xref: /titanic_50/usr/src/uts/common/fs/zfs/zfs_znode.c (revision 8a57cef6afbd3163c64efedaa20cbfab2c46b9cd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /* Portions Copyright 2007 Jeremy Teo */
27 
28 #ifdef _KERNEL
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/time.h>
32 #include <sys/systm.h>
33 #include <sys/sysmacros.h>
34 #include <sys/resource.h>
35 #include <sys/mntent.h>
36 #include <sys/mkdev.h>
37 #include <sys/u8_textprep.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/vfs.h>
40 #include <sys/vfs_opreg.h>
41 #include <sys/vnode.h>
42 #include <sys/file.h>
43 #include <sys/kmem.h>
44 #include <sys/errno.h>
45 #include <sys/unistd.h>
46 #include <sys/mode.h>
47 #include <sys/atomic.h>
48 #include <vm/pvn.h>
49 #include "fs/fs_subr.h"
50 #include <sys/zfs_dir.h>
51 #include <sys/zfs_acl.h>
52 #include <sys/zfs_ioctl.h>
53 #include <sys/zfs_rlock.h>
54 #include <sys/zfs_fuid.h>
55 #include <sys/fs/zfs.h>
56 #include <sys/kidmap.h>
57 #endif /* _KERNEL */
58 
59 #include <sys/dmu.h>
60 #include <sys/refcount.h>
61 #include <sys/stat.h>
62 #include <sys/zap.h>
63 #include <sys/zfs_znode.h>
64 
65 #include "zfs_prop.h"
66 
67 /*
68  * Define ZNODE_STATS to turn on statistic gathering. By default, it is only
69  * turned on when DEBUG is also defined.
70  */
71 #ifdef	DEBUG
72 #define	ZNODE_STATS
73 #endif	/* DEBUG */
74 
75 #ifdef	ZNODE_STATS
76 #define	ZNODE_STAT_ADD(stat)			((stat)++)
77 #else
78 #define	ZNODE_STAT_ADD(stat)			/* nothing */
79 #endif	/* ZNODE_STATS */
80 
81 #define	POINTER_IS_VALID(p)	(!((uintptr_t)(p) & 0x3))
82 #define	POINTER_INVALIDATE(pp)	(*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1))
83 
84 /*
85  * Functions needed for userland (ie: libzpool) are not put under
86  * #ifdef_KERNEL; the rest of the functions have dependencies
87  * (such as VFS logic) that will not compile easily in userland.
88  */
89 #ifdef _KERNEL
90 /*
91  * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to
92  * be freed before it can be safely accessed.
93  */
94 krwlock_t zfsvfs_lock;
95 
96 static kmem_cache_t *znode_cache = NULL;
97 
98 /*ARGSUSED*/
99 static void
100 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr)
101 {
102 	/*
103 	 * We should never drop all dbuf refs without first clearing
104 	 * the eviction callback.
105 	 */
106 	panic("evicting znode %p\n", user_ptr);
107 }
108 
109 /*ARGSUSED*/
110 static int
111 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
112 {
113 	znode_t *zp = buf;
114 
115 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
116 
117 	zp->z_vnode = vn_alloc(kmflags);
118 	if (zp->z_vnode == NULL) {
119 		return (-1);
120 	}
121 	ZTOV(zp)->v_data = zp;
122 
123 	list_link_init(&zp->z_link_node);
124 
125 	mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
126 	rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
127 	rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL);
128 	mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
129 
130 	mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL);
131 	avl_create(&zp->z_range_avl, zfs_range_compare,
132 	    sizeof (rl_t), offsetof(rl_t, r_node));
133 
134 	zp->z_dbuf = NULL;
135 	zp->z_dirlocks = NULL;
136 	return (0);
137 }
138 
139 /*ARGSUSED*/
140 static void
141 zfs_znode_cache_destructor(void *buf, void *arg)
142 {
143 	znode_t *zp = buf;
144 
145 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
146 	ASSERT(ZTOV(zp)->v_data == zp);
147 	vn_free(ZTOV(zp));
148 	ASSERT(!list_link_active(&zp->z_link_node));
149 	mutex_destroy(&zp->z_lock);
150 	rw_destroy(&zp->z_parent_lock);
151 	rw_destroy(&zp->z_name_lock);
152 	mutex_destroy(&zp->z_acl_lock);
153 	avl_destroy(&zp->z_range_avl);
154 	mutex_destroy(&zp->z_range_lock);
155 
156 	ASSERT(zp->z_dbuf == NULL);
157 	ASSERT(zp->z_dirlocks == NULL);
158 }
159 
160 #ifdef	ZNODE_STATS
161 static struct {
162 	uint64_t zms_zfsvfs_invalid;
163 	uint64_t zms_zfsvfs_recheck1;
164 	uint64_t zms_zfsvfs_unmounted;
165 	uint64_t zms_zfsvfs_recheck2;
166 	uint64_t zms_obj_held;
167 	uint64_t zms_vnode_locked;
168 	uint64_t zms_not_only_dnlc;
169 } znode_move_stats;
170 #endif	/* ZNODE_STATS */
171 
172 static void
173 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp)
174 {
175 	vnode_t *vp;
176 
177 	/* Copy fields. */
178 	nzp->z_zfsvfs = ozp->z_zfsvfs;
179 
180 	/* Swap vnodes. */
181 	vp = nzp->z_vnode;
182 	nzp->z_vnode = ozp->z_vnode;
183 	ozp->z_vnode = vp; /* let destructor free the overwritten vnode */
184 	ZTOV(ozp)->v_data = ozp;
185 	ZTOV(nzp)->v_data = nzp;
186 
187 	nzp->z_id = ozp->z_id;
188 	ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */
189 	ASSERT(avl_numnodes(&ozp->z_range_avl) == 0);
190 	nzp->z_unlinked = ozp->z_unlinked;
191 	nzp->z_atime_dirty = ozp->z_atime_dirty;
192 	nzp->z_zn_prefetch = ozp->z_zn_prefetch;
193 	nzp->z_blksz = ozp->z_blksz;
194 	nzp->z_seq = ozp->z_seq;
195 	nzp->z_mapcnt = ozp->z_mapcnt;
196 	nzp->z_last_itx = ozp->z_last_itx;
197 	nzp->z_gen = ozp->z_gen;
198 	nzp->z_sync_cnt = ozp->z_sync_cnt;
199 	nzp->z_phys = ozp->z_phys;
200 	nzp->z_dbuf = ozp->z_dbuf;
201 
202 	/* Update back pointers. */
203 	(void) dmu_buf_update_user(nzp->z_dbuf, ozp, nzp, &nzp->z_phys,
204 	    znode_evict_error);
205 
206 	/*
207 	 * Invalidate the original znode by clearing fields that provide a
208 	 * pointer back to the znode. Set the low bit of the vfs pointer to
209 	 * ensure that zfs_znode_move() recognizes the znode as invalid in any
210 	 * subsequent callback.
211 	 */
212 	ozp->z_dbuf = NULL;
213 	POINTER_INVALIDATE(&ozp->z_zfsvfs);
214 }
215 
216 /*ARGSUSED*/
217 static kmem_cbrc_t
218 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg)
219 {
220 	znode_t *ozp = buf, *nzp = newbuf;
221 	zfsvfs_t *zfsvfs;
222 	vnode_t *vp;
223 
224 	/*
225 	 * The znode is on the file system's list of known znodes if the vfs
226 	 * pointer is valid. We set the low bit of the vfs pointer when freeing
227 	 * the znode to invalidate it, and the memory patterns written by kmem
228 	 * (baddcafe and deadbeef) set at least one of the two low bits. A newly
229 	 * created znode sets the vfs pointer last of all to indicate that the
230 	 * znode is known and in a valid state to be moved by this function.
231 	 */
232 	zfsvfs = ozp->z_zfsvfs;
233 	if (!POINTER_IS_VALID(zfsvfs)) {
234 		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid);
235 		return (KMEM_CBRC_DONT_KNOW);
236 	}
237 
238 	/*
239 	 * Close a small window in which it's possible that the filesystem could
240 	 * be unmounted and freed, and zfsvfs, though valid in the previous
241 	 * statement, could point to unrelated memory by the time we try to
242 	 * prevent the filesystem from being unmounted.
243 	 */
244 	rw_enter(&zfsvfs_lock, RW_WRITER);
245 	if (zfsvfs != ozp->z_zfsvfs) {
246 		rw_exit(&zfsvfs_lock);
247 		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1);
248 		return (KMEM_CBRC_DONT_KNOW);
249 	}
250 
251 	/*
252 	 * If the znode is still valid, then so is the file system. We know that
253 	 * no valid file system can be freed while we hold zfsvfs_lock, so we
254 	 * can safely ensure that the filesystem is not and will not be
255 	 * unmounted. The next statement is equivalent to ZFS_ENTER().
256 	 */
257 	rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG);
258 	if (zfsvfs->z_unmounted) {
259 		ZFS_EXIT(zfsvfs);
260 		rw_exit(&zfsvfs_lock);
261 		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted);
262 		return (KMEM_CBRC_DONT_KNOW);
263 	}
264 	rw_exit(&zfsvfs_lock);
265 
266 	mutex_enter(&zfsvfs->z_znodes_lock);
267 	/*
268 	 * Recheck the vfs pointer in case the znode was removed just before
269 	 * acquiring the lock.
270 	 */
271 	if (zfsvfs != ozp->z_zfsvfs) {
272 		mutex_exit(&zfsvfs->z_znodes_lock);
273 		ZFS_EXIT(zfsvfs);
274 		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2);
275 		return (KMEM_CBRC_DONT_KNOW);
276 	}
277 
278 	/*
279 	 * At this point we know that as long as we hold z_znodes_lock, the
280 	 * znode cannot be freed and fields within the znode can be safely
281 	 * accessed. Now, prevent a race with zfs_zget().
282 	 */
283 	if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) {
284 		mutex_exit(&zfsvfs->z_znodes_lock);
285 		ZFS_EXIT(zfsvfs);
286 		ZNODE_STAT_ADD(znode_move_stats.zms_obj_held);
287 		return (KMEM_CBRC_LATER);
288 	}
289 
290 	vp = ZTOV(ozp);
291 	if (mutex_tryenter(&vp->v_lock) == 0) {
292 		ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
293 		mutex_exit(&zfsvfs->z_znodes_lock);
294 		ZFS_EXIT(zfsvfs);
295 		ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked);
296 		return (KMEM_CBRC_LATER);
297 	}
298 
299 	/* Only move znodes that are referenced _only_ by the DNLC. */
300 	if (vp->v_count != 1 || !vn_in_dnlc(vp)) {
301 		mutex_exit(&vp->v_lock);
302 		ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
303 		mutex_exit(&zfsvfs->z_znodes_lock);
304 		ZFS_EXIT(zfsvfs);
305 		ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc);
306 		return (KMEM_CBRC_LATER);
307 	}
308 
309 	/*
310 	 * The znode is known and in a valid state to move. We're holding the
311 	 * locks needed to execute the critical section.
312 	 */
313 	zfs_znode_move_impl(ozp, nzp);
314 	mutex_exit(&vp->v_lock);
315 	ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
316 
317 	list_link_replace(&ozp->z_link_node, &nzp->z_link_node);
318 	mutex_exit(&zfsvfs->z_znodes_lock);
319 	ZFS_EXIT(zfsvfs);
320 
321 	return (KMEM_CBRC_YES);
322 }
323 
324 void
325 zfs_znode_init(void)
326 {
327 	/*
328 	 * Initialize zcache
329 	 */
330 	rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL);
331 	ASSERT(znode_cache == NULL);
332 	znode_cache = kmem_cache_create("zfs_znode_cache",
333 	    sizeof (znode_t), 0, zfs_znode_cache_constructor,
334 	    zfs_znode_cache_destructor, NULL, NULL, NULL, 0);
335 	kmem_cache_set_move(znode_cache, zfs_znode_move);
336 }
337 
338 void
339 zfs_znode_fini(void)
340 {
341 	/*
342 	 * Cleanup vfs & vnode ops
343 	 */
344 	zfs_remove_op_tables();
345 
346 	/*
347 	 * Cleanup zcache
348 	 */
349 	if (znode_cache)
350 		kmem_cache_destroy(znode_cache);
351 	znode_cache = NULL;
352 	rw_destroy(&zfsvfs_lock);
353 }
354 
355 struct vnodeops *zfs_dvnodeops;
356 struct vnodeops *zfs_fvnodeops;
357 struct vnodeops *zfs_symvnodeops;
358 struct vnodeops *zfs_xdvnodeops;
359 struct vnodeops *zfs_evnodeops;
360 struct vnodeops *zfs_sharevnodeops;
361 
362 void
363 zfs_remove_op_tables()
364 {
365 	/*
366 	 * Remove vfs ops
367 	 */
368 	ASSERT(zfsfstype);
369 	(void) vfs_freevfsops_by_type(zfsfstype);
370 	zfsfstype = 0;
371 
372 	/*
373 	 * Remove vnode ops
374 	 */
375 	if (zfs_dvnodeops)
376 		vn_freevnodeops(zfs_dvnodeops);
377 	if (zfs_fvnodeops)
378 		vn_freevnodeops(zfs_fvnodeops);
379 	if (zfs_symvnodeops)
380 		vn_freevnodeops(zfs_symvnodeops);
381 	if (zfs_xdvnodeops)
382 		vn_freevnodeops(zfs_xdvnodeops);
383 	if (zfs_evnodeops)
384 		vn_freevnodeops(zfs_evnodeops);
385 	if (zfs_sharevnodeops)
386 		vn_freevnodeops(zfs_sharevnodeops);
387 
388 	zfs_dvnodeops = NULL;
389 	zfs_fvnodeops = NULL;
390 	zfs_symvnodeops = NULL;
391 	zfs_xdvnodeops = NULL;
392 	zfs_evnodeops = NULL;
393 	zfs_sharevnodeops = NULL;
394 }
395 
396 extern const fs_operation_def_t zfs_dvnodeops_template[];
397 extern const fs_operation_def_t zfs_fvnodeops_template[];
398 extern const fs_operation_def_t zfs_xdvnodeops_template[];
399 extern const fs_operation_def_t zfs_symvnodeops_template[];
400 extern const fs_operation_def_t zfs_evnodeops_template[];
401 extern const fs_operation_def_t zfs_sharevnodeops_template[];
402 
403 int
404 zfs_create_op_tables()
405 {
406 	int error;
407 
408 	/*
409 	 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs()
410 	 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv).
411 	 * In this case we just return as the ops vectors are already set up.
412 	 */
413 	if (zfs_dvnodeops)
414 		return (0);
415 
416 	error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template,
417 	    &zfs_dvnodeops);
418 	if (error)
419 		return (error);
420 
421 	error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template,
422 	    &zfs_fvnodeops);
423 	if (error)
424 		return (error);
425 
426 	error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template,
427 	    &zfs_symvnodeops);
428 	if (error)
429 		return (error);
430 
431 	error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template,
432 	    &zfs_xdvnodeops);
433 	if (error)
434 		return (error);
435 
436 	error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template,
437 	    &zfs_evnodeops);
438 	if (error)
439 		return (error);
440 
441 	error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template,
442 	    &zfs_sharevnodeops);
443 
444 	return (error);
445 }
446 
447 int
448 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
449 {
450 	zfs_acl_ids_t acl_ids;
451 	vattr_t vattr;
452 	znode_t *sharezp;
453 	vnode_t *vp;
454 	znode_t *zp;
455 	int error;
456 
457 	vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
458 	vattr.va_type = VDIR;
459 	vattr.va_mode = S_IFDIR|0555;
460 	vattr.va_uid = crgetuid(kcred);
461 	vattr.va_gid = crgetgid(kcred);
462 
463 	sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP);
464 	sharezp->z_unlinked = 0;
465 	sharezp->z_atime_dirty = 0;
466 	sharezp->z_zfsvfs = zfsvfs;
467 
468 	vp = ZTOV(sharezp);
469 	vn_reinit(vp);
470 	vp->v_type = VDIR;
471 
472 	VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr,
473 	    kcred, NULL, &acl_ids));
474 	zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE,
475 	    &zp, 0, &acl_ids);
476 	ASSERT3P(zp, ==, sharezp);
477 	ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */
478 	POINTER_INVALIDATE(&sharezp->z_zfsvfs);
479 	error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
480 	    ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx);
481 	zfsvfs->z_shares_dir = sharezp->z_id;
482 
483 	zfs_acl_ids_free(&acl_ids);
484 	ZTOV(sharezp)->v_count = 0;
485 	dmu_buf_rele(sharezp->z_dbuf, NULL);
486 	sharezp->z_dbuf = NULL;
487 	kmem_cache_free(znode_cache, sharezp);
488 
489 	return (error);
490 }
491 
492 /*
493  * define a couple of values we need available
494  * for both 64 and 32 bit environments.
495  */
496 #ifndef NBITSMINOR64
497 #define	NBITSMINOR64	32
498 #endif
499 #ifndef MAXMAJ64
500 #define	MAXMAJ64	0xffffffffUL
501 #endif
502 #ifndef	MAXMIN64
503 #define	MAXMIN64	0xffffffffUL
504 #endif
505 
506 /*
507  * Create special expldev for ZFS private use.
508  * Can't use standard expldev since it doesn't do
509  * what we want.  The standard expldev() takes a
510  * dev32_t in LP64 and expands it to a long dev_t.
511  * We need an interface that takes a dev32_t in ILP32
512  * and expands it to a long dev_t.
513  */
514 static uint64_t
515 zfs_expldev(dev_t dev)
516 {
517 #ifndef _LP64
518 	major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32;
519 	return (((uint64_t)major << NBITSMINOR64) |
520 	    ((minor_t)dev & MAXMIN32));
521 #else
522 	return (dev);
523 #endif
524 }
525 
526 /*
527  * Special cmpldev for ZFS private use.
528  * Can't use standard cmpldev since it takes
529  * a long dev_t and compresses it to dev32_t in
530  * LP64.  We need to do a compaction of a long dev_t
531  * to a dev32_t in ILP32.
532  */
533 dev_t
534 zfs_cmpldev(uint64_t dev)
535 {
536 #ifndef _LP64
537 	minor_t minor = (minor_t)dev & MAXMIN64;
538 	major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64;
539 
540 	if (major > MAXMAJ32 || minor > MAXMIN32)
541 		return (NODEV32);
542 
543 	return (((dev32_t)major << NBITSMINOR32) | minor);
544 #else
545 	return (dev);
546 #endif
547 }
548 
549 static void
550 zfs_znode_dmu_init(zfsvfs_t *zfsvfs, znode_t *zp, dmu_buf_t *db)
551 {
552 	znode_t		*nzp;
553 
554 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs));
555 	ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id)));
556 
557 	mutex_enter(&zp->z_lock);
558 
559 	ASSERT(zp->z_dbuf == NULL);
560 	zp->z_dbuf = db;
561 	nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_evict_error);
562 
563 	/*
564 	 * there should be no
565 	 * concurrent zgets on this object.
566 	 */
567 	if (nzp != NULL)
568 		panic("existing znode %p for dbuf %p", (void *)nzp, (void *)db);
569 
570 	/*
571 	 * Slap on VROOT if we are the root znode
572 	 */
573 	if (zp->z_id == zfsvfs->z_root)
574 		ZTOV(zp)->v_flag |= VROOT;
575 
576 	mutex_exit(&zp->z_lock);
577 	vn_exists(ZTOV(zp));
578 }
579 
580 void
581 zfs_znode_dmu_fini(znode_t *zp)
582 {
583 	dmu_buf_t *db = zp->z_dbuf;
584 	ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) ||
585 	    zp->z_unlinked ||
586 	    RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock));
587 	ASSERT(zp->z_dbuf != NULL);
588 	zp->z_dbuf = NULL;
589 	VERIFY(zp == dmu_buf_update_user(db, zp, NULL, NULL, NULL));
590 	dmu_buf_rele(db, NULL);
591 }
592 
593 /*
594  * Construct a new znode/vnode and intialize.
595  *
596  * This does not do a call to dmu_set_user() that is
597  * up to the caller to do, in case you don't want to
598  * return the znode
599  */
600 static znode_t *
601 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz)
602 {
603 	znode_t	*zp;
604 	vnode_t *vp;
605 
606 	zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
607 
608 	ASSERT(zp->z_dirlocks == NULL);
609 	ASSERT(zp->z_dbuf == NULL);
610 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
611 
612 	/*
613 	 * Defer setting z_zfsvfs until the znode is ready to be a candidate for
614 	 * the zfs_znode_move() callback.
615 	 */
616 	zp->z_phys = NULL;
617 	zp->z_unlinked = 0;
618 	zp->z_atime_dirty = 0;
619 	zp->z_mapcnt = 0;
620 	zp->z_last_itx = 0;
621 	zp->z_id = db->db_object;
622 	zp->z_blksz = blksz;
623 	zp->z_seq = 0x7A4653;
624 	zp->z_sync_cnt = 0;
625 
626 	vp = ZTOV(zp);
627 	vn_reinit(vp);
628 
629 	zfs_znode_dmu_init(zfsvfs, zp, db);
630 
631 	zp->z_gen = zp->z_phys->zp_gen;
632 
633 	vp->v_vfsp = zfsvfs->z_parent->z_vfs;
634 	vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode);
635 
636 	switch (vp->v_type) {
637 	case VDIR:
638 		if (zp->z_phys->zp_flags & ZFS_XATTR) {
639 			vn_setops(vp, zfs_xdvnodeops);
640 			vp->v_flag |= V_XATTRDIR;
641 		} else {
642 			vn_setops(vp, zfs_dvnodeops);
643 		}
644 		zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */
645 		break;
646 	case VBLK:
647 	case VCHR:
648 		vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev);
649 		/*FALLTHROUGH*/
650 	case VFIFO:
651 	case VSOCK:
652 	case VDOOR:
653 		vn_setops(vp, zfs_fvnodeops);
654 		break;
655 	case VREG:
656 		vp->v_flag |= VMODSORT;
657 		if (zp->z_phys->zp_parent == zfsvfs->z_shares_dir)
658 			vn_setops(vp, zfs_sharevnodeops);
659 		else
660 			vn_setops(vp, zfs_fvnodeops);
661 		break;
662 	case VLNK:
663 		vn_setops(vp, zfs_symvnodeops);
664 		break;
665 	default:
666 		vn_setops(vp, zfs_evnodeops);
667 		break;
668 	}
669 
670 	mutex_enter(&zfsvfs->z_znodes_lock);
671 	list_insert_tail(&zfsvfs->z_all_znodes, zp);
672 	membar_producer();
673 	/*
674 	 * Everything else must be valid before assigning z_zfsvfs makes the
675 	 * znode eligible for zfs_znode_move().
676 	 */
677 	zp->z_zfsvfs = zfsvfs;
678 	mutex_exit(&zfsvfs->z_znodes_lock);
679 
680 	VFS_HOLD(zfsvfs->z_vfs);
681 	return (zp);
682 }
683 
684 /*
685  * Create a new DMU object to hold a zfs znode.
686  *
687  *	IN:	dzp	- parent directory for new znode
688  *		vap	- file attributes for new znode
689  *		tx	- dmu transaction id for zap operations
690  *		cr	- credentials of caller
691  *		flag	- flags:
692  *			  IS_ROOT_NODE	- new object will be root
693  *			  IS_XATTR	- new object is an attribute
694  *			  IS_REPLAY	- intent log replay
695  *		bonuslen - length of bonus buffer
696  *		setaclp  - File/Dir initial ACL
697  *		fuidp	 - Tracks fuid allocation.
698  *
699  *	OUT:	zpp	- allocated znode
700  *
701  */
702 void
703 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
704     uint_t flag, znode_t **zpp, int bonuslen, zfs_acl_ids_t *acl_ids)
705 {
706 	dmu_buf_t	*db;
707 	znode_phys_t	*pzp;
708 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
709 	timestruc_t	now;
710 	uint64_t	gen, obj;
711 	int		err;
712 
713 	ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
714 
715 	if (zfsvfs->z_replay) {
716 		obj = vap->va_nodeid;
717 		flag |= IS_REPLAY;
718 		now = vap->va_ctime;		/* see zfs_replay_create() */
719 		gen = vap->va_nblocks;		/* ditto */
720 	} else {
721 		obj = 0;
722 		gethrestime(&now);
723 		gen = dmu_tx_get_txg(tx);
724 	}
725 
726 	/*
727 	 * Create a new DMU object.
728 	 */
729 	/*
730 	 * There's currently no mechanism for pre-reading the blocks that will
731 	 * be to needed allocate a new object, so we accept the small chance
732 	 * that there will be an i/o error and we will fail one of the
733 	 * assertions below.
734 	 */
735 	if (vap->va_type == VDIR) {
736 		if (flag & IS_REPLAY) {
737 			err = zap_create_claim_norm(zfsvfs->z_os, obj,
738 			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
739 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
740 			ASSERT3U(err, ==, 0);
741 		} else {
742 			obj = zap_create_norm(zfsvfs->z_os,
743 			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
744 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
745 		}
746 	} else {
747 		if (flag & IS_REPLAY) {
748 			err = dmu_object_claim(zfsvfs->z_os, obj,
749 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
750 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
751 			ASSERT3U(err, ==, 0);
752 		} else {
753 			obj = dmu_object_alloc(zfsvfs->z_os,
754 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
755 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
756 		}
757 	}
758 	VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, obj, NULL, &db));
759 	dmu_buf_will_dirty(db, tx);
760 
761 	/*
762 	 * Initialize the znode physical data to zero.
763 	 */
764 	ASSERT(db->db_size >= sizeof (znode_phys_t));
765 	bzero(db->db_data, db->db_size);
766 	pzp = db->db_data;
767 
768 	/*
769 	 * If this is the root, fix up the half-initialized parent pointer
770 	 * to reference the just-allocated physical data area.
771 	 */
772 	if (flag & IS_ROOT_NODE) {
773 		dzp->z_dbuf = db;
774 		dzp->z_phys = pzp;
775 		dzp->z_id = obj;
776 	}
777 
778 	/*
779 	 * If parent is an xattr, so am I.
780 	 */
781 	if (dzp->z_phys->zp_flags & ZFS_XATTR)
782 		flag |= IS_XATTR;
783 
784 	if (vap->va_type == VBLK || vap->va_type == VCHR) {
785 		pzp->zp_rdev = zfs_expldev(vap->va_rdev);
786 	}
787 
788 	if (zfsvfs->z_use_fuids)
789 		pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
790 
791 	if (vap->va_type == VDIR) {
792 		pzp->zp_size = 2;		/* contents ("." and "..") */
793 		pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
794 	}
795 
796 	pzp->zp_parent = dzp->z_id;
797 	if (flag & IS_XATTR)
798 		pzp->zp_flags |= ZFS_XATTR;
799 
800 	pzp->zp_gen = gen;
801 
802 	ZFS_TIME_ENCODE(&now, pzp->zp_crtime);
803 	ZFS_TIME_ENCODE(&now, pzp->zp_ctime);
804 
805 	if (vap->va_mask & AT_ATIME) {
806 		ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
807 	} else {
808 		ZFS_TIME_ENCODE(&now, pzp->zp_atime);
809 	}
810 
811 	if (vap->va_mask & AT_MTIME) {
812 		ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
813 	} else {
814 		ZFS_TIME_ENCODE(&now, pzp->zp_mtime);
815 	}
816 
817 	pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode);
818 	if (!(flag & IS_ROOT_NODE)) {
819 		ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
820 		*zpp = zfs_znode_alloc(zfsvfs, db, 0);
821 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
822 	} else {
823 		/*
824 		 * If we are creating the root node, the "parent" we
825 		 * passed in is the znode for the root.
826 		 */
827 		*zpp = dzp;
828 	}
829 	pzp->zp_uid = acl_ids->z_fuid;
830 	pzp->zp_gid = acl_ids->z_fgid;
831 	pzp->zp_mode = acl_ids->z_mode;
832 	VERIFY(0 == zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx));
833 	if (vap->va_mask & AT_XVATTR)
834 		zfs_xvattr_set(*zpp, (xvattr_t *)vap);
835 }
836 
837 void
838 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap)
839 {
840 	xoptattr_t *xoap;
841 
842 	xoap = xva_getxoptattr(xvap);
843 	ASSERT(xoap);
844 
845 	if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
846 		ZFS_TIME_ENCODE(&xoap->xoa_createtime, zp->z_phys->zp_crtime);
847 		XVA_SET_RTN(xvap, XAT_CREATETIME);
848 	}
849 	if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
850 		ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly);
851 		XVA_SET_RTN(xvap, XAT_READONLY);
852 	}
853 	if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
854 		ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden);
855 		XVA_SET_RTN(xvap, XAT_HIDDEN);
856 	}
857 	if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
858 		ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system);
859 		XVA_SET_RTN(xvap, XAT_SYSTEM);
860 	}
861 	if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
862 		ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive);
863 		XVA_SET_RTN(xvap, XAT_ARCHIVE);
864 	}
865 	if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
866 		ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable);
867 		XVA_SET_RTN(xvap, XAT_IMMUTABLE);
868 	}
869 	if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
870 		ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink);
871 		XVA_SET_RTN(xvap, XAT_NOUNLINK);
872 	}
873 	if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
874 		ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly);
875 		XVA_SET_RTN(xvap, XAT_APPENDONLY);
876 	}
877 	if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
878 		ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump);
879 		XVA_SET_RTN(xvap, XAT_NODUMP);
880 	}
881 	if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
882 		ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque);
883 		XVA_SET_RTN(xvap, XAT_OPAQUE);
884 	}
885 	if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
886 		ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
887 		    xoap->xoa_av_quarantined);
888 		XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
889 	}
890 	if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
891 		ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified);
892 		XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
893 	}
894 	if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
895 		(void) memcpy(zp->z_phys + 1, xoap->xoa_av_scanstamp,
896 		    sizeof (xoap->xoa_av_scanstamp));
897 		zp->z_phys->zp_flags |= ZFS_BONUS_SCANSTAMP;
898 		XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
899 	}
900 }
901 
902 int
903 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
904 {
905 	dmu_object_info_t doi;
906 	dmu_buf_t	*db;
907 	znode_t		*zp;
908 	int err;
909 
910 	*zpp = NULL;
911 
912 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
913 
914 	err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db);
915 	if (err) {
916 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
917 		return (err);
918 	}
919 
920 	dmu_object_info_from_db(db, &doi);
921 	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
922 	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
923 		dmu_buf_rele(db, NULL);
924 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
925 		return (EINVAL);
926 	}
927 
928 	zp = dmu_buf_get_user(db);
929 	if (zp != NULL) {
930 		mutex_enter(&zp->z_lock);
931 
932 		/*
933 		 * Since we do immediate eviction of the z_dbuf, we
934 		 * should never find a dbuf with a znode that doesn't
935 		 * know about the dbuf.
936 		 */
937 		ASSERT3P(zp->z_dbuf, ==, db);
938 		ASSERT3U(zp->z_id, ==, obj_num);
939 		if (zp->z_unlinked) {
940 			err = ENOENT;
941 		} else {
942 			VN_HOLD(ZTOV(zp));
943 			*zpp = zp;
944 			err = 0;
945 		}
946 		dmu_buf_rele(db, NULL);
947 		mutex_exit(&zp->z_lock);
948 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
949 		return (err);
950 	}
951 
952 	/*
953 	 * Not found create new znode/vnode
954 	 */
955 	zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size);
956 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
957 	*zpp = zp;
958 	return (0);
959 }
960 
961 int
962 zfs_rezget(znode_t *zp)
963 {
964 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
965 	dmu_object_info_t doi;
966 	dmu_buf_t *db;
967 	uint64_t obj_num = zp->z_id;
968 	int err;
969 
970 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
971 
972 	err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db);
973 	if (err) {
974 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
975 		return (err);
976 	}
977 
978 	dmu_object_info_from_db(db, &doi);
979 	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
980 	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
981 		dmu_buf_rele(db, NULL);
982 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
983 		return (EINVAL);
984 	}
985 
986 	if (((znode_phys_t *)db->db_data)->zp_gen != zp->z_gen) {
987 		dmu_buf_rele(db, NULL);
988 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
989 		return (EIO);
990 	}
991 
992 	zfs_znode_dmu_init(zfsvfs, zp, db);
993 	zp->z_unlinked = (zp->z_phys->zp_links == 0);
994 	zp->z_blksz = doi.doi_data_block_size;
995 
996 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
997 
998 	return (0);
999 }
1000 
1001 void
1002 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
1003 {
1004 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1005 	objset_t *os = zfsvfs->z_os;
1006 	uint64_t obj = zp->z_id;
1007 	uint64_t acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj;
1008 
1009 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
1010 	if (acl_obj)
1011 		VERIFY(0 == dmu_object_free(os, acl_obj, tx));
1012 	VERIFY(0 == dmu_object_free(os, obj, tx));
1013 	zfs_znode_dmu_fini(zp);
1014 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1015 	zfs_znode_free(zp);
1016 }
1017 
1018 void
1019 zfs_zinactive(znode_t *zp)
1020 {
1021 	vnode_t	*vp = ZTOV(zp);
1022 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1023 	uint64_t z_id = zp->z_id;
1024 
1025 	ASSERT(zp->z_dbuf && zp->z_phys);
1026 
1027 	/*
1028 	 * Don't allow a zfs_zget() while were trying to release this znode
1029 	 */
1030 	ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);
1031 
1032 	mutex_enter(&zp->z_lock);
1033 	mutex_enter(&vp->v_lock);
1034 	vp->v_count--;
1035 	if (vp->v_count > 0 || vn_has_cached_data(vp)) {
1036 		/*
1037 		 * If the hold count is greater than zero, somebody has
1038 		 * obtained a new reference on this znode while we were
1039 		 * processing it here, so we are done.  If we still have
1040 		 * mapped pages then we are also done, since we don't
1041 		 * want to inactivate the znode until the pages get pushed.
1042 		 *
1043 		 * XXX - if vn_has_cached_data(vp) is true, but count == 0,
1044 		 * this seems like it would leave the znode hanging with
1045 		 * no chance to go inactive...
1046 		 */
1047 		mutex_exit(&vp->v_lock);
1048 		mutex_exit(&zp->z_lock);
1049 		ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1050 		return;
1051 	}
1052 	mutex_exit(&vp->v_lock);
1053 
1054 	/*
1055 	 * If this was the last reference to a file with no links,
1056 	 * remove the file from the file system.
1057 	 */
1058 	if (zp->z_unlinked) {
1059 		mutex_exit(&zp->z_lock);
1060 		ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1061 		zfs_rmnode(zp);
1062 		return;
1063 	}
1064 	mutex_exit(&zp->z_lock);
1065 	zfs_znode_dmu_fini(zp);
1066 	ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1067 	zfs_znode_free(zp);
1068 }
1069 
1070 void
1071 zfs_znode_free(znode_t *zp)
1072 {
1073 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1074 
1075 	vn_invalid(ZTOV(zp));
1076 
1077 	ASSERT(ZTOV(zp)->v_count == 0);
1078 
1079 	mutex_enter(&zfsvfs->z_znodes_lock);
1080 	POINTER_INVALIDATE(&zp->z_zfsvfs);
1081 	list_remove(&zfsvfs->z_all_znodes, zp);
1082 	mutex_exit(&zfsvfs->z_znodes_lock);
1083 
1084 	kmem_cache_free(znode_cache, zp);
1085 
1086 	VFS_RELE(zfsvfs->z_vfs);
1087 }
1088 
1089 void
1090 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx)
1091 {
1092 	timestruc_t	now;
1093 
1094 	ASSERT(MUTEX_HELD(&zp->z_lock));
1095 
1096 	gethrestime(&now);
1097 
1098 	if (tx) {
1099 		dmu_buf_will_dirty(zp->z_dbuf, tx);
1100 		zp->z_atime_dirty = 0;
1101 		zp->z_seq++;
1102 	} else {
1103 		zp->z_atime_dirty = 1;
1104 	}
1105 
1106 	if (flag & AT_ATIME)
1107 		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime);
1108 
1109 	if (flag & AT_MTIME) {
1110 		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime);
1111 		if (zp->z_zfsvfs->z_use_fuids)
1112 			zp->z_phys->zp_flags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED);
1113 	}
1114 
1115 	if (flag & AT_CTIME) {
1116 		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime);
1117 		if (zp->z_zfsvfs->z_use_fuids)
1118 			zp->z_phys->zp_flags |= ZFS_ARCHIVE;
1119 	}
1120 }
1121 
1122 /*
1123  * Update the requested znode timestamps with the current time.
1124  * If we are in a transaction, then go ahead and mark the znode
1125  * dirty in the transaction so the timestamps will go to disk.
1126  * Otherwise, we will get pushed next time the znode is updated
1127  * in a transaction, or when this znode eventually goes inactive.
1128  *
1129  * Why is this OK?
1130  *  1 - Only the ACCESS time is ever updated outside of a transaction.
1131  *  2 - Multiple consecutive updates will be collapsed into a single
1132  *	znode update by the transaction grouping semantics of the DMU.
1133  */
1134 void
1135 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx)
1136 {
1137 	mutex_enter(&zp->z_lock);
1138 	zfs_time_stamper_locked(zp, flag, tx);
1139 	mutex_exit(&zp->z_lock);
1140 }
1141 
1142 /*
1143  * Grow the block size for a file.
1144  *
1145  *	IN:	zp	- znode of file to free data in.
1146  *		size	- requested block size
1147  *		tx	- open transaction.
1148  *
1149  * NOTE: this function assumes that the znode is write locked.
1150  */
1151 void
1152 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1153 {
1154 	int		error;
1155 	u_longlong_t	dummy;
1156 
1157 	if (size <= zp->z_blksz)
1158 		return;
1159 	/*
1160 	 * If the file size is already greater than the current blocksize,
1161 	 * we will not grow.  If there is more than one block in a file,
1162 	 * the blocksize cannot change.
1163 	 */
1164 	if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz)
1165 		return;
1166 
1167 	error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
1168 	    size, 0, tx);
1169 	if (error == ENOTSUP)
1170 		return;
1171 	ASSERT3U(error, ==, 0);
1172 
1173 	/* What blocksize did we actually get? */
1174 	dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy);
1175 }
1176 
1177 /*
1178  * This is a dummy interface used when pvn_vplist_dirty() should *not*
1179  * be calling back into the fs for a putpage().  E.g.: when truncating
1180  * a file, the pages being "thrown away* don't need to be written out.
1181  */
1182 /* ARGSUSED */
1183 static int
1184 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
1185     int flags, cred_t *cr)
1186 {
1187 	ASSERT(0);
1188 	return (0);
1189 }
1190 
1191 /*
1192  * Increase the file length
1193  *
1194  *	IN:	zp	- znode of file to free data in.
1195  *		end	- new end-of-file
1196  *
1197  * 	RETURN:	0 if success
1198  *		error code if failure
1199  */
1200 static int
1201 zfs_extend(znode_t *zp, uint64_t end)
1202 {
1203 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1204 	dmu_tx_t *tx;
1205 	rl_t *rl;
1206 	uint64_t newblksz;
1207 	int error;
1208 
1209 	/*
1210 	 * We will change zp_size, lock the whole file.
1211 	 */
1212 	rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1213 
1214 	/*
1215 	 * Nothing to do if file already at desired length.
1216 	 */
1217 	if (end <= zp->z_phys->zp_size) {
1218 		zfs_range_unlock(rl);
1219 		return (0);
1220 	}
1221 top:
1222 	tx = dmu_tx_create(zfsvfs->z_os);
1223 	dmu_tx_hold_bonus(tx, zp->z_id);
1224 	if (end > zp->z_blksz &&
1225 	    (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
1226 		/*
1227 		 * We are growing the file past the current block size.
1228 		 */
1229 		if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
1230 			ASSERT(!ISP2(zp->z_blksz));
1231 			newblksz = MIN(end, SPA_MAXBLOCKSIZE);
1232 		} else {
1233 			newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
1234 		}
1235 		dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1236 	} else {
1237 		newblksz = 0;
1238 	}
1239 
1240 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1241 	if (error) {
1242 		if (error == ERESTART) {
1243 			dmu_tx_wait(tx);
1244 			dmu_tx_abort(tx);
1245 			goto top;
1246 		}
1247 		dmu_tx_abort(tx);
1248 		zfs_range_unlock(rl);
1249 		return (error);
1250 	}
1251 	dmu_buf_will_dirty(zp->z_dbuf, tx);
1252 
1253 	if (newblksz)
1254 		zfs_grow_blocksize(zp, newblksz, tx);
1255 
1256 	zp->z_phys->zp_size = end;
1257 
1258 	zfs_range_unlock(rl);
1259 
1260 	dmu_tx_commit(tx);
1261 
1262 	return (0);
1263 }
1264 
1265 /*
1266  * Free space in a file.
1267  *
1268  *	IN:	zp	- znode of file to free data in.
1269  *		off	- start of section to free.
1270  *		len	- length of section to free.
1271  *
1272  * 	RETURN:	0 if success
1273  *		error code if failure
1274  */
1275 static int
1276 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1277 {
1278 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1279 	rl_t *rl;
1280 	int error;
1281 
1282 	/*
1283 	 * Lock the range being freed.
1284 	 */
1285 	rl = zfs_range_lock(zp, off, len, RL_WRITER);
1286 
1287 	/*
1288 	 * Nothing to do if file already at desired length.
1289 	 */
1290 	if (off >= zp->z_phys->zp_size) {
1291 		zfs_range_unlock(rl);
1292 		return (0);
1293 	}
1294 
1295 	if (off + len > zp->z_phys->zp_size)
1296 		len = zp->z_phys->zp_size - off;
1297 
1298 	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
1299 
1300 	zfs_range_unlock(rl);
1301 
1302 	return (error);
1303 }
1304 
1305 /*
1306  * Truncate a file
1307  *
1308  *	IN:	zp	- znode of file to free data in.
1309  *		end	- new end-of-file.
1310  *
1311  * 	RETURN:	0 if success
1312  *		error code if failure
1313  */
1314 static int
1315 zfs_trunc(znode_t *zp, uint64_t end)
1316 {
1317 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1318 	vnode_t *vp = ZTOV(zp);
1319 	dmu_tx_t *tx;
1320 	rl_t *rl;
1321 	int error;
1322 
1323 	/*
1324 	 * We will change zp_size, lock the whole file.
1325 	 */
1326 	rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1327 
1328 	/*
1329 	 * Nothing to do if file already at desired length.
1330 	 */
1331 	if (end >= zp->z_phys->zp_size) {
1332 		zfs_range_unlock(rl);
1333 		return (0);
1334 	}
1335 
1336 	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end,  -1);
1337 	if (error) {
1338 		zfs_range_unlock(rl);
1339 		return (error);
1340 	}
1341 top:
1342 	tx = dmu_tx_create(zfsvfs->z_os);
1343 	dmu_tx_hold_bonus(tx, zp->z_id);
1344 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1345 	if (error) {
1346 		if (error == ERESTART) {
1347 			dmu_tx_wait(tx);
1348 			dmu_tx_abort(tx);
1349 			goto top;
1350 		}
1351 		dmu_tx_abort(tx);
1352 		zfs_range_unlock(rl);
1353 		return (error);
1354 	}
1355 	dmu_buf_will_dirty(zp->z_dbuf, tx);
1356 
1357 	zp->z_phys->zp_size = end;
1358 
1359 	dmu_tx_commit(tx);
1360 
1361 	/*
1362 	 * Clear any mapped pages in the truncated region.  This has to
1363 	 * happen outside of the transaction to avoid the possibility of
1364 	 * a deadlock with someone trying to push a page that we are
1365 	 * about to invalidate.
1366 	 */
1367 	if (vn_has_cached_data(vp)) {
1368 		page_t *pp;
1369 		uint64_t start = end & PAGEMASK;
1370 		int poff = end & PAGEOFFSET;
1371 
1372 		if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) {
1373 			/*
1374 			 * We need to zero a partial page.
1375 			 */
1376 			pagezero(pp, poff, PAGESIZE - poff);
1377 			start += PAGESIZE;
1378 			page_unlock(pp);
1379 		}
1380 		error = pvn_vplist_dirty(vp, start, zfs_no_putpage,
1381 		    B_INVAL | B_TRUNC, NULL);
1382 		ASSERT(error == 0);
1383 	}
1384 
1385 	zfs_range_unlock(rl);
1386 
1387 	return (0);
1388 }
1389 
1390 /*
1391  * Free space in a file
1392  *
1393  *	IN:	zp	- znode of file to free data in.
1394  *		off	- start of range
1395  *		len	- end of range (0 => EOF)
1396  *		flag	- current file open mode flags.
1397  *		log	- TRUE if this action should be logged
1398  *
1399  * 	RETURN:	0 if success
1400  *		error code if failure
1401  */
1402 int
1403 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1404 {
1405 	vnode_t *vp = ZTOV(zp);
1406 	dmu_tx_t *tx;
1407 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1408 	zilog_t *zilog = zfsvfs->z_log;
1409 	int error;
1410 
1411 	if (off > zp->z_phys->zp_size) {
1412 		error =  zfs_extend(zp, off+len);
1413 		if (error == 0 && log)
1414 			goto log;
1415 		else
1416 			return (error);
1417 	}
1418 
1419 	/*
1420 	 * Check for any locks in the region to be freed.
1421 	 */
1422 	if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) {
1423 		uint64_t length = (len ? len : zp->z_phys->zp_size - off);
1424 		if (error = chklock(vp, FWRITE, off, length, flag, NULL))
1425 			return (error);
1426 	}
1427 
1428 	if (len == 0) {
1429 		error = zfs_trunc(zp, off);
1430 	} else {
1431 		if ((error = zfs_free_range(zp, off, len)) == 0 &&
1432 		    off + len > zp->z_phys->zp_size)
1433 			error = zfs_extend(zp, off+len);
1434 	}
1435 	if (error || !log)
1436 		return (error);
1437 log:
1438 	tx = dmu_tx_create(zfsvfs->z_os);
1439 	dmu_tx_hold_bonus(tx, zp->z_id);
1440 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1441 	if (error) {
1442 		if (error == ERESTART) {
1443 			dmu_tx_wait(tx);
1444 			dmu_tx_abort(tx);
1445 			goto log;
1446 		}
1447 		dmu_tx_abort(tx);
1448 		return (error);
1449 	}
1450 
1451 	zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
1452 	zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1453 
1454 	dmu_tx_commit(tx);
1455 	return (0);
1456 }
1457 
1458 void
1459 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
1460 {
1461 	zfsvfs_t	zfsvfs;
1462 	uint64_t	moid, obj, version;
1463 	uint64_t	sense = ZFS_CASE_SENSITIVE;
1464 	uint64_t	norm = 0;
1465 	nvpair_t	*elem;
1466 	int		error;
1467 	znode_t		*rootzp = NULL;
1468 	vnode_t		*vp;
1469 	vattr_t		vattr;
1470 	znode_t		*zp;
1471 	zfs_acl_ids_t	acl_ids;
1472 
1473 	/*
1474 	 * First attempt to create master node.
1475 	 */
1476 	/*
1477 	 * In an empty objset, there are no blocks to read and thus
1478 	 * there can be no i/o errors (which we assert below).
1479 	 */
1480 	moid = MASTER_NODE_OBJ;
1481 	error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1482 	    DMU_OT_NONE, 0, tx);
1483 	ASSERT(error == 0);
1484 
1485 	/*
1486 	 * Set starting attributes.
1487 	 */
1488 	if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_USERSPACE)
1489 		version = ZPL_VERSION;
1490 	else if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID)
1491 		version = ZPL_VERSION_USERSPACE - 1;
1492 	else
1493 		version = ZPL_VERSION_FUID - 1;
1494 	elem = NULL;
1495 	while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
1496 		/* For the moment we expect all zpl props to be uint64_ts */
1497 		uint64_t val;
1498 		char *name;
1499 
1500 		ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
1501 		VERIFY(nvpair_value_uint64(elem, &val) == 0);
1502 		name = nvpair_name(elem);
1503 		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
1504 			if (val < version)
1505 				version = val;
1506 		} else {
1507 			error = zap_update(os, moid, name, 8, 1, &val, tx);
1508 		}
1509 		ASSERT(error == 0);
1510 		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
1511 			norm = val;
1512 		else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
1513 			sense = val;
1514 	}
1515 	ASSERT(version != 0);
1516 	error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
1517 
1518 	/*
1519 	 * Create a delete queue.
1520 	 */
1521 	obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1522 
1523 	error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
1524 	ASSERT(error == 0);
1525 
1526 	/*
1527 	 * Create root znode.  Create minimal znode/vnode/zfsvfs
1528 	 * to allow zfs_mknode to work.
1529 	 */
1530 	vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
1531 	vattr.va_type = VDIR;
1532 	vattr.va_mode = S_IFDIR|0755;
1533 	vattr.va_uid = crgetuid(cr);
1534 	vattr.va_gid = crgetgid(cr);
1535 
1536 	rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1537 	rootzp->z_unlinked = 0;
1538 	rootzp->z_atime_dirty = 0;
1539 
1540 	vp = ZTOV(rootzp);
1541 	vn_reinit(vp);
1542 	vp->v_type = VDIR;
1543 
1544 	bzero(&zfsvfs, sizeof (zfsvfs_t));
1545 
1546 	zfsvfs.z_os = os;
1547 	zfsvfs.z_parent = &zfsvfs;
1548 	zfsvfs.z_version = version;
1549 	zfsvfs.z_use_fuids = USE_FUIDS(version, os);
1550 	zfsvfs.z_norm = norm;
1551 	/*
1552 	 * Fold case on file systems that are always or sometimes case
1553 	 * insensitive.
1554 	 */
1555 	if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
1556 		zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER;
1557 
1558 	mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1559 	list_create(&zfsvfs.z_all_znodes, sizeof (znode_t),
1560 	    offsetof(znode_t, z_link_node));
1561 
1562 	ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs));
1563 	rootzp->z_zfsvfs = &zfsvfs;
1564 	VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
1565 	    cr, NULL, &acl_ids));
1566 	zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, 0, &acl_ids);
1567 	ASSERT3P(zp, ==, rootzp);
1568 	ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */
1569 	error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
1570 	ASSERT(error == 0);
1571 	zfs_acl_ids_free(&acl_ids);
1572 	POINTER_INVALIDATE(&rootzp->z_zfsvfs);
1573 
1574 	ZTOV(rootzp)->v_count = 0;
1575 	dmu_buf_rele(rootzp->z_dbuf, NULL);
1576 	rootzp->z_dbuf = NULL;
1577 	kmem_cache_free(znode_cache, rootzp);
1578 
1579 	/*
1580 	 * Create shares directory
1581 	 */
1582 
1583 	error = zfs_create_share_dir(&zfsvfs, tx);
1584 
1585 	ASSERT(error == 0);
1586 }
1587 
1588 #endif /* _KERNEL */
1589 /*
1590  * Given an object number, return its parent object number and whether
1591  * or not the object is an extended attribute directory.
1592  */
1593 static int
1594 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir)
1595 {
1596 	dmu_buf_t *db;
1597 	dmu_object_info_t doi;
1598 	znode_phys_t *zp;
1599 	int error;
1600 
1601 	if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0)
1602 		return (error);
1603 
1604 	dmu_object_info_from_db(db, &doi);
1605 	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
1606 	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
1607 		dmu_buf_rele(db, FTAG);
1608 		return (EINVAL);
1609 	}
1610 
1611 	zp = db->db_data;
1612 	*pobjp = zp->zp_parent;
1613 	*is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) &&
1614 	    S_ISDIR(zp->zp_mode);
1615 	dmu_buf_rele(db, FTAG);
1616 
1617 	return (0);
1618 }
1619 
1620 int
1621 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
1622 {
1623 	char *path = buf + len - 1;
1624 	int error;
1625 
1626 	*path = '\0';
1627 
1628 	for (;;) {
1629 		uint64_t pobj;
1630 		char component[MAXNAMELEN + 2];
1631 		size_t complen;
1632 		int is_xattrdir;
1633 
1634 		if ((error = zfs_obj_to_pobj(osp, obj, &pobj,
1635 		    &is_xattrdir)) != 0)
1636 			break;
1637 
1638 		if (pobj == obj) {
1639 			if (path[0] != '/')
1640 				*--path = '/';
1641 			break;
1642 		}
1643 
1644 		component[0] = '/';
1645 		if (is_xattrdir) {
1646 			(void) sprintf(component + 1, "<xattrdir>");
1647 		} else {
1648 			error = zap_value_search(osp, pobj, obj,
1649 			    ZFS_DIRENT_OBJ(-1ULL), component + 1);
1650 			if (error != 0)
1651 				break;
1652 		}
1653 
1654 		complen = strlen(component);
1655 		path -= complen;
1656 		ASSERT(path >= buf);
1657 		bcopy(component, path, complen);
1658 		obj = pobj;
1659 	}
1660 
1661 	if (error == 0)
1662 		(void) memmove(buf, path, buf + len - path);
1663 	return (error);
1664 }
1665