1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/sysmacros.h> 32 #include <sys/kmem.h> 33 #include <sys/pathname.h> 34 #include <sys/vnode.h> 35 #include <sys/vfs.h> 36 #include <sys/vfs_opreg.h> 37 #include <sys/mntent.h> 38 #include <sys/mount.h> 39 #include <sys/cmn_err.h> 40 #include "fs/fs_subr.h" 41 #include <sys/zfs_znode.h> 42 #include <sys/zfs_dir.h> 43 #include <sys/zil.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/dmu.h> 46 #include <sys/dsl_prop.h> 47 #include <sys/dsl_dataset.h> 48 #include <sys/dsl_deleg.h> 49 #include <sys/spa.h> 50 #include <sys/zap.h> 51 #include <sys/varargs.h> 52 #include <sys/policy.h> 53 #include <sys/atomic.h> 54 #include <sys/mkdev.h> 55 #include <sys/modctl.h> 56 #include <sys/refstr.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/zfs_ctldir.h> 59 #include <sys/zfs_fuid.h> 60 #include <sys/bootconf.h> 61 #include <sys/sunddi.h> 62 #include <sys/dnlc.h> 63 #include <sys/dmu_objset.h> 64 #include <sys/spa_boot.h> 65 66 int zfsfstype; 67 vfsops_t *zfs_vfsops = NULL; 68 static major_t zfs_major; 69 static minor_t zfs_minor; 70 static kmutex_t zfs_dev_mtx; 71 72 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 73 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 74 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 75 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 76 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 77 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 78 static void zfs_freevfs(vfs_t *vfsp); 79 80 static const fs_operation_def_t zfs_vfsops_template[] = { 81 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 82 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 83 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 84 VFSNAME_ROOT, { .vfs_root = zfs_root }, 85 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 86 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 87 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 88 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 89 NULL, NULL 90 }; 91 92 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 93 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 94 NULL, NULL 95 }; 96 97 /* 98 * We need to keep a count of active fs's. 99 * This is necessary to prevent our module 100 * from being unloaded after a umount -f 101 */ 102 static uint32_t zfs_active_fs_count = 0; 103 104 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 105 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 106 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 107 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 108 109 /* 110 * MO_DEFAULT is not used since the default value is determined 111 * by the equivalent property. 112 */ 113 static mntopt_t mntopts[] = { 114 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 115 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 116 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 117 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 118 }; 119 120 static mntopts_t zfs_mntopts = { 121 sizeof (mntopts) / sizeof (mntopt_t), 122 mntopts 123 }; 124 125 /*ARGSUSED*/ 126 int 127 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 128 { 129 /* 130 * Data integrity is job one. We don't want a compromised kernel 131 * writing to the storage pool, so we never sync during panic. 132 */ 133 if (panicstr) 134 return (0); 135 136 /* 137 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 138 * to sync metadata, which they would otherwise cache indefinitely. 139 * Semantically, the only requirement is that the sync be initiated. 140 * The DMU syncs out txgs frequently, so there's nothing to do. 141 */ 142 if (flag & SYNC_ATTR) 143 return (0); 144 145 if (vfsp != NULL) { 146 /* 147 * Sync a specific filesystem. 148 */ 149 zfsvfs_t *zfsvfs = vfsp->vfs_data; 150 151 ZFS_ENTER(zfsvfs); 152 if (zfsvfs->z_log != NULL) 153 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 154 else 155 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 156 ZFS_EXIT(zfsvfs); 157 } else { 158 /* 159 * Sync all ZFS filesystems. This is what happens when you 160 * run sync(1M). Unlike other filesystems, ZFS honors the 161 * request by waiting for all pools to commit all dirty data. 162 */ 163 spa_sync_allpools(); 164 } 165 166 return (0); 167 } 168 169 static int 170 zfs_create_unique_device(dev_t *dev) 171 { 172 major_t new_major; 173 174 do { 175 ASSERT3U(zfs_minor, <=, MAXMIN32); 176 minor_t start = zfs_minor; 177 do { 178 mutex_enter(&zfs_dev_mtx); 179 if (zfs_minor >= MAXMIN32) { 180 /* 181 * If we're still using the real major 182 * keep out of /dev/zfs and /dev/zvol minor 183 * number space. If we're using a getudev()'ed 184 * major number, we can use all of its minors. 185 */ 186 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 187 zfs_minor = ZFS_MIN_MINOR; 188 else 189 zfs_minor = 0; 190 } else { 191 zfs_minor++; 192 } 193 *dev = makedevice(zfs_major, zfs_minor); 194 mutex_exit(&zfs_dev_mtx); 195 } while (vfs_devismounted(*dev) && zfs_minor != start); 196 if (zfs_minor == start) { 197 /* 198 * We are using all ~262,000 minor numbers for the 199 * current major number. Create a new major number. 200 */ 201 if ((new_major = getudev()) == (major_t)-1) { 202 cmn_err(CE_WARN, 203 "zfs_mount: Can't get unique major " 204 "device number."); 205 return (-1); 206 } 207 mutex_enter(&zfs_dev_mtx); 208 zfs_major = new_major; 209 zfs_minor = 0; 210 211 mutex_exit(&zfs_dev_mtx); 212 } else { 213 break; 214 } 215 /* CONSTANTCONDITION */ 216 } while (1); 217 218 return (0); 219 } 220 221 static void 222 atime_changed_cb(void *arg, uint64_t newval) 223 { 224 zfsvfs_t *zfsvfs = arg; 225 226 if (newval == TRUE) { 227 zfsvfs->z_atime = TRUE; 228 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 229 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 230 } else { 231 zfsvfs->z_atime = FALSE; 232 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 233 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 234 } 235 } 236 237 static void 238 xattr_changed_cb(void *arg, uint64_t newval) 239 { 240 zfsvfs_t *zfsvfs = arg; 241 242 if (newval == TRUE) { 243 /* XXX locking on vfs_flag? */ 244 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 245 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 246 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 247 } else { 248 /* XXX locking on vfs_flag? */ 249 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 250 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 251 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 252 } 253 } 254 255 static void 256 blksz_changed_cb(void *arg, uint64_t newval) 257 { 258 zfsvfs_t *zfsvfs = arg; 259 260 if (newval < SPA_MINBLOCKSIZE || 261 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 262 newval = SPA_MAXBLOCKSIZE; 263 264 zfsvfs->z_max_blksz = newval; 265 zfsvfs->z_vfs->vfs_bsize = newval; 266 } 267 268 static void 269 readonly_changed_cb(void *arg, uint64_t newval) 270 { 271 zfsvfs_t *zfsvfs = arg; 272 273 if (newval) { 274 /* XXX locking on vfs_flag? */ 275 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 276 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 277 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 278 } else { 279 /* XXX locking on vfs_flag? */ 280 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 281 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 282 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 283 } 284 } 285 286 static void 287 devices_changed_cb(void *arg, uint64_t newval) 288 { 289 zfsvfs_t *zfsvfs = arg; 290 291 if (newval == FALSE) { 292 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 293 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 294 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 295 } else { 296 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 297 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 298 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 299 } 300 } 301 302 static void 303 setuid_changed_cb(void *arg, uint64_t newval) 304 { 305 zfsvfs_t *zfsvfs = arg; 306 307 if (newval == FALSE) { 308 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 309 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 310 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 311 } else { 312 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 313 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 314 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 315 } 316 } 317 318 static void 319 exec_changed_cb(void *arg, uint64_t newval) 320 { 321 zfsvfs_t *zfsvfs = arg; 322 323 if (newval == FALSE) { 324 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 325 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 326 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 327 } else { 328 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 329 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 330 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 331 } 332 } 333 334 /* 335 * The nbmand mount option can be changed at mount time. 336 * We can't allow it to be toggled on live file systems or incorrect 337 * behavior may be seen from cifs clients 338 * 339 * This property isn't registered via dsl_prop_register(), but this callback 340 * will be called when a file system is first mounted 341 */ 342 static void 343 nbmand_changed_cb(void *arg, uint64_t newval) 344 { 345 zfsvfs_t *zfsvfs = arg; 346 if (newval == FALSE) { 347 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 348 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 349 } else { 350 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 351 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 352 } 353 } 354 355 static void 356 snapdir_changed_cb(void *arg, uint64_t newval) 357 { 358 zfsvfs_t *zfsvfs = arg; 359 360 zfsvfs->z_show_ctldir = newval; 361 } 362 363 static void 364 vscan_changed_cb(void *arg, uint64_t newval) 365 { 366 zfsvfs_t *zfsvfs = arg; 367 368 zfsvfs->z_vscan = newval; 369 } 370 371 static void 372 acl_mode_changed_cb(void *arg, uint64_t newval) 373 { 374 zfsvfs_t *zfsvfs = arg; 375 376 zfsvfs->z_acl_mode = newval; 377 } 378 379 static void 380 acl_inherit_changed_cb(void *arg, uint64_t newval) 381 { 382 zfsvfs_t *zfsvfs = arg; 383 384 zfsvfs->z_acl_inherit = newval; 385 } 386 387 static int 388 zfs_register_callbacks(vfs_t *vfsp) 389 { 390 struct dsl_dataset *ds = NULL; 391 objset_t *os = NULL; 392 zfsvfs_t *zfsvfs = NULL; 393 uint64_t nbmand; 394 int readonly, do_readonly = B_FALSE; 395 int setuid, do_setuid = B_FALSE; 396 int exec, do_exec = B_FALSE; 397 int devices, do_devices = B_FALSE; 398 int xattr, do_xattr = B_FALSE; 399 int atime, do_atime = B_FALSE; 400 int error = 0; 401 402 ASSERT(vfsp); 403 zfsvfs = vfsp->vfs_data; 404 ASSERT(zfsvfs); 405 os = zfsvfs->z_os; 406 407 /* 408 * The act of registering our callbacks will destroy any mount 409 * options we may have. In order to enable temporary overrides 410 * of mount options, we stash away the current values and 411 * restore them after we register the callbacks. 412 */ 413 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 414 readonly = B_TRUE; 415 do_readonly = B_TRUE; 416 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 417 readonly = B_FALSE; 418 do_readonly = B_TRUE; 419 } 420 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 421 devices = B_FALSE; 422 setuid = B_FALSE; 423 do_devices = B_TRUE; 424 do_setuid = B_TRUE; 425 } else { 426 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 427 devices = B_FALSE; 428 do_devices = B_TRUE; 429 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 430 devices = B_TRUE; 431 do_devices = B_TRUE; 432 } 433 434 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 435 setuid = B_FALSE; 436 do_setuid = B_TRUE; 437 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 438 setuid = B_TRUE; 439 do_setuid = B_TRUE; 440 } 441 } 442 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 443 exec = B_FALSE; 444 do_exec = B_TRUE; 445 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 446 exec = B_TRUE; 447 do_exec = B_TRUE; 448 } 449 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 450 xattr = B_FALSE; 451 do_xattr = B_TRUE; 452 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 453 xattr = B_TRUE; 454 do_xattr = B_TRUE; 455 } 456 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 457 atime = B_FALSE; 458 do_atime = B_TRUE; 459 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 460 atime = B_TRUE; 461 do_atime = B_TRUE; 462 } 463 464 /* 465 * nbmand is a special property. It can only be changed at 466 * mount time. 467 * 468 * This is weird, but it is documented to only be changeable 469 * at mount time. 470 */ 471 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 472 nbmand = B_FALSE; 473 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 474 nbmand = B_TRUE; 475 } else { 476 char osname[MAXNAMELEN]; 477 478 dmu_objset_name(os, osname); 479 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 480 NULL)) 481 return (error); 482 } 483 484 /* 485 * Register property callbacks. 486 * 487 * It would probably be fine to just check for i/o error from 488 * the first prop_register(), but I guess I like to go 489 * overboard... 490 */ 491 ds = dmu_objset_ds(os); 492 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 493 error = error ? error : dsl_prop_register(ds, 494 "xattr", xattr_changed_cb, zfsvfs); 495 error = error ? error : dsl_prop_register(ds, 496 "recordsize", blksz_changed_cb, zfsvfs); 497 error = error ? error : dsl_prop_register(ds, 498 "readonly", readonly_changed_cb, zfsvfs); 499 error = error ? error : dsl_prop_register(ds, 500 "devices", devices_changed_cb, zfsvfs); 501 error = error ? error : dsl_prop_register(ds, 502 "setuid", setuid_changed_cb, zfsvfs); 503 error = error ? error : dsl_prop_register(ds, 504 "exec", exec_changed_cb, zfsvfs); 505 error = error ? error : dsl_prop_register(ds, 506 "snapdir", snapdir_changed_cb, zfsvfs); 507 error = error ? error : dsl_prop_register(ds, 508 "aclmode", acl_mode_changed_cb, zfsvfs); 509 error = error ? error : dsl_prop_register(ds, 510 "aclinherit", acl_inherit_changed_cb, zfsvfs); 511 error = error ? error : dsl_prop_register(ds, 512 "vscan", vscan_changed_cb, zfsvfs); 513 if (error) 514 goto unregister; 515 516 /* 517 * Invoke our callbacks to restore temporary mount options. 518 */ 519 if (do_readonly) 520 readonly_changed_cb(zfsvfs, readonly); 521 if (do_setuid) 522 setuid_changed_cb(zfsvfs, setuid); 523 if (do_exec) 524 exec_changed_cb(zfsvfs, exec); 525 if (do_devices) 526 devices_changed_cb(zfsvfs, devices); 527 if (do_xattr) 528 xattr_changed_cb(zfsvfs, xattr); 529 if (do_atime) 530 atime_changed_cb(zfsvfs, atime); 531 532 nbmand_changed_cb(zfsvfs, nbmand); 533 534 return (0); 535 536 unregister: 537 /* 538 * We may attempt to unregister some callbacks that are not 539 * registered, but this is OK; it will simply return ENOMSG, 540 * which we will ignore. 541 */ 542 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 543 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 544 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 545 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 546 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 547 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 548 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 549 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 550 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 551 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 552 zfsvfs); 553 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 554 return (error); 555 556 } 557 558 static int 559 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 560 { 561 uint_t readonly; 562 int error; 563 564 error = zfs_register_callbacks(zfsvfs->z_vfs); 565 if (error) 566 return (error); 567 568 /* 569 * Set the objset user_ptr to track its zfsvfs. 570 */ 571 mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock); 572 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 573 mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock); 574 575 /* 576 * If we are not mounting (ie: online recv), then we don't 577 * have to worry about replaying the log as we blocked all 578 * operations out since we closed the ZIL. 579 */ 580 if (mounting) { 581 /* 582 * During replay we remove the read only flag to 583 * allow replays to succeed. 584 */ 585 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 586 if (readonly != 0) 587 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 588 else 589 zfs_unlinked_drain(zfsvfs); 590 591 /* 592 * Parse and replay the intent log. 593 * 594 * Because of ziltest, this must be done after 595 * zfs_unlinked_drain(). (Further note: ziltest doesn't 596 * use readonly mounts, where zfs_unlinked_drain() isn't 597 * called.) This is because ziltest causes spa_sync() 598 * to think it's committed, but actually it is not, so 599 * the intent log contains many txg's worth of changes. 600 * 601 * In particular, if object N is in the unlinked set in 602 * the last txg to actually sync, then it could be 603 * actually freed in a later txg and then reallocated in 604 * a yet later txg. This would write a "create object 605 * N" record to the intent log. Normally, this would be 606 * fine because the spa_sync() would have written out 607 * the fact that object N is free, before we could write 608 * the "create object N" intent log record. 609 * 610 * But when we are in ziltest mode, we advance the "open 611 * txg" without actually spa_sync()-ing the changes to 612 * disk. So we would see that object N is still 613 * allocated and in the unlinked set, and there is an 614 * intent log record saying to allocate it. 615 */ 616 zil_replay(zfsvfs->z_os, zfsvfs, &zfsvfs->z_assign, 617 zfs_replay_vector); 618 619 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 620 } 621 622 if (!zil_disable) 623 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 624 625 return (0); 626 } 627 628 static void 629 zfs_freezfsvfs(zfsvfs_t *zfsvfs) 630 { 631 mutex_destroy(&zfsvfs->z_znodes_lock); 632 mutex_destroy(&zfsvfs->z_online_recv_lock); 633 list_destroy(&zfsvfs->z_all_znodes); 634 rrw_destroy(&zfsvfs->z_teardown_lock); 635 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 636 rw_destroy(&zfsvfs->z_fuid_lock); 637 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 638 } 639 640 static int 641 zfs_domount(vfs_t *vfsp, char *osname, cred_t *cr) 642 { 643 dev_t mount_dev; 644 uint64_t recordsize, readonly; 645 int error = 0; 646 int mode; 647 zfsvfs_t *zfsvfs; 648 znode_t *zp = NULL; 649 650 ASSERT(vfsp); 651 ASSERT(osname); 652 653 /* 654 * Initialize the zfs-specific filesystem structure. 655 * Should probably make this a kmem cache, shuffle fields, 656 * and just bzero up to z_hold_mtx[]. 657 */ 658 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 659 zfsvfs->z_vfs = vfsp; 660 zfsvfs->z_parent = zfsvfs; 661 zfsvfs->z_assign = TXG_NOWAIT; 662 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 663 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 664 665 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 666 mutex_init(&zfsvfs->z_online_recv_lock, NULL, MUTEX_DEFAULT, NULL); 667 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 668 offsetof(znode_t, z_link_node)); 669 rrw_init(&zfsvfs->z_teardown_lock); 670 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 671 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 672 673 /* Initialize the generic filesystem structure. */ 674 vfsp->vfs_bcount = 0; 675 vfsp->vfs_data = NULL; 676 677 if (zfs_create_unique_device(&mount_dev) == -1) { 678 error = ENODEV; 679 goto out; 680 } 681 ASSERT(vfs_devismounted(mount_dev) == 0); 682 683 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 684 NULL)) 685 goto out; 686 687 vfsp->vfs_dev = mount_dev; 688 vfsp->vfs_fstype = zfsfstype; 689 vfsp->vfs_bsize = recordsize; 690 vfsp->vfs_flag |= VFS_NOTRUNC; 691 vfsp->vfs_data = zfsvfs; 692 693 if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL)) 694 goto out; 695 696 if (readonly) 697 mode = DS_MODE_PRIMARY | DS_MODE_READONLY; 698 else 699 mode = DS_MODE_PRIMARY; 700 701 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 702 if (error == EROFS) { 703 mode = DS_MODE_PRIMARY | DS_MODE_READONLY; 704 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, 705 &zfsvfs->z_os); 706 } 707 708 if (error) 709 goto out; 710 711 if (error = zfs_init_fs(zfsvfs, &zp, cr)) 712 goto out; 713 714 /* The call to zfs_init_fs leaves the vnode held, release it here. */ 715 VN_RELE(ZTOV(zp)); 716 717 /* 718 * Set features for file system. 719 */ 720 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 721 if (zfsvfs->z_use_fuids) { 722 vfs_set_feature(vfsp, VFSFT_XVATTR); 723 vfs_set_feature(vfsp, VFSFT_ACEMASKONACCESS); 724 vfs_set_feature(vfsp, VFSFT_ACLONCREATE); 725 } 726 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 727 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 728 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 729 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 730 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 731 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 732 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 733 } 734 735 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 736 uint64_t pval; 737 738 ASSERT(mode & DS_MODE_READONLY); 739 atime_changed_cb(zfsvfs, B_FALSE); 740 readonly_changed_cb(zfsvfs, B_TRUE); 741 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 742 goto out; 743 xattr_changed_cb(zfsvfs, pval); 744 zfsvfs->z_issnap = B_TRUE; 745 } else { 746 error = zfsvfs_setup(zfsvfs, B_TRUE); 747 } 748 749 if (!zfsvfs->z_issnap) 750 zfsctl_create(zfsvfs); 751 out: 752 if (error) { 753 if (zfsvfs->z_os) 754 dmu_objset_close(zfsvfs->z_os); 755 zfs_freezfsvfs(zfsvfs); 756 } else { 757 atomic_add_32(&zfs_active_fs_count, 1); 758 } 759 760 return (error); 761 } 762 763 void 764 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 765 { 766 objset_t *os = zfsvfs->z_os; 767 struct dsl_dataset *ds; 768 769 /* 770 * Unregister properties. 771 */ 772 if (!dmu_objset_is_snapshot(os)) { 773 ds = dmu_objset_ds(os); 774 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 775 zfsvfs) == 0); 776 777 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 778 zfsvfs) == 0); 779 780 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 781 zfsvfs) == 0); 782 783 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 784 zfsvfs) == 0); 785 786 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 787 zfsvfs) == 0); 788 789 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 790 zfsvfs) == 0); 791 792 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 793 zfsvfs) == 0); 794 795 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 796 zfsvfs) == 0); 797 798 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 799 zfsvfs) == 0); 800 801 VERIFY(dsl_prop_unregister(ds, "aclinherit", 802 acl_inherit_changed_cb, zfsvfs) == 0); 803 804 VERIFY(dsl_prop_unregister(ds, "vscan", 805 vscan_changed_cb, zfsvfs) == 0); 806 } 807 } 808 809 /* 810 * Convert a decimal digit string to a uint64_t integer. 811 */ 812 static int 813 str_to_uint64(char *str, uint64_t *objnum) 814 { 815 uint64_t num = 0; 816 817 while (*str) { 818 if (*str < '0' || *str > '9') 819 return (EINVAL); 820 821 num = num*10 + *str++ - '0'; 822 } 823 824 *objnum = num; 825 return (0); 826 } 827 828 /* 829 * The boot path passed from the boot loader is in the form of 830 * "rootpool-name/root-filesystem-object-number'. Convert this 831 * string to a dataset name: "rootpool-name/root-filesystem-name". 832 */ 833 static int 834 zfs_parse_bootfs(char *bpath, char *outpath) 835 { 836 char *slashp; 837 uint64_t objnum; 838 int error; 839 840 if (*bpath == 0 || *bpath == '/') 841 return (EINVAL); 842 843 slashp = strchr(bpath, '/'); 844 845 /* if no '/', just return the pool name */ 846 if (slashp == NULL) { 847 (void) strcpy(outpath, bpath); 848 return (0); 849 } 850 851 if (error = str_to_uint64(slashp+1, &objnum)) 852 return (error); 853 854 *slashp = '\0'; 855 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 856 *slashp = '/'; 857 858 return (error); 859 } 860 861 static int 862 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 863 { 864 int error = 0; 865 static int zfsrootdone = 0; 866 zfsvfs_t *zfsvfs = NULL; 867 znode_t *zp = NULL; 868 vnode_t *vp = NULL; 869 char *zfs_bootfs; 870 871 ASSERT(vfsp); 872 873 /* 874 * The filesystem that we mount as root is defined in the 875 * boot property "zfs-bootfs" with a format of 876 * "poolname/root-dataset-objnum". 877 */ 878 if (why == ROOT_INIT) { 879 if (zfsrootdone++) 880 return (EBUSY); 881 /* 882 * the process of doing a spa_load will require the 883 * clock to be set before we could (for example) do 884 * something better by looking at the timestamp on 885 * an uberblock, so just set it to -1. 886 */ 887 clkset(-1); 888 889 if ((zfs_bootfs = spa_get_bootfs()) == NULL) { 890 cmn_err(CE_NOTE, "\nspa_get_bootfs: can not get " 891 "bootfs name \n"); 892 return (EINVAL); 893 } 894 895 if (error = spa_import_rootpool(rootfs.bo_name)) { 896 spa_free_bootfs(zfs_bootfs); 897 cmn_err(CE_NOTE, "\nspa_import_rootpool: error %d\n", 898 error); 899 return (error); 900 } 901 902 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 903 spa_free_bootfs(zfs_bootfs); 904 cmn_err(CE_NOTE, "\nzfs_parse_bootfs: error %d\n", 905 error); 906 return (error); 907 } 908 909 spa_free_bootfs(zfs_bootfs); 910 911 if (error = vfs_lock(vfsp)) 912 return (error); 913 914 if (error = zfs_domount(vfsp, rootfs.bo_name, CRED())) { 915 cmn_err(CE_NOTE, "\nzfs_domount: error %d\n", error); 916 goto out; 917 } 918 919 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 920 ASSERT(zfsvfs); 921 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 922 cmn_err(CE_NOTE, "\nzfs_zget: error %d\n", error); 923 goto out; 924 } 925 926 vp = ZTOV(zp); 927 mutex_enter(&vp->v_lock); 928 vp->v_flag |= VROOT; 929 mutex_exit(&vp->v_lock); 930 rootvp = vp; 931 932 /* 933 * The zfs_zget call above returns with a hold on vp, we release 934 * it here. 935 */ 936 VN_RELE(vp); 937 938 vfs_add((struct vnode *)0, vfsp, 939 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 940 out: 941 vfs_unlock(vfsp); 942 return (error); 943 } else if (why == ROOT_REMOUNT) { 944 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 945 vfsp->vfs_flag |= VFS_REMOUNT; 946 947 /* refresh mount options */ 948 zfs_unregister_callbacks(vfsp->vfs_data); 949 return (zfs_register_callbacks(vfsp)); 950 951 } else if (why == ROOT_UNMOUNT) { 952 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 953 (void) zfs_sync(vfsp, 0, 0); 954 return (0); 955 } 956 957 /* 958 * if "why" is equal to anything else other than ROOT_INIT, 959 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 960 */ 961 return (ENOTSUP); 962 } 963 964 /*ARGSUSED*/ 965 static int 966 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 967 { 968 char *osname; 969 pathname_t spn; 970 int error = 0; 971 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 972 UIO_SYSSPACE : UIO_USERSPACE; 973 int canwrite; 974 975 if (mvp->v_type != VDIR) 976 return (ENOTDIR); 977 978 mutex_enter(&mvp->v_lock); 979 if ((uap->flags & MS_REMOUNT) == 0 && 980 (uap->flags & MS_OVERLAY) == 0 && 981 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 982 mutex_exit(&mvp->v_lock); 983 return (EBUSY); 984 } 985 mutex_exit(&mvp->v_lock); 986 987 /* 988 * ZFS does not support passing unparsed data in via MS_DATA. 989 * Users should use the MS_OPTIONSTR interface; this means 990 * that all option parsing is already done and the options struct 991 * can be interrogated. 992 */ 993 if ((uap->flags & MS_DATA) && uap->datalen > 0) 994 return (EINVAL); 995 996 /* 997 * Get the objset name (the "special" mount argument). 998 */ 999 if (error = pn_get(uap->spec, fromspace, &spn)) 1000 return (error); 1001 1002 osname = spn.pn_path; 1003 1004 /* 1005 * Check for mount privilege? 1006 * 1007 * If we don't have privilege then see if 1008 * we have local permission to allow it 1009 */ 1010 error = secpolicy_fs_mount(cr, mvp, vfsp); 1011 if (error) { 1012 error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr); 1013 if (error == 0) { 1014 vattr_t vattr; 1015 1016 /* 1017 * Make sure user is the owner of the mount point 1018 * or has sufficient privileges. 1019 */ 1020 1021 vattr.va_mask = AT_UID; 1022 1023 if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1024 goto out; 1025 } 1026 1027 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1028 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1029 error = EPERM; 1030 goto out; 1031 } 1032 1033 secpolicy_fs_mount_clearopts(cr, vfsp); 1034 } else { 1035 goto out; 1036 } 1037 } 1038 1039 /* 1040 * Refuse to mount a filesystem if we are in a local zone and the 1041 * dataset is not visible. 1042 */ 1043 if (!INGLOBALZONE(curproc) && 1044 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1045 error = EPERM; 1046 goto out; 1047 } 1048 1049 /* 1050 * When doing a remount, we simply refresh our temporary properties 1051 * according to those options set in the current VFS options. 1052 */ 1053 if (uap->flags & MS_REMOUNT) { 1054 /* refresh mount options */ 1055 zfs_unregister_callbacks(vfsp->vfs_data); 1056 error = zfs_register_callbacks(vfsp); 1057 goto out; 1058 } 1059 1060 error = zfs_domount(vfsp, osname, cr); 1061 1062 out: 1063 pn_free(&spn); 1064 return (error); 1065 } 1066 1067 static int 1068 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1069 { 1070 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1071 dev32_t d32; 1072 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1073 1074 ZFS_ENTER(zfsvfs); 1075 1076 dmu_objset_space(zfsvfs->z_os, 1077 &refdbytes, &availbytes, &usedobjs, &availobjs); 1078 1079 /* 1080 * The underlying storage pool actually uses multiple block sizes. 1081 * We report the fragsize as the smallest block size we support, 1082 * and we report our blocksize as the filesystem's maximum blocksize. 1083 */ 1084 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1085 statp->f_bsize = zfsvfs->z_max_blksz; 1086 1087 /* 1088 * The following report "total" blocks of various kinds in the 1089 * file system, but reported in terms of f_frsize - the 1090 * "fragment" size. 1091 */ 1092 1093 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1094 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1095 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1096 1097 /* 1098 * statvfs() should really be called statufs(), because it assumes 1099 * static metadata. ZFS doesn't preallocate files, so the best 1100 * we can do is report the max that could possibly fit in f_files, 1101 * and that minus the number actually used in f_ffree. 1102 * For f_ffree, report the smaller of the number of object available 1103 * and the number of blocks (each object will take at least a block). 1104 */ 1105 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1106 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1107 statp->f_files = statp->f_ffree + usedobjs; 1108 1109 (void) cmpldev(&d32, vfsp->vfs_dev); 1110 statp->f_fsid = d32; 1111 1112 /* 1113 * We're a zfs filesystem. 1114 */ 1115 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1116 1117 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1118 1119 statp->f_namemax = ZFS_MAXNAMELEN; 1120 1121 /* 1122 * We have all of 32 characters to stuff a string here. 1123 * Is there anything useful we could/should provide? 1124 */ 1125 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1126 1127 ZFS_EXIT(zfsvfs); 1128 return (0); 1129 } 1130 1131 static int 1132 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1133 { 1134 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1135 znode_t *rootzp; 1136 int error; 1137 1138 ZFS_ENTER(zfsvfs); 1139 1140 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1141 if (error == 0) 1142 *vpp = ZTOV(rootzp); 1143 1144 ZFS_EXIT(zfsvfs); 1145 return (error); 1146 } 1147 1148 /* 1149 * Teardown the zfsvfs::z_os. 1150 * 1151 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1152 * and 'z_teardown_inactive_lock' held. 1153 */ 1154 static int 1155 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1156 { 1157 znode_t *zp; 1158 1159 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1160 1161 if (!unmounting) { 1162 /* 1163 * We purge the parent filesystem's vfsp as the parent 1164 * filesystem and all of its snapshots have their vnode's 1165 * v_vfsp set to the parent's filesystem's vfsp. Note, 1166 * 'z_parent' is self referential for non-snapshots. 1167 */ 1168 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1169 } 1170 1171 /* 1172 * Close the zil. NB: Can't close the zil while zfs_inactive 1173 * threads are blocked as zil_close can call zfs_inactive. 1174 */ 1175 if (zfsvfs->z_log) { 1176 zil_close(zfsvfs->z_log); 1177 zfsvfs->z_log = NULL; 1178 } 1179 1180 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1181 1182 /* 1183 * If we are not unmounting (ie: online recv) and someone already 1184 * unmounted this file system while we were doing the switcheroo, 1185 * or a reopen of z_os failed then just bail out now. 1186 */ 1187 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1188 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1189 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1190 return (EIO); 1191 } 1192 1193 /* 1194 * At this point there are no vops active, and any new vops will 1195 * fail with EIO since we have z_teardown_lock for writer (only 1196 * relavent for forced unmount). 1197 * 1198 * Release all holds on dbufs. 1199 */ 1200 mutex_enter(&zfsvfs->z_znodes_lock); 1201 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1202 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1203 if (zp->z_dbuf) { 1204 ASSERT(ZTOV(zp)->v_count > 0); 1205 zfs_znode_dmu_fini(zp); 1206 } 1207 mutex_exit(&zfsvfs->z_znodes_lock); 1208 1209 /* 1210 * If we are unmounting, set the unmounted flag and let new vops 1211 * unblock. zfs_inactive will have the unmounted behavior, and all 1212 * other vops will fail with EIO. 1213 */ 1214 if (unmounting) { 1215 zfsvfs->z_unmounted = B_TRUE; 1216 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1217 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1218 } 1219 1220 /* 1221 * z_os will be NULL if there was an error in attempting to reopen 1222 * zfsvfs, so just return as the properties had already been 1223 * unregistered and cached data had been evicted before. 1224 */ 1225 if (zfsvfs->z_os == NULL) 1226 return (0); 1227 1228 /* 1229 * Unregister properties. 1230 */ 1231 zfs_unregister_callbacks(zfsvfs); 1232 1233 /* 1234 * Evict cached data 1235 */ 1236 if (dmu_objset_evict_dbufs(zfsvfs->z_os)) { 1237 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1238 (void) dmu_objset_evict_dbufs(zfsvfs->z_os); 1239 } 1240 1241 return (0); 1242 } 1243 1244 /*ARGSUSED*/ 1245 static int 1246 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1247 { 1248 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1249 objset_t *os; 1250 int ret; 1251 1252 ret = secpolicy_fs_unmount(cr, vfsp); 1253 if (ret) { 1254 ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1255 ZFS_DELEG_PERM_MOUNT, cr); 1256 if (ret) 1257 return (ret); 1258 } 1259 1260 /* 1261 * We purge the parent filesystem's vfsp as the parent filesystem 1262 * and all of its snapshots have their vnode's v_vfsp set to the 1263 * parent's filesystem's vfsp. Note, 'z_parent' is self 1264 * referential for non-snapshots. 1265 */ 1266 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1267 1268 /* 1269 * Unmount any snapshots mounted under .zfs before unmounting the 1270 * dataset itself. 1271 */ 1272 if (zfsvfs->z_ctldir != NULL && 1273 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1274 return (ret); 1275 } 1276 1277 if (!(fflag & MS_FORCE)) { 1278 /* 1279 * Check the number of active vnodes in the file system. 1280 * Our count is maintained in the vfs structure, but the 1281 * number is off by 1 to indicate a hold on the vfs 1282 * structure itself. 1283 * 1284 * The '.zfs' directory maintains a reference of its 1285 * own, and any active references underneath are 1286 * reflected in the vnode count. 1287 */ 1288 if (zfsvfs->z_ctldir == NULL) { 1289 if (vfsp->vfs_count > 1) 1290 return (EBUSY); 1291 } else { 1292 if (vfsp->vfs_count > 2 || 1293 zfsvfs->z_ctldir->v_count > 1) 1294 return (EBUSY); 1295 } 1296 } 1297 1298 vfsp->vfs_flag |= VFS_UNMOUNTED; 1299 1300 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1301 os = zfsvfs->z_os; 1302 1303 /* 1304 * z_os will be NULL if there was an error in 1305 * attempting to reopen zfsvfs. 1306 */ 1307 if (os != NULL) { 1308 /* 1309 * Unset the objset user_ptr. 1310 */ 1311 mutex_enter(&os->os->os_user_ptr_lock); 1312 dmu_objset_set_user(os, NULL); 1313 mutex_exit(&os->os->os_user_ptr_lock); 1314 1315 /* 1316 * Finally close the objset 1317 */ 1318 dmu_objset_close(os); 1319 } 1320 1321 /* 1322 * We can now safely destroy the '.zfs' directory node. 1323 */ 1324 if (zfsvfs->z_ctldir != NULL) 1325 zfsctl_destroy(zfsvfs); 1326 1327 return (0); 1328 } 1329 1330 static int 1331 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1332 { 1333 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1334 znode_t *zp; 1335 uint64_t object = 0; 1336 uint64_t fid_gen = 0; 1337 uint64_t gen_mask; 1338 uint64_t zp_gen; 1339 int i, err; 1340 1341 *vpp = NULL; 1342 1343 ZFS_ENTER(zfsvfs); 1344 1345 if (fidp->fid_len == LONG_FID_LEN) { 1346 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1347 uint64_t objsetid = 0; 1348 uint64_t setgen = 0; 1349 1350 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1351 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1352 1353 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1354 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1355 1356 ZFS_EXIT(zfsvfs); 1357 1358 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1359 if (err) 1360 return (EINVAL); 1361 ZFS_ENTER(zfsvfs); 1362 } 1363 1364 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1365 zfid_short_t *zfid = (zfid_short_t *)fidp; 1366 1367 for (i = 0; i < sizeof (zfid->zf_object); i++) 1368 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1369 1370 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1371 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1372 } else { 1373 ZFS_EXIT(zfsvfs); 1374 return (EINVAL); 1375 } 1376 1377 /* A zero fid_gen means we are in the .zfs control directories */ 1378 if (fid_gen == 0 && 1379 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1380 *vpp = zfsvfs->z_ctldir; 1381 ASSERT(*vpp != NULL); 1382 if (object == ZFSCTL_INO_SNAPDIR) { 1383 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1384 0, NULL, NULL, NULL, NULL, NULL) == 0); 1385 } else { 1386 VN_HOLD(*vpp); 1387 } 1388 ZFS_EXIT(zfsvfs); 1389 return (0); 1390 } 1391 1392 gen_mask = -1ULL >> (64 - 8 * i); 1393 1394 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1395 if (err = zfs_zget(zfsvfs, object, &zp)) { 1396 ZFS_EXIT(zfsvfs); 1397 return (err); 1398 } 1399 zp_gen = zp->z_phys->zp_gen & gen_mask; 1400 if (zp_gen == 0) 1401 zp_gen = 1; 1402 if (zp->z_unlinked || zp_gen != fid_gen) { 1403 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1404 VN_RELE(ZTOV(zp)); 1405 ZFS_EXIT(zfsvfs); 1406 return (EINVAL); 1407 } 1408 1409 *vpp = ZTOV(zp); 1410 ZFS_EXIT(zfsvfs); 1411 return (0); 1412 } 1413 1414 /* 1415 * Block out VOPs and close zfsvfs_t::z_os 1416 * 1417 * Note, if successful, then we return with the 'z_teardown_lock' and 1418 * 'z_teardown_inactive_lock' write held. 1419 */ 1420 int 1421 zfs_suspend_fs(zfsvfs_t *zfsvfs, char *name, int *mode) 1422 { 1423 int error; 1424 1425 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 1426 return (error); 1427 1428 *mode = zfsvfs->z_os->os_mode; 1429 dmu_objset_name(zfsvfs->z_os, name); 1430 dmu_objset_close(zfsvfs->z_os); 1431 1432 return (0); 1433 } 1434 1435 /* 1436 * Reopen zfsvfs_t::z_os and release VOPs. 1437 */ 1438 int 1439 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname, int mode) 1440 { 1441 int err; 1442 1443 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 1444 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1445 1446 err = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 1447 if (err) { 1448 zfsvfs->z_os = NULL; 1449 } else { 1450 znode_t *zp; 1451 1452 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 1453 1454 /* 1455 * Attempt to re-establish all the active znodes with 1456 * their dbufs. If a zfs_rezget() fails, then we'll let 1457 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 1458 * when they try to use their znode. 1459 */ 1460 mutex_enter(&zfsvfs->z_znodes_lock); 1461 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 1462 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1463 (void) zfs_rezget(zp); 1464 } 1465 mutex_exit(&zfsvfs->z_znodes_lock); 1466 1467 } 1468 1469 /* release the VOPs */ 1470 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1471 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1472 1473 if (err) { 1474 /* 1475 * Since we couldn't reopen zfsvfs::z_os, force 1476 * unmount this file system. 1477 */ 1478 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 1479 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 1480 } 1481 return (err); 1482 } 1483 1484 static void 1485 zfs_freevfs(vfs_t *vfsp) 1486 { 1487 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1488 int i; 1489 1490 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1491 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1492 1493 zfs_fuid_destroy(zfsvfs); 1494 zfs_freezfsvfs(zfsvfs); 1495 1496 atomic_add_32(&zfs_active_fs_count, -1); 1497 } 1498 1499 /* 1500 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 1501 * so we can't safely do any non-idempotent initialization here. 1502 * Leave that to zfs_init() and zfs_fini(), which are called 1503 * from the module's _init() and _fini() entry points. 1504 */ 1505 /*ARGSUSED*/ 1506 static int 1507 zfs_vfsinit(int fstype, char *name) 1508 { 1509 int error; 1510 1511 zfsfstype = fstype; 1512 1513 /* 1514 * Setup vfsops and vnodeops tables. 1515 */ 1516 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 1517 if (error != 0) { 1518 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 1519 } 1520 1521 error = zfs_create_op_tables(); 1522 if (error) { 1523 zfs_remove_op_tables(); 1524 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 1525 (void) vfs_freevfsops_by_type(zfsfstype); 1526 return (error); 1527 } 1528 1529 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 1530 1531 /* 1532 * Unique major number for all zfs mounts. 1533 * If we run out of 32-bit minors, we'll getudev() another major. 1534 */ 1535 zfs_major = ddi_name_to_major(ZFS_DRIVER); 1536 zfs_minor = ZFS_MIN_MINOR; 1537 1538 return (0); 1539 } 1540 1541 void 1542 zfs_init(void) 1543 { 1544 /* 1545 * Initialize .zfs directory structures 1546 */ 1547 zfsctl_init(); 1548 1549 /* 1550 * Initialize znode cache, vnode ops, etc... 1551 */ 1552 zfs_znode_init(); 1553 } 1554 1555 void 1556 zfs_fini(void) 1557 { 1558 zfsctl_fini(); 1559 zfs_znode_fini(); 1560 } 1561 1562 int 1563 zfs_busy(void) 1564 { 1565 return (zfs_active_fs_count != 0); 1566 } 1567 1568 int 1569 zfs_set_version(const char *name, uint64_t newvers) 1570 { 1571 int error; 1572 objset_t *os; 1573 dmu_tx_t *tx; 1574 uint64_t curvers; 1575 1576 /* 1577 * XXX for now, require that the filesystem be unmounted. Would 1578 * be nice to find the zfsvfs_t and just update that if 1579 * possible. 1580 */ 1581 1582 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 1583 return (EINVAL); 1584 1585 error = dmu_objset_open(name, DMU_OST_ZFS, DS_MODE_PRIMARY, &os); 1586 if (error) 1587 return (error); 1588 1589 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 1590 8, 1, &curvers); 1591 if (error) 1592 goto out; 1593 if (newvers < curvers) { 1594 error = EINVAL; 1595 goto out; 1596 } 1597 1598 tx = dmu_tx_create(os); 1599 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 0, ZPL_VERSION_STR); 1600 error = dmu_tx_assign(tx, TXG_WAIT); 1601 if (error) { 1602 dmu_tx_abort(tx); 1603 goto out; 1604 } 1605 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, 1606 &newvers, tx); 1607 1608 spa_history_internal_log(LOG_DS_UPGRADE, 1609 dmu_objset_spa(os), tx, CRED(), 1610 "oldver=%llu newver=%llu dataset = %llu", curvers, newvers, 1611 dmu_objset_id(os)); 1612 dmu_tx_commit(tx); 1613 1614 out: 1615 dmu_objset_close(os); 1616 return (error); 1617 } 1618 1619 /* 1620 * Read a property stored within the master node. 1621 */ 1622 int 1623 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 1624 { 1625 const char *pname; 1626 int error; 1627 1628 /* 1629 * Look up the file system's value for the property. For the 1630 * version property, we look up a slightly different string. 1631 */ 1632 if (prop == ZFS_PROP_VERSION) 1633 pname = ZPL_VERSION_STR; 1634 else 1635 pname = zfs_prop_to_name(prop); 1636 1637 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 1638 1639 if (error == ENOENT) { 1640 /* No value set, use the default value */ 1641 switch (prop) { 1642 case ZFS_PROP_VERSION: 1643 *value = ZPL_VERSION; 1644 break; 1645 case ZFS_PROP_NORMALIZE: 1646 case ZFS_PROP_UTF8ONLY: 1647 *value = 0; 1648 break; 1649 case ZFS_PROP_CASE: 1650 *value = ZFS_CASE_SENSITIVE; 1651 break; 1652 default: 1653 return (error); 1654 } 1655 error = 0; 1656 } 1657 return (error); 1658 } 1659 1660 static vfsdef_t vfw = { 1661 VFSDEF_VERSION, 1662 MNTTYPE_ZFS, 1663 zfs_vfsinit, 1664 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 1665 VSW_XID, 1666 &zfs_mntopts 1667 }; 1668 1669 struct modlfs zfs_modlfs = { 1670 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 1671 }; 1672