1104e2ed7Sperrin /*
2104e2ed7Sperrin * CDDL HEADER START
3104e2ed7Sperrin *
4104e2ed7Sperrin * The contents of this file are subject to the terms of the
5104e2ed7Sperrin * Common Development and Distribution License (the "License").
6104e2ed7Sperrin * You may not use this file except in compliance with the License.
7104e2ed7Sperrin *
8104e2ed7Sperrin * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9104e2ed7Sperrin * or http://www.opensolaris.org/os/licensing.
10104e2ed7Sperrin * See the License for the specific language governing permissions
11104e2ed7Sperrin * and limitations under the License.
12104e2ed7Sperrin *
13104e2ed7Sperrin * When distributing Covered Code, include this CDDL HEADER in each
14104e2ed7Sperrin * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15104e2ed7Sperrin * If applicable, add the following below this CDDL HEADER, with the
16104e2ed7Sperrin * fields enclosed by brackets "[]" replaced with your own identifying
17104e2ed7Sperrin * information: Portions Copyright [yyyy] [name of copyright owner]
18104e2ed7Sperrin *
19104e2ed7Sperrin * CDDL HEADER END
20104e2ed7Sperrin */
21104e2ed7Sperrin /*
220a586ceaSMark Shellenbaum * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23104e2ed7Sperrin * Use is subject to license terms.
24104e2ed7Sperrin */
25fb09f5aaSMadhav Suresh /*
26fb09f5aaSMadhav Suresh * Copyright (c) 2012 by Delphix. All rights reserved.
27fb09f5aaSMadhav Suresh */
28104e2ed7Sperrin
29104e2ed7Sperrin /*
30104e2ed7Sperrin * This file contains the code to implement file range locking in
31*f7170741SWill Andrews * ZFS, although there isn't much specific to ZFS (all that comes to mind is
32104e2ed7Sperrin * support for growing the blocksize).
33104e2ed7Sperrin *
34104e2ed7Sperrin * Interface
35104e2ed7Sperrin * ---------
36104e2ed7Sperrin * Defined in zfs_rlock.h but essentially:
37104e2ed7Sperrin * rl = zfs_range_lock(zp, off, len, lock_type);
38c5c6ffa0Smaybee * zfs_range_unlock(rl);
39c5c6ffa0Smaybee * zfs_range_reduce(rl, off, len);
40104e2ed7Sperrin *
41104e2ed7Sperrin * AVL tree
42104e2ed7Sperrin * --------
43104e2ed7Sperrin * An AVL tree is used to maintain the state of the existing ranges
44104e2ed7Sperrin * that are locked for exclusive (writer) or shared (reader) use.
45104e2ed7Sperrin * The starting range offset is used for searching and sorting the tree.
46104e2ed7Sperrin *
47104e2ed7Sperrin * Common case
48104e2ed7Sperrin * -----------
49104e2ed7Sperrin * The (hopefully) usual case is of no overlaps or contention for
50104e2ed7Sperrin * locks. On entry to zfs_lock_range() a rl_t is allocated; the tree
51104e2ed7Sperrin * searched that finds no overlap, and *this* rl_t is placed in the tree.
52104e2ed7Sperrin *
53104e2ed7Sperrin * Overlaps/Reference counting/Proxy locks
54104e2ed7Sperrin * ---------------------------------------
55104e2ed7Sperrin * The avl code only allows one node at a particular offset. Also it's very
56104e2ed7Sperrin * inefficient to search through all previous entries looking for overlaps
57104e2ed7Sperrin * (because the very 1st in the ordered list might be at offset 0 but
58104e2ed7Sperrin * cover the whole file).
59104e2ed7Sperrin * So this implementation uses reference counts and proxy range locks.
60104e2ed7Sperrin * Firstly, only reader locks use reference counts and proxy locks,
61104e2ed7Sperrin * because writer locks are exclusive.
62104e2ed7Sperrin * When a reader lock overlaps with another then a proxy lock is created
63104e2ed7Sperrin * for that range and replaces the original lock. If the overlap
64104e2ed7Sperrin * is exact then the reference count of the proxy is simply incremented.
65104e2ed7Sperrin * Otherwise, the proxy lock is split into smaller lock ranges and
66104e2ed7Sperrin * new proxy locks created for non overlapping ranges.
67104e2ed7Sperrin * The reference counts are adjusted accordingly.
68104e2ed7Sperrin * Meanwhile, the orginal lock is kept around (this is the callers handle)
69104e2ed7Sperrin * and its offset and length are used when releasing the lock.
70104e2ed7Sperrin *
71104e2ed7Sperrin * Thread coordination
72104e2ed7Sperrin * -------------------
73104e2ed7Sperrin * In order to make wakeups efficient and to ensure multiple continuous
74104e2ed7Sperrin * readers on a range don't starve a writer for the same range lock,
75104e2ed7Sperrin * two condition variables are allocated in each rl_t.
76104e2ed7Sperrin * If a writer (or reader) can't get a range it initialises the writer
77104e2ed7Sperrin * (or reader) cv; sets a flag saying there's a writer (or reader) waiting;
78104e2ed7Sperrin * and waits on that cv. When a thread unlocks that range it wakes up all
79104e2ed7Sperrin * writers then all readers before destroying the lock.
80104e2ed7Sperrin *
81104e2ed7Sperrin * Append mode writes
82104e2ed7Sperrin * ------------------
83104e2ed7Sperrin * Append mode writes need to lock a range at the end of a file.
84104e2ed7Sperrin * The offset of the end of the file is determined under the
85104e2ed7Sperrin * range locking mutex, and the lock type converted from RL_APPEND to
86104e2ed7Sperrin * RL_WRITER and the range locked.
87104e2ed7Sperrin *
88104e2ed7Sperrin * Grow block handling
89104e2ed7Sperrin * -------------------
90104e2ed7Sperrin * ZFS supports multiple block sizes currently upto 128K. The smallest
91104e2ed7Sperrin * block size is used for the file which is grown as needed. During this
92104e2ed7Sperrin * growth all other writers and readers must be excluded.
93104e2ed7Sperrin * So if the block size needs to be grown then the whole file is
94104e2ed7Sperrin * exclusively locked, then later the caller will reduce the lock
95104e2ed7Sperrin * range to just the range to be written using zfs_reduce_range.
96104e2ed7Sperrin */
97104e2ed7Sperrin
98104e2ed7Sperrin #include <sys/zfs_rlock.h>
99104e2ed7Sperrin
100104e2ed7Sperrin /*
101104e2ed7Sperrin * Check if a write lock can be grabbed, or wait and recheck until available.
102104e2ed7Sperrin */
103104e2ed7Sperrin static void
zfs_range_lock_writer(znode_t * zp,rl_t * new)104104e2ed7Sperrin zfs_range_lock_writer(znode_t *zp, rl_t *new)
105104e2ed7Sperrin {
106104e2ed7Sperrin avl_tree_t *tree = &zp->z_range_avl;
107104e2ed7Sperrin rl_t *rl;
108104e2ed7Sperrin avl_index_t where;
109104e2ed7Sperrin uint64_t end_size;
110104e2ed7Sperrin uint64_t off = new->r_off;
111104e2ed7Sperrin uint64_t len = new->r_len;
112104e2ed7Sperrin
113104e2ed7Sperrin for (;;) {
114104e2ed7Sperrin /*
115c2e6a7d6Sperrin * Range locking is also used by zvol and uses a
116c2e6a7d6Sperrin * dummied up znode. However, for zvol, we don't need to
117c2e6a7d6Sperrin * append or grow blocksize, and besides we don't have
1180a586ceaSMark Shellenbaum * a "sa" data or z_zfsvfs - so skip that processing.
119c2e6a7d6Sperrin *
120c2e6a7d6Sperrin * Yes, this is ugly, and would be solved by not handling
121c2e6a7d6Sperrin * grow or append in range lock code. If that was done then
122c2e6a7d6Sperrin * we could make the range locking code generically available
123c2e6a7d6Sperrin * to other non-zfs consumers.
124c2e6a7d6Sperrin */
125c2e6a7d6Sperrin if (zp->z_vnode) { /* caller is ZPL */
126c2e6a7d6Sperrin /*
127104e2ed7Sperrin * If in append mode pick up the current end of file.
128104e2ed7Sperrin * This is done under z_range_lock to avoid races.
129104e2ed7Sperrin */
130104e2ed7Sperrin if (new->r_type == RL_APPEND)
1310a586ceaSMark Shellenbaum new->r_off = zp->z_size;
132104e2ed7Sperrin
133104e2ed7Sperrin /*
134104e2ed7Sperrin * If we need to grow the block size then grab the whole
135104e2ed7Sperrin * file range. This is also done under z_range_lock to
136104e2ed7Sperrin * avoid races.
137104e2ed7Sperrin */
1380a586ceaSMark Shellenbaum end_size = MAX(zp->z_size, new->r_off + len);
139c2e6a7d6Sperrin if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) ||
140c2e6a7d6Sperrin zp->z_blksz < zp->z_zfsvfs->z_max_blksz)) {
141104e2ed7Sperrin new->r_off = 0;
142104e2ed7Sperrin new->r_len = UINT64_MAX;
143104e2ed7Sperrin }
144c2e6a7d6Sperrin }
145104e2ed7Sperrin
146104e2ed7Sperrin /*
147104e2ed7Sperrin * First check for the usual case of no locks
148104e2ed7Sperrin */
149104e2ed7Sperrin if (avl_numnodes(tree) == 0) {
150104e2ed7Sperrin new->r_type = RL_WRITER; /* convert to writer */
151104e2ed7Sperrin avl_add(tree, new);
152104e2ed7Sperrin return;
153104e2ed7Sperrin }
154104e2ed7Sperrin
155104e2ed7Sperrin /*
156104e2ed7Sperrin * Look for any locks in the range.
157104e2ed7Sperrin */
158104e2ed7Sperrin rl = avl_find(tree, new, &where);
159104e2ed7Sperrin if (rl)
160104e2ed7Sperrin goto wait; /* already locked at same offset */
161104e2ed7Sperrin
162104e2ed7Sperrin rl = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
163104e2ed7Sperrin if (rl && (rl->r_off < new->r_off + new->r_len))
164104e2ed7Sperrin goto wait;
165104e2ed7Sperrin
166104e2ed7Sperrin rl = (rl_t *)avl_nearest(tree, where, AVL_BEFORE);
167104e2ed7Sperrin if (rl && rl->r_off + rl->r_len > new->r_off)
168104e2ed7Sperrin goto wait;
169104e2ed7Sperrin
170104e2ed7Sperrin new->r_type = RL_WRITER; /* convert possible RL_APPEND */
171104e2ed7Sperrin avl_insert(tree, new, where);
172104e2ed7Sperrin return;
173104e2ed7Sperrin wait:
174104e2ed7Sperrin if (!rl->r_write_wanted) {
175104e2ed7Sperrin cv_init(&rl->r_wr_cv, NULL, CV_DEFAULT, NULL);
176104e2ed7Sperrin rl->r_write_wanted = B_TRUE;
177104e2ed7Sperrin }
178104e2ed7Sperrin cv_wait(&rl->r_wr_cv, &zp->z_range_lock);
179104e2ed7Sperrin
180104e2ed7Sperrin /* reset to original */
181104e2ed7Sperrin new->r_off = off;
182104e2ed7Sperrin new->r_len = len;
183104e2ed7Sperrin }
184104e2ed7Sperrin }
185104e2ed7Sperrin
186104e2ed7Sperrin /*
187104e2ed7Sperrin * If this is an original (non-proxy) lock then replace it by
188104e2ed7Sperrin * a proxy and return the proxy.
189104e2ed7Sperrin */
190104e2ed7Sperrin static rl_t *
zfs_range_proxify(avl_tree_t * tree,rl_t * rl)191104e2ed7Sperrin zfs_range_proxify(avl_tree_t *tree, rl_t *rl)
192104e2ed7Sperrin {
193104e2ed7Sperrin rl_t *proxy;
194104e2ed7Sperrin
195104e2ed7Sperrin if (rl->r_proxy)
196104e2ed7Sperrin return (rl); /* already a proxy */
197104e2ed7Sperrin
198104e2ed7Sperrin ASSERT3U(rl->r_cnt, ==, 1);
199104e2ed7Sperrin ASSERT(rl->r_write_wanted == B_FALSE);
200104e2ed7Sperrin ASSERT(rl->r_read_wanted == B_FALSE);
201104e2ed7Sperrin avl_remove(tree, rl);
202104e2ed7Sperrin rl->r_cnt = 0;
203104e2ed7Sperrin
204104e2ed7Sperrin /* create a proxy range lock */
205104e2ed7Sperrin proxy = kmem_alloc(sizeof (rl_t), KM_SLEEP);
206104e2ed7Sperrin proxy->r_off = rl->r_off;
207104e2ed7Sperrin proxy->r_len = rl->r_len;
208104e2ed7Sperrin proxy->r_cnt = 1;
209104e2ed7Sperrin proxy->r_type = RL_READER;
210104e2ed7Sperrin proxy->r_proxy = B_TRUE;
211104e2ed7Sperrin proxy->r_write_wanted = B_FALSE;
212104e2ed7Sperrin proxy->r_read_wanted = B_FALSE;
213104e2ed7Sperrin avl_add(tree, proxy);
214104e2ed7Sperrin
215104e2ed7Sperrin return (proxy);
216104e2ed7Sperrin }
217104e2ed7Sperrin
218104e2ed7Sperrin /*
219104e2ed7Sperrin * Split the range lock at the supplied offset
220104e2ed7Sperrin * returning the *front* proxy.
221104e2ed7Sperrin */
222104e2ed7Sperrin static rl_t *
zfs_range_split(avl_tree_t * tree,rl_t * rl,uint64_t off)223104e2ed7Sperrin zfs_range_split(avl_tree_t *tree, rl_t *rl, uint64_t off)
224104e2ed7Sperrin {
225104e2ed7Sperrin rl_t *front, *rear;
226104e2ed7Sperrin
227104e2ed7Sperrin ASSERT3U(rl->r_len, >, 1);
228104e2ed7Sperrin ASSERT3U(off, >, rl->r_off);
229104e2ed7Sperrin ASSERT3U(off, <, rl->r_off + rl->r_len);
230104e2ed7Sperrin ASSERT(rl->r_write_wanted == B_FALSE);
231104e2ed7Sperrin ASSERT(rl->r_read_wanted == B_FALSE);
232104e2ed7Sperrin
233104e2ed7Sperrin /* create the rear proxy range lock */
234104e2ed7Sperrin rear = kmem_alloc(sizeof (rl_t), KM_SLEEP);
235104e2ed7Sperrin rear->r_off = off;
236104e2ed7Sperrin rear->r_len = rl->r_off + rl->r_len - off;
237104e2ed7Sperrin rear->r_cnt = rl->r_cnt;
238104e2ed7Sperrin rear->r_type = RL_READER;
239104e2ed7Sperrin rear->r_proxy = B_TRUE;
240104e2ed7Sperrin rear->r_write_wanted = B_FALSE;
241104e2ed7Sperrin rear->r_read_wanted = B_FALSE;
242104e2ed7Sperrin
243104e2ed7Sperrin front = zfs_range_proxify(tree, rl);
244104e2ed7Sperrin front->r_len = off - rl->r_off;
245104e2ed7Sperrin
246104e2ed7Sperrin avl_insert_here(tree, rear, front, AVL_AFTER);
247104e2ed7Sperrin return (front);
248104e2ed7Sperrin }
249104e2ed7Sperrin
250104e2ed7Sperrin /*
251104e2ed7Sperrin * Create and add a new proxy range lock for the supplied range.
252104e2ed7Sperrin */
253104e2ed7Sperrin static void
zfs_range_new_proxy(avl_tree_t * tree,uint64_t off,uint64_t len)254104e2ed7Sperrin zfs_range_new_proxy(avl_tree_t *tree, uint64_t off, uint64_t len)
255104e2ed7Sperrin {
256104e2ed7Sperrin rl_t *rl;
257104e2ed7Sperrin
258104e2ed7Sperrin ASSERT(len);
259104e2ed7Sperrin rl = kmem_alloc(sizeof (rl_t), KM_SLEEP);
260104e2ed7Sperrin rl->r_off = off;
261104e2ed7Sperrin rl->r_len = len;
262104e2ed7Sperrin rl->r_cnt = 1;
263104e2ed7Sperrin rl->r_type = RL_READER;
264104e2ed7Sperrin rl->r_proxy = B_TRUE;
265104e2ed7Sperrin rl->r_write_wanted = B_FALSE;
266104e2ed7Sperrin rl->r_read_wanted = B_FALSE;
267104e2ed7Sperrin avl_add(tree, rl);
268104e2ed7Sperrin }
269104e2ed7Sperrin
270104e2ed7Sperrin static void
zfs_range_add_reader(avl_tree_t * tree,rl_t * new,rl_t * prev,avl_index_t where)271104e2ed7Sperrin zfs_range_add_reader(avl_tree_t *tree, rl_t *new, rl_t *prev, avl_index_t where)
272104e2ed7Sperrin {
273104e2ed7Sperrin rl_t *next;
274104e2ed7Sperrin uint64_t off = new->r_off;
275104e2ed7Sperrin uint64_t len = new->r_len;
276104e2ed7Sperrin
277104e2ed7Sperrin /*
278104e2ed7Sperrin * prev arrives either:
279104e2ed7Sperrin * - pointing to an entry at the same offset
280104e2ed7Sperrin * - pointing to the entry with the closest previous offset whose
281104e2ed7Sperrin * range may overlap with the new range
282104e2ed7Sperrin * - null, if there were no ranges starting before the new one
283104e2ed7Sperrin */
284104e2ed7Sperrin if (prev) {
285104e2ed7Sperrin if (prev->r_off + prev->r_len <= off) {
286104e2ed7Sperrin prev = NULL;
287104e2ed7Sperrin } else if (prev->r_off != off) {
288104e2ed7Sperrin /*
289104e2ed7Sperrin * convert to proxy if needed then
290104e2ed7Sperrin * split this entry and bump ref count
291104e2ed7Sperrin */
292104e2ed7Sperrin prev = zfs_range_split(tree, prev, off);
293104e2ed7Sperrin prev = AVL_NEXT(tree, prev); /* move to rear range */
294104e2ed7Sperrin }
295104e2ed7Sperrin }
296104e2ed7Sperrin ASSERT((prev == NULL) || (prev->r_off == off));
297104e2ed7Sperrin
298104e2ed7Sperrin if (prev)
299104e2ed7Sperrin next = prev;
300104e2ed7Sperrin else
301104e2ed7Sperrin next = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
302104e2ed7Sperrin
303104e2ed7Sperrin if (next == NULL || off + len <= next->r_off) {
304104e2ed7Sperrin /* no overlaps, use the original new rl_t in the tree */
305104e2ed7Sperrin avl_insert(tree, new, where);
306104e2ed7Sperrin return;
307104e2ed7Sperrin }
308104e2ed7Sperrin
309104e2ed7Sperrin if (off < next->r_off) {
310104e2ed7Sperrin /* Add a proxy for initial range before the overlap */
311104e2ed7Sperrin zfs_range_new_proxy(tree, off, next->r_off - off);
312104e2ed7Sperrin }
313104e2ed7Sperrin
314104e2ed7Sperrin new->r_cnt = 0; /* will use proxies in tree */
315104e2ed7Sperrin /*
316104e2ed7Sperrin * We now search forward through the ranges, until we go past the end
317104e2ed7Sperrin * of the new range. For each entry we make it a proxy if it
318104e2ed7Sperrin * isn't already, then bump its reference count. If there's any
319104e2ed7Sperrin * gaps between the ranges then we create a new proxy range.
320104e2ed7Sperrin */
321104e2ed7Sperrin for (prev = NULL; next; prev = next, next = AVL_NEXT(tree, next)) {
322104e2ed7Sperrin if (off + len <= next->r_off)
323104e2ed7Sperrin break;
324104e2ed7Sperrin if (prev && prev->r_off + prev->r_len < next->r_off) {
325104e2ed7Sperrin /* there's a gap */
326104e2ed7Sperrin ASSERT3U(next->r_off, >, prev->r_off + prev->r_len);
327104e2ed7Sperrin zfs_range_new_proxy(tree, prev->r_off + prev->r_len,
328104e2ed7Sperrin next->r_off - (prev->r_off + prev->r_len));
329104e2ed7Sperrin }
330104e2ed7Sperrin if (off + len == next->r_off + next->r_len) {
331104e2ed7Sperrin /* exact overlap with end */
332104e2ed7Sperrin next = zfs_range_proxify(tree, next);
333104e2ed7Sperrin next->r_cnt++;
334104e2ed7Sperrin return;
335104e2ed7Sperrin }
336104e2ed7Sperrin if (off + len < next->r_off + next->r_len) {
337104e2ed7Sperrin /* new range ends in the middle of this block */
338104e2ed7Sperrin next = zfs_range_split(tree, next, off + len);
339104e2ed7Sperrin next->r_cnt++;
340104e2ed7Sperrin return;
341104e2ed7Sperrin }
342104e2ed7Sperrin ASSERT3U(off + len, >, next->r_off + next->r_len);
343104e2ed7Sperrin next = zfs_range_proxify(tree, next);
344104e2ed7Sperrin next->r_cnt++;
345104e2ed7Sperrin }
346104e2ed7Sperrin
347104e2ed7Sperrin /* Add the remaining end range. */
348104e2ed7Sperrin zfs_range_new_proxy(tree, prev->r_off + prev->r_len,
349104e2ed7Sperrin (off + len) - (prev->r_off + prev->r_len));
350104e2ed7Sperrin }
351104e2ed7Sperrin
352104e2ed7Sperrin /*
353104e2ed7Sperrin * Check if a reader lock can be grabbed, or wait and recheck until available.
354104e2ed7Sperrin */
355104e2ed7Sperrin static void
zfs_range_lock_reader(znode_t * zp,rl_t * new)356104e2ed7Sperrin zfs_range_lock_reader(znode_t *zp, rl_t *new)
357104e2ed7Sperrin {
358104e2ed7Sperrin avl_tree_t *tree = &zp->z_range_avl;
359104e2ed7Sperrin rl_t *prev, *next;
360104e2ed7Sperrin avl_index_t where;
361104e2ed7Sperrin uint64_t off = new->r_off;
362104e2ed7Sperrin uint64_t len = new->r_len;
363104e2ed7Sperrin
364104e2ed7Sperrin /*
365104e2ed7Sperrin * Look for any writer locks in the range.
366104e2ed7Sperrin */
367104e2ed7Sperrin retry:
368104e2ed7Sperrin prev = avl_find(tree, new, &where);
369104e2ed7Sperrin if (prev == NULL)
370104e2ed7Sperrin prev = (rl_t *)avl_nearest(tree, where, AVL_BEFORE);
371104e2ed7Sperrin
372104e2ed7Sperrin /*
373104e2ed7Sperrin * Check the previous range for a writer lock overlap.
374104e2ed7Sperrin */
375104e2ed7Sperrin if (prev && (off < prev->r_off + prev->r_len)) {
376104e2ed7Sperrin if ((prev->r_type == RL_WRITER) || (prev->r_write_wanted)) {
377104e2ed7Sperrin if (!prev->r_read_wanted) {
378104e2ed7Sperrin cv_init(&prev->r_rd_cv, NULL, CV_DEFAULT, NULL);
379104e2ed7Sperrin prev->r_read_wanted = B_TRUE;
380104e2ed7Sperrin }
381104e2ed7Sperrin cv_wait(&prev->r_rd_cv, &zp->z_range_lock);
382104e2ed7Sperrin goto retry;
383104e2ed7Sperrin }
384104e2ed7Sperrin if (off + len < prev->r_off + prev->r_len)
385104e2ed7Sperrin goto got_lock;
386104e2ed7Sperrin }
387104e2ed7Sperrin
388104e2ed7Sperrin /*
389104e2ed7Sperrin * Search through the following ranges to see if there's
390104e2ed7Sperrin * write lock any overlap.
391104e2ed7Sperrin */
392104e2ed7Sperrin if (prev)
393104e2ed7Sperrin next = AVL_NEXT(tree, prev);
394104e2ed7Sperrin else
395104e2ed7Sperrin next = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
396104e2ed7Sperrin for (; next; next = AVL_NEXT(tree, next)) {
397104e2ed7Sperrin if (off + len <= next->r_off)
398104e2ed7Sperrin goto got_lock;
399104e2ed7Sperrin if ((next->r_type == RL_WRITER) || (next->r_write_wanted)) {
400104e2ed7Sperrin if (!next->r_read_wanted) {
401104e2ed7Sperrin cv_init(&next->r_rd_cv, NULL, CV_DEFAULT, NULL);
402104e2ed7Sperrin next->r_read_wanted = B_TRUE;
403104e2ed7Sperrin }
404104e2ed7Sperrin cv_wait(&next->r_rd_cv, &zp->z_range_lock);
405104e2ed7Sperrin goto retry;
406104e2ed7Sperrin }
407104e2ed7Sperrin if (off + len <= next->r_off + next->r_len)
408104e2ed7Sperrin goto got_lock;
409104e2ed7Sperrin }
410104e2ed7Sperrin
411104e2ed7Sperrin got_lock:
412104e2ed7Sperrin /*
413104e2ed7Sperrin * Add the read lock, which may involve splitting existing
414104e2ed7Sperrin * locks and bumping ref counts (r_cnt).
415104e2ed7Sperrin */
416104e2ed7Sperrin zfs_range_add_reader(tree, new, prev, where);
417104e2ed7Sperrin }
418104e2ed7Sperrin
419104e2ed7Sperrin /*
420104e2ed7Sperrin * Lock a range (offset, length) as either shared (RL_READER)
421104e2ed7Sperrin * or exclusive (RL_WRITER). Returns the range lock structure
422104e2ed7Sperrin * for later unlocking or reduce range (if entire file
423104e2ed7Sperrin * previously locked as RL_WRITER).
424104e2ed7Sperrin */
425104e2ed7Sperrin rl_t *
zfs_range_lock(znode_t * zp,uint64_t off,uint64_t len,rl_type_t type)426104e2ed7Sperrin zfs_range_lock(znode_t *zp, uint64_t off, uint64_t len, rl_type_t type)
427104e2ed7Sperrin {
428104e2ed7Sperrin rl_t *new;
429104e2ed7Sperrin
430104e2ed7Sperrin ASSERT(type == RL_READER || type == RL_WRITER || type == RL_APPEND);
431104e2ed7Sperrin
432104e2ed7Sperrin new = kmem_alloc(sizeof (rl_t), KM_SLEEP);
433c5c6ffa0Smaybee new->r_zp = zp;
434104e2ed7Sperrin new->r_off = off;
435ac05c741SMark Maybee if (len + off < off) /* overflow */
436ac05c741SMark Maybee len = UINT64_MAX - off;
437104e2ed7Sperrin new->r_len = len;
438104e2ed7Sperrin new->r_cnt = 1; /* assume it's going to be in the tree */
439104e2ed7Sperrin new->r_type = type;
440104e2ed7Sperrin new->r_proxy = B_FALSE;
441104e2ed7Sperrin new->r_write_wanted = B_FALSE;
442104e2ed7Sperrin new->r_read_wanted = B_FALSE;
443104e2ed7Sperrin
444104e2ed7Sperrin mutex_enter(&zp->z_range_lock);
445104e2ed7Sperrin if (type == RL_READER) {
446104e2ed7Sperrin /*
447104e2ed7Sperrin * First check for the usual case of no locks
448104e2ed7Sperrin */
449104e2ed7Sperrin if (avl_numnodes(&zp->z_range_avl) == 0)
450104e2ed7Sperrin avl_add(&zp->z_range_avl, new);
451104e2ed7Sperrin else
452104e2ed7Sperrin zfs_range_lock_reader(zp, new);
453104e2ed7Sperrin } else
454104e2ed7Sperrin zfs_range_lock_writer(zp, new); /* RL_WRITER or RL_APPEND */
455104e2ed7Sperrin mutex_exit(&zp->z_range_lock);
456104e2ed7Sperrin return (new);
457104e2ed7Sperrin }
458104e2ed7Sperrin
459104e2ed7Sperrin /*
460104e2ed7Sperrin * Unlock a reader lock
461104e2ed7Sperrin */
462104e2ed7Sperrin static void
zfs_range_unlock_reader(znode_t * zp,rl_t * remove)463104e2ed7Sperrin zfs_range_unlock_reader(znode_t *zp, rl_t *remove)
464104e2ed7Sperrin {
465104e2ed7Sperrin avl_tree_t *tree = &zp->z_range_avl;
466d5285caeSGeorge Wilson rl_t *rl, *next = NULL;
467104e2ed7Sperrin uint64_t len;
468104e2ed7Sperrin
469104e2ed7Sperrin /*
470104e2ed7Sperrin * The common case is when the remove entry is in the tree
471104e2ed7Sperrin * (cnt == 1) meaning there's been no other reader locks overlapping
472104e2ed7Sperrin * with this one. Otherwise the remove entry will have been
473104e2ed7Sperrin * removed from the tree and replaced by proxies (one or
474104e2ed7Sperrin * more ranges mapping to the entire range).
475104e2ed7Sperrin */
476104e2ed7Sperrin if (remove->r_cnt == 1) {
477104e2ed7Sperrin avl_remove(tree, remove);
478c25056deSgw25295 if (remove->r_write_wanted) {
479104e2ed7Sperrin cv_broadcast(&remove->r_wr_cv);
480c25056deSgw25295 cv_destroy(&remove->r_wr_cv);
481c25056deSgw25295 }
482c25056deSgw25295 if (remove->r_read_wanted) {
483104e2ed7Sperrin cv_broadcast(&remove->r_rd_cv);
484c25056deSgw25295 cv_destroy(&remove->r_rd_cv);
485c25056deSgw25295 }
486104e2ed7Sperrin } else {
487fb09f5aaSMadhav Suresh ASSERT0(remove->r_cnt);
488fb09f5aaSMadhav Suresh ASSERT0(remove->r_write_wanted);
489fb09f5aaSMadhav Suresh ASSERT0(remove->r_read_wanted);
490104e2ed7Sperrin /*
491104e2ed7Sperrin * Find start proxy representing this reader lock,
492104e2ed7Sperrin * then decrement ref count on all proxies
493104e2ed7Sperrin * that make up this range, freeing them as needed.
494104e2ed7Sperrin */
495104e2ed7Sperrin rl = avl_find(tree, remove, NULL);
496104e2ed7Sperrin ASSERT(rl);
497104e2ed7Sperrin ASSERT(rl->r_cnt);
498104e2ed7Sperrin ASSERT(rl->r_type == RL_READER);
499104e2ed7Sperrin for (len = remove->r_len; len != 0; rl = next) {
500104e2ed7Sperrin len -= rl->r_len;
501104e2ed7Sperrin if (len) {
502104e2ed7Sperrin next = AVL_NEXT(tree, rl);
503104e2ed7Sperrin ASSERT(next);
504104e2ed7Sperrin ASSERT(rl->r_off + rl->r_len == next->r_off);
505104e2ed7Sperrin ASSERT(next->r_cnt);
506104e2ed7Sperrin ASSERT(next->r_type == RL_READER);
507104e2ed7Sperrin }
508104e2ed7Sperrin rl->r_cnt--;
509104e2ed7Sperrin if (rl->r_cnt == 0) {
510104e2ed7Sperrin avl_remove(tree, rl);
511c25056deSgw25295 if (rl->r_write_wanted) {
512104e2ed7Sperrin cv_broadcast(&rl->r_wr_cv);
513c25056deSgw25295 cv_destroy(&rl->r_wr_cv);
514c25056deSgw25295 }
515c25056deSgw25295 if (rl->r_read_wanted) {
516104e2ed7Sperrin cv_broadcast(&rl->r_rd_cv);
517c25056deSgw25295 cv_destroy(&rl->r_rd_cv);
518c25056deSgw25295 }
519104e2ed7Sperrin kmem_free(rl, sizeof (rl_t));
520104e2ed7Sperrin }
521104e2ed7Sperrin }
522104e2ed7Sperrin }
523104e2ed7Sperrin kmem_free(remove, sizeof (rl_t));
524104e2ed7Sperrin }
525104e2ed7Sperrin
526104e2ed7Sperrin /*
527104e2ed7Sperrin * Unlock range and destroy range lock structure.
528104e2ed7Sperrin */
529104e2ed7Sperrin void
zfs_range_unlock(rl_t * rl)530c5c6ffa0Smaybee zfs_range_unlock(rl_t *rl)
531104e2ed7Sperrin {
532c5c6ffa0Smaybee znode_t *zp = rl->r_zp;
533c5c6ffa0Smaybee
534104e2ed7Sperrin ASSERT(rl->r_type == RL_WRITER || rl->r_type == RL_READER);
535104e2ed7Sperrin ASSERT(rl->r_cnt == 1 || rl->r_cnt == 0);
536104e2ed7Sperrin ASSERT(!rl->r_proxy);
537104e2ed7Sperrin
538104e2ed7Sperrin mutex_enter(&zp->z_range_lock);
539104e2ed7Sperrin if (rl->r_type == RL_WRITER) {
540104e2ed7Sperrin /* writer locks can't be shared or split */
541104e2ed7Sperrin avl_remove(&zp->z_range_avl, rl);
542104e2ed7Sperrin mutex_exit(&zp->z_range_lock);
543c25056deSgw25295 if (rl->r_write_wanted) {
544104e2ed7Sperrin cv_broadcast(&rl->r_wr_cv);
545c25056deSgw25295 cv_destroy(&rl->r_wr_cv);
546c25056deSgw25295 }
547c25056deSgw25295 if (rl->r_read_wanted) {
548104e2ed7Sperrin cv_broadcast(&rl->r_rd_cv);
549c25056deSgw25295 cv_destroy(&rl->r_rd_cv);
550c25056deSgw25295 }
551104e2ed7Sperrin kmem_free(rl, sizeof (rl_t));
552104e2ed7Sperrin } else {
553104e2ed7Sperrin /*
554104e2ed7Sperrin * lock may be shared, let zfs_range_unlock_reader()
555104e2ed7Sperrin * release the lock and free the rl_t
556104e2ed7Sperrin */
557104e2ed7Sperrin zfs_range_unlock_reader(zp, rl);
558104e2ed7Sperrin mutex_exit(&zp->z_range_lock);
559104e2ed7Sperrin }
560104e2ed7Sperrin }
561104e2ed7Sperrin
562104e2ed7Sperrin /*
563104e2ed7Sperrin * Reduce range locked as RL_WRITER from whole file to specified range.
564104e2ed7Sperrin * Asserts the whole file is exclusivly locked and so there's only one
565104e2ed7Sperrin * entry in the tree.
566104e2ed7Sperrin */
567104e2ed7Sperrin void
zfs_range_reduce(rl_t * rl,uint64_t off,uint64_t len)568c5c6ffa0Smaybee zfs_range_reduce(rl_t *rl, uint64_t off, uint64_t len)
569104e2ed7Sperrin {
570c5c6ffa0Smaybee znode_t *zp = rl->r_zp;
571c5c6ffa0Smaybee
572104e2ed7Sperrin /* Ensure there are no other locks */
573104e2ed7Sperrin ASSERT(avl_numnodes(&zp->z_range_avl) == 1);
574104e2ed7Sperrin ASSERT(rl->r_off == 0);
575104e2ed7Sperrin ASSERT(rl->r_type == RL_WRITER);
576104e2ed7Sperrin ASSERT(!rl->r_proxy);
577104e2ed7Sperrin ASSERT3U(rl->r_len, ==, UINT64_MAX);
578104e2ed7Sperrin ASSERT3U(rl->r_cnt, ==, 1);
579104e2ed7Sperrin
580104e2ed7Sperrin mutex_enter(&zp->z_range_lock);
581104e2ed7Sperrin rl->r_off = off;
582104e2ed7Sperrin rl->r_len = len;
583104e2ed7Sperrin mutex_exit(&zp->z_range_lock);
584104e2ed7Sperrin if (rl->r_write_wanted)
585104e2ed7Sperrin cv_broadcast(&rl->r_wr_cv);
586104e2ed7Sperrin if (rl->r_read_wanted)
587104e2ed7Sperrin cv_broadcast(&rl->r_rd_cv);
588104e2ed7Sperrin }
589104e2ed7Sperrin
590104e2ed7Sperrin /*
591104e2ed7Sperrin * AVL comparison function used to order range locks
592104e2ed7Sperrin * Locks are ordered on the start offset of the range.
593104e2ed7Sperrin */
594104e2ed7Sperrin int
zfs_range_compare(const void * arg1,const void * arg2)595104e2ed7Sperrin zfs_range_compare(const void *arg1, const void *arg2)
596104e2ed7Sperrin {
597104e2ed7Sperrin const rl_t *rl1 = arg1;
598104e2ed7Sperrin const rl_t *rl2 = arg2;
599104e2ed7Sperrin
600104e2ed7Sperrin if (rl1->r_off > rl2->r_off)
601104e2ed7Sperrin return (1);
602104e2ed7Sperrin if (rl1->r_off < rl2->r_off)
603104e2ed7Sperrin return (-1);
604104e2ed7Sperrin return (0);
605104e2ed7Sperrin }
606