1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 */ 26 27 /* Portions Copyright 2010 Robert Milkowski */ 28 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/kmem.h> 34 #include <sys/pathname.h> 35 #include <sys/vnode.h> 36 #include <sys/vfs.h> 37 #include <sys/vfs_opreg.h> 38 #include <sys/mntent.h> 39 #include <sys/mount.h> 40 #include <sys/cmn_err.h> 41 #include "fs/fs_subr.h" 42 #include <sys/zfs_znode.h> 43 #include <sys/zfs_dir.h> 44 #include <sys/zil.h> 45 #include <sys/fs/zfs.h> 46 #include <sys/dmu.h> 47 #include <sys/dsl_prop.h> 48 #include <sys/dsl_dataset.h> 49 #include <sys/dsl_deleg.h> 50 #include <sys/spa.h> 51 #include <sys/zap.h> 52 #include <sys/sa.h> 53 #include <sys/sa_impl.h> 54 #include <sys/varargs.h> 55 #include <sys/policy.h> 56 #include <sys/atomic.h> 57 #include <sys/mkdev.h> 58 #include <sys/modctl.h> 59 #include <sys/refstr.h> 60 #include <sys/zfs_ioctl.h> 61 #include <sys/zfs_ctldir.h> 62 #include <sys/zfs_fuid.h> 63 #include <sys/bootconf.h> 64 #include <sys/sunddi.h> 65 #include <sys/dnlc.h> 66 #include <sys/dmu_objset.h> 67 #include <sys/spa_boot.h> 68 #include "zfs_comutil.h" 69 70 int zfsfstype; 71 vfsops_t *zfs_vfsops = NULL; 72 static major_t zfs_major; 73 static minor_t zfs_minor; 74 static kmutex_t zfs_dev_mtx; 75 76 extern int sys_shutdown; 77 78 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 79 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 80 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 81 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 82 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 83 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 84 static void zfs_freevfs(vfs_t *vfsp); 85 86 static const fs_operation_def_t zfs_vfsops_template[] = { 87 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 88 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 89 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 90 VFSNAME_ROOT, { .vfs_root = zfs_root }, 91 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 92 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 93 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 94 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 95 NULL, NULL 96 }; 97 98 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 99 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 100 NULL, NULL 101 }; 102 103 /* 104 * We need to keep a count of active fs's. 105 * This is necessary to prevent our module 106 * from being unloaded after a umount -f 107 */ 108 static uint32_t zfs_active_fs_count = 0; 109 110 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 111 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 112 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 113 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 114 115 /* 116 * MO_DEFAULT is not used since the default value is determined 117 * by the equivalent property. 118 */ 119 static mntopt_t mntopts[] = { 120 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 121 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 122 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 123 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 124 }; 125 126 static mntopts_t zfs_mntopts = { 127 sizeof (mntopts) / sizeof (mntopt_t), 128 mntopts 129 }; 130 131 /*ARGSUSED*/ 132 int 133 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 134 { 135 /* 136 * Data integrity is job one. We don't want a compromised kernel 137 * writing to the storage pool, so we never sync during panic. 138 */ 139 if (panicstr) 140 return (0); 141 142 /* 143 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 144 * to sync metadata, which they would otherwise cache indefinitely. 145 * Semantically, the only requirement is that the sync be initiated. 146 * The DMU syncs out txgs frequently, so there's nothing to do. 147 */ 148 if (flag & SYNC_ATTR) 149 return (0); 150 151 if (vfsp != NULL) { 152 /* 153 * Sync a specific filesystem. 154 */ 155 zfsvfs_t *zfsvfs = vfsp->vfs_data; 156 dsl_pool_t *dp; 157 158 ZFS_ENTER(zfsvfs); 159 dp = dmu_objset_pool(zfsvfs->z_os); 160 161 /* 162 * If the system is shutting down, then skip any 163 * filesystems which may exist on a suspended pool. 164 */ 165 if (sys_shutdown && spa_suspended(dp->dp_spa)) { 166 ZFS_EXIT(zfsvfs); 167 return (0); 168 } 169 170 if (zfsvfs->z_log != NULL) 171 zil_commit(zfsvfs->z_log, 0); 172 173 ZFS_EXIT(zfsvfs); 174 } else { 175 /* 176 * Sync all ZFS filesystems. This is what happens when you 177 * run sync(1M). Unlike other filesystems, ZFS honors the 178 * request by waiting for all pools to commit all dirty data. 179 */ 180 spa_sync_allpools(); 181 } 182 183 return (0); 184 } 185 186 static int 187 zfs_create_unique_device(dev_t *dev) 188 { 189 major_t new_major; 190 191 do { 192 ASSERT3U(zfs_minor, <=, MAXMIN32); 193 minor_t start = zfs_minor; 194 do { 195 mutex_enter(&zfs_dev_mtx); 196 if (zfs_minor >= MAXMIN32) { 197 /* 198 * If we're still using the real major 199 * keep out of /dev/zfs and /dev/zvol minor 200 * number space. If we're using a getudev()'ed 201 * major number, we can use all of its minors. 202 */ 203 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 204 zfs_minor = ZFS_MIN_MINOR; 205 else 206 zfs_minor = 0; 207 } else { 208 zfs_minor++; 209 } 210 *dev = makedevice(zfs_major, zfs_minor); 211 mutex_exit(&zfs_dev_mtx); 212 } while (vfs_devismounted(*dev) && zfs_minor != start); 213 if (zfs_minor == start) { 214 /* 215 * We are using all ~262,000 minor numbers for the 216 * current major number. Create a new major number. 217 */ 218 if ((new_major = getudev()) == (major_t)-1) { 219 cmn_err(CE_WARN, 220 "zfs_mount: Can't get unique major " 221 "device number."); 222 return (-1); 223 } 224 mutex_enter(&zfs_dev_mtx); 225 zfs_major = new_major; 226 zfs_minor = 0; 227 228 mutex_exit(&zfs_dev_mtx); 229 } else { 230 break; 231 } 232 /* CONSTANTCONDITION */ 233 } while (1); 234 235 return (0); 236 } 237 238 static void 239 atime_changed_cb(void *arg, uint64_t newval) 240 { 241 zfsvfs_t *zfsvfs = arg; 242 243 if (newval == TRUE) { 244 zfsvfs->z_atime = TRUE; 245 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 246 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 247 } else { 248 zfsvfs->z_atime = FALSE; 249 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 250 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 251 } 252 } 253 254 static void 255 xattr_changed_cb(void *arg, uint64_t newval) 256 { 257 zfsvfs_t *zfsvfs = arg; 258 259 if (newval == TRUE) { 260 /* XXX locking on vfs_flag? */ 261 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 262 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 263 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 264 } else { 265 /* XXX locking on vfs_flag? */ 266 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 267 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 268 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 269 } 270 } 271 272 static void 273 blksz_changed_cb(void *arg, uint64_t newval) 274 { 275 zfsvfs_t *zfsvfs = arg; 276 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os))); 277 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE); 278 ASSERT(ISP2(newval)); 279 280 zfsvfs->z_max_blksz = newval; 281 zfsvfs->z_vfs->vfs_bsize = newval; 282 } 283 284 static void 285 readonly_changed_cb(void *arg, uint64_t newval) 286 { 287 zfsvfs_t *zfsvfs = arg; 288 289 if (newval) { 290 /* XXX locking on vfs_flag? */ 291 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 292 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 293 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 294 } else { 295 /* XXX locking on vfs_flag? */ 296 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 297 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 298 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 299 } 300 } 301 302 static void 303 devices_changed_cb(void *arg, uint64_t newval) 304 { 305 zfsvfs_t *zfsvfs = arg; 306 307 if (newval == FALSE) { 308 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 309 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 310 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 311 } else { 312 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 313 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 314 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 315 } 316 } 317 318 static void 319 setuid_changed_cb(void *arg, uint64_t newval) 320 { 321 zfsvfs_t *zfsvfs = arg; 322 323 if (newval == FALSE) { 324 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 325 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 326 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 327 } else { 328 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 329 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 330 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 331 } 332 } 333 334 static void 335 exec_changed_cb(void *arg, uint64_t newval) 336 { 337 zfsvfs_t *zfsvfs = arg; 338 339 if (newval == FALSE) { 340 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 341 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 342 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 343 } else { 344 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 345 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 346 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 347 } 348 } 349 350 /* 351 * The nbmand mount option can be changed at mount time. 352 * We can't allow it to be toggled on live file systems or incorrect 353 * behavior may be seen from cifs clients 354 * 355 * This property isn't registered via dsl_prop_register(), but this callback 356 * will be called when a file system is first mounted 357 */ 358 static void 359 nbmand_changed_cb(void *arg, uint64_t newval) 360 { 361 zfsvfs_t *zfsvfs = arg; 362 if (newval == FALSE) { 363 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 364 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 365 } else { 366 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 367 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 368 } 369 } 370 371 static void 372 snapdir_changed_cb(void *arg, uint64_t newval) 373 { 374 zfsvfs_t *zfsvfs = arg; 375 376 zfsvfs->z_show_ctldir = newval; 377 } 378 379 static void 380 vscan_changed_cb(void *arg, uint64_t newval) 381 { 382 zfsvfs_t *zfsvfs = arg; 383 384 zfsvfs->z_vscan = newval; 385 } 386 387 static void 388 acl_mode_changed_cb(void *arg, uint64_t newval) 389 { 390 zfsvfs_t *zfsvfs = arg; 391 392 zfsvfs->z_acl_mode = newval; 393 } 394 395 static void 396 acl_inherit_changed_cb(void *arg, uint64_t newval) 397 { 398 zfsvfs_t *zfsvfs = arg; 399 400 zfsvfs->z_acl_inherit = newval; 401 } 402 403 static int 404 zfs_register_callbacks(vfs_t *vfsp) 405 { 406 struct dsl_dataset *ds = NULL; 407 objset_t *os = NULL; 408 zfsvfs_t *zfsvfs = NULL; 409 uint64_t nbmand; 410 boolean_t readonly = B_FALSE; 411 boolean_t do_readonly = B_FALSE; 412 boolean_t setuid = B_FALSE; 413 boolean_t do_setuid = B_FALSE; 414 boolean_t exec = B_FALSE; 415 boolean_t do_exec = B_FALSE; 416 boolean_t devices = B_FALSE; 417 boolean_t do_devices = B_FALSE; 418 boolean_t xattr = B_FALSE; 419 boolean_t do_xattr = B_FALSE; 420 boolean_t atime = B_FALSE; 421 boolean_t do_atime = B_FALSE; 422 int error = 0; 423 424 ASSERT(vfsp); 425 zfsvfs = vfsp->vfs_data; 426 ASSERT(zfsvfs); 427 os = zfsvfs->z_os; 428 429 /* 430 * The act of registering our callbacks will destroy any mount 431 * options we may have. In order to enable temporary overrides 432 * of mount options, we stash away the current values and 433 * restore them after we register the callbacks. 434 */ 435 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) || 436 !spa_writeable(dmu_objset_spa(os))) { 437 readonly = B_TRUE; 438 do_readonly = B_TRUE; 439 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 440 readonly = B_FALSE; 441 do_readonly = B_TRUE; 442 } 443 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 444 devices = B_FALSE; 445 setuid = B_FALSE; 446 do_devices = B_TRUE; 447 do_setuid = B_TRUE; 448 } else { 449 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 450 devices = B_FALSE; 451 do_devices = B_TRUE; 452 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 453 devices = B_TRUE; 454 do_devices = B_TRUE; 455 } 456 457 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 458 setuid = B_FALSE; 459 do_setuid = B_TRUE; 460 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 461 setuid = B_TRUE; 462 do_setuid = B_TRUE; 463 } 464 } 465 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 466 exec = B_FALSE; 467 do_exec = B_TRUE; 468 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 469 exec = B_TRUE; 470 do_exec = B_TRUE; 471 } 472 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 473 xattr = B_FALSE; 474 do_xattr = B_TRUE; 475 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 476 xattr = B_TRUE; 477 do_xattr = B_TRUE; 478 } 479 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 480 atime = B_FALSE; 481 do_atime = B_TRUE; 482 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 483 atime = B_TRUE; 484 do_atime = B_TRUE; 485 } 486 487 /* 488 * nbmand is a special property. It can only be changed at 489 * mount time. 490 * 491 * This is weird, but it is documented to only be changeable 492 * at mount time. 493 */ 494 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 495 nbmand = B_FALSE; 496 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 497 nbmand = B_TRUE; 498 } else { 499 char osname[MAXNAMELEN]; 500 501 dmu_objset_name(os, osname); 502 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 503 NULL)) { 504 return (error); 505 } 506 } 507 508 /* 509 * Register property callbacks. 510 * 511 * It would probably be fine to just check for i/o error from 512 * the first prop_register(), but I guess I like to go 513 * overboard... 514 */ 515 ds = dmu_objset_ds(os); 516 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 517 error = dsl_prop_register(ds, 518 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs); 519 error = error ? error : dsl_prop_register(ds, 520 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs); 521 error = error ? error : dsl_prop_register(ds, 522 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs); 523 error = error ? error : dsl_prop_register(ds, 524 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs); 525 error = error ? error : dsl_prop_register(ds, 526 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs); 527 error = error ? error : dsl_prop_register(ds, 528 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs); 529 error = error ? error : dsl_prop_register(ds, 530 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs); 531 error = error ? error : dsl_prop_register(ds, 532 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs); 533 error = error ? error : dsl_prop_register(ds, 534 zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs); 535 error = error ? error : dsl_prop_register(ds, 536 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, 537 zfsvfs); 538 error = error ? error : dsl_prop_register(ds, 539 zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs); 540 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 541 if (error) 542 goto unregister; 543 544 /* 545 * Invoke our callbacks to restore temporary mount options. 546 */ 547 if (do_readonly) 548 readonly_changed_cb(zfsvfs, readonly); 549 if (do_setuid) 550 setuid_changed_cb(zfsvfs, setuid); 551 if (do_exec) 552 exec_changed_cb(zfsvfs, exec); 553 if (do_devices) 554 devices_changed_cb(zfsvfs, devices); 555 if (do_xattr) 556 xattr_changed_cb(zfsvfs, xattr); 557 if (do_atime) 558 atime_changed_cb(zfsvfs, atime); 559 560 nbmand_changed_cb(zfsvfs, nbmand); 561 562 return (0); 563 564 unregister: 565 dsl_prop_unregister_all(ds, zfsvfs); 566 return (error); 567 } 568 569 static int 570 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data, 571 uint64_t *userp, uint64_t *groupp) 572 { 573 /* 574 * Is it a valid type of object to track? 575 */ 576 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) 577 return (SET_ERROR(ENOENT)); 578 579 /* 580 * If we have a NULL data pointer 581 * then assume the id's aren't changing and 582 * return EEXIST to the dmu to let it know to 583 * use the same ids 584 */ 585 if (data == NULL) 586 return (SET_ERROR(EEXIST)); 587 588 if (bonustype == DMU_OT_ZNODE) { 589 znode_phys_t *znp = data; 590 *userp = znp->zp_uid; 591 *groupp = znp->zp_gid; 592 } else { 593 int hdrsize; 594 sa_hdr_phys_t *sap = data; 595 sa_hdr_phys_t sa = *sap; 596 boolean_t swap = B_FALSE; 597 598 ASSERT(bonustype == DMU_OT_SA); 599 600 if (sa.sa_magic == 0) { 601 /* 602 * This should only happen for newly created 603 * files that haven't had the znode data filled 604 * in yet. 605 */ 606 *userp = 0; 607 *groupp = 0; 608 return (0); 609 } 610 if (sa.sa_magic == BSWAP_32(SA_MAGIC)) { 611 sa.sa_magic = SA_MAGIC; 612 sa.sa_layout_info = BSWAP_16(sa.sa_layout_info); 613 swap = B_TRUE; 614 } else { 615 VERIFY3U(sa.sa_magic, ==, SA_MAGIC); 616 } 617 618 hdrsize = sa_hdrsize(&sa); 619 VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t)); 620 *userp = *((uint64_t *)((uintptr_t)data + hdrsize + 621 SA_UID_OFFSET)); 622 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize + 623 SA_GID_OFFSET)); 624 if (swap) { 625 *userp = BSWAP_64(*userp); 626 *groupp = BSWAP_64(*groupp); 627 } 628 } 629 return (0); 630 } 631 632 static void 633 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, 634 char *domainbuf, int buflen, uid_t *ridp) 635 { 636 uint64_t fuid; 637 const char *domain; 638 639 fuid = strtonum(fuidstr, NULL); 640 641 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); 642 if (domain) 643 (void) strlcpy(domainbuf, domain, buflen); 644 else 645 domainbuf[0] = '\0'; 646 *ridp = FUID_RID(fuid); 647 } 648 649 static uint64_t 650 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) 651 { 652 switch (type) { 653 case ZFS_PROP_USERUSED: 654 return (DMU_USERUSED_OBJECT); 655 case ZFS_PROP_GROUPUSED: 656 return (DMU_GROUPUSED_OBJECT); 657 case ZFS_PROP_USERQUOTA: 658 return (zfsvfs->z_userquota_obj); 659 case ZFS_PROP_GROUPQUOTA: 660 return (zfsvfs->z_groupquota_obj); 661 } 662 return (0); 663 } 664 665 int 666 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 667 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) 668 { 669 int error; 670 zap_cursor_t zc; 671 zap_attribute_t za; 672 zfs_useracct_t *buf = vbuf; 673 uint64_t obj; 674 675 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 676 return (SET_ERROR(ENOTSUP)); 677 678 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 679 if (obj == 0) { 680 *bufsizep = 0; 681 return (0); 682 } 683 684 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); 685 (error = zap_cursor_retrieve(&zc, &za)) == 0; 686 zap_cursor_advance(&zc)) { 687 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > 688 *bufsizep) 689 break; 690 691 fuidstr_to_sid(zfsvfs, za.za_name, 692 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); 693 694 buf->zu_space = za.za_first_integer; 695 buf++; 696 } 697 if (error == ENOENT) 698 error = 0; 699 700 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); 701 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; 702 *cookiep = zap_cursor_serialize(&zc); 703 zap_cursor_fini(&zc); 704 return (error); 705 } 706 707 /* 708 * buf must be big enough (eg, 32 bytes) 709 */ 710 static int 711 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, 712 char *buf, boolean_t addok) 713 { 714 uint64_t fuid; 715 int domainid = 0; 716 717 if (domain && domain[0]) { 718 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); 719 if (domainid == -1) 720 return (SET_ERROR(ENOENT)); 721 } 722 fuid = FUID_ENCODE(domainid, rid); 723 (void) sprintf(buf, "%llx", (longlong_t)fuid); 724 return (0); 725 } 726 727 int 728 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 729 const char *domain, uint64_t rid, uint64_t *valp) 730 { 731 char buf[32]; 732 int err; 733 uint64_t obj; 734 735 *valp = 0; 736 737 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 738 return (SET_ERROR(ENOTSUP)); 739 740 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 741 if (obj == 0) 742 return (0); 743 744 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE); 745 if (err) 746 return (err); 747 748 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); 749 if (err == ENOENT) 750 err = 0; 751 return (err); 752 } 753 754 int 755 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 756 const char *domain, uint64_t rid, uint64_t quota) 757 { 758 char buf[32]; 759 int err; 760 dmu_tx_t *tx; 761 uint64_t *objp; 762 boolean_t fuid_dirtied; 763 764 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA) 765 return (SET_ERROR(EINVAL)); 766 767 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) 768 return (SET_ERROR(ENOTSUP)); 769 770 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj : 771 &zfsvfs->z_groupquota_obj; 772 773 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE); 774 if (err) 775 return (err); 776 fuid_dirtied = zfsvfs->z_fuid_dirty; 777 778 tx = dmu_tx_create(zfsvfs->z_os); 779 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); 780 if (*objp == 0) { 781 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 782 zfs_userquota_prop_prefixes[type]); 783 } 784 if (fuid_dirtied) 785 zfs_fuid_txhold(zfsvfs, tx); 786 err = dmu_tx_assign(tx, TXG_WAIT); 787 if (err) { 788 dmu_tx_abort(tx); 789 return (err); 790 } 791 792 mutex_enter(&zfsvfs->z_lock); 793 if (*objp == 0) { 794 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, 795 DMU_OT_NONE, 0, tx); 796 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 797 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); 798 } 799 mutex_exit(&zfsvfs->z_lock); 800 801 if (quota == 0) { 802 err = zap_remove(zfsvfs->z_os, *objp, buf, tx); 803 if (err == ENOENT) 804 err = 0; 805 } else { 806 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); 807 } 808 ASSERT(err == 0); 809 if (fuid_dirtied) 810 zfs_fuid_sync(zfsvfs, tx); 811 dmu_tx_commit(tx); 812 return (err); 813 } 814 815 boolean_t 816 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid) 817 { 818 char buf[32]; 819 uint64_t used, quota, usedobj, quotaobj; 820 int err; 821 822 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 823 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 824 825 if (quotaobj == 0 || zfsvfs->z_replay) 826 return (B_FALSE); 827 828 (void) sprintf(buf, "%llx", (longlong_t)fuid); 829 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); 830 if (err != 0) 831 return (B_FALSE); 832 833 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); 834 if (err != 0) 835 return (B_FALSE); 836 return (used >= quota); 837 } 838 839 boolean_t 840 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup) 841 { 842 uint64_t fuid; 843 uint64_t quotaobj; 844 845 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 846 847 fuid = isgroup ? zp->z_gid : zp->z_uid; 848 849 if (quotaobj == 0 || zfsvfs->z_replay) 850 return (B_FALSE); 851 852 return (zfs_fuid_overquota(zfsvfs, isgroup, fuid)); 853 } 854 855 int 856 zfsvfs_create(const char *osname, zfsvfs_t **zfvp) 857 { 858 objset_t *os; 859 zfsvfs_t *zfsvfs; 860 uint64_t zval; 861 int i, error; 862 uint64_t sa_obj; 863 864 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 865 866 /* 867 * We claim to always be readonly so we can open snapshots; 868 * other ZPL code will prevent us from writing to snapshots. 869 */ 870 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os); 871 if (error) { 872 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 873 return (error); 874 } 875 876 /* 877 * Initialize the zfs-specific filesystem structure. 878 * Should probably make this a kmem cache, shuffle fields, 879 * and just bzero up to z_hold_mtx[]. 880 */ 881 zfsvfs->z_vfs = NULL; 882 zfsvfs->z_parent = zfsvfs; 883 zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE; 884 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 885 zfsvfs->z_os = os; 886 887 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 888 if (error) { 889 goto out; 890 } else if (zfsvfs->z_version > 891 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { 892 (void) printf("Can't mount a version %lld file system " 893 "on a version %lld pool\n. Pool must be upgraded to mount " 894 "this file system.", (u_longlong_t)zfsvfs->z_version, 895 (u_longlong_t)spa_version(dmu_objset_spa(os))); 896 error = SET_ERROR(ENOTSUP); 897 goto out; 898 } 899 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 900 goto out; 901 zfsvfs->z_norm = (int)zval; 902 903 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 904 goto out; 905 zfsvfs->z_utf8 = (zval != 0); 906 907 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 908 goto out; 909 zfsvfs->z_case = (uint_t)zval; 910 911 /* 912 * Fold case on file systems that are always or sometimes case 913 * insensitive. 914 */ 915 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 916 zfsvfs->z_case == ZFS_CASE_MIXED) 917 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 918 919 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 920 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 921 922 if (zfsvfs->z_use_sa) { 923 /* should either have both of these objects or none */ 924 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, 925 &sa_obj); 926 if (error) 927 goto out; 928 } else { 929 /* 930 * Pre SA versions file systems should never touch 931 * either the attribute registration or layout objects. 932 */ 933 sa_obj = 0; 934 } 935 936 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 937 &zfsvfs->z_attr_table); 938 if (error) 939 goto out; 940 941 if (zfsvfs->z_version >= ZPL_VERSION_SA) 942 sa_register_update_callback(os, zfs_sa_upgrade); 943 944 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 945 &zfsvfs->z_root); 946 if (error) 947 goto out; 948 ASSERT(zfsvfs->z_root != 0); 949 950 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 951 &zfsvfs->z_unlinkedobj); 952 if (error) 953 goto out; 954 955 error = zap_lookup(os, MASTER_NODE_OBJ, 956 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 957 8, 1, &zfsvfs->z_userquota_obj); 958 if (error && error != ENOENT) 959 goto out; 960 961 error = zap_lookup(os, MASTER_NODE_OBJ, 962 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 963 8, 1, &zfsvfs->z_groupquota_obj); 964 if (error && error != ENOENT) 965 goto out; 966 967 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 968 &zfsvfs->z_fuid_obj); 969 if (error && error != ENOENT) 970 goto out; 971 972 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 973 &zfsvfs->z_shares_dir); 974 if (error && error != ENOENT) 975 goto out; 976 977 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 978 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 979 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 980 offsetof(znode_t, z_link_node)); 981 rrm_init(&zfsvfs->z_teardown_lock, B_FALSE); 982 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 983 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 984 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 985 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 986 987 *zfvp = zfsvfs; 988 return (0); 989 990 out: 991 dmu_objset_disown(os, zfsvfs); 992 *zfvp = NULL; 993 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 994 return (error); 995 } 996 997 static int 998 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 999 { 1000 int error; 1001 1002 error = zfs_register_callbacks(zfsvfs->z_vfs); 1003 if (error) 1004 return (error); 1005 1006 /* 1007 * Set the objset user_ptr to track its zfsvfs. 1008 */ 1009 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1010 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1011 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1012 1013 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 1014 1015 /* 1016 * If we are not mounting (ie: online recv), then we don't 1017 * have to worry about replaying the log as we blocked all 1018 * operations out since we closed the ZIL. 1019 */ 1020 if (mounting) { 1021 boolean_t readonly; 1022 1023 /* 1024 * During replay we remove the read only flag to 1025 * allow replays to succeed. 1026 */ 1027 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 1028 if (readonly != 0) 1029 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 1030 else 1031 zfs_unlinked_drain(zfsvfs); 1032 1033 /* 1034 * Parse and replay the intent log. 1035 * 1036 * Because of ziltest, this must be done after 1037 * zfs_unlinked_drain(). (Further note: ziltest 1038 * doesn't use readonly mounts, where 1039 * zfs_unlinked_drain() isn't called.) This is because 1040 * ziltest causes spa_sync() to think it's committed, 1041 * but actually it is not, so the intent log contains 1042 * many txg's worth of changes. 1043 * 1044 * In particular, if object N is in the unlinked set in 1045 * the last txg to actually sync, then it could be 1046 * actually freed in a later txg and then reallocated 1047 * in a yet later txg. This would write a "create 1048 * object N" record to the intent log. Normally, this 1049 * would be fine because the spa_sync() would have 1050 * written out the fact that object N is free, before 1051 * we could write the "create object N" intent log 1052 * record. 1053 * 1054 * But when we are in ziltest mode, we advance the "open 1055 * txg" without actually spa_sync()-ing the changes to 1056 * disk. So we would see that object N is still 1057 * allocated and in the unlinked set, and there is an 1058 * intent log record saying to allocate it. 1059 */ 1060 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) { 1061 if (zil_replay_disable) { 1062 zil_destroy(zfsvfs->z_log, B_FALSE); 1063 } else { 1064 zfsvfs->z_replay = B_TRUE; 1065 zil_replay(zfsvfs->z_os, zfsvfs, 1066 zfs_replay_vector); 1067 zfsvfs->z_replay = B_FALSE; 1068 } 1069 } 1070 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 1071 } 1072 1073 return (0); 1074 } 1075 1076 void 1077 zfsvfs_free(zfsvfs_t *zfsvfs) 1078 { 1079 int i; 1080 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */ 1081 1082 /* 1083 * This is a barrier to prevent the filesystem from going away in 1084 * zfs_znode_move() until we can safely ensure that the filesystem is 1085 * not unmounted. We consider the filesystem valid before the barrier 1086 * and invalid after the barrier. 1087 */ 1088 rw_enter(&zfsvfs_lock, RW_READER); 1089 rw_exit(&zfsvfs_lock); 1090 1091 zfs_fuid_destroy(zfsvfs); 1092 1093 mutex_destroy(&zfsvfs->z_znodes_lock); 1094 mutex_destroy(&zfsvfs->z_lock); 1095 list_destroy(&zfsvfs->z_all_znodes); 1096 rrm_destroy(&zfsvfs->z_teardown_lock); 1097 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1098 rw_destroy(&zfsvfs->z_fuid_lock); 1099 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1100 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1101 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1102 } 1103 1104 static void 1105 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 1106 { 1107 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1108 if (zfsvfs->z_vfs) { 1109 if (zfsvfs->z_use_fuids) { 1110 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1111 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1112 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1113 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1114 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1115 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1116 } else { 1117 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1118 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1119 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1120 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1121 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1122 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1123 } 1124 } 1125 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 1126 } 1127 1128 static int 1129 zfs_domount(vfs_t *vfsp, char *osname) 1130 { 1131 dev_t mount_dev; 1132 uint64_t recordsize, fsid_guid; 1133 int error = 0; 1134 zfsvfs_t *zfsvfs; 1135 1136 ASSERT(vfsp); 1137 ASSERT(osname); 1138 1139 error = zfsvfs_create(osname, &zfsvfs); 1140 if (error) 1141 return (error); 1142 zfsvfs->z_vfs = vfsp; 1143 1144 /* Initialize the generic filesystem structure. */ 1145 vfsp->vfs_bcount = 0; 1146 vfsp->vfs_data = NULL; 1147 1148 if (zfs_create_unique_device(&mount_dev) == -1) { 1149 error = SET_ERROR(ENODEV); 1150 goto out; 1151 } 1152 ASSERT(vfs_devismounted(mount_dev) == 0); 1153 1154 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 1155 NULL)) 1156 goto out; 1157 1158 vfsp->vfs_dev = mount_dev; 1159 vfsp->vfs_fstype = zfsfstype; 1160 vfsp->vfs_bsize = recordsize; 1161 vfsp->vfs_flag |= VFS_NOTRUNC; 1162 vfsp->vfs_data = zfsvfs; 1163 1164 /* 1165 * The fsid is 64 bits, composed of an 8-bit fs type, which 1166 * separates our fsid from any other filesystem types, and a 1167 * 56-bit objset unique ID. The objset unique ID is unique to 1168 * all objsets open on this system, provided by unique_create(). 1169 * The 8-bit fs type must be put in the low bits of fsid[1] 1170 * because that's where other Solaris filesystems put it. 1171 */ 1172 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); 1173 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 1174 vfsp->vfs_fsid.val[0] = fsid_guid; 1175 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 1176 zfsfstype & 0xFF; 1177 1178 /* 1179 * Set features for file system. 1180 */ 1181 zfs_set_fuid_feature(zfsvfs); 1182 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 1183 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1184 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1185 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 1186 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 1187 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1188 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1189 } 1190 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED); 1191 1192 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1193 uint64_t pval; 1194 1195 atime_changed_cb(zfsvfs, B_FALSE); 1196 readonly_changed_cb(zfsvfs, B_TRUE); 1197 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 1198 goto out; 1199 xattr_changed_cb(zfsvfs, pval); 1200 zfsvfs->z_issnap = B_TRUE; 1201 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED; 1202 1203 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1204 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1205 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1206 } else { 1207 error = zfsvfs_setup(zfsvfs, B_TRUE); 1208 } 1209 1210 if (!zfsvfs->z_issnap) 1211 zfsctl_create(zfsvfs); 1212 out: 1213 if (error) { 1214 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 1215 zfsvfs_free(zfsvfs); 1216 } else { 1217 atomic_inc_32(&zfs_active_fs_count); 1218 } 1219 1220 return (error); 1221 } 1222 1223 void 1224 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 1225 { 1226 objset_t *os = zfsvfs->z_os; 1227 1228 if (!dmu_objset_is_snapshot(os)) 1229 dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs); 1230 } 1231 1232 /* 1233 * Convert a decimal digit string to a uint64_t integer. 1234 */ 1235 static int 1236 str_to_uint64(char *str, uint64_t *objnum) 1237 { 1238 uint64_t num = 0; 1239 1240 while (*str) { 1241 if (*str < '0' || *str > '9') 1242 return (SET_ERROR(EINVAL)); 1243 1244 num = num*10 + *str++ - '0'; 1245 } 1246 1247 *objnum = num; 1248 return (0); 1249 } 1250 1251 /* 1252 * The boot path passed from the boot loader is in the form of 1253 * "rootpool-name/root-filesystem-object-number'. Convert this 1254 * string to a dataset name: "rootpool-name/root-filesystem-name". 1255 */ 1256 static int 1257 zfs_parse_bootfs(char *bpath, char *outpath) 1258 { 1259 char *slashp; 1260 uint64_t objnum; 1261 int error; 1262 1263 if (*bpath == 0 || *bpath == '/') 1264 return (SET_ERROR(EINVAL)); 1265 1266 (void) strcpy(outpath, bpath); 1267 1268 slashp = strchr(bpath, '/'); 1269 1270 /* if no '/', just return the pool name */ 1271 if (slashp == NULL) { 1272 return (0); 1273 } 1274 1275 /* if not a number, just return the root dataset name */ 1276 if (str_to_uint64(slashp+1, &objnum)) { 1277 return (0); 1278 } 1279 1280 *slashp = '\0'; 1281 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 1282 *slashp = '/'; 1283 1284 return (error); 1285 } 1286 1287 /* 1288 * Check that the hex label string is appropriate for the dataset being 1289 * mounted into the global_zone proper. 1290 * 1291 * Return an error if the hex label string is not default or 1292 * admin_low/admin_high. For admin_low labels, the corresponding 1293 * dataset must be readonly. 1294 */ 1295 int 1296 zfs_check_global_label(const char *dsname, const char *hexsl) 1297 { 1298 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1299 return (0); 1300 if (strcasecmp(hexsl, ADMIN_HIGH) == 0) 1301 return (0); 1302 if (strcasecmp(hexsl, ADMIN_LOW) == 0) { 1303 /* must be readonly */ 1304 uint64_t rdonly; 1305 1306 if (dsl_prop_get_integer(dsname, 1307 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) 1308 return (SET_ERROR(EACCES)); 1309 return (rdonly ? 0 : EACCES); 1310 } 1311 return (SET_ERROR(EACCES)); 1312 } 1313 1314 /* 1315 * Determine whether the mount is allowed according to MAC check. 1316 * by comparing (where appropriate) label of the dataset against 1317 * the label of the zone being mounted into. If the dataset has 1318 * no label, create one. 1319 * 1320 * Returns 0 if access allowed, error otherwise (e.g. EACCES) 1321 */ 1322 static int 1323 zfs_mount_label_policy(vfs_t *vfsp, char *osname) 1324 { 1325 int error, retv; 1326 zone_t *mntzone = NULL; 1327 ts_label_t *mnt_tsl; 1328 bslabel_t *mnt_sl; 1329 bslabel_t ds_sl; 1330 char ds_hexsl[MAXNAMELEN]; 1331 1332 retv = EACCES; /* assume the worst */ 1333 1334 /* 1335 * Start by getting the dataset label if it exists. 1336 */ 1337 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1338 1, sizeof (ds_hexsl), &ds_hexsl, NULL); 1339 if (error) 1340 return (SET_ERROR(EACCES)); 1341 1342 /* 1343 * If labeling is NOT enabled, then disallow the mount of datasets 1344 * which have a non-default label already. No other label checks 1345 * are needed. 1346 */ 1347 if (!is_system_labeled()) { 1348 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1349 return (0); 1350 return (SET_ERROR(EACCES)); 1351 } 1352 1353 /* 1354 * Get the label of the mountpoint. If mounting into the global 1355 * zone (i.e. mountpoint is not within an active zone and the 1356 * zoned property is off), the label must be default or 1357 * admin_low/admin_high only; no other checks are needed. 1358 */ 1359 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE); 1360 if (mntzone->zone_id == GLOBAL_ZONEID) { 1361 uint64_t zoned; 1362 1363 zone_rele(mntzone); 1364 1365 if (dsl_prop_get_integer(osname, 1366 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) 1367 return (SET_ERROR(EACCES)); 1368 if (!zoned) 1369 return (zfs_check_global_label(osname, ds_hexsl)); 1370 else 1371 /* 1372 * This is the case of a zone dataset being mounted 1373 * initially, before the zone has been fully created; 1374 * allow this mount into global zone. 1375 */ 1376 return (0); 1377 } 1378 1379 mnt_tsl = mntzone->zone_slabel; 1380 ASSERT(mnt_tsl != NULL); 1381 label_hold(mnt_tsl); 1382 mnt_sl = label2bslabel(mnt_tsl); 1383 1384 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) { 1385 /* 1386 * The dataset doesn't have a real label, so fabricate one. 1387 */ 1388 char *str = NULL; 1389 1390 if (l_to_str_internal(mnt_sl, &str) == 0 && 1391 dsl_prop_set_string(osname, 1392 zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1393 ZPROP_SRC_LOCAL, str) == 0) 1394 retv = 0; 1395 if (str != NULL) 1396 kmem_free(str, strlen(str) + 1); 1397 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) { 1398 /* 1399 * Now compare labels to complete the MAC check. If the 1400 * labels are equal then allow access. If the mountpoint 1401 * label dominates the dataset label, allow readonly access. 1402 * Otherwise, access is denied. 1403 */ 1404 if (blequal(mnt_sl, &ds_sl)) 1405 retv = 0; 1406 else if (bldominates(mnt_sl, &ds_sl)) { 1407 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1408 retv = 0; 1409 } 1410 } 1411 1412 label_rele(mnt_tsl); 1413 zone_rele(mntzone); 1414 return (retv); 1415 } 1416 1417 static int 1418 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 1419 { 1420 int error = 0; 1421 static int zfsrootdone = 0; 1422 zfsvfs_t *zfsvfs = NULL; 1423 znode_t *zp = NULL; 1424 vnode_t *vp = NULL; 1425 char *zfs_bootfs; 1426 char *zfs_devid; 1427 1428 ASSERT(vfsp); 1429 1430 /* 1431 * The filesystem that we mount as root is defined in the 1432 * boot property "zfs-bootfs" with a format of 1433 * "poolname/root-dataset-objnum". 1434 */ 1435 if (why == ROOT_INIT) { 1436 if (zfsrootdone++) 1437 return (SET_ERROR(EBUSY)); 1438 /* 1439 * the process of doing a spa_load will require the 1440 * clock to be set before we could (for example) do 1441 * something better by looking at the timestamp on 1442 * an uberblock, so just set it to -1. 1443 */ 1444 clkset(-1); 1445 1446 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 1447 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 1448 "bootfs name"); 1449 return (SET_ERROR(EINVAL)); 1450 } 1451 zfs_devid = spa_get_bootprop("diskdevid"); 1452 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 1453 if (zfs_devid) 1454 spa_free_bootprop(zfs_devid); 1455 if (error) { 1456 spa_free_bootprop(zfs_bootfs); 1457 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 1458 error); 1459 return (error); 1460 } 1461 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 1462 spa_free_bootprop(zfs_bootfs); 1463 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 1464 error); 1465 return (error); 1466 } 1467 1468 spa_free_bootprop(zfs_bootfs); 1469 1470 if (error = vfs_lock(vfsp)) 1471 return (error); 1472 1473 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 1474 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 1475 goto out; 1476 } 1477 1478 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 1479 ASSERT(zfsvfs); 1480 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 1481 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 1482 goto out; 1483 } 1484 1485 vp = ZTOV(zp); 1486 mutex_enter(&vp->v_lock); 1487 vp->v_flag |= VROOT; 1488 mutex_exit(&vp->v_lock); 1489 rootvp = vp; 1490 1491 /* 1492 * Leave rootvp held. The root file system is never unmounted. 1493 */ 1494 1495 vfs_add((struct vnode *)0, vfsp, 1496 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 1497 out: 1498 vfs_unlock(vfsp); 1499 return (error); 1500 } else if (why == ROOT_REMOUNT) { 1501 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 1502 vfsp->vfs_flag |= VFS_REMOUNT; 1503 1504 /* refresh mount options */ 1505 zfs_unregister_callbacks(vfsp->vfs_data); 1506 return (zfs_register_callbacks(vfsp)); 1507 1508 } else if (why == ROOT_UNMOUNT) { 1509 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 1510 (void) zfs_sync(vfsp, 0, 0); 1511 return (0); 1512 } 1513 1514 /* 1515 * if "why" is equal to anything else other than ROOT_INIT, 1516 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 1517 */ 1518 return (SET_ERROR(ENOTSUP)); 1519 } 1520 1521 /*ARGSUSED*/ 1522 static int 1523 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 1524 { 1525 char *osname; 1526 pathname_t spn; 1527 int error = 0; 1528 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 1529 UIO_SYSSPACE : UIO_USERSPACE; 1530 int canwrite; 1531 1532 if (mvp->v_type != VDIR) 1533 return (SET_ERROR(ENOTDIR)); 1534 1535 mutex_enter(&mvp->v_lock); 1536 if ((uap->flags & MS_REMOUNT) == 0 && 1537 (uap->flags & MS_OVERLAY) == 0 && 1538 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1539 mutex_exit(&mvp->v_lock); 1540 return (SET_ERROR(EBUSY)); 1541 } 1542 mutex_exit(&mvp->v_lock); 1543 1544 /* 1545 * ZFS does not support passing unparsed data in via MS_DATA. 1546 * Users should use the MS_OPTIONSTR interface; this means 1547 * that all option parsing is already done and the options struct 1548 * can be interrogated. 1549 */ 1550 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1551 return (SET_ERROR(EINVAL)); 1552 1553 /* 1554 * Get the objset name (the "special" mount argument). 1555 */ 1556 if (error = pn_get(uap->spec, fromspace, &spn)) 1557 return (error); 1558 1559 osname = spn.pn_path; 1560 1561 /* 1562 * Check for mount privilege? 1563 * 1564 * If we don't have privilege then see if 1565 * we have local permission to allow it 1566 */ 1567 error = secpolicy_fs_mount(cr, mvp, vfsp); 1568 if (error) { 1569 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) { 1570 vattr_t vattr; 1571 1572 /* 1573 * Make sure user is the owner of the mount point 1574 * or has sufficient privileges. 1575 */ 1576 1577 vattr.va_mask = AT_UID; 1578 1579 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1580 goto out; 1581 } 1582 1583 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1584 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1585 goto out; 1586 } 1587 secpolicy_fs_mount_clearopts(cr, vfsp); 1588 } else { 1589 goto out; 1590 } 1591 } 1592 1593 /* 1594 * Refuse to mount a filesystem if we are in a local zone and the 1595 * dataset is not visible. 1596 */ 1597 if (!INGLOBALZONE(curproc) && 1598 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1599 error = SET_ERROR(EPERM); 1600 goto out; 1601 } 1602 1603 error = zfs_mount_label_policy(vfsp, osname); 1604 if (error) 1605 goto out; 1606 1607 /* 1608 * When doing a remount, we simply refresh our temporary properties 1609 * according to those options set in the current VFS options. 1610 */ 1611 if (uap->flags & MS_REMOUNT) { 1612 /* refresh mount options */ 1613 zfs_unregister_callbacks(vfsp->vfs_data); 1614 error = zfs_register_callbacks(vfsp); 1615 goto out; 1616 } 1617 1618 error = zfs_domount(vfsp, osname); 1619 1620 /* 1621 * Add an extra VFS_HOLD on our parent vfs so that it can't 1622 * disappear due to a forced unmount. 1623 */ 1624 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) 1625 VFS_HOLD(mvp->v_vfsp); 1626 1627 out: 1628 pn_free(&spn); 1629 return (error); 1630 } 1631 1632 static int 1633 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1634 { 1635 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1636 dev32_t d32; 1637 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1638 1639 ZFS_ENTER(zfsvfs); 1640 1641 dmu_objset_space(zfsvfs->z_os, 1642 &refdbytes, &availbytes, &usedobjs, &availobjs); 1643 1644 /* 1645 * The underlying storage pool actually uses multiple block sizes. 1646 * We report the fragsize as the smallest block size we support, 1647 * and we report our blocksize as the filesystem's maximum blocksize. 1648 */ 1649 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1650 statp->f_bsize = zfsvfs->z_max_blksz; 1651 1652 /* 1653 * The following report "total" blocks of various kinds in the 1654 * file system, but reported in terms of f_frsize - the 1655 * "fragment" size. 1656 */ 1657 1658 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1659 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1660 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1661 1662 /* 1663 * statvfs() should really be called statufs(), because it assumes 1664 * static metadata. ZFS doesn't preallocate files, so the best 1665 * we can do is report the max that could possibly fit in f_files, 1666 * and that minus the number actually used in f_ffree. 1667 * For f_ffree, report the smaller of the number of object available 1668 * and the number of blocks (each object will take at least a block). 1669 */ 1670 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1671 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1672 statp->f_files = statp->f_ffree + usedobjs; 1673 1674 (void) cmpldev(&d32, vfsp->vfs_dev); 1675 statp->f_fsid = d32; 1676 1677 /* 1678 * We're a zfs filesystem. 1679 */ 1680 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1681 1682 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1683 1684 statp->f_namemax = ZFS_MAXNAMELEN; 1685 1686 /* 1687 * We have all of 32 characters to stuff a string here. 1688 * Is there anything useful we could/should provide? 1689 */ 1690 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1691 1692 ZFS_EXIT(zfsvfs); 1693 return (0); 1694 } 1695 1696 static int 1697 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1698 { 1699 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1700 znode_t *rootzp; 1701 int error; 1702 1703 ZFS_ENTER(zfsvfs); 1704 1705 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1706 if (error == 0) 1707 *vpp = ZTOV(rootzp); 1708 1709 ZFS_EXIT(zfsvfs); 1710 return (error); 1711 } 1712 1713 /* 1714 * Teardown the zfsvfs::z_os. 1715 * 1716 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1717 * and 'z_teardown_inactive_lock' held. 1718 */ 1719 static int 1720 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1721 { 1722 znode_t *zp; 1723 1724 rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1725 1726 if (!unmounting) { 1727 /* 1728 * We purge the parent filesystem's vfsp as the parent 1729 * filesystem and all of its snapshots have their vnode's 1730 * v_vfsp set to the parent's filesystem's vfsp. Note, 1731 * 'z_parent' is self referential for non-snapshots. 1732 */ 1733 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1734 } 1735 1736 /* 1737 * Close the zil. NB: Can't close the zil while zfs_inactive 1738 * threads are blocked as zil_close can call zfs_inactive. 1739 */ 1740 if (zfsvfs->z_log) { 1741 zil_close(zfsvfs->z_log); 1742 zfsvfs->z_log = NULL; 1743 } 1744 1745 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1746 1747 /* 1748 * If we are not unmounting (ie: online recv) and someone already 1749 * unmounted this file system while we were doing the switcheroo, 1750 * or a reopen of z_os failed then just bail out now. 1751 */ 1752 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1753 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1754 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 1755 return (SET_ERROR(EIO)); 1756 } 1757 1758 /* 1759 * At this point there are no vops active, and any new vops will 1760 * fail with EIO since we have z_teardown_lock for writer (only 1761 * relavent for forced unmount). 1762 * 1763 * Release all holds on dbufs. 1764 */ 1765 mutex_enter(&zfsvfs->z_znodes_lock); 1766 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1767 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1768 if (zp->z_sa_hdl) { 1769 ASSERT(ZTOV(zp)->v_count > 0); 1770 zfs_znode_dmu_fini(zp); 1771 } 1772 mutex_exit(&zfsvfs->z_znodes_lock); 1773 1774 /* 1775 * If we are unmounting, set the unmounted flag and let new vops 1776 * unblock. zfs_inactive will have the unmounted behavior, and all 1777 * other vops will fail with EIO. 1778 */ 1779 if (unmounting) { 1780 zfsvfs->z_unmounted = B_TRUE; 1781 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 1782 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1783 } 1784 1785 /* 1786 * z_os will be NULL if there was an error in attempting to reopen 1787 * zfsvfs, so just return as the properties had already been 1788 * unregistered and cached data had been evicted before. 1789 */ 1790 if (zfsvfs->z_os == NULL) 1791 return (0); 1792 1793 /* 1794 * Unregister properties. 1795 */ 1796 zfs_unregister_callbacks(zfsvfs); 1797 1798 /* 1799 * Evict cached data 1800 */ 1801 if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) && 1802 !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY)) 1803 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1804 dmu_objset_evict_dbufs(zfsvfs->z_os); 1805 1806 return (0); 1807 } 1808 1809 /*ARGSUSED*/ 1810 static int 1811 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1812 { 1813 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1814 objset_t *os; 1815 int ret; 1816 1817 ret = secpolicy_fs_unmount(cr, vfsp); 1818 if (ret) { 1819 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1820 ZFS_DELEG_PERM_MOUNT, cr)) 1821 return (ret); 1822 } 1823 1824 /* 1825 * We purge the parent filesystem's vfsp as the parent filesystem 1826 * and all of its snapshots have their vnode's v_vfsp set to the 1827 * parent's filesystem's vfsp. Note, 'z_parent' is self 1828 * referential for non-snapshots. 1829 */ 1830 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1831 1832 /* 1833 * Unmount any snapshots mounted under .zfs before unmounting the 1834 * dataset itself. 1835 */ 1836 if (zfsvfs->z_ctldir != NULL && 1837 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1838 return (ret); 1839 } 1840 1841 if (!(fflag & MS_FORCE)) { 1842 /* 1843 * Check the number of active vnodes in the file system. 1844 * Our count is maintained in the vfs structure, but the 1845 * number is off by 1 to indicate a hold on the vfs 1846 * structure itself. 1847 * 1848 * The '.zfs' directory maintains a reference of its 1849 * own, and any active references underneath are 1850 * reflected in the vnode count. 1851 */ 1852 if (zfsvfs->z_ctldir == NULL) { 1853 if (vfsp->vfs_count > 1) 1854 return (SET_ERROR(EBUSY)); 1855 } else { 1856 if (vfsp->vfs_count > 2 || 1857 zfsvfs->z_ctldir->v_count > 1) 1858 return (SET_ERROR(EBUSY)); 1859 } 1860 } 1861 1862 vfsp->vfs_flag |= VFS_UNMOUNTED; 1863 1864 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1865 os = zfsvfs->z_os; 1866 1867 /* 1868 * z_os will be NULL if there was an error in 1869 * attempting to reopen zfsvfs. 1870 */ 1871 if (os != NULL) { 1872 /* 1873 * Unset the objset user_ptr. 1874 */ 1875 mutex_enter(&os->os_user_ptr_lock); 1876 dmu_objset_set_user(os, NULL); 1877 mutex_exit(&os->os_user_ptr_lock); 1878 1879 /* 1880 * Finally release the objset 1881 */ 1882 dmu_objset_disown(os, zfsvfs); 1883 } 1884 1885 /* 1886 * We can now safely destroy the '.zfs' directory node. 1887 */ 1888 if (zfsvfs->z_ctldir != NULL) 1889 zfsctl_destroy(zfsvfs); 1890 1891 return (0); 1892 } 1893 1894 static int 1895 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1896 { 1897 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1898 znode_t *zp; 1899 uint64_t object = 0; 1900 uint64_t fid_gen = 0; 1901 uint64_t gen_mask; 1902 uint64_t zp_gen; 1903 int i, err; 1904 1905 *vpp = NULL; 1906 1907 ZFS_ENTER(zfsvfs); 1908 1909 if (fidp->fid_len == LONG_FID_LEN) { 1910 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1911 uint64_t objsetid = 0; 1912 uint64_t setgen = 0; 1913 1914 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1915 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1916 1917 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1918 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1919 1920 ZFS_EXIT(zfsvfs); 1921 1922 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1923 if (err) 1924 return (SET_ERROR(EINVAL)); 1925 ZFS_ENTER(zfsvfs); 1926 } 1927 1928 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1929 zfid_short_t *zfid = (zfid_short_t *)fidp; 1930 1931 for (i = 0; i < sizeof (zfid->zf_object); i++) 1932 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1933 1934 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1935 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1936 } else { 1937 ZFS_EXIT(zfsvfs); 1938 return (SET_ERROR(EINVAL)); 1939 } 1940 1941 /* A zero fid_gen means we are in the .zfs control directories */ 1942 if (fid_gen == 0 && 1943 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1944 *vpp = zfsvfs->z_ctldir; 1945 ASSERT(*vpp != NULL); 1946 if (object == ZFSCTL_INO_SNAPDIR) { 1947 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1948 0, NULL, NULL, NULL, NULL, NULL) == 0); 1949 } else { 1950 VN_HOLD(*vpp); 1951 } 1952 ZFS_EXIT(zfsvfs); 1953 return (0); 1954 } 1955 1956 gen_mask = -1ULL >> (64 - 8 * i); 1957 1958 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1959 if (err = zfs_zget(zfsvfs, object, &zp)) { 1960 ZFS_EXIT(zfsvfs); 1961 return (err); 1962 } 1963 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 1964 sizeof (uint64_t)); 1965 zp_gen = zp_gen & gen_mask; 1966 if (zp_gen == 0) 1967 zp_gen = 1; 1968 if (zp->z_unlinked || zp_gen != fid_gen) { 1969 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1970 VN_RELE(ZTOV(zp)); 1971 ZFS_EXIT(zfsvfs); 1972 return (SET_ERROR(EINVAL)); 1973 } 1974 1975 *vpp = ZTOV(zp); 1976 ZFS_EXIT(zfsvfs); 1977 return (0); 1978 } 1979 1980 /* 1981 * Block out VOPs and close zfsvfs_t::z_os 1982 * 1983 * Note, if successful, then we return with the 'z_teardown_lock' and 1984 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying 1985 * dataset and objset intact so that they can be atomically handed off during 1986 * a subsequent rollback or recv operation and the resume thereafter. 1987 */ 1988 int 1989 zfs_suspend_fs(zfsvfs_t *zfsvfs) 1990 { 1991 int error; 1992 1993 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 1994 return (error); 1995 1996 return (0); 1997 } 1998 1999 /* 2000 * Rebuild SA and release VOPs. Note that ownership of the underlying dataset 2001 * is an invariant across any of the operations that can be performed while the 2002 * filesystem was suspended. Whether it succeeded or failed, the preconditions 2003 * are the same: the relevant objset and associated dataset are owned by 2004 * zfsvfs, held, and long held on entry. 2005 */ 2006 int 2007 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname) 2008 { 2009 int err; 2010 znode_t *zp; 2011 uint64_t sa_obj = 0; 2012 2013 ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock)); 2014 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 2015 2016 /* 2017 * We already own this, so just hold and rele it to update the 2018 * objset_t, as the one we had before may have been evicted. 2019 */ 2020 VERIFY0(dmu_objset_hold(osname, zfsvfs, &zfsvfs->z_os)); 2021 VERIFY3P(zfsvfs->z_os->os_dsl_dataset->ds_owner, ==, zfsvfs); 2022 VERIFY(dsl_dataset_long_held(zfsvfs->z_os->os_dsl_dataset)); 2023 dmu_objset_rele(zfsvfs->z_os, zfsvfs); 2024 2025 /* 2026 * Make sure version hasn't changed 2027 */ 2028 2029 err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION, 2030 &zfsvfs->z_version); 2031 2032 if (err) 2033 goto bail; 2034 2035 err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, 2036 ZFS_SA_ATTRS, 8, 1, &sa_obj); 2037 2038 if (err && zfsvfs->z_version >= ZPL_VERSION_SA) 2039 goto bail; 2040 2041 if ((err = sa_setup(zfsvfs->z_os, sa_obj, 2042 zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table)) != 0) 2043 goto bail; 2044 2045 if (zfsvfs->z_version >= ZPL_VERSION_SA) 2046 sa_register_update_callback(zfsvfs->z_os, 2047 zfs_sa_upgrade); 2048 2049 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 2050 2051 zfs_set_fuid_feature(zfsvfs); 2052 2053 /* 2054 * Attempt to re-establish all the active znodes with 2055 * their dbufs. If a zfs_rezget() fails, then we'll let 2056 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 2057 * when they try to use their znode. 2058 */ 2059 mutex_enter(&zfsvfs->z_znodes_lock); 2060 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 2061 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 2062 (void) zfs_rezget(zp); 2063 } 2064 mutex_exit(&zfsvfs->z_znodes_lock); 2065 2066 bail: 2067 /* release the VOPs */ 2068 rw_exit(&zfsvfs->z_teardown_inactive_lock); 2069 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 2070 2071 if (err) { 2072 /* 2073 * Since we couldn't setup the sa framework, try to force 2074 * unmount this file system. 2075 */ 2076 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 2077 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 2078 } 2079 return (err); 2080 } 2081 2082 static void 2083 zfs_freevfs(vfs_t *vfsp) 2084 { 2085 zfsvfs_t *zfsvfs = vfsp->vfs_data; 2086 2087 /* 2088 * If this is a snapshot, we have an extra VFS_HOLD on our parent 2089 * from zfs_mount(). Release it here. If we came through 2090 * zfs_mountroot() instead, we didn't grab an extra hold, so 2091 * skip the VFS_RELE for rootvfs. 2092 */ 2093 if (zfsvfs->z_issnap && (vfsp != rootvfs)) 2094 VFS_RELE(zfsvfs->z_parent->z_vfs); 2095 2096 zfsvfs_free(zfsvfs); 2097 2098 atomic_dec_32(&zfs_active_fs_count); 2099 } 2100 2101 /* 2102 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 2103 * so we can't safely do any non-idempotent initialization here. 2104 * Leave that to zfs_init() and zfs_fini(), which are called 2105 * from the module's _init() and _fini() entry points. 2106 */ 2107 /*ARGSUSED*/ 2108 static int 2109 zfs_vfsinit(int fstype, char *name) 2110 { 2111 int error; 2112 2113 zfsfstype = fstype; 2114 2115 /* 2116 * Setup vfsops and vnodeops tables. 2117 */ 2118 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 2119 if (error != 0) { 2120 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 2121 } 2122 2123 error = zfs_create_op_tables(); 2124 if (error) { 2125 zfs_remove_op_tables(); 2126 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 2127 (void) vfs_freevfsops_by_type(zfsfstype); 2128 return (error); 2129 } 2130 2131 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 2132 2133 /* 2134 * Unique major number for all zfs mounts. 2135 * If we run out of 32-bit minors, we'll getudev() another major. 2136 */ 2137 zfs_major = ddi_name_to_major(ZFS_DRIVER); 2138 zfs_minor = ZFS_MIN_MINOR; 2139 2140 return (0); 2141 } 2142 2143 void 2144 zfs_init(void) 2145 { 2146 /* 2147 * Initialize .zfs directory structures 2148 */ 2149 zfsctl_init(); 2150 2151 /* 2152 * Initialize znode cache, vnode ops, etc... 2153 */ 2154 zfs_znode_init(); 2155 2156 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); 2157 } 2158 2159 void 2160 zfs_fini(void) 2161 { 2162 zfsctl_fini(); 2163 zfs_znode_fini(); 2164 } 2165 2166 int 2167 zfs_busy(void) 2168 { 2169 return (zfs_active_fs_count != 0); 2170 } 2171 2172 int 2173 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 2174 { 2175 int error; 2176 objset_t *os = zfsvfs->z_os; 2177 dmu_tx_t *tx; 2178 2179 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 2180 return (SET_ERROR(EINVAL)); 2181 2182 if (newvers < zfsvfs->z_version) 2183 return (SET_ERROR(EINVAL)); 2184 2185 if (zfs_spa_version_map(newvers) > 2186 spa_version(dmu_objset_spa(zfsvfs->z_os))) 2187 return (SET_ERROR(ENOTSUP)); 2188 2189 tx = dmu_tx_create(os); 2190 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 2191 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2192 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 2193 ZFS_SA_ATTRS); 2194 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2195 } 2196 error = dmu_tx_assign(tx, TXG_WAIT); 2197 if (error) { 2198 dmu_tx_abort(tx); 2199 return (error); 2200 } 2201 2202 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2203 8, 1, &newvers, tx); 2204 2205 if (error) { 2206 dmu_tx_commit(tx); 2207 return (error); 2208 } 2209 2210 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2211 uint64_t sa_obj; 2212 2213 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, 2214 SPA_VERSION_SA); 2215 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 2216 DMU_OT_NONE, 0, tx); 2217 2218 error = zap_add(os, MASTER_NODE_OBJ, 2219 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 2220 ASSERT0(error); 2221 2222 VERIFY(0 == sa_set_sa_object(os, sa_obj)); 2223 sa_register_update_callback(os, zfs_sa_upgrade); 2224 } 2225 2226 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx, 2227 "from %llu to %llu", zfsvfs->z_version, newvers); 2228 2229 dmu_tx_commit(tx); 2230 2231 zfsvfs->z_version = newvers; 2232 2233 zfs_set_fuid_feature(zfsvfs); 2234 2235 return (0); 2236 } 2237 2238 /* 2239 * Read a property stored within the master node. 2240 */ 2241 int 2242 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2243 { 2244 const char *pname; 2245 int error = ENOENT; 2246 2247 /* 2248 * Look up the file system's value for the property. For the 2249 * version property, we look up a slightly different string. 2250 */ 2251 if (prop == ZFS_PROP_VERSION) 2252 pname = ZPL_VERSION_STR; 2253 else 2254 pname = zfs_prop_to_name(prop); 2255 2256 if (os != NULL) 2257 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2258 2259 if (error == ENOENT) { 2260 /* No value set, use the default value */ 2261 switch (prop) { 2262 case ZFS_PROP_VERSION: 2263 *value = ZPL_VERSION; 2264 break; 2265 case ZFS_PROP_NORMALIZE: 2266 case ZFS_PROP_UTF8ONLY: 2267 *value = 0; 2268 break; 2269 case ZFS_PROP_CASE: 2270 *value = ZFS_CASE_SENSITIVE; 2271 break; 2272 default: 2273 return (error); 2274 } 2275 error = 0; 2276 } 2277 return (error); 2278 } 2279 2280 static vfsdef_t vfw = { 2281 VFSDEF_VERSION, 2282 MNTTYPE_ZFS, 2283 zfs_vfsinit, 2284 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 2285 VSW_XID|VSW_ZMOUNT, 2286 &zfs_mntopts 2287 }; 2288 2289 struct modlfs zfs_modlfs = { 2290 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 2291 }; 2292