xref: /titanic_50/usr/src/uts/common/fs/zfs/zfs_fuid.c (revision 142c9f13e148d687426ed2d4e8bd93717eeaebbc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/zfs_context.h>
29 #include <sys/sunddi.h>
30 #include <sys/dmu.h>
31 #include <sys/avl.h>
32 #include <sys/zap.h>
33 #include <sys/refcount.h>
34 #include <sys/nvpair.h>
35 #ifdef _KERNEL
36 #include <sys/kidmap.h>
37 #include <sys/sid.h>
38 #include <sys/zfs_vfsops.h>
39 #include <sys/zfs_znode.h>
40 #endif
41 #include <sys/zfs_fuid.h>
42 
43 /*
44  * FUID Domain table(s).
45  *
46  * The FUID table is stored as a packed nvlist of an array
47  * of nvlists which contain an index, domain string and offset
48  *
49  * During file system initialization the nvlist(s) are read and
50  * two AVL trees are created.  One tree is keyed by the index number
51  * and the other by the domain string.  Nodes are never removed from
52  * trees, but new entries may be added.  If a new entry is added then the
53  * on-disk packed nvlist will also be updated.
54  */
55 
56 #define	FUID_IDX	"fuid_idx"
57 #define	FUID_DOMAIN	"fuid_domain"
58 #define	FUID_OFFSET	"fuid_offset"
59 #define	FUID_NVP_ARRAY	"fuid_nvlist"
60 
61 typedef struct fuid_domain {
62 	avl_node_t	f_domnode;
63 	avl_node_t	f_idxnode;
64 	ksiddomain_t	*f_ksid;
65 	uint64_t	f_idx;
66 } fuid_domain_t;
67 
68 /*
69  * Compare two indexes.
70  */
71 static int
72 idx_compare(const void *arg1, const void *arg2)
73 {
74 	const fuid_domain_t *node1 = arg1;
75 	const fuid_domain_t *node2 = arg2;
76 
77 	if (node1->f_idx < node2->f_idx)
78 		return (-1);
79 	else if (node1->f_idx > node2->f_idx)
80 		return (1);
81 	return (0);
82 }
83 
84 /*
85  * Compare two domain strings.
86  */
87 static int
88 domain_compare(const void *arg1, const void *arg2)
89 {
90 	const fuid_domain_t *node1 = arg1;
91 	const fuid_domain_t *node2 = arg2;
92 	int val;
93 
94 	val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name);
95 	if (val == 0)
96 		return (0);
97 	return (val > 0 ? 1 : -1);
98 }
99 
100 /*
101  * load initial fuid domain and idx trees.  This function is used by
102  * both the kernel and zdb.
103  */
104 uint64_t
105 zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree,
106     avl_tree_t *domain_tree)
107 {
108 	dmu_buf_t *db;
109 	uint64_t fuid_size;
110 
111 	avl_create(idx_tree, idx_compare,
112 	    sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode));
113 	avl_create(domain_tree, domain_compare,
114 	    sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode));
115 
116 	VERIFY(0 == dmu_bonus_hold(os, fuid_obj, FTAG, &db));
117 	fuid_size = *(uint64_t *)db->db_data;
118 	dmu_buf_rele(db, FTAG);
119 
120 	if (fuid_size)  {
121 		nvlist_t **fuidnvp;
122 		nvlist_t *nvp = NULL;
123 		uint_t count;
124 		char *packed;
125 		int i;
126 
127 		packed = kmem_alloc(fuid_size, KM_SLEEP);
128 		VERIFY(dmu_read(os, fuid_obj, 0, fuid_size, packed) == 0);
129 		VERIFY(nvlist_unpack(packed, fuid_size,
130 		    &nvp, 0) == 0);
131 		VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY,
132 		    &fuidnvp, &count) == 0);
133 
134 		for (i = 0; i != count; i++) {
135 			fuid_domain_t *domnode;
136 			char *domain;
137 			uint64_t idx;
138 
139 			VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN,
140 			    &domain) == 0);
141 			VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX,
142 			    &idx) == 0);
143 
144 			domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
145 
146 			domnode->f_idx = idx;
147 			domnode->f_ksid = ksid_lookupdomain(domain);
148 			avl_add(idx_tree, domnode);
149 			avl_add(domain_tree, domnode);
150 		}
151 		nvlist_free(nvp);
152 		kmem_free(packed, fuid_size);
153 	}
154 	return (fuid_size);
155 }
156 
157 void
158 zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
159 {
160 	fuid_domain_t *domnode;
161 	void *cookie;
162 
163 	cookie = NULL;
164 	while (domnode = avl_destroy_nodes(domain_tree, &cookie))
165 		ksiddomain_rele(domnode->f_ksid);
166 
167 	avl_destroy(domain_tree);
168 	cookie = NULL;
169 	while (domnode = avl_destroy_nodes(idx_tree, &cookie))
170 		kmem_free(domnode, sizeof (fuid_domain_t));
171 	avl_destroy(idx_tree);
172 }
173 
174 char *
175 zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx)
176 {
177 	fuid_domain_t searchnode, *findnode;
178 	avl_index_t loc;
179 
180 	searchnode.f_idx = idx;
181 
182 	findnode = avl_find(idx_tree, &searchnode, &loc);
183 
184 	return (findnode->f_ksid->kd_name);
185 }
186 
187 #ifdef _KERNEL
188 /*
189  * Load the fuid table(s) into memory.
190  */
191 static void
192 zfs_fuid_init(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
193 {
194 	int error = 0;
195 
196 	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
197 
198 	if (zfsvfs->z_fuid_loaded) {
199 		rw_exit(&zfsvfs->z_fuid_lock);
200 		return;
201 	}
202 
203 	if (zfsvfs->z_fuid_obj == 0) {
204 
205 		/* first make sure we need to allocate object */
206 
207 		error = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
208 		    ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj);
209 		if (error == ENOENT && tx != NULL) {
210 			zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os,
211 			    DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE,
212 			    sizeof (uint64_t), tx);
213 			VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
214 			    ZFS_FUID_TABLES, sizeof (uint64_t), 1,
215 			    &zfsvfs->z_fuid_obj, tx) == 0);
216 		}
217 	}
218 
219 	zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os,
220 	    zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
221 
222 	zfsvfs->z_fuid_loaded = B_TRUE;
223 	rw_exit(&zfsvfs->z_fuid_lock);
224 }
225 
226 /*
227  * Query domain table for a given domain.
228  *
229  * If domain isn't found it is added to AVL trees and
230  * the results are pushed out to disk.
231  */
232 int
233 zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain, char **retdomain,
234     dmu_tx_t *tx)
235 {
236 	fuid_domain_t searchnode, *findnode;
237 	avl_index_t loc;
238 
239 	/*
240 	 * If the dummy "nobody" domain then return an index of 0
241 	 * to cause the created FUID to be a standard POSIX id
242 	 * for the user nobody.
243 	 */
244 	if (domain[0] == '\0') {
245 		*retdomain = "";
246 		return (0);
247 	}
248 
249 	searchnode.f_ksid = ksid_lookupdomain(domain);
250 	if (retdomain) {
251 		*retdomain = searchnode.f_ksid->kd_name;
252 	}
253 	if (!zfsvfs->z_fuid_loaded)
254 		zfs_fuid_init(zfsvfs, tx);
255 
256 	rw_enter(&zfsvfs->z_fuid_lock, RW_READER);
257 	findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc);
258 	rw_exit(&zfsvfs->z_fuid_lock);
259 
260 	if (findnode) {
261 		ksiddomain_rele(searchnode.f_ksid);
262 		return (findnode->f_idx);
263 	} else {
264 		fuid_domain_t *domnode;
265 		nvlist_t *nvp;
266 		nvlist_t **fuids;
267 		uint64_t retidx;
268 		size_t nvsize = 0;
269 		char *packed;
270 		dmu_buf_t *db;
271 		int i = 0;
272 
273 		domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
274 		domnode->f_ksid = searchnode.f_ksid;
275 
276 		rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
277 		retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1;
278 
279 		avl_add(&zfsvfs->z_fuid_domain, domnode);
280 		avl_add(&zfsvfs->z_fuid_idx, domnode);
281 		/*
282 		 * Now resync the on-disk nvlist.
283 		 */
284 		VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
285 
286 		domnode = avl_first(&zfsvfs->z_fuid_domain);
287 		fuids = kmem_alloc(retidx * sizeof (void *), KM_SLEEP);
288 		while (domnode) {
289 			VERIFY(nvlist_alloc(&fuids[i],
290 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
291 			VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX,
292 			    domnode->f_idx) == 0);
293 			VERIFY(nvlist_add_uint64(fuids[i],
294 			    FUID_OFFSET, 0) == 0);
295 			VERIFY(nvlist_add_string(fuids[i++], FUID_DOMAIN,
296 			    domnode->f_ksid->kd_name) == 0);
297 			domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode);
298 		}
299 		VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY,
300 		    fuids, retidx) == 0);
301 		for (i = 0; i != retidx; i++)
302 			nvlist_free(fuids[i]);
303 		kmem_free(fuids, retidx * sizeof (void *));
304 		VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0);
305 		packed = kmem_alloc(nvsize, KM_SLEEP);
306 		VERIFY(nvlist_pack(nvp, &packed, &nvsize,
307 		    NV_ENCODE_XDR, KM_SLEEP) == 0);
308 		nvlist_free(nvp);
309 		zfsvfs->z_fuid_size = nvsize;
310 		dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0,
311 		    zfsvfs->z_fuid_size, packed, tx);
312 		kmem_free(packed, zfsvfs->z_fuid_size);
313 		VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj,
314 		    FTAG, &db));
315 		dmu_buf_will_dirty(db, tx);
316 		*(uint64_t *)db->db_data = zfsvfs->z_fuid_size;
317 		dmu_buf_rele(db, FTAG);
318 
319 		rw_exit(&zfsvfs->z_fuid_lock);
320 		return (retidx);
321 	}
322 }
323 
324 /*
325  * Query domain table by index, returning domain string
326  *
327  * Returns a pointer from an avl node of the domain string.
328  *
329  */
330 static char *
331 zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx)
332 {
333 	char *domain;
334 
335 	if (idx == 0 || !zfsvfs->z_use_fuids)
336 		return (NULL);
337 
338 	if (!zfsvfs->z_fuid_loaded)
339 		zfs_fuid_init(zfsvfs, NULL);
340 
341 	rw_enter(&zfsvfs->z_fuid_lock, RW_READER);
342 	domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx);
343 	rw_exit(&zfsvfs->z_fuid_lock);
344 
345 	ASSERT(domain);
346 	return (domain);
347 }
348 
349 void
350 zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp)
351 {
352 	*uidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_phys->zp_uid,
353 	    cr, ZFS_OWNER);
354 	*gidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_phys->zp_gid,
355 	    cr, ZFS_GROUP);
356 }
357 
358 uid_t
359 zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
360     cred_t *cr, zfs_fuid_type_t type)
361 {
362 	uint32_t index = FUID_INDEX(fuid);
363 	char *domain;
364 	uid_t id;
365 
366 	if (index == 0)
367 		return (fuid);
368 
369 	domain = zfs_fuid_find_by_idx(zfsvfs, index);
370 	ASSERT(domain != NULL);
371 
372 	if (type == ZFS_OWNER || type == ZFS_ACE_USER) {
373 		(void) kidmap_getuidbysid(crgetzone(cr), domain,
374 		    FUID_RID(fuid), &id);
375 	} else {
376 		(void) kidmap_getgidbysid(crgetzone(cr), domain,
377 		    FUID_RID(fuid), &id);
378 	}
379 	return (id);
380 }
381 
382 /*
383  * Add a FUID node to the list of fuid's being created for this
384  * ACL
385  *
386  * If ACL has multiple domains, then keep only one copy of each unique
387  * domain.
388  */
389 static void
390 zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid,
391     uint64_t idx, uint64_t id, zfs_fuid_type_t type)
392 {
393 	zfs_fuid_t *fuid;
394 	zfs_fuid_domain_t *fuid_domain;
395 	zfs_fuid_info_t *fuidp;
396 	uint64_t fuididx;
397 	boolean_t found = B_FALSE;
398 
399 	if (*fuidpp == NULL)
400 		*fuidpp = zfs_fuid_info_alloc();
401 
402 	fuidp = *fuidpp;
403 	/*
404 	 * First find fuid domain index in linked list
405 	 *
406 	 * If one isn't found then create an entry.
407 	 */
408 
409 	for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains);
410 	    fuid_domain; fuid_domain = list_next(&fuidp->z_domains,
411 	    fuid_domain), fuididx++) {
412 		if (idx == fuid_domain->z_domidx) {
413 			found = B_TRUE;
414 			break;
415 		}
416 	}
417 
418 	if (!found) {
419 		fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP);
420 		fuid_domain->z_domain = domain;
421 		fuid_domain->z_domidx = idx;
422 		list_insert_tail(&fuidp->z_domains, fuid_domain);
423 		fuidp->z_domain_str_sz += strlen(domain) + 1;
424 		fuidp->z_domain_cnt++;
425 	}
426 
427 	if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) {
428 		/*
429 		 * Now allocate fuid entry and add it on the end of the list
430 		 */
431 
432 		fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP);
433 		fuid->z_id = id;
434 		fuid->z_domidx = idx;
435 		fuid->z_logfuid = FUID_ENCODE(fuididx, rid);
436 
437 		list_insert_tail(&fuidp->z_fuids, fuid);
438 		fuidp->z_fuid_cnt++;
439 	} else {
440 		if (type == ZFS_OWNER)
441 			fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid);
442 		else
443 			fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid);
444 	}
445 }
446 
447 /*
448  * Create a file system FUID, based on information in the users cred
449  */
450 uint64_t
451 zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type,
452     dmu_tx_t *tx, cred_t *cr, zfs_fuid_info_t **fuidp)
453 {
454 	uint64_t	idx;
455 	ksid_t		*ksid;
456 	uint32_t	rid;
457 	char 		*kdomain;
458 	const char	*domain;
459 	uid_t		id;
460 
461 	VERIFY(type == ZFS_OWNER || type == ZFS_GROUP);
462 
463 	if (type == ZFS_OWNER)
464 		id = crgetuid(cr);
465 	else
466 		id = crgetgid(cr);
467 
468 	if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id))
469 		return ((uint64_t)id);
470 
471 	ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP);
472 
473 	VERIFY(ksid != NULL);
474 	rid = ksid_getrid(ksid);
475 	domain = ksid_getdomain(ksid);
476 
477 	idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, tx);
478 
479 	zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type);
480 
481 	return (FUID_ENCODE(idx, rid));
482 }
483 
484 /*
485  * Create a file system FUID for an ACL ace
486  * or a chown/chgrp of the file.
487  * This is similar to zfs_fuid_create_cred, except that
488  * we can't find the domain + rid information in the
489  * cred.  Instead we have to query Winchester for the
490  * domain and rid.
491  *
492  * During replay operations the domain+rid information is
493  * found in the zfs_fuid_info_t that the replay code has
494  * attached to the zfsvfs of the file system.
495  */
496 uint64_t
497 zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr,
498     zfs_fuid_type_t type, dmu_tx_t *tx, zfs_fuid_info_t **fuidpp)
499 {
500 	const char *domain;
501 	char *kdomain;
502 	uint32_t fuid_idx = FUID_INDEX(id);
503 	uint32_t rid;
504 	idmap_stat status;
505 	uint64_t idx;
506 	boolean_t is_replay = (zfsvfs->z_assign >= TXG_INITIAL);
507 	zfs_fuid_t *zfuid = NULL;
508 	zfs_fuid_info_t *fuidp;
509 
510 	/*
511 	 * If POSIX ID, or entry is already a FUID then
512 	 * just return the id
513 	 *
514 	 * We may also be handed an already FUID'ized id via
515 	 * chmod.
516 	 */
517 
518 	if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0)
519 		return (id);
520 
521 	if (is_replay) {
522 		fuidp = zfsvfs->z_fuid_replay;
523 
524 		/*
525 		 * If we are passed an ephemeral id, but no
526 		 * fuid_info was logged then return NOBODY.
527 		 * This is most likely a result of idmap service
528 		 * not being available.
529 		 */
530 		if (fuidp == NULL)
531 			return (UID_NOBODY);
532 
533 		switch (type) {
534 		case ZFS_ACE_USER:
535 		case ZFS_ACE_GROUP:
536 			zfuid = list_head(&fuidp->z_fuids);
537 			rid = FUID_RID(zfuid->z_logfuid);
538 			idx = FUID_INDEX(zfuid->z_logfuid);
539 			break;
540 		case ZFS_OWNER:
541 			rid = FUID_RID(fuidp->z_fuid_owner);
542 			idx = FUID_INDEX(fuidp->z_fuid_owner);
543 			break;
544 		case ZFS_GROUP:
545 			rid = FUID_RID(fuidp->z_fuid_group);
546 			idx = FUID_INDEX(fuidp->z_fuid_group);
547 			break;
548 		};
549 		domain = fuidp->z_domain_table[idx -1];
550 	} else {
551 		if (type == ZFS_OWNER || type == ZFS_ACE_USER)
552 			status = kidmap_getsidbyuid(crgetzone(cr), id,
553 			    &domain, &rid);
554 		else
555 			status = kidmap_getsidbygid(crgetzone(cr), id,
556 			    &domain, &rid);
557 
558 		if (status != 0) {
559 			/*
560 			 * When returning nobody we will need to
561 			 * make a dummy fuid table entry for logging
562 			 * purposes.
563 			 */
564 			rid = UID_NOBODY;
565 			domain = "";
566 		}
567 	}
568 
569 	idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, tx);
570 
571 	if (!is_replay)
572 		zfs_fuid_node_add(fuidpp, kdomain, rid, idx, id, type);
573 	else if (zfuid != NULL) {
574 		list_remove(&fuidp->z_fuids, zfuid);
575 		kmem_free(zfuid, sizeof (zfs_fuid_t));
576 	}
577 	return (FUID_ENCODE(idx, rid));
578 }
579 
580 void
581 zfs_fuid_destroy(zfsvfs_t *zfsvfs)
582 {
583 	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
584 	if (!zfsvfs->z_fuid_loaded) {
585 		rw_exit(&zfsvfs->z_fuid_lock);
586 		return;
587 	}
588 	zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
589 	rw_exit(&zfsvfs->z_fuid_lock);
590 }
591 
592 /*
593  * Allocate zfs_fuid_info for tracking FUIDs created during
594  * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR()
595  */
596 zfs_fuid_info_t *
597 zfs_fuid_info_alloc(void)
598 {
599 	zfs_fuid_info_t *fuidp;
600 
601 	fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP);
602 	list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t),
603 	    offsetof(zfs_fuid_domain_t, z_next));
604 	list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t),
605 	    offsetof(zfs_fuid_t, z_next));
606 	return (fuidp);
607 }
608 
609 /*
610  * Release all memory associated with zfs_fuid_info_t
611  */
612 void
613 zfs_fuid_info_free(zfs_fuid_info_t *fuidp)
614 {
615 	zfs_fuid_t *zfuid;
616 	zfs_fuid_domain_t *zdomain;
617 
618 	while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) {
619 		list_remove(&fuidp->z_fuids, zfuid);
620 		kmem_free(zfuid, sizeof (zfs_fuid_t));
621 	}
622 
623 	if (fuidp->z_domain_table != NULL)
624 		kmem_free(fuidp->z_domain_table,
625 		    (sizeof (char **)) * fuidp->z_domain_cnt);
626 
627 	while ((zdomain = list_head(&fuidp->z_domains)) != NULL) {
628 		list_remove(&fuidp->z_domains, zdomain);
629 		kmem_free(zdomain, sizeof (zfs_fuid_domain_t));
630 	}
631 
632 	kmem_free(fuidp, sizeof (zfs_fuid_info_t));
633 }
634 
635 /*
636  * Check to see if id is a groupmember.  If cred
637  * has ksid info then sidlist is checked first
638  * and if still not found then POSIX groups are checked
639  *
640  * Will use a straight FUID compare when possible.
641  */
642 boolean_t
643 zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr)
644 {
645 	ksid_t		*ksid = crgetsid(cr, KSID_GROUP);
646 	uid_t		gid;
647 
648 	if (ksid) {
649 		int 		i;
650 		ksid_t		*ksid_groups;
651 		ksidlist_t	*ksidlist = crgetsidlist(cr);
652 		uint32_t	idx = FUID_INDEX(id);
653 		uint32_t	rid = FUID_RID(id);
654 
655 		ASSERT(ksidlist);
656 		ksid_groups = ksidlist->ksl_sids;
657 
658 		for (i = 0; i != ksidlist->ksl_nsid; i++) {
659 			if (idx == 0) {
660 				if (id != IDMAP_WK_CREATOR_GROUP_GID &&
661 				    id == ksid_groups[i].ks_id) {
662 					return (B_TRUE);
663 				}
664 			} else {
665 				char *domain;
666 
667 				domain = zfs_fuid_find_by_idx(zfsvfs, idx);
668 				ASSERT(domain != NULL);
669 
670 				if (strcmp(domain,
671 				    IDMAP_WK_CREATOR_SID_AUTHORITY) == 0)
672 					return (B_FALSE);
673 
674 				if ((strcmp(domain,
675 				    ksid_groups[i].ks_domain->kd_name) == 0) &&
676 				    rid == ksid_groups[i].ks_rid)
677 					return (B_TRUE);
678 			}
679 		}
680 	}
681 
682 	/*
683 	 * Not found in ksidlist, check posix groups
684 	 */
685 	gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP);
686 	return (groupmember(gid, cr));
687 }
688 #endif
689