1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/vdev_impl.h> 32 #include <sys/spa_impl.h> 33 #include <sys/zio.h> 34 #include <sys/avl.h> 35 #include <sys/dsl_pool.h> 36 37 /* 38 * ZFS I/O Scheduler 39 * --------------- 40 * 41 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The 42 * I/O scheduler determines when and in what order those operations are 43 * issued. The I/O scheduler divides operations into five I/O classes 44 * prioritized in the following order: sync read, sync write, async read, 45 * async write, and scrub/resilver. Each queue defines the minimum and 46 * maximum number of concurrent operations that may be issued to the device. 47 * In addition, the device has an aggregate maximum. Note that the sum of the 48 * per-queue minimums must not exceed the aggregate maximum, and if the 49 * aggregate maximum is equal to or greater than the sum of the per-queue 50 * maximums, the per-queue minimum has no effect. 51 * 52 * For many physical devices, throughput increases with the number of 53 * concurrent operations, but latency typically suffers. Further, physical 54 * devices typically have a limit at which more concurrent operations have no 55 * effect on throughput or can actually cause it to decrease. 56 * 57 * The scheduler selects the next operation to issue by first looking for an 58 * I/O class whose minimum has not been satisfied. Once all are satisfied and 59 * the aggregate maximum has not been hit, the scheduler looks for classes 60 * whose maximum has not been satisfied. Iteration through the I/O classes is 61 * done in the order specified above. No further operations are issued if the 62 * aggregate maximum number of concurrent operations has been hit or if there 63 * are no operations queued for an I/O class that has not hit its maximum. 64 * Every time an i/o is queued or an operation completes, the I/O scheduler 65 * looks for new operations to issue. 66 * 67 * All I/O classes have a fixed maximum number of outstanding operations 68 * except for the async write class. Asynchronous writes represent the data 69 * that is committed to stable storage during the syncing stage for 70 * transaction groups (see txg.c). Transaction groups enter the syncing state 71 * periodically so the number of queued async writes will quickly burst up and 72 * then bleed down to zero. Rather than servicing them as quickly as possible, 73 * the I/O scheduler changes the maximum number of active async write i/os 74 * according to the amount of dirty data in the pool (see dsl_pool.c). Since 75 * both throughput and latency typically increase with the number of 76 * concurrent operations issued to physical devices, reducing the burstiness 77 * in the number of concurrent operations also stabilizes the response time of 78 * operations from other -- and in particular synchronous -- queues. In broad 79 * strokes, the I/O scheduler will issue more concurrent operations from the 80 * async write queue as there's more dirty data in the pool. 81 * 82 * Async Writes 83 * 84 * The number of concurrent operations issued for the async write I/O class 85 * follows a piece-wise linear function defined by a few adjustable points. 86 * 87 * | o---------| <-- zfs_vdev_async_write_max_active 88 * ^ | /^ | 89 * | | / | | 90 * active | / | | 91 * I/O | / | | 92 * count | / | | 93 * | / | | 94 * |------------o | | <-- zfs_vdev_async_write_min_active 95 * 0|____________^______|_________| 96 * 0% | | 100% of zfs_dirty_data_max 97 * | | 98 * | `-- zfs_vdev_async_write_active_max_dirty_percent 99 * `--------- zfs_vdev_async_write_active_min_dirty_percent 100 * 101 * Until the amount of dirty data exceeds a minimum percentage of the dirty 102 * data allowed in the pool, the I/O scheduler will limit the number of 103 * concurrent operations to the minimum. As that threshold is crossed, the 104 * number of concurrent operations issued increases linearly to the maximum at 105 * the specified maximum percentage of the dirty data allowed in the pool. 106 * 107 * Ideally, the amount of dirty data on a busy pool will stay in the sloped 108 * part of the function between zfs_vdev_async_write_active_min_dirty_percent 109 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the 110 * maximum percentage, this indicates that the rate of incoming data is 111 * greater than the rate that the backend storage can handle. In this case, we 112 * must further throttle incoming writes (see dmu_tx_delay() for details). 113 */ 114 115 /* 116 * The maximum number of i/os active to each device. Ideally, this will be >= 117 * the sum of each queue's max_active. It must be at least the sum of each 118 * queue's min_active. 119 */ 120 uint32_t zfs_vdev_max_active = 1000; 121 122 /* 123 * Per-queue limits on the number of i/os active to each device. If the 124 * sum of the queue's max_active is < zfs_vdev_max_active, then the 125 * min_active comes into play. We will send min_active from each queue, 126 * and then select from queues in the order defined by zio_priority_t. 127 * 128 * In general, smaller max_active's will lead to lower latency of synchronous 129 * operations. Larger max_active's may lead to higher overall throughput, 130 * depending on underlying storage. 131 * 132 * The ratio of the queues' max_actives determines the balance of performance 133 * between reads, writes, and scrubs. E.g., increasing 134 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete 135 * more quickly, but reads and writes to have higher latency and lower 136 * throughput. 137 */ 138 uint32_t zfs_vdev_sync_read_min_active = 10; 139 uint32_t zfs_vdev_sync_read_max_active = 10; 140 uint32_t zfs_vdev_sync_write_min_active = 10; 141 uint32_t zfs_vdev_sync_write_max_active = 10; 142 uint32_t zfs_vdev_async_read_min_active = 1; 143 uint32_t zfs_vdev_async_read_max_active = 3; 144 uint32_t zfs_vdev_async_write_min_active = 1; 145 uint32_t zfs_vdev_async_write_max_active = 10; 146 uint32_t zfs_vdev_scrub_min_active = 1; 147 uint32_t zfs_vdev_scrub_max_active = 2; 148 149 /* 150 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent 151 * dirty data, use zfs_vdev_async_write_min_active. When it has more than 152 * zfs_vdev_async_write_active_max_dirty_percent, use 153 * zfs_vdev_async_write_max_active. The value is linearly interpolated 154 * between min and max. 155 */ 156 int zfs_vdev_async_write_active_min_dirty_percent = 30; 157 int zfs_vdev_async_write_active_max_dirty_percent = 60; 158 159 /* 160 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O. 161 * For read I/Os, we also aggregate across small adjacency gaps; for writes 162 * we include spans of optional I/Os to aid aggregation at the disk even when 163 * they aren't able to help us aggregate at this level. 164 */ 165 int zfs_vdev_aggregation_limit = SPA_OLD_MAXBLOCKSIZE; 166 int zfs_vdev_read_gap_limit = 32 << 10; 167 int zfs_vdev_write_gap_limit = 4 << 10; 168 169 int 170 vdev_queue_offset_compare(const void *x1, const void *x2) 171 { 172 const zio_t *z1 = x1; 173 const zio_t *z2 = x2; 174 175 if (z1->io_offset < z2->io_offset) 176 return (-1); 177 if (z1->io_offset > z2->io_offset) 178 return (1); 179 180 if (z1 < z2) 181 return (-1); 182 if (z1 > z2) 183 return (1); 184 185 return (0); 186 } 187 188 static inline avl_tree_t * 189 vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p) 190 { 191 return (&vq->vq_class[p].vqc_queued_tree); 192 } 193 194 static inline avl_tree_t * 195 vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t) 196 { 197 ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE); 198 if (t == ZIO_TYPE_READ) 199 return (&vq->vq_read_offset_tree); 200 else 201 return (&vq->vq_write_offset_tree); 202 } 203 204 int 205 vdev_queue_timestamp_compare(const void *x1, const void *x2) 206 { 207 const zio_t *z1 = x1; 208 const zio_t *z2 = x2; 209 210 if (z1->io_timestamp < z2->io_timestamp) 211 return (-1); 212 if (z1->io_timestamp > z2->io_timestamp) 213 return (1); 214 215 if (z1 < z2) 216 return (-1); 217 if (z1 > z2) 218 return (1); 219 220 return (0); 221 } 222 223 void 224 vdev_queue_init(vdev_t *vd) 225 { 226 vdev_queue_t *vq = &vd->vdev_queue; 227 228 mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL); 229 vq->vq_vdev = vd; 230 231 avl_create(&vq->vq_active_tree, vdev_queue_offset_compare, 232 sizeof (zio_t), offsetof(struct zio, io_queue_node)); 233 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ), 234 vdev_queue_offset_compare, sizeof (zio_t), 235 offsetof(struct zio, io_offset_node)); 236 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE), 237 vdev_queue_offset_compare, sizeof (zio_t), 238 offsetof(struct zio, io_offset_node)); 239 240 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 241 int (*compfn) (const void *, const void *); 242 243 /* 244 * The synchronous i/o queues are dispatched in FIFO rather 245 * than LBA order. This provides more consistent latency for 246 * these i/os. 247 */ 248 if (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE) 249 compfn = vdev_queue_timestamp_compare; 250 else 251 compfn = vdev_queue_offset_compare; 252 253 avl_create(vdev_queue_class_tree(vq, p), compfn, 254 sizeof (zio_t), offsetof(struct zio, io_queue_node)); 255 } 256 } 257 258 void 259 vdev_queue_fini(vdev_t *vd) 260 { 261 vdev_queue_t *vq = &vd->vdev_queue; 262 263 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) 264 avl_destroy(vdev_queue_class_tree(vq, p)); 265 avl_destroy(&vq->vq_active_tree); 266 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ)); 267 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE)); 268 269 mutex_destroy(&vq->vq_lock); 270 } 271 272 static void 273 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio) 274 { 275 spa_t *spa = zio->io_spa; 276 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 277 avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio); 278 avl_add(vdev_queue_type_tree(vq, zio->io_type), zio); 279 280 mutex_enter(&spa->spa_iokstat_lock); 281 spa->spa_queue_stats[zio->io_priority].spa_queued++; 282 if (spa->spa_iokstat != NULL) 283 kstat_waitq_enter(spa->spa_iokstat->ks_data); 284 mutex_exit(&spa->spa_iokstat_lock); 285 } 286 287 static void 288 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio) 289 { 290 spa_t *spa = zio->io_spa; 291 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 292 avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio); 293 avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio); 294 295 mutex_enter(&spa->spa_iokstat_lock); 296 ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0); 297 spa->spa_queue_stats[zio->io_priority].spa_queued--; 298 if (spa->spa_iokstat != NULL) 299 kstat_waitq_exit(spa->spa_iokstat->ks_data); 300 mutex_exit(&spa->spa_iokstat_lock); 301 } 302 303 static void 304 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio) 305 { 306 spa_t *spa = zio->io_spa; 307 ASSERT(MUTEX_HELD(&vq->vq_lock)); 308 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 309 vq->vq_class[zio->io_priority].vqc_active++; 310 avl_add(&vq->vq_active_tree, zio); 311 312 mutex_enter(&spa->spa_iokstat_lock); 313 spa->spa_queue_stats[zio->io_priority].spa_active++; 314 if (spa->spa_iokstat != NULL) 315 kstat_runq_enter(spa->spa_iokstat->ks_data); 316 mutex_exit(&spa->spa_iokstat_lock); 317 } 318 319 static void 320 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio) 321 { 322 spa_t *spa = zio->io_spa; 323 ASSERT(MUTEX_HELD(&vq->vq_lock)); 324 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 325 vq->vq_class[zio->io_priority].vqc_active--; 326 avl_remove(&vq->vq_active_tree, zio); 327 328 mutex_enter(&spa->spa_iokstat_lock); 329 ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0); 330 spa->spa_queue_stats[zio->io_priority].spa_active--; 331 if (spa->spa_iokstat != NULL) { 332 kstat_io_t *ksio = spa->spa_iokstat->ks_data; 333 334 kstat_runq_exit(spa->spa_iokstat->ks_data); 335 if (zio->io_type == ZIO_TYPE_READ) { 336 ksio->reads++; 337 ksio->nread += zio->io_size; 338 } else if (zio->io_type == ZIO_TYPE_WRITE) { 339 ksio->writes++; 340 ksio->nwritten += zio->io_size; 341 } 342 } 343 mutex_exit(&spa->spa_iokstat_lock); 344 } 345 346 static void 347 vdev_queue_agg_io_done(zio_t *aio) 348 { 349 if (aio->io_type == ZIO_TYPE_READ) { 350 zio_t *pio; 351 while ((pio = zio_walk_parents(aio)) != NULL) { 352 bcopy((char *)aio->io_data + (pio->io_offset - 353 aio->io_offset), pio->io_data, pio->io_size); 354 } 355 } 356 357 zio_buf_free(aio->io_data, aio->io_size); 358 } 359 360 static int 361 vdev_queue_class_min_active(zio_priority_t p) 362 { 363 switch (p) { 364 case ZIO_PRIORITY_SYNC_READ: 365 return (zfs_vdev_sync_read_min_active); 366 case ZIO_PRIORITY_SYNC_WRITE: 367 return (zfs_vdev_sync_write_min_active); 368 case ZIO_PRIORITY_ASYNC_READ: 369 return (zfs_vdev_async_read_min_active); 370 case ZIO_PRIORITY_ASYNC_WRITE: 371 return (zfs_vdev_async_write_min_active); 372 case ZIO_PRIORITY_SCRUB: 373 return (zfs_vdev_scrub_min_active); 374 default: 375 panic("invalid priority %u", p); 376 return (0); 377 } 378 } 379 380 static int 381 vdev_queue_max_async_writes(spa_t *spa) 382 { 383 int writes; 384 uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total; 385 uint64_t min_bytes = zfs_dirty_data_max * 386 zfs_vdev_async_write_active_min_dirty_percent / 100; 387 uint64_t max_bytes = zfs_dirty_data_max * 388 zfs_vdev_async_write_active_max_dirty_percent / 100; 389 390 /* 391 * Sync tasks correspond to interactive user actions. To reduce the 392 * execution time of those actions we push data out as fast as possible. 393 */ 394 if (spa_has_pending_synctask(spa)) { 395 return (zfs_vdev_async_write_max_active); 396 } 397 398 if (dirty < min_bytes) 399 return (zfs_vdev_async_write_min_active); 400 if (dirty > max_bytes) 401 return (zfs_vdev_async_write_max_active); 402 403 /* 404 * linear interpolation: 405 * slope = (max_writes - min_writes) / (max_bytes - min_bytes) 406 * move right by min_bytes 407 * move up by min_writes 408 */ 409 writes = (dirty - min_bytes) * 410 (zfs_vdev_async_write_max_active - 411 zfs_vdev_async_write_min_active) / 412 (max_bytes - min_bytes) + 413 zfs_vdev_async_write_min_active; 414 ASSERT3U(writes, >=, zfs_vdev_async_write_min_active); 415 ASSERT3U(writes, <=, zfs_vdev_async_write_max_active); 416 return (writes); 417 } 418 419 static int 420 vdev_queue_class_max_active(spa_t *spa, zio_priority_t p) 421 { 422 switch (p) { 423 case ZIO_PRIORITY_SYNC_READ: 424 return (zfs_vdev_sync_read_max_active); 425 case ZIO_PRIORITY_SYNC_WRITE: 426 return (zfs_vdev_sync_write_max_active); 427 case ZIO_PRIORITY_ASYNC_READ: 428 return (zfs_vdev_async_read_max_active); 429 case ZIO_PRIORITY_ASYNC_WRITE: 430 return (vdev_queue_max_async_writes(spa)); 431 case ZIO_PRIORITY_SCRUB: 432 return (zfs_vdev_scrub_max_active); 433 default: 434 panic("invalid priority %u", p); 435 return (0); 436 } 437 } 438 439 /* 440 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if 441 * there is no eligible class. 442 */ 443 static zio_priority_t 444 vdev_queue_class_to_issue(vdev_queue_t *vq) 445 { 446 spa_t *spa = vq->vq_vdev->vdev_spa; 447 zio_priority_t p; 448 449 if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active) 450 return (ZIO_PRIORITY_NUM_QUEUEABLE); 451 452 /* find a queue that has not reached its minimum # outstanding i/os */ 453 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 454 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 && 455 vq->vq_class[p].vqc_active < 456 vdev_queue_class_min_active(p)) 457 return (p); 458 } 459 460 /* 461 * If we haven't found a queue, look for one that hasn't reached its 462 * maximum # outstanding i/os. 463 */ 464 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 465 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 && 466 vq->vq_class[p].vqc_active < 467 vdev_queue_class_max_active(spa, p)) 468 return (p); 469 } 470 471 /* No eligible queued i/os */ 472 return (ZIO_PRIORITY_NUM_QUEUEABLE); 473 } 474 475 /* 476 * Compute the range spanned by two i/os, which is the endpoint of the last 477 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset). 478 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio); 479 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0. 480 */ 481 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset) 482 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio)) 483 484 static zio_t * 485 vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio) 486 { 487 zio_t *first, *last, *aio, *dio, *mandatory, *nio; 488 uint64_t maxgap = 0; 489 uint64_t size; 490 boolean_t stretch = B_FALSE; 491 avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type); 492 enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT; 493 494 if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE) 495 return (NULL); 496 497 first = last = zio; 498 499 if (zio->io_type == ZIO_TYPE_READ) 500 maxgap = zfs_vdev_read_gap_limit; 501 502 /* 503 * We can aggregate I/Os that are sufficiently adjacent and of 504 * the same flavor, as expressed by the AGG_INHERIT flags. 505 * The latter requirement is necessary so that certain 506 * attributes of the I/O, such as whether it's a normal I/O 507 * or a scrub/resilver, can be preserved in the aggregate. 508 * We can include optional I/Os, but don't allow them 509 * to begin a range as they add no benefit in that situation. 510 */ 511 512 /* 513 * We keep track of the last non-optional I/O. 514 */ 515 mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first; 516 517 /* 518 * Walk backwards through sufficiently contiguous I/Os 519 * recording the last non-option I/O. 520 */ 521 while ((dio = AVL_PREV(t, first)) != NULL && 522 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 523 IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit && 524 IO_GAP(dio, first) <= maxgap) { 525 first = dio; 526 if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL)) 527 mandatory = first; 528 } 529 530 /* 531 * Skip any initial optional I/Os. 532 */ 533 while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) { 534 first = AVL_NEXT(t, first); 535 ASSERT(first != NULL); 536 } 537 538 /* 539 * Walk forward through sufficiently contiguous I/Os. 540 */ 541 while ((dio = AVL_NEXT(t, last)) != NULL && 542 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 543 IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit && 544 IO_GAP(last, dio) <= maxgap) { 545 last = dio; 546 if (!(last->io_flags & ZIO_FLAG_OPTIONAL)) 547 mandatory = last; 548 } 549 550 /* 551 * Now that we've established the range of the I/O aggregation 552 * we must decide what to do with trailing optional I/Os. 553 * For reads, there's nothing to do. While we are unable to 554 * aggregate further, it's possible that a trailing optional 555 * I/O would allow the underlying device to aggregate with 556 * subsequent I/Os. We must therefore determine if the next 557 * non-optional I/O is close enough to make aggregation 558 * worthwhile. 559 */ 560 if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) { 561 zio_t *nio = last; 562 while ((dio = AVL_NEXT(t, nio)) != NULL && 563 IO_GAP(nio, dio) == 0 && 564 IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) { 565 nio = dio; 566 if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) { 567 stretch = B_TRUE; 568 break; 569 } 570 } 571 } 572 573 if (stretch) { 574 /* This may be a no-op. */ 575 dio = AVL_NEXT(t, last); 576 dio->io_flags &= ~ZIO_FLAG_OPTIONAL; 577 } else { 578 while (last != mandatory && last != first) { 579 ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL); 580 last = AVL_PREV(t, last); 581 ASSERT(last != NULL); 582 } 583 } 584 585 if (first == last) 586 return (NULL); 587 588 size = IO_SPAN(first, last); 589 ASSERT3U(size, <=, zfs_vdev_aggregation_limit); 590 591 aio = zio_vdev_delegated_io(first->io_vd, first->io_offset, 592 zio_buf_alloc(size), size, first->io_type, zio->io_priority, 593 flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE, 594 vdev_queue_agg_io_done, NULL); 595 aio->io_timestamp = first->io_timestamp; 596 597 nio = first; 598 do { 599 dio = nio; 600 nio = AVL_NEXT(t, dio); 601 ASSERT3U(dio->io_type, ==, aio->io_type); 602 603 if (dio->io_flags & ZIO_FLAG_NODATA) { 604 ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE); 605 bzero((char *)aio->io_data + (dio->io_offset - 606 aio->io_offset), dio->io_size); 607 } else if (dio->io_type == ZIO_TYPE_WRITE) { 608 bcopy(dio->io_data, (char *)aio->io_data + 609 (dio->io_offset - aio->io_offset), 610 dio->io_size); 611 } 612 613 zio_add_child(dio, aio); 614 vdev_queue_io_remove(vq, dio); 615 zio_vdev_io_bypass(dio); 616 zio_execute(dio); 617 } while (dio != last); 618 619 return (aio); 620 } 621 622 static zio_t * 623 vdev_queue_io_to_issue(vdev_queue_t *vq) 624 { 625 zio_t *zio, *aio; 626 zio_priority_t p; 627 avl_index_t idx; 628 avl_tree_t *tree; 629 zio_t search; 630 631 again: 632 ASSERT(MUTEX_HELD(&vq->vq_lock)); 633 634 p = vdev_queue_class_to_issue(vq); 635 636 if (p == ZIO_PRIORITY_NUM_QUEUEABLE) { 637 /* No eligible queued i/os */ 638 return (NULL); 639 } 640 641 /* 642 * For LBA-ordered queues (async / scrub), issue the i/o which follows 643 * the most recently issued i/o in LBA (offset) order. 644 * 645 * For FIFO queues (sync), issue the i/o with the lowest timestamp. 646 */ 647 tree = vdev_queue_class_tree(vq, p); 648 search.io_timestamp = 0; 649 search.io_offset = vq->vq_last_offset + 1; 650 VERIFY3P(avl_find(tree, &search, &idx), ==, NULL); 651 zio = avl_nearest(tree, idx, AVL_AFTER); 652 if (zio == NULL) 653 zio = avl_first(tree); 654 ASSERT3U(zio->io_priority, ==, p); 655 656 aio = vdev_queue_aggregate(vq, zio); 657 if (aio != NULL) 658 zio = aio; 659 else 660 vdev_queue_io_remove(vq, zio); 661 662 /* 663 * If the I/O is or was optional and therefore has no data, we need to 664 * simply discard it. We need to drop the vdev queue's lock to avoid a 665 * deadlock that we could encounter since this I/O will complete 666 * immediately. 667 */ 668 if (zio->io_flags & ZIO_FLAG_NODATA) { 669 mutex_exit(&vq->vq_lock); 670 zio_vdev_io_bypass(zio); 671 zio_execute(zio); 672 mutex_enter(&vq->vq_lock); 673 goto again; 674 } 675 676 vdev_queue_pending_add(vq, zio); 677 vq->vq_last_offset = zio->io_offset; 678 679 return (zio); 680 } 681 682 zio_t * 683 vdev_queue_io(zio_t *zio) 684 { 685 vdev_queue_t *vq = &zio->io_vd->vdev_queue; 686 zio_t *nio; 687 688 if (zio->io_flags & ZIO_FLAG_DONT_QUEUE) 689 return (zio); 690 691 /* 692 * Children i/os inherent their parent's priority, which might 693 * not match the child's i/o type. Fix it up here. 694 */ 695 if (zio->io_type == ZIO_TYPE_READ) { 696 if (zio->io_priority != ZIO_PRIORITY_SYNC_READ && 697 zio->io_priority != ZIO_PRIORITY_ASYNC_READ && 698 zio->io_priority != ZIO_PRIORITY_SCRUB) 699 zio->io_priority = ZIO_PRIORITY_ASYNC_READ; 700 } else { 701 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 702 if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE && 703 zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE) 704 zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE; 705 } 706 707 zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE; 708 709 mutex_enter(&vq->vq_lock); 710 zio->io_timestamp = gethrtime(); 711 vdev_queue_io_add(vq, zio); 712 nio = vdev_queue_io_to_issue(vq); 713 mutex_exit(&vq->vq_lock); 714 715 if (nio == NULL) 716 return (NULL); 717 718 if (nio->io_done == vdev_queue_agg_io_done) { 719 zio_nowait(nio); 720 return (NULL); 721 } 722 723 return (nio); 724 } 725 726 void 727 vdev_queue_io_done(zio_t *zio) 728 { 729 vdev_queue_t *vq = &zio->io_vd->vdev_queue; 730 zio_t *nio; 731 732 mutex_enter(&vq->vq_lock); 733 734 vdev_queue_pending_remove(vq, zio); 735 736 vq->vq_io_complete_ts = gethrtime(); 737 738 while ((nio = vdev_queue_io_to_issue(vq)) != NULL) { 739 mutex_exit(&vq->vq_lock); 740 if (nio->io_done == vdev_queue_agg_io_done) { 741 zio_nowait(nio); 742 } else { 743 zio_vdev_io_reissue(nio); 744 zio_execute(nio); 745 } 746 mutex_enter(&vq->vq_lock); 747 } 748 749 mutex_exit(&vq->vq_lock); 750 } 751