1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/time.h> 32 #include <sys/systm.h> 33 #include <sys/sysmacros.h> 34 #include <sys/resource.h> 35 #include <sys/vfs.h> 36 #include <sys/vnode.h> 37 #include <sys/file.h> 38 #include <sys/stat.h> 39 #include <sys/kmem.h> 40 #include <sys/taskq.h> 41 #include <sys/uio.h> 42 #include <sys/vmsystm.h> 43 #include <sys/atomic.h> 44 #include <vm/seg_vn.h> 45 #include <vm/pvn.h> 46 #include <vm/as.h> 47 #include <sys/mman.h> 48 #include <sys/pathname.h> 49 #include <sys/cmn_err.h> 50 #include <sys/errno.h> 51 #include <sys/unistd.h> 52 #include <sys/zfs_vfsops.h> 53 #include <sys/zfs_dir.h> 54 #include <sys/zfs_acl.h> 55 #include <sys/zfs_ioctl.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/dmu.h> 58 #include <sys/spa.h> 59 #include <sys/txg.h> 60 #include <sys/refcount.h> /* temporary for debugging purposes */ 61 #include <sys/dbuf.h> 62 #include <sys/zap.h> 63 #include <sys/dirent.h> 64 #include <sys/policy.h> 65 #include <sys/sunddi.h> 66 #include <sys/filio.h> 67 #include "fs/fs_subr.h" 68 #include <sys/zfs_ctldir.h> 69 70 /* 71 * Programming rules. 72 * 73 * Each vnode op performs some logical unit of work. To do this, the ZPL must 74 * properly lock its in-core state, create a DMU transaction, do the work, 75 * record this work in the intent log (ZIL), commit the DMU transaction, 76 * and wait the the intent log to commit if it's is a synchronous operation. 77 * Morover, the vnode ops must work in both normal and log replay context. 78 * The ordering of events is important to avoid deadlocks and references 79 * to freed memory. The example below illustrates the following Big Rules: 80 * 81 * (1) A check must be made in each zfs thread for a mounted file system. 82 * This is done avoiding races using ZFS_ENTER(zfsvfs). 83 * A ZFS_EXIT(zfsvfs) is needed before all returns. 84 * 85 * (2) VN_RELE() should always be the last thing except for zil_commit() 86 * and ZFS_EXIT(). This is for 3 reasons: 87 * First, if it's the last reference, the vnode/znode 88 * can be freed, so the zp may point to freed memory. Second, the last 89 * reference will call zfs_zinactive(), which may induce a lot of work -- 90 * pushing cached pages (which requires z_grow_lock) and syncing out 91 * cached atime changes. Third, zfs_zinactive() may require a new tx, 92 * which could deadlock the system if you were already holding one. 93 * 94 * (3) Always pass zfsvfs->z_assign as the second argument to dmu_tx_assign(). 95 * In normal operation, this will be TXG_NOWAIT. During ZIL replay, 96 * it will be a specific txg. Either way, dmu_tx_assign() never blocks. 97 * This is critical because we don't want to block while holding locks. 98 * Note, in particular, that if a lock is sometimes acquired before 99 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 100 * use a non-blocking assign can deadlock the system. The scenario: 101 * 102 * Thread A has grabbed a lock before calling dmu_tx_assign(). 103 * Thread B is in an already-assigned tx, and blocks for this lock. 104 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 105 * forever, because the previous txg can't quiesce until B's tx commits. 106 * 107 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 108 * then drop all locks, call txg_wait_open(), and try again. 109 * 110 * (4) If the operation succeeded, generate the intent log entry for it 111 * before dropping locks. This ensures that the ordering of events 112 * in the intent log matches the order in which they actually occurred. 113 * 114 * (5) At the end of each vnode op, the DMU tx must always commit, 115 * regardless of whether there were any errors. 116 * 117 * (6) After dropping all locks, invoke zil_commit(zilog, seq, ioflag) 118 * to ensure that synchronous semantics are provided when necessary. 119 * 120 * In general, this is how things should be ordered in each vnode op: 121 * 122 * ZFS_ENTER(zfsvfs); // exit if unmounted 123 * top: 124 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 125 * rw_enter(...); // grab any other locks you need 126 * tx = dmu_tx_create(...); // get DMU tx 127 * dmu_tx_hold_*(); // hold each object you might modify 128 * error = dmu_tx_assign(tx, zfsvfs->z_assign); // try to assign 129 * if (error) { 130 * dmu_tx_abort(tx); // abort DMU tx 131 * rw_exit(...); // drop locks 132 * zfs_dirent_unlock(dl); // unlock directory entry 133 * VN_RELE(...); // release held vnodes 134 * if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 135 * txg_wait_open(dmu_objset_pool(os), 0); 136 * goto top; 137 * } 138 * ZFS_EXIT(zfsvfs); // finished in zfs 139 * return (error); // really out of space 140 * } 141 * error = do_real_work(); // do whatever this VOP does 142 * if (error == 0) 143 * seq = zfs_log_*(...); // on success, make ZIL entry 144 * dmu_tx_commit(tx); // commit DMU tx -- error or not 145 * rw_exit(...); // drop locks 146 * zfs_dirent_unlock(dl); // unlock directory entry 147 * VN_RELE(...); // release held vnodes 148 * zil_commit(zilog, seq, ioflag); // synchronous when necessary 149 * ZFS_EXIT(zfsvfs); // finished in zfs 150 * return (error); // done, report error 151 */ 152 153 /* ARGSUSED */ 154 static int 155 zfs_open(vnode_t **vpp, int flag, cred_t *cr) 156 { 157 return (0); 158 } 159 160 /* ARGSUSED */ 161 static int 162 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr) 163 { 164 /* 165 * Clean up any locks held by this process on the vp. 166 */ 167 cleanlocks(vp, ddi_get_pid(), 0); 168 cleanshares(vp, ddi_get_pid()); 169 170 return (0); 171 } 172 173 /* 174 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 175 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 176 */ 177 static int 178 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 179 { 180 znode_t *zp = VTOZ(vp); 181 uint64_t noff = (uint64_t)*off; /* new offset */ 182 uint64_t file_sz; 183 int error; 184 boolean_t hole; 185 186 rw_enter(&zp->z_grow_lock, RW_READER); 187 file_sz = zp->z_phys->zp_size; 188 if (noff >= file_sz) { 189 rw_exit(&zp->z_grow_lock); 190 return (ENXIO); 191 } 192 193 if (cmd == _FIO_SEEK_HOLE) 194 hole = B_TRUE; 195 else 196 hole = B_FALSE; 197 198 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 199 rw_exit(&zp->z_grow_lock); 200 201 /* end of file? */ 202 if ((error == ESRCH) || (noff > file_sz)) { 203 /* 204 * Handle the virtual hole at the end of file. 205 */ 206 if (hole) { 207 *off = file_sz; 208 return (0); 209 } 210 return (ENXIO); 211 } 212 213 if (noff < *off) 214 return (error); 215 *off = noff; 216 return (error); 217 } 218 219 /* ARGSUSED */ 220 static int 221 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 222 int *rvalp) 223 { 224 offset_t off; 225 int error; 226 zfsvfs_t *zfsvfs; 227 228 switch (com) { 229 case _FIOFFS: 230 return (zfs_sync(vp->v_vfsp, 0, cred)); 231 232 case _FIO_SEEK_DATA: 233 case _FIO_SEEK_HOLE: 234 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 235 return (EFAULT); 236 237 zfsvfs = VTOZ(vp)->z_zfsvfs; 238 ZFS_ENTER(zfsvfs); 239 240 /* offset parameter is in/out */ 241 error = zfs_holey(vp, com, &off); 242 ZFS_EXIT(zfsvfs); 243 if (error) 244 return (error); 245 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 246 return (EFAULT); 247 return (0); 248 } 249 return (ENOTTY); 250 } 251 252 /* 253 * When a file is memory mapped, we must keep the IO data synchronized 254 * between the DMU cache and the memory mapped pages. What this means: 255 * 256 * On Write: If we find a memory mapped page, we write to *both* 257 * the page and the dmu buffer. 258 * 259 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 260 * the file is memory mapped. 261 */ 262 static int 263 mappedwrite(vnode_t *vp, uint64_t woff, int nbytes, uio_t *uio, dmu_tx_t *tx) 264 { 265 znode_t *zp = VTOZ(vp); 266 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 267 int64_t start, off; 268 int len = nbytes; 269 int error = 0; 270 271 start = uio->uio_loffset; 272 off = start & PAGEOFFSET; 273 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 274 page_t *pp; 275 uint64_t bytes = MIN(PAGESIZE - off, len); 276 277 /* 278 * We don't want a new page to "appear" in the middle of 279 * the file update (because it may not get the write 280 * update data), so we grab a lock to block 281 * zfs_getpage(). 282 */ 283 rw_enter(&zp->z_map_lock, RW_WRITER); 284 if (pp = page_lookup(vp, start, SE_SHARED)) { 285 caddr_t va; 286 287 rw_exit(&zp->z_map_lock); 288 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 289 error = uiomove(va+off, bytes, UIO_WRITE, uio); 290 if (error == 0) { 291 dmu_write(zfsvfs->z_os, zp->z_id, 292 woff, bytes, va+off, tx); 293 } 294 ppmapout(va); 295 page_unlock(pp); 296 } else { 297 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 298 woff, bytes, uio, tx); 299 rw_exit(&zp->z_map_lock); 300 } 301 len -= bytes; 302 woff += bytes; 303 off = 0; 304 if (error) 305 break; 306 } 307 return (error); 308 } 309 310 /* 311 * When a file is memory mapped, we must keep the IO data synchronized 312 * between the DMU cache and the memory mapped pages. What this means: 313 * 314 * On Read: We "read" preferentially from memory mapped pages, 315 * else we default from the dmu buffer. 316 * 317 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 318 * the file is memory mapped. 319 */ 320 static int 321 mappedread(vnode_t *vp, char *addr, int nbytes, uio_t *uio) 322 { 323 int64_t start, off, bytes; 324 int len = nbytes; 325 int error = 0; 326 327 start = uio->uio_loffset; 328 off = start & PAGEOFFSET; 329 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 330 page_t *pp; 331 332 bytes = MIN(PAGESIZE - off, len); 333 if (pp = page_lookup(vp, start, SE_SHARED)) { 334 caddr_t va; 335 336 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 337 error = uiomove(va + off, bytes, UIO_READ, uio); 338 ppmapout(va); 339 page_unlock(pp); 340 } else { 341 /* XXX use dmu_read here? */ 342 error = uiomove(addr, bytes, UIO_READ, uio); 343 } 344 len -= bytes; 345 addr += bytes; 346 off = 0; 347 if (error) 348 break; 349 } 350 return (error); 351 } 352 353 uint_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 354 355 /* 356 * Read bytes from specified file into supplied buffer. 357 * 358 * IN: vp - vnode of file to be read from. 359 * uio - structure supplying read location, range info, 360 * and return buffer. 361 * ioflag - SYNC flags; used to provide FRSYNC semantics. 362 * cr - credentials of caller. 363 * 364 * OUT: uio - updated offset and range, buffer filled. 365 * 366 * RETURN: 0 if success 367 * error code if failure 368 * 369 * Side Effects: 370 * vp - atime updated if byte count > 0 371 */ 372 /* ARGSUSED */ 373 static int 374 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 375 { 376 znode_t *zp = VTOZ(vp); 377 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 378 uint64_t delta; 379 ssize_t n, size, cnt, ndone; 380 int error, i, numbufs; 381 dmu_buf_t *dbp, **dbpp; 382 383 ZFS_ENTER(zfsvfs); 384 385 /* 386 * Validate file offset 387 */ 388 if (uio->uio_loffset < (offset_t)0) { 389 ZFS_EXIT(zfsvfs); 390 return (EINVAL); 391 } 392 393 /* 394 * Fasttrack empty reads 395 */ 396 if (uio->uio_resid == 0) { 397 ZFS_EXIT(zfsvfs); 398 return (0); 399 } 400 401 /* 402 * Check for region locks 403 */ 404 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 405 if (error = chklock(vp, FREAD, 406 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 407 ZFS_EXIT(zfsvfs); 408 return (error); 409 } 410 } 411 412 /* 413 * If we're in FRSYNC mode, sync out this znode before reading it. 414 */ 415 zil_commit(zfsvfs->z_log, zp->z_last_itx, ioflag & FRSYNC); 416 417 /* 418 * Make sure nobody restructures the file (changes block size) 419 * in the middle of the read. 420 */ 421 rw_enter(&zp->z_grow_lock, RW_READER); 422 /* 423 * If we are reading past end-of-file we can skip 424 * to the end; but we might still need to set atime. 425 */ 426 if (uio->uio_loffset >= zp->z_phys->zp_size) { 427 cnt = 0; 428 error = 0; 429 goto out; 430 } 431 432 cnt = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 433 434 for (ndone = 0; ndone < cnt; ndone += zfs_read_chunk_size) { 435 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 436 n = MIN(zfs_read_chunk_size, 437 zp->z_phys->zp_size - uio->uio_loffset); 438 n = MIN(n, cnt); 439 dbpp = dmu_buf_hold_array(zfsvfs->z_os, zp->z_id, 440 uio->uio_loffset, n, &numbufs); 441 if (error = dmu_buf_read_array_canfail(dbpp, numbufs)) { 442 dmu_buf_rele_array(dbpp, numbufs); 443 goto out; 444 } 445 /* 446 * Compute the adjustment to align the dmu buffers 447 * with the uio buffer. 448 */ 449 delta = uio->uio_loffset - dbpp[0]->db_offset; 450 451 for (i = 0; i < numbufs; i++) { 452 if (n < 0) 453 break; 454 dbp = dbpp[i]; 455 size = dbp->db_size - delta; 456 /* 457 * XXX -- this is correct, but may be suboptimal. 458 * If the pages are all clean, we don't need to 459 * go through mappedread(). Maybe the VMODSORT 460 * stuff can help us here. 461 */ 462 if (vn_has_cached_data(vp)) { 463 error = mappedread(vp, (caddr_t)dbp->db_data + 464 delta, (n < size ? n : size), uio); 465 } else { 466 error = uiomove((caddr_t)dbp->db_data + delta, 467 (n < size ? n : size), UIO_READ, uio); 468 } 469 if (error) { 470 dmu_buf_rele_array(dbpp, numbufs); 471 goto out; 472 } 473 n -= dbp->db_size; 474 if (delta) { 475 n += delta; 476 delta = 0; 477 } 478 } 479 dmu_buf_rele_array(dbpp, numbufs); 480 } 481 out: 482 rw_exit(&zp->z_grow_lock); 483 484 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 485 ZFS_EXIT(zfsvfs); 486 return (error); 487 } 488 489 /* 490 * Fault in the pages of the first n bytes specified by the uio structure. 491 * 1 byte in each page is touched and the uio struct is unmodified. 492 * Any error will exit this routine as this is only a best 493 * attempt to get the pages resident. This is a copy of ufs_trans_touch(). 494 */ 495 static void 496 zfs_prefault_write(ssize_t n, struct uio *uio) 497 { 498 struct iovec *iov; 499 ulong_t cnt, incr; 500 caddr_t p; 501 uint8_t tmp; 502 503 iov = uio->uio_iov; 504 505 while (n) { 506 cnt = MIN(iov->iov_len, n); 507 if (cnt == 0) { 508 /* empty iov entry */ 509 iov++; 510 continue; 511 } 512 n -= cnt; 513 /* 514 * touch each page in this segment. 515 */ 516 p = iov->iov_base; 517 while (cnt) { 518 switch (uio->uio_segflg) { 519 case UIO_USERSPACE: 520 case UIO_USERISPACE: 521 if (fuword8(p, &tmp)) 522 return; 523 break; 524 case UIO_SYSSPACE: 525 if (kcopy(p, &tmp, 1)) 526 return; 527 break; 528 } 529 incr = MIN(cnt, PAGESIZE); 530 p += incr; 531 cnt -= incr; 532 } 533 /* 534 * touch the last byte in case it straddles a page. 535 */ 536 p--; 537 switch (uio->uio_segflg) { 538 case UIO_USERSPACE: 539 case UIO_USERISPACE: 540 if (fuword8(p, &tmp)) 541 return; 542 break; 543 case UIO_SYSSPACE: 544 if (kcopy(p, &tmp, 1)) 545 return; 546 break; 547 } 548 iov++; 549 } 550 } 551 552 /* 553 * Write the bytes to a file. 554 * 555 * IN: vp - vnode of file to be written to. 556 * uio - structure supplying write location, range info, 557 * and data buffer. 558 * ioflag - FAPPEND flag set if in append mode. 559 * cr - credentials of caller. 560 * 561 * OUT: uio - updated offset and range. 562 * 563 * RETURN: 0 if success 564 * error code if failure 565 * 566 * Timestamps: 567 * vp - ctime|mtime updated if byte count > 0 568 * 569 * Note: zfs_write() holds z_append_lock across calls to txg_wait_open(). 570 * It has to because of the semantics of FAPPEND. The implication is that 571 * we must never grab z_append_lock while in an assigned tx. 572 */ 573 /* ARGSUSED */ 574 static int 575 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 576 { 577 znode_t *zp = VTOZ(vp); 578 rlim64_t limit = uio->uio_llimit; 579 ssize_t start_resid = uio->uio_resid; 580 ssize_t tx_bytes; 581 uint64_t end_size; 582 dmu_tx_t *tx; 583 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 584 zilog_t *zilog = zfsvfs->z_log; 585 uint64_t seq = 0; 586 offset_t woff; 587 ssize_t n, nbytes; 588 int max_blksz = zfsvfs->z_max_blksz; 589 int need_append_lock, error; 590 krw_t grow_rw = RW_READER; 591 592 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 593 limit = MAXOFFSET_T; 594 595 n = start_resid; 596 597 /* 598 * Fasttrack empty write 599 */ 600 if (n == 0) 601 return (0); 602 603 ZFS_ENTER(zfsvfs); 604 605 /* 606 * Pre-fault the pages to ensure slow (eg NFS) pages don't hold up txg 607 */ 608 zfs_prefault_write(MIN(start_resid, SPA_MAXBLOCKSIZE), uio); 609 610 /* 611 * If in append mode, set the io offset pointer to eof. 612 */ 613 need_append_lock = ioflag & FAPPEND; 614 if (need_append_lock) { 615 rw_enter(&zp->z_append_lock, RW_WRITER); 616 woff = uio->uio_loffset = zp->z_phys->zp_size; 617 } else { 618 woff = uio->uio_loffset; 619 /* 620 * Validate file offset 621 */ 622 if (woff < 0) { 623 ZFS_EXIT(zfsvfs); 624 return (EINVAL); 625 } 626 627 /* 628 * If this write could change the file length, 629 * we need to synchronize with "appenders". 630 */ 631 if (woff < limit - n && woff + n > zp->z_phys->zp_size) { 632 need_append_lock = TRUE; 633 rw_enter(&zp->z_append_lock, RW_READER); 634 } 635 } 636 637 if (woff >= limit) { 638 error = EFBIG; 639 goto no_tx_done; 640 } 641 642 if ((woff + n) > limit || woff > (limit - n)) 643 n = limit - woff; 644 645 /* 646 * Check for region locks 647 */ 648 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 649 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) 650 goto no_tx_done; 651 top: 652 /* 653 * Make sure nobody restructures the file (changes block size) 654 * in the middle of the write. 655 */ 656 rw_enter(&zp->z_grow_lock, grow_rw); 657 658 end_size = MAX(zp->z_phys->zp_size, woff + n); 659 tx = dmu_tx_create(zfsvfs->z_os); 660 dmu_tx_hold_bonus(tx, zp->z_id); 661 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 662 error = dmu_tx_assign(tx, zfsvfs->z_assign); 663 if (error) { 664 dmu_tx_abort(tx); 665 rw_exit(&zp->z_grow_lock); 666 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 667 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 668 goto top; 669 } 670 goto no_tx_done; 671 } 672 673 if (end_size > zp->z_blksz && 674 (!ISP2(zp->z_blksz) || zp->z_blksz < max_blksz)) { 675 uint64_t new_blksz; 676 /* 677 * This write will increase the file size beyond 678 * the current block size so increase the block size. 679 */ 680 if (grow_rw == RW_READER && !rw_tryupgrade(&zp->z_grow_lock)) { 681 dmu_tx_commit(tx); 682 rw_exit(&zp->z_grow_lock); 683 grow_rw = RW_WRITER; 684 goto top; 685 } 686 if (zp->z_blksz > max_blksz) { 687 ASSERT(!ISP2(zp->z_blksz)); 688 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 689 } else { 690 new_blksz = MIN(end_size, max_blksz); 691 } 692 error = zfs_grow_blocksize(zp, new_blksz, tx); 693 if (error) { 694 tx_bytes = 0; 695 goto tx_done; 696 } 697 } 698 699 if (grow_rw == RW_WRITER) { 700 rw_downgrade(&zp->z_grow_lock); 701 grow_rw = RW_READER; 702 } 703 704 /* 705 * The file data does not fit in the znode "cache", so we 706 * will be writing to the file block data buffers. 707 * Each buffer will be written in a separate transaction; 708 * this keeps the intent log records small and allows us 709 * to do more fine-grained space accounting. 710 */ 711 while (n > 0) { 712 /* 713 * XXX - should we really limit each write to z_max_blksz? 714 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 715 */ 716 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 717 rw_enter(&zp->z_map_lock, RW_READER); 718 719 tx_bytes = uio->uio_resid; 720 if (vn_has_cached_data(vp)) { 721 rw_exit(&zp->z_map_lock); 722 error = mappedwrite(vp, woff, nbytes, uio, tx); 723 } else { 724 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 725 woff, nbytes, uio, tx); 726 rw_exit(&zp->z_map_lock); 727 } 728 tx_bytes -= uio->uio_resid; 729 730 if (error) { 731 /* XXX - do we need to "clean up" the dmu buffer? */ 732 break; 733 } 734 735 ASSERT(tx_bytes == nbytes); 736 737 n -= nbytes; 738 if (n <= 0) 739 break; 740 741 /* 742 * We have more work ahead of us, so wrap up this transaction 743 * and start another. Exact same logic as tx_done below. 744 */ 745 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) { 746 dmu_buf_will_dirty(zp->z_dbuf, tx); 747 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 748 uio->uio_loffset); 749 } 750 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 751 seq = zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, 752 ioflag, uio); 753 dmu_tx_commit(tx); 754 755 /* Pre-fault the next set of pages */ 756 zfs_prefault_write(MIN(n, SPA_MAXBLOCKSIZE), uio); 757 758 /* 759 * Start another transaction. 760 */ 761 woff = uio->uio_loffset; 762 tx = dmu_tx_create(zfsvfs->z_os); 763 dmu_tx_hold_bonus(tx, zp->z_id); 764 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 765 error = dmu_tx_assign(tx, zfsvfs->z_assign); 766 if (error) { 767 dmu_tx_abort(tx); 768 rw_exit(&zp->z_grow_lock); 769 if (error == ERESTART && 770 zfsvfs->z_assign == TXG_NOWAIT) { 771 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 772 goto top; 773 } 774 goto no_tx_done; 775 } 776 } 777 778 tx_done: 779 780 if (tx_bytes != 0) { 781 /* 782 * Update the file size if it has changed; account 783 * for possible concurrent updates. 784 */ 785 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) { 786 dmu_buf_will_dirty(zp->z_dbuf, tx); 787 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 788 uio->uio_loffset); 789 } 790 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 791 seq = zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, 792 ioflag, uio); 793 } 794 dmu_tx_commit(tx); 795 796 rw_exit(&zp->z_grow_lock); 797 798 no_tx_done: 799 800 if (need_append_lock) 801 rw_exit(&zp->z_append_lock); 802 803 /* 804 * If we're in replay mode, or we made no progress, return error. 805 * Otherwise, it's at least a partial write, so it's successful. 806 */ 807 if (zfsvfs->z_assign >= TXG_INITIAL || uio->uio_resid == start_resid) { 808 ZFS_EXIT(zfsvfs); 809 return (error); 810 } 811 812 zil_commit(zilog, seq, ioflag & (FSYNC | FDSYNC)); 813 814 ZFS_EXIT(zfsvfs); 815 return (0); 816 } 817 818 /* 819 * Get data to generate a TX_WRITE intent log record. 820 */ 821 int 822 zfs_get_data(void *arg, lr_write_t *lr) 823 { 824 zfsvfs_t *zfsvfs = arg; 825 objset_t *os = zfsvfs->z_os; 826 znode_t *zp; 827 uint64_t off = lr->lr_offset; 828 int dlen = lr->lr_length; /* length of user data */ 829 int reclen = lr->lr_common.lrc_reclen; 830 int error = 0; 831 832 ASSERT(dlen != 0); 833 834 /* 835 * Nothing to do if the file has been removed or truncated. 836 */ 837 if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0) 838 return (ENOENT); 839 if (off >= zp->z_phys->zp_size || zp->z_reap) { 840 VN_RELE(ZTOV(zp)); 841 return (ENOENT); 842 } 843 844 /* 845 * Write records come in two flavors: immediate and indirect. 846 * For small writes it's cheaper to store the data with the 847 * log record (immediate); for large writes it's cheaper to 848 * sync the data and get a pointer to it (indirect) so that 849 * we don't have to write the data twice. 850 */ 851 if (sizeof (lr_write_t) + dlen <= reclen) { /* immediate write */ 852 rw_enter(&zp->z_grow_lock, RW_READER); 853 dmu_buf_t *db = dmu_buf_hold(os, lr->lr_foid, off); 854 dmu_buf_read(db); 855 bcopy((char *)db->db_data + off - db->db_offset, lr + 1, dlen); 856 dmu_buf_rele(db); 857 rw_exit(&zp->z_grow_lock); 858 } else { 859 /* 860 * We have to grab z_grow_lock as RW_WRITER because 861 * dmu_sync() can't handle concurrent dbuf_dirty() (6313856). 862 * z_grow_lock will be replaced with a range lock soon, 863 * which will eliminate the concurrency hit, but dmu_sync() 864 * really needs more thought. It shouldn't have to rely on 865 * the caller to provide MT safety. 866 */ 867 rw_enter(&zp->z_grow_lock, RW_WRITER); 868 txg_suspend(dmu_objset_pool(os)); 869 error = dmu_sync(os, lr->lr_foid, off, &lr->lr_blkoff, 870 &lr->lr_blkptr, lr->lr_common.lrc_txg); 871 txg_resume(dmu_objset_pool(os)); 872 rw_exit(&zp->z_grow_lock); 873 } 874 VN_RELE(ZTOV(zp)); 875 return (error); 876 } 877 878 /*ARGSUSED*/ 879 static int 880 zfs_access(vnode_t *vp, int mode, int flags, cred_t *cr) 881 { 882 znode_t *zp = VTOZ(vp); 883 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 884 int error; 885 886 ZFS_ENTER(zfsvfs); 887 error = zfs_zaccess_rwx(zp, mode, cr); 888 ZFS_EXIT(zfsvfs); 889 return (error); 890 } 891 892 /* 893 * Lookup an entry in a directory, or an extended attribute directory. 894 * If it exists, return a held vnode reference for it. 895 * 896 * IN: dvp - vnode of directory to search. 897 * nm - name of entry to lookup. 898 * pnp - full pathname to lookup [UNUSED]. 899 * flags - LOOKUP_XATTR set if looking for an attribute. 900 * rdir - root directory vnode [UNUSED]. 901 * cr - credentials of caller. 902 * 903 * OUT: vpp - vnode of located entry, NULL if not found. 904 * 905 * RETURN: 0 if success 906 * error code if failure 907 * 908 * Timestamps: 909 * NA 910 */ 911 /* ARGSUSED */ 912 static int 913 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 914 int flags, vnode_t *rdir, cred_t *cr) 915 { 916 917 znode_t *zdp = VTOZ(dvp); 918 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 919 int error; 920 921 ZFS_ENTER(zfsvfs); 922 923 *vpp = NULL; 924 925 if (flags & LOOKUP_XATTR) { 926 /* 927 * We don't allow recursive attributes.. 928 * Maybe someday we will. 929 */ 930 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 931 ZFS_EXIT(zfsvfs); 932 return (EINVAL); 933 } 934 935 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr)) { 936 ZFS_EXIT(zfsvfs); 937 return (error); 938 } 939 940 /* 941 * Do we have permission to get into attribute directory? 942 */ 943 944 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, cr)) { 945 VN_RELE(*vpp); 946 } 947 948 ZFS_EXIT(zfsvfs); 949 return (error); 950 } 951 952 /* 953 * Check accessibility of directory. 954 */ 955 956 if (error = zfs_zaccess(zdp, ACE_EXECUTE, cr)) { 957 ZFS_EXIT(zfsvfs); 958 return (error); 959 } 960 961 if ((error = zfs_dirlook(zdp, nm, vpp)) == 0) { 962 963 /* 964 * Convert device special files 965 */ 966 if (IS_DEVVP(*vpp)) { 967 vnode_t *svp; 968 969 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 970 VN_RELE(*vpp); 971 if (svp == NULL) 972 error = ENOSYS; 973 else 974 *vpp = svp; 975 } 976 } 977 978 ZFS_EXIT(zfsvfs); 979 return (error); 980 } 981 982 /* 983 * Attempt to create a new entry in a directory. If the entry 984 * already exists, truncate the file if permissible, else return 985 * an error. Return the vp of the created or trunc'd file. 986 * 987 * IN: dvp - vnode of directory to put new file entry in. 988 * name - name of new file entry. 989 * vap - attributes of new file. 990 * excl - flag indicating exclusive or non-exclusive mode. 991 * mode - mode to open file with. 992 * cr - credentials of caller. 993 * flag - large file flag [UNUSED]. 994 * 995 * OUT: vpp - vnode of created or trunc'd entry. 996 * 997 * RETURN: 0 if success 998 * error code if failure 999 * 1000 * Timestamps: 1001 * dvp - ctime|mtime updated if new entry created 1002 * vp - ctime|mtime always, atime if new 1003 */ 1004 /* ARGSUSED */ 1005 static int 1006 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1007 int mode, vnode_t **vpp, cred_t *cr, int flag) 1008 { 1009 znode_t *zp, *dzp = VTOZ(dvp); 1010 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1011 zilog_t *zilog = zfsvfs->z_log; 1012 uint64_t seq = 0; 1013 objset_t *os = zfsvfs->z_os; 1014 zfs_dirlock_t *dl; 1015 dmu_tx_t *tx; 1016 int error; 1017 uint64_t zoid; 1018 1019 ZFS_ENTER(zfsvfs); 1020 1021 top: 1022 *vpp = NULL; 1023 1024 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1025 vap->va_mode &= ~VSVTX; 1026 1027 if (*name == '\0') { 1028 /* 1029 * Null component name refers to the directory itself. 1030 */ 1031 VN_HOLD(dvp); 1032 zp = dzp; 1033 dl = NULL; 1034 error = 0; 1035 } else { 1036 /* possible VN_HOLD(zp) */ 1037 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, 0)) { 1038 if (strcmp(name, "..") == 0) 1039 error = EISDIR; 1040 ZFS_EXIT(zfsvfs); 1041 return (error); 1042 } 1043 } 1044 1045 zoid = zp ? zp->z_id : -1ULL; 1046 1047 if (zp == NULL) { 1048 /* 1049 * Create a new file object and update the directory 1050 * to reference it. 1051 */ 1052 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 1053 goto out; 1054 } 1055 1056 /* 1057 * We only support the creation of regular files in 1058 * extended attribute directories. 1059 */ 1060 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1061 (vap->va_type != VREG)) { 1062 error = EINVAL; 1063 goto out; 1064 } 1065 1066 tx = dmu_tx_create(os); 1067 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1068 dmu_tx_hold_bonus(tx, dzp->z_id); 1069 dmu_tx_hold_zap(tx, dzp->z_id, 1); 1070 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 1071 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1072 0, SPA_MAXBLOCKSIZE); 1073 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1074 if (error) { 1075 dmu_tx_abort(tx); 1076 zfs_dirent_unlock(dl); 1077 if (error == ERESTART && 1078 zfsvfs->z_assign == TXG_NOWAIT) { 1079 txg_wait_open(dmu_objset_pool(os), 0); 1080 goto top; 1081 } 1082 ZFS_EXIT(zfsvfs); 1083 return (error); 1084 } 1085 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 1086 ASSERT(zp->z_id == zoid); 1087 (void) zfs_link_create(dl, zp, tx, ZNEW); 1088 seq = zfs_log_create(zilog, tx, TX_CREATE, dzp, zp, name); 1089 dmu_tx_commit(tx); 1090 } else { 1091 /* 1092 * A directory entry already exists for this name. 1093 */ 1094 /* 1095 * Can't truncate an existing file if in exclusive mode. 1096 */ 1097 if (excl == EXCL) { 1098 error = EEXIST; 1099 goto out; 1100 } 1101 /* 1102 * Can't open a directory for writing. 1103 */ 1104 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1105 error = EISDIR; 1106 goto out; 1107 } 1108 /* 1109 * Verify requested access to file. 1110 */ 1111 if (mode && (error = zfs_zaccess_rwx(zp, mode, cr))) { 1112 goto out; 1113 } 1114 /* 1115 * Truncate regular files if requested. 1116 */ 1117 1118 /* 1119 * Need to update dzp->z_seq? 1120 */ 1121 1122 mutex_enter(&dzp->z_lock); 1123 dzp->z_seq++; 1124 mutex_exit(&dzp->z_lock); 1125 1126 if ((ZTOV(zp)->v_type == VREG) && (zp->z_phys->zp_size != 0) && 1127 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1128 /* 1129 * Truncate the file. 1130 */ 1131 tx = dmu_tx_create(os); 1132 dmu_tx_hold_bonus(tx, zoid); 1133 dmu_tx_hold_free(tx, zoid, 0, DMU_OBJECT_END); 1134 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1135 if (error) { 1136 dmu_tx_abort(tx); 1137 if (dl) 1138 zfs_dirent_unlock(dl); 1139 VN_RELE(ZTOV(zp)); 1140 if (error == ERESTART && 1141 zfsvfs->z_assign == TXG_NOWAIT) { 1142 txg_wait_open(dmu_objset_pool(os), 0); 1143 goto top; 1144 } 1145 ZFS_EXIT(zfsvfs); 1146 return (error); 1147 } 1148 /* 1149 * Grab the grow_lock to serialize this change with 1150 * respect to other file manipulations. 1151 */ 1152 rw_enter(&zp->z_grow_lock, RW_WRITER); 1153 error = zfs_freesp(zp, 0, 0, mode, tx, cr); 1154 if (error == 0) { 1155 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 1156 seq = zfs_log_truncate(zilog, tx, 1157 TX_TRUNCATE, zp, 0, 0); 1158 } 1159 rw_exit(&zp->z_grow_lock); 1160 dmu_tx_commit(tx); 1161 } 1162 } 1163 out: 1164 1165 if (dl) 1166 zfs_dirent_unlock(dl); 1167 1168 if (error) { 1169 if (zp) 1170 VN_RELE(ZTOV(zp)); 1171 } else { 1172 *vpp = ZTOV(zp); 1173 /* 1174 * If vnode is for a device return a specfs vnode instead. 1175 */ 1176 if (IS_DEVVP(*vpp)) { 1177 struct vnode *svp; 1178 1179 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1180 VN_RELE(*vpp); 1181 if (svp == NULL) { 1182 error = ENOSYS; 1183 } 1184 *vpp = svp; 1185 } 1186 } 1187 1188 zil_commit(zilog, seq, 0); 1189 1190 ZFS_EXIT(zfsvfs); 1191 return (error); 1192 } 1193 1194 /* 1195 * Remove an entry from a directory. 1196 * 1197 * IN: dvp - vnode of directory to remove entry from. 1198 * name - name of entry to remove. 1199 * cr - credentials of caller. 1200 * 1201 * RETURN: 0 if success 1202 * error code if failure 1203 * 1204 * Timestamps: 1205 * dvp - ctime|mtime 1206 * vp - ctime (if nlink > 0) 1207 */ 1208 static int 1209 zfs_remove(vnode_t *dvp, char *name, cred_t *cr) 1210 { 1211 znode_t *zp, *dzp = VTOZ(dvp); 1212 znode_t *xzp = NULL; 1213 vnode_t *vp; 1214 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1215 zilog_t *zilog = zfsvfs->z_log; 1216 uint64_t seq = 0; 1217 uint64_t acl_obj, xattr_obj; 1218 zfs_dirlock_t *dl; 1219 dmu_tx_t *tx; 1220 int may_delete_now, delete_now = FALSE; 1221 int reaped; 1222 int error; 1223 1224 ZFS_ENTER(zfsvfs); 1225 1226 top: 1227 /* 1228 * Attempt to lock directory; fail if entry doesn't exist. 1229 */ 1230 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) { 1231 ZFS_EXIT(zfsvfs); 1232 return (error); 1233 } 1234 1235 vp = ZTOV(zp); 1236 1237 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1238 goto out; 1239 } 1240 1241 /* 1242 * Check the restrictions that apply on sticky directories. 1243 */ 1244 if (error = zfs_sticky_remove_access(dzp, zp, cr)) 1245 goto out; 1246 1247 /* 1248 * Need to use rmdir for removing directories. 1249 */ 1250 if (vp->v_type == VDIR) { 1251 error = EPERM; 1252 goto out; 1253 } 1254 1255 vnevent_remove(vp); 1256 1257 mutex_enter(&vp->v_lock); 1258 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1259 mutex_exit(&vp->v_lock); 1260 1261 /* 1262 * We may delete the znode now, or we may put it on the delete queue; 1263 * it depends on whether we're the last link, and on whether there are 1264 * other holds on the vnode. So we dmu_tx_hold() the right things to 1265 * allow for either case. 1266 */ 1267 tx = dmu_tx_create(zfsvfs->z_os); 1268 dmu_tx_hold_zap(tx, dzp->z_id, -1); 1269 dmu_tx_hold_bonus(tx, zp->z_id); 1270 if (may_delete_now) 1271 dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END); 1272 1273 /* are there any extended attributes? */ 1274 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1275 /* 1276 * XXX - There is a possibility that the delete 1277 * of the parent file could succeed, but then we get 1278 * an ENOSPC when we try to delete the xattrs... 1279 * so we would need to re-try the deletes periodically 1280 */ 1281 /* XXX - do we need this if we are deleting? */ 1282 dmu_tx_hold_bonus(tx, xattr_obj); 1283 } 1284 1285 /* are there any additional acls */ 1286 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1287 may_delete_now) 1288 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1289 1290 /* charge as an update -- would be nice not to charge at all */ 1291 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, -1); 1292 1293 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1294 if (error) { 1295 dmu_tx_abort(tx); 1296 zfs_dirent_unlock(dl); 1297 VN_RELE(vp); 1298 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1299 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 1300 goto top; 1301 } 1302 ZFS_EXIT(zfsvfs); 1303 return (error); 1304 } 1305 1306 /* 1307 * Remove the directory entry. 1308 */ 1309 error = zfs_link_destroy(dl, zp, tx, 0, &reaped); 1310 1311 if (error) { 1312 dmu_tx_commit(tx); 1313 goto out; 1314 } 1315 1316 if (reaped) { 1317 mutex_enter(&vp->v_lock); 1318 delete_now = may_delete_now && 1319 vp->v_count == 1 && !vn_has_cached_data(vp) && 1320 zp->z_phys->zp_xattr == xattr_obj && 1321 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1322 mutex_exit(&vp->v_lock); 1323 } 1324 1325 if (delete_now) { 1326 if (zp->z_phys->zp_xattr) { 1327 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1328 ASSERT3U(error, ==, 0); 1329 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1330 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1331 mutex_enter(&xzp->z_lock); 1332 xzp->z_reap = 1; 1333 xzp->z_phys->zp_links = 0; 1334 mutex_exit(&xzp->z_lock); 1335 zfs_dq_add(xzp, tx); 1336 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1337 } 1338 mutex_enter(&zp->z_lock); 1339 mutex_enter(&vp->v_lock); 1340 vp->v_count--; 1341 ASSERT3U(vp->v_count, ==, 0); 1342 mutex_exit(&vp->v_lock); 1343 zp->z_active = 0; 1344 mutex_exit(&zp->z_lock); 1345 zfs_znode_delete(zp, tx); 1346 VFS_RELE(zfsvfs->z_vfs); 1347 } else if (reaped) { 1348 zfs_dq_add(zp, tx); 1349 } 1350 1351 seq = zfs_log_remove(zilog, tx, TX_REMOVE, dzp, name); 1352 1353 dmu_tx_commit(tx); 1354 out: 1355 zfs_dirent_unlock(dl); 1356 1357 if (!delete_now) { 1358 VN_RELE(vp); 1359 } else if (xzp) { 1360 /* this rele delayed to prevent nesting transactions */ 1361 VN_RELE(ZTOV(xzp)); 1362 } 1363 1364 zil_commit(zilog, seq, 0); 1365 1366 ZFS_EXIT(zfsvfs); 1367 return (error); 1368 } 1369 1370 /* 1371 * Create a new directory and insert it into dvp using the name 1372 * provided. Return a pointer to the inserted directory. 1373 * 1374 * IN: dvp - vnode of directory to add subdir to. 1375 * dirname - name of new directory. 1376 * vap - attributes of new directory. 1377 * cr - credentials of caller. 1378 * 1379 * OUT: vpp - vnode of created directory. 1380 * 1381 * RETURN: 0 if success 1382 * error code if failure 1383 * 1384 * Timestamps: 1385 * dvp - ctime|mtime updated 1386 * vp - ctime|mtime|atime updated 1387 */ 1388 static int 1389 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr) 1390 { 1391 znode_t *zp, *dzp = VTOZ(dvp); 1392 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1393 zilog_t *zilog = zfsvfs->z_log; 1394 uint64_t seq = 0; 1395 zfs_dirlock_t *dl; 1396 uint64_t zoid = 0; 1397 dmu_tx_t *tx; 1398 int error; 1399 1400 ASSERT(vap->va_type == VDIR); 1401 1402 ZFS_ENTER(zfsvfs); 1403 1404 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1405 ZFS_EXIT(zfsvfs); 1406 return (EINVAL); 1407 } 1408 top: 1409 *vpp = NULL; 1410 1411 /* 1412 * First make sure the new directory doesn't exist. 1413 */ 1414 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, ZNEW)) { 1415 ZFS_EXIT(zfsvfs); 1416 return (error); 1417 } 1418 1419 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, cr)) { 1420 zfs_dirent_unlock(dl); 1421 ZFS_EXIT(zfsvfs); 1422 return (error); 1423 } 1424 1425 /* 1426 * Add a new entry to the directory. 1427 */ 1428 tx = dmu_tx_create(zfsvfs->z_os); 1429 dmu_tx_hold_zap(tx, dzp->z_id, 1); 1430 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, 0); 1431 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 1432 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1433 0, SPA_MAXBLOCKSIZE); 1434 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1435 if (error) { 1436 dmu_tx_abort(tx); 1437 zfs_dirent_unlock(dl); 1438 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1439 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 1440 goto top; 1441 } 1442 ZFS_EXIT(zfsvfs); 1443 return (error); 1444 } 1445 1446 /* 1447 * Create new node. 1448 */ 1449 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 1450 1451 /* 1452 * Now put new name in parent dir. 1453 */ 1454 (void) zfs_link_create(dl, zp, tx, ZNEW); 1455 1456 *vpp = ZTOV(zp); 1457 1458 seq = zfs_log_create(zilog, tx, TX_MKDIR, dzp, zp, dirname); 1459 dmu_tx_commit(tx); 1460 1461 zfs_dirent_unlock(dl); 1462 1463 zil_commit(zilog, seq, 0); 1464 1465 ZFS_EXIT(zfsvfs); 1466 return (0); 1467 } 1468 1469 /* 1470 * Remove a directory subdir entry. If the current working 1471 * directory is the same as the subdir to be removed, the 1472 * remove will fail. 1473 * 1474 * IN: dvp - vnode of directory to remove from. 1475 * name - name of directory to be removed. 1476 * cwd - vnode of current working directory. 1477 * cr - credentials of caller. 1478 * 1479 * RETURN: 0 if success 1480 * error code if failure 1481 * 1482 * Timestamps: 1483 * dvp - ctime|mtime updated 1484 */ 1485 static int 1486 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr) 1487 { 1488 znode_t *dzp = VTOZ(dvp); 1489 znode_t *zp; 1490 vnode_t *vp; 1491 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1492 zilog_t *zilog = zfsvfs->z_log; 1493 uint64_t seq = 0; 1494 zfs_dirlock_t *dl; 1495 dmu_tx_t *tx; 1496 int error; 1497 1498 ZFS_ENTER(zfsvfs); 1499 1500 top: 1501 zp = NULL; 1502 1503 /* 1504 * Attempt to lock directory; fail if entry doesn't exist. 1505 */ 1506 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) { 1507 ZFS_EXIT(zfsvfs); 1508 return (error); 1509 } 1510 1511 vp = ZTOV(zp); 1512 1513 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1514 goto out; 1515 } 1516 1517 /* 1518 * Check the restrictions that apply on sticky directories. 1519 */ 1520 if (error = zfs_sticky_remove_access(dzp, zp, cr)) 1521 goto out; 1522 1523 if (vp->v_type != VDIR) { 1524 error = ENOTDIR; 1525 goto out; 1526 } 1527 1528 if (vp == cwd) { 1529 error = EINVAL; 1530 goto out; 1531 } 1532 1533 vnevent_rmdir(vp); 1534 1535 /* 1536 * Grab a lock on the parent pointer make sure we play well 1537 * with the treewalk and directory rename code. 1538 */ 1539 rw_enter(&zp->z_parent_lock, RW_WRITER); 1540 1541 tx = dmu_tx_create(zfsvfs->z_os); 1542 dmu_tx_hold_zap(tx, dzp->z_id, 1); 1543 dmu_tx_hold_bonus(tx, zp->z_id); 1544 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, 1); 1545 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1546 if (error) { 1547 dmu_tx_abort(tx); 1548 rw_exit(&zp->z_parent_lock); 1549 zfs_dirent_unlock(dl); 1550 VN_RELE(vp); 1551 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1552 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 1553 goto top; 1554 } 1555 ZFS_EXIT(zfsvfs); 1556 return (error); 1557 } 1558 1559 error = zfs_link_destroy(dl, zp, tx, 0, NULL); 1560 1561 if (error == 0) 1562 seq = zfs_log_remove(zilog, tx, TX_RMDIR, dzp, name); 1563 1564 dmu_tx_commit(tx); 1565 1566 rw_exit(&zp->z_parent_lock); 1567 out: 1568 zfs_dirent_unlock(dl); 1569 1570 VN_RELE(vp); 1571 1572 zil_commit(zilog, seq, 0); 1573 1574 ZFS_EXIT(zfsvfs); 1575 return (error); 1576 } 1577 1578 /* 1579 * Read as many directory entries as will fit into the provided 1580 * buffer from the given directory cursor position (specified in 1581 * the uio structure. 1582 * 1583 * IN: vp - vnode of directory to read. 1584 * uio - structure supplying read location, range info, 1585 * and return buffer. 1586 * cr - credentials of caller. 1587 * 1588 * OUT: uio - updated offset and range, buffer filled. 1589 * eofp - set to true if end-of-file detected. 1590 * 1591 * RETURN: 0 if success 1592 * error code if failure 1593 * 1594 * Timestamps: 1595 * vp - atime updated 1596 * 1597 * Note that the low 4 bits of the cookie returned by zap is always zero. 1598 * This allows us to use the low range for "special" directory entries: 1599 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1600 * we use the offset 2 for the '.zfs' directory. 1601 */ 1602 /* ARGSUSED */ 1603 static int 1604 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp) 1605 { 1606 znode_t *zp = VTOZ(vp); 1607 iovec_t *iovp; 1608 dirent64_t *odp; 1609 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1610 objset_t *os; 1611 caddr_t outbuf; 1612 size_t bufsize; 1613 zap_cursor_t zc; 1614 zap_attribute_t zap; 1615 uint_t bytes_wanted; 1616 ushort_t this_reclen; 1617 uint64_t offset; /* must be unsigned; checks for < 1 */ 1618 off64_t *next; 1619 int local_eof; 1620 int outcount; 1621 int error; 1622 uint8_t prefetch; 1623 1624 ZFS_ENTER(zfsvfs); 1625 1626 /* 1627 * If we are not given an eof variable, 1628 * use a local one. 1629 */ 1630 if (eofp == NULL) 1631 eofp = &local_eof; 1632 1633 /* 1634 * Check for valid iov_len. 1635 */ 1636 if (uio->uio_iov->iov_len <= 0) { 1637 ZFS_EXIT(zfsvfs); 1638 return (EINVAL); 1639 } 1640 1641 /* 1642 * Quit if directory has been removed (posix) 1643 */ 1644 if ((*eofp = zp->z_reap) != 0) { 1645 ZFS_EXIT(zfsvfs); 1646 return (0); 1647 } 1648 1649 error = 0; 1650 os = zfsvfs->z_os; 1651 offset = uio->uio_loffset; 1652 prefetch = zp->z_zn_prefetch; 1653 1654 /* 1655 * Initialize the iterator cursor. 1656 */ 1657 if (offset <= 3) { 1658 /* 1659 * Start iteration from the beginning of the directory. 1660 */ 1661 zap_cursor_init(&zc, os, zp->z_id); 1662 } else { 1663 /* 1664 * The offset is a serialized cursor. 1665 */ 1666 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1667 } 1668 1669 /* 1670 * Get space to change directory entries into fs independent format. 1671 */ 1672 iovp = uio->uio_iov; 1673 bytes_wanted = iovp->iov_len; 1674 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 1675 bufsize = bytes_wanted; 1676 outbuf = kmem_alloc(bufsize, KM_SLEEP); 1677 odp = (struct dirent64 *)outbuf; 1678 } else { 1679 bufsize = bytes_wanted; 1680 odp = (struct dirent64 *)iovp->iov_base; 1681 } 1682 1683 /* 1684 * Transform to file-system independent format 1685 */ 1686 outcount = 0; 1687 while (outcount < bytes_wanted) { 1688 /* 1689 * Special case `.', `..', and `.zfs'. 1690 */ 1691 if (offset == 0) { 1692 (void) strcpy(zap.za_name, "."); 1693 zap.za_first_integer = zp->z_id; 1694 this_reclen = DIRENT64_RECLEN(1); 1695 } else if (offset == 1) { 1696 (void) strcpy(zap.za_name, ".."); 1697 zap.za_first_integer = zp->z_phys->zp_parent; 1698 this_reclen = DIRENT64_RECLEN(2); 1699 } else if (offset == 2 && zfs_show_ctldir(zp)) { 1700 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 1701 zap.za_first_integer = ZFSCTL_INO_ROOT; 1702 this_reclen = 1703 DIRENT64_RECLEN(sizeof (ZFS_CTLDIR_NAME) - 1); 1704 } else { 1705 /* 1706 * Grab next entry. 1707 */ 1708 if (error = zap_cursor_retrieve(&zc, &zap)) { 1709 if ((*eofp = (error == ENOENT)) != 0) 1710 break; 1711 else 1712 goto update; 1713 } 1714 1715 if (zap.za_integer_length != 8 || 1716 zap.za_num_integers != 1) { 1717 cmn_err(CE_WARN, "zap_readdir: bad directory " 1718 "entry, obj = %lld, offset = %lld\n", 1719 (u_longlong_t)zp->z_id, 1720 (u_longlong_t)offset); 1721 error = ENXIO; 1722 goto update; 1723 } 1724 this_reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 1725 } 1726 1727 /* 1728 * Will this entry fit in the buffer? 1729 */ 1730 if (outcount + this_reclen > bufsize) { 1731 /* 1732 * Did we manage to fit anything in the buffer? 1733 */ 1734 if (!outcount) { 1735 error = EINVAL; 1736 goto update; 1737 } 1738 break; 1739 } 1740 /* 1741 * Add this entry: 1742 */ 1743 odp->d_ino = (ino64_t)zap.za_first_integer; 1744 odp->d_reclen = (ushort_t)this_reclen; 1745 /* NOTE: d_off is the offset for the *next* entry */ 1746 next = &(odp->d_off); 1747 (void) strncpy(odp->d_name, zap.za_name, 1748 DIRENT64_NAMELEN(this_reclen)); 1749 outcount += this_reclen; 1750 odp = (dirent64_t *)((intptr_t)odp + this_reclen); 1751 1752 ASSERT(outcount <= bufsize); 1753 1754 /* Prefetch znode */ 1755 if (prefetch) 1756 dmu_prefetch(os, zap.za_first_integer, 0, 0); 1757 1758 /* 1759 * Move to the next entry, fill in the previous offset. 1760 */ 1761 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 1762 zap_cursor_advance(&zc); 1763 offset = zap_cursor_serialize(&zc); 1764 } else { 1765 offset += 1; 1766 } 1767 *next = offset; 1768 } 1769 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 1770 1771 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 1772 iovp->iov_base += outcount; 1773 iovp->iov_len -= outcount; 1774 uio->uio_resid -= outcount; 1775 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 1776 /* 1777 * Reset the pointer. 1778 */ 1779 offset = uio->uio_loffset; 1780 } 1781 1782 update: 1783 zap_cursor_fini(&zc); 1784 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 1785 kmem_free(outbuf, bufsize); 1786 1787 if (error == ENOENT) 1788 error = 0; 1789 1790 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 1791 1792 uio->uio_loffset = offset; 1793 ZFS_EXIT(zfsvfs); 1794 return (error); 1795 } 1796 1797 /* ARGSUSED */ 1798 static int 1799 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr) 1800 { 1801 znode_t *zp = VTOZ(vp); 1802 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1803 1804 ZFS_ENTER(zfsvfs); 1805 zil_commit(zfsvfs->z_log, zp->z_last_itx, FSYNC); 1806 ZFS_EXIT(zfsvfs); 1807 return (0); 1808 } 1809 1810 /* 1811 * Get the requested file attributes and place them in the provided 1812 * vattr structure. 1813 * 1814 * IN: vp - vnode of file. 1815 * vap - va_mask identifies requested attributes. 1816 * flags - [UNUSED] 1817 * cr - credentials of caller. 1818 * 1819 * OUT: vap - attribute values. 1820 * 1821 * RETURN: 0 (always succeeds) 1822 */ 1823 /* ARGSUSED */ 1824 static int 1825 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) 1826 { 1827 znode_t *zp = VTOZ(vp); 1828 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1829 znode_phys_t *pzp = zp->z_phys; 1830 int error; 1831 1832 ZFS_ENTER(zfsvfs); 1833 1834 /* 1835 * Return all attributes. It's cheaper to provide the answer 1836 * than to determine whether we were asked the question. 1837 */ 1838 mutex_enter(&zp->z_lock); 1839 1840 vap->va_type = vp->v_type; 1841 vap->va_mode = pzp->zp_mode & MODEMASK; 1842 vap->va_uid = zp->z_phys->zp_uid; 1843 vap->va_gid = zp->z_phys->zp_gid; 1844 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 1845 vap->va_nodeid = zp->z_id; 1846 vap->va_nlink = MIN(pzp->zp_links, UINT32_MAX); /* nlink_t limit! */ 1847 vap->va_size = pzp->zp_size; 1848 vap->va_rdev = pzp->zp_rdev; 1849 vap->va_seq = zp->z_seq; 1850 1851 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 1852 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 1853 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 1854 1855 /* 1856 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 1857 * Also, if we are the owner don't bother, since owner should 1858 * always be allowed to read basic attributes of file. 1859 */ 1860 if (!(zp->z_phys->zp_flags & ZFS_ACL_TRIVIAL) && 1861 (zp->z_phys->zp_uid != crgetuid(cr))) { 1862 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, cr)) { 1863 mutex_exit(&zp->z_lock); 1864 ZFS_EXIT(zfsvfs); 1865 return (error); 1866 } 1867 } 1868 1869 mutex_exit(&zp->z_lock); 1870 1871 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 1872 1873 if (zp->z_blksz == 0) { 1874 /* 1875 * Block size hasn't been set; suggest maximal I/O transfers. 1876 */ 1877 vap->va_blksize = zfsvfs->z_max_blksz; 1878 } 1879 1880 ZFS_EXIT(zfsvfs); 1881 return (0); 1882 } 1883 1884 /* 1885 * Set the file attributes to the values contained in the 1886 * vattr structure. 1887 * 1888 * IN: vp - vnode of file to be modified. 1889 * vap - new attribute values. 1890 * flags - ATTR_UTIME set if non-default time values provided. 1891 * cr - credentials of caller. 1892 * 1893 * RETURN: 0 if success 1894 * error code if failure 1895 * 1896 * Timestamps: 1897 * vp - ctime updated, mtime updated if size changed. 1898 */ 1899 /* ARGSUSED */ 1900 static int 1901 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 1902 caller_context_t *ct) 1903 { 1904 struct znode *zp = VTOZ(vp); 1905 znode_phys_t *pzp = zp->z_phys; 1906 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1907 zilog_t *zilog = zfsvfs->z_log; 1908 uint64_t seq = 0; 1909 dmu_tx_t *tx; 1910 uint_t mask = vap->va_mask; 1911 uint_t mask_applied = 0; 1912 vattr_t oldva; 1913 int trim_mask = FALSE; 1914 int saved_mask; 1915 uint64_t new_mode; 1916 znode_t *attrzp; 1917 int have_grow_lock; 1918 int need_policy = FALSE; 1919 int err; 1920 1921 if (mask == 0) 1922 return (0); 1923 1924 if (mask & AT_NOSET) 1925 return (EINVAL); 1926 1927 if (mask & AT_SIZE && vp->v_type == VDIR) 1928 return (EISDIR); 1929 1930 ZFS_ENTER(zfsvfs); 1931 1932 top: 1933 have_grow_lock = FALSE; 1934 attrzp = NULL; 1935 1936 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 1937 ZFS_EXIT(zfsvfs); 1938 return (EROFS); 1939 } 1940 1941 /* 1942 * First validate permissions 1943 */ 1944 1945 if (mask & AT_SIZE) { 1946 err = zfs_zaccess(zp, ACE_WRITE_DATA, cr); 1947 if (err) { 1948 ZFS_EXIT(zfsvfs); 1949 return (err); 1950 } 1951 } 1952 1953 if (mask & (AT_ATIME|AT_MTIME)) 1954 need_policy = zfs_zaccess_v4_perm(zp, ACE_WRITE_ATTRIBUTES, cr); 1955 1956 if (mask & (AT_UID|AT_GID)) { 1957 int idmask = (mask & (AT_UID|AT_GID)); 1958 int take_owner; 1959 int take_group; 1960 1961 /* 1962 * NOTE: even if a new mode is being set, 1963 * we may clear S_ISUID/S_ISGID bits. 1964 */ 1965 1966 if (!(mask & AT_MODE)) 1967 vap->va_mode = pzp->zp_mode; 1968 1969 /* 1970 * Take ownership or chgrp to group we are a member of 1971 */ 1972 1973 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 1974 take_group = (mask & AT_GID) && groupmember(vap->va_gid, cr); 1975 1976 /* 1977 * If both AT_UID and AT_GID are set then take_owner and 1978 * take_group must both be set in order to allow taking 1979 * ownership. 1980 * 1981 * Otherwise, send the check through secpolicy_vnode_setattr() 1982 * 1983 */ 1984 1985 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 1986 ((idmask == AT_UID) && take_owner) || 1987 ((idmask == AT_GID) && take_group)) { 1988 if (zfs_zaccess_v4_perm(zp, ACE_WRITE_OWNER, cr) == 0) { 1989 /* 1990 * Remove setuid/setgid for non-privileged users 1991 */ 1992 secpolicy_setid_clear(vap, cr); 1993 trim_mask = TRUE; 1994 saved_mask = vap->va_mask; 1995 } else { 1996 need_policy = TRUE; 1997 } 1998 } else { 1999 need_policy = TRUE; 2000 } 2001 } 2002 2003 if (mask & AT_MODE) 2004 need_policy = TRUE; 2005 2006 if (need_policy) { 2007 mutex_enter(&zp->z_lock); 2008 oldva.va_mode = pzp->zp_mode; 2009 oldva.va_uid = zp->z_phys->zp_uid; 2010 oldva.va_gid = zp->z_phys->zp_gid; 2011 mutex_exit(&zp->z_lock); 2012 2013 /* 2014 * If trim_mask is set then take ownership 2015 * has been granted. In that case remove 2016 * UID|GID from mask so that 2017 * secpolicy_vnode_setattr() doesn't revoke it. 2018 */ 2019 if (trim_mask) 2020 vap->va_mask &= ~(AT_UID|AT_GID); 2021 2022 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2023 (int (*)(void *, int, cred_t *))zfs_zaccess_rwx, zp); 2024 if (err) { 2025 ZFS_EXIT(zfsvfs); 2026 return (err); 2027 } 2028 2029 if (trim_mask) 2030 vap->va_mask |= (saved_mask & (AT_UID|AT_GID)); 2031 } 2032 2033 /* 2034 * secpolicy_vnode_setattr, or take ownership may have 2035 * changed va_mask 2036 */ 2037 mask = vap->va_mask; 2038 2039 tx = dmu_tx_create(zfsvfs->z_os); 2040 dmu_tx_hold_bonus(tx, zp->z_id); 2041 2042 if (mask & AT_MODE) { 2043 2044 new_mode = (pzp->zp_mode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2045 2046 if (zp->z_phys->zp_acl.z_acl_extern_obj) 2047 dmu_tx_hold_write(tx, 2048 pzp->zp_acl.z_acl_extern_obj, 0, SPA_MAXBLOCKSIZE); 2049 else 2050 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2051 0, ZFS_ACL_SIZE(MAX_ACL_SIZE)); 2052 } 2053 2054 if (mask & AT_SIZE) { 2055 uint64_t off = vap->va_size; 2056 /* 2057 * Grab the grow_lock to serialize this change with 2058 * respect to other file manipulations. 2059 */ 2060 rw_enter(&zp->z_grow_lock, RW_WRITER); 2061 have_grow_lock = TRUE; 2062 if (off < zp->z_phys->zp_size) 2063 dmu_tx_hold_free(tx, zp->z_id, off, DMU_OBJECT_END); 2064 else if (zp->z_phys->zp_size && 2065 zp->z_blksz < zfsvfs->z_max_blksz && off > zp->z_blksz) 2066 /* we will rewrite this block if we grow */ 2067 dmu_tx_hold_write(tx, zp->z_id, 0, zp->z_phys->zp_size); 2068 } 2069 2070 if ((mask & (AT_UID | AT_GID)) && zp->z_phys->zp_xattr != 0) { 2071 err = zfs_zget(zp->z_zfsvfs, zp->z_phys->zp_xattr, &attrzp); 2072 if (err) { 2073 dmu_tx_abort(tx); 2074 if (have_grow_lock) 2075 rw_exit(&zp->z_grow_lock); 2076 ZFS_EXIT(zfsvfs); 2077 return (err); 2078 } 2079 dmu_tx_hold_bonus(tx, attrzp->z_id); 2080 } 2081 2082 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2083 if (err) { 2084 if (attrzp) 2085 VN_RELE(ZTOV(attrzp)); 2086 dmu_tx_abort(tx); 2087 if (have_grow_lock) 2088 rw_exit(&zp->z_grow_lock); 2089 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2090 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2091 goto top; 2092 } 2093 ZFS_EXIT(zfsvfs); 2094 return (err); 2095 } 2096 2097 dmu_buf_will_dirty(zp->z_dbuf, tx); 2098 2099 /* 2100 * Set each attribute requested. 2101 * We group settings according to the locks they need to acquire. 2102 * 2103 * Note: you cannot set ctime directly, although it will be 2104 * updated as a side-effect of calling this function. 2105 */ 2106 if (mask & AT_SIZE) { 2107 /* 2108 * XXX - Note, we are not providing any open 2109 * mode flags here (like FNDELAY), so we may 2110 * block if there are locks present... this 2111 * should be addressed in openat(). 2112 */ 2113 err = zfs_freesp(zp, vap->va_size, 0, 0, tx, cr); 2114 if (err) { 2115 mutex_enter(&zp->z_lock); 2116 goto out; 2117 } 2118 mask_applied |= AT_SIZE; 2119 } 2120 2121 mask_applied = mask; /* no errors after this point */ 2122 2123 mutex_enter(&zp->z_lock); 2124 2125 if (mask & AT_MODE) { 2126 err = zfs_acl_chmod_setattr(zp, new_mode, tx); 2127 ASSERT3U(err, ==, 0); 2128 } 2129 2130 if (attrzp) 2131 mutex_enter(&attrzp->z_lock); 2132 2133 if (mask & AT_UID) { 2134 zp->z_phys->zp_uid = (uint64_t)vap->va_uid; 2135 if (attrzp) { 2136 attrzp->z_phys->zp_uid = (uint64_t)vap->va_uid; 2137 } 2138 } 2139 2140 if (mask & AT_GID) { 2141 zp->z_phys->zp_gid = (uint64_t)vap->va_gid; 2142 if (attrzp) 2143 attrzp->z_phys->zp_gid = (uint64_t)vap->va_gid; 2144 } 2145 2146 if (attrzp) 2147 mutex_exit(&attrzp->z_lock); 2148 2149 if (mask & AT_ATIME) 2150 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2151 2152 if (mask & AT_MTIME) 2153 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2154 2155 if (mask_applied & AT_SIZE) 2156 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2157 else if (mask_applied != 0) 2158 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2159 2160 out: 2161 2162 if (mask_applied != 0) 2163 seq = zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, 2164 mask_applied); 2165 2166 mutex_exit(&zp->z_lock); 2167 2168 if (attrzp) 2169 VN_RELE(ZTOV(attrzp)); 2170 2171 if (have_grow_lock) 2172 rw_exit(&zp->z_grow_lock); 2173 2174 dmu_tx_commit(tx); 2175 2176 zil_commit(zilog, seq, 0); 2177 2178 ZFS_EXIT(zfsvfs); 2179 return (err); 2180 } 2181 2182 /* 2183 * Search back through the directory tree, using the ".." entries. 2184 * Lock each directory in the chain to prevent concurrent renames. 2185 * Fail any attempt to move a directory into one of its own descendants. 2186 * XXX - z_parent_lock can overlap with map or grow locks 2187 */ 2188 typedef struct zfs_zlock { 2189 krwlock_t *zl_rwlock; /* lock we acquired */ 2190 znode_t *zl_znode; /* znode we held */ 2191 struct zfs_zlock *zl_next; /* next in list */ 2192 } zfs_zlock_t; 2193 2194 static int 2195 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2196 { 2197 zfs_zlock_t *zl; 2198 znode_t *zp = tdzp; 2199 uint64_t rootid = zp->z_zfsvfs->z_root; 2200 uint64_t *oidp = &zp->z_id; 2201 krwlock_t *rwlp = &szp->z_parent_lock; 2202 krw_t rw = RW_WRITER; 2203 2204 /* 2205 * First pass write-locks szp and compares to zp->z_id. 2206 * Later passes read-lock zp and compare to zp->z_parent. 2207 */ 2208 do { 2209 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 2210 zl->zl_rwlock = rwlp; 2211 zl->zl_znode = NULL; 2212 zl->zl_next = *zlpp; 2213 *zlpp = zl; 2214 2215 rw_enter(rwlp, rw); 2216 2217 if (*oidp == szp->z_id) /* We're a descendant of szp */ 2218 return (EINVAL); 2219 2220 if (*oidp == rootid) /* We've hit the top */ 2221 return (0); 2222 2223 if (rw == RW_READER) { /* i.e. not the first pass */ 2224 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 2225 if (error) 2226 return (error); 2227 zl->zl_znode = zp; 2228 } 2229 oidp = &zp->z_phys->zp_parent; 2230 rwlp = &zp->z_parent_lock; 2231 rw = RW_READER; 2232 2233 } while (zp->z_id != sdzp->z_id); 2234 2235 return (0); 2236 } 2237 2238 /* 2239 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2240 */ 2241 static void 2242 zfs_rename_unlock(zfs_zlock_t **zlpp) 2243 { 2244 zfs_zlock_t *zl; 2245 2246 while ((zl = *zlpp) != NULL) { 2247 if (zl->zl_znode != NULL) 2248 VN_RELE(ZTOV(zl->zl_znode)); 2249 rw_exit(zl->zl_rwlock); 2250 *zlpp = zl->zl_next; 2251 kmem_free(zl, sizeof (*zl)); 2252 } 2253 } 2254 2255 /* 2256 * Move an entry from the provided source directory to the target 2257 * directory. Change the entry name as indicated. 2258 * 2259 * IN: sdvp - Source directory containing the "old entry". 2260 * snm - Old entry name. 2261 * tdvp - Target directory to contain the "new entry". 2262 * tnm - New entry name. 2263 * cr - credentials of caller. 2264 * 2265 * RETURN: 0 if success 2266 * error code if failure 2267 * 2268 * Timestamps: 2269 * sdvp,tdvp - ctime|mtime updated 2270 */ 2271 static int 2272 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr) 2273 { 2274 znode_t *tdzp, *szp, *tzp; 2275 znode_t *sdzp = VTOZ(sdvp); 2276 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 2277 zilog_t *zilog = zfsvfs->z_log; 2278 uint64_t seq = 0; 2279 vnode_t *realvp; 2280 zfs_dirlock_t *sdl, *tdl; 2281 dmu_tx_t *tx; 2282 zfs_zlock_t *zl; 2283 int cmp, serr, terr, error; 2284 2285 ZFS_ENTER(zfsvfs); 2286 2287 /* 2288 * Make sure we have the real vp for the target directory. 2289 */ 2290 if (VOP_REALVP(tdvp, &realvp) == 0) 2291 tdvp = realvp; 2292 2293 if (tdvp->v_vfsp != sdvp->v_vfsp) { 2294 ZFS_EXIT(zfsvfs); 2295 return (EXDEV); 2296 } 2297 2298 tdzp = VTOZ(tdvp); 2299 top: 2300 szp = NULL; 2301 tzp = NULL; 2302 zl = NULL; 2303 2304 /* 2305 * This is to prevent the creation of links into attribute space 2306 * by renaming a linked file into/outof an attribute directory. 2307 * See the comment in zfs_link() for why this is considered bad. 2308 */ 2309 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 2310 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 2311 ZFS_EXIT(zfsvfs); 2312 return (EINVAL); 2313 } 2314 2315 /* 2316 * Lock source and target directory entries. To prevent deadlock, 2317 * a lock ordering must be defined. We lock the directory with 2318 * the smallest object id first, or if it's a tie, the one with 2319 * the lexically first name. 2320 */ 2321 if (sdzp->z_id < tdzp->z_id) { 2322 cmp = -1; 2323 } else if (sdzp->z_id > tdzp->z_id) { 2324 cmp = 1; 2325 } else { 2326 cmp = strcmp(snm, tnm); 2327 if (cmp == 0) { 2328 /* 2329 * POSIX: "If the old argument and the new argument 2330 * both refer to links to the same existing file, 2331 * the rename() function shall return successfully 2332 * and perform no other action." 2333 */ 2334 ZFS_EXIT(zfsvfs); 2335 return (0); 2336 } 2337 } 2338 if (cmp < 0) { 2339 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS); 2340 terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0); 2341 } else { 2342 terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0); 2343 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS); 2344 } 2345 2346 if (serr) { 2347 /* 2348 * Source entry invalid or not there. 2349 */ 2350 if (!terr) { 2351 zfs_dirent_unlock(tdl); 2352 if (tzp) 2353 VN_RELE(ZTOV(tzp)); 2354 } 2355 if (strcmp(snm, "..") == 0) 2356 serr = EINVAL; 2357 ZFS_EXIT(zfsvfs); 2358 return (serr); 2359 } 2360 if (terr) { 2361 zfs_dirent_unlock(sdl); 2362 VN_RELE(ZTOV(szp)); 2363 if (strcmp(tnm, "..") == 0) 2364 terr = EINVAL; 2365 ZFS_EXIT(zfsvfs); 2366 return (terr); 2367 } 2368 2369 /* 2370 * Must have write access at the source to remove the old entry 2371 * and write access at the target to create the new entry. 2372 * Note that if target and source are the same, this can be 2373 * done in a single check. 2374 */ 2375 2376 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 2377 goto out; 2378 2379 if (ZTOV(szp)->v_type == VDIR) { 2380 /* 2381 * Check to make sure rename is valid. 2382 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 2383 */ 2384 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 2385 goto out; 2386 } 2387 2388 /* 2389 * Does target exist? 2390 */ 2391 if (tzp) { 2392 /* 2393 * Source and target must be the same type. 2394 */ 2395 if (ZTOV(szp)->v_type == VDIR) { 2396 if (ZTOV(tzp)->v_type != VDIR) { 2397 error = ENOTDIR; 2398 goto out; 2399 } 2400 } else { 2401 if (ZTOV(tzp)->v_type == VDIR) { 2402 error = EISDIR; 2403 goto out; 2404 } 2405 } 2406 /* 2407 * POSIX dictates that when the source and target 2408 * entries refer to the same file object, rename 2409 * must do nothing and exit without error. 2410 */ 2411 if (szp->z_id == tzp->z_id) { 2412 error = 0; 2413 goto out; 2414 } 2415 } 2416 2417 vnevent_rename_src(ZTOV(szp)); 2418 if (tzp) 2419 vnevent_rename_dest(ZTOV(tzp)); 2420 2421 tx = dmu_tx_create(zfsvfs->z_os); 2422 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 2423 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 2424 if (sdzp != tdzp) { 2425 dmu_tx_hold_zap(tx, sdzp->z_id, 1); 2426 dmu_tx_hold_zap(tx, tdzp->z_id, 1); 2427 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 2428 } else { 2429 dmu_tx_hold_zap(tx, sdzp->z_id, 2); 2430 } 2431 if (tzp) { 2432 dmu_tx_hold_bonus(tx, tzp->z_id); /* nlink changes */ 2433 } 2434 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, 1); 2435 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2436 if (error) { 2437 dmu_tx_abort(tx); 2438 if (zl != NULL) 2439 zfs_rename_unlock(&zl); 2440 zfs_dirent_unlock(sdl); 2441 zfs_dirent_unlock(tdl); 2442 VN_RELE(ZTOV(szp)); 2443 if (tzp) 2444 VN_RELE(ZTOV(tzp)); 2445 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2446 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2447 goto top; 2448 } 2449 ZFS_EXIT(zfsvfs); 2450 return (error); 2451 } 2452 2453 if (tzp) /* Attempt to remove the existing target */ 2454 error = zfs_link_destroy(tdl, tzp, tx, 0, NULL); 2455 2456 if (error == 0) { 2457 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 2458 if (error == 0) { 2459 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 2460 ASSERT(error == 0); 2461 seq = zfs_log_rename(zilog, tx, TX_RENAME, 2462 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); 2463 } 2464 } 2465 2466 dmu_tx_commit(tx); 2467 out: 2468 if (zl != NULL) 2469 zfs_rename_unlock(&zl); 2470 2471 zfs_dirent_unlock(sdl); 2472 zfs_dirent_unlock(tdl); 2473 2474 VN_RELE(ZTOV(szp)); 2475 if (tzp) 2476 VN_RELE(ZTOV(tzp)); 2477 2478 zil_commit(zilog, seq, 0); 2479 2480 ZFS_EXIT(zfsvfs); 2481 return (error); 2482 } 2483 2484 /* 2485 * Insert the indicated symbolic reference entry into the directory. 2486 * 2487 * IN: dvp - Directory to contain new symbolic link. 2488 * link - Name for new symlink entry. 2489 * vap - Attributes of new entry. 2490 * target - Target path of new symlink. 2491 * cr - credentials of caller. 2492 * 2493 * RETURN: 0 if success 2494 * error code if failure 2495 * 2496 * Timestamps: 2497 * dvp - ctime|mtime updated 2498 */ 2499 static int 2500 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr) 2501 { 2502 znode_t *zp, *dzp = VTOZ(dvp); 2503 zfs_dirlock_t *dl; 2504 dmu_tx_t *tx; 2505 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2506 zilog_t *zilog = zfsvfs->z_log; 2507 uint64_t seq = 0; 2508 uint64_t zoid; 2509 int len = strlen(link); 2510 int error; 2511 2512 ASSERT(vap->va_type == VLNK); 2513 2514 ZFS_ENTER(zfsvfs); 2515 top: 2516 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 2517 ZFS_EXIT(zfsvfs); 2518 return (error); 2519 } 2520 2521 if (len > MAXPATHLEN) { 2522 ZFS_EXIT(zfsvfs); 2523 return (ENAMETOOLONG); 2524 } 2525 2526 /* 2527 * Attempt to lock directory; fail if entry already exists. 2528 */ 2529 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZNEW)) { 2530 ZFS_EXIT(zfsvfs); 2531 return (error); 2532 } 2533 2534 tx = dmu_tx_create(zfsvfs->z_os); 2535 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 2536 dmu_tx_hold_bonus(tx, dzp->z_id); 2537 dmu_tx_hold_zap(tx, dzp->z_id, 1); 2538 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 2539 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 2540 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2541 if (error) { 2542 dmu_tx_abort(tx); 2543 zfs_dirent_unlock(dl); 2544 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2545 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2546 goto top; 2547 } 2548 ZFS_EXIT(zfsvfs); 2549 return (error); 2550 } 2551 2552 dmu_buf_will_dirty(dzp->z_dbuf, tx); 2553 2554 /* 2555 * Create a new object for the symlink. 2556 * Put the link content into bonus buffer if it will fit; 2557 * otherwise, store it just like any other file data. 2558 */ 2559 zoid = 0; 2560 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 2561 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, len); 2562 if (len != 0) 2563 bcopy(link, zp->z_phys + 1, len); 2564 } else { 2565 dmu_buf_t *dbp; 2566 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 2567 2568 rw_enter(&zp->z_grow_lock, RW_WRITER); 2569 error = zfs_grow_blocksize(zp, len, tx); 2570 rw_exit(&zp->z_grow_lock); 2571 if (error) 2572 goto out; 2573 2574 dbp = dmu_buf_hold(zfsvfs->z_os, zoid, 0); 2575 dmu_buf_will_dirty(dbp, tx); 2576 2577 ASSERT3U(len, <=, dbp->db_size); 2578 bcopy(link, dbp->db_data, len); 2579 dmu_buf_rele(dbp); 2580 } 2581 zp->z_phys->zp_size = len; 2582 2583 /* 2584 * Insert the new object into the directory. 2585 */ 2586 (void) zfs_link_create(dl, zp, tx, ZNEW); 2587 out: 2588 if (error == 0) 2589 seq = zfs_log_symlink(zilog, tx, TX_SYMLINK, 2590 dzp, zp, name, link); 2591 2592 dmu_tx_commit(tx); 2593 2594 zfs_dirent_unlock(dl); 2595 2596 VN_RELE(ZTOV(zp)); 2597 2598 zil_commit(zilog, seq, 0); 2599 2600 ZFS_EXIT(zfsvfs); 2601 return (error); 2602 } 2603 2604 /* 2605 * Return, in the buffer contained in the provided uio structure, 2606 * the symbolic path referred to by vp. 2607 * 2608 * IN: vp - vnode of symbolic link. 2609 * uoip - structure to contain the link path. 2610 * cr - credentials of caller. 2611 * 2612 * OUT: uio - structure to contain the link path. 2613 * 2614 * RETURN: 0 if success 2615 * error code if failure 2616 * 2617 * Timestamps: 2618 * vp - atime updated 2619 */ 2620 /* ARGSUSED */ 2621 static int 2622 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr) 2623 { 2624 znode_t *zp = VTOZ(vp); 2625 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2626 size_t bufsz; 2627 int error; 2628 2629 ZFS_ENTER(zfsvfs); 2630 2631 bufsz = (size_t)zp->z_phys->zp_size; 2632 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 2633 error = uiomove(zp->z_phys + 1, 2634 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 2635 } else { 2636 dmu_buf_t *dbp = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0); 2637 if ((error = dmu_buf_read_canfail(dbp)) != 0) { 2638 dmu_buf_rele(dbp); 2639 ZFS_EXIT(zfsvfs); 2640 return (error); 2641 } 2642 error = uiomove(dbp->db_data, 2643 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 2644 dmu_buf_rele(dbp); 2645 } 2646 2647 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2648 ZFS_EXIT(zfsvfs); 2649 return (error); 2650 } 2651 2652 /* 2653 * Insert a new entry into directory tdvp referencing svp. 2654 * 2655 * IN: tdvp - Directory to contain new entry. 2656 * svp - vnode of new entry. 2657 * name - name of new entry. 2658 * cr - credentials of caller. 2659 * 2660 * RETURN: 0 if success 2661 * error code if failure 2662 * 2663 * Timestamps: 2664 * tdvp - ctime|mtime updated 2665 * svp - ctime updated 2666 */ 2667 /* ARGSUSED */ 2668 static int 2669 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr) 2670 { 2671 znode_t *dzp = VTOZ(tdvp); 2672 znode_t *tzp, *szp; 2673 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2674 zilog_t *zilog = zfsvfs->z_log; 2675 uint64_t seq = 0; 2676 zfs_dirlock_t *dl; 2677 dmu_tx_t *tx; 2678 vnode_t *realvp; 2679 int error; 2680 2681 ASSERT(tdvp->v_type == VDIR); 2682 2683 ZFS_ENTER(zfsvfs); 2684 2685 if (VOP_REALVP(svp, &realvp) == 0) 2686 svp = realvp; 2687 2688 if (svp->v_vfsp != tdvp->v_vfsp) { 2689 ZFS_EXIT(zfsvfs); 2690 return (EXDEV); 2691 } 2692 2693 szp = VTOZ(svp); 2694 top: 2695 /* 2696 * We do not support links between attributes and non-attributes 2697 * because of the potential security risk of creating links 2698 * into "normal" file space in order to circumvent restrictions 2699 * imposed in attribute space. 2700 */ 2701 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 2702 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 2703 ZFS_EXIT(zfsvfs); 2704 return (EINVAL); 2705 } 2706 2707 /* 2708 * POSIX dictates that we return EPERM here. 2709 * Better choices include ENOTSUP or EISDIR. 2710 */ 2711 if (svp->v_type == VDIR) { 2712 ZFS_EXIT(zfsvfs); 2713 return (EPERM); 2714 } 2715 2716 if ((uid_t)szp->z_phys->zp_uid != crgetuid(cr) && 2717 secpolicy_basic_link(cr) != 0) { 2718 ZFS_EXIT(zfsvfs); 2719 return (EPERM); 2720 } 2721 2722 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 2723 ZFS_EXIT(zfsvfs); 2724 return (error); 2725 } 2726 2727 /* 2728 * Attempt to lock directory; fail if entry already exists. 2729 */ 2730 if (error = zfs_dirent_lock(&dl, dzp, name, &tzp, ZNEW)) { 2731 ZFS_EXIT(zfsvfs); 2732 return (error); 2733 } 2734 2735 tx = dmu_tx_create(zfsvfs->z_os); 2736 dmu_tx_hold_bonus(tx, szp->z_id); 2737 dmu_tx_hold_zap(tx, dzp->z_id, 1); 2738 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2739 if (error) { 2740 dmu_tx_abort(tx); 2741 zfs_dirent_unlock(dl); 2742 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2743 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2744 goto top; 2745 } 2746 ZFS_EXIT(zfsvfs); 2747 return (error); 2748 } 2749 2750 error = zfs_link_create(dl, szp, tx, 0); 2751 2752 if (error == 0) 2753 seq = zfs_log_link(zilog, tx, TX_LINK, dzp, szp, name); 2754 2755 dmu_tx_commit(tx); 2756 2757 zfs_dirent_unlock(dl); 2758 2759 zil_commit(zilog, seq, 0); 2760 2761 ZFS_EXIT(zfsvfs); 2762 return (error); 2763 } 2764 2765 /* 2766 * zfs_null_putapage() is used when the file system has been force 2767 * unmounted. It just drops the pages. 2768 */ 2769 /* ARGSUSED */ 2770 static int 2771 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 2772 size_t *lenp, int flags, cred_t *cr) 2773 { 2774 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 2775 return (0); 2776 } 2777 2778 /* ARGSUSED */ 2779 static int 2780 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 2781 size_t *lenp, int flags, cred_t *cr) 2782 { 2783 znode_t *zp = VTOZ(vp); 2784 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2785 zilog_t *zilog = zfsvfs->z_log; 2786 uint64_t seq = 0; 2787 dmu_tx_t *tx; 2788 u_offset_t off; 2789 ssize_t len; 2790 caddr_t va; 2791 int err; 2792 2793 top: 2794 rw_enter(&zp->z_grow_lock, RW_READER); 2795 2796 off = pp->p_offset; 2797 len = MIN(PAGESIZE, zp->z_phys->zp_size - off); 2798 2799 tx = dmu_tx_create(zfsvfs->z_os); 2800 dmu_tx_hold_write(tx, zp->z_id, off, len); 2801 dmu_tx_hold_bonus(tx, zp->z_id); 2802 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2803 if (err != 0) { 2804 dmu_tx_abort(tx); 2805 rw_exit(&zp->z_grow_lock); 2806 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2807 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2808 goto top; 2809 } 2810 goto out; 2811 } 2812 2813 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 2814 2815 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 2816 2817 ppmapout(va); 2818 2819 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 2820 seq = zfs_log_write(zilog, tx, TX_WRITE, zp, off, len, 0, NULL); 2821 dmu_tx_commit(tx); 2822 2823 rw_exit(&zp->z_grow_lock); 2824 2825 pvn_write_done(pp, B_WRITE | flags); 2826 if (offp) 2827 *offp = off; 2828 if (lenp) 2829 *lenp = len; 2830 2831 zil_commit(zilog, seq, (flags & B_ASYNC) ? 0 : FDSYNC); 2832 out: 2833 return (err); 2834 } 2835 2836 /* 2837 * Copy the portion of the file indicated from pages into the file. 2838 * The pages are stored in a page list attached to the files vnode. 2839 * 2840 * IN: vp - vnode of file to push page data to. 2841 * off - position in file to put data. 2842 * len - amount of data to write. 2843 * flags - flags to control the operation. 2844 * cr - credentials of caller. 2845 * 2846 * RETURN: 0 if success 2847 * error code if failure 2848 * 2849 * Timestamps: 2850 * vp - ctime|mtime updated 2851 */ 2852 static int 2853 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr) 2854 { 2855 znode_t *zp = VTOZ(vp); 2856 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2857 page_t *pp; 2858 size_t io_len; 2859 u_offset_t io_off; 2860 int error = 0; 2861 2862 ZFS_ENTER(zfsvfs); 2863 2864 ASSERT(zp->z_dbuf_held && zp->z_phys); 2865 2866 if (len == 0) { 2867 /* 2868 * Search the entire vp list for pages >= off. 2869 */ 2870 error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage, 2871 flags, cr); 2872 ZFS_EXIT(zfsvfs); 2873 return (error); 2874 } 2875 2876 if (off > zp->z_phys->zp_size) { 2877 /* past end of file */ 2878 ZFS_EXIT(zfsvfs); 2879 return (0); 2880 } 2881 2882 len = MIN(len, zp->z_phys->zp_size - off); 2883 2884 io_off = off; 2885 while (io_off < off + len) { 2886 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 2887 pp = page_lookup(vp, io_off, 2888 (flags & (B_INVAL | B_FREE)) ? 2889 SE_EXCL : SE_SHARED); 2890 } else { 2891 pp = page_lookup_nowait(vp, io_off, 2892 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 2893 } 2894 2895 if (pp != NULL && pvn_getdirty(pp, flags)) { 2896 int err; 2897 2898 /* 2899 * Found a dirty page to push 2900 */ 2901 if (err = 2902 zfs_putapage(vp, pp, &io_off, &io_len, flags, cr)) 2903 error = err; 2904 } else { 2905 io_len = PAGESIZE; 2906 } 2907 io_off += io_len; 2908 } 2909 ZFS_EXIT(zfsvfs); 2910 return (error); 2911 } 2912 2913 void 2914 zfs_inactive(vnode_t *vp, cred_t *cr) 2915 { 2916 znode_t *zp = VTOZ(vp); 2917 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2918 int error; 2919 2920 rw_enter(&zfsvfs->z_um_lock, RW_READER); 2921 if (zfsvfs->z_unmounted2) { 2922 ASSERT(zp->z_dbuf_held == 0); 2923 2924 if (vn_has_cached_data(vp)) { 2925 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 2926 B_INVAL, cr); 2927 } 2928 2929 vp->v_count = 0; /* count arrives as 1 */ 2930 zfs_znode_free(zp); 2931 rw_exit(&zfsvfs->z_um_lock); 2932 VFS_RELE(zfsvfs->z_vfs); 2933 return; 2934 } 2935 2936 /* 2937 * Attempt to push any data in the page cache. If this fails 2938 * we will get kicked out later in zfs_zinactive(). 2939 */ 2940 if (vn_has_cached_data(vp)) 2941 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL, cr); 2942 2943 if (zp->z_atime_dirty && zp->z_reap == 0) { 2944 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 2945 2946 dmu_tx_hold_bonus(tx, zp->z_id); 2947 error = dmu_tx_assign(tx, TXG_WAIT); 2948 if (error) { 2949 dmu_tx_abort(tx); 2950 } else { 2951 dmu_buf_will_dirty(zp->z_dbuf, tx); 2952 mutex_enter(&zp->z_lock); 2953 zp->z_atime_dirty = 0; 2954 mutex_exit(&zp->z_lock); 2955 dmu_tx_commit(tx); 2956 } 2957 } 2958 2959 zfs_zinactive(zp); 2960 rw_exit(&zfsvfs->z_um_lock); 2961 } 2962 2963 /* 2964 * Bounds-check the seek operation. 2965 * 2966 * IN: vp - vnode seeking within 2967 * ooff - old file offset 2968 * noffp - pointer to new file offset 2969 * 2970 * RETURN: 0 if success 2971 * EINVAL if new offset invalid 2972 */ 2973 /* ARGSUSED */ 2974 static int 2975 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp) 2976 { 2977 if (vp->v_type == VDIR) 2978 return (0); 2979 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 2980 } 2981 2982 /* 2983 * Pre-filter the generic locking function to trap attempts to place 2984 * a mandatory lock on a memory mapped file. 2985 */ 2986 static int 2987 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 2988 flk_callback_t *flk_cbp, cred_t *cr) 2989 { 2990 znode_t *zp = VTOZ(vp); 2991 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2992 uint_t cnt = 1; 2993 int error; 2994 2995 ZFS_ENTER(zfsvfs); 2996 2997 /* 2998 * If file is being mapped, disallow frlock. We set the mapcnt to 2999 * -1 here to signal that we are in the process of setting a lock. 3000 * This prevents a race with zfs_map(). 3001 * XXX - well, sort of; since zfs_map() does not change z_mapcnt, 3002 * we could be in the middle of zfs_map() and still call fs_frlock(). 3003 * Also, we are doing no checking in zfs_addmap() (where z_mapcnt 3004 * *is* manipulated). 3005 */ 3006 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 3007 (int)(cnt = atomic_cas_32(&zp->z_mapcnt, 0, -1)) > 0) { 3008 ZFS_EXIT(zfsvfs); 3009 return (EAGAIN); 3010 } 3011 error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr); 3012 ASSERT((cnt != 0) || ((int)atomic_cas_32(&zp->z_mapcnt, -1, 0) == -1)); 3013 ZFS_EXIT(zfsvfs); 3014 return (error); 3015 } 3016 3017 /* 3018 * If we can't find a page in the cache, we will create a new page 3019 * and fill it with file data. For efficiency, we may try to fill 3020 * multiple pages as once (klustering). 3021 */ 3022 static int 3023 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 3024 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 3025 { 3026 znode_t *zp = VTOZ(vp); 3027 page_t *pp, *cur_pp; 3028 objset_t *os = zp->z_zfsvfs->z_os; 3029 caddr_t va; 3030 u_offset_t io_off, total; 3031 uint64_t oid = zp->z_id; 3032 size_t io_len; 3033 int err; 3034 3035 /* 3036 * If we are only asking for a single page don't bother klustering. 3037 */ 3038 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE || 3039 off > zp->z_phys->zp_size) { 3040 io_off = off; 3041 io_len = PAGESIZE; 3042 pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr); 3043 } else { 3044 /* 3045 * Try to fill a kluster of pages (a blocks worth). 3046 */ 3047 size_t klen; 3048 u_offset_t koff; 3049 3050 if (!ISP2(zp->z_blksz)) { 3051 /* Only one block in the file. */ 3052 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3053 koff = 0; 3054 } else { 3055 klen = plsz; 3056 koff = P2ALIGN(off, (u_offset_t)klen); 3057 } 3058 if (klen > zp->z_phys->zp_size) 3059 klen = P2ROUNDUP(zp->z_phys->zp_size, 3060 (uint64_t)PAGESIZE); 3061 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3062 &io_len, koff, klen, 0); 3063 } 3064 if (pp == NULL) { 3065 /* 3066 * Some other thread entered the page before us. 3067 * Return to zfs_getpage to retry the lookup. 3068 */ 3069 *pl = NULL; 3070 return (0); 3071 } 3072 3073 /* 3074 * Fill the pages in the kluster. 3075 */ 3076 cur_pp = pp; 3077 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 3078 ASSERT(io_off == cur_pp->p_offset); 3079 va = ppmapin(cur_pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 3080 err = dmu_read_canfail(os, oid, io_off, PAGESIZE, va); 3081 ppmapout(va); 3082 if (err) { 3083 /* On error, toss the entire kluster */ 3084 pvn_read_done(pp, B_ERROR); 3085 return (err); 3086 } 3087 cur_pp = cur_pp->p_next; 3088 } 3089 out: 3090 /* 3091 * Fill in the page list array from the kluster. If 3092 * there are too many pages in the kluster, return 3093 * as many pages as possible starting from the desired 3094 * offset `off'. 3095 * NOTE: the page list will always be null terminated. 3096 */ 3097 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3098 3099 return (0); 3100 } 3101 3102 /* 3103 * Return pointers to the pages for the file region [off, off + len] 3104 * in the pl array. If plsz is greater than len, this function may 3105 * also return page pointers from before or after the specified 3106 * region (i.e. some region [off', off' + plsz]). These additional 3107 * pages are only returned if they are already in the cache, or were 3108 * created as part of a klustered read. 3109 * 3110 * IN: vp - vnode of file to get data from. 3111 * off - position in file to get data from. 3112 * len - amount of data to retrieve. 3113 * plsz - length of provided page list. 3114 * seg - segment to obtain pages for. 3115 * addr - virtual address of fault. 3116 * rw - mode of created pages. 3117 * cr - credentials of caller. 3118 * 3119 * OUT: protp - protection mode of created pages. 3120 * pl - list of pages created. 3121 * 3122 * RETURN: 0 if success 3123 * error code if failure 3124 * 3125 * Timestamps: 3126 * vp - atime updated 3127 */ 3128 /* ARGSUSED */ 3129 static int 3130 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3131 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3132 enum seg_rw rw, cred_t *cr) 3133 { 3134 znode_t *zp = VTOZ(vp); 3135 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3136 page_t *pp, **pl0 = pl; 3137 int cnt = 0, need_unlock = 0, err = 0; 3138 3139 ZFS_ENTER(zfsvfs); 3140 3141 if (protp) 3142 *protp = PROT_ALL; 3143 3144 ASSERT(zp->z_dbuf_held && zp->z_phys); 3145 3146 /* no faultahead (for now) */ 3147 if (pl == NULL) { 3148 ZFS_EXIT(zfsvfs); 3149 return (0); 3150 } 3151 3152 /* can't fault past EOF */ 3153 if (off >= zp->z_phys->zp_size) { 3154 ZFS_EXIT(zfsvfs); 3155 return (EFAULT); 3156 } 3157 3158 /* 3159 * Make sure nobody restructures the file (changes block size) 3160 * in the middle of the getpage. 3161 */ 3162 rw_enter(&zp->z_grow_lock, RW_READER); 3163 3164 /* 3165 * If we already own the lock, then we must be page faulting 3166 * in the middle of a write to this file (i.e., we are writing 3167 * to this file using data from a mapped region of the file). 3168 */ 3169 if (!rw_owner(&zp->z_map_lock)) { 3170 rw_enter(&zp->z_map_lock, RW_WRITER); 3171 need_unlock = TRUE; 3172 } 3173 3174 /* 3175 * Loop through the requested range [off, off + len] looking 3176 * for pages. If we don't find a page, we will need to create 3177 * a new page and fill it with data from the file. 3178 */ 3179 while (len > 0) { 3180 if (plsz < PAGESIZE) 3181 break; 3182 if (pp = page_lookup(vp, off, SE_SHARED)) { 3183 *pl++ = pp; 3184 off += PAGESIZE; 3185 addr += PAGESIZE; 3186 len -= PAGESIZE; 3187 plsz -= PAGESIZE; 3188 } else { 3189 err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw); 3190 /* 3191 * klustering may have changed our region 3192 * to be block aligned. 3193 */ 3194 if (((pp = *pl) != 0) && (off != pp->p_offset)) { 3195 int delta = off - pp->p_offset; 3196 len += delta; 3197 off -= delta; 3198 addr -= delta; 3199 } 3200 while (*pl) { 3201 pl++; 3202 cnt++; 3203 off += PAGESIZE; 3204 addr += PAGESIZE; 3205 plsz -= PAGESIZE; 3206 if (len > PAGESIZE) 3207 len -= PAGESIZE; 3208 else 3209 len = 0; 3210 } 3211 } 3212 if (err) 3213 goto out; 3214 } 3215 3216 /* 3217 * Fill out the page array with any pages already in the cache. 3218 */ 3219 while (plsz > 0) { 3220 pp = page_lookup_nowait(vp, off, SE_SHARED); 3221 if (pp == NULL) 3222 break; 3223 *pl++ = pp; 3224 off += PAGESIZE; 3225 plsz -= PAGESIZE; 3226 } 3227 3228 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3229 out: 3230 if (err) { 3231 /* 3232 * Release any pages we have locked. 3233 */ 3234 while (pl > pl0) 3235 page_unlock(*--pl); 3236 } 3237 *pl = NULL; 3238 3239 if (need_unlock) 3240 rw_exit(&zp->z_map_lock); 3241 rw_exit(&zp->z_grow_lock); 3242 3243 ZFS_EXIT(zfsvfs); 3244 return (err); 3245 } 3246 3247 static int 3248 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 3249 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 3250 { 3251 znode_t *zp = VTOZ(vp); 3252 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3253 segvn_crargs_t vn_a; 3254 int error; 3255 3256 ZFS_ENTER(zfsvfs); 3257 3258 if (vp->v_flag & VNOMAP) { 3259 ZFS_EXIT(zfsvfs); 3260 return (ENOSYS); 3261 } 3262 3263 if (off < 0 || len > MAXOFFSET_T - off) { 3264 ZFS_EXIT(zfsvfs); 3265 return (ENXIO); 3266 } 3267 3268 if (vp->v_type != VREG) { 3269 ZFS_EXIT(zfsvfs); 3270 return (ENODEV); 3271 } 3272 3273 /* 3274 * If file is locked, disallow mapping. 3275 * XXX - since we don't modify z_mapcnt here, there is nothing 3276 * to stop a file lock being placed immediately after we complete 3277 * this check. 3278 */ 3279 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 3280 if (vn_has_flocks(vp) || zp->z_mapcnt == -1) { 3281 ZFS_EXIT(zfsvfs); 3282 return (EAGAIN); 3283 } 3284 } 3285 3286 as_rangelock(as); 3287 if ((flags & MAP_FIXED) == 0) { 3288 map_addr(addrp, len, off, 1, flags); 3289 if (*addrp == NULL) { 3290 as_rangeunlock(as); 3291 ZFS_EXIT(zfsvfs); 3292 return (ENOMEM); 3293 } 3294 } else { 3295 /* 3296 * User specified address - blow away any previous mappings 3297 */ 3298 (void) as_unmap(as, *addrp, len); 3299 } 3300 3301 vn_a.vp = vp; 3302 vn_a.offset = (u_offset_t)off; 3303 vn_a.type = flags & MAP_TYPE; 3304 vn_a.prot = prot; 3305 vn_a.maxprot = maxprot; 3306 vn_a.cred = cr; 3307 vn_a.amp = NULL; 3308 vn_a.flags = flags & ~MAP_TYPE; 3309 3310 error = as_map(as, *addrp, len, segvn_create, &vn_a); 3311 3312 as_rangeunlock(as); 3313 ZFS_EXIT(zfsvfs); 3314 return (error); 3315 } 3316 3317 /* ARGSUSED */ 3318 static int 3319 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 3320 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 3321 { 3322 /* 3323 * XXX - shouldn't we be checking for file locks here? 3324 */ 3325 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, 0); 3326 atomic_add_32(&VTOZ(vp)->z_mapcnt, btopr(len)); 3327 return (0); 3328 } 3329 3330 /* ARGSUSED */ 3331 static int 3332 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 3333 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr) 3334 { 3335 atomic_add_32(&VTOZ(vp)->z_mapcnt, -btopr(len)); 3336 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, 0); 3337 return (0); 3338 } 3339 3340 /* 3341 * Free or allocate space in a file. Currently, this function only 3342 * supports the `F_FREESP' command. However, this command is somewhat 3343 * misnamed, as its functionality includes the ability to allocate as 3344 * well as free space. 3345 * 3346 * IN: vp - vnode of file to free data in. 3347 * cmd - action to take (only F_FREESP supported). 3348 * bfp - section of file to free/alloc. 3349 * flag - current file open mode flags. 3350 * offset - current file offset. 3351 * cr - credentials of caller [UNUSED]. 3352 * 3353 * RETURN: 0 if success 3354 * error code if failure 3355 * 3356 * Timestamps: 3357 * vp - ctime|mtime updated 3358 * 3359 * NOTE: This function is limited in that it will only permit space to 3360 * be freed at the end of a file. In essence, this function simply 3361 * allows one to set the file size. 3362 */ 3363 /* ARGSUSED */ 3364 static int 3365 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 3366 offset_t offset, cred_t *cr, caller_context_t *ct) 3367 { 3368 dmu_tx_t *tx; 3369 znode_t *zp = VTOZ(vp); 3370 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3371 zilog_t *zilog = zfsvfs->z_log; 3372 uint64_t seq = 0; 3373 uint64_t off, len; 3374 int error; 3375 3376 ZFS_ENTER(zfsvfs); 3377 3378 top: 3379 if (cmd != F_FREESP) { 3380 ZFS_EXIT(zfsvfs); 3381 return (EINVAL); 3382 } 3383 3384 if (error = convoff(vp, bfp, 0, offset)) { 3385 ZFS_EXIT(zfsvfs); 3386 return (error); 3387 } 3388 3389 if (bfp->l_len < 0) { 3390 ZFS_EXIT(zfsvfs); 3391 return (EINVAL); 3392 } 3393 3394 off = bfp->l_start; 3395 len = bfp->l_len; 3396 tx = dmu_tx_create(zfsvfs->z_os); 3397 /* 3398 * Grab the grow_lock to serialize this change with 3399 * respect to other file size changes. 3400 */ 3401 dmu_tx_hold_bonus(tx, zp->z_id); 3402 rw_enter(&zp->z_grow_lock, RW_WRITER); 3403 if (off + len > zp->z_blksz && zp->z_blksz < zfsvfs->z_max_blksz && 3404 off >= zp->z_phys->zp_size) { 3405 /* 3406 * We are increasing the length of the file, 3407 * and this may mean a block size increase. 3408 */ 3409 dmu_tx_hold_write(tx, zp->z_id, 0, 3410 MIN(off + len, zfsvfs->z_max_blksz)); 3411 } else if (off < zp->z_phys->zp_size) { 3412 /* 3413 * If len == 0, we are truncating the file. 3414 */ 3415 dmu_tx_hold_free(tx, zp->z_id, off, len ? len : DMU_OBJECT_END); 3416 } 3417 3418 error = dmu_tx_assign(tx, zfsvfs->z_assign); 3419 if (error) { 3420 dmu_tx_abort(tx); 3421 rw_exit(&zp->z_grow_lock); 3422 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3423 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 3424 goto top; 3425 } 3426 ZFS_EXIT(zfsvfs); 3427 return (error); 3428 } 3429 3430 error = zfs_freesp(zp, off, len, flag, tx, cr); 3431 3432 if (error == 0) { 3433 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 3434 seq = zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 3435 } 3436 3437 rw_exit(&zp->z_grow_lock); 3438 3439 dmu_tx_commit(tx); 3440 3441 zil_commit(zilog, seq, 0); 3442 3443 ZFS_EXIT(zfsvfs); 3444 return (error); 3445 } 3446 3447 static int 3448 zfs_fid(vnode_t *vp, fid_t *fidp) 3449 { 3450 znode_t *zp = VTOZ(vp); 3451 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3452 uint32_t gen = (uint32_t)zp->z_phys->zp_gen; 3453 uint64_t object = zp->z_id; 3454 zfid_short_t *zfid; 3455 int size, i; 3456 3457 ZFS_ENTER(zfsvfs); 3458 3459 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 3460 if (fidp->fid_len < size) { 3461 fidp->fid_len = size; 3462 return (ENOSPC); 3463 } 3464 3465 zfid = (zfid_short_t *)fidp; 3466 3467 zfid->zf_len = size; 3468 3469 for (i = 0; i < sizeof (zfid->zf_object); i++) 3470 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 3471 3472 /* Must have a non-zero generation number to distinguish from .zfs */ 3473 if (gen == 0) 3474 gen = 1; 3475 for (i = 0; i < sizeof (zfid->zf_gen); i++) 3476 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 3477 3478 if (size == LONG_FID_LEN) { 3479 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 3480 zfid_long_t *zlfid; 3481 3482 zlfid = (zfid_long_t *)fidp; 3483 3484 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 3485 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 3486 3487 /* XXX - this should be the generation number for the objset */ 3488 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 3489 zlfid->zf_setgen[i] = 0; 3490 } 3491 3492 ZFS_EXIT(zfsvfs); 3493 return (0); 3494 } 3495 3496 static int 3497 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr) 3498 { 3499 znode_t *zp, *xzp; 3500 zfsvfs_t *zfsvfs; 3501 zfs_dirlock_t *dl; 3502 int error; 3503 3504 switch (cmd) { 3505 case _PC_LINK_MAX: 3506 *valp = ULONG_MAX; 3507 return (0); 3508 3509 case _PC_FILESIZEBITS: 3510 *valp = 64; 3511 return (0); 3512 3513 case _PC_XATTR_EXISTS: 3514 zp = VTOZ(vp); 3515 zfsvfs = zp->z_zfsvfs; 3516 ZFS_ENTER(zfsvfs); 3517 *valp = 0; 3518 error = zfs_dirent_lock(&dl, zp, "", &xzp, 3519 ZXATTR | ZEXISTS | ZSHARED); 3520 if (error == 0) { 3521 zfs_dirent_unlock(dl); 3522 if (!zfs_dirempty(xzp)) 3523 *valp = 1; 3524 VN_RELE(ZTOV(xzp)); 3525 } else if (error == ENOENT) { 3526 /* 3527 * If there aren't extended attributes, it's the 3528 * same as having zero of them. 3529 */ 3530 error = 0; 3531 } 3532 ZFS_EXIT(zfsvfs); 3533 return (error); 3534 3535 case _PC_ACL_ENABLED: 3536 *valp = _ACL_ACE_ENABLED; 3537 return (0); 3538 3539 case _PC_MIN_HOLE_SIZE: 3540 *valp = (ulong_t)SPA_MINBLOCKSIZE; 3541 return (0); 3542 3543 default: 3544 return (fs_pathconf(vp, cmd, valp, cr)); 3545 } 3546 } 3547 3548 /*ARGSUSED*/ 3549 static int 3550 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr) 3551 { 3552 znode_t *zp = VTOZ(vp); 3553 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3554 int error; 3555 3556 ZFS_ENTER(zfsvfs); 3557 error = zfs_getacl(zp, vsecp, cr); 3558 ZFS_EXIT(zfsvfs); 3559 3560 return (error); 3561 } 3562 3563 /*ARGSUSED*/ 3564 static int 3565 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr) 3566 { 3567 znode_t *zp = VTOZ(vp); 3568 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3569 int error; 3570 3571 ZFS_ENTER(zfsvfs); 3572 error = zfs_setacl(zp, vsecp, cr); 3573 ZFS_EXIT(zfsvfs); 3574 return (error); 3575 } 3576 3577 /* 3578 * Predeclare these here so that the compiler assumes that 3579 * this is an "old style" function declaration that does 3580 * not include arguments => we won't get type mismatch errors 3581 * in the initializations that follow. 3582 */ 3583 static int zfs_inval(); 3584 static int zfs_isdir(); 3585 3586 static int 3587 zfs_inval() 3588 { 3589 return (EINVAL); 3590 } 3591 3592 static int 3593 zfs_isdir() 3594 { 3595 return (EISDIR); 3596 } 3597 /* 3598 * Directory vnode operations template 3599 */ 3600 vnodeops_t *zfs_dvnodeops; 3601 const fs_operation_def_t zfs_dvnodeops_template[] = { 3602 VOPNAME_OPEN, zfs_open, 3603 VOPNAME_CLOSE, zfs_close, 3604 VOPNAME_READ, zfs_isdir, 3605 VOPNAME_WRITE, zfs_isdir, 3606 VOPNAME_IOCTL, zfs_ioctl, 3607 VOPNAME_GETATTR, zfs_getattr, 3608 VOPNAME_SETATTR, zfs_setattr, 3609 VOPNAME_ACCESS, zfs_access, 3610 VOPNAME_LOOKUP, zfs_lookup, 3611 VOPNAME_CREATE, zfs_create, 3612 VOPNAME_REMOVE, zfs_remove, 3613 VOPNAME_LINK, zfs_link, 3614 VOPNAME_RENAME, zfs_rename, 3615 VOPNAME_MKDIR, zfs_mkdir, 3616 VOPNAME_RMDIR, zfs_rmdir, 3617 VOPNAME_READDIR, zfs_readdir, 3618 VOPNAME_SYMLINK, zfs_symlink, 3619 VOPNAME_FSYNC, zfs_fsync, 3620 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3621 VOPNAME_FID, zfs_fid, 3622 VOPNAME_SEEK, zfs_seek, 3623 VOPNAME_PATHCONF, zfs_pathconf, 3624 VOPNAME_GETSECATTR, zfs_getsecattr, 3625 VOPNAME_SETSECATTR, zfs_setsecattr, 3626 NULL, NULL 3627 }; 3628 3629 /* 3630 * Regular file vnode operations template 3631 */ 3632 vnodeops_t *zfs_fvnodeops; 3633 const fs_operation_def_t zfs_fvnodeops_template[] = { 3634 VOPNAME_OPEN, zfs_open, 3635 VOPNAME_CLOSE, zfs_close, 3636 VOPNAME_READ, zfs_read, 3637 VOPNAME_WRITE, zfs_write, 3638 VOPNAME_IOCTL, zfs_ioctl, 3639 VOPNAME_GETATTR, zfs_getattr, 3640 VOPNAME_SETATTR, zfs_setattr, 3641 VOPNAME_ACCESS, zfs_access, 3642 VOPNAME_LOOKUP, zfs_lookup, 3643 VOPNAME_RENAME, zfs_rename, 3644 VOPNAME_FSYNC, zfs_fsync, 3645 VOPNAME_INACTIVE, (fs_generic_func_p)zfs_inactive, 3646 VOPNAME_FID, zfs_fid, 3647 VOPNAME_SEEK, zfs_seek, 3648 VOPNAME_FRLOCK, zfs_frlock, 3649 VOPNAME_SPACE, zfs_space, 3650 VOPNAME_GETPAGE, zfs_getpage, 3651 VOPNAME_PUTPAGE, zfs_putpage, 3652 VOPNAME_MAP, (fs_generic_func_p) zfs_map, 3653 VOPNAME_ADDMAP, (fs_generic_func_p) zfs_addmap, 3654 VOPNAME_DELMAP, zfs_delmap, 3655 VOPNAME_PATHCONF, zfs_pathconf, 3656 VOPNAME_GETSECATTR, zfs_getsecattr, 3657 VOPNAME_SETSECATTR, zfs_setsecattr, 3658 VOPNAME_VNEVENT, fs_vnevent_support, 3659 NULL, NULL 3660 }; 3661 3662 /* 3663 * Symbolic link vnode operations template 3664 */ 3665 vnodeops_t *zfs_symvnodeops; 3666 const fs_operation_def_t zfs_symvnodeops_template[] = { 3667 VOPNAME_GETATTR, zfs_getattr, 3668 VOPNAME_SETATTR, zfs_setattr, 3669 VOPNAME_ACCESS, zfs_access, 3670 VOPNAME_RENAME, zfs_rename, 3671 VOPNAME_READLINK, zfs_readlink, 3672 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3673 VOPNAME_FID, zfs_fid, 3674 VOPNAME_PATHCONF, zfs_pathconf, 3675 VOPNAME_VNEVENT, fs_vnevent_support, 3676 NULL, NULL 3677 }; 3678 3679 /* 3680 * Extended attribute directory vnode operations template 3681 * This template is identical to the directory vnodes 3682 * operation template except for restricted operations: 3683 * VOP_MKDIR() 3684 * VOP_SYMLINK() 3685 * Note that there are other restrictions embedded in: 3686 * zfs_create() - restrict type to VREG 3687 * zfs_link() - no links into/out of attribute space 3688 * zfs_rename() - no moves into/out of attribute space 3689 */ 3690 vnodeops_t *zfs_xdvnodeops; 3691 const fs_operation_def_t zfs_xdvnodeops_template[] = { 3692 VOPNAME_OPEN, zfs_open, 3693 VOPNAME_CLOSE, zfs_close, 3694 VOPNAME_IOCTL, zfs_ioctl, 3695 VOPNAME_GETATTR, zfs_getattr, 3696 VOPNAME_SETATTR, zfs_setattr, 3697 VOPNAME_ACCESS, zfs_access, 3698 VOPNAME_LOOKUP, zfs_lookup, 3699 VOPNAME_CREATE, zfs_create, 3700 VOPNAME_REMOVE, zfs_remove, 3701 VOPNAME_LINK, zfs_link, 3702 VOPNAME_RENAME, zfs_rename, 3703 VOPNAME_MKDIR, zfs_inval, 3704 VOPNAME_RMDIR, zfs_rmdir, 3705 VOPNAME_READDIR, zfs_readdir, 3706 VOPNAME_SYMLINK, zfs_inval, 3707 VOPNAME_FSYNC, zfs_fsync, 3708 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3709 VOPNAME_FID, zfs_fid, 3710 VOPNAME_SEEK, zfs_seek, 3711 VOPNAME_PATHCONF, zfs_pathconf, 3712 VOPNAME_GETSECATTR, zfs_getsecattr, 3713 VOPNAME_SETSECATTR, zfs_setsecattr, 3714 VOPNAME_VNEVENT, fs_vnevent_support, 3715 NULL, NULL 3716 }; 3717 3718 /* 3719 * Error vnode operations template 3720 */ 3721 vnodeops_t *zfs_evnodeops; 3722 const fs_operation_def_t zfs_evnodeops_template[] = { 3723 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3724 VOPNAME_PATHCONF, zfs_pathconf, 3725 NULL, NULL 3726 }; 3727