xref: /titanic_50/usr/src/uts/common/fs/zfs/zfs_vfsops.c (revision 8200fe25ffab8b2032d046c88710a949f361b700)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysmacros.h>
32 #include <sys/kmem.h>
33 #include <sys/pathname.h>
34 #include <sys/acl.h>
35 #include <sys/vnode.h>
36 #include <sys/vfs.h>
37 #include <sys/mntent.h>
38 #include <sys/mount.h>
39 #include <sys/cmn_err.h>
40 #include "fs/fs_subr.h"
41 #include <sys/zfs_znode.h>
42 #include <sys/zil.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/dmu.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/spa.h>
47 #include <sys/zap.h>
48 #include <sys/varargs.h>
49 #include <sys/policy.h>
50 #include <sys/atomic.h>
51 #include <sys/mkdev.h>
52 #include <sys/modctl.h>
53 #include <sys/zfs_ioctl.h>
54 #include <sys/zfs_ctldir.h>
55 #include <sys/bootconf.h>
56 #include <sys/sunddi.h>
57 #include <sys/dnlc.h>
58 
59 int zfsfstype;
60 vfsops_t *zfs_vfsops = NULL;
61 static major_t zfs_major;
62 static minor_t zfs_minor;
63 static kmutex_t	zfs_dev_mtx;
64 
65 extern char zfs_bootpath[BO_MAXOBJNAME];
66 
67 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
68 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
69 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
70 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
71 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
72 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
73 static void zfs_freevfs(vfs_t *vfsp);
74 static void zfs_objset_close(zfsvfs_t *zfsvfs);
75 
76 static const fs_operation_def_t zfs_vfsops_template[] = {
77 	VFSNAME_MOUNT, zfs_mount,
78 	VFSNAME_MOUNTROOT, zfs_mountroot,
79 	VFSNAME_UNMOUNT, zfs_umount,
80 	VFSNAME_ROOT, zfs_root,
81 	VFSNAME_STATVFS, zfs_statvfs,
82 	VFSNAME_SYNC, (fs_generic_func_p) zfs_sync,
83 	VFSNAME_VGET, zfs_vget,
84 	VFSNAME_FREEVFS, (fs_generic_func_p) zfs_freevfs,
85 	NULL, NULL
86 };
87 
88 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
89 	VFSNAME_FREEVFS, (fs_generic_func_p) zfs_freevfs,
90 	NULL, NULL
91 };
92 
93 /*
94  * We need to keep a count of active fs's.
95  * This is necessary to prevent our module
96  * from being unloaded after a umount -f
97  */
98 static uint32_t	zfs_active_fs_count = 0;
99 
100 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
101 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
102 
103 static mntopt_t mntopts[] = {
104 	{ MNTOPT_XATTR, NULL, NULL, MO_NODISPLAY|MO_DEFAULT, NULL },
105 	{ MNTOPT_NOATIME, noatime_cancel, NULL, MO_DEFAULT, NULL },
106 	{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
107 };
108 
109 static mntopts_t zfs_mntopts = {
110 	sizeof (mntopts) / sizeof (mntopt_t),
111 	mntopts
112 };
113 
114 /*ARGSUSED*/
115 int
116 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
117 {
118 	/*
119 	 * Data integrity is job one.  We don't want a compromised kernel
120 	 * writing to the storage pool, so we never sync during panic.
121 	 */
122 	if (panicstr)
123 		return (0);
124 
125 	/*
126 	 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
127 	 * to sync metadata, which they would otherwise cache indefinitely.
128 	 * Semantically, the only requirement is that the sync be initiated.
129 	 * The DMU syncs out txgs frequently, so there's nothing to do.
130 	 */
131 	if (flag & SYNC_ATTR)
132 		return (0);
133 
134 	if (vfsp != NULL) {
135 		/*
136 		 * Sync a specific filesystem.
137 		 */
138 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
139 
140 		ZFS_ENTER(zfsvfs);
141 		if (zfsvfs->z_log != NULL)
142 			zil_commit(zfsvfs->z_log, UINT64_MAX, FSYNC);
143 		else
144 			txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
145 		ZFS_EXIT(zfsvfs);
146 	} else {
147 		/*
148 		 * Sync all ZFS filesystems.  This is what happens when you
149 		 * run sync(1M).  Unlike other filesystems, ZFS honors the
150 		 * request by waiting for all pools to commit all dirty data.
151 		 */
152 		spa_sync_allpools();
153 	}
154 
155 	return (0);
156 }
157 
158 static int
159 zfs_create_unique_device(dev_t *dev)
160 {
161 	major_t new_major;
162 
163 	do {
164 		ASSERT3U(zfs_minor, <=, MAXMIN32);
165 		minor_t start = zfs_minor;
166 		do {
167 			mutex_enter(&zfs_dev_mtx);
168 			if (zfs_minor >= MAXMIN32) {
169 				/*
170 				 * If we're still using the real major
171 				 * keep out of /dev/zfs and /dev/zvol minor
172 				 * number space.  If we're using a getudev()'ed
173 				 * major number, we can use all of its minors.
174 				 */
175 				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
176 					zfs_minor = ZFS_MIN_MINOR;
177 				else
178 					zfs_minor = 0;
179 			} else {
180 				zfs_minor++;
181 			}
182 			*dev = makedevice(zfs_major, zfs_minor);
183 			mutex_exit(&zfs_dev_mtx);
184 		} while (vfs_devismounted(*dev) && zfs_minor != start);
185 		if (zfs_minor == start) {
186 			/*
187 			 * We are using all ~262,000 minor numbers for the
188 			 * current major number.  Create a new major number.
189 			 */
190 			if ((new_major = getudev()) == (major_t)-1) {
191 				cmn_err(CE_WARN,
192 				    "zfs_mount: Can't get unique major "
193 				    "device number.");
194 				return (-1);
195 			}
196 			mutex_enter(&zfs_dev_mtx);
197 			zfs_major = new_major;
198 			zfs_minor = 0;
199 
200 			mutex_exit(&zfs_dev_mtx);
201 		} else {
202 			break;
203 		}
204 		/* CONSTANTCONDITION */
205 	} while (1);
206 
207 	return (0);
208 }
209 
210 static void
211 atime_changed_cb(void *arg, uint64_t newval)
212 {
213 	zfsvfs_t *zfsvfs = arg;
214 
215 	if (newval == TRUE) {
216 		zfsvfs->z_atime = TRUE;
217 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
218 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
219 	} else {
220 		zfsvfs->z_atime = FALSE;
221 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
222 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
223 	}
224 }
225 
226 static void
227 blksz_changed_cb(void *arg, uint64_t newval)
228 {
229 	zfsvfs_t *zfsvfs = arg;
230 
231 	if (newval < SPA_MINBLOCKSIZE ||
232 	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
233 		newval = SPA_MAXBLOCKSIZE;
234 
235 	zfsvfs->z_max_blksz = newval;
236 	zfsvfs->z_vfs->vfs_bsize = newval;
237 }
238 
239 static void
240 readonly_changed_cb(void *arg, uint64_t newval)
241 {
242 	zfsvfs_t *zfsvfs = arg;
243 
244 	if (newval) {
245 		/* XXX locking on vfs_flag? */
246 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
247 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
248 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
249 		(void) zfs_delete_thread_target(zfsvfs, 0);
250 	} else {
251 		/* XXX locking on vfs_flag? */
252 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
253 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
254 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
255 		(void) zfs_delete_thread_target(zfsvfs, 1);
256 	}
257 }
258 
259 static void
260 devices_changed_cb(void *arg, uint64_t newval)
261 {
262 	zfsvfs_t *zfsvfs = arg;
263 
264 	if (newval == FALSE) {
265 		zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
266 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
267 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
268 	} else {
269 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
270 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
271 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
272 	}
273 }
274 
275 static void
276 setuid_changed_cb(void *arg, uint64_t newval)
277 {
278 	zfsvfs_t *zfsvfs = arg;
279 
280 	if (newval == FALSE) {
281 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
282 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
283 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
284 	} else {
285 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
286 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
287 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
288 	}
289 }
290 
291 static void
292 exec_changed_cb(void *arg, uint64_t newval)
293 {
294 	zfsvfs_t *zfsvfs = arg;
295 
296 	if (newval == FALSE) {
297 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
298 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
299 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
300 	} else {
301 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
302 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
303 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
304 	}
305 }
306 
307 static void
308 snapdir_changed_cb(void *arg, uint64_t newval)
309 {
310 	zfsvfs_t *zfsvfs = arg;
311 
312 	zfsvfs->z_show_ctldir = newval;
313 }
314 
315 static void
316 acl_mode_changed_cb(void *arg, uint64_t newval)
317 {
318 	zfsvfs_t *zfsvfs = arg;
319 
320 	zfsvfs->z_acl_mode = newval;
321 }
322 
323 static void
324 acl_inherit_changed_cb(void *arg, uint64_t newval)
325 {
326 	zfsvfs_t *zfsvfs = arg;
327 
328 	zfsvfs->z_acl_inherit = newval;
329 }
330 
331 static int
332 zfs_refresh_properties(vfs_t *vfsp)
333 {
334 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
335 
336 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
337 		readonly_changed_cb(zfsvfs, B_TRUE);
338 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
339 		if (dmu_objset_is_snapshot(zfsvfs->z_os))
340 			return (EROFS);
341 		readonly_changed_cb(zfsvfs, B_FALSE);
342 	}
343 
344 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
345 		devices_changed_cb(zfsvfs, B_FALSE);
346 		setuid_changed_cb(zfsvfs, B_FALSE);
347 	} else {
348 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
349 			devices_changed_cb(zfsvfs, B_FALSE);
350 		else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL))
351 			devices_changed_cb(zfsvfs, B_TRUE);
352 
353 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
354 			setuid_changed_cb(zfsvfs, B_FALSE);
355 		else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL))
356 			setuid_changed_cb(zfsvfs, B_TRUE);
357 	}
358 
359 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
360 		exec_changed_cb(zfsvfs, B_FALSE);
361 	else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL))
362 		exec_changed_cb(zfsvfs, B_TRUE);
363 
364 	return (0);
365 }
366 
367 static int
368 zfs_register_callbacks(vfs_t *vfsp)
369 {
370 	struct dsl_dataset *ds = NULL;
371 	objset_t *os = NULL;
372 	zfsvfs_t *zfsvfs = NULL;
373 	int do_readonly = FALSE, readonly;
374 	int do_setuid = FALSE, setuid;
375 	int do_exec = FALSE, exec;
376 	int do_devices = FALSE, devices;
377 	int error = 0;
378 
379 	ASSERT(vfsp);
380 	zfsvfs = vfsp->vfs_data;
381 	ASSERT(zfsvfs);
382 	os = zfsvfs->z_os;
383 
384 	/*
385 	 * The act of registering our callbacks will destroy any mount
386 	 * options we may have.  In order to enable temporary overrides
387 	 * of mount options, we stash away the current values and restore
388 	 * restore them after we register the callbacks.
389 	 */
390 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
391 		readonly = B_TRUE;
392 		do_readonly = B_TRUE;
393 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
394 		readonly = B_FALSE;
395 		do_readonly = B_TRUE;
396 	}
397 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
398 		devices = B_FALSE;
399 		setuid = B_FALSE;
400 		do_devices = B_TRUE;
401 		do_setuid = B_TRUE;
402 	} else {
403 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
404 			devices = B_FALSE;
405 			do_devices = B_TRUE;
406 		} else if (vfs_optionisset(vfsp,
407 			    MNTOPT_DEVICES, NULL)) {
408 			devices = B_TRUE;
409 			do_devices = B_TRUE;
410 		}
411 
412 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
413 			setuid = B_FALSE;
414 			do_setuid = B_TRUE;
415 		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
416 			setuid = B_TRUE;
417 			do_setuid = B_TRUE;
418 		}
419 	}
420 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
421 		exec = B_FALSE;
422 		do_exec = B_TRUE;
423 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
424 		exec = B_TRUE;
425 		do_exec = B_TRUE;
426 	}
427 
428 	/*
429 	 * Register property callbacks.
430 	 *
431 	 * It would probably be fine to just check for i/o error from
432 	 * the first prop_register(), but I guess I like to go
433 	 * overboard...
434 	 */
435 	ds = dmu_objset_ds(os);
436 	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
437 	error = error ? error : dsl_prop_register(ds,
438 	    "recordsize", blksz_changed_cb, zfsvfs);
439 	error = error ? error : dsl_prop_register(ds,
440 	    "readonly", readonly_changed_cb, zfsvfs);
441 	error = error ? error : dsl_prop_register(ds,
442 	    "devices", devices_changed_cb, zfsvfs);
443 	error = error ? error : dsl_prop_register(ds,
444 	    "setuid", setuid_changed_cb, zfsvfs);
445 	error = error ? error : dsl_prop_register(ds,
446 	    "exec", exec_changed_cb, zfsvfs);
447 	error = error ? error : dsl_prop_register(ds,
448 	    "snapdir", snapdir_changed_cb, zfsvfs);
449 	error = error ? error : dsl_prop_register(ds,
450 	    "aclmode", acl_mode_changed_cb, zfsvfs);
451 	error = error ? error : dsl_prop_register(ds,
452 	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
453 	if (error)
454 		goto unregister;
455 
456 	/*
457 	 * Invoke our callbacks to restore temporary mount options.
458 	 */
459 	if (do_readonly)
460 		readonly_changed_cb(zfsvfs, readonly);
461 	if (do_setuid)
462 		setuid_changed_cb(zfsvfs, setuid);
463 	if (do_exec)
464 		exec_changed_cb(zfsvfs, exec);
465 	if (do_devices)
466 		devices_changed_cb(zfsvfs, devices);
467 
468 	return (0);
469 
470 unregister:
471 	/*
472 	 * We may attempt to unregister some callbacks that are not
473 	 * registered, but this is OK; it will simply return ENOMSG,
474 	 * which we will ignore.
475 	 */
476 	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
477 	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
478 	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
479 	(void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
480 	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
481 	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
482 	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
483 	(void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
484 	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
485 	    zfsvfs);
486 	return (error);
487 
488 }
489 
490 static int
491 zfs_domount(vfs_t *vfsp, char *osname, cred_t *cr)
492 {
493 	dev_t mount_dev;
494 	uint64_t recordsize, readonly;
495 	int error = 0;
496 	int mode;
497 	zfsvfs_t *zfsvfs;
498 	znode_t *zp = NULL;
499 
500 	ASSERT(vfsp);
501 	ASSERT(osname);
502 
503 	/*
504 	 * Initialize the zfs-specific filesystem structure.
505 	 * Should probably make this a kmem cache, shuffle fields,
506 	 * and just bzero up to z_hold_mtx[].
507 	 */
508 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
509 	zfsvfs->z_vfs = vfsp;
510 	zfsvfs->z_parent = zfsvfs;
511 	zfsvfs->z_assign = TXG_NOWAIT;
512 	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
513 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
514 
515 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
516 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
517 	    offsetof(znode_t, z_link_node));
518 	rw_init(&zfsvfs->z_um_lock, NULL, RW_DEFAULT, NULL);
519 
520 	/* Initialize the generic filesystem structure. */
521 	vfsp->vfs_bcount = 0;
522 	vfsp->vfs_data = NULL;
523 
524 	if (zfs_create_unique_device(&mount_dev) == -1) {
525 		error = ENODEV;
526 		goto out;
527 	}
528 	ASSERT(vfs_devismounted(mount_dev) == 0);
529 
530 	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
531 	    NULL))
532 		goto out;
533 
534 	vfsp->vfs_dev = mount_dev;
535 	vfsp->vfs_fstype = zfsfstype;
536 	vfsp->vfs_bsize = recordsize;
537 	vfsp->vfs_flag |= VFS_NOTRUNC;
538 	vfsp->vfs_data = zfsvfs;
539 
540 	if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL))
541 		goto out;
542 
543 	if (readonly)
544 		mode = DS_MODE_PRIMARY | DS_MODE_READONLY;
545 	else
546 		mode = DS_MODE_PRIMARY;
547 
548 	error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os);
549 	if (error == EROFS) {
550 		mode = DS_MODE_PRIMARY | DS_MODE_READONLY;
551 		error = dmu_objset_open(osname, DMU_OST_ZFS, mode,
552 		    &zfsvfs->z_os);
553 	}
554 
555 	if (error)
556 		goto out;
557 
558 	if (error = zfs_init_fs(zfsvfs, &zp, cr))
559 		goto out;
560 
561 	/* The call to zfs_init_fs leaves the vnode held, release it here. */
562 	VN_RELE(ZTOV(zp));
563 
564 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
565 		ASSERT(mode & DS_MODE_READONLY);
566 		atime_changed_cb(zfsvfs, B_FALSE);
567 		readonly_changed_cb(zfsvfs, B_TRUE);
568 		zfsvfs->z_issnap = B_TRUE;
569 	} else {
570 		error = zfs_register_callbacks(vfsp);
571 		if (error)
572 			goto out;
573 
574 		/*
575 		 * Start a delete thread running.
576 		 */
577 		(void) zfs_delete_thread_target(zfsvfs, 1);
578 
579 		/*
580 		 * Parse and replay the intent log.
581 		 */
582 		zil_replay(zfsvfs->z_os, zfsvfs, &zfsvfs->z_assign,
583 		    zfs_replay_vector, (void (*)(void *))zfs_delete_wait_empty);
584 
585 		if (!zil_disable)
586 			zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
587 	}
588 
589 	if (!zfsvfs->z_issnap)
590 		zfsctl_create(zfsvfs);
591 out:
592 	if (error) {
593 		if (zfsvfs->z_os)
594 			dmu_objset_close(zfsvfs->z_os);
595 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
596 	} else {
597 		atomic_add_32(&zfs_active_fs_count, 1);
598 	}
599 
600 	return (error);
601 
602 }
603 
604 void
605 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
606 {
607 	objset_t *os = zfsvfs->z_os;
608 	struct dsl_dataset *ds;
609 
610 	/*
611 	 * Unregister properties.
612 	 */
613 	if (!dmu_objset_is_snapshot(os)) {
614 		ds = dmu_objset_ds(os);
615 		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
616 		    zfsvfs) == 0);
617 
618 		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
619 		    zfsvfs) == 0);
620 
621 		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
622 		    zfsvfs) == 0);
623 
624 		VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
625 		    zfsvfs) == 0);
626 
627 		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
628 		    zfsvfs) == 0);
629 
630 		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
631 		    zfsvfs) == 0);
632 
633 		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
634 		    zfsvfs) == 0);
635 
636 		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
637 		    zfsvfs) == 0);
638 
639 		VERIFY(dsl_prop_unregister(ds, "aclinherit",
640 		    acl_inherit_changed_cb, zfsvfs) == 0);
641 	}
642 }
643 
644 static int
645 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
646 {
647 	int error = 0;
648 	int ret = 0;
649 	static int zfsrootdone = 0;
650 	zfsvfs_t *zfsvfs = NULL;
651 	znode_t *zp = NULL;
652 	vnode_t *vp = NULL;
653 
654 	ASSERT(vfsp);
655 
656 	/*
657 	 * The filesystem that we mount as root is defined in
658 	 * /etc/system using the zfsroot variable.  The value defined
659 	 * there is copied early in startup code to zfs_bootpath
660 	 * (defined in modsysfile.c).
661 	 */
662 	if (why == ROOT_INIT) {
663 		if (zfsrootdone++)
664 			return (EBUSY);
665 
666 		/*
667 		 * This needs to be done here, so that when we return from
668 		 * mountroot, the vfs resource name will be set correctly.
669 		 */
670 		if (snprintf(rootfs.bo_name, BO_MAXOBJNAME, "%s", zfs_bootpath)
671 		    >= BO_MAXOBJNAME)
672 			return (ENAMETOOLONG);
673 
674 		if (error = vfs_lock(vfsp))
675 			return (error);
676 
677 		if (error = zfs_domount(vfsp, zfs_bootpath, CRED()))
678 			goto out;
679 
680 		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
681 		ASSERT(zfsvfs);
682 		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp))
683 			goto out;
684 
685 		vp = ZTOV(zp);
686 		mutex_enter(&vp->v_lock);
687 		vp->v_flag |= VROOT;
688 		mutex_exit(&vp->v_lock);
689 		rootvp = vp;
690 
691 		/*
692 		 * The zfs_zget call above returns with a hold on vp, we release
693 		 * it here.
694 		 */
695 		VN_RELE(vp);
696 
697 		/*
698 		 * Mount root as readonly initially, it will be remouted
699 		 * read/write by /lib/svc/method/fs-usr.
700 		 */
701 		readonly_changed_cb(vfsp->vfs_data, B_TRUE);
702 		vfs_add((struct vnode *)0, vfsp,
703 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
704 out:
705 		vfs_unlock(vfsp);
706 		ret = (error) ? error : 0;
707 		return (ret);
708 
709 	} else if (why == ROOT_REMOUNT) {
710 
711 		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
712 		vfsp->vfs_flag |= VFS_REMOUNT;
713 		return (zfs_refresh_properties(vfsp));
714 
715 	} else if (why == ROOT_UNMOUNT) {
716 		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
717 		(void) zfs_sync(vfsp, 0, 0);
718 		return (0);
719 	}
720 
721 	/*
722 	 * if "why" is equal to anything else other than ROOT_INIT,
723 	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
724 	 */
725 	return (ENOTSUP);
726 }
727 
728 /*ARGSUSED*/
729 static int
730 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
731 {
732 	char		*osname;
733 	pathname_t	spn;
734 	int		error = 0;
735 	uio_seg_t	fromspace = (uap->flags & MS_SYSSPACE) ?
736 				UIO_SYSSPACE : UIO_USERSPACE;
737 	int		canwrite;
738 
739 	if (mvp->v_type != VDIR)
740 		return (ENOTDIR);
741 
742 	mutex_enter(&mvp->v_lock);
743 	if ((uap->flags & MS_REMOUNT) == 0 &&
744 	    (uap->flags & MS_OVERLAY) == 0 &&
745 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
746 		mutex_exit(&mvp->v_lock);
747 		return (EBUSY);
748 	}
749 	mutex_exit(&mvp->v_lock);
750 
751 	/*
752 	 * ZFS does not support passing unparsed data in via MS_DATA.
753 	 * Users should use the MS_OPTIONSTR interface; this means
754 	 * that all option parsing is already done and the options struct
755 	 * can be interrogated.
756 	 */
757 	if ((uap->flags & MS_DATA) && uap->datalen > 0)
758 		return (EINVAL);
759 
760 	/*
761 	 * When doing a remount, we simply refresh our temporary properties
762 	 * according to those options set in the current VFS options.
763 	 */
764 	if (uap->flags & MS_REMOUNT) {
765 		return (zfs_refresh_properties(vfsp));
766 	}
767 
768 	/*
769 	 * Get the objset name (the "special" mount argument).
770 	 */
771 	if (error = pn_get(uap->spec, fromspace, &spn))
772 		return (error);
773 
774 	osname = spn.pn_path;
775 
776 	if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0)
777 		goto out;
778 
779 	/*
780 	 * Refuse to mount a filesystem if we are in a local zone and the
781 	 * dataset is not visible.
782 	 */
783 	if (!INGLOBALZONE(curproc) &&
784 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
785 		error = EPERM;
786 		goto out;
787 	}
788 
789 	error = zfs_domount(vfsp, osname, cr);
790 
791 out:
792 	pn_free(&spn);
793 	return (error);
794 }
795 
796 static int
797 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
798 {
799 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
800 	dmu_objset_stats_t dstats;
801 	dev32_t d32;
802 
803 	ZFS_ENTER(zfsvfs);
804 
805 	dmu_objset_stats(zfsvfs->z_os, &dstats);
806 
807 	/*
808 	 * The underlying storage pool actually uses multiple block sizes.
809 	 * We report the fragsize as the smallest block size we support,
810 	 * and we report our blocksize as the filesystem's maximum blocksize.
811 	 */
812 	statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
813 	statp->f_bsize = zfsvfs->z_max_blksz;
814 
815 	/*
816 	 * The following report "total" blocks of various kinds in the
817 	 * file system, but reported in terms of f_frsize - the
818 	 * "fragment" size.
819 	 */
820 
821 	statp->f_blocks =
822 	    (dstats.dds_space_refd + dstats.dds_available) >> SPA_MINBLOCKSHIFT;
823 	statp->f_bfree = dstats.dds_available >> SPA_MINBLOCKSHIFT;
824 	statp->f_bavail = statp->f_bfree; /* no root reservation */
825 
826 	/*
827 	 * statvfs() should really be called statufs(), because it assumes
828 	 * static metadata.  ZFS doesn't preallocate files, so the best
829 	 * we can do is report the max that could possibly fit in f_files,
830 	 * and that minus the number actually used in f_ffree.
831 	 * For f_ffree, report the smaller of the number of object available
832 	 * and the number of blocks (each object will take at least a block).
833 	 */
834 	statp->f_ffree = MIN(dstats.dds_objects_avail, statp->f_bfree);
835 	statp->f_favail = statp->f_ffree;	/* no "root reservation" */
836 	statp->f_files = statp->f_ffree + dstats.dds_objects_used;
837 
838 	(void) cmpldev(&d32, vfsp->vfs_dev);
839 	statp->f_fsid = d32;
840 
841 	/*
842 	 * We're a zfs filesystem.
843 	 */
844 	(void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
845 
846 	statp->f_flag = vf_to_stf(vfsp->vfs_flag);
847 
848 	statp->f_namemax = ZFS_MAXNAMELEN;
849 
850 	/*
851 	 * We have all of 32 characters to stuff a string here.
852 	 * Is there anything useful we could/should provide?
853 	 */
854 	bzero(statp->f_fstr, sizeof (statp->f_fstr));
855 
856 	ZFS_EXIT(zfsvfs);
857 	return (0);
858 }
859 
860 static int
861 zfs_root(vfs_t *vfsp, vnode_t **vpp)
862 {
863 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
864 	znode_t *rootzp;
865 	int error;
866 
867 	ZFS_ENTER(zfsvfs);
868 
869 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
870 	if (error == 0)
871 		*vpp = ZTOV(rootzp);
872 
873 	ZFS_EXIT(zfsvfs);
874 	return (error);
875 }
876 
877 /*ARGSUSED*/
878 static int
879 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
880 {
881 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
882 	int ret;
883 
884 	if ((ret = secpolicy_fs_unmount(cr, vfsp)) != 0)
885 		return (ret);
886 
887 
888 	(void) dnlc_purge_vfsp(vfsp, 0);
889 
890 	/*
891 	 * Unmount any snapshots mounted under .zfs before unmounting the
892 	 * dataset itself.
893 	 */
894 	if (zfsvfs->z_ctldir != NULL &&
895 	    (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
896 		return (ret);
897 
898 	if (fflag & MS_FORCE) {
899 		vfsp->vfs_flag |= VFS_UNMOUNTED;
900 		zfsvfs->z_unmounted1 = B_TRUE;
901 
902 		/*
903 		 * Wait for all zfs threads to leave zfs.
904 		 * Grabbing a rwlock as reader in all vops and
905 		 * as writer here doesn't work because it too easy to get
906 		 * multiple reader enters as zfs can re-enter itself.
907 		 * This can lead to deadlock if there is an intervening
908 		 * rw_enter as writer.
909 		 * So a file system threads ref count (z_op_cnt) is used.
910 		 * A polling loop on z_op_cnt may seem inefficient, but
911 		 * - this saves all threads on exit from having to grab a
912 		 *   mutex in order to cv_signal
913 		 * - only occurs on forced unmount in the rare case when
914 		 *   there are outstanding threads within the file system.
915 		 */
916 		while (zfsvfs->z_op_cnt) {
917 			delay(1);
918 		}
919 
920 		zfs_objset_close(zfsvfs);
921 
922 		return (0);
923 	}
924 	/*
925 	 * Stop all delete threads.
926 	 */
927 	(void) zfs_delete_thread_target(zfsvfs, 0);
928 
929 	/*
930 	 * Check the number of active vnodes in the file system.
931 	 * Our count is maintained in the vfs structure, but the number
932 	 * is off by 1 to indicate a hold on the vfs structure itself.
933 	 *
934 	 * The '.zfs' directory maintains a reference of its own, and any active
935 	 * references underneath are reflected in the vnode count.
936 	 */
937 	if (zfsvfs->z_ctldir == NULL) {
938 		if (vfsp->vfs_count > 1) {
939 			if ((zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) == 0)
940 				(void) zfs_delete_thread_target(zfsvfs, 1);
941 			return (EBUSY);
942 		}
943 	} else {
944 		if (vfsp->vfs_count > 2 ||
945 		    (zfsvfs->z_ctldir->v_count > 1 && !(fflag & MS_FORCE))) {
946 			if ((zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) == 0)
947 				(void) zfs_delete_thread_target(zfsvfs, 1);
948 			return (EBUSY);
949 		}
950 	}
951 
952 	vfsp->vfs_flag |= VFS_UNMOUNTED;
953 	zfs_objset_close(zfsvfs);
954 
955 	return (0);
956 }
957 
958 static int
959 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
960 {
961 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
962 	znode_t		*zp;
963 	uint64_t	object = 0;
964 	uint64_t	fid_gen = 0;
965 	uint64_t	gen_mask;
966 	uint64_t	zp_gen;
967 	int 		i, err;
968 
969 	*vpp = NULL;
970 
971 	ZFS_ENTER(zfsvfs);
972 
973 	if (fidp->fid_len == LONG_FID_LEN) {
974 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
975 		uint64_t	objsetid = 0;
976 		uint64_t	setgen = 0;
977 
978 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
979 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
980 
981 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
982 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
983 
984 		ZFS_EXIT(zfsvfs);
985 
986 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
987 		if (err)
988 			return (EINVAL);
989 		ZFS_ENTER(zfsvfs);
990 	}
991 
992 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
993 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
994 
995 		for (i = 0; i < sizeof (zfid->zf_object); i++)
996 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
997 
998 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
999 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1000 	} else {
1001 		ZFS_EXIT(zfsvfs);
1002 		return (EINVAL);
1003 	}
1004 
1005 	/* A zero fid_gen means we are in the .zfs control directories */
1006 	if (fid_gen == 0 &&
1007 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1008 		*vpp = zfsvfs->z_ctldir;
1009 		ASSERT(*vpp != NULL);
1010 		if (object == ZFSCTL_INO_SNAPDIR) {
1011 			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1012 			    0, NULL, NULL) == 0);
1013 		} else {
1014 			VN_HOLD(*vpp);
1015 		}
1016 		ZFS_EXIT(zfsvfs);
1017 		return (0);
1018 	}
1019 
1020 	gen_mask = -1ULL >> (64 - 8 * i);
1021 
1022 	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1023 	if (err = zfs_zget(zfsvfs, object, &zp)) {
1024 		ZFS_EXIT(zfsvfs);
1025 		return (err);
1026 	}
1027 	zp_gen = zp->z_phys->zp_gen & gen_mask;
1028 	if (zp_gen == 0)
1029 		zp_gen = 1;
1030 	if (zp->z_reap || zp_gen != fid_gen) {
1031 		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1032 		VN_RELE(ZTOV(zp));
1033 		ZFS_EXIT(zfsvfs);
1034 		return (EINVAL);
1035 	}
1036 
1037 	*vpp = ZTOV(zp);
1038 	ZFS_EXIT(zfsvfs);
1039 	return (0);
1040 }
1041 
1042 static void
1043 zfs_objset_close(zfsvfs_t *zfsvfs)
1044 {
1045 	zfs_delete_t	*zd = &zfsvfs->z_delete_head;
1046 	znode_t		*zp, *nextzp;
1047 	objset_t	*os = zfsvfs->z_os;
1048 
1049 	/*
1050 	 * Stop all delete threads.
1051 	 */
1052 	(void) zfs_delete_thread_target(zfsvfs, 0);
1053 
1054 	/*
1055 	 * For forced unmount, at this point all vops except zfs_inactive
1056 	 * are erroring EIO. We need to now suspend zfs_inactive threads
1057 	 * while we are freeing dbufs before switching zfs_inactive
1058 	 * to use behaviour without a objset.
1059 	 */
1060 	rw_enter(&zfsvfs->z_um_lock, RW_WRITER);
1061 
1062 	/*
1063 	 * Release all delete in progress znodes
1064 	 * They will be processed when the file system remounts.
1065 	 */
1066 	mutex_enter(&zd->z_mutex);
1067 	while (zp = list_head(&zd->z_znodes)) {
1068 		list_remove(&zd->z_znodes, zp);
1069 		zp->z_dbuf_held = 0;
1070 		dmu_buf_rele(zp->z_dbuf, NULL);
1071 	}
1072 	mutex_exit(&zd->z_mutex);
1073 
1074 	/*
1075 	 * Release all holds on dbufs
1076 	 * Note, although we have stopped all other vop threads and
1077 	 * zfs_inactive(), the dmu can callback via znode_pageout_func()
1078 	 * which can zfs_znode_free() the znode.
1079 	 * So we lock z_all_znodes; search the list for a held
1080 	 * dbuf; drop the lock (we know zp can't disappear if we hold
1081 	 * a dbuf lock; then regrab the lock and restart.
1082 	 */
1083 	mutex_enter(&zfsvfs->z_znodes_lock);
1084 	for (zp = list_head(&zfsvfs->z_all_znodes); zp; zp = nextzp) {
1085 		nextzp = list_next(&zfsvfs->z_all_znodes, zp);
1086 		if (zp->z_dbuf_held) {
1087 			/* dbufs should only be held when force unmounting */
1088 			zp->z_dbuf_held = 0;
1089 			mutex_exit(&zfsvfs->z_znodes_lock);
1090 			dmu_buf_rele(zp->z_dbuf, NULL);
1091 			/* Start again */
1092 			mutex_enter(&zfsvfs->z_znodes_lock);
1093 			nextzp = list_head(&zfsvfs->z_all_znodes);
1094 		}
1095 	}
1096 	mutex_exit(&zfsvfs->z_znodes_lock);
1097 
1098 	/*
1099 	 * Unregister properties.
1100 	 */
1101 	if (!dmu_objset_is_snapshot(os))
1102 		zfs_unregister_callbacks(zfsvfs);
1103 
1104 	/*
1105 	 * Switch zfs_inactive to behaviour without an objset.
1106 	 * It just tosses cached pages and frees the znode & vnode.
1107 	 * Then re-enable zfs_inactive threads in that new behaviour.
1108 	 */
1109 	zfsvfs->z_unmounted2 = B_TRUE;
1110 	rw_exit(&zfsvfs->z_um_lock); /* re-enable any zfs_inactive threads */
1111 
1112 	/*
1113 	 * Close the zil. Can't close the zil while zfs_inactive
1114 	 * threads are blocked as zil_close can call zfs_inactive.
1115 	 */
1116 	if (zfsvfs->z_log) {
1117 		zil_close(zfsvfs->z_log);
1118 		zfsvfs->z_log = NULL;
1119 	}
1120 
1121 	/*
1122 	 * Evict all dbufs so that cached znodes will be freed
1123 	 */
1124 	if (dmu_objset_evict_dbufs(os, 1)) {
1125 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1126 		(void) dmu_objset_evict_dbufs(os, 0);
1127 	}
1128 
1129 	/*
1130 	 * Finally close the objset
1131 	 */
1132 	dmu_objset_close(os);
1133 
1134 	/*
1135 	 * We can now safely destroy the '.zfs' directory node.
1136 	 */
1137 	if (zfsvfs->z_ctldir != NULL)
1138 		zfsctl_destroy(zfsvfs);
1139 
1140 }
1141 
1142 static void
1143 zfs_freevfs(vfs_t *vfsp)
1144 {
1145 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1146 
1147 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1148 
1149 	atomic_add_32(&zfs_active_fs_count, -1);
1150 }
1151 
1152 /*
1153  * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
1154  * so we can't safely do any non-idempotent initialization here.
1155  * Leave that to zfs_init() and zfs_fini(), which are called
1156  * from the module's _init() and _fini() entry points.
1157  */
1158 /*ARGSUSED*/
1159 static int
1160 zfs_vfsinit(int fstype, char *name)
1161 {
1162 	int error;
1163 
1164 	zfsfstype = fstype;
1165 
1166 	/*
1167 	 * Setup vfsops and vnodeops tables.
1168 	 */
1169 	error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
1170 	if (error != 0) {
1171 		cmn_err(CE_WARN, "zfs: bad vfs ops template");
1172 	}
1173 
1174 	error = zfs_create_op_tables();
1175 	if (error) {
1176 		zfs_remove_op_tables();
1177 		cmn_err(CE_WARN, "zfs: bad vnode ops template");
1178 		(void) vfs_freevfsops_by_type(zfsfstype);
1179 		return (error);
1180 	}
1181 
1182 	mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
1183 
1184 	/*
1185 	 * Unique major number for all zfs mounts.
1186 	 * If we run out of 32-bit minors, we'll getudev() another major.
1187 	 */
1188 	zfs_major = ddi_name_to_major(ZFS_DRIVER);
1189 	zfs_minor = ZFS_MIN_MINOR;
1190 
1191 	return (0);
1192 }
1193 
1194 void
1195 zfs_init(void)
1196 {
1197 	/*
1198 	 * Initialize .zfs directory structures
1199 	 */
1200 	zfsctl_init();
1201 
1202 	/*
1203 	 * Initialize znode cache, vnode ops, etc...
1204 	 */
1205 	zfs_znode_init();
1206 }
1207 
1208 void
1209 zfs_fini(void)
1210 {
1211 	zfsctl_fini();
1212 	zfs_znode_fini();
1213 }
1214 
1215 int
1216 zfs_busy(void)
1217 {
1218 	return (zfs_active_fs_count != 0);
1219 }
1220 
1221 static vfsdef_t vfw = {
1222 	VFSDEF_VERSION,
1223 	MNTTYPE_ZFS,
1224 	zfs_vfsinit,
1225 	VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS,
1226 	&zfs_mntopts
1227 };
1228 
1229 struct modlfs zfs_modlfs = {
1230 	&mod_fsops, "ZFS filesystem version 1", &vfw
1231 };
1232