1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/vfs.h> 35 #include <sys/vfs_opreg.h> 36 #include <sys/vnode.h> 37 #include <sys/file.h> 38 #include <sys/stat.h> 39 #include <sys/kmem.h> 40 #include <sys/taskq.h> 41 #include <sys/uio.h> 42 #include <sys/vmsystm.h> 43 #include <sys/atomic.h> 44 #include <sys/vm.h> 45 #include <vm/seg_vn.h> 46 #include <vm/pvn.h> 47 #include <vm/as.h> 48 #include <vm/kpm.h> 49 #include <vm/seg_kpm.h> 50 #include <sys/mman.h> 51 #include <sys/pathname.h> 52 #include <sys/cmn_err.h> 53 #include <sys/errno.h> 54 #include <sys/unistd.h> 55 #include <sys/zfs_dir.h> 56 #include <sys/zfs_acl.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/dmu.h> 60 #include <sys/spa.h> 61 #include <sys/txg.h> 62 #include <sys/dbuf.h> 63 #include <sys/zap.h> 64 #include <sys/dirent.h> 65 #include <sys/policy.h> 66 #include <sys/sunddi.h> 67 #include <sys/filio.h> 68 #include <sys/sid.h> 69 #include "fs/fs_subr.h" 70 #include <sys/zfs_ctldir.h> 71 #include <sys/zfs_fuid.h> 72 #include <sys/dnlc.h> 73 #include <sys/zfs_rlock.h> 74 #include <sys/extdirent.h> 75 #include <sys/kidmap.h> 76 #include <sys/cred_impl.h> 77 #include <sys/attr.h> 78 79 /* 80 * Programming rules. 81 * 82 * Each vnode op performs some logical unit of work. To do this, the ZPL must 83 * properly lock its in-core state, create a DMU transaction, do the work, 84 * record this work in the intent log (ZIL), commit the DMU transaction, 85 * and wait for the intent log to commit if it is a synchronous operation. 86 * Moreover, the vnode ops must work in both normal and log replay context. 87 * The ordering of events is important to avoid deadlocks and references 88 * to freed memory. The example below illustrates the following Big Rules: 89 * 90 * (1) A check must be made in each zfs thread for a mounted file system. 91 * This is done avoiding races using ZFS_ENTER(zfsvfs). 92 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 93 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 94 * can return EIO from the calling function. 95 * 96 * (2) VN_RELE() should always be the last thing except for zil_commit() 97 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 98 * First, if it's the last reference, the vnode/znode 99 * can be freed, so the zp may point to freed memory. Second, the last 100 * reference will call zfs_zinactive(), which may induce a lot of work -- 101 * pushing cached pages (which acquires range locks) and syncing out 102 * cached atime changes. Third, zfs_zinactive() may require a new tx, 103 * which could deadlock the system if you were already holding one. 104 * 105 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 106 * as they can span dmu_tx_assign() calls. 107 * 108 * (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign(). 109 * This is critical because we don't want to block while holding locks. 110 * Note, in particular, that if a lock is sometimes acquired before 111 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 112 * use a non-blocking assign can deadlock the system. The scenario: 113 * 114 * Thread A has grabbed a lock before calling dmu_tx_assign(). 115 * Thread B is in an already-assigned tx, and blocks for this lock. 116 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 117 * forever, because the previous txg can't quiesce until B's tx commits. 118 * 119 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 120 * then drop all locks, call dmu_tx_wait(), and try again. 121 * 122 * (5) If the operation succeeded, generate the intent log entry for it 123 * before dropping locks. This ensures that the ordering of events 124 * in the intent log matches the order in which they actually occurred. 125 * During ZIL replay the zfs_log_* functions will update the sequence 126 * number to indicate the zil transaction has replayed. 127 * 128 * (6) At the end of each vnode op, the DMU tx must always commit, 129 * regardless of whether there were any errors. 130 * 131 * (7) After dropping all locks, invoke zil_commit(zilog, seq, foid) 132 * to ensure that synchronous semantics are provided when necessary. 133 * 134 * In general, this is how things should be ordered in each vnode op: 135 * 136 * ZFS_ENTER(zfsvfs); // exit if unmounted 137 * top: 138 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 139 * rw_enter(...); // grab any other locks you need 140 * tx = dmu_tx_create(...); // get DMU tx 141 * dmu_tx_hold_*(); // hold each object you might modify 142 * error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign 143 * if (error) { 144 * rw_exit(...); // drop locks 145 * zfs_dirent_unlock(dl); // unlock directory entry 146 * VN_RELE(...); // release held vnodes 147 * if (error == ERESTART) { 148 * dmu_tx_wait(tx); 149 * dmu_tx_abort(tx); 150 * goto top; 151 * } 152 * dmu_tx_abort(tx); // abort DMU tx 153 * ZFS_EXIT(zfsvfs); // finished in zfs 154 * return (error); // really out of space 155 * } 156 * error = do_real_work(); // do whatever this VOP does 157 * if (error == 0) 158 * zfs_log_*(...); // on success, make ZIL entry 159 * dmu_tx_commit(tx); // commit DMU tx -- error or not 160 * rw_exit(...); // drop locks 161 * zfs_dirent_unlock(dl); // unlock directory entry 162 * VN_RELE(...); // release held vnodes 163 * zil_commit(zilog, seq, foid); // synchronous when necessary 164 * ZFS_EXIT(zfsvfs); // finished in zfs 165 * return (error); // done, report error 166 */ 167 168 /* ARGSUSED */ 169 static int 170 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 171 { 172 znode_t *zp = VTOZ(*vpp); 173 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 174 175 ZFS_ENTER(zfsvfs); 176 ZFS_VERIFY_ZP(zp); 177 178 if ((flag & FWRITE) && (zp->z_phys->zp_flags & ZFS_APPENDONLY) && 179 ((flag & FAPPEND) == 0)) { 180 ZFS_EXIT(zfsvfs); 181 return (EPERM); 182 } 183 184 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 185 ZTOV(zp)->v_type == VREG && 186 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 187 zp->z_phys->zp_size > 0) { 188 if (fs_vscan(*vpp, cr, 0) != 0) { 189 ZFS_EXIT(zfsvfs); 190 return (EACCES); 191 } 192 } 193 194 /* Keep a count of the synchronous opens in the znode */ 195 if (flag & (FSYNC | FDSYNC)) 196 atomic_inc_32(&zp->z_sync_cnt); 197 198 ZFS_EXIT(zfsvfs); 199 return (0); 200 } 201 202 /* ARGSUSED */ 203 static int 204 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 205 caller_context_t *ct) 206 { 207 znode_t *zp = VTOZ(vp); 208 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 209 210 ZFS_ENTER(zfsvfs); 211 ZFS_VERIFY_ZP(zp); 212 213 /* Decrement the synchronous opens in the znode */ 214 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 215 atomic_dec_32(&zp->z_sync_cnt); 216 217 /* 218 * Clean up any locks held by this process on the vp. 219 */ 220 cleanlocks(vp, ddi_get_pid(), 0); 221 cleanshares(vp, ddi_get_pid()); 222 223 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 224 ZTOV(zp)->v_type == VREG && 225 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 226 zp->z_phys->zp_size > 0) 227 VERIFY(fs_vscan(vp, cr, 1) == 0); 228 229 ZFS_EXIT(zfsvfs); 230 return (0); 231 } 232 233 /* 234 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 235 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 236 */ 237 static int 238 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 239 { 240 znode_t *zp = VTOZ(vp); 241 uint64_t noff = (uint64_t)*off; /* new offset */ 242 uint64_t file_sz; 243 int error; 244 boolean_t hole; 245 246 file_sz = zp->z_phys->zp_size; 247 if (noff >= file_sz) { 248 return (ENXIO); 249 } 250 251 if (cmd == _FIO_SEEK_HOLE) 252 hole = B_TRUE; 253 else 254 hole = B_FALSE; 255 256 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 257 258 /* end of file? */ 259 if ((error == ESRCH) || (noff > file_sz)) { 260 /* 261 * Handle the virtual hole at the end of file. 262 */ 263 if (hole) { 264 *off = file_sz; 265 return (0); 266 } 267 return (ENXIO); 268 } 269 270 if (noff < *off) 271 return (error); 272 *off = noff; 273 return (error); 274 } 275 276 /* ARGSUSED */ 277 static int 278 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 279 int *rvalp, caller_context_t *ct) 280 { 281 offset_t off; 282 int error; 283 zfsvfs_t *zfsvfs; 284 znode_t *zp; 285 286 switch (com) { 287 case _FIOFFS: 288 return (zfs_sync(vp->v_vfsp, 0, cred)); 289 290 /* 291 * The following two ioctls are used by bfu. Faking out, 292 * necessary to avoid bfu errors. 293 */ 294 case _FIOGDIO: 295 case _FIOSDIO: 296 return (0); 297 298 case _FIO_SEEK_DATA: 299 case _FIO_SEEK_HOLE: 300 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 301 return (EFAULT); 302 303 zp = VTOZ(vp); 304 zfsvfs = zp->z_zfsvfs; 305 ZFS_ENTER(zfsvfs); 306 ZFS_VERIFY_ZP(zp); 307 308 /* offset parameter is in/out */ 309 error = zfs_holey(vp, com, &off); 310 ZFS_EXIT(zfsvfs); 311 if (error) 312 return (error); 313 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 314 return (EFAULT); 315 return (0); 316 } 317 return (ENOTTY); 318 } 319 320 /* 321 * Utility functions to map and unmap a single physical page. These 322 * are used to manage the mappable copies of ZFS file data, and therefore 323 * do not update ref/mod bits. 324 */ 325 caddr_t 326 zfs_map_page(page_t *pp, enum seg_rw rw) 327 { 328 if (kpm_enable) 329 return (hat_kpm_mapin(pp, 0)); 330 ASSERT(rw == S_READ || rw == S_WRITE); 331 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 332 (caddr_t)-1)); 333 } 334 335 void 336 zfs_unmap_page(page_t *pp, caddr_t addr) 337 { 338 if (kpm_enable) { 339 hat_kpm_mapout(pp, 0, addr); 340 } else { 341 ppmapout(addr); 342 } 343 } 344 345 /* 346 * When a file is memory mapped, we must keep the IO data synchronized 347 * between the DMU cache and the memory mapped pages. What this means: 348 * 349 * On Write: If we find a memory mapped page, we write to *both* 350 * the page and the dmu buffer. 351 */ 352 static void 353 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 354 { 355 int64_t off; 356 357 off = start & PAGEOFFSET; 358 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 359 page_t *pp; 360 uint64_t nbytes = MIN(PAGESIZE - off, len); 361 362 if (pp = page_lookup(vp, start, SE_SHARED)) { 363 caddr_t va; 364 365 va = zfs_map_page(pp, S_WRITE); 366 (void) dmu_read(os, oid, start+off, nbytes, va+off); 367 zfs_unmap_page(pp, va); 368 page_unlock(pp); 369 } 370 len -= nbytes; 371 off = 0; 372 } 373 } 374 375 /* 376 * When a file is memory mapped, we must keep the IO data synchronized 377 * between the DMU cache and the memory mapped pages. What this means: 378 * 379 * On Read: We "read" preferentially from memory mapped pages, 380 * else we default from the dmu buffer. 381 * 382 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 383 * the file is memory mapped. 384 */ 385 static int 386 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 387 { 388 znode_t *zp = VTOZ(vp); 389 objset_t *os = zp->z_zfsvfs->z_os; 390 int64_t start, off; 391 int len = nbytes; 392 int error = 0; 393 394 start = uio->uio_loffset; 395 off = start & PAGEOFFSET; 396 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 397 page_t *pp; 398 uint64_t bytes = MIN(PAGESIZE - off, len); 399 400 if (pp = page_lookup(vp, start, SE_SHARED)) { 401 caddr_t va; 402 403 va = zfs_map_page(pp, S_READ); 404 error = uiomove(va + off, bytes, UIO_READ, uio); 405 zfs_unmap_page(pp, va); 406 page_unlock(pp); 407 } else { 408 error = dmu_read_uio(os, zp->z_id, uio, bytes); 409 } 410 len -= bytes; 411 off = 0; 412 if (error) 413 break; 414 } 415 return (error); 416 } 417 418 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 419 420 /* 421 * Read bytes from specified file into supplied buffer. 422 * 423 * IN: vp - vnode of file to be read from. 424 * uio - structure supplying read location, range info, 425 * and return buffer. 426 * ioflag - SYNC flags; used to provide FRSYNC semantics. 427 * cr - credentials of caller. 428 * ct - caller context 429 * 430 * OUT: uio - updated offset and range, buffer filled. 431 * 432 * RETURN: 0 if success 433 * error code if failure 434 * 435 * Side Effects: 436 * vp - atime updated if byte count > 0 437 */ 438 /* ARGSUSED */ 439 static int 440 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 441 { 442 znode_t *zp = VTOZ(vp); 443 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 444 objset_t *os; 445 ssize_t n, nbytes; 446 int error; 447 rl_t *rl; 448 449 ZFS_ENTER(zfsvfs); 450 ZFS_VERIFY_ZP(zp); 451 os = zfsvfs->z_os; 452 453 if (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) { 454 ZFS_EXIT(zfsvfs); 455 return (EACCES); 456 } 457 458 /* 459 * Validate file offset 460 */ 461 if (uio->uio_loffset < (offset_t)0) { 462 ZFS_EXIT(zfsvfs); 463 return (EINVAL); 464 } 465 466 /* 467 * Fasttrack empty reads 468 */ 469 if (uio->uio_resid == 0) { 470 ZFS_EXIT(zfsvfs); 471 return (0); 472 } 473 474 /* 475 * Check for mandatory locks 476 */ 477 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 478 if (error = chklock(vp, FREAD, 479 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 480 ZFS_EXIT(zfsvfs); 481 return (error); 482 } 483 } 484 485 /* 486 * If we're in FRSYNC mode, sync out this znode before reading it. 487 */ 488 if (ioflag & FRSYNC) 489 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 490 491 /* 492 * Lock the range against changes. 493 */ 494 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 495 496 /* 497 * If we are reading past end-of-file we can skip 498 * to the end; but we might still need to set atime. 499 */ 500 if (uio->uio_loffset >= zp->z_phys->zp_size) { 501 error = 0; 502 goto out; 503 } 504 505 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 506 n = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 507 508 while (n > 0) { 509 nbytes = MIN(n, zfs_read_chunk_size - 510 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 511 512 if (vn_has_cached_data(vp)) 513 error = mappedread(vp, nbytes, uio); 514 else 515 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 516 if (error) { 517 /* convert checksum errors into IO errors */ 518 if (error == ECKSUM) 519 error = EIO; 520 break; 521 } 522 523 n -= nbytes; 524 } 525 526 out: 527 zfs_range_unlock(rl); 528 529 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 530 ZFS_EXIT(zfsvfs); 531 return (error); 532 } 533 534 /* 535 * Write the bytes to a file. 536 * 537 * IN: vp - vnode of file to be written to. 538 * uio - structure supplying write location, range info, 539 * and data buffer. 540 * ioflag - FAPPEND flag set if in append mode. 541 * cr - credentials of caller. 542 * ct - caller context (NFS/CIFS fem monitor only) 543 * 544 * OUT: uio - updated offset and range. 545 * 546 * RETURN: 0 if success 547 * error code if failure 548 * 549 * Timestamps: 550 * vp - ctime|mtime updated if byte count > 0 551 */ 552 /* ARGSUSED */ 553 static int 554 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 555 { 556 znode_t *zp = VTOZ(vp); 557 rlim64_t limit = uio->uio_llimit; 558 ssize_t start_resid = uio->uio_resid; 559 ssize_t tx_bytes; 560 uint64_t end_size; 561 dmu_tx_t *tx; 562 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 563 zilog_t *zilog; 564 offset_t woff; 565 ssize_t n, nbytes; 566 rl_t *rl; 567 int max_blksz = zfsvfs->z_max_blksz; 568 uint64_t pflags; 569 int error; 570 571 /* 572 * Fasttrack empty write 573 */ 574 n = start_resid; 575 if (n == 0) 576 return (0); 577 578 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 579 limit = MAXOFFSET_T; 580 581 ZFS_ENTER(zfsvfs); 582 ZFS_VERIFY_ZP(zp); 583 584 /* 585 * If immutable or not appending then return EPERM 586 */ 587 pflags = zp->z_phys->zp_flags; 588 if ((pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 589 ((pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 590 (uio->uio_loffset < zp->z_phys->zp_size))) { 591 ZFS_EXIT(zfsvfs); 592 return (EPERM); 593 } 594 595 zilog = zfsvfs->z_log; 596 597 /* 598 * Pre-fault the pages to ensure slow (eg NFS) pages 599 * don't hold up txg. 600 */ 601 uio_prefaultpages(n, uio); 602 603 /* 604 * If in append mode, set the io offset pointer to eof. 605 */ 606 if (ioflag & FAPPEND) { 607 /* 608 * Range lock for a file append: 609 * The value for the start of range will be determined by 610 * zfs_range_lock() (to guarantee append semantics). 611 * If this write will cause the block size to increase, 612 * zfs_range_lock() will lock the entire file, so we must 613 * later reduce the range after we grow the block size. 614 */ 615 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 616 if (rl->r_len == UINT64_MAX) { 617 /* overlocked, zp_size can't change */ 618 woff = uio->uio_loffset = zp->z_phys->zp_size; 619 } else { 620 woff = uio->uio_loffset = rl->r_off; 621 } 622 } else { 623 woff = uio->uio_loffset; 624 /* 625 * Validate file offset 626 */ 627 if (woff < 0) { 628 ZFS_EXIT(zfsvfs); 629 return (EINVAL); 630 } 631 632 /* 633 * If we need to grow the block size then zfs_range_lock() 634 * will lock a wider range than we request here. 635 * Later after growing the block size we reduce the range. 636 */ 637 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 638 } 639 640 if (woff >= limit) { 641 zfs_range_unlock(rl); 642 ZFS_EXIT(zfsvfs); 643 return (EFBIG); 644 } 645 646 if ((woff + n) > limit || woff > (limit - n)) 647 n = limit - woff; 648 649 /* 650 * Check for mandatory locks 651 */ 652 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 653 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 654 zfs_range_unlock(rl); 655 ZFS_EXIT(zfsvfs); 656 return (error); 657 } 658 end_size = MAX(zp->z_phys->zp_size, woff + n); 659 660 /* 661 * Write the file in reasonable size chunks. Each chunk is written 662 * in a separate transaction; this keeps the intent log records small 663 * and allows us to do more fine-grained space accounting. 664 */ 665 while (n > 0) { 666 /* 667 * Start a transaction. 668 */ 669 woff = uio->uio_loffset; 670 tx = dmu_tx_create(zfsvfs->z_os); 671 dmu_tx_hold_bonus(tx, zp->z_id); 672 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 673 error = dmu_tx_assign(tx, TXG_NOWAIT); 674 if (error) { 675 if (error == ERESTART) { 676 dmu_tx_wait(tx); 677 dmu_tx_abort(tx); 678 continue; 679 } 680 dmu_tx_abort(tx); 681 break; 682 } 683 684 /* 685 * If zfs_range_lock() over-locked we grow the blocksize 686 * and then reduce the lock range. This will only happen 687 * on the first iteration since zfs_range_reduce() will 688 * shrink down r_len to the appropriate size. 689 */ 690 if (rl->r_len == UINT64_MAX) { 691 uint64_t new_blksz; 692 693 if (zp->z_blksz > max_blksz) { 694 ASSERT(!ISP2(zp->z_blksz)); 695 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 696 } else { 697 new_blksz = MIN(end_size, max_blksz); 698 } 699 zfs_grow_blocksize(zp, new_blksz, tx); 700 zfs_range_reduce(rl, woff, n); 701 } 702 703 /* 704 * XXX - should we really limit each write to z_max_blksz? 705 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 706 */ 707 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 708 709 tx_bytes = uio->uio_resid; 710 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, uio, nbytes, tx); 711 tx_bytes -= uio->uio_resid; 712 if (tx_bytes && vn_has_cached_data(vp)) 713 update_pages(vp, woff, 714 tx_bytes, zfsvfs->z_os, zp->z_id); 715 716 /* 717 * If we made no progress, we're done. If we made even 718 * partial progress, update the znode and ZIL accordingly. 719 */ 720 if (tx_bytes == 0) { 721 dmu_tx_commit(tx); 722 ASSERT(error != 0); 723 break; 724 } 725 726 /* 727 * Clear Set-UID/Set-GID bits on successful write if not 728 * privileged and at least one of the excute bits is set. 729 * 730 * It would be nice to to this after all writes have 731 * been done, but that would still expose the ISUID/ISGID 732 * to another app after the partial write is committed. 733 * 734 * Note: we don't call zfs_fuid_map_id() here because 735 * user 0 is not an ephemeral uid. 736 */ 737 mutex_enter(&zp->z_acl_lock); 738 if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) | 739 (S_IXUSR >> 6))) != 0 && 740 (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 && 741 secpolicy_vnode_setid_retain(cr, 742 (zp->z_phys->zp_mode & S_ISUID) != 0 && 743 zp->z_phys->zp_uid == 0) != 0) { 744 zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID); 745 } 746 mutex_exit(&zp->z_acl_lock); 747 748 /* 749 * Update time stamp. NOTE: This marks the bonus buffer as 750 * dirty, so we don't have to do it again for zp_size. 751 */ 752 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 753 754 /* 755 * Update the file size (zp_size) if it has changed; 756 * account for possible concurrent updates. 757 */ 758 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) 759 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 760 uio->uio_loffset); 761 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 762 dmu_tx_commit(tx); 763 764 if (error != 0) 765 break; 766 ASSERT(tx_bytes == nbytes); 767 n -= nbytes; 768 } 769 770 zfs_range_unlock(rl); 771 772 /* 773 * If we're in replay mode, or we made no progress, return error. 774 * Otherwise, it's at least a partial write, so it's successful. 775 */ 776 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 777 ZFS_EXIT(zfsvfs); 778 return (error); 779 } 780 781 if (ioflag & (FSYNC | FDSYNC)) 782 zil_commit(zilog, zp->z_last_itx, zp->z_id); 783 784 ZFS_EXIT(zfsvfs); 785 return (0); 786 } 787 788 void 789 zfs_get_done(dmu_buf_t *db, void *vzgd) 790 { 791 zgd_t *zgd = (zgd_t *)vzgd; 792 rl_t *rl = zgd->zgd_rl; 793 vnode_t *vp = ZTOV(rl->r_zp); 794 795 dmu_buf_rele(db, vzgd); 796 zfs_range_unlock(rl); 797 VN_RELE(vp); 798 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 799 kmem_free(zgd, sizeof (zgd_t)); 800 } 801 802 /* 803 * Get data to generate a TX_WRITE intent log record. 804 */ 805 int 806 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 807 { 808 zfsvfs_t *zfsvfs = arg; 809 objset_t *os = zfsvfs->z_os; 810 znode_t *zp; 811 uint64_t off = lr->lr_offset; 812 dmu_buf_t *db; 813 rl_t *rl; 814 zgd_t *zgd; 815 int dlen = lr->lr_length; /* length of user data */ 816 int error = 0; 817 818 ASSERT(zio); 819 ASSERT(dlen != 0); 820 821 /* 822 * Nothing to do if the file has been removed 823 */ 824 if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0) 825 return (ENOENT); 826 if (zp->z_unlinked) { 827 VN_RELE(ZTOV(zp)); 828 return (ENOENT); 829 } 830 831 /* 832 * Write records come in two flavors: immediate and indirect. 833 * For small writes it's cheaper to store the data with the 834 * log record (immediate); for large writes it's cheaper to 835 * sync the data and get a pointer to it (indirect) so that 836 * we don't have to write the data twice. 837 */ 838 if (buf != NULL) { /* immediate write */ 839 rl = zfs_range_lock(zp, off, dlen, RL_READER); 840 /* test for truncation needs to be done while range locked */ 841 if (off >= zp->z_phys->zp_size) { 842 error = ENOENT; 843 goto out; 844 } 845 VERIFY(0 == dmu_read(os, lr->lr_foid, off, dlen, buf)); 846 } else { /* indirect write */ 847 uint64_t boff; /* block starting offset */ 848 849 /* 850 * Have to lock the whole block to ensure when it's 851 * written out and it's checksum is being calculated 852 * that no one can change the data. We need to re-check 853 * blocksize after we get the lock in case it's changed! 854 */ 855 for (;;) { 856 if (ISP2(zp->z_blksz)) { 857 boff = P2ALIGN_TYPED(off, zp->z_blksz, 858 uint64_t); 859 } else { 860 boff = 0; 861 } 862 dlen = zp->z_blksz; 863 rl = zfs_range_lock(zp, boff, dlen, RL_READER); 864 if (zp->z_blksz == dlen) 865 break; 866 zfs_range_unlock(rl); 867 } 868 /* test for truncation needs to be done while range locked */ 869 if (off >= zp->z_phys->zp_size) { 870 error = ENOENT; 871 goto out; 872 } 873 zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP); 874 zgd->zgd_rl = rl; 875 zgd->zgd_zilog = zfsvfs->z_log; 876 zgd->zgd_bp = &lr->lr_blkptr; 877 VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, boff, zgd, &db)); 878 ASSERT(boff == db->db_offset); 879 lr->lr_blkoff = off - boff; 880 error = dmu_sync(zio, db, &lr->lr_blkptr, 881 lr->lr_common.lrc_txg, zfs_get_done, zgd); 882 ASSERT((error && error != EINPROGRESS) || 883 lr->lr_length <= zp->z_blksz); 884 if (error == 0) 885 zil_add_block(zfsvfs->z_log, &lr->lr_blkptr); 886 /* 887 * If we get EINPROGRESS, then we need to wait for a 888 * write IO initiated by dmu_sync() to complete before 889 * we can release this dbuf. We will finish everything 890 * up in the zfs_get_done() callback. 891 */ 892 if (error == EINPROGRESS) 893 return (0); 894 dmu_buf_rele(db, zgd); 895 kmem_free(zgd, sizeof (zgd_t)); 896 } 897 out: 898 zfs_range_unlock(rl); 899 VN_RELE(ZTOV(zp)); 900 return (error); 901 } 902 903 /*ARGSUSED*/ 904 static int 905 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 906 caller_context_t *ct) 907 { 908 znode_t *zp = VTOZ(vp); 909 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 910 int error; 911 912 ZFS_ENTER(zfsvfs); 913 ZFS_VERIFY_ZP(zp); 914 915 if (flag & V_ACE_MASK) 916 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 917 else 918 error = zfs_zaccess_rwx(zp, mode, flag, cr); 919 920 ZFS_EXIT(zfsvfs); 921 return (error); 922 } 923 924 /* 925 * Lookup an entry in a directory, or an extended attribute directory. 926 * If it exists, return a held vnode reference for it. 927 * 928 * IN: dvp - vnode of directory to search. 929 * nm - name of entry to lookup. 930 * pnp - full pathname to lookup [UNUSED]. 931 * flags - LOOKUP_XATTR set if looking for an attribute. 932 * rdir - root directory vnode [UNUSED]. 933 * cr - credentials of caller. 934 * ct - caller context 935 * direntflags - directory lookup flags 936 * realpnp - returned pathname. 937 * 938 * OUT: vpp - vnode of located entry, NULL if not found. 939 * 940 * RETURN: 0 if success 941 * error code if failure 942 * 943 * Timestamps: 944 * NA 945 */ 946 /* ARGSUSED */ 947 static int 948 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 949 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 950 int *direntflags, pathname_t *realpnp) 951 { 952 znode_t *zdp = VTOZ(dvp); 953 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 954 int error; 955 956 ZFS_ENTER(zfsvfs); 957 ZFS_VERIFY_ZP(zdp); 958 959 *vpp = NULL; 960 961 if (flags & LOOKUP_XATTR) { 962 /* 963 * If the xattr property is off, refuse the lookup request. 964 */ 965 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 966 ZFS_EXIT(zfsvfs); 967 return (EINVAL); 968 } 969 970 /* 971 * We don't allow recursive attributes.. 972 * Maybe someday we will. 973 */ 974 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 975 ZFS_EXIT(zfsvfs); 976 return (EINVAL); 977 } 978 979 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 980 ZFS_EXIT(zfsvfs); 981 return (error); 982 } 983 984 /* 985 * Do we have permission to get into attribute directory? 986 */ 987 988 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 989 B_FALSE, cr)) { 990 VN_RELE(*vpp); 991 *vpp = NULL; 992 } 993 994 ZFS_EXIT(zfsvfs); 995 return (error); 996 } 997 998 if (dvp->v_type != VDIR) { 999 ZFS_EXIT(zfsvfs); 1000 return (ENOTDIR); 1001 } 1002 1003 /* 1004 * Check accessibility of directory. 1005 */ 1006 1007 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1008 ZFS_EXIT(zfsvfs); 1009 return (error); 1010 } 1011 1012 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1013 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1014 ZFS_EXIT(zfsvfs); 1015 return (EILSEQ); 1016 } 1017 1018 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1019 if (error == 0) { 1020 /* 1021 * Convert device special files 1022 */ 1023 if (IS_DEVVP(*vpp)) { 1024 vnode_t *svp; 1025 1026 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1027 VN_RELE(*vpp); 1028 if (svp == NULL) 1029 error = ENOSYS; 1030 else 1031 *vpp = svp; 1032 } 1033 } 1034 1035 ZFS_EXIT(zfsvfs); 1036 return (error); 1037 } 1038 1039 /* 1040 * Attempt to create a new entry in a directory. If the entry 1041 * already exists, truncate the file if permissible, else return 1042 * an error. Return the vp of the created or trunc'd file. 1043 * 1044 * IN: dvp - vnode of directory to put new file entry in. 1045 * name - name of new file entry. 1046 * vap - attributes of new file. 1047 * excl - flag indicating exclusive or non-exclusive mode. 1048 * mode - mode to open file with. 1049 * cr - credentials of caller. 1050 * flag - large file flag [UNUSED]. 1051 * ct - caller context 1052 * vsecp - ACL to be set 1053 * 1054 * OUT: vpp - vnode of created or trunc'd entry. 1055 * 1056 * RETURN: 0 if success 1057 * error code if failure 1058 * 1059 * Timestamps: 1060 * dvp - ctime|mtime updated if new entry created 1061 * vp - ctime|mtime always, atime if new 1062 */ 1063 1064 /* ARGSUSED */ 1065 static int 1066 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1067 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1068 vsecattr_t *vsecp) 1069 { 1070 znode_t *zp, *dzp = VTOZ(dvp); 1071 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1072 zilog_t *zilog; 1073 objset_t *os; 1074 zfs_dirlock_t *dl; 1075 dmu_tx_t *tx; 1076 int error; 1077 zfs_acl_t *aclp = NULL; 1078 zfs_fuid_info_t *fuidp = NULL; 1079 ksid_t *ksid; 1080 uid_t uid; 1081 gid_t gid = crgetgid(cr); 1082 1083 /* 1084 * If we have an ephemeral id, ACL, or XVATTR then 1085 * make sure file system is at proper version 1086 */ 1087 1088 ksid = crgetsid(cr, KSID_OWNER); 1089 if (ksid) 1090 uid = ksid_getid(ksid); 1091 else 1092 uid = crgetuid(cr); 1093 1094 if (zfsvfs->z_use_fuids == B_FALSE && 1095 (vsecp || (vap->va_mask & AT_XVATTR) || 1096 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1097 return (EINVAL); 1098 1099 ZFS_ENTER(zfsvfs); 1100 ZFS_VERIFY_ZP(dzp); 1101 os = zfsvfs->z_os; 1102 zilog = zfsvfs->z_log; 1103 1104 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1105 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1106 ZFS_EXIT(zfsvfs); 1107 return (EILSEQ); 1108 } 1109 1110 if (vap->va_mask & AT_XVATTR) { 1111 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1112 crgetuid(cr), cr, vap->va_type)) != 0) { 1113 ZFS_EXIT(zfsvfs); 1114 return (error); 1115 } 1116 } 1117 top: 1118 *vpp = NULL; 1119 1120 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1121 vap->va_mode &= ~VSVTX; 1122 1123 if (*name == '\0') { 1124 /* 1125 * Null component name refers to the directory itself. 1126 */ 1127 VN_HOLD(dvp); 1128 zp = dzp; 1129 dl = NULL; 1130 error = 0; 1131 } else { 1132 /* possible VN_HOLD(zp) */ 1133 int zflg = 0; 1134 1135 if (flag & FIGNORECASE) 1136 zflg |= ZCILOOK; 1137 1138 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1139 NULL, NULL); 1140 if (error) { 1141 if (strcmp(name, "..") == 0) 1142 error = EISDIR; 1143 ZFS_EXIT(zfsvfs); 1144 if (aclp) 1145 zfs_acl_free(aclp); 1146 return (error); 1147 } 1148 } 1149 if (vsecp && aclp == NULL) { 1150 error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, &aclp); 1151 if (error) { 1152 ZFS_EXIT(zfsvfs); 1153 if (dl) 1154 zfs_dirent_unlock(dl); 1155 return (error); 1156 } 1157 } 1158 1159 if (zp == NULL) { 1160 uint64_t txtype; 1161 1162 /* 1163 * Create a new file object and update the directory 1164 * to reference it. 1165 */ 1166 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1167 goto out; 1168 } 1169 1170 /* 1171 * We only support the creation of regular files in 1172 * extended attribute directories. 1173 */ 1174 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1175 (vap->va_type != VREG)) { 1176 error = EINVAL; 1177 goto out; 1178 } 1179 1180 tx = dmu_tx_create(os); 1181 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1182 if ((aclp && aclp->z_has_fuids) || IS_EPHEMERAL(uid) || 1183 IS_EPHEMERAL(gid)) { 1184 if (zfsvfs->z_fuid_obj == 0) { 1185 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1186 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1187 FUID_SIZE_ESTIMATE(zfsvfs)); 1188 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 1189 FALSE, NULL); 1190 } else { 1191 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 1192 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 1193 FUID_SIZE_ESTIMATE(zfsvfs)); 1194 } 1195 } 1196 dmu_tx_hold_bonus(tx, dzp->z_id); 1197 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1198 if ((dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) || aclp) { 1199 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1200 0, SPA_MAXBLOCKSIZE); 1201 } 1202 error = dmu_tx_assign(tx, TXG_NOWAIT); 1203 if (error) { 1204 zfs_dirent_unlock(dl); 1205 if (error == ERESTART) { 1206 dmu_tx_wait(tx); 1207 dmu_tx_abort(tx); 1208 goto top; 1209 } 1210 dmu_tx_abort(tx); 1211 ZFS_EXIT(zfsvfs); 1212 if (aclp) 1213 zfs_acl_free(aclp); 1214 return (error); 1215 } 1216 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, aclp, &fuidp); 1217 (void) zfs_link_create(dl, zp, tx, ZNEW); 1218 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1219 if (flag & FIGNORECASE) 1220 txtype |= TX_CI; 1221 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1222 vsecp, fuidp, vap); 1223 if (fuidp) 1224 zfs_fuid_info_free(fuidp); 1225 dmu_tx_commit(tx); 1226 } else { 1227 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1228 1229 /* 1230 * A directory entry already exists for this name. 1231 */ 1232 /* 1233 * Can't truncate an existing file if in exclusive mode. 1234 */ 1235 if (excl == EXCL) { 1236 error = EEXIST; 1237 goto out; 1238 } 1239 /* 1240 * Can't open a directory for writing. 1241 */ 1242 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1243 error = EISDIR; 1244 goto out; 1245 } 1246 /* 1247 * Verify requested access to file. 1248 */ 1249 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1250 goto out; 1251 } 1252 1253 mutex_enter(&dzp->z_lock); 1254 dzp->z_seq++; 1255 mutex_exit(&dzp->z_lock); 1256 1257 /* 1258 * Truncate regular files if requested. 1259 */ 1260 if ((ZTOV(zp)->v_type == VREG) && 1261 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1262 /* we can't hold any locks when calling zfs_freesp() */ 1263 zfs_dirent_unlock(dl); 1264 dl = NULL; 1265 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1266 if (error == 0) { 1267 vnevent_create(ZTOV(zp), ct); 1268 } 1269 } 1270 } 1271 out: 1272 1273 if (dl) 1274 zfs_dirent_unlock(dl); 1275 1276 if (error) { 1277 if (zp) 1278 VN_RELE(ZTOV(zp)); 1279 } else { 1280 *vpp = ZTOV(zp); 1281 /* 1282 * If vnode is for a device return a specfs vnode instead. 1283 */ 1284 if (IS_DEVVP(*vpp)) { 1285 struct vnode *svp; 1286 1287 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1288 VN_RELE(*vpp); 1289 if (svp == NULL) { 1290 error = ENOSYS; 1291 } 1292 *vpp = svp; 1293 } 1294 } 1295 if (aclp) 1296 zfs_acl_free(aclp); 1297 1298 ZFS_EXIT(zfsvfs); 1299 return (error); 1300 } 1301 1302 /* 1303 * Remove an entry from a directory. 1304 * 1305 * IN: dvp - vnode of directory to remove entry from. 1306 * name - name of entry to remove. 1307 * cr - credentials of caller. 1308 * ct - caller context 1309 * flags - case flags 1310 * 1311 * RETURN: 0 if success 1312 * error code if failure 1313 * 1314 * Timestamps: 1315 * dvp - ctime|mtime 1316 * vp - ctime (if nlink > 0) 1317 */ 1318 /*ARGSUSED*/ 1319 static int 1320 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1321 int flags) 1322 { 1323 znode_t *zp, *dzp = VTOZ(dvp); 1324 znode_t *xzp = NULL; 1325 vnode_t *vp; 1326 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1327 zilog_t *zilog; 1328 uint64_t acl_obj, xattr_obj; 1329 zfs_dirlock_t *dl; 1330 dmu_tx_t *tx; 1331 boolean_t may_delete_now, delete_now = FALSE; 1332 boolean_t unlinked, toobig = FALSE; 1333 uint64_t txtype; 1334 pathname_t *realnmp = NULL; 1335 pathname_t realnm; 1336 int error; 1337 int zflg = ZEXISTS; 1338 1339 ZFS_ENTER(zfsvfs); 1340 ZFS_VERIFY_ZP(dzp); 1341 zilog = zfsvfs->z_log; 1342 1343 if (flags & FIGNORECASE) { 1344 zflg |= ZCILOOK; 1345 pn_alloc(&realnm); 1346 realnmp = &realnm; 1347 } 1348 1349 top: 1350 /* 1351 * Attempt to lock directory; fail if entry doesn't exist. 1352 */ 1353 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1354 NULL, realnmp)) { 1355 if (realnmp) 1356 pn_free(realnmp); 1357 ZFS_EXIT(zfsvfs); 1358 return (error); 1359 } 1360 1361 vp = ZTOV(zp); 1362 1363 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1364 goto out; 1365 } 1366 1367 /* 1368 * Need to use rmdir for removing directories. 1369 */ 1370 if (vp->v_type == VDIR) { 1371 error = EPERM; 1372 goto out; 1373 } 1374 1375 vnevent_remove(vp, dvp, name, ct); 1376 1377 if (realnmp) 1378 dnlc_remove(dvp, realnmp->pn_buf); 1379 else 1380 dnlc_remove(dvp, name); 1381 1382 mutex_enter(&vp->v_lock); 1383 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1384 mutex_exit(&vp->v_lock); 1385 1386 /* 1387 * We may delete the znode now, or we may put it in the unlinked set; 1388 * it depends on whether we're the last link, and on whether there are 1389 * other holds on the vnode. So we dmu_tx_hold() the right things to 1390 * allow for either case. 1391 */ 1392 tx = dmu_tx_create(zfsvfs->z_os); 1393 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1394 dmu_tx_hold_bonus(tx, zp->z_id); 1395 if (may_delete_now) { 1396 toobig = 1397 zp->z_phys->zp_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1398 /* if the file is too big, only hold_free a token amount */ 1399 dmu_tx_hold_free(tx, zp->z_id, 0, 1400 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1401 } 1402 1403 /* are there any extended attributes? */ 1404 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1405 /* XXX - do we need this if we are deleting? */ 1406 dmu_tx_hold_bonus(tx, xattr_obj); 1407 } 1408 1409 /* are there any additional acls */ 1410 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1411 may_delete_now) 1412 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1413 1414 /* charge as an update -- would be nice not to charge at all */ 1415 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1416 1417 error = dmu_tx_assign(tx, TXG_NOWAIT); 1418 if (error) { 1419 zfs_dirent_unlock(dl); 1420 VN_RELE(vp); 1421 if (error == ERESTART) { 1422 dmu_tx_wait(tx); 1423 dmu_tx_abort(tx); 1424 goto top; 1425 } 1426 if (realnmp) 1427 pn_free(realnmp); 1428 dmu_tx_abort(tx); 1429 ZFS_EXIT(zfsvfs); 1430 return (error); 1431 } 1432 1433 /* 1434 * Remove the directory entry. 1435 */ 1436 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1437 1438 if (error) { 1439 dmu_tx_commit(tx); 1440 goto out; 1441 } 1442 1443 if (unlinked) { 1444 mutex_enter(&vp->v_lock); 1445 delete_now = may_delete_now && !toobig && 1446 vp->v_count == 1 && !vn_has_cached_data(vp) && 1447 zp->z_phys->zp_xattr == xattr_obj && 1448 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1449 mutex_exit(&vp->v_lock); 1450 } 1451 1452 if (delete_now) { 1453 if (zp->z_phys->zp_xattr) { 1454 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1455 ASSERT3U(error, ==, 0); 1456 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1457 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1458 mutex_enter(&xzp->z_lock); 1459 xzp->z_unlinked = 1; 1460 xzp->z_phys->zp_links = 0; 1461 mutex_exit(&xzp->z_lock); 1462 zfs_unlinked_add(xzp, tx); 1463 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1464 } 1465 mutex_enter(&zp->z_lock); 1466 mutex_enter(&vp->v_lock); 1467 vp->v_count--; 1468 ASSERT3U(vp->v_count, ==, 0); 1469 mutex_exit(&vp->v_lock); 1470 mutex_exit(&zp->z_lock); 1471 zfs_znode_delete(zp, tx); 1472 } else if (unlinked) { 1473 zfs_unlinked_add(zp, tx); 1474 } 1475 1476 txtype = TX_REMOVE; 1477 if (flags & FIGNORECASE) 1478 txtype |= TX_CI; 1479 zfs_log_remove(zilog, tx, txtype, dzp, name); 1480 1481 dmu_tx_commit(tx); 1482 out: 1483 if (realnmp) 1484 pn_free(realnmp); 1485 1486 zfs_dirent_unlock(dl); 1487 1488 if (!delete_now) { 1489 VN_RELE(vp); 1490 } else if (xzp) { 1491 /* this rele is delayed to prevent nesting transactions */ 1492 VN_RELE(ZTOV(xzp)); 1493 } 1494 1495 ZFS_EXIT(zfsvfs); 1496 return (error); 1497 } 1498 1499 /* 1500 * Create a new directory and insert it into dvp using the name 1501 * provided. Return a pointer to the inserted directory. 1502 * 1503 * IN: dvp - vnode of directory to add subdir to. 1504 * dirname - name of new directory. 1505 * vap - attributes of new directory. 1506 * cr - credentials of caller. 1507 * ct - caller context 1508 * vsecp - ACL to be set 1509 * 1510 * OUT: vpp - vnode of created directory. 1511 * 1512 * RETURN: 0 if success 1513 * error code if failure 1514 * 1515 * Timestamps: 1516 * dvp - ctime|mtime updated 1517 * vp - ctime|mtime|atime updated 1518 */ 1519 /*ARGSUSED*/ 1520 static int 1521 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1522 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1523 { 1524 znode_t *zp, *dzp = VTOZ(dvp); 1525 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1526 zilog_t *zilog; 1527 zfs_dirlock_t *dl; 1528 uint64_t txtype; 1529 dmu_tx_t *tx; 1530 int error; 1531 zfs_acl_t *aclp = NULL; 1532 zfs_fuid_info_t *fuidp = NULL; 1533 int zf = ZNEW; 1534 ksid_t *ksid; 1535 uid_t uid; 1536 gid_t gid = crgetgid(cr); 1537 1538 ASSERT(vap->va_type == VDIR); 1539 1540 /* 1541 * If we have an ephemeral id, ACL, or XVATTR then 1542 * make sure file system is at proper version 1543 */ 1544 1545 ksid = crgetsid(cr, KSID_OWNER); 1546 if (ksid) 1547 uid = ksid_getid(ksid); 1548 else 1549 uid = crgetuid(cr); 1550 if (zfsvfs->z_use_fuids == B_FALSE && 1551 (vsecp || (vap->va_mask & AT_XVATTR) || 1552 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1553 return (EINVAL); 1554 1555 ZFS_ENTER(zfsvfs); 1556 ZFS_VERIFY_ZP(dzp); 1557 zilog = zfsvfs->z_log; 1558 1559 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1560 ZFS_EXIT(zfsvfs); 1561 return (EINVAL); 1562 } 1563 1564 if (zfsvfs->z_utf8 && u8_validate(dirname, 1565 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1566 ZFS_EXIT(zfsvfs); 1567 return (EILSEQ); 1568 } 1569 if (flags & FIGNORECASE) 1570 zf |= ZCILOOK; 1571 1572 if (vap->va_mask & AT_XVATTR) 1573 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1574 crgetuid(cr), cr, vap->va_type)) != 0) { 1575 ZFS_EXIT(zfsvfs); 1576 return (error); 1577 } 1578 1579 /* 1580 * First make sure the new directory doesn't exist. 1581 */ 1582 top: 1583 *vpp = NULL; 1584 1585 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1586 NULL, NULL)) { 1587 ZFS_EXIT(zfsvfs); 1588 return (error); 1589 } 1590 1591 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1592 zfs_dirent_unlock(dl); 1593 ZFS_EXIT(zfsvfs); 1594 return (error); 1595 } 1596 1597 if (vsecp && aclp == NULL) { 1598 error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, &aclp); 1599 if (error) { 1600 zfs_dirent_unlock(dl); 1601 ZFS_EXIT(zfsvfs); 1602 return (error); 1603 } 1604 } 1605 /* 1606 * Add a new entry to the directory. 1607 */ 1608 tx = dmu_tx_create(zfsvfs->z_os); 1609 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1610 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1611 if ((aclp && aclp->z_has_fuids) || IS_EPHEMERAL(uid) || 1612 IS_EPHEMERAL(gid)) { 1613 if (zfsvfs->z_fuid_obj == 0) { 1614 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1615 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1616 FUID_SIZE_ESTIMATE(zfsvfs)); 1617 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 1618 } else { 1619 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 1620 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 1621 FUID_SIZE_ESTIMATE(zfsvfs)); 1622 } 1623 } 1624 if ((dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) || aclp) 1625 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1626 0, SPA_MAXBLOCKSIZE); 1627 error = dmu_tx_assign(tx, TXG_NOWAIT); 1628 if (error) { 1629 zfs_dirent_unlock(dl); 1630 if (error == ERESTART) { 1631 dmu_tx_wait(tx); 1632 dmu_tx_abort(tx); 1633 goto top; 1634 } 1635 dmu_tx_abort(tx); 1636 ZFS_EXIT(zfsvfs); 1637 if (aclp) 1638 zfs_acl_free(aclp); 1639 return (error); 1640 } 1641 1642 /* 1643 * Create new node. 1644 */ 1645 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, aclp, &fuidp); 1646 1647 if (aclp) 1648 zfs_acl_free(aclp); 1649 1650 /* 1651 * Now put new name in parent dir. 1652 */ 1653 (void) zfs_link_create(dl, zp, tx, ZNEW); 1654 1655 *vpp = ZTOV(zp); 1656 1657 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1658 if (flags & FIGNORECASE) 1659 txtype |= TX_CI; 1660 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, fuidp, vap); 1661 1662 if (fuidp) 1663 zfs_fuid_info_free(fuidp); 1664 dmu_tx_commit(tx); 1665 1666 zfs_dirent_unlock(dl); 1667 1668 ZFS_EXIT(zfsvfs); 1669 return (0); 1670 } 1671 1672 /* 1673 * Remove a directory subdir entry. If the current working 1674 * directory is the same as the subdir to be removed, the 1675 * remove will fail. 1676 * 1677 * IN: dvp - vnode of directory to remove from. 1678 * name - name of directory to be removed. 1679 * cwd - vnode of current working directory. 1680 * cr - credentials of caller. 1681 * ct - caller context 1682 * flags - case flags 1683 * 1684 * RETURN: 0 if success 1685 * error code if failure 1686 * 1687 * Timestamps: 1688 * dvp - ctime|mtime updated 1689 */ 1690 /*ARGSUSED*/ 1691 static int 1692 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1693 caller_context_t *ct, int flags) 1694 { 1695 znode_t *dzp = VTOZ(dvp); 1696 znode_t *zp; 1697 vnode_t *vp; 1698 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1699 zilog_t *zilog; 1700 zfs_dirlock_t *dl; 1701 dmu_tx_t *tx; 1702 int error; 1703 int zflg = ZEXISTS; 1704 1705 ZFS_ENTER(zfsvfs); 1706 ZFS_VERIFY_ZP(dzp); 1707 zilog = zfsvfs->z_log; 1708 1709 if (flags & FIGNORECASE) 1710 zflg |= ZCILOOK; 1711 top: 1712 zp = NULL; 1713 1714 /* 1715 * Attempt to lock directory; fail if entry doesn't exist. 1716 */ 1717 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1718 NULL, NULL)) { 1719 ZFS_EXIT(zfsvfs); 1720 return (error); 1721 } 1722 1723 vp = ZTOV(zp); 1724 1725 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1726 goto out; 1727 } 1728 1729 if (vp->v_type != VDIR) { 1730 error = ENOTDIR; 1731 goto out; 1732 } 1733 1734 if (vp == cwd) { 1735 error = EINVAL; 1736 goto out; 1737 } 1738 1739 vnevent_rmdir(vp, dvp, name, ct); 1740 1741 /* 1742 * Grab a lock on the directory to make sure that noone is 1743 * trying to add (or lookup) entries while we are removing it. 1744 */ 1745 rw_enter(&zp->z_name_lock, RW_WRITER); 1746 1747 /* 1748 * Grab a lock on the parent pointer to make sure we play well 1749 * with the treewalk and directory rename code. 1750 */ 1751 rw_enter(&zp->z_parent_lock, RW_WRITER); 1752 1753 tx = dmu_tx_create(zfsvfs->z_os); 1754 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1755 dmu_tx_hold_bonus(tx, zp->z_id); 1756 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1757 error = dmu_tx_assign(tx, TXG_NOWAIT); 1758 if (error) { 1759 rw_exit(&zp->z_parent_lock); 1760 rw_exit(&zp->z_name_lock); 1761 zfs_dirent_unlock(dl); 1762 VN_RELE(vp); 1763 if (error == ERESTART) { 1764 dmu_tx_wait(tx); 1765 dmu_tx_abort(tx); 1766 goto top; 1767 } 1768 dmu_tx_abort(tx); 1769 ZFS_EXIT(zfsvfs); 1770 return (error); 1771 } 1772 1773 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 1774 1775 if (error == 0) { 1776 uint64_t txtype = TX_RMDIR; 1777 if (flags & FIGNORECASE) 1778 txtype |= TX_CI; 1779 zfs_log_remove(zilog, tx, txtype, dzp, name); 1780 } 1781 1782 dmu_tx_commit(tx); 1783 1784 rw_exit(&zp->z_parent_lock); 1785 rw_exit(&zp->z_name_lock); 1786 out: 1787 zfs_dirent_unlock(dl); 1788 1789 VN_RELE(vp); 1790 1791 ZFS_EXIT(zfsvfs); 1792 return (error); 1793 } 1794 1795 /* 1796 * Read as many directory entries as will fit into the provided 1797 * buffer from the given directory cursor position (specified in 1798 * the uio structure. 1799 * 1800 * IN: vp - vnode of directory to read. 1801 * uio - structure supplying read location, range info, 1802 * and return buffer. 1803 * cr - credentials of caller. 1804 * ct - caller context 1805 * flags - case flags 1806 * 1807 * OUT: uio - updated offset and range, buffer filled. 1808 * eofp - set to true if end-of-file detected. 1809 * 1810 * RETURN: 0 if success 1811 * error code if failure 1812 * 1813 * Timestamps: 1814 * vp - atime updated 1815 * 1816 * Note that the low 4 bits of the cookie returned by zap is always zero. 1817 * This allows us to use the low range for "special" directory entries: 1818 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1819 * we use the offset 2 for the '.zfs' directory. 1820 */ 1821 /* ARGSUSED */ 1822 static int 1823 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 1824 caller_context_t *ct, int flags) 1825 { 1826 znode_t *zp = VTOZ(vp); 1827 iovec_t *iovp; 1828 edirent_t *eodp; 1829 dirent64_t *odp; 1830 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1831 objset_t *os; 1832 caddr_t outbuf; 1833 size_t bufsize; 1834 zap_cursor_t zc; 1835 zap_attribute_t zap; 1836 uint_t bytes_wanted; 1837 uint64_t offset; /* must be unsigned; checks for < 1 */ 1838 int local_eof; 1839 int outcount; 1840 int error; 1841 uint8_t prefetch; 1842 boolean_t check_sysattrs; 1843 1844 ZFS_ENTER(zfsvfs); 1845 ZFS_VERIFY_ZP(zp); 1846 1847 /* 1848 * If we are not given an eof variable, 1849 * use a local one. 1850 */ 1851 if (eofp == NULL) 1852 eofp = &local_eof; 1853 1854 /* 1855 * Check for valid iov_len. 1856 */ 1857 if (uio->uio_iov->iov_len <= 0) { 1858 ZFS_EXIT(zfsvfs); 1859 return (EINVAL); 1860 } 1861 1862 /* 1863 * Quit if directory has been removed (posix) 1864 */ 1865 if ((*eofp = zp->z_unlinked) != 0) { 1866 ZFS_EXIT(zfsvfs); 1867 return (0); 1868 } 1869 1870 error = 0; 1871 os = zfsvfs->z_os; 1872 offset = uio->uio_loffset; 1873 prefetch = zp->z_zn_prefetch; 1874 1875 /* 1876 * Initialize the iterator cursor. 1877 */ 1878 if (offset <= 3) { 1879 /* 1880 * Start iteration from the beginning of the directory. 1881 */ 1882 zap_cursor_init(&zc, os, zp->z_id); 1883 } else { 1884 /* 1885 * The offset is a serialized cursor. 1886 */ 1887 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1888 } 1889 1890 /* 1891 * Get space to change directory entries into fs independent format. 1892 */ 1893 iovp = uio->uio_iov; 1894 bytes_wanted = iovp->iov_len; 1895 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 1896 bufsize = bytes_wanted; 1897 outbuf = kmem_alloc(bufsize, KM_SLEEP); 1898 odp = (struct dirent64 *)outbuf; 1899 } else { 1900 bufsize = bytes_wanted; 1901 odp = (struct dirent64 *)iovp->iov_base; 1902 } 1903 eodp = (struct edirent *)odp; 1904 1905 /* 1906 * If this VFS supports the system attribute view interface; and 1907 * we're looking at an extended attribute directory; and we care 1908 * about normalization conflicts on this vfs; then we must check 1909 * for normalization conflicts with the sysattr name space. 1910 */ 1911 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 1912 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 1913 (flags & V_RDDIR_ENTFLAGS); 1914 1915 /* 1916 * Transform to file-system independent format 1917 */ 1918 outcount = 0; 1919 while (outcount < bytes_wanted) { 1920 ino64_t objnum; 1921 ushort_t reclen; 1922 off64_t *next; 1923 1924 /* 1925 * Special case `.', `..', and `.zfs'. 1926 */ 1927 if (offset == 0) { 1928 (void) strcpy(zap.za_name, "."); 1929 zap.za_normalization_conflict = 0; 1930 objnum = zp->z_id; 1931 } else if (offset == 1) { 1932 (void) strcpy(zap.za_name, ".."); 1933 zap.za_normalization_conflict = 0; 1934 objnum = zp->z_phys->zp_parent; 1935 } else if (offset == 2 && zfs_show_ctldir(zp)) { 1936 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 1937 zap.za_normalization_conflict = 0; 1938 objnum = ZFSCTL_INO_ROOT; 1939 } else { 1940 /* 1941 * Grab next entry. 1942 */ 1943 if (error = zap_cursor_retrieve(&zc, &zap)) { 1944 if ((*eofp = (error == ENOENT)) != 0) 1945 break; 1946 else 1947 goto update; 1948 } 1949 1950 if (zap.za_integer_length != 8 || 1951 zap.za_num_integers != 1) { 1952 cmn_err(CE_WARN, "zap_readdir: bad directory " 1953 "entry, obj = %lld, offset = %lld\n", 1954 (u_longlong_t)zp->z_id, 1955 (u_longlong_t)offset); 1956 error = ENXIO; 1957 goto update; 1958 } 1959 1960 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 1961 /* 1962 * MacOS X can extract the object type here such as: 1963 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 1964 */ 1965 1966 if (check_sysattrs && !zap.za_normalization_conflict) { 1967 zap.za_normalization_conflict = 1968 xattr_sysattr_casechk(zap.za_name); 1969 } 1970 } 1971 1972 if (flags & V_RDDIR_ENTFLAGS) 1973 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 1974 else 1975 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 1976 1977 /* 1978 * Will this entry fit in the buffer? 1979 */ 1980 if (outcount + reclen > bufsize) { 1981 /* 1982 * Did we manage to fit anything in the buffer? 1983 */ 1984 if (!outcount) { 1985 error = EINVAL; 1986 goto update; 1987 } 1988 break; 1989 } 1990 if (flags & V_RDDIR_ENTFLAGS) { 1991 /* 1992 * Add extended flag entry: 1993 */ 1994 eodp->ed_ino = objnum; 1995 eodp->ed_reclen = reclen; 1996 /* NOTE: ed_off is the offset for the *next* entry */ 1997 next = &(eodp->ed_off); 1998 eodp->ed_eflags = zap.za_normalization_conflict ? 1999 ED_CASE_CONFLICT : 0; 2000 (void) strncpy(eodp->ed_name, zap.za_name, 2001 EDIRENT_NAMELEN(reclen)); 2002 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2003 } else { 2004 /* 2005 * Add normal entry: 2006 */ 2007 odp->d_ino = objnum; 2008 odp->d_reclen = reclen; 2009 /* NOTE: d_off is the offset for the *next* entry */ 2010 next = &(odp->d_off); 2011 (void) strncpy(odp->d_name, zap.za_name, 2012 DIRENT64_NAMELEN(reclen)); 2013 odp = (dirent64_t *)((intptr_t)odp + reclen); 2014 } 2015 outcount += reclen; 2016 2017 ASSERT(outcount <= bufsize); 2018 2019 /* Prefetch znode */ 2020 if (prefetch) 2021 dmu_prefetch(os, objnum, 0, 0); 2022 2023 /* 2024 * Move to the next entry, fill in the previous offset. 2025 */ 2026 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2027 zap_cursor_advance(&zc); 2028 offset = zap_cursor_serialize(&zc); 2029 } else { 2030 offset += 1; 2031 } 2032 *next = offset; 2033 } 2034 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2035 2036 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2037 iovp->iov_base += outcount; 2038 iovp->iov_len -= outcount; 2039 uio->uio_resid -= outcount; 2040 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2041 /* 2042 * Reset the pointer. 2043 */ 2044 offset = uio->uio_loffset; 2045 } 2046 2047 update: 2048 zap_cursor_fini(&zc); 2049 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2050 kmem_free(outbuf, bufsize); 2051 2052 if (error == ENOENT) 2053 error = 0; 2054 2055 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2056 2057 uio->uio_loffset = offset; 2058 ZFS_EXIT(zfsvfs); 2059 return (error); 2060 } 2061 2062 ulong_t zfs_fsync_sync_cnt = 4; 2063 2064 static int 2065 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2066 { 2067 znode_t *zp = VTOZ(vp); 2068 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2069 2070 /* 2071 * Regardless of whether this is required for standards conformance, 2072 * this is the logical behavior when fsync() is called on a file with 2073 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2074 * going to be pushed out as part of the zil_commit(). 2075 */ 2076 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2077 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2078 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2079 2080 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2081 2082 ZFS_ENTER(zfsvfs); 2083 ZFS_VERIFY_ZP(zp); 2084 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 2085 ZFS_EXIT(zfsvfs); 2086 return (0); 2087 } 2088 2089 2090 /* 2091 * Get the requested file attributes and place them in the provided 2092 * vattr structure. 2093 * 2094 * IN: vp - vnode of file. 2095 * vap - va_mask identifies requested attributes. 2096 * If AT_XVATTR set, then optional attrs are requested 2097 * flags - ATTR_NOACLCHECK (CIFS server context) 2098 * cr - credentials of caller. 2099 * ct - caller context 2100 * 2101 * OUT: vap - attribute values. 2102 * 2103 * RETURN: 0 (always succeeds) 2104 */ 2105 /* ARGSUSED */ 2106 static int 2107 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2108 caller_context_t *ct) 2109 { 2110 znode_t *zp = VTOZ(vp); 2111 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2112 znode_phys_t *pzp; 2113 int error = 0; 2114 uint64_t links; 2115 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2116 xoptattr_t *xoap = NULL; 2117 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2118 2119 ZFS_ENTER(zfsvfs); 2120 ZFS_VERIFY_ZP(zp); 2121 pzp = zp->z_phys; 2122 2123 mutex_enter(&zp->z_lock); 2124 2125 /* 2126 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2127 * Also, if we are the owner don't bother, since owner should 2128 * always be allowed to read basic attributes of file. 2129 */ 2130 if (!(pzp->zp_flags & ZFS_ACL_TRIVIAL) && 2131 (pzp->zp_uid != crgetuid(cr))) { 2132 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2133 skipaclchk, cr)) { 2134 mutex_exit(&zp->z_lock); 2135 ZFS_EXIT(zfsvfs); 2136 return (error); 2137 } 2138 } 2139 2140 /* 2141 * Return all attributes. It's cheaper to provide the answer 2142 * than to determine whether we were asked the question. 2143 */ 2144 2145 vap->va_type = vp->v_type; 2146 vap->va_mode = pzp->zp_mode & MODEMASK; 2147 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2148 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2149 vap->va_nodeid = zp->z_id; 2150 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2151 links = pzp->zp_links + 1; 2152 else 2153 links = pzp->zp_links; 2154 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2155 vap->va_size = pzp->zp_size; 2156 vap->va_rdev = vp->v_rdev; 2157 vap->va_seq = zp->z_seq; 2158 2159 /* 2160 * Add in any requested optional attributes and the create time. 2161 * Also set the corresponding bits in the returned attribute bitmap. 2162 */ 2163 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2164 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2165 xoap->xoa_archive = 2166 ((pzp->zp_flags & ZFS_ARCHIVE) != 0); 2167 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2168 } 2169 2170 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2171 xoap->xoa_readonly = 2172 ((pzp->zp_flags & ZFS_READONLY) != 0); 2173 XVA_SET_RTN(xvap, XAT_READONLY); 2174 } 2175 2176 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2177 xoap->xoa_system = 2178 ((pzp->zp_flags & ZFS_SYSTEM) != 0); 2179 XVA_SET_RTN(xvap, XAT_SYSTEM); 2180 } 2181 2182 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2183 xoap->xoa_hidden = 2184 ((pzp->zp_flags & ZFS_HIDDEN) != 0); 2185 XVA_SET_RTN(xvap, XAT_HIDDEN); 2186 } 2187 2188 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2189 xoap->xoa_nounlink = 2190 ((pzp->zp_flags & ZFS_NOUNLINK) != 0); 2191 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2192 } 2193 2194 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2195 xoap->xoa_immutable = 2196 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0); 2197 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2198 } 2199 2200 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2201 xoap->xoa_appendonly = 2202 ((pzp->zp_flags & ZFS_APPENDONLY) != 0); 2203 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2204 } 2205 2206 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2207 xoap->xoa_nodump = 2208 ((pzp->zp_flags & ZFS_NODUMP) != 0); 2209 XVA_SET_RTN(xvap, XAT_NODUMP); 2210 } 2211 2212 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2213 xoap->xoa_opaque = 2214 ((pzp->zp_flags & ZFS_OPAQUE) != 0); 2215 XVA_SET_RTN(xvap, XAT_OPAQUE); 2216 } 2217 2218 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2219 xoap->xoa_av_quarantined = 2220 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0); 2221 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2222 } 2223 2224 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2225 xoap->xoa_av_modified = 2226 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0); 2227 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2228 } 2229 2230 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2231 vp->v_type == VREG && 2232 (pzp->zp_flags & ZFS_BONUS_SCANSTAMP)) { 2233 size_t len; 2234 dmu_object_info_t doi; 2235 2236 /* 2237 * Only VREG files have anti-virus scanstamps, so we 2238 * won't conflict with symlinks in the bonus buffer. 2239 */ 2240 dmu_object_info_from_db(zp->z_dbuf, &doi); 2241 len = sizeof (xoap->xoa_av_scanstamp) + 2242 sizeof (znode_phys_t); 2243 if (len <= doi.doi_bonus_size) { 2244 /* 2245 * pzp points to the start of the 2246 * znode_phys_t. pzp + 1 points to the 2247 * first byte after the znode_phys_t. 2248 */ 2249 (void) memcpy(xoap->xoa_av_scanstamp, 2250 pzp + 1, 2251 sizeof (xoap->xoa_av_scanstamp)); 2252 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 2253 } 2254 } 2255 2256 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2257 ZFS_TIME_DECODE(&xoap->xoa_createtime, pzp->zp_crtime); 2258 XVA_SET_RTN(xvap, XAT_CREATETIME); 2259 } 2260 } 2261 2262 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 2263 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 2264 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 2265 2266 mutex_exit(&zp->z_lock); 2267 2268 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 2269 2270 if (zp->z_blksz == 0) { 2271 /* 2272 * Block size hasn't been set; suggest maximal I/O transfers. 2273 */ 2274 vap->va_blksize = zfsvfs->z_max_blksz; 2275 } 2276 2277 ZFS_EXIT(zfsvfs); 2278 return (0); 2279 } 2280 2281 /* 2282 * Set the file attributes to the values contained in the 2283 * vattr structure. 2284 * 2285 * IN: vp - vnode of file to be modified. 2286 * vap - new attribute values. 2287 * If AT_XVATTR set, then optional attrs are being set 2288 * flags - ATTR_UTIME set if non-default time values provided. 2289 * - ATTR_NOACLCHECK (CIFS context only). 2290 * cr - credentials of caller. 2291 * ct - caller context 2292 * 2293 * RETURN: 0 if success 2294 * error code if failure 2295 * 2296 * Timestamps: 2297 * vp - ctime updated, mtime updated if size changed. 2298 */ 2299 /* ARGSUSED */ 2300 static int 2301 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2302 caller_context_t *ct) 2303 { 2304 znode_t *zp = VTOZ(vp); 2305 znode_phys_t *pzp; 2306 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2307 zilog_t *zilog; 2308 dmu_tx_t *tx; 2309 vattr_t oldva; 2310 xvattr_t tmpxvattr; 2311 uint_t mask = vap->va_mask; 2312 uint_t saved_mask; 2313 int trim_mask = 0; 2314 uint64_t new_mode; 2315 znode_t *attrzp; 2316 int need_policy = FALSE; 2317 int err; 2318 zfs_fuid_info_t *fuidp = NULL; 2319 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2320 xoptattr_t *xoap; 2321 zfs_acl_t *aclp = NULL; 2322 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2323 2324 if (mask == 0) 2325 return (0); 2326 2327 if (mask & AT_NOSET) 2328 return (EINVAL); 2329 2330 ZFS_ENTER(zfsvfs); 2331 ZFS_VERIFY_ZP(zp); 2332 2333 pzp = zp->z_phys; 2334 zilog = zfsvfs->z_log; 2335 2336 /* 2337 * Make sure that if we have ephemeral uid/gid or xvattr specified 2338 * that file system is at proper version level 2339 */ 2340 2341 if (zfsvfs->z_use_fuids == B_FALSE && 2342 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2343 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2344 (mask & AT_XVATTR))) { 2345 ZFS_EXIT(zfsvfs); 2346 return (EINVAL); 2347 } 2348 2349 if (mask & AT_SIZE && vp->v_type == VDIR) { 2350 ZFS_EXIT(zfsvfs); 2351 return (EISDIR); 2352 } 2353 2354 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2355 ZFS_EXIT(zfsvfs); 2356 return (EINVAL); 2357 } 2358 2359 /* 2360 * If this is an xvattr_t, then get a pointer to the structure of 2361 * optional attributes. If this is NULL, then we have a vattr_t. 2362 */ 2363 xoap = xva_getxoptattr(xvap); 2364 2365 xva_init(&tmpxvattr); 2366 2367 /* 2368 * Immutable files can only alter immutable bit and atime 2369 */ 2370 if ((pzp->zp_flags & ZFS_IMMUTABLE) && 2371 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2372 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2373 ZFS_EXIT(zfsvfs); 2374 return (EPERM); 2375 } 2376 2377 if ((mask & AT_SIZE) && (pzp->zp_flags & ZFS_READONLY)) { 2378 ZFS_EXIT(zfsvfs); 2379 return (EPERM); 2380 } 2381 2382 /* 2383 * Verify timestamps doesn't overflow 32 bits. 2384 * ZFS can handle large timestamps, but 32bit syscalls can't 2385 * handle times greater than 2039. This check should be removed 2386 * once large timestamps are fully supported. 2387 */ 2388 if (mask & (AT_ATIME | AT_MTIME)) { 2389 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2390 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2391 ZFS_EXIT(zfsvfs); 2392 return (EOVERFLOW); 2393 } 2394 } 2395 2396 top: 2397 attrzp = NULL; 2398 2399 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2400 ZFS_EXIT(zfsvfs); 2401 return (EROFS); 2402 } 2403 2404 /* 2405 * First validate permissions 2406 */ 2407 2408 if (mask & AT_SIZE) { 2409 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2410 if (err) { 2411 ZFS_EXIT(zfsvfs); 2412 return (err); 2413 } 2414 /* 2415 * XXX - Note, we are not providing any open 2416 * mode flags here (like FNDELAY), so we may 2417 * block if there are locks present... this 2418 * should be addressed in openat(). 2419 */ 2420 /* XXX - would it be OK to generate a log record here? */ 2421 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2422 if (err) { 2423 ZFS_EXIT(zfsvfs); 2424 return (err); 2425 } 2426 } 2427 2428 if (mask & (AT_ATIME|AT_MTIME) || 2429 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2430 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2431 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2432 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2433 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) 2434 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2435 skipaclchk, cr); 2436 2437 if (mask & (AT_UID|AT_GID)) { 2438 int idmask = (mask & (AT_UID|AT_GID)); 2439 int take_owner; 2440 int take_group; 2441 2442 /* 2443 * NOTE: even if a new mode is being set, 2444 * we may clear S_ISUID/S_ISGID bits. 2445 */ 2446 2447 if (!(mask & AT_MODE)) 2448 vap->va_mode = pzp->zp_mode; 2449 2450 /* 2451 * Take ownership or chgrp to group we are a member of 2452 */ 2453 2454 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2455 take_group = (mask & AT_GID) && 2456 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2457 2458 /* 2459 * If both AT_UID and AT_GID are set then take_owner and 2460 * take_group must both be set in order to allow taking 2461 * ownership. 2462 * 2463 * Otherwise, send the check through secpolicy_vnode_setattr() 2464 * 2465 */ 2466 2467 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2468 ((idmask == AT_UID) && take_owner) || 2469 ((idmask == AT_GID) && take_group)) { 2470 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2471 skipaclchk, cr) == 0) { 2472 /* 2473 * Remove setuid/setgid for non-privileged users 2474 */ 2475 secpolicy_setid_clear(vap, cr); 2476 trim_mask = (mask & (AT_UID|AT_GID)); 2477 } else { 2478 need_policy = TRUE; 2479 } 2480 } else { 2481 need_policy = TRUE; 2482 } 2483 } 2484 2485 mutex_enter(&zp->z_lock); 2486 oldva.va_mode = pzp->zp_mode; 2487 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2488 if (mask & AT_XVATTR) { 2489 /* 2490 * Update xvattr mask to include only those attributes 2491 * that are actually changing. 2492 * 2493 * the bits will be restored prior to actually setting 2494 * the attributes so the caller thinks they were set. 2495 */ 2496 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2497 if (xoap->xoa_appendonly != 2498 ((pzp->zp_flags & ZFS_APPENDONLY) != 0)) { 2499 need_policy = TRUE; 2500 } else { 2501 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2502 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2503 } 2504 } 2505 2506 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2507 if (xoap->xoa_nounlink != 2508 ((pzp->zp_flags & ZFS_NOUNLINK) != 0)) { 2509 need_policy = TRUE; 2510 } else { 2511 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2512 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2513 } 2514 } 2515 2516 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2517 if (xoap->xoa_immutable != 2518 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0)) { 2519 need_policy = TRUE; 2520 } else { 2521 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2522 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2523 } 2524 } 2525 2526 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2527 if (xoap->xoa_nodump != 2528 ((pzp->zp_flags & ZFS_NODUMP) != 0)) { 2529 need_policy = TRUE; 2530 } else { 2531 XVA_CLR_REQ(xvap, XAT_NODUMP); 2532 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2533 } 2534 } 2535 2536 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2537 if (xoap->xoa_av_modified != 2538 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0)) { 2539 need_policy = TRUE; 2540 } else { 2541 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2542 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2543 } 2544 } 2545 2546 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2547 if ((vp->v_type != VREG && 2548 xoap->xoa_av_quarantined) || 2549 xoap->xoa_av_quarantined != 2550 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0)) { 2551 need_policy = TRUE; 2552 } else { 2553 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2554 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2555 } 2556 } 2557 2558 if (need_policy == FALSE && 2559 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2560 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2561 need_policy = TRUE; 2562 } 2563 } 2564 2565 mutex_exit(&zp->z_lock); 2566 2567 if (mask & AT_MODE) { 2568 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2569 err = secpolicy_setid_setsticky_clear(vp, vap, 2570 &oldva, cr); 2571 if (err) { 2572 ZFS_EXIT(zfsvfs); 2573 return (err); 2574 } 2575 trim_mask |= AT_MODE; 2576 } else { 2577 need_policy = TRUE; 2578 } 2579 } 2580 2581 if (need_policy) { 2582 /* 2583 * If trim_mask is set then take ownership 2584 * has been granted or write_acl is present and user 2585 * has the ability to modify mode. In that case remove 2586 * UID|GID and or MODE from mask so that 2587 * secpolicy_vnode_setattr() doesn't revoke it. 2588 */ 2589 2590 if (trim_mask) { 2591 saved_mask = vap->va_mask; 2592 vap->va_mask &= ~trim_mask; 2593 } 2594 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2595 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2596 if (err) { 2597 ZFS_EXIT(zfsvfs); 2598 return (err); 2599 } 2600 2601 if (trim_mask) 2602 vap->va_mask |= saved_mask; 2603 } 2604 2605 /* 2606 * secpolicy_vnode_setattr, or take ownership may have 2607 * changed va_mask 2608 */ 2609 mask = vap->va_mask; 2610 2611 tx = dmu_tx_create(zfsvfs->z_os); 2612 dmu_tx_hold_bonus(tx, zp->z_id); 2613 if (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2614 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid))) { 2615 if (zfsvfs->z_fuid_obj == 0) { 2616 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2617 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 2618 FUID_SIZE_ESTIMATE(zfsvfs)); 2619 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 2620 } else { 2621 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 2622 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 2623 FUID_SIZE_ESTIMATE(zfsvfs)); 2624 } 2625 } 2626 2627 if (mask & AT_MODE) { 2628 uint64_t pmode = pzp->zp_mode; 2629 2630 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2631 2632 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) { 2633 dmu_tx_abort(tx); 2634 ZFS_EXIT(zfsvfs); 2635 return (err); 2636 } 2637 if (pzp->zp_acl.z_acl_extern_obj) { 2638 /* Are we upgrading ACL from old V0 format to new V1 */ 2639 if (zfsvfs->z_version <= ZPL_VERSION_FUID && 2640 pzp->zp_acl.z_acl_version == 2641 ZFS_ACL_VERSION_INITIAL) { 2642 dmu_tx_hold_free(tx, 2643 pzp->zp_acl.z_acl_extern_obj, 0, 2644 DMU_OBJECT_END); 2645 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2646 0, aclp->z_acl_bytes); 2647 } else { 2648 dmu_tx_hold_write(tx, 2649 pzp->zp_acl.z_acl_extern_obj, 0, 2650 aclp->z_acl_bytes); 2651 } 2652 } else if (aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2653 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2654 0, aclp->z_acl_bytes); 2655 } 2656 } 2657 2658 if ((mask & (AT_UID | AT_GID)) && pzp->zp_xattr != 0) { 2659 err = zfs_zget(zp->z_zfsvfs, pzp->zp_xattr, &attrzp); 2660 if (err) { 2661 dmu_tx_abort(tx); 2662 ZFS_EXIT(zfsvfs); 2663 if (aclp) 2664 zfs_acl_free(aclp); 2665 return (err); 2666 } 2667 dmu_tx_hold_bonus(tx, attrzp->z_id); 2668 } 2669 2670 err = dmu_tx_assign(tx, TXG_NOWAIT); 2671 if (err) { 2672 if (attrzp) 2673 VN_RELE(ZTOV(attrzp)); 2674 2675 if (aclp) { 2676 zfs_acl_free(aclp); 2677 aclp = NULL; 2678 } 2679 2680 if (err == ERESTART) { 2681 dmu_tx_wait(tx); 2682 dmu_tx_abort(tx); 2683 goto top; 2684 } 2685 dmu_tx_abort(tx); 2686 ZFS_EXIT(zfsvfs); 2687 return (err); 2688 } 2689 2690 dmu_buf_will_dirty(zp->z_dbuf, tx); 2691 2692 /* 2693 * Set each attribute requested. 2694 * We group settings according to the locks they need to acquire. 2695 * 2696 * Note: you cannot set ctime directly, although it will be 2697 * updated as a side-effect of calling this function. 2698 */ 2699 2700 mutex_enter(&zp->z_lock); 2701 2702 if (mask & AT_MODE) { 2703 mutex_enter(&zp->z_acl_lock); 2704 zp->z_phys->zp_mode = new_mode; 2705 err = zfs_aclset_common(zp, aclp, cr, &fuidp, tx); 2706 ASSERT3U(err, ==, 0); 2707 mutex_exit(&zp->z_acl_lock); 2708 } 2709 2710 if (attrzp) 2711 mutex_enter(&attrzp->z_lock); 2712 2713 if (mask & AT_UID) { 2714 pzp->zp_uid = zfs_fuid_create(zfsvfs, 2715 vap->va_uid, cr, ZFS_OWNER, tx, &fuidp); 2716 if (attrzp) { 2717 attrzp->z_phys->zp_uid = zfs_fuid_create(zfsvfs, 2718 vap->va_uid, cr, ZFS_OWNER, tx, &fuidp); 2719 } 2720 } 2721 2722 if (mask & AT_GID) { 2723 pzp->zp_gid = zfs_fuid_create(zfsvfs, vap->va_gid, 2724 cr, ZFS_GROUP, tx, &fuidp); 2725 if (attrzp) 2726 attrzp->z_phys->zp_gid = zfs_fuid_create(zfsvfs, 2727 vap->va_gid, cr, ZFS_GROUP, tx, &fuidp); 2728 } 2729 2730 if (aclp) 2731 zfs_acl_free(aclp); 2732 2733 if (attrzp) 2734 mutex_exit(&attrzp->z_lock); 2735 2736 if (mask & AT_ATIME) 2737 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2738 2739 if (mask & AT_MTIME) 2740 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2741 2742 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 2743 if (mask & AT_SIZE) 2744 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2745 else if (mask != 0) 2746 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2747 /* 2748 * Do this after setting timestamps to prevent timestamp 2749 * update from toggling bit 2750 */ 2751 2752 if (xoap && (mask & AT_XVATTR)) { 2753 2754 /* 2755 * restore trimmed off masks 2756 * so that return masks can be set for caller. 2757 */ 2758 2759 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 2760 XVA_SET_REQ(xvap, XAT_APPENDONLY); 2761 } 2762 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 2763 XVA_SET_REQ(xvap, XAT_NOUNLINK); 2764 } 2765 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 2766 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 2767 } 2768 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 2769 XVA_SET_REQ(xvap, XAT_NODUMP); 2770 } 2771 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 2772 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 2773 } 2774 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 2775 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 2776 } 2777 2778 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 2779 size_t len; 2780 dmu_object_info_t doi; 2781 2782 ASSERT(vp->v_type == VREG); 2783 2784 /* Grow the bonus buffer if necessary. */ 2785 dmu_object_info_from_db(zp->z_dbuf, &doi); 2786 len = sizeof (xoap->xoa_av_scanstamp) + 2787 sizeof (znode_phys_t); 2788 if (len > doi.doi_bonus_size) 2789 VERIFY(dmu_set_bonus(zp->z_dbuf, len, tx) == 0); 2790 } 2791 zfs_xvattr_set(zp, xvap); 2792 } 2793 2794 if (mask != 0) 2795 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 2796 2797 if (fuidp) 2798 zfs_fuid_info_free(fuidp); 2799 mutex_exit(&zp->z_lock); 2800 2801 if (attrzp) 2802 VN_RELE(ZTOV(attrzp)); 2803 2804 dmu_tx_commit(tx); 2805 2806 ZFS_EXIT(zfsvfs); 2807 return (err); 2808 } 2809 2810 typedef struct zfs_zlock { 2811 krwlock_t *zl_rwlock; /* lock we acquired */ 2812 znode_t *zl_znode; /* znode we held */ 2813 struct zfs_zlock *zl_next; /* next in list */ 2814 } zfs_zlock_t; 2815 2816 /* 2817 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2818 */ 2819 static void 2820 zfs_rename_unlock(zfs_zlock_t **zlpp) 2821 { 2822 zfs_zlock_t *zl; 2823 2824 while ((zl = *zlpp) != NULL) { 2825 if (zl->zl_znode != NULL) 2826 VN_RELE(ZTOV(zl->zl_znode)); 2827 rw_exit(zl->zl_rwlock); 2828 *zlpp = zl->zl_next; 2829 kmem_free(zl, sizeof (*zl)); 2830 } 2831 } 2832 2833 /* 2834 * Search back through the directory tree, using the ".." entries. 2835 * Lock each directory in the chain to prevent concurrent renames. 2836 * Fail any attempt to move a directory into one of its own descendants. 2837 * XXX - z_parent_lock can overlap with map or grow locks 2838 */ 2839 static int 2840 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2841 { 2842 zfs_zlock_t *zl; 2843 znode_t *zp = tdzp; 2844 uint64_t rootid = zp->z_zfsvfs->z_root; 2845 uint64_t *oidp = &zp->z_id; 2846 krwlock_t *rwlp = &szp->z_parent_lock; 2847 krw_t rw = RW_WRITER; 2848 2849 /* 2850 * First pass write-locks szp and compares to zp->z_id. 2851 * Later passes read-lock zp and compare to zp->z_parent. 2852 */ 2853 do { 2854 if (!rw_tryenter(rwlp, rw)) { 2855 /* 2856 * Another thread is renaming in this path. 2857 * Note that if we are a WRITER, we don't have any 2858 * parent_locks held yet. 2859 */ 2860 if (rw == RW_READER && zp->z_id > szp->z_id) { 2861 /* 2862 * Drop our locks and restart 2863 */ 2864 zfs_rename_unlock(&zl); 2865 *zlpp = NULL; 2866 zp = tdzp; 2867 oidp = &zp->z_id; 2868 rwlp = &szp->z_parent_lock; 2869 rw = RW_WRITER; 2870 continue; 2871 } else { 2872 /* 2873 * Wait for other thread to drop its locks 2874 */ 2875 rw_enter(rwlp, rw); 2876 } 2877 } 2878 2879 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 2880 zl->zl_rwlock = rwlp; 2881 zl->zl_znode = NULL; 2882 zl->zl_next = *zlpp; 2883 *zlpp = zl; 2884 2885 if (*oidp == szp->z_id) /* We're a descendant of szp */ 2886 return (EINVAL); 2887 2888 if (*oidp == rootid) /* We've hit the top */ 2889 return (0); 2890 2891 if (rw == RW_READER) { /* i.e. not the first pass */ 2892 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 2893 if (error) 2894 return (error); 2895 zl->zl_znode = zp; 2896 } 2897 oidp = &zp->z_phys->zp_parent; 2898 rwlp = &zp->z_parent_lock; 2899 rw = RW_READER; 2900 2901 } while (zp->z_id != sdzp->z_id); 2902 2903 return (0); 2904 } 2905 2906 /* 2907 * Move an entry from the provided source directory to the target 2908 * directory. Change the entry name as indicated. 2909 * 2910 * IN: sdvp - Source directory containing the "old entry". 2911 * snm - Old entry name. 2912 * tdvp - Target directory to contain the "new entry". 2913 * tnm - New entry name. 2914 * cr - credentials of caller. 2915 * ct - caller context 2916 * flags - case flags 2917 * 2918 * RETURN: 0 if success 2919 * error code if failure 2920 * 2921 * Timestamps: 2922 * sdvp,tdvp - ctime|mtime updated 2923 */ 2924 /*ARGSUSED*/ 2925 static int 2926 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 2927 caller_context_t *ct, int flags) 2928 { 2929 znode_t *tdzp, *szp, *tzp; 2930 znode_t *sdzp = VTOZ(sdvp); 2931 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 2932 zilog_t *zilog; 2933 vnode_t *realvp; 2934 zfs_dirlock_t *sdl, *tdl; 2935 dmu_tx_t *tx; 2936 zfs_zlock_t *zl; 2937 int cmp, serr, terr; 2938 int error = 0; 2939 int zflg = 0; 2940 2941 ZFS_ENTER(zfsvfs); 2942 ZFS_VERIFY_ZP(sdzp); 2943 zilog = zfsvfs->z_log; 2944 2945 /* 2946 * Make sure we have the real vp for the target directory. 2947 */ 2948 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 2949 tdvp = realvp; 2950 2951 if (tdvp->v_vfsp != sdvp->v_vfsp) { 2952 ZFS_EXIT(zfsvfs); 2953 return (EXDEV); 2954 } 2955 2956 tdzp = VTOZ(tdvp); 2957 ZFS_VERIFY_ZP(tdzp); 2958 if (zfsvfs->z_utf8 && u8_validate(tnm, 2959 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 2960 ZFS_EXIT(zfsvfs); 2961 return (EILSEQ); 2962 } 2963 2964 if (flags & FIGNORECASE) 2965 zflg |= ZCILOOK; 2966 2967 top: 2968 szp = NULL; 2969 tzp = NULL; 2970 zl = NULL; 2971 2972 /* 2973 * This is to prevent the creation of links into attribute space 2974 * by renaming a linked file into/outof an attribute directory. 2975 * See the comment in zfs_link() for why this is considered bad. 2976 */ 2977 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 2978 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 2979 ZFS_EXIT(zfsvfs); 2980 return (EINVAL); 2981 } 2982 2983 /* 2984 * Lock source and target directory entries. To prevent deadlock, 2985 * a lock ordering must be defined. We lock the directory with 2986 * the smallest object id first, or if it's a tie, the one with 2987 * the lexically first name. 2988 */ 2989 if (sdzp->z_id < tdzp->z_id) { 2990 cmp = -1; 2991 } else if (sdzp->z_id > tdzp->z_id) { 2992 cmp = 1; 2993 } else { 2994 /* 2995 * First compare the two name arguments without 2996 * considering any case folding. 2997 */ 2998 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 2999 3000 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3001 ASSERT(error == 0 || !zfsvfs->z_utf8); 3002 if (cmp == 0) { 3003 /* 3004 * POSIX: "If the old argument and the new argument 3005 * both refer to links to the same existing file, 3006 * the rename() function shall return successfully 3007 * and perform no other action." 3008 */ 3009 ZFS_EXIT(zfsvfs); 3010 return (0); 3011 } 3012 /* 3013 * If the file system is case-folding, then we may 3014 * have some more checking to do. A case-folding file 3015 * system is either supporting mixed case sensitivity 3016 * access or is completely case-insensitive. Note 3017 * that the file system is always case preserving. 3018 * 3019 * In mixed sensitivity mode case sensitive behavior 3020 * is the default. FIGNORECASE must be used to 3021 * explicitly request case insensitive behavior. 3022 * 3023 * If the source and target names provided differ only 3024 * by case (e.g., a request to rename 'tim' to 'Tim'), 3025 * we will treat this as a special case in the 3026 * case-insensitive mode: as long as the source name 3027 * is an exact match, we will allow this to proceed as 3028 * a name-change request. 3029 */ 3030 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3031 (zfsvfs->z_case == ZFS_CASE_MIXED && 3032 flags & FIGNORECASE)) && 3033 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3034 &error) == 0) { 3035 /* 3036 * case preserving rename request, require exact 3037 * name matches 3038 */ 3039 zflg |= ZCIEXACT; 3040 zflg &= ~ZCILOOK; 3041 } 3042 } 3043 3044 if (cmp < 0) { 3045 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3046 ZEXISTS | zflg, NULL, NULL); 3047 terr = zfs_dirent_lock(&tdl, 3048 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3049 } else { 3050 terr = zfs_dirent_lock(&tdl, 3051 tdzp, tnm, &tzp, zflg, NULL, NULL); 3052 serr = zfs_dirent_lock(&sdl, 3053 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3054 NULL, NULL); 3055 } 3056 3057 if (serr) { 3058 /* 3059 * Source entry invalid or not there. 3060 */ 3061 if (!terr) { 3062 zfs_dirent_unlock(tdl); 3063 if (tzp) 3064 VN_RELE(ZTOV(tzp)); 3065 } 3066 if (strcmp(snm, "..") == 0) 3067 serr = EINVAL; 3068 ZFS_EXIT(zfsvfs); 3069 return (serr); 3070 } 3071 if (terr) { 3072 zfs_dirent_unlock(sdl); 3073 VN_RELE(ZTOV(szp)); 3074 if (strcmp(tnm, "..") == 0) 3075 terr = EINVAL; 3076 ZFS_EXIT(zfsvfs); 3077 return (terr); 3078 } 3079 3080 /* 3081 * Must have write access at the source to remove the old entry 3082 * and write access at the target to create the new entry. 3083 * Note that if target and source are the same, this can be 3084 * done in a single check. 3085 */ 3086 3087 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3088 goto out; 3089 3090 if (ZTOV(szp)->v_type == VDIR) { 3091 /* 3092 * Check to make sure rename is valid. 3093 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3094 */ 3095 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3096 goto out; 3097 } 3098 3099 /* 3100 * Does target exist? 3101 */ 3102 if (tzp) { 3103 /* 3104 * Source and target must be the same type. 3105 */ 3106 if (ZTOV(szp)->v_type == VDIR) { 3107 if (ZTOV(tzp)->v_type != VDIR) { 3108 error = ENOTDIR; 3109 goto out; 3110 } 3111 } else { 3112 if (ZTOV(tzp)->v_type == VDIR) { 3113 error = EISDIR; 3114 goto out; 3115 } 3116 } 3117 /* 3118 * POSIX dictates that when the source and target 3119 * entries refer to the same file object, rename 3120 * must do nothing and exit without error. 3121 */ 3122 if (szp->z_id == tzp->z_id) { 3123 error = 0; 3124 goto out; 3125 } 3126 } 3127 3128 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3129 if (tzp) 3130 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3131 3132 /* 3133 * notify the target directory if it is not the same 3134 * as source directory. 3135 */ 3136 if (tdvp != sdvp) { 3137 vnevent_rename_dest_dir(tdvp, ct); 3138 } 3139 3140 tx = dmu_tx_create(zfsvfs->z_os); 3141 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 3142 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 3143 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3144 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3145 if (sdzp != tdzp) 3146 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 3147 if (tzp) 3148 dmu_tx_hold_bonus(tx, tzp->z_id); /* parent changes */ 3149 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3150 error = dmu_tx_assign(tx, TXG_NOWAIT); 3151 if (error) { 3152 if (zl != NULL) 3153 zfs_rename_unlock(&zl); 3154 zfs_dirent_unlock(sdl); 3155 zfs_dirent_unlock(tdl); 3156 VN_RELE(ZTOV(szp)); 3157 if (tzp) 3158 VN_RELE(ZTOV(tzp)); 3159 if (error == ERESTART) { 3160 dmu_tx_wait(tx); 3161 dmu_tx_abort(tx); 3162 goto top; 3163 } 3164 dmu_tx_abort(tx); 3165 ZFS_EXIT(zfsvfs); 3166 return (error); 3167 } 3168 3169 if (tzp) /* Attempt to remove the existing target */ 3170 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3171 3172 if (error == 0) { 3173 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3174 if (error == 0) { 3175 szp->z_phys->zp_flags |= ZFS_AV_MODIFIED; 3176 3177 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3178 ASSERT(error == 0); 3179 3180 zfs_log_rename(zilog, tx, 3181 TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0), 3182 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); 3183 3184 /* Update path information for the target vnode */ 3185 vn_renamepath(tdvp, ZTOV(szp), tnm, strlen(tnm)); 3186 } 3187 } 3188 3189 dmu_tx_commit(tx); 3190 out: 3191 if (zl != NULL) 3192 zfs_rename_unlock(&zl); 3193 3194 zfs_dirent_unlock(sdl); 3195 zfs_dirent_unlock(tdl); 3196 3197 VN_RELE(ZTOV(szp)); 3198 if (tzp) 3199 VN_RELE(ZTOV(tzp)); 3200 3201 ZFS_EXIT(zfsvfs); 3202 return (error); 3203 } 3204 3205 /* 3206 * Insert the indicated symbolic reference entry into the directory. 3207 * 3208 * IN: dvp - Directory to contain new symbolic link. 3209 * link - Name for new symlink entry. 3210 * vap - Attributes of new entry. 3211 * target - Target path of new symlink. 3212 * cr - credentials of caller. 3213 * ct - caller context 3214 * flags - case flags 3215 * 3216 * RETURN: 0 if success 3217 * error code if failure 3218 * 3219 * Timestamps: 3220 * dvp - ctime|mtime updated 3221 */ 3222 /*ARGSUSED*/ 3223 static int 3224 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3225 caller_context_t *ct, int flags) 3226 { 3227 znode_t *zp, *dzp = VTOZ(dvp); 3228 zfs_dirlock_t *dl; 3229 dmu_tx_t *tx; 3230 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3231 zilog_t *zilog; 3232 int len = strlen(link); 3233 int error; 3234 int zflg = ZNEW; 3235 zfs_fuid_info_t *fuidp = NULL; 3236 3237 ASSERT(vap->va_type == VLNK); 3238 3239 ZFS_ENTER(zfsvfs); 3240 ZFS_VERIFY_ZP(dzp); 3241 zilog = zfsvfs->z_log; 3242 3243 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3244 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3245 ZFS_EXIT(zfsvfs); 3246 return (EILSEQ); 3247 } 3248 if (flags & FIGNORECASE) 3249 zflg |= ZCILOOK; 3250 top: 3251 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3252 ZFS_EXIT(zfsvfs); 3253 return (error); 3254 } 3255 3256 if (len > MAXPATHLEN) { 3257 ZFS_EXIT(zfsvfs); 3258 return (ENAMETOOLONG); 3259 } 3260 3261 /* 3262 * Attempt to lock directory; fail if entry already exists. 3263 */ 3264 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3265 if (error) { 3266 ZFS_EXIT(zfsvfs); 3267 return (error); 3268 } 3269 3270 tx = dmu_tx_create(zfsvfs->z_os); 3271 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3272 dmu_tx_hold_bonus(tx, dzp->z_id); 3273 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3274 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 3275 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 3276 if (IS_EPHEMERAL(crgetuid(cr)) || IS_EPHEMERAL(crgetgid(cr))) { 3277 if (zfsvfs->z_fuid_obj == 0) { 3278 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 3279 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3280 FUID_SIZE_ESTIMATE(zfsvfs)); 3281 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 3282 } else { 3283 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 3284 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 3285 FUID_SIZE_ESTIMATE(zfsvfs)); 3286 } 3287 } 3288 error = dmu_tx_assign(tx, TXG_NOWAIT); 3289 if (error) { 3290 zfs_dirent_unlock(dl); 3291 if (error == ERESTART) { 3292 dmu_tx_wait(tx); 3293 dmu_tx_abort(tx); 3294 goto top; 3295 } 3296 dmu_tx_abort(tx); 3297 ZFS_EXIT(zfsvfs); 3298 return (error); 3299 } 3300 3301 dmu_buf_will_dirty(dzp->z_dbuf, tx); 3302 3303 /* 3304 * Create a new object for the symlink. 3305 * Put the link content into bonus buffer if it will fit; 3306 * otherwise, store it just like any other file data. 3307 */ 3308 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 3309 zfs_mknode(dzp, vap, tx, cr, 0, &zp, len, NULL, &fuidp); 3310 if (len != 0) 3311 bcopy(link, zp->z_phys + 1, len); 3312 } else { 3313 dmu_buf_t *dbp; 3314 3315 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, NULL, &fuidp); 3316 /* 3317 * Nothing can access the znode yet so no locking needed 3318 * for growing the znode's blocksize. 3319 */ 3320 zfs_grow_blocksize(zp, len, tx); 3321 3322 VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, 3323 zp->z_id, 0, FTAG, &dbp)); 3324 dmu_buf_will_dirty(dbp, tx); 3325 3326 ASSERT3U(len, <=, dbp->db_size); 3327 bcopy(link, dbp->db_data, len); 3328 dmu_buf_rele(dbp, FTAG); 3329 } 3330 zp->z_phys->zp_size = len; 3331 3332 /* 3333 * Insert the new object into the directory. 3334 */ 3335 (void) zfs_link_create(dl, zp, tx, ZNEW); 3336 out: 3337 if (error == 0) { 3338 uint64_t txtype = TX_SYMLINK; 3339 if (flags & FIGNORECASE) 3340 txtype |= TX_CI; 3341 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3342 } 3343 if (fuidp) 3344 zfs_fuid_info_free(fuidp); 3345 3346 dmu_tx_commit(tx); 3347 3348 zfs_dirent_unlock(dl); 3349 3350 VN_RELE(ZTOV(zp)); 3351 3352 ZFS_EXIT(zfsvfs); 3353 return (error); 3354 } 3355 3356 /* 3357 * Return, in the buffer contained in the provided uio structure, 3358 * the symbolic path referred to by vp. 3359 * 3360 * IN: vp - vnode of symbolic link. 3361 * uoip - structure to contain the link path. 3362 * cr - credentials of caller. 3363 * ct - caller context 3364 * 3365 * OUT: uio - structure to contain the link path. 3366 * 3367 * RETURN: 0 if success 3368 * error code if failure 3369 * 3370 * Timestamps: 3371 * vp - atime updated 3372 */ 3373 /* ARGSUSED */ 3374 static int 3375 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3376 { 3377 znode_t *zp = VTOZ(vp); 3378 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3379 size_t bufsz; 3380 int error; 3381 3382 ZFS_ENTER(zfsvfs); 3383 ZFS_VERIFY_ZP(zp); 3384 3385 bufsz = (size_t)zp->z_phys->zp_size; 3386 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 3387 error = uiomove(zp->z_phys + 1, 3388 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3389 } else { 3390 dmu_buf_t *dbp; 3391 error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp); 3392 if (error) { 3393 ZFS_EXIT(zfsvfs); 3394 return (error); 3395 } 3396 error = uiomove(dbp->db_data, 3397 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3398 dmu_buf_rele(dbp, FTAG); 3399 } 3400 3401 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3402 ZFS_EXIT(zfsvfs); 3403 return (error); 3404 } 3405 3406 /* 3407 * Insert a new entry into directory tdvp referencing svp. 3408 * 3409 * IN: tdvp - Directory to contain new entry. 3410 * svp - vnode of new entry. 3411 * name - name of new entry. 3412 * cr - credentials of caller. 3413 * ct - caller context 3414 * 3415 * RETURN: 0 if success 3416 * error code if failure 3417 * 3418 * Timestamps: 3419 * tdvp - ctime|mtime updated 3420 * svp - ctime updated 3421 */ 3422 /* ARGSUSED */ 3423 static int 3424 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3425 caller_context_t *ct, int flags) 3426 { 3427 znode_t *dzp = VTOZ(tdvp); 3428 znode_t *tzp, *szp; 3429 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3430 zilog_t *zilog; 3431 zfs_dirlock_t *dl; 3432 dmu_tx_t *tx; 3433 vnode_t *realvp; 3434 int error; 3435 int zf = ZNEW; 3436 uid_t owner; 3437 3438 ASSERT(tdvp->v_type == VDIR); 3439 3440 ZFS_ENTER(zfsvfs); 3441 ZFS_VERIFY_ZP(dzp); 3442 zilog = zfsvfs->z_log; 3443 3444 if (VOP_REALVP(svp, &realvp, ct) == 0) 3445 svp = realvp; 3446 3447 if (svp->v_vfsp != tdvp->v_vfsp) { 3448 ZFS_EXIT(zfsvfs); 3449 return (EXDEV); 3450 } 3451 szp = VTOZ(svp); 3452 ZFS_VERIFY_ZP(szp); 3453 3454 if (zfsvfs->z_utf8 && u8_validate(name, 3455 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3456 ZFS_EXIT(zfsvfs); 3457 return (EILSEQ); 3458 } 3459 if (flags & FIGNORECASE) 3460 zf |= ZCILOOK; 3461 3462 top: 3463 /* 3464 * We do not support links between attributes and non-attributes 3465 * because of the potential security risk of creating links 3466 * into "normal" file space in order to circumvent restrictions 3467 * imposed in attribute space. 3468 */ 3469 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 3470 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 3471 ZFS_EXIT(zfsvfs); 3472 return (EINVAL); 3473 } 3474 3475 /* 3476 * POSIX dictates that we return EPERM here. 3477 * Better choices include ENOTSUP or EISDIR. 3478 */ 3479 if (svp->v_type == VDIR) { 3480 ZFS_EXIT(zfsvfs); 3481 return (EPERM); 3482 } 3483 3484 owner = zfs_fuid_map_id(zfsvfs, szp->z_phys->zp_uid, cr, ZFS_OWNER); 3485 if (owner != crgetuid(cr) && 3486 secpolicy_basic_link(cr) != 0) { 3487 ZFS_EXIT(zfsvfs); 3488 return (EPERM); 3489 } 3490 3491 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3492 ZFS_EXIT(zfsvfs); 3493 return (error); 3494 } 3495 3496 /* 3497 * Attempt to lock directory; fail if entry already exists. 3498 */ 3499 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 3500 if (error) { 3501 ZFS_EXIT(zfsvfs); 3502 return (error); 3503 } 3504 3505 tx = dmu_tx_create(zfsvfs->z_os); 3506 dmu_tx_hold_bonus(tx, szp->z_id); 3507 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3508 error = dmu_tx_assign(tx, TXG_NOWAIT); 3509 if (error) { 3510 zfs_dirent_unlock(dl); 3511 if (error == ERESTART) { 3512 dmu_tx_wait(tx); 3513 dmu_tx_abort(tx); 3514 goto top; 3515 } 3516 dmu_tx_abort(tx); 3517 ZFS_EXIT(zfsvfs); 3518 return (error); 3519 } 3520 3521 error = zfs_link_create(dl, szp, tx, 0); 3522 3523 if (error == 0) { 3524 uint64_t txtype = TX_LINK; 3525 if (flags & FIGNORECASE) 3526 txtype |= TX_CI; 3527 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 3528 } 3529 3530 dmu_tx_commit(tx); 3531 3532 zfs_dirent_unlock(dl); 3533 3534 if (error == 0) { 3535 vnevent_link(svp, ct); 3536 } 3537 3538 ZFS_EXIT(zfsvfs); 3539 return (error); 3540 } 3541 3542 /* 3543 * zfs_null_putapage() is used when the file system has been force 3544 * unmounted. It just drops the pages. 3545 */ 3546 /* ARGSUSED */ 3547 static int 3548 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3549 size_t *lenp, int flags, cred_t *cr) 3550 { 3551 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 3552 return (0); 3553 } 3554 3555 /* 3556 * Push a page out to disk, klustering if possible. 3557 * 3558 * IN: vp - file to push page to. 3559 * pp - page to push. 3560 * flags - additional flags. 3561 * cr - credentials of caller. 3562 * 3563 * OUT: offp - start of range pushed. 3564 * lenp - len of range pushed. 3565 * 3566 * RETURN: 0 if success 3567 * error code if failure 3568 * 3569 * NOTE: callers must have locked the page to be pushed. On 3570 * exit, the page (and all other pages in the kluster) must be 3571 * unlocked. 3572 */ 3573 /* ARGSUSED */ 3574 static int 3575 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3576 size_t *lenp, int flags, cred_t *cr) 3577 { 3578 znode_t *zp = VTOZ(vp); 3579 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3580 dmu_tx_t *tx; 3581 u_offset_t off, koff; 3582 size_t len, klen; 3583 uint64_t filesz; 3584 int err; 3585 3586 filesz = zp->z_phys->zp_size; 3587 off = pp->p_offset; 3588 len = PAGESIZE; 3589 /* 3590 * If our blocksize is bigger than the page size, try to kluster 3591 * multiple pages so that we write a full block (thus avoiding 3592 * a read-modify-write). 3593 */ 3594 if (off < filesz && zp->z_blksz > PAGESIZE) { 3595 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3596 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 3597 ASSERT(koff <= filesz); 3598 if (koff + klen > filesz) 3599 klen = P2ROUNDUP(filesz - koff, (uint64_t)PAGESIZE); 3600 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 3601 } 3602 ASSERT3U(btop(len), ==, btopr(len)); 3603 3604 /* 3605 * Can't push pages past end-of-file. 3606 */ 3607 if (off >= filesz) { 3608 /* ignore all pages */ 3609 err = 0; 3610 goto out; 3611 } else if (off + len > filesz) { 3612 int npages = btopr(filesz - off); 3613 page_t *trunc; 3614 3615 page_list_break(&pp, &trunc, npages); 3616 /* ignore pages past end of file */ 3617 if (trunc) 3618 pvn_write_done(trunc, flags); 3619 len = filesz - off; 3620 } 3621 top: 3622 tx = dmu_tx_create(zfsvfs->z_os); 3623 dmu_tx_hold_write(tx, zp->z_id, off, len); 3624 dmu_tx_hold_bonus(tx, zp->z_id); 3625 err = dmu_tx_assign(tx, TXG_NOWAIT); 3626 if (err != 0) { 3627 if (err == ERESTART) { 3628 dmu_tx_wait(tx); 3629 dmu_tx_abort(tx); 3630 goto top; 3631 } 3632 dmu_tx_abort(tx); 3633 goto out; 3634 } 3635 3636 if (zp->z_blksz <= PAGESIZE) { 3637 caddr_t va = zfs_map_page(pp, S_READ); 3638 ASSERT3U(len, <=, PAGESIZE); 3639 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 3640 zfs_unmap_page(pp, va); 3641 } else { 3642 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 3643 } 3644 3645 if (err == 0) { 3646 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 3647 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 3648 dmu_tx_commit(tx); 3649 } 3650 3651 out: 3652 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 3653 if (offp) 3654 *offp = off; 3655 if (lenp) 3656 *lenp = len; 3657 3658 return (err); 3659 } 3660 3661 /* 3662 * Copy the portion of the file indicated from pages into the file. 3663 * The pages are stored in a page list attached to the files vnode. 3664 * 3665 * IN: vp - vnode of file to push page data to. 3666 * off - position in file to put data. 3667 * len - amount of data to write. 3668 * flags - flags to control the operation. 3669 * cr - credentials of caller. 3670 * ct - caller context. 3671 * 3672 * RETURN: 0 if success 3673 * error code if failure 3674 * 3675 * Timestamps: 3676 * vp - ctime|mtime updated 3677 */ 3678 /*ARGSUSED*/ 3679 static int 3680 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 3681 caller_context_t *ct) 3682 { 3683 znode_t *zp = VTOZ(vp); 3684 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3685 page_t *pp; 3686 size_t io_len; 3687 u_offset_t io_off; 3688 uint_t blksz; 3689 rl_t *rl; 3690 int error = 0; 3691 3692 ZFS_ENTER(zfsvfs); 3693 ZFS_VERIFY_ZP(zp); 3694 3695 /* 3696 * Align this request to the file block size in case we kluster. 3697 * XXX - this can result in pretty aggresive locking, which can 3698 * impact simultanious read/write access. One option might be 3699 * to break up long requests (len == 0) into block-by-block 3700 * operations to get narrower locking. 3701 */ 3702 blksz = zp->z_blksz; 3703 if (ISP2(blksz)) 3704 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 3705 else 3706 io_off = 0; 3707 if (len > 0 && ISP2(blksz)) 3708 io_len = P2ROUNDUP_TYPED(len + (io_off - off), blksz, size_t); 3709 else 3710 io_len = 0; 3711 3712 if (io_len == 0) { 3713 /* 3714 * Search the entire vp list for pages >= io_off. 3715 */ 3716 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 3717 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 3718 goto out; 3719 } 3720 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 3721 3722 if (off > zp->z_phys->zp_size) { 3723 /* past end of file */ 3724 zfs_range_unlock(rl); 3725 ZFS_EXIT(zfsvfs); 3726 return (0); 3727 } 3728 3729 len = MIN(io_len, P2ROUNDUP(zp->z_phys->zp_size, PAGESIZE) - io_off); 3730 3731 for (off = io_off; io_off < off + len; io_off += io_len) { 3732 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 3733 pp = page_lookup(vp, io_off, 3734 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 3735 } else { 3736 pp = page_lookup_nowait(vp, io_off, 3737 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 3738 } 3739 3740 if (pp != NULL && pvn_getdirty(pp, flags)) { 3741 int err; 3742 3743 /* 3744 * Found a dirty page to push 3745 */ 3746 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 3747 if (err) 3748 error = err; 3749 } else { 3750 io_len = PAGESIZE; 3751 } 3752 } 3753 out: 3754 zfs_range_unlock(rl); 3755 if ((flags & B_ASYNC) == 0) 3756 zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id); 3757 ZFS_EXIT(zfsvfs); 3758 return (error); 3759 } 3760 3761 /*ARGSUSED*/ 3762 void 3763 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 3764 { 3765 znode_t *zp = VTOZ(vp); 3766 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3767 int error; 3768 3769 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 3770 if (zp->z_dbuf == NULL) { 3771 /* 3772 * The fs has been unmounted, or we did a 3773 * suspend/resume and this file no longer exists. 3774 */ 3775 if (vn_has_cached_data(vp)) { 3776 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 3777 B_INVAL, cr); 3778 } 3779 3780 mutex_enter(&zp->z_lock); 3781 vp->v_count = 0; /* count arrives as 1 */ 3782 mutex_exit(&zp->z_lock); 3783 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3784 zfs_znode_free(zp); 3785 return; 3786 } 3787 3788 /* 3789 * Attempt to push any data in the page cache. If this fails 3790 * we will get kicked out later in zfs_zinactive(). 3791 */ 3792 if (vn_has_cached_data(vp)) { 3793 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 3794 cr); 3795 } 3796 3797 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 3798 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 3799 3800 dmu_tx_hold_bonus(tx, zp->z_id); 3801 error = dmu_tx_assign(tx, TXG_WAIT); 3802 if (error) { 3803 dmu_tx_abort(tx); 3804 } else { 3805 dmu_buf_will_dirty(zp->z_dbuf, tx); 3806 mutex_enter(&zp->z_lock); 3807 zp->z_atime_dirty = 0; 3808 mutex_exit(&zp->z_lock); 3809 dmu_tx_commit(tx); 3810 } 3811 } 3812 3813 zfs_zinactive(zp); 3814 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3815 } 3816 3817 /* 3818 * Bounds-check the seek operation. 3819 * 3820 * IN: vp - vnode seeking within 3821 * ooff - old file offset 3822 * noffp - pointer to new file offset 3823 * ct - caller context 3824 * 3825 * RETURN: 0 if success 3826 * EINVAL if new offset invalid 3827 */ 3828 /* ARGSUSED */ 3829 static int 3830 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 3831 caller_context_t *ct) 3832 { 3833 if (vp->v_type == VDIR) 3834 return (0); 3835 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 3836 } 3837 3838 /* 3839 * Pre-filter the generic locking function to trap attempts to place 3840 * a mandatory lock on a memory mapped file. 3841 */ 3842 static int 3843 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 3844 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 3845 { 3846 znode_t *zp = VTOZ(vp); 3847 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3848 int error; 3849 3850 ZFS_ENTER(zfsvfs); 3851 ZFS_VERIFY_ZP(zp); 3852 3853 /* 3854 * We are following the UFS semantics with respect to mapcnt 3855 * here: If we see that the file is mapped already, then we will 3856 * return an error, but we don't worry about races between this 3857 * function and zfs_map(). 3858 */ 3859 if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) { 3860 ZFS_EXIT(zfsvfs); 3861 return (EAGAIN); 3862 } 3863 error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct); 3864 ZFS_EXIT(zfsvfs); 3865 return (error); 3866 } 3867 3868 /* 3869 * If we can't find a page in the cache, we will create a new page 3870 * and fill it with file data. For efficiency, we may try to fill 3871 * multiple pages at once (klustering) to fill up the supplied page 3872 * list. 3873 */ 3874 static int 3875 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 3876 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 3877 { 3878 znode_t *zp = VTOZ(vp); 3879 page_t *pp, *cur_pp; 3880 objset_t *os = zp->z_zfsvfs->z_os; 3881 u_offset_t io_off, total; 3882 size_t io_len; 3883 int err; 3884 3885 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 3886 /* 3887 * We only have a single page, don't bother klustering 3888 */ 3889 io_off = off; 3890 io_len = PAGESIZE; 3891 pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr); 3892 } else { 3893 /* 3894 * Try to find enough pages to fill the page list 3895 */ 3896 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3897 &io_len, off, plsz, 0); 3898 } 3899 if (pp == NULL) { 3900 /* 3901 * The page already exists, nothing to do here. 3902 */ 3903 *pl = NULL; 3904 return (0); 3905 } 3906 3907 /* 3908 * Fill the pages in the kluster. 3909 */ 3910 cur_pp = pp; 3911 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 3912 caddr_t va; 3913 3914 ASSERT3U(io_off, ==, cur_pp->p_offset); 3915 va = zfs_map_page(cur_pp, S_WRITE); 3916 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va); 3917 zfs_unmap_page(cur_pp, va); 3918 if (err) { 3919 /* On error, toss the entire kluster */ 3920 pvn_read_done(pp, B_ERROR); 3921 /* convert checksum errors into IO errors */ 3922 if (err == ECKSUM) 3923 err = EIO; 3924 return (err); 3925 } 3926 cur_pp = cur_pp->p_next; 3927 } 3928 3929 /* 3930 * Fill in the page list array from the kluster starting 3931 * from the desired offset `off'. 3932 * NOTE: the page list will always be null terminated. 3933 */ 3934 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3935 ASSERT(pl == NULL || (*pl)->p_offset == off); 3936 3937 return (0); 3938 } 3939 3940 /* 3941 * Return pointers to the pages for the file region [off, off + len] 3942 * in the pl array. If plsz is greater than len, this function may 3943 * also return page pointers from after the specified region 3944 * (i.e. the region [off, off + plsz]). These additional pages are 3945 * only returned if they are already in the cache, or were created as 3946 * part of a klustered read. 3947 * 3948 * IN: vp - vnode of file to get data from. 3949 * off - position in file to get data from. 3950 * len - amount of data to retrieve. 3951 * plsz - length of provided page list. 3952 * seg - segment to obtain pages for. 3953 * addr - virtual address of fault. 3954 * rw - mode of created pages. 3955 * cr - credentials of caller. 3956 * ct - caller context. 3957 * 3958 * OUT: protp - protection mode of created pages. 3959 * pl - list of pages created. 3960 * 3961 * RETURN: 0 if success 3962 * error code if failure 3963 * 3964 * Timestamps: 3965 * vp - atime updated 3966 */ 3967 /* ARGSUSED */ 3968 static int 3969 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3970 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3971 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 3972 { 3973 znode_t *zp = VTOZ(vp); 3974 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3975 page_t **pl0 = pl; 3976 int err = 0; 3977 3978 /* we do our own caching, faultahead is unnecessary */ 3979 if (pl == NULL) 3980 return (0); 3981 else if (len > plsz) 3982 len = plsz; 3983 else 3984 len = P2ROUNDUP(len, PAGESIZE); 3985 ASSERT(plsz >= len); 3986 3987 ZFS_ENTER(zfsvfs); 3988 ZFS_VERIFY_ZP(zp); 3989 3990 if (protp) 3991 *protp = PROT_ALL; 3992 3993 /* 3994 * Loop through the requested range [off, off + len] looking 3995 * for pages. If we don't find a page, we will need to create 3996 * a new page and fill it with data from the file. 3997 */ 3998 while (len > 0) { 3999 if (*pl = page_lookup(vp, off, SE_SHARED)) 4000 *(pl+1) = NULL; 4001 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4002 goto out; 4003 while (*pl) { 4004 ASSERT3U((*pl)->p_offset, ==, off); 4005 off += PAGESIZE; 4006 addr += PAGESIZE; 4007 if (len > 0) { 4008 ASSERT3U(len, >=, PAGESIZE); 4009 len -= PAGESIZE; 4010 } 4011 ASSERT3U(plsz, >=, PAGESIZE); 4012 plsz -= PAGESIZE; 4013 pl++; 4014 } 4015 } 4016 4017 /* 4018 * Fill out the page array with any pages already in the cache. 4019 */ 4020 while (plsz > 0 && 4021 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4022 off += PAGESIZE; 4023 plsz -= PAGESIZE; 4024 } 4025 out: 4026 if (err) { 4027 /* 4028 * Release any pages we have previously locked. 4029 */ 4030 while (pl > pl0) 4031 page_unlock(*--pl); 4032 } else { 4033 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4034 } 4035 4036 *pl = NULL; 4037 4038 ZFS_EXIT(zfsvfs); 4039 return (err); 4040 } 4041 4042 /* 4043 * Request a memory map for a section of a file. This code interacts 4044 * with common code and the VM system as follows: 4045 * 4046 * common code calls mmap(), which ends up in smmap_common() 4047 * 4048 * this calls VOP_MAP(), which takes you into (say) zfs 4049 * 4050 * zfs_map() calls as_map(), passing segvn_create() as the callback 4051 * 4052 * segvn_create() creates the new segment and calls VOP_ADDMAP() 4053 * 4054 * zfs_addmap() updates z_mapcnt 4055 */ 4056 /*ARGSUSED*/ 4057 static int 4058 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4059 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4060 caller_context_t *ct) 4061 { 4062 znode_t *zp = VTOZ(vp); 4063 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4064 segvn_crargs_t vn_a; 4065 int error; 4066 4067 ZFS_ENTER(zfsvfs); 4068 ZFS_VERIFY_ZP(zp); 4069 4070 if ((prot & PROT_WRITE) && 4071 (zp->z_phys->zp_flags & (ZFS_IMMUTABLE | ZFS_READONLY | 4072 ZFS_APPENDONLY))) { 4073 ZFS_EXIT(zfsvfs); 4074 return (EPERM); 4075 } 4076 4077 if ((prot & (PROT_READ | PROT_EXEC)) && 4078 (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED)) { 4079 ZFS_EXIT(zfsvfs); 4080 return (EACCES); 4081 } 4082 4083 if (vp->v_flag & VNOMAP) { 4084 ZFS_EXIT(zfsvfs); 4085 return (ENOSYS); 4086 } 4087 4088 if (off < 0 || len > MAXOFFSET_T - off) { 4089 ZFS_EXIT(zfsvfs); 4090 return (ENXIO); 4091 } 4092 4093 if (vp->v_type != VREG) { 4094 ZFS_EXIT(zfsvfs); 4095 return (ENODEV); 4096 } 4097 4098 /* 4099 * If file is locked, disallow mapping. 4100 */ 4101 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) { 4102 ZFS_EXIT(zfsvfs); 4103 return (EAGAIN); 4104 } 4105 4106 as_rangelock(as); 4107 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4108 if (error != 0) { 4109 as_rangeunlock(as); 4110 ZFS_EXIT(zfsvfs); 4111 return (error); 4112 } 4113 4114 vn_a.vp = vp; 4115 vn_a.offset = (u_offset_t)off; 4116 vn_a.type = flags & MAP_TYPE; 4117 vn_a.prot = prot; 4118 vn_a.maxprot = maxprot; 4119 vn_a.cred = cr; 4120 vn_a.amp = NULL; 4121 vn_a.flags = flags & ~MAP_TYPE; 4122 vn_a.szc = 0; 4123 vn_a.lgrp_mem_policy_flags = 0; 4124 4125 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4126 4127 as_rangeunlock(as); 4128 ZFS_EXIT(zfsvfs); 4129 return (error); 4130 } 4131 4132 /* ARGSUSED */ 4133 static int 4134 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4135 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4136 caller_context_t *ct) 4137 { 4138 uint64_t pages = btopr(len); 4139 4140 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4141 return (0); 4142 } 4143 4144 /* 4145 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4146 * more accurate mtime for the associated file. Since we don't have a way of 4147 * detecting when the data was actually modified, we have to resort to 4148 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4149 * last page is pushed. The problem occurs when the msync() call is omitted, 4150 * which by far the most common case: 4151 * 4152 * open() 4153 * mmap() 4154 * <modify memory> 4155 * munmap() 4156 * close() 4157 * <time lapse> 4158 * putpage() via fsflush 4159 * 4160 * If we wait until fsflush to come along, we can have a modification time that 4161 * is some arbitrary point in the future. In order to prevent this in the 4162 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4163 * torn down. 4164 */ 4165 /* ARGSUSED */ 4166 static int 4167 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4168 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4169 caller_context_t *ct) 4170 { 4171 uint64_t pages = btopr(len); 4172 4173 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4174 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4175 4176 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4177 vn_has_cached_data(vp)) 4178 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4179 4180 return (0); 4181 } 4182 4183 /* 4184 * Free or allocate space in a file. Currently, this function only 4185 * supports the `F_FREESP' command. However, this command is somewhat 4186 * misnamed, as its functionality includes the ability to allocate as 4187 * well as free space. 4188 * 4189 * IN: vp - vnode of file to free data in. 4190 * cmd - action to take (only F_FREESP supported). 4191 * bfp - section of file to free/alloc. 4192 * flag - current file open mode flags. 4193 * offset - current file offset. 4194 * cr - credentials of caller [UNUSED]. 4195 * ct - caller context. 4196 * 4197 * RETURN: 0 if success 4198 * error code if failure 4199 * 4200 * Timestamps: 4201 * vp - ctime|mtime updated 4202 */ 4203 /* ARGSUSED */ 4204 static int 4205 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4206 offset_t offset, cred_t *cr, caller_context_t *ct) 4207 { 4208 znode_t *zp = VTOZ(vp); 4209 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4210 uint64_t off, len; 4211 int error; 4212 4213 ZFS_ENTER(zfsvfs); 4214 ZFS_VERIFY_ZP(zp); 4215 4216 if (cmd != F_FREESP) { 4217 ZFS_EXIT(zfsvfs); 4218 return (EINVAL); 4219 } 4220 4221 if (error = convoff(vp, bfp, 0, offset)) { 4222 ZFS_EXIT(zfsvfs); 4223 return (error); 4224 } 4225 4226 if (bfp->l_len < 0) { 4227 ZFS_EXIT(zfsvfs); 4228 return (EINVAL); 4229 } 4230 4231 off = bfp->l_start; 4232 len = bfp->l_len; /* 0 means from off to end of file */ 4233 4234 error = zfs_freesp(zp, off, len, flag, TRUE); 4235 4236 ZFS_EXIT(zfsvfs); 4237 return (error); 4238 } 4239 4240 /*ARGSUSED*/ 4241 static int 4242 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4243 { 4244 znode_t *zp = VTOZ(vp); 4245 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4246 uint32_t gen; 4247 uint64_t object = zp->z_id; 4248 zfid_short_t *zfid; 4249 int size, i; 4250 4251 ZFS_ENTER(zfsvfs); 4252 ZFS_VERIFY_ZP(zp); 4253 gen = (uint32_t)zp->z_gen; 4254 4255 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4256 if (fidp->fid_len < size) { 4257 fidp->fid_len = size; 4258 ZFS_EXIT(zfsvfs); 4259 return (ENOSPC); 4260 } 4261 4262 zfid = (zfid_short_t *)fidp; 4263 4264 zfid->zf_len = size; 4265 4266 for (i = 0; i < sizeof (zfid->zf_object); i++) 4267 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4268 4269 /* Must have a non-zero generation number to distinguish from .zfs */ 4270 if (gen == 0) 4271 gen = 1; 4272 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4273 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4274 4275 if (size == LONG_FID_LEN) { 4276 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4277 zfid_long_t *zlfid; 4278 4279 zlfid = (zfid_long_t *)fidp; 4280 4281 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4282 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4283 4284 /* XXX - this should be the generation number for the objset */ 4285 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4286 zlfid->zf_setgen[i] = 0; 4287 } 4288 4289 ZFS_EXIT(zfsvfs); 4290 return (0); 4291 } 4292 4293 static int 4294 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4295 caller_context_t *ct) 4296 { 4297 znode_t *zp, *xzp; 4298 zfsvfs_t *zfsvfs; 4299 zfs_dirlock_t *dl; 4300 int error; 4301 4302 switch (cmd) { 4303 case _PC_LINK_MAX: 4304 *valp = ULONG_MAX; 4305 return (0); 4306 4307 case _PC_FILESIZEBITS: 4308 *valp = 64; 4309 return (0); 4310 4311 case _PC_XATTR_EXISTS: 4312 zp = VTOZ(vp); 4313 zfsvfs = zp->z_zfsvfs; 4314 ZFS_ENTER(zfsvfs); 4315 ZFS_VERIFY_ZP(zp); 4316 *valp = 0; 4317 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4318 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4319 if (error == 0) { 4320 zfs_dirent_unlock(dl); 4321 if (!zfs_dirempty(xzp)) 4322 *valp = 1; 4323 VN_RELE(ZTOV(xzp)); 4324 } else if (error == ENOENT) { 4325 /* 4326 * If there aren't extended attributes, it's the 4327 * same as having zero of them. 4328 */ 4329 error = 0; 4330 } 4331 ZFS_EXIT(zfsvfs); 4332 return (error); 4333 4334 case _PC_SATTR_ENABLED: 4335 case _PC_SATTR_EXISTS: 4336 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4337 (vp->v_type == VREG || vp->v_type == VDIR); 4338 return (0); 4339 4340 case _PC_ACL_ENABLED: 4341 *valp = _ACL_ACE_ENABLED; 4342 return (0); 4343 4344 case _PC_MIN_HOLE_SIZE: 4345 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4346 return (0); 4347 4348 default: 4349 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4350 } 4351 } 4352 4353 /*ARGSUSED*/ 4354 static int 4355 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4356 caller_context_t *ct) 4357 { 4358 znode_t *zp = VTOZ(vp); 4359 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4360 int error; 4361 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4362 4363 ZFS_ENTER(zfsvfs); 4364 ZFS_VERIFY_ZP(zp); 4365 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4366 ZFS_EXIT(zfsvfs); 4367 4368 return (error); 4369 } 4370 4371 /*ARGSUSED*/ 4372 static int 4373 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4374 caller_context_t *ct) 4375 { 4376 znode_t *zp = VTOZ(vp); 4377 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4378 int error; 4379 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4380 4381 ZFS_ENTER(zfsvfs); 4382 ZFS_VERIFY_ZP(zp); 4383 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4384 ZFS_EXIT(zfsvfs); 4385 return (error); 4386 } 4387 4388 /* 4389 * Predeclare these here so that the compiler assumes that 4390 * this is an "old style" function declaration that does 4391 * not include arguments => we won't get type mismatch errors 4392 * in the initializations that follow. 4393 */ 4394 static int zfs_inval(); 4395 static int zfs_isdir(); 4396 4397 static int 4398 zfs_inval() 4399 { 4400 return (EINVAL); 4401 } 4402 4403 static int 4404 zfs_isdir() 4405 { 4406 return (EISDIR); 4407 } 4408 /* 4409 * Directory vnode operations template 4410 */ 4411 vnodeops_t *zfs_dvnodeops; 4412 const fs_operation_def_t zfs_dvnodeops_template[] = { 4413 VOPNAME_OPEN, { .vop_open = zfs_open }, 4414 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4415 VOPNAME_READ, { .error = zfs_isdir }, 4416 VOPNAME_WRITE, { .error = zfs_isdir }, 4417 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4418 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4419 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4420 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4421 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4422 VOPNAME_CREATE, { .vop_create = zfs_create }, 4423 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4424 VOPNAME_LINK, { .vop_link = zfs_link }, 4425 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4426 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 4427 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4428 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4429 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 4430 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4431 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4432 VOPNAME_FID, { .vop_fid = zfs_fid }, 4433 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4434 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4435 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4436 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4437 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4438 NULL, NULL 4439 }; 4440 4441 /* 4442 * Regular file vnode operations template 4443 */ 4444 vnodeops_t *zfs_fvnodeops; 4445 const fs_operation_def_t zfs_fvnodeops_template[] = { 4446 VOPNAME_OPEN, { .vop_open = zfs_open }, 4447 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4448 VOPNAME_READ, { .vop_read = zfs_read }, 4449 VOPNAME_WRITE, { .vop_write = zfs_write }, 4450 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4451 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4452 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4453 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4454 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4455 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4456 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4457 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4458 VOPNAME_FID, { .vop_fid = zfs_fid }, 4459 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4460 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 4461 VOPNAME_SPACE, { .vop_space = zfs_space }, 4462 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 4463 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 4464 VOPNAME_MAP, { .vop_map = zfs_map }, 4465 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 4466 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 4467 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4468 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4469 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4470 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4471 NULL, NULL 4472 }; 4473 4474 /* 4475 * Symbolic link vnode operations template 4476 */ 4477 vnodeops_t *zfs_symvnodeops; 4478 const fs_operation_def_t zfs_symvnodeops_template[] = { 4479 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4480 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4481 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4482 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4483 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 4484 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4485 VOPNAME_FID, { .vop_fid = zfs_fid }, 4486 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4487 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4488 NULL, NULL 4489 }; 4490 4491 /* 4492 * special share hidden files vnode operations template 4493 */ 4494 vnodeops_t *zfs_sharevnodeops; 4495 const fs_operation_def_t zfs_sharevnodeops_template[] = { 4496 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4497 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4498 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4499 VOPNAME_FID, { .vop_fid = zfs_fid }, 4500 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4501 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4502 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4503 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4504 NULL, NULL 4505 }; 4506 4507 /* 4508 * Extended attribute directory vnode operations template 4509 * This template is identical to the directory vnodes 4510 * operation template except for restricted operations: 4511 * VOP_MKDIR() 4512 * VOP_SYMLINK() 4513 * Note that there are other restrictions embedded in: 4514 * zfs_create() - restrict type to VREG 4515 * zfs_link() - no links into/out of attribute space 4516 * zfs_rename() - no moves into/out of attribute space 4517 */ 4518 vnodeops_t *zfs_xdvnodeops; 4519 const fs_operation_def_t zfs_xdvnodeops_template[] = { 4520 VOPNAME_OPEN, { .vop_open = zfs_open }, 4521 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4522 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4523 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4524 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4525 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4526 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4527 VOPNAME_CREATE, { .vop_create = zfs_create }, 4528 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4529 VOPNAME_LINK, { .vop_link = zfs_link }, 4530 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4531 VOPNAME_MKDIR, { .error = zfs_inval }, 4532 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4533 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4534 VOPNAME_SYMLINK, { .error = zfs_inval }, 4535 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4536 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4537 VOPNAME_FID, { .vop_fid = zfs_fid }, 4538 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4539 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4540 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4541 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4542 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4543 NULL, NULL 4544 }; 4545 4546 /* 4547 * Error vnode operations template 4548 */ 4549 vnodeops_t *zfs_evnodeops; 4550 const fs_operation_def_t zfs_evnodeops_template[] = { 4551 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4552 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4553 NULL, NULL 4554 }; 4555