1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * ZFS control directory (a.k.a. ".zfs") 31 * 32 * This directory provides a common location for all ZFS meta-objects. 33 * Currently, this is only the 'snapshot' directory, but this may expand in the 34 * future. The elements are built using the GFS primitives, as the hierarchy 35 * does not actually exist on disk. 36 * 37 * For 'snapshot', we don't want to have all snapshots always mounted, because 38 * this would take up a huge amount of space in /etc/mnttab. We have three 39 * types of objects: 40 * 41 * ctldir ------> snapshotdir -------> snapshot 42 * | 43 * | 44 * V 45 * mounted fs 46 * 47 * The 'snapshot' node contains just enough information to lookup '..' and act 48 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we 49 * perform an automount of the underlying filesystem and return the 50 * corresponding vnode. 51 * 52 * All mounts are handled automatically by the kernel, but unmounts are 53 * (currently) handled from user land. The main reason is that there is no 54 * reliable way to auto-unmount the filesystem when it's "no longer in use". 55 * When the user unmounts a filesystem, we call zfsctl_unmount(), which 56 * unmounts any snapshots within the snapshot directory. 57 */ 58 59 #include <fs/fs_subr.h> 60 #include <sys/zfs_ctldir.h> 61 #include <sys/zfs_ioctl.h> 62 #include <sys/zfs_vfsops.h> 63 #include <sys/gfs.h> 64 #include <sys/stat.h> 65 #include <sys/dmu.h> 66 #include <sys/mount.h> 67 68 typedef struct { 69 char *se_name; 70 vnode_t *se_root; 71 avl_node_t se_node; 72 } zfs_snapentry_t; 73 74 static int 75 snapentry_compare(const void *a, const void *b) 76 { 77 const zfs_snapentry_t *sa = a; 78 const zfs_snapentry_t *sb = b; 79 int ret = strcmp(sa->se_name, sb->se_name); 80 81 if (ret < 0) 82 return (-1); 83 else if (ret > 0) 84 return (1); 85 else 86 return (0); 87 } 88 89 vnodeops_t *zfsctl_ops_root; 90 vnodeops_t *zfsctl_ops_snapdir; 91 vnodeops_t *zfsctl_ops_snapshot; 92 93 static const fs_operation_def_t zfsctl_tops_root[]; 94 static const fs_operation_def_t zfsctl_tops_snapdir[]; 95 static const fs_operation_def_t zfsctl_tops_snapshot[]; 96 97 static vnode_t *zfsctl_mknode_snapdir(vnode_t *); 98 static vnode_t *zfsctl_snapshot_mknode(vnode_t *, uint64_t objset); 99 100 static gfs_opsvec_t zfsctl_opsvec[] = { 101 { ".zfs", zfsctl_tops_root, &zfsctl_ops_root }, 102 { ".zfs/snapshot", zfsctl_tops_snapdir, &zfsctl_ops_snapdir }, 103 { ".zfs/snapshot/vnode", zfsctl_tops_snapshot, &zfsctl_ops_snapshot }, 104 { NULL } 105 }; 106 107 typedef struct zfsctl_node { 108 gfs_dir_t zc_gfs_private; 109 uint64_t zc_id; 110 } zfsctl_node_t; 111 112 typedef struct zfsctl_snapdir { 113 zfsctl_node_t sd_node; 114 kmutex_t sd_lock; 115 avl_tree_t sd_snaps; 116 } zfsctl_snapdir_t; 117 118 /* 119 * Root directory elements. We have only a single static entry, 'snapshot'. 120 */ 121 static gfs_dirent_t zfsctl_root_entries[] = { 122 { "snapshot", zfsctl_mknode_snapdir, GFS_CACHE_VNODE }, 123 { NULL } 124 }; 125 126 /* include . and .. in the calculation */ 127 #define NROOT_ENTRIES ((sizeof (zfsctl_root_entries) / \ 128 sizeof (gfs_dirent_t)) + 1) 129 130 131 /* 132 * Initialize the various GFS pieces we'll need to create and manipulate .zfs 133 * directories. This is called from the ZFS init routine, and initializes the 134 * vnode ops vectors that we'll be using. 135 */ 136 void 137 zfsctl_init(void) 138 { 139 VERIFY(gfs_make_opsvec(zfsctl_opsvec) == 0); 140 } 141 142 void 143 zfsctl_fini(void) 144 { 145 /* 146 * Remove vfsctl vnode ops 147 */ 148 if (zfsctl_ops_root) 149 vn_freevnodeops(zfsctl_ops_root); 150 if (zfsctl_ops_snapdir) 151 vn_freevnodeops(zfsctl_ops_snapdir); 152 if (zfsctl_ops_snapshot) 153 vn_freevnodeops(zfsctl_ops_snapshot); 154 155 zfsctl_ops_root = NULL; 156 zfsctl_ops_snapdir = NULL; 157 zfsctl_ops_snapshot = NULL; 158 } 159 160 /* 161 * Return the inode number associated with the 'snapshot' directory. 162 */ 163 /* ARGSUSED */ 164 static ino64_t 165 zfsctl_root_inode_cb(vnode_t *vp, int index) 166 { 167 ASSERT(index == 0); 168 return (ZFSCTL_INO_SNAPDIR); 169 } 170 171 /* 172 * Create the '.zfs' directory. This directory is cached as part of the VFS 173 * structure. This results in a hold on the vfs_t. The code in zfs_umount() 174 * therefore checks against a vfs_count of 2 instead of 1. This reference 175 * is removed when the ctldir is destroyed in the unmount. 176 */ 177 void 178 zfsctl_create(zfsvfs_t *zfsvfs) 179 { 180 vnode_t *vp; 181 zfsctl_node_t *zcp; 182 183 ASSERT(zfsvfs->z_ctldir == NULL); 184 185 vp = gfs_root_create(sizeof (zfsctl_node_t), zfsvfs->z_vfs, 186 zfsctl_ops_root, ZFSCTL_INO_ROOT, zfsctl_root_entries, 187 zfsctl_root_inode_cb, MAXNAMELEN, NULL, NULL); 188 zcp = vp->v_data; 189 zcp->zc_id = ZFSCTL_INO_ROOT; 190 191 /* 192 * We're only faking the fact that we have a root of a filesystem for 193 * the sake of the GFS interfaces. Undo the flag manipulation it did 194 * for us. 195 */ 196 vp->v_flag &= ~(VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT); 197 198 zfsvfs->z_ctldir = vp; 199 } 200 201 /* 202 * Destroy the '.zfs' directory. Only called when the filesystem is 203 * unmounted, and there are no more references. Release the vnode, 204 * which will release the hold on the vfs structure. 205 */ 206 void 207 zfsctl_destroy(zfsvfs_t *zfsvfs) 208 { 209 ASSERT(zfsvfs->z_ctldir->v_count == 1); 210 VN_RELE(zfsvfs->z_ctldir); 211 zfsvfs->z_ctldir = NULL; 212 } 213 214 /* 215 * Given a root znode, retrieve the associated .zfs directory. 216 * Add a hold to the vnode and return it. 217 */ 218 vnode_t * 219 zfsctl_root(znode_t *zp) 220 { 221 ASSERT(zfs_has_ctldir(zp)); 222 VN_HOLD(zp->z_zfsvfs->z_ctldir); 223 return (zp->z_zfsvfs->z_ctldir); 224 } 225 226 /* 227 * Common open routine. Disallow any write access. 228 */ 229 /* ARGSUSED */ 230 static int 231 zfsctl_common_open(vnode_t **vpp, int flags, cred_t *cr) 232 { 233 if (flags & FWRITE) 234 return (EACCES); 235 236 return (0); 237 } 238 239 /* 240 * Common close routine. Nothing to do here. 241 */ 242 /* ARGSUSED */ 243 static int 244 zfsctl_common_close(vnode_t *vpp, int flags, int count, offset_t off, 245 cred_t *cr) 246 { 247 return (0); 248 } 249 250 /* 251 * Common access routine. Disallow writes. 252 */ 253 /* ARGSUSED */ 254 static int 255 zfsctl_common_access(vnode_t *vp, int mode, int flags, cred_t *cr) 256 { 257 if (mode & VWRITE) 258 return (EACCES); 259 260 return (0); 261 } 262 263 /* 264 * Common getattr function. Fill in basic information. 265 */ 266 static void 267 zfsctl_common_getattr(vnode_t *vp, vattr_t *vap) 268 { 269 timestruc_t now; 270 271 vap->va_uid = 0; 272 vap->va_gid = 0; 273 vap->va_rdev = 0; 274 /* 275 * We are a purly virtual object, so we have no 276 * blocksize or allocated blocks. 277 */ 278 vap->va_blksize = 0; 279 vap->va_nblocks = 0; 280 vap->va_seq = 0; 281 vap->va_fsid = vp->v_vfsp->vfs_dev; 282 vap->va_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | 283 S_IROTH | S_IXOTH; 284 vap->va_type = VDIR; 285 /* 286 * We live in the now. 287 */ 288 gethrestime(&now); 289 vap->va_mtime = vap->va_ctime = vap->va_atime = now; 290 } 291 292 static int 293 zfsctl_common_fid(vnode_t *vp, fid_t *fidp) 294 { 295 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 296 zfsctl_node_t *zcp = vp->v_data; 297 uint64_t object = zcp->zc_id; 298 zfid_short_t *zfid; 299 int i; 300 301 ZFS_ENTER(zfsvfs); 302 303 if (fidp->fid_len < SHORT_FID_LEN) { 304 fidp->fid_len = SHORT_FID_LEN; 305 return (ENOSPC); 306 } 307 308 zfid = (zfid_short_t *)fidp; 309 310 zfid->zf_len = SHORT_FID_LEN; 311 312 for (i = 0; i < sizeof (zfid->zf_object); i++) 313 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 314 315 /* .zfs znodes always have a generation number of 0 */ 316 for (i = 0; i < sizeof (zfid->zf_gen); i++) 317 zfid->zf_gen[i] = 0; 318 319 ZFS_EXIT(zfsvfs); 320 return (0); 321 } 322 323 /* 324 * .zfs inode namespace 325 * 326 * We need to generate unique inode numbers for all files and directories 327 * within the .zfs pseudo-filesystem. We use the following scheme: 328 * 329 * ENTRY ZFSCTL_INODE 330 * .zfs 1 331 * .zfs/snapshot 2 332 * .zfs/snapshot/<snap> objectid(snap) 333 */ 334 335 #define ZFSCTL_INO_SNAP(id) (id) 336 337 /* 338 * Get root directory attributes. 339 */ 340 /* ARGSUSED */ 341 static int 342 zfsctl_root_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) 343 { 344 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 345 346 ZFS_ENTER(zfsvfs); 347 vap->va_nodeid = ZFSCTL_INO_ROOT; 348 vap->va_nlink = vap->va_size = NROOT_ENTRIES; 349 350 zfsctl_common_getattr(vp, vap); 351 ZFS_EXIT(zfsvfs); 352 353 return (0); 354 } 355 356 /* 357 * Special case the handling of "..". 358 */ 359 /* ARGSUSED */ 360 int 361 zfsctl_root_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 362 int flags, vnode_t *rdir, cred_t *cr) 363 { 364 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 365 int err; 366 367 ZFS_ENTER(zfsvfs); 368 369 if (strcmp(nm, "..") == 0) { 370 err = VFS_ROOT(dvp->v_vfsp, vpp); 371 } else { 372 err = gfs_dir_lookup(dvp, nm, vpp); 373 } 374 375 ZFS_EXIT(zfsvfs); 376 377 return (err); 378 } 379 380 static const fs_operation_def_t zfsctl_tops_root[] = { 381 { VOPNAME_OPEN, zfsctl_common_open }, 382 { VOPNAME_CLOSE, zfsctl_common_close }, 383 { VOPNAME_IOCTL, fs_inval }, 384 { VOPNAME_GETATTR, zfsctl_root_getattr }, 385 { VOPNAME_ACCESS, zfsctl_common_access }, 386 { VOPNAME_READDIR, gfs_vop_readdir }, 387 { VOPNAME_LOOKUP, zfsctl_root_lookup }, 388 { VOPNAME_SEEK, fs_seek }, 389 { VOPNAME_INACTIVE, (fs_generic_func_p) gfs_vop_inactive }, 390 { VOPNAME_FID, zfsctl_common_fid }, 391 { NULL } 392 }; 393 394 static int 395 zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname) 396 { 397 objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os; 398 399 dmu_objset_name(os, zname); 400 (void) strcat(zname, "@"); 401 if (strlen(zname) + strlen(name) >= len) 402 return (ENAMETOOLONG); 403 (void) strcat(zname, name); 404 return (0); 405 } 406 407 static int 408 zfsctl_unmount_snap(vnode_t *dvp, const char *name, int force, cred_t *cr) 409 { 410 zfsctl_snapdir_t *sdp = dvp->v_data; 411 zfs_snapentry_t search, *sep; 412 avl_index_t where; 413 int err; 414 415 ASSERT(MUTEX_HELD(&sdp->sd_lock)); 416 417 search.se_name = (char *)name; 418 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) 419 return (ENOENT); 420 421 ASSERT(vn_ismntpt(sep->se_root)); 422 423 /* this will be dropped by dounmount() */ 424 if ((err = vn_vfswlock(sep->se_root)) != 0) 425 return (err); 426 427 VN_HOLD(sep->se_root); 428 if ((err = dounmount(vn_mountedvfs(sep->se_root), force, kcred)) != 0) 429 return (err); 430 ASSERT(sep->se_root->v_count == 1); 431 gfs_vop_inactive(sep->se_root, cr); 432 433 avl_remove(&sdp->sd_snaps, sep); 434 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 435 kmem_free(sep, sizeof (zfs_snapentry_t)); 436 437 return (0); 438 } 439 440 441 static int 442 zfsctl_rename_snap(zfsctl_snapdir_t *sdp, zfs_snapentry_t *sep, const char *nm) 443 { 444 avl_index_t where; 445 vfs_t *vfsp; 446 refstr_t *pathref; 447 char newpath[MAXNAMELEN]; 448 const char *oldpath; 449 char *tail; 450 int err; 451 452 ASSERT(MUTEX_HELD(&sdp->sd_lock)); 453 ASSERT(sep != NULL); 454 455 vfsp = vn_mountedvfs(sep->se_root); 456 ASSERT(vfsp != NULL); 457 458 if (err = vfs_lock(vfsp)) 459 return (err); 460 461 /* 462 * Change the name in the AVL tree. 463 */ 464 avl_remove(&sdp->sd_snaps, sep); 465 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 466 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 467 (void) strcpy(sep->se_name, nm); 468 VERIFY(avl_find(&sdp->sd_snaps, sep, &where) == NULL); 469 avl_insert(&sdp->sd_snaps, sep, where); 470 471 /* 472 * Change the current mountpoint info: 473 * - update the tail of the mntpoint path 474 * - update the tail of the resource path 475 */ 476 pathref = vfs_getmntpoint(vfsp); 477 oldpath = refstr_value(pathref); 478 VERIFY((tail = strrchr(oldpath, '/')) != NULL); 479 ASSERT((tail - oldpath) + strlen(nm) + 2 < MAXNAMELEN); 480 (void) strncpy(newpath, oldpath, tail - oldpath + 1); 481 (void) strcat(newpath, nm); 482 refstr_rele(pathref); 483 vfs_setmntpoint(vfsp, newpath); 484 485 pathref = vfs_getresource(vfsp); 486 oldpath = refstr_value(pathref); 487 VERIFY((tail = strrchr(oldpath, '@')) != NULL); 488 ASSERT((tail - oldpath) + strlen(nm) + 2 < MAXNAMELEN); 489 (void) strncpy(newpath, oldpath, tail - oldpath + 1); 490 (void) strcat(newpath, nm); 491 refstr_rele(pathref); 492 vfs_setresource(vfsp, newpath); 493 494 vfs_unlock(vfsp); 495 return (0); 496 } 497 498 static int 499 zfsctl_snapdir_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, 500 cred_t *cr) 501 { 502 zfsctl_snapdir_t *sdp = sdvp->v_data; 503 zfs_snapentry_t search, *sep; 504 avl_index_t where; 505 char from[MAXNAMELEN], to[MAXNAMELEN]; 506 int err; 507 508 VERIFY(zfsctl_snapshot_zname(sdvp, snm, MAXNAMELEN, from) == 0); 509 err = zfs_secpolicy_write(from, NULL, cr); 510 if (err) 511 return (err); 512 513 /* 514 * Cannot move snapshots out of the snapdir. 515 */ 516 if (sdvp != tdvp) 517 return (EINVAL); 518 519 if (strcmp(snm, tnm) == 0) 520 return (0); 521 522 mutex_enter(&sdp->sd_lock); 523 524 search.se_name = (char *)snm; 525 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) != NULL) { 526 err = zfsctl_rename_snap(sdp, sep, tnm); 527 if (err) { 528 mutex_exit(&sdp->sd_lock); 529 return (err); 530 } 531 } 532 533 534 VERIFY(zfsctl_snapshot_zname(tdvp, tnm, MAXNAMELEN, to) == 0); 535 err = dmu_objset_rename(from, to); 536 537 mutex_exit(&sdp->sd_lock); 538 539 return (err); 540 } 541 542 /* ARGSUSED */ 543 static int 544 zfsctl_snapdir_remove(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr) 545 { 546 zfsctl_snapdir_t *sdp = dvp->v_data; 547 char snapname[MAXNAMELEN]; 548 int err; 549 550 VERIFY(zfsctl_snapshot_zname(dvp, name, MAXNAMELEN, snapname) == 0); 551 err = zfs_secpolicy_write(snapname, NULL, cr); 552 if (err) 553 return (err); 554 555 mutex_enter(&sdp->sd_lock); 556 557 err = zfsctl_unmount_snap(dvp, name, 0, cr); 558 if (err) { 559 mutex_exit(&sdp->sd_lock); 560 return (err); 561 } 562 563 err = dmu_objset_destroy(snapname); 564 565 mutex_exit(&sdp->sd_lock); 566 567 return (err); 568 } 569 570 /* 571 * Lookup entry point for the 'snapshot' directory. Try to open the 572 * snapshot if it exist, creating the pseudo filesystem vnode as necessary. 573 * Perform a mount of the associated dataset on top of the vnode. 574 */ 575 /* ARGSUSED */ 576 static int 577 zfsctl_snapdir_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 578 int flags, vnode_t *rdir, cred_t *cr) 579 { 580 zfsctl_snapdir_t *sdp = dvp->v_data; 581 objset_t *snap; 582 char snapname[MAXNAMELEN]; 583 char *mountpoint; 584 zfs_snapentry_t *sep, search; 585 struct mounta margs; 586 vfs_t *vfsp; 587 size_t mountpoint_len; 588 avl_index_t where; 589 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 590 int err; 591 592 ASSERT(dvp->v_type == VDIR); 593 594 if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) 595 return (0); 596 597 /* 598 * If we get a recursive call, that means we got called 599 * from the domount() code while it was trying to look up the 600 * spec (which looks like a local path for zfs). We need to 601 * add some flag to domount() to tell it not to do this lookup. 602 */ 603 if (MUTEX_HELD(&sdp->sd_lock)) 604 return (ENOENT); 605 606 ZFS_ENTER(zfsvfs); 607 608 mutex_enter(&sdp->sd_lock); 609 search.se_name = (char *)nm; 610 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) != NULL) { 611 *vpp = sep->se_root; 612 VN_HOLD(*vpp); 613 /* 614 * If the snapshot was unmounted behind our backs, remount it. 615 */ 616 if (!vn_ismntpt(*vpp)) 617 goto domount; 618 VERIFY(traverse(vpp) == 0); 619 mutex_exit(&sdp->sd_lock); 620 ZFS_EXIT(zfsvfs); 621 return (0); 622 } 623 624 /* 625 * The requested snapshot is not currently mounted, look it up. 626 */ 627 VERIFY(zfsctl_snapshot_zname(dvp, nm, MAXNAMELEN, snapname) == 0); 628 if (dmu_objset_open(snapname, DMU_OST_ZFS, 629 DS_MODE_STANDARD | DS_MODE_READONLY, &snap) != 0) { 630 mutex_exit(&sdp->sd_lock); 631 ZFS_EXIT(zfsvfs); 632 return (ENOENT); 633 } 634 635 sep = kmem_alloc(sizeof (zfs_snapentry_t), KM_SLEEP); 636 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 637 (void) strcpy(sep->se_name, nm); 638 *vpp = sep->se_root = zfsctl_snapshot_mknode(dvp, dmu_objset_id(snap)); 639 avl_insert(&sdp->sd_snaps, sep, where); 640 641 dmu_objset_close(snap); 642 domount: 643 mountpoint_len = strlen(refstr_value(dvp->v_vfsp->vfs_mntpt)) + 644 strlen("/.zfs/snapshot/") + strlen(nm) + 1; 645 mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP); 646 (void) snprintf(mountpoint, mountpoint_len, "%s/.zfs/snapshot/%s", 647 refstr_value(dvp->v_vfsp->vfs_mntpt), nm); 648 649 margs.spec = snapname; 650 margs.dir = mountpoint; 651 margs.flags = MS_SYSSPACE | MS_NOMNTTAB; 652 margs.fstype = "zfs"; 653 margs.dataptr = NULL; 654 margs.datalen = 0; 655 margs.optptr = NULL; 656 margs.optlen = 0; 657 658 err = domount("zfs", &margs, *vpp, kcred, &vfsp); 659 ASSERT3U(err, ==, 0); 660 661 kmem_free(mountpoint, mountpoint_len); 662 663 VFS_RELE(vfsp); 664 665 /* 666 * Fix up the root vnode. 667 */ 668 VERIFY(traverse(vpp) == 0); 669 ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs); 670 VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs; 671 (*vpp)->v_vfsp = zfsvfs->z_vfs; 672 (*vpp)->v_flag &= ~VROOT; 673 mutex_exit(&sdp->sd_lock); 674 ZFS_EXIT(zfsvfs); 675 676 return (0); 677 } 678 679 /* ARGSUSED */ 680 static int 681 zfsctl_snapdir_readdir_cb(vnode_t *vp, struct dirent64 *dp, int *eofp, 682 offset_t *offp, offset_t *nextp, void *data) 683 { 684 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 685 char snapname[MAXNAMELEN]; 686 uint64_t id, cookie; 687 688 ZFS_ENTER(zfsvfs); 689 690 cookie = *offp; 691 if (dmu_snapshot_list_next(zfsvfs->z_os, MAXNAMELEN, snapname, &id, 692 &cookie) == ENOENT) { 693 *eofp = 1; 694 ZFS_EXIT(zfsvfs); 695 return (0); 696 } 697 698 (void) strcpy(dp->d_name, snapname); 699 dp->d_ino = ZFSCTL_INO_SNAP(id); 700 *nextp = cookie; 701 702 ZFS_EXIT(zfsvfs); 703 704 return (0); 705 } 706 707 vnode_t * 708 zfsctl_mknode_snapdir(vnode_t *pvp) 709 { 710 vnode_t *vp; 711 zfsctl_snapdir_t *sdp; 712 713 vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp, 714 zfsctl_ops_snapdir, NULL, NULL, MAXNAMELEN, 715 zfsctl_snapdir_readdir_cb, NULL); 716 sdp = vp->v_data; 717 sdp->sd_node.zc_id = ZFSCTL_INO_SNAPDIR; 718 mutex_init(&sdp->sd_lock, NULL, MUTEX_DEFAULT, NULL); 719 avl_create(&sdp->sd_snaps, snapentry_compare, 720 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node)); 721 return (vp); 722 } 723 724 /* ARGSUSED */ 725 static int 726 zfsctl_snapdir_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) 727 { 728 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 729 zfsctl_snapdir_t *sdp = vp->v_data; 730 731 ZFS_ENTER(zfsvfs); 732 zfsctl_common_getattr(vp, vap); 733 vap->va_nodeid = gfs_file_inode(vp); 734 vap->va_nlink = vap->va_size = avl_numnodes(&sdp->sd_snaps) + 2; 735 ZFS_EXIT(zfsvfs); 736 737 return (0); 738 } 739 740 static void 741 zfsctl_snapdir_inactive(vnode_t *vp, cred_t *cr) 742 { 743 zfsctl_snapdir_t *sdp = vp->v_data; 744 745 ASSERT(avl_numnodes(&sdp->sd_snaps) == 0); 746 mutex_destroy(&sdp->sd_lock); 747 avl_destroy(&sdp->sd_snaps); 748 gfs_vop_inactive(vp, cr); 749 } 750 751 static const fs_operation_def_t zfsctl_tops_snapdir[] = { 752 { VOPNAME_OPEN, zfsctl_common_open }, 753 { VOPNAME_CLOSE, zfsctl_common_close }, 754 { VOPNAME_IOCTL, fs_inval }, 755 { VOPNAME_GETATTR, zfsctl_snapdir_getattr }, 756 { VOPNAME_ACCESS, zfsctl_common_access }, 757 { VOPNAME_RENAME, zfsctl_snapdir_rename }, 758 { VOPNAME_RMDIR, zfsctl_snapdir_remove }, 759 { VOPNAME_READDIR, gfs_vop_readdir }, 760 { VOPNAME_LOOKUP, zfsctl_snapdir_lookup }, 761 { VOPNAME_SEEK, fs_seek }, 762 { VOPNAME_INACTIVE, (fs_generic_func_p) zfsctl_snapdir_inactive }, 763 { VOPNAME_FID, zfsctl_common_fid }, 764 { NULL } 765 }; 766 767 static vnode_t * 768 zfsctl_snapshot_mknode(vnode_t *pvp, uint64_t objset) 769 { 770 vnode_t *vp; 771 zfsctl_node_t *zcp; 772 773 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp, 774 zfsctl_ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL); 775 zcp = vp->v_data; 776 zcp->zc_id = objset; 777 778 return (vp); 779 } 780 781 static void 782 zfsctl_snapshot_inactive(vnode_t *vp, cred_t *cr) 783 { 784 zfsctl_snapdir_t *sdp; 785 zfs_snapentry_t *sep, *next; 786 vnode_t *dvp; 787 788 VERIFY(gfs_dir_lookup(vp, "..", &dvp) == 0); 789 sdp = dvp->v_data; 790 791 mutex_enter(&sdp->sd_lock); 792 793 if (vp->v_count > 1) { 794 mutex_exit(&sdp->sd_lock); 795 return; 796 } 797 ASSERT(!vn_ismntpt(vp)); 798 799 sep = avl_first(&sdp->sd_snaps); 800 while (sep != NULL) { 801 next = AVL_NEXT(&sdp->sd_snaps, sep); 802 803 if (sep->se_root == vp) { 804 avl_remove(&sdp->sd_snaps, sep); 805 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 806 kmem_free(sep, sizeof (zfs_snapentry_t)); 807 break; 808 } 809 sep = next; 810 } 811 ASSERT(sep != NULL); 812 813 mutex_exit(&sdp->sd_lock); 814 VN_RELE(dvp); 815 816 gfs_vop_inactive(vp, cr); 817 } 818 819 820 /* 821 * These VP's should never see the light of day. They should always 822 * be covered. 823 */ 824 static const fs_operation_def_t zfsctl_tops_snapshot[] = { 825 VOPNAME_INACTIVE, (fs_generic_func_p) zfsctl_snapshot_inactive, 826 NULL, NULL 827 }; 828 829 int 830 zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp) 831 { 832 zfsvfs_t *zfsvfs = vfsp->vfs_data; 833 vnode_t *dvp, *vp; 834 zfsctl_snapdir_t *sdp; 835 zfsctl_node_t *zcp; 836 zfs_snapentry_t *sep; 837 int error; 838 839 ASSERT(zfsvfs->z_ctldir != NULL); 840 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 841 NULL, 0, NULL, kcred); 842 if (error != 0) 843 return (error); 844 sdp = dvp->v_data; 845 846 mutex_enter(&sdp->sd_lock); 847 sep = avl_first(&sdp->sd_snaps); 848 while (sep != NULL) { 849 vp = sep->se_root; 850 zcp = vp->v_data; 851 if (zcp->zc_id == objsetid) 852 break; 853 854 sep = AVL_NEXT(&sdp->sd_snaps, sep); 855 } 856 857 if (sep != NULL) { 858 VN_HOLD(vp); 859 error = traverse(&vp); 860 if (error == 0) 861 *zfsvfsp = VTOZ(vp)->z_zfsvfs; 862 VN_RELE(vp); 863 } else { 864 error = EINVAL; 865 } 866 867 mutex_exit(&sdp->sd_lock); 868 VN_RELE(dvp); 869 870 return (error); 871 } 872 873 /* 874 * Unmount any snapshots for the given filesystem. This is called from 875 * zfs_umount() - if we have a ctldir, then go through and unmount all the 876 * snapshots. 877 */ 878 int 879 zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr) 880 { 881 zfsvfs_t *zfsvfs = vfsp->vfs_data; 882 vnode_t *dvp, *svp; 883 zfsctl_snapdir_t *sdp; 884 zfs_snapentry_t *sep, *next; 885 int error; 886 887 ASSERT(zfsvfs->z_ctldir != NULL); 888 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 889 NULL, 0, NULL, cr); 890 if (error != 0) 891 return (error); 892 sdp = dvp->v_data; 893 894 mutex_enter(&sdp->sd_lock); 895 896 sep = avl_first(&sdp->sd_snaps); 897 while (sep != NULL) { 898 svp = sep->se_root; 899 next = AVL_NEXT(&sdp->sd_snaps, sep); 900 901 /* 902 * If this snapshot is not mounted, then it must 903 * have just been unmounted by somebody else, and 904 * will be cleaned up by zfsctl_snapdir_inactive(). 905 */ 906 if (vn_ismntpt(svp)) { 907 if ((error = vn_vfswlock(svp)) != 0) 908 goto out; 909 910 VN_HOLD(svp); 911 error = dounmount(vn_mountedvfs(svp), fflags, cr); 912 if (error) { 913 VN_RELE(svp); 914 goto out; 915 } 916 917 avl_remove(&sdp->sd_snaps, sep); 918 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 919 kmem_free(sep, sizeof (zfs_snapentry_t)); 920 921 /* 922 * We can't use VN_RELE(), as that will try to 923 * invoke zfsctl_snapdir_inactive(), and that 924 * would lead to an attempt to re-grab the sd_lock. 925 */ 926 ASSERT3U(svp->v_count, ==, 1); 927 gfs_vop_inactive(svp, cr); 928 } 929 sep = next; 930 } 931 out: 932 mutex_exit(&sdp->sd_lock); 933 VN_RELE(dvp); 934 935 return (error); 936 } 937