1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * ZFS control directory (a.k.a. ".zfs") 30 * 31 * This directory provides a common location for all ZFS meta-objects. 32 * Currently, this is only the 'snapshot' directory, but this may expand in the 33 * future. The elements are built using the GFS primitives, as the hierarchy 34 * does not actually exist on disk. 35 * 36 * For 'snapshot', we don't want to have all snapshots always mounted, because 37 * this would take up a huge amount of space in /etc/mnttab. We have three 38 * types of objects: 39 * 40 * ctldir ------> snapshotdir -------> snapshot 41 * | 42 * | 43 * V 44 * mounted fs 45 * 46 * The 'snapshot' node contains just enough information to lookup '..' and act 47 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we 48 * perform an automount of the underlying filesystem and return the 49 * corresponding vnode. 50 * 51 * All mounts are handled automatically by the kernel, but unmounts are 52 * (currently) handled from user land. The main reason is that there is no 53 * reliable way to auto-unmount the filesystem when it's "no longer in use". 54 * When the user unmounts a filesystem, we call zfsctl_unmount(), which 55 * unmounts any snapshots within the snapshot directory. 56 * 57 * The '.zfs', '.zfs/snapshot', and all directories created under 58 * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') are all GFS nodes and 59 * share the same vfs_t as the head filesystem (what '.zfs' lives under). 60 * 61 * File systems mounted ontop of the GFS nodes '.zfs/snapshot/<snapname>' 62 * (ie: snapshots) are ZFS nodes and have their own unique vfs_t. 63 * However, vnodes within these mounted on file systems have their v_vfsp 64 * fields set to the head filesystem to make NFS happy (see 65 * zfsctl_snapdir_lookup()). 66 */ 67 68 #include <fs/fs_subr.h> 69 #include <sys/zfs_ctldir.h> 70 #include <sys/zfs_ioctl.h> 71 #include <sys/zfs_vfsops.h> 72 #include <sys/vfs_opreg.h> 73 #include <sys/gfs.h> 74 #include <sys/stat.h> 75 #include <sys/dmu.h> 76 #include <sys/dsl_deleg.h> 77 #include <sys/mount.h> 78 79 typedef struct { 80 char *se_name; 81 vnode_t *se_root; 82 avl_node_t se_node; 83 } zfs_snapentry_t; 84 85 static int 86 snapentry_compare(const void *a, const void *b) 87 { 88 const zfs_snapentry_t *sa = a; 89 const zfs_snapentry_t *sb = b; 90 int ret = strcmp(sa->se_name, sb->se_name); 91 92 if (ret < 0) 93 return (-1); 94 else if (ret > 0) 95 return (1); 96 else 97 return (0); 98 } 99 100 vnodeops_t *zfsctl_ops_root; 101 vnodeops_t *zfsctl_ops_snapdir; 102 vnodeops_t *zfsctl_ops_snapshot; 103 104 static const fs_operation_def_t zfsctl_tops_root[]; 105 static const fs_operation_def_t zfsctl_tops_snapdir[]; 106 static const fs_operation_def_t zfsctl_tops_snapshot[]; 107 108 static vnode_t *zfsctl_mknode_snapdir(vnode_t *); 109 static vnode_t *zfsctl_snapshot_mknode(vnode_t *, uint64_t objset); 110 111 static gfs_opsvec_t zfsctl_opsvec[] = { 112 { ".zfs", zfsctl_tops_root, &zfsctl_ops_root }, 113 { ".zfs/snapshot", zfsctl_tops_snapdir, &zfsctl_ops_snapdir }, 114 { ".zfs/snapshot/vnode", zfsctl_tops_snapshot, &zfsctl_ops_snapshot }, 115 { NULL } 116 }; 117 118 typedef struct zfsctl_node { 119 gfs_dir_t zc_gfs_private; 120 uint64_t zc_id; 121 timestruc_t zc_cmtime; /* ctime and mtime, always the same */ 122 } zfsctl_node_t; 123 124 typedef struct zfsctl_snapdir { 125 zfsctl_node_t sd_node; 126 kmutex_t sd_lock; 127 avl_tree_t sd_snaps; 128 } zfsctl_snapdir_t; 129 130 /* 131 * Root directory elements. We have only a single static entry, 'snapshot'. 132 */ 133 static gfs_dirent_t zfsctl_root_entries[] = { 134 { "snapshot", zfsctl_mknode_snapdir, GFS_CACHE_VNODE }, 135 { NULL } 136 }; 137 138 /* include . and .. in the calculation */ 139 #define NROOT_ENTRIES ((sizeof (zfsctl_root_entries) / \ 140 sizeof (gfs_dirent_t)) + 1) 141 142 143 /* 144 * Initialize the various GFS pieces we'll need to create and manipulate .zfs 145 * directories. This is called from the ZFS init routine, and initializes the 146 * vnode ops vectors that we'll be using. 147 */ 148 void 149 zfsctl_init(void) 150 { 151 VERIFY(gfs_make_opsvec(zfsctl_opsvec) == 0); 152 } 153 154 void 155 zfsctl_fini(void) 156 { 157 /* 158 * Remove vfsctl vnode ops 159 */ 160 if (zfsctl_ops_root) 161 vn_freevnodeops(zfsctl_ops_root); 162 if (zfsctl_ops_snapdir) 163 vn_freevnodeops(zfsctl_ops_snapdir); 164 if (zfsctl_ops_snapshot) 165 vn_freevnodeops(zfsctl_ops_snapshot); 166 167 zfsctl_ops_root = NULL; 168 zfsctl_ops_snapdir = NULL; 169 zfsctl_ops_snapshot = NULL; 170 } 171 172 /* 173 * Return the inode number associated with the 'snapshot' directory. 174 */ 175 /* ARGSUSED */ 176 static ino64_t 177 zfsctl_root_inode_cb(vnode_t *vp, int index) 178 { 179 ASSERT(index == 0); 180 return (ZFSCTL_INO_SNAPDIR); 181 } 182 183 /* 184 * Create the '.zfs' directory. This directory is cached as part of the VFS 185 * structure. This results in a hold on the vfs_t. The code in zfs_umount() 186 * therefore checks against a vfs_count of 2 instead of 1. This reference 187 * is removed when the ctldir is destroyed in the unmount. 188 */ 189 void 190 zfsctl_create(zfsvfs_t *zfsvfs) 191 { 192 vnode_t *vp, *rvp; 193 zfsctl_node_t *zcp; 194 195 ASSERT(zfsvfs->z_ctldir == NULL); 196 197 vp = gfs_root_create(sizeof (zfsctl_node_t), zfsvfs->z_vfs, 198 zfsctl_ops_root, ZFSCTL_INO_ROOT, zfsctl_root_entries, 199 zfsctl_root_inode_cb, MAXNAMELEN, NULL, NULL); 200 zcp = vp->v_data; 201 zcp->zc_id = ZFSCTL_INO_ROOT; 202 203 VERIFY(VFS_ROOT(zfsvfs->z_vfs, &rvp) == 0); 204 ZFS_TIME_DECODE(&zcp->zc_cmtime, VTOZ(rvp)->z_phys->zp_crtime); 205 VN_RELE(rvp); 206 207 /* 208 * We're only faking the fact that we have a root of a filesystem for 209 * the sake of the GFS interfaces. Undo the flag manipulation it did 210 * for us. 211 */ 212 vp->v_flag &= ~(VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT); 213 214 zfsvfs->z_ctldir = vp; 215 } 216 217 /* 218 * Destroy the '.zfs' directory. Only called when the filesystem is unmounted. 219 * There might still be more references if we were force unmounted, but only 220 * new zfs_inactive() calls can occur and they don't reference .zfs 221 */ 222 void 223 zfsctl_destroy(zfsvfs_t *zfsvfs) 224 { 225 VN_RELE(zfsvfs->z_ctldir); 226 zfsvfs->z_ctldir = NULL; 227 } 228 229 /* 230 * Given a root znode, retrieve the associated .zfs directory. 231 * Add a hold to the vnode and return it. 232 */ 233 vnode_t * 234 zfsctl_root(znode_t *zp) 235 { 236 ASSERT(zfs_has_ctldir(zp)); 237 VN_HOLD(zp->z_zfsvfs->z_ctldir); 238 return (zp->z_zfsvfs->z_ctldir); 239 } 240 241 /* 242 * Common open routine. Disallow any write access. 243 */ 244 /* ARGSUSED */ 245 static int 246 zfsctl_common_open(vnode_t **vpp, int flags, cred_t *cr, caller_context_t *ct) 247 { 248 if (flags & FWRITE) 249 return (EACCES); 250 251 return (0); 252 } 253 254 /* 255 * Common close routine. Nothing to do here. 256 */ 257 /* ARGSUSED */ 258 static int 259 zfsctl_common_close(vnode_t *vpp, int flags, int count, offset_t off, 260 cred_t *cr, caller_context_t *ct) 261 { 262 return (0); 263 } 264 265 /* 266 * Common access routine. Disallow writes. 267 */ 268 /* ARGSUSED */ 269 static int 270 zfsctl_common_access(vnode_t *vp, int mode, int flags, cred_t *cr, 271 caller_context_t *ct) 272 { 273 if (mode & VWRITE) 274 return (EACCES); 275 276 return (0); 277 } 278 279 /* 280 * Common getattr function. Fill in basic information. 281 */ 282 static void 283 zfsctl_common_getattr(vnode_t *vp, vattr_t *vap) 284 { 285 zfsctl_node_t *zcp = vp->v_data; 286 timestruc_t now; 287 288 vap->va_uid = 0; 289 vap->va_gid = 0; 290 vap->va_rdev = 0; 291 /* 292 * We are a purly virtual object, so we have no 293 * blocksize or allocated blocks. 294 */ 295 vap->va_blksize = 0; 296 vap->va_nblocks = 0; 297 vap->va_seq = 0; 298 vap->va_fsid = vp->v_vfsp->vfs_dev; 299 vap->va_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | 300 S_IROTH | S_IXOTH; 301 vap->va_type = VDIR; 302 /* 303 * We live in the now (for atime). 304 */ 305 gethrestime(&now); 306 vap->va_atime = now; 307 vap->va_mtime = vap->va_ctime = zcp->zc_cmtime; 308 } 309 310 /*ARGSUSED*/ 311 static int 312 zfsctl_common_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 313 { 314 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 315 zfsctl_node_t *zcp = vp->v_data; 316 uint64_t object = zcp->zc_id; 317 zfid_short_t *zfid; 318 int i; 319 320 ZFS_ENTER(zfsvfs); 321 322 if (fidp->fid_len < SHORT_FID_LEN) { 323 fidp->fid_len = SHORT_FID_LEN; 324 ZFS_EXIT(zfsvfs); 325 return (ENOSPC); 326 } 327 328 zfid = (zfid_short_t *)fidp; 329 330 zfid->zf_len = SHORT_FID_LEN; 331 332 for (i = 0; i < sizeof (zfid->zf_object); i++) 333 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 334 335 /* .zfs znodes always have a generation number of 0 */ 336 for (i = 0; i < sizeof (zfid->zf_gen); i++) 337 zfid->zf_gen[i] = 0; 338 339 ZFS_EXIT(zfsvfs); 340 return (0); 341 } 342 343 /* 344 * .zfs inode namespace 345 * 346 * We need to generate unique inode numbers for all files and directories 347 * within the .zfs pseudo-filesystem. We use the following scheme: 348 * 349 * ENTRY ZFSCTL_INODE 350 * .zfs 1 351 * .zfs/snapshot 2 352 * .zfs/snapshot/<snap> objectid(snap) 353 */ 354 355 #define ZFSCTL_INO_SNAP(id) (id) 356 357 /* 358 * Get root directory attributes. 359 */ 360 /* ARGSUSED */ 361 static int 362 zfsctl_root_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 363 caller_context_t *ct) 364 { 365 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 366 367 ZFS_ENTER(zfsvfs); 368 vap->va_nodeid = ZFSCTL_INO_ROOT; 369 vap->va_nlink = vap->va_size = NROOT_ENTRIES; 370 371 zfsctl_common_getattr(vp, vap); 372 ZFS_EXIT(zfsvfs); 373 374 return (0); 375 } 376 377 /* 378 * Special case the handling of "..". 379 */ 380 /* ARGSUSED */ 381 int 382 zfsctl_root_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 383 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 384 int *direntflags, pathname_t *realpnp) 385 { 386 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 387 int err; 388 389 /* 390 * No extended attributes allowed under .zfs 391 */ 392 if (flags & LOOKUP_XATTR) 393 return (EINVAL); 394 395 ZFS_ENTER(zfsvfs); 396 397 if (strcmp(nm, "..") == 0) { 398 err = VFS_ROOT(dvp->v_vfsp, vpp); 399 } else { 400 err = gfs_dir_lookup(dvp, nm, vpp, cr); 401 } 402 403 ZFS_EXIT(zfsvfs); 404 405 return (err); 406 } 407 408 static const fs_operation_def_t zfsctl_tops_root[] = { 409 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 410 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 411 { VOPNAME_IOCTL, { .error = fs_inval } }, 412 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_root_getattr } }, 413 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 414 { VOPNAME_READDIR, { .vop_readdir = gfs_vop_readdir } }, 415 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_root_lookup } }, 416 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 417 { VOPNAME_INACTIVE, { .vop_inactive = gfs_vop_inactive } }, 418 { VOPNAME_FID, { .vop_fid = zfsctl_common_fid } }, 419 { NULL } 420 }; 421 422 static int 423 zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname) 424 { 425 objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os; 426 427 dmu_objset_name(os, zname); 428 if (strlen(zname) + 1 + strlen(name) >= len) 429 return (ENAMETOOLONG); 430 (void) strcat(zname, "@"); 431 (void) strcat(zname, name); 432 return (0); 433 } 434 435 int 436 zfsctl_unmount_snap(vnode_t *dvp, const char *name, int force, cred_t *cr) 437 { 438 zfsctl_snapdir_t *sdp = dvp->v_data; 439 zfs_snapentry_t search, *sep; 440 avl_index_t where; 441 int err; 442 443 ASSERT(MUTEX_HELD(&sdp->sd_lock)); 444 445 search.se_name = (char *)name; 446 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) 447 return (ENOENT); 448 449 ASSERT(vn_ismntpt(sep->se_root)); 450 451 /* this will be dropped by dounmount() */ 452 if ((err = vn_vfswlock(sep->se_root)) != 0) 453 return (err); 454 455 VN_HOLD(sep->se_root); 456 err = dounmount(vn_mountedvfs(sep->se_root), force, kcred); 457 if (err) { 458 VN_RELE(sep->se_root); 459 return (err); 460 } 461 ASSERT(sep->se_root->v_count == 1); 462 gfs_vop_inactive(sep->se_root, cr, NULL); 463 464 avl_remove(&sdp->sd_snaps, sep); 465 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 466 kmem_free(sep, sizeof (zfs_snapentry_t)); 467 468 return (0); 469 } 470 471 472 static void 473 zfsctl_rename_snap(zfsctl_snapdir_t *sdp, zfs_snapentry_t *sep, const char *nm) 474 { 475 avl_index_t where; 476 vfs_t *vfsp; 477 refstr_t *pathref; 478 char newpath[MAXNAMELEN]; 479 char *tail; 480 481 ASSERT(MUTEX_HELD(&sdp->sd_lock)); 482 ASSERT(sep != NULL); 483 484 vfsp = vn_mountedvfs(sep->se_root); 485 ASSERT(vfsp != NULL); 486 487 vfs_lock_wait(vfsp); 488 489 /* 490 * Change the name in the AVL tree. 491 */ 492 avl_remove(&sdp->sd_snaps, sep); 493 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 494 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 495 (void) strcpy(sep->se_name, nm); 496 VERIFY(avl_find(&sdp->sd_snaps, sep, &where) == NULL); 497 avl_insert(&sdp->sd_snaps, sep, where); 498 499 /* 500 * Change the current mountpoint info: 501 * - update the tail of the mntpoint path 502 * - update the tail of the resource path 503 */ 504 pathref = vfs_getmntpoint(vfsp); 505 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath)); 506 VERIFY((tail = strrchr(newpath, '/')) != NULL); 507 *(tail+1) = '\0'; 508 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath)); 509 (void) strcat(newpath, nm); 510 refstr_rele(pathref); 511 vfs_setmntpoint(vfsp, newpath); 512 513 pathref = vfs_getresource(vfsp); 514 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath)); 515 VERIFY((tail = strrchr(newpath, '@')) != NULL); 516 *(tail+1) = '\0'; 517 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath)); 518 (void) strcat(newpath, nm); 519 refstr_rele(pathref); 520 vfs_setresource(vfsp, newpath); 521 522 vfs_unlock(vfsp); 523 } 524 525 /*ARGSUSED*/ 526 static int 527 zfsctl_snapdir_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, 528 cred_t *cr, caller_context_t *ct, int flags) 529 { 530 zfsctl_snapdir_t *sdp = sdvp->v_data; 531 zfs_snapentry_t search, *sep; 532 avl_index_t where; 533 char from[MAXNAMELEN], to[MAXNAMELEN]; 534 int err; 535 536 err = zfsctl_snapshot_zname(sdvp, snm, MAXNAMELEN, from); 537 if (err) 538 return (err); 539 540 err = zfsctl_snapshot_zname(tdvp, tnm, MAXNAMELEN, to); 541 if (err) 542 return (err); 543 544 if (err = zfs_secpolicy_rename_perms(from, to, cr)) 545 return (err); 546 /* 547 * Cannot move snapshots out of the snapdir. 548 */ 549 if (sdvp != tdvp) 550 return (EINVAL); 551 552 if (strcmp(snm, tnm) == 0) 553 return (0); 554 555 mutex_enter(&sdp->sd_lock); 556 557 search.se_name = (char *)snm; 558 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) { 559 mutex_exit(&sdp->sd_lock); 560 return (ENOENT); 561 } 562 563 err = dmu_objset_rename(from, to, B_FALSE); 564 if (err == 0) 565 zfsctl_rename_snap(sdp, sep, tnm); 566 567 mutex_exit(&sdp->sd_lock); 568 569 return (err); 570 } 571 572 /* ARGSUSED */ 573 static int 574 zfsctl_snapdir_remove(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 575 caller_context_t *ct, int flags) 576 { 577 zfsctl_snapdir_t *sdp = dvp->v_data; 578 char snapname[MAXNAMELEN]; 579 int err; 580 581 err = zfsctl_snapshot_zname(dvp, name, MAXNAMELEN, snapname); 582 if (err) 583 return (err); 584 585 if (err = zfs_secpolicy_destroy_perms(snapname, cr)) 586 return (err); 587 588 mutex_enter(&sdp->sd_lock); 589 590 err = zfsctl_unmount_snap(dvp, name, MS_FORCE, cr); 591 if (err) { 592 mutex_exit(&sdp->sd_lock); 593 return (err); 594 } 595 596 err = dmu_objset_destroy(snapname); 597 598 mutex_exit(&sdp->sd_lock); 599 600 return (err); 601 } 602 603 /* 604 * This creates a snapshot under '.zfs/snapshot'. 605 */ 606 /* ARGSUSED */ 607 static int 608 zfsctl_snapdir_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, 609 cred_t *cr, caller_context_t *cc, int flags, vsecattr_t *vsecp) 610 { 611 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 612 char name[MAXNAMELEN]; 613 int err; 614 static enum symfollow follow = NO_FOLLOW; 615 static enum uio_seg seg = UIO_SYSSPACE; 616 617 dmu_objset_name(zfsvfs->z_os, name); 618 619 *vpp = NULL; 620 621 err = zfs_secpolicy_snapshot_perms(name, cr); 622 if (err) 623 return (err); 624 625 if (err == 0) { 626 err = dmu_objset_snapshot(name, dirname, B_FALSE); 627 if (err) 628 return (err); 629 err = lookupnameat(dirname, seg, follow, NULL, vpp, dvp); 630 } 631 632 return (err); 633 } 634 635 /* 636 * Lookup entry point for the 'snapshot' directory. Try to open the 637 * snapshot if it exist, creating the pseudo filesystem vnode as necessary. 638 * Perform a mount of the associated dataset on top of the vnode. 639 */ 640 /* ARGSUSED */ 641 static int 642 zfsctl_snapdir_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 643 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 644 int *direntflags, pathname_t *realpnp) 645 { 646 zfsctl_snapdir_t *sdp = dvp->v_data; 647 objset_t *snap; 648 char snapname[MAXNAMELEN]; 649 char *mountpoint; 650 zfs_snapentry_t *sep, search; 651 struct mounta margs; 652 vfs_t *vfsp; 653 size_t mountpoint_len; 654 avl_index_t where; 655 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 656 int err; 657 658 /* 659 * No extended attributes allowed under .zfs 660 */ 661 if (flags & LOOKUP_XATTR) 662 return (EINVAL); 663 664 ASSERT(dvp->v_type == VDIR); 665 666 if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) 667 return (0); 668 669 /* 670 * If we get a recursive call, that means we got called 671 * from the domount() code while it was trying to look up the 672 * spec (which looks like a local path for zfs). We need to 673 * add some flag to domount() to tell it not to do this lookup. 674 */ 675 if (MUTEX_HELD(&sdp->sd_lock)) 676 return (ENOENT); 677 678 ZFS_ENTER(zfsvfs); 679 680 mutex_enter(&sdp->sd_lock); 681 search.se_name = (char *)nm; 682 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) != NULL) { 683 *vpp = sep->se_root; 684 VN_HOLD(*vpp); 685 err = traverse(vpp); 686 if (err) { 687 VN_RELE(*vpp); 688 *vpp = NULL; 689 } else if (*vpp == sep->se_root) { 690 /* 691 * The snapshot was unmounted behind our backs, 692 * try to remount it. 693 */ 694 goto domount; 695 } 696 mutex_exit(&sdp->sd_lock); 697 ZFS_EXIT(zfsvfs); 698 return (err); 699 } 700 701 /* 702 * The requested snapshot is not currently mounted, look it up. 703 */ 704 err = zfsctl_snapshot_zname(dvp, nm, MAXNAMELEN, snapname); 705 if (err) { 706 mutex_exit(&sdp->sd_lock); 707 ZFS_EXIT(zfsvfs); 708 return (err); 709 } 710 if (dmu_objset_open(snapname, DMU_OST_ZFS, 711 DS_MODE_STANDARD | DS_MODE_READONLY, &snap) != 0) { 712 mutex_exit(&sdp->sd_lock); 713 ZFS_EXIT(zfsvfs); 714 return (ENOENT); 715 } 716 717 sep = kmem_alloc(sizeof (zfs_snapentry_t), KM_SLEEP); 718 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 719 (void) strcpy(sep->se_name, nm); 720 *vpp = sep->se_root = zfsctl_snapshot_mknode(dvp, dmu_objset_id(snap)); 721 avl_insert(&sdp->sd_snaps, sep, where); 722 723 dmu_objset_close(snap); 724 domount: 725 mountpoint_len = strlen(refstr_value(dvp->v_vfsp->vfs_mntpt)) + 726 strlen("/.zfs/snapshot/") + strlen(nm) + 1; 727 mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP); 728 (void) snprintf(mountpoint, mountpoint_len, "%s/.zfs/snapshot/%s", 729 refstr_value(dvp->v_vfsp->vfs_mntpt), nm); 730 731 margs.spec = snapname; 732 margs.dir = mountpoint; 733 margs.flags = MS_SYSSPACE | MS_NOMNTTAB; 734 margs.fstype = "zfs"; 735 margs.dataptr = NULL; 736 margs.datalen = 0; 737 margs.optptr = NULL; 738 margs.optlen = 0; 739 740 err = domount("zfs", &margs, *vpp, kcred, &vfsp); 741 kmem_free(mountpoint, mountpoint_len); 742 743 if (err == 0) { 744 /* 745 * Return the mounted root rather than the covered mount point. 746 * Takes the GFS vnode at .zfs/snapshot/<snapname> and returns 747 * the ZFS vnode mounted on top of the GFS node. This ZFS 748 * vnode is the root the newly created vfsp. 749 */ 750 VFS_RELE(vfsp); 751 err = traverse(vpp); 752 } 753 754 if (err == 0) { 755 /* 756 * Fix up the root vnode mounted on .zfs/snapshot/<snapname>. 757 * 758 * This is where we lie about our v_vfsp in order to 759 * make .zfs/snapshot/<snapname> accessible over NFS 760 * without requiring manual mounts of <snapname>. 761 */ 762 ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs); 763 VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs; 764 (*vpp)->v_vfsp = zfsvfs->z_vfs; 765 (*vpp)->v_flag &= ~VROOT; 766 } 767 mutex_exit(&sdp->sd_lock); 768 ZFS_EXIT(zfsvfs); 769 770 /* 771 * If we had an error, drop our hold on the vnode and 772 * zfsctl_snapshot_inactive() will clean up. 773 */ 774 if (err) { 775 VN_RELE(*vpp); 776 *vpp = NULL; 777 } 778 return (err); 779 } 780 781 /* ARGSUSED */ 782 static int 783 zfsctl_snapdir_readdir_cb(vnode_t *vp, void *dp, int *eofp, 784 offset_t *offp, offset_t *nextp, void *data, int flags) 785 { 786 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 787 char snapname[MAXNAMELEN]; 788 uint64_t id, cookie; 789 boolean_t case_conflict; 790 int error; 791 792 ZFS_ENTER(zfsvfs); 793 794 cookie = *offp; 795 error = dmu_snapshot_list_next(zfsvfs->z_os, MAXNAMELEN, snapname, &id, 796 &cookie, &case_conflict); 797 if (error) { 798 ZFS_EXIT(zfsvfs); 799 if (error == ENOENT) { 800 *eofp = 1; 801 return (0); 802 } 803 return (error); 804 } 805 806 if (flags & V_RDDIR_ENTFLAGS) { 807 edirent_t *eodp = dp; 808 809 (void) strcpy(eodp->ed_name, snapname); 810 eodp->ed_ino = ZFSCTL_INO_SNAP(id); 811 eodp->ed_eflags = case_conflict ? ED_CASE_CONFLICT : 0; 812 } else { 813 struct dirent64 *odp = dp; 814 815 (void) strcpy(odp->d_name, snapname); 816 odp->d_ino = ZFSCTL_INO_SNAP(id); 817 } 818 *nextp = cookie; 819 820 ZFS_EXIT(zfsvfs); 821 822 return (0); 823 } 824 825 /* 826 * pvp is the '.zfs' directory (zfsctl_node_t). 827 * Creates vp, which is '.zfs/snapshot' (zfsctl_snapdir_t). 828 * 829 * This function is the callback to create a GFS vnode for '.zfs/snapshot' 830 * when a lookup is performed on .zfs for "snapshot". 831 */ 832 vnode_t * 833 zfsctl_mknode_snapdir(vnode_t *pvp) 834 { 835 vnode_t *vp; 836 zfsctl_snapdir_t *sdp; 837 838 vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp, 839 zfsctl_ops_snapdir, NULL, NULL, MAXNAMELEN, 840 zfsctl_snapdir_readdir_cb, NULL); 841 sdp = vp->v_data; 842 sdp->sd_node.zc_id = ZFSCTL_INO_SNAPDIR; 843 sdp->sd_node.zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime; 844 mutex_init(&sdp->sd_lock, NULL, MUTEX_DEFAULT, NULL); 845 avl_create(&sdp->sd_snaps, snapentry_compare, 846 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node)); 847 return (vp); 848 } 849 850 /* ARGSUSED */ 851 static int 852 zfsctl_snapdir_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 853 caller_context_t *ct) 854 { 855 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 856 zfsctl_snapdir_t *sdp = vp->v_data; 857 858 ZFS_ENTER(zfsvfs); 859 zfsctl_common_getattr(vp, vap); 860 vap->va_nodeid = gfs_file_inode(vp); 861 vap->va_nlink = vap->va_size = avl_numnodes(&sdp->sd_snaps) + 2; 862 ZFS_EXIT(zfsvfs); 863 864 return (0); 865 } 866 867 /* ARGSUSED */ 868 static void 869 zfsctl_snapdir_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 870 { 871 zfsctl_snapdir_t *sdp = vp->v_data; 872 void *private; 873 874 private = gfs_dir_inactive(vp); 875 if (private != NULL) { 876 ASSERT(avl_numnodes(&sdp->sd_snaps) == 0); 877 mutex_destroy(&sdp->sd_lock); 878 avl_destroy(&sdp->sd_snaps); 879 kmem_free(private, sizeof (zfsctl_snapdir_t)); 880 } 881 } 882 883 static const fs_operation_def_t zfsctl_tops_snapdir[] = { 884 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 885 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 886 { VOPNAME_IOCTL, { .error = fs_inval } }, 887 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_snapdir_getattr } }, 888 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 889 { VOPNAME_RENAME, { .vop_rename = zfsctl_snapdir_rename } }, 890 { VOPNAME_RMDIR, { .vop_rmdir = zfsctl_snapdir_remove } }, 891 { VOPNAME_MKDIR, { .vop_mkdir = zfsctl_snapdir_mkdir } }, 892 { VOPNAME_READDIR, { .vop_readdir = gfs_vop_readdir } }, 893 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_snapdir_lookup } }, 894 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 895 { VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapdir_inactive } }, 896 { VOPNAME_FID, { .vop_fid = zfsctl_common_fid } }, 897 { NULL } 898 }; 899 900 /* 901 * pvp is the GFS vnode '.zfs/snapshot'. 902 * 903 * This creates a GFS node under '.zfs/snapshot' representing each 904 * snapshot. This newly created GFS node is what we mount snapshot 905 * vfs_t's ontop of. 906 */ 907 static vnode_t * 908 zfsctl_snapshot_mknode(vnode_t *pvp, uint64_t objset) 909 { 910 vnode_t *vp; 911 zfsctl_node_t *zcp; 912 913 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp, 914 zfsctl_ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL); 915 zcp = vp->v_data; 916 zcp->zc_id = objset; 917 918 return (vp); 919 } 920 921 static void 922 zfsctl_snapshot_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 923 { 924 zfsctl_snapdir_t *sdp; 925 zfs_snapentry_t *sep, *next; 926 vnode_t *dvp; 927 928 VERIFY(gfs_dir_lookup(vp, "..", &dvp, cr) == 0); 929 sdp = dvp->v_data; 930 931 mutex_enter(&sdp->sd_lock); 932 933 if (vp->v_count > 1) { 934 mutex_exit(&sdp->sd_lock); 935 return; 936 } 937 ASSERT(!vn_ismntpt(vp)); 938 939 sep = avl_first(&sdp->sd_snaps); 940 while (sep != NULL) { 941 next = AVL_NEXT(&sdp->sd_snaps, sep); 942 943 if (sep->se_root == vp) { 944 avl_remove(&sdp->sd_snaps, sep); 945 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 946 kmem_free(sep, sizeof (zfs_snapentry_t)); 947 break; 948 } 949 sep = next; 950 } 951 ASSERT(sep != NULL); 952 953 mutex_exit(&sdp->sd_lock); 954 VN_RELE(dvp); 955 956 /* 957 * Dispose of the vnode for the snapshot mount point. 958 * This is safe to do because once this entry has been removed 959 * from the AVL tree, it can't be found again, so cannot become 960 * "active". If we lookup the same name again we will end up 961 * creating a new vnode. 962 */ 963 gfs_vop_inactive(vp, cr, ct); 964 } 965 966 967 /* 968 * These VP's should never see the light of day. They should always 969 * be covered. 970 */ 971 static const fs_operation_def_t zfsctl_tops_snapshot[] = { 972 VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapshot_inactive }, 973 NULL, NULL 974 }; 975 976 int 977 zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp) 978 { 979 zfsvfs_t *zfsvfs = vfsp->vfs_data; 980 vnode_t *dvp, *vp; 981 zfsctl_snapdir_t *sdp; 982 zfsctl_node_t *zcp; 983 zfs_snapentry_t *sep; 984 int error; 985 986 ASSERT(zfsvfs->z_ctldir != NULL); 987 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 988 NULL, 0, NULL, kcred, NULL, NULL, NULL); 989 if (error != 0) 990 return (error); 991 sdp = dvp->v_data; 992 993 mutex_enter(&sdp->sd_lock); 994 sep = avl_first(&sdp->sd_snaps); 995 while (sep != NULL) { 996 vp = sep->se_root; 997 zcp = vp->v_data; 998 if (zcp->zc_id == objsetid) 999 break; 1000 1001 sep = AVL_NEXT(&sdp->sd_snaps, sep); 1002 } 1003 1004 if (sep != NULL) { 1005 VN_HOLD(vp); 1006 /* 1007 * Return the mounted root rather than the covered mount point. 1008 * Takes the GFS vnode at .zfs/snapshot/<snapshot objsetid> 1009 * and returns the ZFS vnode mounted on top of the GFS node. 1010 * This ZFS vnode is the root of the vfs for objset 'objsetid'. 1011 */ 1012 error = traverse(&vp); 1013 if (error == 0) { 1014 if (vp == sep->se_root) 1015 error = EINVAL; 1016 else 1017 *zfsvfsp = VTOZ(vp)->z_zfsvfs; 1018 } 1019 mutex_exit(&sdp->sd_lock); 1020 VN_RELE(vp); 1021 } else { 1022 error = EINVAL; 1023 mutex_exit(&sdp->sd_lock); 1024 } 1025 1026 VN_RELE(dvp); 1027 1028 return (error); 1029 } 1030 1031 /* 1032 * Unmount any snapshots for the given filesystem. This is called from 1033 * zfs_umount() - if we have a ctldir, then go through and unmount all the 1034 * snapshots. 1035 */ 1036 int 1037 zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr) 1038 { 1039 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1040 vnode_t *dvp, *svp; 1041 zfsctl_snapdir_t *sdp; 1042 zfs_snapentry_t *sep, *next; 1043 int error; 1044 1045 ASSERT(zfsvfs->z_ctldir != NULL); 1046 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 1047 NULL, 0, NULL, cr, NULL, NULL, NULL); 1048 if (error != 0) 1049 return (error); 1050 sdp = dvp->v_data; 1051 1052 mutex_enter(&sdp->sd_lock); 1053 1054 sep = avl_first(&sdp->sd_snaps); 1055 while (sep != NULL) { 1056 svp = sep->se_root; 1057 next = AVL_NEXT(&sdp->sd_snaps, sep); 1058 1059 /* 1060 * If this snapshot is not mounted, then it must 1061 * have just been unmounted by somebody else, and 1062 * will be cleaned up by zfsctl_snapdir_inactive(). 1063 */ 1064 if (vn_ismntpt(svp)) { 1065 if ((error = vn_vfswlock(svp)) != 0) 1066 goto out; 1067 1068 VN_HOLD(svp); 1069 error = dounmount(vn_mountedvfs(svp), fflags, cr); 1070 if (error) { 1071 VN_RELE(svp); 1072 goto out; 1073 } 1074 1075 avl_remove(&sdp->sd_snaps, sep); 1076 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 1077 kmem_free(sep, sizeof (zfs_snapentry_t)); 1078 1079 /* 1080 * We can't use VN_RELE(), as that will try to 1081 * invoke zfsctl_snapdir_inactive(), and that 1082 * would lead to an attempt to re-grab the sd_lock. 1083 */ 1084 ASSERT3U(svp->v_count, ==, 1); 1085 gfs_vop_inactive(svp, cr, NULL); 1086 } 1087 sep = next; 1088 } 1089 out: 1090 mutex_exit(&sdp->sd_lock); 1091 VN_RELE(dvp); 1092 1093 return (error); 1094 } 1095