1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #ifdef _KERNEL 31 #include <sys/types.h> 32 #include <sys/param.h> 33 #include <sys/time.h> 34 #include <sys/systm.h> 35 #include <sys/sysmacros.h> 36 #include <sys/resource.h> 37 #include <sys/mntent.h> 38 #include <sys/mkdev.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/kmem.h> 44 #include <sys/cmn_err.h> 45 #include <sys/errno.h> 46 #include <sys/unistd.h> 47 #include <sys/mode.h> 48 #include <sys/atomic.h> 49 #include <vm/pvn.h> 50 #include "fs/fs_subr.h" 51 #include <sys/zfs_dir.h> 52 #include <sys/zfs_acl.h> 53 #include <sys/zfs_ioctl.h> 54 #include <sys/zfs_rlock.h> 55 #include <sys/fs/zfs.h> 56 #endif /* _KERNEL */ 57 58 #include <sys/dmu.h> 59 #include <sys/refcount.h> 60 #include <sys/stat.h> 61 #include <sys/zap.h> 62 #include <sys/zfs_znode.h> 63 64 /* 65 * Functions needed for userland (ie: libzpool) are not put under 66 * #ifdef_KERNEL; the rest of the functions have dependencies 67 * (such as VFS logic) that will not compile easily in userland. 68 */ 69 #ifdef _KERNEL 70 struct kmem_cache *znode_cache = NULL; 71 72 /*ARGSUSED*/ 73 static void 74 znode_pageout_func(dmu_buf_t *dbuf, void *user_ptr) 75 { 76 znode_t *zp = user_ptr; 77 vnode_t *vp = ZTOV(zp); 78 79 mutex_enter(&zp->z_lock); 80 if (vp->v_count == 0) { 81 mutex_exit(&zp->z_lock); 82 vn_invalid(vp); 83 zfs_znode_free(zp); 84 } else { 85 /* signal force unmount that this znode can be freed */ 86 zp->z_dbuf = NULL; 87 mutex_exit(&zp->z_lock); 88 } 89 } 90 91 /*ARGSUSED*/ 92 static int 93 zfs_znode_cache_constructor(void *buf, void *cdrarg, int kmflags) 94 { 95 znode_t *zp = buf; 96 97 zp->z_vnode = vn_alloc(KM_SLEEP); 98 zp->z_vnode->v_data = (caddr_t)zp; 99 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 100 rw_init(&zp->z_map_lock, NULL, RW_DEFAULT, NULL); 101 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 102 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 103 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 104 105 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 106 avl_create(&zp->z_range_avl, zfs_range_compare, 107 sizeof (rl_t), offsetof(rl_t, r_node)); 108 109 zp->z_dbuf_held = 0; 110 zp->z_dirlocks = 0; 111 return (0); 112 } 113 114 /*ARGSUSED*/ 115 static void 116 zfs_znode_cache_destructor(void *buf, void *cdarg) 117 { 118 znode_t *zp = buf; 119 120 ASSERT(zp->z_dirlocks == 0); 121 mutex_destroy(&zp->z_lock); 122 rw_destroy(&zp->z_map_lock); 123 rw_destroy(&zp->z_parent_lock); 124 rw_destroy(&zp->z_name_lock); 125 mutex_destroy(&zp->z_acl_lock); 126 avl_destroy(&zp->z_range_avl); 127 128 ASSERT(zp->z_dbuf_held == 0); 129 ASSERT(ZTOV(zp)->v_count == 0); 130 vn_free(ZTOV(zp)); 131 } 132 133 void 134 zfs_znode_init(void) 135 { 136 /* 137 * Initialize zcache 138 */ 139 ASSERT(znode_cache == NULL); 140 znode_cache = kmem_cache_create("zfs_znode_cache", 141 sizeof (znode_t), 0, zfs_znode_cache_constructor, 142 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 143 } 144 145 void 146 zfs_znode_fini(void) 147 { 148 /* 149 * Cleanup vfs & vnode ops 150 */ 151 zfs_remove_op_tables(); 152 153 /* 154 * Cleanup zcache 155 */ 156 if (znode_cache) 157 kmem_cache_destroy(znode_cache); 158 znode_cache = NULL; 159 } 160 161 struct vnodeops *zfs_dvnodeops; 162 struct vnodeops *zfs_fvnodeops; 163 struct vnodeops *zfs_symvnodeops; 164 struct vnodeops *zfs_xdvnodeops; 165 struct vnodeops *zfs_evnodeops; 166 167 void 168 zfs_remove_op_tables() 169 { 170 /* 171 * Remove vfs ops 172 */ 173 ASSERT(zfsfstype); 174 (void) vfs_freevfsops_by_type(zfsfstype); 175 zfsfstype = 0; 176 177 /* 178 * Remove vnode ops 179 */ 180 if (zfs_dvnodeops) 181 vn_freevnodeops(zfs_dvnodeops); 182 if (zfs_fvnodeops) 183 vn_freevnodeops(zfs_fvnodeops); 184 if (zfs_symvnodeops) 185 vn_freevnodeops(zfs_symvnodeops); 186 if (zfs_xdvnodeops) 187 vn_freevnodeops(zfs_xdvnodeops); 188 if (zfs_evnodeops) 189 vn_freevnodeops(zfs_evnodeops); 190 191 zfs_dvnodeops = NULL; 192 zfs_fvnodeops = NULL; 193 zfs_symvnodeops = NULL; 194 zfs_xdvnodeops = NULL; 195 zfs_evnodeops = NULL; 196 } 197 198 extern const fs_operation_def_t zfs_dvnodeops_template[]; 199 extern const fs_operation_def_t zfs_fvnodeops_template[]; 200 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 201 extern const fs_operation_def_t zfs_symvnodeops_template[]; 202 extern const fs_operation_def_t zfs_evnodeops_template[]; 203 204 int 205 zfs_create_op_tables() 206 { 207 int error; 208 209 /* 210 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 211 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 212 * In this case we just return as the ops vectors are already set up. 213 */ 214 if (zfs_dvnodeops) 215 return (0); 216 217 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 218 &zfs_dvnodeops); 219 if (error) 220 return (error); 221 222 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 223 &zfs_fvnodeops); 224 if (error) 225 return (error); 226 227 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 228 &zfs_symvnodeops); 229 if (error) 230 return (error); 231 232 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 233 &zfs_xdvnodeops); 234 if (error) 235 return (error); 236 237 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 238 &zfs_evnodeops); 239 240 return (error); 241 } 242 243 /* 244 * zfs_init_fs - Initialize the zfsvfs struct and the file system 245 * incore "master" object. Verify version compatibility. 246 */ 247 int 248 zfs_init_fs(zfsvfs_t *zfsvfs, znode_t **zpp, cred_t *cr) 249 { 250 extern int zfsfstype; 251 252 objset_t *os = zfsvfs->z_os; 253 uint64_t version = ZPL_VERSION; 254 int i, error; 255 dmu_object_info_t doi; 256 uint64_t fsid_guid; 257 258 *zpp = NULL; 259 260 /* 261 * XXX - hack to auto-create the pool root filesystem at 262 * the first attempted mount. 263 */ 264 if (dmu_object_info(os, MASTER_NODE_OBJ, &doi) == ENOENT) { 265 dmu_tx_t *tx = dmu_tx_create(os); 266 267 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* master */ 268 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* del queue */ 269 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); /* root node */ 270 error = dmu_tx_assign(tx, TXG_WAIT); 271 ASSERT3U(error, ==, 0); 272 zfs_create_fs(os, cr, tx); 273 dmu_tx_commit(tx); 274 } 275 276 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_OBJ, 8, 1, 277 &version); 278 if (error) { 279 return (error); 280 } else if (version != ZPL_VERSION) { 281 (void) printf("Mismatched versions: File system " 282 "is version %lld on-disk format, which is " 283 "incompatible with this software version %lld!", 284 (u_longlong_t)version, ZPL_VERSION); 285 return (ENOTSUP); 286 } 287 288 /* 289 * The fsid is 64 bits, composed of an 8-bit fs type, which 290 * separates our fsid from any other filesystem types, and a 291 * 56-bit objset unique ID. The objset unique ID is unique to 292 * all objsets open on this system, provided by unique_create(). 293 * The 8-bit fs type must be put in the low bits of fsid[1] 294 * because that's where other Solaris filesystems put it. 295 */ 296 fsid_guid = dmu_objset_fsid_guid(os); 297 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 298 zfsvfs->z_vfs->vfs_fsid.val[0] = fsid_guid; 299 zfsvfs->z_vfs->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 300 zfsfstype & 0xFF; 301 302 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 303 &zfsvfs->z_root); 304 if (error) 305 return (error); 306 ASSERT(zfsvfs->z_root != 0); 307 308 /* 309 * Initialize zget mutex's 310 */ 311 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 312 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 313 314 error = zfs_zget(zfsvfs, zfsvfs->z_root, zpp); 315 if (error) 316 return (error); 317 ASSERT3U((*zpp)->z_id, ==, zfsvfs->z_root); 318 319 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 320 &zfsvfs->z_unlinkedobj); 321 if (error) 322 return (error); 323 324 return (0); 325 } 326 327 /* 328 * define a couple of values we need available 329 * for both 64 and 32 bit environments. 330 */ 331 #ifndef NBITSMINOR64 332 #define NBITSMINOR64 32 333 #endif 334 #ifndef MAXMAJ64 335 #define MAXMAJ64 0xffffffffUL 336 #endif 337 #ifndef MAXMIN64 338 #define MAXMIN64 0xffffffffUL 339 #endif 340 341 /* 342 * Create special expldev for ZFS private use. 343 * Can't use standard expldev since it doesn't do 344 * what we want. The standard expldev() takes a 345 * dev32_t in LP64 and expands it to a long dev_t. 346 * We need an interface that takes a dev32_t in ILP32 347 * and expands it to a long dev_t. 348 */ 349 static uint64_t 350 zfs_expldev(dev_t dev) 351 { 352 #ifndef _LP64 353 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 354 return (((uint64_t)major << NBITSMINOR64) | 355 ((minor_t)dev & MAXMIN32)); 356 #else 357 return (dev); 358 #endif 359 } 360 361 /* 362 * Special cmpldev for ZFS private use. 363 * Can't use standard cmpldev since it takes 364 * a long dev_t and compresses it to dev32_t in 365 * LP64. We need to do a compaction of a long dev_t 366 * to a dev32_t in ILP32. 367 */ 368 dev_t 369 zfs_cmpldev(uint64_t dev) 370 { 371 #ifndef _LP64 372 minor_t minor = (minor_t)dev & MAXMIN64; 373 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 374 375 if (major > MAXMAJ32 || minor > MAXMIN32) 376 return (NODEV32); 377 378 return (((dev32_t)major << NBITSMINOR32) | minor); 379 #else 380 return (dev); 381 #endif 382 } 383 384 /* 385 * Construct a new znode/vnode and intialize. 386 * 387 * This does not do a call to dmu_set_user() that is 388 * up to the caller to do, in case you don't want to 389 * return the znode 390 */ 391 static znode_t * 392 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, uint64_t obj_num, int blksz) 393 { 394 znode_t *zp; 395 vnode_t *vp; 396 397 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 398 399 ASSERT(zp->z_dirlocks == NULL); 400 401 zp->z_phys = db->db_data; 402 zp->z_zfsvfs = zfsvfs; 403 zp->z_unlinked = 0; 404 zp->z_atime_dirty = 0; 405 zp->z_dbuf_held = 0; 406 zp->z_mapcnt = 0; 407 zp->z_last_itx = 0; 408 zp->z_dbuf = db; 409 zp->z_id = obj_num; 410 zp->z_blksz = blksz; 411 zp->z_seq = 0x7A4653; 412 zp->z_sync_cnt = 0; 413 414 mutex_enter(&zfsvfs->z_znodes_lock); 415 list_insert_tail(&zfsvfs->z_all_znodes, zp); 416 mutex_exit(&zfsvfs->z_znodes_lock); 417 418 vp = ZTOV(zp); 419 vn_reinit(vp); 420 421 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 422 vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode); 423 424 switch (vp->v_type) { 425 case VDIR: 426 if (zp->z_phys->zp_flags & ZFS_XATTR) { 427 vn_setops(vp, zfs_xdvnodeops); 428 vp->v_flag |= V_XATTRDIR; 429 } else 430 vn_setops(vp, zfs_dvnodeops); 431 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 432 break; 433 case VBLK: 434 case VCHR: 435 vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev); 436 /*FALLTHROUGH*/ 437 case VFIFO: 438 case VSOCK: 439 case VDOOR: 440 vn_setops(vp, zfs_fvnodeops); 441 break; 442 case VREG: 443 vp->v_flag |= VMODSORT; 444 vn_setops(vp, zfs_fvnodeops); 445 break; 446 case VLNK: 447 vn_setops(vp, zfs_symvnodeops); 448 break; 449 default: 450 vn_setops(vp, zfs_evnodeops); 451 break; 452 } 453 454 return (zp); 455 } 456 457 static void 458 zfs_znode_dmu_init(znode_t *zp) 459 { 460 znode_t *nzp; 461 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 462 dmu_buf_t *db = zp->z_dbuf; 463 464 mutex_enter(&zp->z_lock); 465 466 nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_pageout_func); 467 468 /* 469 * there should be no 470 * concurrent zgets on this object. 471 */ 472 ASSERT3P(nzp, ==, NULL); 473 474 /* 475 * Slap on VROOT if we are the root znode 476 */ 477 if (zp->z_id == zfsvfs->z_root) { 478 ZTOV(zp)->v_flag |= VROOT; 479 } 480 481 ASSERT(zp->z_dbuf_held == 0); 482 zp->z_dbuf_held = 1; 483 VFS_HOLD(zfsvfs->z_vfs); 484 mutex_exit(&zp->z_lock); 485 vn_exists(ZTOV(zp)); 486 } 487 488 /* 489 * Create a new DMU object to hold a zfs znode. 490 * 491 * IN: dzp - parent directory for new znode 492 * vap - file attributes for new znode 493 * tx - dmu transaction id for zap operations 494 * cr - credentials of caller 495 * flag - flags: 496 * IS_ROOT_NODE - new object will be root 497 * IS_XATTR - new object is an attribute 498 * IS_REPLAY - intent log replay 499 * 500 * OUT: oid - ID of created object 501 * 502 */ 503 void 504 zfs_mknode(znode_t *dzp, vattr_t *vap, uint64_t *oid, dmu_tx_t *tx, cred_t *cr, 505 uint_t flag, znode_t **zpp, int bonuslen) 506 { 507 dmu_buf_t *dbp; 508 znode_phys_t *pzp; 509 znode_t *zp; 510 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 511 timestruc_t now; 512 uint64_t gen; 513 int err; 514 515 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 516 517 if (zfsvfs->z_assign >= TXG_INITIAL) { /* ZIL replay */ 518 *oid = vap->va_nodeid; 519 flag |= IS_REPLAY; 520 now = vap->va_ctime; /* see zfs_replay_create() */ 521 gen = vap->va_nblocks; /* ditto */ 522 } else { 523 *oid = 0; 524 gethrestime(&now); 525 gen = dmu_tx_get_txg(tx); 526 } 527 528 /* 529 * Create a new DMU object. 530 */ 531 /* 532 * There's currently no mechanism for pre-reading the blocks that will 533 * be to needed allocate a new object, so we accept the small chance 534 * that there will be an i/o error and we will fail one of the 535 * assertions below. 536 */ 537 if (vap->va_type == VDIR) { 538 if (flag & IS_REPLAY) { 539 err = zap_create_claim(zfsvfs->z_os, *oid, 540 DMU_OT_DIRECTORY_CONTENTS, 541 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 542 ASSERT3U(err, ==, 0); 543 } else { 544 *oid = zap_create(zfsvfs->z_os, 545 DMU_OT_DIRECTORY_CONTENTS, 546 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 547 } 548 } else { 549 if (flag & IS_REPLAY) { 550 err = dmu_object_claim(zfsvfs->z_os, *oid, 551 DMU_OT_PLAIN_FILE_CONTENTS, 0, 552 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 553 ASSERT3U(err, ==, 0); 554 } else { 555 *oid = dmu_object_alloc(zfsvfs->z_os, 556 DMU_OT_PLAIN_FILE_CONTENTS, 0, 557 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 558 } 559 } 560 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, *oid, NULL, &dbp)); 561 dmu_buf_will_dirty(dbp, tx); 562 563 /* 564 * Initialize the znode physical data to zero. 565 */ 566 ASSERT(dbp->db_size >= sizeof (znode_phys_t)); 567 bzero(dbp->db_data, dbp->db_size); 568 pzp = dbp->db_data; 569 570 /* 571 * If this is the root, fix up the half-initialized parent pointer 572 * to reference the just-allocated physical data area. 573 */ 574 if (flag & IS_ROOT_NODE) { 575 dzp->z_phys = pzp; 576 dzp->z_id = *oid; 577 } 578 579 /* 580 * If parent is an xattr, so am I. 581 */ 582 if (dzp->z_phys->zp_flags & ZFS_XATTR) 583 flag |= IS_XATTR; 584 585 if (vap->va_type == VBLK || vap->va_type == VCHR) { 586 pzp->zp_rdev = zfs_expldev(vap->va_rdev); 587 } 588 589 if (vap->va_type == VDIR) { 590 pzp->zp_size = 2; /* contents ("." and "..") */ 591 pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 592 } 593 594 pzp->zp_parent = dzp->z_id; 595 if (flag & IS_XATTR) 596 pzp->zp_flags |= ZFS_XATTR; 597 598 pzp->zp_gen = gen; 599 600 ZFS_TIME_ENCODE(&now, pzp->zp_crtime); 601 ZFS_TIME_ENCODE(&now, pzp->zp_ctime); 602 603 if (vap->va_mask & AT_ATIME) { 604 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 605 } else { 606 ZFS_TIME_ENCODE(&now, pzp->zp_atime); 607 } 608 609 if (vap->va_mask & AT_MTIME) { 610 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 611 } else { 612 ZFS_TIME_ENCODE(&now, pzp->zp_mtime); 613 } 614 615 pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode); 616 zp = zfs_znode_alloc(zfsvfs, dbp, *oid, 0); 617 618 zfs_perm_init(zp, dzp, flag, vap, tx, cr); 619 620 if (zpp) { 621 kmutex_t *hash_mtx = ZFS_OBJ_MUTEX(zp); 622 623 mutex_enter(hash_mtx); 624 zfs_znode_dmu_init(zp); 625 mutex_exit(hash_mtx); 626 627 *zpp = zp; 628 } else { 629 ZTOV(zp)->v_count = 0; 630 dmu_buf_rele(dbp, NULL); 631 zfs_znode_free(zp); 632 } 633 } 634 635 int 636 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 637 { 638 dmu_object_info_t doi; 639 dmu_buf_t *db; 640 znode_t *zp; 641 int err; 642 643 *zpp = NULL; 644 645 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 646 647 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 648 if (err) { 649 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 650 return (err); 651 } 652 653 dmu_object_info_from_db(db, &doi); 654 if (doi.doi_bonus_type != DMU_OT_ZNODE || 655 doi.doi_bonus_size < sizeof (znode_phys_t)) { 656 dmu_buf_rele(db, NULL); 657 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 658 return (EINVAL); 659 } 660 661 ASSERT(db->db_object == obj_num); 662 ASSERT(db->db_offset == -1); 663 ASSERT(db->db_data != NULL); 664 665 zp = dmu_buf_get_user(db); 666 667 if (zp != NULL) { 668 mutex_enter(&zp->z_lock); 669 670 ASSERT3U(zp->z_id, ==, obj_num); 671 if (zp->z_unlinked) { 672 dmu_buf_rele(db, NULL); 673 mutex_exit(&zp->z_lock); 674 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 675 return (ENOENT); 676 } else if (zp->z_dbuf_held) { 677 dmu_buf_rele(db, NULL); 678 } else { 679 zp->z_dbuf_held = 1; 680 VFS_HOLD(zfsvfs->z_vfs); 681 } 682 683 684 VN_HOLD(ZTOV(zp)); 685 mutex_exit(&zp->z_lock); 686 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 687 *zpp = zp; 688 return (0); 689 } 690 691 /* 692 * Not found create new znode/vnode 693 */ 694 zp = zfs_znode_alloc(zfsvfs, db, obj_num, doi.doi_data_block_size); 695 ASSERT3U(zp->z_id, ==, obj_num); 696 zfs_znode_dmu_init(zp); 697 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 698 *zpp = zp; 699 return (0); 700 } 701 702 void 703 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 704 { 705 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 706 int error; 707 708 ZFS_OBJ_HOLD_ENTER(zfsvfs, zp->z_id); 709 if (zp->z_phys->zp_acl.z_acl_extern_obj) { 710 error = dmu_object_free(zfsvfs->z_os, 711 zp->z_phys->zp_acl.z_acl_extern_obj, tx); 712 ASSERT3U(error, ==, 0); 713 } 714 error = dmu_object_free(zfsvfs->z_os, zp->z_id, tx); 715 ASSERT3U(error, ==, 0); 716 zp->z_dbuf_held = 0; 717 ZFS_OBJ_HOLD_EXIT(zfsvfs, zp->z_id); 718 dmu_buf_rele(zp->z_dbuf, NULL); 719 } 720 721 void 722 zfs_zinactive(znode_t *zp) 723 { 724 vnode_t *vp = ZTOV(zp); 725 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 726 uint64_t z_id = zp->z_id; 727 728 ASSERT(zp->z_dbuf_held && zp->z_phys); 729 730 /* 731 * Don't allow a zfs_zget() while were trying to release this znode 732 */ 733 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 734 735 mutex_enter(&zp->z_lock); 736 mutex_enter(&vp->v_lock); 737 vp->v_count--; 738 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 739 /* 740 * If the hold count is greater than zero, somebody has 741 * obtained a new reference on this znode while we were 742 * processing it here, so we are done. If we still have 743 * mapped pages then we are also done, since we don't 744 * want to inactivate the znode until the pages get pushed. 745 * 746 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 747 * this seems like it would leave the znode hanging with 748 * no chance to go inactive... 749 */ 750 mutex_exit(&vp->v_lock); 751 mutex_exit(&zp->z_lock); 752 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 753 return; 754 } 755 mutex_exit(&vp->v_lock); 756 757 /* 758 * If this was the last reference to a file with no links, 759 * remove the file from the file system. 760 */ 761 if (zp->z_unlinked) { 762 mutex_exit(&zp->z_lock); 763 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 764 zfs_rmnode(zp); 765 VFS_RELE(zfsvfs->z_vfs); 766 return; 767 } 768 ASSERT(zp->z_phys); 769 ASSERT(zp->z_dbuf_held); 770 771 zp->z_dbuf_held = 0; 772 mutex_exit(&zp->z_lock); 773 dmu_buf_rele(zp->z_dbuf, NULL); 774 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 775 VFS_RELE(zfsvfs->z_vfs); 776 } 777 778 void 779 zfs_znode_free(znode_t *zp) 780 { 781 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 782 783 mutex_enter(&zfsvfs->z_znodes_lock); 784 list_remove(&zfsvfs->z_all_znodes, zp); 785 mutex_exit(&zfsvfs->z_znodes_lock); 786 787 kmem_cache_free(znode_cache, zp); 788 } 789 790 void 791 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx) 792 { 793 timestruc_t now; 794 795 ASSERT(MUTEX_HELD(&zp->z_lock)); 796 797 gethrestime(&now); 798 799 if (tx) { 800 dmu_buf_will_dirty(zp->z_dbuf, tx); 801 zp->z_atime_dirty = 0; 802 zp->z_seq++; 803 } else { 804 zp->z_atime_dirty = 1; 805 } 806 807 if (flag & AT_ATIME) 808 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime); 809 810 if (flag & AT_MTIME) 811 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime); 812 813 if (flag & AT_CTIME) 814 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime); 815 } 816 817 /* 818 * Update the requested znode timestamps with the current time. 819 * If we are in a transaction, then go ahead and mark the znode 820 * dirty in the transaction so the timestamps will go to disk. 821 * Otherwise, we will get pushed next time the znode is updated 822 * in a transaction, or when this znode eventually goes inactive. 823 * 824 * Why is this OK? 825 * 1 - Only the ACCESS time is ever updated outside of a transaction. 826 * 2 - Multiple consecutive updates will be collapsed into a single 827 * znode update by the transaction grouping semantics of the DMU. 828 */ 829 void 830 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx) 831 { 832 mutex_enter(&zp->z_lock); 833 zfs_time_stamper_locked(zp, flag, tx); 834 mutex_exit(&zp->z_lock); 835 } 836 837 /* 838 * Grow the block size for a file. 839 * 840 * IN: zp - znode of file to free data in. 841 * size - requested block size 842 * tx - open transaction. 843 * 844 * NOTE: this function assumes that the znode is write locked. 845 */ 846 void 847 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 848 { 849 int error; 850 u_longlong_t dummy; 851 852 if (size <= zp->z_blksz) 853 return; 854 /* 855 * If the file size is already greater than the current blocksize, 856 * we will not grow. If there is more than one block in a file, 857 * the blocksize cannot change. 858 */ 859 if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz) 860 return; 861 862 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 863 size, 0, tx); 864 if (error == ENOTSUP) 865 return; 866 ASSERT3U(error, ==, 0); 867 868 /* What blocksize did we actually get? */ 869 dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy); 870 } 871 872 /* 873 * This is a dummy interface used when pvn_vplist_dirty() should *not* 874 * be calling back into the fs for a putpage(). E.g.: when truncating 875 * a file, the pages being "thrown away* don't need to be written out. 876 */ 877 /* ARGSUSED */ 878 static int 879 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 880 int flags, cred_t *cr) 881 { 882 ASSERT(0); 883 return (0); 884 } 885 886 /* 887 * Free space in a file. 888 * 889 * IN: zp - znode of file to free data in. 890 * off - start of section to free. 891 * len - length of section to free (0 => to EOF). 892 * flag - current file open mode flags. 893 * 894 * RETURN: 0 if success 895 * error code if failure 896 */ 897 int 898 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 899 { 900 vnode_t *vp = ZTOV(zp); 901 dmu_tx_t *tx; 902 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 903 zilog_t *zilog = zfsvfs->z_log; 904 rl_t *rl; 905 uint64_t end = off + len; 906 uint64_t size, new_blksz; 907 int error; 908 909 if (ZTOV(zp)->v_type == VFIFO) 910 return (0); 911 912 /* 913 * If we will change zp_size then lock the whole file, 914 * otherwise just lock the range being freed. 915 */ 916 if (len == 0 || off + len > zp->z_phys->zp_size) { 917 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 918 } else { 919 rl = zfs_range_lock(zp, off, len, RL_WRITER); 920 /* recheck, in case zp_size changed */ 921 if (off + len > zp->z_phys->zp_size) { 922 /* lost race: file size changed, lock whole file */ 923 zfs_range_unlock(rl); 924 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 925 } 926 } 927 928 /* 929 * Nothing to do if file already at desired length. 930 */ 931 size = zp->z_phys->zp_size; 932 if (len == 0 && size == off && off != 0) { 933 zfs_range_unlock(rl); 934 return (0); 935 } 936 937 /* 938 * Check for any locks in the region to be freed. 939 */ 940 if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) { 941 uint64_t start = off; 942 uint64_t extent = len; 943 944 if (off > size) { 945 start = size; 946 extent += off - size; 947 } else if (len == 0) { 948 extent = size - off; 949 } 950 if (error = chklock(vp, FWRITE, start, extent, flag, NULL)) { 951 zfs_range_unlock(rl); 952 return (error); 953 } 954 } 955 956 tx = dmu_tx_create(zfsvfs->z_os); 957 dmu_tx_hold_bonus(tx, zp->z_id); 958 new_blksz = 0; 959 if (end > size && 960 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 961 /* 962 * We are growing the file past the current block size. 963 */ 964 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 965 ASSERT(!ISP2(zp->z_blksz)); 966 new_blksz = MIN(end, SPA_MAXBLOCKSIZE); 967 } else { 968 new_blksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 969 } 970 dmu_tx_hold_write(tx, zp->z_id, 0, MIN(end, new_blksz)); 971 } else if (off < size) { 972 /* 973 * If len == 0, we are truncating the file. 974 */ 975 dmu_tx_hold_free(tx, zp->z_id, off, len ? len : DMU_OBJECT_END); 976 } 977 978 error = dmu_tx_assign(tx, zfsvfs->z_assign); 979 if (error) { 980 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) 981 dmu_tx_wait(tx); 982 dmu_tx_abort(tx); 983 zfs_range_unlock(rl); 984 return (error); 985 } 986 987 if (new_blksz) 988 zfs_grow_blocksize(zp, new_blksz, tx); 989 990 if (end > size || len == 0) 991 zp->z_phys->zp_size = end; 992 993 if (off < size) { 994 objset_t *os = zfsvfs->z_os; 995 uint64_t rlen = len; 996 997 if (len == 0) 998 rlen = -1; 999 else if (end > size) 1000 rlen = size - off; 1001 VERIFY(0 == dmu_free_range(os, zp->z_id, off, rlen, tx)); 1002 } 1003 1004 if (log) { 1005 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 1006 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1007 } 1008 1009 zfs_range_unlock(rl); 1010 1011 dmu_tx_commit(tx); 1012 1013 /* 1014 * Clear any mapped pages in the truncated region. This has to 1015 * happen outside of the transaction to avoid the possibility of 1016 * a deadlock with someone trying to push a page that we are 1017 * about to invalidate. 1018 */ 1019 rw_enter(&zp->z_map_lock, RW_WRITER); 1020 if (off < size && vn_has_cached_data(vp)) { 1021 page_t *pp; 1022 uint64_t start = off & PAGEMASK; 1023 int poff = off & PAGEOFFSET; 1024 1025 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1026 /* 1027 * We need to zero a partial page. 1028 */ 1029 pagezero(pp, poff, PAGESIZE - poff); 1030 start += PAGESIZE; 1031 page_unlock(pp); 1032 } 1033 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1034 B_INVAL | B_TRUNC, NULL); 1035 ASSERT(error == 0); 1036 } 1037 rw_exit(&zp->z_map_lock); 1038 1039 return (0); 1040 } 1041 1042 void 1043 zfs_create_fs(objset_t *os, cred_t *cr, dmu_tx_t *tx) 1044 { 1045 zfsvfs_t zfsvfs; 1046 uint64_t moid, doid, roid = 0; 1047 uint64_t version = ZPL_VERSION; 1048 int error; 1049 znode_t *rootzp = NULL; 1050 vnode_t *vp; 1051 vattr_t vattr; 1052 1053 /* 1054 * First attempt to create master node. 1055 */ 1056 /* 1057 * In an empty objset, there are no blocks to read and thus 1058 * there can be no i/o errors (which we assert below). 1059 */ 1060 moid = MASTER_NODE_OBJ; 1061 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1062 DMU_OT_NONE, 0, tx); 1063 ASSERT(error == 0); 1064 1065 /* 1066 * Set starting attributes. 1067 */ 1068 1069 error = zap_update(os, moid, ZPL_VERSION_OBJ, 8, 1, &version, tx); 1070 ASSERT(error == 0); 1071 1072 /* 1073 * Create a delete queue. 1074 */ 1075 doid = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1076 1077 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &doid, tx); 1078 ASSERT(error == 0); 1079 1080 /* 1081 * Create root znode. Create minimal znode/vnode/zfsvfs 1082 * to allow zfs_mknode to work. 1083 */ 1084 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1085 vattr.va_type = VDIR; 1086 vattr.va_mode = S_IFDIR|0755; 1087 vattr.va_uid = crgetuid(cr); 1088 vattr.va_gid = crgetgid(cr); 1089 1090 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1091 rootzp->z_zfsvfs = &zfsvfs; 1092 rootzp->z_unlinked = 0; 1093 rootzp->z_atime_dirty = 0; 1094 rootzp->z_dbuf_held = 0; 1095 1096 vp = ZTOV(rootzp); 1097 vn_reinit(vp); 1098 vp->v_type = VDIR; 1099 1100 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1101 1102 zfsvfs.z_os = os; 1103 zfsvfs.z_assign = TXG_NOWAIT; 1104 zfsvfs.z_parent = &zfsvfs; 1105 1106 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1107 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1108 offsetof(znode_t, z_link_node)); 1109 1110 zfs_mknode(rootzp, &vattr, &roid, tx, cr, IS_ROOT_NODE, NULL, 0); 1111 ASSERT3U(rootzp->z_id, ==, roid); 1112 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &roid, tx); 1113 ASSERT(error == 0); 1114 1115 ZTOV(rootzp)->v_count = 0; 1116 kmem_cache_free(znode_cache, rootzp); 1117 } 1118 #endif /* _KERNEL */ 1119 1120 /* 1121 * Given an object number, return its parent object number and whether 1122 * or not the object is an extended attribute directory. 1123 */ 1124 static int 1125 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir) 1126 { 1127 dmu_buf_t *db; 1128 dmu_object_info_t doi; 1129 znode_phys_t *zp; 1130 int error; 1131 1132 if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0) 1133 return (error); 1134 1135 dmu_object_info_from_db(db, &doi); 1136 if (doi.doi_bonus_type != DMU_OT_ZNODE || 1137 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1138 dmu_buf_rele(db, FTAG); 1139 return (EINVAL); 1140 } 1141 1142 zp = db->db_data; 1143 *pobjp = zp->zp_parent; 1144 *is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) && 1145 S_ISDIR(zp->zp_mode); 1146 dmu_buf_rele(db, FTAG); 1147 1148 return (0); 1149 } 1150 1151 int 1152 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 1153 { 1154 char *path = buf + len - 1; 1155 int error; 1156 1157 *path = '\0'; 1158 1159 for (;;) { 1160 uint64_t pobj; 1161 char component[MAXNAMELEN + 2]; 1162 size_t complen; 1163 int is_xattrdir; 1164 1165 if ((error = zfs_obj_to_pobj(osp, obj, &pobj, 1166 &is_xattrdir)) != 0) 1167 break; 1168 1169 if (pobj == obj) { 1170 if (path[0] != '/') 1171 *--path = '/'; 1172 break; 1173 } 1174 1175 component[0] = '/'; 1176 if (is_xattrdir) { 1177 (void) sprintf(component + 1, "<xattrdir>"); 1178 } else { 1179 error = zap_value_search(osp, pobj, obj, component + 1); 1180 if (error != 0) 1181 break; 1182 } 1183 1184 complen = strlen(component); 1185 path -= complen; 1186 ASSERT(path >= buf); 1187 bcopy(component, path, complen); 1188 obj = pobj; 1189 } 1190 1191 if (error == 0) 1192 (void) memmove(buf, path, buf + len - path); 1193 return (error); 1194 } 1195