xref: /titanic_50/usr/src/uts/common/fs/zfs/vdev_label.c (revision a0de58d66161bc0edbe32c2a250d723f4daf2124)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Virtual Device Labels
28  * ---------------------
29  *
30  * The vdev label serves several distinct purposes:
31  *
32  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
33  *	   identity within the pool.
34  *
35  * 	2. Verify that all the devices given in a configuration are present
36  *         within the pool.
37  *
38  * 	3. Determine the uberblock for the pool.
39  *
40  * 	4. In case of an import operation, determine the configuration of the
41  *         toplevel vdev of which it is a part.
42  *
43  * 	5. If an import operation cannot find all the devices in the pool,
44  *         provide enough information to the administrator to determine which
45  *         devices are missing.
46  *
47  * It is important to note that while the kernel is responsible for writing the
48  * label, it only consumes the information in the first three cases.  The
49  * latter information is only consumed in userland when determining the
50  * configuration to import a pool.
51  *
52  *
53  * Label Organization
54  * ------------------
55  *
56  * Before describing the contents of the label, it's important to understand how
57  * the labels are written and updated with respect to the uberblock.
58  *
59  * When the pool configuration is altered, either because it was newly created
60  * or a device was added, we want to update all the labels such that we can deal
61  * with fatal failure at any point.  To this end, each disk has two labels which
62  * are updated before and after the uberblock is synced.  Assuming we have
63  * labels and an uberblock with the following transaction groups:
64  *
65  *              L1          UB          L2
66  *           +------+    +------+    +------+
67  *           |      |    |      |    |      |
68  *           | t10  |    | t10  |    | t10  |
69  *           |      |    |      |    |      |
70  *           +------+    +------+    +------+
71  *
72  * In this stable state, the labels and the uberblock were all updated within
73  * the same transaction group (10).  Each label is mirrored and checksummed, so
74  * that we can detect when we fail partway through writing the label.
75  *
76  * In order to identify which labels are valid, the labels are written in the
77  * following manner:
78  *
79  * 	1. For each vdev, update 'L1' to the new label
80  * 	2. Update the uberblock
81  * 	3. For each vdev, update 'L2' to the new label
82  *
83  * Given arbitrary failure, we can determine the correct label to use based on
84  * the transaction group.  If we fail after updating L1 but before updating the
85  * UB, we will notice that L1's transaction group is greater than the uberblock,
86  * so L2 must be valid.  If we fail after writing the uberblock but before
87  * writing L2, we will notice that L2's transaction group is less than L1, and
88  * therefore L1 is valid.
89  *
90  * Another added complexity is that not every label is updated when the config
91  * is synced.  If we add a single device, we do not want to have to re-write
92  * every label for every device in the pool.  This means that both L1 and L2 may
93  * be older than the pool uberblock, because the necessary information is stored
94  * on another vdev.
95  *
96  *
97  * On-disk Format
98  * --------------
99  *
100  * The vdev label consists of two distinct parts, and is wrapped within the
101  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
102  * VTOC disk labels, but is otherwise ignored.
103  *
104  * The first half of the label is a packed nvlist which contains pool wide
105  * properties, per-vdev properties, and configuration information.  It is
106  * described in more detail below.
107  *
108  * The latter half of the label consists of a redundant array of uberblocks.
109  * These uberblocks are updated whenever a transaction group is committed,
110  * or when the configuration is updated.  When a pool is loaded, we scan each
111  * vdev for the 'best' uberblock.
112  *
113  *
114  * Configuration Information
115  * -------------------------
116  *
117  * The nvlist describing the pool and vdev contains the following elements:
118  *
119  * 	version		ZFS on-disk version
120  * 	name		Pool name
121  * 	state		Pool state
122  * 	txg		Transaction group in which this label was written
123  * 	pool_guid	Unique identifier for this pool
124  * 	vdev_tree	An nvlist describing vdev tree.
125  *
126  * Each leaf device label also contains the following:
127  *
128  * 	top_guid	Unique ID for top-level vdev in which this is contained
129  * 	guid		Unique ID for the leaf vdev
130  *
131  * The 'vs' configuration follows the format described in 'spa_config.c'.
132  */
133 
134 #include <sys/zfs_context.h>
135 #include <sys/spa.h>
136 #include <sys/spa_impl.h>
137 #include <sys/dmu.h>
138 #include <sys/zap.h>
139 #include <sys/vdev.h>
140 #include <sys/vdev_impl.h>
141 #include <sys/uberblock_impl.h>
142 #include <sys/metaslab.h>
143 #include <sys/zio.h>
144 #include <sys/fs/zfs.h>
145 
146 /*
147  * Basic routines to read and write from a vdev label.
148  * Used throughout the rest of this file.
149  */
150 uint64_t
151 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
152 {
153 	ASSERT(offset < sizeof (vdev_label_t));
154 	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
155 
156 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
157 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
158 }
159 
160 /*
161  * Returns back the vdev label associated with the passed in offset.
162  */
163 int
164 vdev_label_number(uint64_t psize, uint64_t offset)
165 {
166 	int l;
167 
168 	if (offset >= psize - VDEV_LABEL_END_SIZE) {
169 		offset -= psize - VDEV_LABEL_END_SIZE;
170 		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
171 	}
172 	l = offset / sizeof (vdev_label_t);
173 	return (l < VDEV_LABELS ? l : -1);
174 }
175 
176 static void
177 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
178 	uint64_t size, zio_done_func_t *done, void *private, int flags)
179 {
180 	ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
181 	    SCL_STATE_ALL);
182 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
183 
184 	zio_nowait(zio_read_phys(zio, vd,
185 	    vdev_label_offset(vd->vdev_psize, l, offset),
186 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
187 	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
188 }
189 
190 static void
191 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
192 	uint64_t size, zio_done_func_t *done, void *private, int flags)
193 {
194 	ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
195 	    (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
196 	    (SCL_CONFIG | SCL_STATE) &&
197 	    dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
198 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
199 
200 	zio_nowait(zio_write_phys(zio, vd,
201 	    vdev_label_offset(vd->vdev_psize, l, offset),
202 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
203 	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
204 }
205 
206 /*
207  * Generate the nvlist representing this vdev's config.
208  */
209 nvlist_t *
210 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
211     boolean_t isspare, boolean_t isl2cache)
212 {
213 	nvlist_t *nv = NULL;
214 
215 	VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
216 
217 	VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
218 	    vd->vdev_ops->vdev_op_type) == 0);
219 	if (!isspare && !isl2cache)
220 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id)
221 		    == 0);
222 	VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
223 
224 	if (vd->vdev_path != NULL)
225 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
226 		    vd->vdev_path) == 0);
227 
228 	if (vd->vdev_devid != NULL)
229 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
230 		    vd->vdev_devid) == 0);
231 
232 	if (vd->vdev_physpath != NULL)
233 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
234 		    vd->vdev_physpath) == 0);
235 
236 	if (vd->vdev_nparity != 0) {
237 		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
238 		    VDEV_TYPE_RAIDZ) == 0);
239 
240 		/*
241 		 * Make sure someone hasn't managed to sneak a fancy new vdev
242 		 * into a crufty old storage pool.
243 		 */
244 		ASSERT(vd->vdev_nparity == 1 ||
245 		    (vd->vdev_nparity == 2 &&
246 		    spa_version(spa) >= SPA_VERSION_RAID6));
247 
248 		/*
249 		 * Note that we'll add the nparity tag even on storage pools
250 		 * that only support a single parity device -- older software
251 		 * will just ignore it.
252 		 */
253 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY,
254 		    vd->vdev_nparity) == 0);
255 	}
256 
257 	if (vd->vdev_wholedisk != -1ULL)
258 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
259 		    vd->vdev_wholedisk) == 0);
260 
261 	if (vd->vdev_not_present)
262 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);
263 
264 	if (vd->vdev_isspare)
265 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0);
266 
267 	if (!isspare && !isl2cache && vd == vd->vdev_top) {
268 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
269 		    vd->vdev_ms_array) == 0);
270 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
271 		    vd->vdev_ms_shift) == 0);
272 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
273 		    vd->vdev_ashift) == 0);
274 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
275 		    vd->vdev_asize) == 0);
276 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG,
277 		    vd->vdev_islog) == 0);
278 	}
279 
280 	if (vd->vdev_dtl.smo_object != 0)
281 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
282 		    vd->vdev_dtl.smo_object) == 0);
283 
284 	if (getstats) {
285 		vdev_stat_t vs;
286 		vdev_get_stats(vd, &vs);
287 		VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS,
288 		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
289 	}
290 
291 	if (!vd->vdev_ops->vdev_op_leaf) {
292 		nvlist_t **child;
293 		int c;
294 
295 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
296 		    KM_SLEEP);
297 
298 		for (c = 0; c < vd->vdev_children; c++)
299 			child[c] = vdev_config_generate(spa, vd->vdev_child[c],
300 			    getstats, isspare, isl2cache);
301 
302 		VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
303 		    child, vd->vdev_children) == 0);
304 
305 		for (c = 0; c < vd->vdev_children; c++)
306 			nvlist_free(child[c]);
307 
308 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
309 
310 	} else {
311 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
312 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
313 			    B_TRUE) == 0);
314 		if (vd->vdev_faulted)
315 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED,
316 			    B_TRUE) == 0);
317 		if (vd->vdev_degraded)
318 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED,
319 			    B_TRUE) == 0);
320 		if (vd->vdev_removed)
321 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED,
322 			    B_TRUE) == 0);
323 		if (vd->vdev_unspare)
324 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE,
325 			    B_TRUE) == 0);
326 	}
327 
328 	return (nv);
329 }
330 
331 nvlist_t *
332 vdev_label_read_config(vdev_t *vd)
333 {
334 	spa_t *spa = vd->vdev_spa;
335 	nvlist_t *config = NULL;
336 	vdev_phys_t *vp;
337 	zio_t *zio;
338 	int flags =
339 	    ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
340 
341 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
342 
343 	if (!vdev_readable(vd))
344 		return (NULL);
345 
346 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
347 
348 	for (int l = 0; l < VDEV_LABELS; l++) {
349 
350 		zio = zio_root(spa, NULL, NULL, flags);
351 
352 		vdev_label_read(zio, vd, l, vp,
353 		    offsetof(vdev_label_t, vl_vdev_phys),
354 		    sizeof (vdev_phys_t), NULL, NULL, flags);
355 
356 		if (zio_wait(zio) == 0 &&
357 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
358 		    &config, 0) == 0)
359 			break;
360 
361 		if (config != NULL) {
362 			nvlist_free(config);
363 			config = NULL;
364 		}
365 	}
366 
367 	zio_buf_free(vp, sizeof (vdev_phys_t));
368 
369 	return (config);
370 }
371 
372 /*
373  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
374  * in with the device guid if this spare is active elsewhere on the system.
375  */
376 static boolean_t
377 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
378     uint64_t *spare_guid, uint64_t *l2cache_guid)
379 {
380 	spa_t *spa = vd->vdev_spa;
381 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
382 	uint64_t vdtxg = 0;
383 	nvlist_t *label;
384 
385 	if (spare_guid)
386 		*spare_guid = 0ULL;
387 	if (l2cache_guid)
388 		*l2cache_guid = 0ULL;
389 
390 	/*
391 	 * Read the label, if any, and perform some basic sanity checks.
392 	 */
393 	if ((label = vdev_label_read_config(vd)) == NULL)
394 		return (B_FALSE);
395 
396 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
397 	    &vdtxg);
398 
399 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
400 	    &state) != 0 ||
401 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
402 	    &device_guid) != 0) {
403 		nvlist_free(label);
404 		return (B_FALSE);
405 	}
406 
407 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
408 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
409 	    &pool_guid) != 0 ||
410 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
411 	    &txg) != 0)) {
412 		nvlist_free(label);
413 		return (B_FALSE);
414 	}
415 
416 	nvlist_free(label);
417 
418 	/*
419 	 * Check to see if this device indeed belongs to the pool it claims to
420 	 * be a part of.  The only way this is allowed is if the device is a hot
421 	 * spare (which we check for later on).
422 	 */
423 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
424 	    !spa_guid_exists(pool_guid, device_guid) &&
425 	    !spa_spare_exists(device_guid, NULL, NULL) &&
426 	    !spa_l2cache_exists(device_guid, NULL))
427 		return (B_FALSE);
428 
429 	/*
430 	 * If the transaction group is zero, then this an initialized (but
431 	 * unused) label.  This is only an error if the create transaction
432 	 * on-disk is the same as the one we're using now, in which case the
433 	 * user has attempted to add the same vdev multiple times in the same
434 	 * transaction.
435 	 */
436 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
437 	    txg == 0 && vdtxg == crtxg)
438 		return (B_TRUE);
439 
440 	/*
441 	 * Check to see if this is a spare device.  We do an explicit check for
442 	 * spa_has_spare() here because it may be on our pending list of spares
443 	 * to add.  We also check if it is an l2cache device.
444 	 */
445 	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
446 	    spa_has_spare(spa, device_guid)) {
447 		if (spare_guid)
448 			*spare_guid = device_guid;
449 
450 		switch (reason) {
451 		case VDEV_LABEL_CREATE:
452 		case VDEV_LABEL_L2CACHE:
453 			return (B_TRUE);
454 
455 		case VDEV_LABEL_REPLACE:
456 			return (!spa_has_spare(spa, device_guid) ||
457 			    spare_pool != 0ULL);
458 
459 		case VDEV_LABEL_SPARE:
460 			return (spa_has_spare(spa, device_guid));
461 		}
462 	}
463 
464 	/*
465 	 * Check to see if this is an l2cache device.
466 	 */
467 	if (spa_l2cache_exists(device_guid, NULL))
468 		return (B_TRUE);
469 
470 	/*
471 	 * If the device is marked ACTIVE, then this device is in use by another
472 	 * pool on the system.
473 	 */
474 	return (state == POOL_STATE_ACTIVE);
475 }
476 
477 /*
478  * Initialize a vdev label.  We check to make sure each leaf device is not in
479  * use, and writable.  We put down an initial label which we will later
480  * overwrite with a complete label.  Note that it's important to do this
481  * sequentially, not in parallel, so that we catch cases of multiple use of the
482  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
483  * itself.
484  */
485 int
486 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
487 {
488 	spa_t *spa = vd->vdev_spa;
489 	nvlist_t *label;
490 	vdev_phys_t *vp;
491 	vdev_boot_header_t *vb;
492 	uberblock_t *ub;
493 	zio_t *zio;
494 	char *buf;
495 	size_t buflen;
496 	int error;
497 	uint64_t spare_guid, l2cache_guid;
498 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
499 
500 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
501 
502 	for (int c = 0; c < vd->vdev_children; c++)
503 		if ((error = vdev_label_init(vd->vdev_child[c],
504 		    crtxg, reason)) != 0)
505 			return (error);
506 
507 	if (!vd->vdev_ops->vdev_op_leaf)
508 		return (0);
509 
510 	/*
511 	 * Dead vdevs cannot be initialized.
512 	 */
513 	if (vdev_is_dead(vd))
514 		return (EIO);
515 
516 	/*
517 	 * Determine if the vdev is in use.
518 	 */
519 	if (reason != VDEV_LABEL_REMOVE &&
520 	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
521 		return (EBUSY);
522 
523 	ASSERT(reason != VDEV_LABEL_REMOVE ||
524 	    vdev_inuse(vd, crtxg, reason, NULL, NULL));
525 
526 	/*
527 	 * If this is a request to add or replace a spare or l2cache device
528 	 * that is in use elsewhere on the system, then we must update the
529 	 * guid (which was initialized to a random value) to reflect the
530 	 * actual GUID (which is shared between multiple pools).
531 	 */
532 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
533 	    spare_guid != 0ULL) {
534 		uint64_t guid_delta = spare_guid - vd->vdev_guid;
535 
536 		vd->vdev_guid += guid_delta;
537 
538 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
539 			pvd->vdev_guid_sum += guid_delta;
540 
541 		/*
542 		 * If this is a replacement, then we want to fallthrough to the
543 		 * rest of the code.  If we're adding a spare, then it's already
544 		 * labeled appropriately and we can just return.
545 		 */
546 		if (reason == VDEV_LABEL_SPARE)
547 			return (0);
548 		ASSERT(reason == VDEV_LABEL_REPLACE);
549 	}
550 
551 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
552 	    l2cache_guid != 0ULL) {
553 		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
554 
555 		vd->vdev_guid += guid_delta;
556 
557 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
558 			pvd->vdev_guid_sum += guid_delta;
559 
560 		/*
561 		 * If this is a replacement, then we want to fallthrough to the
562 		 * rest of the code.  If we're adding an l2cache, then it's
563 		 * already labeled appropriately and we can just return.
564 		 */
565 		if (reason == VDEV_LABEL_L2CACHE)
566 			return (0);
567 		ASSERT(reason == VDEV_LABEL_REPLACE);
568 	}
569 
570 	/*
571 	 * Initialize its label.
572 	 */
573 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
574 	bzero(vp, sizeof (vdev_phys_t));
575 
576 	/*
577 	 * Generate a label describing the pool and our top-level vdev.
578 	 * We mark it as being from txg 0 to indicate that it's not
579 	 * really part of an active pool just yet.  The labels will
580 	 * be written again with a meaningful txg by spa_sync().
581 	 */
582 	if (reason == VDEV_LABEL_SPARE ||
583 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
584 		/*
585 		 * For inactive hot spares, we generate a special label that
586 		 * identifies as a mutually shared hot spare.  We write the
587 		 * label if we are adding a hot spare, or if we are removing an
588 		 * active hot spare (in which case we want to revert the
589 		 * labels).
590 		 */
591 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
592 
593 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
594 		    spa_version(spa)) == 0);
595 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
596 		    POOL_STATE_SPARE) == 0);
597 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
598 		    vd->vdev_guid) == 0);
599 	} else if (reason == VDEV_LABEL_L2CACHE ||
600 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
601 		/*
602 		 * For level 2 ARC devices, add a special label.
603 		 */
604 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
605 
606 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
607 		    spa_version(spa)) == 0);
608 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
609 		    POOL_STATE_L2CACHE) == 0);
610 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
611 		    vd->vdev_guid) == 0);
612 	} else {
613 		label = spa_config_generate(spa, vd, 0ULL, B_FALSE);
614 
615 		/*
616 		 * Add our creation time.  This allows us to detect multiple
617 		 * vdev uses as described above, and automatically expires if we
618 		 * fail.
619 		 */
620 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
621 		    crtxg) == 0);
622 	}
623 
624 	buf = vp->vp_nvlist;
625 	buflen = sizeof (vp->vp_nvlist);
626 
627 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
628 	if (error != 0) {
629 		nvlist_free(label);
630 		zio_buf_free(vp, sizeof (vdev_phys_t));
631 		/* EFAULT means nvlist_pack ran out of room */
632 		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
633 	}
634 
635 	/*
636 	 * Initialize boot block header.
637 	 */
638 	vb = zio_buf_alloc(sizeof (vdev_boot_header_t));
639 	bzero(vb, sizeof (vdev_boot_header_t));
640 	vb->vb_magic = VDEV_BOOT_MAGIC;
641 	vb->vb_version = VDEV_BOOT_VERSION;
642 	vb->vb_offset = VDEV_BOOT_OFFSET;
643 	vb->vb_size = VDEV_BOOT_SIZE;
644 
645 	/*
646 	 * Initialize uberblock template.
647 	 */
648 	ub = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
649 	bzero(ub, VDEV_UBERBLOCK_SIZE(vd));
650 	*ub = spa->spa_uberblock;
651 	ub->ub_txg = 0;
652 
653 	/*
654 	 * Write everything in parallel.
655 	 */
656 	zio = zio_root(spa, NULL, NULL, flags);
657 
658 	for (int l = 0; l < VDEV_LABELS; l++) {
659 
660 		vdev_label_write(zio, vd, l, vp,
661 		    offsetof(vdev_label_t, vl_vdev_phys),
662 		    sizeof (vdev_phys_t), NULL, NULL, flags);
663 
664 		vdev_label_write(zio, vd, l, vb,
665 		    offsetof(vdev_label_t, vl_boot_header),
666 		    sizeof (vdev_boot_header_t), NULL, NULL, flags);
667 
668 		for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
669 			vdev_label_write(zio, vd, l, ub,
670 			    VDEV_UBERBLOCK_OFFSET(vd, n),
671 			    VDEV_UBERBLOCK_SIZE(vd), NULL, NULL, flags);
672 		}
673 	}
674 
675 	error = zio_wait(zio);
676 
677 	nvlist_free(label);
678 	zio_buf_free(ub, VDEV_UBERBLOCK_SIZE(vd));
679 	zio_buf_free(vb, sizeof (vdev_boot_header_t));
680 	zio_buf_free(vp, sizeof (vdev_phys_t));
681 
682 	/*
683 	 * If this vdev hasn't been previously identified as a spare, then we
684 	 * mark it as such only if a) we are labeling it as a spare, or b) it
685 	 * exists as a spare elsewhere in the system.  Do the same for
686 	 * level 2 ARC devices.
687 	 */
688 	if (error == 0 && !vd->vdev_isspare &&
689 	    (reason == VDEV_LABEL_SPARE ||
690 	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
691 		spa_spare_add(vd);
692 
693 	if (error == 0 && !vd->vdev_isl2cache &&
694 	    (reason == VDEV_LABEL_L2CACHE ||
695 	    spa_l2cache_exists(vd->vdev_guid, NULL)))
696 		spa_l2cache_add(vd);
697 
698 	return (error);
699 }
700 
701 /*
702  * ==========================================================================
703  * uberblock load/sync
704  * ==========================================================================
705  */
706 
707 /*
708  * Consider the following situation: txg is safely synced to disk.  We've
709  * written the first uberblock for txg + 1, and then we lose power.  When we
710  * come back up, we fail to see the uberblock for txg + 1 because, say,
711  * it was on a mirrored device and the replica to which we wrote txg + 1
712  * is now offline.  If we then make some changes and sync txg + 1, and then
713  * the missing replica comes back, then for a new seconds we'll have two
714  * conflicting uberblocks on disk with the same txg.  The solution is simple:
715  * among uberblocks with equal txg, choose the one with the latest timestamp.
716  */
717 static int
718 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
719 {
720 	if (ub1->ub_txg < ub2->ub_txg)
721 		return (-1);
722 	if (ub1->ub_txg > ub2->ub_txg)
723 		return (1);
724 
725 	if (ub1->ub_timestamp < ub2->ub_timestamp)
726 		return (-1);
727 	if (ub1->ub_timestamp > ub2->ub_timestamp)
728 		return (1);
729 
730 	return (0);
731 }
732 
733 static void
734 vdev_uberblock_load_done(zio_t *zio)
735 {
736 	zio_t *rio = zio->io_private;
737 	uberblock_t *ub = zio->io_data;
738 	uberblock_t *ubbest = rio->io_private;
739 
740 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd));
741 
742 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
743 		mutex_enter(&rio->io_lock);
744 		if (vdev_uberblock_compare(ub, ubbest) > 0)
745 			*ubbest = *ub;
746 		mutex_exit(&rio->io_lock);
747 	}
748 
749 	zio_buf_free(zio->io_data, zio->io_size);
750 }
751 
752 void
753 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest)
754 {
755 	spa_t *spa = vd->vdev_spa;
756 	vdev_t *rvd = spa->spa_root_vdev;
757 	int flags =
758 	    ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
759 
760 	if (vd == rvd) {
761 		ASSERT(zio == NULL);
762 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
763 		zio = zio_root(spa, NULL, ubbest, flags);
764 		bzero(ubbest, sizeof (uberblock_t));
765 	}
766 
767 	ASSERT(zio != NULL);
768 
769 	for (int c = 0; c < vd->vdev_children; c++)
770 		vdev_uberblock_load(zio, vd->vdev_child[c], ubbest);
771 
772 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
773 		for (int l = 0; l < VDEV_LABELS; l++) {
774 			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
775 				vdev_label_read(zio, vd, l,
776 				    zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
777 				    VDEV_UBERBLOCK_OFFSET(vd, n),
778 				    VDEV_UBERBLOCK_SIZE(vd),
779 				    vdev_uberblock_load_done, zio, flags);
780 			}
781 		}
782 	}
783 
784 	if (vd == rvd) {
785 		(void) zio_wait(zio);
786 		spa_config_exit(spa, SCL_ALL, FTAG);
787 	}
788 }
789 
790 /*
791  * On success, increment root zio's count of good writes.
792  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
793  */
794 static void
795 vdev_uberblock_sync_done(zio_t *zio)
796 {
797 	uint64_t *good_writes = zio->io_private;
798 
799 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
800 		atomic_add_64(good_writes, 1);
801 }
802 
803 /*
804  * Write the uberblock to all labels of all leaves of the specified vdev.
805  */
806 static void
807 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
808 {
809 	uberblock_t *ubbuf;
810 	int n;
811 
812 	for (int c = 0; c < vd->vdev_children; c++)
813 		vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
814 
815 	if (!vd->vdev_ops->vdev_op_leaf)
816 		return;
817 
818 	if (!vdev_writeable(vd))
819 		return;
820 
821 	n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
822 
823 	ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
824 	bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
825 	*ubbuf = *ub;
826 
827 	for (int l = 0; l < VDEV_LABELS; l++)
828 		vdev_label_write(zio, vd, l, ubbuf,
829 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
830 		    vdev_uberblock_sync_done, zio->io_private,
831 		    flags | ZIO_FLAG_DONT_PROPAGATE);
832 
833 	zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
834 }
835 
836 int
837 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
838 {
839 	spa_t *spa = svd[0]->vdev_spa;
840 	zio_t *zio;
841 	uint64_t good_writes = 0;
842 
843 	zio = zio_root(spa, NULL, &good_writes, flags);
844 
845 	for (int v = 0; v < svdcount; v++)
846 		vdev_uberblock_sync(zio, ub, svd[v], flags);
847 
848 	(void) zio_wait(zio);
849 
850 	/*
851 	 * Flush the uberblocks to disk.  This ensures that the odd labels
852 	 * are no longer needed (because the new uberblocks and the even
853 	 * labels are safely on disk), so it is safe to overwrite them.
854 	 */
855 	zio = zio_root(spa, NULL, NULL, flags);
856 
857 	for (int v = 0; v < svdcount; v++)
858 		zio_flush(zio, svd[v]);
859 
860 	(void) zio_wait(zio);
861 
862 	return (good_writes >= 1 ? 0 : EIO);
863 }
864 
865 /*
866  * On success, increment the count of good writes for our top-level vdev.
867  */
868 static void
869 vdev_label_sync_done(zio_t *zio)
870 {
871 	uint64_t *good_writes = zio->io_private;
872 
873 	if (zio->io_error == 0)
874 		atomic_add_64(good_writes, 1);
875 }
876 
877 /*
878  * If there weren't enough good writes, indicate failure to the parent.
879  */
880 static void
881 vdev_label_sync_top_done(zio_t *zio)
882 {
883 	uint64_t *good_writes = zio->io_private;
884 
885 	if (*good_writes == 0)
886 		zio->io_error = EIO;
887 
888 	kmem_free(good_writes, sizeof (uint64_t));
889 }
890 
891 /*
892  * We ignore errors for log and cache devices, simply free the private data.
893  */
894 static void
895 vdev_label_sync_ignore_done(zio_t *zio)
896 {
897 	kmem_free(zio->io_private, sizeof (uint64_t));
898 }
899 
900 /*
901  * Write all even or odd labels to all leaves of the specified vdev.
902  */
903 static void
904 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
905 {
906 	nvlist_t *label;
907 	vdev_phys_t *vp;
908 	char *buf;
909 	size_t buflen;
910 
911 	for (int c = 0; c < vd->vdev_children; c++)
912 		vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
913 
914 	if (!vd->vdev_ops->vdev_op_leaf)
915 		return;
916 
917 	if (!vdev_writeable(vd))
918 		return;
919 
920 	/*
921 	 * Generate a label describing the top-level config to which we belong.
922 	 */
923 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
924 
925 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
926 	bzero(vp, sizeof (vdev_phys_t));
927 
928 	buf = vp->vp_nvlist;
929 	buflen = sizeof (vp->vp_nvlist);
930 
931 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
932 		for (; l < VDEV_LABELS; l += 2) {
933 			vdev_label_write(zio, vd, l, vp,
934 			    offsetof(vdev_label_t, vl_vdev_phys),
935 			    sizeof (vdev_phys_t),
936 			    vdev_label_sync_done, zio->io_private,
937 			    flags | ZIO_FLAG_DONT_PROPAGATE);
938 		}
939 	}
940 
941 	zio_buf_free(vp, sizeof (vdev_phys_t));
942 	nvlist_free(label);
943 }
944 
945 int
946 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
947 {
948 	list_t *dl = &spa->spa_config_dirty_list;
949 	vdev_t *vd;
950 	zio_t *zio;
951 	int error;
952 
953 	/*
954 	 * Write the new labels to disk.
955 	 */
956 	zio = zio_root(spa, NULL, NULL, flags);
957 
958 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
959 		uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
960 		    KM_SLEEP);
961 		zio_t *vio = zio_null(zio, spa,
962 		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
963 		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
964 		    good_writes, flags);
965 		vdev_label_sync(vio, vd, l, txg, flags);
966 		zio_nowait(vio);
967 	}
968 
969 	error = zio_wait(zio);
970 
971 	/*
972 	 * Flush the new labels to disk.
973 	 */
974 	zio = zio_root(spa, NULL, NULL, flags);
975 
976 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
977 		zio_flush(zio, vd);
978 
979 	(void) zio_wait(zio);
980 
981 	return (error);
982 }
983 
984 /*
985  * Sync the uberblock and any changes to the vdev configuration.
986  *
987  * The order of operations is carefully crafted to ensure that
988  * if the system panics or loses power at any time, the state on disk
989  * is still transactionally consistent.  The in-line comments below
990  * describe the failure semantics at each stage.
991  *
992  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
993  * at any time, you can just call it again, and it will resume its work.
994  */
995 int
996 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
997 {
998 	spa_t *spa = svd[0]->vdev_spa;
999 	uberblock_t *ub = &spa->spa_uberblock;
1000 	vdev_t *vd;
1001 	zio_t *zio;
1002 	int error;
1003 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1004 
1005 	ASSERT(ub->ub_txg <= txg);
1006 
1007 	/*
1008 	 * If this isn't a resync due to I/O errors,
1009 	 * and nothing changed in this transaction group,
1010 	 * and the vdev configuration hasn't changed,
1011 	 * then there's nothing to do.
1012 	 */
1013 	if (ub->ub_txg < txg &&
1014 	    uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1015 	    list_is_empty(&spa->spa_config_dirty_list))
1016 		return (0);
1017 
1018 	if (txg > spa_freeze_txg(spa))
1019 		return (0);
1020 
1021 	ASSERT(txg <= spa->spa_final_txg);
1022 
1023 	/*
1024 	 * Flush the write cache of every disk that's been written to
1025 	 * in this transaction group.  This ensures that all blocks
1026 	 * written in this txg will be committed to stable storage
1027 	 * before any uberblock that references them.
1028 	 */
1029 	zio = zio_root(spa, NULL, NULL, flags);
1030 
1031 	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1032 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1033 		zio_flush(zio, vd);
1034 
1035 	(void) zio_wait(zio);
1036 
1037 	/*
1038 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1039 	 * system dies in the middle of this process, that's OK: all of the
1040 	 * even labels that made it to disk will be newer than any uberblock,
1041 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1042 	 * which have not yet been touched, will still be valid.  We flush
1043 	 * the new labels to disk to ensure that all even-label updates
1044 	 * are committed to stable storage before the uberblock update.
1045 	 */
1046 	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1047 		return (error);
1048 
1049 	/*
1050 	 * Sync the uberblocks to all vdevs in svd[].
1051 	 * If the system dies in the middle of this step, there are two cases
1052 	 * to consider, and the on-disk state is consistent either way:
1053 	 *
1054 	 * (1)	If none of the new uberblocks made it to disk, then the
1055 	 *	previous uberblock will be the newest, and the odd labels
1056 	 *	(which had not yet been touched) will be valid with respect
1057 	 *	to that uberblock.
1058 	 *
1059 	 * (2)	If one or more new uberblocks made it to disk, then they
1060 	 *	will be the newest, and the even labels (which had all
1061 	 *	been successfully committed) will be valid with respect
1062 	 *	to the new uberblocks.
1063 	 */
1064 	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1065 		return (error);
1066 
1067 	/*
1068 	 * Sync out odd labels for every dirty vdev.  If the system dies
1069 	 * in the middle of this process, the even labels and the new
1070 	 * uberblocks will suffice to open the pool.  The next time
1071 	 * the pool is opened, the first thing we'll do -- before any
1072 	 * user data is modified -- is mark every vdev dirty so that
1073 	 * all labels will be brought up to date.  We flush the new labels
1074 	 * to disk to ensure that all odd-label updates are committed to
1075 	 * stable storage before the next transaction group begins.
1076 	 */
1077 	return (vdev_label_sync_list(spa, 1, txg, flags));
1078 }
1079