1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/time.h> 33 #include <sys/systm.h> 34 #include <sys/sysmacros.h> 35 #include <sys/resource.h> 36 #include <sys/vfs.h> 37 #include <sys/vfs_opreg.h> 38 #include <sys/vnode.h> 39 #include <sys/file.h> 40 #include <sys/stat.h> 41 #include <sys/kmem.h> 42 #include <sys/taskq.h> 43 #include <sys/uio.h> 44 #include <sys/vmsystm.h> 45 #include <sys/atomic.h> 46 #include <sys/vm.h> 47 #include <vm/seg_vn.h> 48 #include <vm/pvn.h> 49 #include <vm/as.h> 50 #include <sys/mman.h> 51 #include <sys/pathname.h> 52 #include <sys/cmn_err.h> 53 #include <sys/errno.h> 54 #include <sys/unistd.h> 55 #include <sys/zfs_dir.h> 56 #include <sys/zfs_acl.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/dmu.h> 60 #include <sys/spa.h> 61 #include <sys/txg.h> 62 #include <sys/dbuf.h> 63 #include <sys/zap.h> 64 #include <sys/dirent.h> 65 #include <sys/policy.h> 66 #include <sys/sunddi.h> 67 #include <sys/filio.h> 68 #include "fs/fs_subr.h" 69 #include <sys/zfs_ctldir.h> 70 #include <sys/zfs_fuid.h> 71 #include <sys/dnlc.h> 72 #include <sys/zfs_rlock.h> 73 #include <sys/extdirent.h> 74 #include <sys/kidmap.h> 75 #include <sys/cred_impl.h> 76 #include <sys/attr.h> 77 78 /* 79 * Programming rules. 80 * 81 * Each vnode op performs some logical unit of work. To do this, the ZPL must 82 * properly lock its in-core state, create a DMU transaction, do the work, 83 * record this work in the intent log (ZIL), commit the DMU transaction, 84 * and wait for the intent log to commit if it is a synchronous operation. 85 * Moreover, the vnode ops must work in both normal and log replay context. 86 * The ordering of events is important to avoid deadlocks and references 87 * to freed memory. The example below illustrates the following Big Rules: 88 * 89 * (1) A check must be made in each zfs thread for a mounted file system. 90 * This is done avoiding races using ZFS_ENTER(zfsvfs). 91 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 92 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 93 * can return EIO from the calling function. 94 * 95 * (2) VN_RELE() should always be the last thing except for zil_commit() 96 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 97 * First, if it's the last reference, the vnode/znode 98 * can be freed, so the zp may point to freed memory. Second, the last 99 * reference will call zfs_zinactive(), which may induce a lot of work -- 100 * pushing cached pages (which acquires range locks) and syncing out 101 * cached atime changes. Third, zfs_zinactive() may require a new tx, 102 * which could deadlock the system if you were already holding one. 103 * 104 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 105 * as they can span dmu_tx_assign() calls. 106 * 107 * (4) Always pass zfsvfs->z_assign as the second argument to dmu_tx_assign(). 108 * In normal operation, this will be TXG_NOWAIT. During ZIL replay, 109 * it will be a specific txg. Either way, dmu_tx_assign() never blocks. 110 * This is critical because we don't want to block while holding locks. 111 * Note, in particular, that if a lock is sometimes acquired before 112 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 113 * use a non-blocking assign can deadlock the system. The scenario: 114 * 115 * Thread A has grabbed a lock before calling dmu_tx_assign(). 116 * Thread B is in an already-assigned tx, and blocks for this lock. 117 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 118 * forever, because the previous txg can't quiesce until B's tx commits. 119 * 120 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 121 * then drop all locks, call dmu_tx_wait(), and try again. 122 * 123 * (5) If the operation succeeded, generate the intent log entry for it 124 * before dropping locks. This ensures that the ordering of events 125 * in the intent log matches the order in which they actually occurred. 126 * 127 * (6) At the end of each vnode op, the DMU tx must always commit, 128 * regardless of whether there were any errors. 129 * 130 * (7) After dropping all locks, invoke zil_commit(zilog, seq, foid) 131 * to ensure that synchronous semantics are provided when necessary. 132 * 133 * In general, this is how things should be ordered in each vnode op: 134 * 135 * ZFS_ENTER(zfsvfs); // exit if unmounted 136 * top: 137 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 138 * rw_enter(...); // grab any other locks you need 139 * tx = dmu_tx_create(...); // get DMU tx 140 * dmu_tx_hold_*(); // hold each object you might modify 141 * error = dmu_tx_assign(tx, zfsvfs->z_assign); // try to assign 142 * if (error) { 143 * rw_exit(...); // drop locks 144 * zfs_dirent_unlock(dl); // unlock directory entry 145 * VN_RELE(...); // release held vnodes 146 * if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 147 * dmu_tx_wait(tx); 148 * dmu_tx_abort(tx); 149 * goto top; 150 * } 151 * dmu_tx_abort(tx); // abort DMU tx 152 * ZFS_EXIT(zfsvfs); // finished in zfs 153 * return (error); // really out of space 154 * } 155 * error = do_real_work(); // do whatever this VOP does 156 * if (error == 0) 157 * zfs_log_*(...); // on success, make ZIL entry 158 * dmu_tx_commit(tx); // commit DMU tx -- error or not 159 * rw_exit(...); // drop locks 160 * zfs_dirent_unlock(dl); // unlock directory entry 161 * VN_RELE(...); // release held vnodes 162 * zil_commit(zilog, seq, foid); // synchronous when necessary 163 * ZFS_EXIT(zfsvfs); // finished in zfs 164 * return (error); // done, report error 165 */ 166 167 /* ARGSUSED */ 168 static int 169 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 170 { 171 znode_t *zp = VTOZ(*vpp); 172 173 if ((flag & FWRITE) && (zp->z_phys->zp_flags & ZFS_APPENDONLY) && 174 ((flag & FAPPEND) == 0)) { 175 return (EPERM); 176 } 177 178 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 179 ZTOV(zp)->v_type == VREG && 180 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 181 zp->z_phys->zp_size > 0) 182 if (fs_vscan(*vpp, cr, 0) != 0) 183 return (EACCES); 184 185 /* Keep a count of the synchronous opens in the znode */ 186 if (flag & (FSYNC | FDSYNC)) 187 atomic_inc_32(&zp->z_sync_cnt); 188 189 return (0); 190 } 191 192 /* ARGSUSED */ 193 static int 194 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 195 caller_context_t *ct) 196 { 197 znode_t *zp = VTOZ(vp); 198 199 /* Decrement the synchronous opens in the znode */ 200 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 201 atomic_dec_32(&zp->z_sync_cnt); 202 203 /* 204 * Clean up any locks held by this process on the vp. 205 */ 206 cleanlocks(vp, ddi_get_pid(), 0); 207 cleanshares(vp, ddi_get_pid()); 208 209 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 210 ZTOV(zp)->v_type == VREG && 211 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 212 zp->z_phys->zp_size > 0) 213 VERIFY(fs_vscan(vp, cr, 1) == 0); 214 215 return (0); 216 } 217 218 /* 219 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 220 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 221 */ 222 static int 223 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 224 { 225 znode_t *zp = VTOZ(vp); 226 uint64_t noff = (uint64_t)*off; /* new offset */ 227 uint64_t file_sz; 228 int error; 229 boolean_t hole; 230 231 file_sz = zp->z_phys->zp_size; 232 if (noff >= file_sz) { 233 return (ENXIO); 234 } 235 236 if (cmd == _FIO_SEEK_HOLE) 237 hole = B_TRUE; 238 else 239 hole = B_FALSE; 240 241 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 242 243 /* end of file? */ 244 if ((error == ESRCH) || (noff > file_sz)) { 245 /* 246 * Handle the virtual hole at the end of file. 247 */ 248 if (hole) { 249 *off = file_sz; 250 return (0); 251 } 252 return (ENXIO); 253 } 254 255 if (noff < *off) 256 return (error); 257 *off = noff; 258 return (error); 259 } 260 261 /* ARGSUSED */ 262 static int 263 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 264 int *rvalp, caller_context_t *ct) 265 { 266 offset_t off; 267 int error; 268 zfsvfs_t *zfsvfs; 269 znode_t *zp; 270 271 switch (com) { 272 case _FIOFFS: 273 return (zfs_sync(vp->v_vfsp, 0, cred)); 274 275 /* 276 * The following two ioctls are used by bfu. Faking out, 277 * necessary to avoid bfu errors. 278 */ 279 case _FIOGDIO: 280 case _FIOSDIO: 281 return (0); 282 283 case _FIO_SEEK_DATA: 284 case _FIO_SEEK_HOLE: 285 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 286 return (EFAULT); 287 288 zp = VTOZ(vp); 289 zfsvfs = zp->z_zfsvfs; 290 ZFS_ENTER(zfsvfs); 291 ZFS_VERIFY_ZP(zp); 292 293 /* offset parameter is in/out */ 294 error = zfs_holey(vp, com, &off); 295 ZFS_EXIT(zfsvfs); 296 if (error) 297 return (error); 298 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 299 return (EFAULT); 300 return (0); 301 } 302 return (ENOTTY); 303 } 304 305 /* 306 * When a file is memory mapped, we must keep the IO data synchronized 307 * between the DMU cache and the memory mapped pages. What this means: 308 * 309 * On Write: If we find a memory mapped page, we write to *both* 310 * the page and the dmu buffer. 311 * 312 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 313 * the file is memory mapped. 314 */ 315 static int 316 mappedwrite(vnode_t *vp, int nbytes, uio_t *uio, dmu_tx_t *tx) 317 { 318 znode_t *zp = VTOZ(vp); 319 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 320 int64_t start, off; 321 int len = nbytes; 322 int error = 0; 323 324 start = uio->uio_loffset; 325 off = start & PAGEOFFSET; 326 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 327 page_t *pp; 328 uint64_t bytes = MIN(PAGESIZE - off, len); 329 uint64_t woff = uio->uio_loffset; 330 331 /* 332 * We don't want a new page to "appear" in the middle of 333 * the file update (because it may not get the write 334 * update data), so we grab a lock to block 335 * zfs_getpage(). 336 */ 337 rw_enter(&zp->z_map_lock, RW_WRITER); 338 if (pp = page_lookup(vp, start, SE_SHARED)) { 339 caddr_t va; 340 341 rw_exit(&zp->z_map_lock); 342 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 343 error = uiomove(va+off, bytes, UIO_WRITE, uio); 344 if (error == 0) { 345 dmu_write(zfsvfs->z_os, zp->z_id, 346 woff, bytes, va+off, tx); 347 } 348 ppmapout(va); 349 page_unlock(pp); 350 } else { 351 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 352 uio, bytes, tx); 353 rw_exit(&zp->z_map_lock); 354 } 355 len -= bytes; 356 off = 0; 357 if (error) 358 break; 359 } 360 return (error); 361 } 362 363 /* 364 * When a file is memory mapped, we must keep the IO data synchronized 365 * between the DMU cache and the memory mapped pages. What this means: 366 * 367 * On Read: We "read" preferentially from memory mapped pages, 368 * else we default from the dmu buffer. 369 * 370 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 371 * the file is memory mapped. 372 */ 373 static int 374 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 375 { 376 znode_t *zp = VTOZ(vp); 377 objset_t *os = zp->z_zfsvfs->z_os; 378 int64_t start, off; 379 int len = nbytes; 380 int error = 0; 381 382 start = uio->uio_loffset; 383 off = start & PAGEOFFSET; 384 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 385 page_t *pp; 386 uint64_t bytes = MIN(PAGESIZE - off, len); 387 388 if (pp = page_lookup(vp, start, SE_SHARED)) { 389 caddr_t va; 390 391 va = ppmapin(pp, PROT_READ, (caddr_t)-1L); 392 error = uiomove(va + off, bytes, UIO_READ, uio); 393 ppmapout(va); 394 page_unlock(pp); 395 } else { 396 error = dmu_read_uio(os, zp->z_id, uio, bytes); 397 } 398 len -= bytes; 399 off = 0; 400 if (error) 401 break; 402 } 403 return (error); 404 } 405 406 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 407 408 /* 409 * Read bytes from specified file into supplied buffer. 410 * 411 * IN: vp - vnode of file to be read from. 412 * uio - structure supplying read location, range info, 413 * and return buffer. 414 * ioflag - SYNC flags; used to provide FRSYNC semantics. 415 * cr - credentials of caller. 416 * ct - caller context 417 * 418 * OUT: uio - updated offset and range, buffer filled. 419 * 420 * RETURN: 0 if success 421 * error code if failure 422 * 423 * Side Effects: 424 * vp - atime updated if byte count > 0 425 */ 426 /* ARGSUSED */ 427 static int 428 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 429 { 430 znode_t *zp = VTOZ(vp); 431 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 432 objset_t *os; 433 ssize_t n, nbytes; 434 int error; 435 rl_t *rl; 436 437 ZFS_ENTER(zfsvfs); 438 ZFS_VERIFY_ZP(zp); 439 os = zfsvfs->z_os; 440 441 if (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) { 442 ZFS_EXIT(zfsvfs); 443 return (EACCES); 444 } 445 446 /* 447 * Validate file offset 448 */ 449 if (uio->uio_loffset < (offset_t)0) { 450 ZFS_EXIT(zfsvfs); 451 return (EINVAL); 452 } 453 454 /* 455 * Fasttrack empty reads 456 */ 457 if (uio->uio_resid == 0) { 458 ZFS_EXIT(zfsvfs); 459 return (0); 460 } 461 462 /* 463 * Check for mandatory locks 464 */ 465 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 466 if (error = chklock(vp, FREAD, 467 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 468 ZFS_EXIT(zfsvfs); 469 return (error); 470 } 471 } 472 473 /* 474 * If we're in FRSYNC mode, sync out this znode before reading it. 475 */ 476 if (ioflag & FRSYNC) 477 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 478 479 /* 480 * Lock the range against changes. 481 */ 482 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 483 484 /* 485 * If we are reading past end-of-file we can skip 486 * to the end; but we might still need to set atime. 487 */ 488 if (uio->uio_loffset >= zp->z_phys->zp_size) { 489 error = 0; 490 goto out; 491 } 492 493 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 494 n = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 495 496 while (n > 0) { 497 nbytes = MIN(n, zfs_read_chunk_size - 498 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 499 500 if (vn_has_cached_data(vp)) 501 error = mappedread(vp, nbytes, uio); 502 else 503 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 504 if (error) 505 break; 506 507 n -= nbytes; 508 } 509 510 out: 511 zfs_range_unlock(rl); 512 513 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 514 ZFS_EXIT(zfsvfs); 515 return (error); 516 } 517 518 /* 519 * Fault in the pages of the first n bytes specified by the uio structure. 520 * 1 byte in each page is touched and the uio struct is unmodified. 521 * Any error will exit this routine as this is only a best 522 * attempt to get the pages resident. This is a copy of ufs_trans_touch(). 523 */ 524 static void 525 zfs_prefault_write(ssize_t n, struct uio *uio) 526 { 527 struct iovec *iov; 528 ulong_t cnt, incr; 529 caddr_t p; 530 uint8_t tmp; 531 532 iov = uio->uio_iov; 533 534 while (n) { 535 cnt = MIN(iov->iov_len, n); 536 if (cnt == 0) { 537 /* empty iov entry */ 538 iov++; 539 continue; 540 } 541 n -= cnt; 542 /* 543 * touch each page in this segment. 544 */ 545 p = iov->iov_base; 546 while (cnt) { 547 switch (uio->uio_segflg) { 548 case UIO_USERSPACE: 549 case UIO_USERISPACE: 550 if (fuword8(p, &tmp)) 551 return; 552 break; 553 case UIO_SYSSPACE: 554 if (kcopy(p, &tmp, 1)) 555 return; 556 break; 557 } 558 incr = MIN(cnt, PAGESIZE); 559 p += incr; 560 cnt -= incr; 561 } 562 /* 563 * touch the last byte in case it straddles a page. 564 */ 565 p--; 566 switch (uio->uio_segflg) { 567 case UIO_USERSPACE: 568 case UIO_USERISPACE: 569 if (fuword8(p, &tmp)) 570 return; 571 break; 572 case UIO_SYSSPACE: 573 if (kcopy(p, &tmp, 1)) 574 return; 575 break; 576 } 577 iov++; 578 } 579 } 580 581 /* 582 * Write the bytes to a file. 583 * 584 * IN: vp - vnode of file to be written to. 585 * uio - structure supplying write location, range info, 586 * and data buffer. 587 * ioflag - FAPPEND flag set if in append mode. 588 * cr - credentials of caller. 589 * ct - caller context (NFS/CIFS fem monitor only) 590 * 591 * OUT: uio - updated offset and range. 592 * 593 * RETURN: 0 if success 594 * error code if failure 595 * 596 * Timestamps: 597 * vp - ctime|mtime updated if byte count > 0 598 */ 599 /* ARGSUSED */ 600 static int 601 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 602 { 603 znode_t *zp = VTOZ(vp); 604 rlim64_t limit = uio->uio_llimit; 605 ssize_t start_resid = uio->uio_resid; 606 ssize_t tx_bytes; 607 uint64_t end_size; 608 dmu_tx_t *tx; 609 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 610 zilog_t *zilog; 611 offset_t woff; 612 ssize_t n, nbytes; 613 rl_t *rl; 614 int max_blksz = zfsvfs->z_max_blksz; 615 uint64_t pflags = zp->z_phys->zp_flags; 616 int error; 617 618 /* 619 * If immutable or not appending then return EPERM 620 */ 621 if ((pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 622 ((pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 623 (uio->uio_loffset < zp->z_phys->zp_size))) 624 return (EPERM); 625 626 /* 627 * Fasttrack empty write 628 */ 629 n = start_resid; 630 if (n == 0) 631 return (0); 632 633 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 634 limit = MAXOFFSET_T; 635 636 ZFS_ENTER(zfsvfs); 637 ZFS_VERIFY_ZP(zp); 638 zilog = zfsvfs->z_log; 639 640 /* 641 * Pre-fault the pages to ensure slow (eg NFS) pages 642 * don't hold up txg. 643 */ 644 zfs_prefault_write(n, uio); 645 646 /* 647 * If in append mode, set the io offset pointer to eof. 648 */ 649 if (ioflag & FAPPEND) { 650 /* 651 * Range lock for a file append: 652 * The value for the start of range will be determined by 653 * zfs_range_lock() (to guarantee append semantics). 654 * If this write will cause the block size to increase, 655 * zfs_range_lock() will lock the entire file, so we must 656 * later reduce the range after we grow the block size. 657 */ 658 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 659 if (rl->r_len == UINT64_MAX) { 660 /* overlocked, zp_size can't change */ 661 woff = uio->uio_loffset = zp->z_phys->zp_size; 662 } else { 663 woff = uio->uio_loffset = rl->r_off; 664 } 665 } else { 666 woff = uio->uio_loffset; 667 /* 668 * Validate file offset 669 */ 670 if (woff < 0) { 671 ZFS_EXIT(zfsvfs); 672 return (EINVAL); 673 } 674 675 /* 676 * If we need to grow the block size then zfs_range_lock() 677 * will lock a wider range than we request here. 678 * Later after growing the block size we reduce the range. 679 */ 680 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 681 } 682 683 if (woff >= limit) { 684 zfs_range_unlock(rl); 685 ZFS_EXIT(zfsvfs); 686 return (EFBIG); 687 } 688 689 if ((woff + n) > limit || woff > (limit - n)) 690 n = limit - woff; 691 692 /* 693 * Check for mandatory locks 694 */ 695 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 696 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 697 zfs_range_unlock(rl); 698 ZFS_EXIT(zfsvfs); 699 return (error); 700 } 701 end_size = MAX(zp->z_phys->zp_size, woff + n); 702 703 /* 704 * Write the file in reasonable size chunks. Each chunk is written 705 * in a separate transaction; this keeps the intent log records small 706 * and allows us to do more fine-grained space accounting. 707 */ 708 while (n > 0) { 709 /* 710 * Start a transaction. 711 */ 712 woff = uio->uio_loffset; 713 tx = dmu_tx_create(zfsvfs->z_os); 714 dmu_tx_hold_bonus(tx, zp->z_id); 715 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 716 error = dmu_tx_assign(tx, zfsvfs->z_assign); 717 if (error) { 718 if (error == ERESTART && 719 zfsvfs->z_assign == TXG_NOWAIT) { 720 dmu_tx_wait(tx); 721 dmu_tx_abort(tx); 722 continue; 723 } 724 dmu_tx_abort(tx); 725 break; 726 } 727 728 /* 729 * If zfs_range_lock() over-locked we grow the blocksize 730 * and then reduce the lock range. This will only happen 731 * on the first iteration since zfs_range_reduce() will 732 * shrink down r_len to the appropriate size. 733 */ 734 if (rl->r_len == UINT64_MAX) { 735 uint64_t new_blksz; 736 737 if (zp->z_blksz > max_blksz) { 738 ASSERT(!ISP2(zp->z_blksz)); 739 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 740 } else { 741 new_blksz = MIN(end_size, max_blksz); 742 } 743 zfs_grow_blocksize(zp, new_blksz, tx); 744 zfs_range_reduce(rl, woff, n); 745 } 746 747 /* 748 * XXX - should we really limit each write to z_max_blksz? 749 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 750 */ 751 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 752 rw_enter(&zp->z_map_lock, RW_READER); 753 754 tx_bytes = uio->uio_resid; 755 if (vn_has_cached_data(vp)) { 756 rw_exit(&zp->z_map_lock); 757 error = mappedwrite(vp, nbytes, uio, tx); 758 } else { 759 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 760 uio, nbytes, tx); 761 rw_exit(&zp->z_map_lock); 762 } 763 tx_bytes -= uio->uio_resid; 764 765 /* 766 * If we made no progress, we're done. If we made even 767 * partial progress, update the znode and ZIL accordingly. 768 */ 769 if (tx_bytes == 0) { 770 dmu_tx_commit(tx); 771 ASSERT(error != 0); 772 break; 773 } 774 775 /* 776 * Clear Set-UID/Set-GID bits on successful write if not 777 * privileged and at least one of the excute bits is set. 778 * 779 * It would be nice to to this after all writes have 780 * been done, but that would still expose the ISUID/ISGID 781 * to another app after the partial write is committed. 782 * 783 * Note: we don't call zfs_fuid_map_id() here because 784 * user 0 is not an ephemeral uid. 785 */ 786 mutex_enter(&zp->z_acl_lock); 787 if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) | 788 (S_IXUSR >> 6))) != 0 && 789 (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 && 790 secpolicy_vnode_setid_retain(cr, 791 (zp->z_phys->zp_mode & S_ISUID) != 0 && 792 zp->z_phys->zp_uid == 0) != 0) { 793 zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID); 794 } 795 mutex_exit(&zp->z_acl_lock); 796 797 /* 798 * Update time stamp. NOTE: This marks the bonus buffer as 799 * dirty, so we don't have to do it again for zp_size. 800 */ 801 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 802 803 /* 804 * Update the file size (zp_size) if it has changed; 805 * account for possible concurrent updates. 806 */ 807 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) 808 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 809 uio->uio_loffset); 810 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 811 dmu_tx_commit(tx); 812 813 if (error != 0) 814 break; 815 ASSERT(tx_bytes == nbytes); 816 n -= nbytes; 817 } 818 819 zfs_range_unlock(rl); 820 821 /* 822 * If we're in replay mode, or we made no progress, return error. 823 * Otherwise, it's at least a partial write, so it's successful. 824 */ 825 if (zfsvfs->z_assign >= TXG_INITIAL || uio->uio_resid == start_resid) { 826 ZFS_EXIT(zfsvfs); 827 return (error); 828 } 829 830 if (ioflag & (FSYNC | FDSYNC)) 831 zil_commit(zilog, zp->z_last_itx, zp->z_id); 832 833 ZFS_EXIT(zfsvfs); 834 return (0); 835 } 836 837 void 838 zfs_get_done(dmu_buf_t *db, void *vzgd) 839 { 840 zgd_t *zgd = (zgd_t *)vzgd; 841 rl_t *rl = zgd->zgd_rl; 842 vnode_t *vp = ZTOV(rl->r_zp); 843 844 dmu_buf_rele(db, vzgd); 845 zfs_range_unlock(rl); 846 VN_RELE(vp); 847 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 848 kmem_free(zgd, sizeof (zgd_t)); 849 } 850 851 /* 852 * Get data to generate a TX_WRITE intent log record. 853 */ 854 int 855 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 856 { 857 zfsvfs_t *zfsvfs = arg; 858 objset_t *os = zfsvfs->z_os; 859 znode_t *zp; 860 uint64_t off = lr->lr_offset; 861 dmu_buf_t *db; 862 rl_t *rl; 863 zgd_t *zgd; 864 int dlen = lr->lr_length; /* length of user data */ 865 int error = 0; 866 867 ASSERT(zio); 868 ASSERT(dlen != 0); 869 870 /* 871 * Nothing to do if the file has been removed 872 */ 873 if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0) 874 return (ENOENT); 875 if (zp->z_unlinked) { 876 VN_RELE(ZTOV(zp)); 877 return (ENOENT); 878 } 879 880 /* 881 * Write records come in two flavors: immediate and indirect. 882 * For small writes it's cheaper to store the data with the 883 * log record (immediate); for large writes it's cheaper to 884 * sync the data and get a pointer to it (indirect) so that 885 * we don't have to write the data twice. 886 */ 887 if (buf != NULL) { /* immediate write */ 888 rl = zfs_range_lock(zp, off, dlen, RL_READER); 889 /* test for truncation needs to be done while range locked */ 890 if (off >= zp->z_phys->zp_size) { 891 error = ENOENT; 892 goto out; 893 } 894 VERIFY(0 == dmu_read(os, lr->lr_foid, off, dlen, buf)); 895 } else { /* indirect write */ 896 uint64_t boff; /* block starting offset */ 897 898 /* 899 * Have to lock the whole block to ensure when it's 900 * written out and it's checksum is being calculated 901 * that no one can change the data. We need to re-check 902 * blocksize after we get the lock in case it's changed! 903 */ 904 for (;;) { 905 if (ISP2(zp->z_blksz)) { 906 boff = P2ALIGN_TYPED(off, zp->z_blksz, 907 uint64_t); 908 } else { 909 boff = 0; 910 } 911 dlen = zp->z_blksz; 912 rl = zfs_range_lock(zp, boff, dlen, RL_READER); 913 if (zp->z_blksz == dlen) 914 break; 915 zfs_range_unlock(rl); 916 } 917 /* test for truncation needs to be done while range locked */ 918 if (off >= zp->z_phys->zp_size) { 919 error = ENOENT; 920 goto out; 921 } 922 zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP); 923 zgd->zgd_rl = rl; 924 zgd->zgd_zilog = zfsvfs->z_log; 925 zgd->zgd_bp = &lr->lr_blkptr; 926 VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, boff, zgd, &db)); 927 ASSERT(boff == db->db_offset); 928 lr->lr_blkoff = off - boff; 929 error = dmu_sync(zio, db, &lr->lr_blkptr, 930 lr->lr_common.lrc_txg, zfs_get_done, zgd); 931 ASSERT((error && error != EINPROGRESS) || 932 lr->lr_length <= zp->z_blksz); 933 if (error == 0) 934 zil_add_block(zfsvfs->z_log, &lr->lr_blkptr); 935 /* 936 * If we get EINPROGRESS, then we need to wait for a 937 * write IO initiated by dmu_sync() to complete before 938 * we can release this dbuf. We will finish everything 939 * up in the zfs_get_done() callback. 940 */ 941 if (error == EINPROGRESS) 942 return (0); 943 dmu_buf_rele(db, zgd); 944 kmem_free(zgd, sizeof (zgd_t)); 945 } 946 out: 947 zfs_range_unlock(rl); 948 VN_RELE(ZTOV(zp)); 949 return (error); 950 } 951 952 /*ARGSUSED*/ 953 static int 954 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 955 caller_context_t *ct) 956 { 957 znode_t *zp = VTOZ(vp); 958 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 959 int error; 960 961 ZFS_ENTER(zfsvfs); 962 ZFS_VERIFY_ZP(zp); 963 964 if (flag & V_ACE_MASK) 965 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 966 else 967 error = zfs_zaccess_rwx(zp, mode, flag, cr); 968 969 ZFS_EXIT(zfsvfs); 970 return (error); 971 } 972 973 /* 974 * Lookup an entry in a directory, or an extended attribute directory. 975 * If it exists, return a held vnode reference for it. 976 * 977 * IN: dvp - vnode of directory to search. 978 * nm - name of entry to lookup. 979 * pnp - full pathname to lookup [UNUSED]. 980 * flags - LOOKUP_XATTR set if looking for an attribute. 981 * rdir - root directory vnode [UNUSED]. 982 * cr - credentials of caller. 983 * ct - caller context 984 * direntflags - directory lookup flags 985 * realpnp - returned pathname. 986 * 987 * OUT: vpp - vnode of located entry, NULL if not found. 988 * 989 * RETURN: 0 if success 990 * error code if failure 991 * 992 * Timestamps: 993 * NA 994 */ 995 /* ARGSUSED */ 996 static int 997 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 998 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 999 int *direntflags, pathname_t *realpnp) 1000 { 1001 znode_t *zdp = VTOZ(dvp); 1002 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1003 int error; 1004 1005 ZFS_ENTER(zfsvfs); 1006 ZFS_VERIFY_ZP(zdp); 1007 1008 *vpp = NULL; 1009 1010 if (flags & LOOKUP_XATTR) { 1011 /* 1012 * If the xattr property is off, refuse the lookup request. 1013 */ 1014 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1015 ZFS_EXIT(zfsvfs); 1016 return (EINVAL); 1017 } 1018 1019 /* 1020 * We don't allow recursive attributes.. 1021 * Maybe someday we will. 1022 */ 1023 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 1024 ZFS_EXIT(zfsvfs); 1025 return (EINVAL); 1026 } 1027 1028 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1029 ZFS_EXIT(zfsvfs); 1030 return (error); 1031 } 1032 1033 /* 1034 * Do we have permission to get into attribute directory? 1035 */ 1036 1037 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1038 B_FALSE, cr)) { 1039 VN_RELE(*vpp); 1040 *vpp = NULL; 1041 } 1042 1043 ZFS_EXIT(zfsvfs); 1044 return (error); 1045 } 1046 1047 if (dvp->v_type != VDIR) { 1048 ZFS_EXIT(zfsvfs); 1049 return (ENOTDIR); 1050 } 1051 1052 /* 1053 * Check accessibility of directory. 1054 */ 1055 1056 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1057 ZFS_EXIT(zfsvfs); 1058 return (error); 1059 } 1060 1061 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1062 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1063 ZFS_EXIT(zfsvfs); 1064 return (EILSEQ); 1065 } 1066 1067 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1068 if (error == 0) { 1069 /* 1070 * Convert device special files 1071 */ 1072 if (IS_DEVVP(*vpp)) { 1073 vnode_t *svp; 1074 1075 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1076 VN_RELE(*vpp); 1077 if (svp == NULL) 1078 error = ENOSYS; 1079 else 1080 *vpp = svp; 1081 } 1082 } 1083 1084 ZFS_EXIT(zfsvfs); 1085 return (error); 1086 } 1087 1088 /* 1089 * Attempt to create a new entry in a directory. If the entry 1090 * already exists, truncate the file if permissible, else return 1091 * an error. Return the vp of the created or trunc'd file. 1092 * 1093 * IN: dvp - vnode of directory to put new file entry in. 1094 * name - name of new file entry. 1095 * vap - attributes of new file. 1096 * excl - flag indicating exclusive or non-exclusive mode. 1097 * mode - mode to open file with. 1098 * cr - credentials of caller. 1099 * flag - large file flag [UNUSED]. 1100 * ct - caller context 1101 * vsecp - ACL to be set 1102 * 1103 * OUT: vpp - vnode of created or trunc'd entry. 1104 * 1105 * RETURN: 0 if success 1106 * error code if failure 1107 * 1108 * Timestamps: 1109 * dvp - ctime|mtime updated if new entry created 1110 * vp - ctime|mtime always, atime if new 1111 */ 1112 1113 /* ARGSUSED */ 1114 static int 1115 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1116 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1117 vsecattr_t *vsecp) 1118 { 1119 znode_t *zp, *dzp = VTOZ(dvp); 1120 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1121 zilog_t *zilog; 1122 objset_t *os; 1123 zfs_dirlock_t *dl; 1124 dmu_tx_t *tx; 1125 int error; 1126 zfs_acl_t *aclp = NULL; 1127 zfs_fuid_info_t *fuidp = NULL; 1128 1129 /* 1130 * If we have an ephemeral id, ACL, or XVATTR then 1131 * make sure file system is at proper version 1132 */ 1133 1134 if (zfsvfs->z_use_fuids == B_FALSE && 1135 (vsecp || (vap->va_mask & AT_XVATTR) || 1136 IS_EPHEMERAL(crgetuid(cr)) || IS_EPHEMERAL(crgetgid(cr)))) 1137 return (EINVAL); 1138 1139 ZFS_ENTER(zfsvfs); 1140 ZFS_VERIFY_ZP(dzp); 1141 os = zfsvfs->z_os; 1142 zilog = zfsvfs->z_log; 1143 1144 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1145 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1146 ZFS_EXIT(zfsvfs); 1147 return (EILSEQ); 1148 } 1149 1150 if (vap->va_mask & AT_XVATTR) { 1151 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1152 crgetuid(cr), cr, vap->va_type)) != 0) { 1153 ZFS_EXIT(zfsvfs); 1154 return (error); 1155 } 1156 } 1157 top: 1158 *vpp = NULL; 1159 1160 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1161 vap->va_mode &= ~VSVTX; 1162 1163 if (*name == '\0') { 1164 /* 1165 * Null component name refers to the directory itself. 1166 */ 1167 VN_HOLD(dvp); 1168 zp = dzp; 1169 dl = NULL; 1170 error = 0; 1171 } else { 1172 /* possible VN_HOLD(zp) */ 1173 int zflg = 0; 1174 1175 if (flag & FIGNORECASE) 1176 zflg |= ZCILOOK; 1177 1178 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1179 NULL, NULL); 1180 if (error) { 1181 if (strcmp(name, "..") == 0) 1182 error = EISDIR; 1183 ZFS_EXIT(zfsvfs); 1184 if (aclp) 1185 zfs_acl_free(aclp); 1186 return (error); 1187 } 1188 } 1189 if (vsecp && aclp == NULL) { 1190 error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, &aclp); 1191 if (error) { 1192 ZFS_EXIT(zfsvfs); 1193 if (dl) 1194 zfs_dirent_unlock(dl); 1195 return (error); 1196 } 1197 } 1198 1199 if (zp == NULL) { 1200 uint64_t txtype; 1201 1202 /* 1203 * Create a new file object and update the directory 1204 * to reference it. 1205 */ 1206 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1207 goto out; 1208 } 1209 1210 /* 1211 * We only support the creation of regular files in 1212 * extended attribute directories. 1213 */ 1214 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1215 (vap->va_type != VREG)) { 1216 error = EINVAL; 1217 goto out; 1218 } 1219 1220 tx = dmu_tx_create(os); 1221 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1222 if (aclp && aclp->z_has_fuids) { 1223 if (zfsvfs->z_fuid_obj == 0) { 1224 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1225 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1226 FUID_SIZE_ESTIMATE(zfsvfs)); 1227 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 1228 FALSE, NULL); 1229 } else { 1230 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 1231 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 1232 FUID_SIZE_ESTIMATE(zfsvfs)); 1233 } 1234 } 1235 dmu_tx_hold_bonus(tx, dzp->z_id); 1236 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1237 if ((dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) || aclp) { 1238 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1239 0, SPA_MAXBLOCKSIZE); 1240 } 1241 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1242 if (error) { 1243 zfs_dirent_unlock(dl); 1244 if (error == ERESTART && 1245 zfsvfs->z_assign == TXG_NOWAIT) { 1246 dmu_tx_wait(tx); 1247 dmu_tx_abort(tx); 1248 goto top; 1249 } 1250 dmu_tx_abort(tx); 1251 ZFS_EXIT(zfsvfs); 1252 if (aclp) 1253 zfs_acl_free(aclp); 1254 return (error); 1255 } 1256 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, aclp, &fuidp); 1257 (void) zfs_link_create(dl, zp, tx, ZNEW); 1258 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1259 if (flag & FIGNORECASE) 1260 txtype |= TX_CI; 1261 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1262 vsecp, fuidp, vap); 1263 if (fuidp) 1264 zfs_fuid_info_free(fuidp); 1265 dmu_tx_commit(tx); 1266 } else { 1267 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1268 1269 /* 1270 * A directory entry already exists for this name. 1271 */ 1272 /* 1273 * Can't truncate an existing file if in exclusive mode. 1274 */ 1275 if (excl == EXCL) { 1276 error = EEXIST; 1277 goto out; 1278 } 1279 /* 1280 * Can't open a directory for writing. 1281 */ 1282 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1283 error = EISDIR; 1284 goto out; 1285 } 1286 /* 1287 * Verify requested access to file. 1288 */ 1289 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1290 goto out; 1291 } 1292 1293 mutex_enter(&dzp->z_lock); 1294 dzp->z_seq++; 1295 mutex_exit(&dzp->z_lock); 1296 1297 /* 1298 * Truncate regular files if requested. 1299 */ 1300 if ((ZTOV(zp)->v_type == VREG) && 1301 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1302 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1303 if (error == ERESTART && 1304 zfsvfs->z_assign == TXG_NOWAIT) { 1305 /* NB: we already did dmu_tx_wait() */ 1306 zfs_dirent_unlock(dl); 1307 VN_RELE(ZTOV(zp)); 1308 goto top; 1309 } 1310 1311 if (error == 0) { 1312 vnevent_create(ZTOV(zp), ct); 1313 } 1314 } 1315 } 1316 out: 1317 1318 if (dl) 1319 zfs_dirent_unlock(dl); 1320 1321 if (error) { 1322 if (zp) 1323 VN_RELE(ZTOV(zp)); 1324 } else { 1325 *vpp = ZTOV(zp); 1326 /* 1327 * If vnode is for a device return a specfs vnode instead. 1328 */ 1329 if (IS_DEVVP(*vpp)) { 1330 struct vnode *svp; 1331 1332 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1333 VN_RELE(*vpp); 1334 if (svp == NULL) { 1335 error = ENOSYS; 1336 } 1337 *vpp = svp; 1338 } 1339 } 1340 if (aclp) 1341 zfs_acl_free(aclp); 1342 1343 ZFS_EXIT(zfsvfs); 1344 return (error); 1345 } 1346 1347 /* 1348 * Remove an entry from a directory. 1349 * 1350 * IN: dvp - vnode of directory to remove entry from. 1351 * name - name of entry to remove. 1352 * cr - credentials of caller. 1353 * ct - caller context 1354 * flags - case flags 1355 * 1356 * RETURN: 0 if success 1357 * error code if failure 1358 * 1359 * Timestamps: 1360 * dvp - ctime|mtime 1361 * vp - ctime (if nlink > 0) 1362 */ 1363 /*ARGSUSED*/ 1364 static int 1365 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1366 int flags) 1367 { 1368 znode_t *zp, *dzp = VTOZ(dvp); 1369 znode_t *xzp = NULL; 1370 vnode_t *vp; 1371 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1372 zilog_t *zilog; 1373 uint64_t acl_obj, xattr_obj; 1374 zfs_dirlock_t *dl; 1375 dmu_tx_t *tx; 1376 boolean_t may_delete_now, delete_now = FALSE; 1377 boolean_t unlinked; 1378 uint64_t txtype; 1379 pathname_t *realnmp = NULL; 1380 pathname_t realnm; 1381 int error; 1382 int zflg = ZEXISTS; 1383 1384 ZFS_ENTER(zfsvfs); 1385 ZFS_VERIFY_ZP(dzp); 1386 zilog = zfsvfs->z_log; 1387 1388 if (flags & FIGNORECASE) { 1389 zflg |= ZCILOOK; 1390 pn_alloc(&realnm); 1391 realnmp = &realnm; 1392 } 1393 1394 top: 1395 /* 1396 * Attempt to lock directory; fail if entry doesn't exist. 1397 */ 1398 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1399 NULL, realnmp)) { 1400 if (realnmp) 1401 pn_free(realnmp); 1402 ZFS_EXIT(zfsvfs); 1403 return (error); 1404 } 1405 1406 vp = ZTOV(zp); 1407 1408 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1409 goto out; 1410 } 1411 1412 /* 1413 * Need to use rmdir for removing directories. 1414 */ 1415 if (vp->v_type == VDIR) { 1416 error = EPERM; 1417 goto out; 1418 } 1419 1420 vnevent_remove(vp, dvp, name, ct); 1421 1422 if (realnmp) 1423 dnlc_remove(dvp, realnmp->pn_path); 1424 else 1425 dnlc_remove(dvp, name); 1426 1427 mutex_enter(&vp->v_lock); 1428 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1429 mutex_exit(&vp->v_lock); 1430 1431 /* 1432 * We may delete the znode now, or we may put it in the unlinked set; 1433 * it depends on whether we're the last link, and on whether there are 1434 * other holds on the vnode. So we dmu_tx_hold() the right things to 1435 * allow for either case. 1436 */ 1437 tx = dmu_tx_create(zfsvfs->z_os); 1438 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1439 dmu_tx_hold_bonus(tx, zp->z_id); 1440 if (may_delete_now) 1441 dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END); 1442 1443 /* are there any extended attributes? */ 1444 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1445 /* XXX - do we need this if we are deleting? */ 1446 dmu_tx_hold_bonus(tx, xattr_obj); 1447 } 1448 1449 /* are there any additional acls */ 1450 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1451 may_delete_now) 1452 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1453 1454 /* charge as an update -- would be nice not to charge at all */ 1455 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1456 1457 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1458 if (error) { 1459 zfs_dirent_unlock(dl); 1460 VN_RELE(vp); 1461 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1462 dmu_tx_wait(tx); 1463 dmu_tx_abort(tx); 1464 goto top; 1465 } 1466 if (realnmp) 1467 pn_free(realnmp); 1468 dmu_tx_abort(tx); 1469 ZFS_EXIT(zfsvfs); 1470 return (error); 1471 } 1472 1473 /* 1474 * Remove the directory entry. 1475 */ 1476 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1477 1478 if (error) { 1479 dmu_tx_commit(tx); 1480 goto out; 1481 } 1482 1483 if (unlinked) { 1484 mutex_enter(&vp->v_lock); 1485 delete_now = may_delete_now && 1486 vp->v_count == 1 && !vn_has_cached_data(vp) && 1487 zp->z_phys->zp_xattr == xattr_obj && 1488 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1489 mutex_exit(&vp->v_lock); 1490 } 1491 1492 if (delete_now) { 1493 if (zp->z_phys->zp_xattr) { 1494 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1495 ASSERT3U(error, ==, 0); 1496 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1497 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1498 mutex_enter(&xzp->z_lock); 1499 xzp->z_unlinked = 1; 1500 xzp->z_phys->zp_links = 0; 1501 mutex_exit(&xzp->z_lock); 1502 zfs_unlinked_add(xzp, tx); 1503 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1504 } 1505 mutex_enter(&zp->z_lock); 1506 mutex_enter(&vp->v_lock); 1507 vp->v_count--; 1508 ASSERT3U(vp->v_count, ==, 0); 1509 mutex_exit(&vp->v_lock); 1510 mutex_exit(&zp->z_lock); 1511 zfs_znode_delete(zp, tx); 1512 } else if (unlinked) { 1513 zfs_unlinked_add(zp, tx); 1514 } 1515 1516 txtype = TX_REMOVE; 1517 if (flags & FIGNORECASE) 1518 txtype |= TX_CI; 1519 zfs_log_remove(zilog, tx, txtype, dzp, name); 1520 1521 dmu_tx_commit(tx); 1522 out: 1523 if (realnmp) 1524 pn_free(realnmp); 1525 1526 zfs_dirent_unlock(dl); 1527 1528 if (!delete_now) { 1529 VN_RELE(vp); 1530 } else if (xzp) { 1531 /* this rele delayed to prevent nesting transactions */ 1532 VN_RELE(ZTOV(xzp)); 1533 } 1534 1535 ZFS_EXIT(zfsvfs); 1536 return (error); 1537 } 1538 1539 /* 1540 * Create a new directory and insert it into dvp using the name 1541 * provided. Return a pointer to the inserted directory. 1542 * 1543 * IN: dvp - vnode of directory to add subdir to. 1544 * dirname - name of new directory. 1545 * vap - attributes of new directory. 1546 * cr - credentials of caller. 1547 * ct - caller context 1548 * vsecp - ACL to be set 1549 * 1550 * OUT: vpp - vnode of created directory. 1551 * 1552 * RETURN: 0 if success 1553 * error code if failure 1554 * 1555 * Timestamps: 1556 * dvp - ctime|mtime updated 1557 * vp - ctime|mtime|atime updated 1558 */ 1559 /*ARGSUSED*/ 1560 static int 1561 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1562 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1563 { 1564 znode_t *zp, *dzp = VTOZ(dvp); 1565 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1566 zilog_t *zilog; 1567 zfs_dirlock_t *dl; 1568 uint64_t txtype; 1569 dmu_tx_t *tx; 1570 int error; 1571 zfs_acl_t *aclp = NULL; 1572 zfs_fuid_info_t *fuidp = NULL; 1573 int zf = ZNEW; 1574 1575 ASSERT(vap->va_type == VDIR); 1576 1577 /* 1578 * If we have an ephemeral id, ACL, or XVATTR then 1579 * make sure file system is at proper version 1580 */ 1581 1582 if (zfsvfs->z_use_fuids == B_FALSE && 1583 (vsecp || (vap->va_mask & AT_XVATTR) || IS_EPHEMERAL(crgetuid(cr))|| 1584 IS_EPHEMERAL(crgetgid(cr)))) 1585 return (EINVAL); 1586 1587 ZFS_ENTER(zfsvfs); 1588 ZFS_VERIFY_ZP(dzp); 1589 zilog = zfsvfs->z_log; 1590 1591 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1592 ZFS_EXIT(zfsvfs); 1593 return (EINVAL); 1594 } 1595 1596 if (zfsvfs->z_utf8 && u8_validate(dirname, 1597 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1598 ZFS_EXIT(zfsvfs); 1599 return (EILSEQ); 1600 } 1601 if (flags & FIGNORECASE) 1602 zf |= ZCILOOK; 1603 1604 if (vap->va_mask & AT_XVATTR) 1605 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1606 crgetuid(cr), cr, vap->va_type)) != 0) { 1607 ZFS_EXIT(zfsvfs); 1608 return (error); 1609 } 1610 1611 /* 1612 * First make sure the new directory doesn't exist. 1613 */ 1614 top: 1615 *vpp = NULL; 1616 1617 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1618 NULL, NULL)) { 1619 ZFS_EXIT(zfsvfs); 1620 return (error); 1621 } 1622 1623 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1624 zfs_dirent_unlock(dl); 1625 ZFS_EXIT(zfsvfs); 1626 return (error); 1627 } 1628 1629 if (vsecp && aclp == NULL) { 1630 error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, &aclp); 1631 if (error) { 1632 zfs_dirent_unlock(dl); 1633 ZFS_EXIT(zfsvfs); 1634 return (error); 1635 } 1636 } 1637 /* 1638 * Add a new entry to the directory. 1639 */ 1640 tx = dmu_tx_create(zfsvfs->z_os); 1641 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1642 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1643 if (aclp && aclp->z_has_fuids) { 1644 if (zfsvfs->z_fuid_obj == 0) { 1645 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1646 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1647 FUID_SIZE_ESTIMATE(zfsvfs)); 1648 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 1649 } else { 1650 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 1651 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 1652 FUID_SIZE_ESTIMATE(zfsvfs)); 1653 } 1654 } 1655 if ((dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) || aclp) 1656 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1657 0, SPA_MAXBLOCKSIZE); 1658 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1659 if (error) { 1660 zfs_dirent_unlock(dl); 1661 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1662 dmu_tx_wait(tx); 1663 dmu_tx_abort(tx); 1664 goto top; 1665 } 1666 dmu_tx_abort(tx); 1667 ZFS_EXIT(zfsvfs); 1668 if (aclp) 1669 zfs_acl_free(aclp); 1670 return (error); 1671 } 1672 1673 /* 1674 * Create new node. 1675 */ 1676 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, aclp, &fuidp); 1677 1678 if (aclp) 1679 zfs_acl_free(aclp); 1680 1681 /* 1682 * Now put new name in parent dir. 1683 */ 1684 (void) zfs_link_create(dl, zp, tx, ZNEW); 1685 1686 *vpp = ZTOV(zp); 1687 1688 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1689 if (flags & FIGNORECASE) 1690 txtype |= TX_CI; 1691 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, fuidp, vap); 1692 1693 if (fuidp) 1694 zfs_fuid_info_free(fuidp); 1695 dmu_tx_commit(tx); 1696 1697 zfs_dirent_unlock(dl); 1698 1699 ZFS_EXIT(zfsvfs); 1700 return (0); 1701 } 1702 1703 /* 1704 * Remove a directory subdir entry. If the current working 1705 * directory is the same as the subdir to be removed, the 1706 * remove will fail. 1707 * 1708 * IN: dvp - vnode of directory to remove from. 1709 * name - name of directory to be removed. 1710 * cwd - vnode of current working directory. 1711 * cr - credentials of caller. 1712 * ct - caller context 1713 * flags - case flags 1714 * 1715 * RETURN: 0 if success 1716 * error code if failure 1717 * 1718 * Timestamps: 1719 * dvp - ctime|mtime updated 1720 */ 1721 /*ARGSUSED*/ 1722 static int 1723 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1724 caller_context_t *ct, int flags) 1725 { 1726 znode_t *dzp = VTOZ(dvp); 1727 znode_t *zp; 1728 vnode_t *vp; 1729 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1730 zilog_t *zilog; 1731 zfs_dirlock_t *dl; 1732 dmu_tx_t *tx; 1733 int error; 1734 int zflg = ZEXISTS; 1735 1736 ZFS_ENTER(zfsvfs); 1737 ZFS_VERIFY_ZP(dzp); 1738 zilog = zfsvfs->z_log; 1739 1740 if (flags & FIGNORECASE) 1741 zflg |= ZCILOOK; 1742 top: 1743 zp = NULL; 1744 1745 /* 1746 * Attempt to lock directory; fail if entry doesn't exist. 1747 */ 1748 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1749 NULL, NULL)) { 1750 ZFS_EXIT(zfsvfs); 1751 return (error); 1752 } 1753 1754 vp = ZTOV(zp); 1755 1756 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1757 goto out; 1758 } 1759 1760 if (vp->v_type != VDIR) { 1761 error = ENOTDIR; 1762 goto out; 1763 } 1764 1765 if (vp == cwd) { 1766 error = EINVAL; 1767 goto out; 1768 } 1769 1770 vnevent_rmdir(vp, dvp, name, ct); 1771 1772 /* 1773 * Grab a lock on the directory to make sure that noone is 1774 * trying to add (or lookup) entries while we are removing it. 1775 */ 1776 rw_enter(&zp->z_name_lock, RW_WRITER); 1777 1778 /* 1779 * Grab a lock on the parent pointer to make sure we play well 1780 * with the treewalk and directory rename code. 1781 */ 1782 rw_enter(&zp->z_parent_lock, RW_WRITER); 1783 1784 tx = dmu_tx_create(zfsvfs->z_os); 1785 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1786 dmu_tx_hold_bonus(tx, zp->z_id); 1787 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1788 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1789 if (error) { 1790 rw_exit(&zp->z_parent_lock); 1791 rw_exit(&zp->z_name_lock); 1792 zfs_dirent_unlock(dl); 1793 VN_RELE(vp); 1794 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1795 dmu_tx_wait(tx); 1796 dmu_tx_abort(tx); 1797 goto top; 1798 } 1799 dmu_tx_abort(tx); 1800 ZFS_EXIT(zfsvfs); 1801 return (error); 1802 } 1803 1804 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 1805 1806 if (error == 0) { 1807 uint64_t txtype = TX_RMDIR; 1808 if (flags & FIGNORECASE) 1809 txtype |= TX_CI; 1810 zfs_log_remove(zilog, tx, txtype, dzp, name); 1811 } 1812 1813 dmu_tx_commit(tx); 1814 1815 rw_exit(&zp->z_parent_lock); 1816 rw_exit(&zp->z_name_lock); 1817 out: 1818 zfs_dirent_unlock(dl); 1819 1820 VN_RELE(vp); 1821 1822 ZFS_EXIT(zfsvfs); 1823 return (error); 1824 } 1825 1826 /* 1827 * Read as many directory entries as will fit into the provided 1828 * buffer from the given directory cursor position (specified in 1829 * the uio structure. 1830 * 1831 * IN: vp - vnode of directory to read. 1832 * uio - structure supplying read location, range info, 1833 * and return buffer. 1834 * cr - credentials of caller. 1835 * ct - caller context 1836 * flags - case flags 1837 * 1838 * OUT: uio - updated offset and range, buffer filled. 1839 * eofp - set to true if end-of-file detected. 1840 * 1841 * RETURN: 0 if success 1842 * error code if failure 1843 * 1844 * Timestamps: 1845 * vp - atime updated 1846 * 1847 * Note that the low 4 bits of the cookie returned by zap is always zero. 1848 * This allows us to use the low range for "special" directory entries: 1849 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1850 * we use the offset 2 for the '.zfs' directory. 1851 */ 1852 /* ARGSUSED */ 1853 static int 1854 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 1855 caller_context_t *ct, int flags) 1856 { 1857 znode_t *zp = VTOZ(vp); 1858 iovec_t *iovp; 1859 edirent_t *eodp; 1860 dirent64_t *odp; 1861 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1862 objset_t *os; 1863 caddr_t outbuf; 1864 size_t bufsize; 1865 zap_cursor_t zc; 1866 zap_attribute_t zap; 1867 uint_t bytes_wanted; 1868 uint64_t offset; /* must be unsigned; checks for < 1 */ 1869 int local_eof; 1870 int outcount; 1871 int error; 1872 uint8_t prefetch; 1873 boolean_t check_sysattrs; 1874 1875 ZFS_ENTER(zfsvfs); 1876 ZFS_VERIFY_ZP(zp); 1877 1878 /* 1879 * If we are not given an eof variable, 1880 * use a local one. 1881 */ 1882 if (eofp == NULL) 1883 eofp = &local_eof; 1884 1885 /* 1886 * Check for valid iov_len. 1887 */ 1888 if (uio->uio_iov->iov_len <= 0) { 1889 ZFS_EXIT(zfsvfs); 1890 return (EINVAL); 1891 } 1892 1893 /* 1894 * Quit if directory has been removed (posix) 1895 */ 1896 if ((*eofp = zp->z_unlinked) != 0) { 1897 ZFS_EXIT(zfsvfs); 1898 return (0); 1899 } 1900 1901 error = 0; 1902 os = zfsvfs->z_os; 1903 offset = uio->uio_loffset; 1904 prefetch = zp->z_zn_prefetch; 1905 1906 /* 1907 * Initialize the iterator cursor. 1908 */ 1909 if (offset <= 3) { 1910 /* 1911 * Start iteration from the beginning of the directory. 1912 */ 1913 zap_cursor_init(&zc, os, zp->z_id); 1914 } else { 1915 /* 1916 * The offset is a serialized cursor. 1917 */ 1918 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1919 } 1920 1921 /* 1922 * Get space to change directory entries into fs independent format. 1923 */ 1924 iovp = uio->uio_iov; 1925 bytes_wanted = iovp->iov_len; 1926 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 1927 bufsize = bytes_wanted; 1928 outbuf = kmem_alloc(bufsize, KM_SLEEP); 1929 odp = (struct dirent64 *)outbuf; 1930 } else { 1931 bufsize = bytes_wanted; 1932 odp = (struct dirent64 *)iovp->iov_base; 1933 } 1934 eodp = (struct edirent *)odp; 1935 1936 /* 1937 * If this VFS supports system attributes; and we're looking at an 1938 * extended attribute directory; and we care about normalization 1939 * conflicts on this vfs; then we must check for normalization 1940 * conflicts with the sysattr name space. 1941 */ 1942 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) && 1943 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 1944 (flags & V_RDDIR_ENTFLAGS); 1945 1946 /* 1947 * Transform to file-system independent format 1948 */ 1949 outcount = 0; 1950 while (outcount < bytes_wanted) { 1951 ino64_t objnum; 1952 ushort_t reclen; 1953 off64_t *next; 1954 1955 /* 1956 * Special case `.', `..', and `.zfs'. 1957 */ 1958 if (offset == 0) { 1959 (void) strcpy(zap.za_name, "."); 1960 zap.za_normalization_conflict = 0; 1961 objnum = zp->z_id; 1962 } else if (offset == 1) { 1963 (void) strcpy(zap.za_name, ".."); 1964 zap.za_normalization_conflict = 0; 1965 objnum = zp->z_phys->zp_parent; 1966 } else if (offset == 2 && zfs_show_ctldir(zp)) { 1967 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 1968 zap.za_normalization_conflict = 0; 1969 objnum = ZFSCTL_INO_ROOT; 1970 } else { 1971 /* 1972 * Grab next entry. 1973 */ 1974 if (error = zap_cursor_retrieve(&zc, &zap)) { 1975 if ((*eofp = (error == ENOENT)) != 0) 1976 break; 1977 else 1978 goto update; 1979 } 1980 1981 if (zap.za_integer_length != 8 || 1982 zap.za_num_integers != 1) { 1983 cmn_err(CE_WARN, "zap_readdir: bad directory " 1984 "entry, obj = %lld, offset = %lld\n", 1985 (u_longlong_t)zp->z_id, 1986 (u_longlong_t)offset); 1987 error = ENXIO; 1988 goto update; 1989 } 1990 1991 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 1992 /* 1993 * MacOS X can extract the object type here such as: 1994 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 1995 */ 1996 1997 if (check_sysattrs && !zap.za_normalization_conflict) { 1998 zap.za_normalization_conflict = 1999 xattr_sysattr_casechk(zap.za_name); 2000 } 2001 } 2002 2003 if (flags & V_RDDIR_ENTFLAGS) 2004 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2005 else 2006 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2007 2008 /* 2009 * Will this entry fit in the buffer? 2010 */ 2011 if (outcount + reclen > bufsize) { 2012 /* 2013 * Did we manage to fit anything in the buffer? 2014 */ 2015 if (!outcount) { 2016 error = EINVAL; 2017 goto update; 2018 } 2019 break; 2020 } 2021 if (flags & V_RDDIR_ENTFLAGS) { 2022 /* 2023 * Add extended flag entry: 2024 */ 2025 eodp->ed_ino = objnum; 2026 eodp->ed_reclen = reclen; 2027 /* NOTE: ed_off is the offset for the *next* entry */ 2028 next = &(eodp->ed_off); 2029 eodp->ed_eflags = zap.za_normalization_conflict ? 2030 ED_CASE_CONFLICT : 0; 2031 (void) strncpy(eodp->ed_name, zap.za_name, 2032 EDIRENT_NAMELEN(reclen)); 2033 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2034 } else { 2035 /* 2036 * Add normal entry: 2037 */ 2038 odp->d_ino = objnum; 2039 odp->d_reclen = reclen; 2040 /* NOTE: d_off is the offset for the *next* entry */ 2041 next = &(odp->d_off); 2042 (void) strncpy(odp->d_name, zap.za_name, 2043 DIRENT64_NAMELEN(reclen)); 2044 odp = (dirent64_t *)((intptr_t)odp + reclen); 2045 } 2046 outcount += reclen; 2047 2048 ASSERT(outcount <= bufsize); 2049 2050 /* Prefetch znode */ 2051 if (prefetch) 2052 dmu_prefetch(os, objnum, 0, 0); 2053 2054 /* 2055 * Move to the next entry, fill in the previous offset. 2056 */ 2057 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2058 zap_cursor_advance(&zc); 2059 offset = zap_cursor_serialize(&zc); 2060 } else { 2061 offset += 1; 2062 } 2063 *next = offset; 2064 } 2065 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2066 2067 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2068 iovp->iov_base += outcount; 2069 iovp->iov_len -= outcount; 2070 uio->uio_resid -= outcount; 2071 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2072 /* 2073 * Reset the pointer. 2074 */ 2075 offset = uio->uio_loffset; 2076 } 2077 2078 update: 2079 zap_cursor_fini(&zc); 2080 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2081 kmem_free(outbuf, bufsize); 2082 2083 if (error == ENOENT) 2084 error = 0; 2085 2086 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2087 2088 uio->uio_loffset = offset; 2089 ZFS_EXIT(zfsvfs); 2090 return (error); 2091 } 2092 2093 ulong_t zfs_fsync_sync_cnt = 4; 2094 2095 static int 2096 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2097 { 2098 znode_t *zp = VTOZ(vp); 2099 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2100 2101 /* 2102 * Regardless of whether this is required for standards conformance, 2103 * this is the logical behavior when fsync() is called on a file with 2104 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2105 * going to be pushed out as part of the zil_commit(). 2106 */ 2107 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2108 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2109 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2110 2111 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2112 2113 ZFS_ENTER(zfsvfs); 2114 ZFS_VERIFY_ZP(zp); 2115 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 2116 ZFS_EXIT(zfsvfs); 2117 return (0); 2118 } 2119 2120 2121 /* 2122 * Get the requested file attributes and place them in the provided 2123 * vattr structure. 2124 * 2125 * IN: vp - vnode of file. 2126 * vap - va_mask identifies requested attributes. 2127 * If AT_XVATTR set, then optional attrs are requested 2128 * flags - ATTR_NOACLCHECK (CIFS server context) 2129 * cr - credentials of caller. 2130 * ct - caller context 2131 * 2132 * OUT: vap - attribute values. 2133 * 2134 * RETURN: 0 (always succeeds) 2135 */ 2136 /* ARGSUSED */ 2137 static int 2138 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2139 caller_context_t *ct) 2140 { 2141 znode_t *zp = VTOZ(vp); 2142 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2143 znode_phys_t *pzp; 2144 int error = 0; 2145 uint64_t links; 2146 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2147 xoptattr_t *xoap = NULL; 2148 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2149 2150 ZFS_ENTER(zfsvfs); 2151 ZFS_VERIFY_ZP(zp); 2152 pzp = zp->z_phys; 2153 2154 mutex_enter(&zp->z_lock); 2155 2156 /* 2157 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2158 * Also, if we are the owner don't bother, since owner should 2159 * always be allowed to read basic attributes of file. 2160 */ 2161 if (!(pzp->zp_flags & ZFS_ACL_TRIVIAL) && 2162 (pzp->zp_uid != crgetuid(cr))) { 2163 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2164 skipaclchk, cr)) { 2165 mutex_exit(&zp->z_lock); 2166 ZFS_EXIT(zfsvfs); 2167 return (error); 2168 } 2169 } 2170 2171 /* 2172 * Return all attributes. It's cheaper to provide the answer 2173 * than to determine whether we were asked the question. 2174 */ 2175 2176 vap->va_type = vp->v_type; 2177 vap->va_mode = pzp->zp_mode & MODEMASK; 2178 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2179 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2180 vap->va_nodeid = zp->z_id; 2181 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2182 links = pzp->zp_links + 1; 2183 else 2184 links = pzp->zp_links; 2185 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2186 vap->va_size = pzp->zp_size; 2187 vap->va_rdev = vp->v_rdev; 2188 vap->va_seq = zp->z_seq; 2189 2190 /* 2191 * Add in any requested optional attributes and the create time. 2192 * Also set the corresponding bits in the returned attribute bitmap. 2193 */ 2194 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2195 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2196 xoap->xoa_archive = 2197 ((pzp->zp_flags & ZFS_ARCHIVE) != 0); 2198 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2199 } 2200 2201 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2202 xoap->xoa_readonly = 2203 ((pzp->zp_flags & ZFS_READONLY) != 0); 2204 XVA_SET_RTN(xvap, XAT_READONLY); 2205 } 2206 2207 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2208 xoap->xoa_system = 2209 ((pzp->zp_flags & ZFS_SYSTEM) != 0); 2210 XVA_SET_RTN(xvap, XAT_SYSTEM); 2211 } 2212 2213 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2214 xoap->xoa_hidden = 2215 ((pzp->zp_flags & ZFS_HIDDEN) != 0); 2216 XVA_SET_RTN(xvap, XAT_HIDDEN); 2217 } 2218 2219 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2220 xoap->xoa_nounlink = 2221 ((pzp->zp_flags & ZFS_NOUNLINK) != 0); 2222 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2223 } 2224 2225 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2226 xoap->xoa_immutable = 2227 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0); 2228 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2229 } 2230 2231 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2232 xoap->xoa_appendonly = 2233 ((pzp->zp_flags & ZFS_APPENDONLY) != 0); 2234 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2235 } 2236 2237 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2238 xoap->xoa_nodump = 2239 ((pzp->zp_flags & ZFS_NODUMP) != 0); 2240 XVA_SET_RTN(xvap, XAT_NODUMP); 2241 } 2242 2243 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2244 xoap->xoa_opaque = 2245 ((pzp->zp_flags & ZFS_OPAQUE) != 0); 2246 XVA_SET_RTN(xvap, XAT_OPAQUE); 2247 } 2248 2249 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2250 xoap->xoa_av_quarantined = 2251 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0); 2252 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2253 } 2254 2255 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2256 xoap->xoa_av_modified = 2257 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0); 2258 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2259 } 2260 2261 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2262 vp->v_type == VREG && 2263 (pzp->zp_flags & ZFS_BONUS_SCANSTAMP)) { 2264 size_t len; 2265 dmu_object_info_t doi; 2266 2267 /* 2268 * Only VREG files have anti-virus scanstamps, so we 2269 * won't conflict with symlinks in the bonus buffer. 2270 */ 2271 dmu_object_info_from_db(zp->z_dbuf, &doi); 2272 len = sizeof (xoap->xoa_av_scanstamp) + 2273 sizeof (znode_phys_t); 2274 if (len <= doi.doi_bonus_size) { 2275 /* 2276 * pzp points to the start of the 2277 * znode_phys_t. pzp + 1 points to the 2278 * first byte after the znode_phys_t. 2279 */ 2280 (void) memcpy(xoap->xoa_av_scanstamp, 2281 pzp + 1, 2282 sizeof (xoap->xoa_av_scanstamp)); 2283 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 2284 } 2285 } 2286 2287 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2288 ZFS_TIME_DECODE(&xoap->xoa_createtime, pzp->zp_crtime); 2289 XVA_SET_RTN(xvap, XAT_CREATETIME); 2290 } 2291 } 2292 2293 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 2294 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 2295 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 2296 2297 mutex_exit(&zp->z_lock); 2298 2299 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 2300 2301 if (zp->z_blksz == 0) { 2302 /* 2303 * Block size hasn't been set; suggest maximal I/O transfers. 2304 */ 2305 vap->va_blksize = zfsvfs->z_max_blksz; 2306 } 2307 2308 ZFS_EXIT(zfsvfs); 2309 return (0); 2310 } 2311 2312 /* 2313 * Set the file attributes to the values contained in the 2314 * vattr structure. 2315 * 2316 * IN: vp - vnode of file to be modified. 2317 * vap - new attribute values. 2318 * If AT_XVATTR set, then optional attrs are being set 2319 * flags - ATTR_UTIME set if non-default time values provided. 2320 * - ATTR_NOACLCHECK (CIFS context only). 2321 * cr - credentials of caller. 2322 * ct - caller context 2323 * 2324 * RETURN: 0 if success 2325 * error code if failure 2326 * 2327 * Timestamps: 2328 * vp - ctime updated, mtime updated if size changed. 2329 */ 2330 /* ARGSUSED */ 2331 static int 2332 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2333 caller_context_t *ct) 2334 { 2335 znode_t *zp = VTOZ(vp); 2336 znode_phys_t *pzp; 2337 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2338 zilog_t *zilog; 2339 dmu_tx_t *tx; 2340 vattr_t oldva; 2341 uint_t mask = vap->va_mask; 2342 uint_t saved_mask; 2343 int trim_mask = 0; 2344 uint64_t new_mode; 2345 znode_t *attrzp; 2346 int need_policy = FALSE; 2347 int err; 2348 zfs_fuid_info_t *fuidp = NULL; 2349 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2350 xoptattr_t *xoap; 2351 zfs_acl_t *aclp = NULL; 2352 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2353 2354 if (mask == 0) 2355 return (0); 2356 2357 if (mask & AT_NOSET) 2358 return (EINVAL); 2359 2360 ZFS_ENTER(zfsvfs); 2361 ZFS_VERIFY_ZP(zp); 2362 2363 pzp = zp->z_phys; 2364 zilog = zfsvfs->z_log; 2365 2366 /* 2367 * Make sure that if we have ephemeral uid/gid or xvattr specified 2368 * that file system is at proper version level 2369 */ 2370 2371 if (zfsvfs->z_use_fuids == B_FALSE && 2372 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2373 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2374 (mask & AT_XVATTR))) { 2375 ZFS_EXIT(zfsvfs); 2376 return (EINVAL); 2377 } 2378 2379 if (mask & AT_SIZE && vp->v_type == VDIR) { 2380 ZFS_EXIT(zfsvfs); 2381 return (EISDIR); 2382 } 2383 2384 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2385 ZFS_EXIT(zfsvfs); 2386 return (EINVAL); 2387 } 2388 2389 /* 2390 * If this is an xvattr_t, then get a pointer to the structure of 2391 * optional attributes. If this is NULL, then we have a vattr_t. 2392 */ 2393 xoap = xva_getxoptattr(xvap); 2394 2395 /* 2396 * Immutable files can only alter immutable bit and atime 2397 */ 2398 if ((pzp->zp_flags & ZFS_IMMUTABLE) && 2399 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2400 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2401 ZFS_EXIT(zfsvfs); 2402 return (EPERM); 2403 } 2404 2405 if ((mask & AT_SIZE) && (pzp->zp_flags & ZFS_READONLY)) { 2406 ZFS_EXIT(zfsvfs); 2407 return (EPERM); 2408 } 2409 2410 top: 2411 attrzp = NULL; 2412 2413 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2414 ZFS_EXIT(zfsvfs); 2415 return (EROFS); 2416 } 2417 2418 /* 2419 * First validate permissions 2420 */ 2421 2422 if (mask & AT_SIZE) { 2423 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2424 if (err) { 2425 ZFS_EXIT(zfsvfs); 2426 return (err); 2427 } 2428 /* 2429 * XXX - Note, we are not providing any open 2430 * mode flags here (like FNDELAY), so we may 2431 * block if there are locks present... this 2432 * should be addressed in openat(). 2433 */ 2434 do { 2435 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2436 /* NB: we already did dmu_tx_wait() if necessary */ 2437 } while (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT); 2438 if (err) { 2439 ZFS_EXIT(zfsvfs); 2440 return (err); 2441 } 2442 } 2443 2444 if (mask & (AT_ATIME|AT_MTIME) || 2445 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2446 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2447 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2448 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2449 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) 2450 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2451 skipaclchk, cr); 2452 2453 if (mask & (AT_UID|AT_GID)) { 2454 int idmask = (mask & (AT_UID|AT_GID)); 2455 int take_owner; 2456 int take_group; 2457 2458 /* 2459 * NOTE: even if a new mode is being set, 2460 * we may clear S_ISUID/S_ISGID bits. 2461 */ 2462 2463 if (!(mask & AT_MODE)) 2464 vap->va_mode = pzp->zp_mode; 2465 2466 /* 2467 * Take ownership or chgrp to group we are a member of 2468 */ 2469 2470 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2471 take_group = (mask & AT_GID) && 2472 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2473 2474 /* 2475 * If both AT_UID and AT_GID are set then take_owner and 2476 * take_group must both be set in order to allow taking 2477 * ownership. 2478 * 2479 * Otherwise, send the check through secpolicy_vnode_setattr() 2480 * 2481 */ 2482 2483 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2484 ((idmask == AT_UID) && take_owner) || 2485 ((idmask == AT_GID) && take_group)) { 2486 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2487 skipaclchk, cr) == 0) { 2488 /* 2489 * Remove setuid/setgid for non-privileged users 2490 */ 2491 secpolicy_setid_clear(vap, cr); 2492 trim_mask = (mask & (AT_UID|AT_GID)); 2493 } else { 2494 need_policy = TRUE; 2495 } 2496 } else { 2497 need_policy = TRUE; 2498 } 2499 } 2500 2501 mutex_enter(&zp->z_lock); 2502 oldva.va_mode = pzp->zp_mode; 2503 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2504 if (mask & AT_XVATTR) { 2505 if ((need_policy == FALSE) && 2506 (XVA_ISSET_REQ(xvap, XAT_APPENDONLY) && 2507 xoap->xoa_appendonly != 2508 ((pzp->zp_flags & ZFS_APPENDONLY) != 0)) || 2509 (XVA_ISSET_REQ(xvap, XAT_NOUNLINK) && 2510 xoap->xoa_nounlink != 2511 ((pzp->zp_flags & ZFS_NOUNLINK) != 0)) || 2512 (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE) && 2513 xoap->xoa_immutable != 2514 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0)) || 2515 (XVA_ISSET_REQ(xvap, XAT_NODUMP) && 2516 xoap->xoa_nodump != 2517 ((pzp->zp_flags & ZFS_NODUMP) != 0)) || 2518 (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED) && 2519 xoap->xoa_av_modified != 2520 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0)) || 2521 ((XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED) && 2522 ((vp->v_type != VREG && xoap->xoa_av_quarantined) || 2523 xoap->xoa_av_quarantined != 2524 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0)))) || 2525 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) || 2526 (XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2527 need_policy = TRUE; 2528 } 2529 } 2530 2531 mutex_exit(&zp->z_lock); 2532 2533 if (mask & AT_MODE) { 2534 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2535 err = secpolicy_setid_setsticky_clear(vp, vap, 2536 &oldva, cr); 2537 if (err) { 2538 ZFS_EXIT(zfsvfs); 2539 return (err); 2540 } 2541 trim_mask |= AT_MODE; 2542 } else { 2543 need_policy = TRUE; 2544 } 2545 } 2546 2547 if (need_policy) { 2548 /* 2549 * If trim_mask is set then take ownership 2550 * has been granted or write_acl is present and user 2551 * has the ability to modify mode. In that case remove 2552 * UID|GID and or MODE from mask so that 2553 * secpolicy_vnode_setattr() doesn't revoke it. 2554 */ 2555 2556 if (trim_mask) { 2557 saved_mask = vap->va_mask; 2558 vap->va_mask &= ~trim_mask; 2559 } 2560 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2561 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2562 if (err) { 2563 ZFS_EXIT(zfsvfs); 2564 return (err); 2565 } 2566 2567 if (trim_mask) 2568 vap->va_mask |= saved_mask; 2569 } 2570 2571 /* 2572 * secpolicy_vnode_setattr, or take ownership may have 2573 * changed va_mask 2574 */ 2575 mask = vap->va_mask; 2576 2577 tx = dmu_tx_create(zfsvfs->z_os); 2578 dmu_tx_hold_bonus(tx, zp->z_id); 2579 if (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2580 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid))) { 2581 if (zfsvfs->z_fuid_obj == 0) { 2582 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2583 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 2584 FUID_SIZE_ESTIMATE(zfsvfs)); 2585 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 2586 } else { 2587 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 2588 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 2589 FUID_SIZE_ESTIMATE(zfsvfs)); 2590 } 2591 } 2592 2593 if (mask & AT_MODE) { 2594 uint64_t pmode = pzp->zp_mode; 2595 2596 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2597 2598 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) { 2599 dmu_tx_abort(tx); 2600 ZFS_EXIT(zfsvfs); 2601 return (err); 2602 } 2603 if (pzp->zp_acl.z_acl_extern_obj) { 2604 /* Are we upgrading ACL from old V0 format to new V1 */ 2605 if (zfsvfs->z_version <= ZPL_VERSION_FUID && 2606 pzp->zp_acl.z_acl_version == 2607 ZFS_ACL_VERSION_INITIAL) { 2608 dmu_tx_hold_free(tx, 2609 pzp->zp_acl.z_acl_extern_obj, 0, 2610 DMU_OBJECT_END); 2611 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2612 0, aclp->z_acl_bytes); 2613 } else { 2614 dmu_tx_hold_write(tx, 2615 pzp->zp_acl.z_acl_extern_obj, 0, 2616 aclp->z_acl_bytes); 2617 } 2618 } else if (!(pzp->zp_flags & ZFS_ACL_TRIVIAL)) { 2619 if (aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2620 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2621 0, aclp->z_acl_bytes); 2622 } 2623 } 2624 } 2625 2626 if ((mask & (AT_UID | AT_GID)) && pzp->zp_xattr != 0) { 2627 err = zfs_zget(zp->z_zfsvfs, pzp->zp_xattr, &attrzp); 2628 if (err) { 2629 dmu_tx_abort(tx); 2630 ZFS_EXIT(zfsvfs); 2631 if (aclp) 2632 zfs_acl_free(aclp); 2633 return (err); 2634 } 2635 dmu_tx_hold_bonus(tx, attrzp->z_id); 2636 } 2637 2638 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2639 if (err) { 2640 if (attrzp) 2641 VN_RELE(ZTOV(attrzp)); 2642 2643 if (aclp) { 2644 zfs_acl_free(aclp); 2645 aclp = NULL; 2646 } 2647 2648 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2649 dmu_tx_wait(tx); 2650 dmu_tx_abort(tx); 2651 goto top; 2652 } 2653 dmu_tx_abort(tx); 2654 ZFS_EXIT(zfsvfs); 2655 return (err); 2656 } 2657 2658 dmu_buf_will_dirty(zp->z_dbuf, tx); 2659 2660 /* 2661 * Set each attribute requested. 2662 * We group settings according to the locks they need to acquire. 2663 * 2664 * Note: you cannot set ctime directly, although it will be 2665 * updated as a side-effect of calling this function. 2666 */ 2667 2668 mutex_enter(&zp->z_lock); 2669 2670 if (mask & AT_MODE) { 2671 mutex_enter(&zp->z_acl_lock); 2672 zp->z_phys->zp_mode = new_mode; 2673 err = zfs_aclset_common(zp, aclp, cr, &fuidp, tx); 2674 ASSERT3U(err, ==, 0); 2675 mutex_exit(&zp->z_acl_lock); 2676 } 2677 2678 if (attrzp) 2679 mutex_enter(&attrzp->z_lock); 2680 2681 if (mask & AT_UID) { 2682 pzp->zp_uid = zfs_fuid_create(zfsvfs, 2683 vap->va_uid, cr, ZFS_OWNER, tx, &fuidp); 2684 if (attrzp) { 2685 attrzp->z_phys->zp_uid = zfs_fuid_create(zfsvfs, 2686 vap->va_uid, cr, ZFS_OWNER, tx, &fuidp); 2687 } 2688 } 2689 2690 if (mask & AT_GID) { 2691 pzp->zp_gid = zfs_fuid_create(zfsvfs, vap->va_gid, 2692 cr, ZFS_GROUP, tx, &fuidp); 2693 if (attrzp) 2694 attrzp->z_phys->zp_gid = zfs_fuid_create(zfsvfs, 2695 vap->va_gid, cr, ZFS_GROUP, tx, &fuidp); 2696 } 2697 2698 if (aclp) 2699 zfs_acl_free(aclp); 2700 2701 if (attrzp) 2702 mutex_exit(&attrzp->z_lock); 2703 2704 if (mask & AT_ATIME) 2705 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2706 2707 if (mask & AT_MTIME) 2708 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2709 2710 if (mask & AT_SIZE) 2711 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2712 else if (mask != 0) 2713 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2714 /* 2715 * Do this after setting timestamps to prevent timestamp 2716 * update from toggling bit 2717 */ 2718 2719 if (xoap && (mask & AT_XVATTR)) { 2720 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 2721 size_t len; 2722 dmu_object_info_t doi; 2723 2724 ASSERT(vp->v_type == VREG); 2725 2726 /* Grow the bonus buffer if necessary. */ 2727 dmu_object_info_from_db(zp->z_dbuf, &doi); 2728 len = sizeof (xoap->xoa_av_scanstamp) + 2729 sizeof (znode_phys_t); 2730 if (len > doi.doi_bonus_size) 2731 VERIFY(dmu_set_bonus(zp->z_dbuf, len, tx) == 0); 2732 } 2733 zfs_xvattr_set(zp, xvap); 2734 } 2735 2736 if (mask != 0) 2737 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 2738 2739 if (fuidp) 2740 zfs_fuid_info_free(fuidp); 2741 mutex_exit(&zp->z_lock); 2742 2743 if (attrzp) 2744 VN_RELE(ZTOV(attrzp)); 2745 2746 dmu_tx_commit(tx); 2747 2748 ZFS_EXIT(zfsvfs); 2749 return (err); 2750 } 2751 2752 typedef struct zfs_zlock { 2753 krwlock_t *zl_rwlock; /* lock we acquired */ 2754 znode_t *zl_znode; /* znode we held */ 2755 struct zfs_zlock *zl_next; /* next in list */ 2756 } zfs_zlock_t; 2757 2758 /* 2759 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2760 */ 2761 static void 2762 zfs_rename_unlock(zfs_zlock_t **zlpp) 2763 { 2764 zfs_zlock_t *zl; 2765 2766 while ((zl = *zlpp) != NULL) { 2767 if (zl->zl_znode != NULL) 2768 VN_RELE(ZTOV(zl->zl_znode)); 2769 rw_exit(zl->zl_rwlock); 2770 *zlpp = zl->zl_next; 2771 kmem_free(zl, sizeof (*zl)); 2772 } 2773 } 2774 2775 /* 2776 * Search back through the directory tree, using the ".." entries. 2777 * Lock each directory in the chain to prevent concurrent renames. 2778 * Fail any attempt to move a directory into one of its own descendants. 2779 * XXX - z_parent_lock can overlap with map or grow locks 2780 */ 2781 static int 2782 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2783 { 2784 zfs_zlock_t *zl; 2785 znode_t *zp = tdzp; 2786 uint64_t rootid = zp->z_zfsvfs->z_root; 2787 uint64_t *oidp = &zp->z_id; 2788 krwlock_t *rwlp = &szp->z_parent_lock; 2789 krw_t rw = RW_WRITER; 2790 2791 /* 2792 * First pass write-locks szp and compares to zp->z_id. 2793 * Later passes read-lock zp and compare to zp->z_parent. 2794 */ 2795 do { 2796 if (!rw_tryenter(rwlp, rw)) { 2797 /* 2798 * Another thread is renaming in this path. 2799 * Note that if we are a WRITER, we don't have any 2800 * parent_locks held yet. 2801 */ 2802 if (rw == RW_READER && zp->z_id > szp->z_id) { 2803 /* 2804 * Drop our locks and restart 2805 */ 2806 zfs_rename_unlock(&zl); 2807 *zlpp = NULL; 2808 zp = tdzp; 2809 oidp = &zp->z_id; 2810 rwlp = &szp->z_parent_lock; 2811 rw = RW_WRITER; 2812 continue; 2813 } else { 2814 /* 2815 * Wait for other thread to drop its locks 2816 */ 2817 rw_enter(rwlp, rw); 2818 } 2819 } 2820 2821 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 2822 zl->zl_rwlock = rwlp; 2823 zl->zl_znode = NULL; 2824 zl->zl_next = *zlpp; 2825 *zlpp = zl; 2826 2827 if (*oidp == szp->z_id) /* We're a descendant of szp */ 2828 return (EINVAL); 2829 2830 if (*oidp == rootid) /* We've hit the top */ 2831 return (0); 2832 2833 if (rw == RW_READER) { /* i.e. not the first pass */ 2834 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 2835 if (error) 2836 return (error); 2837 zl->zl_znode = zp; 2838 } 2839 oidp = &zp->z_phys->zp_parent; 2840 rwlp = &zp->z_parent_lock; 2841 rw = RW_READER; 2842 2843 } while (zp->z_id != sdzp->z_id); 2844 2845 return (0); 2846 } 2847 2848 /* 2849 * Move an entry from the provided source directory to the target 2850 * directory. Change the entry name as indicated. 2851 * 2852 * IN: sdvp - Source directory containing the "old entry". 2853 * snm - Old entry name. 2854 * tdvp - Target directory to contain the "new entry". 2855 * tnm - New entry name. 2856 * cr - credentials of caller. 2857 * ct - caller context 2858 * flags - case flags 2859 * 2860 * RETURN: 0 if success 2861 * error code if failure 2862 * 2863 * Timestamps: 2864 * sdvp,tdvp - ctime|mtime updated 2865 */ 2866 /*ARGSUSED*/ 2867 static int 2868 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 2869 caller_context_t *ct, int flags) 2870 { 2871 znode_t *tdzp, *szp, *tzp; 2872 znode_t *sdzp = VTOZ(sdvp); 2873 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 2874 zilog_t *zilog; 2875 vnode_t *realvp; 2876 zfs_dirlock_t *sdl, *tdl; 2877 dmu_tx_t *tx; 2878 zfs_zlock_t *zl; 2879 int cmp, serr, terr; 2880 int error = 0; 2881 int zflg = 0; 2882 2883 ZFS_ENTER(zfsvfs); 2884 ZFS_VERIFY_ZP(sdzp); 2885 zilog = zfsvfs->z_log; 2886 2887 /* 2888 * Make sure we have the real vp for the target directory. 2889 */ 2890 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 2891 tdvp = realvp; 2892 2893 if (tdvp->v_vfsp != sdvp->v_vfsp) { 2894 ZFS_EXIT(zfsvfs); 2895 return (EXDEV); 2896 } 2897 2898 tdzp = VTOZ(tdvp); 2899 ZFS_VERIFY_ZP(tdzp); 2900 if (zfsvfs->z_utf8 && u8_validate(tnm, 2901 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 2902 ZFS_EXIT(zfsvfs); 2903 return (EILSEQ); 2904 } 2905 2906 if (flags & FIGNORECASE) 2907 zflg |= ZCILOOK; 2908 2909 top: 2910 szp = NULL; 2911 tzp = NULL; 2912 zl = NULL; 2913 2914 /* 2915 * This is to prevent the creation of links into attribute space 2916 * by renaming a linked file into/outof an attribute directory. 2917 * See the comment in zfs_link() for why this is considered bad. 2918 */ 2919 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 2920 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 2921 ZFS_EXIT(zfsvfs); 2922 return (EINVAL); 2923 } 2924 2925 /* 2926 * Lock source and target directory entries. To prevent deadlock, 2927 * a lock ordering must be defined. We lock the directory with 2928 * the smallest object id first, or if it's a tie, the one with 2929 * the lexically first name. 2930 */ 2931 if (sdzp->z_id < tdzp->z_id) { 2932 cmp = -1; 2933 } else if (sdzp->z_id > tdzp->z_id) { 2934 cmp = 1; 2935 } else { 2936 /* 2937 * First compare the two name arguments without 2938 * considering any case folding. 2939 */ 2940 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 2941 2942 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 2943 ASSERT(error == 0 || !zfsvfs->z_utf8); 2944 if (cmp == 0) { 2945 /* 2946 * POSIX: "If the old argument and the new argument 2947 * both refer to links to the same existing file, 2948 * the rename() function shall return successfully 2949 * and perform no other action." 2950 */ 2951 ZFS_EXIT(zfsvfs); 2952 return (0); 2953 } 2954 /* 2955 * If the file system is case-folding, then we may 2956 * have some more checking to do. A case-folding file 2957 * system is either supporting mixed case sensitivity 2958 * access or is completely case-insensitive. Note 2959 * that the file system is always case preserving. 2960 * 2961 * In mixed sensitivity mode case sensitive behavior 2962 * is the default. FIGNORECASE must be used to 2963 * explicitly request case insensitive behavior. 2964 * 2965 * If the source and target names provided differ only 2966 * by case (e.g., a request to rename 'tim' to 'Tim'), 2967 * we will treat this as a special case in the 2968 * case-insensitive mode: as long as the source name 2969 * is an exact match, we will allow this to proceed as 2970 * a name-change request. 2971 */ 2972 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 2973 (zfsvfs->z_case == ZFS_CASE_MIXED && 2974 flags & FIGNORECASE)) && 2975 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 2976 &error) == 0) { 2977 /* 2978 * case preserving rename request, require exact 2979 * name matches 2980 */ 2981 zflg |= ZCIEXACT; 2982 zflg &= ~ZCILOOK; 2983 } 2984 } 2985 2986 if (cmp < 0) { 2987 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 2988 ZEXISTS | zflg, NULL, NULL); 2989 terr = zfs_dirent_lock(&tdl, 2990 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 2991 } else { 2992 terr = zfs_dirent_lock(&tdl, 2993 tdzp, tnm, &tzp, zflg, NULL, NULL); 2994 serr = zfs_dirent_lock(&sdl, 2995 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 2996 NULL, NULL); 2997 } 2998 2999 if (serr) { 3000 /* 3001 * Source entry invalid or not there. 3002 */ 3003 if (!terr) { 3004 zfs_dirent_unlock(tdl); 3005 if (tzp) 3006 VN_RELE(ZTOV(tzp)); 3007 } 3008 if (strcmp(snm, "..") == 0) 3009 serr = EINVAL; 3010 ZFS_EXIT(zfsvfs); 3011 return (serr); 3012 } 3013 if (terr) { 3014 zfs_dirent_unlock(sdl); 3015 VN_RELE(ZTOV(szp)); 3016 if (strcmp(tnm, "..") == 0) 3017 terr = EINVAL; 3018 ZFS_EXIT(zfsvfs); 3019 return (terr); 3020 } 3021 3022 /* 3023 * Must have write access at the source to remove the old entry 3024 * and write access at the target to create the new entry. 3025 * Note that if target and source are the same, this can be 3026 * done in a single check. 3027 */ 3028 3029 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3030 goto out; 3031 3032 if (ZTOV(szp)->v_type == VDIR) { 3033 /* 3034 * Check to make sure rename is valid. 3035 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3036 */ 3037 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3038 goto out; 3039 } 3040 3041 /* 3042 * Does target exist? 3043 */ 3044 if (tzp) { 3045 /* 3046 * Source and target must be the same type. 3047 */ 3048 if (ZTOV(szp)->v_type == VDIR) { 3049 if (ZTOV(tzp)->v_type != VDIR) { 3050 error = ENOTDIR; 3051 goto out; 3052 } 3053 } else { 3054 if (ZTOV(tzp)->v_type == VDIR) { 3055 error = EISDIR; 3056 goto out; 3057 } 3058 } 3059 /* 3060 * POSIX dictates that when the source and target 3061 * entries refer to the same file object, rename 3062 * must do nothing and exit without error. 3063 */ 3064 if (szp->z_id == tzp->z_id) { 3065 error = 0; 3066 goto out; 3067 } 3068 } 3069 3070 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3071 if (tzp) 3072 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3073 3074 /* 3075 * notify the target directory if it is not the same 3076 * as source directory. 3077 */ 3078 if (tdvp != sdvp) { 3079 vnevent_rename_dest_dir(tdvp, ct); 3080 } 3081 3082 tx = dmu_tx_create(zfsvfs->z_os); 3083 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 3084 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 3085 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3086 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3087 if (sdzp != tdzp) 3088 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 3089 if (tzp) 3090 dmu_tx_hold_bonus(tx, tzp->z_id); /* parent changes */ 3091 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3092 error = dmu_tx_assign(tx, zfsvfs->z_assign); 3093 if (error) { 3094 if (zl != NULL) 3095 zfs_rename_unlock(&zl); 3096 zfs_dirent_unlock(sdl); 3097 zfs_dirent_unlock(tdl); 3098 VN_RELE(ZTOV(szp)); 3099 if (tzp) 3100 VN_RELE(ZTOV(tzp)); 3101 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3102 dmu_tx_wait(tx); 3103 dmu_tx_abort(tx); 3104 goto top; 3105 } 3106 dmu_tx_abort(tx); 3107 ZFS_EXIT(zfsvfs); 3108 return (error); 3109 } 3110 3111 if (tzp) /* Attempt to remove the existing target */ 3112 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3113 3114 if (error == 0) { 3115 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3116 if (error == 0) { 3117 szp->z_phys->zp_flags |= ZFS_AV_MODIFIED; 3118 3119 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3120 ASSERT(error == 0); 3121 3122 zfs_log_rename(zilog, tx, 3123 TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0), 3124 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); 3125 } 3126 } 3127 3128 dmu_tx_commit(tx); 3129 out: 3130 if (zl != NULL) 3131 zfs_rename_unlock(&zl); 3132 3133 zfs_dirent_unlock(sdl); 3134 zfs_dirent_unlock(tdl); 3135 3136 VN_RELE(ZTOV(szp)); 3137 if (tzp) 3138 VN_RELE(ZTOV(tzp)); 3139 3140 ZFS_EXIT(zfsvfs); 3141 return (error); 3142 } 3143 3144 /* 3145 * Insert the indicated symbolic reference entry into the directory. 3146 * 3147 * IN: dvp - Directory to contain new symbolic link. 3148 * link - Name for new symlink entry. 3149 * vap - Attributes of new entry. 3150 * target - Target path of new symlink. 3151 * cr - credentials of caller. 3152 * ct - caller context 3153 * flags - case flags 3154 * 3155 * RETURN: 0 if success 3156 * error code if failure 3157 * 3158 * Timestamps: 3159 * dvp - ctime|mtime updated 3160 */ 3161 /*ARGSUSED*/ 3162 static int 3163 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3164 caller_context_t *ct, int flags) 3165 { 3166 znode_t *zp, *dzp = VTOZ(dvp); 3167 zfs_dirlock_t *dl; 3168 dmu_tx_t *tx; 3169 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3170 zilog_t *zilog; 3171 int len = strlen(link); 3172 int error; 3173 int zflg = ZNEW; 3174 zfs_fuid_info_t *fuidp = NULL; 3175 3176 ASSERT(vap->va_type == VLNK); 3177 3178 ZFS_ENTER(zfsvfs); 3179 ZFS_VERIFY_ZP(dzp); 3180 zilog = zfsvfs->z_log; 3181 3182 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3183 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3184 ZFS_EXIT(zfsvfs); 3185 return (EILSEQ); 3186 } 3187 if (flags & FIGNORECASE) 3188 zflg |= ZCILOOK; 3189 top: 3190 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3191 ZFS_EXIT(zfsvfs); 3192 return (error); 3193 } 3194 3195 if (len > MAXPATHLEN) { 3196 ZFS_EXIT(zfsvfs); 3197 return (ENAMETOOLONG); 3198 } 3199 3200 /* 3201 * Attempt to lock directory; fail if entry already exists. 3202 */ 3203 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3204 if (error) { 3205 ZFS_EXIT(zfsvfs); 3206 return (error); 3207 } 3208 3209 tx = dmu_tx_create(zfsvfs->z_os); 3210 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3211 dmu_tx_hold_bonus(tx, dzp->z_id); 3212 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3213 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 3214 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 3215 if (IS_EPHEMERAL(crgetuid(cr)) || IS_EPHEMERAL(crgetgid(cr))) { 3216 if (zfsvfs->z_fuid_obj == 0) { 3217 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 3218 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3219 FUID_SIZE_ESTIMATE(zfsvfs)); 3220 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 3221 } else { 3222 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 3223 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 3224 FUID_SIZE_ESTIMATE(zfsvfs)); 3225 } 3226 } 3227 error = dmu_tx_assign(tx, zfsvfs->z_assign); 3228 if (error) { 3229 zfs_dirent_unlock(dl); 3230 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3231 dmu_tx_wait(tx); 3232 dmu_tx_abort(tx); 3233 goto top; 3234 } 3235 dmu_tx_abort(tx); 3236 ZFS_EXIT(zfsvfs); 3237 return (error); 3238 } 3239 3240 dmu_buf_will_dirty(dzp->z_dbuf, tx); 3241 3242 /* 3243 * Create a new object for the symlink. 3244 * Put the link content into bonus buffer if it will fit; 3245 * otherwise, store it just like any other file data. 3246 */ 3247 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 3248 zfs_mknode(dzp, vap, tx, cr, 0, &zp, len, NULL, &fuidp); 3249 if (len != 0) 3250 bcopy(link, zp->z_phys + 1, len); 3251 } else { 3252 dmu_buf_t *dbp; 3253 3254 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, NULL, &fuidp); 3255 /* 3256 * Nothing can access the znode yet so no locking needed 3257 * for growing the znode's blocksize. 3258 */ 3259 zfs_grow_blocksize(zp, len, tx); 3260 3261 VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, 3262 zp->z_id, 0, FTAG, &dbp)); 3263 dmu_buf_will_dirty(dbp, tx); 3264 3265 ASSERT3U(len, <=, dbp->db_size); 3266 bcopy(link, dbp->db_data, len); 3267 dmu_buf_rele(dbp, FTAG); 3268 } 3269 zp->z_phys->zp_size = len; 3270 3271 /* 3272 * Insert the new object into the directory. 3273 */ 3274 (void) zfs_link_create(dl, zp, tx, ZNEW); 3275 out: 3276 if (error == 0) { 3277 uint64_t txtype = TX_SYMLINK; 3278 if (flags & FIGNORECASE) 3279 txtype |= TX_CI; 3280 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3281 } 3282 if (fuidp) 3283 zfs_fuid_info_free(fuidp); 3284 3285 dmu_tx_commit(tx); 3286 3287 zfs_dirent_unlock(dl); 3288 3289 VN_RELE(ZTOV(zp)); 3290 3291 ZFS_EXIT(zfsvfs); 3292 return (error); 3293 } 3294 3295 /* 3296 * Return, in the buffer contained in the provided uio structure, 3297 * the symbolic path referred to by vp. 3298 * 3299 * IN: vp - vnode of symbolic link. 3300 * uoip - structure to contain the link path. 3301 * cr - credentials of caller. 3302 * ct - caller context 3303 * 3304 * OUT: uio - structure to contain the link path. 3305 * 3306 * RETURN: 0 if success 3307 * error code if failure 3308 * 3309 * Timestamps: 3310 * vp - atime updated 3311 */ 3312 /* ARGSUSED */ 3313 static int 3314 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3315 { 3316 znode_t *zp = VTOZ(vp); 3317 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3318 size_t bufsz; 3319 int error; 3320 3321 ZFS_ENTER(zfsvfs); 3322 ZFS_VERIFY_ZP(zp); 3323 3324 bufsz = (size_t)zp->z_phys->zp_size; 3325 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 3326 error = uiomove(zp->z_phys + 1, 3327 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3328 } else { 3329 dmu_buf_t *dbp; 3330 error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp); 3331 if (error) { 3332 ZFS_EXIT(zfsvfs); 3333 return (error); 3334 } 3335 error = uiomove(dbp->db_data, 3336 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3337 dmu_buf_rele(dbp, FTAG); 3338 } 3339 3340 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3341 ZFS_EXIT(zfsvfs); 3342 return (error); 3343 } 3344 3345 /* 3346 * Insert a new entry into directory tdvp referencing svp. 3347 * 3348 * IN: tdvp - Directory to contain new entry. 3349 * svp - vnode of new entry. 3350 * name - name of new entry. 3351 * cr - credentials of caller. 3352 * ct - caller context 3353 * 3354 * RETURN: 0 if success 3355 * error code if failure 3356 * 3357 * Timestamps: 3358 * tdvp - ctime|mtime updated 3359 * svp - ctime updated 3360 */ 3361 /* ARGSUSED */ 3362 static int 3363 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3364 caller_context_t *ct, int flags) 3365 { 3366 znode_t *dzp = VTOZ(tdvp); 3367 znode_t *tzp, *szp; 3368 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3369 zilog_t *zilog; 3370 zfs_dirlock_t *dl; 3371 dmu_tx_t *tx; 3372 vnode_t *realvp; 3373 int error; 3374 int zf = ZNEW; 3375 uid_t owner; 3376 3377 ASSERT(tdvp->v_type == VDIR); 3378 3379 ZFS_ENTER(zfsvfs); 3380 ZFS_VERIFY_ZP(dzp); 3381 zilog = zfsvfs->z_log; 3382 3383 if (VOP_REALVP(svp, &realvp, ct) == 0) 3384 svp = realvp; 3385 3386 if (svp->v_vfsp != tdvp->v_vfsp) { 3387 ZFS_EXIT(zfsvfs); 3388 return (EXDEV); 3389 } 3390 szp = VTOZ(svp); 3391 ZFS_VERIFY_ZP(szp); 3392 3393 if (zfsvfs->z_utf8 && u8_validate(name, 3394 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3395 ZFS_EXIT(zfsvfs); 3396 return (EILSEQ); 3397 } 3398 if (flags & FIGNORECASE) 3399 zf |= ZCILOOK; 3400 3401 top: 3402 /* 3403 * We do not support links between attributes and non-attributes 3404 * because of the potential security risk of creating links 3405 * into "normal" file space in order to circumvent restrictions 3406 * imposed in attribute space. 3407 */ 3408 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 3409 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 3410 ZFS_EXIT(zfsvfs); 3411 return (EINVAL); 3412 } 3413 3414 /* 3415 * POSIX dictates that we return EPERM here. 3416 * Better choices include ENOTSUP or EISDIR. 3417 */ 3418 if (svp->v_type == VDIR) { 3419 ZFS_EXIT(zfsvfs); 3420 return (EPERM); 3421 } 3422 3423 zfs_fuid_map_id(zfsvfs, szp->z_phys->zp_uid, cr, ZFS_OWNER, &owner); 3424 if (owner != crgetuid(cr) && 3425 secpolicy_basic_link(cr) != 0) { 3426 ZFS_EXIT(zfsvfs); 3427 return (EPERM); 3428 } 3429 3430 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3431 ZFS_EXIT(zfsvfs); 3432 return (error); 3433 } 3434 3435 /* 3436 * Attempt to lock directory; fail if entry already exists. 3437 */ 3438 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 3439 if (error) { 3440 ZFS_EXIT(zfsvfs); 3441 return (error); 3442 } 3443 3444 tx = dmu_tx_create(zfsvfs->z_os); 3445 dmu_tx_hold_bonus(tx, szp->z_id); 3446 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3447 error = dmu_tx_assign(tx, zfsvfs->z_assign); 3448 if (error) { 3449 zfs_dirent_unlock(dl); 3450 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3451 dmu_tx_wait(tx); 3452 dmu_tx_abort(tx); 3453 goto top; 3454 } 3455 dmu_tx_abort(tx); 3456 ZFS_EXIT(zfsvfs); 3457 return (error); 3458 } 3459 3460 error = zfs_link_create(dl, szp, tx, 0); 3461 3462 if (error == 0) { 3463 uint64_t txtype = TX_LINK; 3464 if (flags & FIGNORECASE) 3465 txtype |= TX_CI; 3466 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 3467 } 3468 3469 dmu_tx_commit(tx); 3470 3471 zfs_dirent_unlock(dl); 3472 3473 if (error == 0) { 3474 vnevent_link(svp, ct); 3475 } 3476 3477 ZFS_EXIT(zfsvfs); 3478 return (error); 3479 } 3480 3481 /* 3482 * zfs_null_putapage() is used when the file system has been force 3483 * unmounted. It just drops the pages. 3484 */ 3485 /* ARGSUSED */ 3486 static int 3487 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3488 size_t *lenp, int flags, cred_t *cr) 3489 { 3490 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 3491 return (0); 3492 } 3493 3494 /* 3495 * Push a page out to disk, klustering if possible. 3496 * 3497 * IN: vp - file to push page to. 3498 * pp - page to push. 3499 * flags - additional flags. 3500 * cr - credentials of caller. 3501 * 3502 * OUT: offp - start of range pushed. 3503 * lenp - len of range pushed. 3504 * 3505 * RETURN: 0 if success 3506 * error code if failure 3507 * 3508 * NOTE: callers must have locked the page to be pushed. On 3509 * exit, the page (and all other pages in the kluster) must be 3510 * unlocked. 3511 */ 3512 /* ARGSUSED */ 3513 static int 3514 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3515 size_t *lenp, int flags, cred_t *cr) 3516 { 3517 znode_t *zp = VTOZ(vp); 3518 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3519 zilog_t *zilog = zfsvfs->z_log; 3520 dmu_tx_t *tx; 3521 rl_t *rl; 3522 u_offset_t off, koff; 3523 size_t len, klen; 3524 uint64_t filesz; 3525 int err; 3526 3527 filesz = zp->z_phys->zp_size; 3528 off = pp->p_offset; 3529 len = PAGESIZE; 3530 /* 3531 * If our blocksize is bigger than the page size, try to kluster 3532 * muiltiple pages so that we write a full block (thus avoiding 3533 * a read-modify-write). 3534 */ 3535 if (off < filesz && zp->z_blksz > PAGESIZE) { 3536 if (!ISP2(zp->z_blksz)) { 3537 /* Only one block in the file. */ 3538 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3539 koff = 0; 3540 } else { 3541 klen = zp->z_blksz; 3542 koff = P2ALIGN(off, (u_offset_t)klen); 3543 } 3544 ASSERT(koff <= filesz); 3545 if (koff + klen > filesz) 3546 klen = P2ROUNDUP(filesz - koff, (uint64_t)PAGESIZE); 3547 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 3548 } 3549 ASSERT3U(btop(len), ==, btopr(len)); 3550 top: 3551 rl = zfs_range_lock(zp, off, len, RL_WRITER); 3552 /* 3553 * Can't push pages past end-of-file. 3554 */ 3555 filesz = zp->z_phys->zp_size; 3556 if (off >= filesz) { 3557 /* ignore all pages */ 3558 err = 0; 3559 goto out; 3560 } else if (off + len > filesz) { 3561 int npages = btopr(filesz - off); 3562 page_t *trunc; 3563 3564 page_list_break(&pp, &trunc, npages); 3565 /* ignore pages past end of file */ 3566 if (trunc) 3567 pvn_write_done(trunc, flags); 3568 len = filesz - off; 3569 } 3570 3571 tx = dmu_tx_create(zfsvfs->z_os); 3572 dmu_tx_hold_write(tx, zp->z_id, off, len); 3573 dmu_tx_hold_bonus(tx, zp->z_id); 3574 err = dmu_tx_assign(tx, zfsvfs->z_assign); 3575 if (err != 0) { 3576 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3577 zfs_range_unlock(rl); 3578 dmu_tx_wait(tx); 3579 dmu_tx_abort(tx); 3580 err = 0; 3581 goto top; 3582 } 3583 dmu_tx_abort(tx); 3584 goto out; 3585 } 3586 3587 if (zp->z_blksz <= PAGESIZE) { 3588 caddr_t va = ppmapin(pp, PROT_READ, (caddr_t)-1); 3589 ASSERT3U(len, <=, PAGESIZE); 3590 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 3591 ppmapout(va); 3592 } else { 3593 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 3594 } 3595 3596 if (err == 0) { 3597 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 3598 zfs_log_write(zilog, tx, TX_WRITE, zp, off, len, 0); 3599 dmu_tx_commit(tx); 3600 } 3601 3602 out: 3603 zfs_range_unlock(rl); 3604 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 3605 if (offp) 3606 *offp = off; 3607 if (lenp) 3608 *lenp = len; 3609 3610 return (err); 3611 } 3612 3613 /* 3614 * Copy the portion of the file indicated from pages into the file. 3615 * The pages are stored in a page list attached to the files vnode. 3616 * 3617 * IN: vp - vnode of file to push page data to. 3618 * off - position in file to put data. 3619 * len - amount of data to write. 3620 * flags - flags to control the operation. 3621 * cr - credentials of caller. 3622 * ct - caller context. 3623 * 3624 * RETURN: 0 if success 3625 * error code if failure 3626 * 3627 * Timestamps: 3628 * vp - ctime|mtime updated 3629 */ 3630 /*ARGSUSED*/ 3631 static int 3632 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 3633 caller_context_t *ct) 3634 { 3635 znode_t *zp = VTOZ(vp); 3636 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3637 page_t *pp; 3638 size_t io_len; 3639 u_offset_t io_off; 3640 uint64_t filesz; 3641 int error = 0; 3642 3643 ZFS_ENTER(zfsvfs); 3644 ZFS_VERIFY_ZP(zp); 3645 3646 if (len == 0) { 3647 /* 3648 * Search the entire vp list for pages >= off. 3649 */ 3650 error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage, 3651 flags, cr); 3652 goto out; 3653 } 3654 3655 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 3656 if (off > filesz) { 3657 /* past end of file */ 3658 ZFS_EXIT(zfsvfs); 3659 return (0); 3660 } 3661 3662 len = MIN(len, filesz - off); 3663 3664 for (io_off = off; io_off < off + len; io_off += io_len) { 3665 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 3666 pp = page_lookup(vp, io_off, 3667 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 3668 } else { 3669 pp = page_lookup_nowait(vp, io_off, 3670 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 3671 } 3672 3673 if (pp != NULL && pvn_getdirty(pp, flags)) { 3674 int err; 3675 3676 /* 3677 * Found a dirty page to push 3678 */ 3679 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 3680 if (err) 3681 error = err; 3682 } else { 3683 io_len = PAGESIZE; 3684 } 3685 } 3686 out: 3687 if ((flags & B_ASYNC) == 0) 3688 zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id); 3689 ZFS_EXIT(zfsvfs); 3690 return (error); 3691 } 3692 3693 /*ARGSUSED*/ 3694 void 3695 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 3696 { 3697 znode_t *zp = VTOZ(vp); 3698 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3699 int error; 3700 3701 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 3702 if (zp->z_dbuf == NULL) { 3703 /* 3704 * The fs has been unmounted, or we did a 3705 * suspend/resume and this file no longer exists. 3706 */ 3707 if (vn_has_cached_data(vp)) { 3708 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 3709 B_INVAL, cr); 3710 } 3711 3712 mutex_enter(&zp->z_lock); 3713 vp->v_count = 0; /* count arrives as 1 */ 3714 mutex_exit(&zp->z_lock); 3715 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3716 zfs_znode_free(zp); 3717 return; 3718 } 3719 3720 /* 3721 * Attempt to push any data in the page cache. If this fails 3722 * we will get kicked out later in zfs_zinactive(). 3723 */ 3724 if (vn_has_cached_data(vp)) { 3725 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 3726 cr); 3727 } 3728 3729 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 3730 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 3731 3732 dmu_tx_hold_bonus(tx, zp->z_id); 3733 error = dmu_tx_assign(tx, TXG_WAIT); 3734 if (error) { 3735 dmu_tx_abort(tx); 3736 } else { 3737 dmu_buf_will_dirty(zp->z_dbuf, tx); 3738 mutex_enter(&zp->z_lock); 3739 zp->z_atime_dirty = 0; 3740 mutex_exit(&zp->z_lock); 3741 dmu_tx_commit(tx); 3742 } 3743 } 3744 3745 zfs_zinactive(zp); 3746 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3747 } 3748 3749 /* 3750 * Bounds-check the seek operation. 3751 * 3752 * IN: vp - vnode seeking within 3753 * ooff - old file offset 3754 * noffp - pointer to new file offset 3755 * ct - caller context 3756 * 3757 * RETURN: 0 if success 3758 * EINVAL if new offset invalid 3759 */ 3760 /* ARGSUSED */ 3761 static int 3762 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 3763 caller_context_t *ct) 3764 { 3765 if (vp->v_type == VDIR) 3766 return (0); 3767 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 3768 } 3769 3770 /* 3771 * Pre-filter the generic locking function to trap attempts to place 3772 * a mandatory lock on a memory mapped file. 3773 */ 3774 static int 3775 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 3776 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 3777 { 3778 znode_t *zp = VTOZ(vp); 3779 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3780 int error; 3781 3782 ZFS_ENTER(zfsvfs); 3783 ZFS_VERIFY_ZP(zp); 3784 3785 /* 3786 * We are following the UFS semantics with respect to mapcnt 3787 * here: If we see that the file is mapped already, then we will 3788 * return an error, but we don't worry about races between this 3789 * function and zfs_map(). 3790 */ 3791 if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) { 3792 ZFS_EXIT(zfsvfs); 3793 return (EAGAIN); 3794 } 3795 error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct); 3796 ZFS_EXIT(zfsvfs); 3797 return (error); 3798 } 3799 3800 /* 3801 * If we can't find a page in the cache, we will create a new page 3802 * and fill it with file data. For efficiency, we may try to fill 3803 * multiple pages at once (klustering). 3804 */ 3805 static int 3806 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 3807 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 3808 { 3809 znode_t *zp = VTOZ(vp); 3810 page_t *pp, *cur_pp; 3811 objset_t *os = zp->z_zfsvfs->z_os; 3812 caddr_t va; 3813 u_offset_t io_off, total; 3814 uint64_t oid = zp->z_id; 3815 size_t io_len; 3816 uint64_t filesz; 3817 int err; 3818 3819 /* 3820 * If we are only asking for a single page don't bother klustering. 3821 */ 3822 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 3823 if (off >= filesz) 3824 return (EFAULT); 3825 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 3826 io_off = off; 3827 io_len = PAGESIZE; 3828 pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr); 3829 } else { 3830 /* 3831 * Try to fill a kluster of pages (a blocks worth). 3832 */ 3833 size_t klen; 3834 u_offset_t koff; 3835 3836 if (!ISP2(zp->z_blksz)) { 3837 /* Only one block in the file. */ 3838 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3839 koff = 0; 3840 } else { 3841 /* 3842 * It would be ideal to align our offset to the 3843 * blocksize but doing so has resulted in some 3844 * strange application crashes. For now, we 3845 * leave the offset as is and only adjust the 3846 * length if we are off the end of the file. 3847 */ 3848 koff = off; 3849 klen = plsz; 3850 } 3851 ASSERT(koff <= filesz); 3852 if (koff + klen > filesz) 3853 klen = P2ROUNDUP(filesz, (uint64_t)PAGESIZE) - koff; 3854 ASSERT3U(off, >=, koff); 3855 ASSERT3U(off, <, koff + klen); 3856 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3857 &io_len, koff, klen, 0); 3858 } 3859 if (pp == NULL) { 3860 /* 3861 * Some other thread entered the page before us. 3862 * Return to zfs_getpage to retry the lookup. 3863 */ 3864 *pl = NULL; 3865 return (0); 3866 } 3867 3868 /* 3869 * Fill the pages in the kluster. 3870 */ 3871 cur_pp = pp; 3872 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 3873 ASSERT3U(io_off, ==, cur_pp->p_offset); 3874 va = ppmapin(cur_pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 3875 err = dmu_read(os, oid, io_off, PAGESIZE, va); 3876 ppmapout(va); 3877 if (err) { 3878 /* On error, toss the entire kluster */ 3879 pvn_read_done(pp, B_ERROR); 3880 return (err); 3881 } 3882 cur_pp = cur_pp->p_next; 3883 } 3884 out: 3885 /* 3886 * Fill in the page list array from the kluster. If 3887 * there are too many pages in the kluster, return 3888 * as many pages as possible starting from the desired 3889 * offset `off'. 3890 * NOTE: the page list will always be null terminated. 3891 */ 3892 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3893 3894 return (0); 3895 } 3896 3897 /* 3898 * Return pointers to the pages for the file region [off, off + len] 3899 * in the pl array. If plsz is greater than len, this function may 3900 * also return page pointers from before or after the specified 3901 * region (i.e. some region [off', off' + plsz]). These additional 3902 * pages are only returned if they are already in the cache, or were 3903 * created as part of a klustered read. 3904 * 3905 * IN: vp - vnode of file to get data from. 3906 * off - position in file to get data from. 3907 * len - amount of data to retrieve. 3908 * plsz - length of provided page list. 3909 * seg - segment to obtain pages for. 3910 * addr - virtual address of fault. 3911 * rw - mode of created pages. 3912 * cr - credentials of caller. 3913 * ct - caller context. 3914 * 3915 * OUT: protp - protection mode of created pages. 3916 * pl - list of pages created. 3917 * 3918 * RETURN: 0 if success 3919 * error code if failure 3920 * 3921 * Timestamps: 3922 * vp - atime updated 3923 */ 3924 /* ARGSUSED */ 3925 static int 3926 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3927 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3928 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 3929 { 3930 znode_t *zp = VTOZ(vp); 3931 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3932 page_t *pp, **pl0 = pl; 3933 int need_unlock = 0, err = 0; 3934 offset_t orig_off; 3935 3936 ZFS_ENTER(zfsvfs); 3937 ZFS_VERIFY_ZP(zp); 3938 3939 if (protp) 3940 *protp = PROT_ALL; 3941 3942 /* no faultahead (for now) */ 3943 if (pl == NULL) { 3944 ZFS_EXIT(zfsvfs); 3945 return (0); 3946 } 3947 3948 /* can't fault past EOF */ 3949 if (off >= zp->z_phys->zp_size) { 3950 ZFS_EXIT(zfsvfs); 3951 return (EFAULT); 3952 } 3953 orig_off = off; 3954 3955 /* 3956 * If we already own the lock, then we must be page faulting 3957 * in the middle of a write to this file (i.e., we are writing 3958 * to this file using data from a mapped region of the file). 3959 */ 3960 if (rw_owner(&zp->z_map_lock) != curthread) { 3961 rw_enter(&zp->z_map_lock, RW_WRITER); 3962 need_unlock = TRUE; 3963 } 3964 3965 /* 3966 * Loop through the requested range [off, off + len] looking 3967 * for pages. If we don't find a page, we will need to create 3968 * a new page and fill it with data from the file. 3969 */ 3970 while (len > 0) { 3971 if (plsz < PAGESIZE) 3972 break; 3973 if (pp = page_lookup(vp, off, SE_SHARED)) { 3974 *pl++ = pp; 3975 off += PAGESIZE; 3976 addr += PAGESIZE; 3977 len -= PAGESIZE; 3978 plsz -= PAGESIZE; 3979 } else { 3980 err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw); 3981 if (err) 3982 goto out; 3983 /* 3984 * klustering may have changed our region 3985 * to be block aligned. 3986 */ 3987 if (((pp = *pl) != 0) && (off != pp->p_offset)) { 3988 int delta = off - pp->p_offset; 3989 len += delta; 3990 off -= delta; 3991 addr -= delta; 3992 } 3993 while (*pl) { 3994 pl++; 3995 off += PAGESIZE; 3996 addr += PAGESIZE; 3997 plsz -= PAGESIZE; 3998 if (len > PAGESIZE) 3999 len -= PAGESIZE; 4000 else 4001 len = 0; 4002 } 4003 } 4004 } 4005 4006 /* 4007 * Fill out the page array with any pages already in the cache. 4008 */ 4009 while (plsz > 0) { 4010 pp = page_lookup_nowait(vp, off, SE_SHARED); 4011 if (pp == NULL) 4012 break; 4013 *pl++ = pp; 4014 off += PAGESIZE; 4015 plsz -= PAGESIZE; 4016 } 4017 4018 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4019 out: 4020 /* 4021 * We can't grab the range lock for the page as reader which would 4022 * stop truncation as this leads to deadlock. So we need to recheck 4023 * the file size. 4024 */ 4025 if (orig_off >= zp->z_phys->zp_size) 4026 err = EFAULT; 4027 if (err) { 4028 /* 4029 * Release any pages we have previously locked. 4030 */ 4031 while (pl > pl0) 4032 page_unlock(*--pl); 4033 } 4034 4035 *pl = NULL; 4036 4037 if (need_unlock) 4038 rw_exit(&zp->z_map_lock); 4039 4040 ZFS_EXIT(zfsvfs); 4041 return (err); 4042 } 4043 4044 /* 4045 * Request a memory map for a section of a file. This code interacts 4046 * with common code and the VM system as follows: 4047 * 4048 * common code calls mmap(), which ends up in smmap_common() 4049 * 4050 * this calls VOP_MAP(), which takes you into (say) zfs 4051 * 4052 * zfs_map() calls as_map(), passing segvn_create() as the callback 4053 * 4054 * segvn_create() creates the new segment and calls VOP_ADDMAP() 4055 * 4056 * zfs_addmap() updates z_mapcnt 4057 */ 4058 /*ARGSUSED*/ 4059 static int 4060 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4061 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4062 caller_context_t *ct) 4063 { 4064 znode_t *zp = VTOZ(vp); 4065 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4066 segvn_crargs_t vn_a; 4067 int error; 4068 4069 ZFS_ENTER(zfsvfs); 4070 ZFS_VERIFY_ZP(zp); 4071 4072 if ((prot & PROT_WRITE) && 4073 (zp->z_phys->zp_flags & (ZFS_IMMUTABLE | ZFS_READONLY | 4074 ZFS_APPENDONLY))) { 4075 ZFS_EXIT(zfsvfs); 4076 return (EPERM); 4077 } 4078 4079 if ((prot & (PROT_READ | PROT_EXEC)) && 4080 (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED)) { 4081 ZFS_EXIT(zfsvfs); 4082 return (EACCES); 4083 } 4084 4085 if (vp->v_flag & VNOMAP) { 4086 ZFS_EXIT(zfsvfs); 4087 return (ENOSYS); 4088 } 4089 4090 if (off < 0 || len > MAXOFFSET_T - off) { 4091 ZFS_EXIT(zfsvfs); 4092 return (ENXIO); 4093 } 4094 4095 if (vp->v_type != VREG) { 4096 ZFS_EXIT(zfsvfs); 4097 return (ENODEV); 4098 } 4099 4100 /* 4101 * If file is locked, disallow mapping. 4102 */ 4103 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) { 4104 ZFS_EXIT(zfsvfs); 4105 return (EAGAIN); 4106 } 4107 4108 as_rangelock(as); 4109 if ((flags & MAP_FIXED) == 0) { 4110 map_addr(addrp, len, off, 1, flags); 4111 if (*addrp == NULL) { 4112 as_rangeunlock(as); 4113 ZFS_EXIT(zfsvfs); 4114 return (ENOMEM); 4115 } 4116 } else { 4117 /* 4118 * User specified address - blow away any previous mappings 4119 */ 4120 (void) as_unmap(as, *addrp, len); 4121 } 4122 4123 vn_a.vp = vp; 4124 vn_a.offset = (u_offset_t)off; 4125 vn_a.type = flags & MAP_TYPE; 4126 vn_a.prot = prot; 4127 vn_a.maxprot = maxprot; 4128 vn_a.cred = cr; 4129 vn_a.amp = NULL; 4130 vn_a.flags = flags & ~MAP_TYPE; 4131 vn_a.szc = 0; 4132 vn_a.lgrp_mem_policy_flags = 0; 4133 4134 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4135 4136 as_rangeunlock(as); 4137 ZFS_EXIT(zfsvfs); 4138 return (error); 4139 } 4140 4141 /* ARGSUSED */ 4142 static int 4143 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4144 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4145 caller_context_t *ct) 4146 { 4147 uint64_t pages = btopr(len); 4148 4149 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4150 return (0); 4151 } 4152 4153 /* 4154 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4155 * more accurate mtime for the associated file. Since we don't have a way of 4156 * detecting when the data was actually modified, we have to resort to 4157 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4158 * last page is pushed. The problem occurs when the msync() call is omitted, 4159 * which by far the most common case: 4160 * 4161 * open() 4162 * mmap() 4163 * <modify memory> 4164 * munmap() 4165 * close() 4166 * <time lapse> 4167 * putpage() via fsflush 4168 * 4169 * If we wait until fsflush to come along, we can have a modification time that 4170 * is some arbitrary point in the future. In order to prevent this in the 4171 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4172 * torn down. 4173 */ 4174 /* ARGSUSED */ 4175 static int 4176 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4177 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4178 caller_context_t *ct) 4179 { 4180 uint64_t pages = btopr(len); 4181 4182 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4183 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4184 4185 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4186 vn_has_cached_data(vp)) 4187 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4188 4189 return (0); 4190 } 4191 4192 /* 4193 * Free or allocate space in a file. Currently, this function only 4194 * supports the `F_FREESP' command. However, this command is somewhat 4195 * misnamed, as its functionality includes the ability to allocate as 4196 * well as free space. 4197 * 4198 * IN: vp - vnode of file to free data in. 4199 * cmd - action to take (only F_FREESP supported). 4200 * bfp - section of file to free/alloc. 4201 * flag - current file open mode flags. 4202 * offset - current file offset. 4203 * cr - credentials of caller [UNUSED]. 4204 * ct - caller context. 4205 * 4206 * RETURN: 0 if success 4207 * error code if failure 4208 * 4209 * Timestamps: 4210 * vp - ctime|mtime updated 4211 */ 4212 /* ARGSUSED */ 4213 static int 4214 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4215 offset_t offset, cred_t *cr, caller_context_t *ct) 4216 { 4217 znode_t *zp = VTOZ(vp); 4218 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4219 uint64_t off, len; 4220 int error; 4221 4222 ZFS_ENTER(zfsvfs); 4223 ZFS_VERIFY_ZP(zp); 4224 4225 top: 4226 if (cmd != F_FREESP) { 4227 ZFS_EXIT(zfsvfs); 4228 return (EINVAL); 4229 } 4230 4231 if (error = convoff(vp, bfp, 0, offset)) { 4232 ZFS_EXIT(zfsvfs); 4233 return (error); 4234 } 4235 4236 if (bfp->l_len < 0) { 4237 ZFS_EXIT(zfsvfs); 4238 return (EINVAL); 4239 } 4240 4241 off = bfp->l_start; 4242 len = bfp->l_len; /* 0 means from off to end of file */ 4243 4244 do { 4245 error = zfs_freesp(zp, off, len, flag, TRUE); 4246 /* NB: we already did dmu_tx_wait() if necessary */ 4247 } while (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT); 4248 4249 ZFS_EXIT(zfsvfs); 4250 return (error); 4251 } 4252 4253 /*ARGSUSED*/ 4254 static int 4255 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4256 { 4257 znode_t *zp = VTOZ(vp); 4258 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4259 uint32_t gen; 4260 uint64_t object = zp->z_id; 4261 zfid_short_t *zfid; 4262 int size, i; 4263 4264 ZFS_ENTER(zfsvfs); 4265 ZFS_VERIFY_ZP(zp); 4266 gen = (uint32_t)zp->z_gen; 4267 4268 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4269 if (fidp->fid_len < size) { 4270 fidp->fid_len = size; 4271 ZFS_EXIT(zfsvfs); 4272 return (ENOSPC); 4273 } 4274 4275 zfid = (zfid_short_t *)fidp; 4276 4277 zfid->zf_len = size; 4278 4279 for (i = 0; i < sizeof (zfid->zf_object); i++) 4280 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4281 4282 /* Must have a non-zero generation number to distinguish from .zfs */ 4283 if (gen == 0) 4284 gen = 1; 4285 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4286 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4287 4288 if (size == LONG_FID_LEN) { 4289 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4290 zfid_long_t *zlfid; 4291 4292 zlfid = (zfid_long_t *)fidp; 4293 4294 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4295 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4296 4297 /* XXX - this should be the generation number for the objset */ 4298 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4299 zlfid->zf_setgen[i] = 0; 4300 } 4301 4302 ZFS_EXIT(zfsvfs); 4303 return (0); 4304 } 4305 4306 static int 4307 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4308 caller_context_t *ct) 4309 { 4310 znode_t *zp, *xzp; 4311 zfsvfs_t *zfsvfs; 4312 zfs_dirlock_t *dl; 4313 int error; 4314 4315 switch (cmd) { 4316 case _PC_LINK_MAX: 4317 *valp = ULONG_MAX; 4318 return (0); 4319 4320 case _PC_FILESIZEBITS: 4321 *valp = 64; 4322 return (0); 4323 4324 case _PC_XATTR_EXISTS: 4325 zp = VTOZ(vp); 4326 zfsvfs = zp->z_zfsvfs; 4327 ZFS_ENTER(zfsvfs); 4328 ZFS_VERIFY_ZP(zp); 4329 *valp = 0; 4330 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4331 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4332 if (error == 0) { 4333 zfs_dirent_unlock(dl); 4334 if (!zfs_dirempty(xzp)) 4335 *valp = 1; 4336 VN_RELE(ZTOV(xzp)); 4337 } else if (error == ENOENT) { 4338 /* 4339 * If there aren't extended attributes, it's the 4340 * same as having zero of them. 4341 */ 4342 error = 0; 4343 } 4344 ZFS_EXIT(zfsvfs); 4345 return (error); 4346 4347 case _PC_SATTR_ENABLED: 4348 case _PC_SATTR_EXISTS: 4349 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) && 4350 (vp->v_type == VREG || vp->v_type == VDIR); 4351 return (0); 4352 4353 case _PC_ACL_ENABLED: 4354 *valp = _ACL_ACE_ENABLED; 4355 return (0); 4356 4357 case _PC_MIN_HOLE_SIZE: 4358 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4359 return (0); 4360 4361 default: 4362 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4363 } 4364 } 4365 4366 /*ARGSUSED*/ 4367 static int 4368 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4369 caller_context_t *ct) 4370 { 4371 znode_t *zp = VTOZ(vp); 4372 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4373 int error; 4374 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4375 4376 ZFS_ENTER(zfsvfs); 4377 ZFS_VERIFY_ZP(zp); 4378 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4379 ZFS_EXIT(zfsvfs); 4380 4381 return (error); 4382 } 4383 4384 /*ARGSUSED*/ 4385 static int 4386 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4387 caller_context_t *ct) 4388 { 4389 znode_t *zp = VTOZ(vp); 4390 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4391 int error; 4392 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4393 4394 ZFS_ENTER(zfsvfs); 4395 ZFS_VERIFY_ZP(zp); 4396 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4397 ZFS_EXIT(zfsvfs); 4398 return (error); 4399 } 4400 4401 /* 4402 * Predeclare these here so that the compiler assumes that 4403 * this is an "old style" function declaration that does 4404 * not include arguments => we won't get type mismatch errors 4405 * in the initializations that follow. 4406 */ 4407 static int zfs_inval(); 4408 static int zfs_isdir(); 4409 4410 static int 4411 zfs_inval() 4412 { 4413 return (EINVAL); 4414 } 4415 4416 static int 4417 zfs_isdir() 4418 { 4419 return (EISDIR); 4420 } 4421 /* 4422 * Directory vnode operations template 4423 */ 4424 vnodeops_t *zfs_dvnodeops; 4425 const fs_operation_def_t zfs_dvnodeops_template[] = { 4426 VOPNAME_OPEN, { .vop_open = zfs_open }, 4427 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4428 VOPNAME_READ, { .error = zfs_isdir }, 4429 VOPNAME_WRITE, { .error = zfs_isdir }, 4430 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4431 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4432 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4433 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4434 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4435 VOPNAME_CREATE, { .vop_create = zfs_create }, 4436 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4437 VOPNAME_LINK, { .vop_link = zfs_link }, 4438 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4439 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 4440 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4441 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4442 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 4443 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4444 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4445 VOPNAME_FID, { .vop_fid = zfs_fid }, 4446 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4447 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4448 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4449 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4450 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4451 NULL, NULL 4452 }; 4453 4454 /* 4455 * Regular file vnode operations template 4456 */ 4457 vnodeops_t *zfs_fvnodeops; 4458 const fs_operation_def_t zfs_fvnodeops_template[] = { 4459 VOPNAME_OPEN, { .vop_open = zfs_open }, 4460 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4461 VOPNAME_READ, { .vop_read = zfs_read }, 4462 VOPNAME_WRITE, { .vop_write = zfs_write }, 4463 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4464 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4465 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4466 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4467 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4468 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4469 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4470 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4471 VOPNAME_FID, { .vop_fid = zfs_fid }, 4472 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4473 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 4474 VOPNAME_SPACE, { .vop_space = zfs_space }, 4475 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 4476 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 4477 VOPNAME_MAP, { .vop_map = zfs_map }, 4478 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 4479 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 4480 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4481 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4482 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4483 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4484 NULL, NULL 4485 }; 4486 4487 /* 4488 * Symbolic link vnode operations template 4489 */ 4490 vnodeops_t *zfs_symvnodeops; 4491 const fs_operation_def_t zfs_symvnodeops_template[] = { 4492 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4493 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4494 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4495 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4496 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 4497 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4498 VOPNAME_FID, { .vop_fid = zfs_fid }, 4499 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4500 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4501 NULL, NULL 4502 }; 4503 4504 /* 4505 * Extended attribute directory vnode operations template 4506 * This template is identical to the directory vnodes 4507 * operation template except for restricted operations: 4508 * VOP_MKDIR() 4509 * VOP_SYMLINK() 4510 * Note that there are other restrictions embedded in: 4511 * zfs_create() - restrict type to VREG 4512 * zfs_link() - no links into/out of attribute space 4513 * zfs_rename() - no moves into/out of attribute space 4514 */ 4515 vnodeops_t *zfs_xdvnodeops; 4516 const fs_operation_def_t zfs_xdvnodeops_template[] = { 4517 VOPNAME_OPEN, { .vop_open = zfs_open }, 4518 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4519 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4520 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4521 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4522 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4523 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4524 VOPNAME_CREATE, { .vop_create = zfs_create }, 4525 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4526 VOPNAME_LINK, { .vop_link = zfs_link }, 4527 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4528 VOPNAME_MKDIR, { .error = zfs_inval }, 4529 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4530 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4531 VOPNAME_SYMLINK, { .error = zfs_inval }, 4532 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4533 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4534 VOPNAME_FID, { .vop_fid = zfs_fid }, 4535 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4536 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4537 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4538 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4539 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4540 NULL, NULL 4541 }; 4542 4543 /* 4544 * Error vnode operations template 4545 */ 4546 vnodeops_t *zfs_evnodeops; 4547 const fs_operation_def_t zfs_evnodeops_template[] = { 4548 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4549 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4550 NULL, NULL 4551 }; 4552