1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #include <sys/types.h> 26 #include <sys/param.h> 27 #include <sys/systm.h> 28 #include <sys/sysmacros.h> 29 #include <sys/kmem.h> 30 #include <sys/pathname.h> 31 #include <sys/vnode.h> 32 #include <sys/vfs.h> 33 #include <sys/vfs_opreg.h> 34 #include <sys/mntent.h> 35 #include <sys/mount.h> 36 #include <sys/cmn_err.h> 37 #include "fs/fs_subr.h" 38 #include <sys/zfs_znode.h> 39 #include <sys/zfs_dir.h> 40 #include <sys/zil.h> 41 #include <sys/fs/zfs.h> 42 #include <sys/dmu.h> 43 #include <sys/dsl_prop.h> 44 #include <sys/dsl_dataset.h> 45 #include <sys/dsl_deleg.h> 46 #include <sys/spa.h> 47 #include <sys/zap.h> 48 #include <sys/sa.h> 49 #include <sys/varargs.h> 50 #include <sys/policy.h> 51 #include <sys/atomic.h> 52 #include <sys/mkdev.h> 53 #include <sys/modctl.h> 54 #include <sys/refstr.h> 55 #include <sys/zfs_ioctl.h> 56 #include <sys/zfs_ctldir.h> 57 #include <sys/zfs_fuid.h> 58 #include <sys/bootconf.h> 59 #include <sys/sunddi.h> 60 #include <sys/dnlc.h> 61 #include <sys/dmu_objset.h> 62 #include <sys/spa_boot.h> 63 #include <sys/sa.h> 64 #include "zfs_comutil.h" 65 66 int zfsfstype; 67 vfsops_t *zfs_vfsops = NULL; 68 static major_t zfs_major; 69 static minor_t zfs_minor; 70 static kmutex_t zfs_dev_mtx; 71 72 extern int sys_shutdown; 73 74 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 75 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 76 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 77 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 78 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 79 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 80 static void zfs_freevfs(vfs_t *vfsp); 81 82 static const fs_operation_def_t zfs_vfsops_template[] = { 83 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 84 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 85 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 86 VFSNAME_ROOT, { .vfs_root = zfs_root }, 87 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 88 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 89 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 90 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 91 NULL, NULL 92 }; 93 94 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 95 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 96 NULL, NULL 97 }; 98 99 /* 100 * We need to keep a count of active fs's. 101 * This is necessary to prevent our module 102 * from being unloaded after a umount -f 103 */ 104 static uint32_t zfs_active_fs_count = 0; 105 106 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 107 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 108 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 109 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 110 111 /* 112 * MO_DEFAULT is not used since the default value is determined 113 * by the equivalent property. 114 */ 115 static mntopt_t mntopts[] = { 116 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 117 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 118 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 119 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 120 }; 121 122 static mntopts_t zfs_mntopts = { 123 sizeof (mntopts) / sizeof (mntopt_t), 124 mntopts 125 }; 126 127 /*ARGSUSED*/ 128 int 129 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 130 { 131 /* 132 * Data integrity is job one. We don't want a compromised kernel 133 * writing to the storage pool, so we never sync during panic. 134 */ 135 if (panicstr) 136 return (0); 137 138 /* 139 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 140 * to sync metadata, which they would otherwise cache indefinitely. 141 * Semantically, the only requirement is that the sync be initiated. 142 * The DMU syncs out txgs frequently, so there's nothing to do. 143 */ 144 if (flag & SYNC_ATTR) 145 return (0); 146 147 if (vfsp != NULL) { 148 /* 149 * Sync a specific filesystem. 150 */ 151 zfsvfs_t *zfsvfs = vfsp->vfs_data; 152 dsl_pool_t *dp; 153 154 ZFS_ENTER(zfsvfs); 155 dp = dmu_objset_pool(zfsvfs->z_os); 156 157 /* 158 * If the system is shutting down, then skip any 159 * filesystems which may exist on a suspended pool. 160 */ 161 if (sys_shutdown && spa_suspended(dp->dp_spa)) { 162 ZFS_EXIT(zfsvfs); 163 return (0); 164 } 165 166 if (zfsvfs->z_log != NULL) 167 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 168 else 169 txg_wait_synced(dp, 0); 170 ZFS_EXIT(zfsvfs); 171 } else { 172 /* 173 * Sync all ZFS filesystems. This is what happens when you 174 * run sync(1M). Unlike other filesystems, ZFS honors the 175 * request by waiting for all pools to commit all dirty data. 176 */ 177 spa_sync_allpools(); 178 } 179 180 return (0); 181 } 182 183 static int 184 zfs_create_unique_device(dev_t *dev) 185 { 186 major_t new_major; 187 188 do { 189 ASSERT3U(zfs_minor, <=, MAXMIN32); 190 minor_t start = zfs_minor; 191 do { 192 mutex_enter(&zfs_dev_mtx); 193 if (zfs_minor >= MAXMIN32) { 194 /* 195 * If we're still using the real major 196 * keep out of /dev/zfs and /dev/zvol minor 197 * number space. If we're using a getudev()'ed 198 * major number, we can use all of its minors. 199 */ 200 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 201 zfs_minor = ZFS_MIN_MINOR; 202 else 203 zfs_minor = 0; 204 } else { 205 zfs_minor++; 206 } 207 *dev = makedevice(zfs_major, zfs_minor); 208 mutex_exit(&zfs_dev_mtx); 209 } while (vfs_devismounted(*dev) && zfs_minor != start); 210 if (zfs_minor == start) { 211 /* 212 * We are using all ~262,000 minor numbers for the 213 * current major number. Create a new major number. 214 */ 215 if ((new_major = getudev()) == (major_t)-1) { 216 cmn_err(CE_WARN, 217 "zfs_mount: Can't get unique major " 218 "device number."); 219 return (-1); 220 } 221 mutex_enter(&zfs_dev_mtx); 222 zfs_major = new_major; 223 zfs_minor = 0; 224 225 mutex_exit(&zfs_dev_mtx); 226 } else { 227 break; 228 } 229 /* CONSTANTCONDITION */ 230 } while (1); 231 232 return (0); 233 } 234 235 static void 236 atime_changed_cb(void *arg, uint64_t newval) 237 { 238 zfsvfs_t *zfsvfs = arg; 239 240 if (newval == TRUE) { 241 zfsvfs->z_atime = TRUE; 242 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 243 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 244 } else { 245 zfsvfs->z_atime = FALSE; 246 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 247 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 248 } 249 } 250 251 static void 252 xattr_changed_cb(void *arg, uint64_t newval) 253 { 254 zfsvfs_t *zfsvfs = arg; 255 256 if (newval == TRUE) { 257 /* XXX locking on vfs_flag? */ 258 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 259 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 260 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 261 } else { 262 /* XXX locking on vfs_flag? */ 263 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 264 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 265 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 266 } 267 } 268 269 static void 270 blksz_changed_cb(void *arg, uint64_t newval) 271 { 272 zfsvfs_t *zfsvfs = arg; 273 274 if (newval < SPA_MINBLOCKSIZE || 275 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 276 newval = SPA_MAXBLOCKSIZE; 277 278 zfsvfs->z_max_blksz = newval; 279 zfsvfs->z_vfs->vfs_bsize = newval; 280 } 281 282 static void 283 readonly_changed_cb(void *arg, uint64_t newval) 284 { 285 zfsvfs_t *zfsvfs = arg; 286 287 if (newval) { 288 /* XXX locking on vfs_flag? */ 289 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 290 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 291 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 292 } else { 293 /* XXX locking on vfs_flag? */ 294 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 295 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 296 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 297 } 298 } 299 300 static void 301 devices_changed_cb(void *arg, uint64_t newval) 302 { 303 zfsvfs_t *zfsvfs = arg; 304 305 if (newval == FALSE) { 306 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 307 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 308 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 309 } else { 310 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 311 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 312 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 313 } 314 } 315 316 static void 317 setuid_changed_cb(void *arg, uint64_t newval) 318 { 319 zfsvfs_t *zfsvfs = arg; 320 321 if (newval == FALSE) { 322 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 323 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 324 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 325 } else { 326 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 327 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 328 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 329 } 330 } 331 332 static void 333 exec_changed_cb(void *arg, uint64_t newval) 334 { 335 zfsvfs_t *zfsvfs = arg; 336 337 if (newval == FALSE) { 338 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 339 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 340 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 341 } else { 342 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 343 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 344 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 345 } 346 } 347 348 /* 349 * The nbmand mount option can be changed at mount time. 350 * We can't allow it to be toggled on live file systems or incorrect 351 * behavior may be seen from cifs clients 352 * 353 * This property isn't registered via dsl_prop_register(), but this callback 354 * will be called when a file system is first mounted 355 */ 356 static void 357 nbmand_changed_cb(void *arg, uint64_t newval) 358 { 359 zfsvfs_t *zfsvfs = arg; 360 if (newval == FALSE) { 361 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 362 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 363 } else { 364 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 365 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 366 } 367 } 368 369 static void 370 snapdir_changed_cb(void *arg, uint64_t newval) 371 { 372 zfsvfs_t *zfsvfs = arg; 373 374 zfsvfs->z_show_ctldir = newval; 375 } 376 377 static void 378 vscan_changed_cb(void *arg, uint64_t newval) 379 { 380 zfsvfs_t *zfsvfs = arg; 381 382 zfsvfs->z_vscan = newval; 383 } 384 385 static void 386 acl_inherit_changed_cb(void *arg, uint64_t newval) 387 { 388 zfsvfs_t *zfsvfs = arg; 389 390 zfsvfs->z_acl_inherit = newval; 391 } 392 393 static int 394 zfs_register_callbacks(vfs_t *vfsp) 395 { 396 struct dsl_dataset *ds = NULL; 397 objset_t *os = NULL; 398 zfsvfs_t *zfsvfs = NULL; 399 uint64_t nbmand; 400 int readonly, do_readonly = B_FALSE; 401 int setuid, do_setuid = B_FALSE; 402 int exec, do_exec = B_FALSE; 403 int devices, do_devices = B_FALSE; 404 int xattr, do_xattr = B_FALSE; 405 int atime, do_atime = B_FALSE; 406 int error = 0; 407 408 ASSERT(vfsp); 409 zfsvfs = vfsp->vfs_data; 410 ASSERT(zfsvfs); 411 os = zfsvfs->z_os; 412 413 /* 414 * The act of registering our callbacks will destroy any mount 415 * options we may have. In order to enable temporary overrides 416 * of mount options, we stash away the current values and 417 * restore them after we register the callbacks. 418 */ 419 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 420 readonly = B_TRUE; 421 do_readonly = B_TRUE; 422 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 423 readonly = B_FALSE; 424 do_readonly = B_TRUE; 425 } 426 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 427 devices = B_FALSE; 428 setuid = B_FALSE; 429 do_devices = B_TRUE; 430 do_setuid = B_TRUE; 431 } else { 432 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 433 devices = B_FALSE; 434 do_devices = B_TRUE; 435 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 436 devices = B_TRUE; 437 do_devices = B_TRUE; 438 } 439 440 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 441 setuid = B_FALSE; 442 do_setuid = B_TRUE; 443 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 444 setuid = B_TRUE; 445 do_setuid = B_TRUE; 446 } 447 } 448 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 449 exec = B_FALSE; 450 do_exec = B_TRUE; 451 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 452 exec = B_TRUE; 453 do_exec = B_TRUE; 454 } 455 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 456 xattr = B_FALSE; 457 do_xattr = B_TRUE; 458 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 459 xattr = B_TRUE; 460 do_xattr = B_TRUE; 461 } 462 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 463 atime = B_FALSE; 464 do_atime = B_TRUE; 465 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 466 atime = B_TRUE; 467 do_atime = B_TRUE; 468 } 469 470 /* 471 * nbmand is a special property. It can only be changed at 472 * mount time. 473 * 474 * This is weird, but it is documented to only be changeable 475 * at mount time. 476 */ 477 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 478 nbmand = B_FALSE; 479 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 480 nbmand = B_TRUE; 481 } else { 482 char osname[MAXNAMELEN]; 483 484 dmu_objset_name(os, osname); 485 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 486 NULL)) { 487 return (error); 488 } 489 } 490 491 /* 492 * Register property callbacks. 493 * 494 * It would probably be fine to just check for i/o error from 495 * the first prop_register(), but I guess I like to go 496 * overboard... 497 */ 498 ds = dmu_objset_ds(os); 499 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 500 error = error ? error : dsl_prop_register(ds, 501 "xattr", xattr_changed_cb, zfsvfs); 502 error = error ? error : dsl_prop_register(ds, 503 "recordsize", blksz_changed_cb, zfsvfs); 504 error = error ? error : dsl_prop_register(ds, 505 "readonly", readonly_changed_cb, zfsvfs); 506 error = error ? error : dsl_prop_register(ds, 507 "devices", devices_changed_cb, zfsvfs); 508 error = error ? error : dsl_prop_register(ds, 509 "setuid", setuid_changed_cb, zfsvfs); 510 error = error ? error : dsl_prop_register(ds, 511 "exec", exec_changed_cb, zfsvfs); 512 error = error ? error : dsl_prop_register(ds, 513 "snapdir", snapdir_changed_cb, zfsvfs); 514 error = error ? error : dsl_prop_register(ds, 515 "aclinherit", acl_inherit_changed_cb, zfsvfs); 516 error = error ? error : dsl_prop_register(ds, 517 "vscan", vscan_changed_cb, zfsvfs); 518 if (error) 519 goto unregister; 520 521 /* 522 * Invoke our callbacks to restore temporary mount options. 523 */ 524 if (do_readonly) 525 readonly_changed_cb(zfsvfs, readonly); 526 if (do_setuid) 527 setuid_changed_cb(zfsvfs, setuid); 528 if (do_exec) 529 exec_changed_cb(zfsvfs, exec); 530 if (do_devices) 531 devices_changed_cb(zfsvfs, devices); 532 if (do_xattr) 533 xattr_changed_cb(zfsvfs, xattr); 534 if (do_atime) 535 atime_changed_cb(zfsvfs, atime); 536 537 nbmand_changed_cb(zfsvfs, nbmand); 538 539 return (0); 540 541 unregister: 542 /* 543 * We may attempt to unregister some callbacks that are not 544 * registered, but this is OK; it will simply return ENOMSG, 545 * which we will ignore. 546 */ 547 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 548 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 549 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 550 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 551 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 552 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 553 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 554 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 555 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 556 zfsvfs); 557 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 558 return (error); 559 560 } 561 562 static void 563 uidacct(objset_t *os, boolean_t isgroup, uint64_t fuid, 564 int64_t delta, dmu_tx_t *tx) 565 { 566 uint64_t used = 0; 567 char buf[32]; 568 int err; 569 uint64_t obj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 570 571 if (delta == 0) 572 return; 573 574 (void) snprintf(buf, sizeof (buf), "%llx", (longlong_t)fuid); 575 err = zap_lookup(os, obj, buf, 8, 1, &used); 576 577 ASSERT(err == 0 || err == ENOENT); 578 /* no underflow/overflow */ 579 ASSERT(delta > 0 || used >= -delta); 580 ASSERT(delta < 0 || used + delta > used); 581 used += delta; 582 if (used == 0) 583 err = zap_remove(os, obj, buf, tx); 584 else 585 err = zap_update(os, obj, buf, 8, 1, &used, tx); 586 ASSERT(err == 0); 587 588 } 589 590 static int 591 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data, 592 uint64_t *userp, uint64_t *groupp) 593 { 594 znode_phys_t *znp = data; 595 int error = 0; 596 597 /* 598 * Is it a valid type of object to track? 599 */ 600 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) 601 return (ENOENT); 602 603 /* 604 * If we have a NULL data pointer 605 * then assume the id's aren't changing and 606 * return EEXIST to the dmu to let it know to 607 * use the same ids 608 */ 609 if (data == NULL) 610 return (EEXIST); 611 612 if (bonustype == DMU_OT_ZNODE) { 613 *userp = znp->zp_uid; 614 *groupp = znp->zp_gid; 615 } else { 616 int hdrsize; 617 618 ASSERT(bonustype == DMU_OT_SA); 619 hdrsize = sa_hdrsize(data); 620 621 if (hdrsize != 0) { 622 *userp = *((uint64_t *)((uintptr_t)data + hdrsize + 623 SA_UID_OFFSET)); 624 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize + 625 SA_GID_OFFSET)); 626 } else { 627 /* 628 * This should only happen for newly created 629 * files that haven't had the znode data filled 630 * in yet. 631 */ 632 *userp = 0; 633 *groupp = 0; 634 } 635 } 636 return (error); 637 } 638 639 static void 640 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, 641 char *domainbuf, int buflen, uid_t *ridp) 642 { 643 uint64_t fuid; 644 const char *domain; 645 646 fuid = strtonum(fuidstr, NULL); 647 648 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); 649 if (domain) 650 (void) strlcpy(domainbuf, domain, buflen); 651 else 652 domainbuf[0] = '\0'; 653 *ridp = FUID_RID(fuid); 654 } 655 656 static uint64_t 657 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) 658 { 659 switch (type) { 660 case ZFS_PROP_USERUSED: 661 return (DMU_USERUSED_OBJECT); 662 case ZFS_PROP_GROUPUSED: 663 return (DMU_GROUPUSED_OBJECT); 664 case ZFS_PROP_USERQUOTA: 665 return (zfsvfs->z_userquota_obj); 666 case ZFS_PROP_GROUPQUOTA: 667 return (zfsvfs->z_groupquota_obj); 668 } 669 return (0); 670 } 671 672 int 673 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 674 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) 675 { 676 int error; 677 zap_cursor_t zc; 678 zap_attribute_t za; 679 zfs_useracct_t *buf = vbuf; 680 uint64_t obj; 681 682 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 683 return (ENOTSUP); 684 685 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 686 if (obj == 0) { 687 *bufsizep = 0; 688 return (0); 689 } 690 691 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); 692 (error = zap_cursor_retrieve(&zc, &za)) == 0; 693 zap_cursor_advance(&zc)) { 694 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > 695 *bufsizep) 696 break; 697 698 fuidstr_to_sid(zfsvfs, za.za_name, 699 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); 700 701 buf->zu_space = za.za_first_integer; 702 buf++; 703 } 704 if (error == ENOENT) 705 error = 0; 706 707 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); 708 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; 709 *cookiep = zap_cursor_serialize(&zc); 710 zap_cursor_fini(&zc); 711 return (error); 712 } 713 714 /* 715 * buf must be big enough (eg, 32 bytes) 716 */ 717 static int 718 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, 719 char *buf, boolean_t addok) 720 { 721 uint64_t fuid; 722 int domainid = 0; 723 724 if (domain && domain[0]) { 725 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); 726 if (domainid == -1) 727 return (ENOENT); 728 } 729 fuid = FUID_ENCODE(domainid, rid); 730 (void) sprintf(buf, "%llx", (longlong_t)fuid); 731 return (0); 732 } 733 734 int 735 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 736 const char *domain, uint64_t rid, uint64_t *valp) 737 { 738 char buf[32]; 739 int err; 740 uint64_t obj; 741 742 *valp = 0; 743 744 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 745 return (ENOTSUP); 746 747 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 748 if (obj == 0) 749 return (0); 750 751 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE); 752 if (err) 753 return (err); 754 755 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); 756 if (err == ENOENT) 757 err = 0; 758 return (err); 759 } 760 761 int 762 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 763 const char *domain, uint64_t rid, uint64_t quota) 764 { 765 char buf[32]; 766 int err; 767 dmu_tx_t *tx; 768 uint64_t *objp; 769 boolean_t fuid_dirtied; 770 771 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA) 772 return (EINVAL); 773 774 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) 775 return (ENOTSUP); 776 777 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj : 778 &zfsvfs->z_groupquota_obj; 779 780 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE); 781 if (err) 782 return (err); 783 fuid_dirtied = zfsvfs->z_fuid_dirty; 784 785 tx = dmu_tx_create(zfsvfs->z_os); 786 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); 787 if (*objp == 0) { 788 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 789 zfs_userquota_prop_prefixes[type]); 790 } 791 if (fuid_dirtied) 792 zfs_fuid_txhold(zfsvfs, tx); 793 err = dmu_tx_assign(tx, TXG_WAIT); 794 if (err) { 795 dmu_tx_abort(tx); 796 return (err); 797 } 798 799 mutex_enter(&zfsvfs->z_lock); 800 if (*objp == 0) { 801 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, 802 DMU_OT_NONE, 0, tx); 803 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 804 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); 805 } 806 mutex_exit(&zfsvfs->z_lock); 807 808 if (quota == 0) { 809 err = zap_remove(zfsvfs->z_os, *objp, buf, tx); 810 if (err == ENOENT) 811 err = 0; 812 } else { 813 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); 814 } 815 ASSERT(err == 0); 816 if (fuid_dirtied) 817 zfs_fuid_sync(zfsvfs, tx); 818 dmu_tx_commit(tx); 819 return (err); 820 } 821 822 boolean_t 823 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid) 824 { 825 char buf[32]; 826 uint64_t used, quota, usedobj, quotaobj; 827 int err; 828 829 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 830 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 831 832 if (quotaobj == 0 || zfsvfs->z_replay) 833 return (B_FALSE); 834 835 (void) sprintf(buf, "%llx", (longlong_t)fuid); 836 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); 837 if (err != 0) 838 return (B_FALSE); 839 840 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); 841 if (err != 0) 842 return (B_FALSE); 843 return (used >= quota); 844 } 845 846 boolean_t 847 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup) 848 { 849 uint64_t fuid; 850 uint64_t quotaobj; 851 uid_t id; 852 853 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 854 855 id = isgroup ? zp->z_gid : zp->z_uid; 856 857 if (quotaobj == 0 || zfsvfs->z_replay) 858 return (B_FALSE); 859 860 if (IS_EPHEMERAL(id)) { 861 VERIFY(0 == sa_lookup(zp->z_sa_hdl, 862 isgroup ? SA_ZPL_GID(zfsvfs) : SA_ZPL_UID(zfsvfs), 863 &fuid, sizeof (fuid))); 864 } else { 865 fuid = (uint64_t)id; 866 } 867 868 return (zfs_fuid_overquota(zfsvfs, isgroup, fuid)); 869 } 870 871 int 872 zfsvfs_create(const char *osname, zfsvfs_t **zfvp) 873 { 874 objset_t *os; 875 zfsvfs_t *zfsvfs; 876 uint64_t zval; 877 int i, error; 878 uint64_t sa_obj; 879 880 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 881 882 /* 883 * We claim to always be readonly so we can open snapshots; 884 * other ZPL code will prevent us from writing to snapshots. 885 */ 886 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os); 887 if (error) { 888 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 889 return (error); 890 } 891 892 /* 893 * Initialize the zfs-specific filesystem structure. 894 * Should probably make this a kmem cache, shuffle fields, 895 * and just bzero up to z_hold_mtx[]. 896 */ 897 zfsvfs->z_vfs = NULL; 898 zfsvfs->z_parent = zfsvfs; 899 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 900 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 901 zfsvfs->z_os = os; 902 903 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 904 if (error) { 905 goto out; 906 } else if (zfsvfs->z_version > 907 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { 908 (void) printf("Can't mount a version %lld file system " 909 "on a version %lld pool\n. Pool must be upgraded to mount " 910 "this file system.", (u_longlong_t)zfsvfs->z_version, 911 (u_longlong_t)spa_version(dmu_objset_spa(os))); 912 error = ENOTSUP; 913 goto out; 914 } 915 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 916 goto out; 917 zfsvfs->z_norm = (int)zval; 918 919 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 920 goto out; 921 zfsvfs->z_utf8 = (zval != 0); 922 923 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 924 goto out; 925 zfsvfs->z_case = (uint_t)zval; 926 927 /* 928 * Fold case on file systems that are always or sometimes case 929 * insensitive. 930 */ 931 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 932 zfsvfs->z_case == ZFS_CASE_MIXED) 933 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 934 935 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 936 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 937 938 if (zfsvfs->z_use_sa) { 939 /* should either have both of these objects or none */ 940 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, 941 &sa_obj); 942 if (error) 943 return (error); 944 } else { 945 /* 946 * Pre SA versions file systems should never touch 947 * either the attribute registration or layout objects. 948 */ 949 sa_obj = 0; 950 } 951 952 zfsvfs->z_attr_table = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END); 953 954 if (zfsvfs->z_version >= ZPL_VERSION_SA) 955 sa_register_update_callback(os, zfs_sa_upgrade); 956 957 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 958 &zfsvfs->z_root); 959 if (error) 960 goto out; 961 ASSERT(zfsvfs->z_root != 0); 962 963 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 964 &zfsvfs->z_unlinkedobj); 965 if (error) 966 goto out; 967 968 error = zap_lookup(os, MASTER_NODE_OBJ, 969 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 970 8, 1, &zfsvfs->z_userquota_obj); 971 if (error && error != ENOENT) 972 goto out; 973 974 error = zap_lookup(os, MASTER_NODE_OBJ, 975 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 976 8, 1, &zfsvfs->z_groupquota_obj); 977 if (error && error != ENOENT) 978 goto out; 979 980 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 981 &zfsvfs->z_fuid_obj); 982 if (error && error != ENOENT) 983 goto out; 984 985 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 986 &zfsvfs->z_shares_dir); 987 if (error && error != ENOENT) 988 goto out; 989 990 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 991 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 992 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 993 offsetof(znode_t, z_link_node)); 994 rrw_init(&zfsvfs->z_teardown_lock); 995 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 996 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 997 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 998 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 999 1000 *zfvp = zfsvfs; 1001 return (0); 1002 1003 out: 1004 dmu_objset_disown(os, zfsvfs); 1005 *zfvp = NULL; 1006 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1007 return (error); 1008 } 1009 1010 static int 1011 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 1012 { 1013 int error; 1014 1015 error = zfs_register_callbacks(zfsvfs->z_vfs); 1016 if (error) 1017 return (error); 1018 1019 /* 1020 * Set the objset user_ptr to track its zfsvfs. 1021 */ 1022 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1023 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1024 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1025 1026 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 1027 if (zil_disable) { 1028 zil_destroy(zfsvfs->z_log, B_FALSE); 1029 zfsvfs->z_log = NULL; 1030 } 1031 1032 /* 1033 * If we are not mounting (ie: online recv), then we don't 1034 * have to worry about replaying the log as we blocked all 1035 * operations out since we closed the ZIL. 1036 */ 1037 if (mounting) { 1038 boolean_t readonly; 1039 1040 /* 1041 * During replay we remove the read only flag to 1042 * allow replays to succeed. 1043 */ 1044 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 1045 if (readonly != 0) 1046 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 1047 else 1048 zfs_unlinked_drain(zfsvfs); 1049 1050 if (zfsvfs->z_log) { 1051 /* 1052 * Parse and replay the intent log. 1053 * 1054 * Because of ziltest, this must be done after 1055 * zfs_unlinked_drain(). (Further note: ziltest 1056 * doesn't use readonly mounts, where 1057 * zfs_unlinked_drain() isn't called.) This is because 1058 * ziltest causes spa_sync() to think it's committed, 1059 * but actually it is not, so the intent log contains 1060 * many txg's worth of changes. 1061 * 1062 * In particular, if object N is in the unlinked set in 1063 * the last txg to actually sync, then it could be 1064 * actually freed in a later txg and then reallocated 1065 * in a yet later txg. This would write a "create 1066 * object N" record to the intent log. Normally, this 1067 * would be fine because the spa_sync() would have 1068 * written out the fact that object N is free, before 1069 * we could write the "create object N" intent log 1070 * record. 1071 * 1072 * But when we are in ziltest mode, we advance the "open 1073 * txg" without actually spa_sync()-ing the changes to 1074 * disk. So we would see that object N is still 1075 * allocated and in the unlinked set, and there is an 1076 * intent log record saying to allocate it. 1077 */ 1078 zfsvfs->z_replay = B_TRUE; 1079 zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector); 1080 zfsvfs->z_replay = B_FALSE; 1081 } 1082 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 1083 } 1084 1085 return (0); 1086 } 1087 1088 void 1089 zfsvfs_free(zfsvfs_t *zfsvfs) 1090 { 1091 int i; 1092 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */ 1093 1094 /* 1095 * This is a barrier to prevent the filesystem from going away in 1096 * zfs_znode_move() until we can safely ensure that the filesystem is 1097 * not unmounted. We consider the filesystem valid before the barrier 1098 * and invalid after the barrier. 1099 */ 1100 rw_enter(&zfsvfs_lock, RW_READER); 1101 rw_exit(&zfsvfs_lock); 1102 1103 zfs_fuid_destroy(zfsvfs); 1104 1105 mutex_destroy(&zfsvfs->z_znodes_lock); 1106 mutex_destroy(&zfsvfs->z_lock); 1107 list_destroy(&zfsvfs->z_all_znodes); 1108 rrw_destroy(&zfsvfs->z_teardown_lock); 1109 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1110 rw_destroy(&zfsvfs->z_fuid_lock); 1111 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1112 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1113 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1114 } 1115 1116 static void 1117 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 1118 { 1119 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1120 if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) { 1121 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1122 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1123 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1124 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1125 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1126 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1127 } 1128 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 1129 } 1130 1131 static int 1132 zfs_domount(vfs_t *vfsp, char *osname) 1133 { 1134 dev_t mount_dev; 1135 uint64_t recordsize, fsid_guid; 1136 int error = 0; 1137 zfsvfs_t *zfsvfs; 1138 1139 ASSERT(vfsp); 1140 ASSERT(osname); 1141 1142 error = zfsvfs_create(osname, &zfsvfs); 1143 if (error) 1144 return (error); 1145 zfsvfs->z_vfs = vfsp; 1146 1147 /* Initialize the generic filesystem structure. */ 1148 vfsp->vfs_bcount = 0; 1149 vfsp->vfs_data = NULL; 1150 1151 if (zfs_create_unique_device(&mount_dev) == -1) { 1152 error = ENODEV; 1153 goto out; 1154 } 1155 ASSERT(vfs_devismounted(mount_dev) == 0); 1156 1157 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 1158 NULL)) 1159 goto out; 1160 1161 vfsp->vfs_dev = mount_dev; 1162 vfsp->vfs_fstype = zfsfstype; 1163 vfsp->vfs_bsize = recordsize; 1164 vfsp->vfs_flag |= VFS_NOTRUNC; 1165 vfsp->vfs_data = zfsvfs; 1166 1167 /* 1168 * The fsid is 64 bits, composed of an 8-bit fs type, which 1169 * separates our fsid from any other filesystem types, and a 1170 * 56-bit objset unique ID. The objset unique ID is unique to 1171 * all objsets open on this system, provided by unique_create(). 1172 * The 8-bit fs type must be put in the low bits of fsid[1] 1173 * because that's where other Solaris filesystems put it. 1174 */ 1175 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); 1176 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 1177 vfsp->vfs_fsid.val[0] = fsid_guid; 1178 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 1179 zfsfstype & 0xFF; 1180 1181 /* 1182 * Set features for file system. 1183 */ 1184 zfs_set_fuid_feature(zfsvfs); 1185 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 1186 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1187 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1188 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 1189 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 1190 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1191 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1192 } 1193 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED); 1194 1195 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1196 uint64_t pval; 1197 1198 atime_changed_cb(zfsvfs, B_FALSE); 1199 readonly_changed_cb(zfsvfs, B_TRUE); 1200 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 1201 goto out; 1202 xattr_changed_cb(zfsvfs, pval); 1203 zfsvfs->z_issnap = B_TRUE; 1204 1205 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1206 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1207 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1208 } else { 1209 error = zfsvfs_setup(zfsvfs, B_TRUE); 1210 } 1211 1212 if (!zfsvfs->z_issnap) 1213 zfsctl_create(zfsvfs); 1214 out: 1215 if (error) { 1216 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 1217 zfsvfs_free(zfsvfs); 1218 } else { 1219 atomic_add_32(&zfs_active_fs_count, 1); 1220 } 1221 1222 return (error); 1223 } 1224 1225 void 1226 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 1227 { 1228 objset_t *os = zfsvfs->z_os; 1229 struct dsl_dataset *ds; 1230 1231 /* 1232 * Unregister properties. 1233 */ 1234 if (!dmu_objset_is_snapshot(os)) { 1235 ds = dmu_objset_ds(os); 1236 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 1237 zfsvfs) == 0); 1238 1239 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 1240 zfsvfs) == 0); 1241 1242 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 1243 zfsvfs) == 0); 1244 1245 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 1246 zfsvfs) == 0); 1247 1248 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 1249 zfsvfs) == 0); 1250 1251 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 1252 zfsvfs) == 0); 1253 1254 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 1255 zfsvfs) == 0); 1256 1257 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 1258 zfsvfs) == 0); 1259 1260 VERIFY(dsl_prop_unregister(ds, "aclinherit", 1261 acl_inherit_changed_cb, zfsvfs) == 0); 1262 1263 VERIFY(dsl_prop_unregister(ds, "vscan", 1264 vscan_changed_cb, zfsvfs) == 0); 1265 } 1266 } 1267 1268 /* 1269 * Convert a decimal digit string to a uint64_t integer. 1270 */ 1271 static int 1272 str_to_uint64(char *str, uint64_t *objnum) 1273 { 1274 uint64_t num = 0; 1275 1276 while (*str) { 1277 if (*str < '0' || *str > '9') 1278 return (EINVAL); 1279 1280 num = num*10 + *str++ - '0'; 1281 } 1282 1283 *objnum = num; 1284 return (0); 1285 } 1286 1287 /* 1288 * The boot path passed from the boot loader is in the form of 1289 * "rootpool-name/root-filesystem-object-number'. Convert this 1290 * string to a dataset name: "rootpool-name/root-filesystem-name". 1291 */ 1292 static int 1293 zfs_parse_bootfs(char *bpath, char *outpath) 1294 { 1295 char *slashp; 1296 uint64_t objnum; 1297 int error; 1298 1299 if (*bpath == 0 || *bpath == '/') 1300 return (EINVAL); 1301 1302 (void) strcpy(outpath, bpath); 1303 1304 slashp = strchr(bpath, '/'); 1305 1306 /* if no '/', just return the pool name */ 1307 if (slashp == NULL) { 1308 return (0); 1309 } 1310 1311 /* if not a number, just return the root dataset name */ 1312 if (str_to_uint64(slashp+1, &objnum)) { 1313 return (0); 1314 } 1315 1316 *slashp = '\0'; 1317 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 1318 *slashp = '/'; 1319 1320 return (error); 1321 } 1322 1323 /* 1324 * zfs_check_global_label: 1325 * Check that the hex label string is appropriate for the dataset 1326 * being mounted into the global_zone proper. 1327 * 1328 * Return an error if the hex label string is not default or 1329 * admin_low/admin_high. For admin_low labels, the corresponding 1330 * dataset must be readonly. 1331 */ 1332 int 1333 zfs_check_global_label(const char *dsname, const char *hexsl) 1334 { 1335 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1336 return (0); 1337 if (strcasecmp(hexsl, ADMIN_HIGH) == 0) 1338 return (0); 1339 if (strcasecmp(hexsl, ADMIN_LOW) == 0) { 1340 /* must be readonly */ 1341 uint64_t rdonly; 1342 1343 if (dsl_prop_get_integer(dsname, 1344 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) 1345 return (EACCES); 1346 return (rdonly ? 0 : EACCES); 1347 } 1348 return (EACCES); 1349 } 1350 1351 /* 1352 * zfs_mount_label_policy: 1353 * Determine whether the mount is allowed according to MAC check. 1354 * by comparing (where appropriate) label of the dataset against 1355 * the label of the zone being mounted into. If the dataset has 1356 * no label, create one. 1357 * 1358 * Returns: 1359 * 0 : access allowed 1360 * >0 : error code, such as EACCES 1361 */ 1362 static int 1363 zfs_mount_label_policy(vfs_t *vfsp, char *osname) 1364 { 1365 int error, retv; 1366 zone_t *mntzone = NULL; 1367 ts_label_t *mnt_tsl; 1368 bslabel_t *mnt_sl; 1369 bslabel_t ds_sl; 1370 char ds_hexsl[MAXNAMELEN]; 1371 1372 retv = EACCES; /* assume the worst */ 1373 1374 /* 1375 * Start by getting the dataset label if it exists. 1376 */ 1377 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1378 1, sizeof (ds_hexsl), &ds_hexsl, NULL); 1379 if (error) 1380 return (EACCES); 1381 1382 /* 1383 * If labeling is NOT enabled, then disallow the mount of datasets 1384 * which have a non-default label already. No other label checks 1385 * are needed. 1386 */ 1387 if (!is_system_labeled()) { 1388 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1389 return (0); 1390 return (EACCES); 1391 } 1392 1393 /* 1394 * Get the label of the mountpoint. If mounting into the global 1395 * zone (i.e. mountpoint is not within an active zone and the 1396 * zoned property is off), the label must be default or 1397 * admin_low/admin_high only; no other checks are needed. 1398 */ 1399 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE); 1400 if (mntzone->zone_id == GLOBAL_ZONEID) { 1401 uint64_t zoned; 1402 1403 zone_rele(mntzone); 1404 1405 if (dsl_prop_get_integer(osname, 1406 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) 1407 return (EACCES); 1408 if (!zoned) 1409 return (zfs_check_global_label(osname, ds_hexsl)); 1410 else 1411 /* 1412 * This is the case of a zone dataset being mounted 1413 * initially, before the zone has been fully created; 1414 * allow this mount into global zone. 1415 */ 1416 return (0); 1417 } 1418 1419 mnt_tsl = mntzone->zone_slabel; 1420 ASSERT(mnt_tsl != NULL); 1421 label_hold(mnt_tsl); 1422 mnt_sl = label2bslabel(mnt_tsl); 1423 1424 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) { 1425 /* 1426 * The dataset doesn't have a real label, so fabricate one. 1427 */ 1428 char *str = NULL; 1429 1430 if (l_to_str_internal(mnt_sl, &str) == 0 && 1431 dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1432 ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0) 1433 retv = 0; 1434 if (str != NULL) 1435 kmem_free(str, strlen(str) + 1); 1436 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) { 1437 /* 1438 * Now compare labels to complete the MAC check. If the 1439 * labels are equal then allow access. If the mountpoint 1440 * label dominates the dataset label, allow readonly access. 1441 * Otherwise, access is denied. 1442 */ 1443 if (blequal(mnt_sl, &ds_sl)) 1444 retv = 0; 1445 else if (bldominates(mnt_sl, &ds_sl)) { 1446 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1447 retv = 0; 1448 } 1449 } 1450 1451 label_rele(mnt_tsl); 1452 zone_rele(mntzone); 1453 return (retv); 1454 } 1455 1456 static int 1457 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 1458 { 1459 int error = 0; 1460 static int zfsrootdone = 0; 1461 zfsvfs_t *zfsvfs = NULL; 1462 znode_t *zp = NULL; 1463 vnode_t *vp = NULL; 1464 char *zfs_bootfs; 1465 char *zfs_devid; 1466 1467 ASSERT(vfsp); 1468 1469 /* 1470 * The filesystem that we mount as root is defined in the 1471 * boot property "zfs-bootfs" with a format of 1472 * "poolname/root-dataset-objnum". 1473 */ 1474 if (why == ROOT_INIT) { 1475 if (zfsrootdone++) 1476 return (EBUSY); 1477 /* 1478 * the process of doing a spa_load will require the 1479 * clock to be set before we could (for example) do 1480 * something better by looking at the timestamp on 1481 * an uberblock, so just set it to -1. 1482 */ 1483 clkset(-1); 1484 1485 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 1486 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 1487 "bootfs name"); 1488 return (EINVAL); 1489 } 1490 zfs_devid = spa_get_bootprop("diskdevid"); 1491 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 1492 if (zfs_devid) 1493 spa_free_bootprop(zfs_devid); 1494 if (error) { 1495 spa_free_bootprop(zfs_bootfs); 1496 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 1497 error); 1498 return (error); 1499 } 1500 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 1501 spa_free_bootprop(zfs_bootfs); 1502 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 1503 error); 1504 return (error); 1505 } 1506 1507 spa_free_bootprop(zfs_bootfs); 1508 1509 if (error = vfs_lock(vfsp)) 1510 return (error); 1511 1512 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 1513 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 1514 goto out; 1515 } 1516 1517 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 1518 ASSERT(zfsvfs); 1519 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 1520 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 1521 goto out; 1522 } 1523 1524 vp = ZTOV(zp); 1525 mutex_enter(&vp->v_lock); 1526 vp->v_flag |= VROOT; 1527 mutex_exit(&vp->v_lock); 1528 rootvp = vp; 1529 1530 /* 1531 * Leave rootvp held. The root file system is never unmounted. 1532 */ 1533 1534 vfs_add((struct vnode *)0, vfsp, 1535 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 1536 out: 1537 vfs_unlock(vfsp); 1538 return (error); 1539 } else if (why == ROOT_REMOUNT) { 1540 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 1541 vfsp->vfs_flag |= VFS_REMOUNT; 1542 1543 /* refresh mount options */ 1544 zfs_unregister_callbacks(vfsp->vfs_data); 1545 return (zfs_register_callbacks(vfsp)); 1546 1547 } else if (why == ROOT_UNMOUNT) { 1548 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 1549 (void) zfs_sync(vfsp, 0, 0); 1550 return (0); 1551 } 1552 1553 /* 1554 * if "why" is equal to anything else other than ROOT_INIT, 1555 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 1556 */ 1557 return (ENOTSUP); 1558 } 1559 1560 /*ARGSUSED*/ 1561 static int 1562 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 1563 { 1564 char *osname; 1565 pathname_t spn; 1566 int error = 0; 1567 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 1568 UIO_SYSSPACE : UIO_USERSPACE; 1569 int canwrite; 1570 1571 if (mvp->v_type != VDIR) 1572 return (ENOTDIR); 1573 1574 mutex_enter(&mvp->v_lock); 1575 if ((uap->flags & MS_REMOUNT) == 0 && 1576 (uap->flags & MS_OVERLAY) == 0 && 1577 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1578 mutex_exit(&mvp->v_lock); 1579 return (EBUSY); 1580 } 1581 mutex_exit(&mvp->v_lock); 1582 1583 /* 1584 * ZFS does not support passing unparsed data in via MS_DATA. 1585 * Users should use the MS_OPTIONSTR interface; this means 1586 * that all option parsing is already done and the options struct 1587 * can be interrogated. 1588 */ 1589 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1590 return (EINVAL); 1591 1592 /* 1593 * Get the objset name (the "special" mount argument). 1594 */ 1595 if (error = pn_get(uap->spec, fromspace, &spn)) 1596 return (error); 1597 1598 osname = spn.pn_path; 1599 1600 /* 1601 * Check for mount privilege? 1602 * 1603 * If we don't have privilege then see if 1604 * we have local permission to allow it 1605 */ 1606 error = secpolicy_fs_mount(cr, mvp, vfsp); 1607 if (error) { 1608 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) { 1609 vattr_t vattr; 1610 1611 /* 1612 * Make sure user is the owner of the mount point 1613 * or has sufficient privileges. 1614 */ 1615 1616 vattr.va_mask = AT_UID; 1617 1618 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1619 goto out; 1620 } 1621 1622 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1623 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1624 goto out; 1625 } 1626 secpolicy_fs_mount_clearopts(cr, vfsp); 1627 } else { 1628 goto out; 1629 } 1630 } 1631 1632 /* 1633 * Refuse to mount a filesystem if we are in a local zone and the 1634 * dataset is not visible. 1635 */ 1636 if (!INGLOBALZONE(curproc) && 1637 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1638 error = EPERM; 1639 goto out; 1640 } 1641 1642 error = zfs_mount_label_policy(vfsp, osname); 1643 if (error) 1644 goto out; 1645 1646 /* 1647 * When doing a remount, we simply refresh our temporary properties 1648 * according to those options set in the current VFS options. 1649 */ 1650 if (uap->flags & MS_REMOUNT) { 1651 /* refresh mount options */ 1652 zfs_unregister_callbacks(vfsp->vfs_data); 1653 error = zfs_register_callbacks(vfsp); 1654 goto out; 1655 } 1656 1657 error = zfs_domount(vfsp, osname); 1658 1659 /* 1660 * Add an extra VFS_HOLD on our parent vfs so that it can't 1661 * disappear due to a forced unmount. 1662 */ 1663 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) 1664 VFS_HOLD(mvp->v_vfsp); 1665 1666 out: 1667 pn_free(&spn); 1668 return (error); 1669 } 1670 1671 static int 1672 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1673 { 1674 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1675 dev32_t d32; 1676 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1677 1678 ZFS_ENTER(zfsvfs); 1679 1680 dmu_objset_space(zfsvfs->z_os, 1681 &refdbytes, &availbytes, &usedobjs, &availobjs); 1682 1683 /* 1684 * The underlying storage pool actually uses multiple block sizes. 1685 * We report the fragsize as the smallest block size we support, 1686 * and we report our blocksize as the filesystem's maximum blocksize. 1687 */ 1688 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1689 statp->f_bsize = zfsvfs->z_max_blksz; 1690 1691 /* 1692 * The following report "total" blocks of various kinds in the 1693 * file system, but reported in terms of f_frsize - the 1694 * "fragment" size. 1695 */ 1696 1697 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1698 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1699 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1700 1701 /* 1702 * statvfs() should really be called statufs(), because it assumes 1703 * static metadata. ZFS doesn't preallocate files, so the best 1704 * we can do is report the max that could possibly fit in f_files, 1705 * and that minus the number actually used in f_ffree. 1706 * For f_ffree, report the smaller of the number of object available 1707 * and the number of blocks (each object will take at least a block). 1708 */ 1709 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1710 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1711 statp->f_files = statp->f_ffree + usedobjs; 1712 1713 (void) cmpldev(&d32, vfsp->vfs_dev); 1714 statp->f_fsid = d32; 1715 1716 /* 1717 * We're a zfs filesystem. 1718 */ 1719 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1720 1721 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1722 1723 statp->f_namemax = ZFS_MAXNAMELEN; 1724 1725 /* 1726 * We have all of 32 characters to stuff a string here. 1727 * Is there anything useful we could/should provide? 1728 */ 1729 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1730 1731 ZFS_EXIT(zfsvfs); 1732 return (0); 1733 } 1734 1735 static int 1736 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1737 { 1738 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1739 znode_t *rootzp; 1740 int error; 1741 1742 ZFS_ENTER(zfsvfs); 1743 1744 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1745 if (error == 0) 1746 *vpp = ZTOV(rootzp); 1747 1748 ZFS_EXIT(zfsvfs); 1749 return (error); 1750 } 1751 1752 /* 1753 * Teardown the zfsvfs::z_os. 1754 * 1755 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1756 * and 'z_teardown_inactive_lock' held. 1757 */ 1758 static int 1759 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1760 { 1761 znode_t *zp; 1762 1763 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1764 1765 if (!unmounting) { 1766 /* 1767 * We purge the parent filesystem's vfsp as the parent 1768 * filesystem and all of its snapshots have their vnode's 1769 * v_vfsp set to the parent's filesystem's vfsp. Note, 1770 * 'z_parent' is self referential for non-snapshots. 1771 */ 1772 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1773 } 1774 1775 /* 1776 * Close the zil. NB: Can't close the zil while zfs_inactive 1777 * threads are blocked as zil_close can call zfs_inactive. 1778 */ 1779 if (zfsvfs->z_log) { 1780 zil_close(zfsvfs->z_log); 1781 zfsvfs->z_log = NULL; 1782 } 1783 1784 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1785 1786 /* 1787 * If we are not unmounting (ie: online recv) and someone already 1788 * unmounted this file system while we were doing the switcheroo, 1789 * or a reopen of z_os failed then just bail out now. 1790 */ 1791 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1792 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1793 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1794 return (EIO); 1795 } 1796 1797 /* 1798 * At this point there are no vops active, and any new vops will 1799 * fail with EIO since we have z_teardown_lock for writer (only 1800 * relavent for forced unmount). 1801 * 1802 * Release all holds on dbufs. 1803 */ 1804 mutex_enter(&zfsvfs->z_znodes_lock); 1805 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1806 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1807 if (zp->z_sa_hdl) { 1808 ASSERT(ZTOV(zp)->v_count > 0); 1809 zfs_znode_dmu_fini(zp); 1810 } 1811 mutex_exit(&zfsvfs->z_znodes_lock); 1812 1813 /* 1814 * If we are unmounting, set the unmounted flag and let new vops 1815 * unblock. zfs_inactive will have the unmounted behavior, and all 1816 * other vops will fail with EIO. 1817 */ 1818 if (unmounting) { 1819 zfsvfs->z_unmounted = B_TRUE; 1820 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1821 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1822 } 1823 1824 /* 1825 * z_os will be NULL if there was an error in attempting to reopen 1826 * zfsvfs, so just return as the properties had already been 1827 * unregistered and cached data had been evicted before. 1828 */ 1829 if (zfsvfs->z_os == NULL) 1830 return (0); 1831 1832 /* 1833 * Unregister properties. 1834 */ 1835 zfs_unregister_callbacks(zfsvfs); 1836 1837 /* 1838 * Evict cached data 1839 */ 1840 if (dmu_objset_evict_dbufs(zfsvfs->z_os)) { 1841 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1842 (void) dmu_objset_evict_dbufs(zfsvfs->z_os); 1843 } 1844 1845 return (0); 1846 } 1847 1848 /*ARGSUSED*/ 1849 static int 1850 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1851 { 1852 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1853 objset_t *os; 1854 int ret; 1855 1856 ret = secpolicy_fs_unmount(cr, vfsp); 1857 if (ret) { 1858 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1859 ZFS_DELEG_PERM_MOUNT, cr)) 1860 return (ret); 1861 } 1862 1863 /* 1864 * We purge the parent filesystem's vfsp as the parent filesystem 1865 * and all of its snapshots have their vnode's v_vfsp set to the 1866 * parent's filesystem's vfsp. Note, 'z_parent' is self 1867 * referential for non-snapshots. 1868 */ 1869 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1870 1871 /* 1872 * Unmount any snapshots mounted under .zfs before unmounting the 1873 * dataset itself. 1874 */ 1875 if (zfsvfs->z_ctldir != NULL && 1876 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1877 return (ret); 1878 } 1879 1880 if (!(fflag & MS_FORCE)) { 1881 /* 1882 * Check the number of active vnodes in the file system. 1883 * Our count is maintained in the vfs structure, but the 1884 * number is off by 1 to indicate a hold on the vfs 1885 * structure itself. 1886 * 1887 * The '.zfs' directory maintains a reference of its 1888 * own, and any active references underneath are 1889 * reflected in the vnode count. 1890 */ 1891 if (zfsvfs->z_ctldir == NULL) { 1892 if (vfsp->vfs_count > 1) 1893 return (EBUSY); 1894 } else { 1895 if (vfsp->vfs_count > 2 || 1896 zfsvfs->z_ctldir->v_count > 1) 1897 return (EBUSY); 1898 } 1899 } 1900 1901 vfsp->vfs_flag |= VFS_UNMOUNTED; 1902 1903 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1904 os = zfsvfs->z_os; 1905 1906 /* 1907 * z_os will be NULL if there was an error in 1908 * attempting to reopen zfsvfs. 1909 */ 1910 if (os != NULL) { 1911 /* 1912 * Unset the objset user_ptr. 1913 */ 1914 mutex_enter(&os->os_user_ptr_lock); 1915 dmu_objset_set_user(os, NULL); 1916 mutex_exit(&os->os_user_ptr_lock); 1917 1918 /* 1919 * Finally release the objset 1920 */ 1921 dmu_objset_disown(os, zfsvfs); 1922 } 1923 1924 /* 1925 * We can now safely destroy the '.zfs' directory node. 1926 */ 1927 if (zfsvfs->z_ctldir != NULL) 1928 zfsctl_destroy(zfsvfs); 1929 1930 return (0); 1931 } 1932 1933 static int 1934 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1935 { 1936 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1937 znode_t *zp; 1938 uint64_t object = 0; 1939 uint64_t fid_gen = 0; 1940 uint64_t gen_mask; 1941 uint64_t zp_gen; 1942 int i, err; 1943 1944 *vpp = NULL; 1945 1946 ZFS_ENTER(zfsvfs); 1947 1948 if (fidp->fid_len == LONG_FID_LEN) { 1949 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1950 uint64_t objsetid = 0; 1951 uint64_t setgen = 0; 1952 1953 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1954 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1955 1956 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1957 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1958 1959 ZFS_EXIT(zfsvfs); 1960 1961 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1962 if (err) 1963 return (EINVAL); 1964 ZFS_ENTER(zfsvfs); 1965 } 1966 1967 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1968 zfid_short_t *zfid = (zfid_short_t *)fidp; 1969 1970 for (i = 0; i < sizeof (zfid->zf_object); i++) 1971 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1972 1973 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1974 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1975 } else { 1976 ZFS_EXIT(zfsvfs); 1977 return (EINVAL); 1978 } 1979 1980 /* A zero fid_gen means we are in the .zfs control directories */ 1981 if (fid_gen == 0 && 1982 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1983 *vpp = zfsvfs->z_ctldir; 1984 ASSERT(*vpp != NULL); 1985 if (object == ZFSCTL_INO_SNAPDIR) { 1986 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1987 0, NULL, NULL, NULL, NULL, NULL) == 0); 1988 } else { 1989 VN_HOLD(*vpp); 1990 } 1991 ZFS_EXIT(zfsvfs); 1992 return (0); 1993 } 1994 1995 gen_mask = -1ULL >> (64 - 8 * i); 1996 1997 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1998 if (err = zfs_zget(zfsvfs, object, &zp)) { 1999 ZFS_EXIT(zfsvfs); 2000 return (err); 2001 } 2002 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 2003 sizeof (uint64_t)); 2004 zp_gen = zp_gen & gen_mask; 2005 if (zp_gen == 0) 2006 zp_gen = 1; 2007 if (zp->z_unlinked || zp_gen != fid_gen) { 2008 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 2009 VN_RELE(ZTOV(zp)); 2010 ZFS_EXIT(zfsvfs); 2011 return (EINVAL); 2012 } 2013 2014 *vpp = ZTOV(zp); 2015 ZFS_EXIT(zfsvfs); 2016 return (0); 2017 } 2018 2019 /* 2020 * Block out VOPs and close zfsvfs_t::z_os 2021 * 2022 * Note, if successful, then we return with the 'z_teardown_lock' and 2023 * 'z_teardown_inactive_lock' write held. 2024 */ 2025 int 2026 zfs_suspend_fs(zfsvfs_t *zfsvfs) 2027 { 2028 int error; 2029 2030 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 2031 return (error); 2032 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 2033 2034 return (0); 2035 } 2036 2037 /* 2038 * Reopen zfsvfs_t::z_os and release VOPs. 2039 */ 2040 int 2041 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname) 2042 { 2043 int err, err2; 2044 2045 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 2046 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 2047 2048 err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs, 2049 &zfsvfs->z_os); 2050 if (err) { 2051 zfsvfs->z_os = NULL; 2052 } else { 2053 znode_t *zp; 2054 uint64_t sa_obj = 0; 2055 2056 err2 = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, 2057 ZFS_SA_ATTRS, 8, 1, &sa_obj); 2058 2059 if ((err || err2) && zfsvfs->z_version >= ZPL_VERSION_SA) 2060 goto bail; 2061 2062 2063 zfsvfs->z_attr_table = sa_setup(zfsvfs->z_os, sa_obj, 2064 zfs_attr_table, ZPL_END); 2065 2066 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 2067 2068 /* 2069 * Attempt to re-establish all the active znodes with 2070 * their dbufs. If a zfs_rezget() fails, then we'll let 2071 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 2072 * when they try to use their znode. 2073 */ 2074 mutex_enter(&zfsvfs->z_znodes_lock); 2075 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 2076 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 2077 (void) zfs_rezget(zp); 2078 } 2079 mutex_exit(&zfsvfs->z_znodes_lock); 2080 2081 } 2082 2083 bail: 2084 /* release the VOPs */ 2085 rw_exit(&zfsvfs->z_teardown_inactive_lock); 2086 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 2087 2088 if (err) { 2089 /* 2090 * Since we couldn't reopen zfsvfs::z_os, force 2091 * unmount this file system. 2092 */ 2093 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 2094 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 2095 } 2096 return (err); 2097 } 2098 2099 static void 2100 zfs_freevfs(vfs_t *vfsp) 2101 { 2102 zfsvfs_t *zfsvfs = vfsp->vfs_data; 2103 2104 /* 2105 * If this is a snapshot, we have an extra VFS_HOLD on our parent 2106 * from zfs_mount(). Release it here. If we came through 2107 * zfs_mountroot() instead, we didn't grab an extra hold, so 2108 * skip the VFS_RELE for rootvfs. 2109 */ 2110 if (zfsvfs->z_issnap && (vfsp != rootvfs)) 2111 VFS_RELE(zfsvfs->z_parent->z_vfs); 2112 2113 zfsvfs_free(zfsvfs); 2114 2115 atomic_add_32(&zfs_active_fs_count, -1); 2116 } 2117 2118 /* 2119 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 2120 * so we can't safely do any non-idempotent initialization here. 2121 * Leave that to zfs_init() and zfs_fini(), which are called 2122 * from the module's _init() and _fini() entry points. 2123 */ 2124 /*ARGSUSED*/ 2125 static int 2126 zfs_vfsinit(int fstype, char *name) 2127 { 2128 int error; 2129 2130 zfsfstype = fstype; 2131 2132 /* 2133 * Setup vfsops and vnodeops tables. 2134 */ 2135 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 2136 if (error != 0) { 2137 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 2138 } 2139 2140 error = zfs_create_op_tables(); 2141 if (error) { 2142 zfs_remove_op_tables(); 2143 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 2144 (void) vfs_freevfsops_by_type(zfsfstype); 2145 return (error); 2146 } 2147 2148 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 2149 2150 /* 2151 * Unique major number for all zfs mounts. 2152 * If we run out of 32-bit minors, we'll getudev() another major. 2153 */ 2154 zfs_major = ddi_name_to_major(ZFS_DRIVER); 2155 zfs_minor = ZFS_MIN_MINOR; 2156 2157 return (0); 2158 } 2159 2160 void 2161 zfs_init(void) 2162 { 2163 /* 2164 * Initialize .zfs directory structures 2165 */ 2166 zfsctl_init(); 2167 2168 /* 2169 * Initialize znode cache, vnode ops, etc... 2170 */ 2171 zfs_znode_init(); 2172 2173 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); 2174 } 2175 2176 void 2177 zfs_fini(void) 2178 { 2179 zfsctl_fini(); 2180 zfs_znode_fini(); 2181 } 2182 2183 int 2184 zfs_busy(void) 2185 { 2186 return (zfs_active_fs_count != 0); 2187 } 2188 2189 int 2190 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 2191 { 2192 int error; 2193 objset_t *os = zfsvfs->z_os; 2194 dmu_tx_t *tx; 2195 2196 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 2197 return (EINVAL); 2198 2199 if (newvers < zfsvfs->z_version) 2200 return (EINVAL); 2201 2202 if (zfs_spa_version_map(newvers) > 2203 spa_version(dmu_objset_spa(zfsvfs->z_os))) 2204 return (ENOTSUP); 2205 2206 tx = dmu_tx_create(os); 2207 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 2208 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2209 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 2210 ZFS_SA_ATTRS); 2211 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2212 } 2213 error = dmu_tx_assign(tx, TXG_WAIT); 2214 if (error) { 2215 dmu_tx_abort(tx); 2216 return (error); 2217 } 2218 2219 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2220 8, 1, &newvers, tx); 2221 2222 if (error) { 2223 dmu_tx_commit(tx); 2224 return (error); 2225 } 2226 2227 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2228 uint64_t sa_obj; 2229 2230 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, 2231 SPA_VERSION_SA); 2232 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 2233 DMU_OT_NONE, 0, tx); 2234 2235 error = zap_add(os, MASTER_NODE_OBJ, 2236 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 2237 ASSERT3U(error, ==, 0); 2238 2239 VERIFY(0 == sa_set_sa_object(os, sa_obj)); 2240 sa_register_update_callback(os, zfs_sa_upgrade); 2241 } 2242 2243 spa_history_internal_log(LOG_DS_UPGRADE, 2244 dmu_objset_spa(os), tx, CRED(), 2245 "oldver=%llu newver=%llu dataset = %llu", 2246 zfsvfs->z_version, newvers, dmu_objset_id(os)); 2247 2248 dmu_tx_commit(tx); 2249 2250 zfsvfs->z_version = newvers; 2251 2252 if (zfsvfs->z_version >= ZPL_VERSION_FUID) 2253 zfs_set_fuid_feature(zfsvfs); 2254 2255 return (0); 2256 } 2257 2258 /* 2259 * Read a property stored within the master node. 2260 */ 2261 int 2262 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2263 { 2264 const char *pname; 2265 int error = ENOENT; 2266 2267 /* 2268 * Look up the file system's value for the property. For the 2269 * version property, we look up a slightly different string. 2270 */ 2271 if (prop == ZFS_PROP_VERSION) 2272 pname = ZPL_VERSION_STR; 2273 else 2274 pname = zfs_prop_to_name(prop); 2275 2276 if (os != NULL) 2277 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2278 2279 if (error == ENOENT) { 2280 /* No value set, use the default value */ 2281 switch (prop) { 2282 case ZFS_PROP_VERSION: 2283 *value = ZPL_VERSION; 2284 break; 2285 case ZFS_PROP_NORMALIZE: 2286 case ZFS_PROP_UTF8ONLY: 2287 *value = 0; 2288 break; 2289 case ZFS_PROP_CASE: 2290 *value = ZFS_CASE_SENSITIVE; 2291 break; 2292 default: 2293 return (error); 2294 } 2295 error = 0; 2296 } 2297 return (error); 2298 } 2299 2300 static vfsdef_t vfw = { 2301 VFSDEF_VERSION, 2302 MNTTYPE_ZFS, 2303 zfs_vfsinit, 2304 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 2305 VSW_XID, 2306 &zfs_mntopts 2307 }; 2308 2309 struct modlfs zfs_modlfs = { 2310 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 2311 }; 2312