1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Portions Copyright 2007 Jeremy Teo */ 26 /* Portions Copyright 2010 Robert Milkowski */ 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/vfs.h> 35 #include <sys/vfs_opreg.h> 36 #include <sys/vnode.h> 37 #include <sys/file.h> 38 #include <sys/stat.h> 39 #include <sys/kmem.h> 40 #include <sys/taskq.h> 41 #include <sys/uio.h> 42 #include <sys/vmsystm.h> 43 #include <sys/atomic.h> 44 #include <sys/vm.h> 45 #include <vm/seg_vn.h> 46 #include <vm/pvn.h> 47 #include <vm/as.h> 48 #include <vm/kpm.h> 49 #include <vm/seg_kpm.h> 50 #include <sys/mman.h> 51 #include <sys/pathname.h> 52 #include <sys/cmn_err.h> 53 #include <sys/errno.h> 54 #include <sys/unistd.h> 55 #include <sys/zfs_dir.h> 56 #include <sys/zfs_acl.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/dmu.h> 60 #include <sys/dmu_objset.h> 61 #include <sys/spa.h> 62 #include <sys/txg.h> 63 #include <sys/dbuf.h> 64 #include <sys/zap.h> 65 #include <sys/sa.h> 66 #include <sys/dirent.h> 67 #include <sys/policy.h> 68 #include <sys/sunddi.h> 69 #include <sys/filio.h> 70 #include <sys/sid.h> 71 #include "fs/fs_subr.h" 72 #include <sys/zfs_ctldir.h> 73 #include <sys/zfs_fuid.h> 74 #include <sys/zfs_sa.h> 75 #include <sys/dnlc.h> 76 #include <sys/zfs_rlock.h> 77 #include <sys/extdirent.h> 78 #include <sys/kidmap.h> 79 #include <sys/cred.h> 80 #include <sys/attr.h> 81 82 /* 83 * Programming rules. 84 * 85 * Each vnode op performs some logical unit of work. To do this, the ZPL must 86 * properly lock its in-core state, create a DMU transaction, do the work, 87 * record this work in the intent log (ZIL), commit the DMU transaction, 88 * and wait for the intent log to commit if it is a synchronous operation. 89 * Moreover, the vnode ops must work in both normal and log replay context. 90 * The ordering of events is important to avoid deadlocks and references 91 * to freed memory. The example below illustrates the following Big Rules: 92 * 93 * (1) A check must be made in each zfs thread for a mounted file system. 94 * This is done avoiding races using ZFS_ENTER(zfsvfs). 95 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 96 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 97 * can return EIO from the calling function. 98 * 99 * (2) VN_RELE() should always be the last thing except for zil_commit() 100 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 101 * First, if it's the last reference, the vnode/znode 102 * can be freed, so the zp may point to freed memory. Second, the last 103 * reference will call zfs_zinactive(), which may induce a lot of work -- 104 * pushing cached pages (which acquires range locks) and syncing out 105 * cached atime changes. Third, zfs_zinactive() may require a new tx, 106 * which could deadlock the system if you were already holding one. 107 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 108 * 109 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 110 * as they can span dmu_tx_assign() calls. 111 * 112 * (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign(). 113 * This is critical because we don't want to block while holding locks. 114 * Note, in particular, that if a lock is sometimes acquired before 115 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 116 * use a non-blocking assign can deadlock the system. The scenario: 117 * 118 * Thread A has grabbed a lock before calling dmu_tx_assign(). 119 * Thread B is in an already-assigned tx, and blocks for this lock. 120 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 121 * forever, because the previous txg can't quiesce until B's tx commits. 122 * 123 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 124 * then drop all locks, call dmu_tx_wait(), and try again. 125 * 126 * (5) If the operation succeeded, generate the intent log entry for it 127 * before dropping locks. This ensures that the ordering of events 128 * in the intent log matches the order in which they actually occurred. 129 * During ZIL replay the zfs_log_* functions will update the sequence 130 * number to indicate the zil transaction has replayed. 131 * 132 * (6) At the end of each vnode op, the DMU tx must always commit, 133 * regardless of whether there were any errors. 134 * 135 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 136 * to ensure that synchronous semantics are provided when necessary. 137 * 138 * In general, this is how things should be ordered in each vnode op: 139 * 140 * ZFS_ENTER(zfsvfs); // exit if unmounted 141 * top: 142 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 143 * rw_enter(...); // grab any other locks you need 144 * tx = dmu_tx_create(...); // get DMU tx 145 * dmu_tx_hold_*(); // hold each object you might modify 146 * error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign 147 * if (error) { 148 * rw_exit(...); // drop locks 149 * zfs_dirent_unlock(dl); // unlock directory entry 150 * VN_RELE(...); // release held vnodes 151 * if (error == ERESTART) { 152 * dmu_tx_wait(tx); 153 * dmu_tx_abort(tx); 154 * goto top; 155 * } 156 * dmu_tx_abort(tx); // abort DMU tx 157 * ZFS_EXIT(zfsvfs); // finished in zfs 158 * return (error); // really out of space 159 * } 160 * error = do_real_work(); // do whatever this VOP does 161 * if (error == 0) 162 * zfs_log_*(...); // on success, make ZIL entry 163 * dmu_tx_commit(tx); // commit DMU tx -- error or not 164 * rw_exit(...); // drop locks 165 * zfs_dirent_unlock(dl); // unlock directory entry 166 * VN_RELE(...); // release held vnodes 167 * zil_commit(zilog, foid); // synchronous when necessary 168 * ZFS_EXIT(zfsvfs); // finished in zfs 169 * return (error); // done, report error 170 */ 171 172 /* ARGSUSED */ 173 static int 174 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 175 { 176 znode_t *zp = VTOZ(*vpp); 177 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 178 179 ZFS_ENTER(zfsvfs); 180 ZFS_VERIFY_ZP(zp); 181 182 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 183 ((flag & FAPPEND) == 0)) { 184 ZFS_EXIT(zfsvfs); 185 return (EPERM); 186 } 187 188 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 189 ZTOV(zp)->v_type == VREG && 190 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 191 if (fs_vscan(*vpp, cr, 0) != 0) { 192 ZFS_EXIT(zfsvfs); 193 return (EACCES); 194 } 195 } 196 197 /* Keep a count of the synchronous opens in the znode */ 198 if (flag & (FSYNC | FDSYNC)) 199 atomic_inc_32(&zp->z_sync_cnt); 200 201 ZFS_EXIT(zfsvfs); 202 return (0); 203 } 204 205 /* ARGSUSED */ 206 static int 207 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 208 caller_context_t *ct) 209 { 210 znode_t *zp = VTOZ(vp); 211 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 212 213 /* 214 * Clean up any locks held by this process on the vp. 215 */ 216 cleanlocks(vp, ddi_get_pid(), 0); 217 cleanshares(vp, ddi_get_pid()); 218 219 ZFS_ENTER(zfsvfs); 220 ZFS_VERIFY_ZP(zp); 221 222 /* Decrement the synchronous opens in the znode */ 223 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 224 atomic_dec_32(&zp->z_sync_cnt); 225 226 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 227 ZTOV(zp)->v_type == VREG && 228 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 229 VERIFY(fs_vscan(vp, cr, 1) == 0); 230 231 ZFS_EXIT(zfsvfs); 232 return (0); 233 } 234 235 /* 236 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 237 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 238 */ 239 static int 240 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 241 { 242 znode_t *zp = VTOZ(vp); 243 uint64_t noff = (uint64_t)*off; /* new offset */ 244 uint64_t file_sz; 245 int error; 246 boolean_t hole; 247 248 file_sz = zp->z_size; 249 if (noff >= file_sz) { 250 return (ENXIO); 251 } 252 253 if (cmd == _FIO_SEEK_HOLE) 254 hole = B_TRUE; 255 else 256 hole = B_FALSE; 257 258 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 259 260 /* end of file? */ 261 if ((error == ESRCH) || (noff > file_sz)) { 262 /* 263 * Handle the virtual hole at the end of file. 264 */ 265 if (hole) { 266 *off = file_sz; 267 return (0); 268 } 269 return (ENXIO); 270 } 271 272 if (noff < *off) 273 return (error); 274 *off = noff; 275 return (error); 276 } 277 278 /* ARGSUSED */ 279 static int 280 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 281 int *rvalp, caller_context_t *ct) 282 { 283 offset_t off; 284 int error; 285 zfsvfs_t *zfsvfs; 286 znode_t *zp; 287 288 switch (com) { 289 case _FIOFFS: 290 return (zfs_sync(vp->v_vfsp, 0, cred)); 291 292 /* 293 * The following two ioctls are used by bfu. Faking out, 294 * necessary to avoid bfu errors. 295 */ 296 case _FIOGDIO: 297 case _FIOSDIO: 298 return (0); 299 300 case _FIO_SEEK_DATA: 301 case _FIO_SEEK_HOLE: 302 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 303 return (EFAULT); 304 305 zp = VTOZ(vp); 306 zfsvfs = zp->z_zfsvfs; 307 ZFS_ENTER(zfsvfs); 308 ZFS_VERIFY_ZP(zp); 309 310 /* offset parameter is in/out */ 311 error = zfs_holey(vp, com, &off); 312 ZFS_EXIT(zfsvfs); 313 if (error) 314 return (error); 315 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 316 return (EFAULT); 317 return (0); 318 } 319 return (ENOTTY); 320 } 321 322 /* 323 * Utility functions to map and unmap a single physical page. These 324 * are used to manage the mappable copies of ZFS file data, and therefore 325 * do not update ref/mod bits. 326 */ 327 caddr_t 328 zfs_map_page(page_t *pp, enum seg_rw rw) 329 { 330 if (kpm_enable) 331 return (hat_kpm_mapin(pp, 0)); 332 ASSERT(rw == S_READ || rw == S_WRITE); 333 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 334 (caddr_t)-1)); 335 } 336 337 void 338 zfs_unmap_page(page_t *pp, caddr_t addr) 339 { 340 if (kpm_enable) { 341 hat_kpm_mapout(pp, 0, addr); 342 } else { 343 ppmapout(addr); 344 } 345 } 346 347 /* 348 * When a file is memory mapped, we must keep the IO data synchronized 349 * between the DMU cache and the memory mapped pages. What this means: 350 * 351 * On Write: If we find a memory mapped page, we write to *both* 352 * the page and the dmu buffer. 353 */ 354 static void 355 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 356 { 357 int64_t off; 358 359 off = start & PAGEOFFSET; 360 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 361 page_t *pp; 362 uint64_t nbytes = MIN(PAGESIZE - off, len); 363 364 if (pp = page_lookup(vp, start, SE_SHARED)) { 365 caddr_t va; 366 367 va = zfs_map_page(pp, S_WRITE); 368 (void) dmu_read(os, oid, start+off, nbytes, va+off, 369 DMU_READ_PREFETCH); 370 zfs_unmap_page(pp, va); 371 page_unlock(pp); 372 } 373 len -= nbytes; 374 off = 0; 375 } 376 } 377 378 /* 379 * When a file is memory mapped, we must keep the IO data synchronized 380 * between the DMU cache and the memory mapped pages. What this means: 381 * 382 * On Read: We "read" preferentially from memory mapped pages, 383 * else we default from the dmu buffer. 384 * 385 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 386 * the file is memory mapped. 387 */ 388 static int 389 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 390 { 391 znode_t *zp = VTOZ(vp); 392 objset_t *os = zp->z_zfsvfs->z_os; 393 int64_t start, off; 394 int len = nbytes; 395 int error = 0; 396 397 start = uio->uio_loffset; 398 off = start & PAGEOFFSET; 399 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 400 page_t *pp; 401 uint64_t bytes = MIN(PAGESIZE - off, len); 402 403 if (pp = page_lookup(vp, start, SE_SHARED)) { 404 caddr_t va; 405 406 va = zfs_map_page(pp, S_READ); 407 error = uiomove(va + off, bytes, UIO_READ, uio); 408 zfs_unmap_page(pp, va); 409 page_unlock(pp); 410 } else { 411 error = dmu_read_uio(os, zp->z_id, uio, bytes); 412 } 413 len -= bytes; 414 off = 0; 415 if (error) 416 break; 417 } 418 return (error); 419 } 420 421 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 422 423 /* 424 * Read bytes from specified file into supplied buffer. 425 * 426 * IN: vp - vnode of file to be read from. 427 * uio - structure supplying read location, range info, 428 * and return buffer. 429 * ioflag - SYNC flags; used to provide FRSYNC semantics. 430 * cr - credentials of caller. 431 * ct - caller context 432 * 433 * OUT: uio - updated offset and range, buffer filled. 434 * 435 * RETURN: 0 if success 436 * error code if failure 437 * 438 * Side Effects: 439 * vp - atime updated if byte count > 0 440 */ 441 /* ARGSUSED */ 442 static int 443 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 444 { 445 znode_t *zp = VTOZ(vp); 446 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 447 objset_t *os; 448 ssize_t n, nbytes; 449 int error; 450 rl_t *rl; 451 xuio_t *xuio = NULL; 452 453 ZFS_ENTER(zfsvfs); 454 ZFS_VERIFY_ZP(zp); 455 os = zfsvfs->z_os; 456 457 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 458 ZFS_EXIT(zfsvfs); 459 return (EACCES); 460 } 461 462 /* 463 * Validate file offset 464 */ 465 if (uio->uio_loffset < (offset_t)0) { 466 ZFS_EXIT(zfsvfs); 467 return (EINVAL); 468 } 469 470 /* 471 * Fasttrack empty reads 472 */ 473 if (uio->uio_resid == 0) { 474 ZFS_EXIT(zfsvfs); 475 return (0); 476 } 477 478 /* 479 * Check for mandatory locks 480 */ 481 if (MANDMODE(zp->z_mode)) { 482 if (error = chklock(vp, FREAD, 483 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 484 ZFS_EXIT(zfsvfs); 485 return (error); 486 } 487 } 488 489 /* 490 * If we're in FRSYNC mode, sync out this znode before reading it. 491 */ 492 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 493 zil_commit(zfsvfs->z_log, zp->z_id); 494 495 /* 496 * Lock the range against changes. 497 */ 498 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 499 500 /* 501 * If we are reading past end-of-file we can skip 502 * to the end; but we might still need to set atime. 503 */ 504 if (uio->uio_loffset >= zp->z_size) { 505 error = 0; 506 goto out; 507 } 508 509 ASSERT(uio->uio_loffset < zp->z_size); 510 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 511 512 if ((uio->uio_extflg == UIO_XUIO) && 513 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 514 int nblk; 515 int blksz = zp->z_blksz; 516 uint64_t offset = uio->uio_loffset; 517 518 xuio = (xuio_t *)uio; 519 if ((ISP2(blksz))) { 520 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 521 blksz)) / blksz; 522 } else { 523 ASSERT(offset + n <= blksz); 524 nblk = 1; 525 } 526 (void) dmu_xuio_init(xuio, nblk); 527 528 if (vn_has_cached_data(vp)) { 529 /* 530 * For simplicity, we always allocate a full buffer 531 * even if we only expect to read a portion of a block. 532 */ 533 while (--nblk >= 0) { 534 (void) dmu_xuio_add(xuio, 535 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 536 blksz), 0, blksz); 537 } 538 } 539 } 540 541 while (n > 0) { 542 nbytes = MIN(n, zfs_read_chunk_size - 543 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 544 545 if (vn_has_cached_data(vp)) 546 error = mappedread(vp, nbytes, uio); 547 else 548 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 549 if (error) { 550 /* convert checksum errors into IO errors */ 551 if (error == ECKSUM) 552 error = EIO; 553 break; 554 } 555 556 n -= nbytes; 557 } 558 out: 559 zfs_range_unlock(rl); 560 561 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 562 ZFS_EXIT(zfsvfs); 563 return (error); 564 } 565 566 /* 567 * Write the bytes to a file. 568 * 569 * IN: vp - vnode of file to be written to. 570 * uio - structure supplying write location, range info, 571 * and data buffer. 572 * ioflag - FAPPEND flag set if in append mode. 573 * cr - credentials of caller. 574 * ct - caller context (NFS/CIFS fem monitor only) 575 * 576 * OUT: uio - updated offset and range. 577 * 578 * RETURN: 0 if success 579 * error code if failure 580 * 581 * Timestamps: 582 * vp - ctime|mtime updated if byte count > 0 583 */ 584 585 /* ARGSUSED */ 586 static int 587 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 588 { 589 znode_t *zp = VTOZ(vp); 590 rlim64_t limit = uio->uio_llimit; 591 ssize_t start_resid = uio->uio_resid; 592 ssize_t tx_bytes; 593 uint64_t end_size; 594 dmu_tx_t *tx; 595 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 596 zilog_t *zilog; 597 offset_t woff; 598 ssize_t n, nbytes; 599 rl_t *rl; 600 int max_blksz = zfsvfs->z_max_blksz; 601 int error; 602 arc_buf_t *abuf; 603 iovec_t *aiov; 604 xuio_t *xuio = NULL; 605 int i_iov = 0; 606 int iovcnt = uio->uio_iovcnt; 607 iovec_t *iovp = uio->uio_iov; 608 int write_eof; 609 int count = 0; 610 sa_bulk_attr_t bulk[4]; 611 uint64_t mtime[2], ctime[2]; 612 613 /* 614 * Fasttrack empty write 615 */ 616 n = start_resid; 617 if (n == 0) 618 return (0); 619 620 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 621 limit = MAXOFFSET_T; 622 623 ZFS_ENTER(zfsvfs); 624 ZFS_VERIFY_ZP(zp); 625 626 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 627 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 628 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 629 &zp->z_size, 8); 630 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 631 &zp->z_pflags, 8); 632 633 /* 634 * If immutable or not appending then return EPERM 635 */ 636 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 637 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 638 (uio->uio_loffset < zp->z_size))) { 639 ZFS_EXIT(zfsvfs); 640 return (EPERM); 641 } 642 643 zilog = zfsvfs->z_log; 644 645 /* 646 * Validate file offset 647 */ 648 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 649 if (woff < 0) { 650 ZFS_EXIT(zfsvfs); 651 return (EINVAL); 652 } 653 654 /* 655 * Check for mandatory locks before calling zfs_range_lock() 656 * in order to prevent a deadlock with locks set via fcntl(). 657 */ 658 if (MANDMODE((mode_t)zp->z_mode) && 659 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 660 ZFS_EXIT(zfsvfs); 661 return (error); 662 } 663 664 /* 665 * Pre-fault the pages to ensure slow (eg NFS) pages 666 * don't hold up txg. 667 * Skip this if uio contains loaned arc_buf. 668 */ 669 if ((uio->uio_extflg == UIO_XUIO) && 670 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 671 xuio = (xuio_t *)uio; 672 else 673 uio_prefaultpages(MIN(n, max_blksz), uio); 674 675 /* 676 * If in append mode, set the io offset pointer to eof. 677 */ 678 if (ioflag & FAPPEND) { 679 /* 680 * Obtain an appending range lock to guarantee file append 681 * semantics. We reset the write offset once we have the lock. 682 */ 683 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 684 woff = rl->r_off; 685 if (rl->r_len == UINT64_MAX) { 686 /* 687 * We overlocked the file because this write will cause 688 * the file block size to increase. 689 * Note that zp_size cannot change with this lock held. 690 */ 691 woff = zp->z_size; 692 } 693 uio->uio_loffset = woff; 694 } else { 695 /* 696 * Note that if the file block size will change as a result of 697 * this write, then this range lock will lock the entire file 698 * so that we can re-write the block safely. 699 */ 700 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 701 } 702 703 if (woff >= limit) { 704 zfs_range_unlock(rl); 705 ZFS_EXIT(zfsvfs); 706 return (EFBIG); 707 } 708 709 if ((woff + n) > limit || woff > (limit - n)) 710 n = limit - woff; 711 712 /* Will this write extend the file length? */ 713 write_eof = (woff + n > zp->z_size); 714 715 end_size = MAX(zp->z_size, woff + n); 716 717 /* 718 * Write the file in reasonable size chunks. Each chunk is written 719 * in a separate transaction; this keeps the intent log records small 720 * and allows us to do more fine-grained space accounting. 721 */ 722 while (n > 0) { 723 abuf = NULL; 724 woff = uio->uio_loffset; 725 again: 726 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 727 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 728 if (abuf != NULL) 729 dmu_return_arcbuf(abuf); 730 error = EDQUOT; 731 break; 732 } 733 734 if (xuio && abuf == NULL) { 735 ASSERT(i_iov < iovcnt); 736 aiov = &iovp[i_iov]; 737 abuf = dmu_xuio_arcbuf(xuio, i_iov); 738 dmu_xuio_clear(xuio, i_iov); 739 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 740 iovec_t *, aiov, arc_buf_t *, abuf); 741 ASSERT((aiov->iov_base == abuf->b_data) || 742 ((char *)aiov->iov_base - (char *)abuf->b_data + 743 aiov->iov_len == arc_buf_size(abuf))); 744 i_iov++; 745 } else if (abuf == NULL && n >= max_blksz && 746 woff >= zp->z_size && 747 P2PHASE(woff, max_blksz) == 0 && 748 zp->z_blksz == max_blksz) { 749 /* 750 * This write covers a full block. "Borrow" a buffer 751 * from the dmu so that we can fill it before we enter 752 * a transaction. This avoids the possibility of 753 * holding up the transaction if the data copy hangs 754 * up on a pagefault (e.g., from an NFS server mapping). 755 */ 756 size_t cbytes; 757 758 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 759 max_blksz); 760 ASSERT(abuf != NULL); 761 ASSERT(arc_buf_size(abuf) == max_blksz); 762 if (error = uiocopy(abuf->b_data, max_blksz, 763 UIO_WRITE, uio, &cbytes)) { 764 dmu_return_arcbuf(abuf); 765 break; 766 } 767 ASSERT(cbytes == max_blksz); 768 } 769 770 /* 771 * Start a transaction. 772 */ 773 tx = dmu_tx_create(zfsvfs->z_os); 774 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 775 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 776 zfs_sa_upgrade_txholds(tx, zp); 777 error = dmu_tx_assign(tx, TXG_NOWAIT); 778 if (error) { 779 if (error == ERESTART) { 780 dmu_tx_wait(tx); 781 dmu_tx_abort(tx); 782 goto again; 783 } 784 dmu_tx_abort(tx); 785 if (abuf != NULL) 786 dmu_return_arcbuf(abuf); 787 break; 788 } 789 790 /* 791 * If zfs_range_lock() over-locked we grow the blocksize 792 * and then reduce the lock range. This will only happen 793 * on the first iteration since zfs_range_reduce() will 794 * shrink down r_len to the appropriate size. 795 */ 796 if (rl->r_len == UINT64_MAX) { 797 uint64_t new_blksz; 798 799 if (zp->z_blksz > max_blksz) { 800 ASSERT(!ISP2(zp->z_blksz)); 801 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 802 } else { 803 new_blksz = MIN(end_size, max_blksz); 804 } 805 zfs_grow_blocksize(zp, new_blksz, tx); 806 zfs_range_reduce(rl, woff, n); 807 } 808 809 /* 810 * XXX - should we really limit each write to z_max_blksz? 811 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 812 */ 813 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 814 815 if (abuf == NULL) { 816 tx_bytes = uio->uio_resid; 817 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 818 uio, nbytes, tx); 819 tx_bytes -= uio->uio_resid; 820 } else { 821 tx_bytes = nbytes; 822 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 823 /* 824 * If this is not a full block write, but we are 825 * extending the file past EOF and this data starts 826 * block-aligned, use assign_arcbuf(). Otherwise, 827 * write via dmu_write(). 828 */ 829 if (tx_bytes < max_blksz && (!write_eof || 830 aiov->iov_base != abuf->b_data)) { 831 ASSERT(xuio); 832 dmu_write(zfsvfs->z_os, zp->z_id, woff, 833 aiov->iov_len, aiov->iov_base, tx); 834 dmu_return_arcbuf(abuf); 835 xuio_stat_wbuf_copied(); 836 } else { 837 ASSERT(xuio || tx_bytes == max_blksz); 838 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), 839 woff, abuf, tx); 840 } 841 ASSERT(tx_bytes <= uio->uio_resid); 842 uioskip(uio, tx_bytes); 843 } 844 if (tx_bytes && vn_has_cached_data(vp)) { 845 update_pages(vp, woff, 846 tx_bytes, zfsvfs->z_os, zp->z_id); 847 } 848 849 /* 850 * If we made no progress, we're done. If we made even 851 * partial progress, update the znode and ZIL accordingly. 852 */ 853 if (tx_bytes == 0) { 854 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 855 (void *)&zp->z_size, sizeof (uint64_t), tx); 856 dmu_tx_commit(tx); 857 ASSERT(error != 0); 858 break; 859 } 860 861 /* 862 * Clear Set-UID/Set-GID bits on successful write if not 863 * privileged and at least one of the excute bits is set. 864 * 865 * It would be nice to to this after all writes have 866 * been done, but that would still expose the ISUID/ISGID 867 * to another app after the partial write is committed. 868 * 869 * Note: we don't call zfs_fuid_map_id() here because 870 * user 0 is not an ephemeral uid. 871 */ 872 mutex_enter(&zp->z_acl_lock); 873 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 874 (S_IXUSR >> 6))) != 0 && 875 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 876 secpolicy_vnode_setid_retain(cr, 877 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 878 uint64_t newmode; 879 zp->z_mode &= ~(S_ISUID | S_ISGID); 880 newmode = zp->z_mode; 881 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 882 (void *)&newmode, sizeof (uint64_t), tx); 883 } 884 mutex_exit(&zp->z_acl_lock); 885 886 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 887 B_TRUE); 888 889 /* 890 * Update the file size (zp_size) if it has changed; 891 * account for possible concurrent updates. 892 */ 893 while ((end_size = zp->z_size) < uio->uio_loffset) { 894 (void) atomic_cas_64(&zp->z_size, end_size, 895 uio->uio_loffset); 896 ASSERT(error == 0); 897 } 898 /* 899 * If we are replaying and eof is non zero then force 900 * the file size to the specified eof. Note, there's no 901 * concurrency during replay. 902 */ 903 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 904 zp->z_size = zfsvfs->z_replay_eof; 905 906 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 907 908 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 909 dmu_tx_commit(tx); 910 911 if (error != 0) 912 break; 913 ASSERT(tx_bytes == nbytes); 914 n -= nbytes; 915 916 if (!xuio && n > 0) 917 uio_prefaultpages(MIN(n, max_blksz), uio); 918 } 919 920 zfs_range_unlock(rl); 921 922 /* 923 * If we're in replay mode, or we made no progress, return error. 924 * Otherwise, it's at least a partial write, so it's successful. 925 */ 926 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 927 ZFS_EXIT(zfsvfs); 928 return (error); 929 } 930 931 if (ioflag & (FSYNC | FDSYNC) || 932 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 933 zil_commit(zilog, zp->z_id); 934 935 ZFS_EXIT(zfsvfs); 936 return (0); 937 } 938 939 void 940 zfs_get_done(zgd_t *zgd, int error) 941 { 942 znode_t *zp = zgd->zgd_private; 943 objset_t *os = zp->z_zfsvfs->z_os; 944 945 if (zgd->zgd_db) 946 dmu_buf_rele(zgd->zgd_db, zgd); 947 948 zfs_range_unlock(zgd->zgd_rl); 949 950 /* 951 * Release the vnode asynchronously as we currently have the 952 * txg stopped from syncing. 953 */ 954 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 955 956 if (error == 0 && zgd->zgd_bp) 957 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 958 959 kmem_free(zgd, sizeof (zgd_t)); 960 } 961 962 #ifdef DEBUG 963 static int zil_fault_io = 0; 964 #endif 965 966 /* 967 * Get data to generate a TX_WRITE intent log record. 968 */ 969 int 970 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 971 { 972 zfsvfs_t *zfsvfs = arg; 973 objset_t *os = zfsvfs->z_os; 974 znode_t *zp; 975 uint64_t object = lr->lr_foid; 976 uint64_t offset = lr->lr_offset; 977 uint64_t size = lr->lr_length; 978 blkptr_t *bp = &lr->lr_blkptr; 979 dmu_buf_t *db; 980 zgd_t *zgd; 981 int error = 0; 982 983 ASSERT(zio != NULL); 984 ASSERT(size != 0); 985 986 /* 987 * Nothing to do if the file has been removed 988 */ 989 if (zfs_zget(zfsvfs, object, &zp) != 0) 990 return (ENOENT); 991 if (zp->z_unlinked) { 992 /* 993 * Release the vnode asynchronously as we currently have the 994 * txg stopped from syncing. 995 */ 996 VN_RELE_ASYNC(ZTOV(zp), 997 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 998 return (ENOENT); 999 } 1000 1001 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 1002 zgd->zgd_zilog = zfsvfs->z_log; 1003 zgd->zgd_private = zp; 1004 1005 /* 1006 * Write records come in two flavors: immediate and indirect. 1007 * For small writes it's cheaper to store the data with the 1008 * log record (immediate); for large writes it's cheaper to 1009 * sync the data and get a pointer to it (indirect) so that 1010 * we don't have to write the data twice. 1011 */ 1012 if (buf != NULL) { /* immediate write */ 1013 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); 1014 /* test for truncation needs to be done while range locked */ 1015 if (offset >= zp->z_size) { 1016 error = ENOENT; 1017 } else { 1018 error = dmu_read(os, object, offset, size, buf, 1019 DMU_READ_NO_PREFETCH); 1020 } 1021 ASSERT(error == 0 || error == ENOENT); 1022 } else { /* indirect write */ 1023 /* 1024 * Have to lock the whole block to ensure when it's 1025 * written out and it's checksum is being calculated 1026 * that no one can change the data. We need to re-check 1027 * blocksize after we get the lock in case it's changed! 1028 */ 1029 for (;;) { 1030 uint64_t blkoff; 1031 size = zp->z_blksz; 1032 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1033 offset -= blkoff; 1034 zgd->zgd_rl = zfs_range_lock(zp, offset, size, 1035 RL_READER); 1036 if (zp->z_blksz == size) 1037 break; 1038 offset += blkoff; 1039 zfs_range_unlock(zgd->zgd_rl); 1040 } 1041 /* test for truncation needs to be done while range locked */ 1042 if (lr->lr_offset >= zp->z_size) 1043 error = ENOENT; 1044 #ifdef DEBUG 1045 if (zil_fault_io) { 1046 error = EIO; 1047 zil_fault_io = 0; 1048 } 1049 #endif 1050 if (error == 0) 1051 error = dmu_buf_hold(os, object, offset, zgd, &db, 1052 DMU_READ_NO_PREFETCH); 1053 1054 if (error == 0) { 1055 zgd->zgd_db = db; 1056 zgd->zgd_bp = bp; 1057 1058 ASSERT(db->db_offset == offset); 1059 ASSERT(db->db_size == size); 1060 1061 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1062 zfs_get_done, zgd); 1063 ASSERT(error || lr->lr_length <= zp->z_blksz); 1064 1065 /* 1066 * On success, we need to wait for the write I/O 1067 * initiated by dmu_sync() to complete before we can 1068 * release this dbuf. We will finish everything up 1069 * in the zfs_get_done() callback. 1070 */ 1071 if (error == 0) 1072 return (0); 1073 1074 if (error == EALREADY) { 1075 lr->lr_common.lrc_txtype = TX_WRITE2; 1076 error = 0; 1077 } 1078 } 1079 } 1080 1081 zfs_get_done(zgd, error); 1082 1083 return (error); 1084 } 1085 1086 /*ARGSUSED*/ 1087 static int 1088 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1089 caller_context_t *ct) 1090 { 1091 znode_t *zp = VTOZ(vp); 1092 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1093 int error; 1094 1095 ZFS_ENTER(zfsvfs); 1096 ZFS_VERIFY_ZP(zp); 1097 1098 if (flag & V_ACE_MASK) 1099 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1100 else 1101 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1102 1103 ZFS_EXIT(zfsvfs); 1104 return (error); 1105 } 1106 1107 /* 1108 * If vnode is for a device return a specfs vnode instead. 1109 */ 1110 static int 1111 specvp_check(vnode_t **vpp, cred_t *cr) 1112 { 1113 int error = 0; 1114 1115 if (IS_DEVVP(*vpp)) { 1116 struct vnode *svp; 1117 1118 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1119 VN_RELE(*vpp); 1120 if (svp == NULL) 1121 error = ENOSYS; 1122 *vpp = svp; 1123 } 1124 return (error); 1125 } 1126 1127 1128 /* 1129 * Lookup an entry in a directory, or an extended attribute directory. 1130 * If it exists, return a held vnode reference for it. 1131 * 1132 * IN: dvp - vnode of directory to search. 1133 * nm - name of entry to lookup. 1134 * pnp - full pathname to lookup [UNUSED]. 1135 * flags - LOOKUP_XATTR set if looking for an attribute. 1136 * rdir - root directory vnode [UNUSED]. 1137 * cr - credentials of caller. 1138 * ct - caller context 1139 * direntflags - directory lookup flags 1140 * realpnp - returned pathname. 1141 * 1142 * OUT: vpp - vnode of located entry, NULL if not found. 1143 * 1144 * RETURN: 0 if success 1145 * error code if failure 1146 * 1147 * Timestamps: 1148 * NA 1149 */ 1150 /* ARGSUSED */ 1151 static int 1152 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1153 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1154 int *direntflags, pathname_t *realpnp) 1155 { 1156 znode_t *zdp = VTOZ(dvp); 1157 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1158 int error = 0; 1159 1160 /* fast path */ 1161 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1162 1163 if (dvp->v_type != VDIR) { 1164 return (ENOTDIR); 1165 } else if (zdp->z_sa_hdl == NULL) { 1166 return (EIO); 1167 } 1168 1169 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1170 error = zfs_fastaccesschk_execute(zdp, cr); 1171 if (!error) { 1172 *vpp = dvp; 1173 VN_HOLD(*vpp); 1174 return (0); 1175 } 1176 return (error); 1177 } else { 1178 vnode_t *tvp = dnlc_lookup(dvp, nm); 1179 1180 if (tvp) { 1181 error = zfs_fastaccesschk_execute(zdp, cr); 1182 if (error) { 1183 VN_RELE(tvp); 1184 return (error); 1185 } 1186 if (tvp == DNLC_NO_VNODE) { 1187 VN_RELE(tvp); 1188 return (ENOENT); 1189 } else { 1190 *vpp = tvp; 1191 return (specvp_check(vpp, cr)); 1192 } 1193 } 1194 } 1195 } 1196 1197 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1198 1199 ZFS_ENTER(zfsvfs); 1200 ZFS_VERIFY_ZP(zdp); 1201 1202 *vpp = NULL; 1203 1204 if (flags & LOOKUP_XATTR) { 1205 /* 1206 * If the xattr property is off, refuse the lookup request. 1207 */ 1208 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1209 ZFS_EXIT(zfsvfs); 1210 return (EINVAL); 1211 } 1212 1213 /* 1214 * We don't allow recursive attributes.. 1215 * Maybe someday we will. 1216 */ 1217 if (zdp->z_pflags & ZFS_XATTR) { 1218 ZFS_EXIT(zfsvfs); 1219 return (EINVAL); 1220 } 1221 1222 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1223 ZFS_EXIT(zfsvfs); 1224 return (error); 1225 } 1226 1227 /* 1228 * Do we have permission to get into attribute directory? 1229 */ 1230 1231 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1232 B_FALSE, cr)) { 1233 VN_RELE(*vpp); 1234 *vpp = NULL; 1235 } 1236 1237 ZFS_EXIT(zfsvfs); 1238 return (error); 1239 } 1240 1241 if (dvp->v_type != VDIR) { 1242 ZFS_EXIT(zfsvfs); 1243 return (ENOTDIR); 1244 } 1245 1246 /* 1247 * Check accessibility of directory. 1248 */ 1249 1250 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1251 ZFS_EXIT(zfsvfs); 1252 return (error); 1253 } 1254 1255 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1256 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1257 ZFS_EXIT(zfsvfs); 1258 return (EILSEQ); 1259 } 1260 1261 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1262 if (error == 0) 1263 error = specvp_check(vpp, cr); 1264 1265 ZFS_EXIT(zfsvfs); 1266 return (error); 1267 } 1268 1269 /* 1270 * Attempt to create a new entry in a directory. If the entry 1271 * already exists, truncate the file if permissible, else return 1272 * an error. Return the vp of the created or trunc'd file. 1273 * 1274 * IN: dvp - vnode of directory to put new file entry in. 1275 * name - name of new file entry. 1276 * vap - attributes of new file. 1277 * excl - flag indicating exclusive or non-exclusive mode. 1278 * mode - mode to open file with. 1279 * cr - credentials of caller. 1280 * flag - large file flag [UNUSED]. 1281 * ct - caller context 1282 * vsecp - ACL to be set 1283 * 1284 * OUT: vpp - vnode of created or trunc'd entry. 1285 * 1286 * RETURN: 0 if success 1287 * error code if failure 1288 * 1289 * Timestamps: 1290 * dvp - ctime|mtime updated if new entry created 1291 * vp - ctime|mtime always, atime if new 1292 */ 1293 1294 /* ARGSUSED */ 1295 static int 1296 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1297 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1298 vsecattr_t *vsecp) 1299 { 1300 znode_t *zp, *dzp = VTOZ(dvp); 1301 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1302 zilog_t *zilog; 1303 objset_t *os; 1304 zfs_dirlock_t *dl; 1305 dmu_tx_t *tx; 1306 int error; 1307 ksid_t *ksid; 1308 uid_t uid; 1309 gid_t gid = crgetgid(cr); 1310 zfs_acl_ids_t acl_ids; 1311 boolean_t fuid_dirtied; 1312 boolean_t have_acl = B_FALSE; 1313 1314 /* 1315 * If we have an ephemeral id, ACL, or XVATTR then 1316 * make sure file system is at proper version 1317 */ 1318 1319 ksid = crgetsid(cr, KSID_OWNER); 1320 if (ksid) 1321 uid = ksid_getid(ksid); 1322 else 1323 uid = crgetuid(cr); 1324 1325 if (zfsvfs->z_use_fuids == B_FALSE && 1326 (vsecp || (vap->va_mask & AT_XVATTR) || 1327 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1328 return (EINVAL); 1329 1330 ZFS_ENTER(zfsvfs); 1331 ZFS_VERIFY_ZP(dzp); 1332 os = zfsvfs->z_os; 1333 zilog = zfsvfs->z_log; 1334 1335 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1336 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1337 ZFS_EXIT(zfsvfs); 1338 return (EILSEQ); 1339 } 1340 1341 if (vap->va_mask & AT_XVATTR) { 1342 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1343 crgetuid(cr), cr, vap->va_type)) != 0) { 1344 ZFS_EXIT(zfsvfs); 1345 return (error); 1346 } 1347 } 1348 top: 1349 *vpp = NULL; 1350 1351 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1352 vap->va_mode &= ~VSVTX; 1353 1354 if (*name == '\0') { 1355 /* 1356 * Null component name refers to the directory itself. 1357 */ 1358 VN_HOLD(dvp); 1359 zp = dzp; 1360 dl = NULL; 1361 error = 0; 1362 } else { 1363 /* possible VN_HOLD(zp) */ 1364 int zflg = 0; 1365 1366 if (flag & FIGNORECASE) 1367 zflg |= ZCILOOK; 1368 1369 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1370 NULL, NULL); 1371 if (error) { 1372 if (have_acl) 1373 zfs_acl_ids_free(&acl_ids); 1374 if (strcmp(name, "..") == 0) 1375 error = EISDIR; 1376 ZFS_EXIT(zfsvfs); 1377 return (error); 1378 } 1379 } 1380 1381 if (zp == NULL) { 1382 uint64_t txtype; 1383 1384 /* 1385 * Create a new file object and update the directory 1386 * to reference it. 1387 */ 1388 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1389 if (have_acl) 1390 zfs_acl_ids_free(&acl_ids); 1391 goto out; 1392 } 1393 1394 /* 1395 * We only support the creation of regular files in 1396 * extended attribute directories. 1397 */ 1398 1399 if ((dzp->z_pflags & ZFS_XATTR) && 1400 (vap->va_type != VREG)) { 1401 if (have_acl) 1402 zfs_acl_ids_free(&acl_ids); 1403 error = EINVAL; 1404 goto out; 1405 } 1406 1407 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1408 cr, vsecp, &acl_ids)) != 0) 1409 goto out; 1410 have_acl = B_TRUE; 1411 1412 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1413 zfs_acl_ids_free(&acl_ids); 1414 error = EDQUOT; 1415 goto out; 1416 } 1417 1418 tx = dmu_tx_create(os); 1419 1420 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1421 ZFS_SA_BASE_ATTR_SIZE); 1422 1423 fuid_dirtied = zfsvfs->z_fuid_dirty; 1424 if (fuid_dirtied) 1425 zfs_fuid_txhold(zfsvfs, tx); 1426 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1427 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1428 if (!zfsvfs->z_use_sa && 1429 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1430 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1431 0, acl_ids.z_aclp->z_acl_bytes); 1432 } 1433 error = dmu_tx_assign(tx, TXG_NOWAIT); 1434 if (error) { 1435 zfs_dirent_unlock(dl); 1436 if (error == ERESTART) { 1437 dmu_tx_wait(tx); 1438 dmu_tx_abort(tx); 1439 goto top; 1440 } 1441 zfs_acl_ids_free(&acl_ids); 1442 dmu_tx_abort(tx); 1443 ZFS_EXIT(zfsvfs); 1444 return (error); 1445 } 1446 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1447 1448 if (fuid_dirtied) 1449 zfs_fuid_sync(zfsvfs, tx); 1450 1451 (void) zfs_link_create(dl, zp, tx, ZNEW); 1452 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1453 if (flag & FIGNORECASE) 1454 txtype |= TX_CI; 1455 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1456 vsecp, acl_ids.z_fuidp, vap); 1457 zfs_acl_ids_free(&acl_ids); 1458 dmu_tx_commit(tx); 1459 } else { 1460 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1461 1462 if (have_acl) 1463 zfs_acl_ids_free(&acl_ids); 1464 have_acl = B_FALSE; 1465 1466 /* 1467 * A directory entry already exists for this name. 1468 */ 1469 /* 1470 * Can't truncate an existing file if in exclusive mode. 1471 */ 1472 if (excl == EXCL) { 1473 error = EEXIST; 1474 goto out; 1475 } 1476 /* 1477 * Can't open a directory for writing. 1478 */ 1479 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1480 error = EISDIR; 1481 goto out; 1482 } 1483 /* 1484 * Verify requested access to file. 1485 */ 1486 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1487 goto out; 1488 } 1489 1490 mutex_enter(&dzp->z_lock); 1491 dzp->z_seq++; 1492 mutex_exit(&dzp->z_lock); 1493 1494 /* 1495 * Truncate regular files if requested. 1496 */ 1497 if ((ZTOV(zp)->v_type == VREG) && 1498 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1499 /* we can't hold any locks when calling zfs_freesp() */ 1500 zfs_dirent_unlock(dl); 1501 dl = NULL; 1502 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1503 if (error == 0) { 1504 vnevent_create(ZTOV(zp), ct); 1505 } 1506 } 1507 } 1508 out: 1509 1510 if (dl) 1511 zfs_dirent_unlock(dl); 1512 1513 if (error) { 1514 if (zp) 1515 VN_RELE(ZTOV(zp)); 1516 } else { 1517 *vpp = ZTOV(zp); 1518 error = specvp_check(vpp, cr); 1519 } 1520 1521 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1522 zil_commit(zilog, 0); 1523 1524 ZFS_EXIT(zfsvfs); 1525 return (error); 1526 } 1527 1528 /* 1529 * Remove an entry from a directory. 1530 * 1531 * IN: dvp - vnode of directory to remove entry from. 1532 * name - name of entry to remove. 1533 * cr - credentials of caller. 1534 * ct - caller context 1535 * flags - case flags 1536 * 1537 * RETURN: 0 if success 1538 * error code if failure 1539 * 1540 * Timestamps: 1541 * dvp - ctime|mtime 1542 * vp - ctime (if nlink > 0) 1543 */ 1544 1545 uint64_t null_xattr = 0; 1546 1547 /*ARGSUSED*/ 1548 static int 1549 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1550 int flags) 1551 { 1552 znode_t *zp, *dzp = VTOZ(dvp); 1553 znode_t *xzp; 1554 vnode_t *vp; 1555 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1556 zilog_t *zilog; 1557 uint64_t acl_obj, xattr_obj; 1558 uint64_t xattr_obj_unlinked = 0; 1559 uint64_t obj = 0; 1560 zfs_dirlock_t *dl; 1561 dmu_tx_t *tx; 1562 boolean_t may_delete_now, delete_now = FALSE; 1563 boolean_t unlinked, toobig = FALSE; 1564 uint64_t txtype; 1565 pathname_t *realnmp = NULL; 1566 pathname_t realnm; 1567 int error; 1568 int zflg = ZEXISTS; 1569 1570 ZFS_ENTER(zfsvfs); 1571 ZFS_VERIFY_ZP(dzp); 1572 zilog = zfsvfs->z_log; 1573 1574 if (flags & FIGNORECASE) { 1575 zflg |= ZCILOOK; 1576 pn_alloc(&realnm); 1577 realnmp = &realnm; 1578 } 1579 1580 top: 1581 xattr_obj = 0; 1582 xzp = NULL; 1583 /* 1584 * Attempt to lock directory; fail if entry doesn't exist. 1585 */ 1586 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1587 NULL, realnmp)) { 1588 if (realnmp) 1589 pn_free(realnmp); 1590 ZFS_EXIT(zfsvfs); 1591 return (error); 1592 } 1593 1594 vp = ZTOV(zp); 1595 1596 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1597 goto out; 1598 } 1599 1600 /* 1601 * Need to use rmdir for removing directories. 1602 */ 1603 if (vp->v_type == VDIR) { 1604 error = EPERM; 1605 goto out; 1606 } 1607 1608 vnevent_remove(vp, dvp, name, ct); 1609 1610 if (realnmp) 1611 dnlc_remove(dvp, realnmp->pn_buf); 1612 else 1613 dnlc_remove(dvp, name); 1614 1615 mutex_enter(&vp->v_lock); 1616 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1617 mutex_exit(&vp->v_lock); 1618 1619 /* 1620 * We may delete the znode now, or we may put it in the unlinked set; 1621 * it depends on whether we're the last link, and on whether there are 1622 * other holds on the vnode. So we dmu_tx_hold() the right things to 1623 * allow for either case. 1624 */ 1625 obj = zp->z_id; 1626 tx = dmu_tx_create(zfsvfs->z_os); 1627 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1628 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1629 zfs_sa_upgrade_txholds(tx, zp); 1630 zfs_sa_upgrade_txholds(tx, dzp); 1631 if (may_delete_now) { 1632 toobig = 1633 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1634 /* if the file is too big, only hold_free a token amount */ 1635 dmu_tx_hold_free(tx, zp->z_id, 0, 1636 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1637 } 1638 1639 /* are there any extended attributes? */ 1640 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1641 &xattr_obj, sizeof (xattr_obj)); 1642 if (error == 0 && xattr_obj) { 1643 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1644 ASSERT3U(error, ==, 0); 1645 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1646 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1647 } 1648 1649 mutex_enter(&zp->z_lock); 1650 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1651 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1652 mutex_exit(&zp->z_lock); 1653 1654 /* charge as an update -- would be nice not to charge at all */ 1655 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1656 1657 error = dmu_tx_assign(tx, TXG_NOWAIT); 1658 if (error) { 1659 zfs_dirent_unlock(dl); 1660 VN_RELE(vp); 1661 if (xzp) 1662 VN_RELE(ZTOV(xzp)); 1663 if (error == ERESTART) { 1664 dmu_tx_wait(tx); 1665 dmu_tx_abort(tx); 1666 goto top; 1667 } 1668 if (realnmp) 1669 pn_free(realnmp); 1670 dmu_tx_abort(tx); 1671 ZFS_EXIT(zfsvfs); 1672 return (error); 1673 } 1674 1675 /* 1676 * Remove the directory entry. 1677 */ 1678 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1679 1680 if (error) { 1681 dmu_tx_commit(tx); 1682 goto out; 1683 } 1684 1685 if (unlinked) { 1686 1687 /* 1688 * Hold z_lock so that we can make sure that the ACL obj 1689 * hasn't changed. Could have been deleted due to 1690 * zfs_sa_upgrade(). 1691 */ 1692 mutex_enter(&zp->z_lock); 1693 mutex_enter(&vp->v_lock); 1694 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1695 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1696 delete_now = may_delete_now && !toobig && 1697 vp->v_count == 1 && !vn_has_cached_data(vp) && 1698 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1699 acl_obj; 1700 mutex_exit(&vp->v_lock); 1701 } 1702 1703 if (delete_now) { 1704 if (xattr_obj_unlinked) { 1705 ASSERT3U(xzp->z_links, ==, 2); 1706 mutex_enter(&xzp->z_lock); 1707 xzp->z_unlinked = 1; 1708 xzp->z_links = 0; 1709 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1710 &xzp->z_links, sizeof (xzp->z_links), tx); 1711 ASSERT3U(error, ==, 0); 1712 mutex_exit(&xzp->z_lock); 1713 zfs_unlinked_add(xzp, tx); 1714 1715 if (zp->z_is_sa) 1716 error = sa_remove(zp->z_sa_hdl, 1717 SA_ZPL_XATTR(zfsvfs), tx); 1718 else 1719 error = sa_update(zp->z_sa_hdl, 1720 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1721 sizeof (uint64_t), tx); 1722 ASSERT3U(error, ==, 0); 1723 } 1724 mutex_enter(&vp->v_lock); 1725 vp->v_count--; 1726 ASSERT3U(vp->v_count, ==, 0); 1727 mutex_exit(&vp->v_lock); 1728 mutex_exit(&zp->z_lock); 1729 zfs_znode_delete(zp, tx); 1730 } else if (unlinked) { 1731 mutex_exit(&zp->z_lock); 1732 zfs_unlinked_add(zp, tx); 1733 } 1734 1735 txtype = TX_REMOVE; 1736 if (flags & FIGNORECASE) 1737 txtype |= TX_CI; 1738 zfs_log_remove(zilog, tx, txtype, dzp, name, obj); 1739 1740 dmu_tx_commit(tx); 1741 out: 1742 if (realnmp) 1743 pn_free(realnmp); 1744 1745 zfs_dirent_unlock(dl); 1746 1747 if (!delete_now) 1748 VN_RELE(vp); 1749 if (xzp) 1750 VN_RELE(ZTOV(xzp)); 1751 1752 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1753 zil_commit(zilog, 0); 1754 1755 ZFS_EXIT(zfsvfs); 1756 return (error); 1757 } 1758 1759 /* 1760 * Create a new directory and insert it into dvp using the name 1761 * provided. Return a pointer to the inserted directory. 1762 * 1763 * IN: dvp - vnode of directory to add subdir to. 1764 * dirname - name of new directory. 1765 * vap - attributes of new directory. 1766 * cr - credentials of caller. 1767 * ct - caller context 1768 * vsecp - ACL to be set 1769 * 1770 * OUT: vpp - vnode of created directory. 1771 * 1772 * RETURN: 0 if success 1773 * error code if failure 1774 * 1775 * Timestamps: 1776 * dvp - ctime|mtime updated 1777 * vp - ctime|mtime|atime updated 1778 */ 1779 /*ARGSUSED*/ 1780 static int 1781 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1782 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1783 { 1784 znode_t *zp, *dzp = VTOZ(dvp); 1785 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1786 zilog_t *zilog; 1787 zfs_dirlock_t *dl; 1788 uint64_t txtype; 1789 dmu_tx_t *tx; 1790 int error; 1791 int zf = ZNEW; 1792 ksid_t *ksid; 1793 uid_t uid; 1794 gid_t gid = crgetgid(cr); 1795 zfs_acl_ids_t acl_ids; 1796 boolean_t fuid_dirtied; 1797 1798 ASSERT(vap->va_type == VDIR); 1799 1800 /* 1801 * If we have an ephemeral id, ACL, or XVATTR then 1802 * make sure file system is at proper version 1803 */ 1804 1805 ksid = crgetsid(cr, KSID_OWNER); 1806 if (ksid) 1807 uid = ksid_getid(ksid); 1808 else 1809 uid = crgetuid(cr); 1810 if (zfsvfs->z_use_fuids == B_FALSE && 1811 (vsecp || (vap->va_mask & AT_XVATTR) || 1812 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1813 return (EINVAL); 1814 1815 ZFS_ENTER(zfsvfs); 1816 ZFS_VERIFY_ZP(dzp); 1817 zilog = zfsvfs->z_log; 1818 1819 if (dzp->z_pflags & ZFS_XATTR) { 1820 ZFS_EXIT(zfsvfs); 1821 return (EINVAL); 1822 } 1823 1824 if (zfsvfs->z_utf8 && u8_validate(dirname, 1825 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1826 ZFS_EXIT(zfsvfs); 1827 return (EILSEQ); 1828 } 1829 if (flags & FIGNORECASE) 1830 zf |= ZCILOOK; 1831 1832 if (vap->va_mask & AT_XVATTR) { 1833 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1834 crgetuid(cr), cr, vap->va_type)) != 0) { 1835 ZFS_EXIT(zfsvfs); 1836 return (error); 1837 } 1838 } 1839 1840 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 1841 vsecp, &acl_ids)) != 0) { 1842 ZFS_EXIT(zfsvfs); 1843 return (error); 1844 } 1845 /* 1846 * First make sure the new directory doesn't exist. 1847 * 1848 * Existence is checked first to make sure we don't return 1849 * EACCES instead of EEXIST which can cause some applications 1850 * to fail. 1851 */ 1852 top: 1853 *vpp = NULL; 1854 1855 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1856 NULL, NULL)) { 1857 zfs_acl_ids_free(&acl_ids); 1858 ZFS_EXIT(zfsvfs); 1859 return (error); 1860 } 1861 1862 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1863 zfs_acl_ids_free(&acl_ids); 1864 zfs_dirent_unlock(dl); 1865 ZFS_EXIT(zfsvfs); 1866 return (error); 1867 } 1868 1869 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1870 zfs_acl_ids_free(&acl_ids); 1871 zfs_dirent_unlock(dl); 1872 ZFS_EXIT(zfsvfs); 1873 return (EDQUOT); 1874 } 1875 1876 /* 1877 * Add a new entry to the directory. 1878 */ 1879 tx = dmu_tx_create(zfsvfs->z_os); 1880 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1881 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1882 fuid_dirtied = zfsvfs->z_fuid_dirty; 1883 if (fuid_dirtied) 1884 zfs_fuid_txhold(zfsvfs, tx); 1885 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1886 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1887 acl_ids.z_aclp->z_acl_bytes); 1888 } 1889 1890 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1891 ZFS_SA_BASE_ATTR_SIZE); 1892 1893 error = dmu_tx_assign(tx, TXG_NOWAIT); 1894 if (error) { 1895 zfs_dirent_unlock(dl); 1896 if (error == ERESTART) { 1897 dmu_tx_wait(tx); 1898 dmu_tx_abort(tx); 1899 goto top; 1900 } 1901 zfs_acl_ids_free(&acl_ids); 1902 dmu_tx_abort(tx); 1903 ZFS_EXIT(zfsvfs); 1904 return (error); 1905 } 1906 1907 /* 1908 * Create new node. 1909 */ 1910 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1911 1912 if (fuid_dirtied) 1913 zfs_fuid_sync(zfsvfs, tx); 1914 1915 /* 1916 * Now put new name in parent dir. 1917 */ 1918 (void) zfs_link_create(dl, zp, tx, ZNEW); 1919 1920 *vpp = ZTOV(zp); 1921 1922 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1923 if (flags & FIGNORECASE) 1924 txtype |= TX_CI; 1925 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 1926 acl_ids.z_fuidp, vap); 1927 1928 zfs_acl_ids_free(&acl_ids); 1929 1930 dmu_tx_commit(tx); 1931 1932 zfs_dirent_unlock(dl); 1933 1934 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1935 zil_commit(zilog, 0); 1936 1937 ZFS_EXIT(zfsvfs); 1938 return (0); 1939 } 1940 1941 /* 1942 * Remove a directory subdir entry. If the current working 1943 * directory is the same as the subdir to be removed, the 1944 * remove will fail. 1945 * 1946 * IN: dvp - vnode of directory to remove from. 1947 * name - name of directory to be removed. 1948 * cwd - vnode of current working directory. 1949 * cr - credentials of caller. 1950 * ct - caller context 1951 * flags - case flags 1952 * 1953 * RETURN: 0 if success 1954 * error code if failure 1955 * 1956 * Timestamps: 1957 * dvp - ctime|mtime updated 1958 */ 1959 /*ARGSUSED*/ 1960 static int 1961 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1962 caller_context_t *ct, int flags) 1963 { 1964 znode_t *dzp = VTOZ(dvp); 1965 znode_t *zp; 1966 vnode_t *vp; 1967 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1968 zilog_t *zilog; 1969 zfs_dirlock_t *dl; 1970 dmu_tx_t *tx; 1971 int error; 1972 int zflg = ZEXISTS; 1973 1974 ZFS_ENTER(zfsvfs); 1975 ZFS_VERIFY_ZP(dzp); 1976 zilog = zfsvfs->z_log; 1977 1978 if (flags & FIGNORECASE) 1979 zflg |= ZCILOOK; 1980 top: 1981 zp = NULL; 1982 1983 /* 1984 * Attempt to lock directory; fail if entry doesn't exist. 1985 */ 1986 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1987 NULL, NULL)) { 1988 ZFS_EXIT(zfsvfs); 1989 return (error); 1990 } 1991 1992 vp = ZTOV(zp); 1993 1994 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1995 goto out; 1996 } 1997 1998 if (vp->v_type != VDIR) { 1999 error = ENOTDIR; 2000 goto out; 2001 } 2002 2003 if (vp == cwd) { 2004 error = EINVAL; 2005 goto out; 2006 } 2007 2008 vnevent_rmdir(vp, dvp, name, ct); 2009 2010 /* 2011 * Grab a lock on the directory to make sure that noone is 2012 * trying to add (or lookup) entries while we are removing it. 2013 */ 2014 rw_enter(&zp->z_name_lock, RW_WRITER); 2015 2016 /* 2017 * Grab a lock on the parent pointer to make sure we play well 2018 * with the treewalk and directory rename code. 2019 */ 2020 rw_enter(&zp->z_parent_lock, RW_WRITER); 2021 2022 tx = dmu_tx_create(zfsvfs->z_os); 2023 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 2024 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2025 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2026 zfs_sa_upgrade_txholds(tx, zp); 2027 zfs_sa_upgrade_txholds(tx, dzp); 2028 error = dmu_tx_assign(tx, TXG_NOWAIT); 2029 if (error) { 2030 rw_exit(&zp->z_parent_lock); 2031 rw_exit(&zp->z_name_lock); 2032 zfs_dirent_unlock(dl); 2033 VN_RELE(vp); 2034 if (error == ERESTART) { 2035 dmu_tx_wait(tx); 2036 dmu_tx_abort(tx); 2037 goto top; 2038 } 2039 dmu_tx_abort(tx); 2040 ZFS_EXIT(zfsvfs); 2041 return (error); 2042 } 2043 2044 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2045 2046 if (error == 0) { 2047 uint64_t txtype = TX_RMDIR; 2048 if (flags & FIGNORECASE) 2049 txtype |= TX_CI; 2050 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT); 2051 } 2052 2053 dmu_tx_commit(tx); 2054 2055 rw_exit(&zp->z_parent_lock); 2056 rw_exit(&zp->z_name_lock); 2057 out: 2058 zfs_dirent_unlock(dl); 2059 2060 VN_RELE(vp); 2061 2062 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2063 zil_commit(zilog, 0); 2064 2065 ZFS_EXIT(zfsvfs); 2066 return (error); 2067 } 2068 2069 /* 2070 * Read as many directory entries as will fit into the provided 2071 * buffer from the given directory cursor position (specified in 2072 * the uio structure. 2073 * 2074 * IN: vp - vnode of directory to read. 2075 * uio - structure supplying read location, range info, 2076 * and return buffer. 2077 * cr - credentials of caller. 2078 * ct - caller context 2079 * flags - case flags 2080 * 2081 * OUT: uio - updated offset and range, buffer filled. 2082 * eofp - set to true if end-of-file detected. 2083 * 2084 * RETURN: 0 if success 2085 * error code if failure 2086 * 2087 * Timestamps: 2088 * vp - atime updated 2089 * 2090 * Note that the low 4 bits of the cookie returned by zap is always zero. 2091 * This allows us to use the low range for "special" directory entries: 2092 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2093 * we use the offset 2 for the '.zfs' directory. 2094 */ 2095 /* ARGSUSED */ 2096 static int 2097 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2098 caller_context_t *ct, int flags) 2099 { 2100 znode_t *zp = VTOZ(vp); 2101 iovec_t *iovp; 2102 edirent_t *eodp; 2103 dirent64_t *odp; 2104 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2105 objset_t *os; 2106 caddr_t outbuf; 2107 size_t bufsize; 2108 zap_cursor_t zc; 2109 zap_attribute_t zap; 2110 uint_t bytes_wanted; 2111 uint64_t offset; /* must be unsigned; checks for < 1 */ 2112 uint64_t parent; 2113 int local_eof; 2114 int outcount; 2115 int error; 2116 uint8_t prefetch; 2117 boolean_t check_sysattrs; 2118 2119 ZFS_ENTER(zfsvfs); 2120 ZFS_VERIFY_ZP(zp); 2121 2122 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2123 &parent, sizeof (parent))) != 0) { 2124 ZFS_EXIT(zfsvfs); 2125 return (error); 2126 } 2127 2128 /* 2129 * If we are not given an eof variable, 2130 * use a local one. 2131 */ 2132 if (eofp == NULL) 2133 eofp = &local_eof; 2134 2135 /* 2136 * Check for valid iov_len. 2137 */ 2138 if (uio->uio_iov->iov_len <= 0) { 2139 ZFS_EXIT(zfsvfs); 2140 return (EINVAL); 2141 } 2142 2143 /* 2144 * Quit if directory has been removed (posix) 2145 */ 2146 if ((*eofp = zp->z_unlinked) != 0) { 2147 ZFS_EXIT(zfsvfs); 2148 return (0); 2149 } 2150 2151 error = 0; 2152 os = zfsvfs->z_os; 2153 offset = uio->uio_loffset; 2154 prefetch = zp->z_zn_prefetch; 2155 2156 /* 2157 * Initialize the iterator cursor. 2158 */ 2159 if (offset <= 3) { 2160 /* 2161 * Start iteration from the beginning of the directory. 2162 */ 2163 zap_cursor_init(&zc, os, zp->z_id); 2164 } else { 2165 /* 2166 * The offset is a serialized cursor. 2167 */ 2168 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2169 } 2170 2171 /* 2172 * Get space to change directory entries into fs independent format. 2173 */ 2174 iovp = uio->uio_iov; 2175 bytes_wanted = iovp->iov_len; 2176 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2177 bufsize = bytes_wanted; 2178 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2179 odp = (struct dirent64 *)outbuf; 2180 } else { 2181 bufsize = bytes_wanted; 2182 odp = (struct dirent64 *)iovp->iov_base; 2183 } 2184 eodp = (struct edirent *)odp; 2185 2186 /* 2187 * If this VFS supports the system attribute view interface; and 2188 * we're looking at an extended attribute directory; and we care 2189 * about normalization conflicts on this vfs; then we must check 2190 * for normalization conflicts with the sysattr name space. 2191 */ 2192 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2193 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2194 (flags & V_RDDIR_ENTFLAGS); 2195 2196 /* 2197 * Transform to file-system independent format 2198 */ 2199 outcount = 0; 2200 while (outcount < bytes_wanted) { 2201 ino64_t objnum; 2202 ushort_t reclen; 2203 off64_t *next = NULL; 2204 2205 /* 2206 * Special case `.', `..', and `.zfs'. 2207 */ 2208 if (offset == 0) { 2209 (void) strcpy(zap.za_name, "."); 2210 zap.za_normalization_conflict = 0; 2211 objnum = zp->z_id; 2212 } else if (offset == 1) { 2213 (void) strcpy(zap.za_name, ".."); 2214 zap.za_normalization_conflict = 0; 2215 objnum = parent; 2216 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2217 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2218 zap.za_normalization_conflict = 0; 2219 objnum = ZFSCTL_INO_ROOT; 2220 } else { 2221 /* 2222 * Grab next entry. 2223 */ 2224 if (error = zap_cursor_retrieve(&zc, &zap)) { 2225 if ((*eofp = (error == ENOENT)) != 0) 2226 break; 2227 else 2228 goto update; 2229 } 2230 2231 if (zap.za_integer_length != 8 || 2232 zap.za_num_integers != 1) { 2233 cmn_err(CE_WARN, "zap_readdir: bad directory " 2234 "entry, obj = %lld, offset = %lld\n", 2235 (u_longlong_t)zp->z_id, 2236 (u_longlong_t)offset); 2237 error = ENXIO; 2238 goto update; 2239 } 2240 2241 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2242 /* 2243 * MacOS X can extract the object type here such as: 2244 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2245 */ 2246 2247 if (check_sysattrs && !zap.za_normalization_conflict) { 2248 zap.za_normalization_conflict = 2249 xattr_sysattr_casechk(zap.za_name); 2250 } 2251 } 2252 2253 if (flags & V_RDDIR_ACCFILTER) { 2254 /* 2255 * If we have no access at all, don't include 2256 * this entry in the returned information 2257 */ 2258 znode_t *ezp; 2259 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2260 goto skip_entry; 2261 if (!zfs_has_access(ezp, cr)) { 2262 VN_RELE(ZTOV(ezp)); 2263 goto skip_entry; 2264 } 2265 VN_RELE(ZTOV(ezp)); 2266 } 2267 2268 if (flags & V_RDDIR_ENTFLAGS) 2269 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2270 else 2271 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2272 2273 /* 2274 * Will this entry fit in the buffer? 2275 */ 2276 if (outcount + reclen > bufsize) { 2277 /* 2278 * Did we manage to fit anything in the buffer? 2279 */ 2280 if (!outcount) { 2281 error = EINVAL; 2282 goto update; 2283 } 2284 break; 2285 } 2286 if (flags & V_RDDIR_ENTFLAGS) { 2287 /* 2288 * Add extended flag entry: 2289 */ 2290 eodp->ed_ino = objnum; 2291 eodp->ed_reclen = reclen; 2292 /* NOTE: ed_off is the offset for the *next* entry */ 2293 next = &(eodp->ed_off); 2294 eodp->ed_eflags = zap.za_normalization_conflict ? 2295 ED_CASE_CONFLICT : 0; 2296 (void) strncpy(eodp->ed_name, zap.za_name, 2297 EDIRENT_NAMELEN(reclen)); 2298 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2299 } else { 2300 /* 2301 * Add normal entry: 2302 */ 2303 odp->d_ino = objnum; 2304 odp->d_reclen = reclen; 2305 /* NOTE: d_off is the offset for the *next* entry */ 2306 next = &(odp->d_off); 2307 (void) strncpy(odp->d_name, zap.za_name, 2308 DIRENT64_NAMELEN(reclen)); 2309 odp = (dirent64_t *)((intptr_t)odp + reclen); 2310 } 2311 outcount += reclen; 2312 2313 ASSERT(outcount <= bufsize); 2314 2315 /* Prefetch znode */ 2316 if (prefetch) 2317 dmu_prefetch(os, objnum, 0, 0); 2318 2319 skip_entry: 2320 /* 2321 * Move to the next entry, fill in the previous offset. 2322 */ 2323 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2324 zap_cursor_advance(&zc); 2325 offset = zap_cursor_serialize(&zc); 2326 } else { 2327 offset += 1; 2328 } 2329 if (next) 2330 *next = offset; 2331 } 2332 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2333 2334 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2335 iovp->iov_base += outcount; 2336 iovp->iov_len -= outcount; 2337 uio->uio_resid -= outcount; 2338 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2339 /* 2340 * Reset the pointer. 2341 */ 2342 offset = uio->uio_loffset; 2343 } 2344 2345 update: 2346 zap_cursor_fini(&zc); 2347 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2348 kmem_free(outbuf, bufsize); 2349 2350 if (error == ENOENT) 2351 error = 0; 2352 2353 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2354 2355 uio->uio_loffset = offset; 2356 ZFS_EXIT(zfsvfs); 2357 return (error); 2358 } 2359 2360 ulong_t zfs_fsync_sync_cnt = 4; 2361 2362 static int 2363 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2364 { 2365 znode_t *zp = VTOZ(vp); 2366 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2367 2368 /* 2369 * Regardless of whether this is required for standards conformance, 2370 * this is the logical behavior when fsync() is called on a file with 2371 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2372 * going to be pushed out as part of the zil_commit(). 2373 */ 2374 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2375 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2376 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2377 2378 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2379 2380 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2381 ZFS_ENTER(zfsvfs); 2382 ZFS_VERIFY_ZP(zp); 2383 zil_commit(zfsvfs->z_log, zp->z_id); 2384 ZFS_EXIT(zfsvfs); 2385 } 2386 return (0); 2387 } 2388 2389 2390 /* 2391 * Get the requested file attributes and place them in the provided 2392 * vattr structure. 2393 * 2394 * IN: vp - vnode of file. 2395 * vap - va_mask identifies requested attributes. 2396 * If AT_XVATTR set, then optional attrs are requested 2397 * flags - ATTR_NOACLCHECK (CIFS server context) 2398 * cr - credentials of caller. 2399 * ct - caller context 2400 * 2401 * OUT: vap - attribute values. 2402 * 2403 * RETURN: 0 (always succeeds) 2404 */ 2405 /* ARGSUSED */ 2406 static int 2407 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2408 caller_context_t *ct) 2409 { 2410 znode_t *zp = VTOZ(vp); 2411 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2412 int error = 0; 2413 uint64_t links; 2414 uint64_t mtime[2], ctime[2]; 2415 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2416 xoptattr_t *xoap = NULL; 2417 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2418 sa_bulk_attr_t bulk[2]; 2419 int count = 0; 2420 2421 ZFS_ENTER(zfsvfs); 2422 ZFS_VERIFY_ZP(zp); 2423 2424 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2425 2426 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2427 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2428 2429 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2430 ZFS_EXIT(zfsvfs); 2431 return (error); 2432 } 2433 2434 /* 2435 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2436 * Also, if we are the owner don't bother, since owner should 2437 * always be allowed to read basic attributes of file. 2438 */ 2439 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && 2440 (vap->va_uid != crgetuid(cr))) { 2441 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2442 skipaclchk, cr)) { 2443 ZFS_EXIT(zfsvfs); 2444 return (error); 2445 } 2446 } 2447 2448 /* 2449 * Return all attributes. It's cheaper to provide the answer 2450 * than to determine whether we were asked the question. 2451 */ 2452 2453 mutex_enter(&zp->z_lock); 2454 vap->va_type = vp->v_type; 2455 vap->va_mode = zp->z_mode & MODEMASK; 2456 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2457 vap->va_nodeid = zp->z_id; 2458 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2459 links = zp->z_links + 1; 2460 else 2461 links = zp->z_links; 2462 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2463 vap->va_size = zp->z_size; 2464 vap->va_rdev = vp->v_rdev; 2465 vap->va_seq = zp->z_seq; 2466 2467 /* 2468 * Add in any requested optional attributes and the create time. 2469 * Also set the corresponding bits in the returned attribute bitmap. 2470 */ 2471 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2472 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2473 xoap->xoa_archive = 2474 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2475 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2476 } 2477 2478 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2479 xoap->xoa_readonly = 2480 ((zp->z_pflags & ZFS_READONLY) != 0); 2481 XVA_SET_RTN(xvap, XAT_READONLY); 2482 } 2483 2484 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2485 xoap->xoa_system = 2486 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2487 XVA_SET_RTN(xvap, XAT_SYSTEM); 2488 } 2489 2490 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2491 xoap->xoa_hidden = 2492 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2493 XVA_SET_RTN(xvap, XAT_HIDDEN); 2494 } 2495 2496 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2497 xoap->xoa_nounlink = 2498 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2499 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2500 } 2501 2502 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2503 xoap->xoa_immutable = 2504 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2505 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2506 } 2507 2508 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2509 xoap->xoa_appendonly = 2510 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2511 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2512 } 2513 2514 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2515 xoap->xoa_nodump = 2516 ((zp->z_pflags & ZFS_NODUMP) != 0); 2517 XVA_SET_RTN(xvap, XAT_NODUMP); 2518 } 2519 2520 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2521 xoap->xoa_opaque = 2522 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2523 XVA_SET_RTN(xvap, XAT_OPAQUE); 2524 } 2525 2526 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2527 xoap->xoa_av_quarantined = 2528 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2529 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2530 } 2531 2532 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2533 xoap->xoa_av_modified = 2534 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2535 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2536 } 2537 2538 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2539 vp->v_type == VREG) { 2540 zfs_sa_get_scanstamp(zp, xvap); 2541 } 2542 2543 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2544 uint64_t times[2]; 2545 2546 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2547 times, sizeof (times)); 2548 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2549 XVA_SET_RTN(xvap, XAT_CREATETIME); 2550 } 2551 2552 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2553 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2554 XVA_SET_RTN(xvap, XAT_REPARSE); 2555 } 2556 if (XVA_ISSET_REQ(xvap, XAT_GEN)) { 2557 xoap->xoa_generation = zp->z_gen; 2558 XVA_SET_RTN(xvap, XAT_GEN); 2559 } 2560 2561 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 2562 xoap->xoa_offline = 2563 ((zp->z_pflags & ZFS_OFFLINE) != 0); 2564 XVA_SET_RTN(xvap, XAT_OFFLINE); 2565 } 2566 2567 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 2568 xoap->xoa_sparse = 2569 ((zp->z_pflags & ZFS_SPARSE) != 0); 2570 XVA_SET_RTN(xvap, XAT_SPARSE); 2571 } 2572 } 2573 2574 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2575 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2576 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2577 2578 mutex_exit(&zp->z_lock); 2579 2580 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2581 2582 if (zp->z_blksz == 0) { 2583 /* 2584 * Block size hasn't been set; suggest maximal I/O transfers. 2585 */ 2586 vap->va_blksize = zfsvfs->z_max_blksz; 2587 } 2588 2589 ZFS_EXIT(zfsvfs); 2590 return (0); 2591 } 2592 2593 /* 2594 * Set the file attributes to the values contained in the 2595 * vattr structure. 2596 * 2597 * IN: vp - vnode of file to be modified. 2598 * vap - new attribute values. 2599 * If AT_XVATTR set, then optional attrs are being set 2600 * flags - ATTR_UTIME set if non-default time values provided. 2601 * - ATTR_NOACLCHECK (CIFS context only). 2602 * cr - credentials of caller. 2603 * ct - caller context 2604 * 2605 * RETURN: 0 if success 2606 * error code if failure 2607 * 2608 * Timestamps: 2609 * vp - ctime updated, mtime updated if size changed. 2610 */ 2611 /* ARGSUSED */ 2612 static int 2613 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2614 caller_context_t *ct) 2615 { 2616 znode_t *zp = VTOZ(vp); 2617 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2618 zilog_t *zilog; 2619 dmu_tx_t *tx; 2620 vattr_t oldva; 2621 xvattr_t tmpxvattr; 2622 uint_t mask = vap->va_mask; 2623 uint_t saved_mask; 2624 int trim_mask = 0; 2625 uint64_t new_mode; 2626 uint64_t new_uid, new_gid; 2627 uint64_t xattr_obj; 2628 uint64_t mtime[2], ctime[2]; 2629 znode_t *attrzp; 2630 int need_policy = FALSE; 2631 int err, err2; 2632 zfs_fuid_info_t *fuidp = NULL; 2633 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2634 xoptattr_t *xoap; 2635 zfs_acl_t *aclp; 2636 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2637 boolean_t fuid_dirtied = B_FALSE; 2638 sa_bulk_attr_t bulk[7], xattr_bulk[7]; 2639 int count = 0, xattr_count = 0; 2640 2641 if (mask == 0) 2642 return (0); 2643 2644 if (mask & AT_NOSET) 2645 return (EINVAL); 2646 2647 ZFS_ENTER(zfsvfs); 2648 ZFS_VERIFY_ZP(zp); 2649 2650 zilog = zfsvfs->z_log; 2651 2652 /* 2653 * Make sure that if we have ephemeral uid/gid or xvattr specified 2654 * that file system is at proper version level 2655 */ 2656 2657 if (zfsvfs->z_use_fuids == B_FALSE && 2658 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2659 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2660 (mask & AT_XVATTR))) { 2661 ZFS_EXIT(zfsvfs); 2662 return (EINVAL); 2663 } 2664 2665 if (mask & AT_SIZE && vp->v_type == VDIR) { 2666 ZFS_EXIT(zfsvfs); 2667 return (EISDIR); 2668 } 2669 2670 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2671 ZFS_EXIT(zfsvfs); 2672 return (EINVAL); 2673 } 2674 2675 /* 2676 * If this is an xvattr_t, then get a pointer to the structure of 2677 * optional attributes. If this is NULL, then we have a vattr_t. 2678 */ 2679 xoap = xva_getxoptattr(xvap); 2680 2681 xva_init(&tmpxvattr); 2682 2683 /* 2684 * Immutable files can only alter immutable bit and atime 2685 */ 2686 if ((zp->z_pflags & ZFS_IMMUTABLE) && 2687 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2688 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2689 ZFS_EXIT(zfsvfs); 2690 return (EPERM); 2691 } 2692 2693 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) { 2694 ZFS_EXIT(zfsvfs); 2695 return (EPERM); 2696 } 2697 2698 /* 2699 * Verify timestamps doesn't overflow 32 bits. 2700 * ZFS can handle large timestamps, but 32bit syscalls can't 2701 * handle times greater than 2039. This check should be removed 2702 * once large timestamps are fully supported. 2703 */ 2704 if (mask & (AT_ATIME | AT_MTIME)) { 2705 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2706 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2707 ZFS_EXIT(zfsvfs); 2708 return (EOVERFLOW); 2709 } 2710 } 2711 2712 top: 2713 attrzp = NULL; 2714 aclp = NULL; 2715 2716 /* Can this be moved to before the top label? */ 2717 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2718 ZFS_EXIT(zfsvfs); 2719 return (EROFS); 2720 } 2721 2722 /* 2723 * First validate permissions 2724 */ 2725 2726 if (mask & AT_SIZE) { 2727 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2728 if (err) { 2729 ZFS_EXIT(zfsvfs); 2730 return (err); 2731 } 2732 /* 2733 * XXX - Note, we are not providing any open 2734 * mode flags here (like FNDELAY), so we may 2735 * block if there are locks present... this 2736 * should be addressed in openat(). 2737 */ 2738 /* XXX - would it be OK to generate a log record here? */ 2739 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2740 if (err) { 2741 ZFS_EXIT(zfsvfs); 2742 return (err); 2743 } 2744 } 2745 2746 if (mask & (AT_ATIME|AT_MTIME) || 2747 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2748 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2749 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2750 XVA_ISSET_REQ(xvap, XAT_OFFLINE) || 2751 XVA_ISSET_REQ(xvap, XAT_SPARSE) || 2752 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2753 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 2754 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2755 skipaclchk, cr); 2756 } 2757 2758 if (mask & (AT_UID|AT_GID)) { 2759 int idmask = (mask & (AT_UID|AT_GID)); 2760 int take_owner; 2761 int take_group; 2762 2763 /* 2764 * NOTE: even if a new mode is being set, 2765 * we may clear S_ISUID/S_ISGID bits. 2766 */ 2767 2768 if (!(mask & AT_MODE)) 2769 vap->va_mode = zp->z_mode; 2770 2771 /* 2772 * Take ownership or chgrp to group we are a member of 2773 */ 2774 2775 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2776 take_group = (mask & AT_GID) && 2777 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2778 2779 /* 2780 * If both AT_UID and AT_GID are set then take_owner and 2781 * take_group must both be set in order to allow taking 2782 * ownership. 2783 * 2784 * Otherwise, send the check through secpolicy_vnode_setattr() 2785 * 2786 */ 2787 2788 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2789 ((idmask == AT_UID) && take_owner) || 2790 ((idmask == AT_GID) && take_group)) { 2791 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2792 skipaclchk, cr) == 0) { 2793 /* 2794 * Remove setuid/setgid for non-privileged users 2795 */ 2796 secpolicy_setid_clear(vap, cr); 2797 trim_mask = (mask & (AT_UID|AT_GID)); 2798 } else { 2799 need_policy = TRUE; 2800 } 2801 } else { 2802 need_policy = TRUE; 2803 } 2804 } 2805 2806 mutex_enter(&zp->z_lock); 2807 oldva.va_mode = zp->z_mode; 2808 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2809 if (mask & AT_XVATTR) { 2810 /* 2811 * Update xvattr mask to include only those attributes 2812 * that are actually changing. 2813 * 2814 * the bits will be restored prior to actually setting 2815 * the attributes so the caller thinks they were set. 2816 */ 2817 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2818 if (xoap->xoa_appendonly != 2819 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 2820 need_policy = TRUE; 2821 } else { 2822 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2823 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2824 } 2825 } 2826 2827 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2828 if (xoap->xoa_nounlink != 2829 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 2830 need_policy = TRUE; 2831 } else { 2832 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2833 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2834 } 2835 } 2836 2837 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2838 if (xoap->xoa_immutable != 2839 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 2840 need_policy = TRUE; 2841 } else { 2842 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2843 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2844 } 2845 } 2846 2847 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2848 if (xoap->xoa_nodump != 2849 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 2850 need_policy = TRUE; 2851 } else { 2852 XVA_CLR_REQ(xvap, XAT_NODUMP); 2853 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2854 } 2855 } 2856 2857 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2858 if (xoap->xoa_av_modified != 2859 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 2860 need_policy = TRUE; 2861 } else { 2862 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2863 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2864 } 2865 } 2866 2867 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2868 if ((vp->v_type != VREG && 2869 xoap->xoa_av_quarantined) || 2870 xoap->xoa_av_quarantined != 2871 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 2872 need_policy = TRUE; 2873 } else { 2874 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2875 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2876 } 2877 } 2878 2879 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2880 mutex_exit(&zp->z_lock); 2881 ZFS_EXIT(zfsvfs); 2882 return (EPERM); 2883 } 2884 2885 if (need_policy == FALSE && 2886 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2887 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2888 need_policy = TRUE; 2889 } 2890 } 2891 2892 mutex_exit(&zp->z_lock); 2893 2894 if (mask & AT_MODE) { 2895 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2896 err = secpolicy_setid_setsticky_clear(vp, vap, 2897 &oldva, cr); 2898 if (err) { 2899 ZFS_EXIT(zfsvfs); 2900 return (err); 2901 } 2902 trim_mask |= AT_MODE; 2903 } else { 2904 need_policy = TRUE; 2905 } 2906 } 2907 2908 if (need_policy) { 2909 /* 2910 * If trim_mask is set then take ownership 2911 * has been granted or write_acl is present and user 2912 * has the ability to modify mode. In that case remove 2913 * UID|GID and or MODE from mask so that 2914 * secpolicy_vnode_setattr() doesn't revoke it. 2915 */ 2916 2917 if (trim_mask) { 2918 saved_mask = vap->va_mask; 2919 vap->va_mask &= ~trim_mask; 2920 } 2921 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2922 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2923 if (err) { 2924 ZFS_EXIT(zfsvfs); 2925 return (err); 2926 } 2927 2928 if (trim_mask) 2929 vap->va_mask |= saved_mask; 2930 } 2931 2932 /* 2933 * secpolicy_vnode_setattr, or take ownership may have 2934 * changed va_mask 2935 */ 2936 mask = vap->va_mask; 2937 2938 if ((mask & (AT_UID | AT_GID))) { 2939 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 2940 &xattr_obj, sizeof (xattr_obj)); 2941 2942 if (err == 0 && xattr_obj) { 2943 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 2944 if (err) 2945 goto out2; 2946 } 2947 if (mask & AT_UID) { 2948 new_uid = zfs_fuid_create(zfsvfs, 2949 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 2950 if (new_uid != zp->z_uid && 2951 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) { 2952 if (attrzp) 2953 VN_RELE(ZTOV(attrzp)); 2954 err = EDQUOT; 2955 goto out2; 2956 } 2957 } 2958 2959 if (mask & AT_GID) { 2960 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 2961 cr, ZFS_GROUP, &fuidp); 2962 if (new_gid != zp->z_gid && 2963 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) { 2964 if (attrzp) 2965 VN_RELE(ZTOV(attrzp)); 2966 err = EDQUOT; 2967 goto out2; 2968 } 2969 } 2970 } 2971 tx = dmu_tx_create(zfsvfs->z_os); 2972 2973 if (mask & AT_MODE) { 2974 uint64_t pmode = zp->z_mode; 2975 uint64_t acl_obj; 2976 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2977 2978 zfs_acl_chmod_setattr(zp, &aclp, new_mode); 2979 2980 mutex_enter(&zp->z_lock); 2981 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 2982 /* 2983 * Are we upgrading ACL from old V0 format 2984 * to V1 format? 2985 */ 2986 if (zfsvfs->z_version >= ZPL_VERSION_FUID && 2987 zfs_znode_acl_version(zp) == 2988 ZFS_ACL_VERSION_INITIAL) { 2989 dmu_tx_hold_free(tx, acl_obj, 0, 2990 DMU_OBJECT_END); 2991 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2992 0, aclp->z_acl_bytes); 2993 } else { 2994 dmu_tx_hold_write(tx, acl_obj, 0, 2995 aclp->z_acl_bytes); 2996 } 2997 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2998 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2999 0, aclp->z_acl_bytes); 3000 } 3001 mutex_exit(&zp->z_lock); 3002 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3003 } else { 3004 if ((mask & AT_XVATTR) && 3005 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3006 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3007 else 3008 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3009 } 3010 3011 if (attrzp) { 3012 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 3013 } 3014 3015 fuid_dirtied = zfsvfs->z_fuid_dirty; 3016 if (fuid_dirtied) 3017 zfs_fuid_txhold(zfsvfs, tx); 3018 3019 zfs_sa_upgrade_txholds(tx, zp); 3020 3021 err = dmu_tx_assign(tx, TXG_NOWAIT); 3022 if (err) { 3023 if (err == ERESTART) 3024 dmu_tx_wait(tx); 3025 goto out; 3026 } 3027 3028 count = 0; 3029 /* 3030 * Set each attribute requested. 3031 * We group settings according to the locks they need to acquire. 3032 * 3033 * Note: you cannot set ctime directly, although it will be 3034 * updated as a side-effect of calling this function. 3035 */ 3036 3037 3038 if (mask & (AT_UID|AT_GID|AT_MODE)) 3039 mutex_enter(&zp->z_acl_lock); 3040 mutex_enter(&zp->z_lock); 3041 3042 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 3043 &zp->z_pflags, sizeof (zp->z_pflags)); 3044 3045 if (attrzp) { 3046 if (mask & (AT_UID|AT_GID|AT_MODE)) 3047 mutex_enter(&attrzp->z_acl_lock); 3048 mutex_enter(&attrzp->z_lock); 3049 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3050 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 3051 sizeof (attrzp->z_pflags)); 3052 } 3053 3054 if (mask & (AT_UID|AT_GID)) { 3055 3056 if (mask & AT_UID) { 3057 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 3058 &new_uid, sizeof (new_uid)); 3059 zp->z_uid = new_uid; 3060 if (attrzp) { 3061 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3062 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 3063 sizeof (new_uid)); 3064 attrzp->z_uid = new_uid; 3065 } 3066 } 3067 3068 if (mask & AT_GID) { 3069 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3070 NULL, &new_gid, sizeof (new_gid)); 3071 zp->z_gid = new_gid; 3072 if (attrzp) { 3073 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3074 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3075 sizeof (new_gid)); 3076 attrzp->z_gid = new_gid; 3077 } 3078 } 3079 if (!(mask & AT_MODE)) { 3080 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3081 NULL, &new_mode, sizeof (new_mode)); 3082 new_mode = zp->z_mode; 3083 } 3084 err = zfs_acl_chown_setattr(zp); 3085 ASSERT(err == 0); 3086 if (attrzp) { 3087 err = zfs_acl_chown_setattr(attrzp); 3088 ASSERT(err == 0); 3089 } 3090 } 3091 3092 if (mask & AT_MODE) { 3093 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3094 &new_mode, sizeof (new_mode)); 3095 zp->z_mode = new_mode; 3096 ASSERT3U((uintptr_t)aclp, !=, NULL); 3097 err = zfs_aclset_common(zp, aclp, cr, tx); 3098 ASSERT3U(err, ==, 0); 3099 if (zp->z_acl_cached) 3100 zfs_acl_free(zp->z_acl_cached); 3101 zp->z_acl_cached = aclp; 3102 aclp = NULL; 3103 } 3104 3105 3106 if (mask & AT_ATIME) { 3107 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3108 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3109 &zp->z_atime, sizeof (zp->z_atime)); 3110 } 3111 3112 if (mask & AT_MTIME) { 3113 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3114 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3115 mtime, sizeof (mtime)); 3116 } 3117 3118 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3119 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3120 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3121 NULL, mtime, sizeof (mtime)); 3122 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3123 &ctime, sizeof (ctime)); 3124 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3125 B_TRUE); 3126 } else if (mask != 0) { 3127 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3128 &ctime, sizeof (ctime)); 3129 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3130 B_TRUE); 3131 if (attrzp) { 3132 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3133 SA_ZPL_CTIME(zfsvfs), NULL, 3134 &ctime, sizeof (ctime)); 3135 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3136 mtime, ctime, B_TRUE); 3137 } 3138 } 3139 /* 3140 * Do this after setting timestamps to prevent timestamp 3141 * update from toggling bit 3142 */ 3143 3144 if (xoap && (mask & AT_XVATTR)) { 3145 3146 /* 3147 * restore trimmed off masks 3148 * so that return masks can be set for caller. 3149 */ 3150 3151 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3152 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3153 } 3154 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3155 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3156 } 3157 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3158 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3159 } 3160 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3161 XVA_SET_REQ(xvap, XAT_NODUMP); 3162 } 3163 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3164 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3165 } 3166 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3167 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3168 } 3169 3170 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3171 ASSERT(vp->v_type == VREG); 3172 3173 zfs_xvattr_set(zp, xvap, tx); 3174 } 3175 3176 if (fuid_dirtied) 3177 zfs_fuid_sync(zfsvfs, tx); 3178 3179 if (mask != 0) 3180 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3181 3182 mutex_exit(&zp->z_lock); 3183 if (mask & (AT_UID|AT_GID|AT_MODE)) 3184 mutex_exit(&zp->z_acl_lock); 3185 3186 if (attrzp) { 3187 if (mask & (AT_UID|AT_GID|AT_MODE)) 3188 mutex_exit(&attrzp->z_acl_lock); 3189 mutex_exit(&attrzp->z_lock); 3190 } 3191 out: 3192 if (err == 0 && attrzp) { 3193 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3194 xattr_count, tx); 3195 ASSERT(err2 == 0); 3196 } 3197 3198 if (attrzp) 3199 VN_RELE(ZTOV(attrzp)); 3200 if (aclp) 3201 zfs_acl_free(aclp); 3202 3203 if (fuidp) { 3204 zfs_fuid_info_free(fuidp); 3205 fuidp = NULL; 3206 } 3207 3208 if (err) { 3209 dmu_tx_abort(tx); 3210 if (err == ERESTART) 3211 goto top; 3212 } else { 3213 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3214 dmu_tx_commit(tx); 3215 } 3216 3217 out2: 3218 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3219 zil_commit(zilog, 0); 3220 3221 ZFS_EXIT(zfsvfs); 3222 return (err); 3223 } 3224 3225 typedef struct zfs_zlock { 3226 krwlock_t *zl_rwlock; /* lock we acquired */ 3227 znode_t *zl_znode; /* znode we held */ 3228 struct zfs_zlock *zl_next; /* next in list */ 3229 } zfs_zlock_t; 3230 3231 /* 3232 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3233 */ 3234 static void 3235 zfs_rename_unlock(zfs_zlock_t **zlpp) 3236 { 3237 zfs_zlock_t *zl; 3238 3239 while ((zl = *zlpp) != NULL) { 3240 if (zl->zl_znode != NULL) 3241 VN_RELE(ZTOV(zl->zl_znode)); 3242 rw_exit(zl->zl_rwlock); 3243 *zlpp = zl->zl_next; 3244 kmem_free(zl, sizeof (*zl)); 3245 } 3246 } 3247 3248 /* 3249 * Search back through the directory tree, using the ".." entries. 3250 * Lock each directory in the chain to prevent concurrent renames. 3251 * Fail any attempt to move a directory into one of its own descendants. 3252 * XXX - z_parent_lock can overlap with map or grow locks 3253 */ 3254 static int 3255 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3256 { 3257 zfs_zlock_t *zl; 3258 znode_t *zp = tdzp; 3259 uint64_t rootid = zp->z_zfsvfs->z_root; 3260 uint64_t oidp = zp->z_id; 3261 krwlock_t *rwlp = &szp->z_parent_lock; 3262 krw_t rw = RW_WRITER; 3263 3264 /* 3265 * First pass write-locks szp and compares to zp->z_id. 3266 * Later passes read-lock zp and compare to zp->z_parent. 3267 */ 3268 do { 3269 if (!rw_tryenter(rwlp, rw)) { 3270 /* 3271 * Another thread is renaming in this path. 3272 * Note that if we are a WRITER, we don't have any 3273 * parent_locks held yet. 3274 */ 3275 if (rw == RW_READER && zp->z_id > szp->z_id) { 3276 /* 3277 * Drop our locks and restart 3278 */ 3279 zfs_rename_unlock(&zl); 3280 *zlpp = NULL; 3281 zp = tdzp; 3282 oidp = zp->z_id; 3283 rwlp = &szp->z_parent_lock; 3284 rw = RW_WRITER; 3285 continue; 3286 } else { 3287 /* 3288 * Wait for other thread to drop its locks 3289 */ 3290 rw_enter(rwlp, rw); 3291 } 3292 } 3293 3294 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3295 zl->zl_rwlock = rwlp; 3296 zl->zl_znode = NULL; 3297 zl->zl_next = *zlpp; 3298 *zlpp = zl; 3299 3300 if (oidp == szp->z_id) /* We're a descendant of szp */ 3301 return (EINVAL); 3302 3303 if (oidp == rootid) /* We've hit the top */ 3304 return (0); 3305 3306 if (rw == RW_READER) { /* i.e. not the first pass */ 3307 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3308 if (error) 3309 return (error); 3310 zl->zl_znode = zp; 3311 } 3312 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3313 &oidp, sizeof (oidp)); 3314 rwlp = &zp->z_parent_lock; 3315 rw = RW_READER; 3316 3317 } while (zp->z_id != sdzp->z_id); 3318 3319 return (0); 3320 } 3321 3322 /* 3323 * Move an entry from the provided source directory to the target 3324 * directory. Change the entry name as indicated. 3325 * 3326 * IN: sdvp - Source directory containing the "old entry". 3327 * snm - Old entry name. 3328 * tdvp - Target directory to contain the "new entry". 3329 * tnm - New entry name. 3330 * cr - credentials of caller. 3331 * ct - caller context 3332 * flags - case flags 3333 * 3334 * RETURN: 0 if success 3335 * error code if failure 3336 * 3337 * Timestamps: 3338 * sdvp,tdvp - ctime|mtime updated 3339 */ 3340 /*ARGSUSED*/ 3341 static int 3342 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3343 caller_context_t *ct, int flags) 3344 { 3345 znode_t *tdzp, *szp, *tzp; 3346 znode_t *sdzp = VTOZ(sdvp); 3347 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3348 zilog_t *zilog; 3349 vnode_t *realvp; 3350 zfs_dirlock_t *sdl, *tdl; 3351 dmu_tx_t *tx; 3352 zfs_zlock_t *zl; 3353 int cmp, serr, terr; 3354 int error = 0; 3355 int zflg = 0; 3356 3357 ZFS_ENTER(zfsvfs); 3358 ZFS_VERIFY_ZP(sdzp); 3359 zilog = zfsvfs->z_log; 3360 3361 /* 3362 * Make sure we have the real vp for the target directory. 3363 */ 3364 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3365 tdvp = realvp; 3366 3367 if (tdvp->v_vfsp != sdvp->v_vfsp || zfsctl_is_node(tdvp)) { 3368 ZFS_EXIT(zfsvfs); 3369 return (EXDEV); 3370 } 3371 3372 tdzp = VTOZ(tdvp); 3373 ZFS_VERIFY_ZP(tdzp); 3374 if (zfsvfs->z_utf8 && u8_validate(tnm, 3375 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3376 ZFS_EXIT(zfsvfs); 3377 return (EILSEQ); 3378 } 3379 3380 if (flags & FIGNORECASE) 3381 zflg |= ZCILOOK; 3382 3383 top: 3384 szp = NULL; 3385 tzp = NULL; 3386 zl = NULL; 3387 3388 /* 3389 * This is to prevent the creation of links into attribute space 3390 * by renaming a linked file into/outof an attribute directory. 3391 * See the comment in zfs_link() for why this is considered bad. 3392 */ 3393 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3394 ZFS_EXIT(zfsvfs); 3395 return (EINVAL); 3396 } 3397 3398 /* 3399 * Lock source and target directory entries. To prevent deadlock, 3400 * a lock ordering must be defined. We lock the directory with 3401 * the smallest object id first, or if it's a tie, the one with 3402 * the lexically first name. 3403 */ 3404 if (sdzp->z_id < tdzp->z_id) { 3405 cmp = -1; 3406 } else if (sdzp->z_id > tdzp->z_id) { 3407 cmp = 1; 3408 } else { 3409 /* 3410 * First compare the two name arguments without 3411 * considering any case folding. 3412 */ 3413 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3414 3415 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3416 ASSERT(error == 0 || !zfsvfs->z_utf8); 3417 if (cmp == 0) { 3418 /* 3419 * POSIX: "If the old argument and the new argument 3420 * both refer to links to the same existing file, 3421 * the rename() function shall return successfully 3422 * and perform no other action." 3423 */ 3424 ZFS_EXIT(zfsvfs); 3425 return (0); 3426 } 3427 /* 3428 * If the file system is case-folding, then we may 3429 * have some more checking to do. A case-folding file 3430 * system is either supporting mixed case sensitivity 3431 * access or is completely case-insensitive. Note 3432 * that the file system is always case preserving. 3433 * 3434 * In mixed sensitivity mode case sensitive behavior 3435 * is the default. FIGNORECASE must be used to 3436 * explicitly request case insensitive behavior. 3437 * 3438 * If the source and target names provided differ only 3439 * by case (e.g., a request to rename 'tim' to 'Tim'), 3440 * we will treat this as a special case in the 3441 * case-insensitive mode: as long as the source name 3442 * is an exact match, we will allow this to proceed as 3443 * a name-change request. 3444 */ 3445 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3446 (zfsvfs->z_case == ZFS_CASE_MIXED && 3447 flags & FIGNORECASE)) && 3448 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3449 &error) == 0) { 3450 /* 3451 * case preserving rename request, require exact 3452 * name matches 3453 */ 3454 zflg |= ZCIEXACT; 3455 zflg &= ~ZCILOOK; 3456 } 3457 } 3458 3459 /* 3460 * If the source and destination directories are the same, we should 3461 * grab the z_name_lock of that directory only once. 3462 */ 3463 if (sdzp == tdzp) { 3464 zflg |= ZHAVELOCK; 3465 rw_enter(&sdzp->z_name_lock, RW_READER); 3466 } 3467 3468 if (cmp < 0) { 3469 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3470 ZEXISTS | zflg, NULL, NULL); 3471 terr = zfs_dirent_lock(&tdl, 3472 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3473 } else { 3474 terr = zfs_dirent_lock(&tdl, 3475 tdzp, tnm, &tzp, zflg, NULL, NULL); 3476 serr = zfs_dirent_lock(&sdl, 3477 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3478 NULL, NULL); 3479 } 3480 3481 if (serr) { 3482 /* 3483 * Source entry invalid or not there. 3484 */ 3485 if (!terr) { 3486 zfs_dirent_unlock(tdl); 3487 if (tzp) 3488 VN_RELE(ZTOV(tzp)); 3489 } 3490 3491 if (sdzp == tdzp) 3492 rw_exit(&sdzp->z_name_lock); 3493 3494 if (strcmp(snm, "..") == 0) 3495 serr = EINVAL; 3496 ZFS_EXIT(zfsvfs); 3497 return (serr); 3498 } 3499 if (terr) { 3500 zfs_dirent_unlock(sdl); 3501 VN_RELE(ZTOV(szp)); 3502 3503 if (sdzp == tdzp) 3504 rw_exit(&sdzp->z_name_lock); 3505 3506 if (strcmp(tnm, "..") == 0) 3507 terr = EINVAL; 3508 ZFS_EXIT(zfsvfs); 3509 return (terr); 3510 } 3511 3512 /* 3513 * Must have write access at the source to remove the old entry 3514 * and write access at the target to create the new entry. 3515 * Note that if target and source are the same, this can be 3516 * done in a single check. 3517 */ 3518 3519 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3520 goto out; 3521 3522 if (ZTOV(szp)->v_type == VDIR) { 3523 /* 3524 * Check to make sure rename is valid. 3525 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3526 */ 3527 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3528 goto out; 3529 } 3530 3531 /* 3532 * Does target exist? 3533 */ 3534 if (tzp) { 3535 /* 3536 * Source and target must be the same type. 3537 */ 3538 if (ZTOV(szp)->v_type == VDIR) { 3539 if (ZTOV(tzp)->v_type != VDIR) { 3540 error = ENOTDIR; 3541 goto out; 3542 } 3543 } else { 3544 if (ZTOV(tzp)->v_type == VDIR) { 3545 error = EISDIR; 3546 goto out; 3547 } 3548 } 3549 /* 3550 * POSIX dictates that when the source and target 3551 * entries refer to the same file object, rename 3552 * must do nothing and exit without error. 3553 */ 3554 if (szp->z_id == tzp->z_id) { 3555 error = 0; 3556 goto out; 3557 } 3558 } 3559 3560 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3561 if (tzp) 3562 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3563 3564 /* 3565 * notify the target directory if it is not the same 3566 * as source directory. 3567 */ 3568 if (tdvp != sdvp) { 3569 vnevent_rename_dest_dir(tdvp, ct); 3570 } 3571 3572 tx = dmu_tx_create(zfsvfs->z_os); 3573 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3574 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 3575 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3576 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3577 if (sdzp != tdzp) { 3578 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 3579 zfs_sa_upgrade_txholds(tx, tdzp); 3580 } 3581 if (tzp) { 3582 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 3583 zfs_sa_upgrade_txholds(tx, tzp); 3584 } 3585 3586 zfs_sa_upgrade_txholds(tx, szp); 3587 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3588 error = dmu_tx_assign(tx, TXG_NOWAIT); 3589 if (error) { 3590 if (zl != NULL) 3591 zfs_rename_unlock(&zl); 3592 zfs_dirent_unlock(sdl); 3593 zfs_dirent_unlock(tdl); 3594 3595 if (sdzp == tdzp) 3596 rw_exit(&sdzp->z_name_lock); 3597 3598 VN_RELE(ZTOV(szp)); 3599 if (tzp) 3600 VN_RELE(ZTOV(tzp)); 3601 if (error == ERESTART) { 3602 dmu_tx_wait(tx); 3603 dmu_tx_abort(tx); 3604 goto top; 3605 } 3606 dmu_tx_abort(tx); 3607 ZFS_EXIT(zfsvfs); 3608 return (error); 3609 } 3610 3611 if (tzp) /* Attempt to remove the existing target */ 3612 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3613 3614 if (error == 0) { 3615 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3616 if (error == 0) { 3617 szp->z_pflags |= ZFS_AV_MODIFIED; 3618 3619 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 3620 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 3621 ASSERT3U(error, ==, 0); 3622 3623 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3624 if (error == 0) { 3625 zfs_log_rename(zilog, tx, TX_RENAME | 3626 (flags & FIGNORECASE ? TX_CI : 0), sdzp, 3627 sdl->dl_name, tdzp, tdl->dl_name, szp); 3628 3629 /* 3630 * Update path information for the target vnode 3631 */ 3632 vn_renamepath(tdvp, ZTOV(szp), tnm, 3633 strlen(tnm)); 3634 } else { 3635 /* 3636 * At this point, we have successfully created 3637 * the target name, but have failed to remove 3638 * the source name. Since the create was done 3639 * with the ZRENAMING flag, there are 3640 * complications; for one, the link count is 3641 * wrong. The easiest way to deal with this 3642 * is to remove the newly created target, and 3643 * return the original error. This must 3644 * succeed; fortunately, it is very unlikely to 3645 * fail, since we just created it. 3646 */ 3647 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 3648 ZRENAMING, NULL), ==, 0); 3649 } 3650 } 3651 } 3652 3653 dmu_tx_commit(tx); 3654 out: 3655 if (zl != NULL) 3656 zfs_rename_unlock(&zl); 3657 3658 zfs_dirent_unlock(sdl); 3659 zfs_dirent_unlock(tdl); 3660 3661 if (sdzp == tdzp) 3662 rw_exit(&sdzp->z_name_lock); 3663 3664 3665 VN_RELE(ZTOV(szp)); 3666 if (tzp) 3667 VN_RELE(ZTOV(tzp)); 3668 3669 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3670 zil_commit(zilog, 0); 3671 3672 ZFS_EXIT(zfsvfs); 3673 return (error); 3674 } 3675 3676 /* 3677 * Insert the indicated symbolic reference entry into the directory. 3678 * 3679 * IN: dvp - Directory to contain new symbolic link. 3680 * link - Name for new symlink entry. 3681 * vap - Attributes of new entry. 3682 * target - Target path of new symlink. 3683 * cr - credentials of caller. 3684 * ct - caller context 3685 * flags - case flags 3686 * 3687 * RETURN: 0 if success 3688 * error code if failure 3689 * 3690 * Timestamps: 3691 * dvp - ctime|mtime updated 3692 */ 3693 /*ARGSUSED*/ 3694 static int 3695 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3696 caller_context_t *ct, int flags) 3697 { 3698 znode_t *zp, *dzp = VTOZ(dvp); 3699 zfs_dirlock_t *dl; 3700 dmu_tx_t *tx; 3701 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3702 zilog_t *zilog; 3703 uint64_t len = strlen(link); 3704 int error; 3705 int zflg = ZNEW; 3706 zfs_acl_ids_t acl_ids; 3707 boolean_t fuid_dirtied; 3708 uint64_t txtype = TX_SYMLINK; 3709 3710 ASSERT(vap->va_type == VLNK); 3711 3712 ZFS_ENTER(zfsvfs); 3713 ZFS_VERIFY_ZP(dzp); 3714 zilog = zfsvfs->z_log; 3715 3716 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3717 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3718 ZFS_EXIT(zfsvfs); 3719 return (EILSEQ); 3720 } 3721 if (flags & FIGNORECASE) 3722 zflg |= ZCILOOK; 3723 3724 if (len > MAXPATHLEN) { 3725 ZFS_EXIT(zfsvfs); 3726 return (ENAMETOOLONG); 3727 } 3728 3729 if ((error = zfs_acl_ids_create(dzp, 0, 3730 vap, cr, NULL, &acl_ids)) != 0) { 3731 ZFS_EXIT(zfsvfs); 3732 return (error); 3733 } 3734 top: 3735 /* 3736 * Attempt to lock directory; fail if entry already exists. 3737 */ 3738 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3739 if (error) { 3740 zfs_acl_ids_free(&acl_ids); 3741 ZFS_EXIT(zfsvfs); 3742 return (error); 3743 } 3744 3745 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3746 zfs_acl_ids_free(&acl_ids); 3747 zfs_dirent_unlock(dl); 3748 ZFS_EXIT(zfsvfs); 3749 return (error); 3750 } 3751 3752 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3753 zfs_acl_ids_free(&acl_ids); 3754 zfs_dirent_unlock(dl); 3755 ZFS_EXIT(zfsvfs); 3756 return (EDQUOT); 3757 } 3758 tx = dmu_tx_create(zfsvfs->z_os); 3759 fuid_dirtied = zfsvfs->z_fuid_dirty; 3760 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3761 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3762 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 3763 ZFS_SA_BASE_ATTR_SIZE + len); 3764 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 3765 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3766 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3767 acl_ids.z_aclp->z_acl_bytes); 3768 } 3769 if (fuid_dirtied) 3770 zfs_fuid_txhold(zfsvfs, tx); 3771 error = dmu_tx_assign(tx, TXG_NOWAIT); 3772 if (error) { 3773 zfs_dirent_unlock(dl); 3774 if (error == ERESTART) { 3775 dmu_tx_wait(tx); 3776 dmu_tx_abort(tx); 3777 goto top; 3778 } 3779 zfs_acl_ids_free(&acl_ids); 3780 dmu_tx_abort(tx); 3781 ZFS_EXIT(zfsvfs); 3782 return (error); 3783 } 3784 3785 /* 3786 * Create a new object for the symlink. 3787 * for version 4 ZPL datsets the symlink will be an SA attribute 3788 */ 3789 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 3790 3791 if (fuid_dirtied) 3792 zfs_fuid_sync(zfsvfs, tx); 3793 3794 mutex_enter(&zp->z_lock); 3795 if (zp->z_is_sa) 3796 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 3797 link, len, tx); 3798 else 3799 zfs_sa_symlink(zp, link, len, tx); 3800 mutex_exit(&zp->z_lock); 3801 3802 zp->z_size = len; 3803 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 3804 &zp->z_size, sizeof (zp->z_size), tx); 3805 /* 3806 * Insert the new object into the directory. 3807 */ 3808 (void) zfs_link_create(dl, zp, tx, ZNEW); 3809 3810 if (flags & FIGNORECASE) 3811 txtype |= TX_CI; 3812 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3813 3814 zfs_acl_ids_free(&acl_ids); 3815 3816 dmu_tx_commit(tx); 3817 3818 zfs_dirent_unlock(dl); 3819 3820 VN_RELE(ZTOV(zp)); 3821 3822 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3823 zil_commit(zilog, 0); 3824 3825 ZFS_EXIT(zfsvfs); 3826 return (error); 3827 } 3828 3829 /* 3830 * Return, in the buffer contained in the provided uio structure, 3831 * the symbolic path referred to by vp. 3832 * 3833 * IN: vp - vnode of symbolic link. 3834 * uoip - structure to contain the link path. 3835 * cr - credentials of caller. 3836 * ct - caller context 3837 * 3838 * OUT: uio - structure to contain the link path. 3839 * 3840 * RETURN: 0 if success 3841 * error code if failure 3842 * 3843 * Timestamps: 3844 * vp - atime updated 3845 */ 3846 /* ARGSUSED */ 3847 static int 3848 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3849 { 3850 znode_t *zp = VTOZ(vp); 3851 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3852 int error; 3853 3854 ZFS_ENTER(zfsvfs); 3855 ZFS_VERIFY_ZP(zp); 3856 3857 mutex_enter(&zp->z_lock); 3858 if (zp->z_is_sa) 3859 error = sa_lookup_uio(zp->z_sa_hdl, 3860 SA_ZPL_SYMLINK(zfsvfs), uio); 3861 else 3862 error = zfs_sa_readlink(zp, uio); 3863 mutex_exit(&zp->z_lock); 3864 3865 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3866 3867 ZFS_EXIT(zfsvfs); 3868 return (error); 3869 } 3870 3871 /* 3872 * Insert a new entry into directory tdvp referencing svp. 3873 * 3874 * IN: tdvp - Directory to contain new entry. 3875 * svp - vnode of new entry. 3876 * name - name of new entry. 3877 * cr - credentials of caller. 3878 * ct - caller context 3879 * 3880 * RETURN: 0 if success 3881 * error code if failure 3882 * 3883 * Timestamps: 3884 * tdvp - ctime|mtime updated 3885 * svp - ctime updated 3886 */ 3887 /* ARGSUSED */ 3888 static int 3889 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3890 caller_context_t *ct, int flags) 3891 { 3892 znode_t *dzp = VTOZ(tdvp); 3893 znode_t *tzp, *szp; 3894 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3895 zilog_t *zilog; 3896 zfs_dirlock_t *dl; 3897 dmu_tx_t *tx; 3898 vnode_t *realvp; 3899 int error; 3900 int zf = ZNEW; 3901 uint64_t parent; 3902 uid_t owner; 3903 3904 ASSERT(tdvp->v_type == VDIR); 3905 3906 ZFS_ENTER(zfsvfs); 3907 ZFS_VERIFY_ZP(dzp); 3908 zilog = zfsvfs->z_log; 3909 3910 if (VOP_REALVP(svp, &realvp, ct) == 0) 3911 svp = realvp; 3912 3913 /* 3914 * POSIX dictates that we return EPERM here. 3915 * Better choices include ENOTSUP or EISDIR. 3916 */ 3917 if (svp->v_type == VDIR) { 3918 ZFS_EXIT(zfsvfs); 3919 return (EPERM); 3920 } 3921 3922 if (svp->v_vfsp != tdvp->v_vfsp || zfsctl_is_node(svp)) { 3923 ZFS_EXIT(zfsvfs); 3924 return (EXDEV); 3925 } 3926 3927 szp = VTOZ(svp); 3928 ZFS_VERIFY_ZP(szp); 3929 3930 /* Prevent links to .zfs/shares files */ 3931 3932 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 3933 &parent, sizeof (uint64_t))) != 0) { 3934 ZFS_EXIT(zfsvfs); 3935 return (error); 3936 } 3937 if (parent == zfsvfs->z_shares_dir) { 3938 ZFS_EXIT(zfsvfs); 3939 return (EPERM); 3940 } 3941 3942 if (zfsvfs->z_utf8 && u8_validate(name, 3943 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3944 ZFS_EXIT(zfsvfs); 3945 return (EILSEQ); 3946 } 3947 if (flags & FIGNORECASE) 3948 zf |= ZCILOOK; 3949 3950 /* 3951 * We do not support links between attributes and non-attributes 3952 * because of the potential security risk of creating links 3953 * into "normal" file space in order to circumvent restrictions 3954 * imposed in attribute space. 3955 */ 3956 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 3957 ZFS_EXIT(zfsvfs); 3958 return (EINVAL); 3959 } 3960 3961 3962 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); 3963 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { 3964 ZFS_EXIT(zfsvfs); 3965 return (EPERM); 3966 } 3967 3968 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3969 ZFS_EXIT(zfsvfs); 3970 return (error); 3971 } 3972 3973 top: 3974 /* 3975 * Attempt to lock directory; fail if entry already exists. 3976 */ 3977 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 3978 if (error) { 3979 ZFS_EXIT(zfsvfs); 3980 return (error); 3981 } 3982 3983 tx = dmu_tx_create(zfsvfs->z_os); 3984 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3985 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3986 zfs_sa_upgrade_txholds(tx, szp); 3987 zfs_sa_upgrade_txholds(tx, dzp); 3988 error = dmu_tx_assign(tx, TXG_NOWAIT); 3989 if (error) { 3990 zfs_dirent_unlock(dl); 3991 if (error == ERESTART) { 3992 dmu_tx_wait(tx); 3993 dmu_tx_abort(tx); 3994 goto top; 3995 } 3996 dmu_tx_abort(tx); 3997 ZFS_EXIT(zfsvfs); 3998 return (error); 3999 } 4000 4001 error = zfs_link_create(dl, szp, tx, 0); 4002 4003 if (error == 0) { 4004 uint64_t txtype = TX_LINK; 4005 if (flags & FIGNORECASE) 4006 txtype |= TX_CI; 4007 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 4008 } 4009 4010 dmu_tx_commit(tx); 4011 4012 zfs_dirent_unlock(dl); 4013 4014 if (error == 0) { 4015 vnevent_link(svp, ct); 4016 } 4017 4018 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4019 zil_commit(zilog, 0); 4020 4021 ZFS_EXIT(zfsvfs); 4022 return (error); 4023 } 4024 4025 /* 4026 * zfs_null_putapage() is used when the file system has been force 4027 * unmounted. It just drops the pages. 4028 */ 4029 /* ARGSUSED */ 4030 static int 4031 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4032 size_t *lenp, int flags, cred_t *cr) 4033 { 4034 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 4035 return (0); 4036 } 4037 4038 /* 4039 * Push a page out to disk, klustering if possible. 4040 * 4041 * IN: vp - file to push page to. 4042 * pp - page to push. 4043 * flags - additional flags. 4044 * cr - credentials of caller. 4045 * 4046 * OUT: offp - start of range pushed. 4047 * lenp - len of range pushed. 4048 * 4049 * RETURN: 0 if success 4050 * error code if failure 4051 * 4052 * NOTE: callers must have locked the page to be pushed. On 4053 * exit, the page (and all other pages in the kluster) must be 4054 * unlocked. 4055 */ 4056 /* ARGSUSED */ 4057 static int 4058 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4059 size_t *lenp, int flags, cred_t *cr) 4060 { 4061 znode_t *zp = VTOZ(vp); 4062 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4063 dmu_tx_t *tx; 4064 u_offset_t off, koff; 4065 size_t len, klen; 4066 int err; 4067 4068 off = pp->p_offset; 4069 len = PAGESIZE; 4070 /* 4071 * If our blocksize is bigger than the page size, try to kluster 4072 * multiple pages so that we write a full block (thus avoiding 4073 * a read-modify-write). 4074 */ 4075 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4076 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4077 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4078 ASSERT(koff <= zp->z_size); 4079 if (koff + klen > zp->z_size) 4080 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4081 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4082 } 4083 ASSERT3U(btop(len), ==, btopr(len)); 4084 4085 /* 4086 * Can't push pages past end-of-file. 4087 */ 4088 if (off >= zp->z_size) { 4089 /* ignore all pages */ 4090 err = 0; 4091 goto out; 4092 } else if (off + len > zp->z_size) { 4093 int npages = btopr(zp->z_size - off); 4094 page_t *trunc; 4095 4096 page_list_break(&pp, &trunc, npages); 4097 /* ignore pages past end of file */ 4098 if (trunc) 4099 pvn_write_done(trunc, flags); 4100 len = zp->z_size - off; 4101 } 4102 4103 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 4104 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 4105 err = EDQUOT; 4106 goto out; 4107 } 4108 top: 4109 tx = dmu_tx_create(zfsvfs->z_os); 4110 dmu_tx_hold_write(tx, zp->z_id, off, len); 4111 4112 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4113 zfs_sa_upgrade_txholds(tx, zp); 4114 err = dmu_tx_assign(tx, TXG_NOWAIT); 4115 if (err != 0) { 4116 if (err == ERESTART) { 4117 dmu_tx_wait(tx); 4118 dmu_tx_abort(tx); 4119 goto top; 4120 } 4121 dmu_tx_abort(tx); 4122 goto out; 4123 } 4124 4125 if (zp->z_blksz <= PAGESIZE) { 4126 caddr_t va = zfs_map_page(pp, S_READ); 4127 ASSERT3U(len, <=, PAGESIZE); 4128 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4129 zfs_unmap_page(pp, va); 4130 } else { 4131 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4132 } 4133 4134 if (err == 0) { 4135 uint64_t mtime[2], ctime[2]; 4136 sa_bulk_attr_t bulk[3]; 4137 int count = 0; 4138 4139 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4140 &mtime, 16); 4141 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4142 &ctime, 16); 4143 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4144 &zp->z_pflags, 8); 4145 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4146 B_TRUE); 4147 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4148 } 4149 dmu_tx_commit(tx); 4150 4151 out: 4152 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4153 if (offp) 4154 *offp = off; 4155 if (lenp) 4156 *lenp = len; 4157 4158 return (err); 4159 } 4160 4161 /* 4162 * Copy the portion of the file indicated from pages into the file. 4163 * The pages are stored in a page list attached to the files vnode. 4164 * 4165 * IN: vp - vnode of file to push page data to. 4166 * off - position in file to put data. 4167 * len - amount of data to write. 4168 * flags - flags to control the operation. 4169 * cr - credentials of caller. 4170 * ct - caller context. 4171 * 4172 * RETURN: 0 if success 4173 * error code if failure 4174 * 4175 * Timestamps: 4176 * vp - ctime|mtime updated 4177 */ 4178 /*ARGSUSED*/ 4179 static int 4180 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4181 caller_context_t *ct) 4182 { 4183 znode_t *zp = VTOZ(vp); 4184 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4185 page_t *pp; 4186 size_t io_len; 4187 u_offset_t io_off; 4188 uint_t blksz; 4189 rl_t *rl; 4190 int error = 0; 4191 4192 ZFS_ENTER(zfsvfs); 4193 ZFS_VERIFY_ZP(zp); 4194 4195 /* 4196 * Align this request to the file block size in case we kluster. 4197 * XXX - this can result in pretty aggresive locking, which can 4198 * impact simultanious read/write access. One option might be 4199 * to break up long requests (len == 0) into block-by-block 4200 * operations to get narrower locking. 4201 */ 4202 blksz = zp->z_blksz; 4203 if (ISP2(blksz)) 4204 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4205 else 4206 io_off = 0; 4207 if (len > 0 && ISP2(blksz)) 4208 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4209 else 4210 io_len = 0; 4211 4212 if (io_len == 0) { 4213 /* 4214 * Search the entire vp list for pages >= io_off. 4215 */ 4216 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 4217 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4218 goto out; 4219 } 4220 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 4221 4222 if (off > zp->z_size) { 4223 /* past end of file */ 4224 zfs_range_unlock(rl); 4225 ZFS_EXIT(zfsvfs); 4226 return (0); 4227 } 4228 4229 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4230 4231 for (off = io_off; io_off < off + len; io_off += io_len) { 4232 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4233 pp = page_lookup(vp, io_off, 4234 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4235 } else { 4236 pp = page_lookup_nowait(vp, io_off, 4237 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4238 } 4239 4240 if (pp != NULL && pvn_getdirty(pp, flags)) { 4241 int err; 4242 4243 /* 4244 * Found a dirty page to push 4245 */ 4246 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4247 if (err) 4248 error = err; 4249 } else { 4250 io_len = PAGESIZE; 4251 } 4252 } 4253 out: 4254 zfs_range_unlock(rl); 4255 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4256 zil_commit(zfsvfs->z_log, zp->z_id); 4257 ZFS_EXIT(zfsvfs); 4258 return (error); 4259 } 4260 4261 /*ARGSUSED*/ 4262 void 4263 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4264 { 4265 znode_t *zp = VTOZ(vp); 4266 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4267 int error; 4268 4269 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4270 if (zp->z_sa_hdl == NULL) { 4271 /* 4272 * The fs has been unmounted, or we did a 4273 * suspend/resume and this file no longer exists. 4274 */ 4275 if (vn_has_cached_data(vp)) { 4276 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4277 B_INVAL, cr); 4278 } 4279 4280 mutex_enter(&zp->z_lock); 4281 mutex_enter(&vp->v_lock); 4282 ASSERT(vp->v_count == 1); 4283 vp->v_count = 0; 4284 mutex_exit(&vp->v_lock); 4285 mutex_exit(&zp->z_lock); 4286 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4287 zfs_znode_free(zp); 4288 return; 4289 } 4290 4291 /* 4292 * Attempt to push any data in the page cache. If this fails 4293 * we will get kicked out later in zfs_zinactive(). 4294 */ 4295 if (vn_has_cached_data(vp)) { 4296 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4297 cr); 4298 } 4299 4300 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4301 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4302 4303 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4304 zfs_sa_upgrade_txholds(tx, zp); 4305 error = dmu_tx_assign(tx, TXG_WAIT); 4306 if (error) { 4307 dmu_tx_abort(tx); 4308 } else { 4309 mutex_enter(&zp->z_lock); 4310 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4311 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4312 zp->z_atime_dirty = 0; 4313 mutex_exit(&zp->z_lock); 4314 dmu_tx_commit(tx); 4315 } 4316 } 4317 4318 zfs_zinactive(zp); 4319 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4320 } 4321 4322 /* 4323 * Bounds-check the seek operation. 4324 * 4325 * IN: vp - vnode seeking within 4326 * ooff - old file offset 4327 * noffp - pointer to new file offset 4328 * ct - caller context 4329 * 4330 * RETURN: 0 if success 4331 * EINVAL if new offset invalid 4332 */ 4333 /* ARGSUSED */ 4334 static int 4335 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4336 caller_context_t *ct) 4337 { 4338 if (vp->v_type == VDIR) 4339 return (0); 4340 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4341 } 4342 4343 /* 4344 * Pre-filter the generic locking function to trap attempts to place 4345 * a mandatory lock on a memory mapped file. 4346 */ 4347 static int 4348 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4349 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4350 { 4351 znode_t *zp = VTOZ(vp); 4352 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4353 4354 ZFS_ENTER(zfsvfs); 4355 ZFS_VERIFY_ZP(zp); 4356 4357 /* 4358 * We are following the UFS semantics with respect to mapcnt 4359 * here: If we see that the file is mapped already, then we will 4360 * return an error, but we don't worry about races between this 4361 * function and zfs_map(). 4362 */ 4363 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4364 ZFS_EXIT(zfsvfs); 4365 return (EAGAIN); 4366 } 4367 ZFS_EXIT(zfsvfs); 4368 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4369 } 4370 4371 /* 4372 * If we can't find a page in the cache, we will create a new page 4373 * and fill it with file data. For efficiency, we may try to fill 4374 * multiple pages at once (klustering) to fill up the supplied page 4375 * list. Note that the pages to be filled are held with an exclusive 4376 * lock to prevent access by other threads while they are being filled. 4377 */ 4378 static int 4379 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4380 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4381 { 4382 znode_t *zp = VTOZ(vp); 4383 page_t *pp, *cur_pp; 4384 objset_t *os = zp->z_zfsvfs->z_os; 4385 u_offset_t io_off, total; 4386 size_t io_len; 4387 int err; 4388 4389 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4390 /* 4391 * We only have a single page, don't bother klustering 4392 */ 4393 io_off = off; 4394 io_len = PAGESIZE; 4395 pp = page_create_va(vp, io_off, io_len, 4396 PG_EXCL | PG_WAIT, seg, addr); 4397 } else { 4398 /* 4399 * Try to find enough pages to fill the page list 4400 */ 4401 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4402 &io_len, off, plsz, 0); 4403 } 4404 if (pp == NULL) { 4405 /* 4406 * The page already exists, nothing to do here. 4407 */ 4408 *pl = NULL; 4409 return (0); 4410 } 4411 4412 /* 4413 * Fill the pages in the kluster. 4414 */ 4415 cur_pp = pp; 4416 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4417 caddr_t va; 4418 4419 ASSERT3U(io_off, ==, cur_pp->p_offset); 4420 va = zfs_map_page(cur_pp, S_WRITE); 4421 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4422 DMU_READ_PREFETCH); 4423 zfs_unmap_page(cur_pp, va); 4424 if (err) { 4425 /* On error, toss the entire kluster */ 4426 pvn_read_done(pp, B_ERROR); 4427 /* convert checksum errors into IO errors */ 4428 if (err == ECKSUM) 4429 err = EIO; 4430 return (err); 4431 } 4432 cur_pp = cur_pp->p_next; 4433 } 4434 4435 /* 4436 * Fill in the page list array from the kluster starting 4437 * from the desired offset `off'. 4438 * NOTE: the page list will always be null terminated. 4439 */ 4440 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4441 ASSERT(pl == NULL || (*pl)->p_offset == off); 4442 4443 return (0); 4444 } 4445 4446 /* 4447 * Return pointers to the pages for the file region [off, off + len] 4448 * in the pl array. If plsz is greater than len, this function may 4449 * also return page pointers from after the specified region 4450 * (i.e. the region [off, off + plsz]). These additional pages are 4451 * only returned if they are already in the cache, or were created as 4452 * part of a klustered read. 4453 * 4454 * IN: vp - vnode of file to get data from. 4455 * off - position in file to get data from. 4456 * len - amount of data to retrieve. 4457 * plsz - length of provided page list. 4458 * seg - segment to obtain pages for. 4459 * addr - virtual address of fault. 4460 * rw - mode of created pages. 4461 * cr - credentials of caller. 4462 * ct - caller context. 4463 * 4464 * OUT: protp - protection mode of created pages. 4465 * pl - list of pages created. 4466 * 4467 * RETURN: 0 if success 4468 * error code if failure 4469 * 4470 * Timestamps: 4471 * vp - atime updated 4472 */ 4473 /* ARGSUSED */ 4474 static int 4475 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4476 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4477 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4478 { 4479 znode_t *zp = VTOZ(vp); 4480 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4481 page_t **pl0 = pl; 4482 int err = 0; 4483 4484 /* we do our own caching, faultahead is unnecessary */ 4485 if (pl == NULL) 4486 return (0); 4487 else if (len > plsz) 4488 len = plsz; 4489 else 4490 len = P2ROUNDUP(len, PAGESIZE); 4491 ASSERT(plsz >= len); 4492 4493 ZFS_ENTER(zfsvfs); 4494 ZFS_VERIFY_ZP(zp); 4495 4496 if (protp) 4497 *protp = PROT_ALL; 4498 4499 /* 4500 * Loop through the requested range [off, off + len) looking 4501 * for pages. If we don't find a page, we will need to create 4502 * a new page and fill it with data from the file. 4503 */ 4504 while (len > 0) { 4505 if (*pl = page_lookup(vp, off, SE_SHARED)) 4506 *(pl+1) = NULL; 4507 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4508 goto out; 4509 while (*pl) { 4510 ASSERT3U((*pl)->p_offset, ==, off); 4511 off += PAGESIZE; 4512 addr += PAGESIZE; 4513 if (len > 0) { 4514 ASSERT3U(len, >=, PAGESIZE); 4515 len -= PAGESIZE; 4516 } 4517 ASSERT3U(plsz, >=, PAGESIZE); 4518 plsz -= PAGESIZE; 4519 pl++; 4520 } 4521 } 4522 4523 /* 4524 * Fill out the page array with any pages already in the cache. 4525 */ 4526 while (plsz > 0 && 4527 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4528 off += PAGESIZE; 4529 plsz -= PAGESIZE; 4530 } 4531 out: 4532 if (err) { 4533 /* 4534 * Release any pages we have previously locked. 4535 */ 4536 while (pl > pl0) 4537 page_unlock(*--pl); 4538 } else { 4539 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4540 } 4541 4542 *pl = NULL; 4543 4544 ZFS_EXIT(zfsvfs); 4545 return (err); 4546 } 4547 4548 /* 4549 * Request a memory map for a section of a file. This code interacts 4550 * with common code and the VM system as follows: 4551 * 4552 * common code calls mmap(), which ends up in smmap_common() 4553 * 4554 * this calls VOP_MAP(), which takes you into (say) zfs 4555 * 4556 * zfs_map() calls as_map(), passing segvn_create() as the callback 4557 * 4558 * segvn_create() creates the new segment and calls VOP_ADDMAP() 4559 * 4560 * zfs_addmap() updates z_mapcnt 4561 */ 4562 /*ARGSUSED*/ 4563 static int 4564 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4565 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4566 caller_context_t *ct) 4567 { 4568 znode_t *zp = VTOZ(vp); 4569 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4570 segvn_crargs_t vn_a; 4571 int error; 4572 4573 ZFS_ENTER(zfsvfs); 4574 ZFS_VERIFY_ZP(zp); 4575 4576 if ((prot & PROT_WRITE) && (zp->z_pflags & 4577 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) { 4578 ZFS_EXIT(zfsvfs); 4579 return (EPERM); 4580 } 4581 4582 if ((prot & (PROT_READ | PROT_EXEC)) && 4583 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 4584 ZFS_EXIT(zfsvfs); 4585 return (EACCES); 4586 } 4587 4588 if (vp->v_flag & VNOMAP) { 4589 ZFS_EXIT(zfsvfs); 4590 return (ENOSYS); 4591 } 4592 4593 if (off < 0 || len > MAXOFFSET_T - off) { 4594 ZFS_EXIT(zfsvfs); 4595 return (ENXIO); 4596 } 4597 4598 if (vp->v_type != VREG) { 4599 ZFS_EXIT(zfsvfs); 4600 return (ENODEV); 4601 } 4602 4603 /* 4604 * If file is locked, disallow mapping. 4605 */ 4606 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 4607 ZFS_EXIT(zfsvfs); 4608 return (EAGAIN); 4609 } 4610 4611 as_rangelock(as); 4612 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4613 if (error != 0) { 4614 as_rangeunlock(as); 4615 ZFS_EXIT(zfsvfs); 4616 return (error); 4617 } 4618 4619 vn_a.vp = vp; 4620 vn_a.offset = (u_offset_t)off; 4621 vn_a.type = flags & MAP_TYPE; 4622 vn_a.prot = prot; 4623 vn_a.maxprot = maxprot; 4624 vn_a.cred = cr; 4625 vn_a.amp = NULL; 4626 vn_a.flags = flags & ~MAP_TYPE; 4627 vn_a.szc = 0; 4628 vn_a.lgrp_mem_policy_flags = 0; 4629 4630 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4631 4632 as_rangeunlock(as); 4633 ZFS_EXIT(zfsvfs); 4634 return (error); 4635 } 4636 4637 /* ARGSUSED */ 4638 static int 4639 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4640 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4641 caller_context_t *ct) 4642 { 4643 uint64_t pages = btopr(len); 4644 4645 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4646 return (0); 4647 } 4648 4649 /* 4650 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4651 * more accurate mtime for the associated file. Since we don't have a way of 4652 * detecting when the data was actually modified, we have to resort to 4653 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4654 * last page is pushed. The problem occurs when the msync() call is omitted, 4655 * which by far the most common case: 4656 * 4657 * open() 4658 * mmap() 4659 * <modify memory> 4660 * munmap() 4661 * close() 4662 * <time lapse> 4663 * putpage() via fsflush 4664 * 4665 * If we wait until fsflush to come along, we can have a modification time that 4666 * is some arbitrary point in the future. In order to prevent this in the 4667 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4668 * torn down. 4669 */ 4670 /* ARGSUSED */ 4671 static int 4672 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4673 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4674 caller_context_t *ct) 4675 { 4676 uint64_t pages = btopr(len); 4677 4678 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4679 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4680 4681 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4682 vn_has_cached_data(vp)) 4683 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4684 4685 return (0); 4686 } 4687 4688 /* 4689 * Free or allocate space in a file. Currently, this function only 4690 * supports the `F_FREESP' command. However, this command is somewhat 4691 * misnamed, as its functionality includes the ability to allocate as 4692 * well as free space. 4693 * 4694 * IN: vp - vnode of file to free data in. 4695 * cmd - action to take (only F_FREESP supported). 4696 * bfp - section of file to free/alloc. 4697 * flag - current file open mode flags. 4698 * offset - current file offset. 4699 * cr - credentials of caller [UNUSED]. 4700 * ct - caller context. 4701 * 4702 * RETURN: 0 if success 4703 * error code if failure 4704 * 4705 * Timestamps: 4706 * vp - ctime|mtime updated 4707 */ 4708 /* ARGSUSED */ 4709 static int 4710 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4711 offset_t offset, cred_t *cr, caller_context_t *ct) 4712 { 4713 znode_t *zp = VTOZ(vp); 4714 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4715 uint64_t off, len; 4716 int error; 4717 4718 ZFS_ENTER(zfsvfs); 4719 ZFS_VERIFY_ZP(zp); 4720 4721 if (cmd != F_FREESP) { 4722 ZFS_EXIT(zfsvfs); 4723 return (EINVAL); 4724 } 4725 4726 if (error = convoff(vp, bfp, 0, offset)) { 4727 ZFS_EXIT(zfsvfs); 4728 return (error); 4729 } 4730 4731 if (bfp->l_len < 0) { 4732 ZFS_EXIT(zfsvfs); 4733 return (EINVAL); 4734 } 4735 4736 off = bfp->l_start; 4737 len = bfp->l_len; /* 0 means from off to end of file */ 4738 4739 error = zfs_freesp(zp, off, len, flag, TRUE); 4740 4741 ZFS_EXIT(zfsvfs); 4742 return (error); 4743 } 4744 4745 /*ARGSUSED*/ 4746 static int 4747 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4748 { 4749 znode_t *zp = VTOZ(vp); 4750 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4751 uint32_t gen; 4752 uint64_t gen64; 4753 uint64_t object = zp->z_id; 4754 zfid_short_t *zfid; 4755 int size, i, error; 4756 4757 ZFS_ENTER(zfsvfs); 4758 ZFS_VERIFY_ZP(zp); 4759 4760 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 4761 &gen64, sizeof (uint64_t))) != 0) { 4762 ZFS_EXIT(zfsvfs); 4763 return (error); 4764 } 4765 4766 gen = (uint32_t)gen64; 4767 4768 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4769 if (fidp->fid_len < size) { 4770 fidp->fid_len = size; 4771 ZFS_EXIT(zfsvfs); 4772 return (ENOSPC); 4773 } 4774 4775 zfid = (zfid_short_t *)fidp; 4776 4777 zfid->zf_len = size; 4778 4779 for (i = 0; i < sizeof (zfid->zf_object); i++) 4780 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4781 4782 /* Must have a non-zero generation number to distinguish from .zfs */ 4783 if (gen == 0) 4784 gen = 1; 4785 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4786 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4787 4788 if (size == LONG_FID_LEN) { 4789 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4790 zfid_long_t *zlfid; 4791 4792 zlfid = (zfid_long_t *)fidp; 4793 4794 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4795 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4796 4797 /* XXX - this should be the generation number for the objset */ 4798 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4799 zlfid->zf_setgen[i] = 0; 4800 } 4801 4802 ZFS_EXIT(zfsvfs); 4803 return (0); 4804 } 4805 4806 static int 4807 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4808 caller_context_t *ct) 4809 { 4810 znode_t *zp, *xzp; 4811 zfsvfs_t *zfsvfs; 4812 zfs_dirlock_t *dl; 4813 int error; 4814 4815 switch (cmd) { 4816 case _PC_LINK_MAX: 4817 *valp = ULONG_MAX; 4818 return (0); 4819 4820 case _PC_FILESIZEBITS: 4821 *valp = 64; 4822 return (0); 4823 4824 case _PC_XATTR_EXISTS: 4825 zp = VTOZ(vp); 4826 zfsvfs = zp->z_zfsvfs; 4827 ZFS_ENTER(zfsvfs); 4828 ZFS_VERIFY_ZP(zp); 4829 *valp = 0; 4830 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4831 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4832 if (error == 0) { 4833 zfs_dirent_unlock(dl); 4834 if (!zfs_dirempty(xzp)) 4835 *valp = 1; 4836 VN_RELE(ZTOV(xzp)); 4837 } else if (error == ENOENT) { 4838 /* 4839 * If there aren't extended attributes, it's the 4840 * same as having zero of them. 4841 */ 4842 error = 0; 4843 } 4844 ZFS_EXIT(zfsvfs); 4845 return (error); 4846 4847 case _PC_SATTR_ENABLED: 4848 case _PC_SATTR_EXISTS: 4849 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4850 (vp->v_type == VREG || vp->v_type == VDIR); 4851 return (0); 4852 4853 case _PC_ACCESS_FILTERING: 4854 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4855 vp->v_type == VDIR; 4856 return (0); 4857 4858 case _PC_ACL_ENABLED: 4859 *valp = _ACL_ACE_ENABLED; 4860 return (0); 4861 4862 case _PC_MIN_HOLE_SIZE: 4863 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4864 return (0); 4865 4866 case _PC_TIMESTAMP_RESOLUTION: 4867 /* nanosecond timestamp resolution */ 4868 *valp = 1L; 4869 return (0); 4870 4871 default: 4872 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4873 } 4874 } 4875 4876 /*ARGSUSED*/ 4877 static int 4878 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4879 caller_context_t *ct) 4880 { 4881 znode_t *zp = VTOZ(vp); 4882 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4883 int error; 4884 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4885 4886 ZFS_ENTER(zfsvfs); 4887 ZFS_VERIFY_ZP(zp); 4888 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4889 ZFS_EXIT(zfsvfs); 4890 4891 return (error); 4892 } 4893 4894 /*ARGSUSED*/ 4895 static int 4896 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4897 caller_context_t *ct) 4898 { 4899 znode_t *zp = VTOZ(vp); 4900 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4901 int error; 4902 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4903 zilog_t *zilog = zfsvfs->z_log; 4904 4905 ZFS_ENTER(zfsvfs); 4906 ZFS_VERIFY_ZP(zp); 4907 4908 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4909 4910 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4911 zil_commit(zilog, 0); 4912 4913 ZFS_EXIT(zfsvfs); 4914 return (error); 4915 } 4916 4917 /* 4918 * Tunable, both must be a power of 2. 4919 * 4920 * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf 4921 * zcr_blksz_max: if set to less than the file block size, allow loaning out of 4922 * an arcbuf for a partial block read 4923 */ 4924 int zcr_blksz_min = (1 << 10); /* 1K */ 4925 int zcr_blksz_max = (1 << 17); /* 128K */ 4926 4927 /*ARGSUSED*/ 4928 static int 4929 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 4930 caller_context_t *ct) 4931 { 4932 znode_t *zp = VTOZ(vp); 4933 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4934 int max_blksz = zfsvfs->z_max_blksz; 4935 uio_t *uio = &xuio->xu_uio; 4936 ssize_t size = uio->uio_resid; 4937 offset_t offset = uio->uio_loffset; 4938 int blksz; 4939 int fullblk, i; 4940 arc_buf_t *abuf; 4941 ssize_t maxsize; 4942 int preamble, postamble; 4943 4944 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 4945 return (EINVAL); 4946 4947 ZFS_ENTER(zfsvfs); 4948 ZFS_VERIFY_ZP(zp); 4949 switch (ioflag) { 4950 case UIO_WRITE: 4951 /* 4952 * Loan out an arc_buf for write if write size is bigger than 4953 * max_blksz, and the file's block size is also max_blksz. 4954 */ 4955 blksz = max_blksz; 4956 if (size < blksz || zp->z_blksz != blksz) { 4957 ZFS_EXIT(zfsvfs); 4958 return (EINVAL); 4959 } 4960 /* 4961 * Caller requests buffers for write before knowing where the 4962 * write offset might be (e.g. NFS TCP write). 4963 */ 4964 if (offset == -1) { 4965 preamble = 0; 4966 } else { 4967 preamble = P2PHASE(offset, blksz); 4968 if (preamble) { 4969 preamble = blksz - preamble; 4970 size -= preamble; 4971 } 4972 } 4973 4974 postamble = P2PHASE(size, blksz); 4975 size -= postamble; 4976 4977 fullblk = size / blksz; 4978 (void) dmu_xuio_init(xuio, 4979 (preamble != 0) + fullblk + (postamble != 0)); 4980 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 4981 int, postamble, int, 4982 (preamble != 0) + fullblk + (postamble != 0)); 4983 4984 /* 4985 * Have to fix iov base/len for partial buffers. They 4986 * currently represent full arc_buf's. 4987 */ 4988 if (preamble) { 4989 /* data begins in the middle of the arc_buf */ 4990 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 4991 blksz); 4992 ASSERT(abuf); 4993 (void) dmu_xuio_add(xuio, abuf, 4994 blksz - preamble, preamble); 4995 } 4996 4997 for (i = 0; i < fullblk; i++) { 4998 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 4999 blksz); 5000 ASSERT(abuf); 5001 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 5002 } 5003 5004 if (postamble) { 5005 /* data ends in the middle of the arc_buf */ 5006 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5007 blksz); 5008 ASSERT(abuf); 5009 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 5010 } 5011 break; 5012 case UIO_READ: 5013 /* 5014 * Loan out an arc_buf for read if the read size is larger than 5015 * the current file block size. Block alignment is not 5016 * considered. Partial arc_buf will be loaned out for read. 5017 */ 5018 blksz = zp->z_blksz; 5019 if (blksz < zcr_blksz_min) 5020 blksz = zcr_blksz_min; 5021 if (blksz > zcr_blksz_max) 5022 blksz = zcr_blksz_max; 5023 /* avoid potential complexity of dealing with it */ 5024 if (blksz > max_blksz) { 5025 ZFS_EXIT(zfsvfs); 5026 return (EINVAL); 5027 } 5028 5029 maxsize = zp->z_size - uio->uio_loffset; 5030 if (size > maxsize) 5031 size = maxsize; 5032 5033 if (size < blksz || vn_has_cached_data(vp)) { 5034 ZFS_EXIT(zfsvfs); 5035 return (EINVAL); 5036 } 5037 break; 5038 default: 5039 ZFS_EXIT(zfsvfs); 5040 return (EINVAL); 5041 } 5042 5043 uio->uio_extflg = UIO_XUIO; 5044 XUIO_XUZC_RW(xuio) = ioflag; 5045 ZFS_EXIT(zfsvfs); 5046 return (0); 5047 } 5048 5049 /*ARGSUSED*/ 5050 static int 5051 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5052 { 5053 int i; 5054 arc_buf_t *abuf; 5055 int ioflag = XUIO_XUZC_RW(xuio); 5056 5057 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5058 5059 i = dmu_xuio_cnt(xuio); 5060 while (i-- > 0) { 5061 abuf = dmu_xuio_arcbuf(xuio, i); 5062 /* 5063 * if abuf == NULL, it must be a write buffer 5064 * that has been returned in zfs_write(). 5065 */ 5066 if (abuf) 5067 dmu_return_arcbuf(abuf); 5068 ASSERT(abuf || ioflag == UIO_WRITE); 5069 } 5070 5071 dmu_xuio_fini(xuio); 5072 return (0); 5073 } 5074 5075 /* 5076 * Predeclare these here so that the compiler assumes that 5077 * this is an "old style" function declaration that does 5078 * not include arguments => we won't get type mismatch errors 5079 * in the initializations that follow. 5080 */ 5081 static int zfs_inval(); 5082 static int zfs_isdir(); 5083 5084 static int 5085 zfs_inval() 5086 { 5087 return (EINVAL); 5088 } 5089 5090 static int 5091 zfs_isdir() 5092 { 5093 return (EISDIR); 5094 } 5095 /* 5096 * Directory vnode operations template 5097 */ 5098 vnodeops_t *zfs_dvnodeops; 5099 const fs_operation_def_t zfs_dvnodeops_template[] = { 5100 VOPNAME_OPEN, { .vop_open = zfs_open }, 5101 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5102 VOPNAME_READ, { .error = zfs_isdir }, 5103 VOPNAME_WRITE, { .error = zfs_isdir }, 5104 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5105 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5106 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5107 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5108 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5109 VOPNAME_CREATE, { .vop_create = zfs_create }, 5110 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5111 VOPNAME_LINK, { .vop_link = zfs_link }, 5112 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5113 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5114 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5115 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5116 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5117 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5118 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5119 VOPNAME_FID, { .vop_fid = zfs_fid }, 5120 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5121 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5122 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5123 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5124 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5125 NULL, NULL 5126 }; 5127 5128 /* 5129 * Regular file vnode operations template 5130 */ 5131 vnodeops_t *zfs_fvnodeops; 5132 const fs_operation_def_t zfs_fvnodeops_template[] = { 5133 VOPNAME_OPEN, { .vop_open = zfs_open }, 5134 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5135 VOPNAME_READ, { .vop_read = zfs_read }, 5136 VOPNAME_WRITE, { .vop_write = zfs_write }, 5137 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5138 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5139 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5140 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5141 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5142 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5143 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5144 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5145 VOPNAME_FID, { .vop_fid = zfs_fid }, 5146 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5147 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5148 VOPNAME_SPACE, { .vop_space = zfs_space }, 5149 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5150 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5151 VOPNAME_MAP, { .vop_map = zfs_map }, 5152 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5153 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5154 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5155 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5156 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5157 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5158 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5159 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5160 NULL, NULL 5161 }; 5162 5163 /* 5164 * Symbolic link vnode operations template 5165 */ 5166 vnodeops_t *zfs_symvnodeops; 5167 const fs_operation_def_t zfs_symvnodeops_template[] = { 5168 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5169 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5170 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5171 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5172 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5173 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5174 VOPNAME_FID, { .vop_fid = zfs_fid }, 5175 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5176 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5177 NULL, NULL 5178 }; 5179 5180 /* 5181 * special share hidden files vnode operations template 5182 */ 5183 vnodeops_t *zfs_sharevnodeops; 5184 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5185 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5186 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5187 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5188 VOPNAME_FID, { .vop_fid = zfs_fid }, 5189 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5190 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5191 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5192 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5193 NULL, NULL 5194 }; 5195 5196 /* 5197 * Extended attribute directory vnode operations template 5198 * This template is identical to the directory vnodes 5199 * operation template except for restricted operations: 5200 * VOP_MKDIR() 5201 * VOP_SYMLINK() 5202 * Note that there are other restrictions embedded in: 5203 * zfs_create() - restrict type to VREG 5204 * zfs_link() - no links into/out of attribute space 5205 * zfs_rename() - no moves into/out of attribute space 5206 */ 5207 vnodeops_t *zfs_xdvnodeops; 5208 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5209 VOPNAME_OPEN, { .vop_open = zfs_open }, 5210 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5211 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5212 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5213 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5214 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5215 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5216 VOPNAME_CREATE, { .vop_create = zfs_create }, 5217 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5218 VOPNAME_LINK, { .vop_link = zfs_link }, 5219 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5220 VOPNAME_MKDIR, { .error = zfs_inval }, 5221 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5222 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5223 VOPNAME_SYMLINK, { .error = zfs_inval }, 5224 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5225 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5226 VOPNAME_FID, { .vop_fid = zfs_fid }, 5227 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5228 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5229 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5230 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5231 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5232 NULL, NULL 5233 }; 5234 5235 /* 5236 * Error vnode operations template 5237 */ 5238 vnodeops_t *zfs_evnodeops; 5239 const fs_operation_def_t zfs_evnodeops_template[] = { 5240 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5241 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5242 NULL, NULL 5243 }; 5244