1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/sysmacros.h> 32 #include <sys/kmem.h> 33 #include <sys/pathname.h> 34 #include <sys/vnode.h> 35 #include <sys/vfs.h> 36 #include <sys/vfs_opreg.h> 37 #include <sys/mntent.h> 38 #include <sys/mount.h> 39 #include <sys/cmn_err.h> 40 #include "fs/fs_subr.h" 41 #include <sys/zfs_znode.h> 42 #include <sys/zfs_dir.h> 43 #include <sys/zil.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/dmu.h> 46 #include <sys/dsl_prop.h> 47 #include <sys/dsl_dataset.h> 48 #include <sys/dsl_deleg.h> 49 #include <sys/spa.h> 50 #include <sys/zap.h> 51 #include <sys/varargs.h> 52 #include <sys/policy.h> 53 #include <sys/atomic.h> 54 #include <sys/mkdev.h> 55 #include <sys/modctl.h> 56 #include <sys/refstr.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/zfs_ctldir.h> 59 #include <sys/zfs_fuid.h> 60 #include <sys/bootconf.h> 61 #include <sys/sunddi.h> 62 #include <sys/dnlc.h> 63 #include <sys/dmu_objset.h> 64 #include <sys/spa_boot.h> 65 66 int zfsfstype; 67 vfsops_t *zfs_vfsops = NULL; 68 static major_t zfs_major; 69 static minor_t zfs_minor; 70 static kmutex_t zfs_dev_mtx; 71 72 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 73 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 74 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 75 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 76 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 77 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 78 static void zfs_freevfs(vfs_t *vfsp); 79 80 static const fs_operation_def_t zfs_vfsops_template[] = { 81 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 82 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 83 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 84 VFSNAME_ROOT, { .vfs_root = zfs_root }, 85 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 86 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 87 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 88 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 89 NULL, NULL 90 }; 91 92 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 93 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 94 NULL, NULL 95 }; 96 97 /* 98 * We need to keep a count of active fs's. 99 * This is necessary to prevent our module 100 * from being unloaded after a umount -f 101 */ 102 static uint32_t zfs_active_fs_count = 0; 103 104 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 105 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 106 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 107 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 108 109 /* 110 * MO_DEFAULT is not used since the default value is determined 111 * by the equivalent property. 112 */ 113 static mntopt_t mntopts[] = { 114 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 115 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 116 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 117 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 118 }; 119 120 static mntopts_t zfs_mntopts = { 121 sizeof (mntopts) / sizeof (mntopt_t), 122 mntopts 123 }; 124 125 /*ARGSUSED*/ 126 int 127 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 128 { 129 /* 130 * Data integrity is job one. We don't want a compromised kernel 131 * writing to the storage pool, so we never sync during panic. 132 */ 133 if (panicstr) 134 return (0); 135 136 /* 137 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 138 * to sync metadata, which they would otherwise cache indefinitely. 139 * Semantically, the only requirement is that the sync be initiated. 140 * The DMU syncs out txgs frequently, so there's nothing to do. 141 */ 142 if (flag & SYNC_ATTR) 143 return (0); 144 145 if (vfsp != NULL) { 146 /* 147 * Sync a specific filesystem. 148 */ 149 zfsvfs_t *zfsvfs = vfsp->vfs_data; 150 151 ZFS_ENTER(zfsvfs); 152 if (zfsvfs->z_log != NULL) 153 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 154 else 155 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 156 ZFS_EXIT(zfsvfs); 157 } else { 158 /* 159 * Sync all ZFS filesystems. This is what happens when you 160 * run sync(1M). Unlike other filesystems, ZFS honors the 161 * request by waiting for all pools to commit all dirty data. 162 */ 163 spa_sync_allpools(); 164 } 165 166 return (0); 167 } 168 169 static int 170 zfs_create_unique_device(dev_t *dev) 171 { 172 major_t new_major; 173 174 do { 175 ASSERT3U(zfs_minor, <=, MAXMIN32); 176 minor_t start = zfs_minor; 177 do { 178 mutex_enter(&zfs_dev_mtx); 179 if (zfs_minor >= MAXMIN32) { 180 /* 181 * If we're still using the real major 182 * keep out of /dev/zfs and /dev/zvol minor 183 * number space. If we're using a getudev()'ed 184 * major number, we can use all of its minors. 185 */ 186 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 187 zfs_minor = ZFS_MIN_MINOR; 188 else 189 zfs_minor = 0; 190 } else { 191 zfs_minor++; 192 } 193 *dev = makedevice(zfs_major, zfs_minor); 194 mutex_exit(&zfs_dev_mtx); 195 } while (vfs_devismounted(*dev) && zfs_minor != start); 196 if (zfs_minor == start) { 197 /* 198 * We are using all ~262,000 minor numbers for the 199 * current major number. Create a new major number. 200 */ 201 if ((new_major = getudev()) == (major_t)-1) { 202 cmn_err(CE_WARN, 203 "zfs_mount: Can't get unique major " 204 "device number."); 205 return (-1); 206 } 207 mutex_enter(&zfs_dev_mtx); 208 zfs_major = new_major; 209 zfs_minor = 0; 210 211 mutex_exit(&zfs_dev_mtx); 212 } else { 213 break; 214 } 215 /* CONSTANTCONDITION */ 216 } while (1); 217 218 return (0); 219 } 220 221 static void 222 atime_changed_cb(void *arg, uint64_t newval) 223 { 224 zfsvfs_t *zfsvfs = arg; 225 226 if (newval == TRUE) { 227 zfsvfs->z_atime = TRUE; 228 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 229 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 230 } else { 231 zfsvfs->z_atime = FALSE; 232 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 233 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 234 } 235 } 236 237 static void 238 xattr_changed_cb(void *arg, uint64_t newval) 239 { 240 zfsvfs_t *zfsvfs = arg; 241 242 if (newval == TRUE) { 243 /* XXX locking on vfs_flag? */ 244 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 245 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 246 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 247 } else { 248 /* XXX locking on vfs_flag? */ 249 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 250 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 251 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 252 } 253 } 254 255 static void 256 blksz_changed_cb(void *arg, uint64_t newval) 257 { 258 zfsvfs_t *zfsvfs = arg; 259 260 if (newval < SPA_MINBLOCKSIZE || 261 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 262 newval = SPA_MAXBLOCKSIZE; 263 264 zfsvfs->z_max_blksz = newval; 265 zfsvfs->z_vfs->vfs_bsize = newval; 266 } 267 268 static void 269 readonly_changed_cb(void *arg, uint64_t newval) 270 { 271 zfsvfs_t *zfsvfs = arg; 272 273 if (newval) { 274 /* XXX locking on vfs_flag? */ 275 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 276 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 277 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 278 } else { 279 /* XXX locking on vfs_flag? */ 280 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 281 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 282 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 283 } 284 } 285 286 static void 287 devices_changed_cb(void *arg, uint64_t newval) 288 { 289 zfsvfs_t *zfsvfs = arg; 290 291 if (newval == FALSE) { 292 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 293 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 294 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 295 } else { 296 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 297 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 298 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 299 } 300 } 301 302 static void 303 setuid_changed_cb(void *arg, uint64_t newval) 304 { 305 zfsvfs_t *zfsvfs = arg; 306 307 if (newval == FALSE) { 308 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 309 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 310 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 311 } else { 312 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 313 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 314 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 315 } 316 } 317 318 static void 319 exec_changed_cb(void *arg, uint64_t newval) 320 { 321 zfsvfs_t *zfsvfs = arg; 322 323 if (newval == FALSE) { 324 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 325 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 326 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 327 } else { 328 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 329 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 330 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 331 } 332 } 333 334 /* 335 * The nbmand mount option can be changed at mount time. 336 * We can't allow it to be toggled on live file systems or incorrect 337 * behavior may be seen from cifs clients 338 * 339 * This property isn't registered via dsl_prop_register(), but this callback 340 * will be called when a file system is first mounted 341 */ 342 static void 343 nbmand_changed_cb(void *arg, uint64_t newval) 344 { 345 zfsvfs_t *zfsvfs = arg; 346 if (newval == FALSE) { 347 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 348 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 349 } else { 350 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 351 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 352 } 353 } 354 355 static void 356 snapdir_changed_cb(void *arg, uint64_t newval) 357 { 358 zfsvfs_t *zfsvfs = arg; 359 360 zfsvfs->z_show_ctldir = newval; 361 } 362 363 static void 364 vscan_changed_cb(void *arg, uint64_t newval) 365 { 366 zfsvfs_t *zfsvfs = arg; 367 368 zfsvfs->z_vscan = newval; 369 } 370 371 static void 372 acl_mode_changed_cb(void *arg, uint64_t newval) 373 { 374 zfsvfs_t *zfsvfs = arg; 375 376 zfsvfs->z_acl_mode = newval; 377 } 378 379 static void 380 acl_inherit_changed_cb(void *arg, uint64_t newval) 381 { 382 zfsvfs_t *zfsvfs = arg; 383 384 zfsvfs->z_acl_inherit = newval; 385 } 386 387 static int 388 zfs_register_callbacks(vfs_t *vfsp) 389 { 390 struct dsl_dataset *ds = NULL; 391 objset_t *os = NULL; 392 zfsvfs_t *zfsvfs = NULL; 393 uint64_t nbmand; 394 int readonly, do_readonly = B_FALSE; 395 int setuid, do_setuid = B_FALSE; 396 int exec, do_exec = B_FALSE; 397 int devices, do_devices = B_FALSE; 398 int xattr, do_xattr = B_FALSE; 399 int atime, do_atime = B_FALSE; 400 int error = 0; 401 402 ASSERT(vfsp); 403 zfsvfs = vfsp->vfs_data; 404 ASSERT(zfsvfs); 405 os = zfsvfs->z_os; 406 407 /* 408 * The act of registering our callbacks will destroy any mount 409 * options we may have. In order to enable temporary overrides 410 * of mount options, we stash away the current values and 411 * restore them after we register the callbacks. 412 */ 413 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 414 readonly = B_TRUE; 415 do_readonly = B_TRUE; 416 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 417 readonly = B_FALSE; 418 do_readonly = B_TRUE; 419 } 420 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 421 devices = B_FALSE; 422 setuid = B_FALSE; 423 do_devices = B_TRUE; 424 do_setuid = B_TRUE; 425 } else { 426 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 427 devices = B_FALSE; 428 do_devices = B_TRUE; 429 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 430 devices = B_TRUE; 431 do_devices = B_TRUE; 432 } 433 434 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 435 setuid = B_FALSE; 436 do_setuid = B_TRUE; 437 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 438 setuid = B_TRUE; 439 do_setuid = B_TRUE; 440 } 441 } 442 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 443 exec = B_FALSE; 444 do_exec = B_TRUE; 445 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 446 exec = B_TRUE; 447 do_exec = B_TRUE; 448 } 449 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 450 xattr = B_FALSE; 451 do_xattr = B_TRUE; 452 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 453 xattr = B_TRUE; 454 do_xattr = B_TRUE; 455 } 456 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 457 atime = B_FALSE; 458 do_atime = B_TRUE; 459 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 460 atime = B_TRUE; 461 do_atime = B_TRUE; 462 } 463 464 /* 465 * nbmand is a special property. It can only be changed at 466 * mount time. 467 * 468 * This is weird, but it is documented to only be changeable 469 * at mount time. 470 */ 471 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 472 nbmand = B_FALSE; 473 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 474 nbmand = B_TRUE; 475 } else { 476 char osname[MAXNAMELEN]; 477 478 dmu_objset_name(os, osname); 479 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 480 NULL)) { 481 return (error); 482 } 483 } 484 485 /* 486 * Register property callbacks. 487 * 488 * It would probably be fine to just check for i/o error from 489 * the first prop_register(), but I guess I like to go 490 * overboard... 491 */ 492 ds = dmu_objset_ds(os); 493 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 494 error = error ? error : dsl_prop_register(ds, 495 "xattr", xattr_changed_cb, zfsvfs); 496 error = error ? error : dsl_prop_register(ds, 497 "recordsize", blksz_changed_cb, zfsvfs); 498 error = error ? error : dsl_prop_register(ds, 499 "readonly", readonly_changed_cb, zfsvfs); 500 error = error ? error : dsl_prop_register(ds, 501 "devices", devices_changed_cb, zfsvfs); 502 error = error ? error : dsl_prop_register(ds, 503 "setuid", setuid_changed_cb, zfsvfs); 504 error = error ? error : dsl_prop_register(ds, 505 "exec", exec_changed_cb, zfsvfs); 506 error = error ? error : dsl_prop_register(ds, 507 "snapdir", snapdir_changed_cb, zfsvfs); 508 error = error ? error : dsl_prop_register(ds, 509 "aclmode", acl_mode_changed_cb, zfsvfs); 510 error = error ? error : dsl_prop_register(ds, 511 "aclinherit", acl_inherit_changed_cb, zfsvfs); 512 error = error ? error : dsl_prop_register(ds, 513 "vscan", vscan_changed_cb, zfsvfs); 514 if (error) 515 goto unregister; 516 517 /* 518 * Invoke our callbacks to restore temporary mount options. 519 */ 520 if (do_readonly) 521 readonly_changed_cb(zfsvfs, readonly); 522 if (do_setuid) 523 setuid_changed_cb(zfsvfs, setuid); 524 if (do_exec) 525 exec_changed_cb(zfsvfs, exec); 526 if (do_devices) 527 devices_changed_cb(zfsvfs, devices); 528 if (do_xattr) 529 xattr_changed_cb(zfsvfs, xattr); 530 if (do_atime) 531 atime_changed_cb(zfsvfs, atime); 532 533 nbmand_changed_cb(zfsvfs, nbmand); 534 535 return (0); 536 537 unregister: 538 /* 539 * We may attempt to unregister some callbacks that are not 540 * registered, but this is OK; it will simply return ENOMSG, 541 * which we will ignore. 542 */ 543 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 544 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 545 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 546 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 547 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 548 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 549 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 550 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 551 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 552 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 553 zfsvfs); 554 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 555 return (error); 556 557 } 558 559 static int 560 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 561 { 562 uint_t readonly; 563 int error; 564 565 error = zfs_register_callbacks(zfsvfs->z_vfs); 566 if (error) 567 return (error); 568 569 /* 570 * Set the objset user_ptr to track its zfsvfs. 571 */ 572 mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock); 573 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 574 mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock); 575 576 /* 577 * If we are not mounting (ie: online recv), then we don't 578 * have to worry about replaying the log as we blocked all 579 * operations out since we closed the ZIL. 580 */ 581 if (mounting) { 582 /* 583 * During replay we remove the read only flag to 584 * allow replays to succeed. 585 */ 586 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 587 if (readonly != 0) 588 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 589 else 590 zfs_unlinked_drain(zfsvfs); 591 592 /* 593 * Parse and replay the intent log. 594 * 595 * Because of ziltest, this must be done after 596 * zfs_unlinked_drain(). (Further note: ziltest doesn't 597 * use readonly mounts, where zfs_unlinked_drain() isn't 598 * called.) This is because ziltest causes spa_sync() 599 * to think it's committed, but actually it is not, so 600 * the intent log contains many txg's worth of changes. 601 * 602 * In particular, if object N is in the unlinked set in 603 * the last txg to actually sync, then it could be 604 * actually freed in a later txg and then reallocated in 605 * a yet later txg. This would write a "create object 606 * N" record to the intent log. Normally, this would be 607 * fine because the spa_sync() would have written out 608 * the fact that object N is free, before we could write 609 * the "create object N" intent log record. 610 * 611 * But when we are in ziltest mode, we advance the "open 612 * txg" without actually spa_sync()-ing the changes to 613 * disk. So we would see that object N is still 614 * allocated and in the unlinked set, and there is an 615 * intent log record saying to allocate it. 616 */ 617 zil_replay(zfsvfs->z_os, zfsvfs, &zfsvfs->z_assign, 618 zfs_replay_vector); 619 620 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 621 } 622 623 if (!zil_disable) 624 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 625 626 return (0); 627 } 628 629 static void 630 zfs_freezfsvfs(zfsvfs_t *zfsvfs) 631 { 632 mutex_destroy(&zfsvfs->z_znodes_lock); 633 mutex_destroy(&zfsvfs->z_online_recv_lock); 634 list_destroy(&zfsvfs->z_all_znodes); 635 rrw_destroy(&zfsvfs->z_teardown_lock); 636 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 637 rw_destroy(&zfsvfs->z_fuid_lock); 638 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 639 } 640 641 static int 642 zfs_domount(vfs_t *vfsp, char *osname) 643 { 644 dev_t mount_dev; 645 uint64_t recordsize, readonly; 646 int error = 0; 647 int mode; 648 zfsvfs_t *zfsvfs; 649 znode_t *zp = NULL; 650 651 ASSERT(vfsp); 652 ASSERT(osname); 653 654 /* 655 * Initialize the zfs-specific filesystem structure. 656 * Should probably make this a kmem cache, shuffle fields, 657 * and just bzero up to z_hold_mtx[]. 658 */ 659 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 660 zfsvfs->z_vfs = vfsp; 661 zfsvfs->z_parent = zfsvfs; 662 zfsvfs->z_assign = TXG_NOWAIT; 663 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 664 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 665 666 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 667 mutex_init(&zfsvfs->z_online_recv_lock, NULL, MUTEX_DEFAULT, NULL); 668 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 669 offsetof(znode_t, z_link_node)); 670 rrw_init(&zfsvfs->z_teardown_lock); 671 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 672 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 673 674 /* Initialize the generic filesystem structure. */ 675 vfsp->vfs_bcount = 0; 676 vfsp->vfs_data = NULL; 677 678 if (zfs_create_unique_device(&mount_dev) == -1) { 679 error = ENODEV; 680 goto out; 681 } 682 ASSERT(vfs_devismounted(mount_dev) == 0); 683 684 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 685 NULL)) 686 goto out; 687 688 vfsp->vfs_dev = mount_dev; 689 vfsp->vfs_fstype = zfsfstype; 690 vfsp->vfs_bsize = recordsize; 691 vfsp->vfs_flag |= VFS_NOTRUNC; 692 vfsp->vfs_data = zfsvfs; 693 694 if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL)) 695 goto out; 696 697 mode = DS_MODE_OWNER; 698 if (readonly) 699 mode |= DS_MODE_READONLY; 700 701 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 702 if (error == EROFS) { 703 mode = DS_MODE_OWNER | DS_MODE_READONLY; 704 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, 705 &zfsvfs->z_os); 706 } 707 708 if (error) 709 goto out; 710 711 if (error = zfs_init_fs(zfsvfs, &zp)) 712 goto out; 713 714 /* The call to zfs_init_fs leaves the vnode held, release it here. */ 715 VN_RELE(ZTOV(zp)); 716 717 /* 718 * Set features for file system. 719 */ 720 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 721 if (zfsvfs->z_use_fuids) { 722 vfs_set_feature(vfsp, VFSFT_XVATTR); 723 vfs_set_feature(vfsp, VFSFT_ACEMASKONACCESS); 724 vfs_set_feature(vfsp, VFSFT_ACLONCREATE); 725 } 726 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 727 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 728 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 729 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 730 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 731 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 732 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 733 } 734 735 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 736 uint64_t pval; 737 738 ASSERT(mode & DS_MODE_READONLY); 739 atime_changed_cb(zfsvfs, B_FALSE); 740 readonly_changed_cb(zfsvfs, B_TRUE); 741 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 742 goto out; 743 xattr_changed_cb(zfsvfs, pval); 744 zfsvfs->z_issnap = B_TRUE; 745 } else { 746 error = zfsvfs_setup(zfsvfs, B_TRUE); 747 } 748 749 if (!zfsvfs->z_issnap) 750 zfsctl_create(zfsvfs); 751 out: 752 if (error) { 753 if (zfsvfs->z_os) 754 dmu_objset_close(zfsvfs->z_os); 755 zfs_freezfsvfs(zfsvfs); 756 } else { 757 atomic_add_32(&zfs_active_fs_count, 1); 758 } 759 760 return (error); 761 } 762 763 void 764 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 765 { 766 objset_t *os = zfsvfs->z_os; 767 struct dsl_dataset *ds; 768 769 /* 770 * Unregister properties. 771 */ 772 if (!dmu_objset_is_snapshot(os)) { 773 ds = dmu_objset_ds(os); 774 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 775 zfsvfs) == 0); 776 777 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 778 zfsvfs) == 0); 779 780 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 781 zfsvfs) == 0); 782 783 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 784 zfsvfs) == 0); 785 786 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 787 zfsvfs) == 0); 788 789 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 790 zfsvfs) == 0); 791 792 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 793 zfsvfs) == 0); 794 795 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 796 zfsvfs) == 0); 797 798 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 799 zfsvfs) == 0); 800 801 VERIFY(dsl_prop_unregister(ds, "aclinherit", 802 acl_inherit_changed_cb, zfsvfs) == 0); 803 804 VERIFY(dsl_prop_unregister(ds, "vscan", 805 vscan_changed_cb, zfsvfs) == 0); 806 } 807 } 808 809 /* 810 * Convert a decimal digit string to a uint64_t integer. 811 */ 812 static int 813 str_to_uint64(char *str, uint64_t *objnum) 814 { 815 uint64_t num = 0; 816 817 while (*str) { 818 if (*str < '0' || *str > '9') 819 return (EINVAL); 820 821 num = num*10 + *str++ - '0'; 822 } 823 824 *objnum = num; 825 return (0); 826 } 827 828 /* 829 * The boot path passed from the boot loader is in the form of 830 * "rootpool-name/root-filesystem-object-number'. Convert this 831 * string to a dataset name: "rootpool-name/root-filesystem-name". 832 */ 833 static int 834 zfs_parse_bootfs(char *bpath, char *outpath) 835 { 836 char *slashp; 837 uint64_t objnum; 838 int error; 839 840 if (*bpath == 0 || *bpath == '/') 841 return (EINVAL); 842 843 slashp = strchr(bpath, '/'); 844 845 /* if no '/', just return the pool name */ 846 if (slashp == NULL) { 847 (void) strcpy(outpath, bpath); 848 return (0); 849 } 850 851 if (error = str_to_uint64(slashp+1, &objnum)) 852 return (error); 853 854 *slashp = '\0'; 855 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 856 *slashp = '/'; 857 858 return (error); 859 } 860 861 static int 862 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 863 { 864 int error = 0; 865 static int zfsrootdone = 0; 866 zfsvfs_t *zfsvfs = NULL; 867 znode_t *zp = NULL; 868 vnode_t *vp = NULL; 869 char *zfs_bootfs; 870 char *zfs_devid; 871 872 ASSERT(vfsp); 873 874 /* 875 * The filesystem that we mount as root is defined in the 876 * boot property "zfs-bootfs" with a format of 877 * "poolname/root-dataset-objnum". 878 */ 879 if (why == ROOT_INIT) { 880 if (zfsrootdone++) 881 return (EBUSY); 882 /* 883 * the process of doing a spa_load will require the 884 * clock to be set before we could (for example) do 885 * something better by looking at the timestamp on 886 * an uberblock, so just set it to -1. 887 */ 888 clkset(-1); 889 890 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 891 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 892 "bootfs name"); 893 return (EINVAL); 894 } 895 zfs_devid = spa_get_bootprop("diskdevid"); 896 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 897 if (zfs_devid) 898 spa_free_bootprop(zfs_devid); 899 if (error) { 900 spa_free_bootprop(zfs_bootfs); 901 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 902 error); 903 return (error); 904 } 905 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 906 spa_free_bootprop(zfs_bootfs); 907 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 908 error); 909 return (error); 910 } 911 912 spa_free_bootprop(zfs_bootfs); 913 914 if (error = vfs_lock(vfsp)) 915 return (error); 916 917 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 918 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 919 goto out; 920 } 921 922 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 923 ASSERT(zfsvfs); 924 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 925 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 926 goto out; 927 } 928 929 vp = ZTOV(zp); 930 mutex_enter(&vp->v_lock); 931 vp->v_flag |= VROOT; 932 mutex_exit(&vp->v_lock); 933 rootvp = vp; 934 935 /* 936 * Leave rootvp held. The root file system is never unmounted. 937 */ 938 939 vfs_add((struct vnode *)0, vfsp, 940 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 941 out: 942 vfs_unlock(vfsp); 943 return (error); 944 } else if (why == ROOT_REMOUNT) { 945 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 946 vfsp->vfs_flag |= VFS_REMOUNT; 947 948 /* refresh mount options */ 949 zfs_unregister_callbacks(vfsp->vfs_data); 950 return (zfs_register_callbacks(vfsp)); 951 952 } else if (why == ROOT_UNMOUNT) { 953 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 954 (void) zfs_sync(vfsp, 0, 0); 955 return (0); 956 } 957 958 /* 959 * if "why" is equal to anything else other than ROOT_INIT, 960 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 961 */ 962 return (ENOTSUP); 963 } 964 965 /*ARGSUSED*/ 966 static int 967 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 968 { 969 char *osname; 970 pathname_t spn; 971 int error = 0; 972 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 973 UIO_SYSSPACE : UIO_USERSPACE; 974 int canwrite; 975 976 if (mvp->v_type != VDIR) 977 return (ENOTDIR); 978 979 mutex_enter(&mvp->v_lock); 980 if ((uap->flags & MS_REMOUNT) == 0 && 981 (uap->flags & MS_OVERLAY) == 0 && 982 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 983 mutex_exit(&mvp->v_lock); 984 return (EBUSY); 985 } 986 mutex_exit(&mvp->v_lock); 987 988 /* 989 * ZFS does not support passing unparsed data in via MS_DATA. 990 * Users should use the MS_OPTIONSTR interface; this means 991 * that all option parsing is already done and the options struct 992 * can be interrogated. 993 */ 994 if ((uap->flags & MS_DATA) && uap->datalen > 0) 995 return (EINVAL); 996 997 /* 998 * Get the objset name (the "special" mount argument). 999 */ 1000 if (error = pn_get(uap->spec, fromspace, &spn)) 1001 return (error); 1002 1003 osname = spn.pn_path; 1004 1005 /* 1006 * Check for mount privilege? 1007 * 1008 * If we don't have privilege then see if 1009 * we have local permission to allow it 1010 */ 1011 error = secpolicy_fs_mount(cr, mvp, vfsp); 1012 if (error) { 1013 error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr); 1014 if (error == 0) { 1015 vattr_t vattr; 1016 1017 /* 1018 * Make sure user is the owner of the mount point 1019 * or has sufficient privileges. 1020 */ 1021 1022 vattr.va_mask = AT_UID; 1023 1024 if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1025 goto out; 1026 } 1027 1028 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1029 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1030 error = EPERM; 1031 goto out; 1032 } 1033 1034 secpolicy_fs_mount_clearopts(cr, vfsp); 1035 } else { 1036 goto out; 1037 } 1038 } 1039 1040 /* 1041 * Refuse to mount a filesystem if we are in a local zone and the 1042 * dataset is not visible. 1043 */ 1044 if (!INGLOBALZONE(curproc) && 1045 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1046 error = EPERM; 1047 goto out; 1048 } 1049 1050 /* 1051 * When doing a remount, we simply refresh our temporary properties 1052 * according to those options set in the current VFS options. 1053 */ 1054 if (uap->flags & MS_REMOUNT) { 1055 /* refresh mount options */ 1056 zfs_unregister_callbacks(vfsp->vfs_data); 1057 error = zfs_register_callbacks(vfsp); 1058 goto out; 1059 } 1060 1061 error = zfs_domount(vfsp, osname); 1062 1063 out: 1064 pn_free(&spn); 1065 return (error); 1066 } 1067 1068 static int 1069 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1070 { 1071 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1072 dev32_t d32; 1073 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1074 1075 ZFS_ENTER(zfsvfs); 1076 1077 dmu_objset_space(zfsvfs->z_os, 1078 &refdbytes, &availbytes, &usedobjs, &availobjs); 1079 1080 /* 1081 * The underlying storage pool actually uses multiple block sizes. 1082 * We report the fragsize as the smallest block size we support, 1083 * and we report our blocksize as the filesystem's maximum blocksize. 1084 */ 1085 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1086 statp->f_bsize = zfsvfs->z_max_blksz; 1087 1088 /* 1089 * The following report "total" blocks of various kinds in the 1090 * file system, but reported in terms of f_frsize - the 1091 * "fragment" size. 1092 */ 1093 1094 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1095 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1096 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1097 1098 /* 1099 * statvfs() should really be called statufs(), because it assumes 1100 * static metadata. ZFS doesn't preallocate files, so the best 1101 * we can do is report the max that could possibly fit in f_files, 1102 * and that minus the number actually used in f_ffree. 1103 * For f_ffree, report the smaller of the number of object available 1104 * and the number of blocks (each object will take at least a block). 1105 */ 1106 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1107 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1108 statp->f_files = statp->f_ffree + usedobjs; 1109 1110 (void) cmpldev(&d32, vfsp->vfs_dev); 1111 statp->f_fsid = d32; 1112 1113 /* 1114 * We're a zfs filesystem. 1115 */ 1116 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1117 1118 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1119 1120 statp->f_namemax = ZFS_MAXNAMELEN; 1121 1122 /* 1123 * We have all of 32 characters to stuff a string here. 1124 * Is there anything useful we could/should provide? 1125 */ 1126 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1127 1128 ZFS_EXIT(zfsvfs); 1129 return (0); 1130 } 1131 1132 static int 1133 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1134 { 1135 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1136 znode_t *rootzp; 1137 int error; 1138 1139 ZFS_ENTER(zfsvfs); 1140 1141 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1142 if (error == 0) 1143 *vpp = ZTOV(rootzp); 1144 1145 ZFS_EXIT(zfsvfs); 1146 return (error); 1147 } 1148 1149 /* 1150 * Teardown the zfsvfs::z_os. 1151 * 1152 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1153 * and 'z_teardown_inactive_lock' held. 1154 */ 1155 static int 1156 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1157 { 1158 znode_t *zp; 1159 1160 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1161 1162 if (!unmounting) { 1163 /* 1164 * We purge the parent filesystem's vfsp as the parent 1165 * filesystem and all of its snapshots have their vnode's 1166 * v_vfsp set to the parent's filesystem's vfsp. Note, 1167 * 'z_parent' is self referential for non-snapshots. 1168 */ 1169 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1170 } 1171 1172 /* 1173 * Close the zil. NB: Can't close the zil while zfs_inactive 1174 * threads are blocked as zil_close can call zfs_inactive. 1175 */ 1176 if (zfsvfs->z_log) { 1177 zil_close(zfsvfs->z_log); 1178 zfsvfs->z_log = NULL; 1179 } 1180 1181 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1182 1183 /* 1184 * If we are not unmounting (ie: online recv) and someone already 1185 * unmounted this file system while we were doing the switcheroo, 1186 * or a reopen of z_os failed then just bail out now. 1187 */ 1188 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1189 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1190 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1191 return (EIO); 1192 } 1193 1194 /* 1195 * At this point there are no vops active, and any new vops will 1196 * fail with EIO since we have z_teardown_lock for writer (only 1197 * relavent for forced unmount). 1198 * 1199 * Release all holds on dbufs. 1200 */ 1201 mutex_enter(&zfsvfs->z_znodes_lock); 1202 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1203 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1204 if (zp->z_dbuf) { 1205 ASSERT(ZTOV(zp)->v_count > 0); 1206 zfs_znode_dmu_fini(zp); 1207 } 1208 mutex_exit(&zfsvfs->z_znodes_lock); 1209 1210 /* 1211 * If we are unmounting, set the unmounted flag and let new vops 1212 * unblock. zfs_inactive will have the unmounted behavior, and all 1213 * other vops will fail with EIO. 1214 */ 1215 if (unmounting) { 1216 zfsvfs->z_unmounted = B_TRUE; 1217 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1218 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1219 } 1220 1221 /* 1222 * z_os will be NULL if there was an error in attempting to reopen 1223 * zfsvfs, so just return as the properties had already been 1224 * unregistered and cached data had been evicted before. 1225 */ 1226 if (zfsvfs->z_os == NULL) 1227 return (0); 1228 1229 /* 1230 * Unregister properties. 1231 */ 1232 zfs_unregister_callbacks(zfsvfs); 1233 1234 /* 1235 * Evict cached data 1236 */ 1237 if (dmu_objset_evict_dbufs(zfsvfs->z_os)) { 1238 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1239 (void) dmu_objset_evict_dbufs(zfsvfs->z_os); 1240 } 1241 1242 return (0); 1243 } 1244 1245 /*ARGSUSED*/ 1246 static int 1247 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1248 { 1249 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1250 objset_t *os; 1251 int ret; 1252 1253 ret = secpolicy_fs_unmount(cr, vfsp); 1254 if (ret) { 1255 ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1256 ZFS_DELEG_PERM_MOUNT, cr); 1257 if (ret) 1258 return (ret); 1259 } 1260 1261 /* 1262 * We purge the parent filesystem's vfsp as the parent filesystem 1263 * and all of its snapshots have their vnode's v_vfsp set to the 1264 * parent's filesystem's vfsp. Note, 'z_parent' is self 1265 * referential for non-snapshots. 1266 */ 1267 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1268 1269 /* 1270 * Unmount any snapshots mounted under .zfs before unmounting the 1271 * dataset itself. 1272 */ 1273 if (zfsvfs->z_ctldir != NULL && 1274 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1275 return (ret); 1276 } 1277 1278 if (!(fflag & MS_FORCE)) { 1279 /* 1280 * Check the number of active vnodes in the file system. 1281 * Our count is maintained in the vfs structure, but the 1282 * number is off by 1 to indicate a hold on the vfs 1283 * structure itself. 1284 * 1285 * The '.zfs' directory maintains a reference of its 1286 * own, and any active references underneath are 1287 * reflected in the vnode count. 1288 */ 1289 if (zfsvfs->z_ctldir == NULL) { 1290 if (vfsp->vfs_count > 1) 1291 return (EBUSY); 1292 } else { 1293 if (vfsp->vfs_count > 2 || 1294 zfsvfs->z_ctldir->v_count > 1) 1295 return (EBUSY); 1296 } 1297 } 1298 1299 vfsp->vfs_flag |= VFS_UNMOUNTED; 1300 1301 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1302 os = zfsvfs->z_os; 1303 1304 /* 1305 * z_os will be NULL if there was an error in 1306 * attempting to reopen zfsvfs. 1307 */ 1308 if (os != NULL) { 1309 /* 1310 * Unset the objset user_ptr. 1311 */ 1312 mutex_enter(&os->os->os_user_ptr_lock); 1313 dmu_objset_set_user(os, NULL); 1314 mutex_exit(&os->os->os_user_ptr_lock); 1315 1316 /* 1317 * Finally release the objset 1318 */ 1319 dmu_objset_close(os); 1320 } 1321 1322 /* 1323 * We can now safely destroy the '.zfs' directory node. 1324 */ 1325 if (zfsvfs->z_ctldir != NULL) 1326 zfsctl_destroy(zfsvfs); 1327 1328 return (0); 1329 } 1330 1331 static int 1332 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1333 { 1334 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1335 znode_t *zp; 1336 uint64_t object = 0; 1337 uint64_t fid_gen = 0; 1338 uint64_t gen_mask; 1339 uint64_t zp_gen; 1340 int i, err; 1341 1342 *vpp = NULL; 1343 1344 ZFS_ENTER(zfsvfs); 1345 1346 if (fidp->fid_len == LONG_FID_LEN) { 1347 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1348 uint64_t objsetid = 0; 1349 uint64_t setgen = 0; 1350 1351 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1352 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1353 1354 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1355 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1356 1357 ZFS_EXIT(zfsvfs); 1358 1359 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1360 if (err) 1361 return (EINVAL); 1362 ZFS_ENTER(zfsvfs); 1363 } 1364 1365 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1366 zfid_short_t *zfid = (zfid_short_t *)fidp; 1367 1368 for (i = 0; i < sizeof (zfid->zf_object); i++) 1369 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1370 1371 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1372 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1373 } else { 1374 ZFS_EXIT(zfsvfs); 1375 return (EINVAL); 1376 } 1377 1378 /* A zero fid_gen means we are in the .zfs control directories */ 1379 if (fid_gen == 0 && 1380 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1381 *vpp = zfsvfs->z_ctldir; 1382 ASSERT(*vpp != NULL); 1383 if (object == ZFSCTL_INO_SNAPDIR) { 1384 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1385 0, NULL, NULL, NULL, NULL, NULL) == 0); 1386 } else { 1387 VN_HOLD(*vpp); 1388 } 1389 ZFS_EXIT(zfsvfs); 1390 return (0); 1391 } 1392 1393 gen_mask = -1ULL >> (64 - 8 * i); 1394 1395 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1396 if (err = zfs_zget(zfsvfs, object, &zp)) { 1397 ZFS_EXIT(zfsvfs); 1398 return (err); 1399 } 1400 zp_gen = zp->z_phys->zp_gen & gen_mask; 1401 if (zp_gen == 0) 1402 zp_gen = 1; 1403 if (zp->z_unlinked || zp_gen != fid_gen) { 1404 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1405 VN_RELE(ZTOV(zp)); 1406 ZFS_EXIT(zfsvfs); 1407 return (EINVAL); 1408 } 1409 1410 *vpp = ZTOV(zp); 1411 ZFS_EXIT(zfsvfs); 1412 return (0); 1413 } 1414 1415 /* 1416 * Block out VOPs and close zfsvfs_t::z_os 1417 * 1418 * Note, if successful, then we return with the 'z_teardown_lock' and 1419 * 'z_teardown_inactive_lock' write held. 1420 */ 1421 int 1422 zfs_suspend_fs(zfsvfs_t *zfsvfs, char *name, int *mode) 1423 { 1424 int error; 1425 1426 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 1427 return (error); 1428 1429 *mode = zfsvfs->z_os->os_mode; 1430 dmu_objset_name(zfsvfs->z_os, name); 1431 dmu_objset_close(zfsvfs->z_os); 1432 1433 return (0); 1434 } 1435 1436 /* 1437 * Reopen zfsvfs_t::z_os and release VOPs. 1438 */ 1439 int 1440 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname, int mode) 1441 { 1442 int err; 1443 1444 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 1445 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1446 1447 err = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 1448 if (err) { 1449 zfsvfs->z_os = NULL; 1450 } else { 1451 znode_t *zp; 1452 1453 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 1454 1455 /* 1456 * Attempt to re-establish all the active znodes with 1457 * their dbufs. If a zfs_rezget() fails, then we'll let 1458 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 1459 * when they try to use their znode. 1460 */ 1461 mutex_enter(&zfsvfs->z_znodes_lock); 1462 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 1463 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1464 (void) zfs_rezget(zp); 1465 } 1466 mutex_exit(&zfsvfs->z_znodes_lock); 1467 1468 } 1469 1470 /* release the VOPs */ 1471 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1472 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1473 1474 if (err) { 1475 /* 1476 * Since we couldn't reopen zfsvfs::z_os, force 1477 * unmount this file system. 1478 */ 1479 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 1480 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 1481 } 1482 return (err); 1483 } 1484 1485 static void 1486 zfs_freevfs(vfs_t *vfsp) 1487 { 1488 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1489 int i; 1490 1491 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1492 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1493 1494 zfs_fuid_destroy(zfsvfs); 1495 zfs_freezfsvfs(zfsvfs); 1496 1497 atomic_add_32(&zfs_active_fs_count, -1); 1498 } 1499 1500 /* 1501 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 1502 * so we can't safely do any non-idempotent initialization here. 1503 * Leave that to zfs_init() and zfs_fini(), which are called 1504 * from the module's _init() and _fini() entry points. 1505 */ 1506 /*ARGSUSED*/ 1507 static int 1508 zfs_vfsinit(int fstype, char *name) 1509 { 1510 int error; 1511 1512 zfsfstype = fstype; 1513 1514 /* 1515 * Setup vfsops and vnodeops tables. 1516 */ 1517 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 1518 if (error != 0) { 1519 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 1520 } 1521 1522 error = zfs_create_op_tables(); 1523 if (error) { 1524 zfs_remove_op_tables(); 1525 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 1526 (void) vfs_freevfsops_by_type(zfsfstype); 1527 return (error); 1528 } 1529 1530 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 1531 1532 /* 1533 * Unique major number for all zfs mounts. 1534 * If we run out of 32-bit minors, we'll getudev() another major. 1535 */ 1536 zfs_major = ddi_name_to_major(ZFS_DRIVER); 1537 zfs_minor = ZFS_MIN_MINOR; 1538 1539 return (0); 1540 } 1541 1542 void 1543 zfs_init(void) 1544 { 1545 /* 1546 * Initialize .zfs directory structures 1547 */ 1548 zfsctl_init(); 1549 1550 /* 1551 * Initialize znode cache, vnode ops, etc... 1552 */ 1553 zfs_znode_init(); 1554 } 1555 1556 void 1557 zfs_fini(void) 1558 { 1559 zfsctl_fini(); 1560 zfs_znode_fini(); 1561 } 1562 1563 int 1564 zfs_busy(void) 1565 { 1566 return (zfs_active_fs_count != 0); 1567 } 1568 1569 int 1570 zfs_set_version(const char *name, uint64_t newvers) 1571 { 1572 int error; 1573 objset_t *os; 1574 dmu_tx_t *tx; 1575 uint64_t curvers; 1576 1577 /* 1578 * XXX for now, require that the filesystem be unmounted. Would 1579 * be nice to find the zfsvfs_t and just update that if 1580 * possible. 1581 */ 1582 1583 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 1584 return (EINVAL); 1585 1586 error = dmu_objset_open(name, DMU_OST_ZFS, DS_MODE_OWNER, &os); 1587 if (error) 1588 return (error); 1589 1590 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 1591 8, 1, &curvers); 1592 if (error) 1593 goto out; 1594 if (newvers < curvers) { 1595 error = EINVAL; 1596 goto out; 1597 } 1598 1599 tx = dmu_tx_create(os); 1600 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 0, ZPL_VERSION_STR); 1601 error = dmu_tx_assign(tx, TXG_WAIT); 1602 if (error) { 1603 dmu_tx_abort(tx); 1604 goto out; 1605 } 1606 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, 1607 &newvers, tx); 1608 1609 spa_history_internal_log(LOG_DS_UPGRADE, 1610 dmu_objset_spa(os), tx, CRED(), 1611 "oldver=%llu newver=%llu dataset = %llu", curvers, newvers, 1612 dmu_objset_id(os)); 1613 dmu_tx_commit(tx); 1614 1615 out: 1616 dmu_objset_close(os); 1617 return (error); 1618 } 1619 1620 /* 1621 * Read a property stored within the master node. 1622 */ 1623 int 1624 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 1625 { 1626 const char *pname; 1627 int error = ENOENT; 1628 1629 /* 1630 * Look up the file system's value for the property. For the 1631 * version property, we look up a slightly different string. 1632 */ 1633 if (prop == ZFS_PROP_VERSION) 1634 pname = ZPL_VERSION_STR; 1635 else 1636 pname = zfs_prop_to_name(prop); 1637 1638 if (os != NULL) 1639 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 1640 1641 if (error == ENOENT) { 1642 /* No value set, use the default value */ 1643 switch (prop) { 1644 case ZFS_PROP_VERSION: 1645 *value = ZPL_VERSION; 1646 break; 1647 case ZFS_PROP_NORMALIZE: 1648 case ZFS_PROP_UTF8ONLY: 1649 *value = 0; 1650 break; 1651 case ZFS_PROP_CASE: 1652 *value = ZFS_CASE_SENSITIVE; 1653 break; 1654 default: 1655 return (error); 1656 } 1657 error = 0; 1658 } 1659 return (error); 1660 } 1661 1662 static vfsdef_t vfw = { 1663 VFSDEF_VERSION, 1664 MNTTYPE_ZFS, 1665 zfs_vfsinit, 1666 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 1667 VSW_XID, 1668 &zfs_mntopts 1669 }; 1670 1671 struct modlfs zfs_modlfs = { 1672 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 1673 }; 1674