1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Virtual Device Labels 30 * --------------------- 31 * 32 * The vdev label serves several distinct purposes: 33 * 34 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 35 * identity within the pool. 36 * 37 * 2. Verify that all the devices given in a configuration are present 38 * within the pool. 39 * 40 * 3. Determine the uberblock for the pool. 41 * 42 * 4. In case of an import operation, determine the configuration of the 43 * toplevel vdev of which it is a part. 44 * 45 * 5. If an import operation cannot find all the devices in the pool, 46 * provide enough information to the administrator to determine which 47 * devices are missing. 48 * 49 * It is important to note that while the kernel is responsible for writing the 50 * label, it only consumes the information in the first three cases. The 51 * latter information is only consumed in userland when determining the 52 * configuration to import a pool. 53 * 54 * 55 * Label Organization 56 * ------------------ 57 * 58 * Before describing the contents of the label, it's important to understand how 59 * the labels are written and updated with respect to the uberblock. 60 * 61 * When the pool configuration is altered, either because it was newly created 62 * or a device was added, we want to update all the labels such that we can deal 63 * with fatal failure at any point. To this end, each disk has two labels which 64 * are updated before and after the uberblock is synced. Assuming we have 65 * labels and an uberblock with the following transaction groups: 66 * 67 * L1 UB L2 68 * +------+ +------+ +------+ 69 * | | | | | | 70 * | t10 | | t10 | | t10 | 71 * | | | | | | 72 * +------+ +------+ +------+ 73 * 74 * In this stable state, the labels and the uberblock were all updated within 75 * the same transaction group (10). Each label is mirrored and checksummed, so 76 * that we can detect when we fail partway through writing the label. 77 * 78 * In order to identify which labels are valid, the labels are written in the 79 * following manner: 80 * 81 * 1. For each vdev, update 'L1' to the new label 82 * 2. Update the uberblock 83 * 3. For each vdev, update 'L2' to the new label 84 * 85 * Given arbitrary failure, we can determine the correct label to use based on 86 * the transaction group. If we fail after updating L1 but before updating the 87 * UB, we will notice that L1's transaction group is greater than the uberblock, 88 * so L2 must be valid. If we fail after writing the uberblock but before 89 * writing L2, we will notice that L2's transaction group is less than L1, and 90 * therefore L1 is valid. 91 * 92 * Another added complexity is that not every label is updated when the config 93 * is synced. If we add a single device, we do not want to have to re-write 94 * every label for every device in the pool. This means that both L1 and L2 may 95 * be older than the pool uberblock, because the necessary information is stored 96 * on another vdev. 97 * 98 * 99 * On-disk Format 100 * -------------- 101 * 102 * The vdev label consists of two distinct parts, and is wrapped within the 103 * vdev_label_t structure. The label includes 8k of padding to permit legacy 104 * VTOC disk labels, but is otherwise ignored. 105 * 106 * The first half of the label is a packed nvlist which contains pool wide 107 * properties, per-vdev properties, and configuration information. It is 108 * described in more detail below. 109 * 110 * The latter half of the label consists of a redundant array of uberblocks. 111 * These uberblocks are updated whenever a transaction group is committed, 112 * or when the configuration is updated. When a pool is loaded, we scan each 113 * vdev for the 'best' uberblock. 114 * 115 * 116 * Configuration Information 117 * ------------------------- 118 * 119 * The nvlist describing the pool and vdev contains the following elements: 120 * 121 * version ZFS on-disk version 122 * name Pool name 123 * state Pool state 124 * txg Transaction group in which this label was written 125 * pool_guid Unique identifier for this pool 126 * vdev_tree An nvlist describing vdev tree. 127 * 128 * Each leaf device label also contains the following: 129 * 130 * top_guid Unique ID for top-level vdev in which this is contained 131 * guid Unique ID for the leaf vdev 132 * 133 * The 'vs' configuration follows the format described in 'spa_config.c'. 134 */ 135 136 #include <sys/zfs_context.h> 137 #include <sys/spa.h> 138 #include <sys/spa_impl.h> 139 #include <sys/dmu.h> 140 #include <sys/zap.h> 141 #include <sys/vdev.h> 142 #include <sys/vdev_impl.h> 143 #include <sys/uberblock_impl.h> 144 #include <sys/metaslab.h> 145 #include <sys/zio.h> 146 #include <sys/fs/zfs.h> 147 148 /* 149 * Basic routines to read and write from a vdev label. 150 * Used throughout the rest of this file. 151 */ 152 uint64_t 153 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 154 { 155 ASSERT(offset < sizeof (vdev_label_t)); 156 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 157 158 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 159 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 160 } 161 162 /* 163 * Returns back the vdev label associated with the passed in offset. 164 */ 165 int 166 vdev_label_number(uint64_t psize, uint64_t offset) 167 { 168 int l; 169 170 if (offset >= psize - VDEV_LABEL_END_SIZE) { 171 offset -= psize - VDEV_LABEL_END_SIZE; 172 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 173 } 174 l = offset / sizeof (vdev_label_t); 175 return (l < VDEV_LABELS ? l : -1); 176 } 177 178 static void 179 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 180 uint64_t size, zio_done_func_t *done, void *private) 181 { 182 ASSERT(vd->vdev_children == 0); 183 184 zio_nowait(zio_read_phys(zio, vd, 185 vdev_label_offset(vd->vdev_psize, l, offset), 186 size, buf, ZIO_CHECKSUM_LABEL, done, private, 187 ZIO_PRIORITY_SYNC_READ, 188 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 189 B_TRUE)); 190 } 191 192 static void 193 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 194 uint64_t size, zio_done_func_t *done, void *private, int flags) 195 { 196 ASSERT(vd->vdev_children == 0); 197 198 zio_nowait(zio_write_phys(zio, vd, 199 vdev_label_offset(vd->vdev_psize, l, offset), 200 size, buf, ZIO_CHECKSUM_LABEL, done, private, 201 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 202 } 203 204 /* 205 * Generate the nvlist representing this vdev's config. 206 */ 207 nvlist_t * 208 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 209 boolean_t isspare, boolean_t isl2cache) 210 { 211 nvlist_t *nv = NULL; 212 213 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 214 215 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, 216 vd->vdev_ops->vdev_op_type) == 0); 217 if (!isspare && !isl2cache) 218 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id) 219 == 0); 220 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); 221 222 if (vd->vdev_path != NULL) 223 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, 224 vd->vdev_path) == 0); 225 226 if (vd->vdev_devid != NULL) 227 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, 228 vd->vdev_devid) == 0); 229 230 if (vd->vdev_physpath != NULL) 231 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 232 vd->vdev_physpath) == 0); 233 234 if (vd->vdev_nparity != 0) { 235 ASSERT(strcmp(vd->vdev_ops->vdev_op_type, 236 VDEV_TYPE_RAIDZ) == 0); 237 238 /* 239 * Make sure someone hasn't managed to sneak a fancy new vdev 240 * into a crufty old storage pool. 241 */ 242 ASSERT(vd->vdev_nparity == 1 || 243 (vd->vdev_nparity == 2 && 244 spa_version(spa) >= SPA_VERSION_RAID6)); 245 246 /* 247 * Note that we'll add the nparity tag even on storage pools 248 * that only support a single parity device -- older software 249 * will just ignore it. 250 */ 251 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, 252 vd->vdev_nparity) == 0); 253 } 254 255 if (vd->vdev_wholedisk != -1ULL) 256 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 257 vd->vdev_wholedisk) == 0); 258 259 if (vd->vdev_not_present) 260 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0); 261 262 if (vd->vdev_isspare) 263 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0); 264 265 if (!isspare && !isl2cache && vd == vd->vdev_top) { 266 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 267 vd->vdev_ms_array) == 0); 268 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 269 vd->vdev_ms_shift) == 0); 270 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, 271 vd->vdev_ashift) == 0); 272 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 273 vd->vdev_asize) == 0); 274 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, 275 vd->vdev_islog) == 0); 276 } 277 278 if (vd->vdev_dtl.smo_object != 0) 279 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 280 vd->vdev_dtl.smo_object) == 0); 281 282 if (getstats) { 283 vdev_stat_t vs; 284 vdev_get_stats(vd, &vs); 285 VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS, 286 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0); 287 } 288 289 if (!vd->vdev_ops->vdev_op_leaf) { 290 nvlist_t **child; 291 int c; 292 293 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 294 KM_SLEEP); 295 296 for (c = 0; c < vd->vdev_children; c++) 297 child[c] = vdev_config_generate(spa, vd->vdev_child[c], 298 getstats, isspare, isl2cache); 299 300 VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 301 child, vd->vdev_children) == 0); 302 303 for (c = 0; c < vd->vdev_children; c++) 304 nvlist_free(child[c]); 305 306 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 307 308 } else { 309 if (vd->vdev_offline && !vd->vdev_tmpoffline) 310 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, 311 B_TRUE) == 0); 312 if (vd->vdev_faulted) 313 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, 314 B_TRUE) == 0); 315 if (vd->vdev_degraded) 316 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, 317 B_TRUE) == 0); 318 if (vd->vdev_removed) 319 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, 320 B_TRUE) == 0); 321 if (vd->vdev_unspare) 322 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, 323 B_TRUE) == 0); 324 } 325 326 return (nv); 327 } 328 329 nvlist_t * 330 vdev_label_read_config(vdev_t *vd) 331 { 332 spa_t *spa = vd->vdev_spa; 333 nvlist_t *config = NULL; 334 vdev_phys_t *vp; 335 zio_t *zio; 336 int l; 337 338 ASSERT(spa_config_held(spa, RW_READER) || 339 spa_config_held(spa, RW_WRITER)); 340 341 if (!vdev_readable(vd)) 342 return (NULL); 343 344 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 345 346 for (l = 0; l < VDEV_LABELS; l++) { 347 348 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | 349 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CONFIG_HELD); 350 351 vdev_label_read(zio, vd, l, vp, 352 offsetof(vdev_label_t, vl_vdev_phys), 353 sizeof (vdev_phys_t), NULL, NULL); 354 355 if (zio_wait(zio) == 0 && 356 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 357 &config, 0) == 0) 358 break; 359 360 if (config != NULL) { 361 nvlist_free(config); 362 config = NULL; 363 } 364 } 365 366 zio_buf_free(vp, sizeof (vdev_phys_t)); 367 368 return (config); 369 } 370 371 /* 372 * Determine if a device is in use. The 'spare_guid' parameter will be filled 373 * in with the device guid if this spare is active elsewhere on the system. 374 */ 375 static boolean_t 376 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 377 uint64_t *spare_guid, uint64_t *l2cache_guid) 378 { 379 spa_t *spa = vd->vdev_spa; 380 uint64_t state, pool_guid, device_guid, txg, spare_pool; 381 uint64_t vdtxg = 0; 382 nvlist_t *label; 383 384 if (spare_guid) 385 *spare_guid = 0ULL; 386 if (l2cache_guid) 387 *l2cache_guid = 0ULL; 388 389 /* 390 * Read the label, if any, and perform some basic sanity checks. 391 */ 392 if ((label = vdev_label_read_config(vd)) == NULL) 393 return (B_FALSE); 394 395 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 396 &vdtxg); 397 398 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 399 &state) != 0 || 400 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 401 &device_guid) != 0) { 402 nvlist_free(label); 403 return (B_FALSE); 404 } 405 406 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 407 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 408 &pool_guid) != 0 || 409 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 410 &txg) != 0)) { 411 nvlist_free(label); 412 return (B_FALSE); 413 } 414 415 nvlist_free(label); 416 417 /* 418 * Check to see if this device indeed belongs to the pool it claims to 419 * be a part of. The only way this is allowed is if the device is a hot 420 * spare (which we check for later on). 421 */ 422 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 423 !spa_guid_exists(pool_guid, device_guid) && 424 !spa_spare_exists(device_guid, NULL) && 425 !spa_l2cache_exists(device_guid, NULL)) 426 return (B_FALSE); 427 428 /* 429 * If the transaction group is zero, then this an initialized (but 430 * unused) label. This is only an error if the create transaction 431 * on-disk is the same as the one we're using now, in which case the 432 * user has attempted to add the same vdev multiple times in the same 433 * transaction. 434 */ 435 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 436 txg == 0 && vdtxg == crtxg) 437 return (B_TRUE); 438 439 /* 440 * Check to see if this is a spare device. We do an explicit check for 441 * spa_has_spare() here because it may be on our pending list of spares 442 * to add. We also check if it is an l2cache device. 443 */ 444 if (spa_spare_exists(device_guid, &spare_pool) || 445 spa_has_spare(spa, device_guid)) { 446 if (spare_guid) 447 *spare_guid = device_guid; 448 449 switch (reason) { 450 case VDEV_LABEL_CREATE: 451 case VDEV_LABEL_L2CACHE: 452 return (B_TRUE); 453 454 case VDEV_LABEL_REPLACE: 455 return (!spa_has_spare(spa, device_guid) || 456 spare_pool != 0ULL); 457 458 case VDEV_LABEL_SPARE: 459 return (spa_has_spare(spa, device_guid)); 460 } 461 } 462 463 /* 464 * Check to see if this is an l2cache device. 465 */ 466 if (spa_l2cache_exists(device_guid, NULL)) 467 return (B_TRUE); 468 469 /* 470 * If the device is marked ACTIVE, then this device is in use by another 471 * pool on the system. 472 */ 473 return (state == POOL_STATE_ACTIVE); 474 } 475 476 /* 477 * Initialize a vdev label. We check to make sure each leaf device is not in 478 * use, and writable. We put down an initial label which we will later 479 * overwrite with a complete label. Note that it's important to do this 480 * sequentially, not in parallel, so that we catch cases of multiple use of the 481 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 482 * itself. 483 */ 484 int 485 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 486 { 487 spa_t *spa = vd->vdev_spa; 488 nvlist_t *label; 489 vdev_phys_t *vp; 490 vdev_boot_header_t *vb; 491 uberblock_t *ub; 492 zio_t *zio; 493 int l, c, n; 494 char *buf; 495 size_t buflen; 496 int error; 497 uint64_t spare_guid, l2cache_guid; 498 int flags = ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL; 499 500 ASSERT(spa_config_held(spa, RW_WRITER)); 501 502 for (c = 0; c < vd->vdev_children; c++) 503 if ((error = vdev_label_init(vd->vdev_child[c], 504 crtxg, reason)) != 0) 505 return (error); 506 507 if (!vd->vdev_ops->vdev_op_leaf) 508 return (0); 509 510 /* 511 * Dead vdevs cannot be initialized. 512 */ 513 if (vdev_is_dead(vd)) 514 return (EIO); 515 516 /* 517 * Determine if the vdev is in use. 518 */ 519 if (reason != VDEV_LABEL_REMOVE && 520 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 521 return (EBUSY); 522 523 ASSERT(reason != VDEV_LABEL_REMOVE || 524 vdev_inuse(vd, crtxg, reason, NULL, NULL)); 525 526 /* 527 * If this is a request to add or replace a spare or l2cache device 528 * that is in use elsewhere on the system, then we must update the 529 * guid (which was initialized to a random value) to reflect the 530 * actual GUID (which is shared between multiple pools). 531 */ 532 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 533 spare_guid != 0ULL) { 534 vdev_t *pvd = vd->vdev_parent; 535 536 for (; pvd != NULL; pvd = pvd->vdev_parent) { 537 pvd->vdev_guid_sum -= vd->vdev_guid; 538 pvd->vdev_guid_sum += spare_guid; 539 } 540 541 vd->vdev_guid = vd->vdev_guid_sum = spare_guid; 542 543 /* 544 * If this is a replacement, then we want to fallthrough to the 545 * rest of the code. If we're adding a spare, then it's already 546 * labeled appropriately and we can just return. 547 */ 548 if (reason == VDEV_LABEL_SPARE) 549 return (0); 550 ASSERT(reason == VDEV_LABEL_REPLACE); 551 } 552 553 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 554 l2cache_guid != 0ULL) { 555 vdev_t *pvd = vd->vdev_parent; 556 557 for (; pvd != NULL; pvd = pvd->vdev_parent) { 558 pvd->vdev_guid_sum -= vd->vdev_guid; 559 pvd->vdev_guid_sum += l2cache_guid; 560 } 561 562 vd->vdev_guid = vd->vdev_guid_sum = l2cache_guid; 563 564 /* 565 * If this is a replacement, then we want to fallthrough to the 566 * rest of the code. If we're adding an l2cache, then it's 567 * already labeled appropriately and we can just return. 568 */ 569 if (reason == VDEV_LABEL_L2CACHE) 570 return (0); 571 ASSERT(reason == VDEV_LABEL_REPLACE); 572 } 573 574 /* 575 * Initialize its label. 576 */ 577 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 578 bzero(vp, sizeof (vdev_phys_t)); 579 580 /* 581 * Generate a label describing the pool and our top-level vdev. 582 * We mark it as being from txg 0 to indicate that it's not 583 * really part of an active pool just yet. The labels will 584 * be written again with a meaningful txg by spa_sync(). 585 */ 586 if (reason == VDEV_LABEL_SPARE || 587 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 588 /* 589 * For inactive hot spares, we generate a special label that 590 * identifies as a mutually shared hot spare. We write the 591 * label if we are adding a hot spare, or if we are removing an 592 * active hot spare (in which case we want to revert the 593 * labels). 594 */ 595 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 596 597 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 598 spa_version(spa)) == 0); 599 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 600 POOL_STATE_SPARE) == 0); 601 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 602 vd->vdev_guid) == 0); 603 } else if (reason == VDEV_LABEL_L2CACHE || 604 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 605 /* 606 * For level 2 ARC devices, add a special label. 607 */ 608 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 609 610 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 611 spa_version(spa)) == 0); 612 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 613 POOL_STATE_L2CACHE) == 0); 614 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 615 vd->vdev_guid) == 0); 616 } else { 617 label = spa_config_generate(spa, vd, 0ULL, B_FALSE); 618 619 /* 620 * Add our creation time. This allows us to detect multiple 621 * vdev uses as described above, and automatically expires if we 622 * fail. 623 */ 624 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 625 crtxg) == 0); 626 } 627 628 buf = vp->vp_nvlist; 629 buflen = sizeof (vp->vp_nvlist); 630 631 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 632 if (error != 0) { 633 nvlist_free(label); 634 zio_buf_free(vp, sizeof (vdev_phys_t)); 635 /* EFAULT means nvlist_pack ran out of room */ 636 return (error == EFAULT ? ENAMETOOLONG : EINVAL); 637 } 638 639 /* 640 * Initialize boot block header. 641 */ 642 vb = zio_buf_alloc(sizeof (vdev_boot_header_t)); 643 bzero(vb, sizeof (vdev_boot_header_t)); 644 vb->vb_magic = VDEV_BOOT_MAGIC; 645 vb->vb_version = VDEV_BOOT_VERSION; 646 vb->vb_offset = VDEV_BOOT_OFFSET; 647 vb->vb_size = VDEV_BOOT_SIZE; 648 649 /* 650 * Initialize uberblock template. 651 */ 652 ub = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); 653 bzero(ub, VDEV_UBERBLOCK_SIZE(vd)); 654 *ub = spa->spa_uberblock; 655 ub->ub_txg = 0; 656 657 /* 658 * Write everything in parallel. 659 */ 660 zio = zio_root(spa, NULL, NULL, flags); 661 662 for (l = 0; l < VDEV_LABELS; l++) { 663 664 vdev_label_write(zio, vd, l, vp, 665 offsetof(vdev_label_t, vl_vdev_phys), 666 sizeof (vdev_phys_t), NULL, NULL, flags); 667 668 vdev_label_write(zio, vd, l, vb, 669 offsetof(vdev_label_t, vl_boot_header), 670 sizeof (vdev_boot_header_t), NULL, NULL, flags); 671 672 for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 673 vdev_label_write(zio, vd, l, ub, 674 VDEV_UBERBLOCK_OFFSET(vd, n), 675 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL, flags); 676 } 677 } 678 679 error = zio_wait(zio); 680 681 nvlist_free(label); 682 zio_buf_free(ub, VDEV_UBERBLOCK_SIZE(vd)); 683 zio_buf_free(vb, sizeof (vdev_boot_header_t)); 684 zio_buf_free(vp, sizeof (vdev_phys_t)); 685 686 /* 687 * If this vdev hasn't been previously identified as a spare, then we 688 * mark it as such only if a) we are labeling it as a spare, or b) it 689 * exists as a spare elsewhere in the system. Do the same for 690 * level 2 ARC devices. 691 */ 692 if (error == 0 && !vd->vdev_isspare && 693 (reason == VDEV_LABEL_SPARE || 694 spa_spare_exists(vd->vdev_guid, NULL))) 695 spa_spare_add(vd); 696 697 if (error == 0 && !vd->vdev_isl2cache && 698 (reason == VDEV_LABEL_L2CACHE || 699 spa_l2cache_exists(vd->vdev_guid, NULL))) 700 spa_l2cache_add(vd); 701 702 return (error); 703 } 704 705 /* 706 * ========================================================================== 707 * uberblock load/sync 708 * ========================================================================== 709 */ 710 711 /* 712 * Consider the following situation: txg is safely synced to disk. We've 713 * written the first uberblock for txg + 1, and then we lose power. When we 714 * come back up, we fail to see the uberblock for txg + 1 because, say, 715 * it was on a mirrored device and the replica to which we wrote txg + 1 716 * is now offline. If we then make some changes and sync txg + 1, and then 717 * the missing replica comes back, then for a new seconds we'll have two 718 * conflicting uberblocks on disk with the same txg. The solution is simple: 719 * among uberblocks with equal txg, choose the one with the latest timestamp. 720 */ 721 static int 722 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 723 { 724 if (ub1->ub_txg < ub2->ub_txg) 725 return (-1); 726 if (ub1->ub_txg > ub2->ub_txg) 727 return (1); 728 729 if (ub1->ub_timestamp < ub2->ub_timestamp) 730 return (-1); 731 if (ub1->ub_timestamp > ub2->ub_timestamp) 732 return (1); 733 734 return (0); 735 } 736 737 static void 738 vdev_uberblock_load_done(zio_t *zio) 739 { 740 uberblock_t *ub = zio->io_data; 741 uberblock_t *ubbest = zio->io_private; 742 spa_t *spa = zio->io_spa; 743 744 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd)); 745 746 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 747 mutex_enter(&spa->spa_uberblock_lock); 748 if (vdev_uberblock_compare(ub, ubbest) > 0) 749 *ubbest = *ub; 750 mutex_exit(&spa->spa_uberblock_lock); 751 } 752 753 zio_buf_free(zio->io_data, zio->io_size); 754 } 755 756 void 757 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest) 758 { 759 int l, c, n; 760 761 for (c = 0; c < vd->vdev_children; c++) 762 vdev_uberblock_load(zio, vd->vdev_child[c], ubbest); 763 764 if (!vd->vdev_ops->vdev_op_leaf) 765 return; 766 767 if (vdev_is_dead(vd)) 768 return; 769 770 for (l = 0; l < VDEV_LABELS; l++) { 771 for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 772 vdev_label_read(zio, vd, l, 773 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)), 774 VDEV_UBERBLOCK_OFFSET(vd, n), 775 VDEV_UBERBLOCK_SIZE(vd), 776 vdev_uberblock_load_done, ubbest); 777 } 778 } 779 } 780 781 /* 782 * On success, increment root zio's count of good writes. 783 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 784 */ 785 static void 786 vdev_uberblock_sync_done(zio_t *zio) 787 { 788 uint64_t *good_writes = zio->io_private; 789 790 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 791 atomic_add_64(good_writes, 1); 792 } 793 794 /* 795 * Write the uberblock to all labels of all leaves of the specified vdev. 796 */ 797 static void 798 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd) 799 { 800 int l, c, n; 801 uberblock_t *ubbuf; 802 803 for (c = 0; c < vd->vdev_children; c++) 804 vdev_uberblock_sync(zio, ub, vd->vdev_child[c]); 805 806 if (!vd->vdev_ops->vdev_op_leaf) 807 return; 808 809 if (vdev_is_dead(vd)) 810 return; 811 812 n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1); 813 814 ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); 815 bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 816 *ubbuf = *ub; 817 818 for (l = 0; l < VDEV_LABELS; l++) 819 vdev_label_write(zio, vd, l, ubbuf, 820 VDEV_UBERBLOCK_OFFSET(vd, n), 821 VDEV_UBERBLOCK_SIZE(vd), 822 vdev_uberblock_sync_done, zio->io_private, 823 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE); 824 825 zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 826 } 827 828 static void 829 vdev_uberblock_sync_list_done(zio_t *zio) 830 { 831 uint64_t *good_writes = zio->io_private; 832 833 if (*good_writes == 0) 834 zio->io_error = EIO; 835 } 836 837 int 838 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 839 { 840 spa_t *spa = svd[0]->vdev_spa; 841 int v; 842 zio_t *zio, *nio; 843 uint64_t good_writes = 0; 844 int io_flags = flags; 845 846 /* 847 * If we've been asked to update all the vdevs then we change 848 * our flags to ZIO_FLAG_MUSTSUCCEED so that the pipeline can 849 * handle error should all update fail. 850 */ 851 if (svdcount == spa->spa_root_vdev->vdev_children) 852 io_flags &= ~ZIO_FLAG_CANFAIL; 853 854 /* 855 * We rely on the value of good_writes and the root I/O to determine 856 * how a complete failure is handled. In the event that the root is a 857 * ZIO_FLAG_MUSTSUCCED, then the pipeline will block this I/O if we 858 * were unable to update any uberblock. Once the I/O is blocked the 859 * pipeline will retry it when the error is cleared. Unfortunately, 860 * the pipeline does not have the complete I/O tree so it will be 861 * unable to retry the actual uberblock update. Instead we rely on 862 * the value of good_writes to return the failed status to the caller 863 * which will retry on error and thus resubmit the complete I/O 864 * tree. 865 */ 866 zio = zio_root(spa, NULL, NULL, io_flags); 867 nio = zio_null(zio, spa, vdev_uberblock_sync_list_done, &good_writes, 868 flags); 869 for (v = 0; v < svdcount; v++) 870 vdev_uberblock_sync(nio, ub, svd[v]); 871 zio_nowait(nio); 872 (void) zio_wait(zio); 873 874 /* 875 * Flush the uberblocks to disk. This ensures that the odd labels 876 * are no longer needed (because the new uberblocks and the even 877 * labels are safely on disk), so it is safe to overwrite them. 878 */ 879 zio = zio_root(spa, NULL, NULL, flags); 880 881 for (v = 0; v < svdcount; v++) 882 zio_flush(zio, svd[v]); 883 884 (void) zio_wait(zio); 885 886 return (good_writes >= 1 ? 0 : EIO); 887 } 888 889 /* 890 * On success, increment the count of good writes for our top-level vdev. 891 */ 892 static void 893 vdev_label_sync_done(zio_t *zio) 894 { 895 uint64_t *good_writes = zio->io_private; 896 897 if (zio->io_error == 0) 898 atomic_add_64(good_writes, 1); 899 } 900 901 /* 902 * If there weren't enough good writes, indicate failure to the parent. 903 */ 904 static void 905 vdev_label_sync_top_done(zio_t *zio) 906 { 907 uint64_t *good_writes = zio->io_private; 908 909 if (*good_writes == 0) 910 zio->io_error = EIO; 911 912 kmem_free(good_writes, sizeof (uint64_t)); 913 } 914 915 /* 916 * We ignore errors for log devices, simply free the private data. 917 */ 918 static void 919 vdev_label_sync_log_done(zio_t *zio) 920 { 921 kmem_free(zio->io_private, sizeof (uint64_t)); 922 } 923 924 /* 925 * Write all even or odd labels to all leaves of the specified vdev. 926 */ 927 static void 928 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg) 929 { 930 nvlist_t *label; 931 vdev_phys_t *vp; 932 char *buf; 933 size_t buflen; 934 int c; 935 936 for (c = 0; c < vd->vdev_children; c++) 937 vdev_label_sync(zio, vd->vdev_child[c], l, txg); 938 939 if (!vd->vdev_ops->vdev_op_leaf) 940 return; 941 942 if (vdev_is_dead(vd)) 943 return; 944 945 /* 946 * Generate a label describing the top-level config to which we belong. 947 */ 948 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 949 950 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 951 bzero(vp, sizeof (vdev_phys_t)); 952 953 buf = vp->vp_nvlist; 954 buflen = sizeof (vp->vp_nvlist); 955 956 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) { 957 for (; l < VDEV_LABELS; l += 2) { 958 vdev_label_write(zio, vd, l, vp, 959 offsetof(vdev_label_t, vl_vdev_phys), 960 sizeof (vdev_phys_t), 961 vdev_label_sync_done, zio->io_private, 962 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE); 963 } 964 } 965 966 zio_buf_free(vp, sizeof (vdev_phys_t)); 967 nvlist_free(label); 968 } 969 970 int 971 vdev_label_sync_list(spa_t *spa, int l, int flags, uint64_t txg) 972 { 973 list_t *dl = &spa->spa_dirty_list; 974 vdev_t *vd; 975 zio_t *zio, *nio; 976 int error; 977 int io_flags = flags & ~ZIO_FLAG_CANFAIL; 978 979 /* 980 * The root I/O for all label updates must succeed and we track 981 * the error returned back from the null I/O to determine if we 982 * need to reissue the I/O tree from scratch. If we are unable 983 * to update any leaf vdev associated with a dirty top-level vdev, 984 * then the pipeline will either suspend or panic when the root I/O 985 * is issued. If the error is cleared, then the pipleine will retry 986 * the root I/O. Unfortunately we've lost the entire I/O tree so we 987 * return back the original error to the caller and allow the caller 988 * to call use again so that we can build the I/O tree from scratch. 989 */ 990 zio = zio_root(spa, NULL, NULL, io_flags); 991 nio = zio_null(zio, spa, NULL, NULL, flags); 992 993 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 994 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t), 995 KM_SLEEP); 996 zio_t *vio = zio_null(nio, spa, vd->vdev_islog ? 997 vdev_label_sync_log_done : vdev_label_sync_top_done, 998 good_writes, flags); 999 vdev_label_sync(vio, vd, l, txg); 1000 zio_nowait(vio); 1001 } 1002 error = zio_wait(nio); 1003 (void) zio_wait(zio); 1004 1005 /* 1006 * Flush the new labels to disk. 1007 */ 1008 zio = zio_root(spa, NULL, NULL, flags); 1009 1010 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 1011 zio_flush(zio, vd); 1012 1013 (void) zio_wait(zio); 1014 1015 return (error); 1016 } 1017 1018 /* 1019 * Sync the uberblock and any changes to the vdev configuration. 1020 * 1021 * The order of operations is carefully crafted to ensure that 1022 * if the system panics or loses power at any time, the state on disk 1023 * is still transactionally consistent. The in-line comments below 1024 * describe the failure semantics at each stage. 1025 * 1026 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 1027 * at any time, you can just call it again, and it will resume its work. 1028 */ 1029 void 1030 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg) 1031 { 1032 spa_t *spa = svd[0]->vdev_spa; 1033 uberblock_t *ub = &spa->spa_uberblock; 1034 vdev_t *vd; 1035 zio_t *zio; 1036 int flags = ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL; 1037 1038 ASSERT(ub->ub_txg <= txg); 1039 1040 /* 1041 * If this isn't a resync due to I/O errors, 1042 * and nothing changed in this transaction group, 1043 * and the vdev configuration hasn't changed, 1044 * then there's nothing to do. 1045 */ 1046 if (ub->ub_txg < txg && 1047 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE && 1048 list_is_empty(&spa->spa_dirty_list)) 1049 return; 1050 1051 if (txg > spa_freeze_txg(spa)) 1052 return; 1053 1054 ASSERT(txg <= spa->spa_final_txg); 1055 1056 /* 1057 * Flush the write cache of every disk that's been written to 1058 * in this transaction group. This ensures that all blocks 1059 * written in this txg will be committed to stable storage 1060 * before any uberblock that references them. 1061 */ 1062 zio = zio_root(spa, NULL, NULL, flags); 1063 1064 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; 1065 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 1066 zio_flush(zio, vd); 1067 1068 (void) zio_wait(zio); 1069 1070 /* 1071 * Sync out the even labels (L0, L2) for every dirty vdev. If the 1072 * system dies in the middle of this process, that's OK: all of the 1073 * even labels that made it to disk will be newer than any uberblock, 1074 * and will therefore be considered invalid. The odd labels (L1, L3), 1075 * which have not yet been touched, will still be valid. We flush 1076 * the new labels to disk to ensure that all even-label updates 1077 * are committed to stable storage before the uberblock update. 1078 * Failure to update any of the labels will invoke the 'failmode' 1079 * code path. Thus we must retry the entire I/O tree once the error 1080 * is cleared and we ar resumed. 1081 */ 1082 while (vdev_label_sync_list(spa, 0, flags, txg) != 0) 1083 ; 1084 1085 /* 1086 * Sync the uberblocks to all vdevs in svd[]. If we are unable 1087 * to do so, then we attempt to sync out to all top-level vdevs. 1088 * If the system dies in the middle of this step, there are two cases 1089 * to consider, and the on-disk state is consistent either way: 1090 * 1091 * (1) If none of the new uberblocks made it to disk, then the 1092 * previous uberblock will be the newest, and the odd labels 1093 * (which had not yet been touched) will be valid with respect 1094 * to that uberblock. 1095 * 1096 * (2) If one or more new uberblocks made it to disk, then they 1097 * will be the newest, and the even labels (which had all 1098 * been successfully committed) will be valid with respect 1099 * to the new uberblocks. 1100 * 1101 * In addition, if we have failed to update all the uberblocks then 1102 * we will follow the 'failmode' code path. We must retry the entire 1103 * I/O tree if we are resumed. 1104 */ 1105 if (vdev_uberblock_sync_list(svd, svdcount, ub, flags) != 0) { 1106 vdev_t *rvd = spa->spa_root_vdev; 1107 1108 while (vdev_uberblock_sync_list(rvd->vdev_child, 1109 rvd->vdev_children, ub, flags)) 1110 ; 1111 } 1112 1113 /* 1114 * Sync out odd labels for every dirty vdev. If the system dies 1115 * in the middle of this process, the even labels and the new 1116 * uberblocks will suffice to open the pool. The next time 1117 * the pool is opened, the first thing we'll do -- before any 1118 * user data is modified -- is mark every vdev dirty so that 1119 * all labels will be brought up to date. We flush the new labels 1120 * to disk to ensure that all odd-label updates are committed to 1121 * stable storage before the next transaction group begins. 1122 * Failure to update any of the labels will invoke the 'failmode' 1123 * code path. Thus we must retry the entire I/O tree once the error 1124 * is cleared and we are resumed. 1125 */ 1126 while (vdev_label_sync_list(spa, 1, flags, txg) != 0) 1127 ; 1128 } 1129