xref: /titanic_50/usr/src/uts/common/fs/zfs/zfs_vfsops.c (revision 95014fbbfdc010ab9f3ed20db2154dc3322e9270)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/param.h>
28 #include <sys/systm.h>
29 #include <sys/sysmacros.h>
30 #include <sys/kmem.h>
31 #include <sys/pathname.h>
32 #include <sys/vnode.h>
33 #include <sys/vfs.h>
34 #include <sys/vfs_opreg.h>
35 #include <sys/mntent.h>
36 #include <sys/mount.h>
37 #include <sys/cmn_err.h>
38 #include "fs/fs_subr.h"
39 #include <sys/zfs_znode.h>
40 #include <sys/zfs_dir.h>
41 #include <sys/zil.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/dmu.h>
44 #include <sys/dsl_prop.h>
45 #include <sys/dsl_dataset.h>
46 #include <sys/dsl_deleg.h>
47 #include <sys/spa.h>
48 #include <sys/zap.h>
49 #include <sys/varargs.h>
50 #include <sys/policy.h>
51 #include <sys/atomic.h>
52 #include <sys/mkdev.h>
53 #include <sys/modctl.h>
54 #include <sys/refstr.h>
55 #include <sys/zfs_ioctl.h>
56 #include <sys/zfs_ctldir.h>
57 #include <sys/zfs_fuid.h>
58 #include <sys/bootconf.h>
59 #include <sys/sunddi.h>
60 #include <sys/dnlc.h>
61 #include <sys/dmu_objset.h>
62 #include <sys/spa_boot.h>
63 
64 int zfsfstype;
65 vfsops_t *zfs_vfsops = NULL;
66 static major_t zfs_major;
67 static minor_t zfs_minor;
68 static kmutex_t	zfs_dev_mtx;
69 
70 extern int sys_shutdown;
71 
72 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
73 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
74 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
75 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
76 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
77 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
78 static void zfs_freevfs(vfs_t *vfsp);
79 
80 static const fs_operation_def_t zfs_vfsops_template[] = {
81 	VFSNAME_MOUNT,		{ .vfs_mount = zfs_mount },
82 	VFSNAME_MOUNTROOT,	{ .vfs_mountroot = zfs_mountroot },
83 	VFSNAME_UNMOUNT,	{ .vfs_unmount = zfs_umount },
84 	VFSNAME_ROOT,		{ .vfs_root = zfs_root },
85 	VFSNAME_STATVFS,	{ .vfs_statvfs = zfs_statvfs },
86 	VFSNAME_SYNC,		{ .vfs_sync = zfs_sync },
87 	VFSNAME_VGET,		{ .vfs_vget = zfs_vget },
88 	VFSNAME_FREEVFS,	{ .vfs_freevfs = zfs_freevfs },
89 	NULL,			NULL
90 };
91 
92 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
93 	VFSNAME_FREEVFS,	{ .vfs_freevfs =  zfs_freevfs },
94 	NULL,			NULL
95 };
96 
97 /*
98  * We need to keep a count of active fs's.
99  * This is necessary to prevent our module
100  * from being unloaded after a umount -f
101  */
102 static uint32_t	zfs_active_fs_count = 0;
103 
104 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
105 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
106 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
107 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
108 
109 /*
110  * MO_DEFAULT is not used since the default value is determined
111  * by the equivalent property.
112  */
113 static mntopt_t mntopts[] = {
114 	{ MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
115 	{ MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
116 	{ MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
117 	{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
118 };
119 
120 static mntopts_t zfs_mntopts = {
121 	sizeof (mntopts) / sizeof (mntopt_t),
122 	mntopts
123 };
124 
125 /*ARGSUSED*/
126 int
127 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
128 {
129 	/*
130 	 * Data integrity is job one.  We don't want a compromised kernel
131 	 * writing to the storage pool, so we never sync during panic.
132 	 */
133 	if (panicstr)
134 		return (0);
135 
136 	/*
137 	 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
138 	 * to sync metadata, which they would otherwise cache indefinitely.
139 	 * Semantically, the only requirement is that the sync be initiated.
140 	 * The DMU syncs out txgs frequently, so there's nothing to do.
141 	 */
142 	if (flag & SYNC_ATTR)
143 		return (0);
144 
145 	if (vfsp != NULL) {
146 		/*
147 		 * Sync a specific filesystem.
148 		 */
149 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
150 		dsl_pool_t *dp;
151 
152 		ZFS_ENTER(zfsvfs);
153 		dp = dmu_objset_pool(zfsvfs->z_os);
154 
155 		/*
156 		 * If the system is shutting down, then skip any
157 		 * filesystems which may exist on a suspended pool.
158 		 */
159 		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
160 			ZFS_EXIT(zfsvfs);
161 			return (0);
162 		}
163 
164 		if (zfsvfs->z_log != NULL)
165 			zil_commit(zfsvfs->z_log, UINT64_MAX, 0);
166 		else
167 			txg_wait_synced(dp, 0);
168 		ZFS_EXIT(zfsvfs);
169 	} else {
170 		/*
171 		 * Sync all ZFS filesystems.  This is what happens when you
172 		 * run sync(1M).  Unlike other filesystems, ZFS honors the
173 		 * request by waiting for all pools to commit all dirty data.
174 		 */
175 		spa_sync_allpools();
176 	}
177 
178 	return (0);
179 }
180 
181 static int
182 zfs_create_unique_device(dev_t *dev)
183 {
184 	major_t new_major;
185 
186 	do {
187 		ASSERT3U(zfs_minor, <=, MAXMIN32);
188 		minor_t start = zfs_minor;
189 		do {
190 			mutex_enter(&zfs_dev_mtx);
191 			if (zfs_minor >= MAXMIN32) {
192 				/*
193 				 * If we're still using the real major
194 				 * keep out of /dev/zfs and /dev/zvol minor
195 				 * number space.  If we're using a getudev()'ed
196 				 * major number, we can use all of its minors.
197 				 */
198 				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
199 					zfs_minor = ZFS_MIN_MINOR;
200 				else
201 					zfs_minor = 0;
202 			} else {
203 				zfs_minor++;
204 			}
205 			*dev = makedevice(zfs_major, zfs_minor);
206 			mutex_exit(&zfs_dev_mtx);
207 		} while (vfs_devismounted(*dev) && zfs_minor != start);
208 		if (zfs_minor == start) {
209 			/*
210 			 * We are using all ~262,000 minor numbers for the
211 			 * current major number.  Create a new major number.
212 			 */
213 			if ((new_major = getudev()) == (major_t)-1) {
214 				cmn_err(CE_WARN,
215 				    "zfs_mount: Can't get unique major "
216 				    "device number.");
217 				return (-1);
218 			}
219 			mutex_enter(&zfs_dev_mtx);
220 			zfs_major = new_major;
221 			zfs_minor = 0;
222 
223 			mutex_exit(&zfs_dev_mtx);
224 		} else {
225 			break;
226 		}
227 		/* CONSTANTCONDITION */
228 	} while (1);
229 
230 	return (0);
231 }
232 
233 static void
234 atime_changed_cb(void *arg, uint64_t newval)
235 {
236 	zfsvfs_t *zfsvfs = arg;
237 
238 	if (newval == TRUE) {
239 		zfsvfs->z_atime = TRUE;
240 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
241 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
242 	} else {
243 		zfsvfs->z_atime = FALSE;
244 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
245 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
246 	}
247 }
248 
249 static void
250 xattr_changed_cb(void *arg, uint64_t newval)
251 {
252 	zfsvfs_t *zfsvfs = arg;
253 
254 	if (newval == TRUE) {
255 		/* XXX locking on vfs_flag? */
256 		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
257 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
258 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
259 	} else {
260 		/* XXX locking on vfs_flag? */
261 		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
262 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
263 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
264 	}
265 }
266 
267 static void
268 blksz_changed_cb(void *arg, uint64_t newval)
269 {
270 	zfsvfs_t *zfsvfs = arg;
271 
272 	if (newval < SPA_MINBLOCKSIZE ||
273 	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
274 		newval = SPA_MAXBLOCKSIZE;
275 
276 	zfsvfs->z_max_blksz = newval;
277 	zfsvfs->z_vfs->vfs_bsize = newval;
278 }
279 
280 static void
281 readonly_changed_cb(void *arg, uint64_t newval)
282 {
283 	zfsvfs_t *zfsvfs = arg;
284 
285 	if (newval) {
286 		/* XXX locking on vfs_flag? */
287 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
288 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
289 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
290 	} else {
291 		/* XXX locking on vfs_flag? */
292 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
293 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
294 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
295 	}
296 }
297 
298 static void
299 devices_changed_cb(void *arg, uint64_t newval)
300 {
301 	zfsvfs_t *zfsvfs = arg;
302 
303 	if (newval == FALSE) {
304 		zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
305 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
306 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
307 	} else {
308 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
309 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
310 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
311 	}
312 }
313 
314 static void
315 setuid_changed_cb(void *arg, uint64_t newval)
316 {
317 	zfsvfs_t *zfsvfs = arg;
318 
319 	if (newval == FALSE) {
320 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
321 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
322 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
323 	} else {
324 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
325 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
326 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
327 	}
328 }
329 
330 static void
331 exec_changed_cb(void *arg, uint64_t newval)
332 {
333 	zfsvfs_t *zfsvfs = arg;
334 
335 	if (newval == FALSE) {
336 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
337 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
338 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
339 	} else {
340 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
341 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
342 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
343 	}
344 }
345 
346 /*
347  * The nbmand mount option can be changed at mount time.
348  * We can't allow it to be toggled on live file systems or incorrect
349  * behavior may be seen from cifs clients
350  *
351  * This property isn't registered via dsl_prop_register(), but this callback
352  * will be called when a file system is first mounted
353  */
354 static void
355 nbmand_changed_cb(void *arg, uint64_t newval)
356 {
357 	zfsvfs_t *zfsvfs = arg;
358 	if (newval == FALSE) {
359 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
360 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
361 	} else {
362 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
363 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
364 	}
365 }
366 
367 static void
368 snapdir_changed_cb(void *arg, uint64_t newval)
369 {
370 	zfsvfs_t *zfsvfs = arg;
371 
372 	zfsvfs->z_show_ctldir = newval;
373 }
374 
375 static void
376 vscan_changed_cb(void *arg, uint64_t newval)
377 {
378 	zfsvfs_t *zfsvfs = arg;
379 
380 	zfsvfs->z_vscan = newval;
381 }
382 
383 static void
384 acl_mode_changed_cb(void *arg, uint64_t newval)
385 {
386 	zfsvfs_t *zfsvfs = arg;
387 
388 	zfsvfs->z_acl_mode = newval;
389 }
390 
391 static void
392 acl_inherit_changed_cb(void *arg, uint64_t newval)
393 {
394 	zfsvfs_t *zfsvfs = arg;
395 
396 	zfsvfs->z_acl_inherit = newval;
397 }
398 
399 static int
400 zfs_register_callbacks(vfs_t *vfsp)
401 {
402 	struct dsl_dataset *ds = NULL;
403 	objset_t *os = NULL;
404 	zfsvfs_t *zfsvfs = NULL;
405 	uint64_t nbmand;
406 	int readonly, do_readonly = B_FALSE;
407 	int setuid, do_setuid = B_FALSE;
408 	int exec, do_exec = B_FALSE;
409 	int devices, do_devices = B_FALSE;
410 	int xattr, do_xattr = B_FALSE;
411 	int atime, do_atime = B_FALSE;
412 	int error = 0;
413 
414 	ASSERT(vfsp);
415 	zfsvfs = vfsp->vfs_data;
416 	ASSERT(zfsvfs);
417 	os = zfsvfs->z_os;
418 
419 	/*
420 	 * The act of registering our callbacks will destroy any mount
421 	 * options we may have.  In order to enable temporary overrides
422 	 * of mount options, we stash away the current values and
423 	 * restore them after we register the callbacks.
424 	 */
425 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
426 		readonly = B_TRUE;
427 		do_readonly = B_TRUE;
428 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
429 		readonly = B_FALSE;
430 		do_readonly = B_TRUE;
431 	}
432 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
433 		devices = B_FALSE;
434 		setuid = B_FALSE;
435 		do_devices = B_TRUE;
436 		do_setuid = B_TRUE;
437 	} else {
438 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
439 			devices = B_FALSE;
440 			do_devices = B_TRUE;
441 		} else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
442 			devices = B_TRUE;
443 			do_devices = B_TRUE;
444 		}
445 
446 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
447 			setuid = B_FALSE;
448 			do_setuid = B_TRUE;
449 		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
450 			setuid = B_TRUE;
451 			do_setuid = B_TRUE;
452 		}
453 	}
454 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
455 		exec = B_FALSE;
456 		do_exec = B_TRUE;
457 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
458 		exec = B_TRUE;
459 		do_exec = B_TRUE;
460 	}
461 	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
462 		xattr = B_FALSE;
463 		do_xattr = B_TRUE;
464 	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
465 		xattr = B_TRUE;
466 		do_xattr = B_TRUE;
467 	}
468 	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
469 		atime = B_FALSE;
470 		do_atime = B_TRUE;
471 	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
472 		atime = B_TRUE;
473 		do_atime = B_TRUE;
474 	}
475 
476 	/*
477 	 * nbmand is a special property.  It can only be changed at
478 	 * mount time.
479 	 *
480 	 * This is weird, but it is documented to only be changeable
481 	 * at mount time.
482 	 */
483 	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
484 		nbmand = B_FALSE;
485 	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
486 		nbmand = B_TRUE;
487 	} else {
488 		char osname[MAXNAMELEN];
489 
490 		dmu_objset_name(os, osname);
491 		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
492 		    NULL)) {
493 			return (error);
494 		}
495 	}
496 
497 	/*
498 	 * Register property callbacks.
499 	 *
500 	 * It would probably be fine to just check for i/o error from
501 	 * the first prop_register(), but I guess I like to go
502 	 * overboard...
503 	 */
504 	ds = dmu_objset_ds(os);
505 	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
506 	error = error ? error : dsl_prop_register(ds,
507 	    "xattr", xattr_changed_cb, zfsvfs);
508 	error = error ? error : dsl_prop_register(ds,
509 	    "recordsize", blksz_changed_cb, zfsvfs);
510 	error = error ? error : dsl_prop_register(ds,
511 	    "readonly", readonly_changed_cb, zfsvfs);
512 	error = error ? error : dsl_prop_register(ds,
513 	    "devices", devices_changed_cb, zfsvfs);
514 	error = error ? error : dsl_prop_register(ds,
515 	    "setuid", setuid_changed_cb, zfsvfs);
516 	error = error ? error : dsl_prop_register(ds,
517 	    "exec", exec_changed_cb, zfsvfs);
518 	error = error ? error : dsl_prop_register(ds,
519 	    "snapdir", snapdir_changed_cb, zfsvfs);
520 	error = error ? error : dsl_prop_register(ds,
521 	    "aclmode", acl_mode_changed_cb, zfsvfs);
522 	error = error ? error : dsl_prop_register(ds,
523 	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
524 	error = error ? error : dsl_prop_register(ds,
525 	    "vscan", vscan_changed_cb, zfsvfs);
526 	if (error)
527 		goto unregister;
528 
529 	/*
530 	 * Invoke our callbacks to restore temporary mount options.
531 	 */
532 	if (do_readonly)
533 		readonly_changed_cb(zfsvfs, readonly);
534 	if (do_setuid)
535 		setuid_changed_cb(zfsvfs, setuid);
536 	if (do_exec)
537 		exec_changed_cb(zfsvfs, exec);
538 	if (do_devices)
539 		devices_changed_cb(zfsvfs, devices);
540 	if (do_xattr)
541 		xattr_changed_cb(zfsvfs, xattr);
542 	if (do_atime)
543 		atime_changed_cb(zfsvfs, atime);
544 
545 	nbmand_changed_cb(zfsvfs, nbmand);
546 
547 	return (0);
548 
549 unregister:
550 	/*
551 	 * We may attempt to unregister some callbacks that are not
552 	 * registered, but this is OK; it will simply return ENOMSG,
553 	 * which we will ignore.
554 	 */
555 	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
556 	(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
557 	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
558 	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
559 	(void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
560 	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
561 	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
562 	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
563 	(void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
564 	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
565 	    zfsvfs);
566 	(void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
567 	return (error);
568 
569 }
570 
571 static void
572 uidacct(objset_t *os, boolean_t isgroup, uint64_t fuid,
573     int64_t delta, dmu_tx_t *tx)
574 {
575 	uint64_t used = 0;
576 	char buf[32];
577 	int err;
578 	uint64_t obj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
579 
580 	if (delta == 0)
581 		return;
582 
583 	(void) snprintf(buf, sizeof (buf), "%llx", (longlong_t)fuid);
584 	err = zap_lookup(os, obj, buf, 8, 1, &used);
585 	ASSERT(err == 0 || err == ENOENT);
586 	/* no underflow/overflow */
587 	ASSERT(delta > 0 || used >= -delta);
588 	ASSERT(delta < 0 || used + delta > used);
589 	used += delta;
590 	if (used == 0)
591 		err = zap_remove(os, obj, buf, tx);
592 	else
593 		err = zap_update(os, obj, buf, 8, 1, &used, tx);
594 	ASSERT(err == 0);
595 }
596 
597 static int
598 zfs_space_delta_cb(dmu_object_type_t bonustype, void *bonus,
599     uint64_t *userp, uint64_t *groupp)
600 {
601 	znode_phys_t *znp = bonus;
602 
603 	if (bonustype != DMU_OT_ZNODE)
604 		return (ENOENT);
605 
606 	*userp = znp->zp_uid;
607 	*groupp = znp->zp_gid;
608 	return (0);
609 }
610 
611 static void
612 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
613     char *domainbuf, int buflen, uid_t *ridp)
614 {
615 	uint64_t fuid;
616 	const char *domain;
617 
618 	fuid = strtonum(fuidstr, NULL);
619 
620 	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
621 	if (domain)
622 		(void) strlcpy(domainbuf, domain, buflen);
623 	else
624 		domainbuf[0] = '\0';
625 	*ridp = FUID_RID(fuid);
626 }
627 
628 static uint64_t
629 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
630 {
631 	switch (type) {
632 	case ZFS_PROP_USERUSED:
633 		return (DMU_USERUSED_OBJECT);
634 	case ZFS_PROP_GROUPUSED:
635 		return (DMU_GROUPUSED_OBJECT);
636 	case ZFS_PROP_USERQUOTA:
637 		return (zfsvfs->z_userquota_obj);
638 	case ZFS_PROP_GROUPQUOTA:
639 		return (zfsvfs->z_groupquota_obj);
640 	}
641 	return (0);
642 }
643 
644 int
645 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
646     uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
647 {
648 	int error;
649 	zap_cursor_t zc;
650 	zap_attribute_t za;
651 	zfs_useracct_t *buf = vbuf;
652 	uint64_t obj;
653 
654 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
655 		return (ENOTSUP);
656 
657 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
658 	if (obj == 0) {
659 		*bufsizep = 0;
660 		return (0);
661 	}
662 
663 	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
664 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
665 	    zap_cursor_advance(&zc)) {
666 		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
667 		    *bufsizep)
668 			break;
669 
670 		fuidstr_to_sid(zfsvfs, za.za_name,
671 		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
672 
673 		buf->zu_space = za.za_first_integer;
674 		buf++;
675 	}
676 	if (error == ENOENT)
677 		error = 0;
678 
679 	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
680 	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
681 	*cookiep = zap_cursor_serialize(&zc);
682 	zap_cursor_fini(&zc);
683 	return (error);
684 }
685 
686 /*
687  * buf must be big enough (eg, 32 bytes)
688  */
689 static int
690 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
691     char *buf, boolean_t addok)
692 {
693 	uint64_t fuid;
694 	int domainid = 0;
695 
696 	if (domain && domain[0]) {
697 		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
698 		if (domainid == -1)
699 			return (ENOENT);
700 	}
701 	fuid = FUID_ENCODE(domainid, rid);
702 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
703 	return (0);
704 }
705 
706 int
707 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
708     const char *domain, uint64_t rid, uint64_t *valp)
709 {
710 	char buf[32];
711 	int err;
712 	uint64_t obj;
713 
714 	*valp = 0;
715 
716 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
717 		return (ENOTSUP);
718 
719 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
720 	if (obj == 0)
721 		return (0);
722 
723 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
724 	if (err)
725 		return (err);
726 
727 	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
728 	if (err == ENOENT)
729 		err = 0;
730 	return (err);
731 }
732 
733 int
734 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
735     const char *domain, uint64_t rid, uint64_t quota)
736 {
737 	char buf[32];
738 	int err;
739 	dmu_tx_t *tx;
740 	uint64_t *objp;
741 	boolean_t fuid_dirtied;
742 
743 	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
744 		return (EINVAL);
745 
746 	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
747 		return (ENOTSUP);
748 
749 	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
750 	    &zfsvfs->z_groupquota_obj;
751 
752 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
753 	if (err)
754 		return (err);
755 	fuid_dirtied = zfsvfs->z_fuid_dirty;
756 
757 	tx = dmu_tx_create(zfsvfs->z_os);
758 	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
759 	if (*objp == 0) {
760 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
761 		    zfs_userquota_prop_prefixes[type]);
762 	}
763 	if (fuid_dirtied)
764 		zfs_fuid_txhold(zfsvfs, tx);
765 	err = dmu_tx_assign(tx, TXG_WAIT);
766 	if (err) {
767 		dmu_tx_abort(tx);
768 		return (err);
769 	}
770 
771 	mutex_enter(&zfsvfs->z_lock);
772 	if (*objp == 0) {
773 		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
774 		    DMU_OT_NONE, 0, tx);
775 		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
776 		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
777 	}
778 	mutex_exit(&zfsvfs->z_lock);
779 
780 	if (quota == 0) {
781 		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
782 		if (err == ENOENT)
783 			err = 0;
784 	} else {
785 		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
786 	}
787 	ASSERT(err == 0);
788 	if (fuid_dirtied)
789 		zfs_fuid_sync(zfsvfs, tx);
790 	dmu_tx_commit(tx);
791 	return (err);
792 }
793 
794 boolean_t
795 zfs_usergroup_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
796 {
797 	char buf[32];
798 	uint64_t used, quota, usedobj, quotaobj;
799 	int err;
800 
801 	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
802 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
803 
804 	if (quotaobj == 0 || zfsvfs->z_replay)
805 		return (B_FALSE);
806 
807 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
808 	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
809 	if (err != 0)
810 		return (B_FALSE);
811 
812 	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
813 	if (err != 0)
814 		return (B_FALSE);
815 	return (used >= quota);
816 }
817 
818 int
819 zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
820 {
821 	objset_t *os;
822 	zfsvfs_t *zfsvfs;
823 	uint64_t zval;
824 	int i, error;
825 
826 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
827 
828 	/*
829 	 * We claim to always be readonly so we can open snapshots;
830 	 * other ZPL code will prevent us from writing to snapshots.
831 	 */
832 	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
833 	if (error) {
834 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
835 		return (error);
836 	}
837 
838 	/*
839 	 * Initialize the zfs-specific filesystem structure.
840 	 * Should probably make this a kmem cache, shuffle fields,
841 	 * and just bzero up to z_hold_mtx[].
842 	 */
843 	zfsvfs->z_vfs = NULL;
844 	zfsvfs->z_parent = zfsvfs;
845 	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
846 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
847 	zfsvfs->z_os = os;
848 
849 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
850 	if (error) {
851 		goto out;
852 	} else if (zfsvfs->z_version > ZPL_VERSION) {
853 		(void) printf("Mismatched versions:  File system "
854 		    "is version %llu on-disk format, which is "
855 		    "incompatible with this software version %lld!",
856 		    (u_longlong_t)zfsvfs->z_version, ZPL_VERSION);
857 		error = ENOTSUP;
858 		goto out;
859 	}
860 
861 	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
862 		goto out;
863 	zfsvfs->z_norm = (int)zval;
864 
865 	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
866 		goto out;
867 	zfsvfs->z_utf8 = (zval != 0);
868 
869 	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
870 		goto out;
871 	zfsvfs->z_case = (uint_t)zval;
872 
873 	/*
874 	 * Fold case on file systems that are always or sometimes case
875 	 * insensitive.
876 	 */
877 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
878 	    zfsvfs->z_case == ZFS_CASE_MIXED)
879 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
880 
881 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
882 
883 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
884 	    &zfsvfs->z_root);
885 	if (error)
886 		goto out;
887 	ASSERT(zfsvfs->z_root != 0);
888 
889 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
890 	    &zfsvfs->z_unlinkedobj);
891 	if (error)
892 		goto out;
893 
894 	error = zap_lookup(os, MASTER_NODE_OBJ,
895 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
896 	    8, 1, &zfsvfs->z_userquota_obj);
897 	if (error && error != ENOENT)
898 		goto out;
899 
900 	error = zap_lookup(os, MASTER_NODE_OBJ,
901 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
902 	    8, 1, &zfsvfs->z_groupquota_obj);
903 	if (error && error != ENOENT)
904 		goto out;
905 
906 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
907 	    &zfsvfs->z_fuid_obj);
908 	if (error && error != ENOENT)
909 		goto out;
910 
911 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
912 	    &zfsvfs->z_shares_dir);
913 	if (error && error != ENOENT)
914 		goto out;
915 
916 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
917 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
918 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
919 	    offsetof(znode_t, z_link_node));
920 	rrw_init(&zfsvfs->z_teardown_lock);
921 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
922 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
923 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
924 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
925 
926 	*zfvp = zfsvfs;
927 	return (0);
928 
929 out:
930 	dmu_objset_disown(os, zfsvfs);
931 	*zfvp = NULL;
932 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
933 	return (error);
934 }
935 
936 static int
937 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
938 {
939 	int error;
940 
941 	error = zfs_register_callbacks(zfsvfs->z_vfs);
942 	if (error)
943 		return (error);
944 
945 	/*
946 	 * Set the objset user_ptr to track its zfsvfs.
947 	 */
948 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
949 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
950 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
951 
952 	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
953 	if (zil_disable) {
954 		zil_destroy(zfsvfs->z_log, B_FALSE);
955 		zfsvfs->z_log = NULL;
956 	}
957 
958 	/*
959 	 * If we are not mounting (ie: online recv), then we don't
960 	 * have to worry about replaying the log as we blocked all
961 	 * operations out since we closed the ZIL.
962 	 */
963 	if (mounting) {
964 		boolean_t readonly;
965 
966 		/*
967 		 * During replay we remove the read only flag to
968 		 * allow replays to succeed.
969 		 */
970 		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
971 		if (readonly != 0)
972 			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
973 		else
974 			zfs_unlinked_drain(zfsvfs);
975 
976 		if (zfsvfs->z_log) {
977 			/*
978 			 * Parse and replay the intent log.
979 			 *
980 			 * Because of ziltest, this must be done after
981 			 * zfs_unlinked_drain().  (Further note: ziltest
982 			 * doesn't use readonly mounts, where
983 			 * zfs_unlinked_drain() isn't called.)  This is because
984 			 * ziltest causes spa_sync() to think it's committed,
985 			 * but actually it is not, so the intent log contains
986 			 * many txg's worth of changes.
987 			 *
988 			 * In particular, if object N is in the unlinked set in
989 			 * the last txg to actually sync, then it could be
990 			 * actually freed in a later txg and then reallocated
991 			 * in a yet later txg.  This would write a "create
992 			 * object N" record to the intent log.  Normally, this
993 			 * would be fine because the spa_sync() would have
994 			 * written out the fact that object N is free, before
995 			 * we could write the "create object N" intent log
996 			 * record.
997 			 *
998 			 * But when we are in ziltest mode, we advance the "open
999 			 * txg" without actually spa_sync()-ing the changes to
1000 			 * disk.  So we would see that object N is still
1001 			 * allocated and in the unlinked set, and there is an
1002 			 * intent log record saying to allocate it.
1003 			 */
1004 			zfsvfs->z_replay = B_TRUE;
1005 			zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector);
1006 			zfsvfs->z_replay = B_FALSE;
1007 		}
1008 		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1009 	}
1010 
1011 	return (0);
1012 }
1013 
1014 void
1015 zfsvfs_free(zfsvfs_t *zfsvfs)
1016 {
1017 	int i;
1018 	extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1019 
1020 	/*
1021 	 * This is a barrier to prevent the filesystem from going away in
1022 	 * zfs_znode_move() until we can safely ensure that the filesystem is
1023 	 * not unmounted. We consider the filesystem valid before the barrier
1024 	 * and invalid after the barrier.
1025 	 */
1026 	rw_enter(&zfsvfs_lock, RW_READER);
1027 	rw_exit(&zfsvfs_lock);
1028 
1029 	zfs_fuid_destroy(zfsvfs);
1030 
1031 	mutex_destroy(&zfsvfs->z_znodes_lock);
1032 	mutex_destroy(&zfsvfs->z_lock);
1033 	list_destroy(&zfsvfs->z_all_znodes);
1034 	rrw_destroy(&zfsvfs->z_teardown_lock);
1035 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1036 	rw_destroy(&zfsvfs->z_fuid_lock);
1037 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1038 		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1039 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1040 }
1041 
1042 static void
1043 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1044 {
1045 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1046 	if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) {
1047 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1048 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1049 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1050 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1051 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1052 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1053 	}
1054 }
1055 
1056 static int
1057 zfs_domount(vfs_t *vfsp, char *osname)
1058 {
1059 	dev_t mount_dev;
1060 	uint64_t recordsize, fsid_guid;
1061 	int error = 0;
1062 	zfsvfs_t *zfsvfs;
1063 
1064 	ASSERT(vfsp);
1065 	ASSERT(osname);
1066 
1067 	error = zfsvfs_create(osname, &zfsvfs);
1068 	if (error)
1069 		return (error);
1070 	zfsvfs->z_vfs = vfsp;
1071 
1072 	/* Initialize the generic filesystem structure. */
1073 	vfsp->vfs_bcount = 0;
1074 	vfsp->vfs_data = NULL;
1075 
1076 	if (zfs_create_unique_device(&mount_dev) == -1) {
1077 		error = ENODEV;
1078 		goto out;
1079 	}
1080 	ASSERT(vfs_devismounted(mount_dev) == 0);
1081 
1082 	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1083 	    NULL))
1084 		goto out;
1085 
1086 	vfsp->vfs_dev = mount_dev;
1087 	vfsp->vfs_fstype = zfsfstype;
1088 	vfsp->vfs_bsize = recordsize;
1089 	vfsp->vfs_flag |= VFS_NOTRUNC;
1090 	vfsp->vfs_data = zfsvfs;
1091 
1092 	/*
1093 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1094 	 * separates our fsid from any other filesystem types, and a
1095 	 * 56-bit objset unique ID.  The objset unique ID is unique to
1096 	 * all objsets open on this system, provided by unique_create().
1097 	 * The 8-bit fs type must be put in the low bits of fsid[1]
1098 	 * because that's where other Solaris filesystems put it.
1099 	 */
1100 	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1101 	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1102 	vfsp->vfs_fsid.val[0] = fsid_guid;
1103 	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1104 	    zfsfstype & 0xFF;
1105 
1106 	/*
1107 	 * Set features for file system.
1108 	 */
1109 	zfs_set_fuid_feature(zfsvfs);
1110 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1111 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1112 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1113 		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1114 	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1115 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1116 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1117 	}
1118 
1119 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1120 		uint64_t pval;
1121 
1122 		atime_changed_cb(zfsvfs, B_FALSE);
1123 		readonly_changed_cb(zfsvfs, B_TRUE);
1124 		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1125 			goto out;
1126 		xattr_changed_cb(zfsvfs, pval);
1127 		zfsvfs->z_issnap = B_TRUE;
1128 
1129 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1130 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1131 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1132 	} else {
1133 		error = zfsvfs_setup(zfsvfs, B_TRUE);
1134 	}
1135 
1136 	if (!zfsvfs->z_issnap)
1137 		zfsctl_create(zfsvfs);
1138 out:
1139 	if (error) {
1140 		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1141 		zfsvfs_free(zfsvfs);
1142 	} else {
1143 		atomic_add_32(&zfs_active_fs_count, 1);
1144 	}
1145 
1146 	return (error);
1147 }
1148 
1149 void
1150 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1151 {
1152 	objset_t *os = zfsvfs->z_os;
1153 	struct dsl_dataset *ds;
1154 
1155 	/*
1156 	 * Unregister properties.
1157 	 */
1158 	if (!dmu_objset_is_snapshot(os)) {
1159 		ds = dmu_objset_ds(os);
1160 		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1161 		    zfsvfs) == 0);
1162 
1163 		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1164 		    zfsvfs) == 0);
1165 
1166 		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1167 		    zfsvfs) == 0);
1168 
1169 		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1170 		    zfsvfs) == 0);
1171 
1172 		VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
1173 		    zfsvfs) == 0);
1174 
1175 		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1176 		    zfsvfs) == 0);
1177 
1178 		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1179 		    zfsvfs) == 0);
1180 
1181 		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1182 		    zfsvfs) == 0);
1183 
1184 		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1185 		    zfsvfs) == 0);
1186 
1187 		VERIFY(dsl_prop_unregister(ds, "aclinherit",
1188 		    acl_inherit_changed_cb, zfsvfs) == 0);
1189 
1190 		VERIFY(dsl_prop_unregister(ds, "vscan",
1191 		    vscan_changed_cb, zfsvfs) == 0);
1192 	}
1193 }
1194 
1195 /*
1196  * Convert a decimal digit string to a uint64_t integer.
1197  */
1198 static int
1199 str_to_uint64(char *str, uint64_t *objnum)
1200 {
1201 	uint64_t num = 0;
1202 
1203 	while (*str) {
1204 		if (*str < '0' || *str > '9')
1205 			return (EINVAL);
1206 
1207 		num = num*10 + *str++ - '0';
1208 	}
1209 
1210 	*objnum = num;
1211 	return (0);
1212 }
1213 
1214 /*
1215  * The boot path passed from the boot loader is in the form of
1216  * "rootpool-name/root-filesystem-object-number'. Convert this
1217  * string to a dataset name: "rootpool-name/root-filesystem-name".
1218  */
1219 static int
1220 zfs_parse_bootfs(char *bpath, char *outpath)
1221 {
1222 	char *slashp;
1223 	uint64_t objnum;
1224 	int error;
1225 
1226 	if (*bpath == 0 || *bpath == '/')
1227 		return (EINVAL);
1228 
1229 	(void) strcpy(outpath, bpath);
1230 
1231 	slashp = strchr(bpath, '/');
1232 
1233 	/* if no '/', just return the pool name */
1234 	if (slashp == NULL) {
1235 		return (0);
1236 	}
1237 
1238 	/* if not a number, just return the root dataset name */
1239 	if (str_to_uint64(slashp+1, &objnum)) {
1240 		return (0);
1241 	}
1242 
1243 	*slashp = '\0';
1244 	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1245 	*slashp = '/';
1246 
1247 	return (error);
1248 }
1249 
1250 /*
1251  * zfs_check_global_label:
1252  *	Check that the hex label string is appropriate for the dataset
1253  *	being mounted into the global_zone proper.
1254  *
1255  *	Return an error if the hex label string is not default or
1256  *	admin_low/admin_high.  For admin_low labels, the corresponding
1257  *	dataset must be readonly.
1258  */
1259 int
1260 zfs_check_global_label(const char *dsname, const char *hexsl)
1261 {
1262 	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1263 		return (0);
1264 	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1265 		return (0);
1266 	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1267 		/* must be readonly */
1268 		uint64_t rdonly;
1269 
1270 		if (dsl_prop_get_integer(dsname,
1271 		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1272 			return (EACCES);
1273 		return (rdonly ? 0 : EACCES);
1274 	}
1275 	return (EACCES);
1276 }
1277 
1278 /*
1279  * zfs_mount_label_policy:
1280  *	Determine whether the mount is allowed according to MAC check.
1281  *	by comparing (where appropriate) label of the dataset against
1282  *	the label of the zone being mounted into.  If the dataset has
1283  *	no label, create one.
1284  *
1285  *	Returns:
1286  *		 0 :	access allowed
1287  *		>0 :	error code, such as EACCES
1288  */
1289 static int
1290 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1291 {
1292 	int		error, retv;
1293 	zone_t		*mntzone = NULL;
1294 	ts_label_t	*mnt_tsl;
1295 	bslabel_t	*mnt_sl;
1296 	bslabel_t	ds_sl;
1297 	char		ds_hexsl[MAXNAMELEN];
1298 
1299 	retv = EACCES;				/* assume the worst */
1300 
1301 	/*
1302 	 * Start by getting the dataset label if it exists.
1303 	 */
1304 	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1305 	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1306 	if (error)
1307 		return (EACCES);
1308 
1309 	/*
1310 	 * If labeling is NOT enabled, then disallow the mount of datasets
1311 	 * which have a non-default label already.  No other label checks
1312 	 * are needed.
1313 	 */
1314 	if (!is_system_labeled()) {
1315 		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1316 			return (0);
1317 		return (EACCES);
1318 	}
1319 
1320 	/*
1321 	 * Get the label of the mountpoint.  If mounting into the global
1322 	 * zone (i.e. mountpoint is not within an active zone and the
1323 	 * zoned property is off), the label must be default or
1324 	 * admin_low/admin_high only; no other checks are needed.
1325 	 */
1326 	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1327 	if (mntzone->zone_id == GLOBAL_ZONEID) {
1328 		uint64_t zoned;
1329 
1330 		zone_rele(mntzone);
1331 
1332 		if (dsl_prop_get_integer(osname,
1333 		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1334 			return (EACCES);
1335 		if (!zoned)
1336 			return (zfs_check_global_label(osname, ds_hexsl));
1337 		else
1338 			/*
1339 			 * This is the case of a zone dataset being mounted
1340 			 * initially, before the zone has been fully created;
1341 			 * allow this mount into global zone.
1342 			 */
1343 			return (0);
1344 	}
1345 
1346 	mnt_tsl = mntzone->zone_slabel;
1347 	ASSERT(mnt_tsl != NULL);
1348 	label_hold(mnt_tsl);
1349 	mnt_sl = label2bslabel(mnt_tsl);
1350 
1351 	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1352 		/*
1353 		 * The dataset doesn't have a real label, so fabricate one.
1354 		 */
1355 		char *str = NULL;
1356 
1357 		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1358 		    dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1359 		    ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0)
1360 			retv = 0;
1361 		if (str != NULL)
1362 			kmem_free(str, strlen(str) + 1);
1363 	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1364 		/*
1365 		 * Now compare labels to complete the MAC check.  If the
1366 		 * labels are equal then allow access.  If the mountpoint
1367 		 * label dominates the dataset label, allow readonly access.
1368 		 * Otherwise, access is denied.
1369 		 */
1370 		if (blequal(mnt_sl, &ds_sl))
1371 			retv = 0;
1372 		else if (bldominates(mnt_sl, &ds_sl)) {
1373 			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1374 			retv = 0;
1375 		}
1376 	}
1377 
1378 	label_rele(mnt_tsl);
1379 	zone_rele(mntzone);
1380 	return (retv);
1381 }
1382 
1383 static int
1384 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1385 {
1386 	int error = 0;
1387 	static int zfsrootdone = 0;
1388 	zfsvfs_t *zfsvfs = NULL;
1389 	znode_t *zp = NULL;
1390 	vnode_t *vp = NULL;
1391 	char *zfs_bootfs;
1392 	char *zfs_devid;
1393 
1394 	ASSERT(vfsp);
1395 
1396 	/*
1397 	 * The filesystem that we mount as root is defined in the
1398 	 * boot property "zfs-bootfs" with a format of
1399 	 * "poolname/root-dataset-objnum".
1400 	 */
1401 	if (why == ROOT_INIT) {
1402 		if (zfsrootdone++)
1403 			return (EBUSY);
1404 		/*
1405 		 * the process of doing a spa_load will require the
1406 		 * clock to be set before we could (for example) do
1407 		 * something better by looking at the timestamp on
1408 		 * an uberblock, so just set it to -1.
1409 		 */
1410 		clkset(-1);
1411 
1412 		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1413 			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1414 			    "bootfs name");
1415 			return (EINVAL);
1416 		}
1417 		zfs_devid = spa_get_bootprop("diskdevid");
1418 		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1419 		if (zfs_devid)
1420 			spa_free_bootprop(zfs_devid);
1421 		if (error) {
1422 			spa_free_bootprop(zfs_bootfs);
1423 			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1424 			    error);
1425 			return (error);
1426 		}
1427 		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1428 			spa_free_bootprop(zfs_bootfs);
1429 			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1430 			    error);
1431 			return (error);
1432 		}
1433 
1434 		spa_free_bootprop(zfs_bootfs);
1435 
1436 		if (error = vfs_lock(vfsp))
1437 			return (error);
1438 
1439 		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1440 			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1441 			goto out;
1442 		}
1443 
1444 		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1445 		ASSERT(zfsvfs);
1446 		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1447 			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1448 			goto out;
1449 		}
1450 
1451 		vp = ZTOV(zp);
1452 		mutex_enter(&vp->v_lock);
1453 		vp->v_flag |= VROOT;
1454 		mutex_exit(&vp->v_lock);
1455 		rootvp = vp;
1456 
1457 		/*
1458 		 * Leave rootvp held.  The root file system is never unmounted.
1459 		 */
1460 
1461 		vfs_add((struct vnode *)0, vfsp,
1462 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1463 out:
1464 		vfs_unlock(vfsp);
1465 		return (error);
1466 	} else if (why == ROOT_REMOUNT) {
1467 		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1468 		vfsp->vfs_flag |= VFS_REMOUNT;
1469 
1470 		/* refresh mount options */
1471 		zfs_unregister_callbacks(vfsp->vfs_data);
1472 		return (zfs_register_callbacks(vfsp));
1473 
1474 	} else if (why == ROOT_UNMOUNT) {
1475 		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1476 		(void) zfs_sync(vfsp, 0, 0);
1477 		return (0);
1478 	}
1479 
1480 	/*
1481 	 * if "why" is equal to anything else other than ROOT_INIT,
1482 	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1483 	 */
1484 	return (ENOTSUP);
1485 }
1486 
1487 /*ARGSUSED*/
1488 static int
1489 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1490 {
1491 	char		*osname;
1492 	pathname_t	spn;
1493 	int		error = 0;
1494 	uio_seg_t	fromspace = (uap->flags & MS_SYSSPACE) ?
1495 	    UIO_SYSSPACE : UIO_USERSPACE;
1496 	int		canwrite;
1497 
1498 	if (mvp->v_type != VDIR)
1499 		return (ENOTDIR);
1500 
1501 	mutex_enter(&mvp->v_lock);
1502 	if ((uap->flags & MS_REMOUNT) == 0 &&
1503 	    (uap->flags & MS_OVERLAY) == 0 &&
1504 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1505 		mutex_exit(&mvp->v_lock);
1506 		return (EBUSY);
1507 	}
1508 	mutex_exit(&mvp->v_lock);
1509 
1510 	/*
1511 	 * ZFS does not support passing unparsed data in via MS_DATA.
1512 	 * Users should use the MS_OPTIONSTR interface; this means
1513 	 * that all option parsing is already done and the options struct
1514 	 * can be interrogated.
1515 	 */
1516 	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1517 		return (EINVAL);
1518 
1519 	/*
1520 	 * Get the objset name (the "special" mount argument).
1521 	 */
1522 	if (error = pn_get(uap->spec, fromspace, &spn))
1523 		return (error);
1524 
1525 	osname = spn.pn_path;
1526 
1527 	/*
1528 	 * Check for mount privilege?
1529 	 *
1530 	 * If we don't have privilege then see if
1531 	 * we have local permission to allow it
1532 	 */
1533 	error = secpolicy_fs_mount(cr, mvp, vfsp);
1534 	if (error) {
1535 		error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr);
1536 		if (error == 0) {
1537 			vattr_t		vattr;
1538 
1539 			/*
1540 			 * Make sure user is the owner of the mount point
1541 			 * or has sufficient privileges.
1542 			 */
1543 
1544 			vattr.va_mask = AT_UID;
1545 
1546 			if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1547 				goto out;
1548 			}
1549 
1550 			if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1551 			    VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1552 				error = EPERM;
1553 				goto out;
1554 			}
1555 
1556 			secpolicy_fs_mount_clearopts(cr, vfsp);
1557 		} else {
1558 			goto out;
1559 		}
1560 	}
1561 
1562 	/*
1563 	 * Refuse to mount a filesystem if we are in a local zone and the
1564 	 * dataset is not visible.
1565 	 */
1566 	if (!INGLOBALZONE(curproc) &&
1567 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1568 		error = EPERM;
1569 		goto out;
1570 	}
1571 
1572 	error = zfs_mount_label_policy(vfsp, osname);
1573 	if (error)
1574 		goto out;
1575 
1576 	/*
1577 	 * When doing a remount, we simply refresh our temporary properties
1578 	 * according to those options set in the current VFS options.
1579 	 */
1580 	if (uap->flags & MS_REMOUNT) {
1581 		/* refresh mount options */
1582 		zfs_unregister_callbacks(vfsp->vfs_data);
1583 		error = zfs_register_callbacks(vfsp);
1584 		goto out;
1585 	}
1586 
1587 	error = zfs_domount(vfsp, osname);
1588 
1589 	/*
1590 	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1591 	 * disappear due to a forced unmount.
1592 	 */
1593 	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1594 		VFS_HOLD(mvp->v_vfsp);
1595 
1596 out:
1597 	pn_free(&spn);
1598 	return (error);
1599 }
1600 
1601 static int
1602 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1603 {
1604 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1605 	dev32_t d32;
1606 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1607 
1608 	ZFS_ENTER(zfsvfs);
1609 
1610 	dmu_objset_space(zfsvfs->z_os,
1611 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1612 
1613 	/*
1614 	 * The underlying storage pool actually uses multiple block sizes.
1615 	 * We report the fragsize as the smallest block size we support,
1616 	 * and we report our blocksize as the filesystem's maximum blocksize.
1617 	 */
1618 	statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1619 	statp->f_bsize = zfsvfs->z_max_blksz;
1620 
1621 	/*
1622 	 * The following report "total" blocks of various kinds in the
1623 	 * file system, but reported in terms of f_frsize - the
1624 	 * "fragment" size.
1625 	 */
1626 
1627 	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1628 	statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1629 	statp->f_bavail = statp->f_bfree; /* no root reservation */
1630 
1631 	/*
1632 	 * statvfs() should really be called statufs(), because it assumes
1633 	 * static metadata.  ZFS doesn't preallocate files, so the best
1634 	 * we can do is report the max that could possibly fit in f_files,
1635 	 * and that minus the number actually used in f_ffree.
1636 	 * For f_ffree, report the smaller of the number of object available
1637 	 * and the number of blocks (each object will take at least a block).
1638 	 */
1639 	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1640 	statp->f_favail = statp->f_ffree;	/* no "root reservation" */
1641 	statp->f_files = statp->f_ffree + usedobjs;
1642 
1643 	(void) cmpldev(&d32, vfsp->vfs_dev);
1644 	statp->f_fsid = d32;
1645 
1646 	/*
1647 	 * We're a zfs filesystem.
1648 	 */
1649 	(void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1650 
1651 	statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1652 
1653 	statp->f_namemax = ZFS_MAXNAMELEN;
1654 
1655 	/*
1656 	 * We have all of 32 characters to stuff a string here.
1657 	 * Is there anything useful we could/should provide?
1658 	 */
1659 	bzero(statp->f_fstr, sizeof (statp->f_fstr));
1660 
1661 	ZFS_EXIT(zfsvfs);
1662 	return (0);
1663 }
1664 
1665 static int
1666 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1667 {
1668 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1669 	znode_t *rootzp;
1670 	int error;
1671 
1672 	ZFS_ENTER(zfsvfs);
1673 
1674 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1675 	if (error == 0)
1676 		*vpp = ZTOV(rootzp);
1677 
1678 	ZFS_EXIT(zfsvfs);
1679 	return (error);
1680 }
1681 
1682 /*
1683  * Teardown the zfsvfs::z_os.
1684  *
1685  * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1686  * and 'z_teardown_inactive_lock' held.
1687  */
1688 static int
1689 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1690 {
1691 	znode_t	*zp;
1692 
1693 	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1694 
1695 	if (!unmounting) {
1696 		/*
1697 		 * We purge the parent filesystem's vfsp as the parent
1698 		 * filesystem and all of its snapshots have their vnode's
1699 		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1700 		 * 'z_parent' is self referential for non-snapshots.
1701 		 */
1702 		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1703 	}
1704 
1705 	/*
1706 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1707 	 * threads are blocked as zil_close can call zfs_inactive.
1708 	 */
1709 	if (zfsvfs->z_log) {
1710 		zil_close(zfsvfs->z_log);
1711 		zfsvfs->z_log = NULL;
1712 	}
1713 
1714 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1715 
1716 	/*
1717 	 * If we are not unmounting (ie: online recv) and someone already
1718 	 * unmounted this file system while we were doing the switcheroo,
1719 	 * or a reopen of z_os failed then just bail out now.
1720 	 */
1721 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1722 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1723 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1724 		return (EIO);
1725 	}
1726 
1727 	/*
1728 	 * At this point there are no vops active, and any new vops will
1729 	 * fail with EIO since we have z_teardown_lock for writer (only
1730 	 * relavent for forced unmount).
1731 	 *
1732 	 * Release all holds on dbufs.
1733 	 */
1734 	mutex_enter(&zfsvfs->z_znodes_lock);
1735 	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1736 	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1737 		if (zp->z_dbuf) {
1738 			ASSERT(ZTOV(zp)->v_count > 0);
1739 			zfs_znode_dmu_fini(zp);
1740 		}
1741 	mutex_exit(&zfsvfs->z_znodes_lock);
1742 
1743 	/*
1744 	 * If we are unmounting, set the unmounted flag and let new vops
1745 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1746 	 * other vops will fail with EIO.
1747 	 */
1748 	if (unmounting) {
1749 		zfsvfs->z_unmounted = B_TRUE;
1750 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1751 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1752 	}
1753 
1754 	/*
1755 	 * z_os will be NULL if there was an error in attempting to reopen
1756 	 * zfsvfs, so just return as the properties had already been
1757 	 * unregistered and cached data had been evicted before.
1758 	 */
1759 	if (zfsvfs->z_os == NULL)
1760 		return (0);
1761 
1762 	/*
1763 	 * Unregister properties.
1764 	 */
1765 	zfs_unregister_callbacks(zfsvfs);
1766 
1767 	/*
1768 	 * Evict cached data
1769 	 */
1770 	if (dmu_objset_evict_dbufs(zfsvfs->z_os)) {
1771 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1772 		(void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1773 	}
1774 
1775 	return (0);
1776 }
1777 
1778 /*ARGSUSED*/
1779 static int
1780 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1781 {
1782 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1783 	objset_t *os;
1784 	int ret;
1785 
1786 	ret = secpolicy_fs_unmount(cr, vfsp);
1787 	if (ret) {
1788 		ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1789 		    ZFS_DELEG_PERM_MOUNT, cr);
1790 		if (ret)
1791 			return (ret);
1792 	}
1793 
1794 	/*
1795 	 * We purge the parent filesystem's vfsp as the parent filesystem
1796 	 * and all of its snapshots have their vnode's v_vfsp set to the
1797 	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1798 	 * referential for non-snapshots.
1799 	 */
1800 	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1801 
1802 	/*
1803 	 * Unmount any snapshots mounted under .zfs before unmounting the
1804 	 * dataset itself.
1805 	 */
1806 	if (zfsvfs->z_ctldir != NULL &&
1807 	    (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1808 		return (ret);
1809 	}
1810 
1811 	if (!(fflag & MS_FORCE)) {
1812 		/*
1813 		 * Check the number of active vnodes in the file system.
1814 		 * Our count is maintained in the vfs structure, but the
1815 		 * number is off by 1 to indicate a hold on the vfs
1816 		 * structure itself.
1817 		 *
1818 		 * The '.zfs' directory maintains a reference of its
1819 		 * own, and any active references underneath are
1820 		 * reflected in the vnode count.
1821 		 */
1822 		if (zfsvfs->z_ctldir == NULL) {
1823 			if (vfsp->vfs_count > 1)
1824 				return (EBUSY);
1825 		} else {
1826 			if (vfsp->vfs_count > 2 ||
1827 			    zfsvfs->z_ctldir->v_count > 1)
1828 				return (EBUSY);
1829 		}
1830 	}
1831 
1832 	vfsp->vfs_flag |= VFS_UNMOUNTED;
1833 
1834 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1835 	os = zfsvfs->z_os;
1836 
1837 	/*
1838 	 * z_os will be NULL if there was an error in
1839 	 * attempting to reopen zfsvfs.
1840 	 */
1841 	if (os != NULL) {
1842 		/*
1843 		 * Unset the objset user_ptr.
1844 		 */
1845 		mutex_enter(&os->os_user_ptr_lock);
1846 		dmu_objset_set_user(os, NULL);
1847 		mutex_exit(&os->os_user_ptr_lock);
1848 
1849 		/*
1850 		 * Finally release the objset
1851 		 */
1852 		dmu_objset_disown(os, zfsvfs);
1853 	}
1854 
1855 	/*
1856 	 * We can now safely destroy the '.zfs' directory node.
1857 	 */
1858 	if (zfsvfs->z_ctldir != NULL)
1859 		zfsctl_destroy(zfsvfs);
1860 
1861 	return (0);
1862 }
1863 
1864 static int
1865 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1866 {
1867 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1868 	znode_t		*zp;
1869 	uint64_t	object = 0;
1870 	uint64_t	fid_gen = 0;
1871 	uint64_t	gen_mask;
1872 	uint64_t	zp_gen;
1873 	int 		i, err;
1874 
1875 	*vpp = NULL;
1876 
1877 	ZFS_ENTER(zfsvfs);
1878 
1879 	if (fidp->fid_len == LONG_FID_LEN) {
1880 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1881 		uint64_t	objsetid = 0;
1882 		uint64_t	setgen = 0;
1883 
1884 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1885 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1886 
1887 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1888 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1889 
1890 		ZFS_EXIT(zfsvfs);
1891 
1892 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1893 		if (err)
1894 			return (EINVAL);
1895 		ZFS_ENTER(zfsvfs);
1896 	}
1897 
1898 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1899 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1900 
1901 		for (i = 0; i < sizeof (zfid->zf_object); i++)
1902 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1903 
1904 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1905 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1906 	} else {
1907 		ZFS_EXIT(zfsvfs);
1908 		return (EINVAL);
1909 	}
1910 
1911 	/* A zero fid_gen means we are in the .zfs control directories */
1912 	if (fid_gen == 0 &&
1913 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1914 		*vpp = zfsvfs->z_ctldir;
1915 		ASSERT(*vpp != NULL);
1916 		if (object == ZFSCTL_INO_SNAPDIR) {
1917 			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1918 			    0, NULL, NULL, NULL, NULL, NULL) == 0);
1919 		} else {
1920 			VN_HOLD(*vpp);
1921 		}
1922 		ZFS_EXIT(zfsvfs);
1923 		return (0);
1924 	}
1925 
1926 	gen_mask = -1ULL >> (64 - 8 * i);
1927 
1928 	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1929 	if (err = zfs_zget(zfsvfs, object, &zp)) {
1930 		ZFS_EXIT(zfsvfs);
1931 		return (err);
1932 	}
1933 	zp_gen = zp->z_phys->zp_gen & gen_mask;
1934 	if (zp_gen == 0)
1935 		zp_gen = 1;
1936 	if (zp->z_unlinked || zp_gen != fid_gen) {
1937 		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1938 		VN_RELE(ZTOV(zp));
1939 		ZFS_EXIT(zfsvfs);
1940 		return (EINVAL);
1941 	}
1942 
1943 	*vpp = ZTOV(zp);
1944 	ZFS_EXIT(zfsvfs);
1945 	return (0);
1946 }
1947 
1948 /*
1949  * Block out VOPs and close zfsvfs_t::z_os
1950  *
1951  * Note, if successful, then we return with the 'z_teardown_lock' and
1952  * 'z_teardown_inactive_lock' write held.
1953  */
1954 int
1955 zfs_suspend_fs(zfsvfs_t *zfsvfs)
1956 {
1957 	int error;
1958 
1959 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1960 		return (error);
1961 	dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1962 
1963 	return (0);
1964 }
1965 
1966 /*
1967  * Reopen zfsvfs_t::z_os and release VOPs.
1968  */
1969 int
1970 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
1971 {
1972 	int err;
1973 
1974 	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
1975 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1976 
1977 	err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
1978 	    &zfsvfs->z_os);
1979 	if (err) {
1980 		zfsvfs->z_os = NULL;
1981 	} else {
1982 		znode_t *zp;
1983 
1984 		VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
1985 
1986 		/*
1987 		 * Attempt to re-establish all the active znodes with
1988 		 * their dbufs.  If a zfs_rezget() fails, then we'll let
1989 		 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
1990 		 * when they try to use their znode.
1991 		 */
1992 		mutex_enter(&zfsvfs->z_znodes_lock);
1993 		for (zp = list_head(&zfsvfs->z_all_znodes); zp;
1994 		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1995 			(void) zfs_rezget(zp);
1996 		}
1997 		mutex_exit(&zfsvfs->z_znodes_lock);
1998 
1999 	}
2000 
2001 	/* release the VOPs */
2002 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2003 	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
2004 
2005 	if (err) {
2006 		/*
2007 		 * Since we couldn't reopen zfsvfs::z_os, force
2008 		 * unmount this file system.
2009 		 */
2010 		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2011 			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
2012 	}
2013 	return (err);
2014 }
2015 
2016 static void
2017 zfs_freevfs(vfs_t *vfsp)
2018 {
2019 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2020 
2021 	/*
2022 	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2023 	 * from zfs_mount().  Release it here.
2024 	 */
2025 	if (zfsvfs->z_issnap)
2026 		VFS_RELE(zfsvfs->z_parent->z_vfs);
2027 
2028 	zfsvfs_free(zfsvfs);
2029 
2030 	atomic_add_32(&zfs_active_fs_count, -1);
2031 }
2032 
2033 /*
2034  * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
2035  * so we can't safely do any non-idempotent initialization here.
2036  * Leave that to zfs_init() and zfs_fini(), which are called
2037  * from the module's _init() and _fini() entry points.
2038  */
2039 /*ARGSUSED*/
2040 static int
2041 zfs_vfsinit(int fstype, char *name)
2042 {
2043 	int error;
2044 
2045 	zfsfstype = fstype;
2046 
2047 	/*
2048 	 * Setup vfsops and vnodeops tables.
2049 	 */
2050 	error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2051 	if (error != 0) {
2052 		cmn_err(CE_WARN, "zfs: bad vfs ops template");
2053 	}
2054 
2055 	error = zfs_create_op_tables();
2056 	if (error) {
2057 		zfs_remove_op_tables();
2058 		cmn_err(CE_WARN, "zfs: bad vnode ops template");
2059 		(void) vfs_freevfsops_by_type(zfsfstype);
2060 		return (error);
2061 	}
2062 
2063 	mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2064 
2065 	/*
2066 	 * Unique major number for all zfs mounts.
2067 	 * If we run out of 32-bit minors, we'll getudev() another major.
2068 	 */
2069 	zfs_major = ddi_name_to_major(ZFS_DRIVER);
2070 	zfs_minor = ZFS_MIN_MINOR;
2071 
2072 	return (0);
2073 }
2074 
2075 void
2076 zfs_init(void)
2077 {
2078 	/*
2079 	 * Initialize .zfs directory structures
2080 	 */
2081 	zfsctl_init();
2082 
2083 	/*
2084 	 * Initialize znode cache, vnode ops, etc...
2085 	 */
2086 	zfs_znode_init();
2087 
2088 	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2089 }
2090 
2091 void
2092 zfs_fini(void)
2093 {
2094 	zfsctl_fini();
2095 	zfs_znode_fini();
2096 }
2097 
2098 int
2099 zfs_busy(void)
2100 {
2101 	return (zfs_active_fs_count != 0);
2102 }
2103 
2104 int
2105 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2106 {
2107 	int error;
2108 	objset_t *os = zfsvfs->z_os;
2109 	dmu_tx_t *tx;
2110 
2111 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2112 		return (EINVAL);
2113 
2114 	if (newvers < zfsvfs->z_version)
2115 		return (EINVAL);
2116 
2117 	tx = dmu_tx_create(os);
2118 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2119 	error = dmu_tx_assign(tx, TXG_WAIT);
2120 	if (error) {
2121 		dmu_tx_abort(tx);
2122 		return (error);
2123 	}
2124 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2125 	    8, 1, &newvers, tx);
2126 
2127 	if (error) {
2128 		dmu_tx_commit(tx);
2129 		return (error);
2130 	}
2131 
2132 	spa_history_internal_log(LOG_DS_UPGRADE,
2133 	    dmu_objset_spa(os), tx, CRED(),
2134 	    "oldver=%llu newver=%llu dataset = %llu",
2135 	    zfsvfs->z_version, newvers, dmu_objset_id(os));
2136 
2137 	dmu_tx_commit(tx);
2138 
2139 	zfsvfs->z_version = newvers;
2140 
2141 	if (zfsvfs->z_version >= ZPL_VERSION_FUID)
2142 		zfs_set_fuid_feature(zfsvfs);
2143 
2144 	return (0);
2145 }
2146 
2147 /*
2148  * Read a property stored within the master node.
2149  */
2150 int
2151 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2152 {
2153 	const char *pname;
2154 	int error = ENOENT;
2155 
2156 	/*
2157 	 * Look up the file system's value for the property.  For the
2158 	 * version property, we look up a slightly different string.
2159 	 */
2160 	if (prop == ZFS_PROP_VERSION)
2161 		pname = ZPL_VERSION_STR;
2162 	else
2163 		pname = zfs_prop_to_name(prop);
2164 
2165 	if (os != NULL)
2166 		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2167 
2168 	if (error == ENOENT) {
2169 		/* No value set, use the default value */
2170 		switch (prop) {
2171 		case ZFS_PROP_VERSION:
2172 			*value = ZPL_VERSION;
2173 			break;
2174 		case ZFS_PROP_NORMALIZE:
2175 		case ZFS_PROP_UTF8ONLY:
2176 			*value = 0;
2177 			break;
2178 		case ZFS_PROP_CASE:
2179 			*value = ZFS_CASE_SENSITIVE;
2180 			break;
2181 		default:
2182 			return (error);
2183 		}
2184 		error = 0;
2185 	}
2186 	return (error);
2187 }
2188 
2189 static vfsdef_t vfw = {
2190 	VFSDEF_VERSION,
2191 	MNTTYPE_ZFS,
2192 	zfs_vfsinit,
2193 	VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2194 	    VSW_XID,
2195 	&zfs_mntopts
2196 };
2197 
2198 struct modlfs zfs_modlfs = {
2199 	&mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2200 };
2201