xref: /titanic_50/usr/src/uts/common/fs/zfs/zfs_fm.c (revision 21ad40f5447a73ac8a7ed2b9b66dd73ff1b088c1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012 by Delphix. All rights reserved.
28  */
29 
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/fm/protocol.h>
39 #include <sys/fm/util.h>
40 #include <sys/sysevent.h>
41 
42 /*
43  * This general routine is responsible for generating all the different ZFS
44  * ereports.  The payload is dependent on the class, and which arguments are
45  * supplied to the function:
46  *
47  * 	EREPORT			POOL	VDEV	IO
48  * 	block			X	X	X
49  * 	data			X		X
50  * 	device			X	X
51  * 	pool			X
52  *
53  * If we are in a loading state, all errors are chained together by the same
54  * SPA-wide ENA (Error Numeric Association).
55  *
56  * For isolated I/O requests, we get the ENA from the zio_t. The propagation
57  * gets very complicated due to RAID-Z, gang blocks, and vdev caching.  We want
58  * to chain together all ereports associated with a logical piece of data.  For
59  * read I/Os, there  are basically three 'types' of I/O, which form a roughly
60  * layered diagram:
61  *
62  *      +---------------+
63  * 	| Aggregate I/O |	No associated logical data or device
64  * 	+---------------+
65  *              |
66  *              V
67  * 	+---------------+	Reads associated with a piece of logical data.
68  * 	|   Read I/O    |	This includes reads on behalf of RAID-Z,
69  * 	+---------------+       mirrors, gang blocks, retries, etc.
70  *              |
71  *              V
72  * 	+---------------+	Reads associated with a particular device, but
73  * 	| Physical I/O  |	no logical data.  Issued as part of vdev caching
74  * 	+---------------+	and I/O aggregation.
75  *
76  * Note that 'physical I/O' here is not the same terminology as used in the rest
77  * of ZIO.  Typically, 'physical I/O' simply means that there is no attached
78  * blockpointer.  But I/O with no associated block pointer can still be related
79  * to a logical piece of data (i.e. RAID-Z requests).
80  *
81  * Purely physical I/O always have unique ENAs.  They are not related to a
82  * particular piece of logical data, and therefore cannot be chained together.
83  * We still generate an ereport, but the DE doesn't correlate it with any
84  * logical piece of data.  When such an I/O fails, the delegated I/O requests
85  * will issue a retry, which will trigger the 'real' ereport with the correct
86  * ENA.
87  *
88  * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
89  * When a new logical I/O is issued, we set this to point to itself.  Child I/Os
90  * then inherit this pointer, so that when it is first set subsequent failures
91  * will use the same ENA.  For vdev cache fill and queue aggregation I/O,
92  * this pointer is set to NULL, and no ereport will be generated (since it
93  * doesn't actually correspond to any particular device or piece of data,
94  * and the caller will always retry without caching or queueing anyway).
95  *
96  * For checksum errors, we want to include more information about the actual
97  * error which occurs.  Accordingly, we build an ereport when the error is
98  * noticed, but instead of sending it in immediately, we hang it off of the
99  * io_cksum_report field of the logical IO.  When the logical IO completes
100  * (successfully or not), zfs_ereport_finish_checksum() is called with the
101  * good and bad versions of the buffer (if available), and we annotate the
102  * ereport with information about the differences.
103  */
104 #ifdef _KERNEL
105 static void
106 zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out,
107     const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio,
108     uint64_t stateoroffset, uint64_t size)
109 {
110 	nvlist_t *ereport, *detector;
111 
112 	uint64_t ena;
113 	char class[64];
114 
115 	/*
116 	 * If we are doing a spa_tryimport() or in recovery mode,
117 	 * ignore errors.
118 	 */
119 	if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT ||
120 	    spa_load_state(spa) == SPA_LOAD_RECOVER)
121 		return;
122 
123 	/*
124 	 * If we are in the middle of opening a pool, and the previous attempt
125 	 * failed, don't bother logging any new ereports - we're just going to
126 	 * get the same diagnosis anyway.
127 	 */
128 	if (spa_load_state(spa) != SPA_LOAD_NONE &&
129 	    spa->spa_last_open_failed)
130 		return;
131 
132 	if (zio != NULL) {
133 		/*
134 		 * If this is not a read or write zio, ignore the error.  This
135 		 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
136 		 */
137 		if (zio->io_type != ZIO_TYPE_READ &&
138 		    zio->io_type != ZIO_TYPE_WRITE)
139 			return;
140 
141 		/*
142 		 * Ignore any errors from speculative I/Os, as failure is an
143 		 * expected result.
144 		 */
145 		if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
146 			return;
147 
148 		/*
149 		 * If this I/O is not a retry I/O, don't post an ereport.
150 		 * Otherwise, we risk making bad diagnoses based on B_FAILFAST
151 		 * I/Os.
152 		 */
153 		if (zio->io_error == EIO &&
154 		    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
155 			return;
156 
157 		if (vd != NULL) {
158 			/*
159 			 * If the vdev has already been marked as failing due
160 			 * to a failed probe, then ignore any subsequent I/O
161 			 * errors, as the DE will automatically fault the vdev
162 			 * on the first such failure.  This also catches cases
163 			 * where vdev_remove_wanted is set and the device has
164 			 * not yet been asynchronously placed into the REMOVED
165 			 * state.
166 			 */
167 			if (zio->io_vd == vd && !vdev_accessible(vd, zio))
168 				return;
169 
170 			/*
171 			 * Ignore checksum errors for reads from DTL regions of
172 			 * leaf vdevs.
173 			 */
174 			if (zio->io_type == ZIO_TYPE_READ &&
175 			    zio->io_error == ECKSUM &&
176 			    vd->vdev_ops->vdev_op_leaf &&
177 			    vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1))
178 				return;
179 		}
180 	}
181 
182 	/*
183 	 * For probe failure, we want to avoid posting ereports if we've
184 	 * already removed the device in the meantime.
185 	 */
186 	if (vd != NULL &&
187 	    strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 &&
188 	    (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED))
189 		return;
190 
191 	if ((ereport = fm_nvlist_create(NULL)) == NULL)
192 		return;
193 
194 	if ((detector = fm_nvlist_create(NULL)) == NULL) {
195 		fm_nvlist_destroy(ereport, FM_NVA_FREE);
196 		return;
197 	}
198 
199 	/*
200 	 * Serialize ereport generation
201 	 */
202 	mutex_enter(&spa->spa_errlist_lock);
203 
204 	/*
205 	 * Determine the ENA to use for this event.  If we are in a loading
206 	 * state, use a SPA-wide ENA.  Otherwise, if we are in an I/O state, use
207 	 * a root zio-wide ENA.  Otherwise, simply use a unique ENA.
208 	 */
209 	if (spa_load_state(spa) != SPA_LOAD_NONE) {
210 		if (spa->spa_ena == 0)
211 			spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
212 		ena = spa->spa_ena;
213 	} else if (zio != NULL && zio->io_logical != NULL) {
214 		if (zio->io_logical->io_ena == 0)
215 			zio->io_logical->io_ena =
216 			    fm_ena_generate(0, FM_ENA_FMT1);
217 		ena = zio->io_logical->io_ena;
218 	} else {
219 		ena = fm_ena_generate(0, FM_ENA_FMT1);
220 	}
221 
222 	/*
223 	 * Construct the full class, detector, and other standard FMA fields.
224 	 */
225 	(void) snprintf(class, sizeof (class), "%s.%s",
226 	    ZFS_ERROR_CLASS, subclass);
227 
228 	fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
229 	    vd != NULL ? vd->vdev_guid : 0);
230 
231 	fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
232 
233 	/*
234 	 * Construct the per-ereport payload, depending on which parameters are
235 	 * passed in.
236 	 */
237 
238 	/*
239 	 * Generic payload members common to all ereports.
240 	 */
241 	fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL,
242 	    DATA_TYPE_STRING, spa_name(spa), FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
243 	    DATA_TYPE_UINT64, spa_guid(spa),
244 	    FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
245 	    spa_load_state(spa), NULL);
246 
247 	if (spa != NULL) {
248 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE,
249 		    DATA_TYPE_STRING,
250 		    spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ?
251 		    FM_EREPORT_FAILMODE_WAIT :
252 		    spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ?
253 		    FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC,
254 		    NULL);
255 	}
256 
257 	if (vd != NULL) {
258 		vdev_t *pvd = vd->vdev_parent;
259 
260 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
261 		    DATA_TYPE_UINT64, vd->vdev_guid,
262 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
263 		    DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
264 		if (vd->vdev_path != NULL)
265 			fm_payload_set(ereport,
266 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
267 			    DATA_TYPE_STRING, vd->vdev_path, NULL);
268 		if (vd->vdev_devid != NULL)
269 			fm_payload_set(ereport,
270 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
271 			    DATA_TYPE_STRING, vd->vdev_devid, NULL);
272 		if (vd->vdev_fru != NULL)
273 			fm_payload_set(ereport,
274 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
275 			    DATA_TYPE_STRING, vd->vdev_fru, NULL);
276 
277 		if (pvd != NULL) {
278 			fm_payload_set(ereport,
279 			    FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
280 			    DATA_TYPE_UINT64, pvd->vdev_guid,
281 			    FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
282 			    DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
283 			    NULL);
284 			if (pvd->vdev_path)
285 				fm_payload_set(ereport,
286 				    FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
287 				    DATA_TYPE_STRING, pvd->vdev_path, NULL);
288 			if (pvd->vdev_devid)
289 				fm_payload_set(ereport,
290 				    FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
291 				    DATA_TYPE_STRING, pvd->vdev_devid, NULL);
292 		}
293 	}
294 
295 	if (zio != NULL) {
296 		/*
297 		 * Payload common to all I/Os.
298 		 */
299 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
300 		    DATA_TYPE_INT32, zio->io_error, NULL);
301 
302 		/*
303 		 * If the 'size' parameter is non-zero, it indicates this is a
304 		 * RAID-Z or other I/O where the physical offset and length are
305 		 * provided for us, instead of within the zio_t.
306 		 */
307 		if (vd != NULL) {
308 			if (size)
309 				fm_payload_set(ereport,
310 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
311 				    DATA_TYPE_UINT64, stateoroffset,
312 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
313 				    DATA_TYPE_UINT64, size, NULL);
314 			else
315 				fm_payload_set(ereport,
316 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
317 				    DATA_TYPE_UINT64, zio->io_offset,
318 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
319 				    DATA_TYPE_UINT64, zio->io_size, NULL);
320 		}
321 
322 		/*
323 		 * Payload for I/Os with corresponding logical information.
324 		 */
325 		if (zio->io_logical != NULL)
326 			fm_payload_set(ereport,
327 			    FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
328 			    DATA_TYPE_UINT64,
329 			    zio->io_logical->io_bookmark.zb_objset,
330 			    FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
331 			    DATA_TYPE_UINT64,
332 			    zio->io_logical->io_bookmark.zb_object,
333 			    FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
334 			    DATA_TYPE_INT64,
335 			    zio->io_logical->io_bookmark.zb_level,
336 			    FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
337 			    DATA_TYPE_UINT64,
338 			    zio->io_logical->io_bookmark.zb_blkid, NULL);
339 	} else if (vd != NULL) {
340 		/*
341 		 * If we have a vdev but no zio, this is a device fault, and the
342 		 * 'stateoroffset' parameter indicates the previous state of the
343 		 * vdev.
344 		 */
345 		fm_payload_set(ereport,
346 		    FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
347 		    DATA_TYPE_UINT64, stateoroffset, NULL);
348 	}
349 
350 	mutex_exit(&spa->spa_errlist_lock);
351 
352 	*ereport_out = ereport;
353 	*detector_out = detector;
354 }
355 
356 /* if it's <= 128 bytes, save the corruption directly */
357 #define	ZFM_MAX_INLINE		(128 / sizeof (uint64_t))
358 
359 #define	MAX_RANGES		16
360 
361 typedef struct zfs_ecksum_info {
362 	/* histograms of set and cleared bits by bit number in a 64-bit word */
363 	uint16_t zei_histogram_set[sizeof (uint64_t) * NBBY];
364 	uint16_t zei_histogram_cleared[sizeof (uint64_t) * NBBY];
365 
366 	/* inline arrays of bits set and cleared. */
367 	uint64_t zei_bits_set[ZFM_MAX_INLINE];
368 	uint64_t zei_bits_cleared[ZFM_MAX_INLINE];
369 
370 	/*
371 	 * for each range, the number of bits set and cleared.  The Hamming
372 	 * distance between the good and bad buffers is the sum of them all.
373 	 */
374 	uint32_t zei_range_sets[MAX_RANGES];
375 	uint32_t zei_range_clears[MAX_RANGES];
376 
377 	struct zei_ranges {
378 		uint32_t	zr_start;
379 		uint32_t	zr_end;
380 	} zei_ranges[MAX_RANGES];
381 
382 	size_t	zei_range_count;
383 	uint32_t zei_mingap;
384 	uint32_t zei_allowed_mingap;
385 
386 } zfs_ecksum_info_t;
387 
388 static void
389 update_histogram(uint64_t value_arg, uint16_t *hist, uint32_t *count)
390 {
391 	size_t i;
392 	size_t bits = 0;
393 	uint64_t value = BE_64(value_arg);
394 
395 	/* We store the bits in big-endian (largest-first) order */
396 	for (i = 0; i < 64; i++) {
397 		if (value & (1ull << i)) {
398 			hist[63 - i]++;
399 			++bits;
400 		}
401 	}
402 	/* update the count of bits changed */
403 	*count += bits;
404 }
405 
406 /*
407  * We've now filled up the range array, and need to increase "mingap" and
408  * shrink the range list accordingly.  zei_mingap is always the smallest
409  * distance between array entries, so we set the new_allowed_gap to be
410  * one greater than that.  We then go through the list, joining together
411  * any ranges which are closer than the new_allowed_gap.
412  *
413  * By construction, there will be at least one.  We also update zei_mingap
414  * to the new smallest gap, to prepare for our next invocation.
415  */
416 static void
417 shrink_ranges(zfs_ecksum_info_t *eip)
418 {
419 	uint32_t mingap = UINT32_MAX;
420 	uint32_t new_allowed_gap = eip->zei_mingap + 1;
421 
422 	size_t idx, output;
423 	size_t max = eip->zei_range_count;
424 
425 	struct zei_ranges *r = eip->zei_ranges;
426 
427 	ASSERT3U(eip->zei_range_count, >, 0);
428 	ASSERT3U(eip->zei_range_count, <=, MAX_RANGES);
429 
430 	output = idx = 0;
431 	while (idx < max - 1) {
432 		uint32_t start = r[idx].zr_start;
433 		uint32_t end = r[idx].zr_end;
434 
435 		while (idx < max - 1) {
436 			idx++;
437 
438 			uint32_t nstart = r[idx].zr_start;
439 			uint32_t nend = r[idx].zr_end;
440 
441 			uint32_t gap = nstart - end;
442 			if (gap < new_allowed_gap) {
443 				end = nend;
444 				continue;
445 			}
446 			if (gap < mingap)
447 				mingap = gap;
448 			break;
449 		}
450 		r[output].zr_start = start;
451 		r[output].zr_end = end;
452 		output++;
453 	}
454 	ASSERT3U(output, <, eip->zei_range_count);
455 	eip->zei_range_count = output;
456 	eip->zei_mingap = mingap;
457 	eip->zei_allowed_mingap = new_allowed_gap;
458 }
459 
460 static void
461 add_range(zfs_ecksum_info_t *eip, int start, int end)
462 {
463 	struct zei_ranges *r = eip->zei_ranges;
464 	size_t count = eip->zei_range_count;
465 
466 	if (count >= MAX_RANGES) {
467 		shrink_ranges(eip);
468 		count = eip->zei_range_count;
469 	}
470 	if (count == 0) {
471 		eip->zei_mingap = UINT32_MAX;
472 		eip->zei_allowed_mingap = 1;
473 	} else {
474 		int gap = start - r[count - 1].zr_end;
475 
476 		if (gap < eip->zei_allowed_mingap) {
477 			r[count - 1].zr_end = end;
478 			return;
479 		}
480 		if (gap < eip->zei_mingap)
481 			eip->zei_mingap = gap;
482 	}
483 	r[count].zr_start = start;
484 	r[count].zr_end = end;
485 	eip->zei_range_count++;
486 }
487 
488 static size_t
489 range_total_size(zfs_ecksum_info_t *eip)
490 {
491 	struct zei_ranges *r = eip->zei_ranges;
492 	size_t count = eip->zei_range_count;
493 	size_t result = 0;
494 	size_t idx;
495 
496 	for (idx = 0; idx < count; idx++)
497 		result += (r[idx].zr_end - r[idx].zr_start);
498 
499 	return (result);
500 }
501 
502 static zfs_ecksum_info_t *
503 annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info,
504     const uint8_t *goodbuf, const uint8_t *badbuf, size_t size,
505     boolean_t drop_if_identical)
506 {
507 	const uint64_t *good = (const uint64_t *)goodbuf;
508 	const uint64_t *bad = (const uint64_t *)badbuf;
509 
510 	uint64_t allset = 0;
511 	uint64_t allcleared = 0;
512 
513 	size_t nui64s = size / sizeof (uint64_t);
514 
515 	size_t inline_size;
516 	int no_inline = 0;
517 	size_t idx;
518 	size_t range;
519 
520 	size_t offset = 0;
521 	ssize_t start = -1;
522 
523 	zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP);
524 
525 	/* don't do any annotation for injected checksum errors */
526 	if (info != NULL && info->zbc_injected)
527 		return (eip);
528 
529 	if (info != NULL && info->zbc_has_cksum) {
530 		fm_payload_set(ereport,
531 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED,
532 		    DATA_TYPE_UINT64_ARRAY,
533 		    sizeof (info->zbc_expected) / sizeof (uint64_t),
534 		    (uint64_t *)&info->zbc_expected,
535 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL,
536 		    DATA_TYPE_UINT64_ARRAY,
537 		    sizeof (info->zbc_actual) / sizeof (uint64_t),
538 		    (uint64_t *)&info->zbc_actual,
539 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO,
540 		    DATA_TYPE_STRING,
541 		    info->zbc_checksum_name,
542 		    NULL);
543 
544 		if (info->zbc_byteswapped) {
545 			fm_payload_set(ereport,
546 			    FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP,
547 			    DATA_TYPE_BOOLEAN, 1,
548 			    NULL);
549 		}
550 	}
551 
552 	if (badbuf == NULL || goodbuf == NULL)
553 		return (eip);
554 
555 	ASSERT3U(nui64s, <=, UINT16_MAX);
556 	ASSERT3U(size, ==, nui64s * sizeof (uint64_t));
557 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
558 	ASSERT3U(size, <=, UINT32_MAX);
559 
560 	/* build up the range list by comparing the two buffers. */
561 	for (idx = 0; idx < nui64s; idx++) {
562 		if (good[idx] == bad[idx]) {
563 			if (start == -1)
564 				continue;
565 
566 			add_range(eip, start, idx);
567 			start = -1;
568 		} else {
569 			if (start != -1)
570 				continue;
571 
572 			start = idx;
573 		}
574 	}
575 	if (start != -1)
576 		add_range(eip, start, idx);
577 
578 	/* See if it will fit in our inline buffers */
579 	inline_size = range_total_size(eip);
580 	if (inline_size > ZFM_MAX_INLINE)
581 		no_inline = 1;
582 
583 	/*
584 	 * If there is no change and we want to drop if the buffers are
585 	 * identical, do so.
586 	 */
587 	if (inline_size == 0 && drop_if_identical) {
588 		kmem_free(eip, sizeof (*eip));
589 		return (NULL);
590 	}
591 
592 	/*
593 	 * Now walk through the ranges, filling in the details of the
594 	 * differences.  Also convert our uint64_t-array offsets to byte
595 	 * offsets.
596 	 */
597 	for (range = 0; range < eip->zei_range_count; range++) {
598 		size_t start = eip->zei_ranges[range].zr_start;
599 		size_t end = eip->zei_ranges[range].zr_end;
600 
601 		for (idx = start; idx < end; idx++) {
602 			uint64_t set, cleared;
603 
604 			// bits set in bad, but not in good
605 			set = ((~good[idx]) & bad[idx]);
606 			// bits set in good, but not in bad
607 			cleared = (good[idx] & (~bad[idx]));
608 
609 			allset |= set;
610 			allcleared |= cleared;
611 
612 			if (!no_inline) {
613 				ASSERT3U(offset, <, inline_size);
614 				eip->zei_bits_set[offset] = set;
615 				eip->zei_bits_cleared[offset] = cleared;
616 				offset++;
617 			}
618 
619 			update_histogram(set, eip->zei_histogram_set,
620 			    &eip->zei_range_sets[range]);
621 			update_histogram(cleared, eip->zei_histogram_cleared,
622 			    &eip->zei_range_clears[range]);
623 		}
624 
625 		/* convert to byte offsets */
626 		eip->zei_ranges[range].zr_start	*= sizeof (uint64_t);
627 		eip->zei_ranges[range].zr_end	*= sizeof (uint64_t);
628 	}
629 	eip->zei_allowed_mingap	*= sizeof (uint64_t);
630 	inline_size		*= sizeof (uint64_t);
631 
632 	/* fill in ereport */
633 	fm_payload_set(ereport,
634 	    FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES,
635 	    DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count,
636 	    (uint32_t *)eip->zei_ranges,
637 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP,
638 	    DATA_TYPE_UINT32, eip->zei_allowed_mingap,
639 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS,
640 	    DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets,
641 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS,
642 	    DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears,
643 	    NULL);
644 
645 	if (!no_inline) {
646 		fm_payload_set(ereport,
647 		    FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS,
648 		    DATA_TYPE_UINT8_ARRAY,
649 		    inline_size, (uint8_t *)eip->zei_bits_set,
650 		    FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS,
651 		    DATA_TYPE_UINT8_ARRAY,
652 		    inline_size, (uint8_t *)eip->zei_bits_cleared,
653 		    NULL);
654 	} else {
655 		fm_payload_set(ereport,
656 		    FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM,
657 		    DATA_TYPE_UINT16_ARRAY,
658 		    NBBY * sizeof (uint64_t), eip->zei_histogram_set,
659 		    FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM,
660 		    DATA_TYPE_UINT16_ARRAY,
661 		    NBBY * sizeof (uint64_t), eip->zei_histogram_cleared,
662 		    NULL);
663 	}
664 	return (eip);
665 }
666 #endif
667 
668 void
669 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio,
670     uint64_t stateoroffset, uint64_t size)
671 {
672 #ifdef _KERNEL
673 	nvlist_t *ereport = NULL;
674 	nvlist_t *detector = NULL;
675 
676 	zfs_ereport_start(&ereport, &detector,
677 	    subclass, spa, vd, zio, stateoroffset, size);
678 
679 	if (ereport == NULL)
680 		return;
681 
682 	fm_ereport_post(ereport, EVCH_SLEEP);
683 
684 	fm_nvlist_destroy(ereport, FM_NVA_FREE);
685 	fm_nvlist_destroy(detector, FM_NVA_FREE);
686 #endif
687 }
688 
689 void
690 zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd,
691     struct zio *zio, uint64_t offset, uint64_t length, void *arg,
692     zio_bad_cksum_t *info)
693 {
694 	zio_cksum_report_t *report = kmem_zalloc(sizeof (*report), KM_SLEEP);
695 
696 	if (zio->io_vsd != NULL)
697 		zio->io_vsd_ops->vsd_cksum_report(zio, report, arg);
698 	else
699 		zio_vsd_default_cksum_report(zio, report, arg);
700 
701 	/* copy the checksum failure information if it was provided */
702 	if (info != NULL) {
703 		report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP);
704 		bcopy(info, report->zcr_ckinfo, sizeof (*info));
705 	}
706 
707 	report->zcr_align = 1ULL << vd->vdev_top->vdev_ashift;
708 	report->zcr_length = length;
709 
710 #ifdef _KERNEL
711 	zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector,
712 	    FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio, offset, length);
713 
714 	if (report->zcr_ereport == NULL) {
715 		report->zcr_free(report->zcr_cbdata, report->zcr_cbinfo);
716 		if (report->zcr_ckinfo != NULL) {
717 			kmem_free(report->zcr_ckinfo,
718 			    sizeof (*report->zcr_ckinfo));
719 		}
720 		kmem_free(report, sizeof (*report));
721 		return;
722 	}
723 #endif
724 
725 	mutex_enter(&spa->spa_errlist_lock);
726 	report->zcr_next = zio->io_logical->io_cksum_report;
727 	zio->io_logical->io_cksum_report = report;
728 	mutex_exit(&spa->spa_errlist_lock);
729 }
730 
731 void
732 zfs_ereport_finish_checksum(zio_cksum_report_t *report,
733     const void *good_data, const void *bad_data, boolean_t drop_if_identical)
734 {
735 #ifdef _KERNEL
736 	zfs_ecksum_info_t *info = NULL;
737 	info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo,
738 	    good_data, bad_data, report->zcr_length, drop_if_identical);
739 
740 	if (info != NULL)
741 		fm_ereport_post(report->zcr_ereport, EVCH_SLEEP);
742 
743 	fm_nvlist_destroy(report->zcr_ereport, FM_NVA_FREE);
744 	fm_nvlist_destroy(report->zcr_detector, FM_NVA_FREE);
745 	report->zcr_ereport = report->zcr_detector = NULL;
746 
747 	if (info != NULL)
748 		kmem_free(info, sizeof (*info));
749 #endif
750 }
751 
752 void
753 zfs_ereport_free_checksum(zio_cksum_report_t *rpt)
754 {
755 #ifdef _KERNEL
756 	if (rpt->zcr_ereport != NULL) {
757 		fm_nvlist_destroy(rpt->zcr_ereport,
758 		    FM_NVA_FREE);
759 		fm_nvlist_destroy(rpt->zcr_detector,
760 		    FM_NVA_FREE);
761 	}
762 #endif
763 	rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo);
764 
765 	if (rpt->zcr_ckinfo != NULL)
766 		kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo));
767 
768 	kmem_free(rpt, sizeof (*rpt));
769 }
770 
771 void
772 zfs_ereport_send_interim_checksum(zio_cksum_report_t *report)
773 {
774 #ifdef _KERNEL
775 	fm_ereport_post(report->zcr_ereport, EVCH_SLEEP);
776 #endif
777 }
778 
779 void
780 zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd,
781     struct zio *zio, uint64_t offset, uint64_t length,
782     const void *good_data, const void *bad_data, zio_bad_cksum_t *zbc)
783 {
784 #ifdef _KERNEL
785 	nvlist_t *ereport = NULL;
786 	nvlist_t *detector = NULL;
787 	zfs_ecksum_info_t *info;
788 
789 	zfs_ereport_start(&ereport, &detector,
790 	    FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio, offset, length);
791 
792 	if (ereport == NULL)
793 		return;
794 
795 	info = annotate_ecksum(ereport, zbc, good_data, bad_data, length,
796 	    B_FALSE);
797 
798 	if (info != NULL)
799 		fm_ereport_post(ereport, EVCH_SLEEP);
800 
801 	fm_nvlist_destroy(ereport, FM_NVA_FREE);
802 	fm_nvlist_destroy(detector, FM_NVA_FREE);
803 
804 	if (info != NULL)
805 		kmem_free(info, sizeof (*info));
806 #endif
807 }
808 
809 static void
810 zfs_post_common(spa_t *spa, vdev_t *vd, const char *name)
811 {
812 #ifdef _KERNEL
813 	nvlist_t *resource;
814 	char class[64];
815 
816 	if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT)
817 		return;
818 
819 	if ((resource = fm_nvlist_create(NULL)) == NULL)
820 		return;
821 
822 	(void) snprintf(class, sizeof (class), "%s.%s.%s", FM_RSRC_RESOURCE,
823 	    ZFS_ERROR_CLASS, name);
824 	VERIFY(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION) == 0);
825 	VERIFY(nvlist_add_string(resource, FM_CLASS, class) == 0);
826 	VERIFY(nvlist_add_uint64(resource,
827 	    FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)) == 0);
828 	if (vd)
829 		VERIFY(nvlist_add_uint64(resource,
830 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid) == 0);
831 
832 	fm_ereport_post(resource, EVCH_SLEEP);
833 
834 	fm_nvlist_destroy(resource, FM_NVA_FREE);
835 #endif
836 }
837 
838 /*
839  * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
840  * has been removed from the system.  This will cause the DE to ignore any
841  * recent I/O errors, inferring that they are due to the asynchronous device
842  * removal.
843  */
844 void
845 zfs_post_remove(spa_t *spa, vdev_t *vd)
846 {
847 	zfs_post_common(spa, vd, FM_RESOURCE_REMOVED);
848 }
849 
850 /*
851  * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
852  * has the 'autoreplace' property set, and therefore any broken vdevs will be
853  * handled by higher level logic, and no vdev fault should be generated.
854  */
855 void
856 zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
857 {
858 	zfs_post_common(spa, vd, FM_RESOURCE_AUTOREPLACE);
859 }
860 
861 /*
862  * The 'resource.fs.zfs.statechange' event is an internal signal that the
863  * given vdev has transitioned its state to DEGRADED or HEALTHY.  This will
864  * cause the retire agent to repair any outstanding fault management cases
865  * open because the device was not found (fault.fs.zfs.device).
866  */
867 void
868 zfs_post_state_change(spa_t *spa, vdev_t *vd)
869 {
870 	zfs_post_common(spa, vd, FM_RESOURCE_STATECHANGE);
871 }
872