1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/spa_impl.h> 34 #include <sys/zio.h> 35 #include <sys/avl.h> 36 #include <sys/dsl_pool.h> 37 38 /* 39 * ZFS I/O Scheduler 40 * --------------- 41 * 42 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The 43 * I/O scheduler determines when and in what order those operations are 44 * issued. The I/O scheduler divides operations into five I/O classes 45 * prioritized in the following order: sync read, sync write, async read, 46 * async write, and scrub/resilver. Each queue defines the minimum and 47 * maximum number of concurrent operations that may be issued to the device. 48 * In addition, the device has an aggregate maximum. Note that the sum of the 49 * per-queue minimums must not exceed the aggregate maximum, and if the 50 * aggregate maximum is equal to or greater than the sum of the per-queue 51 * maximums, the per-queue minimum has no effect. 52 * 53 * For many physical devices, throughput increases with the number of 54 * concurrent operations, but latency typically suffers. Further, physical 55 * devices typically have a limit at which more concurrent operations have no 56 * effect on throughput or can actually cause it to decrease. 57 * 58 * The scheduler selects the next operation to issue by first looking for an 59 * I/O class whose minimum has not been satisfied. Once all are satisfied and 60 * the aggregate maximum has not been hit, the scheduler looks for classes 61 * whose maximum has not been satisfied. Iteration through the I/O classes is 62 * done in the order specified above. No further operations are issued if the 63 * aggregate maximum number of concurrent operations has been hit or if there 64 * are no operations queued for an I/O class that has not hit its maximum. 65 * Every time an i/o is queued or an operation completes, the I/O scheduler 66 * looks for new operations to issue. 67 * 68 * All I/O classes have a fixed maximum number of outstanding operations 69 * except for the async write class. Asynchronous writes represent the data 70 * that is committed to stable storage during the syncing stage for 71 * transaction groups (see txg.c). Transaction groups enter the syncing state 72 * periodically so the number of queued async writes will quickly burst up and 73 * then bleed down to zero. Rather than servicing them as quickly as possible, 74 * the I/O scheduler changes the maximum number of active async write i/os 75 * according to the amount of dirty data in the pool (see dsl_pool.c). Since 76 * both throughput and latency typically increase with the number of 77 * concurrent operations issued to physical devices, reducing the burstiness 78 * in the number of concurrent operations also stabilizes the response time of 79 * operations from other -- and in particular synchronous -- queues. In broad 80 * strokes, the I/O scheduler will issue more concurrent operations from the 81 * async write queue as there's more dirty data in the pool. 82 * 83 * Async Writes 84 * 85 * The number of concurrent operations issued for the async write I/O class 86 * follows a piece-wise linear function defined by a few adjustable points. 87 * 88 * | o---------| <-- zfs_vdev_async_write_max_active 89 * ^ | /^ | 90 * | | / | | 91 * active | / | | 92 * I/O | / | | 93 * count | / | | 94 * | / | | 95 * |------------o | | <-- zfs_vdev_async_write_min_active 96 * 0|____________^______|_________| 97 * 0% | | 100% of zfs_dirty_data_max 98 * | | 99 * | `-- zfs_vdev_async_write_active_max_dirty_percent 100 * `--------- zfs_vdev_async_write_active_min_dirty_percent 101 * 102 * Until the amount of dirty data exceeds a minimum percentage of the dirty 103 * data allowed in the pool, the I/O scheduler will limit the number of 104 * concurrent operations to the minimum. As that threshold is crossed, the 105 * number of concurrent operations issued increases linearly to the maximum at 106 * the specified maximum percentage of the dirty data allowed in the pool. 107 * 108 * Ideally, the amount of dirty data on a busy pool will stay in the sloped 109 * part of the function between zfs_vdev_async_write_active_min_dirty_percent 110 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the 111 * maximum percentage, this indicates that the rate of incoming data is 112 * greater than the rate that the backend storage can handle. In this case, we 113 * must further throttle incoming writes (see dmu_tx_delay() for details). 114 */ 115 116 /* 117 * The maximum number of i/os active to each device. Ideally, this will be >= 118 * the sum of each queue's max_active. It must be at least the sum of each 119 * queue's min_active. 120 */ 121 uint32_t zfs_vdev_max_active = 1000; 122 123 /* 124 * Per-queue limits on the number of i/os active to each device. If the 125 * sum of the queue's max_active is < zfs_vdev_max_active, then the 126 * min_active comes into play. We will send min_active from each queue, 127 * and then select from queues in the order defined by zio_priority_t. 128 * 129 * In general, smaller max_active's will lead to lower latency of synchronous 130 * operations. Larger max_active's may lead to higher overall throughput, 131 * depending on underlying storage. 132 * 133 * The ratio of the queues' max_actives determines the balance of performance 134 * between reads, writes, and scrubs. E.g., increasing 135 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete 136 * more quickly, but reads and writes to have higher latency and lower 137 * throughput. 138 */ 139 uint32_t zfs_vdev_sync_read_min_active = 10; 140 uint32_t zfs_vdev_sync_read_max_active = 10; 141 uint32_t zfs_vdev_sync_write_min_active = 10; 142 uint32_t zfs_vdev_sync_write_max_active = 10; 143 uint32_t zfs_vdev_async_read_min_active = 1; 144 uint32_t zfs_vdev_async_read_max_active = 3; 145 uint32_t zfs_vdev_async_write_min_active = 1; 146 uint32_t zfs_vdev_async_write_max_active = 10; 147 uint32_t zfs_vdev_scrub_min_active = 1; 148 uint32_t zfs_vdev_scrub_max_active = 2; 149 150 /* 151 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent 152 * dirty data, use zfs_vdev_async_write_min_active. When it has more than 153 * zfs_vdev_async_write_active_max_dirty_percent, use 154 * zfs_vdev_async_write_max_active. The value is linearly interpolated 155 * between min and max. 156 */ 157 int zfs_vdev_async_write_active_min_dirty_percent = 30; 158 int zfs_vdev_async_write_active_max_dirty_percent = 60; 159 160 /* 161 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O. 162 * For read I/Os, we also aggregate across small adjacency gaps; for writes 163 * we include spans of optional I/Os to aid aggregation at the disk even when 164 * they aren't able to help us aggregate at this level. 165 */ 166 int zfs_vdev_aggregation_limit = SPA_OLD_MAXBLOCKSIZE; 167 int zfs_vdev_read_gap_limit = 32 << 10; 168 int zfs_vdev_write_gap_limit = 4 << 10; 169 170 int 171 vdev_queue_offset_compare(const void *x1, const void *x2) 172 { 173 const zio_t *z1 = x1; 174 const zio_t *z2 = x2; 175 176 if (z1->io_offset < z2->io_offset) 177 return (-1); 178 if (z1->io_offset > z2->io_offset) 179 return (1); 180 181 if (z1 < z2) 182 return (-1); 183 if (z1 > z2) 184 return (1); 185 186 return (0); 187 } 188 189 static inline avl_tree_t * 190 vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p) 191 { 192 return (&vq->vq_class[p].vqc_queued_tree); 193 } 194 195 static inline avl_tree_t * 196 vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t) 197 { 198 ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE); 199 if (t == ZIO_TYPE_READ) 200 return (&vq->vq_read_offset_tree); 201 else 202 return (&vq->vq_write_offset_tree); 203 } 204 205 int 206 vdev_queue_timestamp_compare(const void *x1, const void *x2) 207 { 208 const zio_t *z1 = x1; 209 const zio_t *z2 = x2; 210 211 if (z1->io_timestamp < z2->io_timestamp) 212 return (-1); 213 if (z1->io_timestamp > z2->io_timestamp) 214 return (1); 215 216 if (z1 < z2) 217 return (-1); 218 if (z1 > z2) 219 return (1); 220 221 return (0); 222 } 223 224 void 225 vdev_queue_init(vdev_t *vd) 226 { 227 vdev_queue_t *vq = &vd->vdev_queue; 228 229 mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL); 230 vq->vq_vdev = vd; 231 232 avl_create(&vq->vq_active_tree, vdev_queue_offset_compare, 233 sizeof (zio_t), offsetof(struct zio, io_queue_node)); 234 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ), 235 vdev_queue_offset_compare, sizeof (zio_t), 236 offsetof(struct zio, io_offset_node)); 237 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE), 238 vdev_queue_offset_compare, sizeof (zio_t), 239 offsetof(struct zio, io_offset_node)); 240 241 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 242 int (*compfn) (const void *, const void *); 243 244 /* 245 * The synchronous i/o queues are dispatched in FIFO rather 246 * than LBA order. This provides more consistent latency for 247 * these i/os. 248 */ 249 if (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE) 250 compfn = vdev_queue_timestamp_compare; 251 else 252 compfn = vdev_queue_offset_compare; 253 254 avl_create(vdev_queue_class_tree(vq, p), compfn, 255 sizeof (zio_t), offsetof(struct zio, io_queue_node)); 256 } 257 } 258 259 void 260 vdev_queue_fini(vdev_t *vd) 261 { 262 vdev_queue_t *vq = &vd->vdev_queue; 263 264 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) 265 avl_destroy(vdev_queue_class_tree(vq, p)); 266 avl_destroy(&vq->vq_active_tree); 267 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ)); 268 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE)); 269 270 mutex_destroy(&vq->vq_lock); 271 } 272 273 static void 274 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio) 275 { 276 spa_t *spa = zio->io_spa; 277 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 278 avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio); 279 avl_add(vdev_queue_type_tree(vq, zio->io_type), zio); 280 281 mutex_enter(&spa->spa_iokstat_lock); 282 spa->spa_queue_stats[zio->io_priority].spa_queued++; 283 if (spa->spa_iokstat != NULL) 284 kstat_waitq_enter(spa->spa_iokstat->ks_data); 285 mutex_exit(&spa->spa_iokstat_lock); 286 } 287 288 static void 289 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio) 290 { 291 spa_t *spa = zio->io_spa; 292 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 293 avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio); 294 avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio); 295 296 mutex_enter(&spa->spa_iokstat_lock); 297 ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0); 298 spa->spa_queue_stats[zio->io_priority].spa_queued--; 299 if (spa->spa_iokstat != NULL) 300 kstat_waitq_exit(spa->spa_iokstat->ks_data); 301 mutex_exit(&spa->spa_iokstat_lock); 302 } 303 304 static void 305 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio) 306 { 307 spa_t *spa = zio->io_spa; 308 ASSERT(MUTEX_HELD(&vq->vq_lock)); 309 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 310 vq->vq_class[zio->io_priority].vqc_active++; 311 avl_add(&vq->vq_active_tree, zio); 312 313 mutex_enter(&spa->spa_iokstat_lock); 314 spa->spa_queue_stats[zio->io_priority].spa_active++; 315 if (spa->spa_iokstat != NULL) 316 kstat_runq_enter(spa->spa_iokstat->ks_data); 317 mutex_exit(&spa->spa_iokstat_lock); 318 } 319 320 static void 321 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio) 322 { 323 spa_t *spa = zio->io_spa; 324 ASSERT(MUTEX_HELD(&vq->vq_lock)); 325 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 326 vq->vq_class[zio->io_priority].vqc_active--; 327 avl_remove(&vq->vq_active_tree, zio); 328 329 mutex_enter(&spa->spa_iokstat_lock); 330 ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0); 331 spa->spa_queue_stats[zio->io_priority].spa_active--; 332 if (spa->spa_iokstat != NULL) { 333 kstat_io_t *ksio = spa->spa_iokstat->ks_data; 334 335 kstat_runq_exit(spa->spa_iokstat->ks_data); 336 if (zio->io_type == ZIO_TYPE_READ) { 337 ksio->reads++; 338 ksio->nread += zio->io_size; 339 } else if (zio->io_type == ZIO_TYPE_WRITE) { 340 ksio->writes++; 341 ksio->nwritten += zio->io_size; 342 } 343 } 344 mutex_exit(&spa->spa_iokstat_lock); 345 } 346 347 static void 348 vdev_queue_agg_io_done(zio_t *aio) 349 { 350 if (aio->io_type == ZIO_TYPE_READ) { 351 zio_t *pio; 352 while ((pio = zio_walk_parents(aio)) != NULL) { 353 bcopy((char *)aio->io_data + (pio->io_offset - 354 aio->io_offset), pio->io_data, pio->io_size); 355 } 356 } 357 358 zio_buf_free(aio->io_data, aio->io_size); 359 } 360 361 static int 362 vdev_queue_class_min_active(zio_priority_t p) 363 { 364 switch (p) { 365 case ZIO_PRIORITY_SYNC_READ: 366 return (zfs_vdev_sync_read_min_active); 367 case ZIO_PRIORITY_SYNC_WRITE: 368 return (zfs_vdev_sync_write_min_active); 369 case ZIO_PRIORITY_ASYNC_READ: 370 return (zfs_vdev_async_read_min_active); 371 case ZIO_PRIORITY_ASYNC_WRITE: 372 return (zfs_vdev_async_write_min_active); 373 case ZIO_PRIORITY_SCRUB: 374 return (zfs_vdev_scrub_min_active); 375 default: 376 panic("invalid priority %u", p); 377 return (0); 378 } 379 } 380 381 static int 382 vdev_queue_max_async_writes(spa_t *spa) 383 { 384 int writes; 385 uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total; 386 uint64_t min_bytes = zfs_dirty_data_max * 387 zfs_vdev_async_write_active_min_dirty_percent / 100; 388 uint64_t max_bytes = zfs_dirty_data_max * 389 zfs_vdev_async_write_active_max_dirty_percent / 100; 390 391 /* 392 * Sync tasks correspond to interactive user actions. To reduce the 393 * execution time of those actions we push data out as fast as possible. 394 */ 395 if (spa_has_pending_synctask(spa)) { 396 return (zfs_vdev_async_write_max_active); 397 } 398 399 if (dirty < min_bytes) 400 return (zfs_vdev_async_write_min_active); 401 if (dirty > max_bytes) 402 return (zfs_vdev_async_write_max_active); 403 404 /* 405 * linear interpolation: 406 * slope = (max_writes - min_writes) / (max_bytes - min_bytes) 407 * move right by min_bytes 408 * move up by min_writes 409 */ 410 writes = (dirty - min_bytes) * 411 (zfs_vdev_async_write_max_active - 412 zfs_vdev_async_write_min_active) / 413 (max_bytes - min_bytes) + 414 zfs_vdev_async_write_min_active; 415 ASSERT3U(writes, >=, zfs_vdev_async_write_min_active); 416 ASSERT3U(writes, <=, zfs_vdev_async_write_max_active); 417 return (writes); 418 } 419 420 static int 421 vdev_queue_class_max_active(spa_t *spa, zio_priority_t p) 422 { 423 switch (p) { 424 case ZIO_PRIORITY_SYNC_READ: 425 return (zfs_vdev_sync_read_max_active); 426 case ZIO_PRIORITY_SYNC_WRITE: 427 return (zfs_vdev_sync_write_max_active); 428 case ZIO_PRIORITY_ASYNC_READ: 429 return (zfs_vdev_async_read_max_active); 430 case ZIO_PRIORITY_ASYNC_WRITE: 431 return (vdev_queue_max_async_writes(spa)); 432 case ZIO_PRIORITY_SCRUB: 433 return (zfs_vdev_scrub_max_active); 434 default: 435 panic("invalid priority %u", p); 436 return (0); 437 } 438 } 439 440 /* 441 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if 442 * there is no eligible class. 443 */ 444 static zio_priority_t 445 vdev_queue_class_to_issue(vdev_queue_t *vq) 446 { 447 spa_t *spa = vq->vq_vdev->vdev_spa; 448 zio_priority_t p; 449 450 if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active) 451 return (ZIO_PRIORITY_NUM_QUEUEABLE); 452 453 /* find a queue that has not reached its minimum # outstanding i/os */ 454 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 455 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 && 456 vq->vq_class[p].vqc_active < 457 vdev_queue_class_min_active(p)) 458 return (p); 459 } 460 461 /* 462 * If we haven't found a queue, look for one that hasn't reached its 463 * maximum # outstanding i/os. 464 */ 465 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 466 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 && 467 vq->vq_class[p].vqc_active < 468 vdev_queue_class_max_active(spa, p)) 469 return (p); 470 } 471 472 /* No eligible queued i/os */ 473 return (ZIO_PRIORITY_NUM_QUEUEABLE); 474 } 475 476 /* 477 * Compute the range spanned by two i/os, which is the endpoint of the last 478 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset). 479 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio); 480 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0. 481 */ 482 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset) 483 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio)) 484 485 static zio_t * 486 vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio) 487 { 488 zio_t *first, *last, *aio, *dio, *mandatory, *nio; 489 uint64_t maxgap = 0; 490 uint64_t size; 491 boolean_t stretch = B_FALSE; 492 avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type); 493 enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT; 494 495 if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE) 496 return (NULL); 497 498 first = last = zio; 499 500 if (zio->io_type == ZIO_TYPE_READ) 501 maxgap = zfs_vdev_read_gap_limit; 502 503 /* 504 * We can aggregate I/Os that are sufficiently adjacent and of 505 * the same flavor, as expressed by the AGG_INHERIT flags. 506 * The latter requirement is necessary so that certain 507 * attributes of the I/O, such as whether it's a normal I/O 508 * or a scrub/resilver, can be preserved in the aggregate. 509 * We can include optional I/Os, but don't allow them 510 * to begin a range as they add no benefit in that situation. 511 */ 512 513 /* 514 * We keep track of the last non-optional I/O. 515 */ 516 mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first; 517 518 /* 519 * Walk backwards through sufficiently contiguous I/Os 520 * recording the last non-option I/O. 521 */ 522 while ((dio = AVL_PREV(t, first)) != NULL && 523 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 524 IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit && 525 IO_GAP(dio, first) <= maxgap) { 526 first = dio; 527 if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL)) 528 mandatory = first; 529 } 530 531 /* 532 * Skip any initial optional I/Os. 533 */ 534 while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) { 535 first = AVL_NEXT(t, first); 536 ASSERT(first != NULL); 537 } 538 539 /* 540 * Walk forward through sufficiently contiguous I/Os. 541 */ 542 while ((dio = AVL_NEXT(t, last)) != NULL && 543 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 544 IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit && 545 IO_GAP(last, dio) <= maxgap) { 546 last = dio; 547 if (!(last->io_flags & ZIO_FLAG_OPTIONAL)) 548 mandatory = last; 549 } 550 551 /* 552 * Now that we've established the range of the I/O aggregation 553 * we must decide what to do with trailing optional I/Os. 554 * For reads, there's nothing to do. While we are unable to 555 * aggregate further, it's possible that a trailing optional 556 * I/O would allow the underlying device to aggregate with 557 * subsequent I/Os. We must therefore determine if the next 558 * non-optional I/O is close enough to make aggregation 559 * worthwhile. 560 */ 561 if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) { 562 zio_t *nio = last; 563 while ((dio = AVL_NEXT(t, nio)) != NULL && 564 IO_GAP(nio, dio) == 0 && 565 IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) { 566 nio = dio; 567 if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) { 568 stretch = B_TRUE; 569 break; 570 } 571 } 572 } 573 574 if (stretch) { 575 /* This may be a no-op. */ 576 dio = AVL_NEXT(t, last); 577 dio->io_flags &= ~ZIO_FLAG_OPTIONAL; 578 } else { 579 while (last != mandatory && last != first) { 580 ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL); 581 last = AVL_PREV(t, last); 582 ASSERT(last != NULL); 583 } 584 } 585 586 if (first == last) 587 return (NULL); 588 589 size = IO_SPAN(first, last); 590 ASSERT3U(size, <=, zfs_vdev_aggregation_limit); 591 592 aio = zio_vdev_delegated_io(first->io_vd, first->io_offset, 593 zio_buf_alloc(size), size, first->io_type, zio->io_priority, 594 flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE, 595 vdev_queue_agg_io_done, NULL); 596 aio->io_timestamp = first->io_timestamp; 597 598 nio = first; 599 do { 600 dio = nio; 601 nio = AVL_NEXT(t, dio); 602 ASSERT3U(dio->io_type, ==, aio->io_type); 603 604 if (dio->io_flags & ZIO_FLAG_NODATA) { 605 ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE); 606 bzero((char *)aio->io_data + (dio->io_offset - 607 aio->io_offset), dio->io_size); 608 } else if (dio->io_type == ZIO_TYPE_WRITE) { 609 bcopy(dio->io_data, (char *)aio->io_data + 610 (dio->io_offset - aio->io_offset), 611 dio->io_size); 612 } 613 614 zio_add_child(dio, aio); 615 vdev_queue_io_remove(vq, dio); 616 zio_vdev_io_bypass(dio); 617 zio_execute(dio); 618 } while (dio != last); 619 620 return (aio); 621 } 622 623 static zio_t * 624 vdev_queue_io_to_issue(vdev_queue_t *vq) 625 { 626 zio_t *zio, *aio; 627 zio_priority_t p; 628 avl_index_t idx; 629 avl_tree_t *tree; 630 zio_t search; 631 632 again: 633 ASSERT(MUTEX_HELD(&vq->vq_lock)); 634 635 p = vdev_queue_class_to_issue(vq); 636 637 if (p == ZIO_PRIORITY_NUM_QUEUEABLE) { 638 /* No eligible queued i/os */ 639 return (NULL); 640 } 641 642 /* 643 * For LBA-ordered queues (async / scrub), issue the i/o which follows 644 * the most recently issued i/o in LBA (offset) order. 645 * 646 * For FIFO queues (sync), issue the i/o with the lowest timestamp. 647 */ 648 tree = vdev_queue_class_tree(vq, p); 649 search.io_timestamp = 0; 650 search.io_offset = vq->vq_last_offset + 1; 651 VERIFY3P(avl_find(tree, &search, &idx), ==, NULL); 652 zio = avl_nearest(tree, idx, AVL_AFTER); 653 if (zio == NULL) 654 zio = avl_first(tree); 655 ASSERT3U(zio->io_priority, ==, p); 656 657 aio = vdev_queue_aggregate(vq, zio); 658 if (aio != NULL) 659 zio = aio; 660 else 661 vdev_queue_io_remove(vq, zio); 662 663 /* 664 * If the I/O is or was optional and therefore has no data, we need to 665 * simply discard it. We need to drop the vdev queue's lock to avoid a 666 * deadlock that we could encounter since this I/O will complete 667 * immediately. 668 */ 669 if (zio->io_flags & ZIO_FLAG_NODATA) { 670 mutex_exit(&vq->vq_lock); 671 zio_vdev_io_bypass(zio); 672 zio_execute(zio); 673 mutex_enter(&vq->vq_lock); 674 goto again; 675 } 676 677 vdev_queue_pending_add(vq, zio); 678 vq->vq_last_offset = zio->io_offset; 679 680 return (zio); 681 } 682 683 zio_t * 684 vdev_queue_io(zio_t *zio) 685 { 686 vdev_queue_t *vq = &zio->io_vd->vdev_queue; 687 zio_t *nio; 688 689 if (zio->io_flags & ZIO_FLAG_DONT_QUEUE) 690 return (zio); 691 692 /* 693 * Children i/os inherent their parent's priority, which might 694 * not match the child's i/o type. Fix it up here. 695 */ 696 if (zio->io_type == ZIO_TYPE_READ) { 697 if (zio->io_priority != ZIO_PRIORITY_SYNC_READ && 698 zio->io_priority != ZIO_PRIORITY_ASYNC_READ && 699 zio->io_priority != ZIO_PRIORITY_SCRUB) 700 zio->io_priority = ZIO_PRIORITY_ASYNC_READ; 701 } else { 702 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 703 if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE && 704 zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE) 705 zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE; 706 } 707 708 zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE; 709 710 mutex_enter(&vq->vq_lock); 711 zio->io_timestamp = gethrtime(); 712 vdev_queue_io_add(vq, zio); 713 nio = vdev_queue_io_to_issue(vq); 714 mutex_exit(&vq->vq_lock); 715 716 if (nio == NULL) 717 return (NULL); 718 719 if (nio->io_done == vdev_queue_agg_io_done) { 720 zio_nowait(nio); 721 return (NULL); 722 } 723 724 return (nio); 725 } 726 727 void 728 vdev_queue_io_done(zio_t *zio) 729 { 730 vdev_queue_t *vq = &zio->io_vd->vdev_queue; 731 zio_t *nio; 732 733 mutex_enter(&vq->vq_lock); 734 735 vdev_queue_pending_remove(vq, zio); 736 737 vq->vq_io_complete_ts = gethrtime(); 738 739 while ((nio = vdev_queue_io_to_issue(vq)) != NULL) { 740 mutex_exit(&vq->vq_lock); 741 if (nio->io_done == vdev_queue_agg_io_done) { 742 zio_nowait(nio); 743 } else { 744 zio_vdev_io_reissue(nio); 745 zio_execute(nio); 746 } 747 mutex_enter(&vq->vq_lock); 748 } 749 750 mutex_exit(&vq->vq_lock); 751 } 752