1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/sysmacros.h> 32 #include <sys/kmem.h> 33 #include <sys/pathname.h> 34 #include <sys/vnode.h> 35 #include <sys/vfs.h> 36 #include <sys/vfs_opreg.h> 37 #include <sys/mntent.h> 38 #include <sys/mount.h> 39 #include <sys/cmn_err.h> 40 #include "fs/fs_subr.h" 41 #include <sys/zfs_znode.h> 42 #include <sys/zfs_dir.h> 43 #include <sys/zfs_i18n.h> 44 #include <sys/zil.h> 45 #include <sys/fs/zfs.h> 46 #include <sys/dmu.h> 47 #include <sys/dsl_prop.h> 48 #include <sys/dsl_dataset.h> 49 #include <sys/dsl_deleg.h> 50 #include <sys/spa.h> 51 #include <sys/zap.h> 52 #include <sys/varargs.h> 53 #include <sys/policy.h> 54 #include <sys/atomic.h> 55 #include <sys/mkdev.h> 56 #include <sys/modctl.h> 57 #include <sys/refstr.h> 58 #include <sys/zfs_ioctl.h> 59 #include <sys/zfs_ctldir.h> 60 #include <sys/zfs_fuid.h> 61 #include <sys/bootconf.h> 62 #include <sys/sunddi.h> 63 #include <sys/dnlc.h> 64 #include <sys/dmu_objset.h> 65 66 int zfsfstype; 67 vfsops_t *zfs_vfsops = NULL; 68 static major_t zfs_major; 69 static minor_t zfs_minor; 70 static kmutex_t zfs_dev_mtx; 71 72 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 73 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 74 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 75 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 76 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 77 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 78 static void zfs_freevfs(vfs_t *vfsp); 79 80 static const fs_operation_def_t zfs_vfsops_template[] = { 81 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 82 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 83 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 84 VFSNAME_ROOT, { .vfs_root = zfs_root }, 85 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 86 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 87 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 88 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 89 NULL, NULL 90 }; 91 92 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 93 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 94 NULL, NULL 95 }; 96 97 /* 98 * We need to keep a count of active fs's. 99 * This is necessary to prevent our module 100 * from being unloaded after a umount -f 101 */ 102 static uint32_t zfs_active_fs_count = 0; 103 104 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 105 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 106 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 107 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 108 109 /* 110 * MO_DEFAULT is not used since the default value is determined 111 * by the equivalent property. 112 */ 113 static mntopt_t mntopts[] = { 114 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 115 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 116 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 117 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 118 }; 119 120 static mntopts_t zfs_mntopts = { 121 sizeof (mntopts) / sizeof (mntopt_t), 122 mntopts 123 }; 124 125 /*ARGSUSED*/ 126 int 127 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 128 { 129 /* 130 * Data integrity is job one. We don't want a compromised kernel 131 * writing to the storage pool, so we never sync during panic. 132 */ 133 if (panicstr) 134 return (0); 135 136 /* 137 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 138 * to sync metadata, which they would otherwise cache indefinitely. 139 * Semantically, the only requirement is that the sync be initiated. 140 * The DMU syncs out txgs frequently, so there's nothing to do. 141 */ 142 if (flag & SYNC_ATTR) 143 return (0); 144 145 if (vfsp != NULL) { 146 /* 147 * Sync a specific filesystem. 148 */ 149 zfsvfs_t *zfsvfs = vfsp->vfs_data; 150 151 ZFS_ENTER(zfsvfs); 152 if (zfsvfs->z_log != NULL) 153 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 154 else 155 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 156 ZFS_EXIT(zfsvfs); 157 } else { 158 /* 159 * Sync all ZFS filesystems. This is what happens when you 160 * run sync(1M). Unlike other filesystems, ZFS honors the 161 * request by waiting for all pools to commit all dirty data. 162 */ 163 spa_sync_allpools(); 164 } 165 166 return (0); 167 } 168 169 static int 170 zfs_create_unique_device(dev_t *dev) 171 { 172 major_t new_major; 173 174 do { 175 ASSERT3U(zfs_minor, <=, MAXMIN32); 176 minor_t start = zfs_minor; 177 do { 178 mutex_enter(&zfs_dev_mtx); 179 if (zfs_minor >= MAXMIN32) { 180 /* 181 * If we're still using the real major 182 * keep out of /dev/zfs and /dev/zvol minor 183 * number space. If we're using a getudev()'ed 184 * major number, we can use all of its minors. 185 */ 186 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 187 zfs_minor = ZFS_MIN_MINOR; 188 else 189 zfs_minor = 0; 190 } else { 191 zfs_minor++; 192 } 193 *dev = makedevice(zfs_major, zfs_minor); 194 mutex_exit(&zfs_dev_mtx); 195 } while (vfs_devismounted(*dev) && zfs_minor != start); 196 if (zfs_minor == start) { 197 /* 198 * We are using all ~262,000 minor numbers for the 199 * current major number. Create a new major number. 200 */ 201 if ((new_major = getudev()) == (major_t)-1) { 202 cmn_err(CE_WARN, 203 "zfs_mount: Can't get unique major " 204 "device number."); 205 return (-1); 206 } 207 mutex_enter(&zfs_dev_mtx); 208 zfs_major = new_major; 209 zfs_minor = 0; 210 211 mutex_exit(&zfs_dev_mtx); 212 } else { 213 break; 214 } 215 /* CONSTANTCONDITION */ 216 } while (1); 217 218 return (0); 219 } 220 221 static void 222 atime_changed_cb(void *arg, uint64_t newval) 223 { 224 zfsvfs_t *zfsvfs = arg; 225 226 if (newval == TRUE) { 227 zfsvfs->z_atime = TRUE; 228 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 229 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 230 } else { 231 zfsvfs->z_atime = FALSE; 232 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 233 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 234 } 235 } 236 237 static void 238 xattr_changed_cb(void *arg, uint64_t newval) 239 { 240 zfsvfs_t *zfsvfs = arg; 241 242 if (newval == TRUE) { 243 /* XXX locking on vfs_flag? */ 244 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 245 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 246 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 247 } else { 248 /* XXX locking on vfs_flag? */ 249 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 250 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 251 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 252 } 253 } 254 255 static void 256 blksz_changed_cb(void *arg, uint64_t newval) 257 { 258 zfsvfs_t *zfsvfs = arg; 259 260 if (newval < SPA_MINBLOCKSIZE || 261 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 262 newval = SPA_MAXBLOCKSIZE; 263 264 zfsvfs->z_max_blksz = newval; 265 zfsvfs->z_vfs->vfs_bsize = newval; 266 } 267 268 static void 269 readonly_changed_cb(void *arg, uint64_t newval) 270 { 271 zfsvfs_t *zfsvfs = arg; 272 273 if (newval) { 274 /* XXX locking on vfs_flag? */ 275 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 276 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 277 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 278 } else { 279 /* XXX locking on vfs_flag? */ 280 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 281 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 282 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 283 } 284 } 285 286 static void 287 devices_changed_cb(void *arg, uint64_t newval) 288 { 289 zfsvfs_t *zfsvfs = arg; 290 291 if (newval == FALSE) { 292 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 293 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 294 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 295 } else { 296 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 297 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 298 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 299 } 300 } 301 302 static void 303 setuid_changed_cb(void *arg, uint64_t newval) 304 { 305 zfsvfs_t *zfsvfs = arg; 306 307 if (newval == FALSE) { 308 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 309 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 310 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 311 } else { 312 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 313 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 314 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 315 } 316 } 317 318 static void 319 exec_changed_cb(void *arg, uint64_t newval) 320 { 321 zfsvfs_t *zfsvfs = arg; 322 323 if (newval == FALSE) { 324 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 325 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 326 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 327 } else { 328 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 329 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 330 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 331 } 332 } 333 334 /* 335 * The nbmand mount option can be changed at mount time. 336 * We can't allow it to be toggled on live file systems or incorrect 337 * behavior may be seen from cifs clients 338 * 339 * This property isn't registered via dsl_prop_register(), but this callback 340 * will be called when a file system is first mounted 341 */ 342 static void 343 nbmand_changed_cb(void *arg, uint64_t newval) 344 { 345 zfsvfs_t *zfsvfs = arg; 346 if (newval == FALSE) { 347 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 348 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 349 } else { 350 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 351 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 352 } 353 } 354 355 static void 356 snapdir_changed_cb(void *arg, uint64_t newval) 357 { 358 zfsvfs_t *zfsvfs = arg; 359 360 zfsvfs->z_show_ctldir = newval; 361 } 362 363 static void 364 vscan_changed_cb(void *arg, uint64_t newval) 365 { 366 zfsvfs_t *zfsvfs = arg; 367 368 zfsvfs->z_vscan = newval; 369 } 370 371 static void 372 acl_mode_changed_cb(void *arg, uint64_t newval) 373 { 374 zfsvfs_t *zfsvfs = arg; 375 376 zfsvfs->z_acl_mode = newval; 377 } 378 379 static void 380 acl_inherit_changed_cb(void *arg, uint64_t newval) 381 { 382 zfsvfs_t *zfsvfs = arg; 383 384 zfsvfs->z_acl_inherit = newval; 385 } 386 387 static int 388 zfs_normalization_set(char *osname, zfsvfs_t *zfsvfs) 389 { 390 uint64_t pval; 391 int error; 392 393 if (zfsvfs->z_version < ZPL_VERSION_FUID) 394 return (0); 395 396 error = dsl_prop_get_integer(osname, "normalization", &pval, NULL); 397 if (error) 398 goto normquit; 399 switch ((int)pval) { 400 case ZFS_NORMALIZE_NONE: 401 break; 402 case ZFS_NORMALIZE_C: 403 zfsvfs->z_norm |= U8_TEXTPREP_NFC; 404 break; 405 case ZFS_NORMALIZE_KC: 406 zfsvfs->z_norm |= U8_TEXTPREP_NFKC; 407 break; 408 case ZFS_NORMALIZE_D: 409 zfsvfs->z_norm |= U8_TEXTPREP_NFD; 410 break; 411 case ZFS_NORMALIZE_KD: 412 zfsvfs->z_norm |= U8_TEXTPREP_NFKD; 413 break; 414 default: 415 ASSERT(pval <= ZFS_NORMALIZE_KD); 416 break; 417 } 418 419 error = dsl_prop_get_integer(osname, "utf8only", &pval, NULL); 420 if (error) 421 goto normquit; 422 if (pval) 423 zfsvfs->z_case |= ZFS_UTF8_ONLY; 424 else 425 zfsvfs->z_case &= ~ZFS_UTF8_ONLY; 426 427 error = dsl_prop_get_integer(osname, "casesensitivity", &pval, NULL); 428 if (error) 429 goto normquit; 430 vfs_set_feature(zfsvfs->z_vfs, VFSFT_DIRENTFLAGS); 431 switch ((int)pval) { 432 case ZFS_CASE_SENSITIVE: 433 break; 434 case ZFS_CASE_INSENSITIVE: 435 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 436 zfsvfs->z_case |= ZFS_CI_ONLY; 437 vfs_set_feature(zfsvfs->z_vfs, VFSFT_CASEINSENSITIVE); 438 vfs_set_feature(zfsvfs->z_vfs, VFSFT_NOCASESENSITIVE); 439 break; 440 case ZFS_CASE_MIXED: 441 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 442 zfsvfs->z_case |= ZFS_CI_MIXD; 443 vfs_set_feature(zfsvfs->z_vfs, VFSFT_CASEINSENSITIVE); 444 break; 445 default: 446 ASSERT(pval <= ZFS_CASE_MIXED); 447 break; 448 } 449 450 normquit: 451 return (error); 452 } 453 454 static int 455 zfs_register_callbacks(vfs_t *vfsp) 456 { 457 struct dsl_dataset *ds = NULL; 458 objset_t *os = NULL; 459 zfsvfs_t *zfsvfs = NULL; 460 uint64_t nbmand; 461 int readonly, do_readonly = B_FALSE; 462 int setuid, do_setuid = B_FALSE; 463 int exec, do_exec = B_FALSE; 464 int devices, do_devices = B_FALSE; 465 int xattr, do_xattr = B_FALSE; 466 int atime, do_atime = B_FALSE; 467 int error = 0; 468 469 ASSERT(vfsp); 470 zfsvfs = vfsp->vfs_data; 471 ASSERT(zfsvfs); 472 os = zfsvfs->z_os; 473 474 /* 475 * The act of registering our callbacks will destroy any mount 476 * options we may have. In order to enable temporary overrides 477 * of mount options, we stash away the current values and 478 * restore them after we register the callbacks. 479 */ 480 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 481 readonly = B_TRUE; 482 do_readonly = B_TRUE; 483 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 484 readonly = B_FALSE; 485 do_readonly = B_TRUE; 486 } 487 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 488 devices = B_FALSE; 489 setuid = B_FALSE; 490 do_devices = B_TRUE; 491 do_setuid = B_TRUE; 492 } else { 493 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 494 devices = B_FALSE; 495 do_devices = B_TRUE; 496 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 497 devices = B_TRUE; 498 do_devices = B_TRUE; 499 } 500 501 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 502 setuid = B_FALSE; 503 do_setuid = B_TRUE; 504 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 505 setuid = B_TRUE; 506 do_setuid = B_TRUE; 507 } 508 } 509 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 510 exec = B_FALSE; 511 do_exec = B_TRUE; 512 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 513 exec = B_TRUE; 514 do_exec = B_TRUE; 515 } 516 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 517 xattr = B_FALSE; 518 do_xattr = B_TRUE; 519 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 520 xattr = B_TRUE; 521 do_xattr = B_TRUE; 522 } 523 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 524 atime = B_FALSE; 525 do_atime = B_TRUE; 526 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 527 atime = B_TRUE; 528 do_atime = B_TRUE; 529 } 530 531 /* 532 * nbmand is a special property. It can only be changed at 533 * mount time. 534 * 535 * This is weird, but it is documented to only be changeable 536 * at mount time. 537 */ 538 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 539 nbmand = B_FALSE; 540 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 541 nbmand = B_TRUE; 542 } else { 543 char osname[MAXNAMELEN]; 544 545 dmu_objset_name(os, osname); 546 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 547 NULL)) 548 return (error); 549 } 550 551 /* 552 * Register property callbacks. 553 * 554 * It would probably be fine to just check for i/o error from 555 * the first prop_register(), but I guess I like to go 556 * overboard... 557 */ 558 ds = dmu_objset_ds(os); 559 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 560 error = error ? error : dsl_prop_register(ds, 561 "xattr", xattr_changed_cb, zfsvfs); 562 error = error ? error : dsl_prop_register(ds, 563 "recordsize", blksz_changed_cb, zfsvfs); 564 error = error ? error : dsl_prop_register(ds, 565 "readonly", readonly_changed_cb, zfsvfs); 566 error = error ? error : dsl_prop_register(ds, 567 "devices", devices_changed_cb, zfsvfs); 568 error = error ? error : dsl_prop_register(ds, 569 "setuid", setuid_changed_cb, zfsvfs); 570 error = error ? error : dsl_prop_register(ds, 571 "exec", exec_changed_cb, zfsvfs); 572 error = error ? error : dsl_prop_register(ds, 573 "snapdir", snapdir_changed_cb, zfsvfs); 574 error = error ? error : dsl_prop_register(ds, 575 "aclmode", acl_mode_changed_cb, zfsvfs); 576 error = error ? error : dsl_prop_register(ds, 577 "aclinherit", acl_inherit_changed_cb, zfsvfs); 578 error = error ? error : dsl_prop_register(ds, 579 "vscan", vscan_changed_cb, zfsvfs); 580 if (error) 581 goto unregister; 582 583 /* 584 * Invoke our callbacks to restore temporary mount options. 585 */ 586 if (do_readonly) 587 readonly_changed_cb(zfsvfs, readonly); 588 if (do_setuid) 589 setuid_changed_cb(zfsvfs, setuid); 590 if (do_exec) 591 exec_changed_cb(zfsvfs, exec); 592 if (do_devices) 593 devices_changed_cb(zfsvfs, devices); 594 if (do_xattr) 595 xattr_changed_cb(zfsvfs, xattr); 596 if (do_atime) 597 atime_changed_cb(zfsvfs, atime); 598 599 nbmand_changed_cb(zfsvfs, nbmand); 600 601 return (0); 602 603 unregister: 604 /* 605 * We may attempt to unregister some callbacks that are not 606 * registered, but this is OK; it will simply return ENOMSG, 607 * which we will ignore. 608 */ 609 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 610 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 611 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 612 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 613 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 614 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 615 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 616 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 617 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 618 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 619 zfsvfs); 620 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 621 return (error); 622 623 } 624 625 static int 626 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 627 { 628 uint_t readonly; 629 int error; 630 631 error = zfs_register_callbacks(zfsvfs->z_vfs); 632 if (error) 633 return (error); 634 635 /* 636 * Set the objset user_ptr to track its zfsvfs. 637 */ 638 mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock); 639 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 640 mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock); 641 642 /* 643 * If we are not mounting (ie: online recv), then we don't 644 * have to worry about replaying the log as we blocked all 645 * operations out since we closed the ZIL. 646 */ 647 if (mounting) { 648 /* 649 * During replay we remove the read only flag to 650 * allow replays to succeed. 651 */ 652 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 653 if (readonly != 0) 654 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 655 else 656 zfs_unlinked_drain(zfsvfs); 657 658 /* 659 * Parse and replay the intent log. 660 * 661 * Because of ziltest, this must be done after 662 * zfs_unlinked_drain(). (Further note: ziltest doesn't 663 * use readonly mounts, where zfs_unlinked_drain() isn't 664 * called.) This is because ziltest causes spa_sync() 665 * to think it's committed, but actually it is not, so 666 * the intent log contains many txg's worth of changes. 667 * 668 * In particular, if object N is in the unlinked set in 669 * the last txg to actually sync, then it could be 670 * actually freed in a later txg and then reallocated in 671 * a yet later txg. This would write a "create object 672 * N" record to the intent log. Normally, this would be 673 * fine because the spa_sync() would have written out 674 * the fact that object N is free, before we could write 675 * the "create object N" intent log record. 676 * 677 * But when we are in ziltest mode, we advance the "open 678 * txg" without actually spa_sync()-ing the changes to 679 * disk. So we would see that object N is still 680 * allocated and in the unlinked set, and there is an 681 * intent log record saying to allocate it. 682 */ 683 zil_replay(zfsvfs->z_os, zfsvfs, &zfsvfs->z_assign, 684 zfs_replay_vector); 685 686 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 687 } 688 689 if (!zil_disable) 690 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 691 692 return (0); 693 } 694 695 static int 696 zfs_domount(vfs_t *vfsp, char *osname, cred_t *cr) 697 { 698 dev_t mount_dev; 699 uint64_t recordsize, readonly; 700 int error = 0; 701 int mode; 702 zfsvfs_t *zfsvfs; 703 znode_t *zp = NULL; 704 705 ASSERT(vfsp); 706 ASSERT(osname); 707 708 /* 709 * Initialize the zfs-specific filesystem structure. 710 * Should probably make this a kmem cache, shuffle fields, 711 * and just bzero up to z_hold_mtx[]. 712 */ 713 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 714 zfsvfs->z_vfs = vfsp; 715 zfsvfs->z_parent = zfsvfs; 716 zfsvfs->z_assign = TXG_NOWAIT; 717 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 718 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 719 720 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 721 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 722 offsetof(znode_t, z_link_node)); 723 rrw_init(&zfsvfs->z_teardown_lock); 724 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 725 726 /* Initialize the generic filesystem structure. */ 727 vfsp->vfs_bcount = 0; 728 vfsp->vfs_data = NULL; 729 730 if (zfs_create_unique_device(&mount_dev) == -1) { 731 error = ENODEV; 732 goto out; 733 } 734 ASSERT(vfs_devismounted(mount_dev) == 0); 735 736 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 737 NULL)) 738 goto out; 739 740 vfsp->vfs_dev = mount_dev; 741 vfsp->vfs_fstype = zfsfstype; 742 vfsp->vfs_bsize = recordsize; 743 vfsp->vfs_flag |= VFS_NOTRUNC; 744 vfsp->vfs_data = zfsvfs; 745 746 if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL)) 747 goto out; 748 749 if (readonly) 750 mode = DS_MODE_PRIMARY | DS_MODE_READONLY; 751 else 752 mode = DS_MODE_PRIMARY; 753 754 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 755 if (error == EROFS) { 756 mode = DS_MODE_PRIMARY | DS_MODE_READONLY; 757 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, 758 &zfsvfs->z_os); 759 } 760 761 if (error) 762 goto out; 763 764 if (error = zfs_init_fs(zfsvfs, &zp, cr)) 765 goto out; 766 767 /* The call to zfs_init_fs leaves the vnode held, release it here. */ 768 VN_RELE(ZTOV(zp)); 769 770 /* 771 * Set features for file system. 772 */ 773 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 774 if (zfsvfs->z_use_fuids) { 775 vfs_set_feature(vfsp, VFSFT_XVATTR); 776 vfs_set_feature(vfsp, VFSFT_ACEMASKONACCESS); 777 vfs_set_feature(vfsp, VFSFT_ACLONCREATE); 778 } 779 780 /* 781 * Set normalization regardless of whether or not the object 782 * set is a snapshot. Snapshots and clones need to have 783 * identical normalization as did the file system they 784 * originated from. 785 */ 786 if ((error = zfs_normalization_set(osname, zfsvfs)) != 0) 787 goto out; 788 789 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 790 uint64_t pval; 791 792 ASSERT(mode & DS_MODE_READONLY); 793 atime_changed_cb(zfsvfs, B_FALSE); 794 readonly_changed_cb(zfsvfs, B_TRUE); 795 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 796 goto out; 797 xattr_changed_cb(zfsvfs, pval); 798 zfsvfs->z_issnap = B_TRUE; 799 } else { 800 error = zfsvfs_setup(zfsvfs, B_TRUE); 801 } 802 803 if (!zfsvfs->z_issnap) 804 zfsctl_create(zfsvfs); 805 out: 806 if (error) { 807 if (zfsvfs->z_os) 808 dmu_objset_close(zfsvfs->z_os); 809 mutex_destroy(&zfsvfs->z_znodes_lock); 810 list_destroy(&zfsvfs->z_all_znodes); 811 rrw_destroy(&zfsvfs->z_teardown_lock); 812 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 813 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 814 } else { 815 atomic_add_32(&zfs_active_fs_count, 1); 816 } 817 818 return (error); 819 } 820 821 void 822 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 823 { 824 objset_t *os = zfsvfs->z_os; 825 struct dsl_dataset *ds; 826 827 /* 828 * Unregister properties. 829 */ 830 if (!dmu_objset_is_snapshot(os)) { 831 ds = dmu_objset_ds(os); 832 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 833 zfsvfs) == 0); 834 835 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 836 zfsvfs) == 0); 837 838 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 839 zfsvfs) == 0); 840 841 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 842 zfsvfs) == 0); 843 844 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 845 zfsvfs) == 0); 846 847 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 848 zfsvfs) == 0); 849 850 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 851 zfsvfs) == 0); 852 853 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 854 zfsvfs) == 0); 855 856 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 857 zfsvfs) == 0); 858 859 VERIFY(dsl_prop_unregister(ds, "aclinherit", 860 acl_inherit_changed_cb, zfsvfs) == 0); 861 862 VERIFY(dsl_prop_unregister(ds, "vscan", 863 vscan_changed_cb, zfsvfs) == 0); 864 } 865 } 866 867 /* 868 * Convert a decimal digit string to a uint64_t integer. 869 */ 870 static int 871 str_to_uint64(char *str, uint64_t *objnum) 872 { 873 uint64_t num = 0; 874 875 while (*str) { 876 if (*str < '0' || *str > '9') 877 return (EINVAL); 878 879 num = num*10 + *str++ - '0'; 880 } 881 882 *objnum = num; 883 return (0); 884 } 885 886 /* 887 * The boot path passed from the boot loader is in the form of 888 * "rootpool-name/root-filesystem-object-number'. Convert this 889 * string to a dataset name: "rootpool-name/root-filesystem-name". 890 */ 891 static int 892 parse_bootpath(char *bpath, char *outpath) 893 { 894 char *slashp; 895 uint64_t objnum; 896 int error; 897 898 if (*bpath == 0 || *bpath == '/') 899 return (EINVAL); 900 901 slashp = strchr(bpath, '/'); 902 903 /* if no '/', just return the pool name */ 904 if (slashp == NULL) { 905 (void) strcpy(outpath, bpath); 906 return (0); 907 } 908 909 if (error = str_to_uint64(slashp+1, &objnum)) 910 return (error); 911 912 *slashp = '\0'; 913 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 914 *slashp = '/'; 915 916 return (error); 917 } 918 919 static int 920 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 921 { 922 int error = 0; 923 int ret = 0; 924 static int zfsrootdone = 0; 925 zfsvfs_t *zfsvfs = NULL; 926 znode_t *zp = NULL; 927 vnode_t *vp = NULL; 928 char *zfs_bootpath; 929 930 ASSERT(vfsp); 931 932 /* 933 * The filesystem that we mount as root is defined in the 934 * "zfs-bootfs" property. 935 */ 936 if (why == ROOT_INIT) { 937 if (zfsrootdone++) 938 return (EBUSY); 939 940 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 941 DDI_PROP_DONTPASS, "zfs-bootfs", &zfs_bootpath) != 942 DDI_SUCCESS) 943 return (EIO); 944 945 error = parse_bootpath(zfs_bootpath, rootfs.bo_name); 946 ddi_prop_free(zfs_bootpath); 947 948 if (error) 949 return (error); 950 951 if (error = vfs_lock(vfsp)) 952 return (error); 953 954 if (error = zfs_domount(vfsp, rootfs.bo_name, CRED())) 955 goto out; 956 957 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 958 ASSERT(zfsvfs); 959 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) 960 goto out; 961 962 vp = ZTOV(zp); 963 mutex_enter(&vp->v_lock); 964 vp->v_flag |= VROOT; 965 mutex_exit(&vp->v_lock); 966 rootvp = vp; 967 968 /* 969 * The zfs_zget call above returns with a hold on vp, we release 970 * it here. 971 */ 972 VN_RELE(vp); 973 974 /* 975 * Mount root as readonly initially, it will be remouted 976 * read/write by /lib/svc/method/fs-usr. 977 */ 978 readonly_changed_cb(vfsp->vfs_data, B_TRUE); 979 vfs_add((struct vnode *)0, vfsp, 980 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 981 out: 982 vfs_unlock(vfsp); 983 ret = (error) ? error : 0; 984 return (ret); 985 } else if (why == ROOT_REMOUNT) { 986 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 987 vfsp->vfs_flag |= VFS_REMOUNT; 988 989 /* refresh mount options */ 990 zfs_unregister_callbacks(vfsp->vfs_data); 991 return (zfs_register_callbacks(vfsp)); 992 993 } else if (why == ROOT_UNMOUNT) { 994 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 995 (void) zfs_sync(vfsp, 0, 0); 996 return (0); 997 } 998 999 /* 1000 * if "why" is equal to anything else other than ROOT_INIT, 1001 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 1002 */ 1003 return (ENOTSUP); 1004 } 1005 1006 /*ARGSUSED*/ 1007 static int 1008 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 1009 { 1010 char *osname; 1011 pathname_t spn; 1012 int error = 0; 1013 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 1014 UIO_SYSSPACE : UIO_USERSPACE; 1015 int canwrite; 1016 1017 if (mvp->v_type != VDIR) 1018 return (ENOTDIR); 1019 1020 mutex_enter(&mvp->v_lock); 1021 if ((uap->flags & MS_REMOUNT) == 0 && 1022 (uap->flags & MS_OVERLAY) == 0 && 1023 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1024 mutex_exit(&mvp->v_lock); 1025 return (EBUSY); 1026 } 1027 mutex_exit(&mvp->v_lock); 1028 1029 /* 1030 * ZFS does not support passing unparsed data in via MS_DATA. 1031 * Users should use the MS_OPTIONSTR interface; this means 1032 * that all option parsing is already done and the options struct 1033 * can be interrogated. 1034 */ 1035 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1036 return (EINVAL); 1037 1038 /* 1039 * Get the objset name (the "special" mount argument). 1040 */ 1041 if (error = pn_get(uap->spec, fromspace, &spn)) 1042 return (error); 1043 1044 osname = spn.pn_path; 1045 1046 /* 1047 * Check for mount privilege? 1048 * 1049 * If we don't have privilege then see if 1050 * we have local permission to allow it 1051 */ 1052 error = secpolicy_fs_mount(cr, mvp, vfsp); 1053 if (error) { 1054 error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr); 1055 if (error == 0) { 1056 vattr_t vattr; 1057 1058 /* 1059 * Make sure user is the owner of the mount point 1060 * or has sufficient privileges. 1061 */ 1062 1063 vattr.va_mask = AT_UID; 1064 1065 if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1066 goto out; 1067 } 1068 1069 if (error = secpolicy_vnode_owner(cr, vattr.va_uid)) { 1070 goto out; 1071 } 1072 1073 if (error = VOP_ACCESS(mvp, VWRITE, 0, cr, NULL)) { 1074 goto out; 1075 } 1076 1077 secpolicy_fs_mount_clearopts(cr, vfsp); 1078 } else { 1079 goto out; 1080 } 1081 } 1082 1083 /* 1084 * Refuse to mount a filesystem if we are in a local zone and the 1085 * dataset is not visible. 1086 */ 1087 if (!INGLOBALZONE(curproc) && 1088 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1089 error = EPERM; 1090 goto out; 1091 } 1092 1093 /* 1094 * When doing a remount, we simply refresh our temporary properties 1095 * according to those options set in the current VFS options. 1096 */ 1097 if (uap->flags & MS_REMOUNT) { 1098 /* refresh mount options */ 1099 zfs_unregister_callbacks(vfsp->vfs_data); 1100 error = zfs_register_callbacks(vfsp); 1101 goto out; 1102 } 1103 1104 error = zfs_domount(vfsp, osname, cr); 1105 1106 out: 1107 pn_free(&spn); 1108 return (error); 1109 } 1110 1111 static int 1112 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1113 { 1114 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1115 dev32_t d32; 1116 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1117 1118 ZFS_ENTER(zfsvfs); 1119 1120 dmu_objset_space(zfsvfs->z_os, 1121 &refdbytes, &availbytes, &usedobjs, &availobjs); 1122 1123 /* 1124 * The underlying storage pool actually uses multiple block sizes. 1125 * We report the fragsize as the smallest block size we support, 1126 * and we report our blocksize as the filesystem's maximum blocksize. 1127 */ 1128 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1129 statp->f_bsize = zfsvfs->z_max_blksz; 1130 1131 /* 1132 * The following report "total" blocks of various kinds in the 1133 * file system, but reported in terms of f_frsize - the 1134 * "fragment" size. 1135 */ 1136 1137 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1138 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1139 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1140 1141 /* 1142 * statvfs() should really be called statufs(), because it assumes 1143 * static metadata. ZFS doesn't preallocate files, so the best 1144 * we can do is report the max that could possibly fit in f_files, 1145 * and that minus the number actually used in f_ffree. 1146 * For f_ffree, report the smaller of the number of object available 1147 * and the number of blocks (each object will take at least a block). 1148 */ 1149 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1150 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1151 statp->f_files = statp->f_ffree + usedobjs; 1152 1153 (void) cmpldev(&d32, vfsp->vfs_dev); 1154 statp->f_fsid = d32; 1155 1156 /* 1157 * We're a zfs filesystem. 1158 */ 1159 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1160 1161 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1162 1163 statp->f_namemax = ZFS_MAXNAMELEN; 1164 1165 /* 1166 * We have all of 32 characters to stuff a string here. 1167 * Is there anything useful we could/should provide? 1168 */ 1169 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1170 1171 ZFS_EXIT(zfsvfs); 1172 return (0); 1173 } 1174 1175 static int 1176 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1177 { 1178 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1179 znode_t *rootzp; 1180 int error; 1181 1182 ZFS_ENTER(zfsvfs); 1183 1184 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1185 if (error == 0) 1186 *vpp = ZTOV(rootzp); 1187 1188 ZFS_EXIT(zfsvfs); 1189 return (error); 1190 } 1191 1192 /* 1193 * Teardown the zfsvfs::z_os. 1194 * 1195 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1196 * and 'z_teardown_inactive_lock' held. 1197 */ 1198 static int 1199 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1200 { 1201 objset_t *os = zfsvfs->z_os; 1202 znode_t *zp, *nextzp; 1203 znode_t markerzp; 1204 1205 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1206 1207 if (!unmounting) { 1208 /* 1209 * We purge the parent filesystem's vfsp as the parent 1210 * filesystem and all of its snapshots have their vnode's 1211 * v_vfsp set to the parent's filesystem's vfsp. Note, 1212 * 'z_parent' is self referential for non-snapshots. 1213 */ 1214 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1215 } 1216 1217 /* 1218 * Close the zil. NB: Can't close the zil while zfs_inactive 1219 * threads are blocked as zil_close can call zfs_inactive. 1220 */ 1221 if (zfsvfs->z_log) { 1222 zil_close(zfsvfs->z_log); 1223 zfsvfs->z_log = NULL; 1224 } 1225 1226 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1227 1228 /* 1229 * If we are not unmounting (ie: online recv) and someone already 1230 * unmounted this file system while we were doing the switcheroo, 1231 * or a reopen of z_os failed then just bail out now. 1232 */ 1233 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1234 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1235 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1236 return (EIO); 1237 } 1238 1239 /* 1240 * At this point there are no vops active, and any new vops will 1241 * fail with EIO since we have z_teardown_lock for writer (only 1242 * relavent for forced unmount). 1243 * 1244 * Release all holds on dbufs. 1245 * Note, the dmu can still callback via znode_pageout_func() 1246 * which can zfs_znode_free() the znode. So we lock 1247 * z_all_znodes; search the list for a held dbuf; drop the lock 1248 * (we know zp can't disappear if we hold a dbuf lock) then 1249 * regrab the lock and restart. 1250 * 1251 * Since we have to restart the search after finding each held dbuf, 1252 * we do two things to speed up searching: we insert a dummy znode 1253 * ('markerzp') to detect the original tail of the list, and move 1254 * non-held znodes to the end of the list. Once we hit 'markerzp', 1255 * we know we've looked at each znode and can break out. 1256 */ 1257 mutex_enter(&zfsvfs->z_znodes_lock); 1258 list_insert_tail(&zfsvfs->z_all_znodes, &markerzp); 1259 for (zp = list_head(&zfsvfs->z_all_znodes); zp != &markerzp; 1260 zp = nextzp) { 1261 nextzp = list_next(&zfsvfs->z_all_znodes, zp); 1262 if (zp->z_dbuf_held) { 1263 /* dbufs should only be held when force unmounting */ 1264 zp->z_dbuf_held = 0; 1265 mutex_exit(&zfsvfs->z_znodes_lock); 1266 dmu_buf_rele(zp->z_dbuf, NULL); 1267 /* Start again */ 1268 mutex_enter(&zfsvfs->z_znodes_lock); 1269 nextzp = list_head(&zfsvfs->z_all_znodes); 1270 } else { 1271 list_remove(&zfsvfs->z_all_znodes, zp); 1272 list_insert_tail(&zfsvfs->z_all_znodes, zp); 1273 } 1274 } 1275 list_remove(&zfsvfs->z_all_znodes, &markerzp); 1276 mutex_exit(&zfsvfs->z_znodes_lock); 1277 1278 /* 1279 * If we are unmounting, set the unmounted flag and let new vops 1280 * unblock. zfs_inactive will have the unmounted behavior, and all 1281 * other vops will fail with EIO. 1282 */ 1283 if (unmounting) { 1284 zfsvfs->z_unmounted = B_TRUE; 1285 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1286 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1287 } 1288 1289 /* 1290 * z_os will be NULL if there was an error in attempting to reopen 1291 * zfsvfs, so just return as the properties had already been 1292 * unregistered and cached data had been evicted before. 1293 */ 1294 if (zfsvfs->z_os == NULL) 1295 return (0); 1296 1297 /* 1298 * Unregister properties. 1299 */ 1300 zfs_unregister_callbacks(zfsvfs); 1301 1302 /* 1303 * Evict cached data 1304 */ 1305 if (dmu_objset_evict_dbufs(os)) { 1306 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1307 (void) dmu_objset_evict_dbufs(os); 1308 } 1309 1310 return (0); 1311 } 1312 1313 /*ARGSUSED*/ 1314 static int 1315 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1316 { 1317 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1318 objset_t *os; 1319 int ret; 1320 1321 ret = secpolicy_fs_unmount(cr, vfsp); 1322 if (ret) { 1323 ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1324 ZFS_DELEG_PERM_MOUNT, cr); 1325 if (ret) 1326 return (ret); 1327 } 1328 1329 /* 1330 * We purge the parent filesystem's vfsp as the parent filesystem 1331 * and all of its snapshots have their vnode's v_vfsp set to the 1332 * parent's filesystem's vfsp. Note, 'z_parent' is self 1333 * referential for non-snapshots. 1334 */ 1335 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1336 1337 /* 1338 * Unmount any snapshots mounted under .zfs before unmounting the 1339 * dataset itself. 1340 */ 1341 if (zfsvfs->z_ctldir != NULL && 1342 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1343 return (ret); 1344 } 1345 1346 if (!(fflag & MS_FORCE)) { 1347 /* 1348 * Check the number of active vnodes in the file system. 1349 * Our count is maintained in the vfs structure, but the 1350 * number is off by 1 to indicate a hold on the vfs 1351 * structure itself. 1352 * 1353 * The '.zfs' directory maintains a reference of its 1354 * own, and any active references underneath are 1355 * reflected in the vnode count. 1356 */ 1357 if (zfsvfs->z_ctldir == NULL) { 1358 if (vfsp->vfs_count > 1) 1359 return (EBUSY); 1360 } else { 1361 if (vfsp->vfs_count > 2 || 1362 zfsvfs->z_ctldir->v_count > 1) 1363 return (EBUSY); 1364 } 1365 } 1366 1367 vfsp->vfs_flag |= VFS_UNMOUNTED; 1368 1369 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1370 os = zfsvfs->z_os; 1371 1372 /* 1373 * z_os will be NULL if there was an error in 1374 * attempting to reopen zfsvfs. 1375 */ 1376 if (os != NULL) { 1377 /* 1378 * Unset the objset user_ptr. 1379 */ 1380 mutex_enter(&os->os->os_user_ptr_lock); 1381 dmu_objset_set_user(os, NULL); 1382 mutex_exit(&os->os->os_user_ptr_lock); 1383 1384 /* 1385 * Finally close the objset 1386 */ 1387 dmu_objset_close(os); 1388 } 1389 1390 /* 1391 * We can now safely destroy the '.zfs' directory node. 1392 */ 1393 if (zfsvfs->z_ctldir != NULL) 1394 zfsctl_destroy(zfsvfs); 1395 1396 return (0); 1397 } 1398 1399 static int 1400 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1401 { 1402 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1403 znode_t *zp; 1404 uint64_t object = 0; 1405 uint64_t fid_gen = 0; 1406 uint64_t gen_mask; 1407 uint64_t zp_gen; 1408 int i, err; 1409 1410 *vpp = NULL; 1411 1412 ZFS_ENTER(zfsvfs); 1413 1414 if (fidp->fid_len == LONG_FID_LEN) { 1415 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1416 uint64_t objsetid = 0; 1417 uint64_t setgen = 0; 1418 1419 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1420 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1421 1422 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1423 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1424 1425 ZFS_EXIT(zfsvfs); 1426 1427 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1428 if (err) 1429 return (EINVAL); 1430 ZFS_ENTER(zfsvfs); 1431 } 1432 1433 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1434 zfid_short_t *zfid = (zfid_short_t *)fidp; 1435 1436 for (i = 0; i < sizeof (zfid->zf_object); i++) 1437 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1438 1439 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1440 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1441 } else { 1442 ZFS_EXIT(zfsvfs); 1443 return (EINVAL); 1444 } 1445 1446 /* A zero fid_gen means we are in the .zfs control directories */ 1447 if (fid_gen == 0 && 1448 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1449 *vpp = zfsvfs->z_ctldir; 1450 ASSERT(*vpp != NULL); 1451 if (object == ZFSCTL_INO_SNAPDIR) { 1452 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1453 0, NULL, NULL, NULL, NULL, NULL) == 0); 1454 } else { 1455 VN_HOLD(*vpp); 1456 } 1457 ZFS_EXIT(zfsvfs); 1458 return (0); 1459 } 1460 1461 gen_mask = -1ULL >> (64 - 8 * i); 1462 1463 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1464 if (err = zfs_zget(zfsvfs, object, &zp)) { 1465 ZFS_EXIT(zfsvfs); 1466 return (err); 1467 } 1468 zp_gen = zp->z_phys->zp_gen & gen_mask; 1469 if (zp_gen == 0) 1470 zp_gen = 1; 1471 if (zp->z_unlinked || zp_gen != fid_gen) { 1472 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1473 VN_RELE(ZTOV(zp)); 1474 ZFS_EXIT(zfsvfs); 1475 return (EINVAL); 1476 } 1477 1478 *vpp = ZTOV(zp); 1479 ZFS_EXIT(zfsvfs); 1480 return (0); 1481 } 1482 1483 /* 1484 * Block out VOPs and close zfsvfs_t::z_os 1485 * 1486 * Note, if successful, then we return with the 'z_teardown_lock' and 1487 * 'z_teardown_inactive_lock' write held. 1488 */ 1489 int 1490 zfs_suspend_fs(zfsvfs_t *zfsvfs, char *name, int *mode) 1491 { 1492 int error; 1493 1494 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 1495 return (error); 1496 1497 *mode = zfsvfs->z_os->os_mode; 1498 dmu_objset_name(zfsvfs->z_os, name); 1499 dmu_objset_close(zfsvfs->z_os); 1500 1501 return (0); 1502 } 1503 1504 /* 1505 * Reopen zfsvfs_t::z_os and release VOPs. 1506 */ 1507 int 1508 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname, int mode) 1509 { 1510 int err; 1511 1512 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 1513 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1514 1515 err = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 1516 if (err) { 1517 zfsvfs->z_os = NULL; 1518 } else { 1519 znode_t *zp; 1520 1521 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 1522 1523 /* 1524 * Attempt to re-establish all the active znodes with 1525 * their dbufs. If a zfs_rezget() fails, then we'll let 1526 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 1527 * when they try to use their znode. 1528 */ 1529 mutex_enter(&zfsvfs->z_znodes_lock); 1530 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 1531 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1532 ASSERT(!zp->z_dbuf_held); 1533 (void) zfs_rezget(zp); 1534 } 1535 mutex_exit(&zfsvfs->z_znodes_lock); 1536 1537 } 1538 1539 /* release the VOPs */ 1540 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1541 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1542 1543 if (err) { 1544 /* 1545 * Since we couldn't reopen zfsvfs::z_os, force 1546 * unmount this file system. 1547 */ 1548 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 1549 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 1550 } 1551 return (err); 1552 } 1553 1554 static void 1555 zfs_freevfs(vfs_t *vfsp) 1556 { 1557 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1558 int i; 1559 1560 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1561 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1562 1563 mutex_destroy(&zfsvfs->z_znodes_lock); 1564 list_destroy(&zfsvfs->z_all_znodes); 1565 rrw_destroy(&zfsvfs->z_teardown_lock); 1566 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1567 zfs_fuid_destroy(zfsvfs); 1568 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1569 1570 atomic_add_32(&zfs_active_fs_count, -1); 1571 } 1572 1573 /* 1574 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 1575 * so we can't safely do any non-idempotent initialization here. 1576 * Leave that to zfs_init() and zfs_fini(), which are called 1577 * from the module's _init() and _fini() entry points. 1578 */ 1579 /*ARGSUSED*/ 1580 static int 1581 zfs_vfsinit(int fstype, char *name) 1582 { 1583 int error; 1584 1585 zfsfstype = fstype; 1586 1587 /* 1588 * Setup vfsops and vnodeops tables. 1589 */ 1590 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 1591 if (error != 0) { 1592 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 1593 } 1594 1595 error = zfs_create_op_tables(); 1596 if (error) { 1597 zfs_remove_op_tables(); 1598 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 1599 (void) vfs_freevfsops_by_type(zfsfstype); 1600 return (error); 1601 } 1602 1603 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 1604 1605 /* 1606 * Unique major number for all zfs mounts. 1607 * If we run out of 32-bit minors, we'll getudev() another major. 1608 */ 1609 zfs_major = ddi_name_to_major(ZFS_DRIVER); 1610 zfs_minor = ZFS_MIN_MINOR; 1611 1612 return (0); 1613 } 1614 1615 void 1616 zfs_init(void) 1617 { 1618 /* 1619 * Initialize .zfs directory structures 1620 */ 1621 zfsctl_init(); 1622 1623 /* 1624 * Initialize znode cache, vnode ops, etc... 1625 */ 1626 zfs_znode_init(); 1627 } 1628 1629 void 1630 zfs_fini(void) 1631 { 1632 zfsctl_fini(); 1633 zfs_znode_fini(); 1634 } 1635 1636 int 1637 zfs_busy(void) 1638 { 1639 return (zfs_active_fs_count != 0); 1640 } 1641 1642 int 1643 zfs_get_version(objset_t *os, uint64_t *version) 1644 { 1645 int error; 1646 1647 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, version); 1648 return (error); 1649 } 1650 1651 int 1652 zfs_set_version(const char *name, uint64_t newvers) 1653 { 1654 int error; 1655 objset_t *os; 1656 dmu_tx_t *tx; 1657 uint64_t curvers; 1658 1659 /* 1660 * XXX for now, require that the filesystem be unmounted. Would 1661 * be nice to find the zfsvfs_t and just update that if 1662 * possible. 1663 */ 1664 1665 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 1666 return (EINVAL); 1667 1668 error = dmu_objset_open(name, DMU_OST_ZFS, DS_MODE_PRIMARY, &os); 1669 if (error) 1670 return (error); 1671 1672 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 1673 8, 1, &curvers); 1674 if (error) 1675 goto out; 1676 if (newvers < curvers) { 1677 error = EINVAL; 1678 goto out; 1679 } 1680 1681 tx = dmu_tx_create(os); 1682 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 0, ZPL_VERSION_STR); 1683 error = dmu_tx_assign(tx, TXG_WAIT); 1684 if (error) { 1685 dmu_tx_abort(tx); 1686 goto out; 1687 } 1688 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, 1689 &newvers, tx); 1690 1691 spa_history_internal_log(LOG_DS_UPGRADE, 1692 dmu_objset_spa(os), tx, CRED(), 1693 "oldver=%llu newver=%llu dataset = %llu", curvers, newvers, 1694 dmu_objset_id(os)); 1695 dmu_tx_commit(tx); 1696 1697 out: 1698 dmu_objset_close(os); 1699 return (error); 1700 } 1701 1702 static vfsdef_t vfw = { 1703 VFSDEF_VERSION, 1704 MNTTYPE_ZFS, 1705 zfs_vfsinit, 1706 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 1707 VSW_XID, 1708 &zfs_mntopts 1709 }; 1710 1711 struct modlfs zfs_modlfs = { 1712 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 1713 }; 1714