xref: /titanic_50/usr/src/uts/common/fs/zfs/zfs_ctldir.c (revision ef1d07349e941417706ea6d639bac69cb863b2f8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013 by Delphix. All rights reserved.
24  */
25 
26 /*
27  * ZFS control directory (a.k.a. ".zfs")
28  *
29  * This directory provides a common location for all ZFS meta-objects.
30  * Currently, this is only the 'snapshot' directory, but this may expand in the
31  * future.  The elements are built using the GFS primitives, as the hierarchy
32  * does not actually exist on disk.
33  *
34  * For 'snapshot', we don't want to have all snapshots always mounted, because
35  * this would take up a huge amount of space in /etc/mnttab.  We have three
36  * types of objects:
37  *
38  * 	ctldir ------> snapshotdir -------> snapshot
39  *                                             |
40  *                                             |
41  *                                             V
42  *                                         mounted fs
43  *
44  * The 'snapshot' node contains just enough information to lookup '..' and act
45  * as a mountpoint for the snapshot.  Whenever we lookup a specific snapshot, we
46  * perform an automount of the underlying filesystem and return the
47  * corresponding vnode.
48  *
49  * All mounts are handled automatically by the kernel, but unmounts are
50  * (currently) handled from user land.  The main reason is that there is no
51  * reliable way to auto-unmount the filesystem when it's "no longer in use".
52  * When the user unmounts a filesystem, we call zfsctl_unmount(), which
53  * unmounts any snapshots within the snapshot directory.
54  *
55  * The '.zfs', '.zfs/snapshot', and all directories created under
56  * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') are all GFS nodes and
57  * share the same vfs_t as the head filesystem (what '.zfs' lives under).
58  *
59  * File systems mounted ontop of the GFS nodes '.zfs/snapshot/<snapname>'
60  * (ie: snapshots) are ZFS nodes and have their own unique vfs_t.
61  * However, vnodes within these mounted on file systems have their v_vfsp
62  * fields set to the head filesystem to make NFS happy (see
63  * zfsctl_snapdir_lookup()). We VFS_HOLD the head filesystem's vfs_t
64  * so that it cannot be freed until all snapshots have been unmounted.
65  */
66 
67 #include <fs/fs_subr.h>
68 #include <sys/zfs_ctldir.h>
69 #include <sys/zfs_ioctl.h>
70 #include <sys/zfs_vfsops.h>
71 #include <sys/vfs_opreg.h>
72 #include <sys/gfs.h>
73 #include <sys/stat.h>
74 #include <sys/dmu.h>
75 #include <sys/dsl_destroy.h>
76 #include <sys/dsl_deleg.h>
77 #include <sys/mount.h>
78 #include <sys/sunddi.h>
79 
80 #include "zfs_namecheck.h"
81 
82 typedef struct zfsctl_node {
83 	gfs_dir_t	zc_gfs_private;
84 	uint64_t	zc_id;
85 	timestruc_t	zc_cmtime;	/* ctime and mtime, always the same */
86 } zfsctl_node_t;
87 
88 typedef struct zfsctl_snapdir {
89 	zfsctl_node_t	sd_node;
90 	kmutex_t	sd_lock;
91 	avl_tree_t	sd_snaps;
92 } zfsctl_snapdir_t;
93 
94 typedef struct {
95 	char		*se_name;
96 	vnode_t		*se_root;
97 	avl_node_t	se_node;
98 } zfs_snapentry_t;
99 
100 static int
101 snapentry_compare(const void *a, const void *b)
102 {
103 	const zfs_snapentry_t *sa = a;
104 	const zfs_snapentry_t *sb = b;
105 	int ret = strcmp(sa->se_name, sb->se_name);
106 
107 	if (ret < 0)
108 		return (-1);
109 	else if (ret > 0)
110 		return (1);
111 	else
112 		return (0);
113 }
114 
115 vnodeops_t *zfsctl_ops_root;
116 vnodeops_t *zfsctl_ops_snapdir;
117 vnodeops_t *zfsctl_ops_snapshot;
118 vnodeops_t *zfsctl_ops_shares;
119 vnodeops_t *zfsctl_ops_shares_dir;
120 
121 static const fs_operation_def_t zfsctl_tops_root[];
122 static const fs_operation_def_t zfsctl_tops_snapdir[];
123 static const fs_operation_def_t zfsctl_tops_snapshot[];
124 static const fs_operation_def_t zfsctl_tops_shares[];
125 
126 static vnode_t *zfsctl_mknode_snapdir(vnode_t *);
127 static vnode_t *zfsctl_mknode_shares(vnode_t *);
128 static vnode_t *zfsctl_snapshot_mknode(vnode_t *, uint64_t objset);
129 static int zfsctl_unmount_snap(zfs_snapentry_t *, int, cred_t *);
130 
131 static gfs_opsvec_t zfsctl_opsvec[] = {
132 	{ ".zfs", zfsctl_tops_root, &zfsctl_ops_root },
133 	{ ".zfs/snapshot", zfsctl_tops_snapdir, &zfsctl_ops_snapdir },
134 	{ ".zfs/snapshot/vnode", zfsctl_tops_snapshot, &zfsctl_ops_snapshot },
135 	{ ".zfs/shares", zfsctl_tops_shares, &zfsctl_ops_shares_dir },
136 	{ ".zfs/shares/vnode", zfsctl_tops_shares, &zfsctl_ops_shares },
137 	{ NULL }
138 };
139 
140 /*
141  * Root directory elements.  We only have two entries
142  * snapshot and shares.
143  */
144 static gfs_dirent_t zfsctl_root_entries[] = {
145 	{ "snapshot", zfsctl_mknode_snapdir, GFS_CACHE_VNODE },
146 	{ "shares", zfsctl_mknode_shares, GFS_CACHE_VNODE },
147 	{ NULL }
148 };
149 
150 /* include . and .. in the calculation */
151 #define	NROOT_ENTRIES	((sizeof (zfsctl_root_entries) / \
152     sizeof (gfs_dirent_t)) + 1)
153 
154 
155 /*
156  * Initialize the various GFS pieces we'll need to create and manipulate .zfs
157  * directories.  This is called from the ZFS init routine, and initializes the
158  * vnode ops vectors that we'll be using.
159  */
160 void
161 zfsctl_init(void)
162 {
163 	VERIFY(gfs_make_opsvec(zfsctl_opsvec) == 0);
164 }
165 
166 void
167 zfsctl_fini(void)
168 {
169 	/*
170 	 * Remove vfsctl vnode ops
171 	 */
172 	if (zfsctl_ops_root)
173 		vn_freevnodeops(zfsctl_ops_root);
174 	if (zfsctl_ops_snapdir)
175 		vn_freevnodeops(zfsctl_ops_snapdir);
176 	if (zfsctl_ops_snapshot)
177 		vn_freevnodeops(zfsctl_ops_snapshot);
178 	if (zfsctl_ops_shares)
179 		vn_freevnodeops(zfsctl_ops_shares);
180 	if (zfsctl_ops_shares_dir)
181 		vn_freevnodeops(zfsctl_ops_shares_dir);
182 
183 	zfsctl_ops_root = NULL;
184 	zfsctl_ops_snapdir = NULL;
185 	zfsctl_ops_snapshot = NULL;
186 	zfsctl_ops_shares = NULL;
187 	zfsctl_ops_shares_dir = NULL;
188 }
189 
190 boolean_t
191 zfsctl_is_node(vnode_t *vp)
192 {
193 	return (vn_matchops(vp, zfsctl_ops_root) ||
194 	    vn_matchops(vp, zfsctl_ops_snapdir) ||
195 	    vn_matchops(vp, zfsctl_ops_snapshot) ||
196 	    vn_matchops(vp, zfsctl_ops_shares) ||
197 	    vn_matchops(vp, zfsctl_ops_shares_dir));
198 
199 }
200 
201 /*
202  * Return the inode number associated with the 'snapshot' or
203  * 'shares' directory.
204  */
205 /* ARGSUSED */
206 static ino64_t
207 zfsctl_root_inode_cb(vnode_t *vp, int index)
208 {
209 	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
210 
211 	ASSERT(index <= 2);
212 
213 	if (index == 0)
214 		return (ZFSCTL_INO_SNAPDIR);
215 
216 	return (zfsvfs->z_shares_dir);
217 }
218 
219 /*
220  * Create the '.zfs' directory.  This directory is cached as part of the VFS
221  * structure.  This results in a hold on the vfs_t.  The code in zfs_umount()
222  * therefore checks against a vfs_count of 2 instead of 1.  This reference
223  * is removed when the ctldir is destroyed in the unmount.
224  */
225 void
226 zfsctl_create(zfsvfs_t *zfsvfs)
227 {
228 	vnode_t *vp, *rvp;
229 	zfsctl_node_t *zcp;
230 	uint64_t crtime[2];
231 
232 	ASSERT(zfsvfs->z_ctldir == NULL);
233 
234 	vp = gfs_root_create(sizeof (zfsctl_node_t), zfsvfs->z_vfs,
235 	    zfsctl_ops_root, ZFSCTL_INO_ROOT, zfsctl_root_entries,
236 	    zfsctl_root_inode_cb, MAXNAMELEN, NULL, NULL);
237 	zcp = vp->v_data;
238 	zcp->zc_id = ZFSCTL_INO_ROOT;
239 
240 	VERIFY(VFS_ROOT(zfsvfs->z_vfs, &rvp) == 0);
241 	VERIFY(0 == sa_lookup(VTOZ(rvp)->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
242 	    &crtime, sizeof (crtime)));
243 	ZFS_TIME_DECODE(&zcp->zc_cmtime, crtime);
244 	VN_RELE(rvp);
245 
246 	/*
247 	 * We're only faking the fact that we have a root of a filesystem for
248 	 * the sake of the GFS interfaces.  Undo the flag manipulation it did
249 	 * for us.
250 	 */
251 	vp->v_flag &= ~(VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT);
252 
253 	zfsvfs->z_ctldir = vp;
254 }
255 
256 /*
257  * Destroy the '.zfs' directory.  Only called when the filesystem is unmounted.
258  * There might still be more references if we were force unmounted, but only
259  * new zfs_inactive() calls can occur and they don't reference .zfs
260  */
261 void
262 zfsctl_destroy(zfsvfs_t *zfsvfs)
263 {
264 	VN_RELE(zfsvfs->z_ctldir);
265 	zfsvfs->z_ctldir = NULL;
266 }
267 
268 /*
269  * Given a root znode, retrieve the associated .zfs directory.
270  * Add a hold to the vnode and return it.
271  */
272 vnode_t *
273 zfsctl_root(znode_t *zp)
274 {
275 	ASSERT(zfs_has_ctldir(zp));
276 	VN_HOLD(zp->z_zfsvfs->z_ctldir);
277 	return (zp->z_zfsvfs->z_ctldir);
278 }
279 
280 /*
281  * Common open routine.  Disallow any write access.
282  */
283 /* ARGSUSED */
284 static int
285 zfsctl_common_open(vnode_t **vpp, int flags, cred_t *cr, caller_context_t *ct)
286 {
287 	if (flags & FWRITE)
288 		return (SET_ERROR(EACCES));
289 
290 	return (0);
291 }
292 
293 /*
294  * Common close routine.  Nothing to do here.
295  */
296 /* ARGSUSED */
297 static int
298 zfsctl_common_close(vnode_t *vpp, int flags, int count, offset_t off,
299     cred_t *cr, caller_context_t *ct)
300 {
301 	return (0);
302 }
303 
304 /*
305  * Common access routine.  Disallow writes.
306  */
307 /* ARGSUSED */
308 static int
309 zfsctl_common_access(vnode_t *vp, int mode, int flags, cred_t *cr,
310     caller_context_t *ct)
311 {
312 	if (flags & V_ACE_MASK) {
313 		if (mode & ACE_ALL_WRITE_PERMS)
314 			return (SET_ERROR(EACCES));
315 	} else {
316 		if (mode & VWRITE)
317 			return (SET_ERROR(EACCES));
318 	}
319 
320 	return (0);
321 }
322 
323 /*
324  * Common getattr function.  Fill in basic information.
325  */
326 static void
327 zfsctl_common_getattr(vnode_t *vp, vattr_t *vap)
328 {
329 	timestruc_t	now;
330 
331 	vap->va_uid = 0;
332 	vap->va_gid = 0;
333 	vap->va_rdev = 0;
334 	/*
335 	 * We are a purely virtual object, so we have no
336 	 * blocksize or allocated blocks.
337 	 */
338 	vap->va_blksize = 0;
339 	vap->va_nblocks = 0;
340 	vap->va_seq = 0;
341 	vap->va_fsid = vp->v_vfsp->vfs_dev;
342 	vap->va_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP |
343 	    S_IROTH | S_IXOTH;
344 	vap->va_type = VDIR;
345 	/*
346 	 * We live in the now (for atime).
347 	 */
348 	gethrestime(&now);
349 	vap->va_atime = now;
350 }
351 
352 /*ARGSUSED*/
353 static int
354 zfsctl_common_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
355 {
356 	zfsvfs_t	*zfsvfs = vp->v_vfsp->vfs_data;
357 	zfsctl_node_t	*zcp = vp->v_data;
358 	uint64_t	object = zcp->zc_id;
359 	zfid_short_t	*zfid;
360 	int		i;
361 
362 	ZFS_ENTER(zfsvfs);
363 
364 	if (fidp->fid_len < SHORT_FID_LEN) {
365 		fidp->fid_len = SHORT_FID_LEN;
366 		ZFS_EXIT(zfsvfs);
367 		return (SET_ERROR(ENOSPC));
368 	}
369 
370 	zfid = (zfid_short_t *)fidp;
371 
372 	zfid->zf_len = SHORT_FID_LEN;
373 
374 	for (i = 0; i < sizeof (zfid->zf_object); i++)
375 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
376 
377 	/* .zfs znodes always have a generation number of 0 */
378 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
379 		zfid->zf_gen[i] = 0;
380 
381 	ZFS_EXIT(zfsvfs);
382 	return (0);
383 }
384 
385 
386 /*ARGSUSED*/
387 static int
388 zfsctl_shares_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
389 {
390 	zfsvfs_t	*zfsvfs = vp->v_vfsp->vfs_data;
391 	znode_t		*dzp;
392 	int		error;
393 
394 	ZFS_ENTER(zfsvfs);
395 
396 	if (zfsvfs->z_shares_dir == 0) {
397 		ZFS_EXIT(zfsvfs);
398 		return (SET_ERROR(ENOTSUP));
399 	}
400 
401 	if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) {
402 		error = VOP_FID(ZTOV(dzp), fidp, ct);
403 		VN_RELE(ZTOV(dzp));
404 	}
405 
406 	ZFS_EXIT(zfsvfs);
407 	return (error);
408 }
409 /*
410  * .zfs inode namespace
411  *
412  * We need to generate unique inode numbers for all files and directories
413  * within the .zfs pseudo-filesystem.  We use the following scheme:
414  *
415  * 	ENTRY			ZFSCTL_INODE
416  * 	.zfs			1
417  * 	.zfs/snapshot		2
418  * 	.zfs/snapshot/<snap>	objectid(snap)
419  */
420 
421 #define	ZFSCTL_INO_SNAP(id)	(id)
422 
423 /*
424  * Get root directory attributes.
425  */
426 /* ARGSUSED */
427 static int
428 zfsctl_root_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
429     caller_context_t *ct)
430 {
431 	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
432 	zfsctl_node_t *zcp = vp->v_data;
433 
434 	ZFS_ENTER(zfsvfs);
435 	vap->va_nodeid = ZFSCTL_INO_ROOT;
436 	vap->va_nlink = vap->va_size = NROOT_ENTRIES;
437 	vap->va_mtime = vap->va_ctime = zcp->zc_cmtime;
438 
439 	zfsctl_common_getattr(vp, vap);
440 	ZFS_EXIT(zfsvfs);
441 
442 	return (0);
443 }
444 
445 /*
446  * Special case the handling of "..".
447  */
448 /* ARGSUSED */
449 int
450 zfsctl_root_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp,
451     int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
452     int *direntflags, pathname_t *realpnp)
453 {
454 	zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
455 	int err;
456 
457 	/*
458 	 * No extended attributes allowed under .zfs
459 	 */
460 	if (flags & LOOKUP_XATTR)
461 		return (SET_ERROR(EINVAL));
462 
463 	ZFS_ENTER(zfsvfs);
464 
465 	if (strcmp(nm, "..") == 0) {
466 		err = VFS_ROOT(dvp->v_vfsp, vpp);
467 	} else {
468 		err = gfs_vop_lookup(dvp, nm, vpp, pnp, flags, rdir,
469 		    cr, ct, direntflags, realpnp);
470 	}
471 
472 	ZFS_EXIT(zfsvfs);
473 
474 	return (err);
475 }
476 
477 static int
478 zfsctl_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
479     caller_context_t *ct)
480 {
481 	/*
482 	 * We only care about ACL_ENABLED so that libsec can
483 	 * display ACL correctly and not default to POSIX draft.
484 	 */
485 	if (cmd == _PC_ACL_ENABLED) {
486 		*valp = _ACL_ACE_ENABLED;
487 		return (0);
488 	}
489 
490 	return (fs_pathconf(vp, cmd, valp, cr, ct));
491 }
492 
493 static const fs_operation_def_t zfsctl_tops_root[] = {
494 	{ VOPNAME_OPEN,		{ .vop_open = zfsctl_common_open }	},
495 	{ VOPNAME_CLOSE,	{ .vop_close = zfsctl_common_close }	},
496 	{ VOPNAME_IOCTL,	{ .error = fs_inval }			},
497 	{ VOPNAME_GETATTR,	{ .vop_getattr = zfsctl_root_getattr }	},
498 	{ VOPNAME_ACCESS,	{ .vop_access = zfsctl_common_access }	},
499 	{ VOPNAME_READDIR,	{ .vop_readdir = gfs_vop_readdir } 	},
500 	{ VOPNAME_LOOKUP,	{ .vop_lookup = zfsctl_root_lookup }	},
501 	{ VOPNAME_SEEK,		{ .vop_seek = fs_seek }			},
502 	{ VOPNAME_INACTIVE,	{ .vop_inactive = gfs_vop_inactive }	},
503 	{ VOPNAME_PATHCONF,	{ .vop_pathconf = zfsctl_pathconf }	},
504 	{ VOPNAME_FID,		{ .vop_fid = zfsctl_common_fid	}	},
505 	{ NULL }
506 };
507 
508 /*
509  * Gets the full dataset name that corresponds to the given snapshot name
510  * Example:
511  * 	zfsctl_snapshot_zname("snap1") -> "mypool/myfs@snap1"
512  */
513 static int
514 zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname)
515 {
516 	objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os;
517 
518 	if (zfs_component_namecheck(name, NULL, NULL) != 0)
519 		return (SET_ERROR(EILSEQ));
520 	dmu_objset_name(os, zname);
521 	if (strlen(zname) + 1 + strlen(name) >= len)
522 		return (SET_ERROR(ENAMETOOLONG));
523 	(void) strcat(zname, "@");
524 	(void) strcat(zname, name);
525 	return (0);
526 }
527 
528 static int
529 zfsctl_unmount_snap(zfs_snapentry_t *sep, int fflags, cred_t *cr)
530 {
531 	vnode_t *svp = sep->se_root;
532 	int error;
533 
534 	ASSERT(vn_ismntpt(svp));
535 
536 	/* this will be dropped by dounmount() */
537 	if ((error = vn_vfswlock(svp)) != 0)
538 		return (error);
539 
540 	VN_HOLD(svp);
541 	error = dounmount(vn_mountedvfs(svp), fflags, cr);
542 	if (error) {
543 		VN_RELE(svp);
544 		return (error);
545 	}
546 
547 	/*
548 	 * We can't use VN_RELE(), as that will try to invoke
549 	 * zfsctl_snapdir_inactive(), which would cause us to destroy
550 	 * the sd_lock mutex held by our caller.
551 	 */
552 	ASSERT(svp->v_count == 1);
553 	gfs_vop_inactive(svp, cr, NULL);
554 
555 	kmem_free(sep->se_name, strlen(sep->se_name) + 1);
556 	kmem_free(sep, sizeof (zfs_snapentry_t));
557 
558 	return (0);
559 }
560 
561 static void
562 zfsctl_rename_snap(zfsctl_snapdir_t *sdp, zfs_snapentry_t *sep, const char *nm)
563 {
564 	avl_index_t where;
565 	vfs_t *vfsp;
566 	refstr_t *pathref;
567 	char newpath[MAXNAMELEN];
568 	char *tail;
569 
570 	ASSERT(MUTEX_HELD(&sdp->sd_lock));
571 	ASSERT(sep != NULL);
572 
573 	vfsp = vn_mountedvfs(sep->se_root);
574 	ASSERT(vfsp != NULL);
575 
576 	vfs_lock_wait(vfsp);
577 
578 	/*
579 	 * Change the name in the AVL tree.
580 	 */
581 	avl_remove(&sdp->sd_snaps, sep);
582 	kmem_free(sep->se_name, strlen(sep->se_name) + 1);
583 	sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP);
584 	(void) strcpy(sep->se_name, nm);
585 	VERIFY(avl_find(&sdp->sd_snaps, sep, &where) == NULL);
586 	avl_insert(&sdp->sd_snaps, sep, where);
587 
588 	/*
589 	 * Change the current mountpoint info:
590 	 * 	- update the tail of the mntpoint path
591 	 *	- update the tail of the resource path
592 	 */
593 	pathref = vfs_getmntpoint(vfsp);
594 	(void) strncpy(newpath, refstr_value(pathref), sizeof (newpath));
595 	VERIFY((tail = strrchr(newpath, '/')) != NULL);
596 	*(tail+1) = '\0';
597 	ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath));
598 	(void) strcat(newpath, nm);
599 	refstr_rele(pathref);
600 	vfs_setmntpoint(vfsp, newpath, 0);
601 
602 	pathref = vfs_getresource(vfsp);
603 	(void) strncpy(newpath, refstr_value(pathref), sizeof (newpath));
604 	VERIFY((tail = strrchr(newpath, '@')) != NULL);
605 	*(tail+1) = '\0';
606 	ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath));
607 	(void) strcat(newpath, nm);
608 	refstr_rele(pathref);
609 	vfs_setresource(vfsp, newpath, 0);
610 
611 	vfs_unlock(vfsp);
612 }
613 
614 /*ARGSUSED*/
615 static int
616 zfsctl_snapdir_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm,
617     cred_t *cr, caller_context_t *ct, int flags)
618 {
619 	zfsctl_snapdir_t *sdp = sdvp->v_data;
620 	zfs_snapentry_t search, *sep;
621 	zfsvfs_t *zfsvfs;
622 	avl_index_t where;
623 	char from[MAXNAMELEN], to[MAXNAMELEN];
624 	char real[MAXNAMELEN], fsname[MAXNAMELEN];
625 	int err;
626 
627 	zfsvfs = sdvp->v_vfsp->vfs_data;
628 	ZFS_ENTER(zfsvfs);
629 
630 	if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
631 		err = dmu_snapshot_realname(zfsvfs->z_os, snm, real,
632 		    MAXNAMELEN, NULL);
633 		if (err == 0) {
634 			snm = real;
635 		} else if (err != ENOTSUP) {
636 			ZFS_EXIT(zfsvfs);
637 			return (err);
638 		}
639 	}
640 
641 	ZFS_EXIT(zfsvfs);
642 
643 	dmu_objset_name(zfsvfs->z_os, fsname);
644 
645 	err = zfsctl_snapshot_zname(sdvp, snm, MAXNAMELEN, from);
646 	if (err == 0)
647 		err = zfsctl_snapshot_zname(tdvp, tnm, MAXNAMELEN, to);
648 	if (err == 0)
649 		err = zfs_secpolicy_rename_perms(from, to, cr);
650 	if (err != 0)
651 		return (err);
652 
653 	/*
654 	 * Cannot move snapshots out of the snapdir.
655 	 */
656 	if (sdvp != tdvp)
657 		return (SET_ERROR(EINVAL));
658 
659 	if (strcmp(snm, tnm) == 0)
660 		return (0);
661 
662 	mutex_enter(&sdp->sd_lock);
663 
664 	search.se_name = (char *)snm;
665 	if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) {
666 		mutex_exit(&sdp->sd_lock);
667 		return (SET_ERROR(ENOENT));
668 	}
669 
670 	err = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE);
671 	if (err == 0)
672 		zfsctl_rename_snap(sdp, sep, tnm);
673 
674 	mutex_exit(&sdp->sd_lock);
675 
676 	return (err);
677 }
678 
679 /* ARGSUSED */
680 static int
681 zfsctl_snapdir_remove(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
682     caller_context_t *ct, int flags)
683 {
684 	zfsctl_snapdir_t *sdp = dvp->v_data;
685 	zfs_snapentry_t *sep;
686 	zfs_snapentry_t search;
687 	zfsvfs_t *zfsvfs;
688 	char snapname[MAXNAMELEN];
689 	char real[MAXNAMELEN];
690 	int err;
691 
692 	zfsvfs = dvp->v_vfsp->vfs_data;
693 	ZFS_ENTER(zfsvfs);
694 
695 	if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
696 
697 		err = dmu_snapshot_realname(zfsvfs->z_os, name, real,
698 		    MAXNAMELEN, NULL);
699 		if (err == 0) {
700 			name = real;
701 		} else if (err != ENOTSUP) {
702 			ZFS_EXIT(zfsvfs);
703 			return (err);
704 		}
705 	}
706 
707 	ZFS_EXIT(zfsvfs);
708 
709 	err = zfsctl_snapshot_zname(dvp, name, MAXNAMELEN, snapname);
710 	if (err == 0)
711 		err = zfs_secpolicy_destroy_perms(snapname, cr);
712 	if (err != 0)
713 		return (err);
714 
715 	mutex_enter(&sdp->sd_lock);
716 
717 	search.se_name = name;
718 	sep = avl_find(&sdp->sd_snaps, &search, NULL);
719 	if (sep) {
720 		avl_remove(&sdp->sd_snaps, sep);
721 		err = zfsctl_unmount_snap(sep, MS_FORCE, cr);
722 		if (err != 0)
723 			avl_add(&sdp->sd_snaps, sep);
724 		else
725 			err = dsl_destroy_snapshot(snapname, B_FALSE);
726 	} else {
727 		err = SET_ERROR(ENOENT);
728 	}
729 
730 	mutex_exit(&sdp->sd_lock);
731 
732 	return (err);
733 }
734 
735 /*
736  * This creates a snapshot under '.zfs/snapshot'.
737  */
738 /* ARGSUSED */
739 static int
740 zfsctl_snapdir_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t  **vpp,
741     cred_t *cr, caller_context_t *cc, int flags, vsecattr_t *vsecp)
742 {
743 	zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
744 	char name[MAXNAMELEN];
745 	int err;
746 	static enum symfollow follow = NO_FOLLOW;
747 	static enum uio_seg seg = UIO_SYSSPACE;
748 
749 	if (zfs_component_namecheck(dirname, NULL, NULL) != 0)
750 		return (SET_ERROR(EILSEQ));
751 
752 	dmu_objset_name(zfsvfs->z_os, name);
753 
754 	*vpp = NULL;
755 
756 	err = zfs_secpolicy_snapshot_perms(name, cr);
757 	if (err != 0)
758 		return (err);
759 
760 	if (err == 0) {
761 		err = dmu_objset_snapshot_one(name, dirname);
762 		if (err != 0)
763 			return (err);
764 		err = lookupnameat(dirname, seg, follow, NULL, vpp, dvp);
765 	}
766 
767 	return (err);
768 }
769 
770 /*
771  * Lookup entry point for the 'snapshot' directory.  Try to open the
772  * snapshot if it exist, creating the pseudo filesystem vnode as necessary.
773  * Perform a mount of the associated dataset on top of the vnode.
774  */
775 /* ARGSUSED */
776 static int
777 zfsctl_snapdir_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp,
778     int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
779     int *direntflags, pathname_t *realpnp)
780 {
781 	zfsctl_snapdir_t *sdp = dvp->v_data;
782 	objset_t *snap;
783 	char snapname[MAXNAMELEN];
784 	char real[MAXNAMELEN];
785 	char *mountpoint;
786 	zfs_snapentry_t *sep, search;
787 	struct mounta margs;
788 	vfs_t *vfsp;
789 	size_t mountpoint_len;
790 	avl_index_t where;
791 	zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
792 	int err;
793 
794 	/*
795 	 * No extended attributes allowed under .zfs
796 	 */
797 	if (flags & LOOKUP_XATTR)
798 		return (SET_ERROR(EINVAL));
799 
800 	ASSERT(dvp->v_type == VDIR);
801 
802 	/*
803 	 * If we get a recursive call, that means we got called
804 	 * from the domount() code while it was trying to look up the
805 	 * spec (which looks like a local path for zfs).  We need to
806 	 * add some flag to domount() to tell it not to do this lookup.
807 	 */
808 	if (MUTEX_HELD(&sdp->sd_lock))
809 		return (SET_ERROR(ENOENT));
810 
811 	ZFS_ENTER(zfsvfs);
812 
813 	if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) {
814 		ZFS_EXIT(zfsvfs);
815 		return (0);
816 	}
817 
818 	if (flags & FIGNORECASE) {
819 		boolean_t conflict = B_FALSE;
820 
821 		err = dmu_snapshot_realname(zfsvfs->z_os, nm, real,
822 		    MAXNAMELEN, &conflict);
823 		if (err == 0) {
824 			nm = real;
825 		} else if (err != ENOTSUP) {
826 			ZFS_EXIT(zfsvfs);
827 			return (err);
828 		}
829 		if (realpnp)
830 			(void) strlcpy(realpnp->pn_buf, nm,
831 			    realpnp->pn_bufsize);
832 		if (conflict && direntflags)
833 			*direntflags = ED_CASE_CONFLICT;
834 	}
835 
836 	mutex_enter(&sdp->sd_lock);
837 	search.se_name = (char *)nm;
838 	if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) != NULL) {
839 		*vpp = sep->se_root;
840 		VN_HOLD(*vpp);
841 		err = traverse(vpp);
842 		if (err != 0) {
843 			VN_RELE(*vpp);
844 			*vpp = NULL;
845 		} else if (*vpp == sep->se_root) {
846 			/*
847 			 * The snapshot was unmounted behind our backs,
848 			 * try to remount it.
849 			 */
850 			goto domount;
851 		} else {
852 			/*
853 			 * VROOT was set during the traverse call.  We need
854 			 * to clear it since we're pretending to be part
855 			 * of our parent's vfs.
856 			 */
857 			(*vpp)->v_flag &= ~VROOT;
858 		}
859 		mutex_exit(&sdp->sd_lock);
860 		ZFS_EXIT(zfsvfs);
861 		return (err);
862 	}
863 
864 	/*
865 	 * The requested snapshot is not currently mounted, look it up.
866 	 */
867 	err = zfsctl_snapshot_zname(dvp, nm, MAXNAMELEN, snapname);
868 	if (err != 0) {
869 		mutex_exit(&sdp->sd_lock);
870 		ZFS_EXIT(zfsvfs);
871 		/*
872 		 * handle "ls *" or "?" in a graceful manner,
873 		 * forcing EILSEQ to ENOENT.
874 		 * Since shell ultimately passes "*" or "?" as name to lookup
875 		 */
876 		return (err == EILSEQ ? ENOENT : err);
877 	}
878 	if (dmu_objset_hold(snapname, FTAG, &snap) != 0) {
879 		mutex_exit(&sdp->sd_lock);
880 		ZFS_EXIT(zfsvfs);
881 		return (SET_ERROR(ENOENT));
882 	}
883 
884 	sep = kmem_alloc(sizeof (zfs_snapentry_t), KM_SLEEP);
885 	sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP);
886 	(void) strcpy(sep->se_name, nm);
887 	*vpp = sep->se_root = zfsctl_snapshot_mknode(dvp, dmu_objset_id(snap));
888 	avl_insert(&sdp->sd_snaps, sep, where);
889 
890 	dmu_objset_rele(snap, FTAG);
891 domount:
892 	mountpoint_len = strlen(refstr_value(dvp->v_vfsp->vfs_mntpt)) +
893 	    strlen("/.zfs/snapshot/") + strlen(nm) + 1;
894 	mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP);
895 	(void) snprintf(mountpoint, mountpoint_len, "%s/.zfs/snapshot/%s",
896 	    refstr_value(dvp->v_vfsp->vfs_mntpt), nm);
897 
898 	margs.spec = snapname;
899 	margs.dir = mountpoint;
900 	margs.flags = MS_SYSSPACE | MS_NOMNTTAB;
901 	margs.fstype = "zfs";
902 	margs.dataptr = NULL;
903 	margs.datalen = 0;
904 	margs.optptr = NULL;
905 	margs.optlen = 0;
906 
907 	err = domount("zfs", &margs, *vpp, kcred, &vfsp);
908 	kmem_free(mountpoint, mountpoint_len);
909 
910 	if (err == 0) {
911 		/*
912 		 * Return the mounted root rather than the covered mount point.
913 		 * Takes the GFS vnode at .zfs/snapshot/<snapname> and returns
914 		 * the ZFS vnode mounted on top of the GFS node.  This ZFS
915 		 * vnode is the root of the newly created vfsp.
916 		 */
917 		VFS_RELE(vfsp);
918 		err = traverse(vpp);
919 	}
920 
921 	if (err == 0) {
922 		/*
923 		 * Fix up the root vnode mounted on .zfs/snapshot/<snapname>.
924 		 *
925 		 * This is where we lie about our v_vfsp in order to
926 		 * make .zfs/snapshot/<snapname> accessible over NFS
927 		 * without requiring manual mounts of <snapname>.
928 		 */
929 		ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs);
930 		VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs;
931 		(*vpp)->v_vfsp = zfsvfs->z_vfs;
932 		(*vpp)->v_flag &= ~VROOT;
933 	}
934 	mutex_exit(&sdp->sd_lock);
935 	ZFS_EXIT(zfsvfs);
936 
937 	/*
938 	 * If we had an error, drop our hold on the vnode and
939 	 * zfsctl_snapshot_inactive() will clean up.
940 	 */
941 	if (err != 0) {
942 		VN_RELE(*vpp);
943 		*vpp = NULL;
944 	}
945 	return (err);
946 }
947 
948 /* ARGSUSED */
949 static int
950 zfsctl_shares_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp,
951     int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
952     int *direntflags, pathname_t *realpnp)
953 {
954 	zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
955 	znode_t *dzp;
956 	int error;
957 
958 	ZFS_ENTER(zfsvfs);
959 
960 	if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) {
961 		ZFS_EXIT(zfsvfs);
962 		return (0);
963 	}
964 
965 	if (zfsvfs->z_shares_dir == 0) {
966 		ZFS_EXIT(zfsvfs);
967 		return (SET_ERROR(ENOTSUP));
968 	}
969 	if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0)
970 		error = VOP_LOOKUP(ZTOV(dzp), nm, vpp, pnp,
971 		    flags, rdir, cr, ct, direntflags, realpnp);
972 
973 	VN_RELE(ZTOV(dzp));
974 	ZFS_EXIT(zfsvfs);
975 
976 	return (error);
977 }
978 
979 /* ARGSUSED */
980 static int
981 zfsctl_snapdir_readdir_cb(vnode_t *vp, void *dp, int *eofp,
982     offset_t *offp, offset_t *nextp, void *data, int flags)
983 {
984 	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
985 	char snapname[MAXNAMELEN];
986 	uint64_t id, cookie;
987 	boolean_t case_conflict;
988 	int error;
989 
990 	ZFS_ENTER(zfsvfs);
991 
992 	cookie = *offp;
993 	dsl_pool_config_enter(dmu_objset_pool(zfsvfs->z_os), FTAG);
994 	error = dmu_snapshot_list_next(zfsvfs->z_os, MAXNAMELEN, snapname, &id,
995 	    &cookie, &case_conflict);
996 	dsl_pool_config_exit(dmu_objset_pool(zfsvfs->z_os), FTAG);
997 	if (error) {
998 		ZFS_EXIT(zfsvfs);
999 		if (error == ENOENT) {
1000 			*eofp = 1;
1001 			return (0);
1002 		}
1003 		return (error);
1004 	}
1005 
1006 	if (flags & V_RDDIR_ENTFLAGS) {
1007 		edirent_t *eodp = dp;
1008 
1009 		(void) strcpy(eodp->ed_name, snapname);
1010 		eodp->ed_ino = ZFSCTL_INO_SNAP(id);
1011 		eodp->ed_eflags = case_conflict ? ED_CASE_CONFLICT : 0;
1012 	} else {
1013 		struct dirent64 *odp = dp;
1014 
1015 		(void) strcpy(odp->d_name, snapname);
1016 		odp->d_ino = ZFSCTL_INO_SNAP(id);
1017 	}
1018 	*nextp = cookie;
1019 
1020 	ZFS_EXIT(zfsvfs);
1021 
1022 	return (0);
1023 }
1024 
1025 /* ARGSUSED */
1026 static int
1027 zfsctl_shares_readdir(vnode_t *vp, uio_t *uiop, cred_t *cr, int *eofp,
1028     caller_context_t *ct, int flags)
1029 {
1030 	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
1031 	znode_t *dzp;
1032 	int error;
1033 
1034 	ZFS_ENTER(zfsvfs);
1035 
1036 	if (zfsvfs->z_shares_dir == 0) {
1037 		ZFS_EXIT(zfsvfs);
1038 		return (SET_ERROR(ENOTSUP));
1039 	}
1040 	if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) {
1041 		error = VOP_READDIR(ZTOV(dzp), uiop, cr, eofp, ct, flags);
1042 		VN_RELE(ZTOV(dzp));
1043 	} else {
1044 		*eofp = 1;
1045 		error = SET_ERROR(ENOENT);
1046 	}
1047 
1048 	ZFS_EXIT(zfsvfs);
1049 	return (error);
1050 }
1051 
1052 /*
1053  * pvp is the '.zfs' directory (zfsctl_node_t).
1054  *
1055  * Creates vp, which is '.zfs/snapshot' (zfsctl_snapdir_t).
1056  *
1057  * This function is the callback to create a GFS vnode for '.zfs/snapshot'
1058  * when a lookup is performed on .zfs for "snapshot".
1059  */
1060 vnode_t *
1061 zfsctl_mknode_snapdir(vnode_t *pvp)
1062 {
1063 	vnode_t *vp;
1064 	zfsctl_snapdir_t *sdp;
1065 
1066 	vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp,
1067 	    zfsctl_ops_snapdir, NULL, NULL, MAXNAMELEN,
1068 	    zfsctl_snapdir_readdir_cb, NULL);
1069 	sdp = vp->v_data;
1070 	sdp->sd_node.zc_id = ZFSCTL_INO_SNAPDIR;
1071 	sdp->sd_node.zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime;
1072 	mutex_init(&sdp->sd_lock, NULL, MUTEX_DEFAULT, NULL);
1073 	avl_create(&sdp->sd_snaps, snapentry_compare,
1074 	    sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node));
1075 	return (vp);
1076 }
1077 
1078 vnode_t *
1079 zfsctl_mknode_shares(vnode_t *pvp)
1080 {
1081 	vnode_t *vp;
1082 	zfsctl_node_t *sdp;
1083 
1084 	vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp,
1085 	    zfsctl_ops_shares, NULL, NULL, MAXNAMELEN,
1086 	    NULL, NULL);
1087 	sdp = vp->v_data;
1088 	sdp->zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime;
1089 	return (vp);
1090 
1091 }
1092 
1093 /* ARGSUSED */
1094 static int
1095 zfsctl_shares_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
1096     caller_context_t *ct)
1097 {
1098 	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
1099 	znode_t *dzp;
1100 	int error;
1101 
1102 	ZFS_ENTER(zfsvfs);
1103 	if (zfsvfs->z_shares_dir == 0) {
1104 		ZFS_EXIT(zfsvfs);
1105 		return (SET_ERROR(ENOTSUP));
1106 	}
1107 	if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) {
1108 		error = VOP_GETATTR(ZTOV(dzp), vap, flags, cr, ct);
1109 		VN_RELE(ZTOV(dzp));
1110 	}
1111 	ZFS_EXIT(zfsvfs);
1112 	return (error);
1113 
1114 
1115 }
1116 
1117 /* ARGSUSED */
1118 static int
1119 zfsctl_snapdir_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
1120     caller_context_t *ct)
1121 {
1122 	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
1123 	zfsctl_snapdir_t *sdp = vp->v_data;
1124 
1125 	ZFS_ENTER(zfsvfs);
1126 	zfsctl_common_getattr(vp, vap);
1127 	vap->va_nodeid = gfs_file_inode(vp);
1128 	vap->va_nlink = vap->va_size = avl_numnodes(&sdp->sd_snaps) + 2;
1129 	vap->va_ctime = vap->va_mtime = dmu_objset_snap_cmtime(zfsvfs->z_os);
1130 	ZFS_EXIT(zfsvfs);
1131 
1132 	return (0);
1133 }
1134 
1135 /* ARGSUSED */
1136 static void
1137 zfsctl_snapdir_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1138 {
1139 	zfsctl_snapdir_t *sdp = vp->v_data;
1140 	void *private;
1141 
1142 	private = gfs_dir_inactive(vp);
1143 	if (private != NULL) {
1144 		ASSERT(avl_numnodes(&sdp->sd_snaps) == 0);
1145 		mutex_destroy(&sdp->sd_lock);
1146 		avl_destroy(&sdp->sd_snaps);
1147 		kmem_free(private, sizeof (zfsctl_snapdir_t));
1148 	}
1149 }
1150 
1151 static const fs_operation_def_t zfsctl_tops_snapdir[] = {
1152 	{ VOPNAME_OPEN,		{ .vop_open = zfsctl_common_open }	},
1153 	{ VOPNAME_CLOSE,	{ .vop_close = zfsctl_common_close }	},
1154 	{ VOPNAME_IOCTL,	{ .error = fs_inval }			},
1155 	{ VOPNAME_GETATTR,	{ .vop_getattr = zfsctl_snapdir_getattr } },
1156 	{ VOPNAME_ACCESS,	{ .vop_access = zfsctl_common_access }	},
1157 	{ VOPNAME_RENAME,	{ .vop_rename = zfsctl_snapdir_rename }	},
1158 	{ VOPNAME_RMDIR,	{ .vop_rmdir = zfsctl_snapdir_remove }	},
1159 	{ VOPNAME_MKDIR,	{ .vop_mkdir = zfsctl_snapdir_mkdir }	},
1160 	{ VOPNAME_READDIR,	{ .vop_readdir = gfs_vop_readdir }	},
1161 	{ VOPNAME_LOOKUP,	{ .vop_lookup = zfsctl_snapdir_lookup }	},
1162 	{ VOPNAME_SEEK,		{ .vop_seek = fs_seek }			},
1163 	{ VOPNAME_INACTIVE,	{ .vop_inactive = zfsctl_snapdir_inactive } },
1164 	{ VOPNAME_FID,		{ .vop_fid = zfsctl_common_fid }	},
1165 	{ NULL }
1166 };
1167 
1168 static const fs_operation_def_t zfsctl_tops_shares[] = {
1169 	{ VOPNAME_OPEN,		{ .vop_open = zfsctl_common_open }	},
1170 	{ VOPNAME_CLOSE,	{ .vop_close = zfsctl_common_close }	},
1171 	{ VOPNAME_IOCTL,	{ .error = fs_inval }			},
1172 	{ VOPNAME_GETATTR,	{ .vop_getattr = zfsctl_shares_getattr } },
1173 	{ VOPNAME_ACCESS,	{ .vop_access = zfsctl_common_access }	},
1174 	{ VOPNAME_READDIR,	{ .vop_readdir = zfsctl_shares_readdir } },
1175 	{ VOPNAME_LOOKUP,	{ .vop_lookup = zfsctl_shares_lookup }	},
1176 	{ VOPNAME_SEEK,		{ .vop_seek = fs_seek }			},
1177 	{ VOPNAME_INACTIVE,	{ .vop_inactive = gfs_vop_inactive } },
1178 	{ VOPNAME_FID,		{ .vop_fid = zfsctl_shares_fid } },
1179 	{ NULL }
1180 };
1181 
1182 /*
1183  * pvp is the GFS vnode '.zfs/snapshot'.
1184  *
1185  * This creates a GFS node under '.zfs/snapshot' representing each
1186  * snapshot.  This newly created GFS node is what we mount snapshot
1187  * vfs_t's ontop of.
1188  */
1189 static vnode_t *
1190 zfsctl_snapshot_mknode(vnode_t *pvp, uint64_t objset)
1191 {
1192 	vnode_t *vp;
1193 	zfsctl_node_t *zcp;
1194 
1195 	vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp,
1196 	    zfsctl_ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL);
1197 	zcp = vp->v_data;
1198 	zcp->zc_id = objset;
1199 
1200 	return (vp);
1201 }
1202 
1203 static void
1204 zfsctl_snapshot_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1205 {
1206 	zfsctl_snapdir_t *sdp;
1207 	zfs_snapentry_t *sep, *next;
1208 	vnode_t *dvp;
1209 
1210 	VERIFY(gfs_dir_lookup(vp, "..", &dvp, cr, 0, NULL, NULL) == 0);
1211 	sdp = dvp->v_data;
1212 
1213 	mutex_enter(&sdp->sd_lock);
1214 
1215 	if (vp->v_count > 1) {
1216 		mutex_exit(&sdp->sd_lock);
1217 		return;
1218 	}
1219 	ASSERT(!vn_ismntpt(vp));
1220 
1221 	sep = avl_first(&sdp->sd_snaps);
1222 	while (sep != NULL) {
1223 		next = AVL_NEXT(&sdp->sd_snaps, sep);
1224 
1225 		if (sep->se_root == vp) {
1226 			avl_remove(&sdp->sd_snaps, sep);
1227 			kmem_free(sep->se_name, strlen(sep->se_name) + 1);
1228 			kmem_free(sep, sizeof (zfs_snapentry_t));
1229 			break;
1230 		}
1231 		sep = next;
1232 	}
1233 	ASSERT(sep != NULL);
1234 
1235 	mutex_exit(&sdp->sd_lock);
1236 	VN_RELE(dvp);
1237 
1238 	/*
1239 	 * Dispose of the vnode for the snapshot mount point.
1240 	 * This is safe to do because once this entry has been removed
1241 	 * from the AVL tree, it can't be found again, so cannot become
1242 	 * "active".  If we lookup the same name again we will end up
1243 	 * creating a new vnode.
1244 	 */
1245 	gfs_vop_inactive(vp, cr, ct);
1246 }
1247 
1248 
1249 /*
1250  * These VP's should never see the light of day.  They should always
1251  * be covered.
1252  */
1253 static const fs_operation_def_t zfsctl_tops_snapshot[] = {
1254 	VOPNAME_INACTIVE, { .vop_inactive =  zfsctl_snapshot_inactive },
1255 	NULL, NULL
1256 };
1257 
1258 int
1259 zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp)
1260 {
1261 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1262 	vnode_t *dvp, *vp;
1263 	zfsctl_snapdir_t *sdp;
1264 	zfsctl_node_t *zcp;
1265 	zfs_snapentry_t *sep;
1266 	int error;
1267 
1268 	ASSERT(zfsvfs->z_ctldir != NULL);
1269 	error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp,
1270 	    NULL, 0, NULL, kcred, NULL, NULL, NULL);
1271 	if (error != 0)
1272 		return (error);
1273 	sdp = dvp->v_data;
1274 
1275 	mutex_enter(&sdp->sd_lock);
1276 	sep = avl_first(&sdp->sd_snaps);
1277 	while (sep != NULL) {
1278 		vp = sep->se_root;
1279 		zcp = vp->v_data;
1280 		if (zcp->zc_id == objsetid)
1281 			break;
1282 
1283 		sep = AVL_NEXT(&sdp->sd_snaps, sep);
1284 	}
1285 
1286 	if (sep != NULL) {
1287 		VN_HOLD(vp);
1288 		/*
1289 		 * Return the mounted root rather than the covered mount point.
1290 		 * Takes the GFS vnode at .zfs/snapshot/<snapshot objsetid>
1291 		 * and returns the ZFS vnode mounted on top of the GFS node.
1292 		 * This ZFS vnode is the root of the vfs for objset 'objsetid'.
1293 		 */
1294 		error = traverse(&vp);
1295 		if (error == 0) {
1296 			if (vp == sep->se_root)
1297 				error = SET_ERROR(EINVAL);
1298 			else
1299 				*zfsvfsp = VTOZ(vp)->z_zfsvfs;
1300 		}
1301 		mutex_exit(&sdp->sd_lock);
1302 		VN_RELE(vp);
1303 	} else {
1304 		error = SET_ERROR(EINVAL);
1305 		mutex_exit(&sdp->sd_lock);
1306 	}
1307 
1308 	VN_RELE(dvp);
1309 
1310 	return (error);
1311 }
1312 
1313 /*
1314  * Unmount any snapshots for the given filesystem.  This is called from
1315  * zfs_umount() - if we have a ctldir, then go through and unmount all the
1316  * snapshots.
1317  */
1318 int
1319 zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr)
1320 {
1321 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1322 	vnode_t *dvp;
1323 	zfsctl_snapdir_t *sdp;
1324 	zfs_snapentry_t *sep, *next;
1325 	int error;
1326 
1327 	ASSERT(zfsvfs->z_ctldir != NULL);
1328 	error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp,
1329 	    NULL, 0, NULL, cr, NULL, NULL, NULL);
1330 	if (error != 0)
1331 		return (error);
1332 	sdp = dvp->v_data;
1333 
1334 	mutex_enter(&sdp->sd_lock);
1335 
1336 	sep = avl_first(&sdp->sd_snaps);
1337 	while (sep != NULL) {
1338 		next = AVL_NEXT(&sdp->sd_snaps, sep);
1339 
1340 		/*
1341 		 * If this snapshot is not mounted, then it must
1342 		 * have just been unmounted by somebody else, and
1343 		 * will be cleaned up by zfsctl_snapdir_inactive().
1344 		 */
1345 		if (vn_ismntpt(sep->se_root)) {
1346 			avl_remove(&sdp->sd_snaps, sep);
1347 			error = zfsctl_unmount_snap(sep, fflags, cr);
1348 			if (error) {
1349 				avl_add(&sdp->sd_snaps, sep);
1350 				break;
1351 			}
1352 		}
1353 		sep = next;
1354 	}
1355 
1356 	mutex_exit(&sdp->sd_lock);
1357 	VN_RELE(dvp);
1358 
1359 	return (error);
1360 }
1361