1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #ifdef _KERNEL 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/time.h> 32 #include <sys/systm.h> 33 #include <sys/sysmacros.h> 34 #include <sys/resource.h> 35 #include <sys/mntent.h> 36 #include <sys/mkdev.h> 37 #include <sys/u8_textprep.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/kmem.h> 44 #include <sys/errno.h> 45 #include <sys/unistd.h> 46 #include <sys/mode.h> 47 #include <sys/atomic.h> 48 #include <vm/pvn.h> 49 #include "fs/fs_subr.h" 50 #include <sys/zfs_dir.h> 51 #include <sys/zfs_acl.h> 52 #include <sys/zfs_ioctl.h> 53 #include <sys/zfs_rlock.h> 54 #include <sys/zfs_fuid.h> 55 #include <sys/fs/zfs.h> 56 #include <sys/kidmap.h> 57 #endif /* _KERNEL */ 58 59 #include <sys/dmu.h> 60 #include <sys/refcount.h> 61 #include <sys/stat.h> 62 #include <sys/zap.h> 63 #include <sys/zfs_znode.h> 64 65 #include "zfs_prop.h" 66 67 /* 68 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only 69 * turned on when DEBUG is also defined. 70 */ 71 #ifdef DEBUG 72 #define ZNODE_STATS 73 #endif /* DEBUG */ 74 75 #ifdef ZNODE_STATS 76 #define ZNODE_STAT_ADD(stat) ((stat)++) 77 #else 78 #define ZNODE_STAT_ADD(stat) /* nothing */ 79 #endif /* ZNODE_STATS */ 80 81 #define POINTER_IS_VALID(p) (!((uintptr_t)(p) & 0x3)) 82 #define POINTER_INVALIDATE(pp) (*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1)) 83 84 /* 85 * Functions needed for userland (ie: libzpool) are not put under 86 * #ifdef_KERNEL; the rest of the functions have dependencies 87 * (such as VFS logic) that will not compile easily in userland. 88 */ 89 #ifdef _KERNEL 90 /* 91 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to 92 * be freed before it can be safely accessed. 93 */ 94 krwlock_t zfsvfs_lock; 95 96 static kmem_cache_t *znode_cache = NULL; 97 98 /*ARGSUSED*/ 99 static void 100 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) 101 { 102 /* 103 * We should never drop all dbuf refs without first clearing 104 * the eviction callback. 105 */ 106 panic("evicting znode %p\n", user_ptr); 107 } 108 109 /*ARGSUSED*/ 110 static int 111 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) 112 { 113 znode_t *zp = buf; 114 115 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 116 117 zp->z_vnode = vn_alloc(kmflags); 118 if (zp->z_vnode == NULL) { 119 return (-1); 120 } 121 ZTOV(zp)->v_data = zp; 122 123 list_link_init(&zp->z_link_node); 124 125 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 126 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 127 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 128 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 129 130 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 131 avl_create(&zp->z_range_avl, zfs_range_compare, 132 sizeof (rl_t), offsetof(rl_t, r_node)); 133 134 zp->z_dbuf = NULL; 135 zp->z_dirlocks = NULL; 136 zp->z_acl_cached = NULL; 137 return (0); 138 } 139 140 /*ARGSUSED*/ 141 static void 142 zfs_znode_cache_destructor(void *buf, void *arg) 143 { 144 znode_t *zp = buf; 145 146 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 147 ASSERT(ZTOV(zp)->v_data == zp); 148 vn_free(ZTOV(zp)); 149 ASSERT(!list_link_active(&zp->z_link_node)); 150 mutex_destroy(&zp->z_lock); 151 rw_destroy(&zp->z_parent_lock); 152 rw_destroy(&zp->z_name_lock); 153 mutex_destroy(&zp->z_acl_lock); 154 avl_destroy(&zp->z_range_avl); 155 mutex_destroy(&zp->z_range_lock); 156 157 ASSERT(zp->z_dbuf == NULL); 158 ASSERT(zp->z_dirlocks == NULL); 159 ASSERT(zp->z_acl_cached == NULL); 160 } 161 162 #ifdef ZNODE_STATS 163 static struct { 164 uint64_t zms_zfsvfs_invalid; 165 uint64_t zms_zfsvfs_recheck1; 166 uint64_t zms_zfsvfs_unmounted; 167 uint64_t zms_zfsvfs_recheck2; 168 uint64_t zms_obj_held; 169 uint64_t zms_vnode_locked; 170 uint64_t zms_not_only_dnlc; 171 } znode_move_stats; 172 #endif /* ZNODE_STATS */ 173 174 static void 175 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) 176 { 177 vnode_t *vp; 178 179 /* Copy fields. */ 180 nzp->z_zfsvfs = ozp->z_zfsvfs; 181 182 /* Swap vnodes. */ 183 vp = nzp->z_vnode; 184 nzp->z_vnode = ozp->z_vnode; 185 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ 186 ZTOV(ozp)->v_data = ozp; 187 ZTOV(nzp)->v_data = nzp; 188 189 nzp->z_id = ozp->z_id; 190 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ 191 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0); 192 nzp->z_unlinked = ozp->z_unlinked; 193 nzp->z_atime_dirty = ozp->z_atime_dirty; 194 nzp->z_zn_prefetch = ozp->z_zn_prefetch; 195 nzp->z_blksz = ozp->z_blksz; 196 nzp->z_seq = ozp->z_seq; 197 nzp->z_mapcnt = ozp->z_mapcnt; 198 nzp->z_last_itx = ozp->z_last_itx; 199 nzp->z_gen = ozp->z_gen; 200 nzp->z_sync_cnt = ozp->z_sync_cnt; 201 nzp->z_phys = ozp->z_phys; 202 nzp->z_dbuf = ozp->z_dbuf; 203 204 /* 205 * Release any cached ACL, since it *may* have 206 * zfs_acl_node_t's that directly references an 207 * embedded ACL in the zp_acl of the old znode_phys_t 208 * 209 * It will be recached the next time the ACL is needed. 210 */ 211 if (ozp->z_acl_cached) { 212 zfs_acl_free(ozp->z_acl_cached); 213 ozp->z_acl_cached = NULL; 214 } 215 216 /* Update back pointers. */ 217 (void) dmu_buf_update_user(nzp->z_dbuf, ozp, nzp, &nzp->z_phys, 218 znode_evict_error); 219 220 /* 221 * Invalidate the original znode by clearing fields that provide a 222 * pointer back to the znode. Set the low bit of the vfs pointer to 223 * ensure that zfs_znode_move() recognizes the znode as invalid in any 224 * subsequent callback. 225 */ 226 ozp->z_dbuf = NULL; 227 POINTER_INVALIDATE(&ozp->z_zfsvfs); 228 } 229 230 /*ARGSUSED*/ 231 static kmem_cbrc_t 232 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) 233 { 234 znode_t *ozp = buf, *nzp = newbuf; 235 zfsvfs_t *zfsvfs; 236 vnode_t *vp; 237 238 /* 239 * The znode is on the file system's list of known znodes if the vfs 240 * pointer is valid. We set the low bit of the vfs pointer when freeing 241 * the znode to invalidate it, and the memory patterns written by kmem 242 * (baddcafe and deadbeef) set at least one of the two low bits. A newly 243 * created znode sets the vfs pointer last of all to indicate that the 244 * znode is known and in a valid state to be moved by this function. 245 */ 246 zfsvfs = ozp->z_zfsvfs; 247 if (!POINTER_IS_VALID(zfsvfs)) { 248 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); 249 return (KMEM_CBRC_DONT_KNOW); 250 } 251 252 /* 253 * Close a small window in which it's possible that the filesystem could 254 * be unmounted and freed, and zfsvfs, though valid in the previous 255 * statement, could point to unrelated memory by the time we try to 256 * prevent the filesystem from being unmounted. 257 */ 258 rw_enter(&zfsvfs_lock, RW_WRITER); 259 if (zfsvfs != ozp->z_zfsvfs) { 260 rw_exit(&zfsvfs_lock); 261 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1); 262 return (KMEM_CBRC_DONT_KNOW); 263 } 264 265 /* 266 * If the znode is still valid, then so is the file system. We know that 267 * no valid file system can be freed while we hold zfsvfs_lock, so we 268 * can safely ensure that the filesystem is not and will not be 269 * unmounted. The next statement is equivalent to ZFS_ENTER(). 270 */ 271 rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG); 272 if (zfsvfs->z_unmounted) { 273 ZFS_EXIT(zfsvfs); 274 rw_exit(&zfsvfs_lock); 275 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); 276 return (KMEM_CBRC_DONT_KNOW); 277 } 278 rw_exit(&zfsvfs_lock); 279 280 mutex_enter(&zfsvfs->z_znodes_lock); 281 /* 282 * Recheck the vfs pointer in case the znode was removed just before 283 * acquiring the lock. 284 */ 285 if (zfsvfs != ozp->z_zfsvfs) { 286 mutex_exit(&zfsvfs->z_znodes_lock); 287 ZFS_EXIT(zfsvfs); 288 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2); 289 return (KMEM_CBRC_DONT_KNOW); 290 } 291 292 /* 293 * At this point we know that as long as we hold z_znodes_lock, the 294 * znode cannot be freed and fields within the znode can be safely 295 * accessed. Now, prevent a race with zfs_zget(). 296 */ 297 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) { 298 mutex_exit(&zfsvfs->z_znodes_lock); 299 ZFS_EXIT(zfsvfs); 300 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held); 301 return (KMEM_CBRC_LATER); 302 } 303 304 vp = ZTOV(ozp); 305 if (mutex_tryenter(&vp->v_lock) == 0) { 306 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 307 mutex_exit(&zfsvfs->z_znodes_lock); 308 ZFS_EXIT(zfsvfs); 309 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); 310 return (KMEM_CBRC_LATER); 311 } 312 313 /* Only move znodes that are referenced _only_ by the DNLC. */ 314 if (vp->v_count != 1 || !vn_in_dnlc(vp)) { 315 mutex_exit(&vp->v_lock); 316 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 317 mutex_exit(&zfsvfs->z_znodes_lock); 318 ZFS_EXIT(zfsvfs); 319 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc); 320 return (KMEM_CBRC_LATER); 321 } 322 323 /* 324 * The znode is known and in a valid state to move. We're holding the 325 * locks needed to execute the critical section. 326 */ 327 zfs_znode_move_impl(ozp, nzp); 328 mutex_exit(&vp->v_lock); 329 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 330 331 list_link_replace(&ozp->z_link_node, &nzp->z_link_node); 332 mutex_exit(&zfsvfs->z_znodes_lock); 333 ZFS_EXIT(zfsvfs); 334 335 return (KMEM_CBRC_YES); 336 } 337 338 void 339 zfs_znode_init(void) 340 { 341 /* 342 * Initialize zcache 343 */ 344 rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL); 345 ASSERT(znode_cache == NULL); 346 znode_cache = kmem_cache_create("zfs_znode_cache", 347 sizeof (znode_t), 0, zfs_znode_cache_constructor, 348 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 349 kmem_cache_set_move(znode_cache, zfs_znode_move); 350 } 351 352 void 353 zfs_znode_fini(void) 354 { 355 /* 356 * Cleanup vfs & vnode ops 357 */ 358 zfs_remove_op_tables(); 359 360 /* 361 * Cleanup zcache 362 */ 363 if (znode_cache) 364 kmem_cache_destroy(znode_cache); 365 znode_cache = NULL; 366 rw_destroy(&zfsvfs_lock); 367 } 368 369 struct vnodeops *zfs_dvnodeops; 370 struct vnodeops *zfs_fvnodeops; 371 struct vnodeops *zfs_symvnodeops; 372 struct vnodeops *zfs_xdvnodeops; 373 struct vnodeops *zfs_evnodeops; 374 struct vnodeops *zfs_sharevnodeops; 375 376 void 377 zfs_remove_op_tables() 378 { 379 /* 380 * Remove vfs ops 381 */ 382 ASSERT(zfsfstype); 383 (void) vfs_freevfsops_by_type(zfsfstype); 384 zfsfstype = 0; 385 386 /* 387 * Remove vnode ops 388 */ 389 if (zfs_dvnodeops) 390 vn_freevnodeops(zfs_dvnodeops); 391 if (zfs_fvnodeops) 392 vn_freevnodeops(zfs_fvnodeops); 393 if (zfs_symvnodeops) 394 vn_freevnodeops(zfs_symvnodeops); 395 if (zfs_xdvnodeops) 396 vn_freevnodeops(zfs_xdvnodeops); 397 if (zfs_evnodeops) 398 vn_freevnodeops(zfs_evnodeops); 399 if (zfs_sharevnodeops) 400 vn_freevnodeops(zfs_sharevnodeops); 401 402 zfs_dvnodeops = NULL; 403 zfs_fvnodeops = NULL; 404 zfs_symvnodeops = NULL; 405 zfs_xdvnodeops = NULL; 406 zfs_evnodeops = NULL; 407 zfs_sharevnodeops = NULL; 408 } 409 410 extern const fs_operation_def_t zfs_dvnodeops_template[]; 411 extern const fs_operation_def_t zfs_fvnodeops_template[]; 412 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 413 extern const fs_operation_def_t zfs_symvnodeops_template[]; 414 extern const fs_operation_def_t zfs_evnodeops_template[]; 415 extern const fs_operation_def_t zfs_sharevnodeops_template[]; 416 417 int 418 zfs_create_op_tables() 419 { 420 int error; 421 422 /* 423 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 424 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 425 * In this case we just return as the ops vectors are already set up. 426 */ 427 if (zfs_dvnodeops) 428 return (0); 429 430 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 431 &zfs_dvnodeops); 432 if (error) 433 return (error); 434 435 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 436 &zfs_fvnodeops); 437 if (error) 438 return (error); 439 440 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 441 &zfs_symvnodeops); 442 if (error) 443 return (error); 444 445 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 446 &zfs_xdvnodeops); 447 if (error) 448 return (error); 449 450 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 451 &zfs_evnodeops); 452 if (error) 453 return (error); 454 455 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template, 456 &zfs_sharevnodeops); 457 458 return (error); 459 } 460 461 int 462 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 463 { 464 zfs_acl_ids_t acl_ids; 465 vattr_t vattr; 466 znode_t *sharezp; 467 vnode_t *vp; 468 znode_t *zp; 469 int error; 470 471 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 472 vattr.va_type = VDIR; 473 vattr.va_mode = S_IFDIR|0555; 474 vattr.va_uid = crgetuid(kcred); 475 vattr.va_gid = crgetgid(kcred); 476 477 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP); 478 sharezp->z_unlinked = 0; 479 sharezp->z_atime_dirty = 0; 480 sharezp->z_zfsvfs = zfsvfs; 481 482 vp = ZTOV(sharezp); 483 vn_reinit(vp); 484 vp->v_type = VDIR; 485 486 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr, 487 kcred, NULL, &acl_ids)); 488 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, 489 &zp, 0, &acl_ids); 490 ASSERT3P(zp, ==, sharezp); 491 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */ 492 POINTER_INVALIDATE(&sharezp->z_zfsvfs); 493 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 494 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx); 495 zfsvfs->z_shares_dir = sharezp->z_id; 496 497 zfs_acl_ids_free(&acl_ids); 498 ZTOV(sharezp)->v_count = 0; 499 dmu_buf_rele(sharezp->z_dbuf, NULL); 500 sharezp->z_dbuf = NULL; 501 kmem_cache_free(znode_cache, sharezp); 502 503 return (error); 504 } 505 506 /* 507 * define a couple of values we need available 508 * for both 64 and 32 bit environments. 509 */ 510 #ifndef NBITSMINOR64 511 #define NBITSMINOR64 32 512 #endif 513 #ifndef MAXMAJ64 514 #define MAXMAJ64 0xffffffffUL 515 #endif 516 #ifndef MAXMIN64 517 #define MAXMIN64 0xffffffffUL 518 #endif 519 520 /* 521 * Create special expldev for ZFS private use. 522 * Can't use standard expldev since it doesn't do 523 * what we want. The standard expldev() takes a 524 * dev32_t in LP64 and expands it to a long dev_t. 525 * We need an interface that takes a dev32_t in ILP32 526 * and expands it to a long dev_t. 527 */ 528 static uint64_t 529 zfs_expldev(dev_t dev) 530 { 531 #ifndef _LP64 532 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 533 return (((uint64_t)major << NBITSMINOR64) | 534 ((minor_t)dev & MAXMIN32)); 535 #else 536 return (dev); 537 #endif 538 } 539 540 /* 541 * Special cmpldev for ZFS private use. 542 * Can't use standard cmpldev since it takes 543 * a long dev_t and compresses it to dev32_t in 544 * LP64. We need to do a compaction of a long dev_t 545 * to a dev32_t in ILP32. 546 */ 547 dev_t 548 zfs_cmpldev(uint64_t dev) 549 { 550 #ifndef _LP64 551 minor_t minor = (minor_t)dev & MAXMIN64; 552 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 553 554 if (major > MAXMAJ32 || minor > MAXMIN32) 555 return (NODEV32); 556 557 return (((dev32_t)major << NBITSMINOR32) | minor); 558 #else 559 return (dev); 560 #endif 561 } 562 563 static void 564 zfs_znode_dmu_init(zfsvfs_t *zfsvfs, znode_t *zp, dmu_buf_t *db) 565 { 566 znode_t *nzp; 567 568 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); 569 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); 570 571 mutex_enter(&zp->z_lock); 572 573 ASSERT(zp->z_dbuf == NULL); 574 zp->z_dbuf = db; 575 nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_evict_error); 576 577 /* 578 * there should be no 579 * concurrent zgets on this object. 580 */ 581 if (nzp != NULL) 582 panic("existing znode %p for dbuf %p", (void *)nzp, (void *)db); 583 584 /* 585 * Slap on VROOT if we are the root znode 586 */ 587 if (zp->z_id == zfsvfs->z_root) 588 ZTOV(zp)->v_flag |= VROOT; 589 590 mutex_exit(&zp->z_lock); 591 vn_exists(ZTOV(zp)); 592 } 593 594 void 595 zfs_znode_dmu_fini(znode_t *zp) 596 { 597 dmu_buf_t *db = zp->z_dbuf; 598 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || 599 zp->z_unlinked || 600 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); 601 ASSERT(zp->z_dbuf != NULL); 602 zp->z_dbuf = NULL; 603 VERIFY(zp == dmu_buf_update_user(db, zp, NULL, NULL, NULL)); 604 dmu_buf_rele(db, NULL); 605 } 606 607 /* 608 * Construct a new znode/vnode and intialize. 609 * 610 * This does not do a call to dmu_set_user() that is 611 * up to the caller to do, in case you don't want to 612 * return the znode 613 */ 614 static znode_t * 615 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz) 616 { 617 znode_t *zp; 618 vnode_t *vp; 619 620 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 621 622 ASSERT(zp->z_dirlocks == NULL); 623 ASSERT(zp->z_dbuf == NULL); 624 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 625 626 /* 627 * Defer setting z_zfsvfs until the znode is ready to be a candidate for 628 * the zfs_znode_move() callback. 629 */ 630 zp->z_phys = NULL; 631 zp->z_unlinked = 0; 632 zp->z_atime_dirty = 0; 633 zp->z_mapcnt = 0; 634 zp->z_last_itx = 0; 635 zp->z_id = db->db_object; 636 zp->z_blksz = blksz; 637 zp->z_seq = 0x7A4653; 638 zp->z_sync_cnt = 0; 639 640 vp = ZTOV(zp); 641 vn_reinit(vp); 642 643 zfs_znode_dmu_init(zfsvfs, zp, db); 644 645 zp->z_gen = zp->z_phys->zp_gen; 646 647 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 648 vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode); 649 650 switch (vp->v_type) { 651 case VDIR: 652 if (zp->z_phys->zp_flags & ZFS_XATTR) { 653 vn_setops(vp, zfs_xdvnodeops); 654 vp->v_flag |= V_XATTRDIR; 655 } else { 656 vn_setops(vp, zfs_dvnodeops); 657 } 658 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 659 break; 660 case VBLK: 661 case VCHR: 662 vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev); 663 /*FALLTHROUGH*/ 664 case VFIFO: 665 case VSOCK: 666 case VDOOR: 667 vn_setops(vp, zfs_fvnodeops); 668 break; 669 case VREG: 670 vp->v_flag |= VMODSORT; 671 if (zp->z_phys->zp_parent == zfsvfs->z_shares_dir) 672 vn_setops(vp, zfs_sharevnodeops); 673 else 674 vn_setops(vp, zfs_fvnodeops); 675 break; 676 case VLNK: 677 vn_setops(vp, zfs_symvnodeops); 678 break; 679 default: 680 vn_setops(vp, zfs_evnodeops); 681 break; 682 } 683 684 mutex_enter(&zfsvfs->z_znodes_lock); 685 list_insert_tail(&zfsvfs->z_all_znodes, zp); 686 membar_producer(); 687 /* 688 * Everything else must be valid before assigning z_zfsvfs makes the 689 * znode eligible for zfs_znode_move(). 690 */ 691 zp->z_zfsvfs = zfsvfs; 692 mutex_exit(&zfsvfs->z_znodes_lock); 693 694 VFS_HOLD(zfsvfs->z_vfs); 695 return (zp); 696 } 697 698 /* 699 * Create a new DMU object to hold a zfs znode. 700 * 701 * IN: dzp - parent directory for new znode 702 * vap - file attributes for new znode 703 * tx - dmu transaction id for zap operations 704 * cr - credentials of caller 705 * flag - flags: 706 * IS_ROOT_NODE - new object will be root 707 * IS_XATTR - new object is an attribute 708 * IS_REPLAY - intent log replay 709 * bonuslen - length of bonus buffer 710 * setaclp - File/Dir initial ACL 711 * fuidp - Tracks fuid allocation. 712 * 713 * OUT: zpp - allocated znode 714 * 715 */ 716 void 717 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 718 uint_t flag, znode_t **zpp, int bonuslen, zfs_acl_ids_t *acl_ids) 719 { 720 dmu_buf_t *db; 721 znode_phys_t *pzp; 722 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 723 timestruc_t now; 724 uint64_t gen, obj; 725 int err; 726 727 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 728 729 if (zfsvfs->z_replay) { 730 obj = vap->va_nodeid; 731 flag |= IS_REPLAY; 732 now = vap->va_ctime; /* see zfs_replay_create() */ 733 gen = vap->va_nblocks; /* ditto */ 734 } else { 735 obj = 0; 736 gethrestime(&now); 737 gen = dmu_tx_get_txg(tx); 738 } 739 740 /* 741 * Create a new DMU object. 742 */ 743 /* 744 * There's currently no mechanism for pre-reading the blocks that will 745 * be to needed allocate a new object, so we accept the small chance 746 * that there will be an i/o error and we will fail one of the 747 * assertions below. 748 */ 749 if (vap->va_type == VDIR) { 750 if (flag & IS_REPLAY) { 751 err = zap_create_claim_norm(zfsvfs->z_os, obj, 752 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 753 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 754 ASSERT3U(err, ==, 0); 755 } else { 756 obj = zap_create_norm(zfsvfs->z_os, 757 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 758 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 759 } 760 } else { 761 if (flag & IS_REPLAY) { 762 err = dmu_object_claim(zfsvfs->z_os, obj, 763 DMU_OT_PLAIN_FILE_CONTENTS, 0, 764 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 765 ASSERT3U(err, ==, 0); 766 } else { 767 obj = dmu_object_alloc(zfsvfs->z_os, 768 DMU_OT_PLAIN_FILE_CONTENTS, 0, 769 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 770 } 771 } 772 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, obj, NULL, &db)); 773 dmu_buf_will_dirty(db, tx); 774 775 /* 776 * Initialize the znode physical data to zero. 777 */ 778 ASSERT(db->db_size >= sizeof (znode_phys_t)); 779 bzero(db->db_data, db->db_size); 780 pzp = db->db_data; 781 782 /* 783 * If this is the root, fix up the half-initialized parent pointer 784 * to reference the just-allocated physical data area. 785 */ 786 if (flag & IS_ROOT_NODE) { 787 dzp->z_dbuf = db; 788 dzp->z_phys = pzp; 789 dzp->z_id = obj; 790 } 791 792 /* 793 * If parent is an xattr, so am I. 794 */ 795 if (dzp->z_phys->zp_flags & ZFS_XATTR) 796 flag |= IS_XATTR; 797 798 if (vap->va_type == VBLK || vap->va_type == VCHR) { 799 pzp->zp_rdev = zfs_expldev(vap->va_rdev); 800 } 801 802 if (zfsvfs->z_use_fuids) 803 pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 804 805 if (vap->va_type == VDIR) { 806 pzp->zp_size = 2; /* contents ("." and "..") */ 807 pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 808 } 809 810 pzp->zp_parent = dzp->z_id; 811 if (flag & IS_XATTR) 812 pzp->zp_flags |= ZFS_XATTR; 813 814 pzp->zp_gen = gen; 815 816 ZFS_TIME_ENCODE(&now, pzp->zp_crtime); 817 ZFS_TIME_ENCODE(&now, pzp->zp_ctime); 818 819 if (vap->va_mask & AT_ATIME) { 820 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 821 } else { 822 ZFS_TIME_ENCODE(&now, pzp->zp_atime); 823 } 824 825 if (vap->va_mask & AT_MTIME) { 826 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 827 } else { 828 ZFS_TIME_ENCODE(&now, pzp->zp_mtime); 829 } 830 831 pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode); 832 if (!(flag & IS_ROOT_NODE)) { 833 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 834 *zpp = zfs_znode_alloc(zfsvfs, db, 0); 835 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 836 } else { 837 /* 838 * If we are creating the root node, the "parent" we 839 * passed in is the znode for the root. 840 */ 841 *zpp = dzp; 842 } 843 pzp->zp_uid = acl_ids->z_fuid; 844 pzp->zp_gid = acl_ids->z_fgid; 845 pzp->zp_mode = acl_ids->z_mode; 846 VERIFY(0 == zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx)); 847 if (vap->va_mask & AT_XVATTR) 848 zfs_xvattr_set(*zpp, (xvattr_t *)vap); 849 } 850 851 void 852 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap) 853 { 854 xoptattr_t *xoap; 855 856 xoap = xva_getxoptattr(xvap); 857 ASSERT(xoap); 858 859 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 860 ZFS_TIME_ENCODE(&xoap->xoa_createtime, zp->z_phys->zp_crtime); 861 XVA_SET_RTN(xvap, XAT_CREATETIME); 862 } 863 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 864 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly); 865 XVA_SET_RTN(xvap, XAT_READONLY); 866 } 867 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 868 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden); 869 XVA_SET_RTN(xvap, XAT_HIDDEN); 870 } 871 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 872 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system); 873 XVA_SET_RTN(xvap, XAT_SYSTEM); 874 } 875 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 876 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive); 877 XVA_SET_RTN(xvap, XAT_ARCHIVE); 878 } 879 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 880 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable); 881 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 882 } 883 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 884 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink); 885 XVA_SET_RTN(xvap, XAT_NOUNLINK); 886 } 887 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 888 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly); 889 XVA_SET_RTN(xvap, XAT_APPENDONLY); 890 } 891 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 892 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump); 893 XVA_SET_RTN(xvap, XAT_NODUMP); 894 } 895 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 896 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque); 897 XVA_SET_RTN(xvap, XAT_OPAQUE); 898 } 899 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 900 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 901 xoap->xoa_av_quarantined); 902 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 903 } 904 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 905 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified); 906 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 907 } 908 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 909 (void) memcpy(zp->z_phys + 1, xoap->xoa_av_scanstamp, 910 sizeof (xoap->xoa_av_scanstamp)); 911 zp->z_phys->zp_flags |= ZFS_BONUS_SCANSTAMP; 912 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 913 } 914 } 915 916 int 917 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 918 { 919 dmu_object_info_t doi; 920 dmu_buf_t *db; 921 znode_t *zp; 922 int err; 923 924 *zpp = NULL; 925 926 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 927 928 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 929 if (err) { 930 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 931 return (err); 932 } 933 934 dmu_object_info_from_db(db, &doi); 935 if (doi.doi_bonus_type != DMU_OT_ZNODE || 936 doi.doi_bonus_size < sizeof (znode_phys_t)) { 937 dmu_buf_rele(db, NULL); 938 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 939 return (EINVAL); 940 } 941 942 zp = dmu_buf_get_user(db); 943 if (zp != NULL) { 944 mutex_enter(&zp->z_lock); 945 946 /* 947 * Since we do immediate eviction of the z_dbuf, we 948 * should never find a dbuf with a znode that doesn't 949 * know about the dbuf. 950 */ 951 ASSERT3P(zp->z_dbuf, ==, db); 952 ASSERT3U(zp->z_id, ==, obj_num); 953 if (zp->z_unlinked) { 954 err = ENOENT; 955 } else { 956 VN_HOLD(ZTOV(zp)); 957 *zpp = zp; 958 err = 0; 959 } 960 dmu_buf_rele(db, NULL); 961 mutex_exit(&zp->z_lock); 962 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 963 return (err); 964 } 965 966 /* 967 * Not found create new znode/vnode 968 */ 969 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size); 970 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 971 *zpp = zp; 972 return (0); 973 } 974 975 int 976 zfs_rezget(znode_t *zp) 977 { 978 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 979 dmu_object_info_t doi; 980 dmu_buf_t *db; 981 uint64_t obj_num = zp->z_id; 982 int err; 983 984 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 985 986 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 987 if (err) { 988 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 989 return (err); 990 } 991 992 dmu_object_info_from_db(db, &doi); 993 if (doi.doi_bonus_type != DMU_OT_ZNODE || 994 doi.doi_bonus_size < sizeof (znode_phys_t)) { 995 dmu_buf_rele(db, NULL); 996 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 997 return (EINVAL); 998 } 999 1000 if (((znode_phys_t *)db->db_data)->zp_gen != zp->z_gen) { 1001 dmu_buf_rele(db, NULL); 1002 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1003 return (EIO); 1004 } 1005 1006 zfs_znode_dmu_init(zfsvfs, zp, db); 1007 zp->z_unlinked = (zp->z_phys->zp_links == 0); 1008 zp->z_blksz = doi.doi_data_block_size; 1009 1010 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1011 1012 return (0); 1013 } 1014 1015 void 1016 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 1017 { 1018 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1019 objset_t *os = zfsvfs->z_os; 1020 uint64_t obj = zp->z_id; 1021 uint64_t acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj; 1022 1023 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 1024 if (acl_obj) 1025 VERIFY(0 == dmu_object_free(os, acl_obj, tx)); 1026 VERIFY(0 == dmu_object_free(os, obj, tx)); 1027 zfs_znode_dmu_fini(zp); 1028 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1029 zfs_znode_free(zp); 1030 } 1031 1032 void 1033 zfs_zinactive(znode_t *zp) 1034 { 1035 vnode_t *vp = ZTOV(zp); 1036 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1037 uint64_t z_id = zp->z_id; 1038 1039 ASSERT(zp->z_dbuf && zp->z_phys); 1040 1041 /* 1042 * Don't allow a zfs_zget() while were trying to release this znode 1043 */ 1044 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 1045 1046 mutex_enter(&zp->z_lock); 1047 mutex_enter(&vp->v_lock); 1048 vp->v_count--; 1049 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 1050 /* 1051 * If the hold count is greater than zero, somebody has 1052 * obtained a new reference on this znode while we were 1053 * processing it here, so we are done. If we still have 1054 * mapped pages then we are also done, since we don't 1055 * want to inactivate the znode until the pages get pushed. 1056 * 1057 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 1058 * this seems like it would leave the znode hanging with 1059 * no chance to go inactive... 1060 */ 1061 mutex_exit(&vp->v_lock); 1062 mutex_exit(&zp->z_lock); 1063 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1064 return; 1065 } 1066 mutex_exit(&vp->v_lock); 1067 1068 /* 1069 * If this was the last reference to a file with no links, 1070 * remove the file from the file system. 1071 */ 1072 if (zp->z_unlinked) { 1073 mutex_exit(&zp->z_lock); 1074 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1075 zfs_rmnode(zp); 1076 return; 1077 } 1078 mutex_exit(&zp->z_lock); 1079 zfs_znode_dmu_fini(zp); 1080 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1081 zfs_znode_free(zp); 1082 } 1083 1084 void 1085 zfs_znode_free(znode_t *zp) 1086 { 1087 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1088 1089 vn_invalid(ZTOV(zp)); 1090 1091 ASSERT(ZTOV(zp)->v_count == 0); 1092 1093 mutex_enter(&zfsvfs->z_znodes_lock); 1094 POINTER_INVALIDATE(&zp->z_zfsvfs); 1095 list_remove(&zfsvfs->z_all_znodes, zp); 1096 mutex_exit(&zfsvfs->z_znodes_lock); 1097 1098 if (zp->z_acl_cached) { 1099 zfs_acl_free(zp->z_acl_cached); 1100 zp->z_acl_cached = NULL; 1101 } 1102 1103 kmem_cache_free(znode_cache, zp); 1104 1105 VFS_RELE(zfsvfs->z_vfs); 1106 } 1107 1108 void 1109 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx) 1110 { 1111 timestruc_t now; 1112 1113 ASSERT(MUTEX_HELD(&zp->z_lock)); 1114 1115 gethrestime(&now); 1116 1117 if (tx) { 1118 dmu_buf_will_dirty(zp->z_dbuf, tx); 1119 zp->z_atime_dirty = 0; 1120 zp->z_seq++; 1121 } else { 1122 zp->z_atime_dirty = 1; 1123 } 1124 1125 if (flag & AT_ATIME) 1126 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime); 1127 1128 if (flag & AT_MTIME) { 1129 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime); 1130 if (zp->z_zfsvfs->z_use_fuids) 1131 zp->z_phys->zp_flags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED); 1132 } 1133 1134 if (flag & AT_CTIME) { 1135 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime); 1136 if (zp->z_zfsvfs->z_use_fuids) 1137 zp->z_phys->zp_flags |= ZFS_ARCHIVE; 1138 } 1139 } 1140 1141 /* 1142 * Update the requested znode timestamps with the current time. 1143 * If we are in a transaction, then go ahead and mark the znode 1144 * dirty in the transaction so the timestamps will go to disk. 1145 * Otherwise, we will get pushed next time the znode is updated 1146 * in a transaction, or when this znode eventually goes inactive. 1147 * 1148 * Why is this OK? 1149 * 1 - Only the ACCESS time is ever updated outside of a transaction. 1150 * 2 - Multiple consecutive updates will be collapsed into a single 1151 * znode update by the transaction grouping semantics of the DMU. 1152 */ 1153 void 1154 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx) 1155 { 1156 mutex_enter(&zp->z_lock); 1157 zfs_time_stamper_locked(zp, flag, tx); 1158 mutex_exit(&zp->z_lock); 1159 } 1160 1161 /* 1162 * Grow the block size for a file. 1163 * 1164 * IN: zp - znode of file to free data in. 1165 * size - requested block size 1166 * tx - open transaction. 1167 * 1168 * NOTE: this function assumes that the znode is write locked. 1169 */ 1170 void 1171 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 1172 { 1173 int error; 1174 u_longlong_t dummy; 1175 1176 if (size <= zp->z_blksz) 1177 return; 1178 /* 1179 * If the file size is already greater than the current blocksize, 1180 * we will not grow. If there is more than one block in a file, 1181 * the blocksize cannot change. 1182 */ 1183 if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz) 1184 return; 1185 1186 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1187 size, 0, tx); 1188 if (error == ENOTSUP) 1189 return; 1190 ASSERT3U(error, ==, 0); 1191 1192 /* What blocksize did we actually get? */ 1193 dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy); 1194 } 1195 1196 /* 1197 * This is a dummy interface used when pvn_vplist_dirty() should *not* 1198 * be calling back into the fs for a putpage(). E.g.: when truncating 1199 * a file, the pages being "thrown away* don't need to be written out. 1200 */ 1201 /* ARGSUSED */ 1202 static int 1203 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1204 int flags, cred_t *cr) 1205 { 1206 ASSERT(0); 1207 return (0); 1208 } 1209 1210 /* 1211 * Increase the file length 1212 * 1213 * IN: zp - znode of file to free data in. 1214 * end - new end-of-file 1215 * 1216 * RETURN: 0 if success 1217 * error code if failure 1218 */ 1219 static int 1220 zfs_extend(znode_t *zp, uint64_t end) 1221 { 1222 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1223 dmu_tx_t *tx; 1224 rl_t *rl; 1225 uint64_t newblksz; 1226 int error; 1227 1228 /* 1229 * We will change zp_size, lock the whole file. 1230 */ 1231 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1232 1233 /* 1234 * Nothing to do if file already at desired length. 1235 */ 1236 if (end <= zp->z_phys->zp_size) { 1237 zfs_range_unlock(rl); 1238 return (0); 1239 } 1240 top: 1241 tx = dmu_tx_create(zfsvfs->z_os); 1242 dmu_tx_hold_bonus(tx, zp->z_id); 1243 if (end > zp->z_blksz && 1244 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1245 /* 1246 * We are growing the file past the current block size. 1247 */ 1248 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1249 ASSERT(!ISP2(zp->z_blksz)); 1250 newblksz = MIN(end, SPA_MAXBLOCKSIZE); 1251 } else { 1252 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1253 } 1254 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); 1255 } else { 1256 newblksz = 0; 1257 } 1258 1259 error = dmu_tx_assign(tx, TXG_NOWAIT); 1260 if (error) { 1261 if (error == ERESTART) { 1262 dmu_tx_wait(tx); 1263 dmu_tx_abort(tx); 1264 goto top; 1265 } 1266 dmu_tx_abort(tx); 1267 zfs_range_unlock(rl); 1268 return (error); 1269 } 1270 dmu_buf_will_dirty(zp->z_dbuf, tx); 1271 1272 if (newblksz) 1273 zfs_grow_blocksize(zp, newblksz, tx); 1274 1275 zp->z_phys->zp_size = end; 1276 1277 zfs_range_unlock(rl); 1278 1279 dmu_tx_commit(tx); 1280 1281 return (0); 1282 } 1283 1284 /* 1285 * Free space in a file. 1286 * 1287 * IN: zp - znode of file to free data in. 1288 * off - start of section to free. 1289 * len - length of section to free. 1290 * 1291 * RETURN: 0 if success 1292 * error code if failure 1293 */ 1294 static int 1295 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) 1296 { 1297 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1298 rl_t *rl; 1299 int error; 1300 1301 /* 1302 * Lock the range being freed. 1303 */ 1304 rl = zfs_range_lock(zp, off, len, RL_WRITER); 1305 1306 /* 1307 * Nothing to do if file already at desired length. 1308 */ 1309 if (off >= zp->z_phys->zp_size) { 1310 zfs_range_unlock(rl); 1311 return (0); 1312 } 1313 1314 if (off + len > zp->z_phys->zp_size) 1315 len = zp->z_phys->zp_size - off; 1316 1317 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); 1318 1319 zfs_range_unlock(rl); 1320 1321 return (error); 1322 } 1323 1324 /* 1325 * Truncate a file 1326 * 1327 * IN: zp - znode of file to free data in. 1328 * end - new end-of-file. 1329 * 1330 * RETURN: 0 if success 1331 * error code if failure 1332 */ 1333 static int 1334 zfs_trunc(znode_t *zp, uint64_t end) 1335 { 1336 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1337 vnode_t *vp = ZTOV(zp); 1338 dmu_tx_t *tx; 1339 rl_t *rl; 1340 int error; 1341 1342 /* 1343 * We will change zp_size, lock the whole file. 1344 */ 1345 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1346 1347 /* 1348 * Nothing to do if file already at desired length. 1349 */ 1350 if (end >= zp->z_phys->zp_size) { 1351 zfs_range_unlock(rl); 1352 return (0); 1353 } 1354 1355 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); 1356 if (error) { 1357 zfs_range_unlock(rl); 1358 return (error); 1359 } 1360 top: 1361 tx = dmu_tx_create(zfsvfs->z_os); 1362 dmu_tx_hold_bonus(tx, zp->z_id); 1363 error = dmu_tx_assign(tx, TXG_NOWAIT); 1364 if (error) { 1365 if (error == ERESTART) { 1366 dmu_tx_wait(tx); 1367 dmu_tx_abort(tx); 1368 goto top; 1369 } 1370 dmu_tx_abort(tx); 1371 zfs_range_unlock(rl); 1372 return (error); 1373 } 1374 dmu_buf_will_dirty(zp->z_dbuf, tx); 1375 1376 zp->z_phys->zp_size = end; 1377 1378 dmu_tx_commit(tx); 1379 1380 /* 1381 * Clear any mapped pages in the truncated region. This has to 1382 * happen outside of the transaction to avoid the possibility of 1383 * a deadlock with someone trying to push a page that we are 1384 * about to invalidate. 1385 */ 1386 if (vn_has_cached_data(vp)) { 1387 page_t *pp; 1388 uint64_t start = end & PAGEMASK; 1389 int poff = end & PAGEOFFSET; 1390 1391 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1392 /* 1393 * We need to zero a partial page. 1394 */ 1395 pagezero(pp, poff, PAGESIZE - poff); 1396 start += PAGESIZE; 1397 page_unlock(pp); 1398 } 1399 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1400 B_INVAL | B_TRUNC, NULL); 1401 ASSERT(error == 0); 1402 } 1403 1404 zfs_range_unlock(rl); 1405 1406 return (0); 1407 } 1408 1409 /* 1410 * Free space in a file 1411 * 1412 * IN: zp - znode of file to free data in. 1413 * off - start of range 1414 * len - end of range (0 => EOF) 1415 * flag - current file open mode flags. 1416 * log - TRUE if this action should be logged 1417 * 1418 * RETURN: 0 if success 1419 * error code if failure 1420 */ 1421 int 1422 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1423 { 1424 vnode_t *vp = ZTOV(zp); 1425 dmu_tx_t *tx; 1426 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1427 zilog_t *zilog = zfsvfs->z_log; 1428 int error; 1429 1430 if (off > zp->z_phys->zp_size) { 1431 error = zfs_extend(zp, off+len); 1432 if (error == 0 && log) 1433 goto log; 1434 else 1435 return (error); 1436 } 1437 1438 /* 1439 * Check for any locks in the region to be freed. 1440 */ 1441 if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) { 1442 uint64_t length = (len ? len : zp->z_phys->zp_size - off); 1443 if (error = chklock(vp, FWRITE, off, length, flag, NULL)) 1444 return (error); 1445 } 1446 1447 if (len == 0) { 1448 error = zfs_trunc(zp, off); 1449 } else { 1450 if ((error = zfs_free_range(zp, off, len)) == 0 && 1451 off + len > zp->z_phys->zp_size) 1452 error = zfs_extend(zp, off+len); 1453 } 1454 if (error || !log) 1455 return (error); 1456 log: 1457 tx = dmu_tx_create(zfsvfs->z_os); 1458 dmu_tx_hold_bonus(tx, zp->z_id); 1459 error = dmu_tx_assign(tx, TXG_NOWAIT); 1460 if (error) { 1461 if (error == ERESTART) { 1462 dmu_tx_wait(tx); 1463 dmu_tx_abort(tx); 1464 goto log; 1465 } 1466 dmu_tx_abort(tx); 1467 return (error); 1468 } 1469 1470 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 1471 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1472 1473 dmu_tx_commit(tx); 1474 return (0); 1475 } 1476 1477 void 1478 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1479 { 1480 zfsvfs_t zfsvfs; 1481 uint64_t moid, obj, version; 1482 uint64_t sense = ZFS_CASE_SENSITIVE; 1483 uint64_t norm = 0; 1484 nvpair_t *elem; 1485 int error; 1486 znode_t *rootzp = NULL; 1487 vnode_t *vp; 1488 vattr_t vattr; 1489 znode_t *zp; 1490 zfs_acl_ids_t acl_ids; 1491 1492 /* 1493 * First attempt to create master node. 1494 */ 1495 /* 1496 * In an empty objset, there are no blocks to read and thus 1497 * there can be no i/o errors (which we assert below). 1498 */ 1499 moid = MASTER_NODE_OBJ; 1500 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1501 DMU_OT_NONE, 0, tx); 1502 ASSERT(error == 0); 1503 1504 /* 1505 * Set starting attributes. 1506 */ 1507 if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_USERSPACE) 1508 version = ZPL_VERSION; 1509 else if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID) 1510 version = ZPL_VERSION_USERSPACE - 1; 1511 else 1512 version = ZPL_VERSION_FUID - 1; 1513 elem = NULL; 1514 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1515 /* For the moment we expect all zpl props to be uint64_ts */ 1516 uint64_t val; 1517 char *name; 1518 1519 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1520 VERIFY(nvpair_value_uint64(elem, &val) == 0); 1521 name = nvpair_name(elem); 1522 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1523 if (val < version) 1524 version = val; 1525 } else { 1526 error = zap_update(os, moid, name, 8, 1, &val, tx); 1527 } 1528 ASSERT(error == 0); 1529 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1530 norm = val; 1531 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1532 sense = val; 1533 } 1534 ASSERT(version != 0); 1535 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx); 1536 1537 /* 1538 * Create a delete queue. 1539 */ 1540 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1541 1542 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx); 1543 ASSERT(error == 0); 1544 1545 /* 1546 * Create root znode. Create minimal znode/vnode/zfsvfs 1547 * to allow zfs_mknode to work. 1548 */ 1549 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1550 vattr.va_type = VDIR; 1551 vattr.va_mode = S_IFDIR|0755; 1552 vattr.va_uid = crgetuid(cr); 1553 vattr.va_gid = crgetgid(cr); 1554 1555 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1556 rootzp->z_unlinked = 0; 1557 rootzp->z_atime_dirty = 0; 1558 1559 vp = ZTOV(rootzp); 1560 vn_reinit(vp); 1561 vp->v_type = VDIR; 1562 1563 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1564 1565 zfsvfs.z_os = os; 1566 zfsvfs.z_parent = &zfsvfs; 1567 zfsvfs.z_version = version; 1568 zfsvfs.z_use_fuids = USE_FUIDS(version, os); 1569 zfsvfs.z_norm = norm; 1570 /* 1571 * Fold case on file systems that are always or sometimes case 1572 * insensitive. 1573 */ 1574 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1575 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER; 1576 1577 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1578 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1579 offsetof(znode_t, z_link_node)); 1580 1581 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); 1582 rootzp->z_zfsvfs = &zfsvfs; 1583 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr, 1584 cr, NULL, &acl_ids)); 1585 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, 0, &acl_ids); 1586 ASSERT3P(zp, ==, rootzp); 1587 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */ 1588 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1589 ASSERT(error == 0); 1590 zfs_acl_ids_free(&acl_ids); 1591 POINTER_INVALIDATE(&rootzp->z_zfsvfs); 1592 1593 ZTOV(rootzp)->v_count = 0; 1594 dmu_buf_rele(rootzp->z_dbuf, NULL); 1595 rootzp->z_dbuf = NULL; 1596 kmem_cache_free(znode_cache, rootzp); 1597 1598 /* 1599 * Create shares directory 1600 */ 1601 1602 error = zfs_create_share_dir(&zfsvfs, tx); 1603 1604 ASSERT(error == 0); 1605 } 1606 1607 #endif /* _KERNEL */ 1608 /* 1609 * Given an object number, return its parent object number and whether 1610 * or not the object is an extended attribute directory. 1611 */ 1612 static int 1613 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir) 1614 { 1615 dmu_buf_t *db; 1616 dmu_object_info_t doi; 1617 znode_phys_t *zp; 1618 int error; 1619 1620 if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0) 1621 return (error); 1622 1623 dmu_object_info_from_db(db, &doi); 1624 if (doi.doi_bonus_type != DMU_OT_ZNODE || 1625 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1626 dmu_buf_rele(db, FTAG); 1627 return (EINVAL); 1628 } 1629 1630 zp = db->db_data; 1631 *pobjp = zp->zp_parent; 1632 *is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) && 1633 S_ISDIR(zp->zp_mode); 1634 dmu_buf_rele(db, FTAG); 1635 1636 return (0); 1637 } 1638 1639 int 1640 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 1641 { 1642 char *path = buf + len - 1; 1643 int error; 1644 1645 *path = '\0'; 1646 1647 for (;;) { 1648 uint64_t pobj; 1649 char component[MAXNAMELEN + 2]; 1650 size_t complen; 1651 int is_xattrdir; 1652 1653 if ((error = zfs_obj_to_pobj(osp, obj, &pobj, 1654 &is_xattrdir)) != 0) 1655 break; 1656 1657 if (pobj == obj) { 1658 if (path[0] != '/') 1659 *--path = '/'; 1660 break; 1661 } 1662 1663 component[0] = '/'; 1664 if (is_xattrdir) { 1665 (void) sprintf(component + 1, "<xattrdir>"); 1666 } else { 1667 error = zap_value_search(osp, pobj, obj, 1668 ZFS_DIRENT_OBJ(-1ULL), component + 1); 1669 if (error != 0) 1670 break; 1671 } 1672 1673 complen = strlen(component); 1674 path -= complen; 1675 ASSERT(path >= buf); 1676 bcopy(component, path, complen); 1677 obj = pobj; 1678 } 1679 1680 if (error == 0) 1681 (void) memmove(buf, path, buf + len - path); 1682 return (error); 1683 } 1684