1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/vfs.h> 35 #include <sys/vfs_opreg.h> 36 #include <sys/vnode.h> 37 #include <sys/file.h> 38 #include <sys/stat.h> 39 #include <sys/kmem.h> 40 #include <sys/taskq.h> 41 #include <sys/uio.h> 42 #include <sys/vmsystm.h> 43 #include <sys/atomic.h> 44 #include <sys/vm.h> 45 #include <vm/seg_vn.h> 46 #include <vm/pvn.h> 47 #include <vm/as.h> 48 #include <vm/kpm.h> 49 #include <vm/seg_kpm.h> 50 #include <sys/mman.h> 51 #include <sys/pathname.h> 52 #include <sys/cmn_err.h> 53 #include <sys/errno.h> 54 #include <sys/unistd.h> 55 #include <sys/zfs_dir.h> 56 #include <sys/zfs_acl.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/dmu.h> 60 #include <sys/spa.h> 61 #include <sys/txg.h> 62 #include <sys/dbuf.h> 63 #include <sys/zap.h> 64 #include <sys/dirent.h> 65 #include <sys/policy.h> 66 #include <sys/sunddi.h> 67 #include <sys/filio.h> 68 #include <sys/sid.h> 69 #include "fs/fs_subr.h" 70 #include <sys/zfs_ctldir.h> 71 #include <sys/zfs_fuid.h> 72 #include <sys/dnlc.h> 73 #include <sys/zfs_rlock.h> 74 #include <sys/extdirent.h> 75 #include <sys/kidmap.h> 76 #include <sys/cred_impl.h> 77 #include <sys/attr.h> 78 79 /* 80 * Programming rules. 81 * 82 * Each vnode op performs some logical unit of work. To do this, the ZPL must 83 * properly lock its in-core state, create a DMU transaction, do the work, 84 * record this work in the intent log (ZIL), commit the DMU transaction, 85 * and wait for the intent log to commit if it is a synchronous operation. 86 * Moreover, the vnode ops must work in both normal and log replay context. 87 * The ordering of events is important to avoid deadlocks and references 88 * to freed memory. The example below illustrates the following Big Rules: 89 * 90 * (1) A check must be made in each zfs thread for a mounted file system. 91 * This is done avoiding races using ZFS_ENTER(zfsvfs). 92 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 93 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 94 * can return EIO from the calling function. 95 * 96 * (2) VN_RELE() should always be the last thing except for zil_commit() 97 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 98 * First, if it's the last reference, the vnode/znode 99 * can be freed, so the zp may point to freed memory. Second, the last 100 * reference will call zfs_zinactive(), which may induce a lot of work -- 101 * pushing cached pages (which acquires range locks) and syncing out 102 * cached atime changes. Third, zfs_zinactive() may require a new tx, 103 * which could deadlock the system if you were already holding one. 104 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 105 * 106 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 107 * as they can span dmu_tx_assign() calls. 108 * 109 * (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign(). 110 * This is critical because we don't want to block while holding locks. 111 * Note, in particular, that if a lock is sometimes acquired before 112 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 113 * use a non-blocking assign can deadlock the system. The scenario: 114 * 115 * Thread A has grabbed a lock before calling dmu_tx_assign(). 116 * Thread B is in an already-assigned tx, and blocks for this lock. 117 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 118 * forever, because the previous txg can't quiesce until B's tx commits. 119 * 120 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 121 * then drop all locks, call dmu_tx_wait(), and try again. 122 * 123 * (5) If the operation succeeded, generate the intent log entry for it 124 * before dropping locks. This ensures that the ordering of events 125 * in the intent log matches the order in which they actually occurred. 126 * During ZIL replay the zfs_log_* functions will update the sequence 127 * number to indicate the zil transaction has replayed. 128 * 129 * (6) At the end of each vnode op, the DMU tx must always commit, 130 * regardless of whether there were any errors. 131 * 132 * (7) After dropping all locks, invoke zil_commit(zilog, seq, foid) 133 * to ensure that synchronous semantics are provided when necessary. 134 * 135 * In general, this is how things should be ordered in each vnode op: 136 * 137 * ZFS_ENTER(zfsvfs); // exit if unmounted 138 * top: 139 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 140 * rw_enter(...); // grab any other locks you need 141 * tx = dmu_tx_create(...); // get DMU tx 142 * dmu_tx_hold_*(); // hold each object you might modify 143 * error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign 144 * if (error) { 145 * rw_exit(...); // drop locks 146 * zfs_dirent_unlock(dl); // unlock directory entry 147 * VN_RELE(...); // release held vnodes 148 * if (error == ERESTART) { 149 * dmu_tx_wait(tx); 150 * dmu_tx_abort(tx); 151 * goto top; 152 * } 153 * dmu_tx_abort(tx); // abort DMU tx 154 * ZFS_EXIT(zfsvfs); // finished in zfs 155 * return (error); // really out of space 156 * } 157 * error = do_real_work(); // do whatever this VOP does 158 * if (error == 0) 159 * zfs_log_*(...); // on success, make ZIL entry 160 * dmu_tx_commit(tx); // commit DMU tx -- error or not 161 * rw_exit(...); // drop locks 162 * zfs_dirent_unlock(dl); // unlock directory entry 163 * VN_RELE(...); // release held vnodes 164 * zil_commit(zilog, seq, foid); // synchronous when necessary 165 * ZFS_EXIT(zfsvfs); // finished in zfs 166 * return (error); // done, report error 167 */ 168 169 /* ARGSUSED */ 170 static int 171 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 172 { 173 znode_t *zp = VTOZ(*vpp); 174 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 175 176 ZFS_ENTER(zfsvfs); 177 ZFS_VERIFY_ZP(zp); 178 179 if ((flag & FWRITE) && (zp->z_phys->zp_flags & ZFS_APPENDONLY) && 180 ((flag & FAPPEND) == 0)) { 181 ZFS_EXIT(zfsvfs); 182 return (EPERM); 183 } 184 185 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 186 ZTOV(zp)->v_type == VREG && 187 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 188 zp->z_phys->zp_size > 0) { 189 if (fs_vscan(*vpp, cr, 0) != 0) { 190 ZFS_EXIT(zfsvfs); 191 return (EACCES); 192 } 193 } 194 195 /* Keep a count of the synchronous opens in the znode */ 196 if (flag & (FSYNC | FDSYNC)) 197 atomic_inc_32(&zp->z_sync_cnt); 198 199 ZFS_EXIT(zfsvfs); 200 return (0); 201 } 202 203 /* ARGSUSED */ 204 static int 205 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 206 caller_context_t *ct) 207 { 208 znode_t *zp = VTOZ(vp); 209 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 210 211 ZFS_ENTER(zfsvfs); 212 ZFS_VERIFY_ZP(zp); 213 214 /* Decrement the synchronous opens in the znode */ 215 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 216 atomic_dec_32(&zp->z_sync_cnt); 217 218 /* 219 * Clean up any locks held by this process on the vp. 220 */ 221 cleanlocks(vp, ddi_get_pid(), 0); 222 cleanshares(vp, ddi_get_pid()); 223 224 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 225 ZTOV(zp)->v_type == VREG && 226 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 227 zp->z_phys->zp_size > 0) 228 VERIFY(fs_vscan(vp, cr, 1) == 0); 229 230 ZFS_EXIT(zfsvfs); 231 return (0); 232 } 233 234 /* 235 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 236 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 237 */ 238 static int 239 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 240 { 241 znode_t *zp = VTOZ(vp); 242 uint64_t noff = (uint64_t)*off; /* new offset */ 243 uint64_t file_sz; 244 int error; 245 boolean_t hole; 246 247 file_sz = zp->z_phys->zp_size; 248 if (noff >= file_sz) { 249 return (ENXIO); 250 } 251 252 if (cmd == _FIO_SEEK_HOLE) 253 hole = B_TRUE; 254 else 255 hole = B_FALSE; 256 257 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 258 259 /* end of file? */ 260 if ((error == ESRCH) || (noff > file_sz)) { 261 /* 262 * Handle the virtual hole at the end of file. 263 */ 264 if (hole) { 265 *off = file_sz; 266 return (0); 267 } 268 return (ENXIO); 269 } 270 271 if (noff < *off) 272 return (error); 273 *off = noff; 274 return (error); 275 } 276 277 /* ARGSUSED */ 278 static int 279 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 280 int *rvalp, caller_context_t *ct) 281 { 282 offset_t off; 283 int error; 284 zfsvfs_t *zfsvfs; 285 znode_t *zp; 286 287 switch (com) { 288 case _FIOFFS: 289 return (zfs_sync(vp->v_vfsp, 0, cred)); 290 291 /* 292 * The following two ioctls are used by bfu. Faking out, 293 * necessary to avoid bfu errors. 294 */ 295 case _FIOGDIO: 296 case _FIOSDIO: 297 return (0); 298 299 case _FIO_SEEK_DATA: 300 case _FIO_SEEK_HOLE: 301 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 302 return (EFAULT); 303 304 zp = VTOZ(vp); 305 zfsvfs = zp->z_zfsvfs; 306 ZFS_ENTER(zfsvfs); 307 ZFS_VERIFY_ZP(zp); 308 309 /* offset parameter is in/out */ 310 error = zfs_holey(vp, com, &off); 311 ZFS_EXIT(zfsvfs); 312 if (error) 313 return (error); 314 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 315 return (EFAULT); 316 return (0); 317 } 318 return (ENOTTY); 319 } 320 321 /* 322 * Utility functions to map and unmap a single physical page. These 323 * are used to manage the mappable copies of ZFS file data, and therefore 324 * do not update ref/mod bits. 325 */ 326 caddr_t 327 zfs_map_page(page_t *pp, enum seg_rw rw) 328 { 329 if (kpm_enable) 330 return (hat_kpm_mapin(pp, 0)); 331 ASSERT(rw == S_READ || rw == S_WRITE); 332 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 333 (caddr_t)-1)); 334 } 335 336 void 337 zfs_unmap_page(page_t *pp, caddr_t addr) 338 { 339 if (kpm_enable) { 340 hat_kpm_mapout(pp, 0, addr); 341 } else { 342 ppmapout(addr); 343 } 344 } 345 346 /* 347 * When a file is memory mapped, we must keep the IO data synchronized 348 * between the DMU cache and the memory mapped pages. What this means: 349 * 350 * On Write: If we find a memory mapped page, we write to *both* 351 * the page and the dmu buffer. 352 */ 353 static void 354 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 355 { 356 int64_t off; 357 358 off = start & PAGEOFFSET; 359 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 360 page_t *pp; 361 uint64_t nbytes = MIN(PAGESIZE - off, len); 362 363 if (pp = page_lookup(vp, start, SE_SHARED)) { 364 caddr_t va; 365 366 va = zfs_map_page(pp, S_WRITE); 367 (void) dmu_read(os, oid, start+off, nbytes, va+off); 368 zfs_unmap_page(pp, va); 369 page_unlock(pp); 370 } 371 len -= nbytes; 372 off = 0; 373 } 374 } 375 376 /* 377 * When a file is memory mapped, we must keep the IO data synchronized 378 * between the DMU cache and the memory mapped pages. What this means: 379 * 380 * On Read: We "read" preferentially from memory mapped pages, 381 * else we default from the dmu buffer. 382 * 383 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 384 * the file is memory mapped. 385 */ 386 static int 387 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 388 { 389 znode_t *zp = VTOZ(vp); 390 objset_t *os = zp->z_zfsvfs->z_os; 391 int64_t start, off; 392 int len = nbytes; 393 int error = 0; 394 395 start = uio->uio_loffset; 396 off = start & PAGEOFFSET; 397 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 398 page_t *pp; 399 uint64_t bytes = MIN(PAGESIZE - off, len); 400 401 if (pp = page_lookup(vp, start, SE_SHARED)) { 402 caddr_t va; 403 404 va = zfs_map_page(pp, S_READ); 405 error = uiomove(va + off, bytes, UIO_READ, uio); 406 zfs_unmap_page(pp, va); 407 page_unlock(pp); 408 } else { 409 error = dmu_read_uio(os, zp->z_id, uio, bytes); 410 } 411 len -= bytes; 412 off = 0; 413 if (error) 414 break; 415 } 416 return (error); 417 } 418 419 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 420 421 /* 422 * Read bytes from specified file into supplied buffer. 423 * 424 * IN: vp - vnode of file to be read from. 425 * uio - structure supplying read location, range info, 426 * and return buffer. 427 * ioflag - SYNC flags; used to provide FRSYNC semantics. 428 * cr - credentials of caller. 429 * ct - caller context 430 * 431 * OUT: uio - updated offset and range, buffer filled. 432 * 433 * RETURN: 0 if success 434 * error code if failure 435 * 436 * Side Effects: 437 * vp - atime updated if byte count > 0 438 */ 439 /* ARGSUSED */ 440 static int 441 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 442 { 443 znode_t *zp = VTOZ(vp); 444 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 445 objset_t *os; 446 ssize_t n, nbytes; 447 int error; 448 rl_t *rl; 449 450 ZFS_ENTER(zfsvfs); 451 ZFS_VERIFY_ZP(zp); 452 os = zfsvfs->z_os; 453 454 if (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) { 455 ZFS_EXIT(zfsvfs); 456 return (EACCES); 457 } 458 459 /* 460 * Validate file offset 461 */ 462 if (uio->uio_loffset < (offset_t)0) { 463 ZFS_EXIT(zfsvfs); 464 return (EINVAL); 465 } 466 467 /* 468 * Fasttrack empty reads 469 */ 470 if (uio->uio_resid == 0) { 471 ZFS_EXIT(zfsvfs); 472 return (0); 473 } 474 475 /* 476 * Check for mandatory locks 477 */ 478 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 479 if (error = chklock(vp, FREAD, 480 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 481 ZFS_EXIT(zfsvfs); 482 return (error); 483 } 484 } 485 486 /* 487 * If we're in FRSYNC mode, sync out this znode before reading it. 488 */ 489 if (ioflag & FRSYNC) 490 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 491 492 /* 493 * Lock the range against changes. 494 */ 495 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 496 497 /* 498 * If we are reading past end-of-file we can skip 499 * to the end; but we might still need to set atime. 500 */ 501 if (uio->uio_loffset >= zp->z_phys->zp_size) { 502 error = 0; 503 goto out; 504 } 505 506 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 507 n = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 508 509 while (n > 0) { 510 nbytes = MIN(n, zfs_read_chunk_size - 511 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 512 513 if (vn_has_cached_data(vp)) 514 error = mappedread(vp, nbytes, uio); 515 else 516 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 517 if (error) { 518 /* convert checksum errors into IO errors */ 519 if (error == ECKSUM) 520 error = EIO; 521 break; 522 } 523 524 n -= nbytes; 525 } 526 527 out: 528 zfs_range_unlock(rl); 529 530 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 531 ZFS_EXIT(zfsvfs); 532 return (error); 533 } 534 535 /* 536 * Write the bytes to a file. 537 * 538 * IN: vp - vnode of file to be written to. 539 * uio - structure supplying write location, range info, 540 * and data buffer. 541 * ioflag - FAPPEND flag set if in append mode. 542 * cr - credentials of caller. 543 * ct - caller context (NFS/CIFS fem monitor only) 544 * 545 * OUT: uio - updated offset and range. 546 * 547 * RETURN: 0 if success 548 * error code if failure 549 * 550 * Timestamps: 551 * vp - ctime|mtime updated if byte count > 0 552 */ 553 /* ARGSUSED */ 554 static int 555 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 556 { 557 znode_t *zp = VTOZ(vp); 558 rlim64_t limit = uio->uio_llimit; 559 ssize_t start_resid = uio->uio_resid; 560 ssize_t tx_bytes; 561 uint64_t end_size; 562 dmu_tx_t *tx; 563 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 564 zilog_t *zilog; 565 offset_t woff; 566 ssize_t n, nbytes; 567 rl_t *rl; 568 int max_blksz = zfsvfs->z_max_blksz; 569 uint64_t pflags; 570 int error; 571 arc_buf_t *abuf; 572 573 /* 574 * Fasttrack empty write 575 */ 576 n = start_resid; 577 if (n == 0) 578 return (0); 579 580 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 581 limit = MAXOFFSET_T; 582 583 ZFS_ENTER(zfsvfs); 584 ZFS_VERIFY_ZP(zp); 585 586 /* 587 * If immutable or not appending then return EPERM 588 */ 589 pflags = zp->z_phys->zp_flags; 590 if ((pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 591 ((pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 592 (uio->uio_loffset < zp->z_phys->zp_size))) { 593 ZFS_EXIT(zfsvfs); 594 return (EPERM); 595 } 596 597 zilog = zfsvfs->z_log; 598 599 /* 600 * Pre-fault the pages to ensure slow (eg NFS) pages 601 * don't hold up txg. 602 */ 603 uio_prefaultpages(n, uio); 604 605 /* 606 * If in append mode, set the io offset pointer to eof. 607 */ 608 if (ioflag & FAPPEND) { 609 /* 610 * Range lock for a file append: 611 * The value for the start of range will be determined by 612 * zfs_range_lock() (to guarantee append semantics). 613 * If this write will cause the block size to increase, 614 * zfs_range_lock() will lock the entire file, so we must 615 * later reduce the range after we grow the block size. 616 */ 617 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 618 if (rl->r_len == UINT64_MAX) { 619 /* overlocked, zp_size can't change */ 620 woff = uio->uio_loffset = zp->z_phys->zp_size; 621 } else { 622 woff = uio->uio_loffset = rl->r_off; 623 } 624 } else { 625 woff = uio->uio_loffset; 626 /* 627 * Validate file offset 628 */ 629 if (woff < 0) { 630 ZFS_EXIT(zfsvfs); 631 return (EINVAL); 632 } 633 634 /* 635 * If we need to grow the block size then zfs_range_lock() 636 * will lock a wider range than we request here. 637 * Later after growing the block size we reduce the range. 638 */ 639 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 640 } 641 642 if (woff >= limit) { 643 zfs_range_unlock(rl); 644 ZFS_EXIT(zfsvfs); 645 return (EFBIG); 646 } 647 648 if ((woff + n) > limit || woff > (limit - n)) 649 n = limit - woff; 650 651 /* 652 * Check for mandatory locks 653 */ 654 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 655 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 656 zfs_range_unlock(rl); 657 ZFS_EXIT(zfsvfs); 658 return (error); 659 } 660 end_size = MAX(zp->z_phys->zp_size, woff + n); 661 662 /* 663 * Write the file in reasonable size chunks. Each chunk is written 664 * in a separate transaction; this keeps the intent log records small 665 * and allows us to do more fine-grained space accounting. 666 */ 667 while (n > 0) { 668 abuf = NULL; 669 woff = uio->uio_loffset; 670 671 again: 672 if (zfs_usergroup_overquota(zfsvfs, 673 B_FALSE, zp->z_phys->zp_uid) || 674 zfs_usergroup_overquota(zfsvfs, 675 B_TRUE, zp->z_phys->zp_gid)) { 676 if (abuf != NULL) 677 dmu_return_arcbuf(abuf); 678 error = EDQUOT; 679 break; 680 } 681 682 /* 683 * If dmu_assign_arcbuf() is expected to execute with minimum 684 * overhead loan an arc buffer and copy user data to it before 685 * we enter a txg. This avoids holding a txg forever while we 686 * pagefault on a hanging NFS server mapping. 687 */ 688 if (abuf == NULL && n >= max_blksz && 689 woff >= zp->z_phys->zp_size && 690 P2PHASE(woff, max_blksz) == 0 && 691 zp->z_blksz == max_blksz) { 692 size_t cbytes; 693 694 abuf = dmu_request_arcbuf(zp->z_dbuf, max_blksz); 695 ASSERT(abuf != NULL); 696 ASSERT(arc_buf_size(abuf) == max_blksz); 697 if (error = uiocopy(abuf->b_data, max_blksz, 698 UIO_WRITE, uio, &cbytes)) { 699 dmu_return_arcbuf(abuf); 700 break; 701 } 702 ASSERT(cbytes == max_blksz); 703 } 704 705 /* 706 * Start a transaction. 707 */ 708 tx = dmu_tx_create(zfsvfs->z_os); 709 dmu_tx_hold_bonus(tx, zp->z_id); 710 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 711 error = dmu_tx_assign(tx, TXG_NOWAIT); 712 if (error) { 713 if (error == ERESTART) { 714 dmu_tx_wait(tx); 715 dmu_tx_abort(tx); 716 goto again; 717 } 718 dmu_tx_abort(tx); 719 if (abuf != NULL) 720 dmu_return_arcbuf(abuf); 721 break; 722 } 723 724 /* 725 * If zfs_range_lock() over-locked we grow the blocksize 726 * and then reduce the lock range. This will only happen 727 * on the first iteration since zfs_range_reduce() will 728 * shrink down r_len to the appropriate size. 729 */ 730 if (rl->r_len == UINT64_MAX) { 731 uint64_t new_blksz; 732 733 if (zp->z_blksz > max_blksz) { 734 ASSERT(!ISP2(zp->z_blksz)); 735 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 736 } else { 737 new_blksz = MIN(end_size, max_blksz); 738 } 739 zfs_grow_blocksize(zp, new_blksz, tx); 740 zfs_range_reduce(rl, woff, n); 741 } 742 743 /* 744 * XXX - should we really limit each write to z_max_blksz? 745 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 746 */ 747 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 748 749 if (abuf == NULL) { 750 tx_bytes = uio->uio_resid; 751 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, uio, 752 nbytes, tx); 753 tx_bytes -= uio->uio_resid; 754 } else { 755 tx_bytes = nbytes; 756 ASSERT(tx_bytes == max_blksz); 757 dmu_assign_arcbuf(zp->z_dbuf, woff, abuf, tx); 758 ASSERT(tx_bytes <= uio->uio_resid); 759 uioskip(uio, tx_bytes); 760 } 761 if (tx_bytes && vn_has_cached_data(vp)) { 762 update_pages(vp, woff, 763 tx_bytes, zfsvfs->z_os, zp->z_id); 764 } 765 766 /* 767 * If we made no progress, we're done. If we made even 768 * partial progress, update the znode and ZIL accordingly. 769 */ 770 if (tx_bytes == 0) { 771 dmu_tx_commit(tx); 772 ASSERT(error != 0); 773 break; 774 } 775 776 /* 777 * Clear Set-UID/Set-GID bits on successful write if not 778 * privileged and at least one of the excute bits is set. 779 * 780 * It would be nice to to this after all writes have 781 * been done, but that would still expose the ISUID/ISGID 782 * to another app after the partial write is committed. 783 * 784 * Note: we don't call zfs_fuid_map_id() here because 785 * user 0 is not an ephemeral uid. 786 */ 787 mutex_enter(&zp->z_acl_lock); 788 if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) | 789 (S_IXUSR >> 6))) != 0 && 790 (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 && 791 secpolicy_vnode_setid_retain(cr, 792 (zp->z_phys->zp_mode & S_ISUID) != 0 && 793 zp->z_phys->zp_uid == 0) != 0) { 794 zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID); 795 } 796 mutex_exit(&zp->z_acl_lock); 797 798 /* 799 * Update time stamp. NOTE: This marks the bonus buffer as 800 * dirty, so we don't have to do it again for zp_size. 801 */ 802 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 803 804 /* 805 * Update the file size (zp_size) if it has changed; 806 * account for possible concurrent updates. 807 */ 808 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) 809 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 810 uio->uio_loffset); 811 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 812 dmu_tx_commit(tx); 813 814 if (error != 0) 815 break; 816 ASSERT(tx_bytes == nbytes); 817 n -= nbytes; 818 } 819 820 zfs_range_unlock(rl); 821 822 /* 823 * If we're in replay mode, or we made no progress, return error. 824 * Otherwise, it's at least a partial write, so it's successful. 825 */ 826 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 827 ZFS_EXIT(zfsvfs); 828 return (error); 829 } 830 831 if (ioflag & (FSYNC | FDSYNC)) 832 zil_commit(zilog, zp->z_last_itx, zp->z_id); 833 834 ZFS_EXIT(zfsvfs); 835 return (0); 836 } 837 838 void 839 zfs_get_done(dmu_buf_t *db, void *vzgd) 840 { 841 zgd_t *zgd = (zgd_t *)vzgd; 842 rl_t *rl = zgd->zgd_rl; 843 vnode_t *vp = ZTOV(rl->r_zp); 844 objset_t *os = rl->r_zp->z_zfsvfs->z_os; 845 846 dmu_buf_rele(db, vzgd); 847 zfs_range_unlock(rl); 848 /* 849 * Release the vnode asynchronously as we currently have the 850 * txg stopped from syncing. 851 */ 852 VN_RELE_ASYNC(vp, dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 853 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 854 kmem_free(zgd, sizeof (zgd_t)); 855 } 856 857 /* 858 * Get data to generate a TX_WRITE intent log record. 859 */ 860 int 861 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 862 { 863 zfsvfs_t *zfsvfs = arg; 864 objset_t *os = zfsvfs->z_os; 865 znode_t *zp; 866 uint64_t off = lr->lr_offset; 867 dmu_buf_t *db; 868 rl_t *rl; 869 zgd_t *zgd; 870 int dlen = lr->lr_length; /* length of user data */ 871 int error = 0; 872 873 ASSERT(zio); 874 ASSERT(dlen != 0); 875 876 /* 877 * Nothing to do if the file has been removed 878 */ 879 if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0) 880 return (ENOENT); 881 if (zp->z_unlinked) { 882 /* 883 * Release the vnode asynchronously as we currently have the 884 * txg stopped from syncing. 885 */ 886 VN_RELE_ASYNC(ZTOV(zp), 887 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 888 return (ENOENT); 889 } 890 891 /* 892 * Write records come in two flavors: immediate and indirect. 893 * For small writes it's cheaper to store the data with the 894 * log record (immediate); for large writes it's cheaper to 895 * sync the data and get a pointer to it (indirect) so that 896 * we don't have to write the data twice. 897 */ 898 if (buf != NULL) { /* immediate write */ 899 rl = zfs_range_lock(zp, off, dlen, RL_READER); 900 /* test for truncation needs to be done while range locked */ 901 if (off >= zp->z_phys->zp_size) { 902 error = ENOENT; 903 goto out; 904 } 905 VERIFY(0 == dmu_read(os, lr->lr_foid, off, dlen, buf)); 906 } else { /* indirect write */ 907 uint64_t boff; /* block starting offset */ 908 909 /* 910 * Have to lock the whole block to ensure when it's 911 * written out and it's checksum is being calculated 912 * that no one can change the data. We need to re-check 913 * blocksize after we get the lock in case it's changed! 914 */ 915 for (;;) { 916 if (ISP2(zp->z_blksz)) { 917 boff = P2ALIGN_TYPED(off, zp->z_blksz, 918 uint64_t); 919 } else { 920 boff = 0; 921 } 922 dlen = zp->z_blksz; 923 rl = zfs_range_lock(zp, boff, dlen, RL_READER); 924 if (zp->z_blksz == dlen) 925 break; 926 zfs_range_unlock(rl); 927 } 928 /* test for truncation needs to be done while range locked */ 929 if (off >= zp->z_phys->zp_size) { 930 error = ENOENT; 931 goto out; 932 } 933 zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP); 934 zgd->zgd_rl = rl; 935 zgd->zgd_zilog = zfsvfs->z_log; 936 zgd->zgd_bp = &lr->lr_blkptr; 937 VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, boff, zgd, &db)); 938 ASSERT(boff == db->db_offset); 939 lr->lr_blkoff = off - boff; 940 error = dmu_sync(zio, db, &lr->lr_blkptr, 941 lr->lr_common.lrc_txg, zfs_get_done, zgd); 942 ASSERT((error && error != EINPROGRESS) || 943 lr->lr_length <= zp->z_blksz); 944 if (error == 0) 945 zil_add_block(zfsvfs->z_log, &lr->lr_blkptr); 946 /* 947 * If we get EINPROGRESS, then we need to wait for a 948 * write IO initiated by dmu_sync() to complete before 949 * we can release this dbuf. We will finish everything 950 * up in the zfs_get_done() callback. 951 */ 952 if (error == EINPROGRESS) 953 return (0); 954 dmu_buf_rele(db, zgd); 955 kmem_free(zgd, sizeof (zgd_t)); 956 } 957 out: 958 zfs_range_unlock(rl); 959 /* 960 * Release the vnode asynchronously as we currently have the 961 * txg stopped from syncing. 962 */ 963 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 964 return (error); 965 } 966 967 /*ARGSUSED*/ 968 static int 969 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 970 caller_context_t *ct) 971 { 972 znode_t *zp = VTOZ(vp); 973 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 974 int error; 975 976 ZFS_ENTER(zfsvfs); 977 ZFS_VERIFY_ZP(zp); 978 979 if (flag & V_ACE_MASK) 980 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 981 else 982 error = zfs_zaccess_rwx(zp, mode, flag, cr); 983 984 ZFS_EXIT(zfsvfs); 985 return (error); 986 } 987 988 /* 989 * Lookup an entry in a directory, or an extended attribute directory. 990 * If it exists, return a held vnode reference for it. 991 * 992 * IN: dvp - vnode of directory to search. 993 * nm - name of entry to lookup. 994 * pnp - full pathname to lookup [UNUSED]. 995 * flags - LOOKUP_XATTR set if looking for an attribute. 996 * rdir - root directory vnode [UNUSED]. 997 * cr - credentials of caller. 998 * ct - caller context 999 * direntflags - directory lookup flags 1000 * realpnp - returned pathname. 1001 * 1002 * OUT: vpp - vnode of located entry, NULL if not found. 1003 * 1004 * RETURN: 0 if success 1005 * error code if failure 1006 * 1007 * Timestamps: 1008 * NA 1009 */ 1010 /* ARGSUSED */ 1011 static int 1012 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1013 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1014 int *direntflags, pathname_t *realpnp) 1015 { 1016 znode_t *zdp = VTOZ(dvp); 1017 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1018 int error; 1019 1020 ZFS_ENTER(zfsvfs); 1021 ZFS_VERIFY_ZP(zdp); 1022 1023 *vpp = NULL; 1024 1025 if (flags & LOOKUP_XATTR) { 1026 /* 1027 * If the xattr property is off, refuse the lookup request. 1028 */ 1029 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1030 ZFS_EXIT(zfsvfs); 1031 return (EINVAL); 1032 } 1033 1034 /* 1035 * We don't allow recursive attributes.. 1036 * Maybe someday we will. 1037 */ 1038 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 1039 ZFS_EXIT(zfsvfs); 1040 return (EINVAL); 1041 } 1042 1043 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1044 ZFS_EXIT(zfsvfs); 1045 return (error); 1046 } 1047 1048 /* 1049 * Do we have permission to get into attribute directory? 1050 */ 1051 1052 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1053 B_FALSE, cr)) { 1054 VN_RELE(*vpp); 1055 *vpp = NULL; 1056 } 1057 1058 ZFS_EXIT(zfsvfs); 1059 return (error); 1060 } 1061 1062 if (dvp->v_type != VDIR) { 1063 ZFS_EXIT(zfsvfs); 1064 return (ENOTDIR); 1065 } 1066 1067 /* 1068 * Check accessibility of directory. 1069 */ 1070 1071 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1072 ZFS_EXIT(zfsvfs); 1073 return (error); 1074 } 1075 1076 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1077 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1078 ZFS_EXIT(zfsvfs); 1079 return (EILSEQ); 1080 } 1081 1082 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1083 if (error == 0) { 1084 /* 1085 * Convert device special files 1086 */ 1087 if (IS_DEVVP(*vpp)) { 1088 vnode_t *svp; 1089 1090 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1091 VN_RELE(*vpp); 1092 if (svp == NULL) 1093 error = ENOSYS; 1094 else 1095 *vpp = svp; 1096 } 1097 } 1098 1099 ZFS_EXIT(zfsvfs); 1100 return (error); 1101 } 1102 1103 /* 1104 * Attempt to create a new entry in a directory. If the entry 1105 * already exists, truncate the file if permissible, else return 1106 * an error. Return the vp of the created or trunc'd file. 1107 * 1108 * IN: dvp - vnode of directory to put new file entry in. 1109 * name - name of new file entry. 1110 * vap - attributes of new file. 1111 * excl - flag indicating exclusive or non-exclusive mode. 1112 * mode - mode to open file with. 1113 * cr - credentials of caller. 1114 * flag - large file flag [UNUSED]. 1115 * ct - caller context 1116 * vsecp - ACL to be set 1117 * 1118 * OUT: vpp - vnode of created or trunc'd entry. 1119 * 1120 * RETURN: 0 if success 1121 * error code if failure 1122 * 1123 * Timestamps: 1124 * dvp - ctime|mtime updated if new entry created 1125 * vp - ctime|mtime always, atime if new 1126 */ 1127 1128 /* ARGSUSED */ 1129 static int 1130 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1131 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1132 vsecattr_t *vsecp) 1133 { 1134 znode_t *zp, *dzp = VTOZ(dvp); 1135 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1136 zilog_t *zilog; 1137 objset_t *os; 1138 zfs_dirlock_t *dl; 1139 dmu_tx_t *tx; 1140 int error; 1141 ksid_t *ksid; 1142 uid_t uid; 1143 gid_t gid = crgetgid(cr); 1144 zfs_acl_ids_t acl_ids; 1145 boolean_t fuid_dirtied; 1146 1147 /* 1148 * If we have an ephemeral id, ACL, or XVATTR then 1149 * make sure file system is at proper version 1150 */ 1151 1152 ksid = crgetsid(cr, KSID_OWNER); 1153 if (ksid) 1154 uid = ksid_getid(ksid); 1155 else 1156 uid = crgetuid(cr); 1157 1158 if (zfsvfs->z_use_fuids == B_FALSE && 1159 (vsecp || (vap->va_mask & AT_XVATTR) || 1160 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1161 return (EINVAL); 1162 1163 ZFS_ENTER(zfsvfs); 1164 ZFS_VERIFY_ZP(dzp); 1165 os = zfsvfs->z_os; 1166 zilog = zfsvfs->z_log; 1167 1168 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1169 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1170 ZFS_EXIT(zfsvfs); 1171 return (EILSEQ); 1172 } 1173 1174 if (vap->va_mask & AT_XVATTR) { 1175 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1176 crgetuid(cr), cr, vap->va_type)) != 0) { 1177 ZFS_EXIT(zfsvfs); 1178 return (error); 1179 } 1180 } 1181 top: 1182 *vpp = NULL; 1183 1184 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1185 vap->va_mode &= ~VSVTX; 1186 1187 if (*name == '\0') { 1188 /* 1189 * Null component name refers to the directory itself. 1190 */ 1191 VN_HOLD(dvp); 1192 zp = dzp; 1193 dl = NULL; 1194 error = 0; 1195 } else { 1196 /* possible VN_HOLD(zp) */ 1197 int zflg = 0; 1198 1199 if (flag & FIGNORECASE) 1200 zflg |= ZCILOOK; 1201 1202 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1203 NULL, NULL); 1204 if (error) { 1205 if (strcmp(name, "..") == 0) 1206 error = EISDIR; 1207 ZFS_EXIT(zfsvfs); 1208 return (error); 1209 } 1210 } 1211 if (zp == NULL) { 1212 uint64_t txtype; 1213 1214 /* 1215 * Create a new file object and update the directory 1216 * to reference it. 1217 */ 1218 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1219 goto out; 1220 } 1221 1222 /* 1223 * We only support the creation of regular files in 1224 * extended attribute directories. 1225 */ 1226 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1227 (vap->va_type != VREG)) { 1228 error = EINVAL; 1229 goto out; 1230 } 1231 1232 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, 1233 &acl_ids)) != 0) 1234 goto out; 1235 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1236 error = EDQUOT; 1237 goto out; 1238 } 1239 1240 tx = dmu_tx_create(os); 1241 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1242 fuid_dirtied = zfsvfs->z_fuid_dirty; 1243 if (fuid_dirtied) 1244 zfs_fuid_txhold(zfsvfs, tx); 1245 dmu_tx_hold_bonus(tx, dzp->z_id); 1246 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1247 if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1248 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1249 0, SPA_MAXBLOCKSIZE); 1250 } 1251 error = dmu_tx_assign(tx, TXG_NOWAIT); 1252 if (error) { 1253 zfs_acl_ids_free(&acl_ids); 1254 zfs_dirent_unlock(dl); 1255 if (error == ERESTART) { 1256 dmu_tx_wait(tx); 1257 dmu_tx_abort(tx); 1258 goto top; 1259 } 1260 dmu_tx_abort(tx); 1261 ZFS_EXIT(zfsvfs); 1262 return (error); 1263 } 1264 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids); 1265 1266 if (fuid_dirtied) 1267 zfs_fuid_sync(zfsvfs, tx); 1268 1269 (void) zfs_link_create(dl, zp, tx, ZNEW); 1270 1271 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1272 if (flag & FIGNORECASE) 1273 txtype |= TX_CI; 1274 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1275 vsecp, acl_ids.z_fuidp, vap); 1276 zfs_acl_ids_free(&acl_ids); 1277 dmu_tx_commit(tx); 1278 } else { 1279 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1280 1281 /* 1282 * A directory entry already exists for this name. 1283 */ 1284 /* 1285 * Can't truncate an existing file if in exclusive mode. 1286 */ 1287 if (excl == EXCL) { 1288 error = EEXIST; 1289 goto out; 1290 } 1291 /* 1292 * Can't open a directory for writing. 1293 */ 1294 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1295 error = EISDIR; 1296 goto out; 1297 } 1298 /* 1299 * Verify requested access to file. 1300 */ 1301 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1302 goto out; 1303 } 1304 1305 mutex_enter(&dzp->z_lock); 1306 dzp->z_seq++; 1307 mutex_exit(&dzp->z_lock); 1308 1309 /* 1310 * Truncate regular files if requested. 1311 */ 1312 if ((ZTOV(zp)->v_type == VREG) && 1313 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1314 /* we can't hold any locks when calling zfs_freesp() */ 1315 zfs_dirent_unlock(dl); 1316 dl = NULL; 1317 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1318 if (error == 0) { 1319 vnevent_create(ZTOV(zp), ct); 1320 } 1321 } 1322 } 1323 out: 1324 1325 if (dl) 1326 zfs_dirent_unlock(dl); 1327 1328 if (error) { 1329 if (zp) 1330 VN_RELE(ZTOV(zp)); 1331 } else { 1332 *vpp = ZTOV(zp); 1333 /* 1334 * If vnode is for a device return a specfs vnode instead. 1335 */ 1336 if (IS_DEVVP(*vpp)) { 1337 struct vnode *svp; 1338 1339 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1340 VN_RELE(*vpp); 1341 if (svp == NULL) { 1342 error = ENOSYS; 1343 } 1344 *vpp = svp; 1345 } 1346 } 1347 1348 ZFS_EXIT(zfsvfs); 1349 return (error); 1350 } 1351 1352 /* 1353 * Remove an entry from a directory. 1354 * 1355 * IN: dvp - vnode of directory to remove entry from. 1356 * name - name of entry to remove. 1357 * cr - credentials of caller. 1358 * ct - caller context 1359 * flags - case flags 1360 * 1361 * RETURN: 0 if success 1362 * error code if failure 1363 * 1364 * Timestamps: 1365 * dvp - ctime|mtime 1366 * vp - ctime (if nlink > 0) 1367 */ 1368 /*ARGSUSED*/ 1369 static int 1370 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1371 int flags) 1372 { 1373 znode_t *zp, *dzp = VTOZ(dvp); 1374 znode_t *xzp = NULL; 1375 vnode_t *vp; 1376 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1377 zilog_t *zilog; 1378 uint64_t acl_obj, xattr_obj; 1379 zfs_dirlock_t *dl; 1380 dmu_tx_t *tx; 1381 boolean_t may_delete_now, delete_now = FALSE; 1382 boolean_t unlinked, toobig = FALSE; 1383 uint64_t txtype; 1384 pathname_t *realnmp = NULL; 1385 pathname_t realnm; 1386 int error; 1387 int zflg = ZEXISTS; 1388 1389 ZFS_ENTER(zfsvfs); 1390 ZFS_VERIFY_ZP(dzp); 1391 zilog = zfsvfs->z_log; 1392 1393 if (flags & FIGNORECASE) { 1394 zflg |= ZCILOOK; 1395 pn_alloc(&realnm); 1396 realnmp = &realnm; 1397 } 1398 1399 top: 1400 /* 1401 * Attempt to lock directory; fail if entry doesn't exist. 1402 */ 1403 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1404 NULL, realnmp)) { 1405 if (realnmp) 1406 pn_free(realnmp); 1407 ZFS_EXIT(zfsvfs); 1408 return (error); 1409 } 1410 1411 vp = ZTOV(zp); 1412 1413 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1414 goto out; 1415 } 1416 1417 /* 1418 * Need to use rmdir for removing directories. 1419 */ 1420 if (vp->v_type == VDIR) { 1421 error = EPERM; 1422 goto out; 1423 } 1424 1425 vnevent_remove(vp, dvp, name, ct); 1426 1427 if (realnmp) 1428 dnlc_remove(dvp, realnmp->pn_buf); 1429 else 1430 dnlc_remove(dvp, name); 1431 1432 mutex_enter(&vp->v_lock); 1433 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1434 mutex_exit(&vp->v_lock); 1435 1436 /* 1437 * We may delete the znode now, or we may put it in the unlinked set; 1438 * it depends on whether we're the last link, and on whether there are 1439 * other holds on the vnode. So we dmu_tx_hold() the right things to 1440 * allow for either case. 1441 */ 1442 tx = dmu_tx_create(zfsvfs->z_os); 1443 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1444 dmu_tx_hold_bonus(tx, zp->z_id); 1445 if (may_delete_now) { 1446 toobig = 1447 zp->z_phys->zp_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1448 /* if the file is too big, only hold_free a token amount */ 1449 dmu_tx_hold_free(tx, zp->z_id, 0, 1450 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1451 } 1452 1453 /* are there any extended attributes? */ 1454 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1455 /* XXX - do we need this if we are deleting? */ 1456 dmu_tx_hold_bonus(tx, xattr_obj); 1457 } 1458 1459 /* are there any additional acls */ 1460 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1461 may_delete_now) 1462 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1463 1464 /* charge as an update -- would be nice not to charge at all */ 1465 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1466 1467 error = dmu_tx_assign(tx, TXG_NOWAIT); 1468 if (error) { 1469 zfs_dirent_unlock(dl); 1470 VN_RELE(vp); 1471 if (error == ERESTART) { 1472 dmu_tx_wait(tx); 1473 dmu_tx_abort(tx); 1474 goto top; 1475 } 1476 if (realnmp) 1477 pn_free(realnmp); 1478 dmu_tx_abort(tx); 1479 ZFS_EXIT(zfsvfs); 1480 return (error); 1481 } 1482 1483 /* 1484 * Remove the directory entry. 1485 */ 1486 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1487 1488 if (error) { 1489 dmu_tx_commit(tx); 1490 goto out; 1491 } 1492 1493 if (unlinked) { 1494 mutex_enter(&vp->v_lock); 1495 delete_now = may_delete_now && !toobig && 1496 vp->v_count == 1 && !vn_has_cached_data(vp) && 1497 zp->z_phys->zp_xattr == xattr_obj && 1498 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1499 mutex_exit(&vp->v_lock); 1500 } 1501 1502 if (delete_now) { 1503 if (zp->z_phys->zp_xattr) { 1504 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1505 ASSERT3U(error, ==, 0); 1506 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1507 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1508 mutex_enter(&xzp->z_lock); 1509 xzp->z_unlinked = 1; 1510 xzp->z_phys->zp_links = 0; 1511 mutex_exit(&xzp->z_lock); 1512 zfs_unlinked_add(xzp, tx); 1513 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1514 } 1515 mutex_enter(&zp->z_lock); 1516 mutex_enter(&vp->v_lock); 1517 vp->v_count--; 1518 ASSERT3U(vp->v_count, ==, 0); 1519 mutex_exit(&vp->v_lock); 1520 mutex_exit(&zp->z_lock); 1521 zfs_znode_delete(zp, tx); 1522 } else if (unlinked) { 1523 zfs_unlinked_add(zp, tx); 1524 } 1525 1526 txtype = TX_REMOVE; 1527 if (flags & FIGNORECASE) 1528 txtype |= TX_CI; 1529 zfs_log_remove(zilog, tx, txtype, dzp, name); 1530 1531 dmu_tx_commit(tx); 1532 out: 1533 if (realnmp) 1534 pn_free(realnmp); 1535 1536 zfs_dirent_unlock(dl); 1537 1538 if (!delete_now) { 1539 VN_RELE(vp); 1540 } else if (xzp) { 1541 /* this rele is delayed to prevent nesting transactions */ 1542 VN_RELE(ZTOV(xzp)); 1543 } 1544 1545 ZFS_EXIT(zfsvfs); 1546 return (error); 1547 } 1548 1549 /* 1550 * Create a new directory and insert it into dvp using the name 1551 * provided. Return a pointer to the inserted directory. 1552 * 1553 * IN: dvp - vnode of directory to add subdir to. 1554 * dirname - name of new directory. 1555 * vap - attributes of new directory. 1556 * cr - credentials of caller. 1557 * ct - caller context 1558 * vsecp - ACL to be set 1559 * 1560 * OUT: vpp - vnode of created directory. 1561 * 1562 * RETURN: 0 if success 1563 * error code if failure 1564 * 1565 * Timestamps: 1566 * dvp - ctime|mtime updated 1567 * vp - ctime|mtime|atime updated 1568 */ 1569 /*ARGSUSED*/ 1570 static int 1571 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1572 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1573 { 1574 znode_t *zp, *dzp = VTOZ(dvp); 1575 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1576 zilog_t *zilog; 1577 zfs_dirlock_t *dl; 1578 uint64_t txtype; 1579 dmu_tx_t *tx; 1580 int error; 1581 int zf = ZNEW; 1582 ksid_t *ksid; 1583 uid_t uid; 1584 gid_t gid = crgetgid(cr); 1585 zfs_acl_ids_t acl_ids; 1586 boolean_t fuid_dirtied; 1587 1588 ASSERT(vap->va_type == VDIR); 1589 1590 /* 1591 * If we have an ephemeral id, ACL, or XVATTR then 1592 * make sure file system is at proper version 1593 */ 1594 1595 ksid = crgetsid(cr, KSID_OWNER); 1596 if (ksid) 1597 uid = ksid_getid(ksid); 1598 else 1599 uid = crgetuid(cr); 1600 if (zfsvfs->z_use_fuids == B_FALSE && 1601 (vsecp || (vap->va_mask & AT_XVATTR) || 1602 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1603 return (EINVAL); 1604 1605 ZFS_ENTER(zfsvfs); 1606 ZFS_VERIFY_ZP(dzp); 1607 zilog = zfsvfs->z_log; 1608 1609 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1610 ZFS_EXIT(zfsvfs); 1611 return (EINVAL); 1612 } 1613 1614 if (zfsvfs->z_utf8 && u8_validate(dirname, 1615 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1616 ZFS_EXIT(zfsvfs); 1617 return (EILSEQ); 1618 } 1619 if (flags & FIGNORECASE) 1620 zf |= ZCILOOK; 1621 1622 if (vap->va_mask & AT_XVATTR) 1623 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1624 crgetuid(cr), cr, vap->va_type)) != 0) { 1625 ZFS_EXIT(zfsvfs); 1626 return (error); 1627 } 1628 1629 /* 1630 * First make sure the new directory doesn't exist. 1631 */ 1632 top: 1633 *vpp = NULL; 1634 1635 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1636 NULL, NULL)) { 1637 ZFS_EXIT(zfsvfs); 1638 return (error); 1639 } 1640 1641 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1642 zfs_dirent_unlock(dl); 1643 ZFS_EXIT(zfsvfs); 1644 return (error); 1645 } 1646 1647 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, 1648 &acl_ids)) != 0) { 1649 zfs_dirent_unlock(dl); 1650 ZFS_EXIT(zfsvfs); 1651 return (error); 1652 } 1653 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1654 zfs_dirent_unlock(dl); 1655 ZFS_EXIT(zfsvfs); 1656 return (EDQUOT); 1657 } 1658 1659 /* 1660 * Add a new entry to the directory. 1661 */ 1662 tx = dmu_tx_create(zfsvfs->z_os); 1663 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1664 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1665 fuid_dirtied = zfsvfs->z_fuid_dirty; 1666 if (fuid_dirtied) 1667 zfs_fuid_txhold(zfsvfs, tx); 1668 if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) 1669 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1670 0, SPA_MAXBLOCKSIZE); 1671 error = dmu_tx_assign(tx, TXG_NOWAIT); 1672 if (error) { 1673 zfs_acl_ids_free(&acl_ids); 1674 zfs_dirent_unlock(dl); 1675 if (error == ERESTART) { 1676 dmu_tx_wait(tx); 1677 dmu_tx_abort(tx); 1678 goto top; 1679 } 1680 dmu_tx_abort(tx); 1681 ZFS_EXIT(zfsvfs); 1682 return (error); 1683 } 1684 1685 /* 1686 * Create new node. 1687 */ 1688 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids); 1689 1690 if (fuid_dirtied) 1691 zfs_fuid_sync(zfsvfs, tx); 1692 /* 1693 * Now put new name in parent dir. 1694 */ 1695 (void) zfs_link_create(dl, zp, tx, ZNEW); 1696 1697 *vpp = ZTOV(zp); 1698 1699 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1700 if (flags & FIGNORECASE) 1701 txtype |= TX_CI; 1702 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 1703 acl_ids.z_fuidp, vap); 1704 1705 zfs_acl_ids_free(&acl_ids); 1706 dmu_tx_commit(tx); 1707 1708 zfs_dirent_unlock(dl); 1709 1710 ZFS_EXIT(zfsvfs); 1711 return (0); 1712 } 1713 1714 /* 1715 * Remove a directory subdir entry. If the current working 1716 * directory is the same as the subdir to be removed, the 1717 * remove will fail. 1718 * 1719 * IN: dvp - vnode of directory to remove from. 1720 * name - name of directory to be removed. 1721 * cwd - vnode of current working directory. 1722 * cr - credentials of caller. 1723 * ct - caller context 1724 * flags - case flags 1725 * 1726 * RETURN: 0 if success 1727 * error code if failure 1728 * 1729 * Timestamps: 1730 * dvp - ctime|mtime updated 1731 */ 1732 /*ARGSUSED*/ 1733 static int 1734 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1735 caller_context_t *ct, int flags) 1736 { 1737 znode_t *dzp = VTOZ(dvp); 1738 znode_t *zp; 1739 vnode_t *vp; 1740 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1741 zilog_t *zilog; 1742 zfs_dirlock_t *dl; 1743 dmu_tx_t *tx; 1744 int error; 1745 int zflg = ZEXISTS; 1746 1747 ZFS_ENTER(zfsvfs); 1748 ZFS_VERIFY_ZP(dzp); 1749 zilog = zfsvfs->z_log; 1750 1751 if (flags & FIGNORECASE) 1752 zflg |= ZCILOOK; 1753 top: 1754 zp = NULL; 1755 1756 /* 1757 * Attempt to lock directory; fail if entry doesn't exist. 1758 */ 1759 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1760 NULL, NULL)) { 1761 ZFS_EXIT(zfsvfs); 1762 return (error); 1763 } 1764 1765 vp = ZTOV(zp); 1766 1767 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1768 goto out; 1769 } 1770 1771 if (vp->v_type != VDIR) { 1772 error = ENOTDIR; 1773 goto out; 1774 } 1775 1776 if (vp == cwd) { 1777 error = EINVAL; 1778 goto out; 1779 } 1780 1781 vnevent_rmdir(vp, dvp, name, ct); 1782 1783 /* 1784 * Grab a lock on the directory to make sure that noone is 1785 * trying to add (or lookup) entries while we are removing it. 1786 */ 1787 rw_enter(&zp->z_name_lock, RW_WRITER); 1788 1789 /* 1790 * Grab a lock on the parent pointer to make sure we play well 1791 * with the treewalk and directory rename code. 1792 */ 1793 rw_enter(&zp->z_parent_lock, RW_WRITER); 1794 1795 tx = dmu_tx_create(zfsvfs->z_os); 1796 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1797 dmu_tx_hold_bonus(tx, zp->z_id); 1798 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1799 error = dmu_tx_assign(tx, TXG_NOWAIT); 1800 if (error) { 1801 rw_exit(&zp->z_parent_lock); 1802 rw_exit(&zp->z_name_lock); 1803 zfs_dirent_unlock(dl); 1804 VN_RELE(vp); 1805 if (error == ERESTART) { 1806 dmu_tx_wait(tx); 1807 dmu_tx_abort(tx); 1808 goto top; 1809 } 1810 dmu_tx_abort(tx); 1811 ZFS_EXIT(zfsvfs); 1812 return (error); 1813 } 1814 1815 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 1816 1817 if (error == 0) { 1818 uint64_t txtype = TX_RMDIR; 1819 if (flags & FIGNORECASE) 1820 txtype |= TX_CI; 1821 zfs_log_remove(zilog, tx, txtype, dzp, name); 1822 } 1823 1824 dmu_tx_commit(tx); 1825 1826 rw_exit(&zp->z_parent_lock); 1827 rw_exit(&zp->z_name_lock); 1828 out: 1829 zfs_dirent_unlock(dl); 1830 1831 VN_RELE(vp); 1832 1833 ZFS_EXIT(zfsvfs); 1834 return (error); 1835 } 1836 1837 /* 1838 * Read as many directory entries as will fit into the provided 1839 * buffer from the given directory cursor position (specified in 1840 * the uio structure. 1841 * 1842 * IN: vp - vnode of directory to read. 1843 * uio - structure supplying read location, range info, 1844 * and return buffer. 1845 * cr - credentials of caller. 1846 * ct - caller context 1847 * flags - case flags 1848 * 1849 * OUT: uio - updated offset and range, buffer filled. 1850 * eofp - set to true if end-of-file detected. 1851 * 1852 * RETURN: 0 if success 1853 * error code if failure 1854 * 1855 * Timestamps: 1856 * vp - atime updated 1857 * 1858 * Note that the low 4 bits of the cookie returned by zap is always zero. 1859 * This allows us to use the low range for "special" directory entries: 1860 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1861 * we use the offset 2 for the '.zfs' directory. 1862 */ 1863 /* ARGSUSED */ 1864 static int 1865 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 1866 caller_context_t *ct, int flags) 1867 { 1868 znode_t *zp = VTOZ(vp); 1869 iovec_t *iovp; 1870 edirent_t *eodp; 1871 dirent64_t *odp; 1872 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1873 objset_t *os; 1874 caddr_t outbuf; 1875 size_t bufsize; 1876 zap_cursor_t zc; 1877 zap_attribute_t zap; 1878 uint_t bytes_wanted; 1879 uint64_t offset; /* must be unsigned; checks for < 1 */ 1880 int local_eof; 1881 int outcount; 1882 int error; 1883 uint8_t prefetch; 1884 boolean_t check_sysattrs; 1885 1886 ZFS_ENTER(zfsvfs); 1887 ZFS_VERIFY_ZP(zp); 1888 1889 /* 1890 * If we are not given an eof variable, 1891 * use a local one. 1892 */ 1893 if (eofp == NULL) 1894 eofp = &local_eof; 1895 1896 /* 1897 * Check for valid iov_len. 1898 */ 1899 if (uio->uio_iov->iov_len <= 0) { 1900 ZFS_EXIT(zfsvfs); 1901 return (EINVAL); 1902 } 1903 1904 /* 1905 * Quit if directory has been removed (posix) 1906 */ 1907 if ((*eofp = zp->z_unlinked) != 0) { 1908 ZFS_EXIT(zfsvfs); 1909 return (0); 1910 } 1911 1912 error = 0; 1913 os = zfsvfs->z_os; 1914 offset = uio->uio_loffset; 1915 prefetch = zp->z_zn_prefetch; 1916 1917 /* 1918 * Initialize the iterator cursor. 1919 */ 1920 if (offset <= 3) { 1921 /* 1922 * Start iteration from the beginning of the directory. 1923 */ 1924 zap_cursor_init(&zc, os, zp->z_id); 1925 } else { 1926 /* 1927 * The offset is a serialized cursor. 1928 */ 1929 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1930 } 1931 1932 /* 1933 * Get space to change directory entries into fs independent format. 1934 */ 1935 iovp = uio->uio_iov; 1936 bytes_wanted = iovp->iov_len; 1937 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 1938 bufsize = bytes_wanted; 1939 outbuf = kmem_alloc(bufsize, KM_SLEEP); 1940 odp = (struct dirent64 *)outbuf; 1941 } else { 1942 bufsize = bytes_wanted; 1943 odp = (struct dirent64 *)iovp->iov_base; 1944 } 1945 eodp = (struct edirent *)odp; 1946 1947 /* 1948 * If this VFS supports the system attribute view interface; and 1949 * we're looking at an extended attribute directory; and we care 1950 * about normalization conflicts on this vfs; then we must check 1951 * for normalization conflicts with the sysattr name space. 1952 */ 1953 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 1954 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 1955 (flags & V_RDDIR_ENTFLAGS); 1956 1957 /* 1958 * Transform to file-system independent format 1959 */ 1960 outcount = 0; 1961 while (outcount < bytes_wanted) { 1962 ino64_t objnum; 1963 ushort_t reclen; 1964 off64_t *next; 1965 1966 /* 1967 * Special case `.', `..', and `.zfs'. 1968 */ 1969 if (offset == 0) { 1970 (void) strcpy(zap.za_name, "."); 1971 zap.za_normalization_conflict = 0; 1972 objnum = zp->z_id; 1973 } else if (offset == 1) { 1974 (void) strcpy(zap.za_name, ".."); 1975 zap.za_normalization_conflict = 0; 1976 objnum = zp->z_phys->zp_parent; 1977 } else if (offset == 2 && zfs_show_ctldir(zp)) { 1978 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 1979 zap.za_normalization_conflict = 0; 1980 objnum = ZFSCTL_INO_ROOT; 1981 } else { 1982 /* 1983 * Grab next entry. 1984 */ 1985 if (error = zap_cursor_retrieve(&zc, &zap)) { 1986 if ((*eofp = (error == ENOENT)) != 0) 1987 break; 1988 else 1989 goto update; 1990 } 1991 1992 if (zap.za_integer_length != 8 || 1993 zap.za_num_integers != 1) { 1994 cmn_err(CE_WARN, "zap_readdir: bad directory " 1995 "entry, obj = %lld, offset = %lld\n", 1996 (u_longlong_t)zp->z_id, 1997 (u_longlong_t)offset); 1998 error = ENXIO; 1999 goto update; 2000 } 2001 2002 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2003 /* 2004 * MacOS X can extract the object type here such as: 2005 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2006 */ 2007 2008 if (check_sysattrs && !zap.za_normalization_conflict) { 2009 zap.za_normalization_conflict = 2010 xattr_sysattr_casechk(zap.za_name); 2011 } 2012 } 2013 2014 if (flags & V_RDDIR_ENTFLAGS) 2015 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2016 else 2017 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2018 2019 /* 2020 * Will this entry fit in the buffer? 2021 */ 2022 if (outcount + reclen > bufsize) { 2023 /* 2024 * Did we manage to fit anything in the buffer? 2025 */ 2026 if (!outcount) { 2027 error = EINVAL; 2028 goto update; 2029 } 2030 break; 2031 } 2032 if (flags & V_RDDIR_ENTFLAGS) { 2033 /* 2034 * Add extended flag entry: 2035 */ 2036 eodp->ed_ino = objnum; 2037 eodp->ed_reclen = reclen; 2038 /* NOTE: ed_off is the offset for the *next* entry */ 2039 next = &(eodp->ed_off); 2040 eodp->ed_eflags = zap.za_normalization_conflict ? 2041 ED_CASE_CONFLICT : 0; 2042 (void) strncpy(eodp->ed_name, zap.za_name, 2043 EDIRENT_NAMELEN(reclen)); 2044 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2045 } else { 2046 /* 2047 * Add normal entry: 2048 */ 2049 odp->d_ino = objnum; 2050 odp->d_reclen = reclen; 2051 /* NOTE: d_off is the offset for the *next* entry */ 2052 next = &(odp->d_off); 2053 (void) strncpy(odp->d_name, zap.za_name, 2054 DIRENT64_NAMELEN(reclen)); 2055 odp = (dirent64_t *)((intptr_t)odp + reclen); 2056 } 2057 outcount += reclen; 2058 2059 ASSERT(outcount <= bufsize); 2060 2061 /* Prefetch znode */ 2062 if (prefetch) 2063 dmu_prefetch(os, objnum, 0, 0); 2064 2065 /* 2066 * Move to the next entry, fill in the previous offset. 2067 */ 2068 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2069 zap_cursor_advance(&zc); 2070 offset = zap_cursor_serialize(&zc); 2071 } else { 2072 offset += 1; 2073 } 2074 *next = offset; 2075 } 2076 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2077 2078 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2079 iovp->iov_base += outcount; 2080 iovp->iov_len -= outcount; 2081 uio->uio_resid -= outcount; 2082 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2083 /* 2084 * Reset the pointer. 2085 */ 2086 offset = uio->uio_loffset; 2087 } 2088 2089 update: 2090 zap_cursor_fini(&zc); 2091 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2092 kmem_free(outbuf, bufsize); 2093 2094 if (error == ENOENT) 2095 error = 0; 2096 2097 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2098 2099 uio->uio_loffset = offset; 2100 ZFS_EXIT(zfsvfs); 2101 return (error); 2102 } 2103 2104 ulong_t zfs_fsync_sync_cnt = 4; 2105 2106 static int 2107 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2108 { 2109 znode_t *zp = VTOZ(vp); 2110 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2111 2112 /* 2113 * Regardless of whether this is required for standards conformance, 2114 * this is the logical behavior when fsync() is called on a file with 2115 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2116 * going to be pushed out as part of the zil_commit(). 2117 */ 2118 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2119 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2120 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2121 2122 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2123 2124 ZFS_ENTER(zfsvfs); 2125 ZFS_VERIFY_ZP(zp); 2126 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 2127 ZFS_EXIT(zfsvfs); 2128 return (0); 2129 } 2130 2131 2132 /* 2133 * Get the requested file attributes and place them in the provided 2134 * vattr structure. 2135 * 2136 * IN: vp - vnode of file. 2137 * vap - va_mask identifies requested attributes. 2138 * If AT_XVATTR set, then optional attrs are requested 2139 * flags - ATTR_NOACLCHECK (CIFS server context) 2140 * cr - credentials of caller. 2141 * ct - caller context 2142 * 2143 * OUT: vap - attribute values. 2144 * 2145 * RETURN: 0 (always succeeds) 2146 */ 2147 /* ARGSUSED */ 2148 static int 2149 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2150 caller_context_t *ct) 2151 { 2152 znode_t *zp = VTOZ(vp); 2153 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2154 znode_phys_t *pzp; 2155 int error = 0; 2156 uint64_t links; 2157 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2158 xoptattr_t *xoap = NULL; 2159 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2160 2161 ZFS_ENTER(zfsvfs); 2162 ZFS_VERIFY_ZP(zp); 2163 pzp = zp->z_phys; 2164 2165 mutex_enter(&zp->z_lock); 2166 2167 /* 2168 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2169 * Also, if we are the owner don't bother, since owner should 2170 * always be allowed to read basic attributes of file. 2171 */ 2172 if (!(pzp->zp_flags & ZFS_ACL_TRIVIAL) && 2173 (pzp->zp_uid != crgetuid(cr))) { 2174 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2175 skipaclchk, cr)) { 2176 mutex_exit(&zp->z_lock); 2177 ZFS_EXIT(zfsvfs); 2178 return (error); 2179 } 2180 } 2181 2182 /* 2183 * Return all attributes. It's cheaper to provide the answer 2184 * than to determine whether we were asked the question. 2185 */ 2186 2187 vap->va_type = vp->v_type; 2188 vap->va_mode = pzp->zp_mode & MODEMASK; 2189 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2190 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2191 vap->va_nodeid = zp->z_id; 2192 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2193 links = pzp->zp_links + 1; 2194 else 2195 links = pzp->zp_links; 2196 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2197 vap->va_size = pzp->zp_size; 2198 vap->va_rdev = vp->v_rdev; 2199 vap->va_seq = zp->z_seq; 2200 2201 /* 2202 * Add in any requested optional attributes and the create time. 2203 * Also set the corresponding bits in the returned attribute bitmap. 2204 */ 2205 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2206 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2207 xoap->xoa_archive = 2208 ((pzp->zp_flags & ZFS_ARCHIVE) != 0); 2209 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2210 } 2211 2212 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2213 xoap->xoa_readonly = 2214 ((pzp->zp_flags & ZFS_READONLY) != 0); 2215 XVA_SET_RTN(xvap, XAT_READONLY); 2216 } 2217 2218 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2219 xoap->xoa_system = 2220 ((pzp->zp_flags & ZFS_SYSTEM) != 0); 2221 XVA_SET_RTN(xvap, XAT_SYSTEM); 2222 } 2223 2224 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2225 xoap->xoa_hidden = 2226 ((pzp->zp_flags & ZFS_HIDDEN) != 0); 2227 XVA_SET_RTN(xvap, XAT_HIDDEN); 2228 } 2229 2230 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2231 xoap->xoa_nounlink = 2232 ((pzp->zp_flags & ZFS_NOUNLINK) != 0); 2233 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2234 } 2235 2236 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2237 xoap->xoa_immutable = 2238 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0); 2239 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2240 } 2241 2242 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2243 xoap->xoa_appendonly = 2244 ((pzp->zp_flags & ZFS_APPENDONLY) != 0); 2245 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2246 } 2247 2248 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2249 xoap->xoa_nodump = 2250 ((pzp->zp_flags & ZFS_NODUMP) != 0); 2251 XVA_SET_RTN(xvap, XAT_NODUMP); 2252 } 2253 2254 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2255 xoap->xoa_opaque = 2256 ((pzp->zp_flags & ZFS_OPAQUE) != 0); 2257 XVA_SET_RTN(xvap, XAT_OPAQUE); 2258 } 2259 2260 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2261 xoap->xoa_av_quarantined = 2262 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0); 2263 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2264 } 2265 2266 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2267 xoap->xoa_av_modified = 2268 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0); 2269 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2270 } 2271 2272 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2273 vp->v_type == VREG && 2274 (pzp->zp_flags & ZFS_BONUS_SCANSTAMP)) { 2275 size_t len; 2276 dmu_object_info_t doi; 2277 2278 /* 2279 * Only VREG files have anti-virus scanstamps, so we 2280 * won't conflict with symlinks in the bonus buffer. 2281 */ 2282 dmu_object_info_from_db(zp->z_dbuf, &doi); 2283 len = sizeof (xoap->xoa_av_scanstamp) + 2284 sizeof (znode_phys_t); 2285 if (len <= doi.doi_bonus_size) { 2286 /* 2287 * pzp points to the start of the 2288 * znode_phys_t. pzp + 1 points to the 2289 * first byte after the znode_phys_t. 2290 */ 2291 (void) memcpy(xoap->xoa_av_scanstamp, 2292 pzp + 1, 2293 sizeof (xoap->xoa_av_scanstamp)); 2294 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 2295 } 2296 } 2297 2298 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2299 ZFS_TIME_DECODE(&xoap->xoa_createtime, pzp->zp_crtime); 2300 XVA_SET_RTN(xvap, XAT_CREATETIME); 2301 } 2302 } 2303 2304 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 2305 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 2306 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 2307 2308 mutex_exit(&zp->z_lock); 2309 2310 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 2311 2312 if (zp->z_blksz == 0) { 2313 /* 2314 * Block size hasn't been set; suggest maximal I/O transfers. 2315 */ 2316 vap->va_blksize = zfsvfs->z_max_blksz; 2317 } 2318 2319 ZFS_EXIT(zfsvfs); 2320 return (0); 2321 } 2322 2323 /* 2324 * Set the file attributes to the values contained in the 2325 * vattr structure. 2326 * 2327 * IN: vp - vnode of file to be modified. 2328 * vap - new attribute values. 2329 * If AT_XVATTR set, then optional attrs are being set 2330 * flags - ATTR_UTIME set if non-default time values provided. 2331 * - ATTR_NOACLCHECK (CIFS context only). 2332 * cr - credentials of caller. 2333 * ct - caller context 2334 * 2335 * RETURN: 0 if success 2336 * error code if failure 2337 * 2338 * Timestamps: 2339 * vp - ctime updated, mtime updated if size changed. 2340 */ 2341 /* ARGSUSED */ 2342 static int 2343 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2344 caller_context_t *ct) 2345 { 2346 znode_t *zp = VTOZ(vp); 2347 znode_phys_t *pzp; 2348 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2349 zilog_t *zilog; 2350 dmu_tx_t *tx; 2351 vattr_t oldva; 2352 xvattr_t tmpxvattr; 2353 uint_t mask = vap->va_mask; 2354 uint_t saved_mask; 2355 int trim_mask = 0; 2356 uint64_t new_mode; 2357 uint64_t new_uid, new_gid; 2358 znode_t *attrzp; 2359 int need_policy = FALSE; 2360 int err; 2361 zfs_fuid_info_t *fuidp = NULL; 2362 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2363 xoptattr_t *xoap; 2364 zfs_acl_t *aclp = NULL; 2365 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2366 boolean_t fuid_dirtied = B_FALSE; 2367 2368 if (mask == 0) 2369 return (0); 2370 2371 if (mask & AT_NOSET) 2372 return (EINVAL); 2373 2374 ZFS_ENTER(zfsvfs); 2375 ZFS_VERIFY_ZP(zp); 2376 2377 pzp = zp->z_phys; 2378 zilog = zfsvfs->z_log; 2379 2380 /* 2381 * Make sure that if we have ephemeral uid/gid or xvattr specified 2382 * that file system is at proper version level 2383 */ 2384 2385 if (zfsvfs->z_use_fuids == B_FALSE && 2386 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2387 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2388 (mask & AT_XVATTR))) { 2389 ZFS_EXIT(zfsvfs); 2390 return (EINVAL); 2391 } 2392 2393 if (mask & AT_SIZE && vp->v_type == VDIR) { 2394 ZFS_EXIT(zfsvfs); 2395 return (EISDIR); 2396 } 2397 2398 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2399 ZFS_EXIT(zfsvfs); 2400 return (EINVAL); 2401 } 2402 2403 /* 2404 * If this is an xvattr_t, then get a pointer to the structure of 2405 * optional attributes. If this is NULL, then we have a vattr_t. 2406 */ 2407 xoap = xva_getxoptattr(xvap); 2408 2409 xva_init(&tmpxvattr); 2410 2411 /* 2412 * Immutable files can only alter immutable bit and atime 2413 */ 2414 if ((pzp->zp_flags & ZFS_IMMUTABLE) && 2415 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2416 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2417 ZFS_EXIT(zfsvfs); 2418 return (EPERM); 2419 } 2420 2421 if ((mask & AT_SIZE) && (pzp->zp_flags & ZFS_READONLY)) { 2422 ZFS_EXIT(zfsvfs); 2423 return (EPERM); 2424 } 2425 2426 /* 2427 * Verify timestamps doesn't overflow 32 bits. 2428 * ZFS can handle large timestamps, but 32bit syscalls can't 2429 * handle times greater than 2039. This check should be removed 2430 * once large timestamps are fully supported. 2431 */ 2432 if (mask & (AT_ATIME | AT_MTIME)) { 2433 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2434 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2435 ZFS_EXIT(zfsvfs); 2436 return (EOVERFLOW); 2437 } 2438 } 2439 2440 top: 2441 attrzp = NULL; 2442 2443 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2444 ZFS_EXIT(zfsvfs); 2445 return (EROFS); 2446 } 2447 2448 /* 2449 * First validate permissions 2450 */ 2451 2452 if (mask & AT_SIZE) { 2453 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2454 if (err) { 2455 ZFS_EXIT(zfsvfs); 2456 return (err); 2457 } 2458 /* 2459 * XXX - Note, we are not providing any open 2460 * mode flags here (like FNDELAY), so we may 2461 * block if there are locks present... this 2462 * should be addressed in openat(). 2463 */ 2464 /* XXX - would it be OK to generate a log record here? */ 2465 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2466 if (err) { 2467 ZFS_EXIT(zfsvfs); 2468 return (err); 2469 } 2470 } 2471 2472 if (mask & (AT_ATIME|AT_MTIME) || 2473 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2474 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2475 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2476 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2477 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) 2478 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2479 skipaclchk, cr); 2480 2481 if (mask & (AT_UID|AT_GID)) { 2482 int idmask = (mask & (AT_UID|AT_GID)); 2483 int take_owner; 2484 int take_group; 2485 2486 /* 2487 * NOTE: even if a new mode is being set, 2488 * we may clear S_ISUID/S_ISGID bits. 2489 */ 2490 2491 if (!(mask & AT_MODE)) 2492 vap->va_mode = pzp->zp_mode; 2493 2494 /* 2495 * Take ownership or chgrp to group we are a member of 2496 */ 2497 2498 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2499 take_group = (mask & AT_GID) && 2500 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2501 2502 /* 2503 * If both AT_UID and AT_GID are set then take_owner and 2504 * take_group must both be set in order to allow taking 2505 * ownership. 2506 * 2507 * Otherwise, send the check through secpolicy_vnode_setattr() 2508 * 2509 */ 2510 2511 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2512 ((idmask == AT_UID) && take_owner) || 2513 ((idmask == AT_GID) && take_group)) { 2514 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2515 skipaclchk, cr) == 0) { 2516 /* 2517 * Remove setuid/setgid for non-privileged users 2518 */ 2519 secpolicy_setid_clear(vap, cr); 2520 trim_mask = (mask & (AT_UID|AT_GID)); 2521 } else { 2522 need_policy = TRUE; 2523 } 2524 } else { 2525 need_policy = TRUE; 2526 } 2527 } 2528 2529 mutex_enter(&zp->z_lock); 2530 oldva.va_mode = pzp->zp_mode; 2531 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2532 if (mask & AT_XVATTR) { 2533 /* 2534 * Update xvattr mask to include only those attributes 2535 * that are actually changing. 2536 * 2537 * the bits will be restored prior to actually setting 2538 * the attributes so the caller thinks they were set. 2539 */ 2540 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2541 if (xoap->xoa_appendonly != 2542 ((pzp->zp_flags & ZFS_APPENDONLY) != 0)) { 2543 need_policy = TRUE; 2544 } else { 2545 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2546 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2547 } 2548 } 2549 2550 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2551 if (xoap->xoa_nounlink != 2552 ((pzp->zp_flags & ZFS_NOUNLINK) != 0)) { 2553 need_policy = TRUE; 2554 } else { 2555 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2556 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2557 } 2558 } 2559 2560 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2561 if (xoap->xoa_immutable != 2562 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0)) { 2563 need_policy = TRUE; 2564 } else { 2565 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2566 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2567 } 2568 } 2569 2570 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2571 if (xoap->xoa_nodump != 2572 ((pzp->zp_flags & ZFS_NODUMP) != 0)) { 2573 need_policy = TRUE; 2574 } else { 2575 XVA_CLR_REQ(xvap, XAT_NODUMP); 2576 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2577 } 2578 } 2579 2580 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2581 if (xoap->xoa_av_modified != 2582 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0)) { 2583 need_policy = TRUE; 2584 } else { 2585 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2586 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2587 } 2588 } 2589 2590 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2591 if ((vp->v_type != VREG && 2592 xoap->xoa_av_quarantined) || 2593 xoap->xoa_av_quarantined != 2594 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0)) { 2595 need_policy = TRUE; 2596 } else { 2597 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2598 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2599 } 2600 } 2601 2602 if (need_policy == FALSE && 2603 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2604 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2605 need_policy = TRUE; 2606 } 2607 } 2608 2609 mutex_exit(&zp->z_lock); 2610 2611 if (mask & AT_MODE) { 2612 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2613 err = secpolicy_setid_setsticky_clear(vp, vap, 2614 &oldva, cr); 2615 if (err) { 2616 ZFS_EXIT(zfsvfs); 2617 return (err); 2618 } 2619 trim_mask |= AT_MODE; 2620 } else { 2621 need_policy = TRUE; 2622 } 2623 } 2624 2625 if (need_policy) { 2626 /* 2627 * If trim_mask is set then take ownership 2628 * has been granted or write_acl is present and user 2629 * has the ability to modify mode. In that case remove 2630 * UID|GID and or MODE from mask so that 2631 * secpolicy_vnode_setattr() doesn't revoke it. 2632 */ 2633 2634 if (trim_mask) { 2635 saved_mask = vap->va_mask; 2636 vap->va_mask &= ~trim_mask; 2637 } 2638 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2639 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2640 if (err) { 2641 ZFS_EXIT(zfsvfs); 2642 return (err); 2643 } 2644 2645 if (trim_mask) 2646 vap->va_mask |= saved_mask; 2647 } 2648 2649 /* 2650 * secpolicy_vnode_setattr, or take ownership may have 2651 * changed va_mask 2652 */ 2653 mask = vap->va_mask; 2654 2655 tx = dmu_tx_create(zfsvfs->z_os); 2656 dmu_tx_hold_bonus(tx, zp->z_id); 2657 2658 if (mask & AT_MODE) { 2659 uint64_t pmode = pzp->zp_mode; 2660 2661 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2662 2663 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 2664 goto out; 2665 if (pzp->zp_acl.z_acl_extern_obj) { 2666 /* Are we upgrading ACL from old V0 format to new V1 */ 2667 if (zfsvfs->z_version <= ZPL_VERSION_FUID && 2668 pzp->zp_acl.z_acl_version == 2669 ZFS_ACL_VERSION_INITIAL) { 2670 dmu_tx_hold_free(tx, 2671 pzp->zp_acl.z_acl_extern_obj, 0, 2672 DMU_OBJECT_END); 2673 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2674 0, aclp->z_acl_bytes); 2675 } else { 2676 dmu_tx_hold_write(tx, 2677 pzp->zp_acl.z_acl_extern_obj, 0, 2678 aclp->z_acl_bytes); 2679 } 2680 } else if (aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2681 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2682 0, aclp->z_acl_bytes); 2683 } 2684 } 2685 2686 if (mask & (AT_UID | AT_GID)) { 2687 if (pzp->zp_xattr) { 2688 err = zfs_zget(zp->z_zfsvfs, pzp->zp_xattr, &attrzp); 2689 if (err) 2690 goto out; 2691 dmu_tx_hold_bonus(tx, attrzp->z_id); 2692 } 2693 if (mask & AT_UID) { 2694 new_uid = zfs_fuid_create(zfsvfs, 2695 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 2696 if (new_uid != pzp->zp_uid && 2697 zfs_usergroup_overquota(zfsvfs, B_FALSE, new_uid)) { 2698 err = EDQUOT; 2699 goto out; 2700 } 2701 } 2702 2703 if (mask & AT_GID) { 2704 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 2705 cr, ZFS_GROUP, &fuidp); 2706 if (new_gid != pzp->zp_gid && 2707 zfs_usergroup_overquota(zfsvfs, B_TRUE, new_gid)) { 2708 err = EDQUOT; 2709 goto out; 2710 } 2711 } 2712 fuid_dirtied = zfsvfs->z_fuid_dirty; 2713 if (fuid_dirtied) { 2714 if (zfsvfs->z_fuid_obj == 0) { 2715 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2716 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 2717 FUID_SIZE_ESTIMATE(zfsvfs)); 2718 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 2719 FALSE, NULL); 2720 } else { 2721 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 2722 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 2723 FUID_SIZE_ESTIMATE(zfsvfs)); 2724 } 2725 } 2726 } 2727 2728 err = dmu_tx_assign(tx, TXG_NOWAIT); 2729 if (err) { 2730 if (err == ERESTART) 2731 dmu_tx_wait(tx); 2732 goto out; 2733 } 2734 2735 dmu_buf_will_dirty(zp->z_dbuf, tx); 2736 2737 /* 2738 * Set each attribute requested. 2739 * We group settings according to the locks they need to acquire. 2740 * 2741 * Note: you cannot set ctime directly, although it will be 2742 * updated as a side-effect of calling this function. 2743 */ 2744 2745 mutex_enter(&zp->z_lock); 2746 2747 if (mask & AT_MODE) { 2748 mutex_enter(&zp->z_acl_lock); 2749 zp->z_phys->zp_mode = new_mode; 2750 err = zfs_aclset_common(zp, aclp, cr, tx); 2751 ASSERT3U(err, ==, 0); 2752 mutex_exit(&zp->z_acl_lock); 2753 } 2754 2755 if (attrzp) 2756 mutex_enter(&attrzp->z_lock); 2757 2758 if (mask & AT_UID) { 2759 pzp->zp_uid = new_uid; 2760 if (attrzp) 2761 attrzp->z_phys->zp_uid = new_uid; 2762 } 2763 2764 if (mask & AT_GID) { 2765 pzp->zp_gid = new_gid; 2766 if (attrzp) 2767 attrzp->z_phys->zp_gid = new_gid; 2768 } 2769 2770 if (attrzp) 2771 mutex_exit(&attrzp->z_lock); 2772 2773 if (mask & AT_ATIME) 2774 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2775 2776 if (mask & AT_MTIME) 2777 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2778 2779 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 2780 if (mask & AT_SIZE) 2781 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2782 else if (mask != 0) 2783 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2784 /* 2785 * Do this after setting timestamps to prevent timestamp 2786 * update from toggling bit 2787 */ 2788 2789 if (xoap && (mask & AT_XVATTR)) { 2790 2791 /* 2792 * restore trimmed off masks 2793 * so that return masks can be set for caller. 2794 */ 2795 2796 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 2797 XVA_SET_REQ(xvap, XAT_APPENDONLY); 2798 } 2799 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 2800 XVA_SET_REQ(xvap, XAT_NOUNLINK); 2801 } 2802 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 2803 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 2804 } 2805 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 2806 XVA_SET_REQ(xvap, XAT_NODUMP); 2807 } 2808 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 2809 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 2810 } 2811 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 2812 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 2813 } 2814 2815 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 2816 size_t len; 2817 dmu_object_info_t doi; 2818 2819 ASSERT(vp->v_type == VREG); 2820 2821 /* Grow the bonus buffer if necessary. */ 2822 dmu_object_info_from_db(zp->z_dbuf, &doi); 2823 len = sizeof (xoap->xoa_av_scanstamp) + 2824 sizeof (znode_phys_t); 2825 if (len > doi.doi_bonus_size) 2826 VERIFY(dmu_set_bonus(zp->z_dbuf, len, tx) == 0); 2827 } 2828 zfs_xvattr_set(zp, xvap); 2829 } 2830 2831 if (fuid_dirtied) 2832 zfs_fuid_sync(zfsvfs, tx); 2833 2834 if (mask != 0) 2835 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 2836 2837 mutex_exit(&zp->z_lock); 2838 2839 out: 2840 if (attrzp) 2841 VN_RELE(ZTOV(attrzp)); 2842 2843 if (aclp) { 2844 zfs_acl_free(aclp); 2845 aclp = NULL; 2846 } 2847 2848 if (fuidp) { 2849 zfs_fuid_info_free(fuidp); 2850 fuidp = NULL; 2851 } 2852 2853 if (err) 2854 dmu_tx_abort(tx); 2855 else 2856 dmu_tx_commit(tx); 2857 2858 if (err == ERESTART) 2859 goto top; 2860 2861 ZFS_EXIT(zfsvfs); 2862 return (err); 2863 } 2864 2865 typedef struct zfs_zlock { 2866 krwlock_t *zl_rwlock; /* lock we acquired */ 2867 znode_t *zl_znode; /* znode we held */ 2868 struct zfs_zlock *zl_next; /* next in list */ 2869 } zfs_zlock_t; 2870 2871 /* 2872 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2873 */ 2874 static void 2875 zfs_rename_unlock(zfs_zlock_t **zlpp) 2876 { 2877 zfs_zlock_t *zl; 2878 2879 while ((zl = *zlpp) != NULL) { 2880 if (zl->zl_znode != NULL) 2881 VN_RELE(ZTOV(zl->zl_znode)); 2882 rw_exit(zl->zl_rwlock); 2883 *zlpp = zl->zl_next; 2884 kmem_free(zl, sizeof (*zl)); 2885 } 2886 } 2887 2888 /* 2889 * Search back through the directory tree, using the ".." entries. 2890 * Lock each directory in the chain to prevent concurrent renames. 2891 * Fail any attempt to move a directory into one of its own descendants. 2892 * XXX - z_parent_lock can overlap with map or grow locks 2893 */ 2894 static int 2895 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2896 { 2897 zfs_zlock_t *zl; 2898 znode_t *zp = tdzp; 2899 uint64_t rootid = zp->z_zfsvfs->z_root; 2900 uint64_t *oidp = &zp->z_id; 2901 krwlock_t *rwlp = &szp->z_parent_lock; 2902 krw_t rw = RW_WRITER; 2903 2904 /* 2905 * First pass write-locks szp and compares to zp->z_id. 2906 * Later passes read-lock zp and compare to zp->z_parent. 2907 */ 2908 do { 2909 if (!rw_tryenter(rwlp, rw)) { 2910 /* 2911 * Another thread is renaming in this path. 2912 * Note that if we are a WRITER, we don't have any 2913 * parent_locks held yet. 2914 */ 2915 if (rw == RW_READER && zp->z_id > szp->z_id) { 2916 /* 2917 * Drop our locks and restart 2918 */ 2919 zfs_rename_unlock(&zl); 2920 *zlpp = NULL; 2921 zp = tdzp; 2922 oidp = &zp->z_id; 2923 rwlp = &szp->z_parent_lock; 2924 rw = RW_WRITER; 2925 continue; 2926 } else { 2927 /* 2928 * Wait for other thread to drop its locks 2929 */ 2930 rw_enter(rwlp, rw); 2931 } 2932 } 2933 2934 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 2935 zl->zl_rwlock = rwlp; 2936 zl->zl_znode = NULL; 2937 zl->zl_next = *zlpp; 2938 *zlpp = zl; 2939 2940 if (*oidp == szp->z_id) /* We're a descendant of szp */ 2941 return (EINVAL); 2942 2943 if (*oidp == rootid) /* We've hit the top */ 2944 return (0); 2945 2946 if (rw == RW_READER) { /* i.e. not the first pass */ 2947 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 2948 if (error) 2949 return (error); 2950 zl->zl_znode = zp; 2951 } 2952 oidp = &zp->z_phys->zp_parent; 2953 rwlp = &zp->z_parent_lock; 2954 rw = RW_READER; 2955 2956 } while (zp->z_id != sdzp->z_id); 2957 2958 return (0); 2959 } 2960 2961 /* 2962 * Move an entry from the provided source directory to the target 2963 * directory. Change the entry name as indicated. 2964 * 2965 * IN: sdvp - Source directory containing the "old entry". 2966 * snm - Old entry name. 2967 * tdvp - Target directory to contain the "new entry". 2968 * tnm - New entry name. 2969 * cr - credentials of caller. 2970 * ct - caller context 2971 * flags - case flags 2972 * 2973 * RETURN: 0 if success 2974 * error code if failure 2975 * 2976 * Timestamps: 2977 * sdvp,tdvp - ctime|mtime updated 2978 */ 2979 /*ARGSUSED*/ 2980 static int 2981 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 2982 caller_context_t *ct, int flags) 2983 { 2984 znode_t *tdzp, *szp, *tzp; 2985 znode_t *sdzp = VTOZ(sdvp); 2986 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 2987 zilog_t *zilog; 2988 vnode_t *realvp; 2989 zfs_dirlock_t *sdl, *tdl; 2990 dmu_tx_t *tx; 2991 zfs_zlock_t *zl; 2992 int cmp, serr, terr; 2993 int error = 0; 2994 int zflg = 0; 2995 2996 ZFS_ENTER(zfsvfs); 2997 ZFS_VERIFY_ZP(sdzp); 2998 zilog = zfsvfs->z_log; 2999 3000 /* 3001 * Make sure we have the real vp for the target directory. 3002 */ 3003 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3004 tdvp = realvp; 3005 3006 if (tdvp->v_vfsp != sdvp->v_vfsp) { 3007 ZFS_EXIT(zfsvfs); 3008 return (EXDEV); 3009 } 3010 3011 tdzp = VTOZ(tdvp); 3012 ZFS_VERIFY_ZP(tdzp); 3013 if (zfsvfs->z_utf8 && u8_validate(tnm, 3014 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3015 ZFS_EXIT(zfsvfs); 3016 return (EILSEQ); 3017 } 3018 3019 if (flags & FIGNORECASE) 3020 zflg |= ZCILOOK; 3021 3022 top: 3023 szp = NULL; 3024 tzp = NULL; 3025 zl = NULL; 3026 3027 /* 3028 * This is to prevent the creation of links into attribute space 3029 * by renaming a linked file into/outof an attribute directory. 3030 * See the comment in zfs_link() for why this is considered bad. 3031 */ 3032 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 3033 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 3034 ZFS_EXIT(zfsvfs); 3035 return (EINVAL); 3036 } 3037 3038 /* 3039 * Lock source and target directory entries. To prevent deadlock, 3040 * a lock ordering must be defined. We lock the directory with 3041 * the smallest object id first, or if it's a tie, the one with 3042 * the lexically first name. 3043 */ 3044 if (sdzp->z_id < tdzp->z_id) { 3045 cmp = -1; 3046 } else if (sdzp->z_id > tdzp->z_id) { 3047 cmp = 1; 3048 } else { 3049 /* 3050 * First compare the two name arguments without 3051 * considering any case folding. 3052 */ 3053 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3054 3055 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3056 ASSERT(error == 0 || !zfsvfs->z_utf8); 3057 if (cmp == 0) { 3058 /* 3059 * POSIX: "If the old argument and the new argument 3060 * both refer to links to the same existing file, 3061 * the rename() function shall return successfully 3062 * and perform no other action." 3063 */ 3064 ZFS_EXIT(zfsvfs); 3065 return (0); 3066 } 3067 /* 3068 * If the file system is case-folding, then we may 3069 * have some more checking to do. A case-folding file 3070 * system is either supporting mixed case sensitivity 3071 * access or is completely case-insensitive. Note 3072 * that the file system is always case preserving. 3073 * 3074 * In mixed sensitivity mode case sensitive behavior 3075 * is the default. FIGNORECASE must be used to 3076 * explicitly request case insensitive behavior. 3077 * 3078 * If the source and target names provided differ only 3079 * by case (e.g., a request to rename 'tim' to 'Tim'), 3080 * we will treat this as a special case in the 3081 * case-insensitive mode: as long as the source name 3082 * is an exact match, we will allow this to proceed as 3083 * a name-change request. 3084 */ 3085 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3086 (zfsvfs->z_case == ZFS_CASE_MIXED && 3087 flags & FIGNORECASE)) && 3088 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3089 &error) == 0) { 3090 /* 3091 * case preserving rename request, require exact 3092 * name matches 3093 */ 3094 zflg |= ZCIEXACT; 3095 zflg &= ~ZCILOOK; 3096 } 3097 } 3098 3099 if (cmp < 0) { 3100 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3101 ZEXISTS | zflg, NULL, NULL); 3102 terr = zfs_dirent_lock(&tdl, 3103 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3104 } else { 3105 terr = zfs_dirent_lock(&tdl, 3106 tdzp, tnm, &tzp, zflg, NULL, NULL); 3107 serr = zfs_dirent_lock(&sdl, 3108 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3109 NULL, NULL); 3110 } 3111 3112 if (serr) { 3113 /* 3114 * Source entry invalid or not there. 3115 */ 3116 if (!terr) { 3117 zfs_dirent_unlock(tdl); 3118 if (tzp) 3119 VN_RELE(ZTOV(tzp)); 3120 } 3121 if (strcmp(snm, "..") == 0) 3122 serr = EINVAL; 3123 ZFS_EXIT(zfsvfs); 3124 return (serr); 3125 } 3126 if (terr) { 3127 zfs_dirent_unlock(sdl); 3128 VN_RELE(ZTOV(szp)); 3129 if (strcmp(tnm, "..") == 0) 3130 terr = EINVAL; 3131 ZFS_EXIT(zfsvfs); 3132 return (terr); 3133 } 3134 3135 /* 3136 * Must have write access at the source to remove the old entry 3137 * and write access at the target to create the new entry. 3138 * Note that if target and source are the same, this can be 3139 * done in a single check. 3140 */ 3141 3142 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3143 goto out; 3144 3145 if (ZTOV(szp)->v_type == VDIR) { 3146 /* 3147 * Check to make sure rename is valid. 3148 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3149 */ 3150 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3151 goto out; 3152 } 3153 3154 /* 3155 * Does target exist? 3156 */ 3157 if (tzp) { 3158 /* 3159 * Source and target must be the same type. 3160 */ 3161 if (ZTOV(szp)->v_type == VDIR) { 3162 if (ZTOV(tzp)->v_type != VDIR) { 3163 error = ENOTDIR; 3164 goto out; 3165 } 3166 } else { 3167 if (ZTOV(tzp)->v_type == VDIR) { 3168 error = EISDIR; 3169 goto out; 3170 } 3171 } 3172 /* 3173 * POSIX dictates that when the source and target 3174 * entries refer to the same file object, rename 3175 * must do nothing and exit without error. 3176 */ 3177 if (szp->z_id == tzp->z_id) { 3178 error = 0; 3179 goto out; 3180 } 3181 } 3182 3183 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3184 if (tzp) 3185 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3186 3187 /* 3188 * notify the target directory if it is not the same 3189 * as source directory. 3190 */ 3191 if (tdvp != sdvp) { 3192 vnevent_rename_dest_dir(tdvp, ct); 3193 } 3194 3195 tx = dmu_tx_create(zfsvfs->z_os); 3196 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 3197 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 3198 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3199 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3200 if (sdzp != tdzp) 3201 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 3202 if (tzp) 3203 dmu_tx_hold_bonus(tx, tzp->z_id); /* parent changes */ 3204 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3205 error = dmu_tx_assign(tx, TXG_NOWAIT); 3206 if (error) { 3207 if (zl != NULL) 3208 zfs_rename_unlock(&zl); 3209 zfs_dirent_unlock(sdl); 3210 zfs_dirent_unlock(tdl); 3211 VN_RELE(ZTOV(szp)); 3212 if (tzp) 3213 VN_RELE(ZTOV(tzp)); 3214 if (error == ERESTART) { 3215 dmu_tx_wait(tx); 3216 dmu_tx_abort(tx); 3217 goto top; 3218 } 3219 dmu_tx_abort(tx); 3220 ZFS_EXIT(zfsvfs); 3221 return (error); 3222 } 3223 3224 if (tzp) /* Attempt to remove the existing target */ 3225 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3226 3227 if (error == 0) { 3228 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3229 if (error == 0) { 3230 szp->z_phys->zp_flags |= ZFS_AV_MODIFIED; 3231 3232 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3233 ASSERT(error == 0); 3234 3235 zfs_log_rename(zilog, tx, 3236 TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0), 3237 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); 3238 3239 /* Update path information for the target vnode */ 3240 vn_renamepath(tdvp, ZTOV(szp), tnm, strlen(tnm)); 3241 } 3242 } 3243 3244 dmu_tx_commit(tx); 3245 out: 3246 if (zl != NULL) 3247 zfs_rename_unlock(&zl); 3248 3249 zfs_dirent_unlock(sdl); 3250 zfs_dirent_unlock(tdl); 3251 3252 VN_RELE(ZTOV(szp)); 3253 if (tzp) 3254 VN_RELE(ZTOV(tzp)); 3255 3256 ZFS_EXIT(zfsvfs); 3257 return (error); 3258 } 3259 3260 /* 3261 * Insert the indicated symbolic reference entry into the directory. 3262 * 3263 * IN: dvp - Directory to contain new symbolic link. 3264 * link - Name for new symlink entry. 3265 * vap - Attributes of new entry. 3266 * target - Target path of new symlink. 3267 * cr - credentials of caller. 3268 * ct - caller context 3269 * flags - case flags 3270 * 3271 * RETURN: 0 if success 3272 * error code if failure 3273 * 3274 * Timestamps: 3275 * dvp - ctime|mtime updated 3276 */ 3277 /*ARGSUSED*/ 3278 static int 3279 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3280 caller_context_t *ct, int flags) 3281 { 3282 znode_t *zp, *dzp = VTOZ(dvp); 3283 zfs_dirlock_t *dl; 3284 dmu_tx_t *tx; 3285 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3286 zilog_t *zilog; 3287 int len = strlen(link); 3288 int error; 3289 int zflg = ZNEW; 3290 zfs_acl_ids_t acl_ids; 3291 boolean_t fuid_dirtied; 3292 3293 ASSERT(vap->va_type == VLNK); 3294 3295 ZFS_ENTER(zfsvfs); 3296 ZFS_VERIFY_ZP(dzp); 3297 zilog = zfsvfs->z_log; 3298 3299 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3300 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3301 ZFS_EXIT(zfsvfs); 3302 return (EILSEQ); 3303 } 3304 if (flags & FIGNORECASE) 3305 zflg |= ZCILOOK; 3306 top: 3307 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3308 ZFS_EXIT(zfsvfs); 3309 return (error); 3310 } 3311 3312 if (len > MAXPATHLEN) { 3313 ZFS_EXIT(zfsvfs); 3314 return (ENAMETOOLONG); 3315 } 3316 3317 /* 3318 * Attempt to lock directory; fail if entry already exists. 3319 */ 3320 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3321 if (error) { 3322 ZFS_EXIT(zfsvfs); 3323 return (error); 3324 } 3325 3326 VERIFY(0 == zfs_acl_ids_create(dzp, 0, vap, cr, NULL, &acl_ids)); 3327 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3328 zfs_acl_ids_free(&acl_ids); 3329 zfs_dirent_unlock(dl); 3330 ZFS_EXIT(zfsvfs); 3331 return (EDQUOT); 3332 } 3333 tx = dmu_tx_create(zfsvfs->z_os); 3334 fuid_dirtied = zfsvfs->z_fuid_dirty; 3335 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3336 dmu_tx_hold_bonus(tx, dzp->z_id); 3337 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3338 if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) 3339 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 3340 if (fuid_dirtied) 3341 zfs_fuid_txhold(zfsvfs, tx); 3342 error = dmu_tx_assign(tx, TXG_NOWAIT); 3343 if (error) { 3344 zfs_acl_ids_free(&acl_ids); 3345 zfs_dirent_unlock(dl); 3346 if (error == ERESTART) { 3347 dmu_tx_wait(tx); 3348 dmu_tx_abort(tx); 3349 goto top; 3350 } 3351 dmu_tx_abort(tx); 3352 ZFS_EXIT(zfsvfs); 3353 return (error); 3354 } 3355 3356 dmu_buf_will_dirty(dzp->z_dbuf, tx); 3357 3358 /* 3359 * Create a new object for the symlink. 3360 * Put the link content into bonus buffer if it will fit; 3361 * otherwise, store it just like any other file data. 3362 */ 3363 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 3364 zfs_mknode(dzp, vap, tx, cr, 0, &zp, len, &acl_ids); 3365 if (len != 0) 3366 bcopy(link, zp->z_phys + 1, len); 3367 } else { 3368 dmu_buf_t *dbp; 3369 3370 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids); 3371 3372 if (fuid_dirtied) 3373 zfs_fuid_sync(zfsvfs, tx); 3374 /* 3375 * Nothing can access the znode yet so no locking needed 3376 * for growing the znode's blocksize. 3377 */ 3378 zfs_grow_blocksize(zp, len, tx); 3379 3380 VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, 3381 zp->z_id, 0, FTAG, &dbp)); 3382 dmu_buf_will_dirty(dbp, tx); 3383 3384 ASSERT3U(len, <=, dbp->db_size); 3385 bcopy(link, dbp->db_data, len); 3386 dmu_buf_rele(dbp, FTAG); 3387 } 3388 zp->z_phys->zp_size = len; 3389 3390 /* 3391 * Insert the new object into the directory. 3392 */ 3393 (void) zfs_link_create(dl, zp, tx, ZNEW); 3394 if (error == 0) { 3395 uint64_t txtype = TX_SYMLINK; 3396 if (flags & FIGNORECASE) 3397 txtype |= TX_CI; 3398 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3399 } 3400 3401 zfs_acl_ids_free(&acl_ids); 3402 3403 dmu_tx_commit(tx); 3404 3405 zfs_dirent_unlock(dl); 3406 3407 VN_RELE(ZTOV(zp)); 3408 3409 ZFS_EXIT(zfsvfs); 3410 return (error); 3411 } 3412 3413 /* 3414 * Return, in the buffer contained in the provided uio structure, 3415 * the symbolic path referred to by vp. 3416 * 3417 * IN: vp - vnode of symbolic link. 3418 * uoip - structure to contain the link path. 3419 * cr - credentials of caller. 3420 * ct - caller context 3421 * 3422 * OUT: uio - structure to contain the link path. 3423 * 3424 * RETURN: 0 if success 3425 * error code if failure 3426 * 3427 * Timestamps: 3428 * vp - atime updated 3429 */ 3430 /* ARGSUSED */ 3431 static int 3432 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3433 { 3434 znode_t *zp = VTOZ(vp); 3435 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3436 size_t bufsz; 3437 int error; 3438 3439 ZFS_ENTER(zfsvfs); 3440 ZFS_VERIFY_ZP(zp); 3441 3442 bufsz = (size_t)zp->z_phys->zp_size; 3443 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 3444 error = uiomove(zp->z_phys + 1, 3445 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3446 } else { 3447 dmu_buf_t *dbp; 3448 error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp); 3449 if (error) { 3450 ZFS_EXIT(zfsvfs); 3451 return (error); 3452 } 3453 error = uiomove(dbp->db_data, 3454 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3455 dmu_buf_rele(dbp, FTAG); 3456 } 3457 3458 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3459 ZFS_EXIT(zfsvfs); 3460 return (error); 3461 } 3462 3463 /* 3464 * Insert a new entry into directory tdvp referencing svp. 3465 * 3466 * IN: tdvp - Directory to contain new entry. 3467 * svp - vnode of new entry. 3468 * name - name of new entry. 3469 * cr - credentials of caller. 3470 * ct - caller context 3471 * 3472 * RETURN: 0 if success 3473 * error code if failure 3474 * 3475 * Timestamps: 3476 * tdvp - ctime|mtime updated 3477 * svp - ctime updated 3478 */ 3479 /* ARGSUSED */ 3480 static int 3481 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3482 caller_context_t *ct, int flags) 3483 { 3484 znode_t *dzp = VTOZ(tdvp); 3485 znode_t *tzp, *szp; 3486 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3487 zilog_t *zilog; 3488 zfs_dirlock_t *dl; 3489 dmu_tx_t *tx; 3490 vnode_t *realvp; 3491 int error; 3492 int zf = ZNEW; 3493 uid_t owner; 3494 3495 ASSERT(tdvp->v_type == VDIR); 3496 3497 ZFS_ENTER(zfsvfs); 3498 ZFS_VERIFY_ZP(dzp); 3499 zilog = zfsvfs->z_log; 3500 3501 if (VOP_REALVP(svp, &realvp, ct) == 0) 3502 svp = realvp; 3503 3504 if (svp->v_vfsp != tdvp->v_vfsp) { 3505 ZFS_EXIT(zfsvfs); 3506 return (EXDEV); 3507 } 3508 szp = VTOZ(svp); 3509 ZFS_VERIFY_ZP(szp); 3510 3511 if (zfsvfs->z_utf8 && u8_validate(name, 3512 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3513 ZFS_EXIT(zfsvfs); 3514 return (EILSEQ); 3515 } 3516 if (flags & FIGNORECASE) 3517 zf |= ZCILOOK; 3518 3519 top: 3520 /* 3521 * We do not support links between attributes and non-attributes 3522 * because of the potential security risk of creating links 3523 * into "normal" file space in order to circumvent restrictions 3524 * imposed in attribute space. 3525 */ 3526 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 3527 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 3528 ZFS_EXIT(zfsvfs); 3529 return (EINVAL); 3530 } 3531 3532 /* 3533 * POSIX dictates that we return EPERM here. 3534 * Better choices include ENOTSUP or EISDIR. 3535 */ 3536 if (svp->v_type == VDIR) { 3537 ZFS_EXIT(zfsvfs); 3538 return (EPERM); 3539 } 3540 3541 owner = zfs_fuid_map_id(zfsvfs, szp->z_phys->zp_uid, cr, ZFS_OWNER); 3542 if (owner != crgetuid(cr) && 3543 secpolicy_basic_link(cr) != 0) { 3544 ZFS_EXIT(zfsvfs); 3545 return (EPERM); 3546 } 3547 3548 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3549 ZFS_EXIT(zfsvfs); 3550 return (error); 3551 } 3552 3553 /* 3554 * Attempt to lock directory; fail if entry already exists. 3555 */ 3556 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 3557 if (error) { 3558 ZFS_EXIT(zfsvfs); 3559 return (error); 3560 } 3561 3562 tx = dmu_tx_create(zfsvfs->z_os); 3563 dmu_tx_hold_bonus(tx, szp->z_id); 3564 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3565 error = dmu_tx_assign(tx, TXG_NOWAIT); 3566 if (error) { 3567 zfs_dirent_unlock(dl); 3568 if (error == ERESTART) { 3569 dmu_tx_wait(tx); 3570 dmu_tx_abort(tx); 3571 goto top; 3572 } 3573 dmu_tx_abort(tx); 3574 ZFS_EXIT(zfsvfs); 3575 return (error); 3576 } 3577 3578 error = zfs_link_create(dl, szp, tx, 0); 3579 3580 if (error == 0) { 3581 uint64_t txtype = TX_LINK; 3582 if (flags & FIGNORECASE) 3583 txtype |= TX_CI; 3584 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 3585 } 3586 3587 dmu_tx_commit(tx); 3588 3589 zfs_dirent_unlock(dl); 3590 3591 if (error == 0) { 3592 vnevent_link(svp, ct); 3593 } 3594 3595 ZFS_EXIT(zfsvfs); 3596 return (error); 3597 } 3598 3599 /* 3600 * zfs_null_putapage() is used when the file system has been force 3601 * unmounted. It just drops the pages. 3602 */ 3603 /* ARGSUSED */ 3604 static int 3605 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3606 size_t *lenp, int flags, cred_t *cr) 3607 { 3608 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 3609 return (0); 3610 } 3611 3612 /* 3613 * Push a page out to disk, klustering if possible. 3614 * 3615 * IN: vp - file to push page to. 3616 * pp - page to push. 3617 * flags - additional flags. 3618 * cr - credentials of caller. 3619 * 3620 * OUT: offp - start of range pushed. 3621 * lenp - len of range pushed. 3622 * 3623 * RETURN: 0 if success 3624 * error code if failure 3625 * 3626 * NOTE: callers must have locked the page to be pushed. On 3627 * exit, the page (and all other pages in the kluster) must be 3628 * unlocked. 3629 */ 3630 /* ARGSUSED */ 3631 static int 3632 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3633 size_t *lenp, int flags, cred_t *cr) 3634 { 3635 znode_t *zp = VTOZ(vp); 3636 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3637 dmu_tx_t *tx; 3638 u_offset_t off, koff; 3639 size_t len, klen; 3640 uint64_t filesz; 3641 int err; 3642 3643 filesz = zp->z_phys->zp_size; 3644 off = pp->p_offset; 3645 len = PAGESIZE; 3646 /* 3647 * If our blocksize is bigger than the page size, try to kluster 3648 * multiple pages so that we write a full block (thus avoiding 3649 * a read-modify-write). 3650 */ 3651 if (off < filesz && zp->z_blksz > PAGESIZE) { 3652 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3653 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 3654 ASSERT(koff <= filesz); 3655 if (koff + klen > filesz) 3656 klen = P2ROUNDUP(filesz - koff, (uint64_t)PAGESIZE); 3657 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 3658 } 3659 ASSERT3U(btop(len), ==, btopr(len)); 3660 3661 /* 3662 * Can't push pages past end-of-file. 3663 */ 3664 if (off >= filesz) { 3665 /* ignore all pages */ 3666 err = 0; 3667 goto out; 3668 } else if (off + len > filesz) { 3669 int npages = btopr(filesz - off); 3670 page_t *trunc; 3671 3672 page_list_break(&pp, &trunc, npages); 3673 /* ignore pages past end of file */ 3674 if (trunc) 3675 pvn_write_done(trunc, flags); 3676 len = filesz - off; 3677 } 3678 3679 if (zfs_usergroup_overquota(zfsvfs, B_FALSE, zp->z_phys->zp_uid) || 3680 zfs_usergroup_overquota(zfsvfs, B_TRUE, zp->z_phys->zp_gid)) { 3681 err = EDQUOT; 3682 goto out; 3683 } 3684 top: 3685 tx = dmu_tx_create(zfsvfs->z_os); 3686 dmu_tx_hold_write(tx, zp->z_id, off, len); 3687 dmu_tx_hold_bonus(tx, zp->z_id); 3688 err = dmu_tx_assign(tx, TXG_NOWAIT); 3689 if (err != 0) { 3690 if (err == ERESTART) { 3691 dmu_tx_wait(tx); 3692 dmu_tx_abort(tx); 3693 goto top; 3694 } 3695 dmu_tx_abort(tx); 3696 goto out; 3697 } 3698 3699 if (zp->z_blksz <= PAGESIZE) { 3700 caddr_t va = zfs_map_page(pp, S_READ); 3701 ASSERT3U(len, <=, PAGESIZE); 3702 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 3703 zfs_unmap_page(pp, va); 3704 } else { 3705 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 3706 } 3707 3708 if (err == 0) { 3709 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 3710 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 3711 dmu_tx_commit(tx); 3712 } 3713 3714 out: 3715 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 3716 if (offp) 3717 *offp = off; 3718 if (lenp) 3719 *lenp = len; 3720 3721 return (err); 3722 } 3723 3724 /* 3725 * Copy the portion of the file indicated from pages into the file. 3726 * The pages are stored in a page list attached to the files vnode. 3727 * 3728 * IN: vp - vnode of file to push page data to. 3729 * off - position in file to put data. 3730 * len - amount of data to write. 3731 * flags - flags to control the operation. 3732 * cr - credentials of caller. 3733 * ct - caller context. 3734 * 3735 * RETURN: 0 if success 3736 * error code if failure 3737 * 3738 * Timestamps: 3739 * vp - ctime|mtime updated 3740 */ 3741 /*ARGSUSED*/ 3742 static int 3743 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 3744 caller_context_t *ct) 3745 { 3746 znode_t *zp = VTOZ(vp); 3747 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3748 page_t *pp; 3749 size_t io_len; 3750 u_offset_t io_off; 3751 uint_t blksz; 3752 rl_t *rl; 3753 int error = 0; 3754 3755 ZFS_ENTER(zfsvfs); 3756 ZFS_VERIFY_ZP(zp); 3757 3758 /* 3759 * Align this request to the file block size in case we kluster. 3760 * XXX - this can result in pretty aggresive locking, which can 3761 * impact simultanious read/write access. One option might be 3762 * to break up long requests (len == 0) into block-by-block 3763 * operations to get narrower locking. 3764 */ 3765 blksz = zp->z_blksz; 3766 if (ISP2(blksz)) 3767 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 3768 else 3769 io_off = 0; 3770 if (len > 0 && ISP2(blksz)) 3771 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 3772 else 3773 io_len = 0; 3774 3775 if (io_len == 0) { 3776 /* 3777 * Search the entire vp list for pages >= io_off. 3778 */ 3779 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 3780 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 3781 goto out; 3782 } 3783 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 3784 3785 if (off > zp->z_phys->zp_size) { 3786 /* past end of file */ 3787 zfs_range_unlock(rl); 3788 ZFS_EXIT(zfsvfs); 3789 return (0); 3790 } 3791 3792 len = MIN(io_len, P2ROUNDUP(zp->z_phys->zp_size, PAGESIZE) - io_off); 3793 3794 for (off = io_off; io_off < off + len; io_off += io_len) { 3795 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 3796 pp = page_lookup(vp, io_off, 3797 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 3798 } else { 3799 pp = page_lookup_nowait(vp, io_off, 3800 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 3801 } 3802 3803 if (pp != NULL && pvn_getdirty(pp, flags)) { 3804 int err; 3805 3806 /* 3807 * Found a dirty page to push 3808 */ 3809 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 3810 if (err) 3811 error = err; 3812 } else { 3813 io_len = PAGESIZE; 3814 } 3815 } 3816 out: 3817 zfs_range_unlock(rl); 3818 if ((flags & B_ASYNC) == 0) 3819 zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id); 3820 ZFS_EXIT(zfsvfs); 3821 return (error); 3822 } 3823 3824 /*ARGSUSED*/ 3825 void 3826 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 3827 { 3828 znode_t *zp = VTOZ(vp); 3829 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3830 int error; 3831 3832 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 3833 if (zp->z_dbuf == NULL) { 3834 /* 3835 * The fs has been unmounted, or we did a 3836 * suspend/resume and this file no longer exists. 3837 */ 3838 if (vn_has_cached_data(vp)) { 3839 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 3840 B_INVAL, cr); 3841 } 3842 3843 mutex_enter(&zp->z_lock); 3844 vp->v_count = 0; /* count arrives as 1 */ 3845 mutex_exit(&zp->z_lock); 3846 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3847 zfs_znode_free(zp); 3848 return; 3849 } 3850 3851 /* 3852 * Attempt to push any data in the page cache. If this fails 3853 * we will get kicked out later in zfs_zinactive(). 3854 */ 3855 if (vn_has_cached_data(vp)) { 3856 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 3857 cr); 3858 } 3859 3860 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 3861 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 3862 3863 dmu_tx_hold_bonus(tx, zp->z_id); 3864 error = dmu_tx_assign(tx, TXG_WAIT); 3865 if (error) { 3866 dmu_tx_abort(tx); 3867 } else { 3868 dmu_buf_will_dirty(zp->z_dbuf, tx); 3869 mutex_enter(&zp->z_lock); 3870 zp->z_atime_dirty = 0; 3871 mutex_exit(&zp->z_lock); 3872 dmu_tx_commit(tx); 3873 } 3874 } 3875 3876 zfs_zinactive(zp); 3877 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3878 } 3879 3880 /* 3881 * Bounds-check the seek operation. 3882 * 3883 * IN: vp - vnode seeking within 3884 * ooff - old file offset 3885 * noffp - pointer to new file offset 3886 * ct - caller context 3887 * 3888 * RETURN: 0 if success 3889 * EINVAL if new offset invalid 3890 */ 3891 /* ARGSUSED */ 3892 static int 3893 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 3894 caller_context_t *ct) 3895 { 3896 if (vp->v_type == VDIR) 3897 return (0); 3898 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 3899 } 3900 3901 /* 3902 * Pre-filter the generic locking function to trap attempts to place 3903 * a mandatory lock on a memory mapped file. 3904 */ 3905 static int 3906 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 3907 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 3908 { 3909 znode_t *zp = VTOZ(vp); 3910 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3911 int error; 3912 3913 ZFS_ENTER(zfsvfs); 3914 ZFS_VERIFY_ZP(zp); 3915 3916 /* 3917 * We are following the UFS semantics with respect to mapcnt 3918 * here: If we see that the file is mapped already, then we will 3919 * return an error, but we don't worry about races between this 3920 * function and zfs_map(). 3921 */ 3922 if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) { 3923 ZFS_EXIT(zfsvfs); 3924 return (EAGAIN); 3925 } 3926 error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct); 3927 ZFS_EXIT(zfsvfs); 3928 return (error); 3929 } 3930 3931 /* 3932 * If we can't find a page in the cache, we will create a new page 3933 * and fill it with file data. For efficiency, we may try to fill 3934 * multiple pages at once (klustering) to fill up the supplied page 3935 * list. Note that the pages to be filled are held with an exclusive 3936 * lock to prevent access by other threads while they are being filled. 3937 */ 3938 static int 3939 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 3940 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 3941 { 3942 znode_t *zp = VTOZ(vp); 3943 page_t *pp, *cur_pp; 3944 objset_t *os = zp->z_zfsvfs->z_os; 3945 u_offset_t io_off, total; 3946 size_t io_len; 3947 int err; 3948 3949 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 3950 /* 3951 * We only have a single page, don't bother klustering 3952 */ 3953 io_off = off; 3954 io_len = PAGESIZE; 3955 pp = page_create_va(vp, io_off, io_len, 3956 PG_EXCL | PG_WAIT, seg, addr); 3957 } else { 3958 /* 3959 * Try to find enough pages to fill the page list 3960 */ 3961 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3962 &io_len, off, plsz, 0); 3963 } 3964 if (pp == NULL) { 3965 /* 3966 * The page already exists, nothing to do here. 3967 */ 3968 *pl = NULL; 3969 return (0); 3970 } 3971 3972 /* 3973 * Fill the pages in the kluster. 3974 */ 3975 cur_pp = pp; 3976 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 3977 caddr_t va; 3978 3979 ASSERT3U(io_off, ==, cur_pp->p_offset); 3980 va = zfs_map_page(cur_pp, S_WRITE); 3981 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va); 3982 zfs_unmap_page(cur_pp, va); 3983 if (err) { 3984 /* On error, toss the entire kluster */ 3985 pvn_read_done(pp, B_ERROR); 3986 /* convert checksum errors into IO errors */ 3987 if (err == ECKSUM) 3988 err = EIO; 3989 return (err); 3990 } 3991 cur_pp = cur_pp->p_next; 3992 } 3993 3994 /* 3995 * Fill in the page list array from the kluster starting 3996 * from the desired offset `off'. 3997 * NOTE: the page list will always be null terminated. 3998 */ 3999 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4000 ASSERT(pl == NULL || (*pl)->p_offset == off); 4001 4002 return (0); 4003 } 4004 4005 /* 4006 * Return pointers to the pages for the file region [off, off + len] 4007 * in the pl array. If plsz is greater than len, this function may 4008 * also return page pointers from after the specified region 4009 * (i.e. the region [off, off + plsz]). These additional pages are 4010 * only returned if they are already in the cache, or were created as 4011 * part of a klustered read. 4012 * 4013 * IN: vp - vnode of file to get data from. 4014 * off - position in file to get data from. 4015 * len - amount of data to retrieve. 4016 * plsz - length of provided page list. 4017 * seg - segment to obtain pages for. 4018 * addr - virtual address of fault. 4019 * rw - mode of created pages. 4020 * cr - credentials of caller. 4021 * ct - caller context. 4022 * 4023 * OUT: protp - protection mode of created pages. 4024 * pl - list of pages created. 4025 * 4026 * RETURN: 0 if success 4027 * error code if failure 4028 * 4029 * Timestamps: 4030 * vp - atime updated 4031 */ 4032 /* ARGSUSED */ 4033 static int 4034 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4035 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4036 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4037 { 4038 znode_t *zp = VTOZ(vp); 4039 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4040 page_t **pl0 = pl; 4041 int err = 0; 4042 4043 /* we do our own caching, faultahead is unnecessary */ 4044 if (pl == NULL) 4045 return (0); 4046 else if (len > plsz) 4047 len = plsz; 4048 else 4049 len = P2ROUNDUP(len, PAGESIZE); 4050 ASSERT(plsz >= len); 4051 4052 ZFS_ENTER(zfsvfs); 4053 ZFS_VERIFY_ZP(zp); 4054 4055 if (protp) 4056 *protp = PROT_ALL; 4057 4058 /* 4059 * Loop through the requested range [off, off + len) looking 4060 * for pages. If we don't find a page, we will need to create 4061 * a new page and fill it with data from the file. 4062 */ 4063 while (len > 0) { 4064 if (*pl = page_lookup(vp, off, SE_SHARED)) 4065 *(pl+1) = NULL; 4066 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4067 goto out; 4068 while (*pl) { 4069 ASSERT3U((*pl)->p_offset, ==, off); 4070 off += PAGESIZE; 4071 addr += PAGESIZE; 4072 if (len > 0) { 4073 ASSERT3U(len, >=, PAGESIZE); 4074 len -= PAGESIZE; 4075 } 4076 ASSERT3U(plsz, >=, PAGESIZE); 4077 plsz -= PAGESIZE; 4078 pl++; 4079 } 4080 } 4081 4082 /* 4083 * Fill out the page array with any pages already in the cache. 4084 */ 4085 while (plsz > 0 && 4086 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4087 off += PAGESIZE; 4088 plsz -= PAGESIZE; 4089 } 4090 out: 4091 if (err) { 4092 /* 4093 * Release any pages we have previously locked. 4094 */ 4095 while (pl > pl0) 4096 page_unlock(*--pl); 4097 } else { 4098 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4099 } 4100 4101 *pl = NULL; 4102 4103 ZFS_EXIT(zfsvfs); 4104 return (err); 4105 } 4106 4107 /* 4108 * Request a memory map for a section of a file. This code interacts 4109 * with common code and the VM system as follows: 4110 * 4111 * common code calls mmap(), which ends up in smmap_common() 4112 * 4113 * this calls VOP_MAP(), which takes you into (say) zfs 4114 * 4115 * zfs_map() calls as_map(), passing segvn_create() as the callback 4116 * 4117 * segvn_create() creates the new segment and calls VOP_ADDMAP() 4118 * 4119 * zfs_addmap() updates z_mapcnt 4120 */ 4121 /*ARGSUSED*/ 4122 static int 4123 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4124 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4125 caller_context_t *ct) 4126 { 4127 znode_t *zp = VTOZ(vp); 4128 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4129 segvn_crargs_t vn_a; 4130 int error; 4131 4132 ZFS_ENTER(zfsvfs); 4133 ZFS_VERIFY_ZP(zp); 4134 4135 if ((prot & PROT_WRITE) && 4136 (zp->z_phys->zp_flags & (ZFS_IMMUTABLE | ZFS_READONLY | 4137 ZFS_APPENDONLY))) { 4138 ZFS_EXIT(zfsvfs); 4139 return (EPERM); 4140 } 4141 4142 if ((prot & (PROT_READ | PROT_EXEC)) && 4143 (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED)) { 4144 ZFS_EXIT(zfsvfs); 4145 return (EACCES); 4146 } 4147 4148 if (vp->v_flag & VNOMAP) { 4149 ZFS_EXIT(zfsvfs); 4150 return (ENOSYS); 4151 } 4152 4153 if (off < 0 || len > MAXOFFSET_T - off) { 4154 ZFS_EXIT(zfsvfs); 4155 return (ENXIO); 4156 } 4157 4158 if (vp->v_type != VREG) { 4159 ZFS_EXIT(zfsvfs); 4160 return (ENODEV); 4161 } 4162 4163 /* 4164 * If file is locked, disallow mapping. 4165 */ 4166 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) { 4167 ZFS_EXIT(zfsvfs); 4168 return (EAGAIN); 4169 } 4170 4171 as_rangelock(as); 4172 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4173 if (error != 0) { 4174 as_rangeunlock(as); 4175 ZFS_EXIT(zfsvfs); 4176 return (error); 4177 } 4178 4179 vn_a.vp = vp; 4180 vn_a.offset = (u_offset_t)off; 4181 vn_a.type = flags & MAP_TYPE; 4182 vn_a.prot = prot; 4183 vn_a.maxprot = maxprot; 4184 vn_a.cred = cr; 4185 vn_a.amp = NULL; 4186 vn_a.flags = flags & ~MAP_TYPE; 4187 vn_a.szc = 0; 4188 vn_a.lgrp_mem_policy_flags = 0; 4189 4190 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4191 4192 as_rangeunlock(as); 4193 ZFS_EXIT(zfsvfs); 4194 return (error); 4195 } 4196 4197 /* ARGSUSED */ 4198 static int 4199 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4200 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4201 caller_context_t *ct) 4202 { 4203 uint64_t pages = btopr(len); 4204 4205 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4206 return (0); 4207 } 4208 4209 /* 4210 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4211 * more accurate mtime for the associated file. Since we don't have a way of 4212 * detecting when the data was actually modified, we have to resort to 4213 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4214 * last page is pushed. The problem occurs when the msync() call is omitted, 4215 * which by far the most common case: 4216 * 4217 * open() 4218 * mmap() 4219 * <modify memory> 4220 * munmap() 4221 * close() 4222 * <time lapse> 4223 * putpage() via fsflush 4224 * 4225 * If we wait until fsflush to come along, we can have a modification time that 4226 * is some arbitrary point in the future. In order to prevent this in the 4227 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4228 * torn down. 4229 */ 4230 /* ARGSUSED */ 4231 static int 4232 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4233 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4234 caller_context_t *ct) 4235 { 4236 uint64_t pages = btopr(len); 4237 4238 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4239 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4240 4241 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4242 vn_has_cached_data(vp)) 4243 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4244 4245 return (0); 4246 } 4247 4248 /* 4249 * Free or allocate space in a file. Currently, this function only 4250 * supports the `F_FREESP' command. However, this command is somewhat 4251 * misnamed, as its functionality includes the ability to allocate as 4252 * well as free space. 4253 * 4254 * IN: vp - vnode of file to free data in. 4255 * cmd - action to take (only F_FREESP supported). 4256 * bfp - section of file to free/alloc. 4257 * flag - current file open mode flags. 4258 * offset - current file offset. 4259 * cr - credentials of caller [UNUSED]. 4260 * ct - caller context. 4261 * 4262 * RETURN: 0 if success 4263 * error code if failure 4264 * 4265 * Timestamps: 4266 * vp - ctime|mtime updated 4267 */ 4268 /* ARGSUSED */ 4269 static int 4270 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4271 offset_t offset, cred_t *cr, caller_context_t *ct) 4272 { 4273 znode_t *zp = VTOZ(vp); 4274 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4275 uint64_t off, len; 4276 int error; 4277 4278 ZFS_ENTER(zfsvfs); 4279 ZFS_VERIFY_ZP(zp); 4280 4281 if (cmd != F_FREESP) { 4282 ZFS_EXIT(zfsvfs); 4283 return (EINVAL); 4284 } 4285 4286 if (error = convoff(vp, bfp, 0, offset)) { 4287 ZFS_EXIT(zfsvfs); 4288 return (error); 4289 } 4290 4291 if (bfp->l_len < 0) { 4292 ZFS_EXIT(zfsvfs); 4293 return (EINVAL); 4294 } 4295 4296 off = bfp->l_start; 4297 len = bfp->l_len; /* 0 means from off to end of file */ 4298 4299 error = zfs_freesp(zp, off, len, flag, TRUE); 4300 4301 ZFS_EXIT(zfsvfs); 4302 return (error); 4303 } 4304 4305 /*ARGSUSED*/ 4306 static int 4307 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4308 { 4309 znode_t *zp = VTOZ(vp); 4310 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4311 uint32_t gen; 4312 uint64_t object = zp->z_id; 4313 zfid_short_t *zfid; 4314 int size, i; 4315 4316 ZFS_ENTER(zfsvfs); 4317 ZFS_VERIFY_ZP(zp); 4318 gen = (uint32_t)zp->z_gen; 4319 4320 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4321 if (fidp->fid_len < size) { 4322 fidp->fid_len = size; 4323 ZFS_EXIT(zfsvfs); 4324 return (ENOSPC); 4325 } 4326 4327 zfid = (zfid_short_t *)fidp; 4328 4329 zfid->zf_len = size; 4330 4331 for (i = 0; i < sizeof (zfid->zf_object); i++) 4332 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4333 4334 /* Must have a non-zero generation number to distinguish from .zfs */ 4335 if (gen == 0) 4336 gen = 1; 4337 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4338 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4339 4340 if (size == LONG_FID_LEN) { 4341 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4342 zfid_long_t *zlfid; 4343 4344 zlfid = (zfid_long_t *)fidp; 4345 4346 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4347 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4348 4349 /* XXX - this should be the generation number for the objset */ 4350 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4351 zlfid->zf_setgen[i] = 0; 4352 } 4353 4354 ZFS_EXIT(zfsvfs); 4355 return (0); 4356 } 4357 4358 static int 4359 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4360 caller_context_t *ct) 4361 { 4362 znode_t *zp, *xzp; 4363 zfsvfs_t *zfsvfs; 4364 zfs_dirlock_t *dl; 4365 int error; 4366 4367 switch (cmd) { 4368 case _PC_LINK_MAX: 4369 *valp = ULONG_MAX; 4370 return (0); 4371 4372 case _PC_FILESIZEBITS: 4373 *valp = 64; 4374 return (0); 4375 4376 case _PC_XATTR_EXISTS: 4377 zp = VTOZ(vp); 4378 zfsvfs = zp->z_zfsvfs; 4379 ZFS_ENTER(zfsvfs); 4380 ZFS_VERIFY_ZP(zp); 4381 *valp = 0; 4382 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4383 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4384 if (error == 0) { 4385 zfs_dirent_unlock(dl); 4386 if (!zfs_dirempty(xzp)) 4387 *valp = 1; 4388 VN_RELE(ZTOV(xzp)); 4389 } else if (error == ENOENT) { 4390 /* 4391 * If there aren't extended attributes, it's the 4392 * same as having zero of them. 4393 */ 4394 error = 0; 4395 } 4396 ZFS_EXIT(zfsvfs); 4397 return (error); 4398 4399 case _PC_SATTR_ENABLED: 4400 case _PC_SATTR_EXISTS: 4401 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4402 (vp->v_type == VREG || vp->v_type == VDIR); 4403 return (0); 4404 4405 case _PC_ACL_ENABLED: 4406 *valp = _ACL_ACE_ENABLED; 4407 return (0); 4408 4409 case _PC_MIN_HOLE_SIZE: 4410 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4411 return (0); 4412 4413 default: 4414 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4415 } 4416 } 4417 4418 /*ARGSUSED*/ 4419 static int 4420 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4421 caller_context_t *ct) 4422 { 4423 znode_t *zp = VTOZ(vp); 4424 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4425 int error; 4426 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4427 4428 ZFS_ENTER(zfsvfs); 4429 ZFS_VERIFY_ZP(zp); 4430 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4431 ZFS_EXIT(zfsvfs); 4432 4433 return (error); 4434 } 4435 4436 /*ARGSUSED*/ 4437 static int 4438 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4439 caller_context_t *ct) 4440 { 4441 znode_t *zp = VTOZ(vp); 4442 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4443 int error; 4444 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4445 4446 ZFS_ENTER(zfsvfs); 4447 ZFS_VERIFY_ZP(zp); 4448 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4449 ZFS_EXIT(zfsvfs); 4450 return (error); 4451 } 4452 4453 /* 4454 * Predeclare these here so that the compiler assumes that 4455 * this is an "old style" function declaration that does 4456 * not include arguments => we won't get type mismatch errors 4457 * in the initializations that follow. 4458 */ 4459 static int zfs_inval(); 4460 static int zfs_isdir(); 4461 4462 static int 4463 zfs_inval() 4464 { 4465 return (EINVAL); 4466 } 4467 4468 static int 4469 zfs_isdir() 4470 { 4471 return (EISDIR); 4472 } 4473 /* 4474 * Directory vnode operations template 4475 */ 4476 vnodeops_t *zfs_dvnodeops; 4477 const fs_operation_def_t zfs_dvnodeops_template[] = { 4478 VOPNAME_OPEN, { .vop_open = zfs_open }, 4479 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4480 VOPNAME_READ, { .error = zfs_isdir }, 4481 VOPNAME_WRITE, { .error = zfs_isdir }, 4482 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4483 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4484 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4485 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4486 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4487 VOPNAME_CREATE, { .vop_create = zfs_create }, 4488 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4489 VOPNAME_LINK, { .vop_link = zfs_link }, 4490 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4491 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 4492 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4493 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4494 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 4495 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4496 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4497 VOPNAME_FID, { .vop_fid = zfs_fid }, 4498 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4499 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4500 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4501 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4502 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4503 NULL, NULL 4504 }; 4505 4506 /* 4507 * Regular file vnode operations template 4508 */ 4509 vnodeops_t *zfs_fvnodeops; 4510 const fs_operation_def_t zfs_fvnodeops_template[] = { 4511 VOPNAME_OPEN, { .vop_open = zfs_open }, 4512 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4513 VOPNAME_READ, { .vop_read = zfs_read }, 4514 VOPNAME_WRITE, { .vop_write = zfs_write }, 4515 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4516 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4517 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4518 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4519 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4520 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4521 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4522 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4523 VOPNAME_FID, { .vop_fid = zfs_fid }, 4524 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4525 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 4526 VOPNAME_SPACE, { .vop_space = zfs_space }, 4527 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 4528 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 4529 VOPNAME_MAP, { .vop_map = zfs_map }, 4530 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 4531 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 4532 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4533 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4534 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4535 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4536 NULL, NULL 4537 }; 4538 4539 /* 4540 * Symbolic link vnode operations template 4541 */ 4542 vnodeops_t *zfs_symvnodeops; 4543 const fs_operation_def_t zfs_symvnodeops_template[] = { 4544 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4545 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4546 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4547 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4548 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 4549 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4550 VOPNAME_FID, { .vop_fid = zfs_fid }, 4551 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4552 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4553 NULL, NULL 4554 }; 4555 4556 /* 4557 * special share hidden files vnode operations template 4558 */ 4559 vnodeops_t *zfs_sharevnodeops; 4560 const fs_operation_def_t zfs_sharevnodeops_template[] = { 4561 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4562 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4563 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4564 VOPNAME_FID, { .vop_fid = zfs_fid }, 4565 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4566 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4567 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4568 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4569 NULL, NULL 4570 }; 4571 4572 /* 4573 * Extended attribute directory vnode operations template 4574 * This template is identical to the directory vnodes 4575 * operation template except for restricted operations: 4576 * VOP_MKDIR() 4577 * VOP_SYMLINK() 4578 * Note that there are other restrictions embedded in: 4579 * zfs_create() - restrict type to VREG 4580 * zfs_link() - no links into/out of attribute space 4581 * zfs_rename() - no moves into/out of attribute space 4582 */ 4583 vnodeops_t *zfs_xdvnodeops; 4584 const fs_operation_def_t zfs_xdvnodeops_template[] = { 4585 VOPNAME_OPEN, { .vop_open = zfs_open }, 4586 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4587 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4588 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4589 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4590 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4591 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4592 VOPNAME_CREATE, { .vop_create = zfs_create }, 4593 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4594 VOPNAME_LINK, { .vop_link = zfs_link }, 4595 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4596 VOPNAME_MKDIR, { .error = zfs_inval }, 4597 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4598 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4599 VOPNAME_SYMLINK, { .error = zfs_inval }, 4600 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4601 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4602 VOPNAME_FID, { .vop_fid = zfs_fid }, 4603 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4604 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4605 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4606 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4607 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4608 NULL, NULL 4609 }; 4610 4611 /* 4612 * Error vnode operations template 4613 */ 4614 vnodeops_t *zfs_evnodeops; 4615 const fs_operation_def_t zfs_evnodeops_template[] = { 4616 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4617 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4618 NULL, NULL 4619 }; 4620