1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/sysmacros.h> 32 #include <sys/kmem.h> 33 #include <sys/pathname.h> 34 #include <sys/vnode.h> 35 #include <sys/vfs.h> 36 #include <sys/vfs_opreg.h> 37 #include <sys/mntent.h> 38 #include <sys/mount.h> 39 #include <sys/cmn_err.h> 40 #include "fs/fs_subr.h" 41 #include <sys/zfs_znode.h> 42 #include <sys/zfs_dir.h> 43 #include <sys/zil.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/dmu.h> 46 #include <sys/dsl_prop.h> 47 #include <sys/dsl_dataset.h> 48 #include <sys/dsl_deleg.h> 49 #include <sys/spa.h> 50 #include <sys/zap.h> 51 #include <sys/varargs.h> 52 #include <sys/policy.h> 53 #include <sys/atomic.h> 54 #include <sys/mkdev.h> 55 #include <sys/modctl.h> 56 #include <sys/refstr.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/zfs_ctldir.h> 59 #include <sys/zfs_fuid.h> 60 #include <sys/bootconf.h> 61 #include <sys/sunddi.h> 62 #include <sys/dnlc.h> 63 #include <sys/dmu_objset.h> 64 65 int zfsfstype; 66 vfsops_t *zfs_vfsops = NULL; 67 static major_t zfs_major; 68 static minor_t zfs_minor; 69 static kmutex_t zfs_dev_mtx; 70 71 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 72 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 73 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 74 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 75 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 76 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 77 static void zfs_freevfs(vfs_t *vfsp); 78 79 static const fs_operation_def_t zfs_vfsops_template[] = { 80 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 81 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 82 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 83 VFSNAME_ROOT, { .vfs_root = zfs_root }, 84 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 85 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 86 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 87 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 88 NULL, NULL 89 }; 90 91 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 92 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 93 NULL, NULL 94 }; 95 96 /* 97 * We need to keep a count of active fs's. 98 * This is necessary to prevent our module 99 * from being unloaded after a umount -f 100 */ 101 static uint32_t zfs_active_fs_count = 0; 102 103 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 104 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 105 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 106 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 107 108 /* 109 * MO_DEFAULT is not used since the default value is determined 110 * by the equivalent property. 111 */ 112 static mntopt_t mntopts[] = { 113 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 114 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 115 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 116 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 117 }; 118 119 static mntopts_t zfs_mntopts = { 120 sizeof (mntopts) / sizeof (mntopt_t), 121 mntopts 122 }; 123 124 /*ARGSUSED*/ 125 int 126 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 127 { 128 /* 129 * Data integrity is job one. We don't want a compromised kernel 130 * writing to the storage pool, so we never sync during panic. 131 */ 132 if (panicstr) 133 return (0); 134 135 /* 136 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 137 * to sync metadata, which they would otherwise cache indefinitely. 138 * Semantically, the only requirement is that the sync be initiated. 139 * The DMU syncs out txgs frequently, so there's nothing to do. 140 */ 141 if (flag & SYNC_ATTR) 142 return (0); 143 144 if (vfsp != NULL) { 145 /* 146 * Sync a specific filesystem. 147 */ 148 zfsvfs_t *zfsvfs = vfsp->vfs_data; 149 150 ZFS_ENTER(zfsvfs); 151 if (zfsvfs->z_log != NULL) 152 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 153 else 154 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 155 ZFS_EXIT(zfsvfs); 156 } else { 157 /* 158 * Sync all ZFS filesystems. This is what happens when you 159 * run sync(1M). Unlike other filesystems, ZFS honors the 160 * request by waiting for all pools to commit all dirty data. 161 */ 162 spa_sync_allpools(); 163 } 164 165 return (0); 166 } 167 168 static int 169 zfs_create_unique_device(dev_t *dev) 170 { 171 major_t new_major; 172 173 do { 174 ASSERT3U(zfs_minor, <=, MAXMIN32); 175 minor_t start = zfs_minor; 176 do { 177 mutex_enter(&zfs_dev_mtx); 178 if (zfs_minor >= MAXMIN32) { 179 /* 180 * If we're still using the real major 181 * keep out of /dev/zfs and /dev/zvol minor 182 * number space. If we're using a getudev()'ed 183 * major number, we can use all of its minors. 184 */ 185 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 186 zfs_minor = ZFS_MIN_MINOR; 187 else 188 zfs_minor = 0; 189 } else { 190 zfs_minor++; 191 } 192 *dev = makedevice(zfs_major, zfs_minor); 193 mutex_exit(&zfs_dev_mtx); 194 } while (vfs_devismounted(*dev) && zfs_minor != start); 195 if (zfs_minor == start) { 196 /* 197 * We are using all ~262,000 minor numbers for the 198 * current major number. Create a new major number. 199 */ 200 if ((new_major = getudev()) == (major_t)-1) { 201 cmn_err(CE_WARN, 202 "zfs_mount: Can't get unique major " 203 "device number."); 204 return (-1); 205 } 206 mutex_enter(&zfs_dev_mtx); 207 zfs_major = new_major; 208 zfs_minor = 0; 209 210 mutex_exit(&zfs_dev_mtx); 211 } else { 212 break; 213 } 214 /* CONSTANTCONDITION */ 215 } while (1); 216 217 return (0); 218 } 219 220 static void 221 atime_changed_cb(void *arg, uint64_t newval) 222 { 223 zfsvfs_t *zfsvfs = arg; 224 225 if (newval == TRUE) { 226 zfsvfs->z_atime = TRUE; 227 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 228 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 229 } else { 230 zfsvfs->z_atime = FALSE; 231 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 232 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 233 } 234 } 235 236 static void 237 xattr_changed_cb(void *arg, uint64_t newval) 238 { 239 zfsvfs_t *zfsvfs = arg; 240 241 if (newval == TRUE) { 242 /* XXX locking on vfs_flag? */ 243 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 244 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 245 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 246 } else { 247 /* XXX locking on vfs_flag? */ 248 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 249 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 250 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 251 } 252 } 253 254 static void 255 blksz_changed_cb(void *arg, uint64_t newval) 256 { 257 zfsvfs_t *zfsvfs = arg; 258 259 if (newval < SPA_MINBLOCKSIZE || 260 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 261 newval = SPA_MAXBLOCKSIZE; 262 263 zfsvfs->z_max_blksz = newval; 264 zfsvfs->z_vfs->vfs_bsize = newval; 265 } 266 267 static void 268 readonly_changed_cb(void *arg, uint64_t newval) 269 { 270 zfsvfs_t *zfsvfs = arg; 271 272 if (newval) { 273 /* XXX locking on vfs_flag? */ 274 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 275 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 276 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 277 } else { 278 /* XXX locking on vfs_flag? */ 279 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 280 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 281 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 282 } 283 } 284 285 static void 286 devices_changed_cb(void *arg, uint64_t newval) 287 { 288 zfsvfs_t *zfsvfs = arg; 289 290 if (newval == FALSE) { 291 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 292 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 293 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 294 } else { 295 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 296 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 297 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 298 } 299 } 300 301 static void 302 setuid_changed_cb(void *arg, uint64_t newval) 303 { 304 zfsvfs_t *zfsvfs = arg; 305 306 if (newval == FALSE) { 307 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 308 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 309 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 310 } else { 311 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 312 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 313 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 314 } 315 } 316 317 static void 318 exec_changed_cb(void *arg, uint64_t newval) 319 { 320 zfsvfs_t *zfsvfs = arg; 321 322 if (newval == FALSE) { 323 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 324 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 325 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 326 } else { 327 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 328 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 329 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 330 } 331 } 332 333 /* 334 * The nbmand mount option can be changed at mount time. 335 * We can't allow it to be toggled on live file systems or incorrect 336 * behavior may be seen from cifs clients 337 * 338 * This property isn't registered via dsl_prop_register(), but this callback 339 * will be called when a file system is first mounted 340 */ 341 static void 342 nbmand_changed_cb(void *arg, uint64_t newval) 343 { 344 zfsvfs_t *zfsvfs = arg; 345 if (newval == FALSE) { 346 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 347 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 348 } else { 349 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 350 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 351 } 352 } 353 354 static void 355 snapdir_changed_cb(void *arg, uint64_t newval) 356 { 357 zfsvfs_t *zfsvfs = arg; 358 359 zfsvfs->z_show_ctldir = newval; 360 } 361 362 static void 363 vscan_changed_cb(void *arg, uint64_t newval) 364 { 365 zfsvfs_t *zfsvfs = arg; 366 367 zfsvfs->z_vscan = newval; 368 } 369 370 static void 371 acl_mode_changed_cb(void *arg, uint64_t newval) 372 { 373 zfsvfs_t *zfsvfs = arg; 374 375 zfsvfs->z_acl_mode = newval; 376 } 377 378 static void 379 acl_inherit_changed_cb(void *arg, uint64_t newval) 380 { 381 zfsvfs_t *zfsvfs = arg; 382 383 zfsvfs->z_acl_inherit = newval; 384 } 385 386 static int 387 zfs_register_callbacks(vfs_t *vfsp) 388 { 389 struct dsl_dataset *ds = NULL; 390 objset_t *os = NULL; 391 zfsvfs_t *zfsvfs = NULL; 392 uint64_t nbmand; 393 int readonly, do_readonly = B_FALSE; 394 int setuid, do_setuid = B_FALSE; 395 int exec, do_exec = B_FALSE; 396 int devices, do_devices = B_FALSE; 397 int xattr, do_xattr = B_FALSE; 398 int atime, do_atime = B_FALSE; 399 int error = 0; 400 401 ASSERT(vfsp); 402 zfsvfs = vfsp->vfs_data; 403 ASSERT(zfsvfs); 404 os = zfsvfs->z_os; 405 406 /* 407 * The act of registering our callbacks will destroy any mount 408 * options we may have. In order to enable temporary overrides 409 * of mount options, we stash away the current values and 410 * restore them after we register the callbacks. 411 */ 412 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 413 readonly = B_TRUE; 414 do_readonly = B_TRUE; 415 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 416 readonly = B_FALSE; 417 do_readonly = B_TRUE; 418 } 419 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 420 devices = B_FALSE; 421 setuid = B_FALSE; 422 do_devices = B_TRUE; 423 do_setuid = B_TRUE; 424 } else { 425 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 426 devices = B_FALSE; 427 do_devices = B_TRUE; 428 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 429 devices = B_TRUE; 430 do_devices = B_TRUE; 431 } 432 433 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 434 setuid = B_FALSE; 435 do_setuid = B_TRUE; 436 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 437 setuid = B_TRUE; 438 do_setuid = B_TRUE; 439 } 440 } 441 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 442 exec = B_FALSE; 443 do_exec = B_TRUE; 444 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 445 exec = B_TRUE; 446 do_exec = B_TRUE; 447 } 448 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 449 xattr = B_FALSE; 450 do_xattr = B_TRUE; 451 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 452 xattr = B_TRUE; 453 do_xattr = B_TRUE; 454 } 455 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 456 atime = B_FALSE; 457 do_atime = B_TRUE; 458 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 459 atime = B_TRUE; 460 do_atime = B_TRUE; 461 } 462 463 /* 464 * nbmand is a special property. It can only be changed at 465 * mount time. 466 * 467 * This is weird, but it is documented to only be changeable 468 * at mount time. 469 */ 470 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 471 nbmand = B_FALSE; 472 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 473 nbmand = B_TRUE; 474 } else { 475 char osname[MAXNAMELEN]; 476 477 dmu_objset_name(os, osname); 478 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 479 NULL)) 480 return (error); 481 } 482 483 /* 484 * Register property callbacks. 485 * 486 * It would probably be fine to just check for i/o error from 487 * the first prop_register(), but I guess I like to go 488 * overboard... 489 */ 490 ds = dmu_objset_ds(os); 491 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 492 error = error ? error : dsl_prop_register(ds, 493 "xattr", xattr_changed_cb, zfsvfs); 494 error = error ? error : dsl_prop_register(ds, 495 "recordsize", blksz_changed_cb, zfsvfs); 496 error = error ? error : dsl_prop_register(ds, 497 "readonly", readonly_changed_cb, zfsvfs); 498 error = error ? error : dsl_prop_register(ds, 499 "devices", devices_changed_cb, zfsvfs); 500 error = error ? error : dsl_prop_register(ds, 501 "setuid", setuid_changed_cb, zfsvfs); 502 error = error ? error : dsl_prop_register(ds, 503 "exec", exec_changed_cb, zfsvfs); 504 error = error ? error : dsl_prop_register(ds, 505 "snapdir", snapdir_changed_cb, zfsvfs); 506 error = error ? error : dsl_prop_register(ds, 507 "aclmode", acl_mode_changed_cb, zfsvfs); 508 error = error ? error : dsl_prop_register(ds, 509 "aclinherit", acl_inherit_changed_cb, zfsvfs); 510 error = error ? error : dsl_prop_register(ds, 511 "vscan", vscan_changed_cb, zfsvfs); 512 if (error) 513 goto unregister; 514 515 /* 516 * Invoke our callbacks to restore temporary mount options. 517 */ 518 if (do_readonly) 519 readonly_changed_cb(zfsvfs, readonly); 520 if (do_setuid) 521 setuid_changed_cb(zfsvfs, setuid); 522 if (do_exec) 523 exec_changed_cb(zfsvfs, exec); 524 if (do_devices) 525 devices_changed_cb(zfsvfs, devices); 526 if (do_xattr) 527 xattr_changed_cb(zfsvfs, xattr); 528 if (do_atime) 529 atime_changed_cb(zfsvfs, atime); 530 531 nbmand_changed_cb(zfsvfs, nbmand); 532 533 return (0); 534 535 unregister: 536 /* 537 * We may attempt to unregister some callbacks that are not 538 * registered, but this is OK; it will simply return ENOMSG, 539 * which we will ignore. 540 */ 541 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 542 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 543 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 544 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 545 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 546 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 547 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 548 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 549 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 550 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 551 zfsvfs); 552 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 553 return (error); 554 555 } 556 557 static int 558 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 559 { 560 uint_t readonly; 561 int error; 562 563 error = zfs_register_callbacks(zfsvfs->z_vfs); 564 if (error) 565 return (error); 566 567 /* 568 * Set the objset user_ptr to track its zfsvfs. 569 */ 570 mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock); 571 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 572 mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock); 573 574 /* 575 * If we are not mounting (ie: online recv), then we don't 576 * have to worry about replaying the log as we blocked all 577 * operations out since we closed the ZIL. 578 */ 579 if (mounting) { 580 /* 581 * During replay we remove the read only flag to 582 * allow replays to succeed. 583 */ 584 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 585 if (readonly != 0) 586 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 587 else 588 zfs_unlinked_drain(zfsvfs); 589 590 /* 591 * Parse and replay the intent log. 592 * 593 * Because of ziltest, this must be done after 594 * zfs_unlinked_drain(). (Further note: ziltest doesn't 595 * use readonly mounts, where zfs_unlinked_drain() isn't 596 * called.) This is because ziltest causes spa_sync() 597 * to think it's committed, but actually it is not, so 598 * the intent log contains many txg's worth of changes. 599 * 600 * In particular, if object N is in the unlinked set in 601 * the last txg to actually sync, then it could be 602 * actually freed in a later txg and then reallocated in 603 * a yet later txg. This would write a "create object 604 * N" record to the intent log. Normally, this would be 605 * fine because the spa_sync() would have written out 606 * the fact that object N is free, before we could write 607 * the "create object N" intent log record. 608 * 609 * But when we are in ziltest mode, we advance the "open 610 * txg" without actually spa_sync()-ing the changes to 611 * disk. So we would see that object N is still 612 * allocated and in the unlinked set, and there is an 613 * intent log record saying to allocate it. 614 */ 615 zil_replay(zfsvfs->z_os, zfsvfs, &zfsvfs->z_assign, 616 zfs_replay_vector); 617 618 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 619 } 620 621 if (!zil_disable) 622 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 623 624 return (0); 625 } 626 627 static int 628 zfs_domount(vfs_t *vfsp, char *osname, cred_t *cr) 629 { 630 dev_t mount_dev; 631 uint64_t recordsize, readonly; 632 int error = 0; 633 int mode; 634 zfsvfs_t *zfsvfs; 635 znode_t *zp = NULL; 636 637 ASSERT(vfsp); 638 ASSERT(osname); 639 640 /* 641 * Initialize the zfs-specific filesystem structure. 642 * Should probably make this a kmem cache, shuffle fields, 643 * and just bzero up to z_hold_mtx[]. 644 */ 645 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 646 zfsvfs->z_vfs = vfsp; 647 zfsvfs->z_parent = zfsvfs; 648 zfsvfs->z_assign = TXG_NOWAIT; 649 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 650 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 651 652 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 653 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 654 offsetof(znode_t, z_link_node)); 655 rrw_init(&zfsvfs->z_teardown_lock); 656 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 657 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 658 659 /* Initialize the generic filesystem structure. */ 660 vfsp->vfs_bcount = 0; 661 vfsp->vfs_data = NULL; 662 663 if (zfs_create_unique_device(&mount_dev) == -1) { 664 error = ENODEV; 665 goto out; 666 } 667 ASSERT(vfs_devismounted(mount_dev) == 0); 668 669 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 670 NULL)) 671 goto out; 672 673 vfsp->vfs_dev = mount_dev; 674 vfsp->vfs_fstype = zfsfstype; 675 vfsp->vfs_bsize = recordsize; 676 vfsp->vfs_flag |= VFS_NOTRUNC; 677 vfsp->vfs_data = zfsvfs; 678 679 if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL)) 680 goto out; 681 682 if (readonly) 683 mode = DS_MODE_PRIMARY | DS_MODE_READONLY; 684 else 685 mode = DS_MODE_PRIMARY; 686 687 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 688 if (error == EROFS) { 689 mode = DS_MODE_PRIMARY | DS_MODE_READONLY; 690 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, 691 &zfsvfs->z_os); 692 } 693 694 if (error) 695 goto out; 696 697 if (error = zfs_init_fs(zfsvfs, &zp, cr)) 698 goto out; 699 700 /* The call to zfs_init_fs leaves the vnode held, release it here. */ 701 VN_RELE(ZTOV(zp)); 702 703 /* 704 * Set features for file system. 705 */ 706 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 707 if (zfsvfs->z_use_fuids) { 708 vfs_set_feature(vfsp, VFSFT_XVATTR); 709 vfs_set_feature(vfsp, VFSFT_ACEMASKONACCESS); 710 vfs_set_feature(vfsp, VFSFT_ACLONCREATE); 711 } 712 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 713 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 714 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 715 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 716 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 717 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 718 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 719 } 720 721 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 722 uint64_t pval; 723 724 ASSERT(mode & DS_MODE_READONLY); 725 atime_changed_cb(zfsvfs, B_FALSE); 726 readonly_changed_cb(zfsvfs, B_TRUE); 727 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 728 goto out; 729 xattr_changed_cb(zfsvfs, pval); 730 zfsvfs->z_issnap = B_TRUE; 731 } else { 732 error = zfsvfs_setup(zfsvfs, B_TRUE); 733 } 734 735 if (!zfsvfs->z_issnap) 736 zfsctl_create(zfsvfs); 737 out: 738 if (error) { 739 if (zfsvfs->z_os) 740 dmu_objset_close(zfsvfs->z_os); 741 mutex_destroy(&zfsvfs->z_znodes_lock); 742 list_destroy(&zfsvfs->z_all_znodes); 743 rrw_destroy(&zfsvfs->z_teardown_lock); 744 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 745 rw_destroy(&zfsvfs->z_fuid_lock); 746 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 747 } else { 748 atomic_add_32(&zfs_active_fs_count, 1); 749 } 750 751 return (error); 752 } 753 754 void 755 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 756 { 757 objset_t *os = zfsvfs->z_os; 758 struct dsl_dataset *ds; 759 760 /* 761 * Unregister properties. 762 */ 763 if (!dmu_objset_is_snapshot(os)) { 764 ds = dmu_objset_ds(os); 765 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 766 zfsvfs) == 0); 767 768 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 769 zfsvfs) == 0); 770 771 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 772 zfsvfs) == 0); 773 774 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 775 zfsvfs) == 0); 776 777 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 778 zfsvfs) == 0); 779 780 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 781 zfsvfs) == 0); 782 783 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 784 zfsvfs) == 0); 785 786 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 787 zfsvfs) == 0); 788 789 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 790 zfsvfs) == 0); 791 792 VERIFY(dsl_prop_unregister(ds, "aclinherit", 793 acl_inherit_changed_cb, zfsvfs) == 0); 794 795 VERIFY(dsl_prop_unregister(ds, "vscan", 796 vscan_changed_cb, zfsvfs) == 0); 797 } 798 } 799 800 /* 801 * Convert a decimal digit string to a uint64_t integer. 802 */ 803 static int 804 str_to_uint64(char *str, uint64_t *objnum) 805 { 806 uint64_t num = 0; 807 808 while (*str) { 809 if (*str < '0' || *str > '9') 810 return (EINVAL); 811 812 num = num*10 + *str++ - '0'; 813 } 814 815 *objnum = num; 816 return (0); 817 } 818 819 /* 820 * The boot path passed from the boot loader is in the form of 821 * "rootpool-name/root-filesystem-object-number'. Convert this 822 * string to a dataset name: "rootpool-name/root-filesystem-name". 823 */ 824 static int 825 parse_bootpath(char *bpath, char *outpath) 826 { 827 char *slashp; 828 uint64_t objnum; 829 int error; 830 831 if (*bpath == 0 || *bpath == '/') 832 return (EINVAL); 833 834 slashp = strchr(bpath, '/'); 835 836 /* if no '/', just return the pool name */ 837 if (slashp == NULL) { 838 (void) strcpy(outpath, bpath); 839 return (0); 840 } 841 842 if (error = str_to_uint64(slashp+1, &objnum)) 843 return (error); 844 845 *slashp = '\0'; 846 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 847 *slashp = '/'; 848 849 return (error); 850 } 851 852 static int 853 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 854 { 855 int error = 0; 856 int ret = 0; 857 static int zfsrootdone = 0; 858 zfsvfs_t *zfsvfs = NULL; 859 znode_t *zp = NULL; 860 vnode_t *vp = NULL; 861 char *zfs_bootpath; 862 #if defined(_OBP) 863 int proplen; 864 #endif 865 866 ASSERT(vfsp); 867 868 /* 869 * The filesystem that we mount as root is defined in the 870 * "zfs-bootfs" property. 871 */ 872 if (why == ROOT_INIT) { 873 if (zfsrootdone++) 874 return (EBUSY); 875 876 #if defined(_OBP) 877 proplen = BOP_GETPROPLEN(bootops, "zfs-bootfs"); 878 if (proplen == 0) 879 return (EIO); 880 zfs_bootpath = kmem_zalloc(proplen, KM_SLEEP); 881 if (BOP_GETPROP(bootops, "zfs-bootfs", zfs_bootpath) == -1) { 882 kmem_free(zfs_bootpath, proplen); 883 return (EIO); 884 } 885 error = parse_bootpath(zfs_bootpath, rootfs.bo_name); 886 kmem_free(zfs_bootpath, proplen); 887 #else 888 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 889 DDI_PROP_DONTPASS, "zfs-bootfs", &zfs_bootpath) != 890 DDI_SUCCESS) 891 return (EIO); 892 893 error = parse_bootpath(zfs_bootpath, rootfs.bo_name); 894 ddi_prop_free(zfs_bootpath); 895 #endif 896 897 if (error) 898 return (error); 899 900 if (error = vfs_lock(vfsp)) 901 return (error); 902 903 if (error = zfs_domount(vfsp, rootfs.bo_name, CRED())) 904 goto out; 905 906 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 907 ASSERT(zfsvfs); 908 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) 909 goto out; 910 911 vp = ZTOV(zp); 912 mutex_enter(&vp->v_lock); 913 vp->v_flag |= VROOT; 914 mutex_exit(&vp->v_lock); 915 rootvp = vp; 916 917 /* 918 * The zfs_zget call above returns with a hold on vp, we release 919 * it here. 920 */ 921 VN_RELE(vp); 922 923 /* 924 * Mount root as readonly initially, it will be remouted 925 * read/write by /lib/svc/method/fs-usr. 926 */ 927 readonly_changed_cb(vfsp->vfs_data, B_TRUE); 928 vfs_add((struct vnode *)0, vfsp, 929 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 930 out: 931 vfs_unlock(vfsp); 932 ret = (error) ? error : 0; 933 return (ret); 934 } else if (why == ROOT_REMOUNT) { 935 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 936 vfsp->vfs_flag |= VFS_REMOUNT; 937 938 /* refresh mount options */ 939 zfs_unregister_callbacks(vfsp->vfs_data); 940 return (zfs_register_callbacks(vfsp)); 941 942 } else if (why == ROOT_UNMOUNT) { 943 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 944 (void) zfs_sync(vfsp, 0, 0); 945 return (0); 946 } 947 948 /* 949 * if "why" is equal to anything else other than ROOT_INIT, 950 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 951 */ 952 return (ENOTSUP); 953 } 954 955 /*ARGSUSED*/ 956 static int 957 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 958 { 959 char *osname; 960 pathname_t spn; 961 int error = 0; 962 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 963 UIO_SYSSPACE : UIO_USERSPACE; 964 int canwrite; 965 966 if (mvp->v_type != VDIR) 967 return (ENOTDIR); 968 969 mutex_enter(&mvp->v_lock); 970 if ((uap->flags & MS_REMOUNT) == 0 && 971 (uap->flags & MS_OVERLAY) == 0 && 972 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 973 mutex_exit(&mvp->v_lock); 974 return (EBUSY); 975 } 976 mutex_exit(&mvp->v_lock); 977 978 /* 979 * ZFS does not support passing unparsed data in via MS_DATA. 980 * Users should use the MS_OPTIONSTR interface; this means 981 * that all option parsing is already done and the options struct 982 * can be interrogated. 983 */ 984 if ((uap->flags & MS_DATA) && uap->datalen > 0) 985 return (EINVAL); 986 987 /* 988 * Get the objset name (the "special" mount argument). 989 */ 990 if (error = pn_get(uap->spec, fromspace, &spn)) 991 return (error); 992 993 osname = spn.pn_path; 994 995 /* 996 * Check for mount privilege? 997 * 998 * If we don't have privilege then see if 999 * we have local permission to allow it 1000 */ 1001 error = secpolicy_fs_mount(cr, mvp, vfsp); 1002 if (error) { 1003 error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr); 1004 if (error == 0) { 1005 vattr_t vattr; 1006 1007 /* 1008 * Make sure user is the owner of the mount point 1009 * or has sufficient privileges. 1010 */ 1011 1012 vattr.va_mask = AT_UID; 1013 1014 if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1015 goto out; 1016 } 1017 1018 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1019 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1020 error = EPERM; 1021 goto out; 1022 } 1023 1024 secpolicy_fs_mount_clearopts(cr, vfsp); 1025 } else { 1026 goto out; 1027 } 1028 } 1029 1030 /* 1031 * Refuse to mount a filesystem if we are in a local zone and the 1032 * dataset is not visible. 1033 */ 1034 if (!INGLOBALZONE(curproc) && 1035 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1036 error = EPERM; 1037 goto out; 1038 } 1039 1040 /* 1041 * When doing a remount, we simply refresh our temporary properties 1042 * according to those options set in the current VFS options. 1043 */ 1044 if (uap->flags & MS_REMOUNT) { 1045 /* refresh mount options */ 1046 zfs_unregister_callbacks(vfsp->vfs_data); 1047 error = zfs_register_callbacks(vfsp); 1048 goto out; 1049 } 1050 1051 error = zfs_domount(vfsp, osname, cr); 1052 1053 out: 1054 pn_free(&spn); 1055 return (error); 1056 } 1057 1058 static int 1059 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1060 { 1061 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1062 dev32_t d32; 1063 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1064 1065 ZFS_ENTER(zfsvfs); 1066 1067 dmu_objset_space(zfsvfs->z_os, 1068 &refdbytes, &availbytes, &usedobjs, &availobjs); 1069 1070 /* 1071 * The underlying storage pool actually uses multiple block sizes. 1072 * We report the fragsize as the smallest block size we support, 1073 * and we report our blocksize as the filesystem's maximum blocksize. 1074 */ 1075 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1076 statp->f_bsize = zfsvfs->z_max_blksz; 1077 1078 /* 1079 * The following report "total" blocks of various kinds in the 1080 * file system, but reported in terms of f_frsize - the 1081 * "fragment" size. 1082 */ 1083 1084 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1085 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1086 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1087 1088 /* 1089 * statvfs() should really be called statufs(), because it assumes 1090 * static metadata. ZFS doesn't preallocate files, so the best 1091 * we can do is report the max that could possibly fit in f_files, 1092 * and that minus the number actually used in f_ffree. 1093 * For f_ffree, report the smaller of the number of object available 1094 * and the number of blocks (each object will take at least a block). 1095 */ 1096 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1097 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1098 statp->f_files = statp->f_ffree + usedobjs; 1099 1100 (void) cmpldev(&d32, vfsp->vfs_dev); 1101 statp->f_fsid = d32; 1102 1103 /* 1104 * We're a zfs filesystem. 1105 */ 1106 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1107 1108 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1109 1110 statp->f_namemax = ZFS_MAXNAMELEN; 1111 1112 /* 1113 * We have all of 32 characters to stuff a string here. 1114 * Is there anything useful we could/should provide? 1115 */ 1116 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1117 1118 ZFS_EXIT(zfsvfs); 1119 return (0); 1120 } 1121 1122 static int 1123 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1124 { 1125 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1126 znode_t *rootzp; 1127 int error; 1128 1129 ZFS_ENTER(zfsvfs); 1130 1131 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1132 if (error == 0) 1133 *vpp = ZTOV(rootzp); 1134 1135 ZFS_EXIT(zfsvfs); 1136 return (error); 1137 } 1138 1139 /* 1140 * Teardown the zfsvfs::z_os. 1141 * 1142 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1143 * and 'z_teardown_inactive_lock' held. 1144 */ 1145 static int 1146 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1147 { 1148 objset_t *os = zfsvfs->z_os; 1149 znode_t *zp; 1150 1151 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1152 1153 if (!unmounting) { 1154 /* 1155 * We purge the parent filesystem's vfsp as the parent 1156 * filesystem and all of its snapshots have their vnode's 1157 * v_vfsp set to the parent's filesystem's vfsp. Note, 1158 * 'z_parent' is self referential for non-snapshots. 1159 */ 1160 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1161 } 1162 1163 /* 1164 * Close the zil. NB: Can't close the zil while zfs_inactive 1165 * threads are blocked as zil_close can call zfs_inactive. 1166 */ 1167 if (zfsvfs->z_log) { 1168 zil_close(zfsvfs->z_log); 1169 zfsvfs->z_log = NULL; 1170 } 1171 1172 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1173 1174 /* 1175 * If we are not unmounting (ie: online recv) and someone already 1176 * unmounted this file system while we were doing the switcheroo, 1177 * or a reopen of z_os failed then just bail out now. 1178 */ 1179 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1180 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1181 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1182 return (EIO); 1183 } 1184 1185 /* 1186 * At this point there are no vops active, and any new vops will 1187 * fail with EIO since we have z_teardown_lock for writer (only 1188 * relavent for forced unmount). 1189 * 1190 * Release all holds on dbufs. 1191 */ 1192 mutex_enter(&zfsvfs->z_znodes_lock); 1193 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1194 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1195 if (zp->z_dbuf) { 1196 ASSERT(ZTOV(zp)->v_count > 0); 1197 zfs_znode_dmu_fini(zp); 1198 } 1199 mutex_exit(&zfsvfs->z_znodes_lock); 1200 1201 /* 1202 * If we are unmounting, set the unmounted flag and let new vops 1203 * unblock. zfs_inactive will have the unmounted behavior, and all 1204 * other vops will fail with EIO. 1205 */ 1206 if (unmounting) { 1207 zfsvfs->z_unmounted = B_TRUE; 1208 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1209 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1210 } 1211 1212 /* 1213 * z_os will be NULL if there was an error in attempting to reopen 1214 * zfsvfs, so just return as the properties had already been 1215 * unregistered and cached data had been evicted before. 1216 */ 1217 if (zfsvfs->z_os == NULL) 1218 return (0); 1219 1220 /* 1221 * Unregister properties. 1222 */ 1223 zfs_unregister_callbacks(zfsvfs); 1224 1225 /* 1226 * Evict cached data 1227 */ 1228 if (dmu_objset_evict_dbufs(os)) { 1229 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1230 (void) dmu_objset_evict_dbufs(os); 1231 } 1232 1233 return (0); 1234 } 1235 1236 /*ARGSUSED*/ 1237 static int 1238 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1239 { 1240 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1241 objset_t *os; 1242 int ret; 1243 1244 ret = secpolicy_fs_unmount(cr, vfsp); 1245 if (ret) { 1246 ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1247 ZFS_DELEG_PERM_MOUNT, cr); 1248 if (ret) 1249 return (ret); 1250 } 1251 1252 /* 1253 * We purge the parent filesystem's vfsp as the parent filesystem 1254 * and all of its snapshots have their vnode's v_vfsp set to the 1255 * parent's filesystem's vfsp. Note, 'z_parent' is self 1256 * referential for non-snapshots. 1257 */ 1258 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1259 1260 /* 1261 * Unmount any snapshots mounted under .zfs before unmounting the 1262 * dataset itself. 1263 */ 1264 if (zfsvfs->z_ctldir != NULL && 1265 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1266 return (ret); 1267 } 1268 1269 if (!(fflag & MS_FORCE)) { 1270 /* 1271 * Check the number of active vnodes in the file system. 1272 * Our count is maintained in the vfs structure, but the 1273 * number is off by 1 to indicate a hold on the vfs 1274 * structure itself. 1275 * 1276 * The '.zfs' directory maintains a reference of its 1277 * own, and any active references underneath are 1278 * reflected in the vnode count. 1279 */ 1280 if (zfsvfs->z_ctldir == NULL) { 1281 if (vfsp->vfs_count > 1) 1282 return (EBUSY); 1283 } else { 1284 if (vfsp->vfs_count > 2 || 1285 zfsvfs->z_ctldir->v_count > 1) 1286 return (EBUSY); 1287 } 1288 } 1289 1290 vfsp->vfs_flag |= VFS_UNMOUNTED; 1291 1292 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1293 os = zfsvfs->z_os; 1294 1295 /* 1296 * z_os will be NULL if there was an error in 1297 * attempting to reopen zfsvfs. 1298 */ 1299 if (os != NULL) { 1300 /* 1301 * Unset the objset user_ptr. 1302 */ 1303 mutex_enter(&os->os->os_user_ptr_lock); 1304 dmu_objset_set_user(os, NULL); 1305 mutex_exit(&os->os->os_user_ptr_lock); 1306 1307 /* 1308 * Finally close the objset 1309 */ 1310 dmu_objset_close(os); 1311 } 1312 1313 /* 1314 * We can now safely destroy the '.zfs' directory node. 1315 */ 1316 if (zfsvfs->z_ctldir != NULL) 1317 zfsctl_destroy(zfsvfs); 1318 1319 return (0); 1320 } 1321 1322 static int 1323 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1324 { 1325 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1326 znode_t *zp; 1327 uint64_t object = 0; 1328 uint64_t fid_gen = 0; 1329 uint64_t gen_mask; 1330 uint64_t zp_gen; 1331 int i, err; 1332 1333 *vpp = NULL; 1334 1335 ZFS_ENTER(zfsvfs); 1336 1337 if (fidp->fid_len == LONG_FID_LEN) { 1338 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1339 uint64_t objsetid = 0; 1340 uint64_t setgen = 0; 1341 1342 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1343 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1344 1345 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1346 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1347 1348 ZFS_EXIT(zfsvfs); 1349 1350 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1351 if (err) 1352 return (EINVAL); 1353 ZFS_ENTER(zfsvfs); 1354 } 1355 1356 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1357 zfid_short_t *zfid = (zfid_short_t *)fidp; 1358 1359 for (i = 0; i < sizeof (zfid->zf_object); i++) 1360 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1361 1362 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1363 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1364 } else { 1365 ZFS_EXIT(zfsvfs); 1366 return (EINVAL); 1367 } 1368 1369 /* A zero fid_gen means we are in the .zfs control directories */ 1370 if (fid_gen == 0 && 1371 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1372 *vpp = zfsvfs->z_ctldir; 1373 ASSERT(*vpp != NULL); 1374 if (object == ZFSCTL_INO_SNAPDIR) { 1375 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1376 0, NULL, NULL, NULL, NULL, NULL) == 0); 1377 } else { 1378 VN_HOLD(*vpp); 1379 } 1380 ZFS_EXIT(zfsvfs); 1381 return (0); 1382 } 1383 1384 gen_mask = -1ULL >> (64 - 8 * i); 1385 1386 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1387 if (err = zfs_zget(zfsvfs, object, &zp)) { 1388 ZFS_EXIT(zfsvfs); 1389 return (err); 1390 } 1391 zp_gen = zp->z_phys->zp_gen & gen_mask; 1392 if (zp_gen == 0) 1393 zp_gen = 1; 1394 if (zp->z_unlinked || zp_gen != fid_gen) { 1395 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1396 VN_RELE(ZTOV(zp)); 1397 ZFS_EXIT(zfsvfs); 1398 return (EINVAL); 1399 } 1400 1401 *vpp = ZTOV(zp); 1402 ZFS_EXIT(zfsvfs); 1403 return (0); 1404 } 1405 1406 /* 1407 * Block out VOPs and close zfsvfs_t::z_os 1408 * 1409 * Note, if successful, then we return with the 'z_teardown_lock' and 1410 * 'z_teardown_inactive_lock' write held. 1411 */ 1412 int 1413 zfs_suspend_fs(zfsvfs_t *zfsvfs, char *name, int *mode) 1414 { 1415 int error; 1416 1417 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 1418 return (error); 1419 1420 *mode = zfsvfs->z_os->os_mode; 1421 dmu_objset_name(zfsvfs->z_os, name); 1422 dmu_objset_close(zfsvfs->z_os); 1423 1424 return (0); 1425 } 1426 1427 /* 1428 * Reopen zfsvfs_t::z_os and release VOPs. 1429 */ 1430 int 1431 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname, int mode) 1432 { 1433 int err; 1434 1435 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 1436 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1437 1438 err = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 1439 if (err) { 1440 zfsvfs->z_os = NULL; 1441 } else { 1442 znode_t *zp; 1443 1444 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 1445 1446 /* 1447 * Attempt to re-establish all the active znodes with 1448 * their dbufs. If a zfs_rezget() fails, then we'll let 1449 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 1450 * when they try to use their znode. 1451 */ 1452 mutex_enter(&zfsvfs->z_znodes_lock); 1453 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 1454 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1455 (void) zfs_rezget(zp); 1456 } 1457 mutex_exit(&zfsvfs->z_znodes_lock); 1458 1459 } 1460 1461 /* release the VOPs */ 1462 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1463 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1464 1465 if (err) { 1466 /* 1467 * Since we couldn't reopen zfsvfs::z_os, force 1468 * unmount this file system. 1469 */ 1470 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 1471 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 1472 } 1473 return (err); 1474 } 1475 1476 static void 1477 zfs_freevfs(vfs_t *vfsp) 1478 { 1479 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1480 int i; 1481 1482 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1483 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1484 1485 mutex_destroy(&zfsvfs->z_znodes_lock); 1486 list_destroy(&zfsvfs->z_all_znodes); 1487 rrw_destroy(&zfsvfs->z_teardown_lock); 1488 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1489 zfs_fuid_destroy(zfsvfs); 1490 rw_destroy(&zfsvfs->z_fuid_lock); 1491 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1492 1493 atomic_add_32(&zfs_active_fs_count, -1); 1494 } 1495 1496 /* 1497 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 1498 * so we can't safely do any non-idempotent initialization here. 1499 * Leave that to zfs_init() and zfs_fini(), which are called 1500 * from the module's _init() and _fini() entry points. 1501 */ 1502 /*ARGSUSED*/ 1503 static int 1504 zfs_vfsinit(int fstype, char *name) 1505 { 1506 int error; 1507 1508 zfsfstype = fstype; 1509 1510 /* 1511 * Setup vfsops and vnodeops tables. 1512 */ 1513 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 1514 if (error != 0) { 1515 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 1516 } 1517 1518 error = zfs_create_op_tables(); 1519 if (error) { 1520 zfs_remove_op_tables(); 1521 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 1522 (void) vfs_freevfsops_by_type(zfsfstype); 1523 return (error); 1524 } 1525 1526 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 1527 1528 /* 1529 * Unique major number for all zfs mounts. 1530 * If we run out of 32-bit minors, we'll getudev() another major. 1531 */ 1532 zfs_major = ddi_name_to_major(ZFS_DRIVER); 1533 zfs_minor = ZFS_MIN_MINOR; 1534 1535 return (0); 1536 } 1537 1538 void 1539 zfs_init(void) 1540 { 1541 /* 1542 * Initialize .zfs directory structures 1543 */ 1544 zfsctl_init(); 1545 1546 /* 1547 * Initialize znode cache, vnode ops, etc... 1548 */ 1549 zfs_znode_init(); 1550 } 1551 1552 void 1553 zfs_fini(void) 1554 { 1555 zfsctl_fini(); 1556 zfs_znode_fini(); 1557 } 1558 1559 int 1560 zfs_busy(void) 1561 { 1562 return (zfs_active_fs_count != 0); 1563 } 1564 1565 int 1566 zfs_set_version(const char *name, uint64_t newvers) 1567 { 1568 int error; 1569 objset_t *os; 1570 dmu_tx_t *tx; 1571 uint64_t curvers; 1572 1573 /* 1574 * XXX for now, require that the filesystem be unmounted. Would 1575 * be nice to find the zfsvfs_t and just update that if 1576 * possible. 1577 */ 1578 1579 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 1580 return (EINVAL); 1581 1582 error = dmu_objset_open(name, DMU_OST_ZFS, DS_MODE_PRIMARY, &os); 1583 if (error) 1584 return (error); 1585 1586 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 1587 8, 1, &curvers); 1588 if (error) 1589 goto out; 1590 if (newvers < curvers) { 1591 error = EINVAL; 1592 goto out; 1593 } 1594 1595 tx = dmu_tx_create(os); 1596 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 0, ZPL_VERSION_STR); 1597 error = dmu_tx_assign(tx, TXG_WAIT); 1598 if (error) { 1599 dmu_tx_abort(tx); 1600 goto out; 1601 } 1602 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, 1603 &newvers, tx); 1604 1605 spa_history_internal_log(LOG_DS_UPGRADE, 1606 dmu_objset_spa(os), tx, CRED(), 1607 "oldver=%llu newver=%llu dataset = %llu", curvers, newvers, 1608 dmu_objset_id(os)); 1609 dmu_tx_commit(tx); 1610 1611 out: 1612 dmu_objset_close(os); 1613 return (error); 1614 } 1615 1616 /* 1617 * Read a property stored within the master node. 1618 */ 1619 int 1620 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 1621 { 1622 const char *pname; 1623 int error; 1624 1625 /* 1626 * Look up the file system's value for the property. For the 1627 * version property, we look up a slightly different string. 1628 * Also, there is no default VERSION value, so if we don't 1629 * find it, return the error. 1630 */ 1631 if (prop == ZFS_PROP_VERSION) 1632 pname = ZPL_VERSION_STR; 1633 else 1634 pname = zfs_prop_to_name(prop); 1635 1636 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 1637 1638 if (!error) { 1639 return (0); 1640 } else if (prop == ZFS_PROP_VERSION || error != ENOENT) { 1641 return (error); 1642 } else { 1643 /* No value set, use the default value */ 1644 switch (prop) { 1645 case ZFS_PROP_NORMALIZE: 1646 case ZFS_PROP_UTF8ONLY: 1647 *value = 0; 1648 break; 1649 case ZFS_PROP_CASE: 1650 *value = ZFS_CASE_SENSITIVE; 1651 break; 1652 default: 1653 return (ENOENT); 1654 } 1655 } 1656 return (0); 1657 } 1658 1659 static vfsdef_t vfw = { 1660 VFSDEF_VERSION, 1661 MNTTYPE_ZFS, 1662 zfs_vfsinit, 1663 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 1664 VSW_XID, 1665 &zfs_mntopts 1666 }; 1667 1668 struct modlfs zfs_modlfs = { 1669 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 1670 }; 1671