1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/vfs.h> 35 #include <sys/vnode.h> 36 #include <sys/file.h> 37 #include <sys/stat.h> 38 #include <sys/kmem.h> 39 #include <sys/taskq.h> 40 #include <sys/uio.h> 41 #include <sys/vmsystm.h> 42 #include <sys/atomic.h> 43 #include <vm/seg_vn.h> 44 #include <vm/pvn.h> 45 #include <vm/as.h> 46 #include <sys/mman.h> 47 #include <sys/pathname.h> 48 #include <sys/cmn_err.h> 49 #include <sys/errno.h> 50 #include <sys/unistd.h> 51 #include <sys/zfs_vfsops.h> 52 #include <sys/zfs_dir.h> 53 #include <sys/zfs_acl.h> 54 #include <sys/zfs_ioctl.h> 55 #include <sys/fs/zfs.h> 56 #include <sys/dmu.h> 57 #include <sys/spa.h> 58 #include <sys/txg.h> 59 #include <sys/dbuf.h> 60 #include <sys/zap.h> 61 #include <sys/dirent.h> 62 #include <sys/policy.h> 63 #include <sys/sunddi.h> 64 #include <sys/filio.h> 65 #include "fs/fs_subr.h" 66 #include <sys/zfs_ctldir.h> 67 #include <sys/dnlc.h> 68 #include <sys/zfs_rlock.h> 69 70 /* 71 * Programming rules. 72 * 73 * Each vnode op performs some logical unit of work. To do this, the ZPL must 74 * properly lock its in-core state, create a DMU transaction, do the work, 75 * record this work in the intent log (ZIL), commit the DMU transaction, 76 * and wait the the intent log to commit if it's is a synchronous operation. 77 * Morover, the vnode ops must work in both normal and log replay context. 78 * The ordering of events is important to avoid deadlocks and references 79 * to freed memory. The example below illustrates the following Big Rules: 80 * 81 * (1) A check must be made in each zfs thread for a mounted file system. 82 * This is done avoiding races using ZFS_ENTER(zfsvfs). 83 * A ZFS_EXIT(zfsvfs) is needed before all returns. 84 * 85 * (2) VN_RELE() should always be the last thing except for zil_commit() 86 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 87 * First, if it's the last reference, the vnode/znode 88 * can be freed, so the zp may point to freed memory. Second, the last 89 * reference will call zfs_zinactive(), which may induce a lot of work -- 90 * pushing cached pages (which acquires range locks) and syncing out 91 * cached atime changes. Third, zfs_zinactive() may require a new tx, 92 * which could deadlock the system if you were already holding one. 93 * 94 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 95 * as they can span dmu_tx_assign() calls. 96 * 97 * (4) Always pass zfsvfs->z_assign as the second argument to dmu_tx_assign(). 98 * In normal operation, this will be TXG_NOWAIT. During ZIL replay, 99 * it will be a specific txg. Either way, dmu_tx_assign() never blocks. 100 * This is critical because we don't want to block while holding locks. 101 * Note, in particular, that if a lock is sometimes acquired before 102 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 103 * use a non-blocking assign can deadlock the system. The scenario: 104 * 105 * Thread A has grabbed a lock before calling dmu_tx_assign(). 106 * Thread B is in an already-assigned tx, and blocks for this lock. 107 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 108 * forever, because the previous txg can't quiesce until B's tx commits. 109 * 110 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 111 * then drop all locks, call dmu_tx_wait(), and try again. 112 * 113 * (5) If the operation succeeded, generate the intent log entry for it 114 * before dropping locks. This ensures that the ordering of events 115 * in the intent log matches the order in which they actually occurred. 116 * 117 * (6) At the end of each vnode op, the DMU tx must always commit, 118 * regardless of whether there were any errors. 119 * 120 * (7) After dropping all locks, invoke zil_commit(zilog, seq, foid) 121 * to ensure that synchronous semantics are provided when necessary. 122 * 123 * In general, this is how things should be ordered in each vnode op: 124 * 125 * ZFS_ENTER(zfsvfs); // exit if unmounted 126 * top: 127 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 128 * rw_enter(...); // grab any other locks you need 129 * tx = dmu_tx_create(...); // get DMU tx 130 * dmu_tx_hold_*(); // hold each object you might modify 131 * error = dmu_tx_assign(tx, zfsvfs->z_assign); // try to assign 132 * if (error) { 133 * rw_exit(...); // drop locks 134 * zfs_dirent_unlock(dl); // unlock directory entry 135 * VN_RELE(...); // release held vnodes 136 * if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 137 * dmu_tx_wait(tx); 138 * dmu_tx_abort(tx); 139 * goto top; 140 * } 141 * dmu_tx_abort(tx); // abort DMU tx 142 * ZFS_EXIT(zfsvfs); // finished in zfs 143 * return (error); // really out of space 144 * } 145 * error = do_real_work(); // do whatever this VOP does 146 * if (error == 0) 147 * zfs_log_*(...); // on success, make ZIL entry 148 * dmu_tx_commit(tx); // commit DMU tx -- error or not 149 * rw_exit(...); // drop locks 150 * zfs_dirent_unlock(dl); // unlock directory entry 151 * VN_RELE(...); // release held vnodes 152 * zil_commit(zilog, seq, foid); // synchronous when necessary 153 * ZFS_EXIT(zfsvfs); // finished in zfs 154 * return (error); // done, report error 155 */ 156 157 /* ARGSUSED */ 158 static int 159 zfs_open(vnode_t **vpp, int flag, cred_t *cr) 160 { 161 return (0); 162 } 163 164 /* ARGSUSED */ 165 static int 166 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr) 167 { 168 /* 169 * Clean up any locks held by this process on the vp. 170 */ 171 cleanlocks(vp, ddi_get_pid(), 0); 172 cleanshares(vp, ddi_get_pid()); 173 174 return (0); 175 } 176 177 /* 178 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 179 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 180 */ 181 static int 182 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 183 { 184 znode_t *zp = VTOZ(vp); 185 uint64_t noff = (uint64_t)*off; /* new offset */ 186 uint64_t file_sz; 187 int error; 188 boolean_t hole; 189 190 file_sz = zp->z_phys->zp_size; 191 if (noff >= file_sz) { 192 return (ENXIO); 193 } 194 195 if (cmd == _FIO_SEEK_HOLE) 196 hole = B_TRUE; 197 else 198 hole = B_FALSE; 199 200 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 201 202 /* end of file? */ 203 if ((error == ESRCH) || (noff > file_sz)) { 204 /* 205 * Handle the virtual hole at the end of file. 206 */ 207 if (hole) { 208 *off = file_sz; 209 return (0); 210 } 211 return (ENXIO); 212 } 213 214 if (noff < *off) 215 return (error); 216 *off = noff; 217 return (error); 218 } 219 220 /* ARGSUSED */ 221 static int 222 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 223 int *rvalp) 224 { 225 offset_t off; 226 int error; 227 zfsvfs_t *zfsvfs; 228 229 switch (com) { 230 case _FIOFFS: 231 return (zfs_sync(vp->v_vfsp, 0, cred)); 232 233 /* 234 * The following two ioctls are used by bfu. Faking out, 235 * necessary to avoid bfu errors. 236 */ 237 case _FIOGDIO: 238 case _FIOSDIO: 239 return (0); 240 241 case _FIO_SEEK_DATA: 242 case _FIO_SEEK_HOLE: 243 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 244 return (EFAULT); 245 246 zfsvfs = VTOZ(vp)->z_zfsvfs; 247 ZFS_ENTER(zfsvfs); 248 249 /* offset parameter is in/out */ 250 error = zfs_holey(vp, com, &off); 251 ZFS_EXIT(zfsvfs); 252 if (error) 253 return (error); 254 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 255 return (EFAULT); 256 return (0); 257 } 258 return (ENOTTY); 259 } 260 261 /* 262 * When a file is memory mapped, we must keep the IO data synchronized 263 * between the DMU cache and the memory mapped pages. What this means: 264 * 265 * On Write: If we find a memory mapped page, we write to *both* 266 * the page and the dmu buffer. 267 * 268 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 269 * the file is memory mapped. 270 */ 271 static int 272 mappedwrite(vnode_t *vp, uint64_t woff, int nbytes, uio_t *uio, dmu_tx_t *tx) 273 { 274 znode_t *zp = VTOZ(vp); 275 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 276 int64_t start, off; 277 int len = nbytes; 278 int error = 0; 279 280 start = uio->uio_loffset; 281 off = start & PAGEOFFSET; 282 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 283 page_t *pp; 284 uint64_t bytes = MIN(PAGESIZE - off, len); 285 286 /* 287 * We don't want a new page to "appear" in the middle of 288 * the file update (because it may not get the write 289 * update data), so we grab a lock to block 290 * zfs_getpage(). 291 */ 292 rw_enter(&zp->z_map_lock, RW_WRITER); 293 if (pp = page_lookup(vp, start, SE_SHARED)) { 294 caddr_t va; 295 296 rw_exit(&zp->z_map_lock); 297 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 298 error = uiomove(va+off, bytes, UIO_WRITE, uio); 299 if (error == 0) { 300 dmu_write(zfsvfs->z_os, zp->z_id, 301 woff, bytes, va+off, tx); 302 } 303 ppmapout(va); 304 page_unlock(pp); 305 } else { 306 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 307 woff, bytes, uio, tx); 308 rw_exit(&zp->z_map_lock); 309 } 310 len -= bytes; 311 woff += bytes; 312 off = 0; 313 if (error) 314 break; 315 } 316 return (error); 317 } 318 319 /* 320 * When a file is memory mapped, we must keep the IO data synchronized 321 * between the DMU cache and the memory mapped pages. What this means: 322 * 323 * On Read: We "read" preferentially from memory mapped pages, 324 * else we default from the dmu buffer. 325 * 326 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 327 * the file is memory mapped. 328 */ 329 static int 330 mappedread(vnode_t *vp, char *addr, int nbytes, uio_t *uio) 331 { 332 int64_t start, off, bytes; 333 int len = nbytes; 334 int error = 0; 335 336 start = uio->uio_loffset; 337 off = start & PAGEOFFSET; 338 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 339 page_t *pp; 340 341 bytes = MIN(PAGESIZE - off, len); 342 if (pp = page_lookup(vp, start, SE_SHARED)) { 343 caddr_t va; 344 345 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 346 error = uiomove(va + off, bytes, UIO_READ, uio); 347 ppmapout(va); 348 page_unlock(pp); 349 } else { 350 /* XXX use dmu_read here? */ 351 error = uiomove(addr, bytes, UIO_READ, uio); 352 } 353 len -= bytes; 354 addr += bytes; 355 off = 0; 356 if (error) 357 break; 358 } 359 return (error); 360 } 361 362 uint_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 363 364 /* 365 * Read bytes from specified file into supplied buffer. 366 * 367 * IN: vp - vnode of file to be read from. 368 * uio - structure supplying read location, range info, 369 * and return buffer. 370 * ioflag - SYNC flags; used to provide FRSYNC semantics. 371 * cr - credentials of caller. 372 * 373 * OUT: uio - updated offset and range, buffer filled. 374 * 375 * RETURN: 0 if success 376 * error code if failure 377 * 378 * Side Effects: 379 * vp - atime updated if byte count > 0 380 */ 381 /* ARGSUSED */ 382 static int 383 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 384 { 385 znode_t *zp = VTOZ(vp); 386 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 387 uint64_t delta; 388 ssize_t n, size, cnt, ndone; 389 int error, i, numbufs; 390 dmu_buf_t *dbp, **dbpp; 391 rl_t *rl; 392 393 ZFS_ENTER(zfsvfs); 394 395 /* 396 * Validate file offset 397 */ 398 if (uio->uio_loffset < (offset_t)0) { 399 ZFS_EXIT(zfsvfs); 400 return (EINVAL); 401 } 402 403 /* 404 * Fasttrack empty reads 405 */ 406 if (uio->uio_resid == 0) { 407 ZFS_EXIT(zfsvfs); 408 return (0); 409 } 410 411 /* 412 * Check for mandatory locks 413 */ 414 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 415 if (error = chklock(vp, FREAD, 416 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 417 ZFS_EXIT(zfsvfs); 418 return (error); 419 } 420 } 421 422 /* 423 * If we're in FRSYNC mode, sync out this znode before reading it. 424 */ 425 if (ioflag & FRSYNC) 426 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 427 428 /* 429 * Lock the range against changes. 430 */ 431 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 432 433 /* 434 * If we are reading past end-of-file we can skip 435 * to the end; but we might still need to set atime. 436 */ 437 if (uio->uio_loffset >= zp->z_phys->zp_size) { 438 cnt = 0; 439 error = 0; 440 goto out; 441 } 442 443 cnt = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 444 445 for (ndone = 0; ndone < cnt; ndone += zfs_read_chunk_size) { 446 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 447 n = MIN(zfs_read_chunk_size, 448 zp->z_phys->zp_size - uio->uio_loffset); 449 n = MIN(n, cnt); 450 error = dmu_buf_hold_array_by_bonus(zp->z_dbuf, 451 uio->uio_loffset, n, TRUE, FTAG, &numbufs, &dbpp); 452 if (error) 453 goto out; 454 /* 455 * Compute the adjustment to align the dmu buffers 456 * with the uio buffer. 457 */ 458 delta = uio->uio_loffset - dbpp[0]->db_offset; 459 460 for (i = 0; i < numbufs; i++) { 461 if (n < 0) 462 break; 463 dbp = dbpp[i]; 464 size = dbp->db_size - delta; 465 /* 466 * XXX -- this is correct, but may be suboptimal. 467 * If the pages are all clean, we don't need to 468 * go through mappedread(). Maybe the VMODSORT 469 * stuff can help us here. 470 */ 471 if (vn_has_cached_data(vp)) { 472 error = mappedread(vp, (caddr_t)dbp->db_data + 473 delta, (n < size ? n : size), uio); 474 } else { 475 error = uiomove((caddr_t)dbp->db_data + delta, 476 (n < size ? n : size), UIO_READ, uio); 477 } 478 if (error) { 479 dmu_buf_rele_array(dbpp, numbufs, FTAG); 480 goto out; 481 } 482 n -= dbp->db_size; 483 if (delta) { 484 n += delta; 485 delta = 0; 486 } 487 } 488 dmu_buf_rele_array(dbpp, numbufs, FTAG); 489 } 490 out: 491 zfs_range_unlock(rl); 492 493 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 494 ZFS_EXIT(zfsvfs); 495 return (error); 496 } 497 498 /* 499 * Fault in the pages of the first n bytes specified by the uio structure. 500 * 1 byte in each page is touched and the uio struct is unmodified. 501 * Any error will exit this routine as this is only a best 502 * attempt to get the pages resident. This is a copy of ufs_trans_touch(). 503 */ 504 static void 505 zfs_prefault_write(ssize_t n, struct uio *uio) 506 { 507 struct iovec *iov; 508 ulong_t cnt, incr; 509 caddr_t p; 510 uint8_t tmp; 511 512 iov = uio->uio_iov; 513 514 while (n) { 515 cnt = MIN(iov->iov_len, n); 516 if (cnt == 0) { 517 /* empty iov entry */ 518 iov++; 519 continue; 520 } 521 n -= cnt; 522 /* 523 * touch each page in this segment. 524 */ 525 p = iov->iov_base; 526 while (cnt) { 527 switch (uio->uio_segflg) { 528 case UIO_USERSPACE: 529 case UIO_USERISPACE: 530 if (fuword8(p, &tmp)) 531 return; 532 break; 533 case UIO_SYSSPACE: 534 if (kcopy(p, &tmp, 1)) 535 return; 536 break; 537 } 538 incr = MIN(cnt, PAGESIZE); 539 p += incr; 540 cnt -= incr; 541 } 542 /* 543 * touch the last byte in case it straddles a page. 544 */ 545 p--; 546 switch (uio->uio_segflg) { 547 case UIO_USERSPACE: 548 case UIO_USERISPACE: 549 if (fuword8(p, &tmp)) 550 return; 551 break; 552 case UIO_SYSSPACE: 553 if (kcopy(p, &tmp, 1)) 554 return; 555 break; 556 } 557 iov++; 558 } 559 } 560 561 /* 562 * Write the bytes to a file. 563 * 564 * IN: vp - vnode of file to be written to. 565 * uio - structure supplying write location, range info, 566 * and data buffer. 567 * ioflag - FAPPEND flag set if in append mode. 568 * cr - credentials of caller. 569 * 570 * OUT: uio - updated offset and range. 571 * 572 * RETURN: 0 if success 573 * error code if failure 574 * 575 * Timestamps: 576 * vp - ctime|mtime updated if byte count > 0 577 */ 578 /* ARGSUSED */ 579 static int 580 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 581 { 582 znode_t *zp = VTOZ(vp); 583 rlim64_t limit = uio->uio_llimit; 584 ssize_t start_resid = uio->uio_resid; 585 ssize_t tx_bytes; 586 uint64_t end_size; 587 dmu_tx_t *tx; 588 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 589 zilog_t *zilog = zfsvfs->z_log; 590 offset_t woff; 591 ssize_t n, nbytes; 592 rl_t *rl; 593 int max_blksz = zfsvfs->z_max_blksz; 594 int error; 595 596 /* 597 * Fasttrack empty write 598 */ 599 n = start_resid; 600 if (n == 0) 601 return (0); 602 603 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 604 limit = MAXOFFSET_T; 605 606 ZFS_ENTER(zfsvfs); 607 608 /* 609 * Pre-fault the pages to ensure slow (eg NFS) pages 610 * don't hold up txg. 611 */ 612 zfs_prefault_write(n, uio); 613 614 /* 615 * If in append mode, set the io offset pointer to eof. 616 */ 617 if (ioflag & FAPPEND) { 618 /* 619 * Range lock for a file append: 620 * The value for the start of range will be determined by 621 * zfs_range_lock() (to guarantee append semantics). 622 * If this write will cause the block size to increase, 623 * zfs_range_lock() will lock the entire file, so we must 624 * later reduce the range after we grow the block size. 625 */ 626 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 627 if (rl->r_len == UINT64_MAX) { 628 /* overlocked, zp_size can't change */ 629 woff = uio->uio_loffset = zp->z_phys->zp_size; 630 } else { 631 woff = uio->uio_loffset = rl->r_off; 632 } 633 } else { 634 woff = uio->uio_loffset; 635 /* 636 * Validate file offset 637 */ 638 if (woff < 0) { 639 ZFS_EXIT(zfsvfs); 640 return (EINVAL); 641 } 642 643 /* 644 * If we need to grow the block size then zfs_range_lock() 645 * will lock a wider range than we request here. 646 * Later after growing the block size we reduce the range. 647 */ 648 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 649 } 650 651 if (woff >= limit) { 652 error = EFBIG; 653 goto no_tx_done; 654 } 655 656 if ((woff + n) > limit || woff > (limit - n)) 657 n = limit - woff; 658 659 /* 660 * Check for mandatory locks 661 */ 662 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 663 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) 664 goto no_tx_done; 665 end_size = MAX(zp->z_phys->zp_size, woff + n); 666 top: 667 tx = dmu_tx_create(zfsvfs->z_os); 668 dmu_tx_hold_bonus(tx, zp->z_id); 669 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 670 error = dmu_tx_assign(tx, zfsvfs->z_assign); 671 if (error) { 672 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 673 dmu_tx_wait(tx); 674 dmu_tx_abort(tx); 675 goto top; 676 } 677 dmu_tx_abort(tx); 678 goto no_tx_done; 679 } 680 681 /* 682 * If zfs_range_lock() over-locked we grow the blocksize 683 * and then reduce the lock range. 684 */ 685 if (rl->r_len == UINT64_MAX) { 686 uint64_t new_blksz; 687 688 if (zp->z_blksz > max_blksz) { 689 ASSERT(!ISP2(zp->z_blksz)); 690 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 691 } else { 692 new_blksz = MIN(end_size, max_blksz); 693 } 694 zfs_grow_blocksize(zp, new_blksz, tx); 695 zfs_range_reduce(rl, woff, n); 696 } 697 698 /* 699 * The file data does not fit in the znode "cache", so we 700 * will be writing to the file block data buffers. 701 * Each buffer will be written in a separate transaction; 702 * this keeps the intent log records small and allows us 703 * to do more fine-grained space accounting. 704 */ 705 while (n > 0) { 706 /* 707 * XXX - should we really limit each write to z_max_blksz? 708 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 709 */ 710 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 711 rw_enter(&zp->z_map_lock, RW_READER); 712 713 tx_bytes = uio->uio_resid; 714 if (vn_has_cached_data(vp)) { 715 rw_exit(&zp->z_map_lock); 716 error = mappedwrite(vp, woff, nbytes, uio, tx); 717 } else { 718 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 719 woff, nbytes, uio, tx); 720 rw_exit(&zp->z_map_lock); 721 } 722 tx_bytes -= uio->uio_resid; 723 724 if (error) { 725 /* XXX - do we need to "clean up" the dmu buffer? */ 726 break; 727 } 728 729 ASSERT(tx_bytes == nbytes); 730 731 /* 732 * Clear Set-UID/Set-GID bits on successful write if not 733 * privileged and at least one of the excute bits is set. 734 * 735 * It would be nice to to this after all writes have 736 * been done, but that would still expose the ISUID/ISGID 737 * to another app after the partial write is committed. 738 */ 739 740 mutex_enter(&zp->z_acl_lock); 741 if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) | 742 (S_IXUSR >> 6))) != 0 && 743 (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 && 744 secpolicy_vnode_setid_retain(cr, 745 (zp->z_phys->zp_mode & S_ISUID) != 0 && 746 zp->z_phys->zp_uid == 0) != 0) { 747 zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID); 748 } 749 mutex_exit(&zp->z_acl_lock); 750 751 n -= nbytes; 752 if (n <= 0) 753 break; 754 755 /* 756 * We have more work ahead of us, so wrap up this transaction 757 * and start another. Exact same logic as tx_done below. 758 */ 759 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) { 760 dmu_buf_will_dirty(zp->z_dbuf, tx); 761 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 762 uio->uio_loffset); 763 } 764 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 765 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, 766 ioflag, uio); 767 dmu_tx_commit(tx); 768 769 /* 770 * Start another transaction. 771 */ 772 woff = uio->uio_loffset; 773 tx = dmu_tx_create(zfsvfs->z_os); 774 dmu_tx_hold_bonus(tx, zp->z_id); 775 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 776 error = dmu_tx_assign(tx, zfsvfs->z_assign); 777 if (error) { 778 if (error == ERESTART && 779 zfsvfs->z_assign == TXG_NOWAIT) { 780 dmu_tx_wait(tx); 781 dmu_tx_abort(tx); 782 goto top; 783 } 784 dmu_tx_abort(tx); 785 goto no_tx_done; 786 } 787 } 788 789 tx_done: 790 791 if (tx_bytes != 0) { 792 /* 793 * Update the file size if it has changed; account 794 * for possible concurrent updates. 795 */ 796 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) { 797 dmu_buf_will_dirty(zp->z_dbuf, tx); 798 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 799 uio->uio_loffset); 800 } 801 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 802 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, 803 ioflag, uio); 804 } 805 dmu_tx_commit(tx); 806 807 808 no_tx_done: 809 810 zfs_range_unlock(rl); 811 812 /* 813 * If we're in replay mode, or we made no progress, return error. 814 * Otherwise, it's at least a partial write, so it's successful. 815 */ 816 if (zfsvfs->z_assign >= TXG_INITIAL || uio->uio_resid == start_resid) { 817 ZFS_EXIT(zfsvfs); 818 return (error); 819 } 820 821 if (ioflag & (FSYNC | FDSYNC)) 822 zil_commit(zilog, zp->z_last_itx, zp->z_id); 823 824 ZFS_EXIT(zfsvfs); 825 return (0); 826 } 827 828 void 829 zfs_get_done(dmu_buf_t *db, void *vrl) 830 { 831 rl_t *rl = (rl_t *)vrl; 832 vnode_t *vp = ZTOV(rl->r_zp); 833 834 dmu_buf_rele(db, rl); 835 zfs_range_unlock(rl); 836 VN_RELE(vp); 837 } 838 839 /* 840 * Get data to generate a TX_WRITE intent log record. 841 */ 842 int 843 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 844 { 845 zfsvfs_t *zfsvfs = arg; 846 objset_t *os = zfsvfs->z_os; 847 znode_t *zp; 848 uint64_t off = lr->lr_offset; 849 dmu_buf_t *db; 850 rl_t *rl; 851 int dlen = lr->lr_length; /* length of user data */ 852 int error = 0; 853 854 ASSERT(dlen != 0); 855 856 /* 857 * Nothing to do if the file has been removed 858 */ 859 if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0) 860 return (ENOENT); 861 if (zp->z_reap) { 862 VN_RELE(ZTOV(zp)); 863 return (ENOENT); 864 } 865 866 /* 867 * Write records come in two flavors: immediate and indirect. 868 * For small writes it's cheaper to store the data with the 869 * log record (immediate); for large writes it's cheaper to 870 * sync the data and get a pointer to it (indirect) so that 871 * we don't have to write the data twice. 872 */ 873 if (buf != NULL) { /* immediate write */ 874 rl = zfs_range_lock(zp, off, dlen, RL_READER); 875 /* test for truncation needs to be done while range locked */ 876 if (off >= zp->z_phys->zp_size) { 877 error = ENOENT; 878 goto out; 879 } 880 VERIFY(0 == dmu_read(os, lr->lr_foid, off, dlen, buf)); 881 } else { /* indirect write */ 882 uint64_t boff; /* block starting offset */ 883 884 ASSERT3U(dlen, <=, zp->z_blksz); 885 /* 886 * Have to lock the whole block to ensure when it's 887 * written out and it's checksum is being calculated 888 * that no one can change the data. We need to re-check 889 * blocksize after we get the lock in case it's changed! 890 */ 891 for (;;) { 892 if (ISP2(zp->z_blksz)) { 893 boff = P2ALIGN_TYPED(off, zp->z_blksz, 894 uint64_t); 895 } else { 896 boff = 0; 897 } 898 dlen = zp->z_blksz; 899 rl = zfs_range_lock(zp, boff, dlen, RL_READER); 900 if (zp->z_blksz == dlen) 901 break; 902 zfs_range_unlock(rl); 903 } 904 /* test for truncation needs to be done while range locked */ 905 if (off >= zp->z_phys->zp_size) { 906 error = ENOENT; 907 goto out; 908 } 909 VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, boff, rl, &db)); 910 ASSERT(boff == db->db_offset); 911 lr->lr_blkoff = off - boff; 912 error = dmu_sync(zio, db, &lr->lr_blkptr, 913 lr->lr_common.lrc_txg, zio ? zfs_get_done : NULL, rl); 914 /* 915 * If we get EINPROGRESS, then we need to wait for a 916 * write IO initiated by dmu_sync() to complete before 917 * we can release this dbuf. We will finish everything 918 * up in the zfs_get_done() callback. 919 */ 920 if (error == EINPROGRESS) 921 return (0); 922 dmu_buf_rele(db, rl); 923 } 924 out: 925 zfs_range_unlock(rl); 926 VN_RELE(ZTOV(zp)); 927 return (error); 928 } 929 930 /*ARGSUSED*/ 931 static int 932 zfs_access(vnode_t *vp, int mode, int flags, cred_t *cr) 933 { 934 znode_t *zp = VTOZ(vp); 935 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 936 int error; 937 938 ZFS_ENTER(zfsvfs); 939 error = zfs_zaccess_rwx(zp, mode, cr); 940 ZFS_EXIT(zfsvfs); 941 return (error); 942 } 943 944 /* 945 * Lookup an entry in a directory, or an extended attribute directory. 946 * If it exists, return a held vnode reference for it. 947 * 948 * IN: dvp - vnode of directory to search. 949 * nm - name of entry to lookup. 950 * pnp - full pathname to lookup [UNUSED]. 951 * flags - LOOKUP_XATTR set if looking for an attribute. 952 * rdir - root directory vnode [UNUSED]. 953 * cr - credentials of caller. 954 * 955 * OUT: vpp - vnode of located entry, NULL if not found. 956 * 957 * RETURN: 0 if success 958 * error code if failure 959 * 960 * Timestamps: 961 * NA 962 */ 963 /* ARGSUSED */ 964 static int 965 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 966 int flags, vnode_t *rdir, cred_t *cr) 967 { 968 969 znode_t *zdp = VTOZ(dvp); 970 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 971 int error; 972 973 ZFS_ENTER(zfsvfs); 974 975 *vpp = NULL; 976 977 if (flags & LOOKUP_XATTR) { 978 /* 979 * We don't allow recursive attributes.. 980 * Maybe someday we will. 981 */ 982 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 983 ZFS_EXIT(zfsvfs); 984 return (EINVAL); 985 } 986 987 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr)) { 988 ZFS_EXIT(zfsvfs); 989 return (error); 990 } 991 992 /* 993 * Do we have permission to get into attribute directory? 994 */ 995 996 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, cr)) { 997 VN_RELE(*vpp); 998 } 999 1000 ZFS_EXIT(zfsvfs); 1001 return (error); 1002 } 1003 1004 if (dvp->v_type != VDIR) { 1005 ZFS_EXIT(zfsvfs); 1006 return (ENOTDIR); 1007 } 1008 1009 /* 1010 * Check accessibility of directory. 1011 */ 1012 1013 if (error = zfs_zaccess(zdp, ACE_EXECUTE, cr)) { 1014 ZFS_EXIT(zfsvfs); 1015 return (error); 1016 } 1017 1018 if ((error = zfs_dirlook(zdp, nm, vpp)) == 0) { 1019 1020 /* 1021 * Convert device special files 1022 */ 1023 if (IS_DEVVP(*vpp)) { 1024 vnode_t *svp; 1025 1026 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1027 VN_RELE(*vpp); 1028 if (svp == NULL) 1029 error = ENOSYS; 1030 else 1031 *vpp = svp; 1032 } 1033 } 1034 1035 ZFS_EXIT(zfsvfs); 1036 return (error); 1037 } 1038 1039 /* 1040 * Attempt to create a new entry in a directory. If the entry 1041 * already exists, truncate the file if permissible, else return 1042 * an error. Return the vp of the created or trunc'd file. 1043 * 1044 * IN: dvp - vnode of directory to put new file entry in. 1045 * name - name of new file entry. 1046 * vap - attributes of new file. 1047 * excl - flag indicating exclusive or non-exclusive mode. 1048 * mode - mode to open file with. 1049 * cr - credentials of caller. 1050 * flag - large file flag [UNUSED]. 1051 * 1052 * OUT: vpp - vnode of created or trunc'd entry. 1053 * 1054 * RETURN: 0 if success 1055 * error code if failure 1056 * 1057 * Timestamps: 1058 * dvp - ctime|mtime updated if new entry created 1059 * vp - ctime|mtime always, atime if new 1060 */ 1061 /* ARGSUSED */ 1062 static int 1063 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1064 int mode, vnode_t **vpp, cred_t *cr, int flag) 1065 { 1066 znode_t *zp, *dzp = VTOZ(dvp); 1067 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1068 zilog_t *zilog = zfsvfs->z_log; 1069 objset_t *os = zfsvfs->z_os; 1070 zfs_dirlock_t *dl; 1071 dmu_tx_t *tx; 1072 int error; 1073 uint64_t zoid; 1074 1075 ZFS_ENTER(zfsvfs); 1076 1077 top: 1078 *vpp = NULL; 1079 1080 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1081 vap->va_mode &= ~VSVTX; 1082 1083 if (*name == '\0') { 1084 /* 1085 * Null component name refers to the directory itself. 1086 */ 1087 VN_HOLD(dvp); 1088 zp = dzp; 1089 dl = NULL; 1090 error = 0; 1091 } else { 1092 /* possible VN_HOLD(zp) */ 1093 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, 0)) { 1094 if (strcmp(name, "..") == 0) 1095 error = EISDIR; 1096 ZFS_EXIT(zfsvfs); 1097 return (error); 1098 } 1099 } 1100 1101 zoid = zp ? zp->z_id : -1ULL; 1102 1103 if (zp == NULL) { 1104 /* 1105 * Create a new file object and update the directory 1106 * to reference it. 1107 */ 1108 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 1109 goto out; 1110 } 1111 1112 /* 1113 * We only support the creation of regular files in 1114 * extended attribute directories. 1115 */ 1116 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1117 (vap->va_type != VREG)) { 1118 error = EINVAL; 1119 goto out; 1120 } 1121 1122 tx = dmu_tx_create(os); 1123 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1124 dmu_tx_hold_bonus(tx, dzp->z_id); 1125 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1126 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 1127 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1128 0, SPA_MAXBLOCKSIZE); 1129 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1130 if (error) { 1131 zfs_dirent_unlock(dl); 1132 if (error == ERESTART && 1133 zfsvfs->z_assign == TXG_NOWAIT) { 1134 dmu_tx_wait(tx); 1135 dmu_tx_abort(tx); 1136 goto top; 1137 } 1138 dmu_tx_abort(tx); 1139 ZFS_EXIT(zfsvfs); 1140 return (error); 1141 } 1142 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 1143 ASSERT(zp->z_id == zoid); 1144 (void) zfs_link_create(dl, zp, tx, ZNEW); 1145 zfs_log_create(zilog, tx, TX_CREATE, dzp, zp, name); 1146 dmu_tx_commit(tx); 1147 } else { 1148 /* 1149 * A directory entry already exists for this name. 1150 */ 1151 /* 1152 * Can't truncate an existing file if in exclusive mode. 1153 */ 1154 if (excl == EXCL) { 1155 error = EEXIST; 1156 goto out; 1157 } 1158 /* 1159 * Can't open a directory for writing. 1160 */ 1161 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1162 error = EISDIR; 1163 goto out; 1164 } 1165 /* 1166 * Verify requested access to file. 1167 */ 1168 if (mode && (error = zfs_zaccess_rwx(zp, mode, cr))) { 1169 goto out; 1170 } 1171 1172 mutex_enter(&dzp->z_lock); 1173 dzp->z_seq++; 1174 mutex_exit(&dzp->z_lock); 1175 1176 /* 1177 * Truncate regular files if requested. 1178 */ 1179 if ((ZTOV(zp)->v_type == VREG) && 1180 (zp->z_phys->zp_size != 0) && 1181 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1182 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1183 if (error == ERESTART && 1184 zfsvfs->z_assign == TXG_NOWAIT) { 1185 /* NB: we already did dmu_tx_wait() */ 1186 zfs_dirent_unlock(dl); 1187 VN_RELE(ZTOV(zp)); 1188 goto top; 1189 } 1190 } 1191 } 1192 out: 1193 1194 if (dl) 1195 zfs_dirent_unlock(dl); 1196 1197 if (error) { 1198 if (zp) 1199 VN_RELE(ZTOV(zp)); 1200 } else { 1201 *vpp = ZTOV(zp); 1202 /* 1203 * If vnode is for a device return a specfs vnode instead. 1204 */ 1205 if (IS_DEVVP(*vpp)) { 1206 struct vnode *svp; 1207 1208 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1209 VN_RELE(*vpp); 1210 if (svp == NULL) { 1211 error = ENOSYS; 1212 } 1213 *vpp = svp; 1214 } 1215 } 1216 1217 ZFS_EXIT(zfsvfs); 1218 return (error); 1219 } 1220 1221 /* 1222 * Remove an entry from a directory. 1223 * 1224 * IN: dvp - vnode of directory to remove entry from. 1225 * name - name of entry to remove. 1226 * cr - credentials of caller. 1227 * 1228 * RETURN: 0 if success 1229 * error code if failure 1230 * 1231 * Timestamps: 1232 * dvp - ctime|mtime 1233 * vp - ctime (if nlink > 0) 1234 */ 1235 static int 1236 zfs_remove(vnode_t *dvp, char *name, cred_t *cr) 1237 { 1238 znode_t *zp, *dzp = VTOZ(dvp); 1239 znode_t *xzp = NULL; 1240 vnode_t *vp; 1241 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1242 zilog_t *zilog = zfsvfs->z_log; 1243 uint64_t acl_obj, xattr_obj; 1244 zfs_dirlock_t *dl; 1245 dmu_tx_t *tx; 1246 int may_delete_now, delete_now = FALSE; 1247 int reaped; 1248 int error; 1249 1250 ZFS_ENTER(zfsvfs); 1251 1252 top: 1253 /* 1254 * Attempt to lock directory; fail if entry doesn't exist. 1255 */ 1256 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) { 1257 ZFS_EXIT(zfsvfs); 1258 return (error); 1259 } 1260 1261 vp = ZTOV(zp); 1262 1263 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1264 goto out; 1265 } 1266 1267 /* 1268 * Need to use rmdir for removing directories. 1269 */ 1270 if (vp->v_type == VDIR) { 1271 error = EPERM; 1272 goto out; 1273 } 1274 1275 vnevent_remove(vp); 1276 1277 dnlc_remove(dvp, name); 1278 1279 mutex_enter(&vp->v_lock); 1280 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1281 mutex_exit(&vp->v_lock); 1282 1283 /* 1284 * We may delete the znode now, or we may put it on the delete queue; 1285 * it depends on whether we're the last link, and on whether there are 1286 * other holds on the vnode. So we dmu_tx_hold() the right things to 1287 * allow for either case. 1288 */ 1289 tx = dmu_tx_create(zfsvfs->z_os); 1290 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1291 dmu_tx_hold_bonus(tx, zp->z_id); 1292 if (may_delete_now) 1293 dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END); 1294 1295 /* are there any extended attributes? */ 1296 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1297 /* 1298 * XXX - There is a possibility that the delete 1299 * of the parent file could succeed, but then we get 1300 * an ENOSPC when we try to delete the xattrs... 1301 * so we would need to re-try the deletes periodically 1302 */ 1303 /* XXX - do we need this if we are deleting? */ 1304 dmu_tx_hold_bonus(tx, xattr_obj); 1305 } 1306 1307 /* are there any additional acls */ 1308 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1309 may_delete_now) 1310 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1311 1312 /* charge as an update -- would be nice not to charge at all */ 1313 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, FALSE, NULL); 1314 1315 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1316 if (error) { 1317 zfs_dirent_unlock(dl); 1318 VN_RELE(vp); 1319 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1320 dmu_tx_wait(tx); 1321 dmu_tx_abort(tx); 1322 goto top; 1323 } 1324 dmu_tx_abort(tx); 1325 ZFS_EXIT(zfsvfs); 1326 return (error); 1327 } 1328 1329 /* 1330 * Remove the directory entry. 1331 */ 1332 error = zfs_link_destroy(dl, zp, tx, 0, &reaped); 1333 1334 if (error) { 1335 dmu_tx_commit(tx); 1336 goto out; 1337 } 1338 1339 if (reaped) { 1340 mutex_enter(&vp->v_lock); 1341 delete_now = may_delete_now && 1342 vp->v_count == 1 && !vn_has_cached_data(vp) && 1343 zp->z_phys->zp_xattr == xattr_obj && 1344 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1345 mutex_exit(&vp->v_lock); 1346 } 1347 1348 if (delete_now) { 1349 if (zp->z_phys->zp_xattr) { 1350 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1351 ASSERT3U(error, ==, 0); 1352 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1353 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1354 mutex_enter(&xzp->z_lock); 1355 xzp->z_reap = 1; 1356 xzp->z_phys->zp_links = 0; 1357 mutex_exit(&xzp->z_lock); 1358 zfs_dq_add(xzp, tx); 1359 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1360 } 1361 mutex_enter(&zp->z_lock); 1362 mutex_enter(&vp->v_lock); 1363 vp->v_count--; 1364 ASSERT3U(vp->v_count, ==, 0); 1365 mutex_exit(&vp->v_lock); 1366 mutex_exit(&zp->z_lock); 1367 zfs_znode_delete(zp, tx); 1368 VFS_RELE(zfsvfs->z_vfs); 1369 } else if (reaped) { 1370 zfs_dq_add(zp, tx); 1371 } 1372 1373 zfs_log_remove(zilog, tx, TX_REMOVE, dzp, name); 1374 1375 dmu_tx_commit(tx); 1376 out: 1377 zfs_dirent_unlock(dl); 1378 1379 if (!delete_now) { 1380 VN_RELE(vp); 1381 } else if (xzp) { 1382 /* this rele delayed to prevent nesting transactions */ 1383 VN_RELE(ZTOV(xzp)); 1384 } 1385 1386 ZFS_EXIT(zfsvfs); 1387 return (error); 1388 } 1389 1390 /* 1391 * Create a new directory and insert it into dvp using the name 1392 * provided. Return a pointer to the inserted directory. 1393 * 1394 * IN: dvp - vnode of directory to add subdir to. 1395 * dirname - name of new directory. 1396 * vap - attributes of new directory. 1397 * cr - credentials of caller. 1398 * 1399 * OUT: vpp - vnode of created directory. 1400 * 1401 * RETURN: 0 if success 1402 * error code if failure 1403 * 1404 * Timestamps: 1405 * dvp - ctime|mtime updated 1406 * vp - ctime|mtime|atime updated 1407 */ 1408 static int 1409 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr) 1410 { 1411 znode_t *zp, *dzp = VTOZ(dvp); 1412 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1413 zilog_t *zilog = zfsvfs->z_log; 1414 zfs_dirlock_t *dl; 1415 uint64_t zoid = 0; 1416 dmu_tx_t *tx; 1417 int error; 1418 1419 ASSERT(vap->va_type == VDIR); 1420 1421 ZFS_ENTER(zfsvfs); 1422 1423 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1424 ZFS_EXIT(zfsvfs); 1425 return (EINVAL); 1426 } 1427 top: 1428 *vpp = NULL; 1429 1430 /* 1431 * First make sure the new directory doesn't exist. 1432 */ 1433 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, ZNEW)) { 1434 ZFS_EXIT(zfsvfs); 1435 return (error); 1436 } 1437 1438 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, cr)) { 1439 zfs_dirent_unlock(dl); 1440 ZFS_EXIT(zfsvfs); 1441 return (error); 1442 } 1443 1444 /* 1445 * Add a new entry to the directory. 1446 */ 1447 tx = dmu_tx_create(zfsvfs->z_os); 1448 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1449 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1450 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 1451 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1452 0, SPA_MAXBLOCKSIZE); 1453 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1454 if (error) { 1455 zfs_dirent_unlock(dl); 1456 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1457 dmu_tx_wait(tx); 1458 dmu_tx_abort(tx); 1459 goto top; 1460 } 1461 dmu_tx_abort(tx); 1462 ZFS_EXIT(zfsvfs); 1463 return (error); 1464 } 1465 1466 /* 1467 * Create new node. 1468 */ 1469 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 1470 1471 /* 1472 * Now put new name in parent dir. 1473 */ 1474 (void) zfs_link_create(dl, zp, tx, ZNEW); 1475 1476 *vpp = ZTOV(zp); 1477 1478 zfs_log_create(zilog, tx, TX_MKDIR, dzp, zp, dirname); 1479 dmu_tx_commit(tx); 1480 1481 zfs_dirent_unlock(dl); 1482 1483 ZFS_EXIT(zfsvfs); 1484 return (0); 1485 } 1486 1487 /* 1488 * Remove a directory subdir entry. If the current working 1489 * directory is the same as the subdir to be removed, the 1490 * remove will fail. 1491 * 1492 * IN: dvp - vnode of directory to remove from. 1493 * name - name of directory to be removed. 1494 * cwd - vnode of current working directory. 1495 * cr - credentials of caller. 1496 * 1497 * RETURN: 0 if success 1498 * error code if failure 1499 * 1500 * Timestamps: 1501 * dvp - ctime|mtime updated 1502 */ 1503 static int 1504 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr) 1505 { 1506 znode_t *dzp = VTOZ(dvp); 1507 znode_t *zp; 1508 vnode_t *vp; 1509 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1510 zilog_t *zilog = zfsvfs->z_log; 1511 zfs_dirlock_t *dl; 1512 dmu_tx_t *tx; 1513 int error; 1514 1515 ZFS_ENTER(zfsvfs); 1516 1517 top: 1518 zp = NULL; 1519 1520 /* 1521 * Attempt to lock directory; fail if entry doesn't exist. 1522 */ 1523 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) { 1524 ZFS_EXIT(zfsvfs); 1525 return (error); 1526 } 1527 1528 vp = ZTOV(zp); 1529 1530 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1531 goto out; 1532 } 1533 1534 if (vp->v_type != VDIR) { 1535 error = ENOTDIR; 1536 goto out; 1537 } 1538 1539 if (vp == cwd) { 1540 error = EINVAL; 1541 goto out; 1542 } 1543 1544 vnevent_rmdir(vp); 1545 1546 /* 1547 * Grab a lock on the parent pointer make sure we play well 1548 * with the treewalk and directory rename code. 1549 */ 1550 rw_enter(&zp->z_parent_lock, RW_WRITER); 1551 1552 tx = dmu_tx_create(zfsvfs->z_os); 1553 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1554 dmu_tx_hold_bonus(tx, zp->z_id); 1555 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, FALSE, NULL); 1556 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1557 if (error) { 1558 rw_exit(&zp->z_parent_lock); 1559 zfs_dirent_unlock(dl); 1560 VN_RELE(vp); 1561 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1562 dmu_tx_wait(tx); 1563 dmu_tx_abort(tx); 1564 goto top; 1565 } 1566 dmu_tx_abort(tx); 1567 ZFS_EXIT(zfsvfs); 1568 return (error); 1569 } 1570 1571 error = zfs_link_destroy(dl, zp, tx, 0, NULL); 1572 1573 if (error == 0) 1574 zfs_log_remove(zilog, tx, TX_RMDIR, dzp, name); 1575 1576 dmu_tx_commit(tx); 1577 1578 rw_exit(&zp->z_parent_lock); 1579 out: 1580 zfs_dirent_unlock(dl); 1581 1582 VN_RELE(vp); 1583 1584 ZFS_EXIT(zfsvfs); 1585 return (error); 1586 } 1587 1588 /* 1589 * Read as many directory entries as will fit into the provided 1590 * buffer from the given directory cursor position (specified in 1591 * the uio structure. 1592 * 1593 * IN: vp - vnode of directory to read. 1594 * uio - structure supplying read location, range info, 1595 * and return buffer. 1596 * cr - credentials of caller. 1597 * 1598 * OUT: uio - updated offset and range, buffer filled. 1599 * eofp - set to true if end-of-file detected. 1600 * 1601 * RETURN: 0 if success 1602 * error code if failure 1603 * 1604 * Timestamps: 1605 * vp - atime updated 1606 * 1607 * Note that the low 4 bits of the cookie returned by zap is always zero. 1608 * This allows us to use the low range for "special" directory entries: 1609 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1610 * we use the offset 2 for the '.zfs' directory. 1611 */ 1612 /* ARGSUSED */ 1613 static int 1614 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp) 1615 { 1616 znode_t *zp = VTOZ(vp); 1617 iovec_t *iovp; 1618 dirent64_t *odp; 1619 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1620 objset_t *os; 1621 caddr_t outbuf; 1622 size_t bufsize; 1623 zap_cursor_t zc; 1624 zap_attribute_t zap; 1625 uint_t bytes_wanted; 1626 ushort_t this_reclen; 1627 uint64_t offset; /* must be unsigned; checks for < 1 */ 1628 off64_t *next; 1629 int local_eof; 1630 int outcount; 1631 int error; 1632 uint8_t prefetch; 1633 1634 ZFS_ENTER(zfsvfs); 1635 1636 /* 1637 * If we are not given an eof variable, 1638 * use a local one. 1639 */ 1640 if (eofp == NULL) 1641 eofp = &local_eof; 1642 1643 /* 1644 * Check for valid iov_len. 1645 */ 1646 if (uio->uio_iov->iov_len <= 0) { 1647 ZFS_EXIT(zfsvfs); 1648 return (EINVAL); 1649 } 1650 1651 /* 1652 * Quit if directory has been removed (posix) 1653 */ 1654 if ((*eofp = zp->z_reap) != 0) { 1655 ZFS_EXIT(zfsvfs); 1656 return (0); 1657 } 1658 1659 error = 0; 1660 os = zfsvfs->z_os; 1661 offset = uio->uio_loffset; 1662 prefetch = zp->z_zn_prefetch; 1663 1664 /* 1665 * Initialize the iterator cursor. 1666 */ 1667 if (offset <= 3) { 1668 /* 1669 * Start iteration from the beginning of the directory. 1670 */ 1671 zap_cursor_init(&zc, os, zp->z_id); 1672 } else { 1673 /* 1674 * The offset is a serialized cursor. 1675 */ 1676 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1677 } 1678 1679 /* 1680 * Get space to change directory entries into fs independent format. 1681 */ 1682 iovp = uio->uio_iov; 1683 bytes_wanted = iovp->iov_len; 1684 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 1685 bufsize = bytes_wanted; 1686 outbuf = kmem_alloc(bufsize, KM_SLEEP); 1687 odp = (struct dirent64 *)outbuf; 1688 } else { 1689 bufsize = bytes_wanted; 1690 odp = (struct dirent64 *)iovp->iov_base; 1691 } 1692 1693 /* 1694 * Transform to file-system independent format 1695 */ 1696 outcount = 0; 1697 while (outcount < bytes_wanted) { 1698 /* 1699 * Special case `.', `..', and `.zfs'. 1700 */ 1701 if (offset == 0) { 1702 (void) strcpy(zap.za_name, "."); 1703 zap.za_first_integer = zp->z_id; 1704 this_reclen = DIRENT64_RECLEN(1); 1705 } else if (offset == 1) { 1706 (void) strcpy(zap.za_name, ".."); 1707 zap.za_first_integer = zp->z_phys->zp_parent; 1708 this_reclen = DIRENT64_RECLEN(2); 1709 } else if (offset == 2 && zfs_show_ctldir(zp)) { 1710 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 1711 zap.za_first_integer = ZFSCTL_INO_ROOT; 1712 this_reclen = 1713 DIRENT64_RECLEN(sizeof (ZFS_CTLDIR_NAME) - 1); 1714 } else { 1715 /* 1716 * Grab next entry. 1717 */ 1718 if (error = zap_cursor_retrieve(&zc, &zap)) { 1719 if ((*eofp = (error == ENOENT)) != 0) 1720 break; 1721 else 1722 goto update; 1723 } 1724 1725 if (zap.za_integer_length != 8 || 1726 zap.za_num_integers != 1) { 1727 cmn_err(CE_WARN, "zap_readdir: bad directory " 1728 "entry, obj = %lld, offset = %lld\n", 1729 (u_longlong_t)zp->z_id, 1730 (u_longlong_t)offset); 1731 error = ENXIO; 1732 goto update; 1733 } 1734 this_reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 1735 } 1736 1737 /* 1738 * Will this entry fit in the buffer? 1739 */ 1740 if (outcount + this_reclen > bufsize) { 1741 /* 1742 * Did we manage to fit anything in the buffer? 1743 */ 1744 if (!outcount) { 1745 error = EINVAL; 1746 goto update; 1747 } 1748 break; 1749 } 1750 /* 1751 * Add this entry: 1752 */ 1753 odp->d_ino = (ino64_t)zap.za_first_integer; 1754 odp->d_reclen = (ushort_t)this_reclen; 1755 /* NOTE: d_off is the offset for the *next* entry */ 1756 next = &(odp->d_off); 1757 (void) strncpy(odp->d_name, zap.za_name, 1758 DIRENT64_NAMELEN(this_reclen)); 1759 outcount += this_reclen; 1760 odp = (dirent64_t *)((intptr_t)odp + this_reclen); 1761 1762 ASSERT(outcount <= bufsize); 1763 1764 /* Prefetch znode */ 1765 if (prefetch) 1766 dmu_prefetch(os, zap.za_first_integer, 0, 0); 1767 1768 /* 1769 * Move to the next entry, fill in the previous offset. 1770 */ 1771 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 1772 zap_cursor_advance(&zc); 1773 offset = zap_cursor_serialize(&zc); 1774 } else { 1775 offset += 1; 1776 } 1777 *next = offset; 1778 } 1779 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 1780 1781 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 1782 iovp->iov_base += outcount; 1783 iovp->iov_len -= outcount; 1784 uio->uio_resid -= outcount; 1785 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 1786 /* 1787 * Reset the pointer. 1788 */ 1789 offset = uio->uio_loffset; 1790 } 1791 1792 update: 1793 zap_cursor_fini(&zc); 1794 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 1795 kmem_free(outbuf, bufsize); 1796 1797 if (error == ENOENT) 1798 error = 0; 1799 1800 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 1801 1802 uio->uio_loffset = offset; 1803 ZFS_EXIT(zfsvfs); 1804 return (error); 1805 } 1806 1807 static int 1808 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr) 1809 { 1810 znode_t *zp = VTOZ(vp); 1811 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1812 1813 /* 1814 * Regardless of whether this is required for standards conformance, 1815 * this is the logical behavior when fsync() is called on a file with 1816 * dirty pages. We use B_ASYNC since the ZIL transactions are already 1817 * going to be pushed out as part of the zil_commit(). 1818 */ 1819 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 1820 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 1821 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr); 1822 1823 ZFS_ENTER(zfsvfs); 1824 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 1825 ZFS_EXIT(zfsvfs); 1826 return (0); 1827 } 1828 1829 /* 1830 * Get the requested file attributes and place them in the provided 1831 * vattr structure. 1832 * 1833 * IN: vp - vnode of file. 1834 * vap - va_mask identifies requested attributes. 1835 * flags - [UNUSED] 1836 * cr - credentials of caller. 1837 * 1838 * OUT: vap - attribute values. 1839 * 1840 * RETURN: 0 (always succeeds) 1841 */ 1842 /* ARGSUSED */ 1843 static int 1844 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) 1845 { 1846 znode_t *zp = VTOZ(vp); 1847 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1848 znode_phys_t *pzp = zp->z_phys; 1849 int error; 1850 1851 ZFS_ENTER(zfsvfs); 1852 1853 /* 1854 * Return all attributes. It's cheaper to provide the answer 1855 * than to determine whether we were asked the question. 1856 */ 1857 mutex_enter(&zp->z_lock); 1858 1859 vap->va_type = vp->v_type; 1860 vap->va_mode = pzp->zp_mode & MODEMASK; 1861 vap->va_uid = zp->z_phys->zp_uid; 1862 vap->va_gid = zp->z_phys->zp_gid; 1863 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 1864 vap->va_nodeid = zp->z_id; 1865 vap->va_nlink = MIN(pzp->zp_links, UINT32_MAX); /* nlink_t limit! */ 1866 vap->va_size = pzp->zp_size; 1867 vap->va_rdev = vp->v_rdev; 1868 vap->va_seq = zp->z_seq; 1869 1870 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 1871 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 1872 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 1873 1874 /* 1875 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 1876 * Also, if we are the owner don't bother, since owner should 1877 * always be allowed to read basic attributes of file. 1878 */ 1879 if (!(zp->z_phys->zp_flags & ZFS_ACL_TRIVIAL) && 1880 (zp->z_phys->zp_uid != crgetuid(cr))) { 1881 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, cr)) { 1882 mutex_exit(&zp->z_lock); 1883 ZFS_EXIT(zfsvfs); 1884 return (error); 1885 } 1886 } 1887 1888 mutex_exit(&zp->z_lock); 1889 1890 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 1891 1892 if (zp->z_blksz == 0) { 1893 /* 1894 * Block size hasn't been set; suggest maximal I/O transfers. 1895 */ 1896 vap->va_blksize = zfsvfs->z_max_blksz; 1897 } 1898 1899 ZFS_EXIT(zfsvfs); 1900 return (0); 1901 } 1902 1903 /* 1904 * Set the file attributes to the values contained in the 1905 * vattr structure. 1906 * 1907 * IN: vp - vnode of file to be modified. 1908 * vap - new attribute values. 1909 * flags - ATTR_UTIME set if non-default time values provided. 1910 * cr - credentials of caller. 1911 * 1912 * RETURN: 0 if success 1913 * error code if failure 1914 * 1915 * Timestamps: 1916 * vp - ctime updated, mtime updated if size changed. 1917 */ 1918 /* ARGSUSED */ 1919 static int 1920 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 1921 caller_context_t *ct) 1922 { 1923 struct znode *zp = VTOZ(vp); 1924 znode_phys_t *pzp = zp->z_phys; 1925 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1926 zilog_t *zilog = zfsvfs->z_log; 1927 dmu_tx_t *tx; 1928 vattr_t oldva; 1929 uint_t mask = vap->va_mask; 1930 uint_t saved_mask; 1931 int trim_mask = FALSE; 1932 uint64_t new_mode; 1933 znode_t *attrzp; 1934 int need_policy = FALSE; 1935 int err; 1936 1937 if (mask == 0) 1938 return (0); 1939 1940 if (mask & AT_NOSET) 1941 return (EINVAL); 1942 1943 if (mask & AT_SIZE && vp->v_type == VDIR) 1944 return (EISDIR); 1945 1946 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) 1947 return (EINVAL); 1948 1949 ZFS_ENTER(zfsvfs); 1950 1951 top: 1952 attrzp = NULL; 1953 1954 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 1955 ZFS_EXIT(zfsvfs); 1956 return (EROFS); 1957 } 1958 1959 /* 1960 * First validate permissions 1961 */ 1962 1963 if (mask & AT_SIZE) { 1964 err = zfs_zaccess(zp, ACE_WRITE_DATA, cr); 1965 if (err) { 1966 ZFS_EXIT(zfsvfs); 1967 return (err); 1968 } 1969 /* 1970 * XXX - Note, we are not providing any open 1971 * mode flags here (like FNDELAY), so we may 1972 * block if there are locks present... this 1973 * should be addressed in openat(). 1974 */ 1975 do { 1976 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 1977 /* NB: we already did dmu_tx_wait() if necessary */ 1978 } while (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT); 1979 if (err) { 1980 ZFS_EXIT(zfsvfs); 1981 return (err); 1982 } 1983 } 1984 1985 if (mask & (AT_ATIME|AT_MTIME)) 1986 need_policy = zfs_zaccess_v4_perm(zp, ACE_WRITE_ATTRIBUTES, cr); 1987 1988 if (mask & (AT_UID|AT_GID)) { 1989 int idmask = (mask & (AT_UID|AT_GID)); 1990 int take_owner; 1991 int take_group; 1992 1993 /* 1994 * NOTE: even if a new mode is being set, 1995 * we may clear S_ISUID/S_ISGID bits. 1996 */ 1997 1998 if (!(mask & AT_MODE)) 1999 vap->va_mode = pzp->zp_mode; 2000 2001 /* 2002 * Take ownership or chgrp to group we are a member of 2003 */ 2004 2005 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2006 take_group = (mask & AT_GID) && groupmember(vap->va_gid, cr); 2007 2008 /* 2009 * If both AT_UID and AT_GID are set then take_owner and 2010 * take_group must both be set in order to allow taking 2011 * ownership. 2012 * 2013 * Otherwise, send the check through secpolicy_vnode_setattr() 2014 * 2015 */ 2016 2017 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2018 ((idmask == AT_UID) && take_owner) || 2019 ((idmask == AT_GID) && take_group)) { 2020 if (zfs_zaccess_v4_perm(zp, ACE_WRITE_OWNER, cr) == 0) { 2021 /* 2022 * Remove setuid/setgid for non-privileged users 2023 */ 2024 secpolicy_setid_clear(vap, cr); 2025 trim_mask = TRUE; 2026 saved_mask = vap->va_mask; 2027 } else { 2028 need_policy = TRUE; 2029 } 2030 } else { 2031 need_policy = TRUE; 2032 } 2033 } 2034 2035 if (mask & AT_MODE) 2036 need_policy = TRUE; 2037 2038 if (need_policy) { 2039 mutex_enter(&zp->z_lock); 2040 oldva.va_mode = pzp->zp_mode; 2041 oldva.va_uid = zp->z_phys->zp_uid; 2042 oldva.va_gid = zp->z_phys->zp_gid; 2043 mutex_exit(&zp->z_lock); 2044 2045 /* 2046 * If trim_mask is set then take ownership 2047 * has been granted. In that case remove 2048 * UID|GID from mask so that 2049 * secpolicy_vnode_setattr() doesn't revoke it. 2050 */ 2051 if (trim_mask) 2052 vap->va_mask &= ~(AT_UID|AT_GID); 2053 2054 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2055 (int (*)(void *, int, cred_t *))zfs_zaccess_rwx, zp); 2056 if (err) { 2057 ZFS_EXIT(zfsvfs); 2058 return (err); 2059 } 2060 2061 if (trim_mask) 2062 vap->va_mask |= (saved_mask & (AT_UID|AT_GID)); 2063 } 2064 2065 /* 2066 * secpolicy_vnode_setattr, or take ownership may have 2067 * changed va_mask 2068 */ 2069 mask = vap->va_mask; 2070 2071 tx = dmu_tx_create(zfsvfs->z_os); 2072 dmu_tx_hold_bonus(tx, zp->z_id); 2073 2074 if (mask & AT_MODE) { 2075 uint64_t pmode = pzp->zp_mode; 2076 2077 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2078 2079 if (zp->z_phys->zp_acl.z_acl_extern_obj) 2080 dmu_tx_hold_write(tx, 2081 pzp->zp_acl.z_acl_extern_obj, 0, SPA_MAXBLOCKSIZE); 2082 else 2083 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2084 0, ZFS_ACL_SIZE(MAX_ACL_SIZE)); 2085 } 2086 2087 if ((mask & (AT_UID | AT_GID)) && zp->z_phys->zp_xattr != 0) { 2088 err = zfs_zget(zp->z_zfsvfs, zp->z_phys->zp_xattr, &attrzp); 2089 if (err) { 2090 dmu_tx_abort(tx); 2091 ZFS_EXIT(zfsvfs); 2092 return (err); 2093 } 2094 dmu_tx_hold_bonus(tx, attrzp->z_id); 2095 } 2096 2097 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2098 if (err) { 2099 if (attrzp) 2100 VN_RELE(ZTOV(attrzp)); 2101 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2102 dmu_tx_wait(tx); 2103 dmu_tx_abort(tx); 2104 goto top; 2105 } 2106 dmu_tx_abort(tx); 2107 ZFS_EXIT(zfsvfs); 2108 return (err); 2109 } 2110 2111 dmu_buf_will_dirty(zp->z_dbuf, tx); 2112 2113 /* 2114 * Set each attribute requested. 2115 * We group settings according to the locks they need to acquire. 2116 * 2117 * Note: you cannot set ctime directly, although it will be 2118 * updated as a side-effect of calling this function. 2119 */ 2120 2121 mutex_enter(&zp->z_lock); 2122 2123 if (mask & AT_MODE) { 2124 err = zfs_acl_chmod_setattr(zp, new_mode, tx); 2125 ASSERT3U(err, ==, 0); 2126 } 2127 2128 if (attrzp) 2129 mutex_enter(&attrzp->z_lock); 2130 2131 if (mask & AT_UID) { 2132 zp->z_phys->zp_uid = (uint64_t)vap->va_uid; 2133 if (attrzp) { 2134 attrzp->z_phys->zp_uid = (uint64_t)vap->va_uid; 2135 } 2136 } 2137 2138 if (mask & AT_GID) { 2139 zp->z_phys->zp_gid = (uint64_t)vap->va_gid; 2140 if (attrzp) 2141 attrzp->z_phys->zp_gid = (uint64_t)vap->va_gid; 2142 } 2143 2144 if (attrzp) 2145 mutex_exit(&attrzp->z_lock); 2146 2147 if (mask & AT_ATIME) 2148 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2149 2150 if (mask & AT_MTIME) 2151 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2152 2153 if (mask & AT_SIZE) 2154 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2155 else if (mask != 0) 2156 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2157 2158 if (mask != 0) 2159 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask); 2160 2161 mutex_exit(&zp->z_lock); 2162 2163 if (attrzp) 2164 VN_RELE(ZTOV(attrzp)); 2165 2166 dmu_tx_commit(tx); 2167 2168 ZFS_EXIT(zfsvfs); 2169 return (err); 2170 } 2171 2172 /* 2173 * Search back through the directory tree, using the ".." entries. 2174 * Lock each directory in the chain to prevent concurrent renames. 2175 * Fail any attempt to move a directory into one of its own descendants. 2176 * XXX - z_parent_lock can overlap with map or grow locks 2177 */ 2178 typedef struct zfs_zlock { 2179 krwlock_t *zl_rwlock; /* lock we acquired */ 2180 znode_t *zl_znode; /* znode we held */ 2181 struct zfs_zlock *zl_next; /* next in list */ 2182 } zfs_zlock_t; 2183 2184 static int 2185 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2186 { 2187 zfs_zlock_t *zl; 2188 znode_t *zp = tdzp; 2189 uint64_t rootid = zp->z_zfsvfs->z_root; 2190 uint64_t *oidp = &zp->z_id; 2191 krwlock_t *rwlp = &szp->z_parent_lock; 2192 krw_t rw = RW_WRITER; 2193 2194 /* 2195 * First pass write-locks szp and compares to zp->z_id. 2196 * Later passes read-lock zp and compare to zp->z_parent. 2197 */ 2198 do { 2199 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 2200 zl->zl_rwlock = rwlp; 2201 zl->zl_znode = NULL; 2202 zl->zl_next = *zlpp; 2203 *zlpp = zl; 2204 2205 rw_enter(rwlp, rw); 2206 2207 if (*oidp == szp->z_id) /* We're a descendant of szp */ 2208 return (EINVAL); 2209 2210 if (*oidp == rootid) /* We've hit the top */ 2211 return (0); 2212 2213 if (rw == RW_READER) { /* i.e. not the first pass */ 2214 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 2215 if (error) 2216 return (error); 2217 zl->zl_znode = zp; 2218 } 2219 oidp = &zp->z_phys->zp_parent; 2220 rwlp = &zp->z_parent_lock; 2221 rw = RW_READER; 2222 2223 } while (zp->z_id != sdzp->z_id); 2224 2225 return (0); 2226 } 2227 2228 /* 2229 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2230 */ 2231 static void 2232 zfs_rename_unlock(zfs_zlock_t **zlpp) 2233 { 2234 zfs_zlock_t *zl; 2235 2236 while ((zl = *zlpp) != NULL) { 2237 if (zl->zl_znode != NULL) 2238 VN_RELE(ZTOV(zl->zl_znode)); 2239 rw_exit(zl->zl_rwlock); 2240 *zlpp = zl->zl_next; 2241 kmem_free(zl, sizeof (*zl)); 2242 } 2243 } 2244 2245 /* 2246 * Move an entry from the provided source directory to the target 2247 * directory. Change the entry name as indicated. 2248 * 2249 * IN: sdvp - Source directory containing the "old entry". 2250 * snm - Old entry name. 2251 * tdvp - Target directory to contain the "new entry". 2252 * tnm - New entry name. 2253 * cr - credentials of caller. 2254 * 2255 * RETURN: 0 if success 2256 * error code if failure 2257 * 2258 * Timestamps: 2259 * sdvp,tdvp - ctime|mtime updated 2260 */ 2261 static int 2262 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr) 2263 { 2264 znode_t *tdzp, *szp, *tzp; 2265 znode_t *sdzp = VTOZ(sdvp); 2266 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 2267 zilog_t *zilog = zfsvfs->z_log; 2268 vnode_t *realvp; 2269 zfs_dirlock_t *sdl, *tdl; 2270 dmu_tx_t *tx; 2271 zfs_zlock_t *zl; 2272 int cmp, serr, terr, error; 2273 2274 ZFS_ENTER(zfsvfs); 2275 2276 /* 2277 * Make sure we have the real vp for the target directory. 2278 */ 2279 if (VOP_REALVP(tdvp, &realvp) == 0) 2280 tdvp = realvp; 2281 2282 if (tdvp->v_vfsp != sdvp->v_vfsp) { 2283 ZFS_EXIT(zfsvfs); 2284 return (EXDEV); 2285 } 2286 2287 tdzp = VTOZ(tdvp); 2288 top: 2289 szp = NULL; 2290 tzp = NULL; 2291 zl = NULL; 2292 2293 /* 2294 * This is to prevent the creation of links into attribute space 2295 * by renaming a linked file into/outof an attribute directory. 2296 * See the comment in zfs_link() for why this is considered bad. 2297 */ 2298 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 2299 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 2300 ZFS_EXIT(zfsvfs); 2301 return (EINVAL); 2302 } 2303 2304 /* 2305 * Lock source and target directory entries. To prevent deadlock, 2306 * a lock ordering must be defined. We lock the directory with 2307 * the smallest object id first, or if it's a tie, the one with 2308 * the lexically first name. 2309 */ 2310 if (sdzp->z_id < tdzp->z_id) { 2311 cmp = -1; 2312 } else if (sdzp->z_id > tdzp->z_id) { 2313 cmp = 1; 2314 } else { 2315 cmp = strcmp(snm, tnm); 2316 if (cmp == 0) { 2317 /* 2318 * POSIX: "If the old argument and the new argument 2319 * both refer to links to the same existing file, 2320 * the rename() function shall return successfully 2321 * and perform no other action." 2322 */ 2323 ZFS_EXIT(zfsvfs); 2324 return (0); 2325 } 2326 } 2327 if (cmp < 0) { 2328 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS); 2329 terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0); 2330 } else { 2331 terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0); 2332 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS); 2333 } 2334 2335 if (serr) { 2336 /* 2337 * Source entry invalid or not there. 2338 */ 2339 if (!terr) { 2340 zfs_dirent_unlock(tdl); 2341 if (tzp) 2342 VN_RELE(ZTOV(tzp)); 2343 } 2344 if (strcmp(snm, "..") == 0) 2345 serr = EINVAL; 2346 ZFS_EXIT(zfsvfs); 2347 return (serr); 2348 } 2349 if (terr) { 2350 zfs_dirent_unlock(sdl); 2351 VN_RELE(ZTOV(szp)); 2352 if (strcmp(tnm, "..") == 0) 2353 terr = EINVAL; 2354 ZFS_EXIT(zfsvfs); 2355 return (terr); 2356 } 2357 2358 /* 2359 * Must have write access at the source to remove the old entry 2360 * and write access at the target to create the new entry. 2361 * Note that if target and source are the same, this can be 2362 * done in a single check. 2363 */ 2364 2365 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 2366 goto out; 2367 2368 if (ZTOV(szp)->v_type == VDIR) { 2369 /* 2370 * Check to make sure rename is valid. 2371 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 2372 */ 2373 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 2374 goto out; 2375 } 2376 2377 /* 2378 * Does target exist? 2379 */ 2380 if (tzp) { 2381 /* 2382 * Source and target must be the same type. 2383 */ 2384 if (ZTOV(szp)->v_type == VDIR) { 2385 if (ZTOV(tzp)->v_type != VDIR) { 2386 error = ENOTDIR; 2387 goto out; 2388 } 2389 } else { 2390 if (ZTOV(tzp)->v_type == VDIR) { 2391 error = EISDIR; 2392 goto out; 2393 } 2394 } 2395 /* 2396 * POSIX dictates that when the source and target 2397 * entries refer to the same file object, rename 2398 * must do nothing and exit without error. 2399 */ 2400 if (szp->z_id == tzp->z_id) { 2401 error = 0; 2402 goto out; 2403 } 2404 } 2405 2406 vnevent_rename_src(ZTOV(szp)); 2407 if (tzp) 2408 vnevent_rename_dest(ZTOV(tzp)); 2409 2410 tx = dmu_tx_create(zfsvfs->z_os); 2411 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 2412 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 2413 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 2414 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 2415 if (sdzp != tdzp) 2416 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 2417 if (tzp) 2418 dmu_tx_hold_bonus(tx, tzp->z_id); /* parent changes */ 2419 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, FALSE, NULL); 2420 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2421 if (error) { 2422 if (zl != NULL) 2423 zfs_rename_unlock(&zl); 2424 zfs_dirent_unlock(sdl); 2425 zfs_dirent_unlock(tdl); 2426 VN_RELE(ZTOV(szp)); 2427 if (tzp) 2428 VN_RELE(ZTOV(tzp)); 2429 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2430 dmu_tx_wait(tx); 2431 dmu_tx_abort(tx); 2432 goto top; 2433 } 2434 dmu_tx_abort(tx); 2435 ZFS_EXIT(zfsvfs); 2436 return (error); 2437 } 2438 2439 if (tzp) /* Attempt to remove the existing target */ 2440 error = zfs_link_destroy(tdl, tzp, tx, 0, NULL); 2441 2442 if (error == 0) { 2443 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 2444 if (error == 0) { 2445 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 2446 ASSERT(error == 0); 2447 zfs_log_rename(zilog, tx, TX_RENAME, sdzp, 2448 sdl->dl_name, tdzp, tdl->dl_name, szp); 2449 } 2450 } 2451 2452 dmu_tx_commit(tx); 2453 out: 2454 if (zl != NULL) 2455 zfs_rename_unlock(&zl); 2456 2457 zfs_dirent_unlock(sdl); 2458 zfs_dirent_unlock(tdl); 2459 2460 VN_RELE(ZTOV(szp)); 2461 if (tzp) 2462 VN_RELE(ZTOV(tzp)); 2463 2464 ZFS_EXIT(zfsvfs); 2465 return (error); 2466 } 2467 2468 /* 2469 * Insert the indicated symbolic reference entry into the directory. 2470 * 2471 * IN: dvp - Directory to contain new symbolic link. 2472 * link - Name for new symlink entry. 2473 * vap - Attributes of new entry. 2474 * target - Target path of new symlink. 2475 * cr - credentials of caller. 2476 * 2477 * RETURN: 0 if success 2478 * error code if failure 2479 * 2480 * Timestamps: 2481 * dvp - ctime|mtime updated 2482 */ 2483 static int 2484 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr) 2485 { 2486 znode_t *zp, *dzp = VTOZ(dvp); 2487 zfs_dirlock_t *dl; 2488 dmu_tx_t *tx; 2489 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2490 zilog_t *zilog = zfsvfs->z_log; 2491 uint64_t zoid; 2492 int len = strlen(link); 2493 int error; 2494 2495 ASSERT(vap->va_type == VLNK); 2496 2497 ZFS_ENTER(zfsvfs); 2498 top: 2499 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 2500 ZFS_EXIT(zfsvfs); 2501 return (error); 2502 } 2503 2504 if (len > MAXPATHLEN) { 2505 ZFS_EXIT(zfsvfs); 2506 return (ENAMETOOLONG); 2507 } 2508 2509 /* 2510 * Attempt to lock directory; fail if entry already exists. 2511 */ 2512 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZNEW)) { 2513 ZFS_EXIT(zfsvfs); 2514 return (error); 2515 } 2516 2517 tx = dmu_tx_create(zfsvfs->z_os); 2518 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 2519 dmu_tx_hold_bonus(tx, dzp->z_id); 2520 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 2521 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 2522 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 2523 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2524 if (error) { 2525 zfs_dirent_unlock(dl); 2526 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2527 dmu_tx_wait(tx); 2528 dmu_tx_abort(tx); 2529 goto top; 2530 } 2531 dmu_tx_abort(tx); 2532 ZFS_EXIT(zfsvfs); 2533 return (error); 2534 } 2535 2536 dmu_buf_will_dirty(dzp->z_dbuf, tx); 2537 2538 /* 2539 * Create a new object for the symlink. 2540 * Put the link content into bonus buffer if it will fit; 2541 * otherwise, store it just like any other file data. 2542 */ 2543 zoid = 0; 2544 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 2545 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, len); 2546 if (len != 0) 2547 bcopy(link, zp->z_phys + 1, len); 2548 } else { 2549 dmu_buf_t *dbp; 2550 2551 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 2552 2553 /* 2554 * Nothing can access the znode yet so no locking needed 2555 * for growing the znode's blocksize. 2556 */ 2557 zfs_grow_blocksize(zp, len, tx); 2558 2559 VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, zoid, 0, FTAG, &dbp)); 2560 dmu_buf_will_dirty(dbp, tx); 2561 2562 ASSERT3U(len, <=, dbp->db_size); 2563 bcopy(link, dbp->db_data, len); 2564 dmu_buf_rele(dbp, FTAG); 2565 } 2566 zp->z_phys->zp_size = len; 2567 2568 /* 2569 * Insert the new object into the directory. 2570 */ 2571 (void) zfs_link_create(dl, zp, tx, ZNEW); 2572 out: 2573 if (error == 0) 2574 zfs_log_symlink(zilog, tx, TX_SYMLINK, dzp, zp, name, link); 2575 2576 dmu_tx_commit(tx); 2577 2578 zfs_dirent_unlock(dl); 2579 2580 VN_RELE(ZTOV(zp)); 2581 2582 ZFS_EXIT(zfsvfs); 2583 return (error); 2584 } 2585 2586 /* 2587 * Return, in the buffer contained in the provided uio structure, 2588 * the symbolic path referred to by vp. 2589 * 2590 * IN: vp - vnode of symbolic link. 2591 * uoip - structure to contain the link path. 2592 * cr - credentials of caller. 2593 * 2594 * OUT: uio - structure to contain the link path. 2595 * 2596 * RETURN: 0 if success 2597 * error code if failure 2598 * 2599 * Timestamps: 2600 * vp - atime updated 2601 */ 2602 /* ARGSUSED */ 2603 static int 2604 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr) 2605 { 2606 znode_t *zp = VTOZ(vp); 2607 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2608 size_t bufsz; 2609 int error; 2610 2611 ZFS_ENTER(zfsvfs); 2612 2613 bufsz = (size_t)zp->z_phys->zp_size; 2614 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 2615 error = uiomove(zp->z_phys + 1, 2616 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 2617 } else { 2618 dmu_buf_t *dbp; 2619 error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp); 2620 if (error) { 2621 ZFS_EXIT(zfsvfs); 2622 return (error); 2623 } 2624 error = uiomove(dbp->db_data, 2625 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 2626 dmu_buf_rele(dbp, FTAG); 2627 } 2628 2629 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2630 ZFS_EXIT(zfsvfs); 2631 return (error); 2632 } 2633 2634 /* 2635 * Insert a new entry into directory tdvp referencing svp. 2636 * 2637 * IN: tdvp - Directory to contain new entry. 2638 * svp - vnode of new entry. 2639 * name - name of new entry. 2640 * cr - credentials of caller. 2641 * 2642 * RETURN: 0 if success 2643 * error code if failure 2644 * 2645 * Timestamps: 2646 * tdvp - ctime|mtime updated 2647 * svp - ctime updated 2648 */ 2649 /* ARGSUSED */ 2650 static int 2651 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr) 2652 { 2653 znode_t *dzp = VTOZ(tdvp); 2654 znode_t *tzp, *szp; 2655 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2656 zilog_t *zilog = zfsvfs->z_log; 2657 zfs_dirlock_t *dl; 2658 dmu_tx_t *tx; 2659 vnode_t *realvp; 2660 int error; 2661 2662 ASSERT(tdvp->v_type == VDIR); 2663 2664 ZFS_ENTER(zfsvfs); 2665 2666 if (VOP_REALVP(svp, &realvp) == 0) 2667 svp = realvp; 2668 2669 if (svp->v_vfsp != tdvp->v_vfsp) { 2670 ZFS_EXIT(zfsvfs); 2671 return (EXDEV); 2672 } 2673 2674 szp = VTOZ(svp); 2675 top: 2676 /* 2677 * We do not support links between attributes and non-attributes 2678 * because of the potential security risk of creating links 2679 * into "normal" file space in order to circumvent restrictions 2680 * imposed in attribute space. 2681 */ 2682 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 2683 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 2684 ZFS_EXIT(zfsvfs); 2685 return (EINVAL); 2686 } 2687 2688 /* 2689 * POSIX dictates that we return EPERM here. 2690 * Better choices include ENOTSUP or EISDIR. 2691 */ 2692 if (svp->v_type == VDIR) { 2693 ZFS_EXIT(zfsvfs); 2694 return (EPERM); 2695 } 2696 2697 if ((uid_t)szp->z_phys->zp_uid != crgetuid(cr) && 2698 secpolicy_basic_link(cr) != 0) { 2699 ZFS_EXIT(zfsvfs); 2700 return (EPERM); 2701 } 2702 2703 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 2704 ZFS_EXIT(zfsvfs); 2705 return (error); 2706 } 2707 2708 /* 2709 * Attempt to lock directory; fail if entry already exists. 2710 */ 2711 if (error = zfs_dirent_lock(&dl, dzp, name, &tzp, ZNEW)) { 2712 ZFS_EXIT(zfsvfs); 2713 return (error); 2714 } 2715 2716 tx = dmu_tx_create(zfsvfs->z_os); 2717 dmu_tx_hold_bonus(tx, szp->z_id); 2718 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 2719 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2720 if (error) { 2721 zfs_dirent_unlock(dl); 2722 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2723 dmu_tx_wait(tx); 2724 dmu_tx_abort(tx); 2725 goto top; 2726 } 2727 dmu_tx_abort(tx); 2728 ZFS_EXIT(zfsvfs); 2729 return (error); 2730 } 2731 2732 error = zfs_link_create(dl, szp, tx, 0); 2733 2734 if (error == 0) 2735 zfs_log_link(zilog, tx, TX_LINK, dzp, szp, name); 2736 2737 dmu_tx_commit(tx); 2738 2739 zfs_dirent_unlock(dl); 2740 2741 ZFS_EXIT(zfsvfs); 2742 return (error); 2743 } 2744 2745 /* 2746 * zfs_null_putapage() is used when the file system has been force 2747 * unmounted. It just drops the pages. 2748 */ 2749 /* ARGSUSED */ 2750 static int 2751 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 2752 size_t *lenp, int flags, cred_t *cr) 2753 { 2754 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 2755 return (0); 2756 } 2757 2758 /* ARGSUSED */ 2759 static int 2760 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 2761 size_t *lenp, int flags, cred_t *cr) 2762 { 2763 znode_t *zp = VTOZ(vp); 2764 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2765 zilog_t *zilog = zfsvfs->z_log; 2766 dmu_tx_t *tx; 2767 rl_t *rl; 2768 u_offset_t off; 2769 ssize_t len; 2770 caddr_t va; 2771 int err; 2772 2773 top: 2774 off = pp->p_offset; 2775 rl = zfs_range_lock(zp, off, PAGESIZE, RL_WRITER); 2776 /* 2777 * Can't push pages past end-of-file. 2778 */ 2779 if (off >= zp->z_phys->zp_size) { 2780 zfs_range_unlock(rl); 2781 return (EIO); 2782 } 2783 len = MIN(PAGESIZE, zp->z_phys->zp_size - off); 2784 2785 tx = dmu_tx_create(zfsvfs->z_os); 2786 dmu_tx_hold_write(tx, zp->z_id, off, len); 2787 dmu_tx_hold_bonus(tx, zp->z_id); 2788 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2789 if (err != 0) { 2790 zfs_range_unlock(rl); 2791 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2792 dmu_tx_wait(tx); 2793 dmu_tx_abort(tx); 2794 goto top; 2795 } 2796 dmu_tx_abort(tx); 2797 goto out; 2798 } 2799 2800 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 2801 2802 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 2803 2804 ppmapout(va); 2805 2806 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 2807 (void) zfs_log_write(zilog, tx, TX_WRITE, zp, off, len, 0, NULL); 2808 dmu_tx_commit(tx); 2809 2810 zfs_range_unlock(rl); 2811 2812 pvn_write_done(pp, B_WRITE | flags); 2813 if (offp) 2814 *offp = off; 2815 if (lenp) 2816 *lenp = len; 2817 2818 out: 2819 return (err); 2820 } 2821 2822 /* 2823 * Copy the portion of the file indicated from pages into the file. 2824 * The pages are stored in a page list attached to the files vnode. 2825 * 2826 * IN: vp - vnode of file to push page data to. 2827 * off - position in file to put data. 2828 * len - amount of data to write. 2829 * flags - flags to control the operation. 2830 * cr - credentials of caller. 2831 * 2832 * RETURN: 0 if success 2833 * error code if failure 2834 * 2835 * Timestamps: 2836 * vp - ctime|mtime updated 2837 */ 2838 static int 2839 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr) 2840 { 2841 znode_t *zp = VTOZ(vp); 2842 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2843 page_t *pp; 2844 size_t io_len; 2845 u_offset_t io_off; 2846 uint64_t filesz; 2847 int error = 0; 2848 2849 ZFS_ENTER(zfsvfs); 2850 2851 ASSERT(zp->z_dbuf_held && zp->z_phys); 2852 2853 if (len == 0) { 2854 /* 2855 * Search the entire vp list for pages >= off. 2856 */ 2857 error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage, 2858 flags, cr); 2859 goto out; 2860 } 2861 2862 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 2863 if (off > filesz) { 2864 /* past end of file */ 2865 ZFS_EXIT(zfsvfs); 2866 return (0); 2867 } 2868 2869 len = MIN(len, filesz - off); 2870 2871 for (io_off = off; io_off < off + len; io_off += io_len) { 2872 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 2873 pp = page_lookup(vp, io_off, 2874 (flags & (B_INVAL | B_FREE)) ? 2875 SE_EXCL : SE_SHARED); 2876 } else { 2877 pp = page_lookup_nowait(vp, io_off, 2878 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 2879 } 2880 2881 if (pp != NULL && pvn_getdirty(pp, flags)) { 2882 int err; 2883 2884 /* 2885 * Found a dirty page to push 2886 */ 2887 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 2888 if (err) 2889 error = err; 2890 } else { 2891 io_len = PAGESIZE; 2892 } 2893 } 2894 out: 2895 if ((flags & B_ASYNC) == 0) 2896 zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id); 2897 ZFS_EXIT(zfsvfs); 2898 return (error); 2899 } 2900 2901 void 2902 zfs_inactive(vnode_t *vp, cred_t *cr) 2903 { 2904 znode_t *zp = VTOZ(vp); 2905 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2906 int error; 2907 2908 rw_enter(&zfsvfs->z_um_lock, RW_READER); 2909 if (zfsvfs->z_unmounted2) { 2910 ASSERT(zp->z_dbuf_held == 0); 2911 2912 if (vn_has_cached_data(vp)) { 2913 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 2914 B_INVAL, cr); 2915 } 2916 2917 mutex_enter(&zp->z_lock); 2918 vp->v_count = 0; /* count arrives as 1 */ 2919 if (zp->z_dbuf == NULL) { 2920 mutex_exit(&zp->z_lock); 2921 zfs_znode_free(zp); 2922 } else { 2923 mutex_exit(&zp->z_lock); 2924 } 2925 rw_exit(&zfsvfs->z_um_lock); 2926 VFS_RELE(zfsvfs->z_vfs); 2927 return; 2928 } 2929 2930 /* 2931 * Attempt to push any data in the page cache. If this fails 2932 * we will get kicked out later in zfs_zinactive(). 2933 */ 2934 if (vn_has_cached_data(vp)) { 2935 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 2936 cr); 2937 } 2938 2939 if (zp->z_atime_dirty && zp->z_reap == 0) { 2940 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 2941 2942 dmu_tx_hold_bonus(tx, zp->z_id); 2943 error = dmu_tx_assign(tx, TXG_WAIT); 2944 if (error) { 2945 dmu_tx_abort(tx); 2946 } else { 2947 dmu_buf_will_dirty(zp->z_dbuf, tx); 2948 mutex_enter(&zp->z_lock); 2949 zp->z_atime_dirty = 0; 2950 mutex_exit(&zp->z_lock); 2951 dmu_tx_commit(tx); 2952 } 2953 } 2954 2955 zfs_zinactive(zp); 2956 rw_exit(&zfsvfs->z_um_lock); 2957 } 2958 2959 /* 2960 * Bounds-check the seek operation. 2961 * 2962 * IN: vp - vnode seeking within 2963 * ooff - old file offset 2964 * noffp - pointer to new file offset 2965 * 2966 * RETURN: 0 if success 2967 * EINVAL if new offset invalid 2968 */ 2969 /* ARGSUSED */ 2970 static int 2971 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp) 2972 { 2973 if (vp->v_type == VDIR) 2974 return (0); 2975 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 2976 } 2977 2978 /* 2979 * Pre-filter the generic locking function to trap attempts to place 2980 * a mandatory lock on a memory mapped file. 2981 */ 2982 static int 2983 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 2984 flk_callback_t *flk_cbp, cred_t *cr) 2985 { 2986 znode_t *zp = VTOZ(vp); 2987 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2988 int error; 2989 2990 ZFS_ENTER(zfsvfs); 2991 2992 /* 2993 * We are following the UFS semantics with respect to mapcnt 2994 * here: If we see that the file is mapped already, then we will 2995 * return an error, but we don't worry about races between this 2996 * function and zfs_map(). 2997 */ 2998 if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) { 2999 ZFS_EXIT(zfsvfs); 3000 return (EAGAIN); 3001 } 3002 error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr); 3003 ZFS_EXIT(zfsvfs); 3004 return (error); 3005 } 3006 3007 /* 3008 * If we can't find a page in the cache, we will create a new page 3009 * and fill it with file data. For efficiency, we may try to fill 3010 * multiple pages at once (klustering). 3011 */ 3012 static int 3013 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 3014 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 3015 { 3016 znode_t *zp = VTOZ(vp); 3017 page_t *pp, *cur_pp; 3018 objset_t *os = zp->z_zfsvfs->z_os; 3019 caddr_t va; 3020 u_offset_t io_off, total; 3021 uint64_t oid = zp->z_id; 3022 size_t io_len; 3023 uint64_t filesz; 3024 int err; 3025 3026 /* 3027 * If we are only asking for a single page don't bother klustering. 3028 */ 3029 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 3030 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE || off > filesz) { 3031 io_off = off; 3032 io_len = PAGESIZE; 3033 pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr); 3034 } else { 3035 /* 3036 * Try to fill a kluster of pages (a blocks worth). 3037 */ 3038 size_t klen; 3039 u_offset_t koff; 3040 3041 if (!ISP2(zp->z_blksz)) { 3042 /* Only one block in the file. */ 3043 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3044 koff = 0; 3045 } else { 3046 klen = plsz; 3047 koff = P2ALIGN(off, (u_offset_t)klen); 3048 } 3049 ASSERT(koff <= filesz); 3050 if (koff + klen > filesz) 3051 klen = P2ROUNDUP(filesz, (uint64_t)PAGESIZE) - koff; 3052 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3053 &io_len, koff, klen, 0); 3054 } 3055 if (pp == NULL) { 3056 /* 3057 * Some other thread entered the page before us. 3058 * Return to zfs_getpage to retry the lookup. 3059 */ 3060 *pl = NULL; 3061 return (0); 3062 } 3063 3064 /* 3065 * Fill the pages in the kluster. 3066 */ 3067 cur_pp = pp; 3068 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 3069 ASSERT(io_off == cur_pp->p_offset); 3070 va = ppmapin(cur_pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 3071 err = dmu_read(os, oid, io_off, PAGESIZE, va); 3072 ppmapout(va); 3073 if (err) { 3074 /* On error, toss the entire kluster */ 3075 pvn_read_done(pp, B_ERROR); 3076 return (err); 3077 } 3078 cur_pp = cur_pp->p_next; 3079 } 3080 out: 3081 /* 3082 * Fill in the page list array from the kluster. If 3083 * there are too many pages in the kluster, return 3084 * as many pages as possible starting from the desired 3085 * offset `off'. 3086 * NOTE: the page list will always be null terminated. 3087 */ 3088 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3089 3090 return (0); 3091 } 3092 3093 /* 3094 * Return pointers to the pages for the file region [off, off + len] 3095 * in the pl array. If plsz is greater than len, this function may 3096 * also return page pointers from before or after the specified 3097 * region (i.e. some region [off', off' + plsz]). These additional 3098 * pages are only returned if they are already in the cache, or were 3099 * created as part of a klustered read. 3100 * 3101 * IN: vp - vnode of file to get data from. 3102 * off - position in file to get data from. 3103 * len - amount of data to retrieve. 3104 * plsz - length of provided page list. 3105 * seg - segment to obtain pages for. 3106 * addr - virtual address of fault. 3107 * rw - mode of created pages. 3108 * cr - credentials of caller. 3109 * 3110 * OUT: protp - protection mode of created pages. 3111 * pl - list of pages created. 3112 * 3113 * RETURN: 0 if success 3114 * error code if failure 3115 * 3116 * Timestamps: 3117 * vp - atime updated 3118 */ 3119 /* ARGSUSED */ 3120 static int 3121 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3122 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3123 enum seg_rw rw, cred_t *cr) 3124 { 3125 znode_t *zp = VTOZ(vp); 3126 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3127 page_t *pp, **pl0 = pl; 3128 rl_t *rl; 3129 int cnt = 0, need_unlock = 0, err = 0; 3130 3131 ZFS_ENTER(zfsvfs); 3132 3133 if (protp) 3134 *protp = PROT_ALL; 3135 3136 ASSERT(zp->z_dbuf_held && zp->z_phys); 3137 3138 /* no faultahead (for now) */ 3139 if (pl == NULL) { 3140 ZFS_EXIT(zfsvfs); 3141 return (0); 3142 } 3143 3144 /* 3145 * Make sure nobody restructures the file in the middle of the getpage. 3146 */ 3147 rl = zfs_range_lock(zp, off, len, RL_READER); 3148 3149 /* can't fault past EOF */ 3150 if (off >= zp->z_phys->zp_size) { 3151 zfs_range_unlock(rl); 3152 ZFS_EXIT(zfsvfs); 3153 return (EFAULT); 3154 } 3155 3156 /* 3157 * If we already own the lock, then we must be page faulting 3158 * in the middle of a write to this file (i.e., we are writing 3159 * to this file using data from a mapped region of the file). 3160 */ 3161 if (!rw_owner(&zp->z_map_lock)) { 3162 rw_enter(&zp->z_map_lock, RW_WRITER); 3163 need_unlock = TRUE; 3164 } 3165 3166 /* 3167 * Loop through the requested range [off, off + len] looking 3168 * for pages. If we don't find a page, we will need to create 3169 * a new page and fill it with data from the file. 3170 */ 3171 while (len > 0) { 3172 if (plsz < PAGESIZE) 3173 break; 3174 if (pp = page_lookup(vp, off, SE_SHARED)) { 3175 *pl++ = pp; 3176 off += PAGESIZE; 3177 addr += PAGESIZE; 3178 len -= PAGESIZE; 3179 plsz -= PAGESIZE; 3180 } else { 3181 err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw); 3182 /* 3183 * klustering may have changed our region 3184 * to be block aligned. 3185 */ 3186 if (((pp = *pl) != 0) && (off != pp->p_offset)) { 3187 int delta = off - pp->p_offset; 3188 len += delta; 3189 off -= delta; 3190 addr -= delta; 3191 } 3192 while (*pl) { 3193 pl++; 3194 cnt++; 3195 off += PAGESIZE; 3196 addr += PAGESIZE; 3197 plsz -= PAGESIZE; 3198 if (len > PAGESIZE) 3199 len -= PAGESIZE; 3200 else 3201 len = 0; 3202 } 3203 if (err) { 3204 /* 3205 * Release any pages we have locked. 3206 */ 3207 while (pl > pl0) 3208 page_unlock(*--pl); 3209 goto out; 3210 } 3211 } 3212 } 3213 3214 /* 3215 * Fill out the page array with any pages already in the cache. 3216 */ 3217 while (plsz > 0) { 3218 pp = page_lookup_nowait(vp, off, SE_SHARED); 3219 if (pp == NULL) 3220 break; 3221 *pl++ = pp; 3222 off += PAGESIZE; 3223 plsz -= PAGESIZE; 3224 } 3225 3226 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3227 out: 3228 *pl = NULL; 3229 3230 if (need_unlock) 3231 rw_exit(&zp->z_map_lock); 3232 zfs_range_unlock(rl); 3233 3234 ZFS_EXIT(zfsvfs); 3235 return (err); 3236 } 3237 3238 /* 3239 * Request a memory map for a section of a file. This code interacts 3240 * with common code and the VM system as follows: 3241 * 3242 * common code calls mmap(), which ends up in smmap_common() 3243 * 3244 * this calls VOP_MAP(), which takes you into (say) zfs 3245 * 3246 * zfs_map() calls as_map(), passing segvn_create() as the callback 3247 * 3248 * segvn_create() creates the new segment and calls VOP_ADDMAP() 3249 * 3250 * zfs_addmap() updates z_mapcnt 3251 */ 3252 static int 3253 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 3254 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 3255 { 3256 znode_t *zp = VTOZ(vp); 3257 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3258 segvn_crargs_t vn_a; 3259 int error; 3260 3261 ZFS_ENTER(zfsvfs); 3262 3263 if (vp->v_flag & VNOMAP) { 3264 ZFS_EXIT(zfsvfs); 3265 return (ENOSYS); 3266 } 3267 3268 if (off < 0 || len > MAXOFFSET_T - off) { 3269 ZFS_EXIT(zfsvfs); 3270 return (ENXIO); 3271 } 3272 3273 if (vp->v_type != VREG) { 3274 ZFS_EXIT(zfsvfs); 3275 return (ENODEV); 3276 } 3277 3278 /* 3279 * If file is locked, disallow mapping. 3280 */ 3281 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) { 3282 ZFS_EXIT(zfsvfs); 3283 return (EAGAIN); 3284 } 3285 3286 as_rangelock(as); 3287 if ((flags & MAP_FIXED) == 0) { 3288 map_addr(addrp, len, off, 1, flags); 3289 if (*addrp == NULL) { 3290 as_rangeunlock(as); 3291 ZFS_EXIT(zfsvfs); 3292 return (ENOMEM); 3293 } 3294 } else { 3295 /* 3296 * User specified address - blow away any previous mappings 3297 */ 3298 (void) as_unmap(as, *addrp, len); 3299 } 3300 3301 vn_a.vp = vp; 3302 vn_a.offset = (u_offset_t)off; 3303 vn_a.type = flags & MAP_TYPE; 3304 vn_a.prot = prot; 3305 vn_a.maxprot = maxprot; 3306 vn_a.cred = cr; 3307 vn_a.amp = NULL; 3308 vn_a.flags = flags & ~MAP_TYPE; 3309 vn_a.szc = 0; 3310 vn_a.lgrp_mem_policy_flags = 0; 3311 3312 error = as_map(as, *addrp, len, segvn_create, &vn_a); 3313 3314 as_rangeunlock(as); 3315 ZFS_EXIT(zfsvfs); 3316 return (error); 3317 } 3318 3319 /* ARGSUSED */ 3320 static int 3321 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 3322 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 3323 { 3324 uint64_t pages = btopr(len); 3325 3326 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 3327 return (0); 3328 } 3329 3330 /* 3331 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 3332 * more accurate mtime for the associated file. Since we don't have a way of 3333 * detecting when the data was actually modified, we have to resort to 3334 * heuristics. If an explicit msync() is done, then we mark the mtime when the 3335 * last page is pushed. The problem occurs when the msync() call is omitted, 3336 * which by far the most common case: 3337 * 3338 * open() 3339 * mmap() 3340 * <modify memory> 3341 * munmap() 3342 * close() 3343 * <time lapse> 3344 * putpage() via fsflush 3345 * 3346 * If we wait until fsflush to come along, we can have a modification time that 3347 * is some arbitrary point in the future. In order to prevent this in the 3348 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 3349 * torn down. 3350 */ 3351 /* ARGSUSED */ 3352 static int 3353 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 3354 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr) 3355 { 3356 uint64_t pages = btopr(len); 3357 3358 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 3359 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 3360 3361 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 3362 vn_has_cached_data(vp)) 3363 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr); 3364 3365 return (0); 3366 } 3367 3368 /* 3369 * Free or allocate space in a file. Currently, this function only 3370 * supports the `F_FREESP' command. However, this command is somewhat 3371 * misnamed, as its functionality includes the ability to allocate as 3372 * well as free space. 3373 * 3374 * IN: vp - vnode of file to free data in. 3375 * cmd - action to take (only F_FREESP supported). 3376 * bfp - section of file to free/alloc. 3377 * flag - current file open mode flags. 3378 * offset - current file offset. 3379 * cr - credentials of caller [UNUSED]. 3380 * 3381 * RETURN: 0 if success 3382 * error code if failure 3383 * 3384 * Timestamps: 3385 * vp - ctime|mtime updated 3386 */ 3387 /* ARGSUSED */ 3388 static int 3389 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 3390 offset_t offset, cred_t *cr, caller_context_t *ct) 3391 { 3392 znode_t *zp = VTOZ(vp); 3393 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3394 uint64_t off, len; 3395 int error; 3396 3397 ZFS_ENTER(zfsvfs); 3398 3399 top: 3400 if (cmd != F_FREESP) { 3401 ZFS_EXIT(zfsvfs); 3402 return (EINVAL); 3403 } 3404 3405 if (error = convoff(vp, bfp, 0, offset)) { 3406 ZFS_EXIT(zfsvfs); 3407 return (error); 3408 } 3409 3410 if (bfp->l_len < 0) { 3411 ZFS_EXIT(zfsvfs); 3412 return (EINVAL); 3413 } 3414 3415 off = bfp->l_start; 3416 len = bfp->l_len; /* 0 means from off to end of file */ 3417 3418 do { 3419 error = zfs_freesp(zp, off, len, flag, TRUE); 3420 /* NB: we already did dmu_tx_wait() if necessary */ 3421 } while (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT); 3422 3423 ZFS_EXIT(zfsvfs); 3424 return (error); 3425 } 3426 3427 static int 3428 zfs_fid(vnode_t *vp, fid_t *fidp) 3429 { 3430 znode_t *zp = VTOZ(vp); 3431 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3432 uint32_t gen = (uint32_t)zp->z_phys->zp_gen; 3433 uint64_t object = zp->z_id; 3434 zfid_short_t *zfid; 3435 int size, i; 3436 3437 ZFS_ENTER(zfsvfs); 3438 3439 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 3440 if (fidp->fid_len < size) { 3441 fidp->fid_len = size; 3442 ZFS_EXIT(zfsvfs); 3443 return (ENOSPC); 3444 } 3445 3446 zfid = (zfid_short_t *)fidp; 3447 3448 zfid->zf_len = size; 3449 3450 for (i = 0; i < sizeof (zfid->zf_object); i++) 3451 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 3452 3453 /* Must have a non-zero generation number to distinguish from .zfs */ 3454 if (gen == 0) 3455 gen = 1; 3456 for (i = 0; i < sizeof (zfid->zf_gen); i++) 3457 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 3458 3459 if (size == LONG_FID_LEN) { 3460 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 3461 zfid_long_t *zlfid; 3462 3463 zlfid = (zfid_long_t *)fidp; 3464 3465 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 3466 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 3467 3468 /* XXX - this should be the generation number for the objset */ 3469 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 3470 zlfid->zf_setgen[i] = 0; 3471 } 3472 3473 ZFS_EXIT(zfsvfs); 3474 return (0); 3475 } 3476 3477 static int 3478 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr) 3479 { 3480 znode_t *zp, *xzp; 3481 zfsvfs_t *zfsvfs; 3482 zfs_dirlock_t *dl; 3483 int error; 3484 3485 switch (cmd) { 3486 case _PC_LINK_MAX: 3487 *valp = ULONG_MAX; 3488 return (0); 3489 3490 case _PC_FILESIZEBITS: 3491 *valp = 64; 3492 return (0); 3493 3494 case _PC_XATTR_EXISTS: 3495 zp = VTOZ(vp); 3496 zfsvfs = zp->z_zfsvfs; 3497 ZFS_ENTER(zfsvfs); 3498 *valp = 0; 3499 error = zfs_dirent_lock(&dl, zp, "", &xzp, 3500 ZXATTR | ZEXISTS | ZSHARED); 3501 if (error == 0) { 3502 zfs_dirent_unlock(dl); 3503 if (!zfs_dirempty(xzp)) 3504 *valp = 1; 3505 VN_RELE(ZTOV(xzp)); 3506 } else if (error == ENOENT) { 3507 /* 3508 * If there aren't extended attributes, it's the 3509 * same as having zero of them. 3510 */ 3511 error = 0; 3512 } 3513 ZFS_EXIT(zfsvfs); 3514 return (error); 3515 3516 case _PC_ACL_ENABLED: 3517 *valp = _ACL_ACE_ENABLED; 3518 return (0); 3519 3520 case _PC_MIN_HOLE_SIZE: 3521 *valp = (ulong_t)SPA_MINBLOCKSIZE; 3522 return (0); 3523 3524 default: 3525 return (fs_pathconf(vp, cmd, valp, cr)); 3526 } 3527 } 3528 3529 /*ARGSUSED*/ 3530 static int 3531 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr) 3532 { 3533 znode_t *zp = VTOZ(vp); 3534 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3535 int error; 3536 3537 ZFS_ENTER(zfsvfs); 3538 error = zfs_getacl(zp, vsecp, cr); 3539 ZFS_EXIT(zfsvfs); 3540 3541 return (error); 3542 } 3543 3544 /*ARGSUSED*/ 3545 static int 3546 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr) 3547 { 3548 znode_t *zp = VTOZ(vp); 3549 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3550 int error; 3551 3552 ZFS_ENTER(zfsvfs); 3553 error = zfs_setacl(zp, vsecp, cr); 3554 ZFS_EXIT(zfsvfs); 3555 return (error); 3556 } 3557 3558 /* 3559 * Predeclare these here so that the compiler assumes that 3560 * this is an "old style" function declaration that does 3561 * not include arguments => we won't get type mismatch errors 3562 * in the initializations that follow. 3563 */ 3564 static int zfs_inval(); 3565 static int zfs_isdir(); 3566 3567 static int 3568 zfs_inval() 3569 { 3570 return (EINVAL); 3571 } 3572 3573 static int 3574 zfs_isdir() 3575 { 3576 return (EISDIR); 3577 } 3578 /* 3579 * Directory vnode operations template 3580 */ 3581 vnodeops_t *zfs_dvnodeops; 3582 const fs_operation_def_t zfs_dvnodeops_template[] = { 3583 VOPNAME_OPEN, zfs_open, 3584 VOPNAME_CLOSE, zfs_close, 3585 VOPNAME_READ, zfs_isdir, 3586 VOPNAME_WRITE, zfs_isdir, 3587 VOPNAME_IOCTL, zfs_ioctl, 3588 VOPNAME_GETATTR, zfs_getattr, 3589 VOPNAME_SETATTR, zfs_setattr, 3590 VOPNAME_ACCESS, zfs_access, 3591 VOPNAME_LOOKUP, zfs_lookup, 3592 VOPNAME_CREATE, zfs_create, 3593 VOPNAME_REMOVE, zfs_remove, 3594 VOPNAME_LINK, zfs_link, 3595 VOPNAME_RENAME, zfs_rename, 3596 VOPNAME_MKDIR, zfs_mkdir, 3597 VOPNAME_RMDIR, zfs_rmdir, 3598 VOPNAME_READDIR, zfs_readdir, 3599 VOPNAME_SYMLINK, zfs_symlink, 3600 VOPNAME_FSYNC, zfs_fsync, 3601 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3602 VOPNAME_FID, zfs_fid, 3603 VOPNAME_SEEK, zfs_seek, 3604 VOPNAME_PATHCONF, zfs_pathconf, 3605 VOPNAME_GETSECATTR, zfs_getsecattr, 3606 VOPNAME_SETSECATTR, zfs_setsecattr, 3607 NULL, NULL 3608 }; 3609 3610 /* 3611 * Regular file vnode operations template 3612 */ 3613 vnodeops_t *zfs_fvnodeops; 3614 const fs_operation_def_t zfs_fvnodeops_template[] = { 3615 VOPNAME_OPEN, zfs_open, 3616 VOPNAME_CLOSE, zfs_close, 3617 VOPNAME_READ, zfs_read, 3618 VOPNAME_WRITE, zfs_write, 3619 VOPNAME_IOCTL, zfs_ioctl, 3620 VOPNAME_GETATTR, zfs_getattr, 3621 VOPNAME_SETATTR, zfs_setattr, 3622 VOPNAME_ACCESS, zfs_access, 3623 VOPNAME_LOOKUP, zfs_lookup, 3624 VOPNAME_RENAME, zfs_rename, 3625 VOPNAME_FSYNC, zfs_fsync, 3626 VOPNAME_INACTIVE, (fs_generic_func_p)zfs_inactive, 3627 VOPNAME_FID, zfs_fid, 3628 VOPNAME_SEEK, zfs_seek, 3629 VOPNAME_FRLOCK, zfs_frlock, 3630 VOPNAME_SPACE, zfs_space, 3631 VOPNAME_GETPAGE, zfs_getpage, 3632 VOPNAME_PUTPAGE, zfs_putpage, 3633 VOPNAME_MAP, (fs_generic_func_p) zfs_map, 3634 VOPNAME_ADDMAP, (fs_generic_func_p) zfs_addmap, 3635 VOPNAME_DELMAP, zfs_delmap, 3636 VOPNAME_PATHCONF, zfs_pathconf, 3637 VOPNAME_GETSECATTR, zfs_getsecattr, 3638 VOPNAME_SETSECATTR, zfs_setsecattr, 3639 VOPNAME_VNEVENT, fs_vnevent_support, 3640 NULL, NULL 3641 }; 3642 3643 /* 3644 * Symbolic link vnode operations template 3645 */ 3646 vnodeops_t *zfs_symvnodeops; 3647 const fs_operation_def_t zfs_symvnodeops_template[] = { 3648 VOPNAME_GETATTR, zfs_getattr, 3649 VOPNAME_SETATTR, zfs_setattr, 3650 VOPNAME_ACCESS, zfs_access, 3651 VOPNAME_RENAME, zfs_rename, 3652 VOPNAME_READLINK, zfs_readlink, 3653 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3654 VOPNAME_FID, zfs_fid, 3655 VOPNAME_PATHCONF, zfs_pathconf, 3656 VOPNAME_VNEVENT, fs_vnevent_support, 3657 NULL, NULL 3658 }; 3659 3660 /* 3661 * Extended attribute directory vnode operations template 3662 * This template is identical to the directory vnodes 3663 * operation template except for restricted operations: 3664 * VOP_MKDIR() 3665 * VOP_SYMLINK() 3666 * Note that there are other restrictions embedded in: 3667 * zfs_create() - restrict type to VREG 3668 * zfs_link() - no links into/out of attribute space 3669 * zfs_rename() - no moves into/out of attribute space 3670 */ 3671 vnodeops_t *zfs_xdvnodeops; 3672 const fs_operation_def_t zfs_xdvnodeops_template[] = { 3673 VOPNAME_OPEN, zfs_open, 3674 VOPNAME_CLOSE, zfs_close, 3675 VOPNAME_IOCTL, zfs_ioctl, 3676 VOPNAME_GETATTR, zfs_getattr, 3677 VOPNAME_SETATTR, zfs_setattr, 3678 VOPNAME_ACCESS, zfs_access, 3679 VOPNAME_LOOKUP, zfs_lookup, 3680 VOPNAME_CREATE, zfs_create, 3681 VOPNAME_REMOVE, zfs_remove, 3682 VOPNAME_LINK, zfs_link, 3683 VOPNAME_RENAME, zfs_rename, 3684 VOPNAME_MKDIR, zfs_inval, 3685 VOPNAME_RMDIR, zfs_rmdir, 3686 VOPNAME_READDIR, zfs_readdir, 3687 VOPNAME_SYMLINK, zfs_inval, 3688 VOPNAME_FSYNC, zfs_fsync, 3689 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3690 VOPNAME_FID, zfs_fid, 3691 VOPNAME_SEEK, zfs_seek, 3692 VOPNAME_PATHCONF, zfs_pathconf, 3693 VOPNAME_GETSECATTR, zfs_getsecattr, 3694 VOPNAME_SETSECATTR, zfs_setsecattr, 3695 VOPNAME_VNEVENT, fs_vnevent_support, 3696 NULL, NULL 3697 }; 3698 3699 /* 3700 * Error vnode operations template 3701 */ 3702 vnodeops_t *zfs_evnodeops; 3703 const fs_operation_def_t zfs_evnodeops_template[] = { 3704 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3705 VOPNAME_PATHCONF, zfs_pathconf, 3706 NULL, NULL 3707 }; 3708