_lock);
871 
872 	return (seq);
873 }
874 
875 /*
876  * Free up all in-memory intent log transactions that have now been synced.
877  */
878 static void
879 zil_itx_clean(zilog_t *zilog)
880 {
881 	uint64_t synced_txg = spa_last_synced_txg(zilog->zl_spa);
882 	uint64_t freeze_txg = spa_freeze_txg(zilog->zl_spa);
883 	list_t clean_list;
884 	itx_t *itx;
885 
886 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
887 
888 	mutex_enter(&zilog->zl_lock);
889 	/* wait for a log writer to finish walking list */
890 	while (zilog->zl_writer) {
891 		cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock);
892 	}
893 
894 	/*
895 	 * Move the sync'd log transactions to a separate list so we can call
896 	 * kmem_free without holding the zl_lock.
897 	 *
898 	 * There is no need to set zl_writer as we don't drop zl_lock here
899 	 */
900 	while ((itx = list_head(&zilog->zl_itx_list)) != NULL &&
901 	    itx->itx_lr.lrc_txg <= MIN(synced_txg, freeze_txg)) {
902 		list_remove(&zilog->zl_itx_list, itx);
903 		zilog->zl_itx_list_sz -= itx->itx_lr.lrc_reclen;
904 		list_insert_tail(&clean_list, itx);
905 	}
906 	cv_broadcast(&zilog->zl_cv_writer);
907 	mutex_exit(&zilog->zl_lock);
908 
909 	/* destroy sync'd log transactions */
910 	while ((itx = list_head(&clean_list)) != NULL) {
911 		list_remove(&clean_list, itx);
912 		kmem_free(itx, offsetof(itx_t, itx_lr)
913 		    + itx->itx_lr.lrc_reclen);
914 	}
915 	list_destroy(&clean_list);
916 }
917 
918 /*
919  * If there are any in-memory intent log transactions which have now been
920  * synced then start up a taskq to free them.
921  */
922 void
923 zil_clean(zilog_t *zilog)
924 {
925 	itx_t *itx;
926 
927 	mutex_enter(&zilog->zl_lock);
928 	itx = list_head(&zilog->zl_itx_list);
929 	if ((itx != NULL) &&
930 	    (itx->itx_lr.lrc_txg <= spa_last_synced_txg(zilog->zl_spa))) {
931 		(void) taskq_dispatch(zilog->zl_clean_taskq,
932 		    (void (*)(void *))zil_itx_clean, zilog, TQ_NOSLEEP);
933 	}
934 	mutex_exit(&zilog->zl_lock);
935 }
936 
937 void
938 zil_commit_writer(zilog_t *zilog, uint64_t seq, uint64_t foid)
939 {
940 	uint64_t txg;
941 	uint64_t reclen;
942 	uint64_t commit_seq = 0;
943 	itx_t *itx, *itx_next = (itx_t *)-1;
944 	lwb_t *lwb;
945 	spa_t *spa;
946 
947 	zilog->zl_writer = B_TRUE;
948 	zilog->zl_root_zio = NULL;
949 	spa = zilog->zl_spa;
950 
951 	if (zilog->zl_suspend) {
952 		lwb = NULL;
953 	} else {
954 		lwb = list_tail(&zilog->zl_lwb_list);
955 		if (lwb == NULL) {
956 			/*
957 			 * Return if there's nothing to flush before we
958 			 * dirty the fs by calling zil_create()
959 			 */
960 			if (list_is_empty(&zilog->zl_itx_list)) {
961 				zilog->zl_writer = B_FALSE;
962 				return;
963 			}
964 			mutex_exit(&zilog->zl_lock);
965 			zil_create(zilog);
966 			mutex_enter(&zilog->zl_lock);
967 			lwb = list_tail(&zilog->zl_lwb_list);
968 		}
969 	}
970 
971 	/* Loop through in-memory log transactions filling log blocks. */
972 	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
973 	for (;;) {
974 		/*
975 		 * Find the next itx to push:
976 		 * Push all transactions related to specified foid and all
977 		 * other transactions except TX_WRITE, TX_TRUNCATE,
978 		 * TX_SETATTR and TX_ACL for all other files.
979 		 */
980 		if (itx_next != (itx_t *)-1)
981 			itx = itx_next;
982 		else
983 			itx = list_head(&zilog->zl_itx_list);
984 		for (; itx != NULL; itx = list_next(&zilog->zl_itx_list, itx)) {
985 			if (foid == 0) /* push all foids? */
986 				break;
987 			if (itx->itx_sync) /* push all O_[D]SYNC */
988 				break;
989 			switch (itx->itx_lr.lrc_txtype) {
990 			case TX_SETATTR:
991 			case TX_WRITE:
992 			case TX_TRUNCATE:
993 			case TX_ACL:
994 				/* lr_foid is same offset for these records */
995 				if (((lr_write_t *)&itx->itx_lr)->lr_foid
996 				    != foid) {
997 					continue; /* skip this record */
998 				}
999 			}
1000 			break;
1001 		}
1002 		if (itx == NULL)
1003 			break;
1004 
1005 		reclen = itx->itx_lr.lrc_reclen;
1006 		if ((itx->itx_lr.lrc_seq > seq) &&
1007 		    ((lwb == NULL) || (lwb->lwb_nused == 0) ||
1008 		    (lwb->lwb_nused + reclen > ZIL_BLK_DATA_SZ(lwb)))) {
1009 			break;
1010 		}
1011 
1012 		/*
1013 		 * Save the next pointer.  Even though we soon drop
1014 		 * zl_lock all threads that may change the list
1015 		 * (another writer or zil_itx_clean) can't do so until
1016 		 * they have zl_writer.
1017 		 */
1018 		itx_next = list_next(&zilog->zl_itx_list, itx);
1019 		list_remove(&zilog->zl_itx_list, itx);
1020 		mutex_exit(&zilog->zl_lock);
1021 		txg = itx->itx_lr.lrc_txg;
1022 		ASSERT(txg);
1023 
1024 		if (txg > spa_last_synced_txg(spa) ||
1025 		    txg > spa_freeze_txg(spa))
1026 			lwb = zil_lwb_commit(zilog, itx, lwb);
1027 		kmem_free(itx, offsetof(itx_t, itx_lr)
1028 		    + itx->itx_lr.lrc_reclen);
1029 		mutex_enter(&zilog->zl_lock);
1030 		zilog->zl_itx_list_sz -= reclen;
1031 	}
1032 	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1033 	/* determine commit sequence number */
1034 	itx = list_head(&zilog->zl_itx_list);
1035 	if (itx)
1036 		commit_seq = itx->itx_lr.lrc_seq;
1037 	else
1038 		commit_seq = zilog->zl_itx_seq;
1039 	mutex_exit(&zilog->zl_lock);
1040 
1041 	/* write the last block out */
1042 	if (lwb != NULL && lwb->lwb_zio != NULL)
1043 		lwb = zil_lwb_write_start(zilog, lwb);
1044 
1045 	zilog->zl_prev_used = zilog->zl_cur_used;
1046 	zilog->zl_cur_used = 0;
1047 
1048 	/*
1049 	 * Wait if necessary for the log blocks to be on stable storage.
1050 	 */
1051 	if (zilog->zl_root_zio) {
1052 		DTRACE_PROBE1(zil__cw3, zilog_t *, zilog);
1053 		(void) zio_wait(zilog->zl_root_zio);
1054 		DTRACE_PROBE1(zil__cw4, zilog_t *, zilog);
1055 		if (!zfs_nocacheflush)
1056 			zil_flush_vdevs(zilog);
1057 	}
1058 
1059 	if (zilog->zl_log_error || lwb == NULL) {
1060 		zilog->zl_log_error = 0;
1061 		txg_wait_synced(zilog->zl_dmu_pool, 0);
1062 	}
1063 
1064 	mutex_enter(&zilog->zl_lock);
1065 	zilog->zl_writer = B_FALSE;
1066 
1067 	ASSERT3U(commit_seq, >=, zilog->zl_commit_seq);
1068 	zilog->zl_commit_seq = commit_seq;
1069 }
1070 
1071 /*
1072  * Push zfs transactions to stable storage up to the supplied sequence number.
1073  * If foid is 0 push out all transactions, otherwise push only those
1074  * for that file or might have been used to create that file.
1075  */
1076 void
1077 zil_commit(zilog_t *zilog, uint64_t seq, uint64_t foid)
1078 {
1079 	if (zilog == NULL || seq == 0)
1080 		return;
1081 
1082 	mutex_enter(&zilog->zl_lock);
1083 
1084 	seq = MIN(seq, zilog->zl_itx_seq);	/* cap seq at largest itx seq */
1085 
1086 	while (zilog->zl_writer) {
1087 		cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock);
1088 		if (seq < zilog->zl_commit_seq) {
1089 			mutex_exit(&zilog->zl_lock);
1090 			return;
1091 		}
1092 	}
1093 	zil_commit_writer(zilog, seq, foid); /* drops zl_lock */
1094 	/* wake up others waiting on the commit */
1095 	cv_broadcast(&zilog->zl_cv_writer);
1096 	mutex_exit(&zilog->zl_lock);
1097 }
1098 
1099 /*
1100  * Called in syncing context to free committed log blocks and update log header.
1101  */
1102 void
1103 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1104 {
1105 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1106 	uint64_t txg = dmu_tx_get_txg(tx);
1107 	spa_t *spa = zilog->zl_spa;
1108 	lwb_t *lwb;
1109 
1110 	mutex_enter(&zilog->zl_lock);
1111 
1112 	ASSERT(zilog->zl_stop_sync == 0);
1113 
1114 	zh->zh_replay_seq = zilog->zl_replay_seq[txg & TXG_MASK];
1115 
1116 	if (zilog->zl_destroy_txg == txg) {
1117 		blkptr_t blk = zh->zh_log;
1118 
1119 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1120 		ASSERT(spa_sync_pass(spa) == 1);
1121 
1122 		bzero(zh, sizeof (zil_header_t));
1123 		bzero(zilog->zl_replay_seq, sizeof (zilog->zl_replay_seq));
1124 
1125 		if (zilog->zl_keep_first) {
1126 			/*
1127 			 * If this block was part of log chain that couldn't
1128 			 * be claimed because a device was missing during
1129 			 * zil_claim(), but that device later returns,
1130 			 * then this block could erroneously appear valid.
1131 			 * To guard against this, assign a new GUID to the new
1132 			 * log chain so it doesn't matter what blk points to.
1133 			 */
1134 			zil_init_log_chain(zilog, &blk);
1135 			zh->zh_log = blk;
1136 		}
1137 	}
1138 
1139 	for (;;) {
1140 		lwb = list_head(&zilog->zl_lwb_list);
1141 		if (lwb == NULL) {
1142 			mutex_exit(&zilog->zl_lock);
1143 			return;
1144 		}
1145 		zh->zh_log = lwb->lwb_blk;
1146 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1147 			break;
1148 		list_remove(&zilog->zl_lwb_list, lwb);
1149 		zio_free_blk(spa, &lwb->lwb_blk, txg);
1150 		kmem_cache_free(zil_lwb_cache, lwb);
1151 
1152 		/*
1153 		 * If we don't have anything left in the lwb list then
1154 		 * we've had an allocation failure and we need to zero
1155 		 * out the zil_header blkptr so that we don't end
1156 		 * up freeing the same block twice.
1157 		 */
1158 		if (list_head(&zilog->zl_lwb_list) == NULL)
1159 			BP_ZERO(&zh->zh_log);
1160 	}
1161 	mutex_exit(&zilog->zl_lock);
1162 }
1163 
1164 void
1165 zil_init(void)
1166 {
1167 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1168 	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1169 }
1170 
1171 void
1172 zil_fini(void)
1173 {
1174 	kmem_cache_destroy(zil_lwb_cache);
1175 }
1176 
1177 zilog_t *
1178 zil_alloc(objset_t *os, zil_header_t *zh_phys)
1179 {
1180 	zilog_t *zilog;
1181 
1182 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1183 
1184 	zilog->zl_header = zh_phys;
1185 	zilog->zl_os = os;
1186 	zilog->zl_spa = dmu_objset_spa(os);
1187 	zilog->zl_dmu_pool = dmu_objset_pool(os);
1188 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1189 
1190 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1191 
1192 	list_create(&zilog->zl_itx_list, sizeof (itx_t),
1193 	    offsetof(itx_t, itx_node));
1194 
1195 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1196 	    offsetof(lwb_t, lwb_node));
1197 
1198 	list_create(&zilog->zl_vdev_list, sizeof (zil_vdev_t),
1199 	    offsetof(zil_vdev_t, vdev_seq_node));
1200 
1201 	return (zilog);
1202 }
1203 
1204 void
1205 zil_free(zilog_t *zilog)
1206 {
1207 	lwb_t *lwb;
1208 	zil_vdev_t *zv;
1209 
1210 	zilog->zl_stop_sync = 1;
1211 
1212 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1213 		list_remove(&zilog->zl_lwb_list, lwb);
1214 		if (lwb->lwb_buf != NULL)
1215 			zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1216 		kmem_cache_free(zil_lwb_cache, lwb);
1217 	}
1218 	list_destroy(&zilog->zl_lwb_list);
1219 
1220 	while ((zv = list_head(&zilog->zl_vdev_list)) != NULL) {
1221 		list_remove(&zilog->zl_vdev_list, zv);
1222 		kmem_free(zv, sizeof (zil_vdev_t));
1223 	}
1224 	list_destroy(&zilog->zl_vdev_list);
1225 
1226 	ASSERT(list_head(&zilog->zl_itx_list) == NULL);
1227 	list_destroy(&zilog->zl_itx_list);
1228 	mutex_destroy(&zilog->zl_lock);
1229 
1230 	kmem_free(zilog, sizeof (zilog_t));
1231 }
1232 
1233 /*
1234  * return true if the initial log block is not valid
1235  */
1236 static int
1237 zil_empty(zilog_t *zilog)
1238 {
1239 	const zil_header_t *zh = zilog->zl_header;
1240 	arc_buf_t *abuf = NULL;
1241 
1242 	if (BP_IS_HOLE(&zh->zh_log))
1243 		return (1);
1244 
1245 	if (zil_read_log_block(zilog, &zh->zh_log, &abuf) != 0)
1246 		return (1);
1247 
1248 	VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
1249 	return (0);
1250 }
1251 
1252 /*
1253  * Open an intent log.
1254  */
1255 zilog_t *
1256 zil_open(objset_t *os, zil_get_data_t *get_data)
1257 {
1258 	zilog_t *zilog = dmu_objset_zil(os);
1259 
1260 	zilog->zl_get_data = get_data;
1261 	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1262 	    2, 2, TASKQ_PREPOPULATE);
1263 
1264 	return (zilog);
1265 }
1266 
1267 /*
1268  * Close an intent log.
1269  */
1270 void
1271 zil_close(zilog_t *zilog)
1272 {
1273 	/*
1274 	 * If the log isn't already committed, mark the objset dirty
1275 	 * (so zil_sync() will be called) and wait for that txg to sync.
1276 	 */
1277 	if (!zil_is_committed(zilog)) {
1278 		uint64_t txg;
1279 		dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
1280 		(void) dmu_tx_assign(tx, TXG_WAIT);
1281 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1282 		txg = dmu_tx_get_txg(tx);
1283 		dmu_tx_commit(tx);
1284 		txg_wait_synced(zilog->zl_dmu_pool, txg);
1285 	}
1286 
1287 	taskq_destroy(zilog->zl_clean_taskq);
1288 	zilog->zl_clean_taskq = NULL;
1289 	zilog->zl_get_data = NULL;
1290 
1291 	zil_itx_clean(zilog);
1292 	ASSERT(list_head(&zilog->zl_itx_list) == NULL);
1293 }
1294 
1295 /*
1296  * Suspend an intent log.  While in suspended mode, we still honor
1297  * synchronous semantics, but we rely on txg_wait_synced() to do it.
1298  * We suspend the log briefly when taking a snapshot so that the snapshot
1299  * contains all the data it's supposed to, and has an empty intent log.
1300  */
1301 int
1302 zil_suspend(zilog_t *zilog)
1303 {
1304 	const zil_header_t *zh = zilog->zl_header;
1305 
1306 	mutex_enter(&zilog->zl_lock);
1307 	if (zh->zh_claim_txg != 0) {		/* unplayed log */
1308 		mutex_exit(&zilog->zl_lock);
1309 		return (EBUSY);
1310 	}
1311 	if (zilog->zl_suspend++ != 0) {
1312 		/*
1313 		 * Someone else already began a suspend.
1314 		 * Just wait for them to finish.
1315 		 */
1316 		while (zilog->zl_suspending)
1317 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1318 		ASSERT(BP_IS_HOLE(&zh->zh_log));
1319 		mutex_exit(&zilog->zl_lock);
1320 		return (0);
1321 	}
1322 	zilog->zl_suspending = B_TRUE;
1323 	mutex_exit(&zilog->zl_lock);
1324 
1325 	zil_commit(zilog, UINT64_MAX, 0);
1326 
1327 	/*
1328 	 * Wait for any in-flight log writes to complete.
1329 	 */
1330 	mutex_enter(&zilog->zl_lock);
1331 	while (zilog->zl_writer)
1332 		cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock);
1333 	mutex_exit(&zilog->zl_lock);
1334 
1335 	zil_destroy(zilog, B_FALSE);
1336 
1337 	mutex_enter(&zilog->zl_lock);
1338 	ASSERT(BP_IS_HOLE(&zh->zh_log));
1339 	zilog->zl_suspending = B_FALSE;
1340 	cv_broadcast(&zilog->zl_cv_suspend);
1341 	mutex_exit(&zilog->zl_lock);
1342 
1343 	return (0);
1344 }
1345 
1346 void
1347 zil_resume(zilog_t *zilog)
1348 {
1349 	mutex_enter(&zilog->zl_lock);
1350 	ASSERT(zilog->zl_suspend != 0);
1351 	zilog->zl_suspend--;
1352 	mutex_exit(&zilog->zl_lock);
1353 }
1354 
1355 typedef struct zil_replay_arg {
1356 	objset_t	*zr_os;
1357 	zil_replay_func_t **zr_replay;
1358 	void		*zr_arg;
1359 	uint64_t	*zr_txgp;
1360 	boolean_t	zr_byteswap;
1361 	char		*zr_lrbuf;
1362 } zil_replay_arg_t;
1363 
1364 static void
1365 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
1366 {
1367 	zil_replay_arg_t *zr = zra;
1368 	const zil_header_t *zh = zilog->zl_header;
1369 	uint64_t reclen = lr->lrc_reclen;
1370 	uint64_t txtype = lr->lrc_txtype;
1371 	char *name;
1372 	int pass, error, sunk;
1373 
1374 	if (zilog->zl_stop_replay)
1375 		return;
1376 
1377 	if (lr->lrc_txg < claim_txg)		/* already committed */
1378 		return;
1379 
1380 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
1381 		return;
1382 
1383 	/*
1384 	 * Make a copy of the data so we can revise and extend it.
1385 	 */
1386 	bcopy(lr, zr->zr_lrbuf, reclen);
1387 
1388 	/*
1389 	 * The log block containing this lr may have been byteswapped
1390 	 * so that we can easily examine common fields like lrc_txtype.
1391 	 * However, the log is a mix of different data types, and only the
1392 	 * replay vectors know how to byteswap their records.  Therefore, if
1393 	 * the lr was byteswapped, undo it before invoking the replay vector.
1394 	 */
1395 	if (zr->zr_byteswap)
1396 		byteswap_uint64_array(zr->zr_lrbuf, reclen);
1397 
1398 	/*
1399 	 * If this is a TX_WRITE with a blkptr, suck in the data.
1400 	 */
1401 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
1402 		lr_write_t *lrw = (lr_write_t *)lr;
1403 		blkptr_t *wbp = &lrw->lr_blkptr;
1404 		uint64_t wlen = lrw->lr_length;
1405 		char *wbuf = zr->zr_lrbuf + reclen;
1406 
1407 		if (BP_IS_HOLE(wbp)) {	/* compressed to a hole */
1408 			bzero(wbuf, wlen);
1409 		} else {
1410 			/*
1411 			 * A subsequent write may have overwritten this block,
1412 			 * in which case wbp may have been been freed and
1413 			 * reallocated, and our read of wbp may fail with a
1414 			 * checksum error.  We can safely ignore this because
1415 			 * the later write will provide the correct data.
1416 			 */
1417 			zbookmark_t zb;
1418 
1419 			zb.zb_objset = dmu_objset_id(zilog->zl_os);
1420 			zb.zb_object = lrw->lr_foid;
1421 			zb.zb_level = -1;
1422 			zb.zb_blkid = lrw->lr_offset / BP_GET_LSIZE(wbp);
1423 
1424 			(void) zio_wait(zio_read(NULL, zilog->zl_spa,
1425 			    wbp, wbuf, BP_GET_LSIZE(wbp), NULL, NULL,
1426 			    ZIO_PRIORITY_SYNC_READ,
1427 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &zb));
1428 			(void) memmove(wbuf, wbuf + lrw->lr_blkoff, wlen);
1429 		}
1430 	}
1431 
1432 	/*
1433 	 * We must now do two things atomically: replay this log record,
1434 	 * and update the log header to reflect the fact that we did so.
1435 	 * We use the DMU's ability to assign into a specific txg to do this.
1436 	 */
1437 	for (pass = 1, sunk = B_FALSE; /* CONSTANTCONDITION */; pass++) {
1438 		uint64_t replay_txg;
1439 		dmu_tx_t *replay_tx;
1440 
1441 		replay_tx = dmu_tx_create(zr->zr_os);
1442 		error = dmu_tx_assign(replay_tx, TXG_WAIT);
1443 		if (error) {
1444 			dmu_tx_abort(replay_tx);
1445 			break;
1446 		}
1447 
1448 		replay_txg = dmu_tx_get_txg(replay_tx);
1449 
1450 		if (txtype == 0 || txtype >= TX_MAX_TYPE) {
1451 			error = EINVAL;
1452 		} else {
1453 			/*
1454 			 * On the first pass, arrange for the replay vector
1455 			 * to fail its dmu_tx_assign().  That's the only way
1456 			 * to ensure that those code paths remain well tested.
1457 			 */
1458 			*zr->zr_txgp = replay_txg - (pass == 1);
1459 			error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lrbuf,
1460 			    zr->zr_byteswap);
1461 			*zr->zr_txgp = TXG_NOWAIT;
1462 		}
1463 
1464 		if (error == 0) {
1465 			dsl_dataset_dirty(dmu_objset_ds(zr->zr_os), replay_tx);
1466 			zilog->zl_replay_seq[replay_txg & TXG_MASK] =
1467 			    lr->lrc_seq;
1468 		}
1469 
1470 		dmu_tx_commit(replay_tx);
1471 
1472 		if (!error)
1473 			return;
1474 
1475 		/*
1476 		 * The DMU's dnode layer doesn't see removes until the txg
1477 		 * commits, so a subsequent claim can spuriously fail with
1478 		 * EEXIST. So if we receive any error other than ERESTART
1479 		 * we try syncing out any removes then retrying the
1480 		 * transaction.
1481 		 */
1482 		if (error != ERESTART && !sunk) {
1483 			txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
1484 			sunk = B_TRUE;
1485 			continue; /* retry */
1486 		}
1487 
1488 		if (error != ERESTART)
1489 			break;
1490 
1491 		if (pass != 1)
1492 			txg_wait_open(spa_get_dsl(zilog->zl_spa),
1493 			    replay_txg + 1);
1494 
1495 		dprintf("pass %d, retrying\n", pass);
1496 	}
1497 
1498 	ASSERT(error && error != ERESTART);
1499 	name = kmem_alloc(MAXNAMELEN, KM_SLEEP);
1500 	dmu_objset_name(zr->zr_os, name);
1501 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
1502 	    "dataset %s, seq 0x%llx, txtype %llu\n",
1503 	    error, name, (u_longlong_t)lr->lrc_seq, (u_longlong_t)txtype);
1504 	zilog->zl_stop_replay = 1;
1505 	kmem_free(name, MAXNAMELEN);
1506 }
1507 
1508 /* ARGSUSED */
1509 static void
1510 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
1511 {
1512 	zilog->zl_replay_blks++;
1513 }
1514 
1515 /*
1516  * If this dataset has a non-empty intent log, replay it and destroy it.
1517  */
1518 void
1519 zil_replay(objset_t *os, void *arg, uint64_t *txgp,
1520 	zil_replay_func_t *replay_func[TX_MAX_TYPE])
1521 {
1522 	zilog_t *zilog = dmu_objset_zil(os);
1523 	const zil_header_t *zh = zilog->zl_header;
1524 	zil_replay_arg_t zr;
1525 
1526 	if (zil_empty(zilog)) {
1527 		zil_destroy(zilog, B_TRUE);
1528 		return;
1529 	}
1530 
1531 	zr.zr_os = os;
1532 	zr.zr_replay = replay_func;
1533 	zr.zr_arg = arg;
1534 	zr.zr_txgp = txgp;
1535 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
1536 	zr.zr_lrbuf = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
1537 
1538 	/*
1539 	 * Wait for in-progress removes to sync before starting replay.
1540 	 */
1541 	txg_wait_synced(zilog->zl_dmu_pool, 0);
1542 
1543 	zilog->zl_stop_replay = 0;
1544 	zilog->zl_replay_time = lbolt;
1545 	ASSERT(zilog->zl_replay_blks == 0);
1546 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
1547 	    zh->zh_claim_txg);
1548 	kmem_free(zr.zr_lrbuf, 2 * SPA_MAXBLOCKSIZE);
1549 
1550 	zil_destroy(zilog, B_FALSE);
1551 }
1552 
1553 /*
1554  * Report whether all transactions are committed
1555  */
1556 int
1557 zil_is_committed(zilog_t *zilog)
1558 {
1559 	lwb_t *lwb;
1560 	int ret;
1561 
1562 	mutex_enter(&zilog->zl_lock);
1563 	while (zilog->zl_writer)
1564 		cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock);
1565 
1566 	/* recent unpushed intent log transactions? */
1567 	if (!list_is_empty(&zilog->zl_itx_list)) {
1568 		ret = B_FALSE;
1569 		goto out;
1570 	}
1571 
1572 	/* intent log never used? */
1573 	lwb = list_head(&zilog->zl_lwb_list);
1574 	if (lwb == NULL) {
1575 		ret = B_TRUE;
1576 		goto out;
1577 	}
1578 
1579 	/*
1580 	 * more than 1 log buffer means zil_sync() hasn't yet freed
1581 	 * entries after a txg has committed
1582 	 */
1583 	if (list_next(&zilog->zl_lwb_list, lwb)) {
1584 		ret = B_FALSE;
1585 		goto out;
1586 	}
1587 
1588 	ASSERT(zil_empty(zilog));
1589 	ret = B_TRUE;
1590 out:
1591 	cv_broadcast(&zilog->zl_cv_writer);
1592 	mutex_exit(&zilog->zl_lock);
1593 	return (ret);
1594 }
1595