1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/sysmacros.h> 32 #include <sys/kmem.h> 33 #include <sys/pathname.h> 34 #include <sys/vnode.h> 35 #include <sys/vfs.h> 36 #include <sys/vfs_opreg.h> 37 #include <sys/mntent.h> 38 #include <sys/mount.h> 39 #include <sys/cmn_err.h> 40 #include "fs/fs_subr.h" 41 #include <sys/zfs_znode.h> 42 #include <sys/zfs_dir.h> 43 #include <sys/zil.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/dmu.h> 46 #include <sys/dsl_prop.h> 47 #include <sys/dsl_dataset.h> 48 #include <sys/dsl_deleg.h> 49 #include <sys/spa.h> 50 #include <sys/zap.h> 51 #include <sys/varargs.h> 52 #include <sys/policy.h> 53 #include <sys/atomic.h> 54 #include <sys/mkdev.h> 55 #include <sys/modctl.h> 56 #include <sys/refstr.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/zfs_ctldir.h> 59 #include <sys/bootconf.h> 60 #include <sys/sunddi.h> 61 #include <sys/dnlc.h> 62 63 int zfsfstype; 64 vfsops_t *zfs_vfsops = NULL; 65 static major_t zfs_major; 66 static minor_t zfs_minor; 67 static kmutex_t zfs_dev_mtx; 68 69 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 70 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 71 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 72 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 73 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 74 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 75 static void zfs_freevfs(vfs_t *vfsp); 76 77 static const fs_operation_def_t zfs_vfsops_template[] = { 78 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 79 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 80 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 81 VFSNAME_ROOT, { .vfs_root = zfs_root }, 82 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 83 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 84 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 85 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 86 NULL, NULL 87 }; 88 89 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 90 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 91 NULL, NULL 92 }; 93 94 /* 95 * We need to keep a count of active fs's. 96 * This is necessary to prevent our module 97 * from being unloaded after a umount -f 98 */ 99 static uint32_t zfs_active_fs_count = 0; 100 101 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 102 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 103 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 104 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 105 106 /* 107 * MO_DEFAULT is not used since the default value is determined 108 * by the equivalent property. 109 */ 110 static mntopt_t mntopts[] = { 111 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 112 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 113 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 114 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 115 }; 116 117 static mntopts_t zfs_mntopts = { 118 sizeof (mntopts) / sizeof (mntopt_t), 119 mntopts 120 }; 121 122 /*ARGSUSED*/ 123 int 124 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 125 { 126 /* 127 * Data integrity is job one. We don't want a compromised kernel 128 * writing to the storage pool, so we never sync during panic. 129 */ 130 if (panicstr) 131 return (0); 132 133 /* 134 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 135 * to sync metadata, which they would otherwise cache indefinitely. 136 * Semantically, the only requirement is that the sync be initiated. 137 * The DMU syncs out txgs frequently, so there's nothing to do. 138 */ 139 if (flag & SYNC_ATTR) 140 return (0); 141 142 if (vfsp != NULL) { 143 /* 144 * Sync a specific filesystem. 145 */ 146 zfsvfs_t *zfsvfs = vfsp->vfs_data; 147 148 ZFS_ENTER(zfsvfs); 149 if (zfsvfs->z_log != NULL) 150 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 151 else 152 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 153 ZFS_EXIT(zfsvfs); 154 } else { 155 /* 156 * Sync all ZFS filesystems. This is what happens when you 157 * run sync(1M). Unlike other filesystems, ZFS honors the 158 * request by waiting for all pools to commit all dirty data. 159 */ 160 spa_sync_allpools(); 161 } 162 163 return (0); 164 } 165 166 static int 167 zfs_create_unique_device(dev_t *dev) 168 { 169 major_t new_major; 170 171 do { 172 ASSERT3U(zfs_minor, <=, MAXMIN32); 173 minor_t start = zfs_minor; 174 do { 175 mutex_enter(&zfs_dev_mtx); 176 if (zfs_minor >= MAXMIN32) { 177 /* 178 * If we're still using the real major 179 * keep out of /dev/zfs and /dev/zvol minor 180 * number space. If we're using a getudev()'ed 181 * major number, we can use all of its minors. 182 */ 183 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 184 zfs_minor = ZFS_MIN_MINOR; 185 else 186 zfs_minor = 0; 187 } else { 188 zfs_minor++; 189 } 190 *dev = makedevice(zfs_major, zfs_minor); 191 mutex_exit(&zfs_dev_mtx); 192 } while (vfs_devismounted(*dev) && zfs_minor != start); 193 if (zfs_minor == start) { 194 /* 195 * We are using all ~262,000 minor numbers for the 196 * current major number. Create a new major number. 197 */ 198 if ((new_major = getudev()) == (major_t)-1) { 199 cmn_err(CE_WARN, 200 "zfs_mount: Can't get unique major " 201 "device number."); 202 return (-1); 203 } 204 mutex_enter(&zfs_dev_mtx); 205 zfs_major = new_major; 206 zfs_minor = 0; 207 208 mutex_exit(&zfs_dev_mtx); 209 } else { 210 break; 211 } 212 /* CONSTANTCONDITION */ 213 } while (1); 214 215 return (0); 216 } 217 218 static void 219 atime_changed_cb(void *arg, uint64_t newval) 220 { 221 zfsvfs_t *zfsvfs = arg; 222 223 if (newval == TRUE) { 224 zfsvfs->z_atime = TRUE; 225 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 226 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 227 } else { 228 zfsvfs->z_atime = FALSE; 229 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 230 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 231 } 232 } 233 234 static void 235 xattr_changed_cb(void *arg, uint64_t newval) 236 { 237 zfsvfs_t *zfsvfs = arg; 238 239 if (newval == TRUE) { 240 /* XXX locking on vfs_flag? */ 241 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 242 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 243 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 244 } else { 245 /* XXX locking on vfs_flag? */ 246 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 247 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 248 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 249 } 250 } 251 252 static void 253 blksz_changed_cb(void *arg, uint64_t newval) 254 { 255 zfsvfs_t *zfsvfs = arg; 256 257 if (newval < SPA_MINBLOCKSIZE || 258 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 259 newval = SPA_MAXBLOCKSIZE; 260 261 zfsvfs->z_max_blksz = newval; 262 zfsvfs->z_vfs->vfs_bsize = newval; 263 } 264 265 static void 266 readonly_changed_cb(void *arg, uint64_t newval) 267 { 268 zfsvfs_t *zfsvfs = arg; 269 270 if (newval) { 271 /* XXX locking on vfs_flag? */ 272 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 273 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 274 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 275 } else { 276 /* XXX locking on vfs_flag? */ 277 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 278 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 279 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 280 } 281 } 282 283 static void 284 devices_changed_cb(void *arg, uint64_t newval) 285 { 286 zfsvfs_t *zfsvfs = arg; 287 288 if (newval == FALSE) { 289 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 290 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 291 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 292 } else { 293 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 294 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 295 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 296 } 297 } 298 299 static void 300 setuid_changed_cb(void *arg, uint64_t newval) 301 { 302 zfsvfs_t *zfsvfs = arg; 303 304 if (newval == FALSE) { 305 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 306 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 307 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 308 } else { 309 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 310 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 311 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 312 } 313 } 314 315 static void 316 exec_changed_cb(void *arg, uint64_t newval) 317 { 318 zfsvfs_t *zfsvfs = arg; 319 320 if (newval == FALSE) { 321 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 322 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 323 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 324 } else { 325 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 326 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 327 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 328 } 329 } 330 331 static void 332 snapdir_changed_cb(void *arg, uint64_t newval) 333 { 334 zfsvfs_t *zfsvfs = arg; 335 336 zfsvfs->z_show_ctldir = newval; 337 } 338 339 static void 340 acl_mode_changed_cb(void *arg, uint64_t newval) 341 { 342 zfsvfs_t *zfsvfs = arg; 343 344 zfsvfs->z_acl_mode = newval; 345 } 346 347 static void 348 acl_inherit_changed_cb(void *arg, uint64_t newval) 349 { 350 zfsvfs_t *zfsvfs = arg; 351 352 zfsvfs->z_acl_inherit = newval; 353 } 354 355 static int 356 zfs_register_callbacks(vfs_t *vfsp) 357 { 358 struct dsl_dataset *ds = NULL; 359 objset_t *os = NULL; 360 zfsvfs_t *zfsvfs = NULL; 361 int readonly, do_readonly = FALSE; 362 int setuid, do_setuid = FALSE; 363 int exec, do_exec = FALSE; 364 int devices, do_devices = FALSE; 365 int xattr, do_xattr = FALSE; 366 int atime, do_atime = FALSE; 367 int error = 0; 368 369 ASSERT(vfsp); 370 zfsvfs = vfsp->vfs_data; 371 ASSERT(zfsvfs); 372 os = zfsvfs->z_os; 373 374 /* 375 * The act of registering our callbacks will destroy any mount 376 * options we may have. In order to enable temporary overrides 377 * of mount options, we stash away the current values and 378 * restore them after we register the callbacks. 379 */ 380 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 381 readonly = B_TRUE; 382 do_readonly = B_TRUE; 383 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 384 readonly = B_FALSE; 385 do_readonly = B_TRUE; 386 } 387 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 388 devices = B_FALSE; 389 setuid = B_FALSE; 390 do_devices = B_TRUE; 391 do_setuid = B_TRUE; 392 } else { 393 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 394 devices = B_FALSE; 395 do_devices = B_TRUE; 396 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 397 devices = B_TRUE; 398 do_devices = B_TRUE; 399 } 400 401 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 402 setuid = B_FALSE; 403 do_setuid = B_TRUE; 404 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 405 setuid = B_TRUE; 406 do_setuid = B_TRUE; 407 } 408 } 409 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 410 exec = B_FALSE; 411 do_exec = B_TRUE; 412 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 413 exec = B_TRUE; 414 do_exec = B_TRUE; 415 } 416 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 417 xattr = B_FALSE; 418 do_xattr = B_TRUE; 419 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 420 xattr = B_TRUE; 421 do_xattr = B_TRUE; 422 } 423 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 424 atime = B_FALSE; 425 do_atime = B_TRUE; 426 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 427 atime = B_TRUE; 428 do_atime = B_TRUE; 429 } 430 431 /* 432 * Register property callbacks. 433 * 434 * It would probably be fine to just check for i/o error from 435 * the first prop_register(), but I guess I like to go 436 * overboard... 437 */ 438 ds = dmu_objset_ds(os); 439 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 440 error = error ? error : dsl_prop_register(ds, 441 "xattr", xattr_changed_cb, zfsvfs); 442 error = error ? error : dsl_prop_register(ds, 443 "recordsize", blksz_changed_cb, zfsvfs); 444 error = error ? error : dsl_prop_register(ds, 445 "readonly", readonly_changed_cb, zfsvfs); 446 error = error ? error : dsl_prop_register(ds, 447 "devices", devices_changed_cb, zfsvfs); 448 error = error ? error : dsl_prop_register(ds, 449 "setuid", setuid_changed_cb, zfsvfs); 450 error = error ? error : dsl_prop_register(ds, 451 "exec", exec_changed_cb, zfsvfs); 452 error = error ? error : dsl_prop_register(ds, 453 "snapdir", snapdir_changed_cb, zfsvfs); 454 error = error ? error : dsl_prop_register(ds, 455 "aclmode", acl_mode_changed_cb, zfsvfs); 456 error = error ? error : dsl_prop_register(ds, 457 "aclinherit", acl_inherit_changed_cb, zfsvfs); 458 if (error) 459 goto unregister; 460 461 /* 462 * Invoke our callbacks to restore temporary mount options. 463 */ 464 if (do_readonly) 465 readonly_changed_cb(zfsvfs, readonly); 466 if (do_setuid) 467 setuid_changed_cb(zfsvfs, setuid); 468 if (do_exec) 469 exec_changed_cb(zfsvfs, exec); 470 if (do_devices) 471 devices_changed_cb(zfsvfs, devices); 472 if (do_xattr) 473 xattr_changed_cb(zfsvfs, xattr); 474 if (do_atime) 475 atime_changed_cb(zfsvfs, atime); 476 477 return (0); 478 479 unregister: 480 /* 481 * We may attempt to unregister some callbacks that are not 482 * registered, but this is OK; it will simply return ENOMSG, 483 * which we will ignore. 484 */ 485 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 486 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 487 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 488 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 489 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 490 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 491 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 492 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 493 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 494 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 495 zfsvfs); 496 return (error); 497 498 } 499 500 static int 501 zfs_domount(vfs_t *vfsp, char *osname, cred_t *cr) 502 { 503 dev_t mount_dev; 504 uint64_t recordsize, readonly; 505 int error = 0; 506 int mode; 507 zfsvfs_t *zfsvfs; 508 znode_t *zp = NULL; 509 510 ASSERT(vfsp); 511 ASSERT(osname); 512 513 /* 514 * Initialize the zfs-specific filesystem structure. 515 * Should probably make this a kmem cache, shuffle fields, 516 * and just bzero up to z_hold_mtx[]. 517 */ 518 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 519 zfsvfs->z_vfs = vfsp; 520 zfsvfs->z_parent = zfsvfs; 521 zfsvfs->z_assign = TXG_NOWAIT; 522 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 523 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 524 525 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 526 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 527 offsetof(znode_t, z_link_node)); 528 rw_init(&zfsvfs->z_unmount_lock, NULL, RW_DEFAULT, NULL); 529 rw_init(&zfsvfs->z_unmount_inactive_lock, NULL, RW_DEFAULT, NULL); 530 531 /* Initialize the generic filesystem structure. */ 532 vfsp->vfs_bcount = 0; 533 vfsp->vfs_data = NULL; 534 535 if (zfs_create_unique_device(&mount_dev) == -1) { 536 error = ENODEV; 537 goto out; 538 } 539 ASSERT(vfs_devismounted(mount_dev) == 0); 540 541 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 542 NULL)) 543 goto out; 544 545 vfsp->vfs_dev = mount_dev; 546 vfsp->vfs_fstype = zfsfstype; 547 vfsp->vfs_bsize = recordsize; 548 vfsp->vfs_flag |= VFS_NOTRUNC; 549 vfsp->vfs_data = zfsvfs; 550 551 if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL)) 552 goto out; 553 554 if (readonly) 555 mode = DS_MODE_PRIMARY | DS_MODE_READONLY; 556 else 557 mode = DS_MODE_PRIMARY; 558 559 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 560 if (error == EROFS) { 561 mode = DS_MODE_PRIMARY | DS_MODE_READONLY; 562 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, 563 &zfsvfs->z_os); 564 } 565 566 if (error) 567 goto out; 568 569 if (error = zfs_init_fs(zfsvfs, &zp, cr)) 570 goto out; 571 572 /* The call to zfs_init_fs leaves the vnode held, release it here. */ 573 VN_RELE(ZTOV(zp)); 574 575 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 576 uint64_t xattr; 577 578 ASSERT(mode & DS_MODE_READONLY); 579 atime_changed_cb(zfsvfs, B_FALSE); 580 readonly_changed_cb(zfsvfs, B_TRUE); 581 if (error = dsl_prop_get_integer(osname, "xattr", &xattr, NULL)) 582 goto out; 583 xattr_changed_cb(zfsvfs, xattr); 584 zfsvfs->z_issnap = B_TRUE; 585 } else { 586 error = zfs_register_callbacks(vfsp); 587 if (error) 588 goto out; 589 590 if (!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY)) 591 zfs_unlinked_drain(zfsvfs); 592 593 /* 594 * Parse and replay the intent log. 595 * 596 * Because of ziltest, this must be done after 597 * zfs_unlinked_drain(). (Further note: ziltest doesn't 598 * use readonly mounts, where zfs_unlinked_drain() isn't 599 * called.) This is because ziltest causes spa_sync() 600 * to think it's committed, but actually it is not, so 601 * the intent log contains many txg's worth of changes. 602 * 603 * In particular, if object N is in the unlinked set in 604 * the last txg to actually sync, then it could be 605 * actually freed in a later txg and then reallocated in 606 * a yet later txg. This would write a "create object 607 * N" record to the intent log. Normally, this would be 608 * fine because the spa_sync() would have written out 609 * the fact that object N is free, before we could write 610 * the "create object N" intent log record. 611 * 612 * But when we are in ziltest mode, we advance the "open 613 * txg" without actually spa_sync()-ing the changes to 614 * disk. So we would see that object N is still 615 * allocated and in the unlinked set, and there is an 616 * intent log record saying to allocate it. 617 */ 618 zil_replay(zfsvfs->z_os, zfsvfs, &zfsvfs->z_assign, 619 zfs_replay_vector); 620 621 if (!zil_disable) 622 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 623 } 624 625 if (!zfsvfs->z_issnap) 626 zfsctl_create(zfsvfs); 627 out: 628 if (error) { 629 if (zfsvfs->z_os) 630 dmu_objset_close(zfsvfs->z_os); 631 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 632 } else { 633 atomic_add_32(&zfs_active_fs_count, 1); 634 } 635 636 return (error); 637 } 638 639 void 640 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 641 { 642 objset_t *os = zfsvfs->z_os; 643 struct dsl_dataset *ds; 644 645 /* 646 * Unregister properties. 647 */ 648 if (!dmu_objset_is_snapshot(os)) { 649 ds = dmu_objset_ds(os); 650 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 651 zfsvfs) == 0); 652 653 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 654 zfsvfs) == 0); 655 656 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 657 zfsvfs) == 0); 658 659 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 660 zfsvfs) == 0); 661 662 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 663 zfsvfs) == 0); 664 665 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 666 zfsvfs) == 0); 667 668 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 669 zfsvfs) == 0); 670 671 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 672 zfsvfs) == 0); 673 674 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 675 zfsvfs) == 0); 676 677 VERIFY(dsl_prop_unregister(ds, "aclinherit", 678 acl_inherit_changed_cb, zfsvfs) == 0); 679 } 680 } 681 682 /* 683 * Convert a decimal digit string to a uint64_t integer. 684 */ 685 static int 686 str_to_uint64(char *str, uint64_t *objnum) 687 { 688 uint64_t num = 0; 689 690 while (*str) { 691 if (*str < '0' || *str > '9') 692 return (EINVAL); 693 694 num = num*10 + *str++ - '0'; 695 } 696 697 *objnum = num; 698 return (0); 699 } 700 701 /* 702 * The boot path passed from the boot loader is in the form of 703 * "rootpool-name/root-filesystem-object-number'. Convert this 704 * string to a dataset name: "rootpool-name/root-filesystem-name". 705 */ 706 static int 707 parse_bootpath(char *bpath, char *outpath) 708 { 709 char *slashp; 710 uint64_t objnum; 711 int error; 712 713 if (*bpath == 0 || *bpath == '/') 714 return (EINVAL); 715 716 slashp = strchr(bpath, '/'); 717 718 /* if no '/', just return the pool name */ 719 if (slashp == NULL) { 720 (void) strcpy(outpath, bpath); 721 return (0); 722 } 723 724 if (error = str_to_uint64(slashp+1, &objnum)) 725 return (error); 726 727 *slashp = '\0'; 728 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 729 *slashp = '/'; 730 731 return (error); 732 } 733 734 static int 735 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 736 { 737 int error = 0; 738 int ret = 0; 739 static int zfsrootdone = 0; 740 zfsvfs_t *zfsvfs = NULL; 741 znode_t *zp = NULL; 742 vnode_t *vp = NULL; 743 char *zfs_bootpath; 744 745 ASSERT(vfsp); 746 747 /* 748 * The filesystem that we mount as root is defined in the 749 * "zfs-bootfs" property. 750 */ 751 if (why == ROOT_INIT) { 752 if (zfsrootdone++) 753 return (EBUSY); 754 755 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 756 DDI_PROP_DONTPASS, "zfs-bootfs", &zfs_bootpath) != 757 DDI_SUCCESS) 758 return (EIO); 759 760 error = parse_bootpath(zfs_bootpath, rootfs.bo_name); 761 ddi_prop_free(zfs_bootpath); 762 763 if (error) 764 return (error); 765 766 if (error = vfs_lock(vfsp)) 767 return (error); 768 769 if (error = zfs_domount(vfsp, rootfs.bo_name, CRED())) 770 goto out; 771 772 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 773 ASSERT(zfsvfs); 774 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) 775 goto out; 776 777 vp = ZTOV(zp); 778 mutex_enter(&vp->v_lock); 779 vp->v_flag |= VROOT; 780 mutex_exit(&vp->v_lock); 781 rootvp = vp; 782 783 /* 784 * The zfs_zget call above returns with a hold on vp, we release 785 * it here. 786 */ 787 VN_RELE(vp); 788 789 /* 790 * Mount root as readonly initially, it will be remouted 791 * read/write by /lib/svc/method/fs-usr. 792 */ 793 readonly_changed_cb(vfsp->vfs_data, B_TRUE); 794 vfs_add((struct vnode *)0, vfsp, 795 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 796 out: 797 vfs_unlock(vfsp); 798 ret = (error) ? error : 0; 799 return (ret); 800 } else if (why == ROOT_REMOUNT) { 801 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 802 vfsp->vfs_flag |= VFS_REMOUNT; 803 804 /* refresh mount options */ 805 zfs_unregister_callbacks(vfsp->vfs_data); 806 return (zfs_register_callbacks(vfsp)); 807 808 } else if (why == ROOT_UNMOUNT) { 809 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 810 (void) zfs_sync(vfsp, 0, 0); 811 return (0); 812 } 813 814 /* 815 * if "why" is equal to anything else other than ROOT_INIT, 816 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 817 */ 818 return (ENOTSUP); 819 } 820 821 /*ARGSUSED*/ 822 static int 823 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 824 { 825 char *osname; 826 pathname_t spn; 827 int error = 0; 828 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 829 UIO_SYSSPACE : UIO_USERSPACE; 830 int canwrite; 831 832 if (mvp->v_type != VDIR) 833 return (ENOTDIR); 834 835 mutex_enter(&mvp->v_lock); 836 if ((uap->flags & MS_REMOUNT) == 0 && 837 (uap->flags & MS_OVERLAY) == 0 && 838 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 839 mutex_exit(&mvp->v_lock); 840 return (EBUSY); 841 } 842 mutex_exit(&mvp->v_lock); 843 844 /* 845 * ZFS does not support passing unparsed data in via MS_DATA. 846 * Users should use the MS_OPTIONSTR interface; this means 847 * that all option parsing is already done and the options struct 848 * can be interrogated. 849 */ 850 if ((uap->flags & MS_DATA) && uap->datalen > 0) 851 return (EINVAL); 852 853 /* 854 * Get the objset name (the "special" mount argument). 855 */ 856 if (error = pn_get(uap->spec, fromspace, &spn)) 857 return (error); 858 859 osname = spn.pn_path; 860 861 /* 862 * Check for mount privilege? 863 * 864 * If we don't have privilege then see if 865 * we have local permission to allow it 866 */ 867 error = secpolicy_fs_mount(cr, mvp, vfsp); 868 if (error) { 869 error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr); 870 if (error == 0) { 871 vattr_t vattr; 872 873 /* 874 * Make sure user is the owner of the mount point 875 * or has sufficient privileges. 876 */ 877 878 vattr.va_mask = AT_UID; 879 880 if (error = VOP_GETATTR(mvp, &vattr, 0, cr)) { 881 goto out; 882 } 883 884 if (error = secpolicy_vnode_owner(cr, vattr.va_uid)) { 885 goto out; 886 } 887 888 if (error = VOP_ACCESS(mvp, VWRITE, 0, cr)) { 889 goto out; 890 } 891 892 secpolicy_fs_mount_clearopts(cr, vfsp); 893 } else { 894 goto out; 895 } 896 } 897 898 /* 899 * Refuse to mount a filesystem if we are in a local zone and the 900 * dataset is not visible. 901 */ 902 if (!INGLOBALZONE(curproc) && 903 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 904 error = EPERM; 905 goto out; 906 } 907 908 /* 909 * When doing a remount, we simply refresh our temporary properties 910 * according to those options set in the current VFS options. 911 */ 912 if (uap->flags & MS_REMOUNT) { 913 /* refresh mount options */ 914 zfs_unregister_callbacks(vfsp->vfs_data); 915 error = zfs_register_callbacks(vfsp); 916 goto out; 917 } 918 919 error = zfs_domount(vfsp, osname, cr); 920 921 out: 922 pn_free(&spn); 923 return (error); 924 } 925 926 static int 927 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 928 { 929 zfsvfs_t *zfsvfs = vfsp->vfs_data; 930 dev32_t d32; 931 uint64_t refdbytes, availbytes, usedobjs, availobjs; 932 933 ZFS_ENTER(zfsvfs); 934 935 dmu_objset_space(zfsvfs->z_os, 936 &refdbytes, &availbytes, &usedobjs, &availobjs); 937 938 /* 939 * The underlying storage pool actually uses multiple block sizes. 940 * We report the fragsize as the smallest block size we support, 941 * and we report our blocksize as the filesystem's maximum blocksize. 942 */ 943 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 944 statp->f_bsize = zfsvfs->z_max_blksz; 945 946 /* 947 * The following report "total" blocks of various kinds in the 948 * file system, but reported in terms of f_frsize - the 949 * "fragment" size. 950 */ 951 952 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 953 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 954 statp->f_bavail = statp->f_bfree; /* no root reservation */ 955 956 /* 957 * statvfs() should really be called statufs(), because it assumes 958 * static metadata. ZFS doesn't preallocate files, so the best 959 * we can do is report the max that could possibly fit in f_files, 960 * and that minus the number actually used in f_ffree. 961 * For f_ffree, report the smaller of the number of object available 962 * and the number of blocks (each object will take at least a block). 963 */ 964 statp->f_ffree = MIN(availobjs, statp->f_bfree); 965 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 966 statp->f_files = statp->f_ffree + usedobjs; 967 968 (void) cmpldev(&d32, vfsp->vfs_dev); 969 statp->f_fsid = d32; 970 971 /* 972 * We're a zfs filesystem. 973 */ 974 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 975 976 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 977 978 statp->f_namemax = ZFS_MAXNAMELEN; 979 980 /* 981 * We have all of 32 characters to stuff a string here. 982 * Is there anything useful we could/should provide? 983 */ 984 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 985 986 ZFS_EXIT(zfsvfs); 987 return (0); 988 } 989 990 static int 991 zfs_root(vfs_t *vfsp, vnode_t **vpp) 992 { 993 zfsvfs_t *zfsvfs = vfsp->vfs_data; 994 znode_t *rootzp; 995 int error; 996 997 ZFS_ENTER(zfsvfs); 998 999 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1000 if (error == 0) 1001 *vpp = ZTOV(rootzp); 1002 1003 ZFS_EXIT(zfsvfs); 1004 return (error); 1005 } 1006 1007 /*ARGSUSED*/ 1008 static int 1009 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1010 { 1011 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1012 objset_t *os = zfsvfs->z_os; 1013 znode_t *zp, *nextzp; 1014 int ret; 1015 1016 ret = secpolicy_fs_unmount(cr, vfsp); 1017 if (ret) { 1018 ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1019 ZFS_DELEG_PERM_MOUNT, cr); 1020 if (ret) 1021 return (ret); 1022 } 1023 1024 /* 1025 * We purge the parent filesystem's vfsp as the parent filesystem 1026 * and all of its snapshots have their vnode's v_vfsp set to the 1027 * parent's filesystem's vfsp. Note, 'z_parent' is self 1028 * referential for non-snapshots. 1029 */ 1030 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1031 1032 /* 1033 * Unmount any snapshots mounted under .zfs before unmounting the 1034 * dataset itself. 1035 */ 1036 if (zfsvfs->z_ctldir != NULL && 1037 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1038 return (ret); 1039 } 1040 1041 if (!(fflag & MS_FORCE)) { 1042 /* 1043 * Check the number of active vnodes in the file system. 1044 * Our count is maintained in the vfs structure, but the 1045 * number is off by 1 to indicate a hold on the vfs 1046 * structure itself. 1047 * 1048 * The '.zfs' directory maintains a reference of its 1049 * own, and any active references underneath are 1050 * reflected in the vnode count. 1051 */ 1052 if (zfsvfs->z_ctldir == NULL) { 1053 if (vfsp->vfs_count > 1) 1054 return (EBUSY); 1055 } else { 1056 if (vfsp->vfs_count > 2 || 1057 zfsvfs->z_ctldir->v_count > 1) { 1058 return (EBUSY); 1059 } 1060 } 1061 } 1062 1063 vfsp->vfs_flag |= VFS_UNMOUNTED; 1064 1065 rw_enter(&zfsvfs->z_unmount_lock, RW_WRITER); 1066 rw_enter(&zfsvfs->z_unmount_inactive_lock, RW_WRITER); 1067 1068 /* 1069 * At this point there are no vops active, and any new vops will 1070 * fail with EIO since we have z_unmount_lock for writer (only 1071 * relavent for forced unmount). 1072 * 1073 * Release all holds on dbufs. 1074 * Note, the dmu can still callback via znode_pageout_func() 1075 * which can zfs_znode_free() the znode. So we lock 1076 * z_all_znodes; search the list for a held dbuf; drop the lock 1077 * (we know zp can't disappear if we hold a dbuf lock) then 1078 * regrab the lock and restart. 1079 */ 1080 mutex_enter(&zfsvfs->z_znodes_lock); 1081 for (zp = list_head(&zfsvfs->z_all_znodes); zp; zp = nextzp) { 1082 nextzp = list_next(&zfsvfs->z_all_znodes, zp); 1083 if (zp->z_dbuf_held) { 1084 /* dbufs should only be held when force unmounting */ 1085 zp->z_dbuf_held = 0; 1086 mutex_exit(&zfsvfs->z_znodes_lock); 1087 dmu_buf_rele(zp->z_dbuf, NULL); 1088 /* Start again */ 1089 mutex_enter(&zfsvfs->z_znodes_lock); 1090 nextzp = list_head(&zfsvfs->z_all_znodes); 1091 } 1092 } 1093 mutex_exit(&zfsvfs->z_znodes_lock); 1094 1095 /* 1096 * Set the unmounted flag and let new vops unblock. 1097 * zfs_inactive will have the unmounted behavior, and all other 1098 * vops will fail with EIO. 1099 */ 1100 zfsvfs->z_unmounted = B_TRUE; 1101 rw_exit(&zfsvfs->z_unmount_lock); 1102 rw_exit(&zfsvfs->z_unmount_inactive_lock); 1103 1104 /* 1105 * Unregister properties. 1106 */ 1107 if (!dmu_objset_is_snapshot(os)) 1108 zfs_unregister_callbacks(zfsvfs); 1109 1110 /* 1111 * Close the zil. NB: Can't close the zil while zfs_inactive 1112 * threads are blocked as zil_close can call zfs_inactive. 1113 */ 1114 if (zfsvfs->z_log) { 1115 zil_close(zfsvfs->z_log); 1116 zfsvfs->z_log = NULL; 1117 } 1118 1119 /* 1120 * Evict all dbufs so that cached znodes will be freed 1121 */ 1122 if (dmu_objset_evict_dbufs(os, B_TRUE)) { 1123 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1124 (void) dmu_objset_evict_dbufs(os, B_FALSE); 1125 } 1126 1127 /* 1128 * Finally close the objset 1129 */ 1130 dmu_objset_close(os); 1131 1132 /* 1133 * We can now safely destroy the '.zfs' directory node. 1134 */ 1135 if (zfsvfs->z_ctldir != NULL) 1136 zfsctl_destroy(zfsvfs); 1137 1138 return (0); 1139 } 1140 1141 static int 1142 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1143 { 1144 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1145 znode_t *zp; 1146 uint64_t object = 0; 1147 uint64_t fid_gen = 0; 1148 uint64_t gen_mask; 1149 uint64_t zp_gen; 1150 int i, err; 1151 1152 *vpp = NULL; 1153 1154 ZFS_ENTER(zfsvfs); 1155 1156 if (fidp->fid_len == LONG_FID_LEN) { 1157 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1158 uint64_t objsetid = 0; 1159 uint64_t setgen = 0; 1160 1161 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1162 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1163 1164 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1165 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1166 1167 ZFS_EXIT(zfsvfs); 1168 1169 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1170 if (err) 1171 return (EINVAL); 1172 ZFS_ENTER(zfsvfs); 1173 } 1174 1175 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1176 zfid_short_t *zfid = (zfid_short_t *)fidp; 1177 1178 for (i = 0; i < sizeof (zfid->zf_object); i++) 1179 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1180 1181 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1182 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1183 } else { 1184 ZFS_EXIT(zfsvfs); 1185 return (EINVAL); 1186 } 1187 1188 /* A zero fid_gen means we are in the .zfs control directories */ 1189 if (fid_gen == 0 && 1190 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1191 *vpp = zfsvfs->z_ctldir; 1192 ASSERT(*vpp != NULL); 1193 if (object == ZFSCTL_INO_SNAPDIR) { 1194 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1195 0, NULL, NULL) == 0); 1196 } else { 1197 VN_HOLD(*vpp); 1198 } 1199 ZFS_EXIT(zfsvfs); 1200 return (0); 1201 } 1202 1203 gen_mask = -1ULL >> (64 - 8 * i); 1204 1205 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1206 if (err = zfs_zget(zfsvfs, object, &zp)) { 1207 ZFS_EXIT(zfsvfs); 1208 return (err); 1209 } 1210 zp_gen = zp->z_phys->zp_gen & gen_mask; 1211 if (zp_gen == 0) 1212 zp_gen = 1; 1213 if (zp->z_unlinked || zp_gen != fid_gen) { 1214 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1215 VN_RELE(ZTOV(zp)); 1216 ZFS_EXIT(zfsvfs); 1217 return (EINVAL); 1218 } 1219 1220 *vpp = ZTOV(zp); 1221 ZFS_EXIT(zfsvfs); 1222 return (0); 1223 } 1224 1225 static void 1226 zfs_freevfs(vfs_t *vfsp) 1227 { 1228 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1229 1230 mutex_destroy(&zfsvfs->z_znodes_lock); 1231 rw_destroy(&zfsvfs->z_unmount_lock); 1232 rw_destroy(&zfsvfs->z_unmount_inactive_lock); 1233 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1234 1235 atomic_add_32(&zfs_active_fs_count, -1); 1236 } 1237 1238 /* 1239 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 1240 * so we can't safely do any non-idempotent initialization here. 1241 * Leave that to zfs_init() and zfs_fini(), which are called 1242 * from the module's _init() and _fini() entry points. 1243 */ 1244 /*ARGSUSED*/ 1245 static int 1246 zfs_vfsinit(int fstype, char *name) 1247 { 1248 int error; 1249 1250 zfsfstype = fstype; 1251 1252 /* 1253 * Setup vfsops and vnodeops tables. 1254 */ 1255 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 1256 if (error != 0) { 1257 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 1258 } 1259 1260 error = zfs_create_op_tables(); 1261 if (error) { 1262 zfs_remove_op_tables(); 1263 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 1264 (void) vfs_freevfsops_by_type(zfsfstype); 1265 return (error); 1266 } 1267 1268 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 1269 1270 /* 1271 * Unique major number for all zfs mounts. 1272 * If we run out of 32-bit minors, we'll getudev() another major. 1273 */ 1274 zfs_major = ddi_name_to_major(ZFS_DRIVER); 1275 zfs_minor = ZFS_MIN_MINOR; 1276 1277 return (0); 1278 } 1279 1280 void 1281 zfs_init(void) 1282 { 1283 /* 1284 * Initialize .zfs directory structures 1285 */ 1286 zfsctl_init(); 1287 1288 /* 1289 * Initialize znode cache, vnode ops, etc... 1290 */ 1291 zfs_znode_init(); 1292 } 1293 1294 void 1295 zfs_fini(void) 1296 { 1297 zfsctl_fini(); 1298 zfs_znode_fini(); 1299 } 1300 1301 int 1302 zfs_busy(void) 1303 { 1304 return (zfs_active_fs_count != 0); 1305 } 1306 1307 int 1308 zfs_get_stats(objset_t *os, nvlist_t *nv) 1309 { 1310 int error; 1311 uint64_t val; 1312 1313 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, &val); 1314 if (error == 0) 1315 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VERSION, val); 1316 1317 return (error); 1318 } 1319 1320 int 1321 zfs_set_version(const char *name, uint64_t newvers) 1322 { 1323 int error; 1324 objset_t *os; 1325 dmu_tx_t *tx; 1326 uint64_t curvers; 1327 1328 /* 1329 * XXX for now, require that the filesystem be unmounted. Would 1330 * be nice to find the zfsvfs_t and just update that if 1331 * possible. 1332 */ 1333 1334 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 1335 return (EINVAL); 1336 1337 error = dmu_objset_open(name, DMU_OST_ZFS, DS_MODE_PRIMARY, &os); 1338 if (error) 1339 return (error); 1340 1341 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 1342 8, 1, &curvers); 1343 if (error) 1344 goto out; 1345 if (newvers < curvers) { 1346 error = EINVAL; 1347 goto out; 1348 } 1349 1350 tx = dmu_tx_create(os); 1351 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 0, ZPL_VERSION_STR); 1352 error = dmu_tx_assign(tx, TXG_WAIT); 1353 if (error) { 1354 dmu_tx_abort(tx); 1355 goto out; 1356 } 1357 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, 1358 &newvers, tx); 1359 1360 spa_history_internal_log(LOG_DS_UPGRADE, 1361 dmu_objset_spa(os), tx, CRED(), 1362 "oldver=%llu newver=%llu dataset = %llu", curvers, newvers, 1363 dmu_objset_id(os)); 1364 dmu_tx_commit(tx); 1365 1366 out: 1367 dmu_objset_close(os); 1368 return (error); 1369 } 1370 1371 static vfsdef_t vfw = { 1372 VFSDEF_VERSION, 1373 MNTTYPE_ZFS, 1374 zfs_vfsinit, 1375 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS, 1376 &zfs_mntopts 1377 }; 1378 1379 struct modlfs zfs_modlfs = { 1380 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 1381 }; 1382