1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/vfs.h> 35 #include <sys/vfs_opreg.h> 36 #include <sys/vnode.h> 37 #include <sys/file.h> 38 #include <sys/stat.h> 39 #include <sys/kmem.h> 40 #include <sys/taskq.h> 41 #include <sys/uio.h> 42 #include <sys/vmsystm.h> 43 #include <sys/atomic.h> 44 #include <sys/vm.h> 45 #include <vm/seg_vn.h> 46 #include <vm/pvn.h> 47 #include <vm/as.h> 48 #include <vm/kpm.h> 49 #include <vm/seg_kpm.h> 50 #include <sys/mman.h> 51 #include <sys/pathname.h> 52 #include <sys/cmn_err.h> 53 #include <sys/errno.h> 54 #include <sys/unistd.h> 55 #include <sys/zfs_dir.h> 56 #include <sys/zfs_acl.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/dmu.h> 60 #include <sys/spa.h> 61 #include <sys/txg.h> 62 #include <sys/dbuf.h> 63 #include <sys/zap.h> 64 #include <sys/dirent.h> 65 #include <sys/policy.h> 66 #include <sys/sunddi.h> 67 #include <sys/filio.h> 68 #include <sys/sid.h> 69 #include "fs/fs_subr.h" 70 #include <sys/zfs_ctldir.h> 71 #include <sys/zfs_fuid.h> 72 #include <sys/dnlc.h> 73 #include <sys/zfs_rlock.h> 74 #include <sys/extdirent.h> 75 #include <sys/kidmap.h> 76 #include <sys/cred_impl.h> 77 #include <sys/attr.h> 78 79 /* 80 * Programming rules. 81 * 82 * Each vnode op performs some logical unit of work. To do this, the ZPL must 83 * properly lock its in-core state, create a DMU transaction, do the work, 84 * record this work in the intent log (ZIL), commit the DMU transaction, 85 * and wait for the intent log to commit if it is a synchronous operation. 86 * Moreover, the vnode ops must work in both normal and log replay context. 87 * The ordering of events is important to avoid deadlocks and references 88 * to freed memory. The example below illustrates the following Big Rules: 89 * 90 * (1) A check must be made in each zfs thread for a mounted file system. 91 * This is done avoiding races using ZFS_ENTER(zfsvfs). 92 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 93 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 94 * can return EIO from the calling function. 95 * 96 * (2) VN_RELE() should always be the last thing except for zil_commit() 97 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 98 * First, if it's the last reference, the vnode/znode 99 * can be freed, so the zp may point to freed memory. Second, the last 100 * reference will call zfs_zinactive(), which may induce a lot of work -- 101 * pushing cached pages (which acquires range locks) and syncing out 102 * cached atime changes. Third, zfs_zinactive() may require a new tx, 103 * which could deadlock the system if you were already holding one. 104 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 105 * 106 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 107 * as they can span dmu_tx_assign() calls. 108 * 109 * (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign(). 110 * This is critical because we don't want to block while holding locks. 111 * Note, in particular, that if a lock is sometimes acquired before 112 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 113 * use a non-blocking assign can deadlock the system. The scenario: 114 * 115 * Thread A has grabbed a lock before calling dmu_tx_assign(). 116 * Thread B is in an already-assigned tx, and blocks for this lock. 117 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 118 * forever, because the previous txg can't quiesce until B's tx commits. 119 * 120 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 121 * then drop all locks, call dmu_tx_wait(), and try again. 122 * 123 * (5) If the operation succeeded, generate the intent log entry for it 124 * before dropping locks. This ensures that the ordering of events 125 * in the intent log matches the order in which they actually occurred. 126 * During ZIL replay the zfs_log_* functions will update the sequence 127 * number to indicate the zil transaction has replayed. 128 * 129 * (6) At the end of each vnode op, the DMU tx must always commit, 130 * regardless of whether there were any errors. 131 * 132 * (7) After dropping all locks, invoke zil_commit(zilog, seq, foid) 133 * to ensure that synchronous semantics are provided when necessary. 134 * 135 * In general, this is how things should be ordered in each vnode op: 136 * 137 * ZFS_ENTER(zfsvfs); // exit if unmounted 138 * top: 139 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 140 * rw_enter(...); // grab any other locks you need 141 * tx = dmu_tx_create(...); // get DMU tx 142 * dmu_tx_hold_*(); // hold each object you might modify 143 * error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign 144 * if (error) { 145 * rw_exit(...); // drop locks 146 * zfs_dirent_unlock(dl); // unlock directory entry 147 * VN_RELE(...); // release held vnodes 148 * if (error == ERESTART) { 149 * dmu_tx_wait(tx); 150 * dmu_tx_abort(tx); 151 * goto top; 152 * } 153 * dmu_tx_abort(tx); // abort DMU tx 154 * ZFS_EXIT(zfsvfs); // finished in zfs 155 * return (error); // really out of space 156 * } 157 * error = do_real_work(); // do whatever this VOP does 158 * if (error == 0) 159 * zfs_log_*(...); // on success, make ZIL entry 160 * dmu_tx_commit(tx); // commit DMU tx -- error or not 161 * rw_exit(...); // drop locks 162 * zfs_dirent_unlock(dl); // unlock directory entry 163 * VN_RELE(...); // release held vnodes 164 * zil_commit(zilog, seq, foid); // synchronous when necessary 165 * ZFS_EXIT(zfsvfs); // finished in zfs 166 * return (error); // done, report error 167 */ 168 169 /* ARGSUSED */ 170 static int 171 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 172 { 173 znode_t *zp = VTOZ(*vpp); 174 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 175 176 ZFS_ENTER(zfsvfs); 177 ZFS_VERIFY_ZP(zp); 178 179 if ((flag & FWRITE) && (zp->z_phys->zp_flags & ZFS_APPENDONLY) && 180 ((flag & FAPPEND) == 0)) { 181 ZFS_EXIT(zfsvfs); 182 return (EPERM); 183 } 184 185 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 186 ZTOV(zp)->v_type == VREG && 187 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 188 zp->z_phys->zp_size > 0) { 189 if (fs_vscan(*vpp, cr, 0) != 0) { 190 ZFS_EXIT(zfsvfs); 191 return (EACCES); 192 } 193 } 194 195 /* Keep a count of the synchronous opens in the znode */ 196 if (flag & (FSYNC | FDSYNC)) 197 atomic_inc_32(&zp->z_sync_cnt); 198 199 ZFS_EXIT(zfsvfs); 200 return (0); 201 } 202 203 /* ARGSUSED */ 204 static int 205 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 206 caller_context_t *ct) 207 { 208 znode_t *zp = VTOZ(vp); 209 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 210 211 /* 212 * Clean up any locks held by this process on the vp. 213 */ 214 cleanlocks(vp, ddi_get_pid(), 0); 215 cleanshares(vp, ddi_get_pid()); 216 217 ZFS_ENTER(zfsvfs); 218 ZFS_VERIFY_ZP(zp); 219 220 /* Decrement the synchronous opens in the znode */ 221 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 222 atomic_dec_32(&zp->z_sync_cnt); 223 224 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 225 ZTOV(zp)->v_type == VREG && 226 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 227 zp->z_phys->zp_size > 0) 228 VERIFY(fs_vscan(vp, cr, 1) == 0); 229 230 ZFS_EXIT(zfsvfs); 231 return (0); 232 } 233 234 /* 235 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 236 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 237 */ 238 static int 239 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 240 { 241 znode_t *zp = VTOZ(vp); 242 uint64_t noff = (uint64_t)*off; /* new offset */ 243 uint64_t file_sz; 244 int error; 245 boolean_t hole; 246 247 file_sz = zp->z_phys->zp_size; 248 if (noff >= file_sz) { 249 return (ENXIO); 250 } 251 252 if (cmd == _FIO_SEEK_HOLE) 253 hole = B_TRUE; 254 else 255 hole = B_FALSE; 256 257 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 258 259 /* end of file? */ 260 if ((error == ESRCH) || (noff > file_sz)) { 261 /* 262 * Handle the virtual hole at the end of file. 263 */ 264 if (hole) { 265 *off = file_sz; 266 return (0); 267 } 268 return (ENXIO); 269 } 270 271 if (noff < *off) 272 return (error); 273 *off = noff; 274 return (error); 275 } 276 277 /* ARGSUSED */ 278 static int 279 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 280 int *rvalp, caller_context_t *ct) 281 { 282 offset_t off; 283 int error; 284 zfsvfs_t *zfsvfs; 285 znode_t *zp; 286 287 switch (com) { 288 case _FIOFFS: 289 return (zfs_sync(vp->v_vfsp, 0, cred)); 290 291 /* 292 * The following two ioctls are used by bfu. Faking out, 293 * necessary to avoid bfu errors. 294 */ 295 case _FIOGDIO: 296 case _FIOSDIO: 297 return (0); 298 299 case _FIO_SEEK_DATA: 300 case _FIO_SEEK_HOLE: 301 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 302 return (EFAULT); 303 304 zp = VTOZ(vp); 305 zfsvfs = zp->z_zfsvfs; 306 ZFS_ENTER(zfsvfs); 307 ZFS_VERIFY_ZP(zp); 308 309 /* offset parameter is in/out */ 310 error = zfs_holey(vp, com, &off); 311 ZFS_EXIT(zfsvfs); 312 if (error) 313 return (error); 314 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 315 return (EFAULT); 316 return (0); 317 } 318 return (ENOTTY); 319 } 320 321 /* 322 * Utility functions to map and unmap a single physical page. These 323 * are used to manage the mappable copies of ZFS file data, and therefore 324 * do not update ref/mod bits. 325 */ 326 caddr_t 327 zfs_map_page(page_t *pp, enum seg_rw rw) 328 { 329 if (kpm_enable) 330 return (hat_kpm_mapin(pp, 0)); 331 ASSERT(rw == S_READ || rw == S_WRITE); 332 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 333 (caddr_t)-1)); 334 } 335 336 void 337 zfs_unmap_page(page_t *pp, caddr_t addr) 338 { 339 if (kpm_enable) { 340 hat_kpm_mapout(pp, 0, addr); 341 } else { 342 ppmapout(addr); 343 } 344 } 345 346 /* 347 * When a file is memory mapped, we must keep the IO data synchronized 348 * between the DMU cache and the memory mapped pages. What this means: 349 * 350 * On Write: If we find a memory mapped page, we write to *both* 351 * the page and the dmu buffer. 352 */ 353 static void 354 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 355 { 356 int64_t off; 357 358 off = start & PAGEOFFSET; 359 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 360 page_t *pp; 361 uint64_t nbytes = MIN(PAGESIZE - off, len); 362 363 if (pp = page_lookup(vp, start, SE_SHARED)) { 364 caddr_t va; 365 366 va = zfs_map_page(pp, S_WRITE); 367 (void) dmu_read(os, oid, start+off, nbytes, va+off, 368 DMU_READ_PREFETCH); 369 zfs_unmap_page(pp, va); 370 page_unlock(pp); 371 } 372 len -= nbytes; 373 off = 0; 374 } 375 } 376 377 /* 378 * When a file is memory mapped, we must keep the IO data synchronized 379 * between the DMU cache and the memory mapped pages. What this means: 380 * 381 * On Read: We "read" preferentially from memory mapped pages, 382 * else we default from the dmu buffer. 383 * 384 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 385 * the file is memory mapped. 386 */ 387 static int 388 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 389 { 390 znode_t *zp = VTOZ(vp); 391 objset_t *os = zp->z_zfsvfs->z_os; 392 int64_t start, off; 393 int len = nbytes; 394 int error = 0; 395 396 start = uio->uio_loffset; 397 off = start & PAGEOFFSET; 398 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 399 page_t *pp; 400 uint64_t bytes = MIN(PAGESIZE - off, len); 401 402 if (pp = page_lookup(vp, start, SE_SHARED)) { 403 caddr_t va; 404 405 va = zfs_map_page(pp, S_READ); 406 error = uiomove(va + off, bytes, UIO_READ, uio); 407 zfs_unmap_page(pp, va); 408 page_unlock(pp); 409 } else { 410 error = dmu_read_uio(os, zp->z_id, uio, bytes); 411 } 412 len -= bytes; 413 off = 0; 414 if (error) 415 break; 416 } 417 return (error); 418 } 419 420 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 421 422 /* 423 * Read bytes from specified file into supplied buffer. 424 * 425 * IN: vp - vnode of file to be read from. 426 * uio - structure supplying read location, range info, 427 * and return buffer. 428 * ioflag - SYNC flags; used to provide FRSYNC semantics. 429 * cr - credentials of caller. 430 * ct - caller context 431 * 432 * OUT: uio - updated offset and range, buffer filled. 433 * 434 * RETURN: 0 if success 435 * error code if failure 436 * 437 * Side Effects: 438 * vp - atime updated if byte count > 0 439 */ 440 /* ARGSUSED */ 441 static int 442 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 443 { 444 znode_t *zp = VTOZ(vp); 445 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 446 objset_t *os; 447 ssize_t n, nbytes; 448 int error; 449 rl_t *rl; 450 451 ZFS_ENTER(zfsvfs); 452 ZFS_VERIFY_ZP(zp); 453 os = zfsvfs->z_os; 454 455 if (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) { 456 ZFS_EXIT(zfsvfs); 457 return (EACCES); 458 } 459 460 /* 461 * Validate file offset 462 */ 463 if (uio->uio_loffset < (offset_t)0) { 464 ZFS_EXIT(zfsvfs); 465 return (EINVAL); 466 } 467 468 /* 469 * Fasttrack empty reads 470 */ 471 if (uio->uio_resid == 0) { 472 ZFS_EXIT(zfsvfs); 473 return (0); 474 } 475 476 /* 477 * Check for mandatory locks 478 */ 479 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 480 if (error = chklock(vp, FREAD, 481 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 482 ZFS_EXIT(zfsvfs); 483 return (error); 484 } 485 } 486 487 /* 488 * If we're in FRSYNC mode, sync out this znode before reading it. 489 */ 490 if (ioflag & FRSYNC) 491 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 492 493 /* 494 * Lock the range against changes. 495 */ 496 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 497 498 /* 499 * If we are reading past end-of-file we can skip 500 * to the end; but we might still need to set atime. 501 */ 502 if (uio->uio_loffset >= zp->z_phys->zp_size) { 503 error = 0; 504 goto out; 505 } 506 507 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 508 n = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 509 510 while (n > 0) { 511 nbytes = MIN(n, zfs_read_chunk_size - 512 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 513 514 if (vn_has_cached_data(vp)) 515 error = mappedread(vp, nbytes, uio); 516 else 517 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 518 if (error) { 519 /* convert checksum errors into IO errors */ 520 if (error == ECKSUM) 521 error = EIO; 522 break; 523 } 524 525 n -= nbytes; 526 } 527 528 out: 529 zfs_range_unlock(rl); 530 531 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 532 ZFS_EXIT(zfsvfs); 533 return (error); 534 } 535 536 /* 537 * Write the bytes to a file. 538 * 539 * IN: vp - vnode of file to be written to. 540 * uio - structure supplying write location, range info, 541 * and data buffer. 542 * ioflag - FAPPEND flag set if in append mode. 543 * cr - credentials of caller. 544 * ct - caller context (NFS/CIFS fem monitor only) 545 * 546 * OUT: uio - updated offset and range. 547 * 548 * RETURN: 0 if success 549 * error code if failure 550 * 551 * Timestamps: 552 * vp - ctime|mtime updated if byte count > 0 553 */ 554 /* ARGSUSED */ 555 static int 556 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 557 { 558 znode_t *zp = VTOZ(vp); 559 rlim64_t limit = uio->uio_llimit; 560 ssize_t start_resid = uio->uio_resid; 561 ssize_t tx_bytes; 562 uint64_t end_size; 563 dmu_tx_t *tx; 564 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 565 zilog_t *zilog; 566 offset_t woff; 567 ssize_t n, nbytes; 568 rl_t *rl; 569 int max_blksz = zfsvfs->z_max_blksz; 570 uint64_t pflags; 571 int error; 572 arc_buf_t *abuf; 573 574 /* 575 * Fasttrack empty write 576 */ 577 n = start_resid; 578 if (n == 0) 579 return (0); 580 581 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 582 limit = MAXOFFSET_T; 583 584 ZFS_ENTER(zfsvfs); 585 ZFS_VERIFY_ZP(zp); 586 587 /* 588 * If immutable or not appending then return EPERM 589 */ 590 pflags = zp->z_phys->zp_flags; 591 if ((pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 592 ((pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 593 (uio->uio_loffset < zp->z_phys->zp_size))) { 594 ZFS_EXIT(zfsvfs); 595 return (EPERM); 596 } 597 598 zilog = zfsvfs->z_log; 599 600 /* 601 * Pre-fault the pages to ensure slow (eg NFS) pages 602 * don't hold up txg. 603 */ 604 uio_prefaultpages(n, uio); 605 606 /* 607 * If in append mode, set the io offset pointer to eof. 608 */ 609 if (ioflag & FAPPEND) { 610 /* 611 * Range lock for a file append: 612 * The value for the start of range will be determined by 613 * zfs_range_lock() (to guarantee append semantics). 614 * If this write will cause the block size to increase, 615 * zfs_range_lock() will lock the entire file, so we must 616 * later reduce the range after we grow the block size. 617 */ 618 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 619 if (rl->r_len == UINT64_MAX) { 620 /* overlocked, zp_size can't change */ 621 woff = uio->uio_loffset = zp->z_phys->zp_size; 622 } else { 623 woff = uio->uio_loffset = rl->r_off; 624 } 625 } else { 626 woff = uio->uio_loffset; 627 /* 628 * Validate file offset 629 */ 630 if (woff < 0) { 631 ZFS_EXIT(zfsvfs); 632 return (EINVAL); 633 } 634 635 /* 636 * If we need to grow the block size then zfs_range_lock() 637 * will lock a wider range than we request here. 638 * Later after growing the block size we reduce the range. 639 */ 640 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 641 } 642 643 if (woff >= limit) { 644 zfs_range_unlock(rl); 645 ZFS_EXIT(zfsvfs); 646 return (EFBIG); 647 } 648 649 if ((woff + n) > limit || woff > (limit - n)) 650 n = limit - woff; 651 652 /* 653 * Check for mandatory locks 654 */ 655 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 656 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 657 zfs_range_unlock(rl); 658 ZFS_EXIT(zfsvfs); 659 return (error); 660 } 661 end_size = MAX(zp->z_phys->zp_size, woff + n); 662 663 /* 664 * Write the file in reasonable size chunks. Each chunk is written 665 * in a separate transaction; this keeps the intent log records small 666 * and allows us to do more fine-grained space accounting. 667 */ 668 while (n > 0) { 669 abuf = NULL; 670 woff = uio->uio_loffset; 671 672 again: 673 if (zfs_usergroup_overquota(zfsvfs, 674 B_FALSE, zp->z_phys->zp_uid) || 675 zfs_usergroup_overquota(zfsvfs, 676 B_TRUE, zp->z_phys->zp_gid)) { 677 if (abuf != NULL) 678 dmu_return_arcbuf(abuf); 679 error = EDQUOT; 680 break; 681 } 682 683 /* 684 * If dmu_assign_arcbuf() is expected to execute with minimum 685 * overhead loan an arc buffer and copy user data to it before 686 * we enter a txg. This avoids holding a txg forever while we 687 * pagefault on a hanging NFS server mapping. 688 */ 689 if (abuf == NULL && n >= max_blksz && 690 woff >= zp->z_phys->zp_size && 691 P2PHASE(woff, max_blksz) == 0 && 692 zp->z_blksz == max_blksz) { 693 size_t cbytes; 694 695 abuf = dmu_request_arcbuf(zp->z_dbuf, max_blksz); 696 ASSERT(abuf != NULL); 697 ASSERT(arc_buf_size(abuf) == max_blksz); 698 if (error = uiocopy(abuf->b_data, max_blksz, 699 UIO_WRITE, uio, &cbytes)) { 700 dmu_return_arcbuf(abuf); 701 break; 702 } 703 ASSERT(cbytes == max_blksz); 704 } 705 706 /* 707 * Start a transaction. 708 */ 709 tx = dmu_tx_create(zfsvfs->z_os); 710 dmu_tx_hold_bonus(tx, zp->z_id); 711 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 712 error = dmu_tx_assign(tx, TXG_NOWAIT); 713 if (error) { 714 if (error == ERESTART) { 715 dmu_tx_wait(tx); 716 dmu_tx_abort(tx); 717 goto again; 718 } 719 dmu_tx_abort(tx); 720 if (abuf != NULL) 721 dmu_return_arcbuf(abuf); 722 break; 723 } 724 725 /* 726 * If zfs_range_lock() over-locked we grow the blocksize 727 * and then reduce the lock range. This will only happen 728 * on the first iteration since zfs_range_reduce() will 729 * shrink down r_len to the appropriate size. 730 */ 731 if (rl->r_len == UINT64_MAX) { 732 uint64_t new_blksz; 733 734 if (zp->z_blksz > max_blksz) { 735 ASSERT(!ISP2(zp->z_blksz)); 736 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 737 } else { 738 new_blksz = MIN(end_size, max_blksz); 739 } 740 zfs_grow_blocksize(zp, new_blksz, tx); 741 zfs_range_reduce(rl, woff, n); 742 } 743 744 /* 745 * XXX - should we really limit each write to z_max_blksz? 746 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 747 */ 748 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 749 750 if (abuf == NULL) { 751 tx_bytes = uio->uio_resid; 752 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, uio, 753 nbytes, tx); 754 tx_bytes -= uio->uio_resid; 755 } else { 756 tx_bytes = nbytes; 757 ASSERT(tx_bytes == max_blksz); 758 dmu_assign_arcbuf(zp->z_dbuf, woff, abuf, tx); 759 ASSERT(tx_bytes <= uio->uio_resid); 760 uioskip(uio, tx_bytes); 761 } 762 if (tx_bytes && vn_has_cached_data(vp)) { 763 update_pages(vp, woff, 764 tx_bytes, zfsvfs->z_os, zp->z_id); 765 } 766 767 /* 768 * If we made no progress, we're done. If we made even 769 * partial progress, update the znode and ZIL accordingly. 770 */ 771 if (tx_bytes == 0) { 772 dmu_tx_commit(tx); 773 ASSERT(error != 0); 774 break; 775 } 776 777 /* 778 * Clear Set-UID/Set-GID bits on successful write if not 779 * privileged and at least one of the excute bits is set. 780 * 781 * It would be nice to to this after all writes have 782 * been done, but that would still expose the ISUID/ISGID 783 * to another app after the partial write is committed. 784 * 785 * Note: we don't call zfs_fuid_map_id() here because 786 * user 0 is not an ephemeral uid. 787 */ 788 mutex_enter(&zp->z_acl_lock); 789 if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) | 790 (S_IXUSR >> 6))) != 0 && 791 (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 && 792 secpolicy_vnode_setid_retain(cr, 793 (zp->z_phys->zp_mode & S_ISUID) != 0 && 794 zp->z_phys->zp_uid == 0) != 0) { 795 zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID); 796 } 797 mutex_exit(&zp->z_acl_lock); 798 799 /* 800 * Update time stamp. NOTE: This marks the bonus buffer as 801 * dirty, so we don't have to do it again for zp_size. 802 */ 803 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 804 805 /* 806 * Update the file size (zp_size) if it has changed; 807 * account for possible concurrent updates. 808 */ 809 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) 810 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 811 uio->uio_loffset); 812 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 813 dmu_tx_commit(tx); 814 815 if (error != 0) 816 break; 817 ASSERT(tx_bytes == nbytes); 818 n -= nbytes; 819 } 820 821 zfs_range_unlock(rl); 822 823 /* 824 * If we're in replay mode, or we made no progress, return error. 825 * Otherwise, it's at least a partial write, so it's successful. 826 */ 827 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 828 ZFS_EXIT(zfsvfs); 829 return (error); 830 } 831 832 if (ioflag & (FSYNC | FDSYNC)) 833 zil_commit(zilog, zp->z_last_itx, zp->z_id); 834 835 ZFS_EXIT(zfsvfs); 836 return (0); 837 } 838 839 void 840 zfs_get_done(zgd_t *zgd, int error) 841 { 842 znode_t *zp = zgd->zgd_private; 843 objset_t *os = zp->z_zfsvfs->z_os; 844 845 if (zgd->zgd_db) 846 dmu_buf_rele(zgd->zgd_db, zgd); 847 848 zfs_range_unlock(zgd->zgd_rl); 849 850 /* 851 * Release the vnode asynchronously as we currently have the 852 * txg stopped from syncing. 853 */ 854 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 855 856 if (error == 0 && zgd->zgd_bp) 857 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 858 859 kmem_free(zgd, sizeof (zgd_t)); 860 } 861 862 #ifdef DEBUG 863 static int zil_fault_io = 0; 864 #endif 865 866 /* 867 * Get data to generate a TX_WRITE intent log record. 868 */ 869 int 870 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 871 { 872 zfsvfs_t *zfsvfs = arg; 873 objset_t *os = zfsvfs->z_os; 874 znode_t *zp; 875 uint64_t object = lr->lr_foid; 876 uint64_t offset = lr->lr_offset; 877 uint64_t size = lr->lr_length; 878 blkptr_t *bp = &lr->lr_blkptr; 879 dmu_buf_t *db; 880 zgd_t *zgd; 881 int error = 0; 882 883 ASSERT(zio != NULL); 884 ASSERT(size != 0); 885 886 /* 887 * Nothing to do if the file has been removed 888 */ 889 if (zfs_zget(zfsvfs, object, &zp) != 0) 890 return (ENOENT); 891 if (zp->z_unlinked) { 892 /* 893 * Release the vnode asynchronously as we currently have the 894 * txg stopped from syncing. 895 */ 896 VN_RELE_ASYNC(ZTOV(zp), 897 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 898 return (ENOENT); 899 } 900 901 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 902 zgd->zgd_zilog = zfsvfs->z_log; 903 zgd->zgd_private = zp; 904 905 /* 906 * Write records come in two flavors: immediate and indirect. 907 * For small writes it's cheaper to store the data with the 908 * log record (immediate); for large writes it's cheaper to 909 * sync the data and get a pointer to it (indirect) so that 910 * we don't have to write the data twice. 911 */ 912 if (buf != NULL) { /* immediate write */ 913 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); 914 /* test for truncation needs to be done while range locked */ 915 if (offset >= zp->z_phys->zp_size) { 916 error = ENOENT; 917 } else { 918 error = dmu_read(os, object, offset, size, buf, 919 DMU_READ_NO_PREFETCH); 920 } 921 ASSERT(error == 0 || error == ENOENT); 922 } else { /* indirect write */ 923 /* 924 * Have to lock the whole block to ensure when it's 925 * written out and it's checksum is being calculated 926 * that no one can change the data. We need to re-check 927 * blocksize after we get the lock in case it's changed! 928 */ 929 for (;;) { 930 uint64_t blkoff; 931 size = zp->z_blksz; 932 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 933 offset -= blkoff; 934 zgd->zgd_rl = zfs_range_lock(zp, offset, size, 935 RL_READER); 936 if (zp->z_blksz == size) 937 break; 938 offset += blkoff; 939 zfs_range_unlock(zgd->zgd_rl); 940 } 941 /* test for truncation needs to be done while range locked */ 942 if (lr->lr_offset >= zp->z_phys->zp_size) 943 error = ENOENT; 944 #ifdef DEBUG 945 if (zil_fault_io) { 946 error = EIO; 947 zil_fault_io = 0; 948 } 949 #endif 950 if (error == 0) 951 error = dmu_buf_hold(os, object, offset, zgd, &db); 952 953 if (error == 0) { 954 zgd->zgd_db = db; 955 zgd->zgd_bp = bp; 956 957 ASSERT(db->db_offset == offset); 958 ASSERT(db->db_size == size); 959 960 error = dmu_sync(zio, lr->lr_common.lrc_txg, 961 zfs_get_done, zgd); 962 ASSERT(error || lr->lr_length <= zp->z_blksz); 963 964 /* 965 * On success, we need to wait for the write I/O 966 * initiated by dmu_sync() to complete before we can 967 * release this dbuf. We will finish everything up 968 * in the zfs_get_done() callback. 969 */ 970 if (error == 0) 971 return (0); 972 973 if (error == EALREADY) { 974 lr->lr_common.lrc_txtype = TX_WRITE2; 975 error = 0; 976 } 977 } 978 } 979 980 zfs_get_done(zgd, error); 981 982 return (error); 983 } 984 985 /*ARGSUSED*/ 986 static int 987 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 988 caller_context_t *ct) 989 { 990 znode_t *zp = VTOZ(vp); 991 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 992 int error; 993 994 ZFS_ENTER(zfsvfs); 995 ZFS_VERIFY_ZP(zp); 996 997 if (flag & V_ACE_MASK) 998 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 999 else 1000 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1001 1002 ZFS_EXIT(zfsvfs); 1003 return (error); 1004 } 1005 1006 /* 1007 * If vnode is for a device return a specfs vnode instead. 1008 */ 1009 static int 1010 specvp_check(vnode_t **vpp, cred_t *cr) 1011 { 1012 int error = 0; 1013 1014 if (IS_DEVVP(*vpp)) { 1015 struct vnode *svp; 1016 1017 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1018 VN_RELE(*vpp); 1019 if (svp == NULL) 1020 error = ENOSYS; 1021 *vpp = svp; 1022 } 1023 return (error); 1024 } 1025 1026 1027 /* 1028 * Lookup an entry in a directory, or an extended attribute directory. 1029 * If it exists, return a held vnode reference for it. 1030 * 1031 * IN: dvp - vnode of directory to search. 1032 * nm - name of entry to lookup. 1033 * pnp - full pathname to lookup [UNUSED]. 1034 * flags - LOOKUP_XATTR set if looking for an attribute. 1035 * rdir - root directory vnode [UNUSED]. 1036 * cr - credentials of caller. 1037 * ct - caller context 1038 * direntflags - directory lookup flags 1039 * realpnp - returned pathname. 1040 * 1041 * OUT: vpp - vnode of located entry, NULL if not found. 1042 * 1043 * RETURN: 0 if success 1044 * error code if failure 1045 * 1046 * Timestamps: 1047 * NA 1048 */ 1049 /* ARGSUSED */ 1050 static int 1051 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1052 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1053 int *direntflags, pathname_t *realpnp) 1054 { 1055 znode_t *zdp = VTOZ(dvp); 1056 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1057 int error = 0; 1058 1059 /* fast path */ 1060 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1061 1062 if (dvp->v_type != VDIR) { 1063 return (ENOTDIR); 1064 } else if (zdp->z_dbuf == NULL) { 1065 return (EIO); 1066 } 1067 1068 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1069 error = zfs_fastaccesschk_execute(zdp, cr); 1070 if (!error) { 1071 *vpp = dvp; 1072 VN_HOLD(*vpp); 1073 return (0); 1074 } 1075 return (error); 1076 } else { 1077 vnode_t *tvp = dnlc_lookup(dvp, nm); 1078 1079 if (tvp) { 1080 error = zfs_fastaccesschk_execute(zdp, cr); 1081 if (error) { 1082 VN_RELE(tvp); 1083 return (error); 1084 } 1085 if (tvp == DNLC_NO_VNODE) { 1086 VN_RELE(tvp); 1087 return (ENOENT); 1088 } else { 1089 *vpp = tvp; 1090 return (specvp_check(vpp, cr)); 1091 } 1092 } 1093 } 1094 } 1095 1096 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1097 1098 ZFS_ENTER(zfsvfs); 1099 ZFS_VERIFY_ZP(zdp); 1100 1101 *vpp = NULL; 1102 1103 if (flags & LOOKUP_XATTR) { 1104 /* 1105 * If the xattr property is off, refuse the lookup request. 1106 */ 1107 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1108 ZFS_EXIT(zfsvfs); 1109 return (EINVAL); 1110 } 1111 1112 /* 1113 * We don't allow recursive attributes.. 1114 * Maybe someday we will. 1115 */ 1116 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 1117 ZFS_EXIT(zfsvfs); 1118 return (EINVAL); 1119 } 1120 1121 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1122 ZFS_EXIT(zfsvfs); 1123 return (error); 1124 } 1125 1126 /* 1127 * Do we have permission to get into attribute directory? 1128 */ 1129 1130 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1131 B_FALSE, cr)) { 1132 VN_RELE(*vpp); 1133 *vpp = NULL; 1134 } 1135 1136 ZFS_EXIT(zfsvfs); 1137 return (error); 1138 } 1139 1140 if (dvp->v_type != VDIR) { 1141 ZFS_EXIT(zfsvfs); 1142 return (ENOTDIR); 1143 } 1144 1145 /* 1146 * Check accessibility of directory. 1147 */ 1148 1149 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1150 ZFS_EXIT(zfsvfs); 1151 return (error); 1152 } 1153 1154 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1155 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1156 ZFS_EXIT(zfsvfs); 1157 return (EILSEQ); 1158 } 1159 1160 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1161 if (error == 0) 1162 error = specvp_check(vpp, cr); 1163 1164 ZFS_EXIT(zfsvfs); 1165 return (error); 1166 } 1167 1168 /* 1169 * Attempt to create a new entry in a directory. If the entry 1170 * already exists, truncate the file if permissible, else return 1171 * an error. Return the vp of the created or trunc'd file. 1172 * 1173 * IN: dvp - vnode of directory to put new file entry in. 1174 * name - name of new file entry. 1175 * vap - attributes of new file. 1176 * excl - flag indicating exclusive or non-exclusive mode. 1177 * mode - mode to open file with. 1178 * cr - credentials of caller. 1179 * flag - large file flag [UNUSED]. 1180 * ct - caller context 1181 * vsecp - ACL to be set 1182 * 1183 * OUT: vpp - vnode of created or trunc'd entry. 1184 * 1185 * RETURN: 0 if success 1186 * error code if failure 1187 * 1188 * Timestamps: 1189 * dvp - ctime|mtime updated if new entry created 1190 * vp - ctime|mtime always, atime if new 1191 */ 1192 1193 /* ARGSUSED */ 1194 static int 1195 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1196 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1197 vsecattr_t *vsecp) 1198 { 1199 znode_t *zp, *dzp = VTOZ(dvp); 1200 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1201 zilog_t *zilog; 1202 objset_t *os; 1203 zfs_dirlock_t *dl; 1204 dmu_tx_t *tx; 1205 int error; 1206 ksid_t *ksid; 1207 uid_t uid; 1208 gid_t gid = crgetgid(cr); 1209 zfs_acl_ids_t acl_ids; 1210 boolean_t fuid_dirtied; 1211 1212 /* 1213 * If we have an ephemeral id, ACL, or XVATTR then 1214 * make sure file system is at proper version 1215 */ 1216 1217 ksid = crgetsid(cr, KSID_OWNER); 1218 if (ksid) 1219 uid = ksid_getid(ksid); 1220 else 1221 uid = crgetuid(cr); 1222 1223 if (zfsvfs->z_use_fuids == B_FALSE && 1224 (vsecp || (vap->va_mask & AT_XVATTR) || 1225 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1226 return (EINVAL); 1227 1228 ZFS_ENTER(zfsvfs); 1229 ZFS_VERIFY_ZP(dzp); 1230 os = zfsvfs->z_os; 1231 zilog = zfsvfs->z_log; 1232 1233 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1234 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1235 ZFS_EXIT(zfsvfs); 1236 return (EILSEQ); 1237 } 1238 1239 if (vap->va_mask & AT_XVATTR) { 1240 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1241 crgetuid(cr), cr, vap->va_type)) != 0) { 1242 ZFS_EXIT(zfsvfs); 1243 return (error); 1244 } 1245 } 1246 top: 1247 *vpp = NULL; 1248 1249 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1250 vap->va_mode &= ~VSVTX; 1251 1252 if (*name == '\0') { 1253 /* 1254 * Null component name refers to the directory itself. 1255 */ 1256 VN_HOLD(dvp); 1257 zp = dzp; 1258 dl = NULL; 1259 error = 0; 1260 } else { 1261 /* possible VN_HOLD(zp) */ 1262 int zflg = 0; 1263 1264 if (flag & FIGNORECASE) 1265 zflg |= ZCILOOK; 1266 1267 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1268 NULL, NULL); 1269 if (error) { 1270 if (strcmp(name, "..") == 0) 1271 error = EISDIR; 1272 ZFS_EXIT(zfsvfs); 1273 return (error); 1274 } 1275 } 1276 if (zp == NULL) { 1277 uint64_t txtype; 1278 1279 /* 1280 * Create a new file object and update the directory 1281 * to reference it. 1282 */ 1283 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1284 goto out; 1285 } 1286 1287 /* 1288 * We only support the creation of regular files in 1289 * extended attribute directories. 1290 */ 1291 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1292 (vap->va_type != VREG)) { 1293 error = EINVAL; 1294 goto out; 1295 } 1296 1297 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, 1298 &acl_ids)) != 0) 1299 goto out; 1300 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1301 zfs_acl_ids_free(&acl_ids); 1302 error = EDQUOT; 1303 goto out; 1304 } 1305 1306 tx = dmu_tx_create(os); 1307 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1308 fuid_dirtied = zfsvfs->z_fuid_dirty; 1309 if (fuid_dirtied) 1310 zfs_fuid_txhold(zfsvfs, tx); 1311 dmu_tx_hold_bonus(tx, dzp->z_id); 1312 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1313 if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1314 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1315 0, SPA_MAXBLOCKSIZE); 1316 } 1317 error = dmu_tx_assign(tx, TXG_NOWAIT); 1318 if (error) { 1319 zfs_acl_ids_free(&acl_ids); 1320 zfs_dirent_unlock(dl); 1321 if (error == ERESTART) { 1322 dmu_tx_wait(tx); 1323 dmu_tx_abort(tx); 1324 goto top; 1325 } 1326 dmu_tx_abort(tx); 1327 ZFS_EXIT(zfsvfs); 1328 return (error); 1329 } 1330 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids); 1331 1332 if (fuid_dirtied) 1333 zfs_fuid_sync(zfsvfs, tx); 1334 1335 (void) zfs_link_create(dl, zp, tx, ZNEW); 1336 1337 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1338 if (flag & FIGNORECASE) 1339 txtype |= TX_CI; 1340 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1341 vsecp, acl_ids.z_fuidp, vap); 1342 zfs_acl_ids_free(&acl_ids); 1343 dmu_tx_commit(tx); 1344 } else { 1345 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1346 1347 /* 1348 * A directory entry already exists for this name. 1349 */ 1350 /* 1351 * Can't truncate an existing file if in exclusive mode. 1352 */ 1353 if (excl == EXCL) { 1354 error = EEXIST; 1355 goto out; 1356 } 1357 /* 1358 * Can't open a directory for writing. 1359 */ 1360 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1361 error = EISDIR; 1362 goto out; 1363 } 1364 /* 1365 * Verify requested access to file. 1366 */ 1367 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1368 goto out; 1369 } 1370 1371 mutex_enter(&dzp->z_lock); 1372 dzp->z_seq++; 1373 mutex_exit(&dzp->z_lock); 1374 1375 /* 1376 * Truncate regular files if requested. 1377 */ 1378 if ((ZTOV(zp)->v_type == VREG) && 1379 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1380 /* we can't hold any locks when calling zfs_freesp() */ 1381 zfs_dirent_unlock(dl); 1382 dl = NULL; 1383 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1384 if (error == 0) { 1385 vnevent_create(ZTOV(zp), ct); 1386 } 1387 } 1388 } 1389 out: 1390 1391 if (dl) 1392 zfs_dirent_unlock(dl); 1393 1394 if (error) { 1395 if (zp) 1396 VN_RELE(ZTOV(zp)); 1397 } else { 1398 *vpp = ZTOV(zp); 1399 error = specvp_check(vpp, cr); 1400 } 1401 1402 ZFS_EXIT(zfsvfs); 1403 return (error); 1404 } 1405 1406 /* 1407 * Remove an entry from a directory. 1408 * 1409 * IN: dvp - vnode of directory to remove entry from. 1410 * name - name of entry to remove. 1411 * cr - credentials of caller. 1412 * ct - caller context 1413 * flags - case flags 1414 * 1415 * RETURN: 0 if success 1416 * error code if failure 1417 * 1418 * Timestamps: 1419 * dvp - ctime|mtime 1420 * vp - ctime (if nlink > 0) 1421 */ 1422 /*ARGSUSED*/ 1423 static int 1424 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1425 int flags) 1426 { 1427 znode_t *zp, *dzp = VTOZ(dvp); 1428 znode_t *xzp = NULL; 1429 vnode_t *vp; 1430 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1431 zilog_t *zilog; 1432 uint64_t acl_obj, xattr_obj; 1433 zfs_dirlock_t *dl; 1434 dmu_tx_t *tx; 1435 boolean_t may_delete_now, delete_now = FALSE; 1436 boolean_t unlinked, toobig = FALSE; 1437 uint64_t txtype; 1438 pathname_t *realnmp = NULL; 1439 pathname_t realnm; 1440 int error; 1441 int zflg = ZEXISTS; 1442 1443 ZFS_ENTER(zfsvfs); 1444 ZFS_VERIFY_ZP(dzp); 1445 zilog = zfsvfs->z_log; 1446 1447 if (flags & FIGNORECASE) { 1448 zflg |= ZCILOOK; 1449 pn_alloc(&realnm); 1450 realnmp = &realnm; 1451 } 1452 1453 top: 1454 /* 1455 * Attempt to lock directory; fail if entry doesn't exist. 1456 */ 1457 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1458 NULL, realnmp)) { 1459 if (realnmp) 1460 pn_free(realnmp); 1461 ZFS_EXIT(zfsvfs); 1462 return (error); 1463 } 1464 1465 vp = ZTOV(zp); 1466 1467 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1468 goto out; 1469 } 1470 1471 /* 1472 * Need to use rmdir for removing directories. 1473 */ 1474 if (vp->v_type == VDIR) { 1475 error = EPERM; 1476 goto out; 1477 } 1478 1479 vnevent_remove(vp, dvp, name, ct); 1480 1481 if (realnmp) 1482 dnlc_remove(dvp, realnmp->pn_buf); 1483 else 1484 dnlc_remove(dvp, name); 1485 1486 mutex_enter(&vp->v_lock); 1487 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1488 mutex_exit(&vp->v_lock); 1489 1490 /* 1491 * We may delete the znode now, or we may put it in the unlinked set; 1492 * it depends on whether we're the last link, and on whether there are 1493 * other holds on the vnode. So we dmu_tx_hold() the right things to 1494 * allow for either case. 1495 */ 1496 tx = dmu_tx_create(zfsvfs->z_os); 1497 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1498 dmu_tx_hold_bonus(tx, zp->z_id); 1499 if (may_delete_now) { 1500 toobig = 1501 zp->z_phys->zp_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1502 /* if the file is too big, only hold_free a token amount */ 1503 dmu_tx_hold_free(tx, zp->z_id, 0, 1504 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1505 } 1506 1507 /* are there any extended attributes? */ 1508 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1509 /* XXX - do we need this if we are deleting? */ 1510 dmu_tx_hold_bonus(tx, xattr_obj); 1511 } 1512 1513 /* are there any additional acls */ 1514 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1515 may_delete_now) 1516 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1517 1518 /* charge as an update -- would be nice not to charge at all */ 1519 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1520 1521 error = dmu_tx_assign(tx, TXG_NOWAIT); 1522 if (error) { 1523 zfs_dirent_unlock(dl); 1524 VN_RELE(vp); 1525 if (error == ERESTART) { 1526 dmu_tx_wait(tx); 1527 dmu_tx_abort(tx); 1528 goto top; 1529 } 1530 if (realnmp) 1531 pn_free(realnmp); 1532 dmu_tx_abort(tx); 1533 ZFS_EXIT(zfsvfs); 1534 return (error); 1535 } 1536 1537 /* 1538 * Remove the directory entry. 1539 */ 1540 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1541 1542 if (error) { 1543 dmu_tx_commit(tx); 1544 goto out; 1545 } 1546 1547 if (unlinked) { 1548 mutex_enter(&vp->v_lock); 1549 delete_now = may_delete_now && !toobig && 1550 vp->v_count == 1 && !vn_has_cached_data(vp) && 1551 zp->z_phys->zp_xattr == xattr_obj && 1552 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1553 mutex_exit(&vp->v_lock); 1554 } 1555 1556 if (delete_now) { 1557 if (zp->z_phys->zp_xattr) { 1558 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1559 ASSERT3U(error, ==, 0); 1560 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1561 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1562 mutex_enter(&xzp->z_lock); 1563 xzp->z_unlinked = 1; 1564 xzp->z_phys->zp_links = 0; 1565 mutex_exit(&xzp->z_lock); 1566 zfs_unlinked_add(xzp, tx); 1567 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1568 } 1569 mutex_enter(&zp->z_lock); 1570 mutex_enter(&vp->v_lock); 1571 vp->v_count--; 1572 ASSERT3U(vp->v_count, ==, 0); 1573 mutex_exit(&vp->v_lock); 1574 mutex_exit(&zp->z_lock); 1575 zfs_znode_delete(zp, tx); 1576 } else if (unlinked) { 1577 zfs_unlinked_add(zp, tx); 1578 } 1579 1580 txtype = TX_REMOVE; 1581 if (flags & FIGNORECASE) 1582 txtype |= TX_CI; 1583 zfs_log_remove(zilog, tx, txtype, dzp, name); 1584 1585 dmu_tx_commit(tx); 1586 out: 1587 if (realnmp) 1588 pn_free(realnmp); 1589 1590 zfs_dirent_unlock(dl); 1591 1592 if (!delete_now) { 1593 VN_RELE(vp); 1594 } else if (xzp) { 1595 /* this rele is delayed to prevent nesting transactions */ 1596 VN_RELE(ZTOV(xzp)); 1597 } 1598 1599 ZFS_EXIT(zfsvfs); 1600 return (error); 1601 } 1602 1603 /* 1604 * Create a new directory and insert it into dvp using the name 1605 * provided. Return a pointer to the inserted directory. 1606 * 1607 * IN: dvp - vnode of directory to add subdir to. 1608 * dirname - name of new directory. 1609 * vap - attributes of new directory. 1610 * cr - credentials of caller. 1611 * ct - caller context 1612 * vsecp - ACL to be set 1613 * 1614 * OUT: vpp - vnode of created directory. 1615 * 1616 * RETURN: 0 if success 1617 * error code if failure 1618 * 1619 * Timestamps: 1620 * dvp - ctime|mtime updated 1621 * vp - ctime|mtime|atime updated 1622 */ 1623 /*ARGSUSED*/ 1624 static int 1625 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1626 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1627 { 1628 znode_t *zp, *dzp = VTOZ(dvp); 1629 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1630 zilog_t *zilog; 1631 zfs_dirlock_t *dl; 1632 uint64_t txtype; 1633 dmu_tx_t *tx; 1634 int error; 1635 int zf = ZNEW; 1636 ksid_t *ksid; 1637 uid_t uid; 1638 gid_t gid = crgetgid(cr); 1639 zfs_acl_ids_t acl_ids; 1640 boolean_t fuid_dirtied; 1641 1642 ASSERT(vap->va_type == VDIR); 1643 1644 /* 1645 * If we have an ephemeral id, ACL, or XVATTR then 1646 * make sure file system is at proper version 1647 */ 1648 1649 ksid = crgetsid(cr, KSID_OWNER); 1650 if (ksid) 1651 uid = ksid_getid(ksid); 1652 else 1653 uid = crgetuid(cr); 1654 if (zfsvfs->z_use_fuids == B_FALSE && 1655 (vsecp || (vap->va_mask & AT_XVATTR) || 1656 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1657 return (EINVAL); 1658 1659 ZFS_ENTER(zfsvfs); 1660 ZFS_VERIFY_ZP(dzp); 1661 zilog = zfsvfs->z_log; 1662 1663 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1664 ZFS_EXIT(zfsvfs); 1665 return (EINVAL); 1666 } 1667 1668 if (zfsvfs->z_utf8 && u8_validate(dirname, 1669 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1670 ZFS_EXIT(zfsvfs); 1671 return (EILSEQ); 1672 } 1673 if (flags & FIGNORECASE) 1674 zf |= ZCILOOK; 1675 1676 if (vap->va_mask & AT_XVATTR) 1677 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1678 crgetuid(cr), cr, vap->va_type)) != 0) { 1679 ZFS_EXIT(zfsvfs); 1680 return (error); 1681 } 1682 1683 /* 1684 * First make sure the new directory doesn't exist. 1685 */ 1686 top: 1687 *vpp = NULL; 1688 1689 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1690 NULL, NULL)) { 1691 ZFS_EXIT(zfsvfs); 1692 return (error); 1693 } 1694 1695 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1696 zfs_dirent_unlock(dl); 1697 ZFS_EXIT(zfsvfs); 1698 return (error); 1699 } 1700 1701 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, 1702 &acl_ids)) != 0) { 1703 zfs_dirent_unlock(dl); 1704 ZFS_EXIT(zfsvfs); 1705 return (error); 1706 } 1707 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1708 zfs_acl_ids_free(&acl_ids); 1709 zfs_dirent_unlock(dl); 1710 ZFS_EXIT(zfsvfs); 1711 return (EDQUOT); 1712 } 1713 1714 /* 1715 * Add a new entry to the directory. 1716 */ 1717 tx = dmu_tx_create(zfsvfs->z_os); 1718 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1719 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1720 fuid_dirtied = zfsvfs->z_fuid_dirty; 1721 if (fuid_dirtied) 1722 zfs_fuid_txhold(zfsvfs, tx); 1723 if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) 1724 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1725 0, SPA_MAXBLOCKSIZE); 1726 error = dmu_tx_assign(tx, TXG_NOWAIT); 1727 if (error) { 1728 zfs_acl_ids_free(&acl_ids); 1729 zfs_dirent_unlock(dl); 1730 if (error == ERESTART) { 1731 dmu_tx_wait(tx); 1732 dmu_tx_abort(tx); 1733 goto top; 1734 } 1735 dmu_tx_abort(tx); 1736 ZFS_EXIT(zfsvfs); 1737 return (error); 1738 } 1739 1740 /* 1741 * Create new node. 1742 */ 1743 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids); 1744 1745 if (fuid_dirtied) 1746 zfs_fuid_sync(zfsvfs, tx); 1747 /* 1748 * Now put new name in parent dir. 1749 */ 1750 (void) zfs_link_create(dl, zp, tx, ZNEW); 1751 1752 *vpp = ZTOV(zp); 1753 1754 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1755 if (flags & FIGNORECASE) 1756 txtype |= TX_CI; 1757 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 1758 acl_ids.z_fuidp, vap); 1759 1760 zfs_acl_ids_free(&acl_ids); 1761 dmu_tx_commit(tx); 1762 1763 zfs_dirent_unlock(dl); 1764 1765 ZFS_EXIT(zfsvfs); 1766 return (0); 1767 } 1768 1769 /* 1770 * Remove a directory subdir entry. If the current working 1771 * directory is the same as the subdir to be removed, the 1772 * remove will fail. 1773 * 1774 * IN: dvp - vnode of directory to remove from. 1775 * name - name of directory to be removed. 1776 * cwd - vnode of current working directory. 1777 * cr - credentials of caller. 1778 * ct - caller context 1779 * flags - case flags 1780 * 1781 * RETURN: 0 if success 1782 * error code if failure 1783 * 1784 * Timestamps: 1785 * dvp - ctime|mtime updated 1786 */ 1787 /*ARGSUSED*/ 1788 static int 1789 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1790 caller_context_t *ct, int flags) 1791 { 1792 znode_t *dzp = VTOZ(dvp); 1793 znode_t *zp; 1794 vnode_t *vp; 1795 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1796 zilog_t *zilog; 1797 zfs_dirlock_t *dl; 1798 dmu_tx_t *tx; 1799 int error; 1800 int zflg = ZEXISTS; 1801 1802 ZFS_ENTER(zfsvfs); 1803 ZFS_VERIFY_ZP(dzp); 1804 zilog = zfsvfs->z_log; 1805 1806 if (flags & FIGNORECASE) 1807 zflg |= ZCILOOK; 1808 top: 1809 zp = NULL; 1810 1811 /* 1812 * Attempt to lock directory; fail if entry doesn't exist. 1813 */ 1814 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1815 NULL, NULL)) { 1816 ZFS_EXIT(zfsvfs); 1817 return (error); 1818 } 1819 1820 vp = ZTOV(zp); 1821 1822 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1823 goto out; 1824 } 1825 1826 if (vp->v_type != VDIR) { 1827 error = ENOTDIR; 1828 goto out; 1829 } 1830 1831 if (vp == cwd) { 1832 error = EINVAL; 1833 goto out; 1834 } 1835 1836 vnevent_rmdir(vp, dvp, name, ct); 1837 1838 /* 1839 * Grab a lock on the directory to make sure that noone is 1840 * trying to add (or lookup) entries while we are removing it. 1841 */ 1842 rw_enter(&zp->z_name_lock, RW_WRITER); 1843 1844 /* 1845 * Grab a lock on the parent pointer to make sure we play well 1846 * with the treewalk and directory rename code. 1847 */ 1848 rw_enter(&zp->z_parent_lock, RW_WRITER); 1849 1850 tx = dmu_tx_create(zfsvfs->z_os); 1851 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1852 dmu_tx_hold_bonus(tx, zp->z_id); 1853 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1854 error = dmu_tx_assign(tx, TXG_NOWAIT); 1855 if (error) { 1856 rw_exit(&zp->z_parent_lock); 1857 rw_exit(&zp->z_name_lock); 1858 zfs_dirent_unlock(dl); 1859 VN_RELE(vp); 1860 if (error == ERESTART) { 1861 dmu_tx_wait(tx); 1862 dmu_tx_abort(tx); 1863 goto top; 1864 } 1865 dmu_tx_abort(tx); 1866 ZFS_EXIT(zfsvfs); 1867 return (error); 1868 } 1869 1870 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 1871 1872 if (error == 0) { 1873 uint64_t txtype = TX_RMDIR; 1874 if (flags & FIGNORECASE) 1875 txtype |= TX_CI; 1876 zfs_log_remove(zilog, tx, txtype, dzp, name); 1877 } 1878 1879 dmu_tx_commit(tx); 1880 1881 rw_exit(&zp->z_parent_lock); 1882 rw_exit(&zp->z_name_lock); 1883 out: 1884 zfs_dirent_unlock(dl); 1885 1886 VN_RELE(vp); 1887 1888 ZFS_EXIT(zfsvfs); 1889 return (error); 1890 } 1891 1892 /* 1893 * Read as many directory entries as will fit into the provided 1894 * buffer from the given directory cursor position (specified in 1895 * the uio structure. 1896 * 1897 * IN: vp - vnode of directory to read. 1898 * uio - structure supplying read location, range info, 1899 * and return buffer. 1900 * cr - credentials of caller. 1901 * ct - caller context 1902 * flags - case flags 1903 * 1904 * OUT: uio - updated offset and range, buffer filled. 1905 * eofp - set to true if end-of-file detected. 1906 * 1907 * RETURN: 0 if success 1908 * error code if failure 1909 * 1910 * Timestamps: 1911 * vp - atime updated 1912 * 1913 * Note that the low 4 bits of the cookie returned by zap is always zero. 1914 * This allows us to use the low range for "special" directory entries: 1915 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1916 * we use the offset 2 for the '.zfs' directory. 1917 */ 1918 /* ARGSUSED */ 1919 static int 1920 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 1921 caller_context_t *ct, int flags) 1922 { 1923 znode_t *zp = VTOZ(vp); 1924 iovec_t *iovp; 1925 edirent_t *eodp; 1926 dirent64_t *odp; 1927 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1928 objset_t *os; 1929 caddr_t outbuf; 1930 size_t bufsize; 1931 zap_cursor_t zc; 1932 zap_attribute_t zap; 1933 uint_t bytes_wanted; 1934 uint64_t offset; /* must be unsigned; checks for < 1 */ 1935 int local_eof; 1936 int outcount; 1937 int error; 1938 uint8_t prefetch; 1939 boolean_t check_sysattrs; 1940 1941 ZFS_ENTER(zfsvfs); 1942 ZFS_VERIFY_ZP(zp); 1943 1944 /* 1945 * If we are not given an eof variable, 1946 * use a local one. 1947 */ 1948 if (eofp == NULL) 1949 eofp = &local_eof; 1950 1951 /* 1952 * Check for valid iov_len. 1953 */ 1954 if (uio->uio_iov->iov_len <= 0) { 1955 ZFS_EXIT(zfsvfs); 1956 return (EINVAL); 1957 } 1958 1959 /* 1960 * Quit if directory has been removed (posix) 1961 */ 1962 if ((*eofp = zp->z_unlinked) != 0) { 1963 ZFS_EXIT(zfsvfs); 1964 return (0); 1965 } 1966 1967 error = 0; 1968 os = zfsvfs->z_os; 1969 offset = uio->uio_loffset; 1970 prefetch = zp->z_zn_prefetch; 1971 1972 /* 1973 * Initialize the iterator cursor. 1974 */ 1975 if (offset <= 3) { 1976 /* 1977 * Start iteration from the beginning of the directory. 1978 */ 1979 zap_cursor_init(&zc, os, zp->z_id); 1980 } else { 1981 /* 1982 * The offset is a serialized cursor. 1983 */ 1984 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1985 } 1986 1987 /* 1988 * Get space to change directory entries into fs independent format. 1989 */ 1990 iovp = uio->uio_iov; 1991 bytes_wanted = iovp->iov_len; 1992 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 1993 bufsize = bytes_wanted; 1994 outbuf = kmem_alloc(bufsize, KM_SLEEP); 1995 odp = (struct dirent64 *)outbuf; 1996 } else { 1997 bufsize = bytes_wanted; 1998 odp = (struct dirent64 *)iovp->iov_base; 1999 } 2000 eodp = (struct edirent *)odp; 2001 2002 /* 2003 * If this VFS supports the system attribute view interface; and 2004 * we're looking at an extended attribute directory; and we care 2005 * about normalization conflicts on this vfs; then we must check 2006 * for normalization conflicts with the sysattr name space. 2007 */ 2008 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2009 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2010 (flags & V_RDDIR_ENTFLAGS); 2011 2012 /* 2013 * Transform to file-system independent format 2014 */ 2015 outcount = 0; 2016 while (outcount < bytes_wanted) { 2017 ino64_t objnum; 2018 ushort_t reclen; 2019 off64_t *next; 2020 2021 /* 2022 * Special case `.', `..', and `.zfs'. 2023 */ 2024 if (offset == 0) { 2025 (void) strcpy(zap.za_name, "."); 2026 zap.za_normalization_conflict = 0; 2027 objnum = zp->z_id; 2028 } else if (offset == 1) { 2029 (void) strcpy(zap.za_name, ".."); 2030 zap.za_normalization_conflict = 0; 2031 objnum = zp->z_phys->zp_parent; 2032 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2033 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2034 zap.za_normalization_conflict = 0; 2035 objnum = ZFSCTL_INO_ROOT; 2036 } else { 2037 /* 2038 * Grab next entry. 2039 */ 2040 if (error = zap_cursor_retrieve(&zc, &zap)) { 2041 if ((*eofp = (error == ENOENT)) != 0) 2042 break; 2043 else 2044 goto update; 2045 } 2046 2047 if (zap.za_integer_length != 8 || 2048 zap.za_num_integers != 1) { 2049 cmn_err(CE_WARN, "zap_readdir: bad directory " 2050 "entry, obj = %lld, offset = %lld\n", 2051 (u_longlong_t)zp->z_id, 2052 (u_longlong_t)offset); 2053 error = ENXIO; 2054 goto update; 2055 } 2056 2057 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2058 /* 2059 * MacOS X can extract the object type here such as: 2060 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2061 */ 2062 2063 if (check_sysattrs && !zap.za_normalization_conflict) { 2064 zap.za_normalization_conflict = 2065 xattr_sysattr_casechk(zap.za_name); 2066 } 2067 } 2068 2069 if (flags & V_RDDIR_ACCFILTER) { 2070 /* 2071 * If we have no access at all, don't include 2072 * this entry in the returned information 2073 */ 2074 znode_t *ezp; 2075 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2076 goto skip_entry; 2077 if (!zfs_has_access(ezp, cr)) { 2078 VN_RELE(ZTOV(ezp)); 2079 goto skip_entry; 2080 } 2081 VN_RELE(ZTOV(ezp)); 2082 } 2083 2084 if (flags & V_RDDIR_ENTFLAGS) 2085 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2086 else 2087 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2088 2089 /* 2090 * Will this entry fit in the buffer? 2091 */ 2092 if (outcount + reclen > bufsize) { 2093 /* 2094 * Did we manage to fit anything in the buffer? 2095 */ 2096 if (!outcount) { 2097 error = EINVAL; 2098 goto update; 2099 } 2100 break; 2101 } 2102 if (flags & V_RDDIR_ENTFLAGS) { 2103 /* 2104 * Add extended flag entry: 2105 */ 2106 eodp->ed_ino = objnum; 2107 eodp->ed_reclen = reclen; 2108 /* NOTE: ed_off is the offset for the *next* entry */ 2109 next = &(eodp->ed_off); 2110 eodp->ed_eflags = zap.za_normalization_conflict ? 2111 ED_CASE_CONFLICT : 0; 2112 (void) strncpy(eodp->ed_name, zap.za_name, 2113 EDIRENT_NAMELEN(reclen)); 2114 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2115 } else { 2116 /* 2117 * Add normal entry: 2118 */ 2119 odp->d_ino = objnum; 2120 odp->d_reclen = reclen; 2121 /* NOTE: d_off is the offset for the *next* entry */ 2122 next = &(odp->d_off); 2123 (void) strncpy(odp->d_name, zap.za_name, 2124 DIRENT64_NAMELEN(reclen)); 2125 odp = (dirent64_t *)((intptr_t)odp + reclen); 2126 } 2127 outcount += reclen; 2128 2129 ASSERT(outcount <= bufsize); 2130 2131 /* Prefetch znode */ 2132 if (prefetch) 2133 dmu_prefetch(os, objnum, 0, 0); 2134 2135 skip_entry: 2136 /* 2137 * Move to the next entry, fill in the previous offset. 2138 */ 2139 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2140 zap_cursor_advance(&zc); 2141 offset = zap_cursor_serialize(&zc); 2142 } else { 2143 offset += 1; 2144 } 2145 *next = offset; 2146 } 2147 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2148 2149 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2150 iovp->iov_base += outcount; 2151 iovp->iov_len -= outcount; 2152 uio->uio_resid -= outcount; 2153 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2154 /* 2155 * Reset the pointer. 2156 */ 2157 offset = uio->uio_loffset; 2158 } 2159 2160 update: 2161 zap_cursor_fini(&zc); 2162 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2163 kmem_free(outbuf, bufsize); 2164 2165 if (error == ENOENT) 2166 error = 0; 2167 2168 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2169 2170 uio->uio_loffset = offset; 2171 ZFS_EXIT(zfsvfs); 2172 return (error); 2173 } 2174 2175 ulong_t zfs_fsync_sync_cnt = 4; 2176 2177 static int 2178 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2179 { 2180 znode_t *zp = VTOZ(vp); 2181 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2182 2183 /* 2184 * Regardless of whether this is required for standards conformance, 2185 * this is the logical behavior when fsync() is called on a file with 2186 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2187 * going to be pushed out as part of the zil_commit(). 2188 */ 2189 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2190 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2191 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2192 2193 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2194 2195 ZFS_ENTER(zfsvfs); 2196 ZFS_VERIFY_ZP(zp); 2197 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 2198 ZFS_EXIT(zfsvfs); 2199 return (0); 2200 } 2201 2202 2203 /* 2204 * Get the requested file attributes and place them in the provided 2205 * vattr structure. 2206 * 2207 * IN: vp - vnode of file. 2208 * vap - va_mask identifies requested attributes. 2209 * If AT_XVATTR set, then optional attrs are requested 2210 * flags - ATTR_NOACLCHECK (CIFS server context) 2211 * cr - credentials of caller. 2212 * ct - caller context 2213 * 2214 * OUT: vap - attribute values. 2215 * 2216 * RETURN: 0 (always succeeds) 2217 */ 2218 /* ARGSUSED */ 2219 static int 2220 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2221 caller_context_t *ct) 2222 { 2223 znode_t *zp = VTOZ(vp); 2224 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2225 znode_phys_t *pzp; 2226 int error = 0; 2227 uint64_t links; 2228 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2229 xoptattr_t *xoap = NULL; 2230 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2231 2232 ZFS_ENTER(zfsvfs); 2233 ZFS_VERIFY_ZP(zp); 2234 pzp = zp->z_phys; 2235 2236 /* 2237 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2238 * Also, if we are the owner don't bother, since owner should 2239 * always be allowed to read basic attributes of file. 2240 */ 2241 if (!(pzp->zp_flags & ZFS_ACL_TRIVIAL) && 2242 (pzp->zp_uid != crgetuid(cr))) { 2243 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2244 skipaclchk, cr)) { 2245 ZFS_EXIT(zfsvfs); 2246 return (error); 2247 } 2248 } 2249 2250 /* 2251 * Return all attributes. It's cheaper to provide the answer 2252 * than to determine whether we were asked the question. 2253 */ 2254 2255 mutex_enter(&zp->z_lock); 2256 vap->va_type = vp->v_type; 2257 vap->va_mode = pzp->zp_mode & MODEMASK; 2258 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2259 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2260 vap->va_nodeid = zp->z_id; 2261 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2262 links = pzp->zp_links + 1; 2263 else 2264 links = pzp->zp_links; 2265 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2266 vap->va_size = pzp->zp_size; 2267 vap->va_rdev = vp->v_rdev; 2268 vap->va_seq = zp->z_seq; 2269 2270 /* 2271 * Add in any requested optional attributes and the create time. 2272 * Also set the corresponding bits in the returned attribute bitmap. 2273 */ 2274 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2275 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2276 xoap->xoa_archive = 2277 ((pzp->zp_flags & ZFS_ARCHIVE) != 0); 2278 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2279 } 2280 2281 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2282 xoap->xoa_readonly = 2283 ((pzp->zp_flags & ZFS_READONLY) != 0); 2284 XVA_SET_RTN(xvap, XAT_READONLY); 2285 } 2286 2287 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2288 xoap->xoa_system = 2289 ((pzp->zp_flags & ZFS_SYSTEM) != 0); 2290 XVA_SET_RTN(xvap, XAT_SYSTEM); 2291 } 2292 2293 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2294 xoap->xoa_hidden = 2295 ((pzp->zp_flags & ZFS_HIDDEN) != 0); 2296 XVA_SET_RTN(xvap, XAT_HIDDEN); 2297 } 2298 2299 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2300 xoap->xoa_nounlink = 2301 ((pzp->zp_flags & ZFS_NOUNLINK) != 0); 2302 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2303 } 2304 2305 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2306 xoap->xoa_immutable = 2307 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0); 2308 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2309 } 2310 2311 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2312 xoap->xoa_appendonly = 2313 ((pzp->zp_flags & ZFS_APPENDONLY) != 0); 2314 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2315 } 2316 2317 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2318 xoap->xoa_nodump = 2319 ((pzp->zp_flags & ZFS_NODUMP) != 0); 2320 XVA_SET_RTN(xvap, XAT_NODUMP); 2321 } 2322 2323 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2324 xoap->xoa_opaque = 2325 ((pzp->zp_flags & ZFS_OPAQUE) != 0); 2326 XVA_SET_RTN(xvap, XAT_OPAQUE); 2327 } 2328 2329 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2330 xoap->xoa_av_quarantined = 2331 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0); 2332 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2333 } 2334 2335 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2336 xoap->xoa_av_modified = 2337 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0); 2338 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2339 } 2340 2341 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2342 vp->v_type == VREG && 2343 (pzp->zp_flags & ZFS_BONUS_SCANSTAMP)) { 2344 size_t len; 2345 dmu_object_info_t doi; 2346 2347 /* 2348 * Only VREG files have anti-virus scanstamps, so we 2349 * won't conflict with symlinks in the bonus buffer. 2350 */ 2351 dmu_object_info_from_db(zp->z_dbuf, &doi); 2352 len = sizeof (xoap->xoa_av_scanstamp) + 2353 sizeof (znode_phys_t); 2354 if (len <= doi.doi_bonus_size) { 2355 /* 2356 * pzp points to the start of the 2357 * znode_phys_t. pzp + 1 points to the 2358 * first byte after the znode_phys_t. 2359 */ 2360 (void) memcpy(xoap->xoa_av_scanstamp, 2361 pzp + 1, 2362 sizeof (xoap->xoa_av_scanstamp)); 2363 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 2364 } 2365 } 2366 2367 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2368 ZFS_TIME_DECODE(&xoap->xoa_createtime, pzp->zp_crtime); 2369 XVA_SET_RTN(xvap, XAT_CREATETIME); 2370 } 2371 2372 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2373 xoap->xoa_reparse = 2374 ((pzp->zp_flags & ZFS_REPARSE) != 0); 2375 XVA_SET_RTN(xvap, XAT_REPARSE); 2376 } 2377 } 2378 2379 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 2380 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 2381 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 2382 2383 mutex_exit(&zp->z_lock); 2384 2385 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 2386 2387 if (zp->z_blksz == 0) { 2388 /* 2389 * Block size hasn't been set; suggest maximal I/O transfers. 2390 */ 2391 vap->va_blksize = zfsvfs->z_max_blksz; 2392 } 2393 2394 ZFS_EXIT(zfsvfs); 2395 return (0); 2396 } 2397 2398 /* 2399 * Set the file attributes to the values contained in the 2400 * vattr structure. 2401 * 2402 * IN: vp - vnode of file to be modified. 2403 * vap - new attribute values. 2404 * If AT_XVATTR set, then optional attrs are being set 2405 * flags - ATTR_UTIME set if non-default time values provided. 2406 * - ATTR_NOACLCHECK (CIFS context only). 2407 * cr - credentials of caller. 2408 * ct - caller context 2409 * 2410 * RETURN: 0 if success 2411 * error code if failure 2412 * 2413 * Timestamps: 2414 * vp - ctime updated, mtime updated if size changed. 2415 */ 2416 /* ARGSUSED */ 2417 static int 2418 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2419 caller_context_t *ct) 2420 { 2421 znode_t *zp = VTOZ(vp); 2422 znode_phys_t *pzp; 2423 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2424 zilog_t *zilog; 2425 dmu_tx_t *tx; 2426 vattr_t oldva; 2427 xvattr_t tmpxvattr; 2428 uint_t mask = vap->va_mask; 2429 uint_t saved_mask; 2430 int trim_mask = 0; 2431 uint64_t new_mode; 2432 uint64_t new_uid, new_gid; 2433 znode_t *attrzp; 2434 int need_policy = FALSE; 2435 int err; 2436 zfs_fuid_info_t *fuidp = NULL; 2437 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2438 xoptattr_t *xoap; 2439 zfs_acl_t *aclp = NULL; 2440 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2441 boolean_t fuid_dirtied = B_FALSE; 2442 2443 if (mask == 0) 2444 return (0); 2445 2446 if (mask & AT_NOSET) 2447 return (EINVAL); 2448 2449 ZFS_ENTER(zfsvfs); 2450 ZFS_VERIFY_ZP(zp); 2451 2452 pzp = zp->z_phys; 2453 zilog = zfsvfs->z_log; 2454 2455 /* 2456 * Make sure that if we have ephemeral uid/gid or xvattr specified 2457 * that file system is at proper version level 2458 */ 2459 2460 if (zfsvfs->z_use_fuids == B_FALSE && 2461 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2462 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2463 (mask & AT_XVATTR))) { 2464 ZFS_EXIT(zfsvfs); 2465 return (EINVAL); 2466 } 2467 2468 if (mask & AT_SIZE && vp->v_type == VDIR) { 2469 ZFS_EXIT(zfsvfs); 2470 return (EISDIR); 2471 } 2472 2473 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2474 ZFS_EXIT(zfsvfs); 2475 return (EINVAL); 2476 } 2477 2478 /* 2479 * If this is an xvattr_t, then get a pointer to the structure of 2480 * optional attributes. If this is NULL, then we have a vattr_t. 2481 */ 2482 xoap = xva_getxoptattr(xvap); 2483 2484 xva_init(&tmpxvattr); 2485 2486 /* 2487 * Immutable files can only alter immutable bit and atime 2488 */ 2489 if ((pzp->zp_flags & ZFS_IMMUTABLE) && 2490 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2491 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2492 ZFS_EXIT(zfsvfs); 2493 return (EPERM); 2494 } 2495 2496 if ((mask & AT_SIZE) && (pzp->zp_flags & ZFS_READONLY)) { 2497 ZFS_EXIT(zfsvfs); 2498 return (EPERM); 2499 } 2500 2501 /* 2502 * Verify timestamps doesn't overflow 32 bits. 2503 * ZFS can handle large timestamps, but 32bit syscalls can't 2504 * handle times greater than 2039. This check should be removed 2505 * once large timestamps are fully supported. 2506 */ 2507 if (mask & (AT_ATIME | AT_MTIME)) { 2508 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2509 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2510 ZFS_EXIT(zfsvfs); 2511 return (EOVERFLOW); 2512 } 2513 } 2514 2515 top: 2516 attrzp = NULL; 2517 2518 /* Can this be moved to before the top label? */ 2519 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2520 ZFS_EXIT(zfsvfs); 2521 return (EROFS); 2522 } 2523 2524 /* 2525 * First validate permissions 2526 */ 2527 2528 if (mask & AT_SIZE) { 2529 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2530 if (err) { 2531 ZFS_EXIT(zfsvfs); 2532 return (err); 2533 } 2534 /* 2535 * XXX - Note, we are not providing any open 2536 * mode flags here (like FNDELAY), so we may 2537 * block if there are locks present... this 2538 * should be addressed in openat(). 2539 */ 2540 /* XXX - would it be OK to generate a log record here? */ 2541 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2542 if (err) { 2543 ZFS_EXIT(zfsvfs); 2544 return (err); 2545 } 2546 } 2547 2548 if (mask & (AT_ATIME|AT_MTIME) || 2549 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2550 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2551 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2552 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2553 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) 2554 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2555 skipaclchk, cr); 2556 2557 if (mask & (AT_UID|AT_GID)) { 2558 int idmask = (mask & (AT_UID|AT_GID)); 2559 int take_owner; 2560 int take_group; 2561 2562 /* 2563 * NOTE: even if a new mode is being set, 2564 * we may clear S_ISUID/S_ISGID bits. 2565 */ 2566 2567 if (!(mask & AT_MODE)) 2568 vap->va_mode = pzp->zp_mode; 2569 2570 /* 2571 * Take ownership or chgrp to group we are a member of 2572 */ 2573 2574 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2575 take_group = (mask & AT_GID) && 2576 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2577 2578 /* 2579 * If both AT_UID and AT_GID are set then take_owner and 2580 * take_group must both be set in order to allow taking 2581 * ownership. 2582 * 2583 * Otherwise, send the check through secpolicy_vnode_setattr() 2584 * 2585 */ 2586 2587 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2588 ((idmask == AT_UID) && take_owner) || 2589 ((idmask == AT_GID) && take_group)) { 2590 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2591 skipaclchk, cr) == 0) { 2592 /* 2593 * Remove setuid/setgid for non-privileged users 2594 */ 2595 secpolicy_setid_clear(vap, cr); 2596 trim_mask = (mask & (AT_UID|AT_GID)); 2597 } else { 2598 need_policy = TRUE; 2599 } 2600 } else { 2601 need_policy = TRUE; 2602 } 2603 } 2604 2605 mutex_enter(&zp->z_lock); 2606 oldva.va_mode = pzp->zp_mode; 2607 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2608 if (mask & AT_XVATTR) { 2609 /* 2610 * Update xvattr mask to include only those attributes 2611 * that are actually changing. 2612 * 2613 * the bits will be restored prior to actually setting 2614 * the attributes so the caller thinks they were set. 2615 */ 2616 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2617 if (xoap->xoa_appendonly != 2618 ((pzp->zp_flags & ZFS_APPENDONLY) != 0)) { 2619 need_policy = TRUE; 2620 } else { 2621 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2622 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2623 } 2624 } 2625 2626 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2627 if (xoap->xoa_nounlink != 2628 ((pzp->zp_flags & ZFS_NOUNLINK) != 0)) { 2629 need_policy = TRUE; 2630 } else { 2631 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2632 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2633 } 2634 } 2635 2636 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2637 if (xoap->xoa_immutable != 2638 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0)) { 2639 need_policy = TRUE; 2640 } else { 2641 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2642 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2643 } 2644 } 2645 2646 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2647 if (xoap->xoa_nodump != 2648 ((pzp->zp_flags & ZFS_NODUMP) != 0)) { 2649 need_policy = TRUE; 2650 } else { 2651 XVA_CLR_REQ(xvap, XAT_NODUMP); 2652 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2653 } 2654 } 2655 2656 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2657 if (xoap->xoa_av_modified != 2658 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0)) { 2659 need_policy = TRUE; 2660 } else { 2661 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2662 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2663 } 2664 } 2665 2666 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2667 if ((vp->v_type != VREG && 2668 xoap->xoa_av_quarantined) || 2669 xoap->xoa_av_quarantined != 2670 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0)) { 2671 need_policy = TRUE; 2672 } else { 2673 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2674 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2675 } 2676 } 2677 2678 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2679 mutex_exit(&zp->z_lock); 2680 ZFS_EXIT(zfsvfs); 2681 return (EPERM); 2682 } 2683 2684 if (need_policy == FALSE && 2685 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2686 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2687 need_policy = TRUE; 2688 } 2689 } 2690 2691 mutex_exit(&zp->z_lock); 2692 2693 if (mask & AT_MODE) { 2694 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2695 err = secpolicy_setid_setsticky_clear(vp, vap, 2696 &oldva, cr); 2697 if (err) { 2698 ZFS_EXIT(zfsvfs); 2699 return (err); 2700 } 2701 trim_mask |= AT_MODE; 2702 } else { 2703 need_policy = TRUE; 2704 } 2705 } 2706 2707 if (need_policy) { 2708 /* 2709 * If trim_mask is set then take ownership 2710 * has been granted or write_acl is present and user 2711 * has the ability to modify mode. In that case remove 2712 * UID|GID and or MODE from mask so that 2713 * secpolicy_vnode_setattr() doesn't revoke it. 2714 */ 2715 2716 if (trim_mask) { 2717 saved_mask = vap->va_mask; 2718 vap->va_mask &= ~trim_mask; 2719 } 2720 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2721 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2722 if (err) { 2723 ZFS_EXIT(zfsvfs); 2724 return (err); 2725 } 2726 2727 if (trim_mask) 2728 vap->va_mask |= saved_mask; 2729 } 2730 2731 /* 2732 * secpolicy_vnode_setattr, or take ownership may have 2733 * changed va_mask 2734 */ 2735 mask = vap->va_mask; 2736 2737 tx = dmu_tx_create(zfsvfs->z_os); 2738 dmu_tx_hold_bonus(tx, zp->z_id); 2739 2740 if (mask & AT_MODE) { 2741 uint64_t pmode = pzp->zp_mode; 2742 2743 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2744 2745 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 2746 goto out; 2747 if (pzp->zp_acl.z_acl_extern_obj) { 2748 /* Are we upgrading ACL from old V0 format to new V1 */ 2749 if (zfsvfs->z_version <= ZPL_VERSION_FUID && 2750 pzp->zp_acl.z_acl_version == 2751 ZFS_ACL_VERSION_INITIAL) { 2752 dmu_tx_hold_free(tx, 2753 pzp->zp_acl.z_acl_extern_obj, 0, 2754 DMU_OBJECT_END); 2755 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2756 0, aclp->z_acl_bytes); 2757 } else { 2758 dmu_tx_hold_write(tx, 2759 pzp->zp_acl.z_acl_extern_obj, 0, 2760 aclp->z_acl_bytes); 2761 } 2762 } else if (aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2763 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2764 0, aclp->z_acl_bytes); 2765 } 2766 } 2767 2768 if (mask & (AT_UID | AT_GID)) { 2769 if (pzp->zp_xattr) { 2770 err = zfs_zget(zp->z_zfsvfs, pzp->zp_xattr, &attrzp); 2771 if (err) 2772 goto out; 2773 dmu_tx_hold_bonus(tx, attrzp->z_id); 2774 } 2775 if (mask & AT_UID) { 2776 new_uid = zfs_fuid_create(zfsvfs, 2777 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 2778 if (new_uid != pzp->zp_uid && 2779 zfs_usergroup_overquota(zfsvfs, B_FALSE, new_uid)) { 2780 err = EDQUOT; 2781 goto out; 2782 } 2783 } 2784 2785 if (mask & AT_GID) { 2786 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 2787 cr, ZFS_GROUP, &fuidp); 2788 if (new_gid != pzp->zp_gid && 2789 zfs_usergroup_overquota(zfsvfs, B_TRUE, new_gid)) { 2790 err = EDQUOT; 2791 goto out; 2792 } 2793 } 2794 fuid_dirtied = zfsvfs->z_fuid_dirty; 2795 if (fuid_dirtied) { 2796 if (zfsvfs->z_fuid_obj == 0) { 2797 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2798 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 2799 FUID_SIZE_ESTIMATE(zfsvfs)); 2800 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 2801 FALSE, NULL); 2802 } else { 2803 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 2804 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 2805 FUID_SIZE_ESTIMATE(zfsvfs)); 2806 } 2807 } 2808 } 2809 2810 err = dmu_tx_assign(tx, TXG_NOWAIT); 2811 if (err) { 2812 if (err == ERESTART) 2813 dmu_tx_wait(tx); 2814 goto out; 2815 } 2816 2817 dmu_buf_will_dirty(zp->z_dbuf, tx); 2818 2819 /* 2820 * Set each attribute requested. 2821 * We group settings according to the locks they need to acquire. 2822 * 2823 * Note: you cannot set ctime directly, although it will be 2824 * updated as a side-effect of calling this function. 2825 */ 2826 2827 mutex_enter(&zp->z_lock); 2828 2829 if (mask & AT_MODE) { 2830 mutex_enter(&zp->z_acl_lock); 2831 zp->z_phys->zp_mode = new_mode; 2832 err = zfs_aclset_common(zp, aclp, cr, tx); 2833 ASSERT3U(err, ==, 0); 2834 zp->z_acl_cached = aclp; 2835 aclp = NULL; 2836 mutex_exit(&zp->z_acl_lock); 2837 } 2838 2839 if (attrzp) 2840 mutex_enter(&attrzp->z_lock); 2841 2842 if (mask & AT_UID) { 2843 pzp->zp_uid = new_uid; 2844 if (attrzp) 2845 attrzp->z_phys->zp_uid = new_uid; 2846 } 2847 2848 if (mask & AT_GID) { 2849 pzp->zp_gid = new_gid; 2850 if (attrzp) 2851 attrzp->z_phys->zp_gid = new_gid; 2852 } 2853 2854 if (attrzp) 2855 mutex_exit(&attrzp->z_lock); 2856 2857 if (mask & AT_ATIME) 2858 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2859 2860 if (mask & AT_MTIME) 2861 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2862 2863 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 2864 if (mask & AT_SIZE) 2865 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2866 else if (mask != 0) 2867 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2868 /* 2869 * Do this after setting timestamps to prevent timestamp 2870 * update from toggling bit 2871 */ 2872 2873 if (xoap && (mask & AT_XVATTR)) { 2874 2875 /* 2876 * restore trimmed off masks 2877 * so that return masks can be set for caller. 2878 */ 2879 2880 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 2881 XVA_SET_REQ(xvap, XAT_APPENDONLY); 2882 } 2883 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 2884 XVA_SET_REQ(xvap, XAT_NOUNLINK); 2885 } 2886 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 2887 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 2888 } 2889 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 2890 XVA_SET_REQ(xvap, XAT_NODUMP); 2891 } 2892 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 2893 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 2894 } 2895 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 2896 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 2897 } 2898 2899 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 2900 size_t len; 2901 dmu_object_info_t doi; 2902 2903 ASSERT(vp->v_type == VREG); 2904 2905 /* Grow the bonus buffer if necessary. */ 2906 dmu_object_info_from_db(zp->z_dbuf, &doi); 2907 len = sizeof (xoap->xoa_av_scanstamp) + 2908 sizeof (znode_phys_t); 2909 if (len > doi.doi_bonus_size) 2910 VERIFY(dmu_set_bonus(zp->z_dbuf, len, tx) == 0); 2911 } 2912 zfs_xvattr_set(zp, xvap); 2913 } 2914 2915 if (fuid_dirtied) 2916 zfs_fuid_sync(zfsvfs, tx); 2917 2918 if (mask != 0) 2919 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 2920 2921 mutex_exit(&zp->z_lock); 2922 2923 out: 2924 if (attrzp) 2925 VN_RELE(ZTOV(attrzp)); 2926 2927 if (aclp) 2928 zfs_acl_free(aclp); 2929 2930 if (fuidp) { 2931 zfs_fuid_info_free(fuidp); 2932 fuidp = NULL; 2933 } 2934 2935 if (err) 2936 dmu_tx_abort(tx); 2937 else 2938 dmu_tx_commit(tx); 2939 2940 if (err == ERESTART) 2941 goto top; 2942 2943 ZFS_EXIT(zfsvfs); 2944 return (err); 2945 } 2946 2947 typedef struct zfs_zlock { 2948 krwlock_t *zl_rwlock; /* lock we acquired */ 2949 znode_t *zl_znode; /* znode we held */ 2950 struct zfs_zlock *zl_next; /* next in list */ 2951 } zfs_zlock_t; 2952 2953 /* 2954 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2955 */ 2956 static void 2957 zfs_rename_unlock(zfs_zlock_t **zlpp) 2958 { 2959 zfs_zlock_t *zl; 2960 2961 while ((zl = *zlpp) != NULL) { 2962 if (zl->zl_znode != NULL) 2963 VN_RELE(ZTOV(zl->zl_znode)); 2964 rw_exit(zl->zl_rwlock); 2965 *zlpp = zl->zl_next; 2966 kmem_free(zl, sizeof (*zl)); 2967 } 2968 } 2969 2970 /* 2971 * Search back through the directory tree, using the ".." entries. 2972 * Lock each directory in the chain to prevent concurrent renames. 2973 * Fail any attempt to move a directory into one of its own descendants. 2974 * XXX - z_parent_lock can overlap with map or grow locks 2975 */ 2976 static int 2977 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2978 { 2979 zfs_zlock_t *zl; 2980 znode_t *zp = tdzp; 2981 uint64_t rootid = zp->z_zfsvfs->z_root; 2982 uint64_t *oidp = &zp->z_id; 2983 krwlock_t *rwlp = &szp->z_parent_lock; 2984 krw_t rw = RW_WRITER; 2985 2986 /* 2987 * First pass write-locks szp and compares to zp->z_id. 2988 * Later passes read-lock zp and compare to zp->z_parent. 2989 */ 2990 do { 2991 if (!rw_tryenter(rwlp, rw)) { 2992 /* 2993 * Another thread is renaming in this path. 2994 * Note that if we are a WRITER, we don't have any 2995 * parent_locks held yet. 2996 */ 2997 if (rw == RW_READER && zp->z_id > szp->z_id) { 2998 /* 2999 * Drop our locks and restart 3000 */ 3001 zfs_rename_unlock(&zl); 3002 *zlpp = NULL; 3003 zp = tdzp; 3004 oidp = &zp->z_id; 3005 rwlp = &szp->z_parent_lock; 3006 rw = RW_WRITER; 3007 continue; 3008 } else { 3009 /* 3010 * Wait for other thread to drop its locks 3011 */ 3012 rw_enter(rwlp, rw); 3013 } 3014 } 3015 3016 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3017 zl->zl_rwlock = rwlp; 3018 zl->zl_znode = NULL; 3019 zl->zl_next = *zlpp; 3020 *zlpp = zl; 3021 3022 if (*oidp == szp->z_id) /* We're a descendant of szp */ 3023 return (EINVAL); 3024 3025 if (*oidp == rootid) /* We've hit the top */ 3026 return (0); 3027 3028 if (rw == RW_READER) { /* i.e. not the first pass */ 3029 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 3030 if (error) 3031 return (error); 3032 zl->zl_znode = zp; 3033 } 3034 oidp = &zp->z_phys->zp_parent; 3035 rwlp = &zp->z_parent_lock; 3036 rw = RW_READER; 3037 3038 } while (zp->z_id != sdzp->z_id); 3039 3040 return (0); 3041 } 3042 3043 /* 3044 * Move an entry from the provided source directory to the target 3045 * directory. Change the entry name as indicated. 3046 * 3047 * IN: sdvp - Source directory containing the "old entry". 3048 * snm - Old entry name. 3049 * tdvp - Target directory to contain the "new entry". 3050 * tnm - New entry name. 3051 * cr - credentials of caller. 3052 * ct - caller context 3053 * flags - case flags 3054 * 3055 * RETURN: 0 if success 3056 * error code if failure 3057 * 3058 * Timestamps: 3059 * sdvp,tdvp - ctime|mtime updated 3060 */ 3061 /*ARGSUSED*/ 3062 static int 3063 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3064 caller_context_t *ct, int flags) 3065 { 3066 znode_t *tdzp, *szp, *tzp; 3067 znode_t *sdzp = VTOZ(sdvp); 3068 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3069 zilog_t *zilog; 3070 vnode_t *realvp; 3071 zfs_dirlock_t *sdl, *tdl; 3072 dmu_tx_t *tx; 3073 zfs_zlock_t *zl; 3074 int cmp, serr, terr; 3075 int error = 0; 3076 int zflg = 0; 3077 3078 ZFS_ENTER(zfsvfs); 3079 ZFS_VERIFY_ZP(sdzp); 3080 zilog = zfsvfs->z_log; 3081 3082 /* 3083 * Make sure we have the real vp for the target directory. 3084 */ 3085 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3086 tdvp = realvp; 3087 3088 if (tdvp->v_vfsp != sdvp->v_vfsp) { 3089 ZFS_EXIT(zfsvfs); 3090 return (EXDEV); 3091 } 3092 3093 tdzp = VTOZ(tdvp); 3094 ZFS_VERIFY_ZP(tdzp); 3095 if (zfsvfs->z_utf8 && u8_validate(tnm, 3096 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3097 ZFS_EXIT(zfsvfs); 3098 return (EILSEQ); 3099 } 3100 3101 if (flags & FIGNORECASE) 3102 zflg |= ZCILOOK; 3103 3104 top: 3105 szp = NULL; 3106 tzp = NULL; 3107 zl = NULL; 3108 3109 /* 3110 * This is to prevent the creation of links into attribute space 3111 * by renaming a linked file into/outof an attribute directory. 3112 * See the comment in zfs_link() for why this is considered bad. 3113 */ 3114 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 3115 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 3116 ZFS_EXIT(zfsvfs); 3117 return (EINVAL); 3118 } 3119 3120 /* 3121 * Lock source and target directory entries. To prevent deadlock, 3122 * a lock ordering must be defined. We lock the directory with 3123 * the smallest object id first, or if it's a tie, the one with 3124 * the lexically first name. 3125 */ 3126 if (sdzp->z_id < tdzp->z_id) { 3127 cmp = -1; 3128 } else if (sdzp->z_id > tdzp->z_id) { 3129 cmp = 1; 3130 } else { 3131 /* 3132 * First compare the two name arguments without 3133 * considering any case folding. 3134 */ 3135 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3136 3137 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3138 ASSERT(error == 0 || !zfsvfs->z_utf8); 3139 if (cmp == 0) { 3140 /* 3141 * POSIX: "If the old argument and the new argument 3142 * both refer to links to the same existing file, 3143 * the rename() function shall return successfully 3144 * and perform no other action." 3145 */ 3146 ZFS_EXIT(zfsvfs); 3147 return (0); 3148 } 3149 /* 3150 * If the file system is case-folding, then we may 3151 * have some more checking to do. A case-folding file 3152 * system is either supporting mixed case sensitivity 3153 * access or is completely case-insensitive. Note 3154 * that the file system is always case preserving. 3155 * 3156 * In mixed sensitivity mode case sensitive behavior 3157 * is the default. FIGNORECASE must be used to 3158 * explicitly request case insensitive behavior. 3159 * 3160 * If the source and target names provided differ only 3161 * by case (e.g., a request to rename 'tim' to 'Tim'), 3162 * we will treat this as a special case in the 3163 * case-insensitive mode: as long as the source name 3164 * is an exact match, we will allow this to proceed as 3165 * a name-change request. 3166 */ 3167 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3168 (zfsvfs->z_case == ZFS_CASE_MIXED && 3169 flags & FIGNORECASE)) && 3170 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3171 &error) == 0) { 3172 /* 3173 * case preserving rename request, require exact 3174 * name matches 3175 */ 3176 zflg |= ZCIEXACT; 3177 zflg &= ~ZCILOOK; 3178 } 3179 } 3180 3181 if (cmp < 0) { 3182 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3183 ZEXISTS | zflg, NULL, NULL); 3184 terr = zfs_dirent_lock(&tdl, 3185 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3186 } else { 3187 terr = zfs_dirent_lock(&tdl, 3188 tdzp, tnm, &tzp, zflg, NULL, NULL); 3189 serr = zfs_dirent_lock(&sdl, 3190 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3191 NULL, NULL); 3192 } 3193 3194 if (serr) { 3195 /* 3196 * Source entry invalid or not there. 3197 */ 3198 if (!terr) { 3199 zfs_dirent_unlock(tdl); 3200 if (tzp) 3201 VN_RELE(ZTOV(tzp)); 3202 } 3203 if (strcmp(snm, "..") == 0) 3204 serr = EINVAL; 3205 ZFS_EXIT(zfsvfs); 3206 return (serr); 3207 } 3208 if (terr) { 3209 zfs_dirent_unlock(sdl); 3210 VN_RELE(ZTOV(szp)); 3211 if (strcmp(tnm, "..") == 0) 3212 terr = EINVAL; 3213 ZFS_EXIT(zfsvfs); 3214 return (terr); 3215 } 3216 3217 /* 3218 * Must have write access at the source to remove the old entry 3219 * and write access at the target to create the new entry. 3220 * Note that if target and source are the same, this can be 3221 * done in a single check. 3222 */ 3223 3224 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3225 goto out; 3226 3227 if (ZTOV(szp)->v_type == VDIR) { 3228 /* 3229 * Check to make sure rename is valid. 3230 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3231 */ 3232 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3233 goto out; 3234 } 3235 3236 /* 3237 * Does target exist? 3238 */ 3239 if (tzp) { 3240 /* 3241 * Source and target must be the same type. 3242 */ 3243 if (ZTOV(szp)->v_type == VDIR) { 3244 if (ZTOV(tzp)->v_type != VDIR) { 3245 error = ENOTDIR; 3246 goto out; 3247 } 3248 } else { 3249 if (ZTOV(tzp)->v_type == VDIR) { 3250 error = EISDIR; 3251 goto out; 3252 } 3253 } 3254 /* 3255 * POSIX dictates that when the source and target 3256 * entries refer to the same file object, rename 3257 * must do nothing and exit without error. 3258 */ 3259 if (szp->z_id == tzp->z_id) { 3260 error = 0; 3261 goto out; 3262 } 3263 } 3264 3265 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3266 if (tzp) 3267 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3268 3269 /* 3270 * notify the target directory if it is not the same 3271 * as source directory. 3272 */ 3273 if (tdvp != sdvp) { 3274 vnevent_rename_dest_dir(tdvp, ct); 3275 } 3276 3277 tx = dmu_tx_create(zfsvfs->z_os); 3278 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 3279 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 3280 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3281 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3282 if (sdzp != tdzp) 3283 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 3284 if (tzp) 3285 dmu_tx_hold_bonus(tx, tzp->z_id); /* parent changes */ 3286 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3287 error = dmu_tx_assign(tx, TXG_NOWAIT); 3288 if (error) { 3289 if (zl != NULL) 3290 zfs_rename_unlock(&zl); 3291 zfs_dirent_unlock(sdl); 3292 zfs_dirent_unlock(tdl); 3293 VN_RELE(ZTOV(szp)); 3294 if (tzp) 3295 VN_RELE(ZTOV(tzp)); 3296 if (error == ERESTART) { 3297 dmu_tx_wait(tx); 3298 dmu_tx_abort(tx); 3299 goto top; 3300 } 3301 dmu_tx_abort(tx); 3302 ZFS_EXIT(zfsvfs); 3303 return (error); 3304 } 3305 3306 if (tzp) /* Attempt to remove the existing target */ 3307 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3308 3309 if (error == 0) { 3310 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3311 if (error == 0) { 3312 szp->z_phys->zp_flags |= ZFS_AV_MODIFIED; 3313 3314 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3315 ASSERT(error == 0); 3316 3317 zfs_log_rename(zilog, tx, 3318 TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0), 3319 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); 3320 3321 /* Update path information for the target vnode */ 3322 vn_renamepath(tdvp, ZTOV(szp), tnm, strlen(tnm)); 3323 } 3324 } 3325 3326 dmu_tx_commit(tx); 3327 out: 3328 if (zl != NULL) 3329 zfs_rename_unlock(&zl); 3330 3331 zfs_dirent_unlock(sdl); 3332 zfs_dirent_unlock(tdl); 3333 3334 VN_RELE(ZTOV(szp)); 3335 if (tzp) 3336 VN_RELE(ZTOV(tzp)); 3337 3338 ZFS_EXIT(zfsvfs); 3339 return (error); 3340 } 3341 3342 /* 3343 * Insert the indicated symbolic reference entry into the directory. 3344 * 3345 * IN: dvp - Directory to contain new symbolic link. 3346 * link - Name for new symlink entry. 3347 * vap - Attributes of new entry. 3348 * target - Target path of new symlink. 3349 * cr - credentials of caller. 3350 * ct - caller context 3351 * flags - case flags 3352 * 3353 * RETURN: 0 if success 3354 * error code if failure 3355 * 3356 * Timestamps: 3357 * dvp - ctime|mtime updated 3358 */ 3359 /*ARGSUSED*/ 3360 static int 3361 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3362 caller_context_t *ct, int flags) 3363 { 3364 znode_t *zp, *dzp = VTOZ(dvp); 3365 zfs_dirlock_t *dl; 3366 dmu_tx_t *tx; 3367 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3368 zilog_t *zilog; 3369 int len = strlen(link); 3370 int error; 3371 int zflg = ZNEW; 3372 zfs_acl_ids_t acl_ids; 3373 boolean_t fuid_dirtied; 3374 3375 ASSERT(vap->va_type == VLNK); 3376 3377 ZFS_ENTER(zfsvfs); 3378 ZFS_VERIFY_ZP(dzp); 3379 zilog = zfsvfs->z_log; 3380 3381 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3382 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3383 ZFS_EXIT(zfsvfs); 3384 return (EILSEQ); 3385 } 3386 if (flags & FIGNORECASE) 3387 zflg |= ZCILOOK; 3388 top: 3389 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3390 ZFS_EXIT(zfsvfs); 3391 return (error); 3392 } 3393 3394 if (len > MAXPATHLEN) { 3395 ZFS_EXIT(zfsvfs); 3396 return (ENAMETOOLONG); 3397 } 3398 3399 /* 3400 * Attempt to lock directory; fail if entry already exists. 3401 */ 3402 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3403 if (error) { 3404 ZFS_EXIT(zfsvfs); 3405 return (error); 3406 } 3407 3408 VERIFY(0 == zfs_acl_ids_create(dzp, 0, vap, cr, NULL, &acl_ids)); 3409 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3410 zfs_acl_ids_free(&acl_ids); 3411 zfs_dirent_unlock(dl); 3412 ZFS_EXIT(zfsvfs); 3413 return (EDQUOT); 3414 } 3415 tx = dmu_tx_create(zfsvfs->z_os); 3416 fuid_dirtied = zfsvfs->z_fuid_dirty; 3417 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3418 dmu_tx_hold_bonus(tx, dzp->z_id); 3419 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3420 if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) 3421 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 3422 if (fuid_dirtied) 3423 zfs_fuid_txhold(zfsvfs, tx); 3424 error = dmu_tx_assign(tx, TXG_NOWAIT); 3425 if (error) { 3426 zfs_acl_ids_free(&acl_ids); 3427 zfs_dirent_unlock(dl); 3428 if (error == ERESTART) { 3429 dmu_tx_wait(tx); 3430 dmu_tx_abort(tx); 3431 goto top; 3432 } 3433 dmu_tx_abort(tx); 3434 ZFS_EXIT(zfsvfs); 3435 return (error); 3436 } 3437 3438 dmu_buf_will_dirty(dzp->z_dbuf, tx); 3439 3440 /* 3441 * Create a new object for the symlink. 3442 * Put the link content into bonus buffer if it will fit; 3443 * otherwise, store it just like any other file data. 3444 */ 3445 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 3446 zfs_mknode(dzp, vap, tx, cr, 0, &zp, len, &acl_ids); 3447 if (len != 0) 3448 bcopy(link, zp->z_phys + 1, len); 3449 } else { 3450 dmu_buf_t *dbp; 3451 3452 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids); 3453 3454 if (fuid_dirtied) 3455 zfs_fuid_sync(zfsvfs, tx); 3456 /* 3457 * Nothing can access the znode yet so no locking needed 3458 * for growing the znode's blocksize. 3459 */ 3460 zfs_grow_blocksize(zp, len, tx); 3461 3462 VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, 3463 zp->z_id, 0, FTAG, &dbp)); 3464 dmu_buf_will_dirty(dbp, tx); 3465 3466 ASSERT3U(len, <=, dbp->db_size); 3467 bcopy(link, dbp->db_data, len); 3468 dmu_buf_rele(dbp, FTAG); 3469 } 3470 zp->z_phys->zp_size = len; 3471 3472 /* 3473 * Insert the new object into the directory. 3474 */ 3475 (void) zfs_link_create(dl, zp, tx, ZNEW); 3476 if (error == 0) { 3477 uint64_t txtype = TX_SYMLINK; 3478 if (flags & FIGNORECASE) 3479 txtype |= TX_CI; 3480 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3481 } 3482 3483 zfs_acl_ids_free(&acl_ids); 3484 3485 dmu_tx_commit(tx); 3486 3487 zfs_dirent_unlock(dl); 3488 3489 VN_RELE(ZTOV(zp)); 3490 3491 ZFS_EXIT(zfsvfs); 3492 return (error); 3493 } 3494 3495 /* 3496 * Return, in the buffer contained in the provided uio structure, 3497 * the symbolic path referred to by vp. 3498 * 3499 * IN: vp - vnode of symbolic link. 3500 * uoip - structure to contain the link path. 3501 * cr - credentials of caller. 3502 * ct - caller context 3503 * 3504 * OUT: uio - structure to contain the link path. 3505 * 3506 * RETURN: 0 if success 3507 * error code if failure 3508 * 3509 * Timestamps: 3510 * vp - atime updated 3511 */ 3512 /* ARGSUSED */ 3513 static int 3514 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3515 { 3516 znode_t *zp = VTOZ(vp); 3517 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3518 size_t bufsz; 3519 int error; 3520 3521 ZFS_ENTER(zfsvfs); 3522 ZFS_VERIFY_ZP(zp); 3523 3524 bufsz = (size_t)zp->z_phys->zp_size; 3525 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 3526 error = uiomove(zp->z_phys + 1, 3527 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3528 } else { 3529 dmu_buf_t *dbp; 3530 error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp); 3531 if (error) { 3532 ZFS_EXIT(zfsvfs); 3533 return (error); 3534 } 3535 error = uiomove(dbp->db_data, 3536 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3537 dmu_buf_rele(dbp, FTAG); 3538 } 3539 3540 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3541 ZFS_EXIT(zfsvfs); 3542 return (error); 3543 } 3544 3545 /* 3546 * Insert a new entry into directory tdvp referencing svp. 3547 * 3548 * IN: tdvp - Directory to contain new entry. 3549 * svp - vnode of new entry. 3550 * name - name of new entry. 3551 * cr - credentials of caller. 3552 * ct - caller context 3553 * 3554 * RETURN: 0 if success 3555 * error code if failure 3556 * 3557 * Timestamps: 3558 * tdvp - ctime|mtime updated 3559 * svp - ctime updated 3560 */ 3561 /* ARGSUSED */ 3562 static int 3563 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3564 caller_context_t *ct, int flags) 3565 { 3566 znode_t *dzp = VTOZ(tdvp); 3567 znode_t *tzp, *szp; 3568 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3569 zilog_t *zilog; 3570 zfs_dirlock_t *dl; 3571 dmu_tx_t *tx; 3572 vnode_t *realvp; 3573 int error; 3574 int zf = ZNEW; 3575 uid_t owner; 3576 3577 ASSERT(tdvp->v_type == VDIR); 3578 3579 ZFS_ENTER(zfsvfs); 3580 ZFS_VERIFY_ZP(dzp); 3581 zilog = zfsvfs->z_log; 3582 3583 if (VOP_REALVP(svp, &realvp, ct) == 0) 3584 svp = realvp; 3585 3586 if (svp->v_vfsp != tdvp->v_vfsp) { 3587 ZFS_EXIT(zfsvfs); 3588 return (EXDEV); 3589 } 3590 szp = VTOZ(svp); 3591 ZFS_VERIFY_ZP(szp); 3592 3593 if (zfsvfs->z_utf8 && u8_validate(name, 3594 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3595 ZFS_EXIT(zfsvfs); 3596 return (EILSEQ); 3597 } 3598 if (flags & FIGNORECASE) 3599 zf |= ZCILOOK; 3600 3601 top: 3602 /* 3603 * We do not support links between attributes and non-attributes 3604 * because of the potential security risk of creating links 3605 * into "normal" file space in order to circumvent restrictions 3606 * imposed in attribute space. 3607 */ 3608 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 3609 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 3610 ZFS_EXIT(zfsvfs); 3611 return (EINVAL); 3612 } 3613 3614 /* 3615 * POSIX dictates that we return EPERM here. 3616 * Better choices include ENOTSUP or EISDIR. 3617 */ 3618 if (svp->v_type == VDIR) { 3619 ZFS_EXIT(zfsvfs); 3620 return (EPERM); 3621 } 3622 3623 owner = zfs_fuid_map_id(zfsvfs, szp->z_phys->zp_uid, cr, ZFS_OWNER); 3624 if (owner != crgetuid(cr) && 3625 secpolicy_basic_link(cr) != 0) { 3626 ZFS_EXIT(zfsvfs); 3627 return (EPERM); 3628 } 3629 3630 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3631 ZFS_EXIT(zfsvfs); 3632 return (error); 3633 } 3634 3635 /* 3636 * Attempt to lock directory; fail if entry already exists. 3637 */ 3638 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 3639 if (error) { 3640 ZFS_EXIT(zfsvfs); 3641 return (error); 3642 } 3643 3644 tx = dmu_tx_create(zfsvfs->z_os); 3645 dmu_tx_hold_bonus(tx, szp->z_id); 3646 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3647 error = dmu_tx_assign(tx, TXG_NOWAIT); 3648 if (error) { 3649 zfs_dirent_unlock(dl); 3650 if (error == ERESTART) { 3651 dmu_tx_wait(tx); 3652 dmu_tx_abort(tx); 3653 goto top; 3654 } 3655 dmu_tx_abort(tx); 3656 ZFS_EXIT(zfsvfs); 3657 return (error); 3658 } 3659 3660 error = zfs_link_create(dl, szp, tx, 0); 3661 3662 if (error == 0) { 3663 uint64_t txtype = TX_LINK; 3664 if (flags & FIGNORECASE) 3665 txtype |= TX_CI; 3666 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 3667 } 3668 3669 dmu_tx_commit(tx); 3670 3671 zfs_dirent_unlock(dl); 3672 3673 if (error == 0) { 3674 vnevent_link(svp, ct); 3675 } 3676 3677 ZFS_EXIT(zfsvfs); 3678 return (error); 3679 } 3680 3681 /* 3682 * zfs_null_putapage() is used when the file system has been force 3683 * unmounted. It just drops the pages. 3684 */ 3685 /* ARGSUSED */ 3686 static int 3687 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3688 size_t *lenp, int flags, cred_t *cr) 3689 { 3690 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 3691 return (0); 3692 } 3693 3694 /* 3695 * Push a page out to disk, klustering if possible. 3696 * 3697 * IN: vp - file to push page to. 3698 * pp - page to push. 3699 * flags - additional flags. 3700 * cr - credentials of caller. 3701 * 3702 * OUT: offp - start of range pushed. 3703 * lenp - len of range pushed. 3704 * 3705 * RETURN: 0 if success 3706 * error code if failure 3707 * 3708 * NOTE: callers must have locked the page to be pushed. On 3709 * exit, the page (and all other pages in the kluster) must be 3710 * unlocked. 3711 */ 3712 /* ARGSUSED */ 3713 static int 3714 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3715 size_t *lenp, int flags, cred_t *cr) 3716 { 3717 znode_t *zp = VTOZ(vp); 3718 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3719 dmu_tx_t *tx; 3720 u_offset_t off, koff; 3721 size_t len, klen; 3722 uint64_t filesz; 3723 int err; 3724 3725 filesz = zp->z_phys->zp_size; 3726 off = pp->p_offset; 3727 len = PAGESIZE; 3728 /* 3729 * If our blocksize is bigger than the page size, try to kluster 3730 * multiple pages so that we write a full block (thus avoiding 3731 * a read-modify-write). 3732 */ 3733 if (off < filesz && zp->z_blksz > PAGESIZE) { 3734 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3735 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 3736 ASSERT(koff <= filesz); 3737 if (koff + klen > filesz) 3738 klen = P2ROUNDUP(filesz - koff, (uint64_t)PAGESIZE); 3739 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 3740 } 3741 ASSERT3U(btop(len), ==, btopr(len)); 3742 3743 /* 3744 * Can't push pages past end-of-file. 3745 */ 3746 if (off >= filesz) { 3747 /* ignore all pages */ 3748 err = 0; 3749 goto out; 3750 } else if (off + len > filesz) { 3751 int npages = btopr(filesz - off); 3752 page_t *trunc; 3753 3754 page_list_break(&pp, &trunc, npages); 3755 /* ignore pages past end of file */ 3756 if (trunc) 3757 pvn_write_done(trunc, flags); 3758 len = filesz - off; 3759 } 3760 3761 if (zfs_usergroup_overquota(zfsvfs, B_FALSE, zp->z_phys->zp_uid) || 3762 zfs_usergroup_overquota(zfsvfs, B_TRUE, zp->z_phys->zp_gid)) { 3763 err = EDQUOT; 3764 goto out; 3765 } 3766 top: 3767 tx = dmu_tx_create(zfsvfs->z_os); 3768 dmu_tx_hold_write(tx, zp->z_id, off, len); 3769 dmu_tx_hold_bonus(tx, zp->z_id); 3770 err = dmu_tx_assign(tx, TXG_NOWAIT); 3771 if (err != 0) { 3772 if (err == ERESTART) { 3773 dmu_tx_wait(tx); 3774 dmu_tx_abort(tx); 3775 goto top; 3776 } 3777 dmu_tx_abort(tx); 3778 goto out; 3779 } 3780 3781 if (zp->z_blksz <= PAGESIZE) { 3782 caddr_t va = zfs_map_page(pp, S_READ); 3783 ASSERT3U(len, <=, PAGESIZE); 3784 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 3785 zfs_unmap_page(pp, va); 3786 } else { 3787 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 3788 } 3789 3790 if (err == 0) { 3791 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 3792 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 3793 } 3794 dmu_tx_commit(tx); 3795 3796 out: 3797 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 3798 if (offp) 3799 *offp = off; 3800 if (lenp) 3801 *lenp = len; 3802 3803 return (err); 3804 } 3805 3806 /* 3807 * Copy the portion of the file indicated from pages into the file. 3808 * The pages are stored in a page list attached to the files vnode. 3809 * 3810 * IN: vp - vnode of file to push page data to. 3811 * off - position in file to put data. 3812 * len - amount of data to write. 3813 * flags - flags to control the operation. 3814 * cr - credentials of caller. 3815 * ct - caller context. 3816 * 3817 * RETURN: 0 if success 3818 * error code if failure 3819 * 3820 * Timestamps: 3821 * vp - ctime|mtime updated 3822 */ 3823 /*ARGSUSED*/ 3824 static int 3825 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 3826 caller_context_t *ct) 3827 { 3828 znode_t *zp = VTOZ(vp); 3829 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3830 page_t *pp; 3831 size_t io_len; 3832 u_offset_t io_off; 3833 uint_t blksz; 3834 rl_t *rl; 3835 int error = 0; 3836 3837 ZFS_ENTER(zfsvfs); 3838 ZFS_VERIFY_ZP(zp); 3839 3840 /* 3841 * Align this request to the file block size in case we kluster. 3842 * XXX - this can result in pretty aggresive locking, which can 3843 * impact simultanious read/write access. One option might be 3844 * to break up long requests (len == 0) into block-by-block 3845 * operations to get narrower locking. 3846 */ 3847 blksz = zp->z_blksz; 3848 if (ISP2(blksz)) 3849 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 3850 else 3851 io_off = 0; 3852 if (len > 0 && ISP2(blksz)) 3853 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 3854 else 3855 io_len = 0; 3856 3857 if (io_len == 0) { 3858 /* 3859 * Search the entire vp list for pages >= io_off. 3860 */ 3861 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 3862 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 3863 goto out; 3864 } 3865 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 3866 3867 if (off > zp->z_phys->zp_size) { 3868 /* past end of file */ 3869 zfs_range_unlock(rl); 3870 ZFS_EXIT(zfsvfs); 3871 return (0); 3872 } 3873 3874 len = MIN(io_len, P2ROUNDUP(zp->z_phys->zp_size, PAGESIZE) - io_off); 3875 3876 for (off = io_off; io_off < off + len; io_off += io_len) { 3877 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 3878 pp = page_lookup(vp, io_off, 3879 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 3880 } else { 3881 pp = page_lookup_nowait(vp, io_off, 3882 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 3883 } 3884 3885 if (pp != NULL && pvn_getdirty(pp, flags)) { 3886 int err; 3887 3888 /* 3889 * Found a dirty page to push 3890 */ 3891 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 3892 if (err) 3893 error = err; 3894 } else { 3895 io_len = PAGESIZE; 3896 } 3897 } 3898 out: 3899 zfs_range_unlock(rl); 3900 if ((flags & B_ASYNC) == 0) 3901 zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id); 3902 ZFS_EXIT(zfsvfs); 3903 return (error); 3904 } 3905 3906 /*ARGSUSED*/ 3907 void 3908 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 3909 { 3910 znode_t *zp = VTOZ(vp); 3911 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3912 int error; 3913 3914 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 3915 if (zp->z_dbuf == NULL) { 3916 /* 3917 * The fs has been unmounted, or we did a 3918 * suspend/resume and this file no longer exists. 3919 */ 3920 if (vn_has_cached_data(vp)) { 3921 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 3922 B_INVAL, cr); 3923 } 3924 3925 mutex_enter(&zp->z_lock); 3926 mutex_enter(&vp->v_lock); 3927 ASSERT(vp->v_count == 1); 3928 vp->v_count = 0; 3929 mutex_exit(&vp->v_lock); 3930 mutex_exit(&zp->z_lock); 3931 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3932 zfs_znode_free(zp); 3933 return; 3934 } 3935 3936 /* 3937 * Attempt to push any data in the page cache. If this fails 3938 * we will get kicked out later in zfs_zinactive(). 3939 */ 3940 if (vn_has_cached_data(vp)) { 3941 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 3942 cr); 3943 } 3944 3945 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 3946 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 3947 3948 dmu_tx_hold_bonus(tx, zp->z_id); 3949 error = dmu_tx_assign(tx, TXG_WAIT); 3950 if (error) { 3951 dmu_tx_abort(tx); 3952 } else { 3953 dmu_buf_will_dirty(zp->z_dbuf, tx); 3954 mutex_enter(&zp->z_lock); 3955 zp->z_atime_dirty = 0; 3956 mutex_exit(&zp->z_lock); 3957 dmu_tx_commit(tx); 3958 } 3959 } 3960 3961 zfs_zinactive(zp); 3962 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3963 } 3964 3965 /* 3966 * Bounds-check the seek operation. 3967 * 3968 * IN: vp - vnode seeking within 3969 * ooff - old file offset 3970 * noffp - pointer to new file offset 3971 * ct - caller context 3972 * 3973 * RETURN: 0 if success 3974 * EINVAL if new offset invalid 3975 */ 3976 /* ARGSUSED */ 3977 static int 3978 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 3979 caller_context_t *ct) 3980 { 3981 if (vp->v_type == VDIR) 3982 return (0); 3983 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 3984 } 3985 3986 /* 3987 * Pre-filter the generic locking function to trap attempts to place 3988 * a mandatory lock on a memory mapped file. 3989 */ 3990 static int 3991 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 3992 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 3993 { 3994 znode_t *zp = VTOZ(vp); 3995 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3996 3997 ZFS_ENTER(zfsvfs); 3998 ZFS_VERIFY_ZP(zp); 3999 4000 /* 4001 * We are following the UFS semantics with respect to mapcnt 4002 * here: If we see that the file is mapped already, then we will 4003 * return an error, but we don't worry about races between this 4004 * function and zfs_map(). 4005 */ 4006 if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) { 4007 ZFS_EXIT(zfsvfs); 4008 return (EAGAIN); 4009 } 4010 ZFS_EXIT(zfsvfs); 4011 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4012 } 4013 4014 /* 4015 * If we can't find a page in the cache, we will create a new page 4016 * and fill it with file data. For efficiency, we may try to fill 4017 * multiple pages at once (klustering) to fill up the supplied page 4018 * list. Note that the pages to be filled are held with an exclusive 4019 * lock to prevent access by other threads while they are being filled. 4020 */ 4021 static int 4022 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4023 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4024 { 4025 znode_t *zp = VTOZ(vp); 4026 page_t *pp, *cur_pp; 4027 objset_t *os = zp->z_zfsvfs->z_os; 4028 u_offset_t io_off, total; 4029 size_t io_len; 4030 int err; 4031 4032 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4033 /* 4034 * We only have a single page, don't bother klustering 4035 */ 4036 io_off = off; 4037 io_len = PAGESIZE; 4038 pp = page_create_va(vp, io_off, io_len, 4039 PG_EXCL | PG_WAIT, seg, addr); 4040 } else { 4041 /* 4042 * Try to find enough pages to fill the page list 4043 */ 4044 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4045 &io_len, off, plsz, 0); 4046 } 4047 if (pp == NULL) { 4048 /* 4049 * The page already exists, nothing to do here. 4050 */ 4051 *pl = NULL; 4052 return (0); 4053 } 4054 4055 /* 4056 * Fill the pages in the kluster. 4057 */ 4058 cur_pp = pp; 4059 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4060 caddr_t va; 4061 4062 ASSERT3U(io_off, ==, cur_pp->p_offset); 4063 va = zfs_map_page(cur_pp, S_WRITE); 4064 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4065 DMU_READ_PREFETCH); 4066 zfs_unmap_page(cur_pp, va); 4067 if (err) { 4068 /* On error, toss the entire kluster */ 4069 pvn_read_done(pp, B_ERROR); 4070 /* convert checksum errors into IO errors */ 4071 if (err == ECKSUM) 4072 err = EIO; 4073 return (err); 4074 } 4075 cur_pp = cur_pp->p_next; 4076 } 4077 4078 /* 4079 * Fill in the page list array from the kluster starting 4080 * from the desired offset `off'. 4081 * NOTE: the page list will always be null terminated. 4082 */ 4083 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4084 ASSERT(pl == NULL || (*pl)->p_offset == off); 4085 4086 return (0); 4087 } 4088 4089 /* 4090 * Return pointers to the pages for the file region [off, off + len] 4091 * in the pl array. If plsz is greater than len, this function may 4092 * also return page pointers from after the specified region 4093 * (i.e. the region [off, off + plsz]). These additional pages are 4094 * only returned if they are already in the cache, or were created as 4095 * part of a klustered read. 4096 * 4097 * IN: vp - vnode of file to get data from. 4098 * off - position in file to get data from. 4099 * len - amount of data to retrieve. 4100 * plsz - length of provided page list. 4101 * seg - segment to obtain pages for. 4102 * addr - virtual address of fault. 4103 * rw - mode of created pages. 4104 * cr - credentials of caller. 4105 * ct - caller context. 4106 * 4107 * OUT: protp - protection mode of created pages. 4108 * pl - list of pages created. 4109 * 4110 * RETURN: 0 if success 4111 * error code if failure 4112 * 4113 * Timestamps: 4114 * vp - atime updated 4115 */ 4116 /* ARGSUSED */ 4117 static int 4118 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4119 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4120 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4121 { 4122 znode_t *zp = VTOZ(vp); 4123 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4124 page_t **pl0 = pl; 4125 int err = 0; 4126 4127 /* we do our own caching, faultahead is unnecessary */ 4128 if (pl == NULL) 4129 return (0); 4130 else if (len > plsz) 4131 len = plsz; 4132 else 4133 len = P2ROUNDUP(len, PAGESIZE); 4134 ASSERT(plsz >= len); 4135 4136 ZFS_ENTER(zfsvfs); 4137 ZFS_VERIFY_ZP(zp); 4138 4139 if (protp) 4140 *protp = PROT_ALL; 4141 4142 /* 4143 * Loop through the requested range [off, off + len) looking 4144 * for pages. If we don't find a page, we will need to create 4145 * a new page and fill it with data from the file. 4146 */ 4147 while (len > 0) { 4148 if (*pl = page_lookup(vp, off, SE_SHARED)) 4149 *(pl+1) = NULL; 4150 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4151 goto out; 4152 while (*pl) { 4153 ASSERT3U((*pl)->p_offset, ==, off); 4154 off += PAGESIZE; 4155 addr += PAGESIZE; 4156 if (len > 0) { 4157 ASSERT3U(len, >=, PAGESIZE); 4158 len -= PAGESIZE; 4159 } 4160 ASSERT3U(plsz, >=, PAGESIZE); 4161 plsz -= PAGESIZE; 4162 pl++; 4163 } 4164 } 4165 4166 /* 4167 * Fill out the page array with any pages already in the cache. 4168 */ 4169 while (plsz > 0 && 4170 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4171 off += PAGESIZE; 4172 plsz -= PAGESIZE; 4173 } 4174 out: 4175 if (err) { 4176 /* 4177 * Release any pages we have previously locked. 4178 */ 4179 while (pl > pl0) 4180 page_unlock(*--pl); 4181 } else { 4182 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4183 } 4184 4185 *pl = NULL; 4186 4187 ZFS_EXIT(zfsvfs); 4188 return (err); 4189 } 4190 4191 /* 4192 * Request a memory map for a section of a file. This code interacts 4193 * with common code and the VM system as follows: 4194 * 4195 * common code calls mmap(), which ends up in smmap_common() 4196 * 4197 * this calls VOP_MAP(), which takes you into (say) zfs 4198 * 4199 * zfs_map() calls as_map(), passing segvn_create() as the callback 4200 * 4201 * segvn_create() creates the new segment and calls VOP_ADDMAP() 4202 * 4203 * zfs_addmap() updates z_mapcnt 4204 */ 4205 /*ARGSUSED*/ 4206 static int 4207 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4208 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4209 caller_context_t *ct) 4210 { 4211 znode_t *zp = VTOZ(vp); 4212 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4213 segvn_crargs_t vn_a; 4214 int error; 4215 4216 ZFS_ENTER(zfsvfs); 4217 ZFS_VERIFY_ZP(zp); 4218 4219 if ((prot & PROT_WRITE) && 4220 (zp->z_phys->zp_flags & (ZFS_IMMUTABLE | ZFS_READONLY | 4221 ZFS_APPENDONLY))) { 4222 ZFS_EXIT(zfsvfs); 4223 return (EPERM); 4224 } 4225 4226 if ((prot & (PROT_READ | PROT_EXEC)) && 4227 (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED)) { 4228 ZFS_EXIT(zfsvfs); 4229 return (EACCES); 4230 } 4231 4232 if (vp->v_flag & VNOMAP) { 4233 ZFS_EXIT(zfsvfs); 4234 return (ENOSYS); 4235 } 4236 4237 if (off < 0 || len > MAXOFFSET_T - off) { 4238 ZFS_EXIT(zfsvfs); 4239 return (ENXIO); 4240 } 4241 4242 if (vp->v_type != VREG) { 4243 ZFS_EXIT(zfsvfs); 4244 return (ENODEV); 4245 } 4246 4247 /* 4248 * If file is locked, disallow mapping. 4249 */ 4250 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) { 4251 ZFS_EXIT(zfsvfs); 4252 return (EAGAIN); 4253 } 4254 4255 as_rangelock(as); 4256 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4257 if (error != 0) { 4258 as_rangeunlock(as); 4259 ZFS_EXIT(zfsvfs); 4260 return (error); 4261 } 4262 4263 vn_a.vp = vp; 4264 vn_a.offset = (u_offset_t)off; 4265 vn_a.type = flags & MAP_TYPE; 4266 vn_a.prot = prot; 4267 vn_a.maxprot = maxprot; 4268 vn_a.cred = cr; 4269 vn_a.amp = NULL; 4270 vn_a.flags = flags & ~MAP_TYPE; 4271 vn_a.szc = 0; 4272 vn_a.lgrp_mem_policy_flags = 0; 4273 4274 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4275 4276 as_rangeunlock(as); 4277 ZFS_EXIT(zfsvfs); 4278 return (error); 4279 } 4280 4281 /* ARGSUSED */ 4282 static int 4283 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4284 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4285 caller_context_t *ct) 4286 { 4287 uint64_t pages = btopr(len); 4288 4289 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4290 return (0); 4291 } 4292 4293 /* 4294 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4295 * more accurate mtime for the associated file. Since we don't have a way of 4296 * detecting when the data was actually modified, we have to resort to 4297 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4298 * last page is pushed. The problem occurs when the msync() call is omitted, 4299 * which by far the most common case: 4300 * 4301 * open() 4302 * mmap() 4303 * <modify memory> 4304 * munmap() 4305 * close() 4306 * <time lapse> 4307 * putpage() via fsflush 4308 * 4309 * If we wait until fsflush to come along, we can have a modification time that 4310 * is some arbitrary point in the future. In order to prevent this in the 4311 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4312 * torn down. 4313 */ 4314 /* ARGSUSED */ 4315 static int 4316 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4317 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4318 caller_context_t *ct) 4319 { 4320 uint64_t pages = btopr(len); 4321 4322 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4323 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4324 4325 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4326 vn_has_cached_data(vp)) 4327 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4328 4329 return (0); 4330 } 4331 4332 /* 4333 * Free or allocate space in a file. Currently, this function only 4334 * supports the `F_FREESP' command. However, this command is somewhat 4335 * misnamed, as its functionality includes the ability to allocate as 4336 * well as free space. 4337 * 4338 * IN: vp - vnode of file to free data in. 4339 * cmd - action to take (only F_FREESP supported). 4340 * bfp - section of file to free/alloc. 4341 * flag - current file open mode flags. 4342 * offset - current file offset. 4343 * cr - credentials of caller [UNUSED]. 4344 * ct - caller context. 4345 * 4346 * RETURN: 0 if success 4347 * error code if failure 4348 * 4349 * Timestamps: 4350 * vp - ctime|mtime updated 4351 */ 4352 /* ARGSUSED */ 4353 static int 4354 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4355 offset_t offset, cred_t *cr, caller_context_t *ct) 4356 { 4357 znode_t *zp = VTOZ(vp); 4358 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4359 uint64_t off, len; 4360 int error; 4361 4362 ZFS_ENTER(zfsvfs); 4363 ZFS_VERIFY_ZP(zp); 4364 4365 if (cmd != F_FREESP) { 4366 ZFS_EXIT(zfsvfs); 4367 return (EINVAL); 4368 } 4369 4370 if (error = convoff(vp, bfp, 0, offset)) { 4371 ZFS_EXIT(zfsvfs); 4372 return (error); 4373 } 4374 4375 if (bfp->l_len < 0) { 4376 ZFS_EXIT(zfsvfs); 4377 return (EINVAL); 4378 } 4379 4380 off = bfp->l_start; 4381 len = bfp->l_len; /* 0 means from off to end of file */ 4382 4383 error = zfs_freesp(zp, off, len, flag, TRUE); 4384 4385 ZFS_EXIT(zfsvfs); 4386 return (error); 4387 } 4388 4389 /*ARGSUSED*/ 4390 static int 4391 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4392 { 4393 znode_t *zp = VTOZ(vp); 4394 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4395 uint32_t gen; 4396 uint64_t object = zp->z_id; 4397 zfid_short_t *zfid; 4398 int size, i; 4399 4400 ZFS_ENTER(zfsvfs); 4401 ZFS_VERIFY_ZP(zp); 4402 gen = (uint32_t)zp->z_gen; 4403 4404 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4405 if (fidp->fid_len < size) { 4406 fidp->fid_len = size; 4407 ZFS_EXIT(zfsvfs); 4408 return (ENOSPC); 4409 } 4410 4411 zfid = (zfid_short_t *)fidp; 4412 4413 zfid->zf_len = size; 4414 4415 for (i = 0; i < sizeof (zfid->zf_object); i++) 4416 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4417 4418 /* Must have a non-zero generation number to distinguish from .zfs */ 4419 if (gen == 0) 4420 gen = 1; 4421 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4422 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4423 4424 if (size == LONG_FID_LEN) { 4425 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4426 zfid_long_t *zlfid; 4427 4428 zlfid = (zfid_long_t *)fidp; 4429 4430 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4431 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4432 4433 /* XXX - this should be the generation number for the objset */ 4434 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4435 zlfid->zf_setgen[i] = 0; 4436 } 4437 4438 ZFS_EXIT(zfsvfs); 4439 return (0); 4440 } 4441 4442 static int 4443 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4444 caller_context_t *ct) 4445 { 4446 znode_t *zp, *xzp; 4447 zfsvfs_t *zfsvfs; 4448 zfs_dirlock_t *dl; 4449 int error; 4450 4451 switch (cmd) { 4452 case _PC_LINK_MAX: 4453 *valp = ULONG_MAX; 4454 return (0); 4455 4456 case _PC_FILESIZEBITS: 4457 *valp = 64; 4458 return (0); 4459 4460 case _PC_XATTR_EXISTS: 4461 zp = VTOZ(vp); 4462 zfsvfs = zp->z_zfsvfs; 4463 ZFS_ENTER(zfsvfs); 4464 ZFS_VERIFY_ZP(zp); 4465 *valp = 0; 4466 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4467 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4468 if (error == 0) { 4469 zfs_dirent_unlock(dl); 4470 if (!zfs_dirempty(xzp)) 4471 *valp = 1; 4472 VN_RELE(ZTOV(xzp)); 4473 } else if (error == ENOENT) { 4474 /* 4475 * If there aren't extended attributes, it's the 4476 * same as having zero of them. 4477 */ 4478 error = 0; 4479 } 4480 ZFS_EXIT(zfsvfs); 4481 return (error); 4482 4483 case _PC_SATTR_ENABLED: 4484 case _PC_SATTR_EXISTS: 4485 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4486 (vp->v_type == VREG || vp->v_type == VDIR); 4487 return (0); 4488 4489 case _PC_ACCESS_FILTERING: 4490 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4491 vp->v_type == VDIR; 4492 return (0); 4493 4494 case _PC_ACL_ENABLED: 4495 *valp = _ACL_ACE_ENABLED; 4496 return (0); 4497 4498 case _PC_MIN_HOLE_SIZE: 4499 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4500 return (0); 4501 4502 case _PC_TIMESTAMP_RESOLUTION: 4503 /* nanosecond timestamp resolution */ 4504 *valp = 1L; 4505 return (0); 4506 4507 default: 4508 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4509 } 4510 } 4511 4512 /*ARGSUSED*/ 4513 static int 4514 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4515 caller_context_t *ct) 4516 { 4517 znode_t *zp = VTOZ(vp); 4518 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4519 int error; 4520 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4521 4522 ZFS_ENTER(zfsvfs); 4523 ZFS_VERIFY_ZP(zp); 4524 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4525 ZFS_EXIT(zfsvfs); 4526 4527 return (error); 4528 } 4529 4530 /*ARGSUSED*/ 4531 static int 4532 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4533 caller_context_t *ct) 4534 { 4535 znode_t *zp = VTOZ(vp); 4536 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4537 int error; 4538 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4539 4540 ZFS_ENTER(zfsvfs); 4541 ZFS_VERIFY_ZP(zp); 4542 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4543 ZFS_EXIT(zfsvfs); 4544 return (error); 4545 } 4546 4547 /* 4548 * Predeclare these here so that the compiler assumes that 4549 * this is an "old style" function declaration that does 4550 * not include arguments => we won't get type mismatch errors 4551 * in the initializations that follow. 4552 */ 4553 static int zfs_inval(); 4554 static int zfs_isdir(); 4555 4556 static int 4557 zfs_inval() 4558 { 4559 return (EINVAL); 4560 } 4561 4562 static int 4563 zfs_isdir() 4564 { 4565 return (EISDIR); 4566 } 4567 /* 4568 * Directory vnode operations template 4569 */ 4570 vnodeops_t *zfs_dvnodeops; 4571 const fs_operation_def_t zfs_dvnodeops_template[] = { 4572 VOPNAME_OPEN, { .vop_open = zfs_open }, 4573 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4574 VOPNAME_READ, { .error = zfs_isdir }, 4575 VOPNAME_WRITE, { .error = zfs_isdir }, 4576 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4577 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4578 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4579 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4580 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4581 VOPNAME_CREATE, { .vop_create = zfs_create }, 4582 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4583 VOPNAME_LINK, { .vop_link = zfs_link }, 4584 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4585 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 4586 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4587 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4588 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 4589 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4590 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4591 VOPNAME_FID, { .vop_fid = zfs_fid }, 4592 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4593 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4594 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4595 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4596 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4597 NULL, NULL 4598 }; 4599 4600 /* 4601 * Regular file vnode operations template 4602 */ 4603 vnodeops_t *zfs_fvnodeops; 4604 const fs_operation_def_t zfs_fvnodeops_template[] = { 4605 VOPNAME_OPEN, { .vop_open = zfs_open }, 4606 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4607 VOPNAME_READ, { .vop_read = zfs_read }, 4608 VOPNAME_WRITE, { .vop_write = zfs_write }, 4609 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4610 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4611 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4612 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4613 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4614 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4615 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4616 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4617 VOPNAME_FID, { .vop_fid = zfs_fid }, 4618 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4619 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 4620 VOPNAME_SPACE, { .vop_space = zfs_space }, 4621 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 4622 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 4623 VOPNAME_MAP, { .vop_map = zfs_map }, 4624 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 4625 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 4626 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4627 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4628 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4629 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4630 NULL, NULL 4631 }; 4632 4633 /* 4634 * Symbolic link vnode operations template 4635 */ 4636 vnodeops_t *zfs_symvnodeops; 4637 const fs_operation_def_t zfs_symvnodeops_template[] = { 4638 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4639 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4640 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4641 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4642 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 4643 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4644 VOPNAME_FID, { .vop_fid = zfs_fid }, 4645 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4646 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4647 NULL, NULL 4648 }; 4649 4650 /* 4651 * special share hidden files vnode operations template 4652 */ 4653 vnodeops_t *zfs_sharevnodeops; 4654 const fs_operation_def_t zfs_sharevnodeops_template[] = { 4655 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4656 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4657 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4658 VOPNAME_FID, { .vop_fid = zfs_fid }, 4659 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4660 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4661 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4662 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4663 NULL, NULL 4664 }; 4665 4666 /* 4667 * Extended attribute directory vnode operations template 4668 * This template is identical to the directory vnodes 4669 * operation template except for restricted operations: 4670 * VOP_MKDIR() 4671 * VOP_SYMLINK() 4672 * Note that there are other restrictions embedded in: 4673 * zfs_create() - restrict type to VREG 4674 * zfs_link() - no links into/out of attribute space 4675 * zfs_rename() - no moves into/out of attribute space 4676 */ 4677 vnodeops_t *zfs_xdvnodeops; 4678 const fs_operation_def_t zfs_xdvnodeops_template[] = { 4679 VOPNAME_OPEN, { .vop_open = zfs_open }, 4680 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4681 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4682 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4683 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4684 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4685 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4686 VOPNAME_CREATE, { .vop_create = zfs_create }, 4687 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4688 VOPNAME_LINK, { .vop_link = zfs_link }, 4689 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4690 VOPNAME_MKDIR, { .error = zfs_inval }, 4691 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4692 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4693 VOPNAME_SYMLINK, { .error = zfs_inval }, 4694 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4695 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4696 VOPNAME_FID, { .vop_fid = zfs_fid }, 4697 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4698 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4699 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4700 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4701 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4702 NULL, NULL 4703 }; 4704 4705 /* 4706 * Error vnode operations template 4707 */ 4708 vnodeops_t *zfs_evnodeops; 4709 const fs_operation_def_t zfs_evnodeops_template[] = { 4710 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4711 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4712 NULL, NULL 4713 }; 4714