1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011 by Delphix. All rights reserved. 24 */ 25 26 /* Portions Copyright 2010 Robert Milkowski */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa.h> 30 #include <sys/dmu.h> 31 #include <sys/zap.h> 32 #include <sys/arc.h> 33 #include <sys/stat.h> 34 #include <sys/resource.h> 35 #include <sys/zil.h> 36 #include <sys/zil_impl.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/vdev_impl.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/dsl_pool.h> 41 42 /* 43 * The zfs intent log (ZIL) saves transaction records of system calls 44 * that change the file system in memory with enough information 45 * to be able to replay them. These are stored in memory until 46 * either the DMU transaction group (txg) commits them to the stable pool 47 * and they can be discarded, or they are flushed to the stable log 48 * (also in the pool) due to a fsync, O_DSYNC or other synchronous 49 * requirement. In the event of a panic or power fail then those log 50 * records (transactions) are replayed. 51 * 52 * There is one ZIL per file system. Its on-disk (pool) format consists 53 * of 3 parts: 54 * 55 * - ZIL header 56 * - ZIL blocks 57 * - ZIL records 58 * 59 * A log record holds a system call transaction. Log blocks can 60 * hold many log records and the blocks are chained together. 61 * Each ZIL block contains a block pointer (blkptr_t) to the next 62 * ZIL block in the chain. The ZIL header points to the first 63 * block in the chain. Note there is not a fixed place in the pool 64 * to hold blocks. They are dynamically allocated and freed as 65 * needed from the blocks available. Figure X shows the ZIL structure: 66 */ 67 68 /* 69 * This global ZIL switch affects all pools 70 */ 71 int zil_replay_disable = 0; /* disable intent logging replay */ 72 73 /* 74 * Tunable parameter for debugging or performance analysis. Setting 75 * zfs_nocacheflush will cause corruption on power loss if a volatile 76 * out-of-order write cache is enabled. 77 */ 78 boolean_t zfs_nocacheflush = B_FALSE; 79 80 static kmem_cache_t *zil_lwb_cache; 81 82 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid); 83 84 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \ 85 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused)) 86 87 88 /* 89 * ziltest is by and large an ugly hack, but very useful in 90 * checking replay without tedious work. 91 * When running ziltest we want to keep all itx's and so maintain 92 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG 93 * We subtract TXG_CONCURRENT_STATES to allow for common code. 94 */ 95 #define ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES) 96 97 static int 98 zil_bp_compare(const void *x1, const void *x2) 99 { 100 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 101 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 102 103 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 104 return (-1); 105 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 106 return (1); 107 108 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 109 return (-1); 110 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 111 return (1); 112 113 return (0); 114 } 115 116 static void 117 zil_bp_tree_init(zilog_t *zilog) 118 { 119 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 120 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 121 } 122 123 static void 124 zil_bp_tree_fini(zilog_t *zilog) 125 { 126 avl_tree_t *t = &zilog->zl_bp_tree; 127 zil_bp_node_t *zn; 128 void *cookie = NULL; 129 130 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 131 kmem_free(zn, sizeof (zil_bp_node_t)); 132 133 avl_destroy(t); 134 } 135 136 int 137 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 138 { 139 avl_tree_t *t = &zilog->zl_bp_tree; 140 const dva_t *dva = BP_IDENTITY(bp); 141 zil_bp_node_t *zn; 142 avl_index_t where; 143 144 if (avl_find(t, dva, &where) != NULL) 145 return (EEXIST); 146 147 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 148 zn->zn_dva = *dva; 149 avl_insert(t, zn, where); 150 151 return (0); 152 } 153 154 static zil_header_t * 155 zil_header_in_syncing_context(zilog_t *zilog) 156 { 157 return ((zil_header_t *)zilog->zl_header); 158 } 159 160 static void 161 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 162 { 163 zio_cksum_t *zc = &bp->blk_cksum; 164 165 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 166 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 167 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 168 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 169 } 170 171 /* 172 * Read a log block and make sure it's valid. 173 */ 174 static int 175 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst, 176 char **end) 177 { 178 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 179 uint32_t aflags = ARC_WAIT; 180 arc_buf_t *abuf = NULL; 181 zbookmark_t zb; 182 int error; 183 184 if (zilog->zl_header->zh_claim_txg == 0) 185 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 186 187 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 188 zio_flags |= ZIO_FLAG_SPECULATIVE; 189 190 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 191 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 192 193 error = dsl_read_nolock(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 194 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 195 196 if (error == 0) { 197 zio_cksum_t cksum = bp->blk_cksum; 198 199 /* 200 * Validate the checksummed log block. 201 * 202 * Sequence numbers should be... sequential. The checksum 203 * verifier for the next block should be bp's checksum plus 1. 204 * 205 * Also check the log chain linkage and size used. 206 */ 207 cksum.zc_word[ZIL_ZC_SEQ]++; 208 209 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 210 zil_chain_t *zilc = abuf->b_data; 211 char *lr = (char *)(zilc + 1); 212 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); 213 214 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 215 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { 216 error = ECKSUM; 217 } else { 218 bcopy(lr, dst, len); 219 *end = (char *)dst + len; 220 *nbp = zilc->zc_next_blk; 221 } 222 } else { 223 char *lr = abuf->b_data; 224 uint64_t size = BP_GET_LSIZE(bp); 225 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 226 227 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 228 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || 229 (zilc->zc_nused > (size - sizeof (*zilc)))) { 230 error = ECKSUM; 231 } else { 232 bcopy(lr, dst, zilc->zc_nused); 233 *end = (char *)dst + zilc->zc_nused; 234 *nbp = zilc->zc_next_blk; 235 } 236 } 237 238 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 239 } 240 241 return (error); 242 } 243 244 /* 245 * Read a TX_WRITE log data block. 246 */ 247 static int 248 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 249 { 250 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 251 const blkptr_t *bp = &lr->lr_blkptr; 252 uint32_t aflags = ARC_WAIT; 253 arc_buf_t *abuf = NULL; 254 zbookmark_t zb; 255 int error; 256 257 if (BP_IS_HOLE(bp)) { 258 if (wbuf != NULL) 259 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 260 return (0); 261 } 262 263 if (zilog->zl_header->zh_claim_txg == 0) 264 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 265 266 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 267 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 268 269 error = arc_read_nolock(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 270 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 271 272 if (error == 0) { 273 if (wbuf != NULL) 274 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf)); 275 (void) arc_buf_remove_ref(abuf, &abuf); 276 } 277 278 return (error); 279 } 280 281 /* 282 * Parse the intent log, and call parse_func for each valid record within. 283 */ 284 int 285 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 286 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 287 { 288 const zil_header_t *zh = zilog->zl_header; 289 boolean_t claimed = !!zh->zh_claim_txg; 290 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 291 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 292 uint64_t max_blk_seq = 0; 293 uint64_t max_lr_seq = 0; 294 uint64_t blk_count = 0; 295 uint64_t lr_count = 0; 296 blkptr_t blk, next_blk; 297 char *lrbuf, *lrp; 298 int error = 0; 299 300 /* 301 * Old logs didn't record the maximum zh_claim_lr_seq. 302 */ 303 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 304 claim_lr_seq = UINT64_MAX; 305 306 /* 307 * Starting at the block pointed to by zh_log we read the log chain. 308 * For each block in the chain we strongly check that block to 309 * ensure its validity. We stop when an invalid block is found. 310 * For each block pointer in the chain we call parse_blk_func(). 311 * For each record in each valid block we call parse_lr_func(). 312 * If the log has been claimed, stop if we encounter a sequence 313 * number greater than the highest claimed sequence number. 314 */ 315 lrbuf = zio_buf_alloc(SPA_MAXBLOCKSIZE); 316 zil_bp_tree_init(zilog); 317 318 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 319 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 320 int reclen; 321 char *end; 322 323 if (blk_seq > claim_blk_seq) 324 break; 325 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0) 326 break; 327 ASSERT3U(max_blk_seq, <, blk_seq); 328 max_blk_seq = blk_seq; 329 blk_count++; 330 331 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 332 break; 333 334 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end); 335 if (error) 336 break; 337 338 for (lrp = lrbuf; lrp < end; lrp += reclen) { 339 lr_t *lr = (lr_t *)lrp; 340 reclen = lr->lrc_reclen; 341 ASSERT3U(reclen, >=, sizeof (lr_t)); 342 if (lr->lrc_seq > claim_lr_seq) 343 goto done; 344 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0) 345 goto done; 346 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 347 max_lr_seq = lr->lrc_seq; 348 lr_count++; 349 } 350 } 351 done: 352 zilog->zl_parse_error = error; 353 zilog->zl_parse_blk_seq = max_blk_seq; 354 zilog->zl_parse_lr_seq = max_lr_seq; 355 zilog->zl_parse_blk_count = blk_count; 356 zilog->zl_parse_lr_count = lr_count; 357 358 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) || 359 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq)); 360 361 zil_bp_tree_fini(zilog); 362 zio_buf_free(lrbuf, SPA_MAXBLOCKSIZE); 363 364 return (error); 365 } 366 367 static int 368 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 369 { 370 /* 371 * Claim log block if not already committed and not already claimed. 372 * If tx == NULL, just verify that the block is claimable. 373 */ 374 if (bp->blk_birth < first_txg || zil_bp_tree_add(zilog, bp) != 0) 375 return (0); 376 377 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 378 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 379 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 380 } 381 382 static int 383 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 384 { 385 lr_write_t *lr = (lr_write_t *)lrc; 386 int error; 387 388 if (lrc->lrc_txtype != TX_WRITE) 389 return (0); 390 391 /* 392 * If the block is not readable, don't claim it. This can happen 393 * in normal operation when a log block is written to disk before 394 * some of the dmu_sync() blocks it points to. In this case, the 395 * transaction cannot have been committed to anyone (we would have 396 * waited for all writes to be stable first), so it is semantically 397 * correct to declare this the end of the log. 398 */ 399 if (lr->lr_blkptr.blk_birth >= first_txg && 400 (error = zil_read_log_data(zilog, lr, NULL)) != 0) 401 return (error); 402 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 403 } 404 405 /* ARGSUSED */ 406 static int 407 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 408 { 409 zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 410 411 return (0); 412 } 413 414 static int 415 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 416 { 417 lr_write_t *lr = (lr_write_t *)lrc; 418 blkptr_t *bp = &lr->lr_blkptr; 419 420 /* 421 * If we previously claimed it, we need to free it. 422 */ 423 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE && 424 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0) 425 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 426 427 return (0); 428 } 429 430 static lwb_t * 431 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg) 432 { 433 lwb_t *lwb; 434 435 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 436 lwb->lwb_zilog = zilog; 437 lwb->lwb_blk = *bp; 438 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); 439 lwb->lwb_max_txg = txg; 440 lwb->lwb_zio = NULL; 441 lwb->lwb_tx = NULL; 442 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 443 lwb->lwb_nused = sizeof (zil_chain_t); 444 lwb->lwb_sz = BP_GET_LSIZE(bp); 445 } else { 446 lwb->lwb_nused = 0; 447 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); 448 } 449 450 mutex_enter(&zilog->zl_lock); 451 list_insert_tail(&zilog->zl_lwb_list, lwb); 452 mutex_exit(&zilog->zl_lock); 453 454 return (lwb); 455 } 456 457 /* 458 * Create an on-disk intent log. 459 */ 460 static lwb_t * 461 zil_create(zilog_t *zilog) 462 { 463 const zil_header_t *zh = zilog->zl_header; 464 lwb_t *lwb = NULL; 465 uint64_t txg = 0; 466 dmu_tx_t *tx = NULL; 467 blkptr_t blk; 468 int error = 0; 469 470 /* 471 * Wait for any previous destroy to complete. 472 */ 473 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 474 475 ASSERT(zh->zh_claim_txg == 0); 476 ASSERT(zh->zh_replay_seq == 0); 477 478 blk = zh->zh_log; 479 480 /* 481 * Allocate an initial log block if: 482 * - there isn't one already 483 * - the existing block is the wrong endianess 484 */ 485 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 486 tx = dmu_tx_create(zilog->zl_os); 487 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 488 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 489 txg = dmu_tx_get_txg(tx); 490 491 if (!BP_IS_HOLE(&blk)) { 492 zio_free_zil(zilog->zl_spa, txg, &blk); 493 BP_ZERO(&blk); 494 } 495 496 error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL, 497 ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY); 498 499 if (error == 0) 500 zil_init_log_chain(zilog, &blk); 501 } 502 503 /* 504 * Allocate a log write buffer (lwb) for the first log block. 505 */ 506 if (error == 0) 507 lwb = zil_alloc_lwb(zilog, &blk, txg); 508 509 /* 510 * If we just allocated the first log block, commit our transaction 511 * and wait for zil_sync() to stuff the block poiner into zh_log. 512 * (zh is part of the MOS, so we cannot modify it in open context.) 513 */ 514 if (tx != NULL) { 515 dmu_tx_commit(tx); 516 txg_wait_synced(zilog->zl_dmu_pool, txg); 517 } 518 519 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 520 521 return (lwb); 522 } 523 524 /* 525 * In one tx, free all log blocks and clear the log header. 526 * If keep_first is set, then we're replaying a log with no content. 527 * We want to keep the first block, however, so that the first 528 * synchronous transaction doesn't require a txg_wait_synced() 529 * in zil_create(). We don't need to txg_wait_synced() here either 530 * when keep_first is set, because both zil_create() and zil_destroy() 531 * will wait for any in-progress destroys to complete. 532 */ 533 void 534 zil_destroy(zilog_t *zilog, boolean_t keep_first) 535 { 536 const zil_header_t *zh = zilog->zl_header; 537 lwb_t *lwb; 538 dmu_tx_t *tx; 539 uint64_t txg; 540 541 /* 542 * Wait for any previous destroy to complete. 543 */ 544 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 545 546 zilog->zl_old_header = *zh; /* debugging aid */ 547 548 if (BP_IS_HOLE(&zh->zh_log)) 549 return; 550 551 tx = dmu_tx_create(zilog->zl_os); 552 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 553 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 554 txg = dmu_tx_get_txg(tx); 555 556 mutex_enter(&zilog->zl_lock); 557 558 ASSERT3U(zilog->zl_destroy_txg, <, txg); 559 zilog->zl_destroy_txg = txg; 560 zilog->zl_keep_first = keep_first; 561 562 if (!list_is_empty(&zilog->zl_lwb_list)) { 563 ASSERT(zh->zh_claim_txg == 0); 564 VERIFY(!keep_first); 565 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 566 list_remove(&zilog->zl_lwb_list, lwb); 567 if (lwb->lwb_buf != NULL) 568 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 569 zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk); 570 kmem_cache_free(zil_lwb_cache, lwb); 571 } 572 } else if (!keep_first) { 573 (void) zil_parse(zilog, zil_free_log_block, 574 zil_free_log_record, tx, zh->zh_claim_txg); 575 } 576 mutex_exit(&zilog->zl_lock); 577 578 dmu_tx_commit(tx); 579 } 580 581 int 582 zil_claim(const char *osname, void *txarg) 583 { 584 dmu_tx_t *tx = txarg; 585 uint64_t first_txg = dmu_tx_get_txg(tx); 586 zilog_t *zilog; 587 zil_header_t *zh; 588 objset_t *os; 589 int error; 590 591 error = dmu_objset_hold(osname, FTAG, &os); 592 if (error) { 593 cmn_err(CE_WARN, "can't open objset for %s", osname); 594 return (0); 595 } 596 597 zilog = dmu_objset_zil(os); 598 zh = zil_header_in_syncing_context(zilog); 599 600 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) { 601 if (!BP_IS_HOLE(&zh->zh_log)) 602 zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log); 603 BP_ZERO(&zh->zh_log); 604 dsl_dataset_dirty(dmu_objset_ds(os), tx); 605 dmu_objset_rele(os, FTAG); 606 return (0); 607 } 608 609 /* 610 * Claim all log blocks if we haven't already done so, and remember 611 * the highest claimed sequence number. This ensures that if we can 612 * read only part of the log now (e.g. due to a missing device), 613 * but we can read the entire log later, we will not try to replay 614 * or destroy beyond the last block we successfully claimed. 615 */ 616 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 617 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 618 (void) zil_parse(zilog, zil_claim_log_block, 619 zil_claim_log_record, tx, first_txg); 620 zh->zh_claim_txg = first_txg; 621 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 622 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 623 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 624 zh->zh_flags |= ZIL_REPLAY_NEEDED; 625 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 626 dsl_dataset_dirty(dmu_objset_ds(os), tx); 627 } 628 629 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 630 dmu_objset_rele(os, FTAG); 631 return (0); 632 } 633 634 /* 635 * Check the log by walking the log chain. 636 * Checksum errors are ok as they indicate the end of the chain. 637 * Any other error (no device or read failure) returns an error. 638 */ 639 int 640 zil_check_log_chain(const char *osname, void *tx) 641 { 642 zilog_t *zilog; 643 objset_t *os; 644 blkptr_t *bp; 645 int error; 646 647 ASSERT(tx == NULL); 648 649 error = dmu_objset_hold(osname, FTAG, &os); 650 if (error) { 651 cmn_err(CE_WARN, "can't open objset for %s", osname); 652 return (0); 653 } 654 655 zilog = dmu_objset_zil(os); 656 bp = (blkptr_t *)&zilog->zl_header->zh_log; 657 658 /* 659 * Check the first block and determine if it's on a log device 660 * which may have been removed or faulted prior to loading this 661 * pool. If so, there's no point in checking the rest of the log 662 * as its content should have already been synced to the pool. 663 */ 664 if (!BP_IS_HOLE(bp)) { 665 vdev_t *vd; 666 boolean_t valid = B_TRUE; 667 668 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); 669 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); 670 if (vd->vdev_islog && vdev_is_dead(vd)) 671 valid = vdev_log_state_valid(vd); 672 spa_config_exit(os->os_spa, SCL_STATE, FTAG); 673 674 if (!valid) { 675 dmu_objset_rele(os, FTAG); 676 return (0); 677 } 678 } 679 680 /* 681 * Because tx == NULL, zil_claim_log_block() will not actually claim 682 * any blocks, but just determine whether it is possible to do so. 683 * In addition to checking the log chain, zil_claim_log_block() 684 * will invoke zio_claim() with a done func of spa_claim_notify(), 685 * which will update spa_max_claim_txg. See spa_load() for details. 686 */ 687 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 688 zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa)); 689 690 dmu_objset_rele(os, FTAG); 691 692 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 693 } 694 695 static int 696 zil_vdev_compare(const void *x1, const void *x2) 697 { 698 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 699 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 700 701 if (v1 < v2) 702 return (-1); 703 if (v1 > v2) 704 return (1); 705 706 return (0); 707 } 708 709 void 710 zil_add_block(zilog_t *zilog, const blkptr_t *bp) 711 { 712 avl_tree_t *t = &zilog->zl_vdev_tree; 713 avl_index_t where; 714 zil_vdev_node_t *zv, zvsearch; 715 int ndvas = BP_GET_NDVAS(bp); 716 int i; 717 718 if (zfs_nocacheflush) 719 return; 720 721 ASSERT(zilog->zl_writer); 722 723 /* 724 * Even though we're zl_writer, we still need a lock because the 725 * zl_get_data() callbacks may have dmu_sync() done callbacks 726 * that will run concurrently. 727 */ 728 mutex_enter(&zilog->zl_vdev_lock); 729 for (i = 0; i < ndvas; i++) { 730 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 731 if (avl_find(t, &zvsearch, &where) == NULL) { 732 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 733 zv->zv_vdev = zvsearch.zv_vdev; 734 avl_insert(t, zv, where); 735 } 736 } 737 mutex_exit(&zilog->zl_vdev_lock); 738 } 739 740 static void 741 zil_flush_vdevs(zilog_t *zilog) 742 { 743 spa_t *spa = zilog->zl_spa; 744 avl_tree_t *t = &zilog->zl_vdev_tree; 745 void *cookie = NULL; 746 zil_vdev_node_t *zv; 747 zio_t *zio; 748 749 ASSERT(zilog->zl_writer); 750 751 /* 752 * We don't need zl_vdev_lock here because we're the zl_writer, 753 * and all zl_get_data() callbacks are done. 754 */ 755 if (avl_numnodes(t) == 0) 756 return; 757 758 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 759 760 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 761 762 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 763 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 764 if (vd != NULL) 765 zio_flush(zio, vd); 766 kmem_free(zv, sizeof (*zv)); 767 } 768 769 /* 770 * Wait for all the flushes to complete. Not all devices actually 771 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. 772 */ 773 (void) zio_wait(zio); 774 775 spa_config_exit(spa, SCL_STATE, FTAG); 776 } 777 778 /* 779 * Function called when a log block write completes 780 */ 781 static void 782 zil_lwb_write_done(zio_t *zio) 783 { 784 lwb_t *lwb = zio->io_private; 785 zilog_t *zilog = lwb->lwb_zilog; 786 dmu_tx_t *tx = lwb->lwb_tx; 787 788 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 789 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 790 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 791 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 792 ASSERT(!BP_IS_GANG(zio->io_bp)); 793 ASSERT(!BP_IS_HOLE(zio->io_bp)); 794 ASSERT(zio->io_bp->blk_fill == 0); 795 796 /* 797 * Ensure the lwb buffer pointer is cleared before releasing 798 * the txg. If we have had an allocation failure and 799 * the txg is waiting to sync then we want want zil_sync() 800 * to remove the lwb so that it's not picked up as the next new 801 * one in zil_commit_writer(). zil_sync() will only remove 802 * the lwb if lwb_buf is null. 803 */ 804 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 805 mutex_enter(&zilog->zl_lock); 806 lwb->lwb_buf = NULL; 807 lwb->lwb_tx = NULL; 808 mutex_exit(&zilog->zl_lock); 809 810 /* 811 * Now that we've written this log block, we have a stable pointer 812 * to the next block in the chain, so it's OK to let the txg in 813 * which we allocated the next block sync. 814 */ 815 dmu_tx_commit(tx); 816 } 817 818 /* 819 * Initialize the io for a log block. 820 */ 821 static void 822 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) 823 { 824 zbookmark_t zb; 825 826 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 827 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 828 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 829 830 if (zilog->zl_root_zio == NULL) { 831 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL, 832 ZIO_FLAG_CANFAIL); 833 } 834 if (lwb->lwb_zio == NULL) { 835 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa, 836 0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk), 837 zil_lwb_write_done, lwb, ZIO_PRIORITY_LOG_WRITE, 838 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb); 839 } 840 } 841 842 /* 843 * Define a limited set of intent log block sizes. 844 * These must be a multiple of 4KB. Note only the amount used (again 845 * aligned to 4KB) actually gets written. However, we can't always just 846 * allocate SPA_MAXBLOCKSIZE as the slog space could be exhausted. 847 */ 848 uint64_t zil_block_buckets[] = { 849 4096, /* non TX_WRITE */ 850 8192+4096, /* data base */ 851 32*1024 + 4096, /* NFS writes */ 852 UINT64_MAX 853 }; 854 855 /* 856 * Use the slog as long as the logbias is 'latency' and the current commit size 857 * is less than the limit or the total list size is less than 2X the limit. 858 * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX. 859 */ 860 uint64_t zil_slog_limit = 1024 * 1024; 861 #define USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \ 862 (((zilog)->zl_cur_used < zil_slog_limit) || \ 863 ((zilog)->zl_itx_list_sz < (zil_slog_limit << 1)))) 864 865 /* 866 * Start a log block write and advance to the next log block. 867 * Calls are serialized. 868 */ 869 static lwb_t * 870 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) 871 { 872 lwb_t *nlwb = NULL; 873 zil_chain_t *zilc; 874 spa_t *spa = zilog->zl_spa; 875 blkptr_t *bp; 876 dmu_tx_t *tx; 877 uint64_t txg; 878 uint64_t zil_blksz, wsz; 879 int i, error; 880 881 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 882 zilc = (zil_chain_t *)lwb->lwb_buf; 883 bp = &zilc->zc_next_blk; 884 } else { 885 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); 886 bp = &zilc->zc_next_blk; 887 } 888 889 ASSERT(lwb->lwb_nused <= lwb->lwb_sz); 890 891 /* 892 * Allocate the next block and save its address in this block 893 * before writing it in order to establish the log chain. 894 * Note that if the allocation of nlwb synced before we wrote 895 * the block that points at it (lwb), we'd leak it if we crashed. 896 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done(). 897 * We dirty the dataset to ensure that zil_sync() will be called 898 * to clean up in the event of allocation failure or I/O failure. 899 */ 900 tx = dmu_tx_create(zilog->zl_os); 901 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 902 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 903 txg = dmu_tx_get_txg(tx); 904 905 lwb->lwb_tx = tx; 906 907 /* 908 * Log blocks are pre-allocated. Here we select the size of the next 909 * block, based on size used in the last block. 910 * - first find the smallest bucket that will fit the block from a 911 * limited set of block sizes. This is because it's faster to write 912 * blocks allocated from the same metaslab as they are adjacent or 913 * close. 914 * - next find the maximum from the new suggested size and an array of 915 * previous sizes. This lessens a picket fence effect of wrongly 916 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k 917 * requests. 918 * 919 * Note we only write what is used, but we can't just allocate 920 * the maximum block size because we can exhaust the available 921 * pool log space. 922 */ 923 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); 924 for (i = 0; zil_blksz > zil_block_buckets[i]; i++) 925 continue; 926 zil_blksz = zil_block_buckets[i]; 927 if (zil_blksz == UINT64_MAX) 928 zil_blksz = SPA_MAXBLOCKSIZE; 929 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; 930 for (i = 0; i < ZIL_PREV_BLKS; i++) 931 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); 932 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); 933 934 BP_ZERO(bp); 935 /* pass the old blkptr in order to spread log blocks across devs */ 936 error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, 937 USE_SLOG(zilog)); 938 if (!error) { 939 ASSERT3U(bp->blk_birth, ==, txg); 940 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 941 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 942 943 /* 944 * Allocate a new log write buffer (lwb). 945 */ 946 nlwb = zil_alloc_lwb(zilog, bp, txg); 947 948 /* Record the block for later vdev flushing */ 949 zil_add_block(zilog, &lwb->lwb_blk); 950 } 951 952 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 953 /* For Slim ZIL only write what is used. */ 954 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t); 955 ASSERT3U(wsz, <=, lwb->lwb_sz); 956 zio_shrink(lwb->lwb_zio, wsz); 957 958 } else { 959 wsz = lwb->lwb_sz; 960 } 961 962 zilc->zc_pad = 0; 963 zilc->zc_nused = lwb->lwb_nused; 964 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 965 966 /* 967 * clear unused data for security 968 */ 969 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused); 970 971 zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */ 972 973 /* 974 * If there was an allocation failure then nlwb will be null which 975 * forces a txg_wait_synced(). 976 */ 977 return (nlwb); 978 } 979 980 static lwb_t * 981 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 982 { 983 lr_t *lrc = &itx->itx_lr; /* common log record */ 984 lr_write_t *lrw = (lr_write_t *)lrc; 985 char *lr_buf; 986 uint64_t txg = lrc->lrc_txg; 987 uint64_t reclen = lrc->lrc_reclen; 988 uint64_t dlen = 0; 989 990 if (lwb == NULL) 991 return (NULL); 992 993 ASSERT(lwb->lwb_buf != NULL); 994 995 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) 996 dlen = P2ROUNDUP_TYPED( 997 lrw->lr_length, sizeof (uint64_t), uint64_t); 998 999 zilog->zl_cur_used += (reclen + dlen); 1000 1001 zil_lwb_write_init(zilog, lwb); 1002 1003 /* 1004 * If this record won't fit in the current log block, start a new one. 1005 */ 1006 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) { 1007 lwb = zil_lwb_write_start(zilog, lwb); 1008 if (lwb == NULL) 1009 return (NULL); 1010 zil_lwb_write_init(zilog, lwb); 1011 ASSERT(LWB_EMPTY(lwb)); 1012 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) { 1013 txg_wait_synced(zilog->zl_dmu_pool, txg); 1014 return (lwb); 1015 } 1016 } 1017 1018 lr_buf = lwb->lwb_buf + lwb->lwb_nused; 1019 bcopy(lrc, lr_buf, reclen); 1020 lrc = (lr_t *)lr_buf; 1021 lrw = (lr_write_t *)lrc; 1022 1023 /* 1024 * If it's a write, fetch the data or get its blkptr as appropriate. 1025 */ 1026 if (lrc->lrc_txtype == TX_WRITE) { 1027 if (txg > spa_freeze_txg(zilog->zl_spa)) 1028 txg_wait_synced(zilog->zl_dmu_pool, txg); 1029 if (itx->itx_wr_state != WR_COPIED) { 1030 char *dbuf; 1031 int error; 1032 1033 if (dlen) { 1034 ASSERT(itx->itx_wr_state == WR_NEED_COPY); 1035 dbuf = lr_buf + reclen; 1036 lrw->lr_common.lrc_reclen += dlen; 1037 } else { 1038 ASSERT(itx->itx_wr_state == WR_INDIRECT); 1039 dbuf = NULL; 1040 } 1041 error = zilog->zl_get_data( 1042 itx->itx_private, lrw, dbuf, lwb->lwb_zio); 1043 if (error == EIO) { 1044 txg_wait_synced(zilog->zl_dmu_pool, txg); 1045 return (lwb); 1046 } 1047 if (error) { 1048 ASSERT(error == ENOENT || error == EEXIST || 1049 error == EALREADY); 1050 return (lwb); 1051 } 1052 } 1053 } 1054 1055 /* 1056 * We're actually making an entry, so update lrc_seq to be the 1057 * log record sequence number. Note that this is generally not 1058 * equal to the itx sequence number because not all transactions 1059 * are synchronous, and sometimes spa_sync() gets there first. 1060 */ 1061 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */ 1062 lwb->lwb_nused += reclen + dlen; 1063 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1064 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); 1065 ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0); 1066 1067 return (lwb); 1068 } 1069 1070 itx_t * 1071 zil_itx_create(uint64_t txtype, size_t lrsize) 1072 { 1073 itx_t *itx; 1074 1075 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 1076 1077 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 1078 itx->itx_lr.lrc_txtype = txtype; 1079 itx->itx_lr.lrc_reclen = lrsize; 1080 itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */ 1081 itx->itx_lr.lrc_seq = 0; /* defensive */ 1082 itx->itx_sync = B_TRUE; /* default is synchronous */ 1083 1084 return (itx); 1085 } 1086 1087 void 1088 zil_itx_destroy(itx_t *itx) 1089 { 1090 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); 1091 } 1092 1093 /* 1094 * Free up the sync and async itxs. The itxs_t has already been detached 1095 * so no locks are needed. 1096 */ 1097 static void 1098 zil_itxg_clean(itxs_t *itxs) 1099 { 1100 itx_t *itx; 1101 list_t *list; 1102 avl_tree_t *t; 1103 void *cookie; 1104 itx_async_node_t *ian; 1105 1106 list = &itxs->i_sync_list; 1107 while ((itx = list_head(list)) != NULL) { 1108 list_remove(list, itx); 1109 kmem_free(itx, offsetof(itx_t, itx_lr) + 1110 itx->itx_lr.lrc_reclen); 1111 } 1112 1113 cookie = NULL; 1114 t = &itxs->i_async_tree; 1115 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1116 list = &ian->ia_list; 1117 while ((itx = list_head(list)) != NULL) { 1118 list_remove(list, itx); 1119 kmem_free(itx, offsetof(itx_t, itx_lr) + 1120 itx->itx_lr.lrc_reclen); 1121 } 1122 list_destroy(list); 1123 kmem_free(ian, sizeof (itx_async_node_t)); 1124 } 1125 avl_destroy(t); 1126 1127 kmem_free(itxs, sizeof (itxs_t)); 1128 } 1129 1130 static int 1131 zil_aitx_compare(const void *x1, const void *x2) 1132 { 1133 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 1134 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 1135 1136 if (o1 < o2) 1137 return (-1); 1138 if (o1 > o2) 1139 return (1); 1140 1141 return (0); 1142 } 1143 1144 /* 1145 * Remove all async itx with the given oid. 1146 */ 1147 static void 1148 zil_remove_async(zilog_t *zilog, uint64_t oid) 1149 { 1150 uint64_t otxg, txg; 1151 itx_async_node_t *ian; 1152 avl_tree_t *t; 1153 avl_index_t where; 1154 list_t clean_list; 1155 itx_t *itx; 1156 1157 ASSERT(oid != 0); 1158 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 1159 1160 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1161 otxg = ZILTEST_TXG; 1162 else 1163 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1164 1165 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1166 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1167 1168 mutex_enter(&itxg->itxg_lock); 1169 if (itxg->itxg_txg != txg) { 1170 mutex_exit(&itxg->itxg_lock); 1171 continue; 1172 } 1173 1174 /* 1175 * Locate the object node and append its list. 1176 */ 1177 t = &itxg->itxg_itxs->i_async_tree; 1178 ian = avl_find(t, &oid, &where); 1179 if (ian != NULL) 1180 list_move_tail(&clean_list, &ian->ia_list); 1181 mutex_exit(&itxg->itxg_lock); 1182 } 1183 while ((itx = list_head(&clean_list)) != NULL) { 1184 list_remove(&clean_list, itx); 1185 kmem_free(itx, offsetof(itx_t, itx_lr) + 1186 itx->itx_lr.lrc_reclen); 1187 } 1188 list_destroy(&clean_list); 1189 } 1190 1191 void 1192 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 1193 { 1194 uint64_t txg; 1195 itxg_t *itxg; 1196 itxs_t *itxs, *clean = NULL; 1197 1198 /* 1199 * Object ids can be re-instantiated in the next txg so 1200 * remove any async transactions to avoid future leaks. 1201 * This can happen if a fsync occurs on the re-instantiated 1202 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets 1203 * the new file data and flushes a write record for the old object. 1204 */ 1205 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE) 1206 zil_remove_async(zilog, itx->itx_oid); 1207 1208 /* 1209 * Ensure the data of a renamed file is committed before the rename. 1210 */ 1211 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 1212 zil_async_to_sync(zilog, itx->itx_oid); 1213 1214 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 1215 txg = ZILTEST_TXG; 1216 else 1217 txg = dmu_tx_get_txg(tx); 1218 1219 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1220 mutex_enter(&itxg->itxg_lock); 1221 itxs = itxg->itxg_itxs; 1222 if (itxg->itxg_txg != txg) { 1223 if (itxs != NULL) { 1224 /* 1225 * The zil_clean callback hasn't got around to cleaning 1226 * this itxg. Save the itxs for release below. 1227 * This should be rare. 1228 */ 1229 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod); 1230 itxg->itxg_sod = 0; 1231 clean = itxg->itxg_itxs; 1232 } 1233 ASSERT(itxg->itxg_sod == 0); 1234 itxg->itxg_txg = txg; 1235 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP); 1236 1237 list_create(&itxs->i_sync_list, sizeof (itx_t), 1238 offsetof(itx_t, itx_node)); 1239 avl_create(&itxs->i_async_tree, zil_aitx_compare, 1240 sizeof (itx_async_node_t), 1241 offsetof(itx_async_node_t, ia_node)); 1242 } 1243 if (itx->itx_sync) { 1244 list_insert_tail(&itxs->i_sync_list, itx); 1245 atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod); 1246 itxg->itxg_sod += itx->itx_sod; 1247 } else { 1248 avl_tree_t *t = &itxs->i_async_tree; 1249 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid; 1250 itx_async_node_t *ian; 1251 avl_index_t where; 1252 1253 ian = avl_find(t, &foid, &where); 1254 if (ian == NULL) { 1255 ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP); 1256 list_create(&ian->ia_list, sizeof (itx_t), 1257 offsetof(itx_t, itx_node)); 1258 ian->ia_foid = foid; 1259 avl_insert(t, ian, where); 1260 } 1261 list_insert_tail(&ian->ia_list, itx); 1262 } 1263 1264 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 1265 mutex_exit(&itxg->itxg_lock); 1266 1267 /* Release the old itxs now we've dropped the lock */ 1268 if (clean != NULL) 1269 zil_itxg_clean(clean); 1270 } 1271 1272 /* 1273 * If there are any in-memory intent log transactions which have now been 1274 * synced then start up a taskq to free them. 1275 */ 1276 void 1277 zil_clean(zilog_t *zilog, uint64_t synced_txg) 1278 { 1279 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 1280 itxs_t *clean_me; 1281 1282 mutex_enter(&itxg->itxg_lock); 1283 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 1284 mutex_exit(&itxg->itxg_lock); 1285 return; 1286 } 1287 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 1288 ASSERT(itxg->itxg_txg != 0); 1289 ASSERT(zilog->zl_clean_taskq != NULL); 1290 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod); 1291 itxg->itxg_sod = 0; 1292 clean_me = itxg->itxg_itxs; 1293 itxg->itxg_itxs = NULL; 1294 itxg->itxg_txg = 0; 1295 mutex_exit(&itxg->itxg_lock); 1296 /* 1297 * Preferably start a task queue to free up the old itxs but 1298 * if taskq_dispatch can't allocate resources to do that then 1299 * free it in-line. This should be rare. Note, using TQ_SLEEP 1300 * created a bad performance problem. 1301 */ 1302 if (taskq_dispatch(zilog->zl_clean_taskq, 1303 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL) 1304 zil_itxg_clean(clean_me); 1305 } 1306 1307 /* 1308 * Get the list of itxs to commit into zl_itx_commit_list. 1309 */ 1310 static void 1311 zil_get_commit_list(zilog_t *zilog) 1312 { 1313 uint64_t otxg, txg; 1314 list_t *commit_list = &zilog->zl_itx_commit_list; 1315 uint64_t push_sod = 0; 1316 1317 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1318 otxg = ZILTEST_TXG; 1319 else 1320 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1321 1322 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1323 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1324 1325 mutex_enter(&itxg->itxg_lock); 1326 if (itxg->itxg_txg != txg) { 1327 mutex_exit(&itxg->itxg_lock); 1328 continue; 1329 } 1330 1331 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); 1332 push_sod += itxg->itxg_sod; 1333 itxg->itxg_sod = 0; 1334 1335 mutex_exit(&itxg->itxg_lock); 1336 } 1337 atomic_add_64(&zilog->zl_itx_list_sz, -push_sod); 1338 } 1339 1340 /* 1341 * Move the async itxs for a specified object to commit into sync lists. 1342 */ 1343 static void 1344 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 1345 { 1346 uint64_t otxg, txg; 1347 itx_async_node_t *ian; 1348 avl_tree_t *t; 1349 avl_index_t where; 1350 1351 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1352 otxg = ZILTEST_TXG; 1353 else 1354 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1355 1356 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1357 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1358 1359 mutex_enter(&itxg->itxg_lock); 1360 if (itxg->itxg_txg != txg) { 1361 mutex_exit(&itxg->itxg_lock); 1362 continue; 1363 } 1364 1365 /* 1366 * If a foid is specified then find that node and append its 1367 * list. Otherwise walk the tree appending all the lists 1368 * to the sync list. We add to the end rather than the 1369 * beginning to ensure the create has happened. 1370 */ 1371 t = &itxg->itxg_itxs->i_async_tree; 1372 if (foid != 0) { 1373 ian = avl_find(t, &foid, &where); 1374 if (ian != NULL) { 1375 list_move_tail(&itxg->itxg_itxs->i_sync_list, 1376 &ian->ia_list); 1377 } 1378 } else { 1379 void *cookie = NULL; 1380 1381 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1382 list_move_tail(&itxg->itxg_itxs->i_sync_list, 1383 &ian->ia_list); 1384 list_destroy(&ian->ia_list); 1385 kmem_free(ian, sizeof (itx_async_node_t)); 1386 } 1387 } 1388 mutex_exit(&itxg->itxg_lock); 1389 } 1390 } 1391 1392 static void 1393 zil_commit_writer(zilog_t *zilog) 1394 { 1395 uint64_t txg; 1396 itx_t *itx; 1397 lwb_t *lwb; 1398 spa_t *spa = zilog->zl_spa; 1399 int error = 0; 1400 1401 ASSERT(zilog->zl_root_zio == NULL); 1402 1403 mutex_exit(&zilog->zl_lock); 1404 1405 zil_get_commit_list(zilog); 1406 1407 /* 1408 * Return if there's nothing to commit before we dirty the fs by 1409 * calling zil_create(). 1410 */ 1411 if (list_head(&zilog->zl_itx_commit_list) == NULL) { 1412 mutex_enter(&zilog->zl_lock); 1413 return; 1414 } 1415 1416 if (zilog->zl_suspend) { 1417 lwb = NULL; 1418 } else { 1419 lwb = list_tail(&zilog->zl_lwb_list); 1420 if (lwb == NULL) 1421 lwb = zil_create(zilog); 1422 } 1423 1424 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog); 1425 while (itx = list_head(&zilog->zl_itx_commit_list)) { 1426 txg = itx->itx_lr.lrc_txg; 1427 ASSERT(txg); 1428 1429 if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa)) 1430 lwb = zil_lwb_commit(zilog, itx, lwb); 1431 list_remove(&zilog->zl_itx_commit_list, itx); 1432 kmem_free(itx, offsetof(itx_t, itx_lr) 1433 + itx->itx_lr.lrc_reclen); 1434 } 1435 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog); 1436 1437 /* write the last block out */ 1438 if (lwb != NULL && lwb->lwb_zio != NULL) 1439 lwb = zil_lwb_write_start(zilog, lwb); 1440 1441 zilog->zl_cur_used = 0; 1442 1443 /* 1444 * Wait if necessary for the log blocks to be on stable storage. 1445 */ 1446 if (zilog->zl_root_zio) { 1447 error = zio_wait(zilog->zl_root_zio); 1448 zilog->zl_root_zio = NULL; 1449 zil_flush_vdevs(zilog); 1450 } 1451 1452 if (error || lwb == NULL) 1453 txg_wait_synced(zilog->zl_dmu_pool, 0); 1454 1455 mutex_enter(&zilog->zl_lock); 1456 1457 /* 1458 * Remember the highest committed log sequence number for ztest. 1459 * We only update this value when all the log writes succeeded, 1460 * because ztest wants to ASSERT that it got the whole log chain. 1461 */ 1462 if (error == 0 && lwb != NULL) 1463 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1464 } 1465 1466 /* 1467 * Commit zfs transactions to stable storage. 1468 * If foid is 0 push out all transactions, otherwise push only those 1469 * for that object or might reference that object. 1470 * 1471 * itxs are committed in batches. In a heavily stressed zil there will be 1472 * a commit writer thread who is writing out a bunch of itxs to the log 1473 * for a set of committing threads (cthreads) in the same batch as the writer. 1474 * Those cthreads are all waiting on the same cv for that batch. 1475 * 1476 * There will also be a different and growing batch of threads that are 1477 * waiting to commit (qthreads). When the committing batch completes 1478 * a transition occurs such that the cthreads exit and the qthreads become 1479 * cthreads. One of the new cthreads becomes the writer thread for the 1480 * batch. Any new threads arriving become new qthreads. 1481 * 1482 * Only 2 condition variables are needed and there's no transition 1483 * between the two cvs needed. They just flip-flop between qthreads 1484 * and cthreads. 1485 * 1486 * Using this scheme we can efficiently wakeup up only those threads 1487 * that have been committed. 1488 */ 1489 void 1490 zil_commit(zilog_t *zilog, uint64_t foid) 1491 { 1492 uint64_t mybatch; 1493 1494 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 1495 return; 1496 1497 /* move the async itxs for the foid to the sync queues */ 1498 zil_async_to_sync(zilog, foid); 1499 1500 mutex_enter(&zilog->zl_lock); 1501 mybatch = zilog->zl_next_batch; 1502 while (zilog->zl_writer) { 1503 cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock); 1504 if (mybatch <= zilog->zl_com_batch) { 1505 mutex_exit(&zilog->zl_lock); 1506 return; 1507 } 1508 } 1509 1510 zilog->zl_next_batch++; 1511 zilog->zl_writer = B_TRUE; 1512 zil_commit_writer(zilog); 1513 zilog->zl_com_batch = mybatch; 1514 zilog->zl_writer = B_FALSE; 1515 mutex_exit(&zilog->zl_lock); 1516 1517 /* wake up one thread to become the next writer */ 1518 cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]); 1519 1520 /* wake up all threads waiting for this batch to be committed */ 1521 cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]); 1522 } 1523 1524 /* 1525 * Called in syncing context to free committed log blocks and update log header. 1526 */ 1527 void 1528 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 1529 { 1530 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1531 uint64_t txg = dmu_tx_get_txg(tx); 1532 spa_t *spa = zilog->zl_spa; 1533 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 1534 lwb_t *lwb; 1535 1536 /* 1537 * We don't zero out zl_destroy_txg, so make sure we don't try 1538 * to destroy it twice. 1539 */ 1540 if (spa_sync_pass(spa) != 1) 1541 return; 1542 1543 mutex_enter(&zilog->zl_lock); 1544 1545 ASSERT(zilog->zl_stop_sync == 0); 1546 1547 if (*replayed_seq != 0) { 1548 ASSERT(zh->zh_replay_seq < *replayed_seq); 1549 zh->zh_replay_seq = *replayed_seq; 1550 *replayed_seq = 0; 1551 } 1552 1553 if (zilog->zl_destroy_txg == txg) { 1554 blkptr_t blk = zh->zh_log; 1555 1556 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 1557 1558 bzero(zh, sizeof (zil_header_t)); 1559 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); 1560 1561 if (zilog->zl_keep_first) { 1562 /* 1563 * If this block was part of log chain that couldn't 1564 * be claimed because a device was missing during 1565 * zil_claim(), but that device later returns, 1566 * then this block could erroneously appear valid. 1567 * To guard against this, assign a new GUID to the new 1568 * log chain so it doesn't matter what blk points to. 1569 */ 1570 zil_init_log_chain(zilog, &blk); 1571 zh->zh_log = blk; 1572 } 1573 } 1574 1575 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1576 zh->zh_log = lwb->lwb_blk; 1577 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 1578 break; 1579 list_remove(&zilog->zl_lwb_list, lwb); 1580 zio_free_zil(spa, txg, &lwb->lwb_blk); 1581 kmem_cache_free(zil_lwb_cache, lwb); 1582 1583 /* 1584 * If we don't have anything left in the lwb list then 1585 * we've had an allocation failure and we need to zero 1586 * out the zil_header blkptr so that we don't end 1587 * up freeing the same block twice. 1588 */ 1589 if (list_head(&zilog->zl_lwb_list) == NULL) 1590 BP_ZERO(&zh->zh_log); 1591 } 1592 mutex_exit(&zilog->zl_lock); 1593 } 1594 1595 void 1596 zil_init(void) 1597 { 1598 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 1599 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0); 1600 } 1601 1602 void 1603 zil_fini(void) 1604 { 1605 kmem_cache_destroy(zil_lwb_cache); 1606 } 1607 1608 void 1609 zil_set_sync(zilog_t *zilog, uint64_t sync) 1610 { 1611 zilog->zl_sync = sync; 1612 } 1613 1614 void 1615 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 1616 { 1617 zilog->zl_logbias = logbias; 1618 } 1619 1620 zilog_t * 1621 zil_alloc(objset_t *os, zil_header_t *zh_phys) 1622 { 1623 zilog_t *zilog; 1624 1625 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 1626 1627 zilog->zl_header = zh_phys; 1628 zilog->zl_os = os; 1629 zilog->zl_spa = dmu_objset_spa(os); 1630 zilog->zl_dmu_pool = dmu_objset_pool(os); 1631 zilog->zl_destroy_txg = TXG_INITIAL - 1; 1632 zilog->zl_logbias = dmu_objset_logbias(os); 1633 zilog->zl_sync = dmu_objset_syncprop(os); 1634 zilog->zl_next_batch = 1; 1635 1636 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 1637 1638 for (int i = 0; i < TXG_SIZE; i++) { 1639 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 1640 MUTEX_DEFAULT, NULL); 1641 } 1642 1643 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 1644 offsetof(lwb_t, lwb_node)); 1645 1646 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 1647 offsetof(itx_t, itx_node)); 1648 1649 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 1650 1651 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare, 1652 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 1653 1654 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL); 1655 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 1656 cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL); 1657 cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL); 1658 1659 return (zilog); 1660 } 1661 1662 void 1663 zil_free(zilog_t *zilog) 1664 { 1665 zilog->zl_stop_sync = 1; 1666 1667 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 1668 list_destroy(&zilog->zl_lwb_list); 1669 1670 avl_destroy(&zilog->zl_vdev_tree); 1671 mutex_destroy(&zilog->zl_vdev_lock); 1672 1673 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 1674 list_destroy(&zilog->zl_itx_commit_list); 1675 1676 for (int i = 0; i < TXG_SIZE; i++) { 1677 /* 1678 * It's possible for an itx to be generated that doesn't dirty 1679 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 1680 * callback to remove the entry. We remove those here. 1681 * 1682 * Also free up the ziltest itxs. 1683 */ 1684 if (zilog->zl_itxg[i].itxg_itxs) 1685 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 1686 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 1687 } 1688 1689 mutex_destroy(&zilog->zl_lock); 1690 1691 cv_destroy(&zilog->zl_cv_writer); 1692 cv_destroy(&zilog->zl_cv_suspend); 1693 cv_destroy(&zilog->zl_cv_batch[0]); 1694 cv_destroy(&zilog->zl_cv_batch[1]); 1695 1696 kmem_free(zilog, sizeof (zilog_t)); 1697 } 1698 1699 /* 1700 * Open an intent log. 1701 */ 1702 zilog_t * 1703 zil_open(objset_t *os, zil_get_data_t *get_data) 1704 { 1705 zilog_t *zilog = dmu_objset_zil(os); 1706 1707 ASSERT(zilog->zl_clean_taskq == NULL); 1708 ASSERT(zilog->zl_get_data == NULL); 1709 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 1710 1711 zilog->zl_get_data = get_data; 1712 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 1713 2, 2, TASKQ_PREPOPULATE); 1714 1715 return (zilog); 1716 } 1717 1718 /* 1719 * Close an intent log. 1720 */ 1721 void 1722 zil_close(zilog_t *zilog) 1723 { 1724 lwb_t *lwb; 1725 uint64_t txg = 0; 1726 1727 zil_commit(zilog, 0); /* commit all itx */ 1728 1729 /* 1730 * The lwb_max_txg for the stubby lwb will reflect the last activity 1731 * for the zil. After a txg_wait_synced() on the txg we know all the 1732 * callbacks have occurred that may clean the zil. Only then can we 1733 * destroy the zl_clean_taskq. 1734 */ 1735 mutex_enter(&zilog->zl_lock); 1736 lwb = list_tail(&zilog->zl_lwb_list); 1737 if (lwb != NULL) 1738 txg = lwb->lwb_max_txg; 1739 mutex_exit(&zilog->zl_lock); 1740 if (txg) 1741 txg_wait_synced(zilog->zl_dmu_pool, txg); 1742 1743 taskq_destroy(zilog->zl_clean_taskq); 1744 zilog->zl_clean_taskq = NULL; 1745 zilog->zl_get_data = NULL; 1746 1747 /* 1748 * We should have only one LWB left on the list; remove it now. 1749 */ 1750 mutex_enter(&zilog->zl_lock); 1751 lwb = list_head(&zilog->zl_lwb_list); 1752 if (lwb != NULL) { 1753 ASSERT(lwb == list_tail(&zilog->zl_lwb_list)); 1754 list_remove(&zilog->zl_lwb_list, lwb); 1755 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1756 kmem_cache_free(zil_lwb_cache, lwb); 1757 } 1758 mutex_exit(&zilog->zl_lock); 1759 } 1760 1761 /* 1762 * Suspend an intent log. While in suspended mode, we still honor 1763 * synchronous semantics, but we rely on txg_wait_synced() to do it. 1764 * We suspend the log briefly when taking a snapshot so that the snapshot 1765 * contains all the data it's supposed to, and has an empty intent log. 1766 */ 1767 int 1768 zil_suspend(zilog_t *zilog) 1769 { 1770 const zil_header_t *zh = zilog->zl_header; 1771 1772 mutex_enter(&zilog->zl_lock); 1773 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 1774 mutex_exit(&zilog->zl_lock); 1775 return (EBUSY); 1776 } 1777 if (zilog->zl_suspend++ != 0) { 1778 /* 1779 * Someone else already began a suspend. 1780 * Just wait for them to finish. 1781 */ 1782 while (zilog->zl_suspending) 1783 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 1784 mutex_exit(&zilog->zl_lock); 1785 return (0); 1786 } 1787 zilog->zl_suspending = B_TRUE; 1788 mutex_exit(&zilog->zl_lock); 1789 1790 zil_commit(zilog, 0); 1791 1792 zil_destroy(zilog, B_FALSE); 1793 1794 mutex_enter(&zilog->zl_lock); 1795 zilog->zl_suspending = B_FALSE; 1796 cv_broadcast(&zilog->zl_cv_suspend); 1797 mutex_exit(&zilog->zl_lock); 1798 1799 return (0); 1800 } 1801 1802 void 1803 zil_resume(zilog_t *zilog) 1804 { 1805 mutex_enter(&zilog->zl_lock); 1806 ASSERT(zilog->zl_suspend != 0); 1807 zilog->zl_suspend--; 1808 mutex_exit(&zilog->zl_lock); 1809 } 1810 1811 typedef struct zil_replay_arg { 1812 zil_replay_func_t **zr_replay; 1813 void *zr_arg; 1814 boolean_t zr_byteswap; 1815 char *zr_lr; 1816 } zil_replay_arg_t; 1817 1818 static int 1819 zil_replay_error(zilog_t *zilog, lr_t *lr, int error) 1820 { 1821 char name[MAXNAMELEN]; 1822 1823 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 1824 1825 dmu_objset_name(zilog->zl_os, name); 1826 1827 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 1828 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 1829 (u_longlong_t)lr->lrc_seq, 1830 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 1831 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 1832 1833 return (error); 1834 } 1835 1836 static int 1837 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 1838 { 1839 zil_replay_arg_t *zr = zra; 1840 const zil_header_t *zh = zilog->zl_header; 1841 uint64_t reclen = lr->lrc_reclen; 1842 uint64_t txtype = lr->lrc_txtype; 1843 int error = 0; 1844 1845 zilog->zl_replaying_seq = lr->lrc_seq; 1846 1847 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 1848 return (0); 1849 1850 if (lr->lrc_txg < claim_txg) /* already committed */ 1851 return (0); 1852 1853 /* Strip case-insensitive bit, still present in log record */ 1854 txtype &= ~TX_CI; 1855 1856 if (txtype == 0 || txtype >= TX_MAX_TYPE) 1857 return (zil_replay_error(zilog, lr, EINVAL)); 1858 1859 /* 1860 * If this record type can be logged out of order, the object 1861 * (lr_foid) may no longer exist. That's legitimate, not an error. 1862 */ 1863 if (TX_OOO(txtype)) { 1864 error = dmu_object_info(zilog->zl_os, 1865 ((lr_ooo_t *)lr)->lr_foid, NULL); 1866 if (error == ENOENT || error == EEXIST) 1867 return (0); 1868 } 1869 1870 /* 1871 * Make a copy of the data so we can revise and extend it. 1872 */ 1873 bcopy(lr, zr->zr_lr, reclen); 1874 1875 /* 1876 * If this is a TX_WRITE with a blkptr, suck in the data. 1877 */ 1878 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 1879 error = zil_read_log_data(zilog, (lr_write_t *)lr, 1880 zr->zr_lr + reclen); 1881 if (error) 1882 return (zil_replay_error(zilog, lr, error)); 1883 } 1884 1885 /* 1886 * The log block containing this lr may have been byteswapped 1887 * so that we can easily examine common fields like lrc_txtype. 1888 * However, the log is a mix of different record types, and only the 1889 * replay vectors know how to byteswap their records. Therefore, if 1890 * the lr was byteswapped, undo it before invoking the replay vector. 1891 */ 1892 if (zr->zr_byteswap) 1893 byteswap_uint64_array(zr->zr_lr, reclen); 1894 1895 /* 1896 * We must now do two things atomically: replay this log record, 1897 * and update the log header sequence number to reflect the fact that 1898 * we did so. At the end of each replay function the sequence number 1899 * is updated if we are in replay mode. 1900 */ 1901 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 1902 if (error) { 1903 /* 1904 * The DMU's dnode layer doesn't see removes until the txg 1905 * commits, so a subsequent claim can spuriously fail with 1906 * EEXIST. So if we receive any error we try syncing out 1907 * any removes then retry the transaction. Note that we 1908 * specify B_FALSE for byteswap now, so we don't do it twice. 1909 */ 1910 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 1911 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 1912 if (error) 1913 return (zil_replay_error(zilog, lr, error)); 1914 } 1915 return (0); 1916 } 1917 1918 /* ARGSUSED */ 1919 static int 1920 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1921 { 1922 zilog->zl_replay_blks++; 1923 1924 return (0); 1925 } 1926 1927 /* 1928 * If this dataset has a non-empty intent log, replay it and destroy it. 1929 */ 1930 void 1931 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]) 1932 { 1933 zilog_t *zilog = dmu_objset_zil(os); 1934 const zil_header_t *zh = zilog->zl_header; 1935 zil_replay_arg_t zr; 1936 1937 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 1938 zil_destroy(zilog, B_TRUE); 1939 return; 1940 } 1941 1942 zr.zr_replay = replay_func; 1943 zr.zr_arg = arg; 1944 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 1945 zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 1946 1947 /* 1948 * Wait for in-progress removes to sync before starting replay. 1949 */ 1950 txg_wait_synced(zilog->zl_dmu_pool, 0); 1951 1952 zilog->zl_replay = B_TRUE; 1953 zilog->zl_replay_time = ddi_get_lbolt(); 1954 ASSERT(zilog->zl_replay_blks == 0); 1955 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 1956 zh->zh_claim_txg); 1957 kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 1958 1959 zil_destroy(zilog, B_FALSE); 1960 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 1961 zilog->zl_replay = B_FALSE; 1962 } 1963 1964 boolean_t 1965 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 1966 { 1967 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 1968 return (B_TRUE); 1969 1970 if (zilog->zl_replay) { 1971 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1972 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 1973 zilog->zl_replaying_seq; 1974 return (B_TRUE); 1975 } 1976 1977 return (B_FALSE); 1978 } 1979 1980 /* ARGSUSED */ 1981 int 1982 zil_vdev_offline(const char *osname, void *arg) 1983 { 1984 objset_t *os; 1985 zilog_t *zilog; 1986 int error; 1987 1988 error = dmu_objset_hold(osname, FTAG, &os); 1989 if (error) 1990 return (error); 1991 1992 zilog = dmu_objset_zil(os); 1993 if (zil_suspend(zilog) != 0) 1994 error = EEXIST; 1995 else 1996 zil_resume(zilog); 1997 dmu_objset_rele(os, FTAG); 1998 return (error); 1999 } 2000