xref: /titanic_50/usr/src/uts/common/fs/zfs/zfs_vnops.c (revision 3d729aecc03ea6ebb9bd5d56b8dccd24f57daa41)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
25  */
26 
27 /* Portions Copyright 2007 Jeremy Teo */
28 /* Portions Copyright 2010 Robert Milkowski */
29 
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/time.h>
33 #include <sys/systm.h>
34 #include <sys/sysmacros.h>
35 #include <sys/resource.h>
36 #include <sys/vfs.h>
37 #include <sys/vfs_opreg.h>
38 #include <sys/vnode.h>
39 #include <sys/file.h>
40 #include <sys/stat.h>
41 #include <sys/kmem.h>
42 #include <sys/taskq.h>
43 #include <sys/uio.h>
44 #include <sys/vmsystm.h>
45 #include <sys/atomic.h>
46 #include <sys/vm.h>
47 #include <vm/seg_vn.h>
48 #include <vm/pvn.h>
49 #include <vm/as.h>
50 #include <vm/kpm.h>
51 #include <vm/seg_kpm.h>
52 #include <sys/mman.h>
53 #include <sys/pathname.h>
54 #include <sys/cmn_err.h>
55 #include <sys/errno.h>
56 #include <sys/unistd.h>
57 #include <sys/zfs_dir.h>
58 #include <sys/zfs_acl.h>
59 #include <sys/zfs_ioctl.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/dmu.h>
62 #include <sys/dmu_objset.h>
63 #include <sys/spa.h>
64 #include <sys/txg.h>
65 #include <sys/dbuf.h>
66 #include <sys/zap.h>
67 #include <sys/sa.h>
68 #include <sys/dirent.h>
69 #include <sys/policy.h>
70 #include <sys/sunddi.h>
71 #include <sys/filio.h>
72 #include <sys/sid.h>
73 #include "fs/fs_subr.h"
74 #include <sys/zfs_ctldir.h>
75 #include <sys/zfs_fuid.h>
76 #include <sys/zfs_sa.h>
77 #include <sys/dnlc.h>
78 #include <sys/zfs_rlock.h>
79 #include <sys/extdirent.h>
80 #include <sys/kidmap.h>
81 #include <sys/cred.h>
82 #include <sys/attr.h>
83 
84 /*
85  * Programming rules.
86  *
87  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
88  * properly lock its in-core state, create a DMU transaction, do the work,
89  * record this work in the intent log (ZIL), commit the DMU transaction,
90  * and wait for the intent log to commit if it is a synchronous operation.
91  * Moreover, the vnode ops must work in both normal and log replay context.
92  * The ordering of events is important to avoid deadlocks and references
93  * to freed memory.  The example below illustrates the following Big Rules:
94  *
95  *  (1)	A check must be made in each zfs thread for a mounted file system.
96  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
97  *	A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
98  *	must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
99  *	can return EIO from the calling function.
100  *
101  *  (2)	VN_RELE() should always be the last thing except for zil_commit()
102  *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
103  *	First, if it's the last reference, the vnode/znode
104  *	can be freed, so the zp may point to freed memory.  Second, the last
105  *	reference will call zfs_zinactive(), which may induce a lot of work --
106  *	pushing cached pages (which acquires range locks) and syncing out
107  *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
108  *	which could deadlock the system if you were already holding one.
109  *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
110  *
111  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
112  *	as they can span dmu_tx_assign() calls.
113  *
114  *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
115  *      dmu_tx_assign().  This is critical because we don't want to block
116  *      while holding locks.
117  *
118  *	If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
119  *	reduces lock contention and CPU usage when we must wait (note that if
120  *	throughput is constrained by the storage, nearly every transaction
121  *	must wait).
122  *
123  *      Note, in particular, that if a lock is sometimes acquired before
124  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
125  *      to use a non-blocking assign can deadlock the system.  The scenario:
126  *
127  *	Thread A has grabbed a lock before calling dmu_tx_assign().
128  *	Thread B is in an already-assigned tx, and blocks for this lock.
129  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
130  *	forever, because the previous txg can't quiesce until B's tx commits.
131  *
132  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
133  *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
134  *	calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
135  *	to indicate that this operation has already called dmu_tx_wait().
136  *	This will ensure that we don't retry forever, waiting a short bit
137  *	each time.
138  *
139  *  (5)	If the operation succeeded, generate the intent log entry for it
140  *	before dropping locks.  This ensures that the ordering of events
141  *	in the intent log matches the order in which they actually occurred.
142  *	During ZIL replay the zfs_log_* functions will update the sequence
143  *	number to indicate the zil transaction has replayed.
144  *
145  *  (6)	At the end of each vnode op, the DMU tx must always commit,
146  *	regardless of whether there were any errors.
147  *
148  *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
149  *	to ensure that synchronous semantics are provided when necessary.
150  *
151  * In general, this is how things should be ordered in each vnode op:
152  *
153  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
154  * top:
155  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
156  *	rw_enter(...);			// grab any other locks you need
157  *	tx = dmu_tx_create(...);	// get DMU tx
158  *	dmu_tx_hold_*();		// hold each object you might modify
159  *	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
160  *	if (error) {
161  *		rw_exit(...);		// drop locks
162  *		zfs_dirent_unlock(dl);	// unlock directory entry
163  *		VN_RELE(...);		// release held vnodes
164  *		if (error == ERESTART) {
165  *			waited = B_TRUE;
166  *			dmu_tx_wait(tx);
167  *			dmu_tx_abort(tx);
168  *			goto top;
169  *		}
170  *		dmu_tx_abort(tx);	// abort DMU tx
171  *		ZFS_EXIT(zfsvfs);	// finished in zfs
172  *		return (error);		// really out of space
173  *	}
174  *	error = do_real_work();		// do whatever this VOP does
175  *	if (error == 0)
176  *		zfs_log_*(...);		// on success, make ZIL entry
177  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
178  *	rw_exit(...);			// drop locks
179  *	zfs_dirent_unlock(dl);		// unlock directory entry
180  *	VN_RELE(...);			// release held vnodes
181  *	zil_commit(zilog, foid);	// synchronous when necessary
182  *	ZFS_EXIT(zfsvfs);		// finished in zfs
183  *	return (error);			// done, report error
184  */
185 
186 /* ARGSUSED */
187 static int
188 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
189 {
190 	znode_t	*zp = VTOZ(*vpp);
191 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
192 
193 	ZFS_ENTER(zfsvfs);
194 	ZFS_VERIFY_ZP(zp);
195 
196 	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
197 	    ((flag & FAPPEND) == 0)) {
198 		ZFS_EXIT(zfsvfs);
199 		return (SET_ERROR(EPERM));
200 	}
201 
202 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
203 	    ZTOV(zp)->v_type == VREG &&
204 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
205 		if (fs_vscan(*vpp, cr, 0) != 0) {
206 			ZFS_EXIT(zfsvfs);
207 			return (SET_ERROR(EACCES));
208 		}
209 	}
210 
211 	/* Keep a count of the synchronous opens in the znode */
212 	if (flag & (FSYNC | FDSYNC))
213 		atomic_inc_32(&zp->z_sync_cnt);
214 
215 	ZFS_EXIT(zfsvfs);
216 	return (0);
217 }
218 
219 /* ARGSUSED */
220 static int
221 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
222     caller_context_t *ct)
223 {
224 	znode_t	*zp = VTOZ(vp);
225 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
226 
227 	/*
228 	 * Clean up any locks held by this process on the vp.
229 	 */
230 	cleanlocks(vp, ddi_get_pid(), 0);
231 	cleanshares(vp, ddi_get_pid());
232 
233 	ZFS_ENTER(zfsvfs);
234 	ZFS_VERIFY_ZP(zp);
235 
236 	/* Decrement the synchronous opens in the znode */
237 	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
238 		atomic_dec_32(&zp->z_sync_cnt);
239 
240 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
241 	    ZTOV(zp)->v_type == VREG &&
242 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
243 		VERIFY(fs_vscan(vp, cr, 1) == 0);
244 
245 	ZFS_EXIT(zfsvfs);
246 	return (0);
247 }
248 
249 /*
250  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
251  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
252  */
253 static int
254 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
255 {
256 	znode_t	*zp = VTOZ(vp);
257 	uint64_t noff = (uint64_t)*off; /* new offset */
258 	uint64_t file_sz;
259 	int error;
260 	boolean_t hole;
261 
262 	file_sz = zp->z_size;
263 	if (noff >= file_sz)  {
264 		return (SET_ERROR(ENXIO));
265 	}
266 
267 	if (cmd == _FIO_SEEK_HOLE)
268 		hole = B_TRUE;
269 	else
270 		hole = B_FALSE;
271 
272 	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
273 
274 	if (error == ESRCH)
275 		return (SET_ERROR(ENXIO));
276 
277 	/*
278 	 * We could find a hole that begins after the logical end-of-file,
279 	 * because dmu_offset_next() only works on whole blocks.  If the
280 	 * EOF falls mid-block, then indicate that the "virtual hole"
281 	 * at the end of the file begins at the logical EOF, rather than
282 	 * at the end of the last block.
283 	 */
284 	if (noff > file_sz) {
285 		ASSERT(hole);
286 		noff = file_sz;
287 	}
288 
289 	if (noff < *off)
290 		return (error);
291 	*off = noff;
292 	return (error);
293 }
294 
295 /* ARGSUSED */
296 static int
297 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
298     int *rvalp, caller_context_t *ct)
299 {
300 	offset_t off;
301 	offset_t ndata;
302 	dmu_object_info_t doi;
303 	int error;
304 	zfsvfs_t *zfsvfs;
305 	znode_t *zp;
306 
307 	switch (com) {
308 	case _FIOFFS:
309 	{
310 		return (zfs_sync(vp->v_vfsp, 0, cred));
311 
312 		/*
313 		 * The following two ioctls are used by bfu.  Faking out,
314 		 * necessary to avoid bfu errors.
315 		 */
316 	}
317 	case _FIOGDIO:
318 	case _FIOSDIO:
319 	{
320 		return (0);
321 	}
322 
323 	case _FIO_SEEK_DATA:
324 	case _FIO_SEEK_HOLE:
325 	{
326 		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
327 			return (SET_ERROR(EFAULT));
328 
329 		zp = VTOZ(vp);
330 		zfsvfs = zp->z_zfsvfs;
331 		ZFS_ENTER(zfsvfs);
332 		ZFS_VERIFY_ZP(zp);
333 
334 		/* offset parameter is in/out */
335 		error = zfs_holey(vp, com, &off);
336 		ZFS_EXIT(zfsvfs);
337 		if (error)
338 			return (error);
339 		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
340 			return (SET_ERROR(EFAULT));
341 		return (0);
342 	}
343 	case _FIO_COUNT_FILLED:
344 	{
345 		/*
346 		 * _FIO_COUNT_FILLED adds a new ioctl command which
347 		 * exposes the number of filled blocks in a
348 		 * ZFS object.
349 		 */
350 		zp = VTOZ(vp);
351 		zfsvfs = zp->z_zfsvfs;
352 		ZFS_ENTER(zfsvfs);
353 		ZFS_VERIFY_ZP(zp);
354 
355 		/*
356 		 * Wait for all dirty blocks for this object
357 		 * to get synced out to disk, and the DMU info
358 		 * updated.
359 		 */
360 		error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
361 		if (error) {
362 			ZFS_EXIT(zfsvfs);
363 			return (error);
364 		}
365 
366 		/*
367 		 * Retrieve fill count from DMU object.
368 		 */
369 		error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
370 		if (error) {
371 			ZFS_EXIT(zfsvfs);
372 			return (error);
373 		}
374 
375 		ndata = doi.doi_fill_count;
376 
377 		ZFS_EXIT(zfsvfs);
378 		if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
379 			return (SET_ERROR(EFAULT));
380 		return (0);
381 	}
382 	}
383 	return (SET_ERROR(ENOTTY));
384 }
385 
386 /*
387  * Utility functions to map and unmap a single physical page.  These
388  * are used to manage the mappable copies of ZFS file data, and therefore
389  * do not update ref/mod bits.
390  */
391 caddr_t
392 zfs_map_page(page_t *pp, enum seg_rw rw)
393 {
394 	if (kpm_enable)
395 		return (hat_kpm_mapin(pp, 0));
396 	ASSERT(rw == S_READ || rw == S_WRITE);
397 	return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
398 	    (caddr_t)-1));
399 }
400 
401 void
402 zfs_unmap_page(page_t *pp, caddr_t addr)
403 {
404 	if (kpm_enable) {
405 		hat_kpm_mapout(pp, 0, addr);
406 	} else {
407 		ppmapout(addr);
408 	}
409 }
410 
411 /*
412  * When a file is memory mapped, we must keep the IO data synchronized
413  * between the DMU cache and the memory mapped pages.  What this means:
414  *
415  * On Write:	If we find a memory mapped page, we write to *both*
416  *		the page and the dmu buffer.
417  */
418 static void
419 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
420 {
421 	int64_t	off;
422 
423 	off = start & PAGEOFFSET;
424 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
425 		page_t *pp;
426 		uint64_t nbytes = MIN(PAGESIZE - off, len);
427 
428 		if (pp = page_lookup(vp, start, SE_SHARED)) {
429 			caddr_t va;
430 
431 			va = zfs_map_page(pp, S_WRITE);
432 			(void) dmu_read(os, oid, start+off, nbytes, va+off,
433 			    DMU_READ_PREFETCH);
434 			zfs_unmap_page(pp, va);
435 			page_unlock(pp);
436 		}
437 		len -= nbytes;
438 		off = 0;
439 	}
440 }
441 
442 /*
443  * When a file is memory mapped, we must keep the IO data synchronized
444  * between the DMU cache and the memory mapped pages.  What this means:
445  *
446  * On Read:	We "read" preferentially from memory mapped pages,
447  *		else we default from the dmu buffer.
448  *
449  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
450  *	 the file is memory mapped.
451  */
452 static int
453 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
454 {
455 	znode_t *zp = VTOZ(vp);
456 	int64_t	start, off;
457 	int len = nbytes;
458 	int error = 0;
459 
460 	start = uio->uio_loffset;
461 	off = start & PAGEOFFSET;
462 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
463 		page_t *pp;
464 		uint64_t bytes = MIN(PAGESIZE - off, len);
465 
466 		if (pp = page_lookup(vp, start, SE_SHARED)) {
467 			caddr_t va;
468 
469 			va = zfs_map_page(pp, S_READ);
470 			error = uiomove(va + off, bytes, UIO_READ, uio);
471 			zfs_unmap_page(pp, va);
472 			page_unlock(pp);
473 		} else {
474 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
475 			    uio, bytes);
476 		}
477 		len -= bytes;
478 		off = 0;
479 		if (error)
480 			break;
481 	}
482 	return (error);
483 }
484 
485 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
486 
487 /*
488  * Read bytes from specified file into supplied buffer.
489  *
490  *	IN:	vp	- vnode of file to be read from.
491  *		uio	- structure supplying read location, range info,
492  *			  and return buffer.
493  *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
494  *		cr	- credentials of caller.
495  *		ct	- caller context
496  *
497  *	OUT:	uio	- updated offset and range, buffer filled.
498  *
499  *	RETURN:	0 on success, error code on failure.
500  *
501  * Side Effects:
502  *	vp - atime updated if byte count > 0
503  */
504 /* ARGSUSED */
505 static int
506 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
507 {
508 	znode_t		*zp = VTOZ(vp);
509 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
510 	ssize_t		n, nbytes;
511 	int		error = 0;
512 	rl_t		*rl;
513 	xuio_t		*xuio = NULL;
514 
515 	ZFS_ENTER(zfsvfs);
516 	ZFS_VERIFY_ZP(zp);
517 
518 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
519 		ZFS_EXIT(zfsvfs);
520 		return (SET_ERROR(EACCES));
521 	}
522 
523 	/*
524 	 * Validate file offset
525 	 */
526 	if (uio->uio_loffset < (offset_t)0) {
527 		ZFS_EXIT(zfsvfs);
528 		return (SET_ERROR(EINVAL));
529 	}
530 
531 	/*
532 	 * Fasttrack empty reads
533 	 */
534 	if (uio->uio_resid == 0) {
535 		ZFS_EXIT(zfsvfs);
536 		return (0);
537 	}
538 
539 	/*
540 	 * Check for mandatory locks
541 	 */
542 	if (MANDMODE(zp->z_mode)) {
543 		if (error = chklock(vp, FREAD,
544 		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
545 			ZFS_EXIT(zfsvfs);
546 			return (error);
547 		}
548 	}
549 
550 	/*
551 	 * If we're in FRSYNC mode, sync out this znode before reading it.
552 	 */
553 	if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
554 		zil_commit(zfsvfs->z_log, zp->z_id);
555 
556 	/*
557 	 * Lock the range against changes.
558 	 */
559 	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
560 
561 	/*
562 	 * If we are reading past end-of-file we can skip
563 	 * to the end; but we might still need to set atime.
564 	 */
565 	if (uio->uio_loffset >= zp->z_size) {
566 		error = 0;
567 		goto out;
568 	}
569 
570 	ASSERT(uio->uio_loffset < zp->z_size);
571 	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
572 
573 	if ((uio->uio_extflg == UIO_XUIO) &&
574 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
575 		int nblk;
576 		int blksz = zp->z_blksz;
577 		uint64_t offset = uio->uio_loffset;
578 
579 		xuio = (xuio_t *)uio;
580 		if ((ISP2(blksz))) {
581 			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
582 			    blksz)) / blksz;
583 		} else {
584 			ASSERT(offset + n <= blksz);
585 			nblk = 1;
586 		}
587 		(void) dmu_xuio_init(xuio, nblk);
588 
589 		if (vn_has_cached_data(vp)) {
590 			/*
591 			 * For simplicity, we always allocate a full buffer
592 			 * even if we only expect to read a portion of a block.
593 			 */
594 			while (--nblk >= 0) {
595 				(void) dmu_xuio_add(xuio,
596 				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
597 				    blksz), 0, blksz);
598 			}
599 		}
600 	}
601 
602 	while (n > 0) {
603 		nbytes = MIN(n, zfs_read_chunk_size -
604 		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
605 
606 		if (vn_has_cached_data(vp)) {
607 			error = mappedread(vp, nbytes, uio);
608 		} else {
609 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
610 			    uio, nbytes);
611 		}
612 		if (error) {
613 			/* convert checksum errors into IO errors */
614 			if (error == ECKSUM)
615 				error = SET_ERROR(EIO);
616 			break;
617 		}
618 
619 		n -= nbytes;
620 	}
621 out:
622 	zfs_range_unlock(rl);
623 
624 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
625 	ZFS_EXIT(zfsvfs);
626 	return (error);
627 }
628 
629 /*
630  * Write the bytes to a file.
631  *
632  *	IN:	vp	- vnode of file to be written to.
633  *		uio	- structure supplying write location, range info,
634  *			  and data buffer.
635  *		ioflag	- FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
636  *			  set if in append mode.
637  *		cr	- credentials of caller.
638  *		ct	- caller context (NFS/CIFS fem monitor only)
639  *
640  *	OUT:	uio	- updated offset and range.
641  *
642  *	RETURN:	0 on success, error code on failure.
643  *
644  * Timestamps:
645  *	vp - ctime|mtime updated if byte count > 0
646  */
647 
648 /* ARGSUSED */
649 static int
650 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
651 {
652 	znode_t		*zp = VTOZ(vp);
653 	rlim64_t	limit = uio->uio_llimit;
654 	ssize_t		start_resid = uio->uio_resid;
655 	ssize_t		tx_bytes;
656 	uint64_t	end_size;
657 	dmu_tx_t	*tx;
658 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
659 	zilog_t		*zilog;
660 	offset_t	woff;
661 	ssize_t		n, nbytes;
662 	rl_t		*rl;
663 	int		max_blksz = zfsvfs->z_max_blksz;
664 	int		error = 0;
665 	arc_buf_t	*abuf;
666 	iovec_t		*aiov = NULL;
667 	xuio_t		*xuio = NULL;
668 	int		i_iov = 0;
669 	int		iovcnt = uio->uio_iovcnt;
670 	iovec_t		*iovp = uio->uio_iov;
671 	int		write_eof;
672 	int		count = 0;
673 	sa_bulk_attr_t	bulk[4];
674 	uint64_t	mtime[2], ctime[2];
675 
676 	/*
677 	 * Fasttrack empty write
678 	 */
679 	n = start_resid;
680 	if (n == 0)
681 		return (0);
682 
683 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
684 		limit = MAXOFFSET_T;
685 
686 	ZFS_ENTER(zfsvfs);
687 	ZFS_VERIFY_ZP(zp);
688 
689 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
690 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
691 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
692 	    &zp->z_size, 8);
693 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
694 	    &zp->z_pflags, 8);
695 
696 	/*
697 	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
698 	 * callers might not be able to detect properly that we are read-only,
699 	 * so check it explicitly here.
700 	 */
701 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
702 		ZFS_EXIT(zfsvfs);
703 		return (SET_ERROR(EROFS));
704 	}
705 
706 	/*
707 	 * If immutable or not appending then return EPERM
708 	 */
709 	if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
710 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
711 	    (uio->uio_loffset < zp->z_size))) {
712 		ZFS_EXIT(zfsvfs);
713 		return (SET_ERROR(EPERM));
714 	}
715 
716 	zilog = zfsvfs->z_log;
717 
718 	/*
719 	 * Validate file offset
720 	 */
721 	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
722 	if (woff < 0) {
723 		ZFS_EXIT(zfsvfs);
724 		return (SET_ERROR(EINVAL));
725 	}
726 
727 	/*
728 	 * Check for mandatory locks before calling zfs_range_lock()
729 	 * in order to prevent a deadlock with locks set via fcntl().
730 	 */
731 	if (MANDMODE((mode_t)zp->z_mode) &&
732 	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
733 		ZFS_EXIT(zfsvfs);
734 		return (error);
735 	}
736 
737 	/*
738 	 * Pre-fault the pages to ensure slow (eg NFS) pages
739 	 * don't hold up txg.
740 	 * Skip this if uio contains loaned arc_buf.
741 	 */
742 	if ((uio->uio_extflg == UIO_XUIO) &&
743 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
744 		xuio = (xuio_t *)uio;
745 	else
746 		uio_prefaultpages(MIN(n, max_blksz), uio);
747 
748 	/*
749 	 * If in append mode, set the io offset pointer to eof.
750 	 */
751 	if (ioflag & FAPPEND) {
752 		/*
753 		 * Obtain an appending range lock to guarantee file append
754 		 * semantics.  We reset the write offset once we have the lock.
755 		 */
756 		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
757 		woff = rl->r_off;
758 		if (rl->r_len == UINT64_MAX) {
759 			/*
760 			 * We overlocked the file because this write will cause
761 			 * the file block size to increase.
762 			 * Note that zp_size cannot change with this lock held.
763 			 */
764 			woff = zp->z_size;
765 		}
766 		uio->uio_loffset = woff;
767 	} else {
768 		/*
769 		 * Note that if the file block size will change as a result of
770 		 * this write, then this range lock will lock the entire file
771 		 * so that we can re-write the block safely.
772 		 */
773 		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
774 	}
775 
776 	if (woff >= limit) {
777 		zfs_range_unlock(rl);
778 		ZFS_EXIT(zfsvfs);
779 		return (SET_ERROR(EFBIG));
780 	}
781 
782 	if ((woff + n) > limit || woff > (limit - n))
783 		n = limit - woff;
784 
785 	/* Will this write extend the file length? */
786 	write_eof = (woff + n > zp->z_size);
787 
788 	end_size = MAX(zp->z_size, woff + n);
789 
790 	/*
791 	 * Write the file in reasonable size chunks.  Each chunk is written
792 	 * in a separate transaction; this keeps the intent log records small
793 	 * and allows us to do more fine-grained space accounting.
794 	 */
795 	while (n > 0) {
796 		abuf = NULL;
797 		woff = uio->uio_loffset;
798 		if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
799 		    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
800 			if (abuf != NULL)
801 				dmu_return_arcbuf(abuf);
802 			error = SET_ERROR(EDQUOT);
803 			break;
804 		}
805 
806 		if (xuio && abuf == NULL) {
807 			ASSERT(i_iov < iovcnt);
808 			aiov = &iovp[i_iov];
809 			abuf = dmu_xuio_arcbuf(xuio, i_iov);
810 			dmu_xuio_clear(xuio, i_iov);
811 			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
812 			    iovec_t *, aiov, arc_buf_t *, abuf);
813 			ASSERT((aiov->iov_base == abuf->b_data) ||
814 			    ((char *)aiov->iov_base - (char *)abuf->b_data +
815 			    aiov->iov_len == arc_buf_size(abuf)));
816 			i_iov++;
817 		} else if (abuf == NULL && n >= max_blksz &&
818 		    woff >= zp->z_size &&
819 		    P2PHASE(woff, max_blksz) == 0 &&
820 		    zp->z_blksz == max_blksz) {
821 			/*
822 			 * This write covers a full block.  "Borrow" a buffer
823 			 * from the dmu so that we can fill it before we enter
824 			 * a transaction.  This avoids the possibility of
825 			 * holding up the transaction if the data copy hangs
826 			 * up on a pagefault (e.g., from an NFS server mapping).
827 			 */
828 			size_t cbytes;
829 
830 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
831 			    max_blksz);
832 			ASSERT(abuf != NULL);
833 			ASSERT(arc_buf_size(abuf) == max_blksz);
834 			if (error = uiocopy(abuf->b_data, max_blksz,
835 			    UIO_WRITE, uio, &cbytes)) {
836 				dmu_return_arcbuf(abuf);
837 				break;
838 			}
839 			ASSERT(cbytes == max_blksz);
840 		}
841 
842 		/*
843 		 * Start a transaction.
844 		 */
845 		tx = dmu_tx_create(zfsvfs->z_os);
846 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
847 		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
848 		zfs_sa_upgrade_txholds(tx, zp);
849 		error = dmu_tx_assign(tx, TXG_WAIT);
850 		if (error) {
851 			dmu_tx_abort(tx);
852 			if (abuf != NULL)
853 				dmu_return_arcbuf(abuf);
854 			break;
855 		}
856 
857 		/*
858 		 * If zfs_range_lock() over-locked we grow the blocksize
859 		 * and then reduce the lock range.  This will only happen
860 		 * on the first iteration since zfs_range_reduce() will
861 		 * shrink down r_len to the appropriate size.
862 		 */
863 		if (rl->r_len == UINT64_MAX) {
864 			uint64_t new_blksz;
865 
866 			if (zp->z_blksz > max_blksz) {
867 				/*
868 				 * File's blocksize is already larger than the
869 				 * "recordsize" property.  Only let it grow to
870 				 * the next power of 2.
871 				 */
872 				ASSERT(!ISP2(zp->z_blksz));
873 				new_blksz = MIN(end_size,
874 				    1 << highbit64(zp->z_blksz));
875 			} else {
876 				new_blksz = MIN(end_size, max_blksz);
877 			}
878 			zfs_grow_blocksize(zp, new_blksz, tx);
879 			zfs_range_reduce(rl, woff, n);
880 		}
881 
882 		/*
883 		 * XXX - should we really limit each write to z_max_blksz?
884 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
885 		 */
886 		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
887 
888 		if (abuf == NULL) {
889 			tx_bytes = uio->uio_resid;
890 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
891 			    uio, nbytes, tx);
892 			tx_bytes -= uio->uio_resid;
893 		} else {
894 			tx_bytes = nbytes;
895 			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
896 			/*
897 			 * If this is not a full block write, but we are
898 			 * extending the file past EOF and this data starts
899 			 * block-aligned, use assign_arcbuf().  Otherwise,
900 			 * write via dmu_write().
901 			 */
902 			if (tx_bytes < max_blksz && (!write_eof ||
903 			    aiov->iov_base != abuf->b_data)) {
904 				ASSERT(xuio);
905 				dmu_write(zfsvfs->z_os, zp->z_id, woff,
906 				    aiov->iov_len, aiov->iov_base, tx);
907 				dmu_return_arcbuf(abuf);
908 				xuio_stat_wbuf_copied();
909 			} else {
910 				ASSERT(xuio || tx_bytes == max_blksz);
911 				dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
912 				    woff, abuf, tx);
913 			}
914 			ASSERT(tx_bytes <= uio->uio_resid);
915 			uioskip(uio, tx_bytes);
916 		}
917 		if (tx_bytes && vn_has_cached_data(vp)) {
918 			update_pages(vp, woff,
919 			    tx_bytes, zfsvfs->z_os, zp->z_id);
920 		}
921 
922 		/*
923 		 * If we made no progress, we're done.  If we made even
924 		 * partial progress, update the znode and ZIL accordingly.
925 		 */
926 		if (tx_bytes == 0) {
927 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
928 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
929 			dmu_tx_commit(tx);
930 			ASSERT(error != 0);
931 			break;
932 		}
933 
934 		/*
935 		 * Clear Set-UID/Set-GID bits on successful write if not
936 		 * privileged and at least one of the excute bits is set.
937 		 *
938 		 * It would be nice to to this after all writes have
939 		 * been done, but that would still expose the ISUID/ISGID
940 		 * to another app after the partial write is committed.
941 		 *
942 		 * Note: we don't call zfs_fuid_map_id() here because
943 		 * user 0 is not an ephemeral uid.
944 		 */
945 		mutex_enter(&zp->z_acl_lock);
946 		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
947 		    (S_IXUSR >> 6))) != 0 &&
948 		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
949 		    secpolicy_vnode_setid_retain(cr,
950 		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
951 			uint64_t newmode;
952 			zp->z_mode &= ~(S_ISUID | S_ISGID);
953 			newmode = zp->z_mode;
954 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
955 			    (void *)&newmode, sizeof (uint64_t), tx);
956 		}
957 		mutex_exit(&zp->z_acl_lock);
958 
959 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
960 		    B_TRUE);
961 
962 		/*
963 		 * Update the file size (zp_size) if it has changed;
964 		 * account for possible concurrent updates.
965 		 */
966 		while ((end_size = zp->z_size) < uio->uio_loffset) {
967 			(void) atomic_cas_64(&zp->z_size, end_size,
968 			    uio->uio_loffset);
969 			ASSERT(error == 0);
970 		}
971 		/*
972 		 * If we are replaying and eof is non zero then force
973 		 * the file size to the specified eof. Note, there's no
974 		 * concurrency during replay.
975 		 */
976 		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
977 			zp->z_size = zfsvfs->z_replay_eof;
978 
979 		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
980 
981 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
982 		dmu_tx_commit(tx);
983 
984 		if (error != 0)
985 			break;
986 		ASSERT(tx_bytes == nbytes);
987 		n -= nbytes;
988 
989 		if (!xuio && n > 0)
990 			uio_prefaultpages(MIN(n, max_blksz), uio);
991 	}
992 
993 	zfs_range_unlock(rl);
994 
995 	/*
996 	 * If we're in replay mode, or we made no progress, return error.
997 	 * Otherwise, it's at least a partial write, so it's successful.
998 	 */
999 	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1000 		ZFS_EXIT(zfsvfs);
1001 		return (error);
1002 	}
1003 
1004 	if (ioflag & (FSYNC | FDSYNC) ||
1005 	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1006 		zil_commit(zilog, zp->z_id);
1007 
1008 	ZFS_EXIT(zfsvfs);
1009 	return (0);
1010 }
1011 
1012 void
1013 zfs_get_done(zgd_t *zgd, int error)
1014 {
1015 	znode_t *zp = zgd->zgd_private;
1016 	objset_t *os = zp->z_zfsvfs->z_os;
1017 
1018 	if (zgd->zgd_db)
1019 		dmu_buf_rele(zgd->zgd_db, zgd);
1020 
1021 	zfs_range_unlock(zgd->zgd_rl);
1022 
1023 	/*
1024 	 * Release the vnode asynchronously as we currently have the
1025 	 * txg stopped from syncing.
1026 	 */
1027 	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1028 
1029 	if (error == 0 && zgd->zgd_bp)
1030 		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1031 
1032 	kmem_free(zgd, sizeof (zgd_t));
1033 }
1034 
1035 #ifdef DEBUG
1036 static int zil_fault_io = 0;
1037 #endif
1038 
1039 /*
1040  * Get data to generate a TX_WRITE intent log record.
1041  */
1042 int
1043 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1044 {
1045 	zfsvfs_t *zfsvfs = arg;
1046 	objset_t *os = zfsvfs->z_os;
1047 	znode_t *zp;
1048 	uint64_t object = lr->lr_foid;
1049 	uint64_t offset = lr->lr_offset;
1050 	uint64_t size = lr->lr_length;
1051 	blkptr_t *bp = &lr->lr_blkptr;
1052 	dmu_buf_t *db;
1053 	zgd_t *zgd;
1054 	int error = 0;
1055 
1056 	ASSERT(zio != NULL);
1057 	ASSERT(size != 0);
1058 
1059 	/*
1060 	 * Nothing to do if the file has been removed
1061 	 */
1062 	if (zfs_zget(zfsvfs, object, &zp) != 0)
1063 		return (SET_ERROR(ENOENT));
1064 	if (zp->z_unlinked) {
1065 		/*
1066 		 * Release the vnode asynchronously as we currently have the
1067 		 * txg stopped from syncing.
1068 		 */
1069 		VN_RELE_ASYNC(ZTOV(zp),
1070 		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1071 		return (SET_ERROR(ENOENT));
1072 	}
1073 
1074 	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1075 	zgd->zgd_zilog = zfsvfs->z_log;
1076 	zgd->zgd_private = zp;
1077 
1078 	/*
1079 	 * Write records come in two flavors: immediate and indirect.
1080 	 * For small writes it's cheaper to store the data with the
1081 	 * log record (immediate); for large writes it's cheaper to
1082 	 * sync the data and get a pointer to it (indirect) so that
1083 	 * we don't have to write the data twice.
1084 	 */
1085 	if (buf != NULL) { /* immediate write */
1086 		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1087 		/* test for truncation needs to be done while range locked */
1088 		if (offset >= zp->z_size) {
1089 			error = SET_ERROR(ENOENT);
1090 		} else {
1091 			error = dmu_read(os, object, offset, size, buf,
1092 			    DMU_READ_NO_PREFETCH);
1093 		}
1094 		ASSERT(error == 0 || error == ENOENT);
1095 	} else { /* indirect write */
1096 		/*
1097 		 * Have to lock the whole block to ensure when it's
1098 		 * written out and it's checksum is being calculated
1099 		 * that no one can change the data. We need to re-check
1100 		 * blocksize after we get the lock in case it's changed!
1101 		 */
1102 		for (;;) {
1103 			uint64_t blkoff;
1104 			size = zp->z_blksz;
1105 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1106 			offset -= blkoff;
1107 			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1108 			    RL_READER);
1109 			if (zp->z_blksz == size)
1110 				break;
1111 			offset += blkoff;
1112 			zfs_range_unlock(zgd->zgd_rl);
1113 		}
1114 		/* test for truncation needs to be done while range locked */
1115 		if (lr->lr_offset >= zp->z_size)
1116 			error = SET_ERROR(ENOENT);
1117 #ifdef DEBUG
1118 		if (zil_fault_io) {
1119 			error = SET_ERROR(EIO);
1120 			zil_fault_io = 0;
1121 		}
1122 #endif
1123 		if (error == 0)
1124 			error = dmu_buf_hold(os, object, offset, zgd, &db,
1125 			    DMU_READ_NO_PREFETCH);
1126 
1127 		if (error == 0) {
1128 			blkptr_t *obp = dmu_buf_get_blkptr(db);
1129 			if (obp) {
1130 				ASSERT(BP_IS_HOLE(bp));
1131 				*bp = *obp;
1132 			}
1133 
1134 			zgd->zgd_db = db;
1135 			zgd->zgd_bp = bp;
1136 
1137 			ASSERT(db->db_offset == offset);
1138 			ASSERT(db->db_size == size);
1139 
1140 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1141 			    zfs_get_done, zgd);
1142 			ASSERT(error || lr->lr_length <= zp->z_blksz);
1143 
1144 			/*
1145 			 * On success, we need to wait for the write I/O
1146 			 * initiated by dmu_sync() to complete before we can
1147 			 * release this dbuf.  We will finish everything up
1148 			 * in the zfs_get_done() callback.
1149 			 */
1150 			if (error == 0)
1151 				return (0);
1152 
1153 			if (error == EALREADY) {
1154 				lr->lr_common.lrc_txtype = TX_WRITE2;
1155 				error = 0;
1156 			}
1157 		}
1158 	}
1159 
1160 	zfs_get_done(zgd, error);
1161 
1162 	return (error);
1163 }
1164 
1165 /*ARGSUSED*/
1166 static int
1167 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1168     caller_context_t *ct)
1169 {
1170 	znode_t *zp = VTOZ(vp);
1171 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1172 	int error;
1173 
1174 	ZFS_ENTER(zfsvfs);
1175 	ZFS_VERIFY_ZP(zp);
1176 
1177 	if (flag & V_ACE_MASK)
1178 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1179 	else
1180 		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1181 
1182 	ZFS_EXIT(zfsvfs);
1183 	return (error);
1184 }
1185 
1186 /*
1187  * If vnode is for a device return a specfs vnode instead.
1188  */
1189 static int
1190 specvp_check(vnode_t **vpp, cred_t *cr)
1191 {
1192 	int error = 0;
1193 
1194 	if (IS_DEVVP(*vpp)) {
1195 		struct vnode *svp;
1196 
1197 		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1198 		VN_RELE(*vpp);
1199 		if (svp == NULL)
1200 			error = SET_ERROR(ENOSYS);
1201 		*vpp = svp;
1202 	}
1203 	return (error);
1204 }
1205 
1206 
1207 /*
1208  * Lookup an entry in a directory, or an extended attribute directory.
1209  * If it exists, return a held vnode reference for it.
1210  *
1211  *	IN:	dvp	- vnode of directory to search.
1212  *		nm	- name of entry to lookup.
1213  *		pnp	- full pathname to lookup [UNUSED].
1214  *		flags	- LOOKUP_XATTR set if looking for an attribute.
1215  *		rdir	- root directory vnode [UNUSED].
1216  *		cr	- credentials of caller.
1217  *		ct	- caller context
1218  *		direntflags - directory lookup flags
1219  *		realpnp - returned pathname.
1220  *
1221  *	OUT:	vpp	- vnode of located entry, NULL if not found.
1222  *
1223  *	RETURN:	0 on success, error code on failure.
1224  *
1225  * Timestamps:
1226  *	NA
1227  */
1228 /* ARGSUSED */
1229 static int
1230 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1231     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1232     int *direntflags, pathname_t *realpnp)
1233 {
1234 	znode_t *zdp = VTOZ(dvp);
1235 	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1236 	int	error = 0;
1237 
1238 	/* fast path */
1239 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1240 
1241 		if (dvp->v_type != VDIR) {
1242 			return (SET_ERROR(ENOTDIR));
1243 		} else if (zdp->z_sa_hdl == NULL) {
1244 			return (SET_ERROR(EIO));
1245 		}
1246 
1247 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1248 			error = zfs_fastaccesschk_execute(zdp, cr);
1249 			if (!error) {
1250 				*vpp = dvp;
1251 				VN_HOLD(*vpp);
1252 				return (0);
1253 			}
1254 			return (error);
1255 		} else {
1256 			vnode_t *tvp = dnlc_lookup(dvp, nm);
1257 
1258 			if (tvp) {
1259 				error = zfs_fastaccesschk_execute(zdp, cr);
1260 				if (error) {
1261 					VN_RELE(tvp);
1262 					return (error);
1263 				}
1264 				if (tvp == DNLC_NO_VNODE) {
1265 					VN_RELE(tvp);
1266 					return (SET_ERROR(ENOENT));
1267 				} else {
1268 					*vpp = tvp;
1269 					return (specvp_check(vpp, cr));
1270 				}
1271 			}
1272 		}
1273 	}
1274 
1275 	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1276 
1277 	ZFS_ENTER(zfsvfs);
1278 	ZFS_VERIFY_ZP(zdp);
1279 
1280 	*vpp = NULL;
1281 
1282 	if (flags & LOOKUP_XATTR) {
1283 		/*
1284 		 * If the xattr property is off, refuse the lookup request.
1285 		 */
1286 		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1287 			ZFS_EXIT(zfsvfs);
1288 			return (SET_ERROR(EINVAL));
1289 		}
1290 
1291 		/*
1292 		 * We don't allow recursive attributes..
1293 		 * Maybe someday we will.
1294 		 */
1295 		if (zdp->z_pflags & ZFS_XATTR) {
1296 			ZFS_EXIT(zfsvfs);
1297 			return (SET_ERROR(EINVAL));
1298 		}
1299 
1300 		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1301 			ZFS_EXIT(zfsvfs);
1302 			return (error);
1303 		}
1304 
1305 		/*
1306 		 * Do we have permission to get into attribute directory?
1307 		 */
1308 
1309 		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1310 		    B_FALSE, cr)) {
1311 			VN_RELE(*vpp);
1312 			*vpp = NULL;
1313 		}
1314 
1315 		ZFS_EXIT(zfsvfs);
1316 		return (error);
1317 	}
1318 
1319 	if (dvp->v_type != VDIR) {
1320 		ZFS_EXIT(zfsvfs);
1321 		return (SET_ERROR(ENOTDIR));
1322 	}
1323 
1324 	/*
1325 	 * Check accessibility of directory.
1326 	 */
1327 
1328 	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1329 		ZFS_EXIT(zfsvfs);
1330 		return (error);
1331 	}
1332 
1333 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1334 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1335 		ZFS_EXIT(zfsvfs);
1336 		return (SET_ERROR(EILSEQ));
1337 	}
1338 
1339 	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1340 	if (error == 0)
1341 		error = specvp_check(vpp, cr);
1342 
1343 	ZFS_EXIT(zfsvfs);
1344 	return (error);
1345 }
1346 
1347 /*
1348  * Attempt to create a new entry in a directory.  If the entry
1349  * already exists, truncate the file if permissible, else return
1350  * an error.  Return the vp of the created or trunc'd file.
1351  *
1352  *	IN:	dvp	- vnode of directory to put new file entry in.
1353  *		name	- name of new file entry.
1354  *		vap	- attributes of new file.
1355  *		excl	- flag indicating exclusive or non-exclusive mode.
1356  *		mode	- mode to open file with.
1357  *		cr	- credentials of caller.
1358  *		flag	- large file flag [UNUSED].
1359  *		ct	- caller context
1360  *		vsecp	- ACL to be set
1361  *
1362  *	OUT:	vpp	- vnode of created or trunc'd entry.
1363  *
1364  *	RETURN:	0 on success, error code on failure.
1365  *
1366  * Timestamps:
1367  *	dvp - ctime|mtime updated if new entry created
1368  *	 vp - ctime|mtime always, atime if new
1369  */
1370 
1371 /* ARGSUSED */
1372 static int
1373 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1374     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1375     vsecattr_t *vsecp)
1376 {
1377 	znode_t		*zp, *dzp = VTOZ(dvp);
1378 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1379 	zilog_t		*zilog;
1380 	objset_t	*os;
1381 	zfs_dirlock_t	*dl;
1382 	dmu_tx_t	*tx;
1383 	int		error;
1384 	ksid_t		*ksid;
1385 	uid_t		uid;
1386 	gid_t		gid = crgetgid(cr);
1387 	zfs_acl_ids_t   acl_ids;
1388 	boolean_t	fuid_dirtied;
1389 	boolean_t	have_acl = B_FALSE;
1390 	boolean_t	waited = B_FALSE;
1391 
1392 	/*
1393 	 * If we have an ephemeral id, ACL, or XVATTR then
1394 	 * make sure file system is at proper version
1395 	 */
1396 
1397 	ksid = crgetsid(cr, KSID_OWNER);
1398 	if (ksid)
1399 		uid = ksid_getid(ksid);
1400 	else
1401 		uid = crgetuid(cr);
1402 
1403 	if (zfsvfs->z_use_fuids == B_FALSE &&
1404 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1405 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1406 		return (SET_ERROR(EINVAL));
1407 
1408 	ZFS_ENTER(zfsvfs);
1409 	ZFS_VERIFY_ZP(dzp);
1410 	os = zfsvfs->z_os;
1411 	zilog = zfsvfs->z_log;
1412 
1413 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1414 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1415 		ZFS_EXIT(zfsvfs);
1416 		return (SET_ERROR(EILSEQ));
1417 	}
1418 
1419 	if (vap->va_mask & AT_XVATTR) {
1420 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1421 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1422 			ZFS_EXIT(zfsvfs);
1423 			return (error);
1424 		}
1425 	}
1426 top:
1427 	*vpp = NULL;
1428 
1429 	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1430 		vap->va_mode &= ~VSVTX;
1431 
1432 	if (*name == '\0') {
1433 		/*
1434 		 * Null component name refers to the directory itself.
1435 		 */
1436 		VN_HOLD(dvp);
1437 		zp = dzp;
1438 		dl = NULL;
1439 		error = 0;
1440 	} else {
1441 		/* possible VN_HOLD(zp) */
1442 		int zflg = 0;
1443 
1444 		if (flag & FIGNORECASE)
1445 			zflg |= ZCILOOK;
1446 
1447 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1448 		    NULL, NULL);
1449 		if (error) {
1450 			if (have_acl)
1451 				zfs_acl_ids_free(&acl_ids);
1452 			if (strcmp(name, "..") == 0)
1453 				error = SET_ERROR(EISDIR);
1454 			ZFS_EXIT(zfsvfs);
1455 			return (error);
1456 		}
1457 	}
1458 
1459 	if (zp == NULL) {
1460 		uint64_t txtype;
1461 
1462 		/*
1463 		 * Create a new file object and update the directory
1464 		 * to reference it.
1465 		 */
1466 		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1467 			if (have_acl)
1468 				zfs_acl_ids_free(&acl_ids);
1469 			goto out;
1470 		}
1471 
1472 		/*
1473 		 * We only support the creation of regular files in
1474 		 * extended attribute directories.
1475 		 */
1476 
1477 		if ((dzp->z_pflags & ZFS_XATTR) &&
1478 		    (vap->va_type != VREG)) {
1479 			if (have_acl)
1480 				zfs_acl_ids_free(&acl_ids);
1481 			error = SET_ERROR(EINVAL);
1482 			goto out;
1483 		}
1484 
1485 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1486 		    cr, vsecp, &acl_ids)) != 0)
1487 			goto out;
1488 		have_acl = B_TRUE;
1489 
1490 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1491 			zfs_acl_ids_free(&acl_ids);
1492 			error = SET_ERROR(EDQUOT);
1493 			goto out;
1494 		}
1495 
1496 		tx = dmu_tx_create(os);
1497 
1498 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1499 		    ZFS_SA_BASE_ATTR_SIZE);
1500 
1501 		fuid_dirtied = zfsvfs->z_fuid_dirty;
1502 		if (fuid_dirtied)
1503 			zfs_fuid_txhold(zfsvfs, tx);
1504 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1505 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1506 		if (!zfsvfs->z_use_sa &&
1507 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1508 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1509 			    0, acl_ids.z_aclp->z_acl_bytes);
1510 		}
1511 		error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1512 		if (error) {
1513 			zfs_dirent_unlock(dl);
1514 			if (error == ERESTART) {
1515 				waited = B_TRUE;
1516 				dmu_tx_wait(tx);
1517 				dmu_tx_abort(tx);
1518 				goto top;
1519 			}
1520 			zfs_acl_ids_free(&acl_ids);
1521 			dmu_tx_abort(tx);
1522 			ZFS_EXIT(zfsvfs);
1523 			return (error);
1524 		}
1525 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1526 
1527 		if (fuid_dirtied)
1528 			zfs_fuid_sync(zfsvfs, tx);
1529 
1530 		(void) zfs_link_create(dl, zp, tx, ZNEW);
1531 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1532 		if (flag & FIGNORECASE)
1533 			txtype |= TX_CI;
1534 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1535 		    vsecp, acl_ids.z_fuidp, vap);
1536 		zfs_acl_ids_free(&acl_ids);
1537 		dmu_tx_commit(tx);
1538 	} else {
1539 		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1540 
1541 		if (have_acl)
1542 			zfs_acl_ids_free(&acl_ids);
1543 		have_acl = B_FALSE;
1544 
1545 		/*
1546 		 * A directory entry already exists for this name.
1547 		 */
1548 		/*
1549 		 * Can't truncate an existing file if in exclusive mode.
1550 		 */
1551 		if (excl == EXCL) {
1552 			error = SET_ERROR(EEXIST);
1553 			goto out;
1554 		}
1555 		/*
1556 		 * Can't open a directory for writing.
1557 		 */
1558 		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1559 			error = SET_ERROR(EISDIR);
1560 			goto out;
1561 		}
1562 		/*
1563 		 * Verify requested access to file.
1564 		 */
1565 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1566 			goto out;
1567 		}
1568 
1569 		mutex_enter(&dzp->z_lock);
1570 		dzp->z_seq++;
1571 		mutex_exit(&dzp->z_lock);
1572 
1573 		/*
1574 		 * Truncate regular files if requested.
1575 		 */
1576 		if ((ZTOV(zp)->v_type == VREG) &&
1577 		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1578 			/* we can't hold any locks when calling zfs_freesp() */
1579 			zfs_dirent_unlock(dl);
1580 			dl = NULL;
1581 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1582 			if (error == 0) {
1583 				vnevent_create(ZTOV(zp), ct);
1584 			}
1585 		}
1586 	}
1587 out:
1588 
1589 	if (dl)
1590 		zfs_dirent_unlock(dl);
1591 
1592 	if (error) {
1593 		if (zp)
1594 			VN_RELE(ZTOV(zp));
1595 	} else {
1596 		*vpp = ZTOV(zp);
1597 		error = specvp_check(vpp, cr);
1598 	}
1599 
1600 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1601 		zil_commit(zilog, 0);
1602 
1603 	ZFS_EXIT(zfsvfs);
1604 	return (error);
1605 }
1606 
1607 /*
1608  * Remove an entry from a directory.
1609  *
1610  *	IN:	dvp	- vnode of directory to remove entry from.
1611  *		name	- name of entry to remove.
1612  *		cr	- credentials of caller.
1613  *		ct	- caller context
1614  *		flags	- case flags
1615  *
1616  *	RETURN:	0 on success, error code on failure.
1617  *
1618  * Timestamps:
1619  *	dvp - ctime|mtime
1620  *	 vp - ctime (if nlink > 0)
1621  */
1622 
1623 uint64_t null_xattr = 0;
1624 
1625 /*ARGSUSED*/
1626 static int
1627 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1628     int flags)
1629 {
1630 	znode_t		*zp, *dzp = VTOZ(dvp);
1631 	znode_t		*xzp;
1632 	vnode_t		*vp;
1633 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1634 	zilog_t		*zilog;
1635 	uint64_t	acl_obj, xattr_obj;
1636 	uint64_t	xattr_obj_unlinked = 0;
1637 	uint64_t	obj = 0;
1638 	zfs_dirlock_t	*dl;
1639 	dmu_tx_t	*tx;
1640 	boolean_t	may_delete_now, delete_now = FALSE;
1641 	boolean_t	unlinked, toobig = FALSE;
1642 	uint64_t	txtype;
1643 	pathname_t	*realnmp = NULL;
1644 	pathname_t	realnm;
1645 	int		error;
1646 	int		zflg = ZEXISTS;
1647 	boolean_t	waited = B_FALSE;
1648 
1649 	ZFS_ENTER(zfsvfs);
1650 	ZFS_VERIFY_ZP(dzp);
1651 	zilog = zfsvfs->z_log;
1652 
1653 	if (flags & FIGNORECASE) {
1654 		zflg |= ZCILOOK;
1655 		pn_alloc(&realnm);
1656 		realnmp = &realnm;
1657 	}
1658 
1659 top:
1660 	xattr_obj = 0;
1661 	xzp = NULL;
1662 	/*
1663 	 * Attempt to lock directory; fail if entry doesn't exist.
1664 	 */
1665 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1666 	    NULL, realnmp)) {
1667 		if (realnmp)
1668 			pn_free(realnmp);
1669 		ZFS_EXIT(zfsvfs);
1670 		return (error);
1671 	}
1672 
1673 	vp = ZTOV(zp);
1674 
1675 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1676 		goto out;
1677 	}
1678 
1679 	/*
1680 	 * Need to use rmdir for removing directories.
1681 	 */
1682 	if (vp->v_type == VDIR) {
1683 		error = SET_ERROR(EPERM);
1684 		goto out;
1685 	}
1686 
1687 	vnevent_remove(vp, dvp, name, ct);
1688 
1689 	if (realnmp)
1690 		dnlc_remove(dvp, realnmp->pn_buf);
1691 	else
1692 		dnlc_remove(dvp, name);
1693 
1694 	mutex_enter(&vp->v_lock);
1695 	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1696 	mutex_exit(&vp->v_lock);
1697 
1698 	/*
1699 	 * We may delete the znode now, or we may put it in the unlinked set;
1700 	 * it depends on whether we're the last link, and on whether there are
1701 	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1702 	 * allow for either case.
1703 	 */
1704 	obj = zp->z_id;
1705 	tx = dmu_tx_create(zfsvfs->z_os);
1706 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1707 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1708 	zfs_sa_upgrade_txholds(tx, zp);
1709 	zfs_sa_upgrade_txholds(tx, dzp);
1710 	if (may_delete_now) {
1711 		toobig =
1712 		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1713 		/* if the file is too big, only hold_free a token amount */
1714 		dmu_tx_hold_free(tx, zp->z_id, 0,
1715 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1716 	}
1717 
1718 	/* are there any extended attributes? */
1719 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1720 	    &xattr_obj, sizeof (xattr_obj));
1721 	if (error == 0 && xattr_obj) {
1722 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1723 		ASSERT0(error);
1724 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1725 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1726 	}
1727 
1728 	mutex_enter(&zp->z_lock);
1729 	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1730 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1731 	mutex_exit(&zp->z_lock);
1732 
1733 	/* charge as an update -- would be nice not to charge at all */
1734 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1735 
1736 	/*
1737 	 * Mark this transaction as typically resulting in a net free of space
1738 	 */
1739 	dmu_tx_mark_netfree(tx);
1740 
1741 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1742 	if (error) {
1743 		zfs_dirent_unlock(dl);
1744 		VN_RELE(vp);
1745 		if (xzp)
1746 			VN_RELE(ZTOV(xzp));
1747 		if (error == ERESTART) {
1748 			waited = B_TRUE;
1749 			dmu_tx_wait(tx);
1750 			dmu_tx_abort(tx);
1751 			goto top;
1752 		}
1753 		if (realnmp)
1754 			pn_free(realnmp);
1755 		dmu_tx_abort(tx);
1756 		ZFS_EXIT(zfsvfs);
1757 		return (error);
1758 	}
1759 
1760 	/*
1761 	 * Remove the directory entry.
1762 	 */
1763 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1764 
1765 	if (error) {
1766 		dmu_tx_commit(tx);
1767 		goto out;
1768 	}
1769 
1770 	if (unlinked) {
1771 		/*
1772 		 * Hold z_lock so that we can make sure that the ACL obj
1773 		 * hasn't changed.  Could have been deleted due to
1774 		 * zfs_sa_upgrade().
1775 		 */
1776 		mutex_enter(&zp->z_lock);
1777 		mutex_enter(&vp->v_lock);
1778 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1779 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1780 		delete_now = may_delete_now && !toobig &&
1781 		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1782 		    xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1783 		    acl_obj;
1784 		mutex_exit(&vp->v_lock);
1785 	}
1786 
1787 	if (delete_now) {
1788 		if (xattr_obj_unlinked) {
1789 			ASSERT3U(xzp->z_links, ==, 2);
1790 			mutex_enter(&xzp->z_lock);
1791 			xzp->z_unlinked = 1;
1792 			xzp->z_links = 0;
1793 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1794 			    &xzp->z_links, sizeof (xzp->z_links), tx);
1795 			ASSERT3U(error,  ==,  0);
1796 			mutex_exit(&xzp->z_lock);
1797 			zfs_unlinked_add(xzp, tx);
1798 
1799 			if (zp->z_is_sa)
1800 				error = sa_remove(zp->z_sa_hdl,
1801 				    SA_ZPL_XATTR(zfsvfs), tx);
1802 			else
1803 				error = sa_update(zp->z_sa_hdl,
1804 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1805 				    sizeof (uint64_t), tx);
1806 			ASSERT0(error);
1807 		}
1808 		mutex_enter(&vp->v_lock);
1809 		vp->v_count--;
1810 		ASSERT0(vp->v_count);
1811 		mutex_exit(&vp->v_lock);
1812 		mutex_exit(&zp->z_lock);
1813 		zfs_znode_delete(zp, tx);
1814 	} else if (unlinked) {
1815 		mutex_exit(&zp->z_lock);
1816 		zfs_unlinked_add(zp, tx);
1817 	}
1818 
1819 	txtype = TX_REMOVE;
1820 	if (flags & FIGNORECASE)
1821 		txtype |= TX_CI;
1822 	zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1823 
1824 	dmu_tx_commit(tx);
1825 out:
1826 	if (realnmp)
1827 		pn_free(realnmp);
1828 
1829 	zfs_dirent_unlock(dl);
1830 
1831 	if (!delete_now)
1832 		VN_RELE(vp);
1833 	if (xzp)
1834 		VN_RELE(ZTOV(xzp));
1835 
1836 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1837 		zil_commit(zilog, 0);
1838 
1839 	ZFS_EXIT(zfsvfs);
1840 	return (error);
1841 }
1842 
1843 /*
1844  * Create a new directory and insert it into dvp using the name
1845  * provided.  Return a pointer to the inserted directory.
1846  *
1847  *	IN:	dvp	- vnode of directory to add subdir to.
1848  *		dirname	- name of new directory.
1849  *		vap	- attributes of new directory.
1850  *		cr	- credentials of caller.
1851  *		ct	- caller context
1852  *		flags	- case flags
1853  *		vsecp	- ACL to be set
1854  *
1855  *	OUT:	vpp	- vnode of created directory.
1856  *
1857  *	RETURN:	0 on success, error code on failure.
1858  *
1859  * Timestamps:
1860  *	dvp - ctime|mtime updated
1861  *	 vp - ctime|mtime|atime updated
1862  */
1863 /*ARGSUSED*/
1864 static int
1865 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1866     caller_context_t *ct, int flags, vsecattr_t *vsecp)
1867 {
1868 	znode_t		*zp, *dzp = VTOZ(dvp);
1869 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1870 	zilog_t		*zilog;
1871 	zfs_dirlock_t	*dl;
1872 	uint64_t	txtype;
1873 	dmu_tx_t	*tx;
1874 	int		error;
1875 	int		zf = ZNEW;
1876 	ksid_t		*ksid;
1877 	uid_t		uid;
1878 	gid_t		gid = crgetgid(cr);
1879 	zfs_acl_ids_t   acl_ids;
1880 	boolean_t	fuid_dirtied;
1881 	boolean_t	waited = B_FALSE;
1882 
1883 	ASSERT(vap->va_type == VDIR);
1884 
1885 	/*
1886 	 * If we have an ephemeral id, ACL, or XVATTR then
1887 	 * make sure file system is at proper version
1888 	 */
1889 
1890 	ksid = crgetsid(cr, KSID_OWNER);
1891 	if (ksid)
1892 		uid = ksid_getid(ksid);
1893 	else
1894 		uid = crgetuid(cr);
1895 	if (zfsvfs->z_use_fuids == B_FALSE &&
1896 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1897 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1898 		return (SET_ERROR(EINVAL));
1899 
1900 	ZFS_ENTER(zfsvfs);
1901 	ZFS_VERIFY_ZP(dzp);
1902 	zilog = zfsvfs->z_log;
1903 
1904 	if (dzp->z_pflags & ZFS_XATTR) {
1905 		ZFS_EXIT(zfsvfs);
1906 		return (SET_ERROR(EINVAL));
1907 	}
1908 
1909 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1910 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1911 		ZFS_EXIT(zfsvfs);
1912 		return (SET_ERROR(EILSEQ));
1913 	}
1914 	if (flags & FIGNORECASE)
1915 		zf |= ZCILOOK;
1916 
1917 	if (vap->va_mask & AT_XVATTR) {
1918 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1919 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1920 			ZFS_EXIT(zfsvfs);
1921 			return (error);
1922 		}
1923 	}
1924 
1925 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1926 	    vsecp, &acl_ids)) != 0) {
1927 		ZFS_EXIT(zfsvfs);
1928 		return (error);
1929 	}
1930 	/*
1931 	 * First make sure the new directory doesn't exist.
1932 	 *
1933 	 * Existence is checked first to make sure we don't return
1934 	 * EACCES instead of EEXIST which can cause some applications
1935 	 * to fail.
1936 	 */
1937 top:
1938 	*vpp = NULL;
1939 
1940 	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1941 	    NULL, NULL)) {
1942 		zfs_acl_ids_free(&acl_ids);
1943 		ZFS_EXIT(zfsvfs);
1944 		return (error);
1945 	}
1946 
1947 	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1948 		zfs_acl_ids_free(&acl_ids);
1949 		zfs_dirent_unlock(dl);
1950 		ZFS_EXIT(zfsvfs);
1951 		return (error);
1952 	}
1953 
1954 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1955 		zfs_acl_ids_free(&acl_ids);
1956 		zfs_dirent_unlock(dl);
1957 		ZFS_EXIT(zfsvfs);
1958 		return (SET_ERROR(EDQUOT));
1959 	}
1960 
1961 	/*
1962 	 * Add a new entry to the directory.
1963 	 */
1964 	tx = dmu_tx_create(zfsvfs->z_os);
1965 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1966 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1967 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1968 	if (fuid_dirtied)
1969 		zfs_fuid_txhold(zfsvfs, tx);
1970 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1971 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1972 		    acl_ids.z_aclp->z_acl_bytes);
1973 	}
1974 
1975 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1976 	    ZFS_SA_BASE_ATTR_SIZE);
1977 
1978 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1979 	if (error) {
1980 		zfs_dirent_unlock(dl);
1981 		if (error == ERESTART) {
1982 			waited = B_TRUE;
1983 			dmu_tx_wait(tx);
1984 			dmu_tx_abort(tx);
1985 			goto top;
1986 		}
1987 		zfs_acl_ids_free(&acl_ids);
1988 		dmu_tx_abort(tx);
1989 		ZFS_EXIT(zfsvfs);
1990 		return (error);
1991 	}
1992 
1993 	/*
1994 	 * Create new node.
1995 	 */
1996 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1997 
1998 	if (fuid_dirtied)
1999 		zfs_fuid_sync(zfsvfs, tx);
2000 
2001 	/*
2002 	 * Now put new name in parent dir.
2003 	 */
2004 	(void) zfs_link_create(dl, zp, tx, ZNEW);
2005 
2006 	*vpp = ZTOV(zp);
2007 
2008 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2009 	if (flags & FIGNORECASE)
2010 		txtype |= TX_CI;
2011 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2012 	    acl_ids.z_fuidp, vap);
2013 
2014 	zfs_acl_ids_free(&acl_ids);
2015 
2016 	dmu_tx_commit(tx);
2017 
2018 	zfs_dirent_unlock(dl);
2019 
2020 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2021 		zil_commit(zilog, 0);
2022 
2023 	ZFS_EXIT(zfsvfs);
2024 	return (0);
2025 }
2026 
2027 /*
2028  * Remove a directory subdir entry.  If the current working
2029  * directory is the same as the subdir to be removed, the
2030  * remove will fail.
2031  *
2032  *	IN:	dvp	- vnode of directory to remove from.
2033  *		name	- name of directory to be removed.
2034  *		cwd	- vnode of current working directory.
2035  *		cr	- credentials of caller.
2036  *		ct	- caller context
2037  *		flags	- case flags
2038  *
2039  *	RETURN:	0 on success, error code on failure.
2040  *
2041  * Timestamps:
2042  *	dvp - ctime|mtime updated
2043  */
2044 /*ARGSUSED*/
2045 static int
2046 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2047     caller_context_t *ct, int flags)
2048 {
2049 	znode_t		*dzp = VTOZ(dvp);
2050 	znode_t		*zp;
2051 	vnode_t		*vp;
2052 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2053 	zilog_t		*zilog;
2054 	zfs_dirlock_t	*dl;
2055 	dmu_tx_t	*tx;
2056 	int		error;
2057 	int		zflg = ZEXISTS;
2058 	boolean_t	waited = B_FALSE;
2059 
2060 	ZFS_ENTER(zfsvfs);
2061 	ZFS_VERIFY_ZP(dzp);
2062 	zilog = zfsvfs->z_log;
2063 
2064 	if (flags & FIGNORECASE)
2065 		zflg |= ZCILOOK;
2066 top:
2067 	zp = NULL;
2068 
2069 	/*
2070 	 * Attempt to lock directory; fail if entry doesn't exist.
2071 	 */
2072 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2073 	    NULL, NULL)) {
2074 		ZFS_EXIT(zfsvfs);
2075 		return (error);
2076 	}
2077 
2078 	vp = ZTOV(zp);
2079 
2080 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2081 		goto out;
2082 	}
2083 
2084 	if (vp->v_type != VDIR) {
2085 		error = SET_ERROR(ENOTDIR);
2086 		goto out;
2087 	}
2088 
2089 	if (vp == cwd) {
2090 		error = SET_ERROR(EINVAL);
2091 		goto out;
2092 	}
2093 
2094 	vnevent_rmdir(vp, dvp, name, ct);
2095 
2096 	/*
2097 	 * Grab a lock on the directory to make sure that noone is
2098 	 * trying to add (or lookup) entries while we are removing it.
2099 	 */
2100 	rw_enter(&zp->z_name_lock, RW_WRITER);
2101 
2102 	/*
2103 	 * Grab a lock on the parent pointer to make sure we play well
2104 	 * with the treewalk and directory rename code.
2105 	 */
2106 	rw_enter(&zp->z_parent_lock, RW_WRITER);
2107 
2108 	tx = dmu_tx_create(zfsvfs->z_os);
2109 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2110 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2111 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2112 	zfs_sa_upgrade_txholds(tx, zp);
2113 	zfs_sa_upgrade_txholds(tx, dzp);
2114 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2115 	if (error) {
2116 		rw_exit(&zp->z_parent_lock);
2117 		rw_exit(&zp->z_name_lock);
2118 		zfs_dirent_unlock(dl);
2119 		VN_RELE(vp);
2120 		if (error == ERESTART) {
2121 			waited = B_TRUE;
2122 			dmu_tx_wait(tx);
2123 			dmu_tx_abort(tx);
2124 			goto top;
2125 		}
2126 		dmu_tx_abort(tx);
2127 		ZFS_EXIT(zfsvfs);
2128 		return (error);
2129 	}
2130 
2131 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2132 
2133 	if (error == 0) {
2134 		uint64_t txtype = TX_RMDIR;
2135 		if (flags & FIGNORECASE)
2136 			txtype |= TX_CI;
2137 		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2138 	}
2139 
2140 	dmu_tx_commit(tx);
2141 
2142 	rw_exit(&zp->z_parent_lock);
2143 	rw_exit(&zp->z_name_lock);
2144 out:
2145 	zfs_dirent_unlock(dl);
2146 
2147 	VN_RELE(vp);
2148 
2149 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2150 		zil_commit(zilog, 0);
2151 
2152 	ZFS_EXIT(zfsvfs);
2153 	return (error);
2154 }
2155 
2156 /*
2157  * Read as many directory entries as will fit into the provided
2158  * buffer from the given directory cursor position (specified in
2159  * the uio structure).
2160  *
2161  *	IN:	vp	- vnode of directory to read.
2162  *		uio	- structure supplying read location, range info,
2163  *			  and return buffer.
2164  *		cr	- credentials of caller.
2165  *		ct	- caller context
2166  *		flags	- case flags
2167  *
2168  *	OUT:	uio	- updated offset and range, buffer filled.
2169  *		eofp	- set to true if end-of-file detected.
2170  *
2171  *	RETURN:	0 on success, error code on failure.
2172  *
2173  * Timestamps:
2174  *	vp - atime updated
2175  *
2176  * Note that the low 4 bits of the cookie returned by zap is always zero.
2177  * This allows us to use the low range for "special" directory entries:
2178  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2179  * we use the offset 2 for the '.zfs' directory.
2180  */
2181 /* ARGSUSED */
2182 static int
2183 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2184     caller_context_t *ct, int flags)
2185 {
2186 	znode_t		*zp = VTOZ(vp);
2187 	iovec_t		*iovp;
2188 	edirent_t	*eodp;
2189 	dirent64_t	*odp;
2190 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2191 	objset_t	*os;
2192 	caddr_t		outbuf;
2193 	size_t		bufsize;
2194 	zap_cursor_t	zc;
2195 	zap_attribute_t	zap;
2196 	uint_t		bytes_wanted;
2197 	uint64_t	offset; /* must be unsigned; checks for < 1 */
2198 	uint64_t	parent;
2199 	int		local_eof;
2200 	int		outcount;
2201 	int		error;
2202 	uint8_t		prefetch;
2203 	boolean_t	check_sysattrs;
2204 
2205 	ZFS_ENTER(zfsvfs);
2206 	ZFS_VERIFY_ZP(zp);
2207 
2208 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2209 	    &parent, sizeof (parent))) != 0) {
2210 		ZFS_EXIT(zfsvfs);
2211 		return (error);
2212 	}
2213 
2214 	/*
2215 	 * If we are not given an eof variable,
2216 	 * use a local one.
2217 	 */
2218 	if (eofp == NULL)
2219 		eofp = &local_eof;
2220 
2221 	/*
2222 	 * Check for valid iov_len.
2223 	 */
2224 	if (uio->uio_iov->iov_len <= 0) {
2225 		ZFS_EXIT(zfsvfs);
2226 		return (SET_ERROR(EINVAL));
2227 	}
2228 
2229 	/*
2230 	 * Quit if directory has been removed (posix)
2231 	 */
2232 	if ((*eofp = zp->z_unlinked) != 0) {
2233 		ZFS_EXIT(zfsvfs);
2234 		return (0);
2235 	}
2236 
2237 	error = 0;
2238 	os = zfsvfs->z_os;
2239 	offset = uio->uio_loffset;
2240 	prefetch = zp->z_zn_prefetch;
2241 
2242 	/*
2243 	 * Initialize the iterator cursor.
2244 	 */
2245 	if (offset <= 3) {
2246 		/*
2247 		 * Start iteration from the beginning of the directory.
2248 		 */
2249 		zap_cursor_init(&zc, os, zp->z_id);
2250 	} else {
2251 		/*
2252 		 * The offset is a serialized cursor.
2253 		 */
2254 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2255 	}
2256 
2257 	/*
2258 	 * Get space to change directory entries into fs independent format.
2259 	 */
2260 	iovp = uio->uio_iov;
2261 	bytes_wanted = iovp->iov_len;
2262 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2263 		bufsize = bytes_wanted;
2264 		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2265 		odp = (struct dirent64 *)outbuf;
2266 	} else {
2267 		bufsize = bytes_wanted;
2268 		outbuf = NULL;
2269 		odp = (struct dirent64 *)iovp->iov_base;
2270 	}
2271 	eodp = (struct edirent *)odp;
2272 
2273 	/*
2274 	 * If this VFS supports the system attribute view interface; and
2275 	 * we're looking at an extended attribute directory; and we care
2276 	 * about normalization conflicts on this vfs; then we must check
2277 	 * for normalization conflicts with the sysattr name space.
2278 	 */
2279 	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2280 	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2281 	    (flags & V_RDDIR_ENTFLAGS);
2282 
2283 	/*
2284 	 * Transform to file-system independent format
2285 	 */
2286 	outcount = 0;
2287 	while (outcount < bytes_wanted) {
2288 		ino64_t objnum;
2289 		ushort_t reclen;
2290 		off64_t *next = NULL;
2291 
2292 		/*
2293 		 * Special case `.', `..', and `.zfs'.
2294 		 */
2295 		if (offset == 0) {
2296 			(void) strcpy(zap.za_name, ".");
2297 			zap.za_normalization_conflict = 0;
2298 			objnum = zp->z_id;
2299 		} else if (offset == 1) {
2300 			(void) strcpy(zap.za_name, "..");
2301 			zap.za_normalization_conflict = 0;
2302 			objnum = parent;
2303 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2304 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2305 			zap.za_normalization_conflict = 0;
2306 			objnum = ZFSCTL_INO_ROOT;
2307 		} else {
2308 			/*
2309 			 * Grab next entry.
2310 			 */
2311 			if (error = zap_cursor_retrieve(&zc, &zap)) {
2312 				if ((*eofp = (error == ENOENT)) != 0)
2313 					break;
2314 				else
2315 					goto update;
2316 			}
2317 
2318 			if (zap.za_integer_length != 8 ||
2319 			    zap.za_num_integers != 1) {
2320 				cmn_err(CE_WARN, "zap_readdir: bad directory "
2321 				    "entry, obj = %lld, offset = %lld\n",
2322 				    (u_longlong_t)zp->z_id,
2323 				    (u_longlong_t)offset);
2324 				error = SET_ERROR(ENXIO);
2325 				goto update;
2326 			}
2327 
2328 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2329 			/*
2330 			 * MacOS X can extract the object type here such as:
2331 			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2332 			 */
2333 
2334 			if (check_sysattrs && !zap.za_normalization_conflict) {
2335 				zap.za_normalization_conflict =
2336 				    xattr_sysattr_casechk(zap.za_name);
2337 			}
2338 		}
2339 
2340 		if (flags & V_RDDIR_ACCFILTER) {
2341 			/*
2342 			 * If we have no access at all, don't include
2343 			 * this entry in the returned information
2344 			 */
2345 			znode_t	*ezp;
2346 			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2347 				goto skip_entry;
2348 			if (!zfs_has_access(ezp, cr)) {
2349 				VN_RELE(ZTOV(ezp));
2350 				goto skip_entry;
2351 			}
2352 			VN_RELE(ZTOV(ezp));
2353 		}
2354 
2355 		if (flags & V_RDDIR_ENTFLAGS)
2356 			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2357 		else
2358 			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2359 
2360 		/*
2361 		 * Will this entry fit in the buffer?
2362 		 */
2363 		if (outcount + reclen > bufsize) {
2364 			/*
2365 			 * Did we manage to fit anything in the buffer?
2366 			 */
2367 			if (!outcount) {
2368 				error = SET_ERROR(EINVAL);
2369 				goto update;
2370 			}
2371 			break;
2372 		}
2373 		if (flags & V_RDDIR_ENTFLAGS) {
2374 			/*
2375 			 * Add extended flag entry:
2376 			 */
2377 			eodp->ed_ino = objnum;
2378 			eodp->ed_reclen = reclen;
2379 			/* NOTE: ed_off is the offset for the *next* entry */
2380 			next = &(eodp->ed_off);
2381 			eodp->ed_eflags = zap.za_normalization_conflict ?
2382 			    ED_CASE_CONFLICT : 0;
2383 			(void) strncpy(eodp->ed_name, zap.za_name,
2384 			    EDIRENT_NAMELEN(reclen));
2385 			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2386 		} else {
2387 			/*
2388 			 * Add normal entry:
2389 			 */
2390 			odp->d_ino = objnum;
2391 			odp->d_reclen = reclen;
2392 			/* NOTE: d_off is the offset for the *next* entry */
2393 			next = &(odp->d_off);
2394 			(void) strncpy(odp->d_name, zap.za_name,
2395 			    DIRENT64_NAMELEN(reclen));
2396 			odp = (dirent64_t *)((intptr_t)odp + reclen);
2397 		}
2398 		outcount += reclen;
2399 
2400 		ASSERT(outcount <= bufsize);
2401 
2402 		/* Prefetch znode */
2403 		if (prefetch)
2404 			dmu_prefetch(os, objnum, 0, 0, 0,
2405 			    ZIO_PRIORITY_SYNC_READ);
2406 
2407 	skip_entry:
2408 		/*
2409 		 * Move to the next entry, fill in the previous offset.
2410 		 */
2411 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2412 			zap_cursor_advance(&zc);
2413 			offset = zap_cursor_serialize(&zc);
2414 		} else {
2415 			offset += 1;
2416 		}
2417 		if (next)
2418 			*next = offset;
2419 	}
2420 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2421 
2422 	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2423 		iovp->iov_base += outcount;
2424 		iovp->iov_len -= outcount;
2425 		uio->uio_resid -= outcount;
2426 	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2427 		/*
2428 		 * Reset the pointer.
2429 		 */
2430 		offset = uio->uio_loffset;
2431 	}
2432 
2433 update:
2434 	zap_cursor_fini(&zc);
2435 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2436 		kmem_free(outbuf, bufsize);
2437 
2438 	if (error == ENOENT)
2439 		error = 0;
2440 
2441 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2442 
2443 	uio->uio_loffset = offset;
2444 	ZFS_EXIT(zfsvfs);
2445 	return (error);
2446 }
2447 
2448 ulong_t zfs_fsync_sync_cnt = 4;
2449 
2450 static int
2451 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2452 {
2453 	znode_t	*zp = VTOZ(vp);
2454 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2455 
2456 	/*
2457 	 * Regardless of whether this is required for standards conformance,
2458 	 * this is the logical behavior when fsync() is called on a file with
2459 	 * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2460 	 * going to be pushed out as part of the zil_commit().
2461 	 */
2462 	if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2463 	    (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2464 		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2465 
2466 	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2467 
2468 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2469 		ZFS_ENTER(zfsvfs);
2470 		ZFS_VERIFY_ZP(zp);
2471 		zil_commit(zfsvfs->z_log, zp->z_id);
2472 		ZFS_EXIT(zfsvfs);
2473 	}
2474 	return (0);
2475 }
2476 
2477 
2478 /*
2479  * Get the requested file attributes and place them in the provided
2480  * vattr structure.
2481  *
2482  *	IN:	vp	- vnode of file.
2483  *		vap	- va_mask identifies requested attributes.
2484  *			  If AT_XVATTR set, then optional attrs are requested
2485  *		flags	- ATTR_NOACLCHECK (CIFS server context)
2486  *		cr	- credentials of caller.
2487  *		ct	- caller context
2488  *
2489  *	OUT:	vap	- attribute values.
2490  *
2491  *	RETURN:	0 (always succeeds).
2492  */
2493 /* ARGSUSED */
2494 static int
2495 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2496     caller_context_t *ct)
2497 {
2498 	znode_t *zp = VTOZ(vp);
2499 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2500 	int	error = 0;
2501 	uint64_t links;
2502 	uint64_t mtime[2], ctime[2];
2503 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2504 	xoptattr_t *xoap = NULL;
2505 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2506 	sa_bulk_attr_t bulk[2];
2507 	int count = 0;
2508 
2509 	ZFS_ENTER(zfsvfs);
2510 	ZFS_VERIFY_ZP(zp);
2511 
2512 	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2513 
2514 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2515 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2516 
2517 	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2518 		ZFS_EXIT(zfsvfs);
2519 		return (error);
2520 	}
2521 
2522 	/*
2523 	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2524 	 * Also, if we are the owner don't bother, since owner should
2525 	 * always be allowed to read basic attributes of file.
2526 	 */
2527 	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2528 	    (vap->va_uid != crgetuid(cr))) {
2529 		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2530 		    skipaclchk, cr)) {
2531 			ZFS_EXIT(zfsvfs);
2532 			return (error);
2533 		}
2534 	}
2535 
2536 	/*
2537 	 * Return all attributes.  It's cheaper to provide the answer
2538 	 * than to determine whether we were asked the question.
2539 	 */
2540 
2541 	mutex_enter(&zp->z_lock);
2542 	vap->va_type = vp->v_type;
2543 	vap->va_mode = zp->z_mode & MODEMASK;
2544 	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2545 	vap->va_nodeid = zp->z_id;
2546 	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2547 		links = zp->z_links + 1;
2548 	else
2549 		links = zp->z_links;
2550 	vap->va_nlink = MIN(links, UINT32_MAX);	/* nlink_t limit! */
2551 	vap->va_size = zp->z_size;
2552 	vap->va_rdev = vp->v_rdev;
2553 	vap->va_seq = zp->z_seq;
2554 
2555 	/*
2556 	 * Add in any requested optional attributes and the create time.
2557 	 * Also set the corresponding bits in the returned attribute bitmap.
2558 	 */
2559 	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2560 		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2561 			xoap->xoa_archive =
2562 			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2563 			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2564 		}
2565 
2566 		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2567 			xoap->xoa_readonly =
2568 			    ((zp->z_pflags & ZFS_READONLY) != 0);
2569 			XVA_SET_RTN(xvap, XAT_READONLY);
2570 		}
2571 
2572 		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2573 			xoap->xoa_system =
2574 			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2575 			XVA_SET_RTN(xvap, XAT_SYSTEM);
2576 		}
2577 
2578 		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2579 			xoap->xoa_hidden =
2580 			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2581 			XVA_SET_RTN(xvap, XAT_HIDDEN);
2582 		}
2583 
2584 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2585 			xoap->xoa_nounlink =
2586 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2587 			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2588 		}
2589 
2590 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2591 			xoap->xoa_immutable =
2592 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2593 			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2594 		}
2595 
2596 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2597 			xoap->xoa_appendonly =
2598 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2599 			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2600 		}
2601 
2602 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2603 			xoap->xoa_nodump =
2604 			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2605 			XVA_SET_RTN(xvap, XAT_NODUMP);
2606 		}
2607 
2608 		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2609 			xoap->xoa_opaque =
2610 			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2611 			XVA_SET_RTN(xvap, XAT_OPAQUE);
2612 		}
2613 
2614 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2615 			xoap->xoa_av_quarantined =
2616 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2617 			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2618 		}
2619 
2620 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2621 			xoap->xoa_av_modified =
2622 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2623 			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2624 		}
2625 
2626 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2627 		    vp->v_type == VREG) {
2628 			zfs_sa_get_scanstamp(zp, xvap);
2629 		}
2630 
2631 		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2632 			uint64_t times[2];
2633 
2634 			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2635 			    times, sizeof (times));
2636 			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2637 			XVA_SET_RTN(xvap, XAT_CREATETIME);
2638 		}
2639 
2640 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2641 			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2642 			XVA_SET_RTN(xvap, XAT_REPARSE);
2643 		}
2644 		if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2645 			xoap->xoa_generation = zp->z_gen;
2646 			XVA_SET_RTN(xvap, XAT_GEN);
2647 		}
2648 
2649 		if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2650 			xoap->xoa_offline =
2651 			    ((zp->z_pflags & ZFS_OFFLINE) != 0);
2652 			XVA_SET_RTN(xvap, XAT_OFFLINE);
2653 		}
2654 
2655 		if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2656 			xoap->xoa_sparse =
2657 			    ((zp->z_pflags & ZFS_SPARSE) != 0);
2658 			XVA_SET_RTN(xvap, XAT_SPARSE);
2659 		}
2660 	}
2661 
2662 	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2663 	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2664 	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2665 
2666 	mutex_exit(&zp->z_lock);
2667 
2668 	sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2669 
2670 	if (zp->z_blksz == 0) {
2671 		/*
2672 		 * Block size hasn't been set; suggest maximal I/O transfers.
2673 		 */
2674 		vap->va_blksize = zfsvfs->z_max_blksz;
2675 	}
2676 
2677 	ZFS_EXIT(zfsvfs);
2678 	return (0);
2679 }
2680 
2681 /*
2682  * Set the file attributes to the values contained in the
2683  * vattr structure.
2684  *
2685  *	IN:	vp	- vnode of file to be modified.
2686  *		vap	- new attribute values.
2687  *			  If AT_XVATTR set, then optional attrs are being set
2688  *		flags	- ATTR_UTIME set if non-default time values provided.
2689  *			- ATTR_NOACLCHECK (CIFS context only).
2690  *		cr	- credentials of caller.
2691  *		ct	- caller context
2692  *
2693  *	RETURN:	0 on success, error code on failure.
2694  *
2695  * Timestamps:
2696  *	vp - ctime updated, mtime updated if size changed.
2697  */
2698 /* ARGSUSED */
2699 static int
2700 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2701     caller_context_t *ct)
2702 {
2703 	znode_t		*zp = VTOZ(vp);
2704 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2705 	zilog_t		*zilog;
2706 	dmu_tx_t	*tx;
2707 	vattr_t		oldva;
2708 	xvattr_t	tmpxvattr;
2709 	uint_t		mask = vap->va_mask;
2710 	uint_t		saved_mask = 0;
2711 	int		trim_mask = 0;
2712 	uint64_t	new_mode;
2713 	uint64_t	new_uid, new_gid;
2714 	uint64_t	xattr_obj;
2715 	uint64_t	mtime[2], ctime[2];
2716 	znode_t		*attrzp;
2717 	int		need_policy = FALSE;
2718 	int		err, err2;
2719 	zfs_fuid_info_t *fuidp = NULL;
2720 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2721 	xoptattr_t	*xoap;
2722 	zfs_acl_t	*aclp;
2723 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2724 	boolean_t	fuid_dirtied = B_FALSE;
2725 	sa_bulk_attr_t	bulk[7], xattr_bulk[7];
2726 	int		count = 0, xattr_count = 0;
2727 
2728 	if (mask == 0)
2729 		return (0);
2730 
2731 	if (mask & AT_NOSET)
2732 		return (SET_ERROR(EINVAL));
2733 
2734 	ZFS_ENTER(zfsvfs);
2735 	ZFS_VERIFY_ZP(zp);
2736 
2737 	zilog = zfsvfs->z_log;
2738 
2739 	/*
2740 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
2741 	 * that file system is at proper version level
2742 	 */
2743 
2744 	if (zfsvfs->z_use_fuids == B_FALSE &&
2745 	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2746 	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2747 	    (mask & AT_XVATTR))) {
2748 		ZFS_EXIT(zfsvfs);
2749 		return (SET_ERROR(EINVAL));
2750 	}
2751 
2752 	if (mask & AT_SIZE && vp->v_type == VDIR) {
2753 		ZFS_EXIT(zfsvfs);
2754 		return (SET_ERROR(EISDIR));
2755 	}
2756 
2757 	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2758 		ZFS_EXIT(zfsvfs);
2759 		return (SET_ERROR(EINVAL));
2760 	}
2761 
2762 	/*
2763 	 * If this is an xvattr_t, then get a pointer to the structure of
2764 	 * optional attributes.  If this is NULL, then we have a vattr_t.
2765 	 */
2766 	xoap = xva_getxoptattr(xvap);
2767 
2768 	xva_init(&tmpxvattr);
2769 
2770 	/*
2771 	 * Immutable files can only alter immutable bit and atime
2772 	 */
2773 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2774 	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2775 	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2776 		ZFS_EXIT(zfsvfs);
2777 		return (SET_ERROR(EPERM));
2778 	}
2779 
2780 	if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2781 		ZFS_EXIT(zfsvfs);
2782 		return (SET_ERROR(EPERM));
2783 	}
2784 
2785 	/*
2786 	 * Verify timestamps doesn't overflow 32 bits.
2787 	 * ZFS can handle large timestamps, but 32bit syscalls can't
2788 	 * handle times greater than 2039.  This check should be removed
2789 	 * once large timestamps are fully supported.
2790 	 */
2791 	if (mask & (AT_ATIME | AT_MTIME)) {
2792 		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2793 		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2794 			ZFS_EXIT(zfsvfs);
2795 			return (SET_ERROR(EOVERFLOW));
2796 		}
2797 	}
2798 
2799 top:
2800 	attrzp = NULL;
2801 	aclp = NULL;
2802 
2803 	/* Can this be moved to before the top label? */
2804 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2805 		ZFS_EXIT(zfsvfs);
2806 		return (SET_ERROR(EROFS));
2807 	}
2808 
2809 	/*
2810 	 * First validate permissions
2811 	 */
2812 
2813 	if (mask & AT_SIZE) {
2814 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2815 		if (err) {
2816 			ZFS_EXIT(zfsvfs);
2817 			return (err);
2818 		}
2819 		/*
2820 		 * XXX - Note, we are not providing any open
2821 		 * mode flags here (like FNDELAY), so we may
2822 		 * block if there are locks present... this
2823 		 * should be addressed in openat().
2824 		 */
2825 		/* XXX - would it be OK to generate a log record here? */
2826 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2827 		if (err) {
2828 			ZFS_EXIT(zfsvfs);
2829 			return (err);
2830 		}
2831 
2832 		if (vap->va_size == 0)
2833 			vnevent_truncate(ZTOV(zp), ct);
2834 	}
2835 
2836 	if (mask & (AT_ATIME|AT_MTIME) ||
2837 	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2838 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2839 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2840 	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2841 	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2842 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2843 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2844 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2845 		    skipaclchk, cr);
2846 	}
2847 
2848 	if (mask & (AT_UID|AT_GID)) {
2849 		int	idmask = (mask & (AT_UID|AT_GID));
2850 		int	take_owner;
2851 		int	take_group;
2852 
2853 		/*
2854 		 * NOTE: even if a new mode is being set,
2855 		 * we may clear S_ISUID/S_ISGID bits.
2856 		 */
2857 
2858 		if (!(mask & AT_MODE))
2859 			vap->va_mode = zp->z_mode;
2860 
2861 		/*
2862 		 * Take ownership or chgrp to group we are a member of
2863 		 */
2864 
2865 		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2866 		take_group = (mask & AT_GID) &&
2867 		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
2868 
2869 		/*
2870 		 * If both AT_UID and AT_GID are set then take_owner and
2871 		 * take_group must both be set in order to allow taking
2872 		 * ownership.
2873 		 *
2874 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2875 		 *
2876 		 */
2877 
2878 		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2879 		    ((idmask == AT_UID) && take_owner) ||
2880 		    ((idmask == AT_GID) && take_group)) {
2881 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2882 			    skipaclchk, cr) == 0) {
2883 				/*
2884 				 * Remove setuid/setgid for non-privileged users
2885 				 */
2886 				secpolicy_setid_clear(vap, cr);
2887 				trim_mask = (mask & (AT_UID|AT_GID));
2888 			} else {
2889 				need_policy =  TRUE;
2890 			}
2891 		} else {
2892 			need_policy =  TRUE;
2893 		}
2894 	}
2895 
2896 	mutex_enter(&zp->z_lock);
2897 	oldva.va_mode = zp->z_mode;
2898 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2899 	if (mask & AT_XVATTR) {
2900 		/*
2901 		 * Update xvattr mask to include only those attributes
2902 		 * that are actually changing.
2903 		 *
2904 		 * the bits will be restored prior to actually setting
2905 		 * the attributes so the caller thinks they were set.
2906 		 */
2907 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2908 			if (xoap->xoa_appendonly !=
2909 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2910 				need_policy = TRUE;
2911 			} else {
2912 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2913 				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2914 			}
2915 		}
2916 
2917 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2918 			if (xoap->xoa_nounlink !=
2919 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2920 				need_policy = TRUE;
2921 			} else {
2922 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2923 				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2924 			}
2925 		}
2926 
2927 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2928 			if (xoap->xoa_immutable !=
2929 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2930 				need_policy = TRUE;
2931 			} else {
2932 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2933 				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2934 			}
2935 		}
2936 
2937 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2938 			if (xoap->xoa_nodump !=
2939 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2940 				need_policy = TRUE;
2941 			} else {
2942 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2943 				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2944 			}
2945 		}
2946 
2947 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2948 			if (xoap->xoa_av_modified !=
2949 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2950 				need_policy = TRUE;
2951 			} else {
2952 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2953 				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2954 			}
2955 		}
2956 
2957 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2958 			if ((vp->v_type != VREG &&
2959 			    xoap->xoa_av_quarantined) ||
2960 			    xoap->xoa_av_quarantined !=
2961 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2962 				need_policy = TRUE;
2963 			} else {
2964 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2965 				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2966 			}
2967 		}
2968 
2969 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2970 			mutex_exit(&zp->z_lock);
2971 			ZFS_EXIT(zfsvfs);
2972 			return (SET_ERROR(EPERM));
2973 		}
2974 
2975 		if (need_policy == FALSE &&
2976 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2977 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2978 			need_policy = TRUE;
2979 		}
2980 	}
2981 
2982 	mutex_exit(&zp->z_lock);
2983 
2984 	if (mask & AT_MODE) {
2985 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2986 			err = secpolicy_setid_setsticky_clear(vp, vap,
2987 			    &oldva, cr);
2988 			if (err) {
2989 				ZFS_EXIT(zfsvfs);
2990 				return (err);
2991 			}
2992 			trim_mask |= AT_MODE;
2993 		} else {
2994 			need_policy = TRUE;
2995 		}
2996 	}
2997 
2998 	if (need_policy) {
2999 		/*
3000 		 * If trim_mask is set then take ownership
3001 		 * has been granted or write_acl is present and user
3002 		 * has the ability to modify mode.  In that case remove
3003 		 * UID|GID and or MODE from mask so that
3004 		 * secpolicy_vnode_setattr() doesn't revoke it.
3005 		 */
3006 
3007 		if (trim_mask) {
3008 			saved_mask = vap->va_mask;
3009 			vap->va_mask &= ~trim_mask;
3010 		}
3011 		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3012 		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3013 		if (err) {
3014 			ZFS_EXIT(zfsvfs);
3015 			return (err);
3016 		}
3017 
3018 		if (trim_mask)
3019 			vap->va_mask |= saved_mask;
3020 	}
3021 
3022 	/*
3023 	 * secpolicy_vnode_setattr, or take ownership may have
3024 	 * changed va_mask
3025 	 */
3026 	mask = vap->va_mask;
3027 
3028 	if ((mask & (AT_UID | AT_GID))) {
3029 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3030 		    &xattr_obj, sizeof (xattr_obj));
3031 
3032 		if (err == 0 && xattr_obj) {
3033 			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3034 			if (err)
3035 				goto out2;
3036 		}
3037 		if (mask & AT_UID) {
3038 			new_uid = zfs_fuid_create(zfsvfs,
3039 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3040 			if (new_uid != zp->z_uid &&
3041 			    zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3042 				if (attrzp)
3043 					VN_RELE(ZTOV(attrzp));
3044 				err = SET_ERROR(EDQUOT);
3045 				goto out2;
3046 			}
3047 		}
3048 
3049 		if (mask & AT_GID) {
3050 			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3051 			    cr, ZFS_GROUP, &fuidp);
3052 			if (new_gid != zp->z_gid &&
3053 			    zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3054 				if (attrzp)
3055 					VN_RELE(ZTOV(attrzp));
3056 				err = SET_ERROR(EDQUOT);
3057 				goto out2;
3058 			}
3059 		}
3060 	}
3061 	tx = dmu_tx_create(zfsvfs->z_os);
3062 
3063 	if (mask & AT_MODE) {
3064 		uint64_t pmode = zp->z_mode;
3065 		uint64_t acl_obj;
3066 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3067 
3068 		if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3069 		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3070 			err = SET_ERROR(EPERM);
3071 			goto out;
3072 		}
3073 
3074 		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3075 			goto out;
3076 
3077 		mutex_enter(&zp->z_lock);
3078 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3079 			/*
3080 			 * Are we upgrading ACL from old V0 format
3081 			 * to V1 format?
3082 			 */
3083 			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3084 			    zfs_znode_acl_version(zp) ==
3085 			    ZFS_ACL_VERSION_INITIAL) {
3086 				dmu_tx_hold_free(tx, acl_obj, 0,
3087 				    DMU_OBJECT_END);
3088 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3089 				    0, aclp->z_acl_bytes);
3090 			} else {
3091 				dmu_tx_hold_write(tx, acl_obj, 0,
3092 				    aclp->z_acl_bytes);
3093 			}
3094 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3095 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3096 			    0, aclp->z_acl_bytes);
3097 		}
3098 		mutex_exit(&zp->z_lock);
3099 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3100 	} else {
3101 		if ((mask & AT_XVATTR) &&
3102 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3103 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3104 		else
3105 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3106 	}
3107 
3108 	if (attrzp) {
3109 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3110 	}
3111 
3112 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3113 	if (fuid_dirtied)
3114 		zfs_fuid_txhold(zfsvfs, tx);
3115 
3116 	zfs_sa_upgrade_txholds(tx, zp);
3117 
3118 	err = dmu_tx_assign(tx, TXG_WAIT);
3119 	if (err)
3120 		goto out;
3121 
3122 	count = 0;
3123 	/*
3124 	 * Set each attribute requested.
3125 	 * We group settings according to the locks they need to acquire.
3126 	 *
3127 	 * Note: you cannot set ctime directly, although it will be
3128 	 * updated as a side-effect of calling this function.
3129 	 */
3130 
3131 
3132 	if (mask & (AT_UID|AT_GID|AT_MODE))
3133 		mutex_enter(&zp->z_acl_lock);
3134 	mutex_enter(&zp->z_lock);
3135 
3136 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3137 	    &zp->z_pflags, sizeof (zp->z_pflags));
3138 
3139 	if (attrzp) {
3140 		if (mask & (AT_UID|AT_GID|AT_MODE))
3141 			mutex_enter(&attrzp->z_acl_lock);
3142 		mutex_enter(&attrzp->z_lock);
3143 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3144 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3145 		    sizeof (attrzp->z_pflags));
3146 	}
3147 
3148 	if (mask & (AT_UID|AT_GID)) {
3149 
3150 		if (mask & AT_UID) {
3151 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3152 			    &new_uid, sizeof (new_uid));
3153 			zp->z_uid = new_uid;
3154 			if (attrzp) {
3155 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3156 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3157 				    sizeof (new_uid));
3158 				attrzp->z_uid = new_uid;
3159 			}
3160 		}
3161 
3162 		if (mask & AT_GID) {
3163 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3164 			    NULL, &new_gid, sizeof (new_gid));
3165 			zp->z_gid = new_gid;
3166 			if (attrzp) {
3167 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3168 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3169 				    sizeof (new_gid));
3170 				attrzp->z_gid = new_gid;
3171 			}
3172 		}
3173 		if (!(mask & AT_MODE)) {
3174 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3175 			    NULL, &new_mode, sizeof (new_mode));
3176 			new_mode = zp->z_mode;
3177 		}
3178 		err = zfs_acl_chown_setattr(zp);
3179 		ASSERT(err == 0);
3180 		if (attrzp) {
3181 			err = zfs_acl_chown_setattr(attrzp);
3182 			ASSERT(err == 0);
3183 		}
3184 	}
3185 
3186 	if (mask & AT_MODE) {
3187 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3188 		    &new_mode, sizeof (new_mode));
3189 		zp->z_mode = new_mode;
3190 		ASSERT3U((uintptr_t)aclp, !=, NULL);
3191 		err = zfs_aclset_common(zp, aclp, cr, tx);
3192 		ASSERT0(err);
3193 		if (zp->z_acl_cached)
3194 			zfs_acl_free(zp->z_acl_cached);
3195 		zp->z_acl_cached = aclp;
3196 		aclp = NULL;
3197 	}
3198 
3199 
3200 	if (mask & AT_ATIME) {
3201 		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3202 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3203 		    &zp->z_atime, sizeof (zp->z_atime));
3204 	}
3205 
3206 	if (mask & AT_MTIME) {
3207 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3208 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3209 		    mtime, sizeof (mtime));
3210 	}
3211 
3212 	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3213 	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3214 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3215 		    NULL, mtime, sizeof (mtime));
3216 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3217 		    &ctime, sizeof (ctime));
3218 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3219 		    B_TRUE);
3220 	} else if (mask != 0) {
3221 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3222 		    &ctime, sizeof (ctime));
3223 		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3224 		    B_TRUE);
3225 		if (attrzp) {
3226 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3227 			    SA_ZPL_CTIME(zfsvfs), NULL,
3228 			    &ctime, sizeof (ctime));
3229 			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3230 			    mtime, ctime, B_TRUE);
3231 		}
3232 	}
3233 	/*
3234 	 * Do this after setting timestamps to prevent timestamp
3235 	 * update from toggling bit
3236 	 */
3237 
3238 	if (xoap && (mask & AT_XVATTR)) {
3239 
3240 		/*
3241 		 * restore trimmed off masks
3242 		 * so that return masks can be set for caller.
3243 		 */
3244 
3245 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3246 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3247 		}
3248 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3249 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3250 		}
3251 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3252 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3253 		}
3254 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3255 			XVA_SET_REQ(xvap, XAT_NODUMP);
3256 		}
3257 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3258 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3259 		}
3260 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3261 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3262 		}
3263 
3264 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3265 			ASSERT(vp->v_type == VREG);
3266 
3267 		zfs_xvattr_set(zp, xvap, tx);
3268 	}
3269 
3270 	if (fuid_dirtied)
3271 		zfs_fuid_sync(zfsvfs, tx);
3272 
3273 	if (mask != 0)
3274 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3275 
3276 	mutex_exit(&zp->z_lock);
3277 	if (mask & (AT_UID|AT_GID|AT_MODE))
3278 		mutex_exit(&zp->z_acl_lock);
3279 
3280 	if (attrzp) {
3281 		if (mask & (AT_UID|AT_GID|AT_MODE))
3282 			mutex_exit(&attrzp->z_acl_lock);
3283 		mutex_exit(&attrzp->z_lock);
3284 	}
3285 out:
3286 	if (err == 0 && attrzp) {
3287 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3288 		    xattr_count, tx);
3289 		ASSERT(err2 == 0);
3290 	}
3291 
3292 	if (attrzp)
3293 		VN_RELE(ZTOV(attrzp));
3294 
3295 	if (aclp)
3296 		zfs_acl_free(aclp);
3297 
3298 	if (fuidp) {
3299 		zfs_fuid_info_free(fuidp);
3300 		fuidp = NULL;
3301 	}
3302 
3303 	if (err) {
3304 		dmu_tx_abort(tx);
3305 		if (err == ERESTART)
3306 			goto top;
3307 	} else {
3308 		err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3309 		dmu_tx_commit(tx);
3310 	}
3311 
3312 out2:
3313 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3314 		zil_commit(zilog, 0);
3315 
3316 	ZFS_EXIT(zfsvfs);
3317 	return (err);
3318 }
3319 
3320 typedef struct zfs_zlock {
3321 	krwlock_t	*zl_rwlock;	/* lock we acquired */
3322 	znode_t		*zl_znode;	/* znode we held */
3323 	struct zfs_zlock *zl_next;	/* next in list */
3324 } zfs_zlock_t;
3325 
3326 /*
3327  * Drop locks and release vnodes that were held by zfs_rename_lock().
3328  */
3329 static void
3330 zfs_rename_unlock(zfs_zlock_t **zlpp)
3331 {
3332 	zfs_zlock_t *zl;
3333 
3334 	while ((zl = *zlpp) != NULL) {
3335 		if (zl->zl_znode != NULL)
3336 			VN_RELE(ZTOV(zl->zl_znode));
3337 		rw_exit(zl->zl_rwlock);
3338 		*zlpp = zl->zl_next;
3339 		kmem_free(zl, sizeof (*zl));
3340 	}
3341 }
3342 
3343 /*
3344  * Search back through the directory tree, using the ".." entries.
3345  * Lock each directory in the chain to prevent concurrent renames.
3346  * Fail any attempt to move a directory into one of its own descendants.
3347  * XXX - z_parent_lock can overlap with map or grow locks
3348  */
3349 static int
3350 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3351 {
3352 	zfs_zlock_t	*zl;
3353 	znode_t		*zp = tdzp;
3354 	uint64_t	rootid = zp->z_zfsvfs->z_root;
3355 	uint64_t	oidp = zp->z_id;
3356 	krwlock_t	*rwlp = &szp->z_parent_lock;
3357 	krw_t		rw = RW_WRITER;
3358 
3359 	/*
3360 	 * First pass write-locks szp and compares to zp->z_id.
3361 	 * Later passes read-lock zp and compare to zp->z_parent.
3362 	 */
3363 	do {
3364 		if (!rw_tryenter(rwlp, rw)) {
3365 			/*
3366 			 * Another thread is renaming in this path.
3367 			 * Note that if we are a WRITER, we don't have any
3368 			 * parent_locks held yet.
3369 			 */
3370 			if (rw == RW_READER && zp->z_id > szp->z_id) {
3371 				/*
3372 				 * Drop our locks and restart
3373 				 */
3374 				zfs_rename_unlock(&zl);
3375 				*zlpp = NULL;
3376 				zp = tdzp;
3377 				oidp = zp->z_id;
3378 				rwlp = &szp->z_parent_lock;
3379 				rw = RW_WRITER;
3380 				continue;
3381 			} else {
3382 				/*
3383 				 * Wait for other thread to drop its locks
3384 				 */
3385 				rw_enter(rwlp, rw);
3386 			}
3387 		}
3388 
3389 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3390 		zl->zl_rwlock = rwlp;
3391 		zl->zl_znode = NULL;
3392 		zl->zl_next = *zlpp;
3393 		*zlpp = zl;
3394 
3395 		if (oidp == szp->z_id)		/* We're a descendant of szp */
3396 			return (SET_ERROR(EINVAL));
3397 
3398 		if (oidp == rootid)		/* We've hit the top */
3399 			return (0);
3400 
3401 		if (rw == RW_READER) {		/* i.e. not the first pass */
3402 			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3403 			if (error)
3404 				return (error);
3405 			zl->zl_znode = zp;
3406 		}
3407 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3408 		    &oidp, sizeof (oidp));
3409 		rwlp = &zp->z_parent_lock;
3410 		rw = RW_READER;
3411 
3412 	} while (zp->z_id != sdzp->z_id);
3413 
3414 	return (0);
3415 }
3416 
3417 /*
3418  * Move an entry from the provided source directory to the target
3419  * directory.  Change the entry name as indicated.
3420  *
3421  *	IN:	sdvp	- Source directory containing the "old entry".
3422  *		snm	- Old entry name.
3423  *		tdvp	- Target directory to contain the "new entry".
3424  *		tnm	- New entry name.
3425  *		cr	- credentials of caller.
3426  *		ct	- caller context
3427  *		flags	- case flags
3428  *
3429  *	RETURN:	0 on success, error code on failure.
3430  *
3431  * Timestamps:
3432  *	sdvp,tdvp - ctime|mtime updated
3433  */
3434 /*ARGSUSED*/
3435 static int
3436 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3437     caller_context_t *ct, int flags)
3438 {
3439 	znode_t		*tdzp, *szp, *tzp;
3440 	znode_t		*sdzp = VTOZ(sdvp);
3441 	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
3442 	zilog_t		*zilog;
3443 	vnode_t		*realvp;
3444 	zfs_dirlock_t	*sdl, *tdl;
3445 	dmu_tx_t	*tx;
3446 	zfs_zlock_t	*zl;
3447 	int		cmp, serr, terr;
3448 	int		error = 0;
3449 	int		zflg = 0;
3450 	boolean_t	waited = B_FALSE;
3451 
3452 	ZFS_ENTER(zfsvfs);
3453 	ZFS_VERIFY_ZP(sdzp);
3454 	zilog = zfsvfs->z_log;
3455 
3456 	/*
3457 	 * Make sure we have the real vp for the target directory.
3458 	 */
3459 	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3460 		tdvp = realvp;
3461 
3462 	tdzp = VTOZ(tdvp);
3463 	ZFS_VERIFY_ZP(tdzp);
3464 
3465 	/*
3466 	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3467 	 * ctldir appear to have the same v_vfsp.
3468 	 */
3469 	if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3470 		ZFS_EXIT(zfsvfs);
3471 		return (SET_ERROR(EXDEV));
3472 	}
3473 
3474 	if (zfsvfs->z_utf8 && u8_validate(tnm,
3475 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3476 		ZFS_EXIT(zfsvfs);
3477 		return (SET_ERROR(EILSEQ));
3478 	}
3479 
3480 	if (flags & FIGNORECASE)
3481 		zflg |= ZCILOOK;
3482 
3483 top:
3484 	szp = NULL;
3485 	tzp = NULL;
3486 	zl = NULL;
3487 
3488 	/*
3489 	 * This is to prevent the creation of links into attribute space
3490 	 * by renaming a linked file into/outof an attribute directory.
3491 	 * See the comment in zfs_link() for why this is considered bad.
3492 	 */
3493 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3494 		ZFS_EXIT(zfsvfs);
3495 		return (SET_ERROR(EINVAL));
3496 	}
3497 
3498 	/*
3499 	 * Lock source and target directory entries.  To prevent deadlock,
3500 	 * a lock ordering must be defined.  We lock the directory with
3501 	 * the smallest object id first, or if it's a tie, the one with
3502 	 * the lexically first name.
3503 	 */
3504 	if (sdzp->z_id < tdzp->z_id) {
3505 		cmp = -1;
3506 	} else if (sdzp->z_id > tdzp->z_id) {
3507 		cmp = 1;
3508 	} else {
3509 		/*
3510 		 * First compare the two name arguments without
3511 		 * considering any case folding.
3512 		 */
3513 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3514 
3515 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3516 		ASSERT(error == 0 || !zfsvfs->z_utf8);
3517 		if (cmp == 0) {
3518 			/*
3519 			 * POSIX: "If the old argument and the new argument
3520 			 * both refer to links to the same existing file,
3521 			 * the rename() function shall return successfully
3522 			 * and perform no other action."
3523 			 */
3524 			ZFS_EXIT(zfsvfs);
3525 			return (0);
3526 		}
3527 		/*
3528 		 * If the file system is case-folding, then we may
3529 		 * have some more checking to do.  A case-folding file
3530 		 * system is either supporting mixed case sensitivity
3531 		 * access or is completely case-insensitive.  Note
3532 		 * that the file system is always case preserving.
3533 		 *
3534 		 * In mixed sensitivity mode case sensitive behavior
3535 		 * is the default.  FIGNORECASE must be used to
3536 		 * explicitly request case insensitive behavior.
3537 		 *
3538 		 * If the source and target names provided differ only
3539 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3540 		 * we will treat this as a special case in the
3541 		 * case-insensitive mode: as long as the source name
3542 		 * is an exact match, we will allow this to proceed as
3543 		 * a name-change request.
3544 		 */
3545 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3546 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3547 		    flags & FIGNORECASE)) &&
3548 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3549 		    &error) == 0) {
3550 			/*
3551 			 * case preserving rename request, require exact
3552 			 * name matches
3553 			 */
3554 			zflg |= ZCIEXACT;
3555 			zflg &= ~ZCILOOK;
3556 		}
3557 	}
3558 
3559 	/*
3560 	 * If the source and destination directories are the same, we should
3561 	 * grab the z_name_lock of that directory only once.
3562 	 */
3563 	if (sdzp == tdzp) {
3564 		zflg |= ZHAVELOCK;
3565 		rw_enter(&sdzp->z_name_lock, RW_READER);
3566 	}
3567 
3568 	if (cmp < 0) {
3569 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3570 		    ZEXISTS | zflg, NULL, NULL);
3571 		terr = zfs_dirent_lock(&tdl,
3572 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3573 	} else {
3574 		terr = zfs_dirent_lock(&tdl,
3575 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3576 		serr = zfs_dirent_lock(&sdl,
3577 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3578 		    NULL, NULL);
3579 	}
3580 
3581 	if (serr) {
3582 		/*
3583 		 * Source entry invalid or not there.
3584 		 */
3585 		if (!terr) {
3586 			zfs_dirent_unlock(tdl);
3587 			if (tzp)
3588 				VN_RELE(ZTOV(tzp));
3589 		}
3590 
3591 		if (sdzp == tdzp)
3592 			rw_exit(&sdzp->z_name_lock);
3593 
3594 		if (strcmp(snm, "..") == 0)
3595 			serr = SET_ERROR(EINVAL);
3596 		ZFS_EXIT(zfsvfs);
3597 		return (serr);
3598 	}
3599 	if (terr) {
3600 		zfs_dirent_unlock(sdl);
3601 		VN_RELE(ZTOV(szp));
3602 
3603 		if (sdzp == tdzp)
3604 			rw_exit(&sdzp->z_name_lock);
3605 
3606 		if (strcmp(tnm, "..") == 0)
3607 			terr = SET_ERROR(EINVAL);
3608 		ZFS_EXIT(zfsvfs);
3609 		return (terr);
3610 	}
3611 
3612 	/*
3613 	 * Must have write access at the source to remove the old entry
3614 	 * and write access at the target to create the new entry.
3615 	 * Note that if target and source are the same, this can be
3616 	 * done in a single check.
3617 	 */
3618 
3619 	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3620 		goto out;
3621 
3622 	if (ZTOV(szp)->v_type == VDIR) {
3623 		/*
3624 		 * Check to make sure rename is valid.
3625 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3626 		 */
3627 		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3628 			goto out;
3629 	}
3630 
3631 	/*
3632 	 * Does target exist?
3633 	 */
3634 	if (tzp) {
3635 		/*
3636 		 * Source and target must be the same type.
3637 		 */
3638 		if (ZTOV(szp)->v_type == VDIR) {
3639 			if (ZTOV(tzp)->v_type != VDIR) {
3640 				error = SET_ERROR(ENOTDIR);
3641 				goto out;
3642 			}
3643 		} else {
3644 			if (ZTOV(tzp)->v_type == VDIR) {
3645 				error = SET_ERROR(EISDIR);
3646 				goto out;
3647 			}
3648 		}
3649 		/*
3650 		 * POSIX dictates that when the source and target
3651 		 * entries refer to the same file object, rename
3652 		 * must do nothing and exit without error.
3653 		 */
3654 		if (szp->z_id == tzp->z_id) {
3655 			error = 0;
3656 			goto out;
3657 		}
3658 	}
3659 
3660 	vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3661 	if (tzp)
3662 		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3663 
3664 	/*
3665 	 * notify the target directory if it is not the same
3666 	 * as source directory.
3667 	 */
3668 	if (tdvp != sdvp) {
3669 		vnevent_rename_dest_dir(tdvp, ct);
3670 	}
3671 
3672 	tx = dmu_tx_create(zfsvfs->z_os);
3673 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3674 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3675 	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3676 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3677 	if (sdzp != tdzp) {
3678 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3679 		zfs_sa_upgrade_txholds(tx, tdzp);
3680 	}
3681 	if (tzp) {
3682 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3683 		zfs_sa_upgrade_txholds(tx, tzp);
3684 	}
3685 
3686 	zfs_sa_upgrade_txholds(tx, szp);
3687 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3688 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3689 	if (error) {
3690 		if (zl != NULL)
3691 			zfs_rename_unlock(&zl);
3692 		zfs_dirent_unlock(sdl);
3693 		zfs_dirent_unlock(tdl);
3694 
3695 		if (sdzp == tdzp)
3696 			rw_exit(&sdzp->z_name_lock);
3697 
3698 		VN_RELE(ZTOV(szp));
3699 		if (tzp)
3700 			VN_RELE(ZTOV(tzp));
3701 		if (error == ERESTART) {
3702 			waited = B_TRUE;
3703 			dmu_tx_wait(tx);
3704 			dmu_tx_abort(tx);
3705 			goto top;
3706 		}
3707 		dmu_tx_abort(tx);
3708 		ZFS_EXIT(zfsvfs);
3709 		return (error);
3710 	}
3711 
3712 	if (tzp)	/* Attempt to remove the existing target */
3713 		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3714 
3715 	if (error == 0) {
3716 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3717 		if (error == 0) {
3718 			szp->z_pflags |= ZFS_AV_MODIFIED;
3719 
3720 			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3721 			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3722 			ASSERT0(error);
3723 
3724 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3725 			if (error == 0) {
3726 				zfs_log_rename(zilog, tx, TX_RENAME |
3727 				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3728 				    sdl->dl_name, tdzp, tdl->dl_name, szp);
3729 
3730 				/*
3731 				 * Update path information for the target vnode
3732 				 */
3733 				vn_renamepath(tdvp, ZTOV(szp), tnm,
3734 				    strlen(tnm));
3735 			} else {
3736 				/*
3737 				 * At this point, we have successfully created
3738 				 * the target name, but have failed to remove
3739 				 * the source name.  Since the create was done
3740 				 * with the ZRENAMING flag, there are
3741 				 * complications; for one, the link count is
3742 				 * wrong.  The easiest way to deal with this
3743 				 * is to remove the newly created target, and
3744 				 * return the original error.  This must
3745 				 * succeed; fortunately, it is very unlikely to
3746 				 * fail, since we just created it.
3747 				 */
3748 				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3749 				    ZRENAMING, NULL), ==, 0);
3750 			}
3751 		}
3752 	}
3753 
3754 	dmu_tx_commit(tx);
3755 out:
3756 	if (zl != NULL)
3757 		zfs_rename_unlock(&zl);
3758 
3759 	zfs_dirent_unlock(sdl);
3760 	zfs_dirent_unlock(tdl);
3761 
3762 	if (sdzp == tdzp)
3763 		rw_exit(&sdzp->z_name_lock);
3764 
3765 
3766 	VN_RELE(ZTOV(szp));
3767 	if (tzp)
3768 		VN_RELE(ZTOV(tzp));
3769 
3770 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3771 		zil_commit(zilog, 0);
3772 
3773 	ZFS_EXIT(zfsvfs);
3774 	return (error);
3775 }
3776 
3777 /*
3778  * Insert the indicated symbolic reference entry into the directory.
3779  *
3780  *	IN:	dvp	- Directory to contain new symbolic link.
3781  *		link	- Name for new symlink entry.
3782  *		vap	- Attributes of new entry.
3783  *		cr	- credentials of caller.
3784  *		ct	- caller context
3785  *		flags	- case flags
3786  *
3787  *	RETURN:	0 on success, error code on failure.
3788  *
3789  * Timestamps:
3790  *	dvp - ctime|mtime updated
3791  */
3792 /*ARGSUSED*/
3793 static int
3794 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3795     caller_context_t *ct, int flags)
3796 {
3797 	znode_t		*zp, *dzp = VTOZ(dvp);
3798 	zfs_dirlock_t	*dl;
3799 	dmu_tx_t	*tx;
3800 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3801 	zilog_t		*zilog;
3802 	uint64_t	len = strlen(link);
3803 	int		error;
3804 	int		zflg = ZNEW;
3805 	zfs_acl_ids_t	acl_ids;
3806 	boolean_t	fuid_dirtied;
3807 	uint64_t	txtype = TX_SYMLINK;
3808 	boolean_t	waited = B_FALSE;
3809 
3810 	ASSERT(vap->va_type == VLNK);
3811 
3812 	ZFS_ENTER(zfsvfs);
3813 	ZFS_VERIFY_ZP(dzp);
3814 	zilog = zfsvfs->z_log;
3815 
3816 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3817 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3818 		ZFS_EXIT(zfsvfs);
3819 		return (SET_ERROR(EILSEQ));
3820 	}
3821 	if (flags & FIGNORECASE)
3822 		zflg |= ZCILOOK;
3823 
3824 	if (len > MAXPATHLEN) {
3825 		ZFS_EXIT(zfsvfs);
3826 		return (SET_ERROR(ENAMETOOLONG));
3827 	}
3828 
3829 	if ((error = zfs_acl_ids_create(dzp, 0,
3830 	    vap, cr, NULL, &acl_ids)) != 0) {
3831 		ZFS_EXIT(zfsvfs);
3832 		return (error);
3833 	}
3834 top:
3835 	/*
3836 	 * Attempt to lock directory; fail if entry already exists.
3837 	 */
3838 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3839 	if (error) {
3840 		zfs_acl_ids_free(&acl_ids);
3841 		ZFS_EXIT(zfsvfs);
3842 		return (error);
3843 	}
3844 
3845 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3846 		zfs_acl_ids_free(&acl_ids);
3847 		zfs_dirent_unlock(dl);
3848 		ZFS_EXIT(zfsvfs);
3849 		return (error);
3850 	}
3851 
3852 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3853 		zfs_acl_ids_free(&acl_ids);
3854 		zfs_dirent_unlock(dl);
3855 		ZFS_EXIT(zfsvfs);
3856 		return (SET_ERROR(EDQUOT));
3857 	}
3858 	tx = dmu_tx_create(zfsvfs->z_os);
3859 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3860 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3861 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3862 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3863 	    ZFS_SA_BASE_ATTR_SIZE + len);
3864 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3865 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3866 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3867 		    acl_ids.z_aclp->z_acl_bytes);
3868 	}
3869 	if (fuid_dirtied)
3870 		zfs_fuid_txhold(zfsvfs, tx);
3871 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3872 	if (error) {
3873 		zfs_dirent_unlock(dl);
3874 		if (error == ERESTART) {
3875 			waited = B_TRUE;
3876 			dmu_tx_wait(tx);
3877 			dmu_tx_abort(tx);
3878 			goto top;
3879 		}
3880 		zfs_acl_ids_free(&acl_ids);
3881 		dmu_tx_abort(tx);
3882 		ZFS_EXIT(zfsvfs);
3883 		return (error);
3884 	}
3885 
3886 	/*
3887 	 * Create a new object for the symlink.
3888 	 * for version 4 ZPL datsets the symlink will be an SA attribute
3889 	 */
3890 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3891 
3892 	if (fuid_dirtied)
3893 		zfs_fuid_sync(zfsvfs, tx);
3894 
3895 	mutex_enter(&zp->z_lock);
3896 	if (zp->z_is_sa)
3897 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3898 		    link, len, tx);
3899 	else
3900 		zfs_sa_symlink(zp, link, len, tx);
3901 	mutex_exit(&zp->z_lock);
3902 
3903 	zp->z_size = len;
3904 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3905 	    &zp->z_size, sizeof (zp->z_size), tx);
3906 	/*
3907 	 * Insert the new object into the directory.
3908 	 */
3909 	(void) zfs_link_create(dl, zp, tx, ZNEW);
3910 
3911 	if (flags & FIGNORECASE)
3912 		txtype |= TX_CI;
3913 	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3914 
3915 	zfs_acl_ids_free(&acl_ids);
3916 
3917 	dmu_tx_commit(tx);
3918 
3919 	zfs_dirent_unlock(dl);
3920 
3921 	VN_RELE(ZTOV(zp));
3922 
3923 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3924 		zil_commit(zilog, 0);
3925 
3926 	ZFS_EXIT(zfsvfs);
3927 	return (error);
3928 }
3929 
3930 /*
3931  * Return, in the buffer contained in the provided uio structure,
3932  * the symbolic path referred to by vp.
3933  *
3934  *	IN:	vp	- vnode of symbolic link.
3935  *		uio	- structure to contain the link path.
3936  *		cr	- credentials of caller.
3937  *		ct	- caller context
3938  *
3939  *	OUT:	uio	- structure containing the link path.
3940  *
3941  *	RETURN:	0 on success, error code on failure.
3942  *
3943  * Timestamps:
3944  *	vp - atime updated
3945  */
3946 /* ARGSUSED */
3947 static int
3948 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3949 {
3950 	znode_t		*zp = VTOZ(vp);
3951 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3952 	int		error;
3953 
3954 	ZFS_ENTER(zfsvfs);
3955 	ZFS_VERIFY_ZP(zp);
3956 
3957 	mutex_enter(&zp->z_lock);
3958 	if (zp->z_is_sa)
3959 		error = sa_lookup_uio(zp->z_sa_hdl,
3960 		    SA_ZPL_SYMLINK(zfsvfs), uio);
3961 	else
3962 		error = zfs_sa_readlink(zp, uio);
3963 	mutex_exit(&zp->z_lock);
3964 
3965 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3966 
3967 	ZFS_EXIT(zfsvfs);
3968 	return (error);
3969 }
3970 
3971 /*
3972  * Insert a new entry into directory tdvp referencing svp.
3973  *
3974  *	IN:	tdvp	- Directory to contain new entry.
3975  *		svp	- vnode of new entry.
3976  *		name	- name of new entry.
3977  *		cr	- credentials of caller.
3978  *		ct	- caller context
3979  *
3980  *	RETURN:	0 on success, error code on failure.
3981  *
3982  * Timestamps:
3983  *	tdvp - ctime|mtime updated
3984  *	 svp - ctime updated
3985  */
3986 /* ARGSUSED */
3987 static int
3988 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3989     caller_context_t *ct, int flags)
3990 {
3991 	znode_t		*dzp = VTOZ(tdvp);
3992 	znode_t		*tzp, *szp;
3993 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3994 	zilog_t		*zilog;
3995 	zfs_dirlock_t	*dl;
3996 	dmu_tx_t	*tx;
3997 	vnode_t		*realvp;
3998 	int		error;
3999 	int		zf = ZNEW;
4000 	uint64_t	parent;
4001 	uid_t		owner;
4002 	boolean_t	waited = B_FALSE;
4003 
4004 	ASSERT(tdvp->v_type == VDIR);
4005 
4006 	ZFS_ENTER(zfsvfs);
4007 	ZFS_VERIFY_ZP(dzp);
4008 	zilog = zfsvfs->z_log;
4009 
4010 	if (VOP_REALVP(svp, &realvp, ct) == 0)
4011 		svp = realvp;
4012 
4013 	/*
4014 	 * POSIX dictates that we return EPERM here.
4015 	 * Better choices include ENOTSUP or EISDIR.
4016 	 */
4017 	if (svp->v_type == VDIR) {
4018 		ZFS_EXIT(zfsvfs);
4019 		return (SET_ERROR(EPERM));
4020 	}
4021 
4022 	szp = VTOZ(svp);
4023 	ZFS_VERIFY_ZP(szp);
4024 
4025 	/*
4026 	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4027 	 * ctldir appear to have the same v_vfsp.
4028 	 */
4029 	if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4030 		ZFS_EXIT(zfsvfs);
4031 		return (SET_ERROR(EXDEV));
4032 	}
4033 
4034 	/* Prevent links to .zfs/shares files */
4035 
4036 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4037 	    &parent, sizeof (uint64_t))) != 0) {
4038 		ZFS_EXIT(zfsvfs);
4039 		return (error);
4040 	}
4041 	if (parent == zfsvfs->z_shares_dir) {
4042 		ZFS_EXIT(zfsvfs);
4043 		return (SET_ERROR(EPERM));
4044 	}
4045 
4046 	if (zfsvfs->z_utf8 && u8_validate(name,
4047 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4048 		ZFS_EXIT(zfsvfs);
4049 		return (SET_ERROR(EILSEQ));
4050 	}
4051 	if (flags & FIGNORECASE)
4052 		zf |= ZCILOOK;
4053 
4054 	/*
4055 	 * We do not support links between attributes and non-attributes
4056 	 * because of the potential security risk of creating links
4057 	 * into "normal" file space in order to circumvent restrictions
4058 	 * imposed in attribute space.
4059 	 */
4060 	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4061 		ZFS_EXIT(zfsvfs);
4062 		return (SET_ERROR(EINVAL));
4063 	}
4064 
4065 
4066 	owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4067 	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4068 		ZFS_EXIT(zfsvfs);
4069 		return (SET_ERROR(EPERM));
4070 	}
4071 
4072 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4073 		ZFS_EXIT(zfsvfs);
4074 		return (error);
4075 	}
4076 
4077 top:
4078 	/*
4079 	 * Attempt to lock directory; fail if entry already exists.
4080 	 */
4081 	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4082 	if (error) {
4083 		ZFS_EXIT(zfsvfs);
4084 		return (error);
4085 	}
4086 
4087 	tx = dmu_tx_create(zfsvfs->z_os);
4088 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4089 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4090 	zfs_sa_upgrade_txholds(tx, szp);
4091 	zfs_sa_upgrade_txholds(tx, dzp);
4092 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4093 	if (error) {
4094 		zfs_dirent_unlock(dl);
4095 		if (error == ERESTART) {
4096 			waited = B_TRUE;
4097 			dmu_tx_wait(tx);
4098 			dmu_tx_abort(tx);
4099 			goto top;
4100 		}
4101 		dmu_tx_abort(tx);
4102 		ZFS_EXIT(zfsvfs);
4103 		return (error);
4104 	}
4105 
4106 	error = zfs_link_create(dl, szp, tx, 0);
4107 
4108 	if (error == 0) {
4109 		uint64_t txtype = TX_LINK;
4110 		if (flags & FIGNORECASE)
4111 			txtype |= TX_CI;
4112 		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4113 	}
4114 
4115 	dmu_tx_commit(tx);
4116 
4117 	zfs_dirent_unlock(dl);
4118 
4119 	if (error == 0) {
4120 		vnevent_link(svp, ct);
4121 	}
4122 
4123 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4124 		zil_commit(zilog, 0);
4125 
4126 	ZFS_EXIT(zfsvfs);
4127 	return (error);
4128 }
4129 
4130 /*
4131  * zfs_null_putapage() is used when the file system has been force
4132  * unmounted. It just drops the pages.
4133  */
4134 /* ARGSUSED */
4135 static int
4136 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4137     size_t *lenp, int flags, cred_t *cr)
4138 {
4139 	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4140 	return (0);
4141 }
4142 
4143 /*
4144  * Push a page out to disk, klustering if possible.
4145  *
4146  *	IN:	vp	- file to push page to.
4147  *		pp	- page to push.
4148  *		flags	- additional flags.
4149  *		cr	- credentials of caller.
4150  *
4151  *	OUT:	offp	- start of range pushed.
4152  *		lenp	- len of range pushed.
4153  *
4154  *	RETURN:	0 on success, error code on failure.
4155  *
4156  * NOTE: callers must have locked the page to be pushed.  On
4157  * exit, the page (and all other pages in the kluster) must be
4158  * unlocked.
4159  */
4160 /* ARGSUSED */
4161 static int
4162 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4163     size_t *lenp, int flags, cred_t *cr)
4164 {
4165 	znode_t		*zp = VTOZ(vp);
4166 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4167 	dmu_tx_t	*tx;
4168 	u_offset_t	off, koff;
4169 	size_t		len, klen;
4170 	int		err;
4171 
4172 	off = pp->p_offset;
4173 	len = PAGESIZE;
4174 	/*
4175 	 * If our blocksize is bigger than the page size, try to kluster
4176 	 * multiple pages so that we write a full block (thus avoiding
4177 	 * a read-modify-write).
4178 	 */
4179 	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4180 		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4181 		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4182 		ASSERT(koff <= zp->z_size);
4183 		if (koff + klen > zp->z_size)
4184 			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4185 		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4186 	}
4187 	ASSERT3U(btop(len), ==, btopr(len));
4188 
4189 	/*
4190 	 * Can't push pages past end-of-file.
4191 	 */
4192 	if (off >= zp->z_size) {
4193 		/* ignore all pages */
4194 		err = 0;
4195 		goto out;
4196 	} else if (off + len > zp->z_size) {
4197 		int npages = btopr(zp->z_size - off);
4198 		page_t *trunc;
4199 
4200 		page_list_break(&pp, &trunc, npages);
4201 		/* ignore pages past end of file */
4202 		if (trunc)
4203 			pvn_write_done(trunc, flags);
4204 		len = zp->z_size - off;
4205 	}
4206 
4207 	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4208 	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4209 		err = SET_ERROR(EDQUOT);
4210 		goto out;
4211 	}
4212 	tx = dmu_tx_create(zfsvfs->z_os);
4213 	dmu_tx_hold_write(tx, zp->z_id, off, len);
4214 
4215 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4216 	zfs_sa_upgrade_txholds(tx, zp);
4217 	err = dmu_tx_assign(tx, TXG_WAIT);
4218 	if (err != 0) {
4219 		dmu_tx_abort(tx);
4220 		goto out;
4221 	}
4222 
4223 	if (zp->z_blksz <= PAGESIZE) {
4224 		caddr_t va = zfs_map_page(pp, S_READ);
4225 		ASSERT3U(len, <=, PAGESIZE);
4226 		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4227 		zfs_unmap_page(pp, va);
4228 	} else {
4229 		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4230 	}
4231 
4232 	if (err == 0) {
4233 		uint64_t mtime[2], ctime[2];
4234 		sa_bulk_attr_t bulk[3];
4235 		int count = 0;
4236 
4237 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4238 		    &mtime, 16);
4239 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4240 		    &ctime, 16);
4241 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4242 		    &zp->z_pflags, 8);
4243 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4244 		    B_TRUE);
4245 		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4246 	}
4247 	dmu_tx_commit(tx);
4248 
4249 out:
4250 	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4251 	if (offp)
4252 		*offp = off;
4253 	if (lenp)
4254 		*lenp = len;
4255 
4256 	return (err);
4257 }
4258 
4259 /*
4260  * Copy the portion of the file indicated from pages into the file.
4261  * The pages are stored in a page list attached to the files vnode.
4262  *
4263  *	IN:	vp	- vnode of file to push page data to.
4264  *		off	- position in file to put data.
4265  *		len	- amount of data to write.
4266  *		flags	- flags to control the operation.
4267  *		cr	- credentials of caller.
4268  *		ct	- caller context.
4269  *
4270  *	RETURN:	0 on success, error code on failure.
4271  *
4272  * Timestamps:
4273  *	vp - ctime|mtime updated
4274  */
4275 /*ARGSUSED*/
4276 static int
4277 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4278     caller_context_t *ct)
4279 {
4280 	znode_t		*zp = VTOZ(vp);
4281 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4282 	page_t		*pp;
4283 	size_t		io_len;
4284 	u_offset_t	io_off;
4285 	uint_t		blksz;
4286 	rl_t		*rl;
4287 	int		error = 0;
4288 
4289 	ZFS_ENTER(zfsvfs);
4290 	ZFS_VERIFY_ZP(zp);
4291 
4292 	/*
4293 	 * There's nothing to do if no data is cached.
4294 	 */
4295 	if (!vn_has_cached_data(vp)) {
4296 		ZFS_EXIT(zfsvfs);
4297 		return (0);
4298 	}
4299 
4300 	/*
4301 	 * Align this request to the file block size in case we kluster.
4302 	 * XXX - this can result in pretty aggresive locking, which can
4303 	 * impact simultanious read/write access.  One option might be
4304 	 * to break up long requests (len == 0) into block-by-block
4305 	 * operations to get narrower locking.
4306 	 */
4307 	blksz = zp->z_blksz;
4308 	if (ISP2(blksz))
4309 		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4310 	else
4311 		io_off = 0;
4312 	if (len > 0 && ISP2(blksz))
4313 		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4314 	else
4315 		io_len = 0;
4316 
4317 	if (io_len == 0) {
4318 		/*
4319 		 * Search the entire vp list for pages >= io_off.
4320 		 */
4321 		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4322 		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4323 		goto out;
4324 	}
4325 	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4326 
4327 	if (off > zp->z_size) {
4328 		/* past end of file */
4329 		zfs_range_unlock(rl);
4330 		ZFS_EXIT(zfsvfs);
4331 		return (0);
4332 	}
4333 
4334 	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4335 
4336 	for (off = io_off; io_off < off + len; io_off += io_len) {
4337 		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4338 			pp = page_lookup(vp, io_off,
4339 			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4340 		} else {
4341 			pp = page_lookup_nowait(vp, io_off,
4342 			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4343 		}
4344 
4345 		if (pp != NULL && pvn_getdirty(pp, flags)) {
4346 			int err;
4347 
4348 			/*
4349 			 * Found a dirty page to push
4350 			 */
4351 			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4352 			if (err)
4353 				error = err;
4354 		} else {
4355 			io_len = PAGESIZE;
4356 		}
4357 	}
4358 out:
4359 	zfs_range_unlock(rl);
4360 	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4361 		zil_commit(zfsvfs->z_log, zp->z_id);
4362 	ZFS_EXIT(zfsvfs);
4363 	return (error);
4364 }
4365 
4366 /*ARGSUSED*/
4367 void
4368 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4369 {
4370 	znode_t	*zp = VTOZ(vp);
4371 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4372 	int error;
4373 
4374 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4375 	if (zp->z_sa_hdl == NULL) {
4376 		/*
4377 		 * The fs has been unmounted, or we did a
4378 		 * suspend/resume and this file no longer exists.
4379 		 */
4380 		if (vn_has_cached_data(vp)) {
4381 			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4382 			    B_INVAL, cr);
4383 		}
4384 
4385 		mutex_enter(&zp->z_lock);
4386 		mutex_enter(&vp->v_lock);
4387 		ASSERT(vp->v_count == 1);
4388 		vp->v_count = 0;
4389 		mutex_exit(&vp->v_lock);
4390 		mutex_exit(&zp->z_lock);
4391 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4392 		zfs_znode_free(zp);
4393 		return;
4394 	}
4395 
4396 	/*
4397 	 * Attempt to push any data in the page cache.  If this fails
4398 	 * we will get kicked out later in zfs_zinactive().
4399 	 */
4400 	if (vn_has_cached_data(vp)) {
4401 		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4402 		    cr);
4403 	}
4404 
4405 	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4406 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4407 
4408 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4409 		zfs_sa_upgrade_txholds(tx, zp);
4410 		error = dmu_tx_assign(tx, TXG_WAIT);
4411 		if (error) {
4412 			dmu_tx_abort(tx);
4413 		} else {
4414 			mutex_enter(&zp->z_lock);
4415 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4416 			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4417 			zp->z_atime_dirty = 0;
4418 			mutex_exit(&zp->z_lock);
4419 			dmu_tx_commit(tx);
4420 		}
4421 	}
4422 
4423 	zfs_zinactive(zp);
4424 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4425 }
4426 
4427 /*
4428  * Bounds-check the seek operation.
4429  *
4430  *	IN:	vp	- vnode seeking within
4431  *		ooff	- old file offset
4432  *		noffp	- pointer to new file offset
4433  *		ct	- caller context
4434  *
4435  *	RETURN:	0 on success, EINVAL if new offset invalid.
4436  */
4437 /* ARGSUSED */
4438 static int
4439 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4440     caller_context_t *ct)
4441 {
4442 	if (vp->v_type == VDIR)
4443 		return (0);
4444 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4445 }
4446 
4447 /*
4448  * Pre-filter the generic locking function to trap attempts to place
4449  * a mandatory lock on a memory mapped file.
4450  */
4451 static int
4452 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4453     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4454 {
4455 	znode_t *zp = VTOZ(vp);
4456 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4457 
4458 	ZFS_ENTER(zfsvfs);
4459 	ZFS_VERIFY_ZP(zp);
4460 
4461 	/*
4462 	 * We are following the UFS semantics with respect to mapcnt
4463 	 * here: If we see that the file is mapped already, then we will
4464 	 * return an error, but we don't worry about races between this
4465 	 * function and zfs_map().
4466 	 */
4467 	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4468 		ZFS_EXIT(zfsvfs);
4469 		return (SET_ERROR(EAGAIN));
4470 	}
4471 	ZFS_EXIT(zfsvfs);
4472 	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4473 }
4474 
4475 /*
4476  * If we can't find a page in the cache, we will create a new page
4477  * and fill it with file data.  For efficiency, we may try to fill
4478  * multiple pages at once (klustering) to fill up the supplied page
4479  * list.  Note that the pages to be filled are held with an exclusive
4480  * lock to prevent access by other threads while they are being filled.
4481  */
4482 static int
4483 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4484     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4485 {
4486 	znode_t *zp = VTOZ(vp);
4487 	page_t *pp, *cur_pp;
4488 	objset_t *os = zp->z_zfsvfs->z_os;
4489 	u_offset_t io_off, total;
4490 	size_t io_len;
4491 	int err;
4492 
4493 	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4494 		/*
4495 		 * We only have a single page, don't bother klustering
4496 		 */
4497 		io_off = off;
4498 		io_len = PAGESIZE;
4499 		pp = page_create_va(vp, io_off, io_len,
4500 		    PG_EXCL | PG_WAIT, seg, addr);
4501 	} else {
4502 		/*
4503 		 * Try to find enough pages to fill the page list
4504 		 */
4505 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4506 		    &io_len, off, plsz, 0);
4507 	}
4508 	if (pp == NULL) {
4509 		/*
4510 		 * The page already exists, nothing to do here.
4511 		 */
4512 		*pl = NULL;
4513 		return (0);
4514 	}
4515 
4516 	/*
4517 	 * Fill the pages in the kluster.
4518 	 */
4519 	cur_pp = pp;
4520 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4521 		caddr_t va;
4522 
4523 		ASSERT3U(io_off, ==, cur_pp->p_offset);
4524 		va = zfs_map_page(cur_pp, S_WRITE);
4525 		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4526 		    DMU_READ_PREFETCH);
4527 		zfs_unmap_page(cur_pp, va);
4528 		if (err) {
4529 			/* On error, toss the entire kluster */
4530 			pvn_read_done(pp, B_ERROR);
4531 			/* convert checksum errors into IO errors */
4532 			if (err == ECKSUM)
4533 				err = SET_ERROR(EIO);
4534 			return (err);
4535 		}
4536 		cur_pp = cur_pp->p_next;
4537 	}
4538 
4539 	/*
4540 	 * Fill in the page list array from the kluster starting
4541 	 * from the desired offset `off'.
4542 	 * NOTE: the page list will always be null terminated.
4543 	 */
4544 	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4545 	ASSERT(pl == NULL || (*pl)->p_offset == off);
4546 
4547 	return (0);
4548 }
4549 
4550 /*
4551  * Return pointers to the pages for the file region [off, off + len]
4552  * in the pl array.  If plsz is greater than len, this function may
4553  * also return page pointers from after the specified region
4554  * (i.e. the region [off, off + plsz]).  These additional pages are
4555  * only returned if they are already in the cache, or were created as
4556  * part of a klustered read.
4557  *
4558  *	IN:	vp	- vnode of file to get data from.
4559  *		off	- position in file to get data from.
4560  *		len	- amount of data to retrieve.
4561  *		plsz	- length of provided page list.
4562  *		seg	- segment to obtain pages for.
4563  *		addr	- virtual address of fault.
4564  *		rw	- mode of created pages.
4565  *		cr	- credentials of caller.
4566  *		ct	- caller context.
4567  *
4568  *	OUT:	protp	- protection mode of created pages.
4569  *		pl	- list of pages created.
4570  *
4571  *	RETURN:	0 on success, error code on failure.
4572  *
4573  * Timestamps:
4574  *	vp - atime updated
4575  */
4576 /* ARGSUSED */
4577 static int
4578 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4579     page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4580     enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4581 {
4582 	znode_t		*zp = VTOZ(vp);
4583 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4584 	page_t		**pl0 = pl;
4585 	int		err = 0;
4586 
4587 	/* we do our own caching, faultahead is unnecessary */
4588 	if (pl == NULL)
4589 		return (0);
4590 	else if (len > plsz)
4591 		len = plsz;
4592 	else
4593 		len = P2ROUNDUP(len, PAGESIZE);
4594 	ASSERT(plsz >= len);
4595 
4596 	ZFS_ENTER(zfsvfs);
4597 	ZFS_VERIFY_ZP(zp);
4598 
4599 	if (protp)
4600 		*protp = PROT_ALL;
4601 
4602 	/*
4603 	 * Loop through the requested range [off, off + len) looking
4604 	 * for pages.  If we don't find a page, we will need to create
4605 	 * a new page and fill it with data from the file.
4606 	 */
4607 	while (len > 0) {
4608 		if (*pl = page_lookup(vp, off, SE_SHARED))
4609 			*(pl+1) = NULL;
4610 		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4611 			goto out;
4612 		while (*pl) {
4613 			ASSERT3U((*pl)->p_offset, ==, off);
4614 			off += PAGESIZE;
4615 			addr += PAGESIZE;
4616 			if (len > 0) {
4617 				ASSERT3U(len, >=, PAGESIZE);
4618 				len -= PAGESIZE;
4619 			}
4620 			ASSERT3U(plsz, >=, PAGESIZE);
4621 			plsz -= PAGESIZE;
4622 			pl++;
4623 		}
4624 	}
4625 
4626 	/*
4627 	 * Fill out the page array with any pages already in the cache.
4628 	 */
4629 	while (plsz > 0 &&
4630 	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4631 			off += PAGESIZE;
4632 			plsz -= PAGESIZE;
4633 	}
4634 out:
4635 	if (err) {
4636 		/*
4637 		 * Release any pages we have previously locked.
4638 		 */
4639 		while (pl > pl0)
4640 			page_unlock(*--pl);
4641 	} else {
4642 		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4643 	}
4644 
4645 	*pl = NULL;
4646 
4647 	ZFS_EXIT(zfsvfs);
4648 	return (err);
4649 }
4650 
4651 /*
4652  * Request a memory map for a section of a file.  This code interacts
4653  * with common code and the VM system as follows:
4654  *
4655  * - common code calls mmap(), which ends up in smmap_common()
4656  * - this calls VOP_MAP(), which takes you into (say) zfs
4657  * - zfs_map() calls as_map(), passing segvn_create() as the callback
4658  * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4659  * - zfs_addmap() updates z_mapcnt
4660  */
4661 /*ARGSUSED*/
4662 static int
4663 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4664     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4665     caller_context_t *ct)
4666 {
4667 	znode_t *zp = VTOZ(vp);
4668 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4669 	segvn_crargs_t	vn_a;
4670 	int		error;
4671 
4672 	ZFS_ENTER(zfsvfs);
4673 	ZFS_VERIFY_ZP(zp);
4674 
4675 	if ((prot & PROT_WRITE) && (zp->z_pflags &
4676 	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4677 		ZFS_EXIT(zfsvfs);
4678 		return (SET_ERROR(EPERM));
4679 	}
4680 
4681 	if ((prot & (PROT_READ | PROT_EXEC)) &&
4682 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4683 		ZFS_EXIT(zfsvfs);
4684 		return (SET_ERROR(EACCES));
4685 	}
4686 
4687 	if (vp->v_flag & VNOMAP) {
4688 		ZFS_EXIT(zfsvfs);
4689 		return (SET_ERROR(ENOSYS));
4690 	}
4691 
4692 	if (off < 0 || len > MAXOFFSET_T - off) {
4693 		ZFS_EXIT(zfsvfs);
4694 		return (SET_ERROR(ENXIO));
4695 	}
4696 
4697 	if (vp->v_type != VREG) {
4698 		ZFS_EXIT(zfsvfs);
4699 		return (SET_ERROR(ENODEV));
4700 	}
4701 
4702 	/*
4703 	 * If file is locked, disallow mapping.
4704 	 */
4705 	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4706 		ZFS_EXIT(zfsvfs);
4707 		return (SET_ERROR(EAGAIN));
4708 	}
4709 
4710 	as_rangelock(as);
4711 	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4712 	if (error != 0) {
4713 		as_rangeunlock(as);
4714 		ZFS_EXIT(zfsvfs);
4715 		return (error);
4716 	}
4717 
4718 	vn_a.vp = vp;
4719 	vn_a.offset = (u_offset_t)off;
4720 	vn_a.type = flags & MAP_TYPE;
4721 	vn_a.prot = prot;
4722 	vn_a.maxprot = maxprot;
4723 	vn_a.cred = cr;
4724 	vn_a.amp = NULL;
4725 	vn_a.flags = flags & ~MAP_TYPE;
4726 	vn_a.szc = 0;
4727 	vn_a.lgrp_mem_policy_flags = 0;
4728 
4729 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
4730 
4731 	as_rangeunlock(as);
4732 	ZFS_EXIT(zfsvfs);
4733 	return (error);
4734 }
4735 
4736 /* ARGSUSED */
4737 static int
4738 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4739     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4740     caller_context_t *ct)
4741 {
4742 	uint64_t pages = btopr(len);
4743 
4744 	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4745 	return (0);
4746 }
4747 
4748 /*
4749  * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4750  * more accurate mtime for the associated file.  Since we don't have a way of
4751  * detecting when the data was actually modified, we have to resort to
4752  * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4753  * last page is pushed.  The problem occurs when the msync() call is omitted,
4754  * which by far the most common case:
4755  *
4756  *	open()
4757  *	mmap()
4758  *	<modify memory>
4759  *	munmap()
4760  *	close()
4761  *	<time lapse>
4762  *	putpage() via fsflush
4763  *
4764  * If we wait until fsflush to come along, we can have a modification time that
4765  * is some arbitrary point in the future.  In order to prevent this in the
4766  * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4767  * torn down.
4768  */
4769 /* ARGSUSED */
4770 static int
4771 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4772     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4773     caller_context_t *ct)
4774 {
4775 	uint64_t pages = btopr(len);
4776 
4777 	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4778 	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4779 
4780 	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4781 	    vn_has_cached_data(vp))
4782 		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4783 
4784 	return (0);
4785 }
4786 
4787 /*
4788  * Free or allocate space in a file.  Currently, this function only
4789  * supports the `F_FREESP' command.  However, this command is somewhat
4790  * misnamed, as its functionality includes the ability to allocate as
4791  * well as free space.
4792  *
4793  *	IN:	vp	- vnode of file to free data in.
4794  *		cmd	- action to take (only F_FREESP supported).
4795  *		bfp	- section of file to free/alloc.
4796  *		flag	- current file open mode flags.
4797  *		offset	- current file offset.
4798  *		cr	- credentials of caller [UNUSED].
4799  *		ct	- caller context.
4800  *
4801  *	RETURN:	0 on success, error code on failure.
4802  *
4803  * Timestamps:
4804  *	vp - ctime|mtime updated
4805  */
4806 /* ARGSUSED */
4807 static int
4808 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4809     offset_t offset, cred_t *cr, caller_context_t *ct)
4810 {
4811 	znode_t		*zp = VTOZ(vp);
4812 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4813 	uint64_t	off, len;
4814 	int		error;
4815 
4816 	ZFS_ENTER(zfsvfs);
4817 	ZFS_VERIFY_ZP(zp);
4818 
4819 	if (cmd != F_FREESP) {
4820 		ZFS_EXIT(zfsvfs);
4821 		return (SET_ERROR(EINVAL));
4822 	}
4823 
4824 	/*
4825 	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4826 	 * callers might not be able to detect properly that we are read-only,
4827 	 * so check it explicitly here.
4828 	 */
4829 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
4830 		ZFS_EXIT(zfsvfs);
4831 		return (SET_ERROR(EROFS));
4832 	}
4833 
4834 	if (error = convoff(vp, bfp, 0, offset)) {
4835 		ZFS_EXIT(zfsvfs);
4836 		return (error);
4837 	}
4838 
4839 	if (bfp->l_len < 0) {
4840 		ZFS_EXIT(zfsvfs);
4841 		return (SET_ERROR(EINVAL));
4842 	}
4843 
4844 	off = bfp->l_start;
4845 	len = bfp->l_len; /* 0 means from off to end of file */
4846 
4847 	error = zfs_freesp(zp, off, len, flag, TRUE);
4848 
4849 	if (error == 0 && off == 0 && len == 0)
4850 		vnevent_truncate(ZTOV(zp), ct);
4851 
4852 	ZFS_EXIT(zfsvfs);
4853 	return (error);
4854 }
4855 
4856 /*ARGSUSED*/
4857 static int
4858 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4859 {
4860 	znode_t		*zp = VTOZ(vp);
4861 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4862 	uint32_t	gen;
4863 	uint64_t	gen64;
4864 	uint64_t	object = zp->z_id;
4865 	zfid_short_t	*zfid;
4866 	int		size, i, error;
4867 
4868 	ZFS_ENTER(zfsvfs);
4869 	ZFS_VERIFY_ZP(zp);
4870 
4871 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4872 	    &gen64, sizeof (uint64_t))) != 0) {
4873 		ZFS_EXIT(zfsvfs);
4874 		return (error);
4875 	}
4876 
4877 	gen = (uint32_t)gen64;
4878 
4879 	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4880 	if (fidp->fid_len < size) {
4881 		fidp->fid_len = size;
4882 		ZFS_EXIT(zfsvfs);
4883 		return (SET_ERROR(ENOSPC));
4884 	}
4885 
4886 	zfid = (zfid_short_t *)fidp;
4887 
4888 	zfid->zf_len = size;
4889 
4890 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4891 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4892 
4893 	/* Must have a non-zero generation number to distinguish from .zfs */
4894 	if (gen == 0)
4895 		gen = 1;
4896 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4897 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4898 
4899 	if (size == LONG_FID_LEN) {
4900 		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
4901 		zfid_long_t	*zlfid;
4902 
4903 		zlfid = (zfid_long_t *)fidp;
4904 
4905 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4906 			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4907 
4908 		/* XXX - this should be the generation number for the objset */
4909 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4910 			zlfid->zf_setgen[i] = 0;
4911 	}
4912 
4913 	ZFS_EXIT(zfsvfs);
4914 	return (0);
4915 }
4916 
4917 static int
4918 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4919     caller_context_t *ct)
4920 {
4921 	znode_t		*zp, *xzp;
4922 	zfsvfs_t	*zfsvfs;
4923 	zfs_dirlock_t	*dl;
4924 	int		error;
4925 
4926 	switch (cmd) {
4927 	case _PC_LINK_MAX:
4928 		*valp = ULONG_MAX;
4929 		return (0);
4930 
4931 	case _PC_FILESIZEBITS:
4932 		*valp = 64;
4933 		return (0);
4934 
4935 	case _PC_XATTR_EXISTS:
4936 		zp = VTOZ(vp);
4937 		zfsvfs = zp->z_zfsvfs;
4938 		ZFS_ENTER(zfsvfs);
4939 		ZFS_VERIFY_ZP(zp);
4940 		*valp = 0;
4941 		error = zfs_dirent_lock(&dl, zp, "", &xzp,
4942 		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4943 		if (error == 0) {
4944 			zfs_dirent_unlock(dl);
4945 			if (!zfs_dirempty(xzp))
4946 				*valp = 1;
4947 			VN_RELE(ZTOV(xzp));
4948 		} else if (error == ENOENT) {
4949 			/*
4950 			 * If there aren't extended attributes, it's the
4951 			 * same as having zero of them.
4952 			 */
4953 			error = 0;
4954 		}
4955 		ZFS_EXIT(zfsvfs);
4956 		return (error);
4957 
4958 	case _PC_SATTR_ENABLED:
4959 	case _PC_SATTR_EXISTS:
4960 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4961 		    (vp->v_type == VREG || vp->v_type == VDIR);
4962 		return (0);
4963 
4964 	case _PC_ACCESS_FILTERING:
4965 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4966 		    vp->v_type == VDIR;
4967 		return (0);
4968 
4969 	case _PC_ACL_ENABLED:
4970 		*valp = _ACL_ACE_ENABLED;
4971 		return (0);
4972 
4973 	case _PC_MIN_HOLE_SIZE:
4974 		*valp = (ulong_t)SPA_MINBLOCKSIZE;
4975 		return (0);
4976 
4977 	case _PC_TIMESTAMP_RESOLUTION:
4978 		/* nanosecond timestamp resolution */
4979 		*valp = 1L;
4980 		return (0);
4981 
4982 	default:
4983 		return (fs_pathconf(vp, cmd, valp, cr, ct));
4984 	}
4985 }
4986 
4987 /*ARGSUSED*/
4988 static int
4989 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4990     caller_context_t *ct)
4991 {
4992 	znode_t *zp = VTOZ(vp);
4993 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4994 	int error;
4995 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4996 
4997 	ZFS_ENTER(zfsvfs);
4998 	ZFS_VERIFY_ZP(zp);
4999 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5000 	ZFS_EXIT(zfsvfs);
5001 
5002 	return (error);
5003 }
5004 
5005 /*ARGSUSED*/
5006 static int
5007 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5008     caller_context_t *ct)
5009 {
5010 	znode_t *zp = VTOZ(vp);
5011 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5012 	int error;
5013 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5014 	zilog_t	*zilog = zfsvfs->z_log;
5015 
5016 	ZFS_ENTER(zfsvfs);
5017 	ZFS_VERIFY_ZP(zp);
5018 
5019 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5020 
5021 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5022 		zil_commit(zilog, 0);
5023 
5024 	ZFS_EXIT(zfsvfs);
5025 	return (error);
5026 }
5027 
5028 /*
5029  * The smallest read we may consider to loan out an arcbuf.
5030  * This must be a power of 2.
5031  */
5032 int zcr_blksz_min = (1 << 10);	/* 1K */
5033 /*
5034  * If set to less than the file block size, allow loaning out of an
5035  * arcbuf for a partial block read.  This must be a power of 2.
5036  */
5037 int zcr_blksz_max = (1 << 17);	/* 128K */
5038 
5039 /*ARGSUSED*/
5040 static int
5041 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5042     caller_context_t *ct)
5043 {
5044 	znode_t	*zp = VTOZ(vp);
5045 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5046 	int max_blksz = zfsvfs->z_max_blksz;
5047 	uio_t *uio = &xuio->xu_uio;
5048 	ssize_t size = uio->uio_resid;
5049 	offset_t offset = uio->uio_loffset;
5050 	int blksz;
5051 	int fullblk, i;
5052 	arc_buf_t *abuf;
5053 	ssize_t maxsize;
5054 	int preamble, postamble;
5055 
5056 	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5057 		return (SET_ERROR(EINVAL));
5058 
5059 	ZFS_ENTER(zfsvfs);
5060 	ZFS_VERIFY_ZP(zp);
5061 	switch (ioflag) {
5062 	case UIO_WRITE:
5063 		/*
5064 		 * Loan out an arc_buf for write if write size is bigger than
5065 		 * max_blksz, and the file's block size is also max_blksz.
5066 		 */
5067 		blksz = max_blksz;
5068 		if (size < blksz || zp->z_blksz != blksz) {
5069 			ZFS_EXIT(zfsvfs);
5070 			return (SET_ERROR(EINVAL));
5071 		}
5072 		/*
5073 		 * Caller requests buffers for write before knowing where the
5074 		 * write offset might be (e.g. NFS TCP write).
5075 		 */
5076 		if (offset == -1) {
5077 			preamble = 0;
5078 		} else {
5079 			preamble = P2PHASE(offset, blksz);
5080 			if (preamble) {
5081 				preamble = blksz - preamble;
5082 				size -= preamble;
5083 			}
5084 		}
5085 
5086 		postamble = P2PHASE(size, blksz);
5087 		size -= postamble;
5088 
5089 		fullblk = size / blksz;
5090 		(void) dmu_xuio_init(xuio,
5091 		    (preamble != 0) + fullblk + (postamble != 0));
5092 		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5093 		    int, postamble, int,
5094 		    (preamble != 0) + fullblk + (postamble != 0));
5095 
5096 		/*
5097 		 * Have to fix iov base/len for partial buffers.  They
5098 		 * currently represent full arc_buf's.
5099 		 */
5100 		if (preamble) {
5101 			/* data begins in the middle of the arc_buf */
5102 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5103 			    blksz);
5104 			ASSERT(abuf);
5105 			(void) dmu_xuio_add(xuio, abuf,
5106 			    blksz - preamble, preamble);
5107 		}
5108 
5109 		for (i = 0; i < fullblk; i++) {
5110 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5111 			    blksz);
5112 			ASSERT(abuf);
5113 			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
5114 		}
5115 
5116 		if (postamble) {
5117 			/* data ends in the middle of the arc_buf */
5118 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5119 			    blksz);
5120 			ASSERT(abuf);
5121 			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
5122 		}
5123 		break;
5124 	case UIO_READ:
5125 		/*
5126 		 * Loan out an arc_buf for read if the read size is larger than
5127 		 * the current file block size.  Block alignment is not
5128 		 * considered.  Partial arc_buf will be loaned out for read.
5129 		 */
5130 		blksz = zp->z_blksz;
5131 		if (blksz < zcr_blksz_min)
5132 			blksz = zcr_blksz_min;
5133 		if (blksz > zcr_blksz_max)
5134 			blksz = zcr_blksz_max;
5135 		/* avoid potential complexity of dealing with it */
5136 		if (blksz > max_blksz) {
5137 			ZFS_EXIT(zfsvfs);
5138 			return (SET_ERROR(EINVAL));
5139 		}
5140 
5141 		maxsize = zp->z_size - uio->uio_loffset;
5142 		if (size > maxsize)
5143 			size = maxsize;
5144 
5145 		if (size < blksz || vn_has_cached_data(vp)) {
5146 			ZFS_EXIT(zfsvfs);
5147 			return (SET_ERROR(EINVAL));
5148 		}
5149 		break;
5150 	default:
5151 		ZFS_EXIT(zfsvfs);
5152 		return (SET_ERROR(EINVAL));
5153 	}
5154 
5155 	uio->uio_extflg = UIO_XUIO;
5156 	XUIO_XUZC_RW(xuio) = ioflag;
5157 	ZFS_EXIT(zfsvfs);
5158 	return (0);
5159 }
5160 
5161 /*ARGSUSED*/
5162 static int
5163 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5164 {
5165 	int i;
5166 	arc_buf_t *abuf;
5167 	int ioflag = XUIO_XUZC_RW(xuio);
5168 
5169 	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5170 
5171 	i = dmu_xuio_cnt(xuio);
5172 	while (i-- > 0) {
5173 		abuf = dmu_xuio_arcbuf(xuio, i);
5174 		/*
5175 		 * if abuf == NULL, it must be a write buffer
5176 		 * that has been returned in zfs_write().
5177 		 */
5178 		if (abuf)
5179 			dmu_return_arcbuf(abuf);
5180 		ASSERT(abuf || ioflag == UIO_WRITE);
5181 	}
5182 
5183 	dmu_xuio_fini(xuio);
5184 	return (0);
5185 }
5186 
5187 /*
5188  * Predeclare these here so that the compiler assumes that
5189  * this is an "old style" function declaration that does
5190  * not include arguments => we won't get type mismatch errors
5191  * in the initializations that follow.
5192  */
5193 static int zfs_inval();
5194 static int zfs_isdir();
5195 
5196 static int
5197 zfs_inval()
5198 {
5199 	return (SET_ERROR(EINVAL));
5200 }
5201 
5202 static int
5203 zfs_isdir()
5204 {
5205 	return (SET_ERROR(EISDIR));
5206 }
5207 /*
5208  * Directory vnode operations template
5209  */
5210 vnodeops_t *zfs_dvnodeops;
5211 const fs_operation_def_t zfs_dvnodeops_template[] = {
5212 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5213 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5214 	VOPNAME_READ,		{ .error = zfs_isdir },
5215 	VOPNAME_WRITE,		{ .error = zfs_isdir },
5216 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5217 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5218 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5219 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5220 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5221 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5222 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5223 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5224 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5225 	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5226 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5227 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5228 	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5229 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5230 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5231 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5232 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5233 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5234 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5235 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5236 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5237 	NULL,			NULL
5238 };
5239 
5240 /*
5241  * Regular file vnode operations template
5242  */
5243 vnodeops_t *zfs_fvnodeops;
5244 const fs_operation_def_t zfs_fvnodeops_template[] = {
5245 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5246 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5247 	VOPNAME_READ,		{ .vop_read = zfs_read },
5248 	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5249 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5250 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5251 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5252 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5253 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5254 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5255 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5256 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5257 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5258 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5259 	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5260 	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5261 	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5262 	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5263 	VOPNAME_MAP,		{ .vop_map = zfs_map },
5264 	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5265 	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5266 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5267 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5268 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5269 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5270 	VOPNAME_REQZCBUF,	{ .vop_reqzcbuf = zfs_reqzcbuf },
5271 	VOPNAME_RETZCBUF,	{ .vop_retzcbuf = zfs_retzcbuf },
5272 	NULL,			NULL
5273 };
5274 
5275 /*
5276  * Symbolic link vnode operations template
5277  */
5278 vnodeops_t *zfs_symvnodeops;
5279 const fs_operation_def_t zfs_symvnodeops_template[] = {
5280 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5281 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5282 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5283 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5284 	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5285 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5286 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5287 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5288 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5289 	NULL,			NULL
5290 };
5291 
5292 /*
5293  * special share hidden files vnode operations template
5294  */
5295 vnodeops_t *zfs_sharevnodeops;
5296 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5297 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5298 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5299 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5300 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5301 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5302 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5303 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5304 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5305 	NULL,			NULL
5306 };
5307 
5308 /*
5309  * Extended attribute directory vnode operations template
5310  *
5311  * This template is identical to the directory vnodes
5312  * operation template except for restricted operations:
5313  *	VOP_MKDIR()
5314  *	VOP_SYMLINK()
5315  *
5316  * Note that there are other restrictions embedded in:
5317  *	zfs_create()	- restrict type to VREG
5318  *	zfs_link()	- no links into/out of attribute space
5319  *	zfs_rename()	- no moves into/out of attribute space
5320  */
5321 vnodeops_t *zfs_xdvnodeops;
5322 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5323 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5324 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5325 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5326 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5327 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5328 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5329 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5330 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5331 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5332 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5333 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5334 	VOPNAME_MKDIR,		{ .error = zfs_inval },
5335 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5336 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5337 	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5338 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5339 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5340 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5341 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5342 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5343 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5344 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5345 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5346 	NULL,			NULL
5347 };
5348 
5349 /*
5350  * Error vnode operations template
5351  */
5352 vnodeops_t *zfs_evnodeops;
5353 const fs_operation_def_t zfs_evnodeops_template[] = {
5354 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5355 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5356 	NULL,			NULL
5357 };
5358