xref: /titanic_50/usr/src/uts/common/fs/zfs/zfs_vnops.c (revision cddcb3dae85e03889ec217ef3da5a8898f4f66c7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /* Portions Copyright 2007 Jeremy Teo */
26 /* Portions Copyright 2010 Robert Milkowski */
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/time.h>
31 #include <sys/systm.h>
32 #include <sys/sysmacros.h>
33 #include <sys/resource.h>
34 #include <sys/vfs.h>
35 #include <sys/vfs_opreg.h>
36 #include <sys/vnode.h>
37 #include <sys/file.h>
38 #include <sys/stat.h>
39 #include <sys/kmem.h>
40 #include <sys/taskq.h>
41 #include <sys/uio.h>
42 #include <sys/vmsystm.h>
43 #include <sys/atomic.h>
44 #include <sys/vm.h>
45 #include <vm/seg_vn.h>
46 #include <vm/pvn.h>
47 #include <vm/as.h>
48 #include <vm/kpm.h>
49 #include <vm/seg_kpm.h>
50 #include <sys/mman.h>
51 #include <sys/pathname.h>
52 #include <sys/cmn_err.h>
53 #include <sys/errno.h>
54 #include <sys/unistd.h>
55 #include <sys/zfs_dir.h>
56 #include <sys/zfs_acl.h>
57 #include <sys/zfs_ioctl.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/dmu.h>
60 #include <sys/dmu_objset.h>
61 #include <sys/spa.h>
62 #include <sys/txg.h>
63 #include <sys/dbuf.h>
64 #include <sys/zap.h>
65 #include <sys/sa.h>
66 #include <sys/dirent.h>
67 #include <sys/policy.h>
68 #include <sys/sunddi.h>
69 #include <sys/filio.h>
70 #include <sys/sid.h>
71 #include "fs/fs_subr.h"
72 #include <sys/zfs_ctldir.h>
73 #include <sys/zfs_fuid.h>
74 #include <sys/zfs_sa.h>
75 #include <sys/dnlc.h>
76 #include <sys/zfs_rlock.h>
77 #include <sys/extdirent.h>
78 #include <sys/kidmap.h>
79 #include <sys/cred.h>
80 #include <sys/attr.h>
81 
82 /*
83  * Programming rules.
84  *
85  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
86  * properly lock its in-core state, create a DMU transaction, do the work,
87  * record this work in the intent log (ZIL), commit the DMU transaction,
88  * and wait for the intent log to commit if it is a synchronous operation.
89  * Moreover, the vnode ops must work in both normal and log replay context.
90  * The ordering of events is important to avoid deadlocks and references
91  * to freed memory.  The example below illustrates the following Big Rules:
92  *
93  *  (1) A check must be made in each zfs thread for a mounted file system.
94  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
95  *      A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
96  *      must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
97  *      can return EIO from the calling function.
98  *
99  *  (2)	VN_RELE() should always be the last thing except for zil_commit()
100  *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
101  *	First, if it's the last reference, the vnode/znode
102  *	can be freed, so the zp may point to freed memory.  Second, the last
103  *	reference will call zfs_zinactive(), which may induce a lot of work --
104  *	pushing cached pages (which acquires range locks) and syncing out
105  *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
106  *	which could deadlock the system if you were already holding one.
107  *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
108  *
109  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
110  *	as they can span dmu_tx_assign() calls.
111  *
112  *  (4)	Always pass TXG_NOWAIT as the second argument to dmu_tx_assign().
113  *	This is critical because we don't want to block while holding locks.
114  *	Note, in particular, that if a lock is sometimes acquired before
115  *	the tx assigns, and sometimes after (e.g. z_lock), then failing to
116  *	use a non-blocking assign can deadlock the system.  The scenario:
117  *
118  *	Thread A has grabbed a lock before calling dmu_tx_assign().
119  *	Thread B is in an already-assigned tx, and blocks for this lock.
120  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
121  *	forever, because the previous txg can't quiesce until B's tx commits.
122  *
123  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
124  *	then drop all locks, call dmu_tx_wait(), and try again.
125  *
126  *  (5)	If the operation succeeded, generate the intent log entry for it
127  *	before dropping locks.  This ensures that the ordering of events
128  *	in the intent log matches the order in which they actually occurred.
129  *      During ZIL replay the zfs_log_* functions will update the sequence
130  *	number to indicate the zil transaction has replayed.
131  *
132  *  (6)	At the end of each vnode op, the DMU tx must always commit,
133  *	regardless of whether there were any errors.
134  *
135  *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
136  *	to ensure that synchronous semantics are provided when necessary.
137  *
138  * In general, this is how things should be ordered in each vnode op:
139  *
140  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
141  * top:
142  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
143  *	rw_enter(...);			// grab any other locks you need
144  *	tx = dmu_tx_create(...);	// get DMU tx
145  *	dmu_tx_hold_*();		// hold each object you might modify
146  *	error = dmu_tx_assign(tx, TXG_NOWAIT);	// try to assign
147  *	if (error) {
148  *		rw_exit(...);		// drop locks
149  *		zfs_dirent_unlock(dl);	// unlock directory entry
150  *		VN_RELE(...);		// release held vnodes
151  *		if (error == ERESTART) {
152  *			dmu_tx_wait(tx);
153  *			dmu_tx_abort(tx);
154  *			goto top;
155  *		}
156  *		dmu_tx_abort(tx);	// abort DMU tx
157  *		ZFS_EXIT(zfsvfs);	// finished in zfs
158  *		return (error);		// really out of space
159  *	}
160  *	error = do_real_work();		// do whatever this VOP does
161  *	if (error == 0)
162  *		zfs_log_*(...);		// on success, make ZIL entry
163  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
164  *	rw_exit(...);			// drop locks
165  *	zfs_dirent_unlock(dl);		// unlock directory entry
166  *	VN_RELE(...);			// release held vnodes
167  *	zil_commit(zilog, foid);	// synchronous when necessary
168  *	ZFS_EXIT(zfsvfs);		// finished in zfs
169  *	return (error);			// done, report error
170  */
171 
172 /* ARGSUSED */
173 static int
174 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
175 {
176 	znode_t	*zp = VTOZ(*vpp);
177 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
178 
179 	ZFS_ENTER(zfsvfs);
180 	ZFS_VERIFY_ZP(zp);
181 
182 	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
183 	    ((flag & FAPPEND) == 0)) {
184 		ZFS_EXIT(zfsvfs);
185 		return (EPERM);
186 	}
187 
188 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
189 	    ZTOV(zp)->v_type == VREG &&
190 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
191 		if (fs_vscan(*vpp, cr, 0) != 0) {
192 			ZFS_EXIT(zfsvfs);
193 			return (EACCES);
194 		}
195 	}
196 
197 	/* Keep a count of the synchronous opens in the znode */
198 	if (flag & (FSYNC | FDSYNC))
199 		atomic_inc_32(&zp->z_sync_cnt);
200 
201 	ZFS_EXIT(zfsvfs);
202 	return (0);
203 }
204 
205 /* ARGSUSED */
206 static int
207 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
208     caller_context_t *ct)
209 {
210 	znode_t	*zp = VTOZ(vp);
211 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
212 
213 	/*
214 	 * Clean up any locks held by this process on the vp.
215 	 */
216 	cleanlocks(vp, ddi_get_pid(), 0);
217 	cleanshares(vp, ddi_get_pid());
218 
219 	ZFS_ENTER(zfsvfs);
220 	ZFS_VERIFY_ZP(zp);
221 
222 	/* Decrement the synchronous opens in the znode */
223 	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
224 		atomic_dec_32(&zp->z_sync_cnt);
225 
226 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
227 	    ZTOV(zp)->v_type == VREG &&
228 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
229 		VERIFY(fs_vscan(vp, cr, 1) == 0);
230 
231 	ZFS_EXIT(zfsvfs);
232 	return (0);
233 }
234 
235 /*
236  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
237  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
238  */
239 static int
240 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
241 {
242 	znode_t	*zp = VTOZ(vp);
243 	uint64_t noff = (uint64_t)*off; /* new offset */
244 	uint64_t file_sz;
245 	int error;
246 	boolean_t hole;
247 
248 	file_sz = zp->z_size;
249 	if (noff >= file_sz)  {
250 		return (ENXIO);
251 	}
252 
253 	if (cmd == _FIO_SEEK_HOLE)
254 		hole = B_TRUE;
255 	else
256 		hole = B_FALSE;
257 
258 	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
259 
260 	/* end of file? */
261 	if ((error == ESRCH) || (noff > file_sz)) {
262 		/*
263 		 * Handle the virtual hole at the end of file.
264 		 */
265 		if (hole) {
266 			*off = file_sz;
267 			return (0);
268 		}
269 		return (ENXIO);
270 	}
271 
272 	if (noff < *off)
273 		return (error);
274 	*off = noff;
275 	return (error);
276 }
277 
278 /* ARGSUSED */
279 static int
280 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
281     int *rvalp, caller_context_t *ct)
282 {
283 	offset_t off;
284 	int error;
285 	zfsvfs_t *zfsvfs;
286 	znode_t *zp;
287 
288 	switch (com) {
289 	case _FIOFFS:
290 		return (zfs_sync(vp->v_vfsp, 0, cred));
291 
292 		/*
293 		 * The following two ioctls are used by bfu.  Faking out,
294 		 * necessary to avoid bfu errors.
295 		 */
296 	case _FIOGDIO:
297 	case _FIOSDIO:
298 		return (0);
299 
300 	case _FIO_SEEK_DATA:
301 	case _FIO_SEEK_HOLE:
302 		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
303 			return (EFAULT);
304 
305 		zp = VTOZ(vp);
306 		zfsvfs = zp->z_zfsvfs;
307 		ZFS_ENTER(zfsvfs);
308 		ZFS_VERIFY_ZP(zp);
309 
310 		/* offset parameter is in/out */
311 		error = zfs_holey(vp, com, &off);
312 		ZFS_EXIT(zfsvfs);
313 		if (error)
314 			return (error);
315 		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
316 			return (EFAULT);
317 		return (0);
318 	}
319 	return (ENOTTY);
320 }
321 
322 /*
323  * Utility functions to map and unmap a single physical page.  These
324  * are used to manage the mappable copies of ZFS file data, and therefore
325  * do not update ref/mod bits.
326  */
327 caddr_t
328 zfs_map_page(page_t *pp, enum seg_rw rw)
329 {
330 	if (kpm_enable)
331 		return (hat_kpm_mapin(pp, 0));
332 	ASSERT(rw == S_READ || rw == S_WRITE);
333 	return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
334 	    (caddr_t)-1));
335 }
336 
337 void
338 zfs_unmap_page(page_t *pp, caddr_t addr)
339 {
340 	if (kpm_enable) {
341 		hat_kpm_mapout(pp, 0, addr);
342 	} else {
343 		ppmapout(addr);
344 	}
345 }
346 
347 /*
348  * When a file is memory mapped, we must keep the IO data synchronized
349  * between the DMU cache and the memory mapped pages.  What this means:
350  *
351  * On Write:	If we find a memory mapped page, we write to *both*
352  *		the page and the dmu buffer.
353  */
354 static void
355 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
356 {
357 	int64_t	off;
358 
359 	off = start & PAGEOFFSET;
360 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
361 		page_t *pp;
362 		uint64_t nbytes = MIN(PAGESIZE - off, len);
363 
364 		if (pp = page_lookup(vp, start, SE_SHARED)) {
365 			caddr_t va;
366 
367 			va = zfs_map_page(pp, S_WRITE);
368 			(void) dmu_read(os, oid, start+off, nbytes, va+off,
369 			    DMU_READ_PREFETCH);
370 			zfs_unmap_page(pp, va);
371 			page_unlock(pp);
372 		}
373 		len -= nbytes;
374 		off = 0;
375 	}
376 }
377 
378 /*
379  * When a file is memory mapped, we must keep the IO data synchronized
380  * between the DMU cache and the memory mapped pages.  What this means:
381  *
382  * On Read:	We "read" preferentially from memory mapped pages,
383  *		else we default from the dmu buffer.
384  *
385  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
386  *	the file is memory mapped.
387  */
388 static int
389 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
390 {
391 	znode_t *zp = VTOZ(vp);
392 	objset_t *os = zp->z_zfsvfs->z_os;
393 	int64_t	start, off;
394 	int len = nbytes;
395 	int error = 0;
396 
397 	start = uio->uio_loffset;
398 	off = start & PAGEOFFSET;
399 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
400 		page_t *pp;
401 		uint64_t bytes = MIN(PAGESIZE - off, len);
402 
403 		if (pp = page_lookup(vp, start, SE_SHARED)) {
404 			caddr_t va;
405 
406 			va = zfs_map_page(pp, S_READ);
407 			error = uiomove(va + off, bytes, UIO_READ, uio);
408 			zfs_unmap_page(pp, va);
409 			page_unlock(pp);
410 		} else {
411 			error = dmu_read_uio(os, zp->z_id, uio, bytes);
412 		}
413 		len -= bytes;
414 		off = 0;
415 		if (error)
416 			break;
417 	}
418 	return (error);
419 }
420 
421 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
422 
423 /*
424  * Read bytes from specified file into supplied buffer.
425  *
426  *	IN:	vp	- vnode of file to be read from.
427  *		uio	- structure supplying read location, range info,
428  *			  and return buffer.
429  *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
430  *		cr	- credentials of caller.
431  *		ct	- caller context
432  *
433  *	OUT:	uio	- updated offset and range, buffer filled.
434  *
435  *	RETURN:	0 if success
436  *		error code if failure
437  *
438  * Side Effects:
439  *	vp - atime updated if byte count > 0
440  */
441 /* ARGSUSED */
442 static int
443 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
444 {
445 	znode_t		*zp = VTOZ(vp);
446 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
447 	objset_t	*os;
448 	ssize_t		n, nbytes;
449 	int		error;
450 	rl_t		*rl;
451 	xuio_t		*xuio = NULL;
452 
453 	ZFS_ENTER(zfsvfs);
454 	ZFS_VERIFY_ZP(zp);
455 	os = zfsvfs->z_os;
456 
457 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
458 		ZFS_EXIT(zfsvfs);
459 		return (EACCES);
460 	}
461 
462 	/*
463 	 * Validate file offset
464 	 */
465 	if (uio->uio_loffset < (offset_t)0) {
466 		ZFS_EXIT(zfsvfs);
467 		return (EINVAL);
468 	}
469 
470 	/*
471 	 * Fasttrack empty reads
472 	 */
473 	if (uio->uio_resid == 0) {
474 		ZFS_EXIT(zfsvfs);
475 		return (0);
476 	}
477 
478 	/*
479 	 * Check for mandatory locks
480 	 */
481 	if (MANDMODE(zp->z_mode)) {
482 		if (error = chklock(vp, FREAD,
483 		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
484 			ZFS_EXIT(zfsvfs);
485 			return (error);
486 		}
487 	}
488 
489 	/*
490 	 * If we're in FRSYNC mode, sync out this znode before reading it.
491 	 */
492 	if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
493 		zil_commit(zfsvfs->z_log, zp->z_id);
494 
495 	/*
496 	 * Lock the range against changes.
497 	 */
498 	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
499 
500 	/*
501 	 * If we are reading past end-of-file we can skip
502 	 * to the end; but we might still need to set atime.
503 	 */
504 	if (uio->uio_loffset >= zp->z_size) {
505 		error = 0;
506 		goto out;
507 	}
508 
509 	ASSERT(uio->uio_loffset < zp->z_size);
510 	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
511 
512 	if ((uio->uio_extflg == UIO_XUIO) &&
513 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
514 		int nblk;
515 		int blksz = zp->z_blksz;
516 		uint64_t offset = uio->uio_loffset;
517 
518 		xuio = (xuio_t *)uio;
519 		if ((ISP2(blksz))) {
520 			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
521 			    blksz)) / blksz;
522 		} else {
523 			ASSERT(offset + n <= blksz);
524 			nblk = 1;
525 		}
526 		(void) dmu_xuio_init(xuio, nblk);
527 
528 		if (vn_has_cached_data(vp)) {
529 			/*
530 			 * For simplicity, we always allocate a full buffer
531 			 * even if we only expect to read a portion of a block.
532 			 */
533 			while (--nblk >= 0) {
534 				(void) dmu_xuio_add(xuio,
535 				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
536 				    blksz), 0, blksz);
537 			}
538 		}
539 	}
540 
541 	while (n > 0) {
542 		nbytes = MIN(n, zfs_read_chunk_size -
543 		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
544 
545 		if (vn_has_cached_data(vp))
546 			error = mappedread(vp, nbytes, uio);
547 		else
548 			error = dmu_read_uio(os, zp->z_id, uio, nbytes);
549 		if (error) {
550 			/* convert checksum errors into IO errors */
551 			if (error == ECKSUM)
552 				error = EIO;
553 			break;
554 		}
555 
556 		n -= nbytes;
557 	}
558 out:
559 	zfs_range_unlock(rl);
560 
561 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
562 	ZFS_EXIT(zfsvfs);
563 	return (error);
564 }
565 
566 /*
567  * Write the bytes to a file.
568  *
569  *	IN:	vp	- vnode of file to be written to.
570  *		uio	- structure supplying write location, range info,
571  *			  and data buffer.
572  *		ioflag	- FAPPEND flag set if in append mode.
573  *		cr	- credentials of caller.
574  *		ct	- caller context (NFS/CIFS fem monitor only)
575  *
576  *	OUT:	uio	- updated offset and range.
577  *
578  *	RETURN:	0 if success
579  *		error code if failure
580  *
581  * Timestamps:
582  *	vp - ctime|mtime updated if byte count > 0
583  */
584 
585 /* ARGSUSED */
586 static int
587 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
588 {
589 	znode_t		*zp = VTOZ(vp);
590 	rlim64_t	limit = uio->uio_llimit;
591 	ssize_t		start_resid = uio->uio_resid;
592 	ssize_t		tx_bytes;
593 	uint64_t	end_size;
594 	dmu_tx_t	*tx;
595 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
596 	zilog_t		*zilog;
597 	offset_t	woff;
598 	ssize_t		n, nbytes;
599 	rl_t		*rl;
600 	int		max_blksz = zfsvfs->z_max_blksz;
601 	int		error;
602 	arc_buf_t	*abuf;
603 	iovec_t		*aiov;
604 	xuio_t		*xuio = NULL;
605 	int		i_iov = 0;
606 	int		iovcnt = uio->uio_iovcnt;
607 	iovec_t		*iovp = uio->uio_iov;
608 	int		write_eof;
609 	int		count = 0;
610 	sa_bulk_attr_t	bulk[4];
611 	uint64_t	mtime[2], ctime[2];
612 
613 	/*
614 	 * Fasttrack empty write
615 	 */
616 	n = start_resid;
617 	if (n == 0)
618 		return (0);
619 
620 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
621 		limit = MAXOFFSET_T;
622 
623 	ZFS_ENTER(zfsvfs);
624 	ZFS_VERIFY_ZP(zp);
625 
626 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
627 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
628 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
629 	    &zp->z_size, 8);
630 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
631 	    &zp->z_pflags, 8);
632 
633 	/*
634 	 * If immutable or not appending then return EPERM
635 	 */
636 	if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
637 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
638 	    (uio->uio_loffset < zp->z_size))) {
639 		ZFS_EXIT(zfsvfs);
640 		return (EPERM);
641 	}
642 
643 	zilog = zfsvfs->z_log;
644 
645 	/*
646 	 * Validate file offset
647 	 */
648 	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
649 	if (woff < 0) {
650 		ZFS_EXIT(zfsvfs);
651 		return (EINVAL);
652 	}
653 
654 	/*
655 	 * Check for mandatory locks before calling zfs_range_lock()
656 	 * in order to prevent a deadlock with locks set via fcntl().
657 	 */
658 	if (MANDMODE((mode_t)zp->z_mode) &&
659 	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
660 		ZFS_EXIT(zfsvfs);
661 		return (error);
662 	}
663 
664 	/*
665 	 * Pre-fault the pages to ensure slow (eg NFS) pages
666 	 * don't hold up txg.
667 	 * Skip this if uio contains loaned arc_buf.
668 	 */
669 	if ((uio->uio_extflg == UIO_XUIO) &&
670 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
671 		xuio = (xuio_t *)uio;
672 	else
673 		uio_prefaultpages(MIN(n, max_blksz), uio);
674 
675 	/*
676 	 * If in append mode, set the io offset pointer to eof.
677 	 */
678 	if (ioflag & FAPPEND) {
679 		/*
680 		 * Obtain an appending range lock to guarantee file append
681 		 * semantics.  We reset the write offset once we have the lock.
682 		 */
683 		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
684 		woff = rl->r_off;
685 		if (rl->r_len == UINT64_MAX) {
686 			/*
687 			 * We overlocked the file because this write will cause
688 			 * the file block size to increase.
689 			 * Note that zp_size cannot change with this lock held.
690 			 */
691 			woff = zp->z_size;
692 		}
693 		uio->uio_loffset = woff;
694 	} else {
695 		/*
696 		 * Note that if the file block size will change as a result of
697 		 * this write, then this range lock will lock the entire file
698 		 * so that we can re-write the block safely.
699 		 */
700 		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
701 	}
702 
703 	if (woff >= limit) {
704 		zfs_range_unlock(rl);
705 		ZFS_EXIT(zfsvfs);
706 		return (EFBIG);
707 	}
708 
709 	if ((woff + n) > limit || woff > (limit - n))
710 		n = limit - woff;
711 
712 	/* Will this write extend the file length? */
713 	write_eof = (woff + n > zp->z_size);
714 
715 	end_size = MAX(zp->z_size, woff + n);
716 
717 	/*
718 	 * Write the file in reasonable size chunks.  Each chunk is written
719 	 * in a separate transaction; this keeps the intent log records small
720 	 * and allows us to do more fine-grained space accounting.
721 	 */
722 	while (n > 0) {
723 		abuf = NULL;
724 		woff = uio->uio_loffset;
725 again:
726 		if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
727 		    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
728 			if (abuf != NULL)
729 				dmu_return_arcbuf(abuf);
730 			error = EDQUOT;
731 			break;
732 		}
733 
734 		if (xuio && abuf == NULL) {
735 			ASSERT(i_iov < iovcnt);
736 			aiov = &iovp[i_iov];
737 			abuf = dmu_xuio_arcbuf(xuio, i_iov);
738 			dmu_xuio_clear(xuio, i_iov);
739 			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
740 			    iovec_t *, aiov, arc_buf_t *, abuf);
741 			ASSERT((aiov->iov_base == abuf->b_data) ||
742 			    ((char *)aiov->iov_base - (char *)abuf->b_data +
743 			    aiov->iov_len == arc_buf_size(abuf)));
744 			i_iov++;
745 		} else if (abuf == NULL && n >= max_blksz &&
746 		    woff >= zp->z_size &&
747 		    P2PHASE(woff, max_blksz) == 0 &&
748 		    zp->z_blksz == max_blksz) {
749 			/*
750 			 * This write covers a full block.  "Borrow" a buffer
751 			 * from the dmu so that we can fill it before we enter
752 			 * a transaction.  This avoids the possibility of
753 			 * holding up the transaction if the data copy hangs
754 			 * up on a pagefault (e.g., from an NFS server mapping).
755 			 */
756 			size_t cbytes;
757 
758 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
759 			    max_blksz);
760 			ASSERT(abuf != NULL);
761 			ASSERT(arc_buf_size(abuf) == max_blksz);
762 			if (error = uiocopy(abuf->b_data, max_blksz,
763 			    UIO_WRITE, uio, &cbytes)) {
764 				dmu_return_arcbuf(abuf);
765 				break;
766 			}
767 			ASSERT(cbytes == max_blksz);
768 		}
769 
770 		/*
771 		 * Start a transaction.
772 		 */
773 		tx = dmu_tx_create(zfsvfs->z_os);
774 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
775 		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
776 		zfs_sa_upgrade_txholds(tx, zp);
777 		error = dmu_tx_assign(tx, TXG_NOWAIT);
778 		if (error) {
779 			if (error == ERESTART) {
780 				dmu_tx_wait(tx);
781 				dmu_tx_abort(tx);
782 				goto again;
783 			}
784 			dmu_tx_abort(tx);
785 			if (abuf != NULL)
786 				dmu_return_arcbuf(abuf);
787 			break;
788 		}
789 
790 		/*
791 		 * If zfs_range_lock() over-locked we grow the blocksize
792 		 * and then reduce the lock range.  This will only happen
793 		 * on the first iteration since zfs_range_reduce() will
794 		 * shrink down r_len to the appropriate size.
795 		 */
796 		if (rl->r_len == UINT64_MAX) {
797 			uint64_t new_blksz;
798 
799 			if (zp->z_blksz > max_blksz) {
800 				ASSERT(!ISP2(zp->z_blksz));
801 				new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
802 			} else {
803 				new_blksz = MIN(end_size, max_blksz);
804 			}
805 			zfs_grow_blocksize(zp, new_blksz, tx);
806 			zfs_range_reduce(rl, woff, n);
807 		}
808 
809 		/*
810 		 * XXX - should we really limit each write to z_max_blksz?
811 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
812 		 */
813 		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
814 
815 		if (abuf == NULL) {
816 			tx_bytes = uio->uio_resid;
817 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
818 			    uio, nbytes, tx);
819 			tx_bytes -= uio->uio_resid;
820 		} else {
821 			tx_bytes = nbytes;
822 			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
823 			/*
824 			 * If this is not a full block write, but we are
825 			 * extending the file past EOF and this data starts
826 			 * block-aligned, use assign_arcbuf().  Otherwise,
827 			 * write via dmu_write().
828 			 */
829 			if (tx_bytes < max_blksz && (!write_eof ||
830 			    aiov->iov_base != abuf->b_data)) {
831 				ASSERT(xuio);
832 				dmu_write(zfsvfs->z_os, zp->z_id, woff,
833 				    aiov->iov_len, aiov->iov_base, tx);
834 				dmu_return_arcbuf(abuf);
835 				xuio_stat_wbuf_copied();
836 			} else {
837 				ASSERT(xuio || tx_bytes == max_blksz);
838 				dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
839 				    woff, abuf, tx);
840 			}
841 			ASSERT(tx_bytes <= uio->uio_resid);
842 			uioskip(uio, tx_bytes);
843 		}
844 		if (tx_bytes && vn_has_cached_data(vp)) {
845 			update_pages(vp, woff,
846 			    tx_bytes, zfsvfs->z_os, zp->z_id);
847 		}
848 
849 		/*
850 		 * If we made no progress, we're done.  If we made even
851 		 * partial progress, update the znode and ZIL accordingly.
852 		 */
853 		if (tx_bytes == 0) {
854 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
855 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
856 			dmu_tx_commit(tx);
857 			ASSERT(error != 0);
858 			break;
859 		}
860 
861 		/*
862 		 * Clear Set-UID/Set-GID bits on successful write if not
863 		 * privileged and at least one of the excute bits is set.
864 		 *
865 		 * It would be nice to to this after all writes have
866 		 * been done, but that would still expose the ISUID/ISGID
867 		 * to another app after the partial write is committed.
868 		 *
869 		 * Note: we don't call zfs_fuid_map_id() here because
870 		 * user 0 is not an ephemeral uid.
871 		 */
872 		mutex_enter(&zp->z_acl_lock);
873 		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
874 		    (S_IXUSR >> 6))) != 0 &&
875 		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
876 		    secpolicy_vnode_setid_retain(cr,
877 		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
878 			uint64_t newmode;
879 			zp->z_mode &= ~(S_ISUID | S_ISGID);
880 			newmode = zp->z_mode;
881 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
882 			    (void *)&newmode, sizeof (uint64_t), tx);
883 		}
884 		mutex_exit(&zp->z_acl_lock);
885 
886 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
887 		    B_TRUE);
888 
889 		/*
890 		 * Update the file size (zp_size) if it has changed;
891 		 * account for possible concurrent updates.
892 		 */
893 		while ((end_size = zp->z_size) < uio->uio_loffset) {
894 			(void) atomic_cas_64(&zp->z_size, end_size,
895 			    uio->uio_loffset);
896 			ASSERT(error == 0);
897 		}
898 		/*
899 		 * If we are replaying and eof is non zero then force
900 		 * the file size to the specified eof. Note, there's no
901 		 * concurrency during replay.
902 		 */
903 		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
904 			zp->z_size = zfsvfs->z_replay_eof;
905 
906 		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
907 
908 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
909 		dmu_tx_commit(tx);
910 
911 		if (error != 0)
912 			break;
913 		ASSERT(tx_bytes == nbytes);
914 		n -= nbytes;
915 
916 		if (!xuio && n > 0)
917 			uio_prefaultpages(MIN(n, max_blksz), uio);
918 	}
919 
920 	zfs_range_unlock(rl);
921 
922 	/*
923 	 * If we're in replay mode, or we made no progress, return error.
924 	 * Otherwise, it's at least a partial write, so it's successful.
925 	 */
926 	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
927 		ZFS_EXIT(zfsvfs);
928 		return (error);
929 	}
930 
931 	if (ioflag & (FSYNC | FDSYNC) ||
932 	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
933 		zil_commit(zilog, zp->z_id);
934 
935 	ZFS_EXIT(zfsvfs);
936 	return (0);
937 }
938 
939 void
940 zfs_get_done(zgd_t *zgd, int error)
941 {
942 	znode_t *zp = zgd->zgd_private;
943 	objset_t *os = zp->z_zfsvfs->z_os;
944 
945 	if (zgd->zgd_db)
946 		dmu_buf_rele(zgd->zgd_db, zgd);
947 
948 	zfs_range_unlock(zgd->zgd_rl);
949 
950 	/*
951 	 * Release the vnode asynchronously as we currently have the
952 	 * txg stopped from syncing.
953 	 */
954 	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
955 
956 	if (error == 0 && zgd->zgd_bp)
957 		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
958 
959 	kmem_free(zgd, sizeof (zgd_t));
960 }
961 
962 #ifdef DEBUG
963 static int zil_fault_io = 0;
964 #endif
965 
966 /*
967  * Get data to generate a TX_WRITE intent log record.
968  */
969 int
970 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
971 {
972 	zfsvfs_t *zfsvfs = arg;
973 	objset_t *os = zfsvfs->z_os;
974 	znode_t *zp;
975 	uint64_t object = lr->lr_foid;
976 	uint64_t offset = lr->lr_offset;
977 	uint64_t size = lr->lr_length;
978 	blkptr_t *bp = &lr->lr_blkptr;
979 	dmu_buf_t *db;
980 	zgd_t *zgd;
981 	int error = 0;
982 
983 	ASSERT(zio != NULL);
984 	ASSERT(size != 0);
985 
986 	/*
987 	 * Nothing to do if the file has been removed
988 	 */
989 	if (zfs_zget(zfsvfs, object, &zp) != 0)
990 		return (ENOENT);
991 	if (zp->z_unlinked) {
992 		/*
993 		 * Release the vnode asynchronously as we currently have the
994 		 * txg stopped from syncing.
995 		 */
996 		VN_RELE_ASYNC(ZTOV(zp),
997 		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
998 		return (ENOENT);
999 	}
1000 
1001 	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1002 	zgd->zgd_zilog = zfsvfs->z_log;
1003 	zgd->zgd_private = zp;
1004 
1005 	/*
1006 	 * Write records come in two flavors: immediate and indirect.
1007 	 * For small writes it's cheaper to store the data with the
1008 	 * log record (immediate); for large writes it's cheaper to
1009 	 * sync the data and get a pointer to it (indirect) so that
1010 	 * we don't have to write the data twice.
1011 	 */
1012 	if (buf != NULL) { /* immediate write */
1013 		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1014 		/* test for truncation needs to be done while range locked */
1015 		if (offset >= zp->z_size) {
1016 			error = ENOENT;
1017 		} else {
1018 			error = dmu_read(os, object, offset, size, buf,
1019 			    DMU_READ_NO_PREFETCH);
1020 		}
1021 		ASSERT(error == 0 || error == ENOENT);
1022 	} else { /* indirect write */
1023 		/*
1024 		 * Have to lock the whole block to ensure when it's
1025 		 * written out and it's checksum is being calculated
1026 		 * that no one can change the data. We need to re-check
1027 		 * blocksize after we get the lock in case it's changed!
1028 		 */
1029 		for (;;) {
1030 			uint64_t blkoff;
1031 			size = zp->z_blksz;
1032 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1033 			offset -= blkoff;
1034 			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1035 			    RL_READER);
1036 			if (zp->z_blksz == size)
1037 				break;
1038 			offset += blkoff;
1039 			zfs_range_unlock(zgd->zgd_rl);
1040 		}
1041 		/* test for truncation needs to be done while range locked */
1042 		if (lr->lr_offset >= zp->z_size)
1043 			error = ENOENT;
1044 #ifdef DEBUG
1045 		if (zil_fault_io) {
1046 			error = EIO;
1047 			zil_fault_io = 0;
1048 		}
1049 #endif
1050 		if (error == 0)
1051 			error = dmu_buf_hold(os, object, offset, zgd, &db,
1052 			    DMU_READ_NO_PREFETCH);
1053 
1054 		if (error == 0) {
1055 			zgd->zgd_db = db;
1056 			zgd->zgd_bp = bp;
1057 
1058 			ASSERT(db->db_offset == offset);
1059 			ASSERT(db->db_size == size);
1060 
1061 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1062 			    zfs_get_done, zgd);
1063 			ASSERT(error || lr->lr_length <= zp->z_blksz);
1064 
1065 			/*
1066 			 * On success, we need to wait for the write I/O
1067 			 * initiated by dmu_sync() to complete before we can
1068 			 * release this dbuf.  We will finish everything up
1069 			 * in the zfs_get_done() callback.
1070 			 */
1071 			if (error == 0)
1072 				return (0);
1073 
1074 			if (error == EALREADY) {
1075 				lr->lr_common.lrc_txtype = TX_WRITE2;
1076 				error = 0;
1077 			}
1078 		}
1079 	}
1080 
1081 	zfs_get_done(zgd, error);
1082 
1083 	return (error);
1084 }
1085 
1086 /*ARGSUSED*/
1087 static int
1088 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1089     caller_context_t *ct)
1090 {
1091 	znode_t *zp = VTOZ(vp);
1092 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1093 	int error;
1094 
1095 	ZFS_ENTER(zfsvfs);
1096 	ZFS_VERIFY_ZP(zp);
1097 
1098 	if (flag & V_ACE_MASK)
1099 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1100 	else
1101 		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1102 
1103 	ZFS_EXIT(zfsvfs);
1104 	return (error);
1105 }
1106 
1107 /*
1108  * If vnode is for a device return a specfs vnode instead.
1109  */
1110 static int
1111 specvp_check(vnode_t **vpp, cred_t *cr)
1112 {
1113 	int error = 0;
1114 
1115 	if (IS_DEVVP(*vpp)) {
1116 		struct vnode *svp;
1117 
1118 		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1119 		VN_RELE(*vpp);
1120 		if (svp == NULL)
1121 			error = ENOSYS;
1122 		*vpp = svp;
1123 	}
1124 	return (error);
1125 }
1126 
1127 
1128 /*
1129  * Lookup an entry in a directory, or an extended attribute directory.
1130  * If it exists, return a held vnode reference for it.
1131  *
1132  *	IN:	dvp	- vnode of directory to search.
1133  *		nm	- name of entry to lookup.
1134  *		pnp	- full pathname to lookup [UNUSED].
1135  *		flags	- LOOKUP_XATTR set if looking for an attribute.
1136  *		rdir	- root directory vnode [UNUSED].
1137  *		cr	- credentials of caller.
1138  *		ct	- caller context
1139  *		direntflags - directory lookup flags
1140  *		realpnp - returned pathname.
1141  *
1142  *	OUT:	vpp	- vnode of located entry, NULL if not found.
1143  *
1144  *	RETURN:	0 if success
1145  *		error code if failure
1146  *
1147  * Timestamps:
1148  *	NA
1149  */
1150 /* ARGSUSED */
1151 static int
1152 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1153     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1154     int *direntflags, pathname_t *realpnp)
1155 {
1156 	znode_t *zdp = VTOZ(dvp);
1157 	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1158 	int	error = 0;
1159 
1160 	/* fast path */
1161 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1162 
1163 		if (dvp->v_type != VDIR) {
1164 			return (ENOTDIR);
1165 		} else if (zdp->z_sa_hdl == NULL) {
1166 			return (EIO);
1167 		}
1168 
1169 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1170 			error = zfs_fastaccesschk_execute(zdp, cr);
1171 			if (!error) {
1172 				*vpp = dvp;
1173 				VN_HOLD(*vpp);
1174 				return (0);
1175 			}
1176 			return (error);
1177 		} else {
1178 			vnode_t *tvp = dnlc_lookup(dvp, nm);
1179 
1180 			if (tvp) {
1181 				error = zfs_fastaccesschk_execute(zdp, cr);
1182 				if (error) {
1183 					VN_RELE(tvp);
1184 					return (error);
1185 				}
1186 				if (tvp == DNLC_NO_VNODE) {
1187 					VN_RELE(tvp);
1188 					return (ENOENT);
1189 				} else {
1190 					*vpp = tvp;
1191 					return (specvp_check(vpp, cr));
1192 				}
1193 			}
1194 		}
1195 	}
1196 
1197 	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1198 
1199 	ZFS_ENTER(zfsvfs);
1200 	ZFS_VERIFY_ZP(zdp);
1201 
1202 	*vpp = NULL;
1203 
1204 	if (flags & LOOKUP_XATTR) {
1205 		/*
1206 		 * If the xattr property is off, refuse the lookup request.
1207 		 */
1208 		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1209 			ZFS_EXIT(zfsvfs);
1210 			return (EINVAL);
1211 		}
1212 
1213 		/*
1214 		 * We don't allow recursive attributes..
1215 		 * Maybe someday we will.
1216 		 */
1217 		if (zdp->z_pflags & ZFS_XATTR) {
1218 			ZFS_EXIT(zfsvfs);
1219 			return (EINVAL);
1220 		}
1221 
1222 		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1223 			ZFS_EXIT(zfsvfs);
1224 			return (error);
1225 		}
1226 
1227 		/*
1228 		 * Do we have permission to get into attribute directory?
1229 		 */
1230 
1231 		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1232 		    B_FALSE, cr)) {
1233 			VN_RELE(*vpp);
1234 			*vpp = NULL;
1235 		}
1236 
1237 		ZFS_EXIT(zfsvfs);
1238 		return (error);
1239 	}
1240 
1241 	if (dvp->v_type != VDIR) {
1242 		ZFS_EXIT(zfsvfs);
1243 		return (ENOTDIR);
1244 	}
1245 
1246 	/*
1247 	 * Check accessibility of directory.
1248 	 */
1249 
1250 	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1251 		ZFS_EXIT(zfsvfs);
1252 		return (error);
1253 	}
1254 
1255 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1256 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1257 		ZFS_EXIT(zfsvfs);
1258 		return (EILSEQ);
1259 	}
1260 
1261 	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1262 	if (error == 0)
1263 		error = specvp_check(vpp, cr);
1264 
1265 	ZFS_EXIT(zfsvfs);
1266 	return (error);
1267 }
1268 
1269 /*
1270  * Attempt to create a new entry in a directory.  If the entry
1271  * already exists, truncate the file if permissible, else return
1272  * an error.  Return the vp of the created or trunc'd file.
1273  *
1274  *	IN:	dvp	- vnode of directory to put new file entry in.
1275  *		name	- name of new file entry.
1276  *		vap	- attributes of new file.
1277  *		excl	- flag indicating exclusive or non-exclusive mode.
1278  *		mode	- mode to open file with.
1279  *		cr	- credentials of caller.
1280  *		flag	- large file flag [UNUSED].
1281  *		ct	- caller context
1282  *		vsecp 	- ACL to be set
1283  *
1284  *	OUT:	vpp	- vnode of created or trunc'd entry.
1285  *
1286  *	RETURN:	0 if success
1287  *		error code if failure
1288  *
1289  * Timestamps:
1290  *	dvp - ctime|mtime updated if new entry created
1291  *	 vp - ctime|mtime always, atime if new
1292  */
1293 
1294 /* ARGSUSED */
1295 static int
1296 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1297     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1298     vsecattr_t *vsecp)
1299 {
1300 	znode_t		*zp, *dzp = VTOZ(dvp);
1301 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1302 	zilog_t		*zilog;
1303 	objset_t	*os;
1304 	zfs_dirlock_t	*dl;
1305 	dmu_tx_t	*tx;
1306 	int		error;
1307 	ksid_t		*ksid;
1308 	uid_t		uid;
1309 	gid_t		gid = crgetgid(cr);
1310 	zfs_acl_ids_t   acl_ids;
1311 	boolean_t	fuid_dirtied;
1312 	boolean_t	have_acl = B_FALSE;
1313 
1314 	/*
1315 	 * If we have an ephemeral id, ACL, or XVATTR then
1316 	 * make sure file system is at proper version
1317 	 */
1318 
1319 	ksid = crgetsid(cr, KSID_OWNER);
1320 	if (ksid)
1321 		uid = ksid_getid(ksid);
1322 	else
1323 		uid = crgetuid(cr);
1324 
1325 	if (zfsvfs->z_use_fuids == B_FALSE &&
1326 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1327 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1328 		return (EINVAL);
1329 
1330 	ZFS_ENTER(zfsvfs);
1331 	ZFS_VERIFY_ZP(dzp);
1332 	os = zfsvfs->z_os;
1333 	zilog = zfsvfs->z_log;
1334 
1335 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1336 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1337 		ZFS_EXIT(zfsvfs);
1338 		return (EILSEQ);
1339 	}
1340 
1341 	if (vap->va_mask & AT_XVATTR) {
1342 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1343 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1344 			ZFS_EXIT(zfsvfs);
1345 			return (error);
1346 		}
1347 	}
1348 top:
1349 	*vpp = NULL;
1350 
1351 	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1352 		vap->va_mode &= ~VSVTX;
1353 
1354 	if (*name == '\0') {
1355 		/*
1356 		 * Null component name refers to the directory itself.
1357 		 */
1358 		VN_HOLD(dvp);
1359 		zp = dzp;
1360 		dl = NULL;
1361 		error = 0;
1362 	} else {
1363 		/* possible VN_HOLD(zp) */
1364 		int zflg = 0;
1365 
1366 		if (flag & FIGNORECASE)
1367 			zflg |= ZCILOOK;
1368 
1369 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1370 		    NULL, NULL);
1371 		if (error) {
1372 			if (have_acl)
1373 				zfs_acl_ids_free(&acl_ids);
1374 			if (strcmp(name, "..") == 0)
1375 				error = EISDIR;
1376 			ZFS_EXIT(zfsvfs);
1377 			return (error);
1378 		}
1379 	}
1380 
1381 	if (zp == NULL) {
1382 		uint64_t txtype;
1383 
1384 		/*
1385 		 * Create a new file object and update the directory
1386 		 * to reference it.
1387 		 */
1388 		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1389 			if (have_acl)
1390 				zfs_acl_ids_free(&acl_ids);
1391 			goto out;
1392 		}
1393 
1394 		/*
1395 		 * We only support the creation of regular files in
1396 		 * extended attribute directories.
1397 		 */
1398 
1399 		if ((dzp->z_pflags & ZFS_XATTR) &&
1400 		    (vap->va_type != VREG)) {
1401 			if (have_acl)
1402 				zfs_acl_ids_free(&acl_ids);
1403 			error = EINVAL;
1404 			goto out;
1405 		}
1406 
1407 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1408 		    cr, vsecp, &acl_ids)) != 0)
1409 			goto out;
1410 		have_acl = B_TRUE;
1411 
1412 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1413 			zfs_acl_ids_free(&acl_ids);
1414 			error = EDQUOT;
1415 			goto out;
1416 		}
1417 
1418 		tx = dmu_tx_create(os);
1419 
1420 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1421 		    ZFS_SA_BASE_ATTR_SIZE);
1422 
1423 		fuid_dirtied = zfsvfs->z_fuid_dirty;
1424 		if (fuid_dirtied)
1425 			zfs_fuid_txhold(zfsvfs, tx);
1426 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1427 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1428 		if (!zfsvfs->z_use_sa &&
1429 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1430 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1431 			    0, acl_ids.z_aclp->z_acl_bytes);
1432 		}
1433 		error = dmu_tx_assign(tx, TXG_NOWAIT);
1434 		if (error) {
1435 			zfs_dirent_unlock(dl);
1436 			if (error == ERESTART) {
1437 				dmu_tx_wait(tx);
1438 				dmu_tx_abort(tx);
1439 				goto top;
1440 			}
1441 			zfs_acl_ids_free(&acl_ids);
1442 			dmu_tx_abort(tx);
1443 			ZFS_EXIT(zfsvfs);
1444 			return (error);
1445 		}
1446 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1447 
1448 		if (fuid_dirtied)
1449 			zfs_fuid_sync(zfsvfs, tx);
1450 
1451 		(void) zfs_link_create(dl, zp, tx, ZNEW);
1452 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1453 		if (flag & FIGNORECASE)
1454 			txtype |= TX_CI;
1455 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1456 		    vsecp, acl_ids.z_fuidp, vap);
1457 		zfs_acl_ids_free(&acl_ids);
1458 		dmu_tx_commit(tx);
1459 	} else {
1460 		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1461 
1462 		if (have_acl)
1463 			zfs_acl_ids_free(&acl_ids);
1464 		have_acl = B_FALSE;
1465 
1466 		/*
1467 		 * A directory entry already exists for this name.
1468 		 */
1469 		/*
1470 		 * Can't truncate an existing file if in exclusive mode.
1471 		 */
1472 		if (excl == EXCL) {
1473 			error = EEXIST;
1474 			goto out;
1475 		}
1476 		/*
1477 		 * Can't open a directory for writing.
1478 		 */
1479 		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1480 			error = EISDIR;
1481 			goto out;
1482 		}
1483 		/*
1484 		 * Verify requested access to file.
1485 		 */
1486 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1487 			goto out;
1488 		}
1489 
1490 		mutex_enter(&dzp->z_lock);
1491 		dzp->z_seq++;
1492 		mutex_exit(&dzp->z_lock);
1493 
1494 		/*
1495 		 * Truncate regular files if requested.
1496 		 */
1497 		if ((ZTOV(zp)->v_type == VREG) &&
1498 		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1499 			/* we can't hold any locks when calling zfs_freesp() */
1500 			zfs_dirent_unlock(dl);
1501 			dl = NULL;
1502 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1503 			if (error == 0) {
1504 				vnevent_create(ZTOV(zp), ct);
1505 			}
1506 		}
1507 	}
1508 out:
1509 
1510 	if (dl)
1511 		zfs_dirent_unlock(dl);
1512 
1513 	if (error) {
1514 		if (zp)
1515 			VN_RELE(ZTOV(zp));
1516 	} else {
1517 		*vpp = ZTOV(zp);
1518 		error = specvp_check(vpp, cr);
1519 	}
1520 
1521 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1522 		zil_commit(zilog, 0);
1523 
1524 	ZFS_EXIT(zfsvfs);
1525 	return (error);
1526 }
1527 
1528 /*
1529  * Remove an entry from a directory.
1530  *
1531  *	IN:	dvp	- vnode of directory to remove entry from.
1532  *		name	- name of entry to remove.
1533  *		cr	- credentials of caller.
1534  *		ct	- caller context
1535  *		flags	- case flags
1536  *
1537  *	RETURN:	0 if success
1538  *		error code if failure
1539  *
1540  * Timestamps:
1541  *	dvp - ctime|mtime
1542  *	 vp - ctime (if nlink > 0)
1543  */
1544 
1545 uint64_t null_xattr = 0;
1546 
1547 /*ARGSUSED*/
1548 static int
1549 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1550     int flags)
1551 {
1552 	znode_t		*zp, *dzp = VTOZ(dvp);
1553 	znode_t		*xzp;
1554 	vnode_t		*vp;
1555 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1556 	zilog_t		*zilog;
1557 	uint64_t	acl_obj, xattr_obj;
1558 	uint64_t 	xattr_obj_unlinked = 0;
1559 	uint64_t	obj = 0;
1560 	zfs_dirlock_t	*dl;
1561 	dmu_tx_t	*tx;
1562 	boolean_t	may_delete_now, delete_now = FALSE;
1563 	boolean_t	unlinked, toobig = FALSE;
1564 	uint64_t	txtype;
1565 	pathname_t	*realnmp = NULL;
1566 	pathname_t	realnm;
1567 	int		error;
1568 	int		zflg = ZEXISTS;
1569 
1570 	ZFS_ENTER(zfsvfs);
1571 	ZFS_VERIFY_ZP(dzp);
1572 	zilog = zfsvfs->z_log;
1573 
1574 	if (flags & FIGNORECASE) {
1575 		zflg |= ZCILOOK;
1576 		pn_alloc(&realnm);
1577 		realnmp = &realnm;
1578 	}
1579 
1580 top:
1581 	xattr_obj = 0;
1582 	xzp = NULL;
1583 	/*
1584 	 * Attempt to lock directory; fail if entry doesn't exist.
1585 	 */
1586 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1587 	    NULL, realnmp)) {
1588 		if (realnmp)
1589 			pn_free(realnmp);
1590 		ZFS_EXIT(zfsvfs);
1591 		return (error);
1592 	}
1593 
1594 	vp = ZTOV(zp);
1595 
1596 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1597 		goto out;
1598 	}
1599 
1600 	/*
1601 	 * Need to use rmdir for removing directories.
1602 	 */
1603 	if (vp->v_type == VDIR) {
1604 		error = EPERM;
1605 		goto out;
1606 	}
1607 
1608 	vnevent_remove(vp, dvp, name, ct);
1609 
1610 	if (realnmp)
1611 		dnlc_remove(dvp, realnmp->pn_buf);
1612 	else
1613 		dnlc_remove(dvp, name);
1614 
1615 	mutex_enter(&vp->v_lock);
1616 	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1617 	mutex_exit(&vp->v_lock);
1618 
1619 	/*
1620 	 * We may delete the znode now, or we may put it in the unlinked set;
1621 	 * it depends on whether we're the last link, and on whether there are
1622 	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1623 	 * allow for either case.
1624 	 */
1625 	obj = zp->z_id;
1626 	tx = dmu_tx_create(zfsvfs->z_os);
1627 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1628 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1629 	zfs_sa_upgrade_txholds(tx, zp);
1630 	zfs_sa_upgrade_txholds(tx, dzp);
1631 	if (may_delete_now) {
1632 		toobig =
1633 		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1634 		/* if the file is too big, only hold_free a token amount */
1635 		dmu_tx_hold_free(tx, zp->z_id, 0,
1636 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1637 	}
1638 
1639 	/* are there any extended attributes? */
1640 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1641 	    &xattr_obj, sizeof (xattr_obj));
1642 	if (error == 0 && xattr_obj) {
1643 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1644 		ASSERT3U(error, ==, 0);
1645 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1646 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1647 	}
1648 
1649 	mutex_enter(&zp->z_lock);
1650 	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1651 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1652 	mutex_exit(&zp->z_lock);
1653 
1654 	/* charge as an update -- would be nice not to charge at all */
1655 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1656 
1657 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1658 	if (error) {
1659 		zfs_dirent_unlock(dl);
1660 		VN_RELE(vp);
1661 		if (xzp)
1662 			VN_RELE(ZTOV(xzp));
1663 		if (error == ERESTART) {
1664 			dmu_tx_wait(tx);
1665 			dmu_tx_abort(tx);
1666 			goto top;
1667 		}
1668 		if (realnmp)
1669 			pn_free(realnmp);
1670 		dmu_tx_abort(tx);
1671 		ZFS_EXIT(zfsvfs);
1672 		return (error);
1673 	}
1674 
1675 	/*
1676 	 * Remove the directory entry.
1677 	 */
1678 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1679 
1680 	if (error) {
1681 		dmu_tx_commit(tx);
1682 		goto out;
1683 	}
1684 
1685 	if (unlinked) {
1686 
1687 		/*
1688 		 * Hold z_lock so that we can make sure that the ACL obj
1689 		 * hasn't changed.  Could have been deleted due to
1690 		 * zfs_sa_upgrade().
1691 		 */
1692 		mutex_enter(&zp->z_lock);
1693 		mutex_enter(&vp->v_lock);
1694 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1695 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1696 		delete_now = may_delete_now && !toobig &&
1697 		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1698 		    xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1699 		    acl_obj;
1700 		mutex_exit(&vp->v_lock);
1701 	}
1702 
1703 	if (delete_now) {
1704 		if (xattr_obj_unlinked) {
1705 			ASSERT3U(xzp->z_links, ==, 2);
1706 			mutex_enter(&xzp->z_lock);
1707 			xzp->z_unlinked = 1;
1708 			xzp->z_links = 0;
1709 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1710 			    &xzp->z_links, sizeof (xzp->z_links), tx);
1711 			ASSERT3U(error,  ==,  0);
1712 			mutex_exit(&xzp->z_lock);
1713 			zfs_unlinked_add(xzp, tx);
1714 
1715 			if (zp->z_is_sa)
1716 				error = sa_remove(zp->z_sa_hdl,
1717 				    SA_ZPL_XATTR(zfsvfs), tx);
1718 			else
1719 				error = sa_update(zp->z_sa_hdl,
1720 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1721 				    sizeof (uint64_t), tx);
1722 			ASSERT3U(error, ==, 0);
1723 		}
1724 		mutex_enter(&vp->v_lock);
1725 		vp->v_count--;
1726 		ASSERT3U(vp->v_count, ==, 0);
1727 		mutex_exit(&vp->v_lock);
1728 		mutex_exit(&zp->z_lock);
1729 		zfs_znode_delete(zp, tx);
1730 	} else if (unlinked) {
1731 		mutex_exit(&zp->z_lock);
1732 		zfs_unlinked_add(zp, tx);
1733 	}
1734 
1735 	txtype = TX_REMOVE;
1736 	if (flags & FIGNORECASE)
1737 		txtype |= TX_CI;
1738 	zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1739 
1740 	dmu_tx_commit(tx);
1741 out:
1742 	if (realnmp)
1743 		pn_free(realnmp);
1744 
1745 	zfs_dirent_unlock(dl);
1746 
1747 	if (!delete_now)
1748 		VN_RELE(vp);
1749 	if (xzp)
1750 		VN_RELE(ZTOV(xzp));
1751 
1752 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1753 		zil_commit(zilog, 0);
1754 
1755 	ZFS_EXIT(zfsvfs);
1756 	return (error);
1757 }
1758 
1759 /*
1760  * Create a new directory and insert it into dvp using the name
1761  * provided.  Return a pointer to the inserted directory.
1762  *
1763  *	IN:	dvp	- vnode of directory to add subdir to.
1764  *		dirname	- name of new directory.
1765  *		vap	- attributes of new directory.
1766  *		cr	- credentials of caller.
1767  *		ct	- caller context
1768  *		vsecp	- ACL to be set
1769  *
1770  *	OUT:	vpp	- vnode of created directory.
1771  *
1772  *	RETURN:	0 if success
1773  *		error code if failure
1774  *
1775  * Timestamps:
1776  *	dvp - ctime|mtime updated
1777  *	 vp - ctime|mtime|atime updated
1778  */
1779 /*ARGSUSED*/
1780 static int
1781 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1782     caller_context_t *ct, int flags, vsecattr_t *vsecp)
1783 {
1784 	znode_t		*zp, *dzp = VTOZ(dvp);
1785 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1786 	zilog_t		*zilog;
1787 	zfs_dirlock_t	*dl;
1788 	uint64_t	txtype;
1789 	dmu_tx_t	*tx;
1790 	int		error;
1791 	int		zf = ZNEW;
1792 	ksid_t		*ksid;
1793 	uid_t		uid;
1794 	gid_t		gid = crgetgid(cr);
1795 	zfs_acl_ids_t   acl_ids;
1796 	boolean_t	fuid_dirtied;
1797 
1798 	ASSERT(vap->va_type == VDIR);
1799 
1800 	/*
1801 	 * If we have an ephemeral id, ACL, or XVATTR then
1802 	 * make sure file system is at proper version
1803 	 */
1804 
1805 	ksid = crgetsid(cr, KSID_OWNER);
1806 	if (ksid)
1807 		uid = ksid_getid(ksid);
1808 	else
1809 		uid = crgetuid(cr);
1810 	if (zfsvfs->z_use_fuids == B_FALSE &&
1811 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1812 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1813 		return (EINVAL);
1814 
1815 	ZFS_ENTER(zfsvfs);
1816 	ZFS_VERIFY_ZP(dzp);
1817 	zilog = zfsvfs->z_log;
1818 
1819 	if (dzp->z_pflags & ZFS_XATTR) {
1820 		ZFS_EXIT(zfsvfs);
1821 		return (EINVAL);
1822 	}
1823 
1824 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1825 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1826 		ZFS_EXIT(zfsvfs);
1827 		return (EILSEQ);
1828 	}
1829 	if (flags & FIGNORECASE)
1830 		zf |= ZCILOOK;
1831 
1832 	if (vap->va_mask & AT_XVATTR) {
1833 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1834 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1835 			ZFS_EXIT(zfsvfs);
1836 			return (error);
1837 		}
1838 	}
1839 
1840 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1841 	    vsecp, &acl_ids)) != 0) {
1842 		ZFS_EXIT(zfsvfs);
1843 		return (error);
1844 	}
1845 	/*
1846 	 * First make sure the new directory doesn't exist.
1847 	 *
1848 	 * Existence is checked first to make sure we don't return
1849 	 * EACCES instead of EEXIST which can cause some applications
1850 	 * to fail.
1851 	 */
1852 top:
1853 	*vpp = NULL;
1854 
1855 	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1856 	    NULL, NULL)) {
1857 		zfs_acl_ids_free(&acl_ids);
1858 		ZFS_EXIT(zfsvfs);
1859 		return (error);
1860 	}
1861 
1862 	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1863 		zfs_acl_ids_free(&acl_ids);
1864 		zfs_dirent_unlock(dl);
1865 		ZFS_EXIT(zfsvfs);
1866 		return (error);
1867 	}
1868 
1869 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1870 		zfs_acl_ids_free(&acl_ids);
1871 		zfs_dirent_unlock(dl);
1872 		ZFS_EXIT(zfsvfs);
1873 		return (EDQUOT);
1874 	}
1875 
1876 	/*
1877 	 * Add a new entry to the directory.
1878 	 */
1879 	tx = dmu_tx_create(zfsvfs->z_os);
1880 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1881 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1882 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1883 	if (fuid_dirtied)
1884 		zfs_fuid_txhold(zfsvfs, tx);
1885 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1886 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1887 		    acl_ids.z_aclp->z_acl_bytes);
1888 	}
1889 
1890 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1891 	    ZFS_SA_BASE_ATTR_SIZE);
1892 
1893 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1894 	if (error) {
1895 		zfs_dirent_unlock(dl);
1896 		if (error == ERESTART) {
1897 			dmu_tx_wait(tx);
1898 			dmu_tx_abort(tx);
1899 			goto top;
1900 		}
1901 		zfs_acl_ids_free(&acl_ids);
1902 		dmu_tx_abort(tx);
1903 		ZFS_EXIT(zfsvfs);
1904 		return (error);
1905 	}
1906 
1907 	/*
1908 	 * Create new node.
1909 	 */
1910 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1911 
1912 	if (fuid_dirtied)
1913 		zfs_fuid_sync(zfsvfs, tx);
1914 
1915 	/*
1916 	 * Now put new name in parent dir.
1917 	 */
1918 	(void) zfs_link_create(dl, zp, tx, ZNEW);
1919 
1920 	*vpp = ZTOV(zp);
1921 
1922 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1923 	if (flags & FIGNORECASE)
1924 		txtype |= TX_CI;
1925 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1926 	    acl_ids.z_fuidp, vap);
1927 
1928 	zfs_acl_ids_free(&acl_ids);
1929 
1930 	dmu_tx_commit(tx);
1931 
1932 	zfs_dirent_unlock(dl);
1933 
1934 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1935 		zil_commit(zilog, 0);
1936 
1937 	ZFS_EXIT(zfsvfs);
1938 	return (0);
1939 }
1940 
1941 /*
1942  * Remove a directory subdir entry.  If the current working
1943  * directory is the same as the subdir to be removed, the
1944  * remove will fail.
1945  *
1946  *	IN:	dvp	- vnode of directory to remove from.
1947  *		name	- name of directory to be removed.
1948  *		cwd	- vnode of current working directory.
1949  *		cr	- credentials of caller.
1950  *		ct	- caller context
1951  *		flags	- case flags
1952  *
1953  *	RETURN:	0 if success
1954  *		error code if failure
1955  *
1956  * Timestamps:
1957  *	dvp - ctime|mtime updated
1958  */
1959 /*ARGSUSED*/
1960 static int
1961 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
1962     caller_context_t *ct, int flags)
1963 {
1964 	znode_t		*dzp = VTOZ(dvp);
1965 	znode_t		*zp;
1966 	vnode_t		*vp;
1967 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1968 	zilog_t		*zilog;
1969 	zfs_dirlock_t	*dl;
1970 	dmu_tx_t	*tx;
1971 	int		error;
1972 	int		zflg = ZEXISTS;
1973 
1974 	ZFS_ENTER(zfsvfs);
1975 	ZFS_VERIFY_ZP(dzp);
1976 	zilog = zfsvfs->z_log;
1977 
1978 	if (flags & FIGNORECASE)
1979 		zflg |= ZCILOOK;
1980 top:
1981 	zp = NULL;
1982 
1983 	/*
1984 	 * Attempt to lock directory; fail if entry doesn't exist.
1985 	 */
1986 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1987 	    NULL, NULL)) {
1988 		ZFS_EXIT(zfsvfs);
1989 		return (error);
1990 	}
1991 
1992 	vp = ZTOV(zp);
1993 
1994 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1995 		goto out;
1996 	}
1997 
1998 	if (vp->v_type != VDIR) {
1999 		error = ENOTDIR;
2000 		goto out;
2001 	}
2002 
2003 	if (vp == cwd) {
2004 		error = EINVAL;
2005 		goto out;
2006 	}
2007 
2008 	vnevent_rmdir(vp, dvp, name, ct);
2009 
2010 	/*
2011 	 * Grab a lock on the directory to make sure that noone is
2012 	 * trying to add (or lookup) entries while we are removing it.
2013 	 */
2014 	rw_enter(&zp->z_name_lock, RW_WRITER);
2015 
2016 	/*
2017 	 * Grab a lock on the parent pointer to make sure we play well
2018 	 * with the treewalk and directory rename code.
2019 	 */
2020 	rw_enter(&zp->z_parent_lock, RW_WRITER);
2021 
2022 	tx = dmu_tx_create(zfsvfs->z_os);
2023 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2024 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2025 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2026 	zfs_sa_upgrade_txholds(tx, zp);
2027 	zfs_sa_upgrade_txholds(tx, dzp);
2028 	error = dmu_tx_assign(tx, TXG_NOWAIT);
2029 	if (error) {
2030 		rw_exit(&zp->z_parent_lock);
2031 		rw_exit(&zp->z_name_lock);
2032 		zfs_dirent_unlock(dl);
2033 		VN_RELE(vp);
2034 		if (error == ERESTART) {
2035 			dmu_tx_wait(tx);
2036 			dmu_tx_abort(tx);
2037 			goto top;
2038 		}
2039 		dmu_tx_abort(tx);
2040 		ZFS_EXIT(zfsvfs);
2041 		return (error);
2042 	}
2043 
2044 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2045 
2046 	if (error == 0) {
2047 		uint64_t txtype = TX_RMDIR;
2048 		if (flags & FIGNORECASE)
2049 			txtype |= TX_CI;
2050 		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2051 	}
2052 
2053 	dmu_tx_commit(tx);
2054 
2055 	rw_exit(&zp->z_parent_lock);
2056 	rw_exit(&zp->z_name_lock);
2057 out:
2058 	zfs_dirent_unlock(dl);
2059 
2060 	VN_RELE(vp);
2061 
2062 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2063 		zil_commit(zilog, 0);
2064 
2065 	ZFS_EXIT(zfsvfs);
2066 	return (error);
2067 }
2068 
2069 /*
2070  * Read as many directory entries as will fit into the provided
2071  * buffer from the given directory cursor position (specified in
2072  * the uio structure.
2073  *
2074  *	IN:	vp	- vnode of directory to read.
2075  *		uio	- structure supplying read location, range info,
2076  *			  and return buffer.
2077  *		cr	- credentials of caller.
2078  *		ct	- caller context
2079  *		flags	- case flags
2080  *
2081  *	OUT:	uio	- updated offset and range, buffer filled.
2082  *		eofp	- set to true if end-of-file detected.
2083  *
2084  *	RETURN:	0 if success
2085  *		error code if failure
2086  *
2087  * Timestamps:
2088  *	vp - atime updated
2089  *
2090  * Note that the low 4 bits of the cookie returned by zap is always zero.
2091  * This allows us to use the low range for "special" directory entries:
2092  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2093  * we use the offset 2 for the '.zfs' directory.
2094  */
2095 /* ARGSUSED */
2096 static int
2097 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2098     caller_context_t *ct, int flags)
2099 {
2100 	znode_t		*zp = VTOZ(vp);
2101 	iovec_t		*iovp;
2102 	edirent_t	*eodp;
2103 	dirent64_t	*odp;
2104 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2105 	objset_t	*os;
2106 	caddr_t		outbuf;
2107 	size_t		bufsize;
2108 	zap_cursor_t	zc;
2109 	zap_attribute_t	zap;
2110 	uint_t		bytes_wanted;
2111 	uint64_t	offset; /* must be unsigned; checks for < 1 */
2112 	uint64_t	parent;
2113 	int		local_eof;
2114 	int		outcount;
2115 	int		error;
2116 	uint8_t		prefetch;
2117 	boolean_t	check_sysattrs;
2118 
2119 	ZFS_ENTER(zfsvfs);
2120 	ZFS_VERIFY_ZP(zp);
2121 
2122 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2123 	    &parent, sizeof (parent))) != 0) {
2124 		ZFS_EXIT(zfsvfs);
2125 		return (error);
2126 	}
2127 
2128 	/*
2129 	 * If we are not given an eof variable,
2130 	 * use a local one.
2131 	 */
2132 	if (eofp == NULL)
2133 		eofp = &local_eof;
2134 
2135 	/*
2136 	 * Check for valid iov_len.
2137 	 */
2138 	if (uio->uio_iov->iov_len <= 0) {
2139 		ZFS_EXIT(zfsvfs);
2140 		return (EINVAL);
2141 	}
2142 
2143 	/*
2144 	 * Quit if directory has been removed (posix)
2145 	 */
2146 	if ((*eofp = zp->z_unlinked) != 0) {
2147 		ZFS_EXIT(zfsvfs);
2148 		return (0);
2149 	}
2150 
2151 	error = 0;
2152 	os = zfsvfs->z_os;
2153 	offset = uio->uio_loffset;
2154 	prefetch = zp->z_zn_prefetch;
2155 
2156 	/*
2157 	 * Initialize the iterator cursor.
2158 	 */
2159 	if (offset <= 3) {
2160 		/*
2161 		 * Start iteration from the beginning of the directory.
2162 		 */
2163 		zap_cursor_init(&zc, os, zp->z_id);
2164 	} else {
2165 		/*
2166 		 * The offset is a serialized cursor.
2167 		 */
2168 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2169 	}
2170 
2171 	/*
2172 	 * Get space to change directory entries into fs independent format.
2173 	 */
2174 	iovp = uio->uio_iov;
2175 	bytes_wanted = iovp->iov_len;
2176 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2177 		bufsize = bytes_wanted;
2178 		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2179 		odp = (struct dirent64 *)outbuf;
2180 	} else {
2181 		bufsize = bytes_wanted;
2182 		odp = (struct dirent64 *)iovp->iov_base;
2183 	}
2184 	eodp = (struct edirent *)odp;
2185 
2186 	/*
2187 	 * If this VFS supports the system attribute view interface; and
2188 	 * we're looking at an extended attribute directory; and we care
2189 	 * about normalization conflicts on this vfs; then we must check
2190 	 * for normalization conflicts with the sysattr name space.
2191 	 */
2192 	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2193 	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2194 	    (flags & V_RDDIR_ENTFLAGS);
2195 
2196 	/*
2197 	 * Transform to file-system independent format
2198 	 */
2199 	outcount = 0;
2200 	while (outcount < bytes_wanted) {
2201 		ino64_t objnum;
2202 		ushort_t reclen;
2203 		off64_t *next = NULL;
2204 
2205 		/*
2206 		 * Special case `.', `..', and `.zfs'.
2207 		 */
2208 		if (offset == 0) {
2209 			(void) strcpy(zap.za_name, ".");
2210 			zap.za_normalization_conflict = 0;
2211 			objnum = zp->z_id;
2212 		} else if (offset == 1) {
2213 			(void) strcpy(zap.za_name, "..");
2214 			zap.za_normalization_conflict = 0;
2215 			objnum = parent;
2216 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2217 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2218 			zap.za_normalization_conflict = 0;
2219 			objnum = ZFSCTL_INO_ROOT;
2220 		} else {
2221 			/*
2222 			 * Grab next entry.
2223 			 */
2224 			if (error = zap_cursor_retrieve(&zc, &zap)) {
2225 				if ((*eofp = (error == ENOENT)) != 0)
2226 					break;
2227 				else
2228 					goto update;
2229 			}
2230 
2231 			if (zap.za_integer_length != 8 ||
2232 			    zap.za_num_integers != 1) {
2233 				cmn_err(CE_WARN, "zap_readdir: bad directory "
2234 				    "entry, obj = %lld, offset = %lld\n",
2235 				    (u_longlong_t)zp->z_id,
2236 				    (u_longlong_t)offset);
2237 				error = ENXIO;
2238 				goto update;
2239 			}
2240 
2241 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2242 			/*
2243 			 * MacOS X can extract the object type here such as:
2244 			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2245 			 */
2246 
2247 			if (check_sysattrs && !zap.za_normalization_conflict) {
2248 				zap.za_normalization_conflict =
2249 				    xattr_sysattr_casechk(zap.za_name);
2250 			}
2251 		}
2252 
2253 		if (flags & V_RDDIR_ACCFILTER) {
2254 			/*
2255 			 * If we have no access at all, don't include
2256 			 * this entry in the returned information
2257 			 */
2258 			znode_t	*ezp;
2259 			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2260 				goto skip_entry;
2261 			if (!zfs_has_access(ezp, cr)) {
2262 				VN_RELE(ZTOV(ezp));
2263 				goto skip_entry;
2264 			}
2265 			VN_RELE(ZTOV(ezp));
2266 		}
2267 
2268 		if (flags & V_RDDIR_ENTFLAGS)
2269 			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2270 		else
2271 			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2272 
2273 		/*
2274 		 * Will this entry fit in the buffer?
2275 		 */
2276 		if (outcount + reclen > bufsize) {
2277 			/*
2278 			 * Did we manage to fit anything in the buffer?
2279 			 */
2280 			if (!outcount) {
2281 				error = EINVAL;
2282 				goto update;
2283 			}
2284 			break;
2285 		}
2286 		if (flags & V_RDDIR_ENTFLAGS) {
2287 			/*
2288 			 * Add extended flag entry:
2289 			 */
2290 			eodp->ed_ino = objnum;
2291 			eodp->ed_reclen = reclen;
2292 			/* NOTE: ed_off is the offset for the *next* entry */
2293 			next = &(eodp->ed_off);
2294 			eodp->ed_eflags = zap.za_normalization_conflict ?
2295 			    ED_CASE_CONFLICT : 0;
2296 			(void) strncpy(eodp->ed_name, zap.za_name,
2297 			    EDIRENT_NAMELEN(reclen));
2298 			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2299 		} else {
2300 			/*
2301 			 * Add normal entry:
2302 			 */
2303 			odp->d_ino = objnum;
2304 			odp->d_reclen = reclen;
2305 			/* NOTE: d_off is the offset for the *next* entry */
2306 			next = &(odp->d_off);
2307 			(void) strncpy(odp->d_name, zap.za_name,
2308 			    DIRENT64_NAMELEN(reclen));
2309 			odp = (dirent64_t *)((intptr_t)odp + reclen);
2310 		}
2311 		outcount += reclen;
2312 
2313 		ASSERT(outcount <= bufsize);
2314 
2315 		/* Prefetch znode */
2316 		if (prefetch)
2317 			dmu_prefetch(os, objnum, 0, 0);
2318 
2319 	skip_entry:
2320 		/*
2321 		 * Move to the next entry, fill in the previous offset.
2322 		 */
2323 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2324 			zap_cursor_advance(&zc);
2325 			offset = zap_cursor_serialize(&zc);
2326 		} else {
2327 			offset += 1;
2328 		}
2329 		if (next)
2330 			*next = offset;
2331 	}
2332 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2333 
2334 	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2335 		iovp->iov_base += outcount;
2336 		iovp->iov_len -= outcount;
2337 		uio->uio_resid -= outcount;
2338 	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2339 		/*
2340 		 * Reset the pointer.
2341 		 */
2342 		offset = uio->uio_loffset;
2343 	}
2344 
2345 update:
2346 	zap_cursor_fini(&zc);
2347 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2348 		kmem_free(outbuf, bufsize);
2349 
2350 	if (error == ENOENT)
2351 		error = 0;
2352 
2353 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2354 
2355 	uio->uio_loffset = offset;
2356 	ZFS_EXIT(zfsvfs);
2357 	return (error);
2358 }
2359 
2360 ulong_t zfs_fsync_sync_cnt = 4;
2361 
2362 static int
2363 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2364 {
2365 	znode_t	*zp = VTOZ(vp);
2366 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2367 
2368 	/*
2369 	 * Regardless of whether this is required for standards conformance,
2370 	 * this is the logical behavior when fsync() is called on a file with
2371 	 * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2372 	 * going to be pushed out as part of the zil_commit().
2373 	 */
2374 	if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2375 	    (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2376 		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2377 
2378 	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2379 
2380 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2381 		ZFS_ENTER(zfsvfs);
2382 		ZFS_VERIFY_ZP(zp);
2383 		zil_commit(zfsvfs->z_log, zp->z_id);
2384 		ZFS_EXIT(zfsvfs);
2385 	}
2386 	return (0);
2387 }
2388 
2389 
2390 /*
2391  * Get the requested file attributes and place them in the provided
2392  * vattr structure.
2393  *
2394  *	IN:	vp	- vnode of file.
2395  *		vap	- va_mask identifies requested attributes.
2396  *			  If AT_XVATTR set, then optional attrs are requested
2397  *		flags	- ATTR_NOACLCHECK (CIFS server context)
2398  *		cr	- credentials of caller.
2399  *		ct	- caller context
2400  *
2401  *	OUT:	vap	- attribute values.
2402  *
2403  *	RETURN:	0 (always succeeds)
2404  */
2405 /* ARGSUSED */
2406 static int
2407 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2408     caller_context_t *ct)
2409 {
2410 	znode_t *zp = VTOZ(vp);
2411 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2412 	int	error = 0;
2413 	uint64_t links;
2414 	uint64_t mtime[2], ctime[2];
2415 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2416 	xoptattr_t *xoap = NULL;
2417 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2418 	sa_bulk_attr_t bulk[2];
2419 	int count = 0;
2420 
2421 	ZFS_ENTER(zfsvfs);
2422 	ZFS_VERIFY_ZP(zp);
2423 
2424 	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2425 
2426 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2427 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2428 
2429 	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2430 		ZFS_EXIT(zfsvfs);
2431 		return (error);
2432 	}
2433 
2434 	/*
2435 	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2436 	 * Also, if we are the owner don't bother, since owner should
2437 	 * always be allowed to read basic attributes of file.
2438 	 */
2439 	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2440 	    (vap->va_uid != crgetuid(cr))) {
2441 		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2442 		    skipaclchk, cr)) {
2443 			ZFS_EXIT(zfsvfs);
2444 			return (error);
2445 		}
2446 	}
2447 
2448 	/*
2449 	 * Return all attributes.  It's cheaper to provide the answer
2450 	 * than to determine whether we were asked the question.
2451 	 */
2452 
2453 	mutex_enter(&zp->z_lock);
2454 	vap->va_type = vp->v_type;
2455 	vap->va_mode = zp->z_mode & MODEMASK;
2456 	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2457 	vap->va_nodeid = zp->z_id;
2458 	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2459 		links = zp->z_links + 1;
2460 	else
2461 		links = zp->z_links;
2462 	vap->va_nlink = MIN(links, UINT32_MAX);	/* nlink_t limit! */
2463 	vap->va_size = zp->z_size;
2464 	vap->va_rdev = vp->v_rdev;
2465 	vap->va_seq = zp->z_seq;
2466 
2467 	/*
2468 	 * Add in any requested optional attributes and the create time.
2469 	 * Also set the corresponding bits in the returned attribute bitmap.
2470 	 */
2471 	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2472 		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2473 			xoap->xoa_archive =
2474 			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2475 			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2476 		}
2477 
2478 		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2479 			xoap->xoa_readonly =
2480 			    ((zp->z_pflags & ZFS_READONLY) != 0);
2481 			XVA_SET_RTN(xvap, XAT_READONLY);
2482 		}
2483 
2484 		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2485 			xoap->xoa_system =
2486 			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2487 			XVA_SET_RTN(xvap, XAT_SYSTEM);
2488 		}
2489 
2490 		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2491 			xoap->xoa_hidden =
2492 			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2493 			XVA_SET_RTN(xvap, XAT_HIDDEN);
2494 		}
2495 
2496 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2497 			xoap->xoa_nounlink =
2498 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2499 			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2500 		}
2501 
2502 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2503 			xoap->xoa_immutable =
2504 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2505 			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2506 		}
2507 
2508 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2509 			xoap->xoa_appendonly =
2510 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2511 			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2512 		}
2513 
2514 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2515 			xoap->xoa_nodump =
2516 			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2517 			XVA_SET_RTN(xvap, XAT_NODUMP);
2518 		}
2519 
2520 		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2521 			xoap->xoa_opaque =
2522 			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2523 			XVA_SET_RTN(xvap, XAT_OPAQUE);
2524 		}
2525 
2526 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2527 			xoap->xoa_av_quarantined =
2528 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2529 			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2530 		}
2531 
2532 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2533 			xoap->xoa_av_modified =
2534 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2535 			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2536 		}
2537 
2538 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2539 		    vp->v_type == VREG) {
2540 			zfs_sa_get_scanstamp(zp, xvap);
2541 		}
2542 
2543 		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2544 			uint64_t times[2];
2545 
2546 			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2547 			    times, sizeof (times));
2548 			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2549 			XVA_SET_RTN(xvap, XAT_CREATETIME);
2550 		}
2551 
2552 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2553 			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2554 			XVA_SET_RTN(xvap, XAT_REPARSE);
2555 		}
2556 		if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2557 			xoap->xoa_generation = zp->z_gen;
2558 			XVA_SET_RTN(xvap, XAT_GEN);
2559 		}
2560 
2561 		if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2562 			xoap->xoa_offline =
2563 			    ((zp->z_pflags & ZFS_OFFLINE) != 0);
2564 			XVA_SET_RTN(xvap, XAT_OFFLINE);
2565 		}
2566 
2567 		if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2568 			xoap->xoa_sparse =
2569 			    ((zp->z_pflags & ZFS_SPARSE) != 0);
2570 			XVA_SET_RTN(xvap, XAT_SPARSE);
2571 		}
2572 	}
2573 
2574 	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2575 	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2576 	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2577 
2578 	mutex_exit(&zp->z_lock);
2579 
2580 	sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2581 
2582 	if (zp->z_blksz == 0) {
2583 		/*
2584 		 * Block size hasn't been set; suggest maximal I/O transfers.
2585 		 */
2586 		vap->va_blksize = zfsvfs->z_max_blksz;
2587 	}
2588 
2589 	ZFS_EXIT(zfsvfs);
2590 	return (0);
2591 }
2592 
2593 /*
2594  * Set the file attributes to the values contained in the
2595  * vattr structure.
2596  *
2597  *	IN:	vp	- vnode of file to be modified.
2598  *		vap	- new attribute values.
2599  *			  If AT_XVATTR set, then optional attrs are being set
2600  *		flags	- ATTR_UTIME set if non-default time values provided.
2601  *			- ATTR_NOACLCHECK (CIFS context only).
2602  *		cr	- credentials of caller.
2603  *		ct	- caller context
2604  *
2605  *	RETURN:	0 if success
2606  *		error code if failure
2607  *
2608  * Timestamps:
2609  *	vp - ctime updated, mtime updated if size changed.
2610  */
2611 /* ARGSUSED */
2612 static int
2613 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2614 	caller_context_t *ct)
2615 {
2616 	znode_t		*zp = VTOZ(vp);
2617 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2618 	zilog_t		*zilog;
2619 	dmu_tx_t	*tx;
2620 	vattr_t		oldva;
2621 	xvattr_t	tmpxvattr;
2622 	uint_t		mask = vap->va_mask;
2623 	uint_t		saved_mask;
2624 	int		trim_mask = 0;
2625 	uint64_t	new_mode;
2626 	uint64_t	new_uid, new_gid;
2627 	uint64_t	xattr_obj;
2628 	uint64_t	mtime[2], ctime[2];
2629 	znode_t		*attrzp;
2630 	int		need_policy = FALSE;
2631 	int		err, err2;
2632 	zfs_fuid_info_t *fuidp = NULL;
2633 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2634 	xoptattr_t	*xoap;
2635 	zfs_acl_t	*aclp;
2636 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2637 	boolean_t	fuid_dirtied = B_FALSE;
2638 	sa_bulk_attr_t	bulk[7], xattr_bulk[7];
2639 	int		count = 0, xattr_count = 0;
2640 
2641 	if (mask == 0)
2642 		return (0);
2643 
2644 	if (mask & AT_NOSET)
2645 		return (EINVAL);
2646 
2647 	ZFS_ENTER(zfsvfs);
2648 	ZFS_VERIFY_ZP(zp);
2649 
2650 	zilog = zfsvfs->z_log;
2651 
2652 	/*
2653 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
2654 	 * that file system is at proper version level
2655 	 */
2656 
2657 	if (zfsvfs->z_use_fuids == B_FALSE &&
2658 	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2659 	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2660 	    (mask & AT_XVATTR))) {
2661 		ZFS_EXIT(zfsvfs);
2662 		return (EINVAL);
2663 	}
2664 
2665 	if (mask & AT_SIZE && vp->v_type == VDIR) {
2666 		ZFS_EXIT(zfsvfs);
2667 		return (EISDIR);
2668 	}
2669 
2670 	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2671 		ZFS_EXIT(zfsvfs);
2672 		return (EINVAL);
2673 	}
2674 
2675 	/*
2676 	 * If this is an xvattr_t, then get a pointer to the structure of
2677 	 * optional attributes.  If this is NULL, then we have a vattr_t.
2678 	 */
2679 	xoap = xva_getxoptattr(xvap);
2680 
2681 	xva_init(&tmpxvattr);
2682 
2683 	/*
2684 	 * Immutable files can only alter immutable bit and atime
2685 	 */
2686 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2687 	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2688 	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2689 		ZFS_EXIT(zfsvfs);
2690 		return (EPERM);
2691 	}
2692 
2693 	if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2694 		ZFS_EXIT(zfsvfs);
2695 		return (EPERM);
2696 	}
2697 
2698 	/*
2699 	 * Verify timestamps doesn't overflow 32 bits.
2700 	 * ZFS can handle large timestamps, but 32bit syscalls can't
2701 	 * handle times greater than 2039.  This check should be removed
2702 	 * once large timestamps are fully supported.
2703 	 */
2704 	if (mask & (AT_ATIME | AT_MTIME)) {
2705 		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2706 		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2707 			ZFS_EXIT(zfsvfs);
2708 			return (EOVERFLOW);
2709 		}
2710 	}
2711 
2712 top:
2713 	attrzp = NULL;
2714 	aclp = NULL;
2715 
2716 	/* Can this be moved to before the top label? */
2717 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2718 		ZFS_EXIT(zfsvfs);
2719 		return (EROFS);
2720 	}
2721 
2722 	/*
2723 	 * First validate permissions
2724 	 */
2725 
2726 	if (mask & AT_SIZE) {
2727 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2728 		if (err) {
2729 			ZFS_EXIT(zfsvfs);
2730 			return (err);
2731 		}
2732 		/*
2733 		 * XXX - Note, we are not providing any open
2734 		 * mode flags here (like FNDELAY), so we may
2735 		 * block if there are locks present... this
2736 		 * should be addressed in openat().
2737 		 */
2738 		/* XXX - would it be OK to generate a log record here? */
2739 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2740 		if (err) {
2741 			ZFS_EXIT(zfsvfs);
2742 			return (err);
2743 		}
2744 	}
2745 
2746 	if (mask & (AT_ATIME|AT_MTIME) ||
2747 	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2748 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2749 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2750 	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2751 	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2752 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2753 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2754 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2755 		    skipaclchk, cr);
2756 	}
2757 
2758 	if (mask & (AT_UID|AT_GID)) {
2759 		int	idmask = (mask & (AT_UID|AT_GID));
2760 		int	take_owner;
2761 		int	take_group;
2762 
2763 		/*
2764 		 * NOTE: even if a new mode is being set,
2765 		 * we may clear S_ISUID/S_ISGID bits.
2766 		 */
2767 
2768 		if (!(mask & AT_MODE))
2769 			vap->va_mode = zp->z_mode;
2770 
2771 		/*
2772 		 * Take ownership or chgrp to group we are a member of
2773 		 */
2774 
2775 		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2776 		take_group = (mask & AT_GID) &&
2777 		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
2778 
2779 		/*
2780 		 * If both AT_UID and AT_GID are set then take_owner and
2781 		 * take_group must both be set in order to allow taking
2782 		 * ownership.
2783 		 *
2784 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2785 		 *
2786 		 */
2787 
2788 		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2789 		    ((idmask == AT_UID) && take_owner) ||
2790 		    ((idmask == AT_GID) && take_group)) {
2791 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2792 			    skipaclchk, cr) == 0) {
2793 				/*
2794 				 * Remove setuid/setgid for non-privileged users
2795 				 */
2796 				secpolicy_setid_clear(vap, cr);
2797 				trim_mask = (mask & (AT_UID|AT_GID));
2798 			} else {
2799 				need_policy =  TRUE;
2800 			}
2801 		} else {
2802 			need_policy =  TRUE;
2803 		}
2804 	}
2805 
2806 	mutex_enter(&zp->z_lock);
2807 	oldva.va_mode = zp->z_mode;
2808 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2809 	if (mask & AT_XVATTR) {
2810 		/*
2811 		 * Update xvattr mask to include only those attributes
2812 		 * that are actually changing.
2813 		 *
2814 		 * the bits will be restored prior to actually setting
2815 		 * the attributes so the caller thinks they were set.
2816 		 */
2817 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2818 			if (xoap->xoa_appendonly !=
2819 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2820 				need_policy = TRUE;
2821 			} else {
2822 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2823 				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2824 			}
2825 		}
2826 
2827 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2828 			if (xoap->xoa_nounlink !=
2829 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2830 				need_policy = TRUE;
2831 			} else {
2832 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2833 				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2834 			}
2835 		}
2836 
2837 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2838 			if (xoap->xoa_immutable !=
2839 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2840 				need_policy = TRUE;
2841 			} else {
2842 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2843 				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2844 			}
2845 		}
2846 
2847 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2848 			if (xoap->xoa_nodump !=
2849 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2850 				need_policy = TRUE;
2851 			} else {
2852 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2853 				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2854 			}
2855 		}
2856 
2857 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2858 			if (xoap->xoa_av_modified !=
2859 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2860 				need_policy = TRUE;
2861 			} else {
2862 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2863 				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2864 			}
2865 		}
2866 
2867 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2868 			if ((vp->v_type != VREG &&
2869 			    xoap->xoa_av_quarantined) ||
2870 			    xoap->xoa_av_quarantined !=
2871 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2872 				need_policy = TRUE;
2873 			} else {
2874 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2875 				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2876 			}
2877 		}
2878 
2879 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2880 			mutex_exit(&zp->z_lock);
2881 			ZFS_EXIT(zfsvfs);
2882 			return (EPERM);
2883 		}
2884 
2885 		if (need_policy == FALSE &&
2886 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2887 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2888 			need_policy = TRUE;
2889 		}
2890 	}
2891 
2892 	mutex_exit(&zp->z_lock);
2893 
2894 	if (mask & AT_MODE) {
2895 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2896 			err = secpolicy_setid_setsticky_clear(vp, vap,
2897 			    &oldva, cr);
2898 			if (err) {
2899 				ZFS_EXIT(zfsvfs);
2900 				return (err);
2901 			}
2902 			trim_mask |= AT_MODE;
2903 		} else {
2904 			need_policy = TRUE;
2905 		}
2906 	}
2907 
2908 	if (need_policy) {
2909 		/*
2910 		 * If trim_mask is set then take ownership
2911 		 * has been granted or write_acl is present and user
2912 		 * has the ability to modify mode.  In that case remove
2913 		 * UID|GID and or MODE from mask so that
2914 		 * secpolicy_vnode_setattr() doesn't revoke it.
2915 		 */
2916 
2917 		if (trim_mask) {
2918 			saved_mask = vap->va_mask;
2919 			vap->va_mask &= ~trim_mask;
2920 		}
2921 		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2922 		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2923 		if (err) {
2924 			ZFS_EXIT(zfsvfs);
2925 			return (err);
2926 		}
2927 
2928 		if (trim_mask)
2929 			vap->va_mask |= saved_mask;
2930 	}
2931 
2932 	/*
2933 	 * secpolicy_vnode_setattr, or take ownership may have
2934 	 * changed va_mask
2935 	 */
2936 	mask = vap->va_mask;
2937 
2938 	if ((mask & (AT_UID | AT_GID))) {
2939 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2940 		    &xattr_obj, sizeof (xattr_obj));
2941 
2942 		if (err == 0 && xattr_obj) {
2943 			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
2944 			if (err)
2945 				goto out2;
2946 		}
2947 		if (mask & AT_UID) {
2948 			new_uid = zfs_fuid_create(zfsvfs,
2949 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2950 			if (new_uid != zp->z_uid &&
2951 			    zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
2952 				if (attrzp)
2953 					VN_RELE(ZTOV(attrzp));
2954 				err = EDQUOT;
2955 				goto out2;
2956 			}
2957 		}
2958 
2959 		if (mask & AT_GID) {
2960 			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
2961 			    cr, ZFS_GROUP, &fuidp);
2962 			if (new_gid != zp->z_gid &&
2963 			    zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
2964 				if (attrzp)
2965 					VN_RELE(ZTOV(attrzp));
2966 				err = EDQUOT;
2967 				goto out2;
2968 			}
2969 		}
2970 	}
2971 	tx = dmu_tx_create(zfsvfs->z_os);
2972 
2973 	if (mask & AT_MODE) {
2974 		uint64_t pmode = zp->z_mode;
2975 		uint64_t acl_obj;
2976 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2977 
2978 		zfs_acl_chmod_setattr(zp, &aclp, new_mode);
2979 
2980 		mutex_enter(&zp->z_lock);
2981 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2982 			/*
2983 			 * Are we upgrading ACL from old V0 format
2984 			 * to V1 format?
2985 			 */
2986 			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
2987 			    zfs_znode_acl_version(zp) ==
2988 			    ZFS_ACL_VERSION_INITIAL) {
2989 				dmu_tx_hold_free(tx, acl_obj, 0,
2990 				    DMU_OBJECT_END);
2991 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2992 				    0, aclp->z_acl_bytes);
2993 			} else {
2994 				dmu_tx_hold_write(tx, acl_obj, 0,
2995 				    aclp->z_acl_bytes);
2996 			}
2997 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2998 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2999 			    0, aclp->z_acl_bytes);
3000 		}
3001 		mutex_exit(&zp->z_lock);
3002 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3003 	} else {
3004 		if ((mask & AT_XVATTR) &&
3005 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3006 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3007 		else
3008 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3009 	}
3010 
3011 	if (attrzp) {
3012 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3013 	}
3014 
3015 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3016 	if (fuid_dirtied)
3017 		zfs_fuid_txhold(zfsvfs, tx);
3018 
3019 	zfs_sa_upgrade_txholds(tx, zp);
3020 
3021 	err = dmu_tx_assign(tx, TXG_NOWAIT);
3022 	if (err) {
3023 		if (err == ERESTART)
3024 			dmu_tx_wait(tx);
3025 		goto out;
3026 	}
3027 
3028 	count = 0;
3029 	/*
3030 	 * Set each attribute requested.
3031 	 * We group settings according to the locks they need to acquire.
3032 	 *
3033 	 * Note: you cannot set ctime directly, although it will be
3034 	 * updated as a side-effect of calling this function.
3035 	 */
3036 
3037 
3038 	if (mask & (AT_UID|AT_GID|AT_MODE))
3039 		mutex_enter(&zp->z_acl_lock);
3040 	mutex_enter(&zp->z_lock);
3041 
3042 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3043 	    &zp->z_pflags, sizeof (zp->z_pflags));
3044 
3045 	if (attrzp) {
3046 		if (mask & (AT_UID|AT_GID|AT_MODE))
3047 			mutex_enter(&attrzp->z_acl_lock);
3048 		mutex_enter(&attrzp->z_lock);
3049 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3050 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3051 		    sizeof (attrzp->z_pflags));
3052 	}
3053 
3054 	if (mask & (AT_UID|AT_GID)) {
3055 
3056 		if (mask & AT_UID) {
3057 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3058 			    &new_uid, sizeof (new_uid));
3059 			zp->z_uid = new_uid;
3060 			if (attrzp) {
3061 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3062 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3063 				    sizeof (new_uid));
3064 				attrzp->z_uid = new_uid;
3065 			}
3066 		}
3067 
3068 		if (mask & AT_GID) {
3069 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3070 			    NULL, &new_gid, sizeof (new_gid));
3071 			zp->z_gid = new_gid;
3072 			if (attrzp) {
3073 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3074 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3075 				    sizeof (new_gid));
3076 				attrzp->z_gid = new_gid;
3077 			}
3078 		}
3079 		if (!(mask & AT_MODE)) {
3080 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3081 			    NULL, &new_mode, sizeof (new_mode));
3082 			new_mode = zp->z_mode;
3083 		}
3084 		err = zfs_acl_chown_setattr(zp);
3085 		ASSERT(err == 0);
3086 		if (attrzp) {
3087 			err = zfs_acl_chown_setattr(attrzp);
3088 			ASSERT(err == 0);
3089 		}
3090 	}
3091 
3092 	if (mask & AT_MODE) {
3093 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3094 		    &new_mode, sizeof (new_mode));
3095 		zp->z_mode = new_mode;
3096 		ASSERT3U((uintptr_t)aclp, !=, NULL);
3097 		err = zfs_aclset_common(zp, aclp, cr, tx);
3098 		ASSERT3U(err, ==, 0);
3099 		if (zp->z_acl_cached)
3100 			zfs_acl_free(zp->z_acl_cached);
3101 		zp->z_acl_cached = aclp;
3102 		aclp = NULL;
3103 	}
3104 
3105 
3106 	if (mask & AT_ATIME) {
3107 		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3108 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3109 		    &zp->z_atime, sizeof (zp->z_atime));
3110 	}
3111 
3112 	if (mask & AT_MTIME) {
3113 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3114 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3115 		    mtime, sizeof (mtime));
3116 	}
3117 
3118 	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3119 	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3120 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3121 		    NULL, mtime, sizeof (mtime));
3122 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3123 		    &ctime, sizeof (ctime));
3124 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3125 		    B_TRUE);
3126 	} else if (mask != 0) {
3127 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3128 		    &ctime, sizeof (ctime));
3129 		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3130 		    B_TRUE);
3131 		if (attrzp) {
3132 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3133 			    SA_ZPL_CTIME(zfsvfs), NULL,
3134 			    &ctime, sizeof (ctime));
3135 			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3136 			    mtime, ctime, B_TRUE);
3137 		}
3138 	}
3139 	/*
3140 	 * Do this after setting timestamps to prevent timestamp
3141 	 * update from toggling bit
3142 	 */
3143 
3144 	if (xoap && (mask & AT_XVATTR)) {
3145 
3146 		/*
3147 		 * restore trimmed off masks
3148 		 * so that return masks can be set for caller.
3149 		 */
3150 
3151 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3152 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3153 		}
3154 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3155 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3156 		}
3157 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3158 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3159 		}
3160 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3161 			XVA_SET_REQ(xvap, XAT_NODUMP);
3162 		}
3163 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3164 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3165 		}
3166 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3167 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3168 		}
3169 
3170 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3171 			ASSERT(vp->v_type == VREG);
3172 
3173 		zfs_xvattr_set(zp, xvap, tx);
3174 	}
3175 
3176 	if (fuid_dirtied)
3177 		zfs_fuid_sync(zfsvfs, tx);
3178 
3179 	if (mask != 0)
3180 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3181 
3182 	mutex_exit(&zp->z_lock);
3183 	if (mask & (AT_UID|AT_GID|AT_MODE))
3184 		mutex_exit(&zp->z_acl_lock);
3185 
3186 	if (attrzp) {
3187 		if (mask & (AT_UID|AT_GID|AT_MODE))
3188 			mutex_exit(&attrzp->z_acl_lock);
3189 		mutex_exit(&attrzp->z_lock);
3190 	}
3191 out:
3192 	if (err == 0 && attrzp) {
3193 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3194 		    xattr_count, tx);
3195 		ASSERT(err2 == 0);
3196 	}
3197 
3198 	if (attrzp)
3199 		VN_RELE(ZTOV(attrzp));
3200 	if (aclp)
3201 		zfs_acl_free(aclp);
3202 
3203 	if (fuidp) {
3204 		zfs_fuid_info_free(fuidp);
3205 		fuidp = NULL;
3206 	}
3207 
3208 	if (err) {
3209 		dmu_tx_abort(tx);
3210 		if (err == ERESTART)
3211 			goto top;
3212 	} else {
3213 		err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3214 		dmu_tx_commit(tx);
3215 	}
3216 
3217 out2:
3218 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3219 		zil_commit(zilog, 0);
3220 
3221 	ZFS_EXIT(zfsvfs);
3222 	return (err);
3223 }
3224 
3225 typedef struct zfs_zlock {
3226 	krwlock_t	*zl_rwlock;	/* lock we acquired */
3227 	znode_t		*zl_znode;	/* znode we held */
3228 	struct zfs_zlock *zl_next;	/* next in list */
3229 } zfs_zlock_t;
3230 
3231 /*
3232  * Drop locks and release vnodes that were held by zfs_rename_lock().
3233  */
3234 static void
3235 zfs_rename_unlock(zfs_zlock_t **zlpp)
3236 {
3237 	zfs_zlock_t *zl;
3238 
3239 	while ((zl = *zlpp) != NULL) {
3240 		if (zl->zl_znode != NULL)
3241 			VN_RELE(ZTOV(zl->zl_znode));
3242 		rw_exit(zl->zl_rwlock);
3243 		*zlpp = zl->zl_next;
3244 		kmem_free(zl, sizeof (*zl));
3245 	}
3246 }
3247 
3248 /*
3249  * Search back through the directory tree, using the ".." entries.
3250  * Lock each directory in the chain to prevent concurrent renames.
3251  * Fail any attempt to move a directory into one of its own descendants.
3252  * XXX - z_parent_lock can overlap with map or grow locks
3253  */
3254 static int
3255 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3256 {
3257 	zfs_zlock_t	*zl;
3258 	znode_t		*zp = tdzp;
3259 	uint64_t	rootid = zp->z_zfsvfs->z_root;
3260 	uint64_t	oidp = zp->z_id;
3261 	krwlock_t	*rwlp = &szp->z_parent_lock;
3262 	krw_t		rw = RW_WRITER;
3263 
3264 	/*
3265 	 * First pass write-locks szp and compares to zp->z_id.
3266 	 * Later passes read-lock zp and compare to zp->z_parent.
3267 	 */
3268 	do {
3269 		if (!rw_tryenter(rwlp, rw)) {
3270 			/*
3271 			 * Another thread is renaming in this path.
3272 			 * Note that if we are a WRITER, we don't have any
3273 			 * parent_locks held yet.
3274 			 */
3275 			if (rw == RW_READER && zp->z_id > szp->z_id) {
3276 				/*
3277 				 * Drop our locks and restart
3278 				 */
3279 				zfs_rename_unlock(&zl);
3280 				*zlpp = NULL;
3281 				zp = tdzp;
3282 				oidp = zp->z_id;
3283 				rwlp = &szp->z_parent_lock;
3284 				rw = RW_WRITER;
3285 				continue;
3286 			} else {
3287 				/*
3288 				 * Wait for other thread to drop its locks
3289 				 */
3290 				rw_enter(rwlp, rw);
3291 			}
3292 		}
3293 
3294 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3295 		zl->zl_rwlock = rwlp;
3296 		zl->zl_znode = NULL;
3297 		zl->zl_next = *zlpp;
3298 		*zlpp = zl;
3299 
3300 		if (oidp == szp->z_id)		/* We're a descendant of szp */
3301 			return (EINVAL);
3302 
3303 		if (oidp == rootid)		/* We've hit the top */
3304 			return (0);
3305 
3306 		if (rw == RW_READER) {		/* i.e. not the first pass */
3307 			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3308 			if (error)
3309 				return (error);
3310 			zl->zl_znode = zp;
3311 		}
3312 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3313 		    &oidp, sizeof (oidp));
3314 		rwlp = &zp->z_parent_lock;
3315 		rw = RW_READER;
3316 
3317 	} while (zp->z_id != sdzp->z_id);
3318 
3319 	return (0);
3320 }
3321 
3322 /*
3323  * Move an entry from the provided source directory to the target
3324  * directory.  Change the entry name as indicated.
3325  *
3326  *	IN:	sdvp	- Source directory containing the "old entry".
3327  *		snm	- Old entry name.
3328  *		tdvp	- Target directory to contain the "new entry".
3329  *		tnm	- New entry name.
3330  *		cr	- credentials of caller.
3331  *		ct	- caller context
3332  *		flags	- case flags
3333  *
3334  *	RETURN:	0 if success
3335  *		error code if failure
3336  *
3337  * Timestamps:
3338  *	sdvp,tdvp - ctime|mtime updated
3339  */
3340 /*ARGSUSED*/
3341 static int
3342 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3343     caller_context_t *ct, int flags)
3344 {
3345 	znode_t		*tdzp, *szp, *tzp;
3346 	znode_t		*sdzp = VTOZ(sdvp);
3347 	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
3348 	zilog_t		*zilog;
3349 	vnode_t		*realvp;
3350 	zfs_dirlock_t	*sdl, *tdl;
3351 	dmu_tx_t	*tx;
3352 	zfs_zlock_t	*zl;
3353 	int		cmp, serr, terr;
3354 	int		error = 0;
3355 	int		zflg = 0;
3356 
3357 	ZFS_ENTER(zfsvfs);
3358 	ZFS_VERIFY_ZP(sdzp);
3359 	zilog = zfsvfs->z_log;
3360 
3361 	/*
3362 	 * Make sure we have the real vp for the target directory.
3363 	 */
3364 	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3365 		tdvp = realvp;
3366 
3367 	if (tdvp->v_vfsp != sdvp->v_vfsp || zfsctl_is_node(tdvp)) {
3368 		ZFS_EXIT(zfsvfs);
3369 		return (EXDEV);
3370 	}
3371 
3372 	tdzp = VTOZ(tdvp);
3373 	ZFS_VERIFY_ZP(tdzp);
3374 	if (zfsvfs->z_utf8 && u8_validate(tnm,
3375 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3376 		ZFS_EXIT(zfsvfs);
3377 		return (EILSEQ);
3378 	}
3379 
3380 	if (flags & FIGNORECASE)
3381 		zflg |= ZCILOOK;
3382 
3383 top:
3384 	szp = NULL;
3385 	tzp = NULL;
3386 	zl = NULL;
3387 
3388 	/*
3389 	 * This is to prevent the creation of links into attribute space
3390 	 * by renaming a linked file into/outof an attribute directory.
3391 	 * See the comment in zfs_link() for why this is considered bad.
3392 	 */
3393 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3394 		ZFS_EXIT(zfsvfs);
3395 		return (EINVAL);
3396 	}
3397 
3398 	/*
3399 	 * Lock source and target directory entries.  To prevent deadlock,
3400 	 * a lock ordering must be defined.  We lock the directory with
3401 	 * the smallest object id first, or if it's a tie, the one with
3402 	 * the lexically first name.
3403 	 */
3404 	if (sdzp->z_id < tdzp->z_id) {
3405 		cmp = -1;
3406 	} else if (sdzp->z_id > tdzp->z_id) {
3407 		cmp = 1;
3408 	} else {
3409 		/*
3410 		 * First compare the two name arguments without
3411 		 * considering any case folding.
3412 		 */
3413 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3414 
3415 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3416 		ASSERT(error == 0 || !zfsvfs->z_utf8);
3417 		if (cmp == 0) {
3418 			/*
3419 			 * POSIX: "If the old argument and the new argument
3420 			 * both refer to links to the same existing file,
3421 			 * the rename() function shall return successfully
3422 			 * and perform no other action."
3423 			 */
3424 			ZFS_EXIT(zfsvfs);
3425 			return (0);
3426 		}
3427 		/*
3428 		 * If the file system is case-folding, then we may
3429 		 * have some more checking to do.  A case-folding file
3430 		 * system is either supporting mixed case sensitivity
3431 		 * access or is completely case-insensitive.  Note
3432 		 * that the file system is always case preserving.
3433 		 *
3434 		 * In mixed sensitivity mode case sensitive behavior
3435 		 * is the default.  FIGNORECASE must be used to
3436 		 * explicitly request case insensitive behavior.
3437 		 *
3438 		 * If the source and target names provided differ only
3439 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3440 		 * we will treat this as a special case in the
3441 		 * case-insensitive mode: as long as the source name
3442 		 * is an exact match, we will allow this to proceed as
3443 		 * a name-change request.
3444 		 */
3445 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3446 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3447 		    flags & FIGNORECASE)) &&
3448 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3449 		    &error) == 0) {
3450 			/*
3451 			 * case preserving rename request, require exact
3452 			 * name matches
3453 			 */
3454 			zflg |= ZCIEXACT;
3455 			zflg &= ~ZCILOOK;
3456 		}
3457 	}
3458 
3459 	/*
3460 	 * If the source and destination directories are the same, we should
3461 	 * grab the z_name_lock of that directory only once.
3462 	 */
3463 	if (sdzp == tdzp) {
3464 		zflg |= ZHAVELOCK;
3465 		rw_enter(&sdzp->z_name_lock, RW_READER);
3466 	}
3467 
3468 	if (cmp < 0) {
3469 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3470 		    ZEXISTS | zflg, NULL, NULL);
3471 		terr = zfs_dirent_lock(&tdl,
3472 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3473 	} else {
3474 		terr = zfs_dirent_lock(&tdl,
3475 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3476 		serr = zfs_dirent_lock(&sdl,
3477 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3478 		    NULL, NULL);
3479 	}
3480 
3481 	if (serr) {
3482 		/*
3483 		 * Source entry invalid or not there.
3484 		 */
3485 		if (!terr) {
3486 			zfs_dirent_unlock(tdl);
3487 			if (tzp)
3488 				VN_RELE(ZTOV(tzp));
3489 		}
3490 
3491 		if (sdzp == tdzp)
3492 			rw_exit(&sdzp->z_name_lock);
3493 
3494 		if (strcmp(snm, "..") == 0)
3495 			serr = EINVAL;
3496 		ZFS_EXIT(zfsvfs);
3497 		return (serr);
3498 	}
3499 	if (terr) {
3500 		zfs_dirent_unlock(sdl);
3501 		VN_RELE(ZTOV(szp));
3502 
3503 		if (sdzp == tdzp)
3504 			rw_exit(&sdzp->z_name_lock);
3505 
3506 		if (strcmp(tnm, "..") == 0)
3507 			terr = EINVAL;
3508 		ZFS_EXIT(zfsvfs);
3509 		return (terr);
3510 	}
3511 
3512 	/*
3513 	 * Must have write access at the source to remove the old entry
3514 	 * and write access at the target to create the new entry.
3515 	 * Note that if target and source are the same, this can be
3516 	 * done in a single check.
3517 	 */
3518 
3519 	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3520 		goto out;
3521 
3522 	if (ZTOV(szp)->v_type == VDIR) {
3523 		/*
3524 		 * Check to make sure rename is valid.
3525 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3526 		 */
3527 		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3528 			goto out;
3529 	}
3530 
3531 	/*
3532 	 * Does target exist?
3533 	 */
3534 	if (tzp) {
3535 		/*
3536 		 * Source and target must be the same type.
3537 		 */
3538 		if (ZTOV(szp)->v_type == VDIR) {
3539 			if (ZTOV(tzp)->v_type != VDIR) {
3540 				error = ENOTDIR;
3541 				goto out;
3542 			}
3543 		} else {
3544 			if (ZTOV(tzp)->v_type == VDIR) {
3545 				error = EISDIR;
3546 				goto out;
3547 			}
3548 		}
3549 		/*
3550 		 * POSIX dictates that when the source and target
3551 		 * entries refer to the same file object, rename
3552 		 * must do nothing and exit without error.
3553 		 */
3554 		if (szp->z_id == tzp->z_id) {
3555 			error = 0;
3556 			goto out;
3557 		}
3558 	}
3559 
3560 	vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3561 	if (tzp)
3562 		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3563 
3564 	/*
3565 	 * notify the target directory if it is not the same
3566 	 * as source directory.
3567 	 */
3568 	if (tdvp != sdvp) {
3569 		vnevent_rename_dest_dir(tdvp, ct);
3570 	}
3571 
3572 	tx = dmu_tx_create(zfsvfs->z_os);
3573 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3574 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3575 	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3576 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3577 	if (sdzp != tdzp) {
3578 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3579 		zfs_sa_upgrade_txholds(tx, tdzp);
3580 	}
3581 	if (tzp) {
3582 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3583 		zfs_sa_upgrade_txholds(tx, tzp);
3584 	}
3585 
3586 	zfs_sa_upgrade_txholds(tx, szp);
3587 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3588 	error = dmu_tx_assign(tx, TXG_NOWAIT);
3589 	if (error) {
3590 		if (zl != NULL)
3591 			zfs_rename_unlock(&zl);
3592 		zfs_dirent_unlock(sdl);
3593 		zfs_dirent_unlock(tdl);
3594 
3595 		if (sdzp == tdzp)
3596 			rw_exit(&sdzp->z_name_lock);
3597 
3598 		VN_RELE(ZTOV(szp));
3599 		if (tzp)
3600 			VN_RELE(ZTOV(tzp));
3601 		if (error == ERESTART) {
3602 			dmu_tx_wait(tx);
3603 			dmu_tx_abort(tx);
3604 			goto top;
3605 		}
3606 		dmu_tx_abort(tx);
3607 		ZFS_EXIT(zfsvfs);
3608 		return (error);
3609 	}
3610 
3611 	if (tzp)	/* Attempt to remove the existing target */
3612 		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3613 
3614 	if (error == 0) {
3615 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3616 		if (error == 0) {
3617 			szp->z_pflags |= ZFS_AV_MODIFIED;
3618 
3619 			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3620 			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3621 			ASSERT3U(error, ==, 0);
3622 
3623 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3624 			if (error == 0) {
3625 				zfs_log_rename(zilog, tx, TX_RENAME |
3626 				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3627 				    sdl->dl_name, tdzp, tdl->dl_name, szp);
3628 
3629 				/*
3630 				 * Update path information for the target vnode
3631 				 */
3632 				vn_renamepath(tdvp, ZTOV(szp), tnm,
3633 				    strlen(tnm));
3634 			} else {
3635 				/*
3636 				 * At this point, we have successfully created
3637 				 * the target name, but have failed to remove
3638 				 * the source name.  Since the create was done
3639 				 * with the ZRENAMING flag, there are
3640 				 * complications; for one, the link count is
3641 				 * wrong.  The easiest way to deal with this
3642 				 * is to remove the newly created target, and
3643 				 * return the original error.  This must
3644 				 * succeed; fortunately, it is very unlikely to
3645 				 * fail, since we just created it.
3646 				 */
3647 				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3648 				    ZRENAMING, NULL), ==, 0);
3649 			}
3650 		}
3651 	}
3652 
3653 	dmu_tx_commit(tx);
3654 out:
3655 	if (zl != NULL)
3656 		zfs_rename_unlock(&zl);
3657 
3658 	zfs_dirent_unlock(sdl);
3659 	zfs_dirent_unlock(tdl);
3660 
3661 	if (sdzp == tdzp)
3662 		rw_exit(&sdzp->z_name_lock);
3663 
3664 
3665 	VN_RELE(ZTOV(szp));
3666 	if (tzp)
3667 		VN_RELE(ZTOV(tzp));
3668 
3669 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3670 		zil_commit(zilog, 0);
3671 
3672 	ZFS_EXIT(zfsvfs);
3673 	return (error);
3674 }
3675 
3676 /*
3677  * Insert the indicated symbolic reference entry into the directory.
3678  *
3679  *	IN:	dvp	- Directory to contain new symbolic link.
3680  *		link	- Name for new symlink entry.
3681  *		vap	- Attributes of new entry.
3682  *		target	- Target path of new symlink.
3683  *		cr	- credentials of caller.
3684  *		ct	- caller context
3685  *		flags	- case flags
3686  *
3687  *	RETURN:	0 if success
3688  *		error code if failure
3689  *
3690  * Timestamps:
3691  *	dvp - ctime|mtime updated
3692  */
3693 /*ARGSUSED*/
3694 static int
3695 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3696     caller_context_t *ct, int flags)
3697 {
3698 	znode_t		*zp, *dzp = VTOZ(dvp);
3699 	zfs_dirlock_t	*dl;
3700 	dmu_tx_t	*tx;
3701 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3702 	zilog_t		*zilog;
3703 	uint64_t	len = strlen(link);
3704 	int		error;
3705 	int		zflg = ZNEW;
3706 	zfs_acl_ids_t	acl_ids;
3707 	boolean_t	fuid_dirtied;
3708 	uint64_t	txtype = TX_SYMLINK;
3709 
3710 	ASSERT(vap->va_type == VLNK);
3711 
3712 	ZFS_ENTER(zfsvfs);
3713 	ZFS_VERIFY_ZP(dzp);
3714 	zilog = zfsvfs->z_log;
3715 
3716 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3717 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3718 		ZFS_EXIT(zfsvfs);
3719 		return (EILSEQ);
3720 	}
3721 	if (flags & FIGNORECASE)
3722 		zflg |= ZCILOOK;
3723 
3724 	if (len > MAXPATHLEN) {
3725 		ZFS_EXIT(zfsvfs);
3726 		return (ENAMETOOLONG);
3727 	}
3728 
3729 	if ((error = zfs_acl_ids_create(dzp, 0,
3730 	    vap, cr, NULL, &acl_ids)) != 0) {
3731 		ZFS_EXIT(zfsvfs);
3732 		return (error);
3733 	}
3734 top:
3735 	/*
3736 	 * Attempt to lock directory; fail if entry already exists.
3737 	 */
3738 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3739 	if (error) {
3740 		zfs_acl_ids_free(&acl_ids);
3741 		ZFS_EXIT(zfsvfs);
3742 		return (error);
3743 	}
3744 
3745 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3746 		zfs_acl_ids_free(&acl_ids);
3747 		zfs_dirent_unlock(dl);
3748 		ZFS_EXIT(zfsvfs);
3749 		return (error);
3750 	}
3751 
3752 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3753 		zfs_acl_ids_free(&acl_ids);
3754 		zfs_dirent_unlock(dl);
3755 		ZFS_EXIT(zfsvfs);
3756 		return (EDQUOT);
3757 	}
3758 	tx = dmu_tx_create(zfsvfs->z_os);
3759 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3760 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3761 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3762 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3763 	    ZFS_SA_BASE_ATTR_SIZE + len);
3764 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3765 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3766 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3767 		    acl_ids.z_aclp->z_acl_bytes);
3768 	}
3769 	if (fuid_dirtied)
3770 		zfs_fuid_txhold(zfsvfs, tx);
3771 	error = dmu_tx_assign(tx, TXG_NOWAIT);
3772 	if (error) {
3773 		zfs_dirent_unlock(dl);
3774 		if (error == ERESTART) {
3775 			dmu_tx_wait(tx);
3776 			dmu_tx_abort(tx);
3777 			goto top;
3778 		}
3779 		zfs_acl_ids_free(&acl_ids);
3780 		dmu_tx_abort(tx);
3781 		ZFS_EXIT(zfsvfs);
3782 		return (error);
3783 	}
3784 
3785 	/*
3786 	 * Create a new object for the symlink.
3787 	 * for version 4 ZPL datsets the symlink will be an SA attribute
3788 	 */
3789 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3790 
3791 	if (fuid_dirtied)
3792 		zfs_fuid_sync(zfsvfs, tx);
3793 
3794 	mutex_enter(&zp->z_lock);
3795 	if (zp->z_is_sa)
3796 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3797 		    link, len, tx);
3798 	else
3799 		zfs_sa_symlink(zp, link, len, tx);
3800 	mutex_exit(&zp->z_lock);
3801 
3802 	zp->z_size = len;
3803 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3804 	    &zp->z_size, sizeof (zp->z_size), tx);
3805 	/*
3806 	 * Insert the new object into the directory.
3807 	 */
3808 	(void) zfs_link_create(dl, zp, tx, ZNEW);
3809 
3810 	if (flags & FIGNORECASE)
3811 		txtype |= TX_CI;
3812 	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3813 
3814 	zfs_acl_ids_free(&acl_ids);
3815 
3816 	dmu_tx_commit(tx);
3817 
3818 	zfs_dirent_unlock(dl);
3819 
3820 	VN_RELE(ZTOV(zp));
3821 
3822 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3823 		zil_commit(zilog, 0);
3824 
3825 	ZFS_EXIT(zfsvfs);
3826 	return (error);
3827 }
3828 
3829 /*
3830  * Return, in the buffer contained in the provided uio structure,
3831  * the symbolic path referred to by vp.
3832  *
3833  *	IN:	vp	- vnode of symbolic link.
3834  *		uoip	- structure to contain the link path.
3835  *		cr	- credentials of caller.
3836  *		ct	- caller context
3837  *
3838  *	OUT:	uio	- structure to contain the link path.
3839  *
3840  *	RETURN:	0 if success
3841  *		error code if failure
3842  *
3843  * Timestamps:
3844  *	vp - atime updated
3845  */
3846 /* ARGSUSED */
3847 static int
3848 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3849 {
3850 	znode_t		*zp = VTOZ(vp);
3851 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3852 	int		error;
3853 
3854 	ZFS_ENTER(zfsvfs);
3855 	ZFS_VERIFY_ZP(zp);
3856 
3857 	mutex_enter(&zp->z_lock);
3858 	if (zp->z_is_sa)
3859 		error = sa_lookup_uio(zp->z_sa_hdl,
3860 		    SA_ZPL_SYMLINK(zfsvfs), uio);
3861 	else
3862 		error = zfs_sa_readlink(zp, uio);
3863 	mutex_exit(&zp->z_lock);
3864 
3865 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3866 
3867 	ZFS_EXIT(zfsvfs);
3868 	return (error);
3869 }
3870 
3871 /*
3872  * Insert a new entry into directory tdvp referencing svp.
3873  *
3874  *	IN:	tdvp	- Directory to contain new entry.
3875  *		svp	- vnode of new entry.
3876  *		name	- name of new entry.
3877  *		cr	- credentials of caller.
3878  *		ct	- caller context
3879  *
3880  *	RETURN:	0 if success
3881  *		error code if failure
3882  *
3883  * Timestamps:
3884  *	tdvp - ctime|mtime updated
3885  *	 svp - ctime updated
3886  */
3887 /* ARGSUSED */
3888 static int
3889 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3890     caller_context_t *ct, int flags)
3891 {
3892 	znode_t		*dzp = VTOZ(tdvp);
3893 	znode_t		*tzp, *szp;
3894 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3895 	zilog_t		*zilog;
3896 	zfs_dirlock_t	*dl;
3897 	dmu_tx_t	*tx;
3898 	vnode_t		*realvp;
3899 	int		error;
3900 	int		zf = ZNEW;
3901 	uint64_t	parent;
3902 	uid_t		owner;
3903 
3904 	ASSERT(tdvp->v_type == VDIR);
3905 
3906 	ZFS_ENTER(zfsvfs);
3907 	ZFS_VERIFY_ZP(dzp);
3908 	zilog = zfsvfs->z_log;
3909 
3910 	if (VOP_REALVP(svp, &realvp, ct) == 0)
3911 		svp = realvp;
3912 
3913 	/*
3914 	 * POSIX dictates that we return EPERM here.
3915 	 * Better choices include ENOTSUP or EISDIR.
3916 	 */
3917 	if (svp->v_type == VDIR) {
3918 		ZFS_EXIT(zfsvfs);
3919 		return (EPERM);
3920 	}
3921 
3922 	if (svp->v_vfsp != tdvp->v_vfsp || zfsctl_is_node(svp)) {
3923 		ZFS_EXIT(zfsvfs);
3924 		return (EXDEV);
3925 	}
3926 
3927 	szp = VTOZ(svp);
3928 	ZFS_VERIFY_ZP(szp);
3929 
3930 	/* Prevent links to .zfs/shares files */
3931 
3932 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3933 	    &parent, sizeof (uint64_t))) != 0) {
3934 		ZFS_EXIT(zfsvfs);
3935 		return (error);
3936 	}
3937 	if (parent == zfsvfs->z_shares_dir) {
3938 		ZFS_EXIT(zfsvfs);
3939 		return (EPERM);
3940 	}
3941 
3942 	if (zfsvfs->z_utf8 && u8_validate(name,
3943 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3944 		ZFS_EXIT(zfsvfs);
3945 		return (EILSEQ);
3946 	}
3947 	if (flags & FIGNORECASE)
3948 		zf |= ZCILOOK;
3949 
3950 	/*
3951 	 * We do not support links between attributes and non-attributes
3952 	 * because of the potential security risk of creating links
3953 	 * into "normal" file space in order to circumvent restrictions
3954 	 * imposed in attribute space.
3955 	 */
3956 	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
3957 		ZFS_EXIT(zfsvfs);
3958 		return (EINVAL);
3959 	}
3960 
3961 
3962 	owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
3963 	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3964 		ZFS_EXIT(zfsvfs);
3965 		return (EPERM);
3966 	}
3967 
3968 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3969 		ZFS_EXIT(zfsvfs);
3970 		return (error);
3971 	}
3972 
3973 top:
3974 	/*
3975 	 * Attempt to lock directory; fail if entry already exists.
3976 	 */
3977 	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
3978 	if (error) {
3979 		ZFS_EXIT(zfsvfs);
3980 		return (error);
3981 	}
3982 
3983 	tx = dmu_tx_create(zfsvfs->z_os);
3984 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3985 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3986 	zfs_sa_upgrade_txholds(tx, szp);
3987 	zfs_sa_upgrade_txholds(tx, dzp);
3988 	error = dmu_tx_assign(tx, TXG_NOWAIT);
3989 	if (error) {
3990 		zfs_dirent_unlock(dl);
3991 		if (error == ERESTART) {
3992 			dmu_tx_wait(tx);
3993 			dmu_tx_abort(tx);
3994 			goto top;
3995 		}
3996 		dmu_tx_abort(tx);
3997 		ZFS_EXIT(zfsvfs);
3998 		return (error);
3999 	}
4000 
4001 	error = zfs_link_create(dl, szp, tx, 0);
4002 
4003 	if (error == 0) {
4004 		uint64_t txtype = TX_LINK;
4005 		if (flags & FIGNORECASE)
4006 			txtype |= TX_CI;
4007 		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4008 	}
4009 
4010 	dmu_tx_commit(tx);
4011 
4012 	zfs_dirent_unlock(dl);
4013 
4014 	if (error == 0) {
4015 		vnevent_link(svp, ct);
4016 	}
4017 
4018 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4019 		zil_commit(zilog, 0);
4020 
4021 	ZFS_EXIT(zfsvfs);
4022 	return (error);
4023 }
4024 
4025 /*
4026  * zfs_null_putapage() is used when the file system has been force
4027  * unmounted. It just drops the pages.
4028  */
4029 /* ARGSUSED */
4030 static int
4031 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4032 		size_t *lenp, int flags, cred_t *cr)
4033 {
4034 	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4035 	return (0);
4036 }
4037 
4038 /*
4039  * Push a page out to disk, klustering if possible.
4040  *
4041  *	IN:	vp	- file to push page to.
4042  *		pp	- page to push.
4043  *		flags	- additional flags.
4044  *		cr	- credentials of caller.
4045  *
4046  *	OUT:	offp	- start of range pushed.
4047  *		lenp	- len of range pushed.
4048  *
4049  *	RETURN:	0 if success
4050  *		error code if failure
4051  *
4052  * NOTE: callers must have locked the page to be pushed.  On
4053  * exit, the page (and all other pages in the kluster) must be
4054  * unlocked.
4055  */
4056 /* ARGSUSED */
4057 static int
4058 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4059 		size_t *lenp, int flags, cred_t *cr)
4060 {
4061 	znode_t		*zp = VTOZ(vp);
4062 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4063 	dmu_tx_t	*tx;
4064 	u_offset_t	off, koff;
4065 	size_t		len, klen;
4066 	int		err;
4067 
4068 	off = pp->p_offset;
4069 	len = PAGESIZE;
4070 	/*
4071 	 * If our blocksize is bigger than the page size, try to kluster
4072 	 * multiple pages so that we write a full block (thus avoiding
4073 	 * a read-modify-write).
4074 	 */
4075 	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4076 		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4077 		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4078 		ASSERT(koff <= zp->z_size);
4079 		if (koff + klen > zp->z_size)
4080 			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4081 		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4082 	}
4083 	ASSERT3U(btop(len), ==, btopr(len));
4084 
4085 	/*
4086 	 * Can't push pages past end-of-file.
4087 	 */
4088 	if (off >= zp->z_size) {
4089 		/* ignore all pages */
4090 		err = 0;
4091 		goto out;
4092 	} else if (off + len > zp->z_size) {
4093 		int npages = btopr(zp->z_size - off);
4094 		page_t *trunc;
4095 
4096 		page_list_break(&pp, &trunc, npages);
4097 		/* ignore pages past end of file */
4098 		if (trunc)
4099 			pvn_write_done(trunc, flags);
4100 		len = zp->z_size - off;
4101 	}
4102 
4103 	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4104 	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4105 		err = EDQUOT;
4106 		goto out;
4107 	}
4108 top:
4109 	tx = dmu_tx_create(zfsvfs->z_os);
4110 	dmu_tx_hold_write(tx, zp->z_id, off, len);
4111 
4112 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4113 	zfs_sa_upgrade_txholds(tx, zp);
4114 	err = dmu_tx_assign(tx, TXG_NOWAIT);
4115 	if (err != 0) {
4116 		if (err == ERESTART) {
4117 			dmu_tx_wait(tx);
4118 			dmu_tx_abort(tx);
4119 			goto top;
4120 		}
4121 		dmu_tx_abort(tx);
4122 		goto out;
4123 	}
4124 
4125 	if (zp->z_blksz <= PAGESIZE) {
4126 		caddr_t va = zfs_map_page(pp, S_READ);
4127 		ASSERT3U(len, <=, PAGESIZE);
4128 		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4129 		zfs_unmap_page(pp, va);
4130 	} else {
4131 		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4132 	}
4133 
4134 	if (err == 0) {
4135 		uint64_t mtime[2], ctime[2];
4136 		sa_bulk_attr_t bulk[3];
4137 		int count = 0;
4138 
4139 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4140 		    &mtime, 16);
4141 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4142 		    &ctime, 16);
4143 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4144 		    &zp->z_pflags, 8);
4145 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4146 		    B_TRUE);
4147 		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4148 	}
4149 	dmu_tx_commit(tx);
4150 
4151 out:
4152 	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4153 	if (offp)
4154 		*offp = off;
4155 	if (lenp)
4156 		*lenp = len;
4157 
4158 	return (err);
4159 }
4160 
4161 /*
4162  * Copy the portion of the file indicated from pages into the file.
4163  * The pages are stored in a page list attached to the files vnode.
4164  *
4165  *	IN:	vp	- vnode of file to push page data to.
4166  *		off	- position in file to put data.
4167  *		len	- amount of data to write.
4168  *		flags	- flags to control the operation.
4169  *		cr	- credentials of caller.
4170  *		ct	- caller context.
4171  *
4172  *	RETURN:	0 if success
4173  *		error code if failure
4174  *
4175  * Timestamps:
4176  *	vp - ctime|mtime updated
4177  */
4178 /*ARGSUSED*/
4179 static int
4180 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4181     caller_context_t *ct)
4182 {
4183 	znode_t		*zp = VTOZ(vp);
4184 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4185 	page_t		*pp;
4186 	size_t		io_len;
4187 	u_offset_t	io_off;
4188 	uint_t		blksz;
4189 	rl_t		*rl;
4190 	int		error = 0;
4191 
4192 	ZFS_ENTER(zfsvfs);
4193 	ZFS_VERIFY_ZP(zp);
4194 
4195 	/*
4196 	 * Align this request to the file block size in case we kluster.
4197 	 * XXX - this can result in pretty aggresive locking, which can
4198 	 * impact simultanious read/write access.  One option might be
4199 	 * to break up long requests (len == 0) into block-by-block
4200 	 * operations to get narrower locking.
4201 	 */
4202 	blksz = zp->z_blksz;
4203 	if (ISP2(blksz))
4204 		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4205 	else
4206 		io_off = 0;
4207 	if (len > 0 && ISP2(blksz))
4208 		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4209 	else
4210 		io_len = 0;
4211 
4212 	if (io_len == 0) {
4213 		/*
4214 		 * Search the entire vp list for pages >= io_off.
4215 		 */
4216 		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4217 		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4218 		goto out;
4219 	}
4220 	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4221 
4222 	if (off > zp->z_size) {
4223 		/* past end of file */
4224 		zfs_range_unlock(rl);
4225 		ZFS_EXIT(zfsvfs);
4226 		return (0);
4227 	}
4228 
4229 	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4230 
4231 	for (off = io_off; io_off < off + len; io_off += io_len) {
4232 		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4233 			pp = page_lookup(vp, io_off,
4234 			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4235 		} else {
4236 			pp = page_lookup_nowait(vp, io_off,
4237 			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4238 		}
4239 
4240 		if (pp != NULL && pvn_getdirty(pp, flags)) {
4241 			int err;
4242 
4243 			/*
4244 			 * Found a dirty page to push
4245 			 */
4246 			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4247 			if (err)
4248 				error = err;
4249 		} else {
4250 			io_len = PAGESIZE;
4251 		}
4252 	}
4253 out:
4254 	zfs_range_unlock(rl);
4255 	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4256 		zil_commit(zfsvfs->z_log, zp->z_id);
4257 	ZFS_EXIT(zfsvfs);
4258 	return (error);
4259 }
4260 
4261 /*ARGSUSED*/
4262 void
4263 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4264 {
4265 	znode_t	*zp = VTOZ(vp);
4266 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4267 	int error;
4268 
4269 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4270 	if (zp->z_sa_hdl == NULL) {
4271 		/*
4272 		 * The fs has been unmounted, or we did a
4273 		 * suspend/resume and this file no longer exists.
4274 		 */
4275 		if (vn_has_cached_data(vp)) {
4276 			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4277 			    B_INVAL, cr);
4278 		}
4279 
4280 		mutex_enter(&zp->z_lock);
4281 		mutex_enter(&vp->v_lock);
4282 		ASSERT(vp->v_count == 1);
4283 		vp->v_count = 0;
4284 		mutex_exit(&vp->v_lock);
4285 		mutex_exit(&zp->z_lock);
4286 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4287 		zfs_znode_free(zp);
4288 		return;
4289 	}
4290 
4291 	/*
4292 	 * Attempt to push any data in the page cache.  If this fails
4293 	 * we will get kicked out later in zfs_zinactive().
4294 	 */
4295 	if (vn_has_cached_data(vp)) {
4296 		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4297 		    cr);
4298 	}
4299 
4300 	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4301 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4302 
4303 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4304 		zfs_sa_upgrade_txholds(tx, zp);
4305 		error = dmu_tx_assign(tx, TXG_WAIT);
4306 		if (error) {
4307 			dmu_tx_abort(tx);
4308 		} else {
4309 			mutex_enter(&zp->z_lock);
4310 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4311 			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4312 			zp->z_atime_dirty = 0;
4313 			mutex_exit(&zp->z_lock);
4314 			dmu_tx_commit(tx);
4315 		}
4316 	}
4317 
4318 	zfs_zinactive(zp);
4319 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4320 }
4321 
4322 /*
4323  * Bounds-check the seek operation.
4324  *
4325  *	IN:	vp	- vnode seeking within
4326  *		ooff	- old file offset
4327  *		noffp	- pointer to new file offset
4328  *		ct	- caller context
4329  *
4330  *	RETURN:	0 if success
4331  *		EINVAL if new offset invalid
4332  */
4333 /* ARGSUSED */
4334 static int
4335 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4336     caller_context_t *ct)
4337 {
4338 	if (vp->v_type == VDIR)
4339 		return (0);
4340 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4341 }
4342 
4343 /*
4344  * Pre-filter the generic locking function to trap attempts to place
4345  * a mandatory lock on a memory mapped file.
4346  */
4347 static int
4348 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4349     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4350 {
4351 	znode_t *zp = VTOZ(vp);
4352 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4353 
4354 	ZFS_ENTER(zfsvfs);
4355 	ZFS_VERIFY_ZP(zp);
4356 
4357 	/*
4358 	 * We are following the UFS semantics with respect to mapcnt
4359 	 * here: If we see that the file is mapped already, then we will
4360 	 * return an error, but we don't worry about races between this
4361 	 * function and zfs_map().
4362 	 */
4363 	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4364 		ZFS_EXIT(zfsvfs);
4365 		return (EAGAIN);
4366 	}
4367 	ZFS_EXIT(zfsvfs);
4368 	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4369 }
4370 
4371 /*
4372  * If we can't find a page in the cache, we will create a new page
4373  * and fill it with file data.  For efficiency, we may try to fill
4374  * multiple pages at once (klustering) to fill up the supplied page
4375  * list.  Note that the pages to be filled are held with an exclusive
4376  * lock to prevent access by other threads while they are being filled.
4377  */
4378 static int
4379 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4380     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4381 {
4382 	znode_t *zp = VTOZ(vp);
4383 	page_t *pp, *cur_pp;
4384 	objset_t *os = zp->z_zfsvfs->z_os;
4385 	u_offset_t io_off, total;
4386 	size_t io_len;
4387 	int err;
4388 
4389 	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4390 		/*
4391 		 * We only have a single page, don't bother klustering
4392 		 */
4393 		io_off = off;
4394 		io_len = PAGESIZE;
4395 		pp = page_create_va(vp, io_off, io_len,
4396 		    PG_EXCL | PG_WAIT, seg, addr);
4397 	} else {
4398 		/*
4399 		 * Try to find enough pages to fill the page list
4400 		 */
4401 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4402 		    &io_len, off, plsz, 0);
4403 	}
4404 	if (pp == NULL) {
4405 		/*
4406 		 * The page already exists, nothing to do here.
4407 		 */
4408 		*pl = NULL;
4409 		return (0);
4410 	}
4411 
4412 	/*
4413 	 * Fill the pages in the kluster.
4414 	 */
4415 	cur_pp = pp;
4416 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4417 		caddr_t va;
4418 
4419 		ASSERT3U(io_off, ==, cur_pp->p_offset);
4420 		va = zfs_map_page(cur_pp, S_WRITE);
4421 		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4422 		    DMU_READ_PREFETCH);
4423 		zfs_unmap_page(cur_pp, va);
4424 		if (err) {
4425 			/* On error, toss the entire kluster */
4426 			pvn_read_done(pp, B_ERROR);
4427 			/* convert checksum errors into IO errors */
4428 			if (err == ECKSUM)
4429 				err = EIO;
4430 			return (err);
4431 		}
4432 		cur_pp = cur_pp->p_next;
4433 	}
4434 
4435 	/*
4436 	 * Fill in the page list array from the kluster starting
4437 	 * from the desired offset `off'.
4438 	 * NOTE: the page list will always be null terminated.
4439 	 */
4440 	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4441 	ASSERT(pl == NULL || (*pl)->p_offset == off);
4442 
4443 	return (0);
4444 }
4445 
4446 /*
4447  * Return pointers to the pages for the file region [off, off + len]
4448  * in the pl array.  If plsz is greater than len, this function may
4449  * also return page pointers from after the specified region
4450  * (i.e. the region [off, off + plsz]).  These additional pages are
4451  * only returned if they are already in the cache, or were created as
4452  * part of a klustered read.
4453  *
4454  *	IN:	vp	- vnode of file to get data from.
4455  *		off	- position in file to get data from.
4456  *		len	- amount of data to retrieve.
4457  *		plsz	- length of provided page list.
4458  *		seg	- segment to obtain pages for.
4459  *		addr	- virtual address of fault.
4460  *		rw	- mode of created pages.
4461  *		cr	- credentials of caller.
4462  *		ct	- caller context.
4463  *
4464  *	OUT:	protp	- protection mode of created pages.
4465  *		pl	- list of pages created.
4466  *
4467  *	RETURN:	0 if success
4468  *		error code if failure
4469  *
4470  * Timestamps:
4471  *	vp - atime updated
4472  */
4473 /* ARGSUSED */
4474 static int
4475 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4476 	page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4477 	enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4478 {
4479 	znode_t		*zp = VTOZ(vp);
4480 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4481 	page_t		**pl0 = pl;
4482 	int		err = 0;
4483 
4484 	/* we do our own caching, faultahead is unnecessary */
4485 	if (pl == NULL)
4486 		return (0);
4487 	else if (len > plsz)
4488 		len = plsz;
4489 	else
4490 		len = P2ROUNDUP(len, PAGESIZE);
4491 	ASSERT(plsz >= len);
4492 
4493 	ZFS_ENTER(zfsvfs);
4494 	ZFS_VERIFY_ZP(zp);
4495 
4496 	if (protp)
4497 		*protp = PROT_ALL;
4498 
4499 	/*
4500 	 * Loop through the requested range [off, off + len) looking
4501 	 * for pages.  If we don't find a page, we will need to create
4502 	 * a new page and fill it with data from the file.
4503 	 */
4504 	while (len > 0) {
4505 		if (*pl = page_lookup(vp, off, SE_SHARED))
4506 			*(pl+1) = NULL;
4507 		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4508 			goto out;
4509 		while (*pl) {
4510 			ASSERT3U((*pl)->p_offset, ==, off);
4511 			off += PAGESIZE;
4512 			addr += PAGESIZE;
4513 			if (len > 0) {
4514 				ASSERT3U(len, >=, PAGESIZE);
4515 				len -= PAGESIZE;
4516 			}
4517 			ASSERT3U(plsz, >=, PAGESIZE);
4518 			plsz -= PAGESIZE;
4519 			pl++;
4520 		}
4521 	}
4522 
4523 	/*
4524 	 * Fill out the page array with any pages already in the cache.
4525 	 */
4526 	while (plsz > 0 &&
4527 	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4528 			off += PAGESIZE;
4529 			plsz -= PAGESIZE;
4530 	}
4531 out:
4532 	if (err) {
4533 		/*
4534 		 * Release any pages we have previously locked.
4535 		 */
4536 		while (pl > pl0)
4537 			page_unlock(*--pl);
4538 	} else {
4539 		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4540 	}
4541 
4542 	*pl = NULL;
4543 
4544 	ZFS_EXIT(zfsvfs);
4545 	return (err);
4546 }
4547 
4548 /*
4549  * Request a memory map for a section of a file.  This code interacts
4550  * with common code and the VM system as follows:
4551  *
4552  *	common code calls mmap(), which ends up in smmap_common()
4553  *
4554  *	this calls VOP_MAP(), which takes you into (say) zfs
4555  *
4556  *	zfs_map() calls as_map(), passing segvn_create() as the callback
4557  *
4558  *	segvn_create() creates the new segment and calls VOP_ADDMAP()
4559  *
4560  *	zfs_addmap() updates z_mapcnt
4561  */
4562 /*ARGSUSED*/
4563 static int
4564 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4565     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4566     caller_context_t *ct)
4567 {
4568 	znode_t *zp = VTOZ(vp);
4569 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4570 	segvn_crargs_t	vn_a;
4571 	int		error;
4572 
4573 	ZFS_ENTER(zfsvfs);
4574 	ZFS_VERIFY_ZP(zp);
4575 
4576 	if ((prot & PROT_WRITE) && (zp->z_pflags &
4577 	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4578 		ZFS_EXIT(zfsvfs);
4579 		return (EPERM);
4580 	}
4581 
4582 	if ((prot & (PROT_READ | PROT_EXEC)) &&
4583 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4584 		ZFS_EXIT(zfsvfs);
4585 		return (EACCES);
4586 	}
4587 
4588 	if (vp->v_flag & VNOMAP) {
4589 		ZFS_EXIT(zfsvfs);
4590 		return (ENOSYS);
4591 	}
4592 
4593 	if (off < 0 || len > MAXOFFSET_T - off) {
4594 		ZFS_EXIT(zfsvfs);
4595 		return (ENXIO);
4596 	}
4597 
4598 	if (vp->v_type != VREG) {
4599 		ZFS_EXIT(zfsvfs);
4600 		return (ENODEV);
4601 	}
4602 
4603 	/*
4604 	 * If file is locked, disallow mapping.
4605 	 */
4606 	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4607 		ZFS_EXIT(zfsvfs);
4608 		return (EAGAIN);
4609 	}
4610 
4611 	as_rangelock(as);
4612 	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4613 	if (error != 0) {
4614 		as_rangeunlock(as);
4615 		ZFS_EXIT(zfsvfs);
4616 		return (error);
4617 	}
4618 
4619 	vn_a.vp = vp;
4620 	vn_a.offset = (u_offset_t)off;
4621 	vn_a.type = flags & MAP_TYPE;
4622 	vn_a.prot = prot;
4623 	vn_a.maxprot = maxprot;
4624 	vn_a.cred = cr;
4625 	vn_a.amp = NULL;
4626 	vn_a.flags = flags & ~MAP_TYPE;
4627 	vn_a.szc = 0;
4628 	vn_a.lgrp_mem_policy_flags = 0;
4629 
4630 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
4631 
4632 	as_rangeunlock(as);
4633 	ZFS_EXIT(zfsvfs);
4634 	return (error);
4635 }
4636 
4637 /* ARGSUSED */
4638 static int
4639 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4640     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4641     caller_context_t *ct)
4642 {
4643 	uint64_t pages = btopr(len);
4644 
4645 	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4646 	return (0);
4647 }
4648 
4649 /*
4650  * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4651  * more accurate mtime for the associated file.  Since we don't have a way of
4652  * detecting when the data was actually modified, we have to resort to
4653  * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4654  * last page is pushed.  The problem occurs when the msync() call is omitted,
4655  * which by far the most common case:
4656  *
4657  * 	open()
4658  * 	mmap()
4659  * 	<modify memory>
4660  * 	munmap()
4661  * 	close()
4662  * 	<time lapse>
4663  * 	putpage() via fsflush
4664  *
4665  * If we wait until fsflush to come along, we can have a modification time that
4666  * is some arbitrary point in the future.  In order to prevent this in the
4667  * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4668  * torn down.
4669  */
4670 /* ARGSUSED */
4671 static int
4672 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4673     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4674     caller_context_t *ct)
4675 {
4676 	uint64_t pages = btopr(len);
4677 
4678 	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4679 	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4680 
4681 	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4682 	    vn_has_cached_data(vp))
4683 		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4684 
4685 	return (0);
4686 }
4687 
4688 /*
4689  * Free or allocate space in a file.  Currently, this function only
4690  * supports the `F_FREESP' command.  However, this command is somewhat
4691  * misnamed, as its functionality includes the ability to allocate as
4692  * well as free space.
4693  *
4694  *	IN:	vp	- vnode of file to free data in.
4695  *		cmd	- action to take (only F_FREESP supported).
4696  *		bfp	- section of file to free/alloc.
4697  *		flag	- current file open mode flags.
4698  *		offset	- current file offset.
4699  *		cr	- credentials of caller [UNUSED].
4700  *		ct	- caller context.
4701  *
4702  *	RETURN:	0 if success
4703  *		error code if failure
4704  *
4705  * Timestamps:
4706  *	vp - ctime|mtime updated
4707  */
4708 /* ARGSUSED */
4709 static int
4710 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4711     offset_t offset, cred_t *cr, caller_context_t *ct)
4712 {
4713 	znode_t		*zp = VTOZ(vp);
4714 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4715 	uint64_t	off, len;
4716 	int		error;
4717 
4718 	ZFS_ENTER(zfsvfs);
4719 	ZFS_VERIFY_ZP(zp);
4720 
4721 	if (cmd != F_FREESP) {
4722 		ZFS_EXIT(zfsvfs);
4723 		return (EINVAL);
4724 	}
4725 
4726 	if (error = convoff(vp, bfp, 0, offset)) {
4727 		ZFS_EXIT(zfsvfs);
4728 		return (error);
4729 	}
4730 
4731 	if (bfp->l_len < 0) {
4732 		ZFS_EXIT(zfsvfs);
4733 		return (EINVAL);
4734 	}
4735 
4736 	off = bfp->l_start;
4737 	len = bfp->l_len; /* 0 means from off to end of file */
4738 
4739 	error = zfs_freesp(zp, off, len, flag, TRUE);
4740 
4741 	ZFS_EXIT(zfsvfs);
4742 	return (error);
4743 }
4744 
4745 /*ARGSUSED*/
4746 static int
4747 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4748 {
4749 	znode_t		*zp = VTOZ(vp);
4750 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4751 	uint32_t	gen;
4752 	uint64_t	gen64;
4753 	uint64_t	object = zp->z_id;
4754 	zfid_short_t	*zfid;
4755 	int		size, i, error;
4756 
4757 	ZFS_ENTER(zfsvfs);
4758 	ZFS_VERIFY_ZP(zp);
4759 
4760 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4761 	    &gen64, sizeof (uint64_t))) != 0) {
4762 		ZFS_EXIT(zfsvfs);
4763 		return (error);
4764 	}
4765 
4766 	gen = (uint32_t)gen64;
4767 
4768 	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4769 	if (fidp->fid_len < size) {
4770 		fidp->fid_len = size;
4771 		ZFS_EXIT(zfsvfs);
4772 		return (ENOSPC);
4773 	}
4774 
4775 	zfid = (zfid_short_t *)fidp;
4776 
4777 	zfid->zf_len = size;
4778 
4779 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4780 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4781 
4782 	/* Must have a non-zero generation number to distinguish from .zfs */
4783 	if (gen == 0)
4784 		gen = 1;
4785 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4786 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4787 
4788 	if (size == LONG_FID_LEN) {
4789 		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
4790 		zfid_long_t	*zlfid;
4791 
4792 		zlfid = (zfid_long_t *)fidp;
4793 
4794 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4795 			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4796 
4797 		/* XXX - this should be the generation number for the objset */
4798 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4799 			zlfid->zf_setgen[i] = 0;
4800 	}
4801 
4802 	ZFS_EXIT(zfsvfs);
4803 	return (0);
4804 }
4805 
4806 static int
4807 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4808     caller_context_t *ct)
4809 {
4810 	znode_t		*zp, *xzp;
4811 	zfsvfs_t	*zfsvfs;
4812 	zfs_dirlock_t	*dl;
4813 	int		error;
4814 
4815 	switch (cmd) {
4816 	case _PC_LINK_MAX:
4817 		*valp = ULONG_MAX;
4818 		return (0);
4819 
4820 	case _PC_FILESIZEBITS:
4821 		*valp = 64;
4822 		return (0);
4823 
4824 	case _PC_XATTR_EXISTS:
4825 		zp = VTOZ(vp);
4826 		zfsvfs = zp->z_zfsvfs;
4827 		ZFS_ENTER(zfsvfs);
4828 		ZFS_VERIFY_ZP(zp);
4829 		*valp = 0;
4830 		error = zfs_dirent_lock(&dl, zp, "", &xzp,
4831 		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4832 		if (error == 0) {
4833 			zfs_dirent_unlock(dl);
4834 			if (!zfs_dirempty(xzp))
4835 				*valp = 1;
4836 			VN_RELE(ZTOV(xzp));
4837 		} else if (error == ENOENT) {
4838 			/*
4839 			 * If there aren't extended attributes, it's the
4840 			 * same as having zero of them.
4841 			 */
4842 			error = 0;
4843 		}
4844 		ZFS_EXIT(zfsvfs);
4845 		return (error);
4846 
4847 	case _PC_SATTR_ENABLED:
4848 	case _PC_SATTR_EXISTS:
4849 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4850 		    (vp->v_type == VREG || vp->v_type == VDIR);
4851 		return (0);
4852 
4853 	case _PC_ACCESS_FILTERING:
4854 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4855 		    vp->v_type == VDIR;
4856 		return (0);
4857 
4858 	case _PC_ACL_ENABLED:
4859 		*valp = _ACL_ACE_ENABLED;
4860 		return (0);
4861 
4862 	case _PC_MIN_HOLE_SIZE:
4863 		*valp = (ulong_t)SPA_MINBLOCKSIZE;
4864 		return (0);
4865 
4866 	case _PC_TIMESTAMP_RESOLUTION:
4867 		/* nanosecond timestamp resolution */
4868 		*valp = 1L;
4869 		return (0);
4870 
4871 	default:
4872 		return (fs_pathconf(vp, cmd, valp, cr, ct));
4873 	}
4874 }
4875 
4876 /*ARGSUSED*/
4877 static int
4878 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4879     caller_context_t *ct)
4880 {
4881 	znode_t *zp = VTOZ(vp);
4882 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4883 	int error;
4884 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4885 
4886 	ZFS_ENTER(zfsvfs);
4887 	ZFS_VERIFY_ZP(zp);
4888 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4889 	ZFS_EXIT(zfsvfs);
4890 
4891 	return (error);
4892 }
4893 
4894 /*ARGSUSED*/
4895 static int
4896 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4897     caller_context_t *ct)
4898 {
4899 	znode_t *zp = VTOZ(vp);
4900 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4901 	int error;
4902 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4903 	zilog_t	*zilog = zfsvfs->z_log;
4904 
4905 	ZFS_ENTER(zfsvfs);
4906 	ZFS_VERIFY_ZP(zp);
4907 
4908 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4909 
4910 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4911 		zil_commit(zilog, 0);
4912 
4913 	ZFS_EXIT(zfsvfs);
4914 	return (error);
4915 }
4916 
4917 /*
4918  * Tunable, both must be a power of 2.
4919  *
4920  * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf
4921  * zcr_blksz_max: if set to less than the file block size, allow loaning out of
4922  *                an arcbuf for a partial block read
4923  */
4924 int zcr_blksz_min = (1 << 10);	/* 1K */
4925 int zcr_blksz_max = (1 << 17);	/* 128K */
4926 
4927 /*ARGSUSED*/
4928 static int
4929 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
4930     caller_context_t *ct)
4931 {
4932 	znode_t	*zp = VTOZ(vp);
4933 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4934 	int max_blksz = zfsvfs->z_max_blksz;
4935 	uio_t *uio = &xuio->xu_uio;
4936 	ssize_t size = uio->uio_resid;
4937 	offset_t offset = uio->uio_loffset;
4938 	int blksz;
4939 	int fullblk, i;
4940 	arc_buf_t *abuf;
4941 	ssize_t maxsize;
4942 	int preamble, postamble;
4943 
4944 	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
4945 		return (EINVAL);
4946 
4947 	ZFS_ENTER(zfsvfs);
4948 	ZFS_VERIFY_ZP(zp);
4949 	switch (ioflag) {
4950 	case UIO_WRITE:
4951 		/*
4952 		 * Loan out an arc_buf for write if write size is bigger than
4953 		 * max_blksz, and the file's block size is also max_blksz.
4954 		 */
4955 		blksz = max_blksz;
4956 		if (size < blksz || zp->z_blksz != blksz) {
4957 			ZFS_EXIT(zfsvfs);
4958 			return (EINVAL);
4959 		}
4960 		/*
4961 		 * Caller requests buffers for write before knowing where the
4962 		 * write offset might be (e.g. NFS TCP write).
4963 		 */
4964 		if (offset == -1) {
4965 			preamble = 0;
4966 		} else {
4967 			preamble = P2PHASE(offset, blksz);
4968 			if (preamble) {
4969 				preamble = blksz - preamble;
4970 				size -= preamble;
4971 			}
4972 		}
4973 
4974 		postamble = P2PHASE(size, blksz);
4975 		size -= postamble;
4976 
4977 		fullblk = size / blksz;
4978 		(void) dmu_xuio_init(xuio,
4979 		    (preamble != 0) + fullblk + (postamble != 0));
4980 		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
4981 		    int, postamble, int,
4982 		    (preamble != 0) + fullblk + (postamble != 0));
4983 
4984 		/*
4985 		 * Have to fix iov base/len for partial buffers.  They
4986 		 * currently represent full arc_buf's.
4987 		 */
4988 		if (preamble) {
4989 			/* data begins in the middle of the arc_buf */
4990 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4991 			    blksz);
4992 			ASSERT(abuf);
4993 			(void) dmu_xuio_add(xuio, abuf,
4994 			    blksz - preamble, preamble);
4995 		}
4996 
4997 		for (i = 0; i < fullblk; i++) {
4998 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4999 			    blksz);
5000 			ASSERT(abuf);
5001 			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
5002 		}
5003 
5004 		if (postamble) {
5005 			/* data ends in the middle of the arc_buf */
5006 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5007 			    blksz);
5008 			ASSERT(abuf);
5009 			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
5010 		}
5011 		break;
5012 	case UIO_READ:
5013 		/*
5014 		 * Loan out an arc_buf for read if the read size is larger than
5015 		 * the current file block size.  Block alignment is not
5016 		 * considered.  Partial arc_buf will be loaned out for read.
5017 		 */
5018 		blksz = zp->z_blksz;
5019 		if (blksz < zcr_blksz_min)
5020 			blksz = zcr_blksz_min;
5021 		if (blksz > zcr_blksz_max)
5022 			blksz = zcr_blksz_max;
5023 		/* avoid potential complexity of dealing with it */
5024 		if (blksz > max_blksz) {
5025 			ZFS_EXIT(zfsvfs);
5026 			return (EINVAL);
5027 		}
5028 
5029 		maxsize = zp->z_size - uio->uio_loffset;
5030 		if (size > maxsize)
5031 			size = maxsize;
5032 
5033 		if (size < blksz || vn_has_cached_data(vp)) {
5034 			ZFS_EXIT(zfsvfs);
5035 			return (EINVAL);
5036 		}
5037 		break;
5038 	default:
5039 		ZFS_EXIT(zfsvfs);
5040 		return (EINVAL);
5041 	}
5042 
5043 	uio->uio_extflg = UIO_XUIO;
5044 	XUIO_XUZC_RW(xuio) = ioflag;
5045 	ZFS_EXIT(zfsvfs);
5046 	return (0);
5047 }
5048 
5049 /*ARGSUSED*/
5050 static int
5051 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5052 {
5053 	int i;
5054 	arc_buf_t *abuf;
5055 	int ioflag = XUIO_XUZC_RW(xuio);
5056 
5057 	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5058 
5059 	i = dmu_xuio_cnt(xuio);
5060 	while (i-- > 0) {
5061 		abuf = dmu_xuio_arcbuf(xuio, i);
5062 		/*
5063 		 * if abuf == NULL, it must be a write buffer
5064 		 * that has been returned in zfs_write().
5065 		 */
5066 		if (abuf)
5067 			dmu_return_arcbuf(abuf);
5068 		ASSERT(abuf || ioflag == UIO_WRITE);
5069 	}
5070 
5071 	dmu_xuio_fini(xuio);
5072 	return (0);
5073 }
5074 
5075 /*
5076  * Predeclare these here so that the compiler assumes that
5077  * this is an "old style" function declaration that does
5078  * not include arguments => we won't get type mismatch errors
5079  * in the initializations that follow.
5080  */
5081 static int zfs_inval();
5082 static int zfs_isdir();
5083 
5084 static int
5085 zfs_inval()
5086 {
5087 	return (EINVAL);
5088 }
5089 
5090 static int
5091 zfs_isdir()
5092 {
5093 	return (EISDIR);
5094 }
5095 /*
5096  * Directory vnode operations template
5097  */
5098 vnodeops_t *zfs_dvnodeops;
5099 const fs_operation_def_t zfs_dvnodeops_template[] = {
5100 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5101 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5102 	VOPNAME_READ,		{ .error = zfs_isdir },
5103 	VOPNAME_WRITE,		{ .error = zfs_isdir },
5104 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5105 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5106 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5107 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5108 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5109 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5110 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5111 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5112 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5113 	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5114 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5115 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5116 	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5117 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5118 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5119 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5120 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5121 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5122 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5123 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5124 	VOPNAME_VNEVENT, 	{ .vop_vnevent = fs_vnevent_support },
5125 	NULL,			NULL
5126 };
5127 
5128 /*
5129  * Regular file vnode operations template
5130  */
5131 vnodeops_t *zfs_fvnodeops;
5132 const fs_operation_def_t zfs_fvnodeops_template[] = {
5133 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5134 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5135 	VOPNAME_READ,		{ .vop_read = zfs_read },
5136 	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5137 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5138 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5139 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5140 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5141 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5142 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5143 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5144 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5145 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5146 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5147 	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5148 	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5149 	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5150 	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5151 	VOPNAME_MAP,		{ .vop_map = zfs_map },
5152 	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5153 	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5154 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5155 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5156 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5157 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5158 	VOPNAME_REQZCBUF, 	{ .vop_reqzcbuf = zfs_reqzcbuf },
5159 	VOPNAME_RETZCBUF, 	{ .vop_retzcbuf = zfs_retzcbuf },
5160 	NULL,			NULL
5161 };
5162 
5163 /*
5164  * Symbolic link vnode operations template
5165  */
5166 vnodeops_t *zfs_symvnodeops;
5167 const fs_operation_def_t zfs_symvnodeops_template[] = {
5168 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5169 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5170 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5171 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5172 	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5173 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5174 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5175 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5176 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5177 	NULL,			NULL
5178 };
5179 
5180 /*
5181  * special share hidden files vnode operations template
5182  */
5183 vnodeops_t *zfs_sharevnodeops;
5184 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5185 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5186 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5187 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5188 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5189 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5190 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5191 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5192 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5193 	NULL,			NULL
5194 };
5195 
5196 /*
5197  * Extended attribute directory vnode operations template
5198  *	This template is identical to the directory vnodes
5199  *	operation template except for restricted operations:
5200  *		VOP_MKDIR()
5201  *		VOP_SYMLINK()
5202  * Note that there are other restrictions embedded in:
5203  *	zfs_create()	- restrict type to VREG
5204  *	zfs_link()	- no links into/out of attribute space
5205  *	zfs_rename()	- no moves into/out of attribute space
5206  */
5207 vnodeops_t *zfs_xdvnodeops;
5208 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5209 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5210 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5211 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5212 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5213 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5214 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5215 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5216 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5217 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5218 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5219 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5220 	VOPNAME_MKDIR,		{ .error = zfs_inval },
5221 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5222 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5223 	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5224 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5225 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5226 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5227 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5228 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5229 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5230 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5231 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5232 	NULL,			NULL
5233 };
5234 
5235 /*
5236  * Error vnode operations template
5237  */
5238 vnodeops_t *zfs_evnodeops;
5239 const fs_operation_def_t zfs_evnodeops_template[] = {
5240 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5241 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5242 	NULL,			NULL
5243 };
5244