1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/spa.h> 29 #include <sys/spa_impl.h> 30 #include <sys/vdev.h> 31 #include <sys/vdev_impl.h> 32 #include <sys/zio.h> 33 34 #include <sys/fm/fs/zfs.h> 35 #include <sys/fm/protocol.h> 36 #include <sys/fm/util.h> 37 #include <sys/sysevent.h> 38 39 /* 40 * This general routine is responsible for generating all the different ZFS 41 * ereports. The payload is dependent on the class, and which arguments are 42 * supplied to the function: 43 * 44 * EREPORT POOL VDEV IO 45 * block X X X 46 * data X X 47 * device X X 48 * pool X 49 * 50 * If we are in a loading state, all errors are chained together by the same 51 * SPA-wide ENA (Error Numeric Association). 52 * 53 * For isolated I/O requests, we get the ENA from the zio_t. The propagation 54 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want 55 * to chain together all ereports associated with a logical piece of data. For 56 * read I/Os, there are basically three 'types' of I/O, which form a roughly 57 * layered diagram: 58 * 59 * +---------------+ 60 * | Aggregate I/O | No associated logical data or device 61 * +---------------+ 62 * | 63 * V 64 * +---------------+ Reads associated with a piece of logical data. 65 * | Read I/O | This includes reads on behalf of RAID-Z, 66 * +---------------+ mirrors, gang blocks, retries, etc. 67 * | 68 * V 69 * +---------------+ Reads associated with a particular device, but 70 * | Physical I/O | no logical data. Issued as part of vdev caching 71 * +---------------+ and I/O aggregation. 72 * 73 * Note that 'physical I/O' here is not the same terminology as used in the rest 74 * of ZIO. Typically, 'physical I/O' simply means that there is no attached 75 * blockpointer. But I/O with no associated block pointer can still be related 76 * to a logical piece of data (i.e. RAID-Z requests). 77 * 78 * Purely physical I/O always have unique ENAs. They are not related to a 79 * particular piece of logical data, and therefore cannot be chained together. 80 * We still generate an ereport, but the DE doesn't correlate it with any 81 * logical piece of data. When such an I/O fails, the delegated I/O requests 82 * will issue a retry, which will trigger the 'real' ereport with the correct 83 * ENA. 84 * 85 * We keep track of the ENA for a ZIO chain through the 'io_logical' member. 86 * When a new logical I/O is issued, we set this to point to itself. Child I/Os 87 * then inherit this pointer, so that when it is first set subsequent failures 88 * will use the same ENA. If a physical I/O is issued (by passing the 89 * ZIO_FLAG_NOBOOKMARK flag), then this pointer is reset, guaranteeing that a 90 * unique ENA will be generated. For an aggregate I/O, this pointer is set to 91 * NULL, and no ereport will be generated (since it doesn't actually correspond 92 * to any particular device or piece of data). 93 */ 94 void 95 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio, 96 uint64_t stateoroffset, uint64_t size) 97 { 98 #ifdef _KERNEL 99 nvlist_t *ereport, *detector; 100 uint64_t ena; 101 char class[64]; 102 int state; 103 104 /* 105 * If we are doing a spa_tryimport(), ignore errors. 106 */ 107 if (spa->spa_load_state == SPA_LOAD_TRYIMPORT) 108 return; 109 110 /* 111 * If we are in the middle of opening a pool, and the previous attempt 112 * failed, don't bother logging any new ereports - we're just going to 113 * get the same diagnosis anyway. 114 */ 115 if (spa->spa_load_state != SPA_LOAD_NONE && 116 spa->spa_last_open_failed) 117 return; 118 119 /* 120 * Ignore any errors from I/Os that we are going to retry anyway - we 121 * only generate errors from the final failure. Checksum errors are 122 * generated after the pipeline stage responsible for retrying the I/O 123 * (VDEV_IO_ASSESS), so this only applies to standard I/O errors. 124 */ 125 if (zio && zio_should_retry(zio) && zio->io_error != ECKSUM) 126 return; 127 128 /* 129 * If this is not a read or write zio, ignore the error. This can occur 130 * if the DKIOCFLUSHWRITECACHE ioctl fails. 131 */ 132 if (zio && zio->io_type != ZIO_TYPE_READ && 133 zio->io_type != ZIO_TYPE_WRITE) 134 return; 135 136 if ((ereport = fm_nvlist_create(NULL)) == NULL) 137 return; 138 139 if ((detector = fm_nvlist_create(NULL)) == NULL) { 140 fm_nvlist_destroy(ereport, FM_NVA_FREE); 141 return; 142 } 143 144 /* 145 * Serialize ereport generation 146 */ 147 mutex_enter(&spa->spa_errlist_lock); 148 149 /* 150 * Determine the ENA to use for this event. If we are in a loading 151 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use 152 * a root zio-wide ENA. Otherwise, simply use a unique ENA. 153 */ 154 if (spa->spa_load_state != SPA_LOAD_NONE) { 155 if (spa->spa_ena == 0) 156 spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1); 157 ena = spa->spa_ena; 158 } else if (zio != NULL && zio->io_logical != NULL) { 159 if (zio->io_logical->io_ena == 0) 160 zio->io_logical->io_ena = 161 fm_ena_generate(0, FM_ENA_FMT1); 162 ena = zio->io_logical->io_ena; 163 } else { 164 ena = fm_ena_generate(0, FM_ENA_FMT1); 165 } 166 167 /* 168 * Construct the full class, detector, and other standard FMA fields. 169 */ 170 (void) snprintf(class, sizeof (class), "%s.%s", 171 ZFS_ERROR_CLASS, subclass); 172 173 fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa), 174 vd != NULL ? vd->vdev_guid : 0); 175 176 fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL); 177 178 /* 179 * Construct the per-ereport payload, depending on which parameters are 180 * passed in. 181 */ 182 183 /* 184 * If we are importing a faulted pool, then we treat it like an open, 185 * not an import. Otherwise, the DE will ignore all faults during 186 * import, since the default behavior is to mark the devices as 187 * persistently unavailable, not leave them in the faulted state. 188 */ 189 state = spa->spa_import_faulted ? SPA_LOAD_OPEN : spa->spa_load_state; 190 191 /* 192 * Generic payload members common to all ereports. 193 * 194 * The direct reference to spa_name is used rather than spa_name() 195 * because of the asynchronous nature of the zio pipeline. spa_name() 196 * asserts that the config lock is held in some form. This is always 197 * the case in I/O context, but because the check for RW_WRITER compares 198 * against 'curthread', we may be in an asynchronous context and blow 199 * this assert. Rather than loosen this assert, we acknowledge that all 200 * contexts in which this function is called (pool open, I/O) are safe, 201 * and dereference the name directly. 202 */ 203 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL, 204 DATA_TYPE_STRING, spa->spa_name, FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, 205 DATA_TYPE_UINT64, spa_guid(spa), 206 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32, 207 state, NULL); 208 209 if (spa != NULL) { 210 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, 211 DATA_TYPE_STRING, 212 spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ? 213 FM_EREPORT_FAILMODE_WAIT : 214 spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ? 215 FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC, 216 NULL); 217 } 218 219 if (vd != NULL) { 220 vdev_t *pvd = vd->vdev_parent; 221 222 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, 223 DATA_TYPE_UINT64, vd->vdev_guid, 224 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE, 225 DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL); 226 if (vd->vdev_path) 227 fm_payload_set(ereport, 228 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, 229 DATA_TYPE_STRING, vd->vdev_path, NULL); 230 if (vd->vdev_devid) 231 fm_payload_set(ereport, 232 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, 233 DATA_TYPE_STRING, vd->vdev_devid, NULL); 234 235 if (pvd != NULL) { 236 fm_payload_set(ereport, 237 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID, 238 DATA_TYPE_UINT64, pvd->vdev_guid, 239 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE, 240 DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type, 241 NULL); 242 if (pvd->vdev_path) 243 fm_payload_set(ereport, 244 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH, 245 DATA_TYPE_STRING, pvd->vdev_path, NULL); 246 if (pvd->vdev_devid) 247 fm_payload_set(ereport, 248 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID, 249 DATA_TYPE_STRING, pvd->vdev_devid, NULL); 250 } 251 } 252 253 if (zio != NULL) { 254 /* 255 * Payload common to all I/Os. 256 */ 257 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR, 258 DATA_TYPE_INT32, zio->io_error, NULL); 259 260 /* 261 * If the 'size' parameter is non-zero, it indicates this is a 262 * RAID-Z or other I/O where the physical offset and length are 263 * provided for us, instead of within the zio_t. 264 */ 265 if (vd != NULL) { 266 if (size) 267 fm_payload_set(ereport, 268 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, 269 DATA_TYPE_UINT64, stateoroffset, 270 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, 271 DATA_TYPE_UINT64, size, NULL); 272 else 273 fm_payload_set(ereport, 274 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, 275 DATA_TYPE_UINT64, zio->io_offset, 276 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, 277 DATA_TYPE_UINT64, zio->io_size, NULL); 278 } 279 280 /* 281 * Payload for I/Os with corresponding logical information. 282 */ 283 if (zio->io_logical != NULL) 284 fm_payload_set(ereport, 285 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET, 286 DATA_TYPE_UINT64, 287 zio->io_logical->io_bookmark.zb_objset, 288 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT, 289 DATA_TYPE_UINT64, 290 zio->io_logical->io_bookmark.zb_object, 291 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL, 292 DATA_TYPE_INT64, 293 zio->io_logical->io_bookmark.zb_level, 294 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID, 295 DATA_TYPE_UINT64, 296 zio->io_logical->io_bookmark.zb_blkid, NULL); 297 } else if (vd != NULL) { 298 /* 299 * If we have a vdev but no zio, this is a device fault, and the 300 * 'stateoroffset' parameter indicates the previous state of the 301 * vdev. 302 */ 303 fm_payload_set(ereport, 304 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE, 305 DATA_TYPE_UINT64, stateoroffset, NULL); 306 } 307 mutex_exit(&spa->spa_errlist_lock); 308 309 fm_ereport_post(ereport, EVCH_SLEEP); 310 311 fm_nvlist_destroy(ereport, FM_NVA_FREE); 312 fm_nvlist_destroy(detector, FM_NVA_FREE); 313 #endif 314 } 315 316 static void 317 zfs_post_common(spa_t *spa, vdev_t *vd, const char *name) 318 { 319 #ifdef _KERNEL 320 nvlist_t *resource; 321 char class[64]; 322 323 if ((resource = fm_nvlist_create(NULL)) == NULL) 324 return; 325 326 (void) snprintf(class, sizeof (class), "%s.%s.%s", FM_RSRC_RESOURCE, 327 ZFS_ERROR_CLASS, name); 328 VERIFY(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION) == 0); 329 VERIFY(nvlist_add_string(resource, FM_CLASS, class) == 0); 330 VERIFY(nvlist_add_uint64(resource, 331 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)) == 0); 332 if (vd) 333 VERIFY(nvlist_add_uint64(resource, 334 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid) == 0); 335 336 fm_ereport_post(resource, EVCH_SLEEP); 337 338 fm_nvlist_destroy(resource, FM_NVA_FREE); 339 #endif 340 } 341 342 /* 343 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev 344 * has been removed from the system. This will cause the DE to ignore any 345 * recent I/O errors, inferring that they are due to the asynchronous device 346 * removal. 347 */ 348 void 349 zfs_post_remove(spa_t *spa, vdev_t *vd) 350 { 351 zfs_post_common(spa, vd, FM_RESOURCE_REMOVED); 352 } 353 354 /* 355 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool 356 * has the 'autoreplace' property set, and therefore any broken vdevs will be 357 * handled by higher level logic, and no vdev fault should be generated. 358 */ 359 void 360 zfs_post_autoreplace(spa_t *spa, vdev_t *vd) 361 { 362 zfs_post_common(spa, vd, FM_RESOURCE_AUTOREPLACE); 363 } 364