1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zio.h> 27 #include <sys/spa.h> 28 #include <sys/dmu.h> 29 #include <sys/zfs_context.h> 30 #include <sys/zap.h> 31 #include <sys/refcount.h> 32 #include <sys/zap_impl.h> 33 #include <sys/zap_leaf.h> 34 #include <sys/avl.h> 35 36 #ifdef _KERNEL 37 #include <sys/sunddi.h> 38 #endif 39 40 static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags); 41 42 uint64_t 43 zap_getflags(zap_t *zap) 44 { 45 if (zap->zap_ismicro) 46 return (0); 47 return (zap->zap_u.zap_fat.zap_phys->zap_flags); 48 } 49 50 int 51 zap_hashbits(zap_t *zap) 52 { 53 if (zap_getflags(zap) & ZAP_FLAG_HASH64) 54 return (48); 55 else 56 return (28); 57 } 58 59 uint32_t 60 zap_maxcd(zap_t *zap) 61 { 62 if (zap_getflags(zap) & ZAP_FLAG_HASH64) 63 return ((1<<16)-1); 64 else 65 return (-1U); 66 } 67 68 static uint64_t 69 zap_hash(zap_name_t *zn) 70 { 71 zap_t *zap = zn->zn_zap; 72 uint64_t h = 0; 73 74 if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) { 75 ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY); 76 h = *(uint64_t *)zn->zn_key_orig; 77 } else { 78 const uint8_t *cp = (const uint8_t *)zn->zn_key_norm; 79 int i, len; 80 81 h = zap->zap_salt; 82 ASSERT(h != 0); 83 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 84 len = zn->zn_key_norm_len; 85 86 /* 87 * Because we previously stored the terminating null on 88 * disk, but didn't hash it, we need to continue to not 89 * hash it. (The zn_key_*_len includes the terminating 90 * null for non-binary keys.) 91 */ 92 if (!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY)) 93 len--; 94 95 for (i = 0; i < len; cp++, i++) 96 h = (h >> 8) ^ zfs_crc64_table[(h ^ *cp) & 0xFF]; 97 98 } 99 /* 100 * Don't use all 64 bits, since we need some in the cookie for 101 * the collision differentiator. We MUST use the high bits, 102 * since those are the ones that we first pay attention to when 103 * chosing the bucket. 104 */ 105 h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1); 106 107 return (h); 108 } 109 110 static int 111 zap_normalize(zap_t *zap, const char *name, char *namenorm) 112 { 113 size_t inlen, outlen; 114 int err; 115 116 ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY)); 117 118 inlen = strlen(name) + 1; 119 outlen = ZAP_MAXNAMELEN; 120 121 err = 0; 122 (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen, 123 zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL | 124 U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err); 125 126 return (err); 127 } 128 129 boolean_t 130 zap_match(zap_name_t *zn, const char *matchname) 131 { 132 ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY)); 133 134 if (zn->zn_matchtype == MT_FIRST) { 135 char norm[ZAP_MAXNAMELEN]; 136 137 if (zap_normalize(zn->zn_zap, matchname, norm) != 0) 138 return (B_FALSE); 139 140 return (strcmp(zn->zn_key_norm, norm) == 0); 141 } else { 142 /* MT_BEST or MT_EXACT */ 143 return (strcmp(zn->zn_key_orig, matchname) == 0); 144 } 145 } 146 147 void 148 zap_name_free(zap_name_t *zn) 149 { 150 kmem_free(zn, sizeof (zap_name_t)); 151 } 152 153 zap_name_t * 154 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt) 155 { 156 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); 157 158 zn->zn_zap = zap; 159 zn->zn_key_intlen = sizeof (*key); 160 zn->zn_key_orig = key; 161 zn->zn_key_orig_len = strlen(zn->zn_key_orig) + 1; 162 zn->zn_matchtype = mt; 163 if (zap->zap_normflags) { 164 if (zap_normalize(zap, key, zn->zn_normbuf) != 0) { 165 zap_name_free(zn); 166 return (NULL); 167 } 168 zn->zn_key_norm = zn->zn_normbuf; 169 zn->zn_key_norm_len = strlen(zn->zn_key_norm) + 1; 170 } else { 171 if (mt != MT_EXACT) { 172 zap_name_free(zn); 173 return (NULL); 174 } 175 zn->zn_key_norm = zn->zn_key_orig; 176 zn->zn_key_norm_len = zn->zn_key_orig_len; 177 } 178 179 zn->zn_hash = zap_hash(zn); 180 return (zn); 181 } 182 183 zap_name_t * 184 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints) 185 { 186 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); 187 188 ASSERT(zap->zap_normflags == 0); 189 zn->zn_zap = zap; 190 zn->zn_key_intlen = sizeof (*key); 191 zn->zn_key_orig = zn->zn_key_norm = key; 192 zn->zn_key_orig_len = zn->zn_key_norm_len = numints; 193 zn->zn_matchtype = MT_EXACT; 194 195 zn->zn_hash = zap_hash(zn); 196 return (zn); 197 } 198 199 static void 200 mzap_byteswap(mzap_phys_t *buf, size_t size) 201 { 202 int i, max; 203 buf->mz_block_type = BSWAP_64(buf->mz_block_type); 204 buf->mz_salt = BSWAP_64(buf->mz_salt); 205 buf->mz_normflags = BSWAP_64(buf->mz_normflags); 206 max = (size / MZAP_ENT_LEN) - 1; 207 for (i = 0; i < max; i++) { 208 buf->mz_chunk[i].mze_value = 209 BSWAP_64(buf->mz_chunk[i].mze_value); 210 buf->mz_chunk[i].mze_cd = 211 BSWAP_32(buf->mz_chunk[i].mze_cd); 212 } 213 } 214 215 void 216 zap_byteswap(void *buf, size_t size) 217 { 218 uint64_t block_type; 219 220 block_type = *(uint64_t *)buf; 221 222 if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) { 223 /* ASSERT(magic == ZAP_LEAF_MAGIC); */ 224 mzap_byteswap(buf, size); 225 } else { 226 fzap_byteswap(buf, size); 227 } 228 } 229 230 static int 231 mze_compare(const void *arg1, const void *arg2) 232 { 233 const mzap_ent_t *mze1 = arg1; 234 const mzap_ent_t *mze2 = arg2; 235 236 if (mze1->mze_hash > mze2->mze_hash) 237 return (+1); 238 if (mze1->mze_hash < mze2->mze_hash) 239 return (-1); 240 if (mze1->mze_phys.mze_cd > mze2->mze_phys.mze_cd) 241 return (+1); 242 if (mze1->mze_phys.mze_cd < mze2->mze_phys.mze_cd) 243 return (-1); 244 return (0); 245 } 246 247 static void 248 mze_insert(zap_t *zap, int chunkid, uint64_t hash, mzap_ent_phys_t *mzep) 249 { 250 mzap_ent_t *mze; 251 252 ASSERT(zap->zap_ismicro); 253 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 254 ASSERT(mzep->mze_cd < zap_maxcd(zap)); 255 256 mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP); 257 mze->mze_chunkid = chunkid; 258 mze->mze_hash = hash; 259 mze->mze_phys = *mzep; 260 avl_add(&zap->zap_m.zap_avl, mze); 261 } 262 263 static mzap_ent_t * 264 mze_find(zap_name_t *zn) 265 { 266 mzap_ent_t mze_tofind; 267 mzap_ent_t *mze; 268 avl_index_t idx; 269 avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl; 270 271 ASSERT(zn->zn_zap->zap_ismicro); 272 ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock)); 273 274 mze_tofind.mze_hash = zn->zn_hash; 275 mze_tofind.mze_phys.mze_cd = 0; 276 277 again: 278 mze = avl_find(avl, &mze_tofind, &idx); 279 if (mze == NULL) 280 mze = avl_nearest(avl, idx, AVL_AFTER); 281 for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) { 282 if (zap_match(zn, mze->mze_phys.mze_name)) 283 return (mze); 284 } 285 if (zn->zn_matchtype == MT_BEST) { 286 zn->zn_matchtype = MT_FIRST; 287 goto again; 288 } 289 return (NULL); 290 } 291 292 static uint32_t 293 mze_find_unused_cd(zap_t *zap, uint64_t hash) 294 { 295 mzap_ent_t mze_tofind; 296 mzap_ent_t *mze; 297 avl_index_t idx; 298 avl_tree_t *avl = &zap->zap_m.zap_avl; 299 uint32_t cd; 300 301 ASSERT(zap->zap_ismicro); 302 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 303 304 mze_tofind.mze_hash = hash; 305 mze_tofind.mze_phys.mze_cd = 0; 306 307 cd = 0; 308 for (mze = avl_find(avl, &mze_tofind, &idx); 309 mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) { 310 if (mze->mze_phys.mze_cd != cd) 311 break; 312 cd++; 313 } 314 315 return (cd); 316 } 317 318 static void 319 mze_remove(zap_t *zap, mzap_ent_t *mze) 320 { 321 ASSERT(zap->zap_ismicro); 322 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 323 324 avl_remove(&zap->zap_m.zap_avl, mze); 325 kmem_free(mze, sizeof (mzap_ent_t)); 326 } 327 328 static void 329 mze_destroy(zap_t *zap) 330 { 331 mzap_ent_t *mze; 332 void *avlcookie = NULL; 333 334 while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie)) 335 kmem_free(mze, sizeof (mzap_ent_t)); 336 avl_destroy(&zap->zap_m.zap_avl); 337 } 338 339 static zap_t * 340 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db) 341 { 342 zap_t *winner; 343 zap_t *zap; 344 int i; 345 346 ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t)); 347 348 zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP); 349 rw_init(&zap->zap_rwlock, 0, 0, 0); 350 rw_enter(&zap->zap_rwlock, RW_WRITER); 351 zap->zap_objset = os; 352 zap->zap_object = obj; 353 zap->zap_dbuf = db; 354 355 if (*(uint64_t *)db->db_data != ZBT_MICRO) { 356 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0); 357 zap->zap_f.zap_block_shift = highbit(db->db_size) - 1; 358 } else { 359 zap->zap_ismicro = TRUE; 360 } 361 362 /* 363 * Make sure that zap_ismicro is set before we let others see 364 * it, because zap_lockdir() checks zap_ismicro without the lock 365 * held. 366 */ 367 winner = dmu_buf_set_user(db, zap, &zap->zap_m.zap_phys, zap_evict); 368 369 if (winner != NULL) { 370 rw_exit(&zap->zap_rwlock); 371 rw_destroy(&zap->zap_rwlock); 372 if (!zap->zap_ismicro) 373 mutex_destroy(&zap->zap_f.zap_num_entries_mtx); 374 kmem_free(zap, sizeof (zap_t)); 375 return (winner); 376 } 377 378 if (zap->zap_ismicro) { 379 zap->zap_salt = zap->zap_m.zap_phys->mz_salt; 380 zap->zap_normflags = zap->zap_m.zap_phys->mz_normflags; 381 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1; 382 avl_create(&zap->zap_m.zap_avl, mze_compare, 383 sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node)); 384 385 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) { 386 mzap_ent_phys_t *mze = 387 &zap->zap_m.zap_phys->mz_chunk[i]; 388 if (mze->mze_name[0]) { 389 zap_name_t *zn; 390 391 zap->zap_m.zap_num_entries++; 392 zn = zap_name_alloc(zap, mze->mze_name, 393 MT_EXACT); 394 mze_insert(zap, i, zn->zn_hash, mze); 395 zap_name_free(zn); 396 } 397 } 398 } else { 399 zap->zap_salt = zap->zap_f.zap_phys->zap_salt; 400 zap->zap_normflags = zap->zap_f.zap_phys->zap_normflags; 401 402 ASSERT3U(sizeof (struct zap_leaf_header), ==, 403 2*ZAP_LEAF_CHUNKSIZE); 404 405 /* 406 * The embedded pointer table should not overlap the 407 * other members. 408 */ 409 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >, 410 &zap->zap_f.zap_phys->zap_salt); 411 412 /* 413 * The embedded pointer table should end at the end of 414 * the block 415 */ 416 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap, 417 1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) - 418 (uintptr_t)zap->zap_f.zap_phys, ==, 419 zap->zap_dbuf->db_size); 420 } 421 rw_exit(&zap->zap_rwlock); 422 return (zap); 423 } 424 425 int 426 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx, 427 krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp) 428 { 429 zap_t *zap; 430 dmu_buf_t *db; 431 krw_t lt; 432 int err; 433 434 *zapp = NULL; 435 436 err = dmu_buf_hold(os, obj, 0, NULL, &db); 437 if (err) 438 return (err); 439 440 #ifdef ZFS_DEBUG 441 { 442 dmu_object_info_t doi; 443 dmu_object_info_from_db(db, &doi); 444 ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap); 445 } 446 #endif 447 448 zap = dmu_buf_get_user(db); 449 if (zap == NULL) 450 zap = mzap_open(os, obj, db); 451 452 /* 453 * We're checking zap_ismicro without the lock held, in order to 454 * tell what type of lock we want. Once we have some sort of 455 * lock, see if it really is the right type. In practice this 456 * can only be different if it was upgraded from micro to fat, 457 * and micro wanted WRITER but fat only needs READER. 458 */ 459 lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti; 460 rw_enter(&zap->zap_rwlock, lt); 461 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) { 462 /* it was upgraded, now we only need reader */ 463 ASSERT(lt == RW_WRITER); 464 ASSERT(RW_READER == 465 (!zap->zap_ismicro && fatreader) ? RW_READER : lti); 466 rw_downgrade(&zap->zap_rwlock); 467 lt = RW_READER; 468 } 469 470 zap->zap_objset = os; 471 472 if (lt == RW_WRITER) 473 dmu_buf_will_dirty(db, tx); 474 475 ASSERT3P(zap->zap_dbuf, ==, db); 476 477 ASSERT(!zap->zap_ismicro || 478 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks); 479 if (zap->zap_ismicro && tx && adding && 480 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) { 481 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE; 482 if (newsz > MZAP_MAX_BLKSZ) { 483 dprintf("upgrading obj %llu: num_entries=%u\n", 484 obj, zap->zap_m.zap_num_entries); 485 *zapp = zap; 486 return (mzap_upgrade(zapp, tx, 0)); 487 } 488 err = dmu_object_set_blocksize(os, obj, newsz, 0, tx); 489 ASSERT3U(err, ==, 0); 490 zap->zap_m.zap_num_chunks = 491 db->db_size / MZAP_ENT_LEN - 1; 492 } 493 494 *zapp = zap; 495 return (0); 496 } 497 498 void 499 zap_unlockdir(zap_t *zap) 500 { 501 rw_exit(&zap->zap_rwlock); 502 dmu_buf_rele(zap->zap_dbuf, NULL); 503 } 504 505 static int 506 mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags) 507 { 508 mzap_phys_t *mzp; 509 int i, sz, nchunks; 510 int err = 0; 511 zap_t *zap = *zapp; 512 513 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 514 515 sz = zap->zap_dbuf->db_size; 516 mzp = kmem_alloc(sz, KM_SLEEP); 517 bcopy(zap->zap_dbuf->db_data, mzp, sz); 518 nchunks = zap->zap_m.zap_num_chunks; 519 520 if (!flags) { 521 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object, 522 1ULL << fzap_default_block_shift, 0, tx); 523 if (err) { 524 kmem_free(mzp, sz); 525 return (err); 526 } 527 } 528 529 dprintf("upgrading obj=%llu with %u chunks\n", 530 zap->zap_object, nchunks); 531 /* XXX destroy the avl later, so we can use the stored hash value */ 532 mze_destroy(zap); 533 534 fzap_upgrade(zap, tx, flags); 535 536 for (i = 0; i < nchunks; i++) { 537 mzap_ent_phys_t *mze = &mzp->mz_chunk[i]; 538 zap_name_t *zn; 539 if (mze->mze_name[0] == 0) 540 continue; 541 dprintf("adding %s=%llu\n", 542 mze->mze_name, mze->mze_value); 543 zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT); 544 err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx); 545 zap = zn->zn_zap; /* fzap_add_cd() may change zap */ 546 zap_name_free(zn); 547 if (err) 548 break; 549 } 550 kmem_free(mzp, sz); 551 *zapp = zap; 552 return (err); 553 } 554 555 static void 556 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags, 557 dmu_tx_t *tx) 558 { 559 dmu_buf_t *db; 560 mzap_phys_t *zp; 561 562 VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db)); 563 564 #ifdef ZFS_DEBUG 565 { 566 dmu_object_info_t doi; 567 dmu_object_info_from_db(db, &doi); 568 ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap); 569 } 570 #endif 571 572 dmu_buf_will_dirty(db, tx); 573 zp = db->db_data; 574 zp->mz_block_type = ZBT_MICRO; 575 zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL; 576 zp->mz_normflags = normflags; 577 dmu_buf_rele(db, FTAG); 578 579 if (flags != 0) { 580 zap_t *zap; 581 /* Only fat zap supports flags; upgrade immediately. */ 582 VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER, 583 B_FALSE, B_FALSE, &zap)); 584 VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags)); 585 zap_unlockdir(zap); 586 } 587 } 588 589 int 590 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot, 591 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 592 { 593 return (zap_create_claim_norm(os, obj, 594 0, ot, bonustype, bonuslen, tx)); 595 } 596 597 int 598 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags, 599 dmu_object_type_t ot, 600 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 601 { 602 int err; 603 604 err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx); 605 if (err != 0) 606 return (err); 607 mzap_create_impl(os, obj, normflags, 0, tx); 608 return (0); 609 } 610 611 uint64_t 612 zap_create(objset_t *os, dmu_object_type_t ot, 613 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 614 { 615 return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx)); 616 } 617 618 uint64_t 619 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot, 620 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 621 { 622 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx); 623 624 mzap_create_impl(os, obj, normflags, 0, tx); 625 return (obj); 626 } 627 628 uint64_t 629 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags, 630 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, 631 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 632 { 633 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx); 634 635 ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT && 636 leaf_blockshift <= SPA_MAXBLOCKSHIFT && 637 indirect_blockshift >= SPA_MINBLOCKSHIFT && 638 indirect_blockshift <= SPA_MAXBLOCKSHIFT); 639 640 VERIFY(dmu_object_set_blocksize(os, obj, 641 1ULL << leaf_blockshift, indirect_blockshift, tx) == 0); 642 643 mzap_create_impl(os, obj, normflags, flags, tx); 644 return (obj); 645 } 646 647 int 648 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx) 649 { 650 /* 651 * dmu_object_free will free the object number and free the 652 * data. Freeing the data will cause our pageout function to be 653 * called, which will destroy our data (zap_leaf_t's and zap_t). 654 */ 655 656 return (dmu_object_free(os, zapobj, tx)); 657 } 658 659 _NOTE(ARGSUSED(0)) 660 void 661 zap_evict(dmu_buf_t *db, void *vzap) 662 { 663 zap_t *zap = vzap; 664 665 rw_destroy(&zap->zap_rwlock); 666 667 if (zap->zap_ismicro) 668 mze_destroy(zap); 669 else 670 mutex_destroy(&zap->zap_f.zap_num_entries_mtx); 671 672 kmem_free(zap, sizeof (zap_t)); 673 } 674 675 int 676 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count) 677 { 678 zap_t *zap; 679 int err; 680 681 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 682 if (err) 683 return (err); 684 if (!zap->zap_ismicro) { 685 err = fzap_count(zap, count); 686 } else { 687 *count = zap->zap_m.zap_num_entries; 688 } 689 zap_unlockdir(zap); 690 return (err); 691 } 692 693 /* 694 * zn may be NULL; if not specified, it will be computed if needed. 695 * See also the comment above zap_entry_normalization_conflict(). 696 */ 697 static boolean_t 698 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze) 699 { 700 mzap_ent_t *other; 701 int direction = AVL_BEFORE; 702 boolean_t allocdzn = B_FALSE; 703 704 if (zap->zap_normflags == 0) 705 return (B_FALSE); 706 707 again: 708 for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction); 709 other && other->mze_hash == mze->mze_hash; 710 other = avl_walk(&zap->zap_m.zap_avl, other, direction)) { 711 712 if (zn == NULL) { 713 zn = zap_name_alloc(zap, mze->mze_phys.mze_name, 714 MT_FIRST); 715 allocdzn = B_TRUE; 716 } 717 if (zap_match(zn, other->mze_phys.mze_name)) { 718 if (allocdzn) 719 zap_name_free(zn); 720 return (B_TRUE); 721 } 722 } 723 724 if (direction == AVL_BEFORE) { 725 direction = AVL_AFTER; 726 goto again; 727 } 728 729 if (allocdzn) 730 zap_name_free(zn); 731 return (B_FALSE); 732 } 733 734 /* 735 * Routines for manipulating attributes. 736 */ 737 738 int 739 zap_lookup(objset_t *os, uint64_t zapobj, const char *name, 740 uint64_t integer_size, uint64_t num_integers, void *buf) 741 { 742 return (zap_lookup_norm(os, zapobj, name, integer_size, 743 num_integers, buf, MT_EXACT, NULL, 0, NULL)); 744 } 745 746 int 747 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name, 748 uint64_t integer_size, uint64_t num_integers, void *buf, 749 matchtype_t mt, char *realname, int rn_len, 750 boolean_t *ncp) 751 { 752 zap_t *zap; 753 int err; 754 mzap_ent_t *mze; 755 zap_name_t *zn; 756 757 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 758 if (err) 759 return (err); 760 zn = zap_name_alloc(zap, name, mt); 761 if (zn == NULL) { 762 zap_unlockdir(zap); 763 return (ENOTSUP); 764 } 765 766 if (!zap->zap_ismicro) { 767 err = fzap_lookup(zn, integer_size, num_integers, buf, 768 realname, rn_len, ncp); 769 } else { 770 mze = mze_find(zn); 771 if (mze == NULL) { 772 err = ENOENT; 773 } else { 774 if (num_integers < 1) { 775 err = EOVERFLOW; 776 } else if (integer_size != 8) { 777 err = EINVAL; 778 } else { 779 *(uint64_t *)buf = mze->mze_phys.mze_value; 780 (void) strlcpy(realname, 781 mze->mze_phys.mze_name, rn_len); 782 if (ncp) { 783 *ncp = mzap_normalization_conflict(zap, 784 zn, mze); 785 } 786 } 787 } 788 } 789 zap_name_free(zn); 790 zap_unlockdir(zap); 791 return (err); 792 } 793 794 int 795 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 796 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf) 797 { 798 zap_t *zap; 799 int err; 800 zap_name_t *zn; 801 802 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 803 if (err) 804 return (err); 805 zn = zap_name_alloc_uint64(zap, key, key_numints); 806 if (zn == NULL) { 807 zap_unlockdir(zap); 808 return (ENOTSUP); 809 } 810 811 err = fzap_lookup(zn, integer_size, num_integers, buf, 812 NULL, 0, NULL); 813 zap_name_free(zn); 814 zap_unlockdir(zap); 815 return (err); 816 } 817 818 int 819 zap_contains(objset_t *os, uint64_t zapobj, const char *name) 820 { 821 int err = (zap_lookup_norm(os, zapobj, name, 0, 822 0, NULL, MT_EXACT, NULL, 0, NULL)); 823 if (err == EOVERFLOW || err == EINVAL) 824 err = 0; /* found, but skipped reading the value */ 825 return (err); 826 } 827 828 int 829 zap_length(objset_t *os, uint64_t zapobj, const char *name, 830 uint64_t *integer_size, uint64_t *num_integers) 831 { 832 zap_t *zap; 833 int err; 834 mzap_ent_t *mze; 835 zap_name_t *zn; 836 837 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 838 if (err) 839 return (err); 840 zn = zap_name_alloc(zap, name, MT_EXACT); 841 if (zn == NULL) { 842 zap_unlockdir(zap); 843 return (ENOTSUP); 844 } 845 if (!zap->zap_ismicro) { 846 err = fzap_length(zn, integer_size, num_integers); 847 } else { 848 mze = mze_find(zn); 849 if (mze == NULL) { 850 err = ENOENT; 851 } else { 852 if (integer_size) 853 *integer_size = 8; 854 if (num_integers) 855 *num_integers = 1; 856 } 857 } 858 zap_name_free(zn); 859 zap_unlockdir(zap); 860 return (err); 861 } 862 863 int 864 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 865 int key_numints, uint64_t *integer_size, uint64_t *num_integers) 866 { 867 zap_t *zap; 868 int err; 869 zap_name_t *zn; 870 871 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 872 if (err) 873 return (err); 874 zn = zap_name_alloc_uint64(zap, key, key_numints); 875 if (zn == NULL) { 876 zap_unlockdir(zap); 877 return (ENOTSUP); 878 } 879 err = fzap_length(zn, integer_size, num_integers); 880 zap_name_free(zn); 881 zap_unlockdir(zap); 882 return (err); 883 } 884 885 static void 886 mzap_addent(zap_name_t *zn, uint64_t value) 887 { 888 int i; 889 zap_t *zap = zn->zn_zap; 890 int start = zap->zap_m.zap_alloc_next; 891 uint32_t cd; 892 893 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 894 895 #ifdef ZFS_DEBUG 896 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) { 897 mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i]; 898 ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0); 899 } 900 #endif 901 902 cd = mze_find_unused_cd(zap, zn->zn_hash); 903 /* given the limited size of the microzap, this can't happen */ 904 ASSERT(cd < zap_maxcd(zap)); 905 906 again: 907 for (i = start; i < zap->zap_m.zap_num_chunks; i++) { 908 mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i]; 909 if (mze->mze_name[0] == 0) { 910 mze->mze_value = value; 911 mze->mze_cd = cd; 912 (void) strcpy(mze->mze_name, zn->zn_key_orig); 913 zap->zap_m.zap_num_entries++; 914 zap->zap_m.zap_alloc_next = i+1; 915 if (zap->zap_m.zap_alloc_next == 916 zap->zap_m.zap_num_chunks) 917 zap->zap_m.zap_alloc_next = 0; 918 mze_insert(zap, i, zn->zn_hash, mze); 919 return; 920 } 921 } 922 if (start != 0) { 923 start = 0; 924 goto again; 925 } 926 ASSERT(!"out of entries!"); 927 } 928 929 int 930 zap_add(objset_t *os, uint64_t zapobj, const char *key, 931 int integer_size, uint64_t num_integers, 932 const void *val, dmu_tx_t *tx) 933 { 934 zap_t *zap; 935 int err; 936 mzap_ent_t *mze; 937 const uint64_t *intval = val; 938 zap_name_t *zn; 939 940 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); 941 if (err) 942 return (err); 943 zn = zap_name_alloc(zap, key, MT_EXACT); 944 if (zn == NULL) { 945 zap_unlockdir(zap); 946 return (ENOTSUP); 947 } 948 if (!zap->zap_ismicro) { 949 err = fzap_add(zn, integer_size, num_integers, val, tx); 950 zap = zn->zn_zap; /* fzap_add() may change zap */ 951 } else if (integer_size != 8 || num_integers != 1 || 952 strlen(key) >= MZAP_NAME_LEN) { 953 err = mzap_upgrade(&zn->zn_zap, tx, 0); 954 if (err == 0) 955 err = fzap_add(zn, integer_size, num_integers, val, tx); 956 zap = zn->zn_zap; /* fzap_add() may change zap */ 957 } else { 958 mze = mze_find(zn); 959 if (mze != NULL) { 960 err = EEXIST; 961 } else { 962 mzap_addent(zn, *intval); 963 } 964 } 965 ASSERT(zap == zn->zn_zap); 966 zap_name_free(zn); 967 if (zap != NULL) /* may be NULL if fzap_add() failed */ 968 zap_unlockdir(zap); 969 return (err); 970 } 971 972 int 973 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 974 int key_numints, int integer_size, uint64_t num_integers, 975 const void *val, dmu_tx_t *tx) 976 { 977 zap_t *zap; 978 int err; 979 zap_name_t *zn; 980 981 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); 982 if (err) 983 return (err); 984 zn = zap_name_alloc_uint64(zap, key, key_numints); 985 if (zn == NULL) { 986 zap_unlockdir(zap); 987 return (ENOTSUP); 988 } 989 err = fzap_add(zn, integer_size, num_integers, val, tx); 990 zap = zn->zn_zap; /* fzap_add() may change zap */ 991 zap_name_free(zn); 992 if (zap != NULL) /* may be NULL if fzap_add() failed */ 993 zap_unlockdir(zap); 994 return (err); 995 } 996 997 int 998 zap_update(objset_t *os, uint64_t zapobj, const char *name, 999 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) 1000 { 1001 zap_t *zap; 1002 mzap_ent_t *mze; 1003 const uint64_t *intval = val; 1004 zap_name_t *zn; 1005 int err; 1006 1007 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); 1008 if (err) 1009 return (err); 1010 zn = zap_name_alloc(zap, name, MT_EXACT); 1011 if (zn == NULL) { 1012 zap_unlockdir(zap); 1013 return (ENOTSUP); 1014 } 1015 if (!zap->zap_ismicro) { 1016 err = fzap_update(zn, integer_size, num_integers, val, tx); 1017 zap = zn->zn_zap; /* fzap_update() may change zap */ 1018 } else if (integer_size != 8 || num_integers != 1 || 1019 strlen(name) >= MZAP_NAME_LEN) { 1020 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n", 1021 zapobj, integer_size, num_integers, name); 1022 err = mzap_upgrade(&zn->zn_zap, tx, 0); 1023 if (err == 0) 1024 err = fzap_update(zn, integer_size, num_integers, 1025 val, tx); 1026 zap = zn->zn_zap; /* fzap_update() may change zap */ 1027 } else { 1028 mze = mze_find(zn); 1029 if (mze != NULL) { 1030 mze->mze_phys.mze_value = *intval; 1031 zap->zap_m.zap_phys->mz_chunk 1032 [mze->mze_chunkid].mze_value = *intval; 1033 } else { 1034 mzap_addent(zn, *intval); 1035 } 1036 } 1037 ASSERT(zap == zn->zn_zap); 1038 zap_name_free(zn); 1039 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ 1040 zap_unlockdir(zap); 1041 return (err); 1042 } 1043 1044 int 1045 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1046 int key_numints, 1047 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) 1048 { 1049 zap_t *zap; 1050 zap_name_t *zn; 1051 int err; 1052 1053 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); 1054 if (err) 1055 return (err); 1056 zn = zap_name_alloc_uint64(zap, key, key_numints); 1057 if (zn == NULL) { 1058 zap_unlockdir(zap); 1059 return (ENOTSUP); 1060 } 1061 err = fzap_update(zn, integer_size, num_integers, val, tx); 1062 zap = zn->zn_zap; /* fzap_update() may change zap */ 1063 zap_name_free(zn); 1064 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ 1065 zap_unlockdir(zap); 1066 return (err); 1067 } 1068 1069 int 1070 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx) 1071 { 1072 return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx)); 1073 } 1074 1075 int 1076 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name, 1077 matchtype_t mt, dmu_tx_t *tx) 1078 { 1079 zap_t *zap; 1080 int err; 1081 mzap_ent_t *mze; 1082 zap_name_t *zn; 1083 1084 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap); 1085 if (err) 1086 return (err); 1087 zn = zap_name_alloc(zap, name, mt); 1088 if (zn == NULL) { 1089 zap_unlockdir(zap); 1090 return (ENOTSUP); 1091 } 1092 if (!zap->zap_ismicro) { 1093 err = fzap_remove(zn, tx); 1094 } else { 1095 mze = mze_find(zn); 1096 if (mze == NULL) { 1097 err = ENOENT; 1098 } else { 1099 zap->zap_m.zap_num_entries--; 1100 bzero(&zap->zap_m.zap_phys->mz_chunk[mze->mze_chunkid], 1101 sizeof (mzap_ent_phys_t)); 1102 mze_remove(zap, mze); 1103 } 1104 } 1105 zap_name_free(zn); 1106 zap_unlockdir(zap); 1107 return (err); 1108 } 1109 1110 int 1111 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1112 int key_numints, dmu_tx_t *tx) 1113 { 1114 zap_t *zap; 1115 int err; 1116 zap_name_t *zn; 1117 1118 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap); 1119 if (err) 1120 return (err); 1121 zn = zap_name_alloc_uint64(zap, key, key_numints); 1122 if (zn == NULL) { 1123 zap_unlockdir(zap); 1124 return (ENOTSUP); 1125 } 1126 err = fzap_remove(zn, tx); 1127 zap_name_free(zn); 1128 zap_unlockdir(zap); 1129 return (err); 1130 } 1131 1132 /* 1133 * Routines for iterating over the attributes. 1134 */ 1135 1136 void 1137 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj, 1138 uint64_t serialized) 1139 { 1140 zc->zc_objset = os; 1141 zc->zc_zap = NULL; 1142 zc->zc_leaf = NULL; 1143 zc->zc_zapobj = zapobj; 1144 zc->zc_serialized = serialized; 1145 zc->zc_hash = 0; 1146 zc->zc_cd = 0; 1147 } 1148 1149 void 1150 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj) 1151 { 1152 zap_cursor_init_serialized(zc, os, zapobj, 0); 1153 } 1154 1155 void 1156 zap_cursor_fini(zap_cursor_t *zc) 1157 { 1158 if (zc->zc_zap) { 1159 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 1160 zap_unlockdir(zc->zc_zap); 1161 zc->zc_zap = NULL; 1162 } 1163 if (zc->zc_leaf) { 1164 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); 1165 zap_put_leaf(zc->zc_leaf); 1166 zc->zc_leaf = NULL; 1167 } 1168 zc->zc_objset = NULL; 1169 } 1170 1171 uint64_t 1172 zap_cursor_serialize(zap_cursor_t *zc) 1173 { 1174 if (zc->zc_hash == -1ULL) 1175 return (-1ULL); 1176 if (zc->zc_zap == NULL) 1177 return (zc->zc_serialized); 1178 ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0); 1179 ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap)); 1180 1181 /* 1182 * We want to keep the high 32 bits of the cursor zero if we can, so 1183 * that 32-bit programs can access this. So usually use a small 1184 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits 1185 * of the cursor. 1186 * 1187 * [ collision differentiator | zap_hashbits()-bit hash value ] 1188 */ 1189 return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) | 1190 ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap))); 1191 } 1192 1193 int 1194 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za) 1195 { 1196 int err; 1197 avl_index_t idx; 1198 mzap_ent_t mze_tofind; 1199 mzap_ent_t *mze; 1200 1201 if (zc->zc_hash == -1ULL) 1202 return (ENOENT); 1203 1204 if (zc->zc_zap == NULL) { 1205 int hb; 1206 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL, 1207 RW_READER, TRUE, FALSE, &zc->zc_zap); 1208 if (err) 1209 return (err); 1210 1211 /* 1212 * To support zap_cursor_init_serialized, advance, retrieve, 1213 * we must add to the existing zc_cd, which may already 1214 * be 1 due to the zap_cursor_advance. 1215 */ 1216 ASSERT(zc->zc_hash == 0); 1217 hb = zap_hashbits(zc->zc_zap); 1218 zc->zc_hash = zc->zc_serialized << (64 - hb); 1219 zc->zc_cd += zc->zc_serialized >> hb; 1220 if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */ 1221 zc->zc_cd = 0; 1222 } else { 1223 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 1224 } 1225 if (!zc->zc_zap->zap_ismicro) { 1226 err = fzap_cursor_retrieve(zc->zc_zap, zc, za); 1227 } else { 1228 err = ENOENT; 1229 1230 mze_tofind.mze_hash = zc->zc_hash; 1231 mze_tofind.mze_phys.mze_cd = zc->zc_cd; 1232 1233 mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx); 1234 if (mze == NULL) { 1235 mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl, 1236 idx, AVL_AFTER); 1237 } 1238 if (mze) { 1239 ASSERT(0 == bcmp(&mze->mze_phys, 1240 &zc->zc_zap->zap_m.zap_phys->mz_chunk 1241 [mze->mze_chunkid], sizeof (mze->mze_phys))); 1242 1243 za->za_normalization_conflict = 1244 mzap_normalization_conflict(zc->zc_zap, NULL, mze); 1245 za->za_integer_length = 8; 1246 za->za_num_integers = 1; 1247 za->za_first_integer = mze->mze_phys.mze_value; 1248 (void) strcpy(za->za_name, mze->mze_phys.mze_name); 1249 zc->zc_hash = mze->mze_hash; 1250 zc->zc_cd = mze->mze_phys.mze_cd; 1251 err = 0; 1252 } else { 1253 zc->zc_hash = -1ULL; 1254 } 1255 } 1256 rw_exit(&zc->zc_zap->zap_rwlock); 1257 return (err); 1258 } 1259 1260 void 1261 zap_cursor_advance(zap_cursor_t *zc) 1262 { 1263 if (zc->zc_hash == -1ULL) 1264 return; 1265 zc->zc_cd++; 1266 } 1267 1268 int 1269 zap_cursor_move_to_key(zap_cursor_t *zc, const char *name, matchtype_t mt) 1270 { 1271 int err = 0; 1272 mzap_ent_t *mze; 1273 zap_name_t *zn; 1274 1275 if (zc->zc_zap == NULL) { 1276 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL, 1277 RW_READER, TRUE, FALSE, &zc->zc_zap); 1278 if (err) 1279 return (err); 1280 } else { 1281 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 1282 } 1283 1284 zn = zap_name_alloc(zc->zc_zap, name, mt); 1285 if (zn == NULL) { 1286 rw_exit(&zc->zc_zap->zap_rwlock); 1287 return (ENOTSUP); 1288 } 1289 1290 if (!zc->zc_zap->zap_ismicro) { 1291 err = fzap_cursor_move_to_key(zc, zn); 1292 } else { 1293 mze = mze_find(zn); 1294 if (mze == NULL) { 1295 err = ENOENT; 1296 goto out; 1297 } 1298 zc->zc_hash = mze->mze_hash; 1299 zc->zc_cd = mze->mze_phys.mze_cd; 1300 } 1301 1302 out: 1303 zap_name_free(zn); 1304 rw_exit(&zc->zc_zap->zap_rwlock); 1305 return (err); 1306 } 1307 1308 int 1309 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs) 1310 { 1311 int err; 1312 zap_t *zap; 1313 1314 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 1315 if (err) 1316 return (err); 1317 1318 bzero(zs, sizeof (zap_stats_t)); 1319 1320 if (zap->zap_ismicro) { 1321 zs->zs_blocksize = zap->zap_dbuf->db_size; 1322 zs->zs_num_entries = zap->zap_m.zap_num_entries; 1323 zs->zs_num_blocks = 1; 1324 } else { 1325 fzap_get_stats(zap, zs); 1326 } 1327 zap_unlockdir(zap); 1328 return (0); 1329 } 1330 1331 int 1332 zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add, 1333 uint64_t *towrite, uint64_t *tooverwrite) 1334 { 1335 zap_t *zap; 1336 int err = 0; 1337 1338 1339 /* 1340 * Since, we don't have a name, we cannot figure out which blocks will 1341 * be affected in this operation. So, account for the worst case : 1342 * - 3 blocks overwritten: target leaf, ptrtbl block, header block 1343 * - 4 new blocks written if adding: 1344 * - 2 blocks for possibly split leaves, 1345 * - 2 grown ptrtbl blocks 1346 * 1347 * This also accomodates the case where an add operation to a fairly 1348 * large microzap results in a promotion to fatzap. 1349 */ 1350 if (name == NULL) { 1351 *towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE; 1352 return (err); 1353 } 1354 1355 /* 1356 * We lock the zap with adding == FALSE. Because, if we pass 1357 * the actual value of add, it could trigger a mzap_upgrade(). 1358 * At present we are just evaluating the possibility of this operation 1359 * and hence we donot want to trigger an upgrade. 1360 */ 1361 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 1362 if (err) 1363 return (err); 1364 1365 if (!zap->zap_ismicro) { 1366 zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT); 1367 if (zn) { 1368 err = fzap_count_write(zn, add, towrite, 1369 tooverwrite); 1370 zap_name_free(zn); 1371 } else { 1372 /* 1373 * We treat this case as similar to (name == NULL) 1374 */ 1375 *towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE; 1376 } 1377 } else { 1378 /* 1379 * We are here if (name != NULL) and this is a micro-zap. 1380 * We account for the header block depending on whether it 1381 * is freeable. 1382 * 1383 * Incase of an add-operation it is hard to find out 1384 * if this add will promote this microzap to fatzap. 1385 * Hence, we consider the worst case and account for the 1386 * blocks assuming this microzap would be promoted to a 1387 * fatzap. 1388 * 1389 * 1 block overwritten : header block 1390 * 4 new blocks written : 2 new split leaf, 2 grown 1391 * ptrtbl blocks 1392 */ 1393 if (dmu_buf_freeable(zap->zap_dbuf)) 1394 *tooverwrite += SPA_MAXBLOCKSIZE; 1395 else 1396 *towrite += SPA_MAXBLOCKSIZE; 1397 1398 if (add) { 1399 *towrite += 4 * SPA_MAXBLOCKSIZE; 1400 } 1401 } 1402 1403 zap_unlockdir(zap); 1404 return (err); 1405 } 1406