xref: /titanic_50/usr/src/uts/common/fs/zfs/zfs_vfsops.c (revision a4ca1d52cdf9b55a14d0c62ff62b74cd904110ff)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /* Portions Copyright 2010 Robert Milkowski */
26 
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/sysmacros.h>
31 #include <sys/kmem.h>
32 #include <sys/pathname.h>
33 #include <sys/vnode.h>
34 #include <sys/vfs.h>
35 #include <sys/vfs_opreg.h>
36 #include <sys/mntent.h>
37 #include <sys/mount.h>
38 #include <sys/cmn_err.h>
39 #include "fs/fs_subr.h"
40 #include <sys/zfs_znode.h>
41 #include <sys/zfs_dir.h>
42 #include <sys/zil.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/dmu.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/dsl_dataset.h>
47 #include <sys/dsl_deleg.h>
48 #include <sys/spa.h>
49 #include <sys/zap.h>
50 #include <sys/sa.h>
51 #include <sys/varargs.h>
52 #include <sys/policy.h>
53 #include <sys/atomic.h>
54 #include <sys/mkdev.h>
55 #include <sys/modctl.h>
56 #include <sys/refstr.h>
57 #include <sys/zfs_ioctl.h>
58 #include <sys/zfs_ctldir.h>
59 #include <sys/zfs_fuid.h>
60 #include <sys/bootconf.h>
61 #include <sys/sunddi.h>
62 #include <sys/dnlc.h>
63 #include <sys/dmu_objset.h>
64 #include <sys/spa_boot.h>
65 #include <sys/sa.h>
66 #include "zfs_comutil.h"
67 
68 int zfsfstype;
69 vfsops_t *zfs_vfsops = NULL;
70 static major_t zfs_major;
71 static minor_t zfs_minor;
72 static kmutex_t	zfs_dev_mtx;
73 
74 extern int sys_shutdown;
75 
76 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
77 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
78 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
79 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
80 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
81 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
82 static void zfs_freevfs(vfs_t *vfsp);
83 
84 static const fs_operation_def_t zfs_vfsops_template[] = {
85 	VFSNAME_MOUNT,		{ .vfs_mount = zfs_mount },
86 	VFSNAME_MOUNTROOT,	{ .vfs_mountroot = zfs_mountroot },
87 	VFSNAME_UNMOUNT,	{ .vfs_unmount = zfs_umount },
88 	VFSNAME_ROOT,		{ .vfs_root = zfs_root },
89 	VFSNAME_STATVFS,	{ .vfs_statvfs = zfs_statvfs },
90 	VFSNAME_SYNC,		{ .vfs_sync = zfs_sync },
91 	VFSNAME_VGET,		{ .vfs_vget = zfs_vget },
92 	VFSNAME_FREEVFS,	{ .vfs_freevfs = zfs_freevfs },
93 	NULL,			NULL
94 };
95 
96 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
97 	VFSNAME_FREEVFS,	{ .vfs_freevfs =  zfs_freevfs },
98 	NULL,			NULL
99 };
100 
101 /*
102  * We need to keep a count of active fs's.
103  * This is necessary to prevent our module
104  * from being unloaded after a umount -f
105  */
106 static uint32_t	zfs_active_fs_count = 0;
107 
108 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
109 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
110 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
111 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
112 
113 /*
114  * MO_DEFAULT is not used since the default value is determined
115  * by the equivalent property.
116  */
117 static mntopt_t mntopts[] = {
118 	{ MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
119 	{ MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
120 	{ MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
121 	{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
122 };
123 
124 static mntopts_t zfs_mntopts = {
125 	sizeof (mntopts) / sizeof (mntopt_t),
126 	mntopts
127 };
128 
129 /*ARGSUSED*/
130 int
131 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
132 {
133 	/*
134 	 * Data integrity is job one.  We don't want a compromised kernel
135 	 * writing to the storage pool, so we never sync during panic.
136 	 */
137 	if (panicstr)
138 		return (0);
139 
140 	/*
141 	 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
142 	 * to sync metadata, which they would otherwise cache indefinitely.
143 	 * Semantically, the only requirement is that the sync be initiated.
144 	 * The DMU syncs out txgs frequently, so there's nothing to do.
145 	 */
146 	if (flag & SYNC_ATTR)
147 		return (0);
148 
149 	if (vfsp != NULL) {
150 		/*
151 		 * Sync a specific filesystem.
152 		 */
153 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
154 		dsl_pool_t *dp;
155 
156 		ZFS_ENTER(zfsvfs);
157 		dp = dmu_objset_pool(zfsvfs->z_os);
158 
159 		/*
160 		 * If the system is shutting down, then skip any
161 		 * filesystems which may exist on a suspended pool.
162 		 */
163 		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
164 			ZFS_EXIT(zfsvfs);
165 			return (0);
166 		}
167 
168 		if (zfsvfs->z_log != NULL)
169 			zil_commit(zfsvfs->z_log, 0);
170 
171 		ZFS_EXIT(zfsvfs);
172 	} else {
173 		/*
174 		 * Sync all ZFS filesystems.  This is what happens when you
175 		 * run sync(1M).  Unlike other filesystems, ZFS honors the
176 		 * request by waiting for all pools to commit all dirty data.
177 		 */
178 		spa_sync_allpools();
179 	}
180 
181 	return (0);
182 }
183 
184 static int
185 zfs_create_unique_device(dev_t *dev)
186 {
187 	major_t new_major;
188 
189 	do {
190 		ASSERT3U(zfs_minor, <=, MAXMIN32);
191 		minor_t start = zfs_minor;
192 		do {
193 			mutex_enter(&zfs_dev_mtx);
194 			if (zfs_minor >= MAXMIN32) {
195 				/*
196 				 * If we're still using the real major
197 				 * keep out of /dev/zfs and /dev/zvol minor
198 				 * number space.  If we're using a getudev()'ed
199 				 * major number, we can use all of its minors.
200 				 */
201 				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
202 					zfs_minor = ZFS_MIN_MINOR;
203 				else
204 					zfs_minor = 0;
205 			} else {
206 				zfs_minor++;
207 			}
208 			*dev = makedevice(zfs_major, zfs_minor);
209 			mutex_exit(&zfs_dev_mtx);
210 		} while (vfs_devismounted(*dev) && zfs_minor != start);
211 		if (zfs_minor == start) {
212 			/*
213 			 * We are using all ~262,000 minor numbers for the
214 			 * current major number.  Create a new major number.
215 			 */
216 			if ((new_major = getudev()) == (major_t)-1) {
217 				cmn_err(CE_WARN,
218 				    "zfs_mount: Can't get unique major "
219 				    "device number.");
220 				return (-1);
221 			}
222 			mutex_enter(&zfs_dev_mtx);
223 			zfs_major = new_major;
224 			zfs_minor = 0;
225 
226 			mutex_exit(&zfs_dev_mtx);
227 		} else {
228 			break;
229 		}
230 		/* CONSTANTCONDITION */
231 	} while (1);
232 
233 	return (0);
234 }
235 
236 static void
237 atime_changed_cb(void *arg, uint64_t newval)
238 {
239 	zfsvfs_t *zfsvfs = arg;
240 
241 	if (newval == TRUE) {
242 		zfsvfs->z_atime = TRUE;
243 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
244 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
245 	} else {
246 		zfsvfs->z_atime = FALSE;
247 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
248 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
249 	}
250 }
251 
252 static void
253 xattr_changed_cb(void *arg, uint64_t newval)
254 {
255 	zfsvfs_t *zfsvfs = arg;
256 
257 	if (newval == TRUE) {
258 		/* XXX locking on vfs_flag? */
259 		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
260 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
261 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
262 	} else {
263 		/* XXX locking on vfs_flag? */
264 		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
265 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
266 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
267 	}
268 }
269 
270 static void
271 blksz_changed_cb(void *arg, uint64_t newval)
272 {
273 	zfsvfs_t *zfsvfs = arg;
274 
275 	if (newval < SPA_MINBLOCKSIZE ||
276 	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
277 		newval = SPA_MAXBLOCKSIZE;
278 
279 	zfsvfs->z_max_blksz = newval;
280 	zfsvfs->z_vfs->vfs_bsize = newval;
281 }
282 
283 static void
284 readonly_changed_cb(void *arg, uint64_t newval)
285 {
286 	zfsvfs_t *zfsvfs = arg;
287 
288 	if (newval) {
289 		/* XXX locking on vfs_flag? */
290 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
291 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
292 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
293 	} else {
294 		/* XXX locking on vfs_flag? */
295 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
296 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
297 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
298 	}
299 }
300 
301 static void
302 devices_changed_cb(void *arg, uint64_t newval)
303 {
304 	zfsvfs_t *zfsvfs = arg;
305 
306 	if (newval == FALSE) {
307 		zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
308 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
309 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
310 	} else {
311 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
312 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
313 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
314 	}
315 }
316 
317 static void
318 setuid_changed_cb(void *arg, uint64_t newval)
319 {
320 	zfsvfs_t *zfsvfs = arg;
321 
322 	if (newval == FALSE) {
323 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
324 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
325 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
326 	} else {
327 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
328 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
329 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
330 	}
331 }
332 
333 static void
334 exec_changed_cb(void *arg, uint64_t newval)
335 {
336 	zfsvfs_t *zfsvfs = arg;
337 
338 	if (newval == FALSE) {
339 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
340 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
341 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
342 	} else {
343 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
344 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
345 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
346 	}
347 }
348 
349 /*
350  * The nbmand mount option can be changed at mount time.
351  * We can't allow it to be toggled on live file systems or incorrect
352  * behavior may be seen from cifs clients
353  *
354  * This property isn't registered via dsl_prop_register(), but this callback
355  * will be called when a file system is first mounted
356  */
357 static void
358 nbmand_changed_cb(void *arg, uint64_t newval)
359 {
360 	zfsvfs_t *zfsvfs = arg;
361 	if (newval == FALSE) {
362 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
363 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
364 	} else {
365 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
366 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
367 	}
368 }
369 
370 static void
371 snapdir_changed_cb(void *arg, uint64_t newval)
372 {
373 	zfsvfs_t *zfsvfs = arg;
374 
375 	zfsvfs->z_show_ctldir = newval;
376 }
377 
378 static void
379 vscan_changed_cb(void *arg, uint64_t newval)
380 {
381 	zfsvfs_t *zfsvfs = arg;
382 
383 	zfsvfs->z_vscan = newval;
384 }
385 
386 static void
387 acl_inherit_changed_cb(void *arg, uint64_t newval)
388 {
389 	zfsvfs_t *zfsvfs = arg;
390 
391 	zfsvfs->z_acl_inherit = newval;
392 }
393 
394 static int
395 zfs_register_callbacks(vfs_t *vfsp)
396 {
397 	struct dsl_dataset *ds = NULL;
398 	objset_t *os = NULL;
399 	zfsvfs_t *zfsvfs = NULL;
400 	uint64_t nbmand;
401 	int readonly, do_readonly = B_FALSE;
402 	int setuid, do_setuid = B_FALSE;
403 	int exec, do_exec = B_FALSE;
404 	int devices, do_devices = B_FALSE;
405 	int xattr, do_xattr = B_FALSE;
406 	int atime, do_atime = B_FALSE;
407 	int error = 0;
408 
409 	ASSERT(vfsp);
410 	zfsvfs = vfsp->vfs_data;
411 	ASSERT(zfsvfs);
412 	os = zfsvfs->z_os;
413 
414 	/*
415 	 * The act of registering our callbacks will destroy any mount
416 	 * options we may have.  In order to enable temporary overrides
417 	 * of mount options, we stash away the current values and
418 	 * restore them after we register the callbacks.
419 	 */
420 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
421 	    !spa_writeable(dmu_objset_spa(os))) {
422 		readonly = B_TRUE;
423 		do_readonly = B_TRUE;
424 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
425 		readonly = B_FALSE;
426 		do_readonly = B_TRUE;
427 	}
428 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
429 		devices = B_FALSE;
430 		setuid = B_FALSE;
431 		do_devices = B_TRUE;
432 		do_setuid = B_TRUE;
433 	} else {
434 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
435 			devices = B_FALSE;
436 			do_devices = B_TRUE;
437 		} else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
438 			devices = B_TRUE;
439 			do_devices = B_TRUE;
440 		}
441 
442 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
443 			setuid = B_FALSE;
444 			do_setuid = B_TRUE;
445 		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
446 			setuid = B_TRUE;
447 			do_setuid = B_TRUE;
448 		}
449 	}
450 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
451 		exec = B_FALSE;
452 		do_exec = B_TRUE;
453 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
454 		exec = B_TRUE;
455 		do_exec = B_TRUE;
456 	}
457 	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
458 		xattr = B_FALSE;
459 		do_xattr = B_TRUE;
460 	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
461 		xattr = B_TRUE;
462 		do_xattr = B_TRUE;
463 	}
464 	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
465 		atime = B_FALSE;
466 		do_atime = B_TRUE;
467 	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
468 		atime = B_TRUE;
469 		do_atime = B_TRUE;
470 	}
471 
472 	/*
473 	 * nbmand is a special property.  It can only be changed at
474 	 * mount time.
475 	 *
476 	 * This is weird, but it is documented to only be changeable
477 	 * at mount time.
478 	 */
479 	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
480 		nbmand = B_FALSE;
481 	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
482 		nbmand = B_TRUE;
483 	} else {
484 		char osname[MAXNAMELEN];
485 
486 		dmu_objset_name(os, osname);
487 		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
488 		    NULL)) {
489 			return (error);
490 		}
491 	}
492 
493 	/*
494 	 * Register property callbacks.
495 	 *
496 	 * It would probably be fine to just check for i/o error from
497 	 * the first prop_register(), but I guess I like to go
498 	 * overboard...
499 	 */
500 	ds = dmu_objset_ds(os);
501 	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
502 	error = error ? error : dsl_prop_register(ds,
503 	    "xattr", xattr_changed_cb, zfsvfs);
504 	error = error ? error : dsl_prop_register(ds,
505 	    "recordsize", blksz_changed_cb, zfsvfs);
506 	error = error ? error : dsl_prop_register(ds,
507 	    "readonly", readonly_changed_cb, zfsvfs);
508 	error = error ? error : dsl_prop_register(ds,
509 	    "devices", devices_changed_cb, zfsvfs);
510 	error = error ? error : dsl_prop_register(ds,
511 	    "setuid", setuid_changed_cb, zfsvfs);
512 	error = error ? error : dsl_prop_register(ds,
513 	    "exec", exec_changed_cb, zfsvfs);
514 	error = error ? error : dsl_prop_register(ds,
515 	    "snapdir", snapdir_changed_cb, zfsvfs);
516 	error = error ? error : dsl_prop_register(ds,
517 	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
518 	error = error ? error : dsl_prop_register(ds,
519 	    "vscan", vscan_changed_cb, zfsvfs);
520 	if (error)
521 		goto unregister;
522 
523 	/*
524 	 * Invoke our callbacks to restore temporary mount options.
525 	 */
526 	if (do_readonly)
527 		readonly_changed_cb(zfsvfs, readonly);
528 	if (do_setuid)
529 		setuid_changed_cb(zfsvfs, setuid);
530 	if (do_exec)
531 		exec_changed_cb(zfsvfs, exec);
532 	if (do_devices)
533 		devices_changed_cb(zfsvfs, devices);
534 	if (do_xattr)
535 		xattr_changed_cb(zfsvfs, xattr);
536 	if (do_atime)
537 		atime_changed_cb(zfsvfs, atime);
538 
539 	nbmand_changed_cb(zfsvfs, nbmand);
540 
541 	return (0);
542 
543 unregister:
544 	/*
545 	 * We may attempt to unregister some callbacks that are not
546 	 * registered, but this is OK; it will simply return ENOMSG,
547 	 * which we will ignore.
548 	 */
549 	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
550 	(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
551 	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
552 	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
553 	(void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
554 	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
555 	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
556 	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
557 	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
558 	    zfsvfs);
559 	(void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
560 	return (error);
561 
562 }
563 
564 static int
565 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
566     uint64_t *userp, uint64_t *groupp)
567 {
568 	znode_phys_t *znp = data;
569 	int error = 0;
570 
571 	/*
572 	 * Is it a valid type of object to track?
573 	 */
574 	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
575 		return (ENOENT);
576 
577 	/*
578 	 * If we have a NULL data pointer
579 	 * then assume the id's aren't changing and
580 	 * return EEXIST to the dmu to let it know to
581 	 * use the same ids
582 	 */
583 	if (data == NULL)
584 		return (EEXIST);
585 
586 	if (bonustype == DMU_OT_ZNODE) {
587 		*userp = znp->zp_uid;
588 		*groupp = znp->zp_gid;
589 	} else {
590 		int hdrsize;
591 
592 		ASSERT(bonustype == DMU_OT_SA);
593 		hdrsize = sa_hdrsize(data);
594 
595 		if (hdrsize != 0) {
596 			*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
597 			    SA_UID_OFFSET));
598 			*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
599 			    SA_GID_OFFSET));
600 		} else {
601 			/*
602 			 * This should only happen for newly created
603 			 * files that haven't had the znode data filled
604 			 * in yet.
605 			 */
606 			*userp = 0;
607 			*groupp = 0;
608 		}
609 	}
610 	return (error);
611 }
612 
613 static void
614 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
615     char *domainbuf, int buflen, uid_t *ridp)
616 {
617 	uint64_t fuid;
618 	const char *domain;
619 
620 	fuid = strtonum(fuidstr, NULL);
621 
622 	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
623 	if (domain)
624 		(void) strlcpy(domainbuf, domain, buflen);
625 	else
626 		domainbuf[0] = '\0';
627 	*ridp = FUID_RID(fuid);
628 }
629 
630 static uint64_t
631 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
632 {
633 	switch (type) {
634 	case ZFS_PROP_USERUSED:
635 		return (DMU_USERUSED_OBJECT);
636 	case ZFS_PROP_GROUPUSED:
637 		return (DMU_GROUPUSED_OBJECT);
638 	case ZFS_PROP_USERQUOTA:
639 		return (zfsvfs->z_userquota_obj);
640 	case ZFS_PROP_GROUPQUOTA:
641 		return (zfsvfs->z_groupquota_obj);
642 	}
643 	return (0);
644 }
645 
646 int
647 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
648     uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
649 {
650 	int error;
651 	zap_cursor_t zc;
652 	zap_attribute_t za;
653 	zfs_useracct_t *buf = vbuf;
654 	uint64_t obj;
655 
656 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
657 		return (ENOTSUP);
658 
659 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
660 	if (obj == 0) {
661 		*bufsizep = 0;
662 		return (0);
663 	}
664 
665 	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
666 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
667 	    zap_cursor_advance(&zc)) {
668 		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
669 		    *bufsizep)
670 			break;
671 
672 		fuidstr_to_sid(zfsvfs, za.za_name,
673 		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
674 
675 		buf->zu_space = za.za_first_integer;
676 		buf++;
677 	}
678 	if (error == ENOENT)
679 		error = 0;
680 
681 	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
682 	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
683 	*cookiep = zap_cursor_serialize(&zc);
684 	zap_cursor_fini(&zc);
685 	return (error);
686 }
687 
688 /*
689  * buf must be big enough (eg, 32 bytes)
690  */
691 static int
692 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
693     char *buf, boolean_t addok)
694 {
695 	uint64_t fuid;
696 	int domainid = 0;
697 
698 	if (domain && domain[0]) {
699 		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
700 		if (domainid == -1)
701 			return (ENOENT);
702 	}
703 	fuid = FUID_ENCODE(domainid, rid);
704 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
705 	return (0);
706 }
707 
708 int
709 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
710     const char *domain, uint64_t rid, uint64_t *valp)
711 {
712 	char buf[32];
713 	int err;
714 	uint64_t obj;
715 
716 	*valp = 0;
717 
718 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
719 		return (ENOTSUP);
720 
721 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
722 	if (obj == 0)
723 		return (0);
724 
725 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
726 	if (err)
727 		return (err);
728 
729 	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
730 	if (err == ENOENT)
731 		err = 0;
732 	return (err);
733 }
734 
735 int
736 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
737     const char *domain, uint64_t rid, uint64_t quota)
738 {
739 	char buf[32];
740 	int err;
741 	dmu_tx_t *tx;
742 	uint64_t *objp;
743 	boolean_t fuid_dirtied;
744 
745 	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
746 		return (EINVAL);
747 
748 	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
749 		return (ENOTSUP);
750 
751 	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
752 	    &zfsvfs->z_groupquota_obj;
753 
754 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
755 	if (err)
756 		return (err);
757 	fuid_dirtied = zfsvfs->z_fuid_dirty;
758 
759 	tx = dmu_tx_create(zfsvfs->z_os);
760 	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
761 	if (*objp == 0) {
762 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
763 		    zfs_userquota_prop_prefixes[type]);
764 	}
765 	if (fuid_dirtied)
766 		zfs_fuid_txhold(zfsvfs, tx);
767 	err = dmu_tx_assign(tx, TXG_WAIT);
768 	if (err) {
769 		dmu_tx_abort(tx);
770 		return (err);
771 	}
772 
773 	mutex_enter(&zfsvfs->z_lock);
774 	if (*objp == 0) {
775 		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
776 		    DMU_OT_NONE, 0, tx);
777 		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
778 		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
779 	}
780 	mutex_exit(&zfsvfs->z_lock);
781 
782 	if (quota == 0) {
783 		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
784 		if (err == ENOENT)
785 			err = 0;
786 	} else {
787 		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
788 	}
789 	ASSERT(err == 0);
790 	if (fuid_dirtied)
791 		zfs_fuid_sync(zfsvfs, tx);
792 	dmu_tx_commit(tx);
793 	return (err);
794 }
795 
796 boolean_t
797 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
798 {
799 	char buf[32];
800 	uint64_t used, quota, usedobj, quotaobj;
801 	int err;
802 
803 	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
804 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
805 
806 	if (quotaobj == 0 || zfsvfs->z_replay)
807 		return (B_FALSE);
808 
809 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
810 	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
811 	if (err != 0)
812 		return (B_FALSE);
813 
814 	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
815 	if (err != 0)
816 		return (B_FALSE);
817 	return (used >= quota);
818 }
819 
820 boolean_t
821 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
822 {
823 	uint64_t fuid;
824 	uint64_t quotaobj;
825 	uid_t id;
826 
827 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
828 
829 	id = isgroup ? zp->z_gid : zp->z_uid;
830 
831 	if (quotaobj == 0 || zfsvfs->z_replay)
832 		return (B_FALSE);
833 
834 	if (IS_EPHEMERAL(id)) {
835 		VERIFY(0 == sa_lookup(zp->z_sa_hdl,
836 		    isgroup ? SA_ZPL_GID(zfsvfs) : SA_ZPL_UID(zfsvfs),
837 		    &fuid, sizeof (fuid)));
838 	} else {
839 		fuid = (uint64_t)id;
840 	}
841 
842 	return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
843 }
844 
845 int
846 zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
847 {
848 	objset_t *os;
849 	zfsvfs_t *zfsvfs;
850 	uint64_t zval;
851 	int i, error;
852 	uint64_t sa_obj;
853 
854 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
855 
856 	/*
857 	 * We claim to always be readonly so we can open snapshots;
858 	 * other ZPL code will prevent us from writing to snapshots.
859 	 */
860 	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
861 	if (error) {
862 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
863 		return (error);
864 	}
865 
866 	/*
867 	 * Initialize the zfs-specific filesystem structure.
868 	 * Should probably make this a kmem cache, shuffle fields,
869 	 * and just bzero up to z_hold_mtx[].
870 	 */
871 	zfsvfs->z_vfs = NULL;
872 	zfsvfs->z_parent = zfsvfs;
873 	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
874 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
875 	zfsvfs->z_os = os;
876 
877 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
878 	if (error) {
879 		goto out;
880 	} else if (zfsvfs->z_version >
881 	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
882 		(void) printf("Can't mount a version %lld file system "
883 		    "on a version %lld pool\n. Pool must be upgraded to mount "
884 		    "this file system.", (u_longlong_t)zfsvfs->z_version,
885 		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
886 		error = ENOTSUP;
887 		goto out;
888 	}
889 	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
890 		goto out;
891 	zfsvfs->z_norm = (int)zval;
892 
893 	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
894 		goto out;
895 	zfsvfs->z_utf8 = (zval != 0);
896 
897 	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
898 		goto out;
899 	zfsvfs->z_case = (uint_t)zval;
900 
901 	/*
902 	 * Fold case on file systems that are always or sometimes case
903 	 * insensitive.
904 	 */
905 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
906 	    zfsvfs->z_case == ZFS_CASE_MIXED)
907 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
908 
909 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
910 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
911 
912 	if (zfsvfs->z_use_sa) {
913 		/* should either have both of these objects or none */
914 		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
915 		    &sa_obj);
916 		if (error)
917 			return (error);
918 	} else {
919 		/*
920 		 * Pre SA versions file systems should never touch
921 		 * either the attribute registration or layout objects.
922 		 */
923 		sa_obj = 0;
924 	}
925 
926 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
927 	    &zfsvfs->z_attr_table);
928 	if (error)
929 		goto out;
930 
931 	if (zfsvfs->z_version >= ZPL_VERSION_SA)
932 		sa_register_update_callback(os, zfs_sa_upgrade);
933 
934 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
935 	    &zfsvfs->z_root);
936 	if (error)
937 		goto out;
938 	ASSERT(zfsvfs->z_root != 0);
939 
940 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
941 	    &zfsvfs->z_unlinkedobj);
942 	if (error)
943 		goto out;
944 
945 	error = zap_lookup(os, MASTER_NODE_OBJ,
946 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
947 	    8, 1, &zfsvfs->z_userquota_obj);
948 	if (error && error != ENOENT)
949 		goto out;
950 
951 	error = zap_lookup(os, MASTER_NODE_OBJ,
952 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
953 	    8, 1, &zfsvfs->z_groupquota_obj);
954 	if (error && error != ENOENT)
955 		goto out;
956 
957 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
958 	    &zfsvfs->z_fuid_obj);
959 	if (error && error != ENOENT)
960 		goto out;
961 
962 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
963 	    &zfsvfs->z_shares_dir);
964 	if (error && error != ENOENT)
965 		goto out;
966 
967 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
968 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
969 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
970 	    offsetof(znode_t, z_link_node));
971 	rrw_init(&zfsvfs->z_teardown_lock);
972 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
973 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
974 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
975 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
976 
977 	*zfvp = zfsvfs;
978 	return (0);
979 
980 out:
981 	dmu_objset_disown(os, zfsvfs);
982 	*zfvp = NULL;
983 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
984 	return (error);
985 }
986 
987 static int
988 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
989 {
990 	int error;
991 
992 	error = zfs_register_callbacks(zfsvfs->z_vfs);
993 	if (error)
994 		return (error);
995 
996 	/*
997 	 * Set the objset user_ptr to track its zfsvfs.
998 	 */
999 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1000 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1001 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1002 
1003 	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1004 
1005 	/*
1006 	 * If we are not mounting (ie: online recv), then we don't
1007 	 * have to worry about replaying the log as we blocked all
1008 	 * operations out since we closed the ZIL.
1009 	 */
1010 	if (mounting) {
1011 		boolean_t readonly;
1012 
1013 		/*
1014 		 * During replay we remove the read only flag to
1015 		 * allow replays to succeed.
1016 		 */
1017 		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1018 		if (readonly != 0)
1019 			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1020 		else
1021 			zfs_unlinked_drain(zfsvfs);
1022 
1023 		/*
1024 		 * Parse and replay the intent log.
1025 		 *
1026 		 * Because of ziltest, this must be done after
1027 		 * zfs_unlinked_drain().  (Further note: ziltest
1028 		 * doesn't use readonly mounts, where
1029 		 * zfs_unlinked_drain() isn't called.)  This is because
1030 		 * ziltest causes spa_sync() to think it's committed,
1031 		 * but actually it is not, so the intent log contains
1032 		 * many txg's worth of changes.
1033 		 *
1034 		 * In particular, if object N is in the unlinked set in
1035 		 * the last txg to actually sync, then it could be
1036 		 * actually freed in a later txg and then reallocated
1037 		 * in a yet later txg.  This would write a "create
1038 		 * object N" record to the intent log.  Normally, this
1039 		 * would be fine because the spa_sync() would have
1040 		 * written out the fact that object N is free, before
1041 		 * we could write the "create object N" intent log
1042 		 * record.
1043 		 *
1044 		 * But when we are in ziltest mode, we advance the "open
1045 		 * txg" without actually spa_sync()-ing the changes to
1046 		 * disk.  So we would see that object N is still
1047 		 * allocated and in the unlinked set, and there is an
1048 		 * intent log record saying to allocate it.
1049 		 */
1050 		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1051 			if (zil_replay_disable) {
1052 				zil_destroy(zfsvfs->z_log, B_FALSE);
1053 			} else {
1054 				zfsvfs->z_replay = B_TRUE;
1055 				zil_replay(zfsvfs->z_os, zfsvfs,
1056 				    zfs_replay_vector);
1057 				zfsvfs->z_replay = B_FALSE;
1058 			}
1059 		}
1060 		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1061 	}
1062 
1063 	return (0);
1064 }
1065 
1066 void
1067 zfsvfs_free(zfsvfs_t *zfsvfs)
1068 {
1069 	int i;
1070 	extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1071 
1072 	/*
1073 	 * This is a barrier to prevent the filesystem from going away in
1074 	 * zfs_znode_move() until we can safely ensure that the filesystem is
1075 	 * not unmounted. We consider the filesystem valid before the barrier
1076 	 * and invalid after the barrier.
1077 	 */
1078 	rw_enter(&zfsvfs_lock, RW_READER);
1079 	rw_exit(&zfsvfs_lock);
1080 
1081 	zfs_fuid_destroy(zfsvfs);
1082 
1083 	mutex_destroy(&zfsvfs->z_znodes_lock);
1084 	mutex_destroy(&zfsvfs->z_lock);
1085 	list_destroy(&zfsvfs->z_all_znodes);
1086 	rrw_destroy(&zfsvfs->z_teardown_lock);
1087 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1088 	rw_destroy(&zfsvfs->z_fuid_lock);
1089 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1090 		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1091 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1092 }
1093 
1094 static void
1095 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1096 {
1097 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1098 	if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) {
1099 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1100 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1101 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1102 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1103 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1104 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1105 	}
1106 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1107 }
1108 
1109 static int
1110 zfs_domount(vfs_t *vfsp, char *osname)
1111 {
1112 	dev_t mount_dev;
1113 	uint64_t recordsize, fsid_guid;
1114 	int error = 0;
1115 	zfsvfs_t *zfsvfs;
1116 
1117 	ASSERT(vfsp);
1118 	ASSERT(osname);
1119 
1120 	error = zfsvfs_create(osname, &zfsvfs);
1121 	if (error)
1122 		return (error);
1123 	zfsvfs->z_vfs = vfsp;
1124 
1125 	/* Initialize the generic filesystem structure. */
1126 	vfsp->vfs_bcount = 0;
1127 	vfsp->vfs_data = NULL;
1128 
1129 	if (zfs_create_unique_device(&mount_dev) == -1) {
1130 		error = ENODEV;
1131 		goto out;
1132 	}
1133 	ASSERT(vfs_devismounted(mount_dev) == 0);
1134 
1135 	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1136 	    NULL))
1137 		goto out;
1138 
1139 	vfsp->vfs_dev = mount_dev;
1140 	vfsp->vfs_fstype = zfsfstype;
1141 	vfsp->vfs_bsize = recordsize;
1142 	vfsp->vfs_flag |= VFS_NOTRUNC;
1143 	vfsp->vfs_data = zfsvfs;
1144 
1145 	/*
1146 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1147 	 * separates our fsid from any other filesystem types, and a
1148 	 * 56-bit objset unique ID.  The objset unique ID is unique to
1149 	 * all objsets open on this system, provided by unique_create().
1150 	 * The 8-bit fs type must be put in the low bits of fsid[1]
1151 	 * because that's where other Solaris filesystems put it.
1152 	 */
1153 	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1154 	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1155 	vfsp->vfs_fsid.val[0] = fsid_guid;
1156 	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1157 	    zfsfstype & 0xFF;
1158 
1159 	/*
1160 	 * Set features for file system.
1161 	 */
1162 	zfs_set_fuid_feature(zfsvfs);
1163 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1164 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1165 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1166 		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1167 	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1168 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1169 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1170 	}
1171 	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1172 
1173 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1174 		uint64_t pval;
1175 
1176 		atime_changed_cb(zfsvfs, B_FALSE);
1177 		readonly_changed_cb(zfsvfs, B_TRUE);
1178 		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1179 			goto out;
1180 		xattr_changed_cb(zfsvfs, pval);
1181 		zfsvfs->z_issnap = B_TRUE;
1182 		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1183 
1184 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1185 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1186 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1187 	} else {
1188 		error = zfsvfs_setup(zfsvfs, B_TRUE);
1189 	}
1190 
1191 	if (!zfsvfs->z_issnap)
1192 		zfsctl_create(zfsvfs);
1193 out:
1194 	if (error) {
1195 		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1196 		zfsvfs_free(zfsvfs);
1197 	} else {
1198 		atomic_add_32(&zfs_active_fs_count, 1);
1199 	}
1200 
1201 	return (error);
1202 }
1203 
1204 void
1205 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1206 {
1207 	objset_t *os = zfsvfs->z_os;
1208 	struct dsl_dataset *ds;
1209 
1210 	/*
1211 	 * Unregister properties.
1212 	 */
1213 	if (!dmu_objset_is_snapshot(os)) {
1214 		ds = dmu_objset_ds(os);
1215 		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1216 		    zfsvfs) == 0);
1217 
1218 		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1219 		    zfsvfs) == 0);
1220 
1221 		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1222 		    zfsvfs) == 0);
1223 
1224 		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1225 		    zfsvfs) == 0);
1226 
1227 		VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
1228 		    zfsvfs) == 0);
1229 
1230 		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1231 		    zfsvfs) == 0);
1232 
1233 		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1234 		    zfsvfs) == 0);
1235 
1236 		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1237 		    zfsvfs) == 0);
1238 
1239 		VERIFY(dsl_prop_unregister(ds, "aclinherit",
1240 		    acl_inherit_changed_cb, zfsvfs) == 0);
1241 
1242 		VERIFY(dsl_prop_unregister(ds, "vscan",
1243 		    vscan_changed_cb, zfsvfs) == 0);
1244 	}
1245 }
1246 
1247 /*
1248  * Convert a decimal digit string to a uint64_t integer.
1249  */
1250 static int
1251 str_to_uint64(char *str, uint64_t *objnum)
1252 {
1253 	uint64_t num = 0;
1254 
1255 	while (*str) {
1256 		if (*str < '0' || *str > '9')
1257 			return (EINVAL);
1258 
1259 		num = num*10 + *str++ - '0';
1260 	}
1261 
1262 	*objnum = num;
1263 	return (0);
1264 }
1265 
1266 /*
1267  * The boot path passed from the boot loader is in the form of
1268  * "rootpool-name/root-filesystem-object-number'. Convert this
1269  * string to a dataset name: "rootpool-name/root-filesystem-name".
1270  */
1271 static int
1272 zfs_parse_bootfs(char *bpath, char *outpath)
1273 {
1274 	char *slashp;
1275 	uint64_t objnum;
1276 	int error;
1277 
1278 	if (*bpath == 0 || *bpath == '/')
1279 		return (EINVAL);
1280 
1281 	(void) strcpy(outpath, bpath);
1282 
1283 	slashp = strchr(bpath, '/');
1284 
1285 	/* if no '/', just return the pool name */
1286 	if (slashp == NULL) {
1287 		return (0);
1288 	}
1289 
1290 	/* if not a number, just return the root dataset name */
1291 	if (str_to_uint64(slashp+1, &objnum)) {
1292 		return (0);
1293 	}
1294 
1295 	*slashp = '\0';
1296 	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1297 	*slashp = '/';
1298 
1299 	return (error);
1300 }
1301 
1302 /*
1303  * zfs_check_global_label:
1304  *	Check that the hex label string is appropriate for the dataset
1305  *	being mounted into the global_zone proper.
1306  *
1307  *	Return an error if the hex label string is not default or
1308  *	admin_low/admin_high.  For admin_low labels, the corresponding
1309  *	dataset must be readonly.
1310  */
1311 int
1312 zfs_check_global_label(const char *dsname, const char *hexsl)
1313 {
1314 	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1315 		return (0);
1316 	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1317 		return (0);
1318 	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1319 		/* must be readonly */
1320 		uint64_t rdonly;
1321 
1322 		if (dsl_prop_get_integer(dsname,
1323 		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1324 			return (EACCES);
1325 		return (rdonly ? 0 : EACCES);
1326 	}
1327 	return (EACCES);
1328 }
1329 
1330 /*
1331  * zfs_mount_label_policy:
1332  *	Determine whether the mount is allowed according to MAC check.
1333  *	by comparing (where appropriate) label of the dataset against
1334  *	the label of the zone being mounted into.  If the dataset has
1335  *	no label, create one.
1336  *
1337  *	Returns:
1338  *		 0 :	access allowed
1339  *		>0 :	error code, such as EACCES
1340  */
1341 static int
1342 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1343 {
1344 	int		error, retv;
1345 	zone_t		*mntzone = NULL;
1346 	ts_label_t	*mnt_tsl;
1347 	bslabel_t	*mnt_sl;
1348 	bslabel_t	ds_sl;
1349 	char		ds_hexsl[MAXNAMELEN];
1350 
1351 	retv = EACCES;				/* assume the worst */
1352 
1353 	/*
1354 	 * Start by getting the dataset label if it exists.
1355 	 */
1356 	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1357 	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1358 	if (error)
1359 		return (EACCES);
1360 
1361 	/*
1362 	 * If labeling is NOT enabled, then disallow the mount of datasets
1363 	 * which have a non-default label already.  No other label checks
1364 	 * are needed.
1365 	 */
1366 	if (!is_system_labeled()) {
1367 		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1368 			return (0);
1369 		return (EACCES);
1370 	}
1371 
1372 	/*
1373 	 * Get the label of the mountpoint.  If mounting into the global
1374 	 * zone (i.e. mountpoint is not within an active zone and the
1375 	 * zoned property is off), the label must be default or
1376 	 * admin_low/admin_high only; no other checks are needed.
1377 	 */
1378 	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1379 	if (mntzone->zone_id == GLOBAL_ZONEID) {
1380 		uint64_t zoned;
1381 
1382 		zone_rele(mntzone);
1383 
1384 		if (dsl_prop_get_integer(osname,
1385 		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1386 			return (EACCES);
1387 		if (!zoned)
1388 			return (zfs_check_global_label(osname, ds_hexsl));
1389 		else
1390 			/*
1391 			 * This is the case of a zone dataset being mounted
1392 			 * initially, before the zone has been fully created;
1393 			 * allow this mount into global zone.
1394 			 */
1395 			return (0);
1396 	}
1397 
1398 	mnt_tsl = mntzone->zone_slabel;
1399 	ASSERT(mnt_tsl != NULL);
1400 	label_hold(mnt_tsl);
1401 	mnt_sl = label2bslabel(mnt_tsl);
1402 
1403 	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1404 		/*
1405 		 * The dataset doesn't have a real label, so fabricate one.
1406 		 */
1407 		char *str = NULL;
1408 
1409 		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1410 		    dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1411 		    ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0)
1412 			retv = 0;
1413 		if (str != NULL)
1414 			kmem_free(str, strlen(str) + 1);
1415 	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1416 		/*
1417 		 * Now compare labels to complete the MAC check.  If the
1418 		 * labels are equal then allow access.  If the mountpoint
1419 		 * label dominates the dataset label, allow readonly access.
1420 		 * Otherwise, access is denied.
1421 		 */
1422 		if (blequal(mnt_sl, &ds_sl))
1423 			retv = 0;
1424 		else if (bldominates(mnt_sl, &ds_sl)) {
1425 			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1426 			retv = 0;
1427 		}
1428 	}
1429 
1430 	label_rele(mnt_tsl);
1431 	zone_rele(mntzone);
1432 	return (retv);
1433 }
1434 
1435 static int
1436 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1437 {
1438 	int error = 0;
1439 	static int zfsrootdone = 0;
1440 	zfsvfs_t *zfsvfs = NULL;
1441 	znode_t *zp = NULL;
1442 	vnode_t *vp = NULL;
1443 	char *zfs_bootfs;
1444 	char *zfs_devid;
1445 
1446 	ASSERT(vfsp);
1447 
1448 	/*
1449 	 * The filesystem that we mount as root is defined in the
1450 	 * boot property "zfs-bootfs" with a format of
1451 	 * "poolname/root-dataset-objnum".
1452 	 */
1453 	if (why == ROOT_INIT) {
1454 		if (zfsrootdone++)
1455 			return (EBUSY);
1456 		/*
1457 		 * the process of doing a spa_load will require the
1458 		 * clock to be set before we could (for example) do
1459 		 * something better by looking at the timestamp on
1460 		 * an uberblock, so just set it to -1.
1461 		 */
1462 		clkset(-1);
1463 
1464 		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1465 			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1466 			    "bootfs name");
1467 			return (EINVAL);
1468 		}
1469 		zfs_devid = spa_get_bootprop("diskdevid");
1470 		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1471 		if (zfs_devid)
1472 			spa_free_bootprop(zfs_devid);
1473 		if (error) {
1474 			spa_free_bootprop(zfs_bootfs);
1475 			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1476 			    error);
1477 			return (error);
1478 		}
1479 		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1480 			spa_free_bootprop(zfs_bootfs);
1481 			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1482 			    error);
1483 			return (error);
1484 		}
1485 
1486 		spa_free_bootprop(zfs_bootfs);
1487 
1488 		if (error = vfs_lock(vfsp))
1489 			return (error);
1490 
1491 		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1492 			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1493 			goto out;
1494 		}
1495 
1496 		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1497 		ASSERT(zfsvfs);
1498 		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1499 			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1500 			goto out;
1501 		}
1502 
1503 		vp = ZTOV(zp);
1504 		mutex_enter(&vp->v_lock);
1505 		vp->v_flag |= VROOT;
1506 		mutex_exit(&vp->v_lock);
1507 		rootvp = vp;
1508 
1509 		/*
1510 		 * Leave rootvp held.  The root file system is never unmounted.
1511 		 */
1512 
1513 		vfs_add((struct vnode *)0, vfsp,
1514 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1515 out:
1516 		vfs_unlock(vfsp);
1517 		return (error);
1518 	} else if (why == ROOT_REMOUNT) {
1519 		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1520 		vfsp->vfs_flag |= VFS_REMOUNT;
1521 
1522 		/* refresh mount options */
1523 		zfs_unregister_callbacks(vfsp->vfs_data);
1524 		return (zfs_register_callbacks(vfsp));
1525 
1526 	} else if (why == ROOT_UNMOUNT) {
1527 		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1528 		(void) zfs_sync(vfsp, 0, 0);
1529 		return (0);
1530 	}
1531 
1532 	/*
1533 	 * if "why" is equal to anything else other than ROOT_INIT,
1534 	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1535 	 */
1536 	return (ENOTSUP);
1537 }
1538 
1539 /*ARGSUSED*/
1540 static int
1541 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1542 {
1543 	char		*osname;
1544 	pathname_t	spn;
1545 	int		error = 0;
1546 	uio_seg_t	fromspace = (uap->flags & MS_SYSSPACE) ?
1547 	    UIO_SYSSPACE : UIO_USERSPACE;
1548 	int		canwrite;
1549 
1550 	if (mvp->v_type != VDIR)
1551 		return (ENOTDIR);
1552 
1553 	mutex_enter(&mvp->v_lock);
1554 	if ((uap->flags & MS_REMOUNT) == 0 &&
1555 	    (uap->flags & MS_OVERLAY) == 0 &&
1556 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1557 		mutex_exit(&mvp->v_lock);
1558 		return (EBUSY);
1559 	}
1560 	mutex_exit(&mvp->v_lock);
1561 
1562 	/*
1563 	 * ZFS does not support passing unparsed data in via MS_DATA.
1564 	 * Users should use the MS_OPTIONSTR interface; this means
1565 	 * that all option parsing is already done and the options struct
1566 	 * can be interrogated.
1567 	 */
1568 	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1569 		return (EINVAL);
1570 
1571 	/*
1572 	 * Get the objset name (the "special" mount argument).
1573 	 */
1574 	if (error = pn_get(uap->spec, fromspace, &spn))
1575 		return (error);
1576 
1577 	osname = spn.pn_path;
1578 
1579 	/*
1580 	 * Check for mount privilege?
1581 	 *
1582 	 * If we don't have privilege then see if
1583 	 * we have local permission to allow it
1584 	 */
1585 	error = secpolicy_fs_mount(cr, mvp, vfsp);
1586 	if (error) {
1587 		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) {
1588 			vattr_t		vattr;
1589 
1590 			/*
1591 			 * Make sure user is the owner of the mount point
1592 			 * or has sufficient privileges.
1593 			 */
1594 
1595 			vattr.va_mask = AT_UID;
1596 
1597 			if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1598 				goto out;
1599 			}
1600 
1601 			if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1602 			    VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1603 				goto out;
1604 			}
1605 			secpolicy_fs_mount_clearopts(cr, vfsp);
1606 		} else {
1607 			goto out;
1608 		}
1609 	}
1610 
1611 	/*
1612 	 * Refuse to mount a filesystem if we are in a local zone and the
1613 	 * dataset is not visible.
1614 	 */
1615 	if (!INGLOBALZONE(curproc) &&
1616 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1617 		error = EPERM;
1618 		goto out;
1619 	}
1620 
1621 	error = zfs_mount_label_policy(vfsp, osname);
1622 	if (error)
1623 		goto out;
1624 
1625 	/*
1626 	 * When doing a remount, we simply refresh our temporary properties
1627 	 * according to those options set in the current VFS options.
1628 	 */
1629 	if (uap->flags & MS_REMOUNT) {
1630 		/* refresh mount options */
1631 		zfs_unregister_callbacks(vfsp->vfs_data);
1632 		error = zfs_register_callbacks(vfsp);
1633 		goto out;
1634 	}
1635 
1636 	error = zfs_domount(vfsp, osname);
1637 
1638 	/*
1639 	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1640 	 * disappear due to a forced unmount.
1641 	 */
1642 	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1643 		VFS_HOLD(mvp->v_vfsp);
1644 
1645 out:
1646 	pn_free(&spn);
1647 	return (error);
1648 }
1649 
1650 static int
1651 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1652 {
1653 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1654 	dev32_t d32;
1655 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1656 
1657 	ZFS_ENTER(zfsvfs);
1658 
1659 	dmu_objset_space(zfsvfs->z_os,
1660 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1661 
1662 	/*
1663 	 * The underlying storage pool actually uses multiple block sizes.
1664 	 * We report the fragsize as the smallest block size we support,
1665 	 * and we report our blocksize as the filesystem's maximum blocksize.
1666 	 */
1667 	statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1668 	statp->f_bsize = zfsvfs->z_max_blksz;
1669 
1670 	/*
1671 	 * The following report "total" blocks of various kinds in the
1672 	 * file system, but reported in terms of f_frsize - the
1673 	 * "fragment" size.
1674 	 */
1675 
1676 	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1677 	statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1678 	statp->f_bavail = statp->f_bfree; /* no root reservation */
1679 
1680 	/*
1681 	 * statvfs() should really be called statufs(), because it assumes
1682 	 * static metadata.  ZFS doesn't preallocate files, so the best
1683 	 * we can do is report the max that could possibly fit in f_files,
1684 	 * and that minus the number actually used in f_ffree.
1685 	 * For f_ffree, report the smaller of the number of object available
1686 	 * and the number of blocks (each object will take at least a block).
1687 	 */
1688 	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1689 	statp->f_favail = statp->f_ffree;	/* no "root reservation" */
1690 	statp->f_files = statp->f_ffree + usedobjs;
1691 
1692 	(void) cmpldev(&d32, vfsp->vfs_dev);
1693 	statp->f_fsid = d32;
1694 
1695 	/*
1696 	 * We're a zfs filesystem.
1697 	 */
1698 	(void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1699 
1700 	statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1701 
1702 	statp->f_namemax = ZFS_MAXNAMELEN;
1703 
1704 	/*
1705 	 * We have all of 32 characters to stuff a string here.
1706 	 * Is there anything useful we could/should provide?
1707 	 */
1708 	bzero(statp->f_fstr, sizeof (statp->f_fstr));
1709 
1710 	ZFS_EXIT(zfsvfs);
1711 	return (0);
1712 }
1713 
1714 static int
1715 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1716 {
1717 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1718 	znode_t *rootzp;
1719 	int error;
1720 
1721 	ZFS_ENTER(zfsvfs);
1722 
1723 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1724 	if (error == 0)
1725 		*vpp = ZTOV(rootzp);
1726 
1727 	ZFS_EXIT(zfsvfs);
1728 	return (error);
1729 }
1730 
1731 /*
1732  * Teardown the zfsvfs::z_os.
1733  *
1734  * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1735  * and 'z_teardown_inactive_lock' held.
1736  */
1737 static int
1738 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1739 {
1740 	znode_t	*zp;
1741 
1742 	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1743 
1744 	if (!unmounting) {
1745 		/*
1746 		 * We purge the parent filesystem's vfsp as the parent
1747 		 * filesystem and all of its snapshots have their vnode's
1748 		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1749 		 * 'z_parent' is self referential for non-snapshots.
1750 		 */
1751 		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1752 	}
1753 
1754 	/*
1755 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1756 	 * threads are blocked as zil_close can call zfs_inactive.
1757 	 */
1758 	if (zfsvfs->z_log) {
1759 		zil_close(zfsvfs->z_log);
1760 		zfsvfs->z_log = NULL;
1761 	}
1762 
1763 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1764 
1765 	/*
1766 	 * If we are not unmounting (ie: online recv) and someone already
1767 	 * unmounted this file system while we were doing the switcheroo,
1768 	 * or a reopen of z_os failed then just bail out now.
1769 	 */
1770 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1771 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1772 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1773 		return (EIO);
1774 	}
1775 
1776 	/*
1777 	 * At this point there are no vops active, and any new vops will
1778 	 * fail with EIO since we have z_teardown_lock for writer (only
1779 	 * relavent for forced unmount).
1780 	 *
1781 	 * Release all holds on dbufs.
1782 	 */
1783 	mutex_enter(&zfsvfs->z_znodes_lock);
1784 	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1785 	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1786 		if (zp->z_sa_hdl) {
1787 			ASSERT(ZTOV(zp)->v_count > 0);
1788 			zfs_znode_dmu_fini(zp);
1789 		}
1790 	mutex_exit(&zfsvfs->z_znodes_lock);
1791 
1792 	/*
1793 	 * If we are unmounting, set the unmounted flag and let new vops
1794 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1795 	 * other vops will fail with EIO.
1796 	 */
1797 	if (unmounting) {
1798 		zfsvfs->z_unmounted = B_TRUE;
1799 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1800 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1801 	}
1802 
1803 	/*
1804 	 * z_os will be NULL if there was an error in attempting to reopen
1805 	 * zfsvfs, so just return as the properties had already been
1806 	 * unregistered and cached data had been evicted before.
1807 	 */
1808 	if (zfsvfs->z_os == NULL)
1809 		return (0);
1810 
1811 	/*
1812 	 * Unregister properties.
1813 	 */
1814 	zfs_unregister_callbacks(zfsvfs);
1815 
1816 	/*
1817 	 * Evict cached data
1818 	 */
1819 	if (dmu_objset_is_dirty_anywhere(zfsvfs->z_os))
1820 		if (!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1821 			txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1822 	(void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1823 
1824 	return (0);
1825 }
1826 
1827 /*ARGSUSED*/
1828 static int
1829 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1830 {
1831 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1832 	objset_t *os;
1833 	int ret;
1834 
1835 	ret = secpolicy_fs_unmount(cr, vfsp);
1836 	if (ret) {
1837 		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1838 		    ZFS_DELEG_PERM_MOUNT, cr))
1839 			return (ret);
1840 	}
1841 
1842 	/*
1843 	 * We purge the parent filesystem's vfsp as the parent filesystem
1844 	 * and all of its snapshots have their vnode's v_vfsp set to the
1845 	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1846 	 * referential for non-snapshots.
1847 	 */
1848 	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1849 
1850 	/*
1851 	 * Unmount any snapshots mounted under .zfs before unmounting the
1852 	 * dataset itself.
1853 	 */
1854 	if (zfsvfs->z_ctldir != NULL &&
1855 	    (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1856 		return (ret);
1857 	}
1858 
1859 	if (!(fflag & MS_FORCE)) {
1860 		/*
1861 		 * Check the number of active vnodes in the file system.
1862 		 * Our count is maintained in the vfs structure, but the
1863 		 * number is off by 1 to indicate a hold on the vfs
1864 		 * structure itself.
1865 		 *
1866 		 * The '.zfs' directory maintains a reference of its
1867 		 * own, and any active references underneath are
1868 		 * reflected in the vnode count.
1869 		 */
1870 		if (zfsvfs->z_ctldir == NULL) {
1871 			if (vfsp->vfs_count > 1)
1872 				return (EBUSY);
1873 		} else {
1874 			if (vfsp->vfs_count > 2 ||
1875 			    zfsvfs->z_ctldir->v_count > 1)
1876 				return (EBUSY);
1877 		}
1878 	}
1879 
1880 	vfsp->vfs_flag |= VFS_UNMOUNTED;
1881 
1882 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1883 	os = zfsvfs->z_os;
1884 
1885 	/*
1886 	 * z_os will be NULL if there was an error in
1887 	 * attempting to reopen zfsvfs.
1888 	 */
1889 	if (os != NULL) {
1890 		/*
1891 		 * Unset the objset user_ptr.
1892 		 */
1893 		mutex_enter(&os->os_user_ptr_lock);
1894 		dmu_objset_set_user(os, NULL);
1895 		mutex_exit(&os->os_user_ptr_lock);
1896 
1897 		/*
1898 		 * Finally release the objset
1899 		 */
1900 		dmu_objset_disown(os, zfsvfs);
1901 	}
1902 
1903 	/*
1904 	 * We can now safely destroy the '.zfs' directory node.
1905 	 */
1906 	if (zfsvfs->z_ctldir != NULL)
1907 		zfsctl_destroy(zfsvfs);
1908 
1909 	return (0);
1910 }
1911 
1912 static int
1913 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1914 {
1915 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1916 	znode_t		*zp;
1917 	uint64_t	object = 0;
1918 	uint64_t	fid_gen = 0;
1919 	uint64_t	gen_mask;
1920 	uint64_t	zp_gen;
1921 	int 		i, err;
1922 
1923 	*vpp = NULL;
1924 
1925 	ZFS_ENTER(zfsvfs);
1926 
1927 	if (fidp->fid_len == LONG_FID_LEN) {
1928 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1929 		uint64_t	objsetid = 0;
1930 		uint64_t	setgen = 0;
1931 
1932 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1933 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1934 
1935 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1936 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1937 
1938 		ZFS_EXIT(zfsvfs);
1939 
1940 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1941 		if (err)
1942 			return (EINVAL);
1943 		ZFS_ENTER(zfsvfs);
1944 	}
1945 
1946 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1947 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1948 
1949 		for (i = 0; i < sizeof (zfid->zf_object); i++)
1950 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1951 
1952 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1953 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1954 	} else {
1955 		ZFS_EXIT(zfsvfs);
1956 		return (EINVAL);
1957 	}
1958 
1959 	/* A zero fid_gen means we are in the .zfs control directories */
1960 	if (fid_gen == 0 &&
1961 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1962 		*vpp = zfsvfs->z_ctldir;
1963 		ASSERT(*vpp != NULL);
1964 		if (object == ZFSCTL_INO_SNAPDIR) {
1965 			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1966 			    0, NULL, NULL, NULL, NULL, NULL) == 0);
1967 		} else {
1968 			VN_HOLD(*vpp);
1969 		}
1970 		ZFS_EXIT(zfsvfs);
1971 		return (0);
1972 	}
1973 
1974 	gen_mask = -1ULL >> (64 - 8 * i);
1975 
1976 	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1977 	if (err = zfs_zget(zfsvfs, object, &zp)) {
1978 		ZFS_EXIT(zfsvfs);
1979 		return (err);
1980 	}
1981 	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1982 	    sizeof (uint64_t));
1983 	zp_gen = zp_gen & gen_mask;
1984 	if (zp_gen == 0)
1985 		zp_gen = 1;
1986 	if (zp->z_unlinked || zp_gen != fid_gen) {
1987 		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1988 		VN_RELE(ZTOV(zp));
1989 		ZFS_EXIT(zfsvfs);
1990 		return (EINVAL);
1991 	}
1992 
1993 	*vpp = ZTOV(zp);
1994 	ZFS_EXIT(zfsvfs);
1995 	return (0);
1996 }
1997 
1998 /*
1999  * Block out VOPs and close zfsvfs_t::z_os
2000  *
2001  * Note, if successful, then we return with the 'z_teardown_lock' and
2002  * 'z_teardown_inactive_lock' write held.
2003  */
2004 int
2005 zfs_suspend_fs(zfsvfs_t *zfsvfs)
2006 {
2007 	int error;
2008 
2009 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2010 		return (error);
2011 	dmu_objset_disown(zfsvfs->z_os, zfsvfs);
2012 
2013 	return (0);
2014 }
2015 
2016 /*
2017  * Reopen zfsvfs_t::z_os and release VOPs.
2018  */
2019 int
2020 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2021 {
2022 	int err, err2;
2023 
2024 	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
2025 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2026 
2027 	err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
2028 	    &zfsvfs->z_os);
2029 	if (err) {
2030 		zfsvfs->z_os = NULL;
2031 	} else {
2032 		znode_t *zp;
2033 		uint64_t sa_obj = 0;
2034 
2035 		err2 = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2036 		    ZFS_SA_ATTRS, 8, 1, &sa_obj);
2037 
2038 		if ((err || err2) && zfsvfs->z_version >= ZPL_VERSION_SA)
2039 			goto bail;
2040 
2041 
2042 		if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2043 		    zfs_attr_table,  ZPL_END, &zfsvfs->z_attr_table)) != 0)
2044 			goto bail;
2045 
2046 		VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2047 
2048 		/*
2049 		 * Attempt to re-establish all the active znodes with
2050 		 * their dbufs.  If a zfs_rezget() fails, then we'll let
2051 		 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2052 		 * when they try to use their znode.
2053 		 */
2054 		mutex_enter(&zfsvfs->z_znodes_lock);
2055 		for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2056 		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2057 			(void) zfs_rezget(zp);
2058 		}
2059 		mutex_exit(&zfsvfs->z_znodes_lock);
2060 
2061 	}
2062 
2063 bail:
2064 	/* release the VOPs */
2065 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2066 	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
2067 
2068 	if (err) {
2069 		/*
2070 		 * Since we couldn't reopen zfsvfs::z_os, force
2071 		 * unmount this file system.
2072 		 */
2073 		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2074 			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
2075 	}
2076 	return (err);
2077 }
2078 
2079 static void
2080 zfs_freevfs(vfs_t *vfsp)
2081 {
2082 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2083 
2084 	/*
2085 	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2086 	 * from zfs_mount().  Release it here.  If we came through
2087 	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2088 	 * skip the VFS_RELE for rootvfs.
2089 	 */
2090 	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2091 		VFS_RELE(zfsvfs->z_parent->z_vfs);
2092 
2093 	zfsvfs_free(zfsvfs);
2094 
2095 	atomic_add_32(&zfs_active_fs_count, -1);
2096 }
2097 
2098 /*
2099  * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
2100  * so we can't safely do any non-idempotent initialization here.
2101  * Leave that to zfs_init() and zfs_fini(), which are called
2102  * from the module's _init() and _fini() entry points.
2103  */
2104 /*ARGSUSED*/
2105 static int
2106 zfs_vfsinit(int fstype, char *name)
2107 {
2108 	int error;
2109 
2110 	zfsfstype = fstype;
2111 
2112 	/*
2113 	 * Setup vfsops and vnodeops tables.
2114 	 */
2115 	error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2116 	if (error != 0) {
2117 		cmn_err(CE_WARN, "zfs: bad vfs ops template");
2118 	}
2119 
2120 	error = zfs_create_op_tables();
2121 	if (error) {
2122 		zfs_remove_op_tables();
2123 		cmn_err(CE_WARN, "zfs: bad vnode ops template");
2124 		(void) vfs_freevfsops_by_type(zfsfstype);
2125 		return (error);
2126 	}
2127 
2128 	mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2129 
2130 	/*
2131 	 * Unique major number for all zfs mounts.
2132 	 * If we run out of 32-bit minors, we'll getudev() another major.
2133 	 */
2134 	zfs_major = ddi_name_to_major(ZFS_DRIVER);
2135 	zfs_minor = ZFS_MIN_MINOR;
2136 
2137 	return (0);
2138 }
2139 
2140 void
2141 zfs_init(void)
2142 {
2143 	/*
2144 	 * Initialize .zfs directory structures
2145 	 */
2146 	zfsctl_init();
2147 
2148 	/*
2149 	 * Initialize znode cache, vnode ops, etc...
2150 	 */
2151 	zfs_znode_init();
2152 
2153 	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2154 }
2155 
2156 void
2157 zfs_fini(void)
2158 {
2159 	zfsctl_fini();
2160 	zfs_znode_fini();
2161 }
2162 
2163 int
2164 zfs_busy(void)
2165 {
2166 	return (zfs_active_fs_count != 0);
2167 }
2168 
2169 int
2170 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2171 {
2172 	int error;
2173 	objset_t *os = zfsvfs->z_os;
2174 	dmu_tx_t *tx;
2175 
2176 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2177 		return (EINVAL);
2178 
2179 	if (newvers < zfsvfs->z_version)
2180 		return (EINVAL);
2181 
2182 	if (zfs_spa_version_map(newvers) >
2183 	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2184 		return (ENOTSUP);
2185 
2186 	tx = dmu_tx_create(os);
2187 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2188 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2189 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2190 		    ZFS_SA_ATTRS);
2191 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2192 	}
2193 	error = dmu_tx_assign(tx, TXG_WAIT);
2194 	if (error) {
2195 		dmu_tx_abort(tx);
2196 		return (error);
2197 	}
2198 
2199 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2200 	    8, 1, &newvers, tx);
2201 
2202 	if (error) {
2203 		dmu_tx_commit(tx);
2204 		return (error);
2205 	}
2206 
2207 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2208 		uint64_t sa_obj;
2209 
2210 		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2211 		    SPA_VERSION_SA);
2212 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2213 		    DMU_OT_NONE, 0, tx);
2214 
2215 		error = zap_add(os, MASTER_NODE_OBJ,
2216 		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2217 		ASSERT3U(error, ==, 0);
2218 
2219 		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2220 		sa_register_update_callback(os, zfs_sa_upgrade);
2221 	}
2222 
2223 	spa_history_log_internal(LOG_DS_UPGRADE,
2224 	    dmu_objset_spa(os), tx, "oldver=%llu newver=%llu dataset = %llu",
2225 	    zfsvfs->z_version, newvers, dmu_objset_id(os));
2226 
2227 	dmu_tx_commit(tx);
2228 
2229 	zfsvfs->z_version = newvers;
2230 
2231 	if (zfsvfs->z_version >= ZPL_VERSION_FUID)
2232 		zfs_set_fuid_feature(zfsvfs);
2233 
2234 	return (0);
2235 }
2236 
2237 /*
2238  * Read a property stored within the master node.
2239  */
2240 int
2241 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2242 {
2243 	const char *pname;
2244 	int error = ENOENT;
2245 
2246 	/*
2247 	 * Look up the file system's value for the property.  For the
2248 	 * version property, we look up a slightly different string.
2249 	 */
2250 	if (prop == ZFS_PROP_VERSION)
2251 		pname = ZPL_VERSION_STR;
2252 	else
2253 		pname = zfs_prop_to_name(prop);
2254 
2255 	if (os != NULL)
2256 		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2257 
2258 	if (error == ENOENT) {
2259 		/* No value set, use the default value */
2260 		switch (prop) {
2261 		case ZFS_PROP_VERSION:
2262 			*value = ZPL_VERSION;
2263 			break;
2264 		case ZFS_PROP_NORMALIZE:
2265 		case ZFS_PROP_UTF8ONLY:
2266 			*value = 0;
2267 			break;
2268 		case ZFS_PROP_CASE:
2269 			*value = ZFS_CASE_SENSITIVE;
2270 			break;
2271 		default:
2272 			return (error);
2273 		}
2274 		error = 0;
2275 	}
2276 	return (error);
2277 }
2278 
2279 static vfsdef_t vfw = {
2280 	VFSDEF_VERSION,
2281 	MNTTYPE_ZFS,
2282 	zfs_vfsinit,
2283 	VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2284 	    VSW_XID|VSW_ZMOUNT,
2285 	&zfs_mntopts
2286 };
2287 
2288 struct modlfs zfs_modlfs = {
2289 	&mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2290 };
2291