1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #ifdef _KERNEL 31 #include <sys/types.h> 32 #include <sys/param.h> 33 #include <sys/time.h> 34 #include <sys/systm.h> 35 #include <sys/sysmacros.h> 36 #include <sys/resource.h> 37 #include <sys/mntent.h> 38 #include <sys/mkdev.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/kmem.h> 44 #include <sys/cmn_err.h> 45 #include <sys/errno.h> 46 #include <sys/unistd.h> 47 #include <sys/mode.h> 48 #include <sys/atomic.h> 49 #include <vm/pvn.h> 50 #include "fs/fs_subr.h" 51 #include <sys/zfs_dir.h> 52 #include <sys/zfs_acl.h> 53 #include <sys/zfs_ioctl.h> 54 #include <sys/zfs_rlock.h> 55 #include <sys/fs/zfs.h> 56 #endif /* _KERNEL */ 57 58 #include <sys/dmu.h> 59 #include <sys/refcount.h> 60 #include <sys/stat.h> 61 #include <sys/zap.h> 62 #include <sys/zfs_znode.h> 63 64 /* 65 * Functions needed for userland (ie: libzpool) are not put under 66 * #ifdef_KERNEL; the rest of the functions have dependencies 67 * (such as VFS logic) that will not compile easily in userland. 68 */ 69 #ifdef _KERNEL 70 struct kmem_cache *znode_cache = NULL; 71 72 /*ARGSUSED*/ 73 static void 74 znode_pageout_func(dmu_buf_t *dbuf, void *user_ptr) 75 { 76 znode_t *zp = user_ptr; 77 vnode_t *vp = ZTOV(zp); 78 79 mutex_enter(&zp->z_lock); 80 if (vp->v_count == 0) { 81 mutex_exit(&zp->z_lock); 82 vn_invalid(vp); 83 zfs_znode_free(zp); 84 } else { 85 /* signal force unmount that this znode can be freed */ 86 zp->z_dbuf = NULL; 87 mutex_exit(&zp->z_lock); 88 } 89 } 90 91 /*ARGSUSED*/ 92 static int 93 zfs_znode_cache_constructor(void *buf, void *cdrarg, int kmflags) 94 { 95 znode_t *zp = buf; 96 97 zp->z_vnode = vn_alloc(KM_SLEEP); 98 zp->z_vnode->v_data = (caddr_t)zp; 99 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 100 rw_init(&zp->z_map_lock, NULL, RW_DEFAULT, NULL); 101 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 102 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 103 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 104 105 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 106 avl_create(&zp->z_range_avl, zfs_range_compare, 107 sizeof (rl_t), offsetof(rl_t, r_node)); 108 109 zp->z_dbuf_held = 0; 110 zp->z_dirlocks = 0; 111 return (0); 112 } 113 114 /*ARGSUSED*/ 115 static void 116 zfs_znode_cache_destructor(void *buf, void *cdarg) 117 { 118 znode_t *zp = buf; 119 120 ASSERT(zp->z_dirlocks == 0); 121 mutex_destroy(&zp->z_lock); 122 rw_destroy(&zp->z_map_lock); 123 rw_destroy(&zp->z_parent_lock); 124 rw_destroy(&zp->z_name_lock); 125 mutex_destroy(&zp->z_acl_lock); 126 avl_destroy(&zp->z_range_avl); 127 mutex_destroy(&zp->z_range_lock); 128 129 ASSERT(zp->z_dbuf_held == 0); 130 ASSERT(ZTOV(zp)->v_count == 0); 131 vn_free(ZTOV(zp)); 132 } 133 134 void 135 zfs_znode_init(void) 136 { 137 /* 138 * Initialize zcache 139 */ 140 ASSERT(znode_cache == NULL); 141 znode_cache = kmem_cache_create("zfs_znode_cache", 142 sizeof (znode_t), 0, zfs_znode_cache_constructor, 143 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 144 } 145 146 void 147 zfs_znode_fini(void) 148 { 149 /* 150 * Cleanup vfs & vnode ops 151 */ 152 zfs_remove_op_tables(); 153 154 /* 155 * Cleanup zcache 156 */ 157 if (znode_cache) 158 kmem_cache_destroy(znode_cache); 159 znode_cache = NULL; 160 } 161 162 struct vnodeops *zfs_dvnodeops; 163 struct vnodeops *zfs_fvnodeops; 164 struct vnodeops *zfs_symvnodeops; 165 struct vnodeops *zfs_xdvnodeops; 166 struct vnodeops *zfs_evnodeops; 167 168 void 169 zfs_remove_op_tables() 170 { 171 /* 172 * Remove vfs ops 173 */ 174 ASSERT(zfsfstype); 175 (void) vfs_freevfsops_by_type(zfsfstype); 176 zfsfstype = 0; 177 178 /* 179 * Remove vnode ops 180 */ 181 if (zfs_dvnodeops) 182 vn_freevnodeops(zfs_dvnodeops); 183 if (zfs_fvnodeops) 184 vn_freevnodeops(zfs_fvnodeops); 185 if (zfs_symvnodeops) 186 vn_freevnodeops(zfs_symvnodeops); 187 if (zfs_xdvnodeops) 188 vn_freevnodeops(zfs_xdvnodeops); 189 if (zfs_evnodeops) 190 vn_freevnodeops(zfs_evnodeops); 191 192 zfs_dvnodeops = NULL; 193 zfs_fvnodeops = NULL; 194 zfs_symvnodeops = NULL; 195 zfs_xdvnodeops = NULL; 196 zfs_evnodeops = NULL; 197 } 198 199 extern const fs_operation_def_t zfs_dvnodeops_template[]; 200 extern const fs_operation_def_t zfs_fvnodeops_template[]; 201 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 202 extern const fs_operation_def_t zfs_symvnodeops_template[]; 203 extern const fs_operation_def_t zfs_evnodeops_template[]; 204 205 int 206 zfs_create_op_tables() 207 { 208 int error; 209 210 /* 211 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 212 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 213 * In this case we just return as the ops vectors are already set up. 214 */ 215 if (zfs_dvnodeops) 216 return (0); 217 218 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 219 &zfs_dvnodeops); 220 if (error) 221 return (error); 222 223 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 224 &zfs_fvnodeops); 225 if (error) 226 return (error); 227 228 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 229 &zfs_symvnodeops); 230 if (error) 231 return (error); 232 233 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 234 &zfs_xdvnodeops); 235 if (error) 236 return (error); 237 238 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 239 &zfs_evnodeops); 240 241 return (error); 242 } 243 244 /* 245 * zfs_init_fs - Initialize the zfsvfs struct and the file system 246 * incore "master" object. Verify version compatibility. 247 */ 248 int 249 zfs_init_fs(zfsvfs_t *zfsvfs, znode_t **zpp, cred_t *cr) 250 { 251 extern int zfsfstype; 252 253 objset_t *os = zfsvfs->z_os; 254 int i, error; 255 dmu_object_info_t doi; 256 uint64_t fsid_guid; 257 258 *zpp = NULL; 259 260 /* 261 * XXX - hack to auto-create the pool root filesystem at 262 * the first attempted mount. 263 */ 264 if (dmu_object_info(os, MASTER_NODE_OBJ, &doi) == ENOENT) { 265 dmu_tx_t *tx = dmu_tx_create(os); 266 267 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* master */ 268 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* del queue */ 269 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); /* root node */ 270 error = dmu_tx_assign(tx, TXG_WAIT); 271 ASSERT3U(error, ==, 0); 272 zfs_create_fs(os, cr, ZPL_VERSION, tx); 273 dmu_tx_commit(tx); 274 } 275 276 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, 277 &zfsvfs->z_version); 278 if (error) { 279 return (error); 280 } else if (zfsvfs->z_version > ZPL_VERSION) { 281 (void) printf("Mismatched versions: File system " 282 "is version %lld on-disk format, which is " 283 "incompatible with this software version %lld!", 284 (u_longlong_t)zfsvfs->z_version, ZPL_VERSION); 285 return (ENOTSUP); 286 } 287 288 /* 289 * The fsid is 64 bits, composed of an 8-bit fs type, which 290 * separates our fsid from any other filesystem types, and a 291 * 56-bit objset unique ID. The objset unique ID is unique to 292 * all objsets open on this system, provided by unique_create(). 293 * The 8-bit fs type must be put in the low bits of fsid[1] 294 * because that's where other Solaris filesystems put it. 295 */ 296 fsid_guid = dmu_objset_fsid_guid(os); 297 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 298 zfsvfs->z_vfs->vfs_fsid.val[0] = fsid_guid; 299 zfsvfs->z_vfs->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 300 zfsfstype & 0xFF; 301 302 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 303 &zfsvfs->z_root); 304 if (error) 305 return (error); 306 ASSERT(zfsvfs->z_root != 0); 307 308 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 309 &zfsvfs->z_unlinkedobj); 310 if (error) 311 return (error); 312 313 /* 314 * Initialize zget mutex's 315 */ 316 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 317 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 318 319 error = zfs_zget(zfsvfs, zfsvfs->z_root, zpp); 320 if (error) { 321 /* 322 * On error, we destroy the mutexes here since it's not 323 * possible for the caller to determine if the mutexes were 324 * initialized properly. 325 */ 326 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 327 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 328 return (error); 329 } 330 ASSERT3U((*zpp)->z_id, ==, zfsvfs->z_root); 331 return (0); 332 } 333 334 /* 335 * define a couple of values we need available 336 * for both 64 and 32 bit environments. 337 */ 338 #ifndef NBITSMINOR64 339 #define NBITSMINOR64 32 340 #endif 341 #ifndef MAXMAJ64 342 #define MAXMAJ64 0xffffffffUL 343 #endif 344 #ifndef MAXMIN64 345 #define MAXMIN64 0xffffffffUL 346 #endif 347 348 /* 349 * Create special expldev for ZFS private use. 350 * Can't use standard expldev since it doesn't do 351 * what we want. The standard expldev() takes a 352 * dev32_t in LP64 and expands it to a long dev_t. 353 * We need an interface that takes a dev32_t in ILP32 354 * and expands it to a long dev_t. 355 */ 356 static uint64_t 357 zfs_expldev(dev_t dev) 358 { 359 #ifndef _LP64 360 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 361 return (((uint64_t)major << NBITSMINOR64) | 362 ((minor_t)dev & MAXMIN32)); 363 #else 364 return (dev); 365 #endif 366 } 367 368 /* 369 * Special cmpldev for ZFS private use. 370 * Can't use standard cmpldev since it takes 371 * a long dev_t and compresses it to dev32_t in 372 * LP64. We need to do a compaction of a long dev_t 373 * to a dev32_t in ILP32. 374 */ 375 dev_t 376 zfs_cmpldev(uint64_t dev) 377 { 378 #ifndef _LP64 379 minor_t minor = (minor_t)dev & MAXMIN64; 380 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 381 382 if (major > MAXMAJ32 || minor > MAXMIN32) 383 return (NODEV32); 384 385 return (((dev32_t)major << NBITSMINOR32) | minor); 386 #else 387 return (dev); 388 #endif 389 } 390 391 /* 392 * Construct a new znode/vnode and intialize. 393 * 394 * This does not do a call to dmu_set_user() that is 395 * up to the caller to do, in case you don't want to 396 * return the znode 397 */ 398 static znode_t * 399 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, uint64_t obj_num, int blksz) 400 { 401 znode_t *zp; 402 vnode_t *vp; 403 404 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 405 406 ASSERT(zp->z_dirlocks == NULL); 407 408 zp->z_phys = db->db_data; 409 zp->z_zfsvfs = zfsvfs; 410 zp->z_unlinked = 0; 411 zp->z_atime_dirty = 0; 412 zp->z_dbuf_held = 0; 413 zp->z_mapcnt = 0; 414 zp->z_last_itx = 0; 415 zp->z_dbuf = db; 416 zp->z_id = obj_num; 417 zp->z_blksz = blksz; 418 zp->z_seq = 0x7A4653; 419 zp->z_sync_cnt = 0; 420 421 mutex_enter(&zfsvfs->z_znodes_lock); 422 list_insert_tail(&zfsvfs->z_all_znodes, zp); 423 mutex_exit(&zfsvfs->z_znodes_lock); 424 425 vp = ZTOV(zp); 426 vn_reinit(vp); 427 428 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 429 vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode); 430 431 switch (vp->v_type) { 432 case VDIR: 433 if (zp->z_phys->zp_flags & ZFS_XATTR) { 434 vn_setops(vp, zfs_xdvnodeops); 435 vp->v_flag |= V_XATTRDIR; 436 } else 437 vn_setops(vp, zfs_dvnodeops); 438 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 439 break; 440 case VBLK: 441 case VCHR: 442 vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev); 443 /*FALLTHROUGH*/ 444 case VFIFO: 445 case VSOCK: 446 case VDOOR: 447 vn_setops(vp, zfs_fvnodeops); 448 break; 449 case VREG: 450 vp->v_flag |= VMODSORT; 451 vn_setops(vp, zfs_fvnodeops); 452 break; 453 case VLNK: 454 vn_setops(vp, zfs_symvnodeops); 455 break; 456 default: 457 vn_setops(vp, zfs_evnodeops); 458 break; 459 } 460 461 return (zp); 462 } 463 464 static void 465 zfs_znode_dmu_init(znode_t *zp) 466 { 467 znode_t *nzp; 468 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 469 dmu_buf_t *db = zp->z_dbuf; 470 471 mutex_enter(&zp->z_lock); 472 473 nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_pageout_func); 474 475 /* 476 * there should be no 477 * concurrent zgets on this object. 478 */ 479 ASSERT3P(nzp, ==, NULL); 480 481 /* 482 * Slap on VROOT if we are the root znode 483 */ 484 if (zp->z_id == zfsvfs->z_root) { 485 ZTOV(zp)->v_flag |= VROOT; 486 } 487 488 ASSERT(zp->z_dbuf_held == 0); 489 zp->z_dbuf_held = 1; 490 VFS_HOLD(zfsvfs->z_vfs); 491 mutex_exit(&zp->z_lock); 492 vn_exists(ZTOV(zp)); 493 } 494 495 /* 496 * Create a new DMU object to hold a zfs znode. 497 * 498 * IN: dzp - parent directory for new znode 499 * vap - file attributes for new znode 500 * tx - dmu transaction id for zap operations 501 * cr - credentials of caller 502 * flag - flags: 503 * IS_ROOT_NODE - new object will be root 504 * IS_XATTR - new object is an attribute 505 * IS_REPLAY - intent log replay 506 * 507 * OUT: oid - ID of created object 508 * 509 */ 510 void 511 zfs_mknode(znode_t *dzp, vattr_t *vap, uint64_t *oid, dmu_tx_t *tx, cred_t *cr, 512 uint_t flag, znode_t **zpp, int bonuslen) 513 { 514 dmu_buf_t *dbp; 515 znode_phys_t *pzp; 516 znode_t *zp; 517 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 518 timestruc_t now; 519 uint64_t gen; 520 int err; 521 522 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 523 524 if (zfsvfs->z_assign >= TXG_INITIAL) { /* ZIL replay */ 525 *oid = vap->va_nodeid; 526 flag |= IS_REPLAY; 527 now = vap->va_ctime; /* see zfs_replay_create() */ 528 gen = vap->va_nblocks; /* ditto */ 529 } else { 530 *oid = 0; 531 gethrestime(&now); 532 gen = dmu_tx_get_txg(tx); 533 } 534 535 /* 536 * Create a new DMU object. 537 */ 538 /* 539 * There's currently no mechanism for pre-reading the blocks that will 540 * be to needed allocate a new object, so we accept the small chance 541 * that there will be an i/o error and we will fail one of the 542 * assertions below. 543 */ 544 if (vap->va_type == VDIR) { 545 if (flag & IS_REPLAY) { 546 err = zap_create_claim(zfsvfs->z_os, *oid, 547 DMU_OT_DIRECTORY_CONTENTS, 548 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 549 ASSERT3U(err, ==, 0); 550 } else { 551 *oid = zap_create(zfsvfs->z_os, 552 DMU_OT_DIRECTORY_CONTENTS, 553 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 554 } 555 } else { 556 if (flag & IS_REPLAY) { 557 err = dmu_object_claim(zfsvfs->z_os, *oid, 558 DMU_OT_PLAIN_FILE_CONTENTS, 0, 559 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 560 ASSERT3U(err, ==, 0); 561 } else { 562 *oid = dmu_object_alloc(zfsvfs->z_os, 563 DMU_OT_PLAIN_FILE_CONTENTS, 0, 564 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 565 } 566 } 567 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, *oid, NULL, &dbp)); 568 dmu_buf_will_dirty(dbp, tx); 569 570 /* 571 * Initialize the znode physical data to zero. 572 */ 573 ASSERT(dbp->db_size >= sizeof (znode_phys_t)); 574 bzero(dbp->db_data, dbp->db_size); 575 pzp = dbp->db_data; 576 577 /* 578 * If this is the root, fix up the half-initialized parent pointer 579 * to reference the just-allocated physical data area. 580 */ 581 if (flag & IS_ROOT_NODE) { 582 dzp->z_phys = pzp; 583 dzp->z_id = *oid; 584 } 585 586 /* 587 * If parent is an xattr, so am I. 588 */ 589 if (dzp->z_phys->zp_flags & ZFS_XATTR) 590 flag |= IS_XATTR; 591 592 if (vap->va_type == VBLK || vap->va_type == VCHR) { 593 pzp->zp_rdev = zfs_expldev(vap->va_rdev); 594 } 595 596 if (vap->va_type == VDIR) { 597 pzp->zp_size = 2; /* contents ("." and "..") */ 598 pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 599 } 600 601 pzp->zp_parent = dzp->z_id; 602 if (flag & IS_XATTR) 603 pzp->zp_flags |= ZFS_XATTR; 604 605 pzp->zp_gen = gen; 606 607 ZFS_TIME_ENCODE(&now, pzp->zp_crtime); 608 ZFS_TIME_ENCODE(&now, pzp->zp_ctime); 609 610 if (vap->va_mask & AT_ATIME) { 611 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 612 } else { 613 ZFS_TIME_ENCODE(&now, pzp->zp_atime); 614 } 615 616 if (vap->va_mask & AT_MTIME) { 617 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 618 } else { 619 ZFS_TIME_ENCODE(&now, pzp->zp_mtime); 620 } 621 622 pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode); 623 zp = zfs_znode_alloc(zfsvfs, dbp, *oid, 0); 624 625 zfs_perm_init(zp, dzp, flag, vap, tx, cr); 626 627 if (zpp) { 628 kmutex_t *hash_mtx = ZFS_OBJ_MUTEX(zp); 629 630 mutex_enter(hash_mtx); 631 zfs_znode_dmu_init(zp); 632 mutex_exit(hash_mtx); 633 634 *zpp = zp; 635 } else { 636 ZTOV(zp)->v_count = 0; 637 dmu_buf_rele(dbp, NULL); 638 zfs_znode_free(zp); 639 } 640 } 641 642 int 643 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 644 { 645 dmu_object_info_t doi; 646 dmu_buf_t *db; 647 znode_t *zp; 648 int err; 649 650 *zpp = NULL; 651 652 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 653 654 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 655 if (err) { 656 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 657 return (err); 658 } 659 660 dmu_object_info_from_db(db, &doi); 661 if (doi.doi_bonus_type != DMU_OT_ZNODE || 662 doi.doi_bonus_size < sizeof (znode_phys_t)) { 663 dmu_buf_rele(db, NULL); 664 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 665 return (EINVAL); 666 } 667 668 ASSERT(db->db_object == obj_num); 669 ASSERT(db->db_offset == -1); 670 ASSERT(db->db_data != NULL); 671 672 zp = dmu_buf_get_user(db); 673 674 if (zp != NULL) { 675 mutex_enter(&zp->z_lock); 676 677 ASSERT3U(zp->z_id, ==, obj_num); 678 if (zp->z_unlinked) { 679 dmu_buf_rele(db, NULL); 680 mutex_exit(&zp->z_lock); 681 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 682 return (ENOENT); 683 } else if (zp->z_dbuf_held) { 684 dmu_buf_rele(db, NULL); 685 } else { 686 zp->z_dbuf_held = 1; 687 VFS_HOLD(zfsvfs->z_vfs); 688 } 689 690 691 VN_HOLD(ZTOV(zp)); 692 mutex_exit(&zp->z_lock); 693 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 694 *zpp = zp; 695 return (0); 696 } 697 698 /* 699 * Not found create new znode/vnode 700 */ 701 zp = zfs_znode_alloc(zfsvfs, db, obj_num, doi.doi_data_block_size); 702 ASSERT3U(zp->z_id, ==, obj_num); 703 zfs_znode_dmu_init(zp); 704 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 705 *zpp = zp; 706 return (0); 707 } 708 709 void 710 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 711 { 712 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 713 int error; 714 715 ZFS_OBJ_HOLD_ENTER(zfsvfs, zp->z_id); 716 if (zp->z_phys->zp_acl.z_acl_extern_obj) { 717 error = dmu_object_free(zfsvfs->z_os, 718 zp->z_phys->zp_acl.z_acl_extern_obj, tx); 719 ASSERT3U(error, ==, 0); 720 } 721 error = dmu_object_free(zfsvfs->z_os, zp->z_id, tx); 722 ASSERT3U(error, ==, 0); 723 zp->z_dbuf_held = 0; 724 ZFS_OBJ_HOLD_EXIT(zfsvfs, zp->z_id); 725 dmu_buf_rele(zp->z_dbuf, NULL); 726 } 727 728 void 729 zfs_zinactive(znode_t *zp) 730 { 731 vnode_t *vp = ZTOV(zp); 732 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 733 uint64_t z_id = zp->z_id; 734 735 ASSERT(zp->z_dbuf_held && zp->z_phys); 736 737 /* 738 * Don't allow a zfs_zget() while were trying to release this znode 739 */ 740 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 741 742 mutex_enter(&zp->z_lock); 743 mutex_enter(&vp->v_lock); 744 vp->v_count--; 745 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 746 /* 747 * If the hold count is greater than zero, somebody has 748 * obtained a new reference on this znode while we were 749 * processing it here, so we are done. If we still have 750 * mapped pages then we are also done, since we don't 751 * want to inactivate the znode until the pages get pushed. 752 * 753 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 754 * this seems like it would leave the znode hanging with 755 * no chance to go inactive... 756 */ 757 mutex_exit(&vp->v_lock); 758 mutex_exit(&zp->z_lock); 759 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 760 return; 761 } 762 mutex_exit(&vp->v_lock); 763 764 /* 765 * If this was the last reference to a file with no links, 766 * remove the file from the file system. 767 */ 768 if (zp->z_unlinked) { 769 mutex_exit(&zp->z_lock); 770 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 771 zfs_rmnode(zp); 772 VFS_RELE(zfsvfs->z_vfs); 773 return; 774 } 775 ASSERT(zp->z_phys); 776 ASSERT(zp->z_dbuf_held); 777 778 zp->z_dbuf_held = 0; 779 mutex_exit(&zp->z_lock); 780 dmu_buf_rele(zp->z_dbuf, NULL); 781 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 782 VFS_RELE(zfsvfs->z_vfs); 783 } 784 785 void 786 zfs_znode_free(znode_t *zp) 787 { 788 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 789 790 mutex_enter(&zfsvfs->z_znodes_lock); 791 list_remove(&zfsvfs->z_all_znodes, zp); 792 mutex_exit(&zfsvfs->z_znodes_lock); 793 794 kmem_cache_free(znode_cache, zp); 795 } 796 797 void 798 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx) 799 { 800 timestruc_t now; 801 802 ASSERT(MUTEX_HELD(&zp->z_lock)); 803 804 gethrestime(&now); 805 806 if (tx) { 807 dmu_buf_will_dirty(zp->z_dbuf, tx); 808 zp->z_atime_dirty = 0; 809 zp->z_seq++; 810 } else { 811 zp->z_atime_dirty = 1; 812 } 813 814 if (flag & AT_ATIME) 815 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime); 816 817 if (flag & AT_MTIME) 818 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime); 819 820 if (flag & AT_CTIME) 821 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime); 822 } 823 824 /* 825 * Update the requested znode timestamps with the current time. 826 * If we are in a transaction, then go ahead and mark the znode 827 * dirty in the transaction so the timestamps will go to disk. 828 * Otherwise, we will get pushed next time the znode is updated 829 * in a transaction, or when this znode eventually goes inactive. 830 * 831 * Why is this OK? 832 * 1 - Only the ACCESS time is ever updated outside of a transaction. 833 * 2 - Multiple consecutive updates will be collapsed into a single 834 * znode update by the transaction grouping semantics of the DMU. 835 */ 836 void 837 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx) 838 { 839 mutex_enter(&zp->z_lock); 840 zfs_time_stamper_locked(zp, flag, tx); 841 mutex_exit(&zp->z_lock); 842 } 843 844 /* 845 * Grow the block size for a file. 846 * 847 * IN: zp - znode of file to free data in. 848 * size - requested block size 849 * tx - open transaction. 850 * 851 * NOTE: this function assumes that the znode is write locked. 852 */ 853 void 854 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 855 { 856 int error; 857 u_longlong_t dummy; 858 859 if (size <= zp->z_blksz) 860 return; 861 /* 862 * If the file size is already greater than the current blocksize, 863 * we will not grow. If there is more than one block in a file, 864 * the blocksize cannot change. 865 */ 866 if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz) 867 return; 868 869 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 870 size, 0, tx); 871 if (error == ENOTSUP) 872 return; 873 ASSERT3U(error, ==, 0); 874 875 /* What blocksize did we actually get? */ 876 dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy); 877 } 878 879 /* 880 * This is a dummy interface used when pvn_vplist_dirty() should *not* 881 * be calling back into the fs for a putpage(). E.g.: when truncating 882 * a file, the pages being "thrown away* don't need to be written out. 883 */ 884 /* ARGSUSED */ 885 static int 886 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 887 int flags, cred_t *cr) 888 { 889 ASSERT(0); 890 return (0); 891 } 892 893 /* 894 * Free space in a file. 895 * 896 * IN: zp - znode of file to free data in. 897 * off - start of section to free. 898 * len - length of section to free (0 => to EOF). 899 * flag - current file open mode flags. 900 * 901 * RETURN: 0 if success 902 * error code if failure 903 */ 904 int 905 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 906 { 907 vnode_t *vp = ZTOV(zp); 908 dmu_tx_t *tx; 909 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 910 zilog_t *zilog = zfsvfs->z_log; 911 rl_t *rl; 912 uint64_t end = off + len; 913 uint64_t size, new_blksz; 914 int error; 915 916 if (ZTOV(zp)->v_type == VFIFO) 917 return (0); 918 919 /* 920 * If we will change zp_size then lock the whole file, 921 * otherwise just lock the range being freed. 922 */ 923 if (len == 0 || off + len > zp->z_phys->zp_size) { 924 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 925 } else { 926 rl = zfs_range_lock(zp, off, len, RL_WRITER); 927 /* recheck, in case zp_size changed */ 928 if (off + len > zp->z_phys->zp_size) { 929 /* lost race: file size changed, lock whole file */ 930 zfs_range_unlock(rl); 931 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 932 } 933 } 934 935 /* 936 * Nothing to do if file already at desired length. 937 */ 938 size = zp->z_phys->zp_size; 939 if (len == 0 && size == off && off != 0) { 940 zfs_range_unlock(rl); 941 return (0); 942 } 943 944 /* 945 * Check for any locks in the region to be freed. 946 */ 947 if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) { 948 uint64_t start = off; 949 uint64_t extent = len; 950 951 if (off > size) { 952 start = size; 953 extent += off - size; 954 } else if (len == 0) { 955 extent = size - off; 956 } 957 if (error = chklock(vp, FWRITE, start, extent, flag, NULL)) { 958 zfs_range_unlock(rl); 959 return (error); 960 } 961 } 962 963 tx = dmu_tx_create(zfsvfs->z_os); 964 dmu_tx_hold_bonus(tx, zp->z_id); 965 new_blksz = 0; 966 if (end > size && 967 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 968 /* 969 * We are growing the file past the current block size. 970 */ 971 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 972 ASSERT(!ISP2(zp->z_blksz)); 973 new_blksz = MIN(end, SPA_MAXBLOCKSIZE); 974 } else { 975 new_blksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 976 } 977 dmu_tx_hold_write(tx, zp->z_id, 0, MIN(end, new_blksz)); 978 } else if (off < size) { 979 /* 980 * If len == 0, we are truncating the file. 981 */ 982 dmu_tx_hold_free(tx, zp->z_id, off, len ? len : DMU_OBJECT_END); 983 } 984 985 error = dmu_tx_assign(tx, zfsvfs->z_assign); 986 if (error) { 987 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) 988 dmu_tx_wait(tx); 989 dmu_tx_abort(tx); 990 zfs_range_unlock(rl); 991 return (error); 992 } 993 994 if (new_blksz) 995 zfs_grow_blocksize(zp, new_blksz, tx); 996 997 if (end > size || len == 0) 998 zp->z_phys->zp_size = end; 999 1000 if (off < size) { 1001 objset_t *os = zfsvfs->z_os; 1002 uint64_t rlen = len; 1003 1004 if (len == 0) 1005 rlen = -1; 1006 else if (end > size) 1007 rlen = size - off; 1008 VERIFY(0 == dmu_free_range(os, zp->z_id, off, rlen, tx)); 1009 } 1010 1011 if (log) { 1012 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 1013 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1014 } 1015 1016 zfs_range_unlock(rl); 1017 1018 dmu_tx_commit(tx); 1019 1020 /* 1021 * Clear any mapped pages in the truncated region. This has to 1022 * happen outside of the transaction to avoid the possibility of 1023 * a deadlock with someone trying to push a page that we are 1024 * about to invalidate. 1025 */ 1026 rw_enter(&zp->z_map_lock, RW_WRITER); 1027 if (off < size && vn_has_cached_data(vp)) { 1028 page_t *pp; 1029 uint64_t start = off & PAGEMASK; 1030 int poff = off & PAGEOFFSET; 1031 1032 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1033 /* 1034 * We need to zero a partial page. 1035 */ 1036 pagezero(pp, poff, PAGESIZE - poff); 1037 start += PAGESIZE; 1038 page_unlock(pp); 1039 } 1040 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1041 B_INVAL | B_TRUNC, NULL); 1042 ASSERT(error == 0); 1043 } 1044 rw_exit(&zp->z_map_lock); 1045 1046 return (0); 1047 } 1048 1049 void 1050 zfs_create_fs(objset_t *os, cred_t *cr, uint64_t version, dmu_tx_t *tx) 1051 { 1052 zfsvfs_t zfsvfs; 1053 uint64_t moid, doid, roid = 0; 1054 int error; 1055 znode_t *rootzp = NULL; 1056 vnode_t *vp; 1057 vattr_t vattr; 1058 1059 /* 1060 * First attempt to create master node. 1061 */ 1062 /* 1063 * In an empty objset, there are no blocks to read and thus 1064 * there can be no i/o errors (which we assert below). 1065 */ 1066 moid = MASTER_NODE_OBJ; 1067 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1068 DMU_OT_NONE, 0, tx); 1069 ASSERT(error == 0); 1070 1071 /* 1072 * Set starting attributes. 1073 */ 1074 1075 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx); 1076 ASSERT(error == 0); 1077 1078 /* 1079 * Create a delete queue. 1080 */ 1081 doid = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1082 1083 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &doid, tx); 1084 ASSERT(error == 0); 1085 1086 /* 1087 * Create root znode. Create minimal znode/vnode/zfsvfs 1088 * to allow zfs_mknode to work. 1089 */ 1090 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1091 vattr.va_type = VDIR; 1092 vattr.va_mode = S_IFDIR|0755; 1093 vattr.va_uid = crgetuid(cr); 1094 vattr.va_gid = crgetgid(cr); 1095 1096 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1097 rootzp->z_zfsvfs = &zfsvfs; 1098 rootzp->z_unlinked = 0; 1099 rootzp->z_atime_dirty = 0; 1100 rootzp->z_dbuf_held = 0; 1101 1102 vp = ZTOV(rootzp); 1103 vn_reinit(vp); 1104 vp->v_type = VDIR; 1105 1106 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1107 1108 zfsvfs.z_os = os; 1109 zfsvfs.z_assign = TXG_NOWAIT; 1110 zfsvfs.z_parent = &zfsvfs; 1111 1112 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1113 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1114 offsetof(znode_t, z_link_node)); 1115 1116 zfs_mknode(rootzp, &vattr, &roid, tx, cr, IS_ROOT_NODE, NULL, 0); 1117 ASSERT3U(rootzp->z_id, ==, roid); 1118 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &roid, tx); 1119 ASSERT(error == 0); 1120 1121 ZTOV(rootzp)->v_count = 0; 1122 kmem_cache_free(znode_cache, rootzp); 1123 } 1124 #endif /* _KERNEL */ 1125 1126 /* 1127 * Given an object number, return its parent object number and whether 1128 * or not the object is an extended attribute directory. 1129 */ 1130 static int 1131 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir) 1132 { 1133 dmu_buf_t *db; 1134 dmu_object_info_t doi; 1135 znode_phys_t *zp; 1136 int error; 1137 1138 if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0) 1139 return (error); 1140 1141 dmu_object_info_from_db(db, &doi); 1142 if (doi.doi_bonus_type != DMU_OT_ZNODE || 1143 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1144 dmu_buf_rele(db, FTAG); 1145 return (EINVAL); 1146 } 1147 1148 zp = db->db_data; 1149 *pobjp = zp->zp_parent; 1150 *is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) && 1151 S_ISDIR(zp->zp_mode); 1152 dmu_buf_rele(db, FTAG); 1153 1154 return (0); 1155 } 1156 1157 int 1158 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 1159 { 1160 char *path = buf + len - 1; 1161 int error; 1162 1163 *path = '\0'; 1164 1165 for (;;) { 1166 uint64_t pobj; 1167 char component[MAXNAMELEN + 2]; 1168 size_t complen; 1169 int is_xattrdir; 1170 1171 if ((error = zfs_obj_to_pobj(osp, obj, &pobj, 1172 &is_xattrdir)) != 0) 1173 break; 1174 1175 if (pobj == obj) { 1176 if (path[0] != '/') 1177 *--path = '/'; 1178 break; 1179 } 1180 1181 component[0] = '/'; 1182 if (is_xattrdir) { 1183 (void) sprintf(component + 1, "<xattrdir>"); 1184 } else { 1185 error = zap_value_search(osp, pobj, obj, 1186 ZFS_DIRENT_OBJ(-1ULL), component + 1); 1187 if (error != 0) 1188 break; 1189 } 1190 1191 complen = strlen(component); 1192 path -= complen; 1193 ASSERT(path >= buf); 1194 bcopy(component, path, complen); 1195 obj = pobj; 1196 } 1197 1198 if (error == 0) 1199 (void) memmove(buf, path, buf + len - path); 1200 return (error); 1201 } 1202