xref: /titanic_50/usr/src/uts/common/fs/zfs/zap_micro.c (revision b82017d353ca36282466f4a627c4cf5cddf90b50)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/spa.h>
29 #include <sys/dmu.h>
30 #include <sys/zfs_context.h>
31 #include <sys/zap.h>
32 #include <sys/zap_impl.h>
33 #include <sys/zap_leaf.h>
34 #include <sys/avl.h>
35 
36 
37 static uint64_t mzap_write_cookie(zap_t *zap, uint64_t cookie,
38     uint64_t entptr);
39 static void mzap_upgrade(zap_t *zap, dmu_tx_t *tx);
40 
41 
42 static void
43 mzap_byteswap(mzap_phys_t *buf, size_t size)
44 {
45 	int i, max;
46 	buf->mz_block_type = BSWAP_64(buf->mz_block_type);
47 	buf->mz_salt = BSWAP_64(buf->mz_salt);
48 	max = (size / MZAP_ENT_LEN) - 1;
49 	for (i = 0; i < max; i++) {
50 		buf->mz_chunk[i].mze_value =
51 		    BSWAP_64(buf->mz_chunk[i].mze_value);
52 		buf->mz_chunk[i].mze_cd =
53 		    BSWAP_32(buf->mz_chunk[i].mze_cd);
54 	}
55 }
56 
57 void
58 zap_byteswap(void *buf, size_t size)
59 {
60 	uint64_t block_type;
61 
62 	block_type = *(uint64_t *)buf;
63 
64 	switch (block_type) {
65 	case ZBT_MICRO:
66 	case BSWAP_64(ZBT_MICRO):
67 		/* ASSERT(magic == ZAP_LEAF_MAGIC); */
68 		mzap_byteswap(buf, size);
69 		return;
70 	default:
71 		fzap_byteswap(buf, size);
72 		return;
73 	}
74 }
75 
76 static int
77 mze_compare(const void *arg1, const void *arg2)
78 {
79 	const mzap_ent_t *mze1 = arg1;
80 	const mzap_ent_t *mze2 = arg2;
81 
82 	if (mze1->mze_hash > mze2->mze_hash)
83 		return (+1);
84 	if (mze1->mze_hash < mze2->mze_hash)
85 		return (-1);
86 	if (mze1->mze_phys.mze_cd > mze2->mze_phys.mze_cd)
87 		return (+1);
88 	if (mze1->mze_phys.mze_cd < mze2->mze_phys.mze_cd)
89 		return (-1);
90 	return (0);
91 }
92 
93 static void
94 mze_insert(zap_t *zap, int chunkid, uint64_t hash, mzap_ent_phys_t *mzep)
95 {
96 	mzap_ent_t *mze;
97 
98 	ASSERT(zap->zap_ismicro);
99 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
100 	ASSERT(mzep->mze_cd < ZAP_MAXCD);
101 	ASSERT3U(zap_hash(zap, mzep->mze_name), ==, hash);
102 
103 	mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
104 	mze->mze_chunkid = chunkid;
105 	mze->mze_hash = hash;
106 	mze->mze_phys = *mzep;
107 	avl_add(&zap->zap_m.zap_avl, mze);
108 }
109 
110 static mzap_ent_t *
111 mze_find(zap_t *zap, const char *name, uint64_t hash)
112 {
113 	mzap_ent_t mze_tofind;
114 	mzap_ent_t *mze;
115 	avl_index_t idx;
116 	avl_tree_t *avl = &zap->zap_m.zap_avl;
117 
118 	ASSERT(zap->zap_ismicro);
119 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
120 	ASSERT3U(zap_hash(zap, name), ==, hash);
121 
122 	if (strlen(name) >= sizeof (mze_tofind.mze_phys.mze_name))
123 		return (NULL);
124 
125 	mze_tofind.mze_hash = hash;
126 	mze_tofind.mze_phys.mze_cd = 0;
127 
128 	mze = avl_find(avl, &mze_tofind, &idx);
129 	if (mze == NULL)
130 		mze = avl_nearest(avl, idx, AVL_AFTER);
131 	for (; mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
132 		if (strcmp(name, mze->mze_phys.mze_name) == 0)
133 			return (mze);
134 	}
135 	return (NULL);
136 }
137 
138 static uint32_t
139 mze_find_unused_cd(zap_t *zap, uint64_t hash)
140 {
141 	mzap_ent_t mze_tofind;
142 	mzap_ent_t *mze;
143 	avl_index_t idx;
144 	avl_tree_t *avl = &zap->zap_m.zap_avl;
145 	uint32_t cd;
146 
147 	ASSERT(zap->zap_ismicro);
148 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
149 
150 	mze_tofind.mze_hash = hash;
151 	mze_tofind.mze_phys.mze_cd = 0;
152 
153 	cd = 0;
154 	for (mze = avl_find(avl, &mze_tofind, &idx);
155 	    mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
156 		if (mze->mze_phys.mze_cd != cd)
157 			break;
158 		cd++;
159 	}
160 
161 	return (cd);
162 }
163 
164 static void
165 mze_remove(zap_t *zap, mzap_ent_t *mze)
166 {
167 	ASSERT(zap->zap_ismicro);
168 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
169 
170 	avl_remove(&zap->zap_m.zap_avl, mze);
171 	kmem_free(mze, sizeof (mzap_ent_t));
172 }
173 
174 static void
175 mze_destroy(zap_t *zap)
176 {
177 	mzap_ent_t *mze;
178 	void *avlcookie = NULL;
179 
180 	while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))
181 		kmem_free(mze, sizeof (mzap_ent_t));
182 	avl_destroy(&zap->zap_m.zap_avl);
183 }
184 
185 static zap_t *
186 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
187 {
188 	zap_t *winner;
189 	zap_t *zap;
190 	int i;
191 
192 	ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
193 
194 	zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
195 	rw_init(&zap->zap_rwlock, 0, 0, 0);
196 	rw_enter(&zap->zap_rwlock, RW_WRITER);
197 	zap->zap_objset = os;
198 	zap->zap_object = obj;
199 	zap->zap_dbuf = db;
200 
201 	if (((uint64_t *)db->db_data)[0] != ZBT_MICRO) {
202 		mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
203 		zap->zap_f.zap_block_shift = highbit(db->db_size) - 1;
204 	} else {
205 		zap->zap_ismicro = TRUE;
206 	}
207 
208 	/*
209 	 * Make sure that zap_ismicro is set before we let others see
210 	 * it, because zap_lockdir() checks zap_ismicro without the lock
211 	 * held.
212 	 */
213 	winner = dmu_buf_set_user(db, zap, &zap->zap_m.zap_phys, zap_pageout);
214 
215 	if (winner != NULL) {
216 		kmem_free(zap, sizeof (zap_t));
217 		return (winner);
218 	}
219 
220 	if (zap->zap_ismicro) {
221 		zap->zap_salt = zap->zap_m.zap_phys->mz_salt;
222 		zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
223 		avl_create(&zap->zap_m.zap_avl, mze_compare,
224 		    sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
225 
226 		for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
227 			mzap_ent_phys_t *mze =
228 			    &zap->zap_m.zap_phys->mz_chunk[i];
229 			if (mze->mze_name[0]) {
230 				zap->zap_m.zap_num_entries++;
231 				mze_insert(zap, i,
232 				    zap_hash(zap, mze->mze_name), mze);
233 			}
234 		}
235 	} else {
236 		zap->zap_salt = zap->zap_f.zap_phys->zap_salt;
237 
238 		ASSERT3U(sizeof (struct zap_leaf_header), ==,
239 		    2*ZAP_LEAF_CHUNKSIZE);
240 
241 		/*
242 		 * The embedded pointer table should not overlap the
243 		 * other members.
244 		 */
245 		ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
246 		    &zap->zap_f.zap_phys->zap_salt);
247 
248 		/*
249 		 * The embedded pointer table should end at the end of
250 		 * the block
251 		 */
252 		ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
253 		    1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
254 		    (uintptr_t)zap->zap_f.zap_phys, ==,
255 		    zap->zap_dbuf->db_size);
256 	}
257 	rw_exit(&zap->zap_rwlock);
258 	return (zap);
259 }
260 
261 int
262 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
263     krw_t lti, int fatreader, zap_t **zapp)
264 {
265 	zap_t *zap;
266 	dmu_buf_t *db;
267 	krw_t lt;
268 	int err;
269 
270 	*zapp = NULL;
271 
272 	db = dmu_buf_hold(os, obj, 0);
273 
274 #ifdef ZFS_DEBUG
275 	{
276 		dmu_object_info_t doi;
277 		dmu_object_info_from_db(db, &doi);
278 		ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap);
279 	}
280 #endif
281 
282 	/*
283 	 * The zap can deal with EIO here, but its callers don't yet, so
284 	 * spare them by doing a mustsucceed read.
285 	 */
286 	dmu_buf_read(db);
287 
288 	zap = dmu_buf_get_user(db);
289 	if (zap == NULL)
290 		zap = mzap_open(os, obj, db);
291 
292 	/*
293 	 * We're checking zap_ismicro without the lock held, in order to
294 	 * tell what type of lock we want.  Once we have some sort of
295 	 * lock, see if it really is the right type.  In practice this
296 	 * can only be different if it was upgraded from micro to fat,
297 	 * and micro wanted WRITER but fat only needs READER.
298 	 */
299 	lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
300 	rw_enter(&zap->zap_rwlock, lt);
301 	if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
302 		/* it was upgraded, now we only need reader */
303 		ASSERT(lt == RW_WRITER);
304 		ASSERT(RW_READER ==
305 		    (!zap->zap_ismicro && fatreader) ? RW_READER : lti);
306 		rw_downgrade(&zap->zap_rwlock);
307 		lt = RW_READER;
308 	}
309 
310 	zap->zap_objset = os;
311 
312 	if (lt == RW_WRITER)
313 		dmu_buf_will_dirty(db, tx);
314 
315 	ASSERT3P(zap->zap_dbuf, ==, db);
316 
317 	ASSERT(!zap->zap_ismicro ||
318 	    zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
319 	if (zap->zap_ismicro && tx &&
320 	    zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
321 		uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
322 		if (newsz > MZAP_MAX_BLKSZ) {
323 			dprintf("upgrading obj %llu: num_entries=%u\n",
324 			    obj, zap->zap_m.zap_num_entries);
325 			mzap_upgrade(zap, tx);
326 			*zapp = zap;
327 			return (0);
328 		}
329 		err = dmu_object_set_blocksize(os, obj, newsz, 0, tx);
330 		ASSERT3U(err, ==, 0);
331 		zap->zap_m.zap_num_chunks =
332 		    db->db_size / MZAP_ENT_LEN - 1;
333 	}
334 
335 	*zapp = zap;
336 	return (0);
337 }
338 
339 void
340 zap_unlockdir(zap_t *zap)
341 {
342 	rw_exit(&zap->zap_rwlock);
343 	dmu_buf_rele(zap->zap_dbuf);
344 }
345 
346 static void
347 mzap_upgrade(zap_t *zap, dmu_tx_t *tx)
348 {
349 	mzap_phys_t *mzp;
350 	int i, sz, nchunks, err;
351 
352 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
353 
354 	sz = zap->zap_dbuf->db_size;
355 	mzp = kmem_alloc(sz, KM_SLEEP);
356 	bcopy(zap->zap_dbuf->db_data, mzp, sz);
357 	nchunks = zap->zap_m.zap_num_chunks;
358 
359 	err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
360 	    1ULL << fzap_default_block_shift, 0, tx);
361 	ASSERT(err == 0);
362 
363 	dprintf("upgrading obj=%llu with %u chunks\n",
364 	    zap->zap_object, nchunks);
365 	mze_destroy(zap);
366 
367 	fzap_upgrade(zap, tx);
368 
369 	for (i = 0; i < nchunks; i++) {
370 		int err;
371 		mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
372 		if (mze->mze_name[0] == 0)
373 			continue;
374 		dprintf("adding %s=%llu\n",
375 		    mze->mze_name, mze->mze_value);
376 		err = fzap_add_cd(zap,
377 		    mze->mze_name, 8, 1, &mze->mze_value,
378 		    mze->mze_cd, tx, NULL);
379 		ASSERT3U(err, ==, 0);
380 	}
381 	kmem_free(mzp, sz);
382 }
383 
384 uint64_t
385 zap_hash(zap_t *zap, const char *name)
386 {
387 	const uint8_t *cp;
388 	uint8_t c;
389 	uint64_t crc = zap->zap_salt;
390 
391 	ASSERT(crc != 0);
392 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
393 	for (cp = (const uint8_t *)name; (c = *cp) != '\0'; cp++)
394 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ c) & 0xFF];
395 
396 	/*
397 	 * Only use 28 bits, since we need 4 bits in the cookie for the
398 	 * collision differentiator.  We MUST use the high bits, since
399 	 * those are the onces that we first pay attention to when
400 	 * chosing the bucket.
401 	 */
402 	crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1);
403 
404 	return (crc);
405 }
406 
407 
408 static void
409 mzap_create_impl(objset_t *os, uint64_t obj, dmu_tx_t *tx)
410 {
411 	dmu_buf_t *db;
412 	mzap_phys_t *zp;
413 
414 	db = dmu_buf_hold(os, obj, 0);
415 
416 #ifdef ZFS_DEBUG
417 	{
418 		dmu_object_info_t doi;
419 		dmu_object_info_from_db(db, &doi);
420 		ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap);
421 	}
422 #endif
423 
424 	dmu_buf_will_dirty(db, tx);
425 	zp = db->db_data;
426 	zp->mz_block_type = ZBT_MICRO;
427 	zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
428 	ASSERT(zp->mz_salt != 0);
429 	dmu_buf_rele(db);
430 }
431 
432 int
433 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
434     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
435 {
436 	int err;
437 
438 	err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
439 	if (err != 0)
440 		return (err);
441 	mzap_create_impl(os, obj, tx);
442 	return (0);
443 }
444 
445 uint64_t
446 zap_create(objset_t *os, dmu_object_type_t ot,
447     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
448 {
449 	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
450 
451 	mzap_create_impl(os, obj, tx);
452 	return (obj);
453 }
454 
455 int
456 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
457 {
458 	/*
459 	 * dmu_object_free will free the object number and free the
460 	 * data.  Freeing the data will cause our pageout function to be
461 	 * called, which will destroy our data (zap_leaf_t's and zap_t).
462 	 */
463 
464 	return (dmu_object_free(os, zapobj, tx));
465 }
466 
467 _NOTE(ARGSUSED(0))
468 void
469 zap_pageout(dmu_buf_t *db, void *vmzap)
470 {
471 	zap_t *zap = vmzap;
472 
473 	rw_destroy(&zap->zap_rwlock);
474 
475 	if (zap->zap_ismicro)
476 		mze_destroy(zap);
477 
478 	kmem_free(zap, sizeof (zap_t));
479 }
480 
481 
482 int
483 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
484 {
485 	zap_t *zap;
486 	int err;
487 
488 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, &zap);
489 	if (err)
490 		return (err);
491 	if (!zap->zap_ismicro) {
492 		err = fzap_count(zap, count);
493 	} else {
494 		*count = zap->zap_m.zap_num_entries;
495 	}
496 	zap_unlockdir(zap);
497 	return (err);
498 }
499 
500 /*
501  * Routines for maniplulating attributes.
502  */
503 
504 int
505 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
506     uint64_t integer_size, uint64_t num_integers, void *buf)
507 {
508 	zap_t *zap;
509 	int err;
510 	mzap_ent_t *mze;
511 
512 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, &zap);
513 	if (err)
514 		return (err);
515 	if (!zap->zap_ismicro) {
516 		err = fzap_lookup(zap, name,
517 		    integer_size, num_integers, buf);
518 	} else {
519 		mze = mze_find(zap, name, zap_hash(zap, name));
520 		if (mze == NULL) {
521 			err = ENOENT;
522 		} else {
523 			if (num_integers < 1)
524 				err = EOVERFLOW;
525 			else if (integer_size != 8)
526 				err = EINVAL;
527 			else
528 				*(uint64_t *)buf = mze->mze_phys.mze_value;
529 		}
530 	}
531 	zap_unlockdir(zap);
532 	return (err);
533 }
534 
535 int
536 zap_length(objset_t *os, uint64_t zapobj, const char *name,
537     uint64_t *integer_size, uint64_t *num_integers)
538 {
539 	zap_t *zap;
540 	int err;
541 	mzap_ent_t *mze;
542 
543 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, &zap);
544 	if (err)
545 		return (err);
546 	if (!zap->zap_ismicro) {
547 		err = fzap_length(zap, name, integer_size, num_integers);
548 	} else {
549 		mze = mze_find(zap, name, zap_hash(zap, name));
550 		if (mze == NULL) {
551 			err = ENOENT;
552 		} else {
553 			if (integer_size)
554 				*integer_size = 8;
555 			if (num_integers)
556 				*num_integers = 1;
557 		}
558 	}
559 	zap_unlockdir(zap);
560 	return (err);
561 }
562 
563 static void
564 mzap_addent(zap_t *zap, const char *name, uint64_t hash, uint64_t value)
565 {
566 	int i;
567 	int start = zap->zap_m.zap_alloc_next;
568 	uint32_t cd;
569 
570 	dprintf("obj=%llu %s=%llu\n", zap->zap_object, name, value);
571 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
572 
573 #ifdef ZFS_DEBUG
574 	for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
575 		mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
576 		ASSERT(strcmp(name, mze->mze_name) != 0);
577 	}
578 #endif
579 
580 	cd = mze_find_unused_cd(zap, hash);
581 	/* given the limited size of the microzap, this can't happen */
582 	ASSERT(cd != ZAP_MAXCD);
583 
584 again:
585 	for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
586 		mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
587 		if (mze->mze_name[0] == 0) {
588 			mze->mze_value = value;
589 			mze->mze_cd = cd;
590 			(void) strcpy(mze->mze_name, name);
591 			zap->zap_m.zap_num_entries++;
592 			zap->zap_m.zap_alloc_next = i+1;
593 			if (zap->zap_m.zap_alloc_next ==
594 			    zap->zap_m.zap_num_chunks)
595 				zap->zap_m.zap_alloc_next = 0;
596 			mze_insert(zap, i, hash, mze);
597 			return;
598 		}
599 	}
600 	if (start != 0) {
601 		start = 0;
602 		goto again;
603 	}
604 	ASSERT(!"out of entries!");
605 }
606 
607 int
608 zap_add(objset_t *os, uint64_t zapobj, const char *name,
609     int integer_size, uint64_t num_integers,
610     const void *val, dmu_tx_t *tx)
611 {
612 	zap_t *zap;
613 	int err;
614 	mzap_ent_t *mze;
615 	const uint64_t *intval = val;
616 	uint64_t hash;
617 
618 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, &zap);
619 	if (err)
620 		return (err);
621 	if (!zap->zap_ismicro) {
622 		err = fzap_add(zap, name, integer_size, num_integers, val, tx);
623 	} else if (integer_size != 8 || num_integers != 1 ||
624 	    strlen(name) >= MZAP_NAME_LEN) {
625 		dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
626 		    zapobj, integer_size, num_integers, name);
627 		mzap_upgrade(zap, tx);
628 		err = fzap_add(zap, name, integer_size, num_integers, val, tx);
629 	} else {
630 		hash = zap_hash(zap, name);
631 		mze = mze_find(zap, name, hash);
632 		if (mze != NULL) {
633 			err = EEXIST;
634 		} else {
635 			mzap_addent(zap, name, hash, *intval);
636 		}
637 	}
638 	zap_unlockdir(zap);
639 	return (err);
640 }
641 
642 int
643 zap_update(objset_t *os, uint64_t zapobj, const char *name,
644     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
645 {
646 	zap_t *zap;
647 	mzap_ent_t *mze;
648 	const uint64_t *intval = val;
649 	uint64_t hash;
650 	int err;
651 
652 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, &zap);
653 	if (err)
654 		return (err);
655 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
656 	if (!zap->zap_ismicro) {
657 		err = fzap_update(zap, name,
658 		    integer_size, num_integers, val, tx);
659 	} else if (integer_size != 8 || num_integers != 1 ||
660 	    strlen(name) >= MZAP_NAME_LEN) {
661 		dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
662 		    zapobj, integer_size, num_integers, name);
663 		mzap_upgrade(zap, tx);
664 		err = fzap_update(zap, name,
665 		    integer_size, num_integers, val, tx);
666 	} else {
667 		hash = zap_hash(zap, name);
668 		mze = mze_find(zap, name, hash);
669 		if (mze != NULL) {
670 			mze->mze_phys.mze_value = *intval;
671 			zap->zap_m.zap_phys->mz_chunk
672 			    [mze->mze_chunkid].mze_value = *intval;
673 		} else {
674 			mzap_addent(zap, name, hash, *intval);
675 		}
676 	}
677 	zap_unlockdir(zap);
678 	return (0);
679 }
680 
681 int
682 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
683 {
684 	zap_t *zap;
685 	int err;
686 	mzap_ent_t *mze;
687 
688 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, &zap);
689 	if (err)
690 		return (err);
691 	if (!zap->zap_ismicro) {
692 		err = fzap_remove(zap, name, tx);
693 	} else {
694 		mze = mze_find(zap, name, zap_hash(zap, name));
695 		if (mze == NULL) {
696 			dprintf("fail: %s\n", name);
697 			err = ENOENT;
698 		} else {
699 			dprintf("success: %s\n", name);
700 			zap->zap_m.zap_num_entries--;
701 			bzero(&zap->zap_m.zap_phys->mz_chunk[mze->mze_chunkid],
702 			    sizeof (mzap_ent_phys_t));
703 			mze_remove(zap, mze);
704 		}
705 	}
706 	zap_unlockdir(zap);
707 	return (err);
708 }
709 
710 
711 /*
712  * Routines for iterating over the attributes.
713  */
714 
715 /*
716  * We want to keep the high 32 bits of the cursor zero if we can, so
717  * that 32-bit programs can access this.  So use a small hash value so
718  * we can fit 4 bits of cd into the 32-bit cursor.
719  *
720  * [ 4 zero bits | 32-bit collision differentiator | 28-bit hash value ]
721  */
722 void
723 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
724     uint64_t serialized)
725 {
726 	zc->zc_objset = os;
727 	zc->zc_zap = NULL;
728 	zc->zc_leaf = NULL;
729 	zc->zc_zapobj = zapobj;
730 	if (serialized == -1ULL) {
731 		zc->zc_hash = -1ULL;
732 		zc->zc_cd = 0;
733 	} else {
734 		zc->zc_hash = serialized << (64-ZAP_HASHBITS);
735 		zc->zc_cd = serialized >> ZAP_HASHBITS;
736 		if (zc->zc_cd >= ZAP_MAXCD) /* corrupt serialized */
737 			zc->zc_cd = 0;
738 	}
739 }
740 
741 void
742 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
743 {
744 	zap_cursor_init_serialized(zc, os, zapobj, 0);
745 }
746 
747 void
748 zap_cursor_fini(zap_cursor_t *zc)
749 {
750 	if (zc->zc_zap) {
751 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
752 		zap_unlockdir(zc->zc_zap);
753 		zc->zc_zap = NULL;
754 	}
755 	if (zc->zc_leaf) {
756 		rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
757 		zap_put_leaf(zc->zc_leaf);
758 		zc->zc_leaf = NULL;
759 	}
760 	zc->zc_objset = NULL;
761 }
762 
763 uint64_t
764 zap_cursor_serialize(zap_cursor_t *zc)
765 {
766 	if (zc->zc_hash == -1ULL)
767 		return (-1ULL);
768 	ASSERT((zc->zc_hash & (ZAP_MAXCD-1)) == 0);
769 	ASSERT(zc->zc_cd < ZAP_MAXCD);
770 	return ((zc->zc_hash >> (64-ZAP_HASHBITS)) |
771 	    ((uint64_t)zc->zc_cd << ZAP_HASHBITS));
772 }
773 
774 int
775 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
776 {
777 	int err;
778 	avl_index_t idx;
779 	mzap_ent_t mze_tofind;
780 	mzap_ent_t *mze;
781 
782 	if (zc->zc_hash == -1ULL)
783 		return (ENOENT);
784 
785 	if (zc->zc_zap == NULL) {
786 		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
787 		    RW_READER, TRUE, &zc->zc_zap);
788 		if (err)
789 			return (err);
790 	} else {
791 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
792 	}
793 	if (!zc->zc_zap->zap_ismicro) {
794 		err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
795 	} else {
796 		err = ENOENT;
797 
798 		mze_tofind.mze_hash = zc->zc_hash;
799 		mze_tofind.mze_phys.mze_cd = zc->zc_cd;
800 
801 		mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
802 		ASSERT(mze == NULL || 0 == bcmp(&mze->mze_phys,
803 		    &zc->zc_zap->zap_m.zap_phys->mz_chunk[mze->mze_chunkid],
804 		    sizeof (mze->mze_phys)));
805 		if (mze == NULL) {
806 			mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
807 			    idx, AVL_AFTER);
808 		}
809 		if (mze) {
810 			za->za_integer_length = 8;
811 			za->za_num_integers = 1;
812 			za->za_first_integer = mze->mze_phys.mze_value;
813 			(void) strcpy(za->za_name, mze->mze_phys.mze_name);
814 			zc->zc_hash = mze->mze_hash;
815 			zc->zc_cd = mze->mze_phys.mze_cd;
816 			err = 0;
817 		} else {
818 			zc->zc_hash = -1ULL;
819 		}
820 	}
821 	rw_exit(&zc->zc_zap->zap_rwlock);
822 	return (err);
823 }
824 
825 void
826 zap_cursor_advance(zap_cursor_t *zc)
827 {
828 	if (zc->zc_hash == -1ULL)
829 		return;
830 	zc->zc_cd++;
831 	if (zc->zc_cd >= ZAP_MAXCD) {
832 		zc->zc_cd = 0;
833 		zc->zc_hash += 1ULL<<(64-ZAP_HASHBITS);
834 		if (zc->zc_hash == 0) /* EOF */
835 			zc->zc_hash = -1ULL;
836 	}
837 }
838 
839 int
840 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
841 {
842 	int err;
843 	zap_t *zap;
844 
845 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, &zap);
846 	if (err)
847 		return (err);
848 
849 	bzero(zs, sizeof (zap_stats_t));
850 
851 	if (zap->zap_ismicro) {
852 		zs->zs_blocksize = zap->zap_dbuf->db_size;
853 		zs->zs_num_entries = zap->zap_m.zap_num_entries;
854 		zs->zs_num_blocks = 1;
855 	} else {
856 		fzap_get_stats(zap, zs);
857 	}
858 	zap_unlockdir(zap);
859 	return (0);
860 }
861