xref: /titanic_50/usr/src/uts/common/fs/zfs/zfs_rlock.c (revision c892ebf1bef94f4f922f282c11516677c134dbe0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * This file contains the code to implement file range locking in
30  * ZFS, although there isn't much specific to ZFS (all that comes to mind
31  * support for growing the blocksize).
32  *
33  * Interface
34  * ---------
35  * Defined in zfs_rlock.h but essentially:
36  *	rl = zfs_range_lock(zp, off, len, lock_type);
37  *	zfs_range_unlock(rl);
38  *	zfs_range_reduce(rl, off, len);
39  *
40  * AVL tree
41  * --------
42  * An AVL tree is used to maintain the state of the existing ranges
43  * that are locked for exclusive (writer) or shared (reader) use.
44  * The starting range offset is used for searching and sorting the tree.
45  *
46  * Common case
47  * -----------
48  * The (hopefully) usual case is of no overlaps or contention for
49  * locks. On entry to zfs_lock_range() a rl_t is allocated; the tree
50  * searched that finds no overlap, and *this* rl_t is placed in the tree.
51  *
52  * Overlaps/Reference counting/Proxy locks
53  * ---------------------------------------
54  * The avl code only allows one node at a particular offset. Also it's very
55  * inefficient to search through all previous entries looking for overlaps
56  * (because the very 1st in the ordered list might be at offset 0 but
57  * cover the whole file).
58  * So this implementation uses reference counts and proxy range locks.
59  * Firstly, only reader locks use reference counts and proxy locks,
60  * because writer locks are exclusive.
61  * When a reader lock overlaps with another then a proxy lock is created
62  * for that range and replaces the original lock. If the overlap
63  * is exact then the reference count of the proxy is simply incremented.
64  * Otherwise, the proxy lock is split into smaller lock ranges and
65  * new proxy locks created for non overlapping ranges.
66  * The reference counts are adjusted accordingly.
67  * Meanwhile, the orginal lock is kept around (this is the callers handle)
68  * and its offset and length are used when releasing the lock.
69  *
70  * Thread coordination
71  * -------------------
72  * In order to make wakeups efficient and to ensure multiple continuous
73  * readers on a range don't starve a writer for the same range lock,
74  * two condition variables are allocated in each rl_t.
75  * If a writer (or reader) can't get a range it initialises the writer
76  * (or reader) cv; sets a flag saying there's a writer (or reader) waiting;
77  * and waits on that cv. When a thread unlocks that range it wakes up all
78  * writers then all readers before destroying the lock.
79  *
80  * Append mode writes
81  * ------------------
82  * Append mode writes need to lock a range at the end of a file.
83  * The offset of the end of the file is determined under the
84  * range locking mutex, and the lock type converted from RL_APPEND to
85  * RL_WRITER and the range locked.
86  *
87  * Grow block handling
88  * -------------------
89  * ZFS supports multiple block sizes currently upto 128K. The smallest
90  * block size is used for the file which is grown as needed. During this
91  * growth all other writers and readers must be excluded.
92  * So if the block size needs to be grown then the whole file is
93  * exclusively locked, then later the caller will reduce the lock
94  * range to just the range to be written using zfs_reduce_range.
95  */
96 
97 #include <sys/zfs_rlock.h>
98 
99 /*
100  * Check if a write lock can be grabbed, or wait and recheck until available.
101  */
102 static void
103 zfs_range_lock_writer(znode_t *zp, rl_t *new)
104 {
105 	avl_tree_t *tree = &zp->z_range_avl;
106 	rl_t *rl;
107 	avl_index_t where;
108 	uint64_t end_size;
109 	uint64_t off = new->r_off;
110 	uint64_t len = new->r_len;
111 	int max_blksz = zp->z_zfsvfs->z_max_blksz;
112 
113 	for (;;) {
114 		/*
115 		 * If in append mode pick up the current end of file.
116 		 * This is done under z_range_lock to avoid races.
117 		 */
118 		if (new->r_type == RL_APPEND)
119 			new->r_off = zp->z_phys->zp_size;
120 
121 		/*
122 		 * If we need to grow the block size then grab the whole
123 		 * file range. This is also done under z_range_lock to
124 		 * avoid races.
125 		 */
126 		end_size = MAX(zp->z_phys->zp_size, new->r_off + len);
127 		if (end_size > zp->z_blksz &&
128 		    (!ISP2(zp->z_blksz) || zp->z_blksz < max_blksz)) {
129 			new->r_off = 0;
130 			new->r_len = UINT64_MAX;
131 		}
132 
133 		/*
134 		 * First check for the usual case of no locks
135 		 */
136 		if (avl_numnodes(tree) == 0) {
137 			new->r_type = RL_WRITER; /* convert to writer */
138 			avl_add(tree, new);
139 			return;
140 		}
141 
142 		/*
143 		 * Look for any locks in the range.
144 		 */
145 		rl = avl_find(tree, new, &where);
146 		if (rl)
147 			goto wait; /* already locked at same offset */
148 
149 		rl = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
150 		if (rl && (rl->r_off < new->r_off + new->r_len))
151 			goto wait;
152 
153 		rl = (rl_t *)avl_nearest(tree, where, AVL_BEFORE);
154 		if (rl && rl->r_off + rl->r_len > new->r_off)
155 			goto wait;
156 
157 		new->r_type = RL_WRITER; /* convert possible RL_APPEND */
158 		avl_insert(tree, new, where);
159 		return;
160 wait:
161 		if (!rl->r_write_wanted) {
162 			cv_init(&rl->r_wr_cv, NULL, CV_DEFAULT, NULL);
163 			rl->r_write_wanted = B_TRUE;
164 		}
165 		cv_wait(&rl->r_wr_cv, &zp->z_range_lock);
166 
167 		/* reset to original */
168 		new->r_off = off;
169 		new->r_len = len;
170 	}
171 }
172 
173 /*
174  * If this is an original (non-proxy) lock then replace it by
175  * a proxy and return the proxy.
176  */
177 static rl_t *
178 zfs_range_proxify(avl_tree_t *tree, rl_t *rl)
179 {
180 	rl_t *proxy;
181 
182 	if (rl->r_proxy)
183 		return (rl); /* already a proxy */
184 
185 	ASSERT3U(rl->r_cnt, ==, 1);
186 	ASSERT(rl->r_write_wanted == B_FALSE);
187 	ASSERT(rl->r_read_wanted == B_FALSE);
188 	avl_remove(tree, rl);
189 	rl->r_cnt = 0;
190 
191 	/* create a proxy range lock */
192 	proxy = kmem_alloc(sizeof (rl_t), KM_SLEEP);
193 	proxy->r_off = rl->r_off;
194 	proxy->r_len = rl->r_len;
195 	proxy->r_cnt = 1;
196 	proxy->r_type = RL_READER;
197 	proxy->r_proxy = B_TRUE;
198 	proxy->r_write_wanted = B_FALSE;
199 	proxy->r_read_wanted = B_FALSE;
200 	avl_add(tree, proxy);
201 
202 	return (proxy);
203 }
204 
205 /*
206  * Split the range lock at the supplied offset
207  * returning the *front* proxy.
208  */
209 static rl_t *
210 zfs_range_split(avl_tree_t *tree, rl_t *rl, uint64_t off)
211 {
212 	rl_t *front, *rear;
213 
214 	ASSERT3U(rl->r_len, >, 1);
215 	ASSERT3U(off, >, rl->r_off);
216 	ASSERT3U(off, <, rl->r_off + rl->r_len);
217 	ASSERT(rl->r_write_wanted == B_FALSE);
218 	ASSERT(rl->r_read_wanted == B_FALSE);
219 
220 	/* create the rear proxy range lock */
221 	rear = kmem_alloc(sizeof (rl_t), KM_SLEEP);
222 	rear->r_off = off;
223 	rear->r_len = rl->r_off + rl->r_len - off;
224 	rear->r_cnt = rl->r_cnt;
225 	rear->r_type = RL_READER;
226 	rear->r_proxy = B_TRUE;
227 	rear->r_write_wanted = B_FALSE;
228 	rear->r_read_wanted = B_FALSE;
229 
230 	front = zfs_range_proxify(tree, rl);
231 	front->r_len = off - rl->r_off;
232 
233 	avl_insert_here(tree, rear, front, AVL_AFTER);
234 	return (front);
235 }
236 
237 /*
238  * Create and add a new proxy range lock for the supplied range.
239  */
240 static void
241 zfs_range_new_proxy(avl_tree_t *tree, uint64_t off, uint64_t len)
242 {
243 	rl_t *rl;
244 
245 	ASSERT(len);
246 	rl = kmem_alloc(sizeof (rl_t), KM_SLEEP);
247 	rl->r_off = off;
248 	rl->r_len = len;
249 	rl->r_cnt = 1;
250 	rl->r_type = RL_READER;
251 	rl->r_proxy = B_TRUE;
252 	rl->r_write_wanted = B_FALSE;
253 	rl->r_read_wanted = B_FALSE;
254 	avl_add(tree, rl);
255 }
256 
257 static void
258 zfs_range_add_reader(avl_tree_t *tree, rl_t *new, rl_t *prev, avl_index_t where)
259 {
260 	rl_t *next;
261 	uint64_t off = new->r_off;
262 	uint64_t len = new->r_len;
263 
264 	/*
265 	 * prev arrives either:
266 	 * - pointing to an entry at the same offset
267 	 * - pointing to the entry with the closest previous offset whose
268 	 *   range may overlap with the new range
269 	 * - null, if there were no ranges starting before the new one
270 	 */
271 	if (prev) {
272 		if (prev->r_off + prev->r_len <= off) {
273 			prev = NULL;
274 		} else if (prev->r_off != off) {
275 			/*
276 			 * convert to proxy if needed then
277 			 * split this entry and bump ref count
278 			 */
279 			prev = zfs_range_split(tree, prev, off);
280 			prev = AVL_NEXT(tree, prev); /* move to rear range */
281 		}
282 	}
283 	ASSERT((prev == NULL) || (prev->r_off == off));
284 
285 	if (prev)
286 		next = prev;
287 	else
288 		next = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
289 
290 	if (next == NULL || off + len <= next->r_off) {
291 		/* no overlaps, use the original new rl_t in the tree */
292 		avl_insert(tree, new, where);
293 		return;
294 	}
295 
296 	if (off < next->r_off) {
297 		/* Add a proxy for initial range before the overlap */
298 		zfs_range_new_proxy(tree, off, next->r_off - off);
299 	}
300 
301 	new->r_cnt = 0; /* will use proxies in tree */
302 	/*
303 	 * We now search forward through the ranges, until we go past the end
304 	 * of the new range. For each entry we make it a proxy if it
305 	 * isn't already, then bump its reference count. If there's any
306 	 * gaps between the ranges then we create a new proxy range.
307 	 */
308 	for (prev = NULL; next; prev = next, next = AVL_NEXT(tree, next)) {
309 		if (off + len <= next->r_off)
310 			break;
311 		if (prev && prev->r_off + prev->r_len < next->r_off) {
312 			/* there's a gap */
313 			ASSERT3U(next->r_off, >, prev->r_off + prev->r_len);
314 			zfs_range_new_proxy(tree, prev->r_off + prev->r_len,
315 			    next->r_off - (prev->r_off + prev->r_len));
316 		}
317 		if (off + len == next->r_off + next->r_len) {
318 			/* exact overlap with end */
319 			next = zfs_range_proxify(tree, next);
320 			next->r_cnt++;
321 			return;
322 		}
323 		if (off + len < next->r_off + next->r_len) {
324 			/* new range ends in the middle of this block */
325 			next = zfs_range_split(tree, next, off + len);
326 			next->r_cnt++;
327 			return;
328 		}
329 		ASSERT3U(off + len, >, next->r_off + next->r_len);
330 		next = zfs_range_proxify(tree, next);
331 		next->r_cnt++;
332 	}
333 
334 	/* Add the remaining end range. */
335 	zfs_range_new_proxy(tree, prev->r_off + prev->r_len,
336 	    (off + len) - (prev->r_off + prev->r_len));
337 }
338 
339 /*
340  * Check if a reader lock can be grabbed, or wait and recheck until available.
341  */
342 static void
343 zfs_range_lock_reader(znode_t *zp, rl_t *new)
344 {
345 	avl_tree_t *tree = &zp->z_range_avl;
346 	rl_t *prev, *next;
347 	avl_index_t where;
348 	uint64_t off = new->r_off;
349 	uint64_t len = new->r_len;
350 
351 	/*
352 	 * Look for any writer locks in the range.
353 	 */
354 retry:
355 	prev = avl_find(tree, new, &where);
356 	if (prev == NULL)
357 		prev = (rl_t *)avl_nearest(tree, where, AVL_BEFORE);
358 
359 	/*
360 	 * Check the previous range for a writer lock overlap.
361 	 */
362 	if (prev && (off < prev->r_off + prev->r_len)) {
363 		if ((prev->r_type == RL_WRITER) || (prev->r_write_wanted)) {
364 			if (!prev->r_read_wanted) {
365 				cv_init(&prev->r_rd_cv, NULL, CV_DEFAULT, NULL);
366 				prev->r_read_wanted = B_TRUE;
367 			}
368 			cv_wait(&prev->r_rd_cv, &zp->z_range_lock);
369 			goto retry;
370 		}
371 		if (off + len < prev->r_off + prev->r_len)
372 			goto got_lock;
373 	}
374 
375 	/*
376 	 * Search through the following ranges to see if there's
377 	 * write lock any overlap.
378 	 */
379 	if (prev)
380 		next = AVL_NEXT(tree, prev);
381 	else
382 		next = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
383 	for (; next; next = AVL_NEXT(tree, next)) {
384 		if (off + len <= next->r_off)
385 			goto got_lock;
386 		if ((next->r_type == RL_WRITER) || (next->r_write_wanted)) {
387 			if (!next->r_read_wanted) {
388 				cv_init(&next->r_rd_cv, NULL, CV_DEFAULT, NULL);
389 				next->r_read_wanted = B_TRUE;
390 			}
391 			cv_wait(&next->r_rd_cv, &zp->z_range_lock);
392 			goto retry;
393 		}
394 		if (off + len <= next->r_off + next->r_len)
395 			goto got_lock;
396 	}
397 
398 got_lock:
399 	/*
400 	 * Add the read lock, which may involve splitting existing
401 	 * locks and bumping ref counts (r_cnt).
402 	 */
403 	zfs_range_add_reader(tree, new, prev, where);
404 }
405 
406 /*
407  * Lock a range (offset, length) as either shared (RL_READER)
408  * or exclusive (RL_WRITER). Returns the range lock structure
409  * for later unlocking or reduce range (if entire file
410  * previously locked as RL_WRITER).
411  */
412 rl_t *
413 zfs_range_lock(znode_t *zp, uint64_t off, uint64_t len, rl_type_t type)
414 {
415 	rl_t *new;
416 
417 	ASSERT(type == RL_READER || type == RL_WRITER || type == RL_APPEND);
418 
419 	new = kmem_alloc(sizeof (rl_t), KM_SLEEP);
420 	new->r_zp = zp;
421 	new->r_off = off;
422 	new->r_len = len;
423 	new->r_cnt = 1; /* assume it's going to be in the tree */
424 	new->r_type = type;
425 	new->r_proxy = B_FALSE;
426 	new->r_write_wanted = B_FALSE;
427 	new->r_read_wanted = B_FALSE;
428 
429 	mutex_enter(&zp->z_range_lock);
430 	if (type == RL_READER) {
431 		/*
432 		 * First check for the usual case of no locks
433 		 */
434 		if (avl_numnodes(&zp->z_range_avl) == 0)
435 			avl_add(&zp->z_range_avl, new);
436 		else
437 			zfs_range_lock_reader(zp, new);
438 	} else
439 		zfs_range_lock_writer(zp, new); /* RL_WRITER or RL_APPEND */
440 	mutex_exit(&zp->z_range_lock);
441 	return (new);
442 }
443 
444 /*
445  * Unlock a reader lock
446  */
447 static void
448 zfs_range_unlock_reader(znode_t *zp, rl_t *remove)
449 {
450 	avl_tree_t *tree = &zp->z_range_avl;
451 	rl_t *rl, *next;
452 	uint64_t len;
453 
454 	/*
455 	 * The common case is when the remove entry is in the tree
456 	 * (cnt == 1) meaning there's been no other reader locks overlapping
457 	 * with this one. Otherwise the remove entry will have been
458 	 * removed from the tree and replaced by proxies (one or
459 	 * more ranges mapping to the entire range).
460 	 */
461 	if (remove->r_cnt == 1) {
462 		avl_remove(tree, remove);
463 		if (remove->r_write_wanted)
464 			cv_broadcast(&remove->r_wr_cv);
465 		if (remove->r_read_wanted)
466 			cv_broadcast(&remove->r_rd_cv);
467 	} else {
468 		ASSERT3U(remove->r_cnt, ==, 0);
469 		ASSERT3U(remove->r_write_wanted, ==, 0);
470 		ASSERT3U(remove->r_read_wanted, ==, 0);
471 		/*
472 		 * Find start proxy representing this reader lock,
473 		 * then decrement ref count on all proxies
474 		 * that make up this range, freeing them as needed.
475 		 */
476 		rl = avl_find(tree, remove, NULL);
477 		ASSERT(rl);
478 		ASSERT(rl->r_cnt);
479 		ASSERT(rl->r_type == RL_READER);
480 		for (len = remove->r_len; len != 0; rl = next) {
481 			len -= rl->r_len;
482 			if (len) {
483 				next = AVL_NEXT(tree, rl);
484 				ASSERT(next);
485 				ASSERT(rl->r_off + rl->r_len == next->r_off);
486 				ASSERT(next->r_cnt);
487 				ASSERT(next->r_type == RL_READER);
488 			}
489 			rl->r_cnt--;
490 			if (rl->r_cnt == 0) {
491 				avl_remove(tree, rl);
492 				if (rl->r_write_wanted)
493 					cv_broadcast(&rl->r_wr_cv);
494 				if (rl->r_read_wanted)
495 					cv_broadcast(&rl->r_rd_cv);
496 				kmem_free(rl, sizeof (rl_t));
497 			}
498 		}
499 	}
500 	kmem_free(remove, sizeof (rl_t));
501 }
502 
503 /*
504  * Unlock range and destroy range lock structure.
505  */
506 void
507 zfs_range_unlock(rl_t *rl)
508 {
509 	znode_t *zp = rl->r_zp;
510 
511 	ASSERT(rl->r_type == RL_WRITER || rl->r_type == RL_READER);
512 	ASSERT(rl->r_cnt == 1 || rl->r_cnt == 0);
513 	ASSERT(!rl->r_proxy);
514 
515 	mutex_enter(&zp->z_range_lock);
516 	if (rl->r_type == RL_WRITER) {
517 		/* writer locks can't be shared or split */
518 		avl_remove(&zp->z_range_avl, rl);
519 		mutex_exit(&zp->z_range_lock);
520 		if (rl->r_write_wanted)
521 			cv_broadcast(&rl->r_wr_cv);
522 		if (rl->r_read_wanted)
523 			cv_broadcast(&rl->r_rd_cv);
524 		kmem_free(rl, sizeof (rl_t));
525 	} else {
526 		/*
527 		 * lock may be shared, let zfs_range_unlock_reader()
528 		 * release the lock and free the rl_t
529 		 */
530 		zfs_range_unlock_reader(zp, rl);
531 		mutex_exit(&zp->z_range_lock);
532 	}
533 }
534 
535 /*
536  * Reduce range locked as RL_WRITER from whole file to specified range.
537  * Asserts the whole file is exclusivly locked and so there's only one
538  * entry in the tree.
539  */
540 void
541 zfs_range_reduce(rl_t *rl, uint64_t off, uint64_t len)
542 {
543 	znode_t *zp = rl->r_zp;
544 
545 	/* Ensure there are no other locks */
546 	ASSERT(avl_numnodes(&zp->z_range_avl) == 1);
547 	ASSERT(rl->r_off == 0);
548 	ASSERT(rl->r_type == RL_WRITER);
549 	ASSERT(!rl->r_proxy);
550 	ASSERT3U(rl->r_len, ==, UINT64_MAX);
551 	ASSERT3U(rl->r_cnt, ==, 1);
552 
553 	mutex_enter(&zp->z_range_lock);
554 	rl->r_off = off;
555 	rl->r_len = len;
556 	mutex_exit(&zp->z_range_lock);
557 	if (rl->r_write_wanted)
558 		cv_broadcast(&rl->r_wr_cv);
559 	if (rl->r_read_wanted)
560 		cv_broadcast(&rl->r_rd_cv);
561 }
562 
563 /*
564  * AVL comparison function used to order range locks
565  * Locks are ordered on the start offset of the range.
566  */
567 int
568 zfs_range_compare(const void *arg1, const void *arg2)
569 {
570 	const rl_t *rl1 = arg1;
571 	const rl_t *rl2 = arg2;
572 
573 	if (rl1->r_off > rl2->r_off)
574 		return (1);
575 	if (rl1->r_off < rl2->r_off)
576 		return (-1);
577 	return (0);
578 }
579