xref: /titanic_50/usr/src/uts/common/fs/zfs/vdev_label.c (revision 7bafd14382b5b097b3e3940091dfccb91247dfd5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Virtual Device Labels
30  * ---------------------
31  *
32  * The vdev label serves several distinct purposes:
33  *
34  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
35  *	   identity within the pool.
36  *
37  * 	2. Verify that all the devices given in a configuration are present
38  *         within the pool.
39  *
40  * 	3. Determine the uberblock for the pool.
41  *
42  * 	4. In case of an import operation, determine the configuration of the
43  *         toplevel vdev of which it is a part.
44  *
45  * 	5. If an import operation cannot find all the devices in the pool,
46  *         provide enough information to the administrator to determine which
47  *         devices are missing.
48  *
49  * It is important to note that while the kernel is responsible for writing the
50  * label, it only consumes the information in the first three cases.  The
51  * latter information is only consumed in userland when determining the
52  * configuration to import a pool.
53  *
54  *
55  * Label Organization
56  * ------------------
57  *
58  * Before describing the contents of the label, it's important to understand how
59  * the labels are written and updated with respect to the uberblock.
60  *
61  * When the pool configuration is altered, either because it was newly created
62  * or a device was added, we want to update all the labels such that we can deal
63  * with fatal failure at any point.  To this end, each disk has two labels which
64  * are updated before and after the uberblock is synced.  Assuming we have
65  * labels and an uberblock with the following transacation groups:
66  *
67  *              L1          UB          L2
68  *           +------+    +------+    +------+
69  *           |      |    |      |    |      |
70  *           | t10  |    | t10  |    | t10  |
71  *           |      |    |      |    |      |
72  *           +------+    +------+    +------+
73  *
74  * In this stable state, the labels and the uberblock were all updated within
75  * the same transaction group (10).  Each label is mirrored and checksummed, so
76  * that we can detect when we fail partway through writing the label.
77  *
78  * In order to identify which labels are valid, the labels are written in the
79  * following manner:
80  *
81  * 	1. For each vdev, update 'L1' to the new label
82  * 	2. Update the uberblock
83  * 	3. For each vdev, update 'L2' to the new label
84  *
85  * Given arbitrary failure, we can determine the correct label to use based on
86  * the transaction group.  If we fail after updating L1 but before updating the
87  * UB, we will notice that L1's transaction group is greater than the uberblock,
88  * so L2 must be valid.  If we fail after writing the uberblock but before
89  * writing L2, we will notice that L2's transaction group is less than L1, and
90  * therefore L1 is valid.
91  *
92  * Another added complexity is that not every label is updated when the config
93  * is synced.  If we add a single device, we do not want to have to re-write
94  * every label for every device in the pool.  This means that both L1 and L2 may
95  * be older than the pool uberblock, because the necessary information is stored
96  * on another vdev.
97  *
98  *
99  * On-disk Format
100  * --------------
101  *
102  * The vdev label consists of two distinct parts, and is wrapped within the
103  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
104  * VTOC disk labels, but is otherwise ignored.
105  *
106  * The first half of the label is a packed nvlist which contains pool wide
107  * properties, per-vdev properties, and configuration information.  It is
108  * described in more detail below.
109  *
110  * The latter half of the label consists of a redundant array of uberblocks.
111  * These uberblocks are updated whenever a transaction group is committed,
112  * or when the configuration is updated.  When a pool is loaded, we scan each
113  * vdev for the 'best' uberblock.
114  *
115  *
116  * Configuration Information
117  * -------------------------
118  *
119  * The nvlist describing the pool and vdev contains the following elements:
120  *
121  * 	version		ZFS on-disk version
122  * 	name		Pool name
123  * 	state		Pool state
124  * 	txg		Transaction group in which this label was written
125  * 	pool_guid	Unique identifier for this pool
126  * 	vdev_tree	An nvlist describing vdev tree.
127  *
128  * Each leaf device label also contains the following:
129  *
130  * 	top_guid	Unique ID for top-level vdev in which this is contained
131  * 	guid		Unique ID for the leaf vdev
132  *
133  * The 'vs' configuration follows the format described in 'spa_config.c'.
134  */
135 
136 #include <sys/zfs_context.h>
137 #include <sys/spa.h>
138 #include <sys/spa_impl.h>
139 #include <sys/dmu.h>
140 #include <sys/zap.h>
141 #include <sys/vdev.h>
142 #include <sys/vdev_impl.h>
143 #include <sys/uberblock_impl.h>
144 #include <sys/metaslab.h>
145 #include <sys/zio.h>
146 #include <sys/fs/zfs.h>
147 
148 /*
149  * Basic routines to read and write from a vdev label.
150  * Used throughout the rest of this file.
151  */
152 uint64_t
153 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
154 {
155 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
156 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
157 }
158 
159 static void
160 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
161 	uint64_t size, zio_done_func_t *done, void *private)
162 {
163 	ASSERT(vd->vdev_children == 0);
164 
165 	zio_nowait(zio_read_phys(zio, vd,
166 	    vdev_label_offset(vd->vdev_psize, l, offset),
167 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
168 	    ZIO_PRIORITY_SYNC_READ,
169 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE));
170 }
171 
172 static void
173 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
174 	uint64_t size, zio_done_func_t *done, void *private)
175 {
176 	ASSERT(vd->vdev_children == 0);
177 
178 	zio_nowait(zio_write_phys(zio, vd,
179 	    vdev_label_offset(vd->vdev_psize, l, offset),
180 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
181 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL));
182 }
183 
184 /*
185  * Generate the nvlist representing this vdev's config.
186  */
187 nvlist_t *
188 vdev_config_generate(vdev_t *vd, int getstats)
189 {
190 	nvlist_t *nv = NULL;
191 
192 	VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
193 
194 	VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
195 	    vd->vdev_ops->vdev_op_type) == 0);
196 	VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id) == 0);
197 	VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
198 
199 	if (vd->vdev_path != NULL)
200 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
201 		    vd->vdev_path) == 0);
202 
203 	if (vd->vdev_devid != NULL)
204 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
205 		    vd->vdev_devid) == 0);
206 
207 	if (vd->vdev_wholedisk != -1ULL)
208 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
209 		    vd->vdev_wholedisk) == 0);
210 
211 	if (vd->vdev_not_present)
212 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);
213 
214 	if (vd == vd->vdev_top) {
215 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
216 		    vd->vdev_ms_array) == 0);
217 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
218 		    vd->vdev_ms_shift) == 0);
219 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
220 		    vd->vdev_ashift) == 0);
221 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
222 		    vd->vdev_asize) == 0);
223 	}
224 
225 	if (vd->vdev_dtl.smo_object != 0)
226 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
227 		    vd->vdev_dtl.smo_object) == 0);
228 
229 	if (getstats) {
230 		vdev_stat_t vs;
231 		vdev_get_stats(vd, &vs);
232 		VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS,
233 		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
234 	}
235 
236 	if (!vd->vdev_ops->vdev_op_leaf) {
237 		nvlist_t **child;
238 		int c;
239 
240 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
241 		    KM_SLEEP);
242 
243 		for (c = 0; c < vd->vdev_children; c++)
244 			child[c] = vdev_config_generate(vd->vdev_child[c],
245 			    getstats);
246 
247 		VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
248 		    child, vd->vdev_children) == 0);
249 
250 		for (c = 0; c < vd->vdev_children; c++)
251 			nvlist_free(child[c]);
252 
253 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
254 
255 	} else {
256 		if (!vd->vdev_tmpoffline) {
257 		    if (vd->vdev_offline)
258 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
259 				B_TRUE) == 0);
260 		    else
261 			(void) nvlist_remove(nv, ZPOOL_CONFIG_OFFLINE,
262 				DATA_TYPE_UINT64);
263 		}
264 	}
265 
266 	return (nv);
267 }
268 
269 nvlist_t *
270 vdev_label_read_config(vdev_t *vd)
271 {
272 	nvlist_t *config = NULL;
273 	vdev_phys_t *vp;
274 	zio_t *zio;
275 	int l;
276 
277 	if (vdev_is_dead(vd))
278 		return (NULL);
279 
280 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
281 
282 	for (l = 0; l < VDEV_LABELS; l++) {
283 
284 		zio = zio_root(vd->vdev_spa, NULL, NULL, ZIO_FLAG_CANFAIL |
285 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CONFIG_HELD);
286 
287 		vdev_label_read(zio, vd, l, vp,
288 		    offsetof(vdev_label_t, vl_vdev_phys),
289 		    sizeof (vdev_phys_t), NULL, NULL);
290 
291 		if (zio_wait(zio) == 0 &&
292 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
293 		    &config, 0) == 0)
294 			break;
295 
296 		if (config != NULL) {
297 			nvlist_free(config);
298 			config = NULL;
299 		}
300 	}
301 
302 	zio_buf_free(vp, sizeof (vdev_phys_t));
303 
304 	return (config);
305 }
306 
307 int
308 vdev_label_init(vdev_t *vd, uint64_t crtxg)
309 {
310 	spa_t *spa = vd->vdev_spa;
311 	nvlist_t *label;
312 	vdev_phys_t *vp;
313 	vdev_boot_header_t *vb;
314 	uberblock_phys_t *ubphys;
315 	zio_t *zio;
316 	int l, c, n;
317 	char *buf;
318 	size_t buflen;
319 	int error;
320 
321 	for (c = 0; c < vd->vdev_children; c++)
322 		if ((error = vdev_label_init(vd->vdev_child[c], crtxg)) != 0)
323 			return (error);
324 
325 	if (!vd->vdev_ops->vdev_op_leaf)
326 		return (0);
327 
328 	/*
329 	 * Make sure each leaf device is writable, and zero its initial content.
330 	 * Along the way, also make sure that no leaf is already in use.
331 	 * Note that it's important to do this sequentially, not in parallel,
332 	 * so that we catch cases of multiple use of the same leaf vdev in
333 	 * the vdev we're creating -- e.g. mirroring a disk with itself.
334 	 */
335 	if (vdev_is_dead(vd))
336 		return (EIO);
337 
338 	/*
339 	 * Check whether this device is already in use.
340 	 * Ignore the check if crtxg == 0, which we use for device removal.
341 	 */
342 	if (crtxg != 0 &&
343 	    (label = vdev_label_read_config(vd)) != NULL) {
344 		uint64_t state, pool_guid, device_guid, txg;
345 		uint64_t mycrtxg = 0;
346 
347 		(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
348 		    &mycrtxg);
349 
350 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
351 		    &state) == 0 && state == POOL_STATE_ACTIVE &&
352 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
353 		    &pool_guid) == 0 &&
354 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
355 		    &device_guid) == 0 &&
356 		    spa_guid_exists(pool_guid, device_guid) &&
357 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
358 		    &txg) == 0 && (txg != 0 || mycrtxg == crtxg)) {
359 			dprintf("vdev %s in use, pool_state %d\n",
360 			    vdev_description(vd), state);
361 			nvlist_free(label);
362 			return (EBUSY);
363 		}
364 		nvlist_free(label);
365 	}
366 
367 	/*
368 	 * The device isn't in use, so initialize its label.
369 	 */
370 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
371 	bzero(vp, sizeof (vdev_phys_t));
372 
373 	/*
374 	 * Generate a label describing the pool and our top-level vdev.
375 	 * We mark it as being from txg 0 to indicate that it's not
376 	 * really part of an active pool just yet.  The labels will
377 	 * be written again with a meaningful txg by spa_sync().
378 	 */
379 	label = spa_config_generate(spa, vd, 0ULL, 0);
380 
381 	/*
382 	 * Add our creation time.  This allows us to detect multiple vdev
383 	 * uses as described above, and automatically expires if we fail.
384 	 */
385 	VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, crtxg) == 0);
386 
387 	buf = vp->vp_nvlist;
388 	buflen = sizeof (vp->vp_nvlist);
389 
390 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) != 0) {
391 		nvlist_free(label);
392 		zio_buf_free(vp, sizeof (vdev_phys_t));
393 		return (EINVAL);
394 	}
395 
396 	/*
397 	 * Initialize boot block header.
398 	 */
399 	vb = zio_buf_alloc(sizeof (vdev_boot_header_t));
400 	bzero(vb, sizeof (vdev_boot_header_t));
401 	vb->vb_magic = VDEV_BOOT_MAGIC;
402 	vb->vb_version = VDEV_BOOT_VERSION;
403 	vb->vb_offset = VDEV_BOOT_OFFSET;
404 	vb->vb_size = VDEV_BOOT_SIZE;
405 
406 	/*
407 	 * Initialize uberblock template.
408 	 */
409 	ubphys = zio_buf_alloc(sizeof (uberblock_phys_t));
410 	bzero(ubphys, sizeof (uberblock_phys_t));
411 	ubphys->ubp_uberblock = spa->spa_uberblock;
412 	ubphys->ubp_uberblock.ub_txg = 0;
413 
414 	/*
415 	 * Write everything in parallel.
416 	 */
417 	zio = zio_root(spa, NULL, NULL,
418 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
419 
420 	for (l = 0; l < VDEV_LABELS; l++) {
421 
422 		vdev_label_write(zio, vd, l, vp,
423 		    offsetof(vdev_label_t, vl_vdev_phys),
424 		    sizeof (vdev_phys_t), NULL, NULL);
425 
426 		vdev_label_write(zio, vd, l, vb,
427 		    offsetof(vdev_label_t, vl_boot_header),
428 		    sizeof (vdev_boot_header_t), NULL, NULL);
429 
430 		for (n = 0; n < VDEV_UBERBLOCKS; n++) {
431 
432 			vdev_label_write(zio, vd, l, ubphys,
433 			    offsetof(vdev_label_t, vl_uberblock[n]),
434 			    sizeof (uberblock_phys_t), NULL, NULL);
435 
436 		}
437 	}
438 
439 	error = zio_wait(zio);
440 
441 	nvlist_free(label);
442 	zio_buf_free(ubphys, sizeof (uberblock_phys_t));
443 	zio_buf_free(vb, sizeof (vdev_boot_header_t));
444 	zio_buf_free(vp, sizeof (vdev_phys_t));
445 
446 	return (error);
447 }
448 
449 /*
450  * ==========================================================================
451  * uberblock load/sync
452  * ==========================================================================
453  */
454 
455 /*
456  * Consider the following situation: txg is safely synced to disk.  We've
457  * written the first uberblock for txg + 1, and then we lose power.  When we
458  * come back up, we fail to see the uberblock for txg + 1 because, say,
459  * it was on a mirrored device and the replica to which we wrote txg + 1
460  * is now offline.  If we then make some changes and sync txg + 1, and then
461  * the missing replica comes back, then for a new seconds we'll have two
462  * conflicting uberblocks on disk with the same txg.  The solution is simple:
463  * among uberblocks with equal txg, choose the one with the latest timestamp.
464  */
465 static int
466 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
467 {
468 	if (ub1->ub_txg < ub2->ub_txg)
469 		return (-1);
470 	if (ub1->ub_txg > ub2->ub_txg)
471 		return (1);
472 
473 	if (ub1->ub_timestamp < ub2->ub_timestamp)
474 		return (-1);
475 	if (ub1->ub_timestamp > ub2->ub_timestamp)
476 		return (1);
477 
478 	return (0);
479 }
480 
481 static void
482 vdev_uberblock_load_done(zio_t *zio)
483 {
484 	uberblock_phys_t *ubphys = zio->io_data;
485 	uberblock_t *ub = &ubphys->ubp_uberblock;
486 	uberblock_t *ubbest = zio->io_private;
487 	spa_t *spa = zio->io_spa;
488 
489 	ASSERT3U(zio->io_size, ==, sizeof (uberblock_phys_t));
490 
491 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
492 		mutex_enter(&spa->spa_uberblock_lock);
493 		if (vdev_uberblock_compare(ub, ubbest) > 0)
494 			*ubbest = *ub;
495 		mutex_exit(&spa->spa_uberblock_lock);
496 	}
497 
498 	zio_buf_free(zio->io_data, zio->io_size);
499 }
500 
501 void
502 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest)
503 {
504 	int l, c, n;
505 
506 	for (c = 0; c < vd->vdev_children; c++)
507 		vdev_uberblock_load(zio, vd->vdev_child[c], ubbest);
508 
509 	if (!vd->vdev_ops->vdev_op_leaf)
510 		return;
511 
512 	if (vdev_is_dead(vd))
513 		return;
514 
515 	for (l = 0; l < VDEV_LABELS; l++) {
516 		for (n = 0; n < VDEV_UBERBLOCKS; n++) {
517 			vdev_label_read(zio, vd, l,
518 			    zio_buf_alloc(sizeof (uberblock_phys_t)),
519 			    offsetof(vdev_label_t, vl_uberblock[n]),
520 			    sizeof (uberblock_phys_t),
521 			    vdev_uberblock_load_done, ubbest);
522 		}
523 	}
524 }
525 
526 /*
527  * Write the uberblock to both labels of all leaves of the specified vdev.
528  */
529 static void
530 vdev_uberblock_sync_done(zio_t *zio)
531 {
532 	uint64_t *good_writes = zio->io_root->io_private;
533 
534 	if (zio->io_error == 0)
535 		atomic_add_64(good_writes, 1);
536 }
537 
538 static void
539 vdev_uberblock_sync(zio_t *zio, uberblock_phys_t *ubphys, vdev_t *vd,
540 	uint64_t txg)
541 {
542 	int l, c, n;
543 
544 	for (c = 0; c < vd->vdev_children; c++)
545 		vdev_uberblock_sync(zio, ubphys, vd->vdev_child[c], txg);
546 
547 	if (!vd->vdev_ops->vdev_op_leaf)
548 		return;
549 
550 	if (vdev_is_dead(vd))
551 		return;
552 
553 	n = txg & (VDEV_UBERBLOCKS - 1);
554 
555 	ASSERT(ubphys->ubp_uberblock.ub_txg == txg);
556 
557 	for (l = 0; l < VDEV_LABELS; l++)
558 		vdev_label_write(zio, vd, l, ubphys,
559 		    offsetof(vdev_label_t, vl_uberblock[n]),
560 		    sizeof (uberblock_phys_t), vdev_uberblock_sync_done, NULL);
561 
562 	dprintf("vdev %s in txg %llu\n", vdev_description(vd), txg);
563 }
564 
565 static int
566 vdev_uberblock_sync_tree(spa_t *spa, uberblock_t *ub, vdev_t *uvd, uint64_t txg)
567 {
568 	uberblock_phys_t *ubphys;
569 	uint64_t *good_writes;
570 	zio_t *zio;
571 	int error;
572 
573 	ubphys = zio_buf_alloc(sizeof (uberblock_phys_t));
574 	bzero(ubphys, sizeof (uberblock_phys_t));
575 	ubphys->ubp_uberblock = *ub;
576 
577 	good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
578 
579 	zio = zio_root(spa, NULL, good_writes,
580 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
581 
582 	vdev_uberblock_sync(zio, ubphys, uvd, txg);
583 
584 	error = zio_wait(zio);
585 
586 	if (error && *good_writes != 0) {
587 		dprintf("partial success: good_writes = %llu\n", *good_writes);
588 		error = 0;
589 	}
590 
591 	/*
592 	 * It's possible to have no good writes and no error if every vdev is in
593 	 * the CANT_OPEN state.
594 	 */
595 	if (*good_writes == 0 && error == 0)
596 		error = EIO;
597 
598 	kmem_free(good_writes, sizeof (uint64_t));
599 	zio_buf_free(ubphys, sizeof (uberblock_phys_t));
600 
601 	return (error);
602 }
603 
604 /*
605  * Sync out an individual vdev.
606  */
607 static void
608 vdev_sync_label_done(zio_t *zio)
609 {
610 	uint64_t *good_writes = zio->io_root->io_private;
611 
612 	if (zio->io_error == 0)
613 		atomic_add_64(good_writes, 1);
614 }
615 
616 static void
617 vdev_sync_label(zio_t *zio, vdev_t *vd, int l, uint64_t txg)
618 {
619 	nvlist_t *label;
620 	vdev_phys_t *vp;
621 	char *buf;
622 	size_t buflen;
623 	int c;
624 
625 	for (c = 0; c < vd->vdev_children; c++)
626 		vdev_sync_label(zio, vd->vdev_child[c], l, txg);
627 
628 	if (!vd->vdev_ops->vdev_op_leaf)
629 		return;
630 
631 	if (vdev_is_dead(vd))
632 		return;
633 
634 	/*
635 	 * Generate a label describing the top-level config to which we belong.
636 	 */
637 	label = spa_config_generate(vd->vdev_spa, vd, txg, 0);
638 
639 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
640 	bzero(vp, sizeof (vdev_phys_t));
641 
642 	buf = vp->vp_nvlist;
643 	buflen = sizeof (vp->vp_nvlist);
644 
645 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0)
646 		vdev_label_write(zio, vd, l, vp,
647 		    offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t),
648 		    vdev_sync_label_done, NULL);
649 
650 	zio_buf_free(vp, sizeof (vdev_phys_t));
651 	nvlist_free(label);
652 
653 	dprintf("%s label %d txg %llu\n", vdev_description(vd), l, txg);
654 }
655 
656 static int
657 vdev_sync_labels(vdev_t *vd, int l, uint64_t txg)
658 {
659 	uint64_t *good_writes;
660 	zio_t *zio;
661 	int error;
662 
663 	ASSERT(vd == vd->vdev_top);
664 
665 	good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
666 
667 	zio = zio_root(vd->vdev_spa, NULL, good_writes,
668 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
669 
670 	/*
671 	 * Recursively kick off writes to all labels.
672 	 */
673 	vdev_sync_label(zio, vd, l, txg);
674 
675 	error = zio_wait(zio);
676 
677 	if (error && *good_writes != 0) {
678 		dprintf("partial success: good_writes = %llu\n", *good_writes);
679 		error = 0;
680 	}
681 
682 	if (*good_writes == 0 && error == 0)
683 		error = ENODEV;
684 
685 	kmem_free(good_writes, sizeof (uint64_t));
686 
687 	return (error);
688 }
689 
690 /*
691  * Sync the entire vdev configuration.
692  *
693  * The order of operations is carefully crafted to ensure that
694  * if the system panics or loses power at any time, the state on disk
695  * is still transactionally consistent.  The in-line comments below
696  * describe the failure semantics at each stage.
697  *
698  * Moreover, it is designed to be idempotent: if spa_sync_labels() fails
699  * at any time, you can just call it again, and it will resume its work.
700  */
701 int
702 spa_sync_labels(spa_t *spa, uint64_t txg)
703 {
704 	uberblock_t *ub = &spa->spa_uberblock;
705 	vdev_t *rvd = spa->spa_root_vdev;
706 	vdev_t *vd, *uvd;
707 	zio_t *zio;
708 	int c, l, error;
709 
710 	ASSERT(ub->ub_txg <= txg);
711 
712 	/*
713 	 * If this isn't a resync due to I/O errors, and nothing changed
714 	 * in this transaction group, and the vdev configuration hasn't changed,
715 	 * and this isn't an explicit sync-all, then there's nothing to do.
716 	 */
717 	if (ub->ub_txg < txg && uberblock_update(ub, rvd, txg) == B_FALSE &&
718 	    list_is_empty(&spa->spa_dirty_list)) {
719 		dprintf("nothing to sync in %s in txg %llu\n",
720 		    spa_name(spa), txg);
721 		return (0);
722 	}
723 
724 	if (txg > spa_freeze_txg(spa))
725 		return (0);
726 
727 	dprintf("syncing %s txg %llu\n", spa_name(spa), txg);
728 
729 	/*
730 	 * Flush the write cache of every disk that's been written to
731 	 * in this transaction group.  This ensures that all blocks
732 	 * written in this txg will be committed to stable storage
733 	 * before any uberblock that references them.
734 	 */
735 	zio = zio_root(spa, NULL, NULL,
736 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
737 	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
738 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) {
739 		zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE,
740 		    NULL, NULL, ZIO_PRIORITY_NOW,
741 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
742 	}
743 	(void) zio_wait(zio);
744 
745 	/*
746 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
747 	 * system dies in the middle of this process, that's OK: all of the
748 	 * even labels that made it to disk will be newer than any uberblock,
749 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
750 	 * which have not yet been touched, will still be valid.
751 	 */
752 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
753 	    vd = list_next(&spa->spa_dirty_list, vd)) {
754 		for (l = 0; l < VDEV_LABELS; l++) {
755 			if (l & 1)
756 				continue;
757 			if ((error = vdev_sync_labels(vd, l, txg)) != 0)
758 				return (error);
759 		}
760 	}
761 
762 	/*
763 	 * Flush the new labels to disk.  This ensures that all even-label
764 	 * updates are committed to stable storage before the uberblock update.
765 	 */
766 	zio = zio_root(spa, NULL, NULL,
767 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
768 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
769 	    vd = list_next(&spa->spa_dirty_list, vd)) {
770 		zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE,
771 		    NULL, NULL, ZIO_PRIORITY_NOW,
772 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
773 	}
774 	(void) zio_wait(zio);
775 
776 	/*
777 	 * If there are any dirty vdevs, sync the uberblock to all vdevs.
778 	 * Otherwise, pick a random top-level vdev that's known to be
779 	 * visible in the config cache (see spa_vdev_add() for details).
780 	 */
781 	if (!list_is_empty(&spa->spa_dirty_list)) {
782 		uvd = rvd;
783 	} else {
784 		do {
785 			uvd =
786 			    rvd->vdev_child[spa_get_random(rvd->vdev_children)];
787 		} while (uvd->vdev_ms_array == 0);
788 	}
789 
790 	/*
791 	 * Sync the uberblocks.  If the system dies in the middle of this
792 	 * step, there are two cases to consider, and the on-disk state
793 	 * is consistent either way:
794 	 *
795 	 * (1)	If none of the new uberblocks made it to disk, then the
796 	 *	previous uberblock will be the newest, and the odd labels
797 	 *	(which had not yet been touched) will be valid with respect
798 	 *	to that uberblock.
799 	 *
800 	 * (2)	If one or more new uberblocks made it to disk, then they
801 	 *	will be the newest, and the even labels (which had all
802 	 *	been successfully committed) will be valid with respect
803 	 *	to the new uberblocks.
804 	 */
805 	if ((error = vdev_uberblock_sync_tree(spa, ub, uvd, txg)) != 0)
806 		return (error);
807 
808 	/*
809 	 * Flush the uberblocks to disk.  This ensures that the odd labels
810 	 * are no longer needed (because the new uberblocks and the even
811 	 * labels are safely on disk), so it is safe to overwrite them.
812 	 */
813 	(void) zio_wait(zio_ioctl(NULL, spa, uvd, DKIOCFLUSHWRITECACHE,
814 	    NULL, NULL, ZIO_PRIORITY_NOW,
815 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
816 
817 	/*
818 	 * Sync out odd labels for every dirty vdev.  If the system dies
819 	 * in the middle of this process, the even labels and the new
820 	 * uberblocks will suffice to open the pool.  The next time
821 	 * the pool is opened, the first thing we'll do -- before any
822 	 * user data is modified -- is mark every vdev dirty so that
823 	 * all labels will be brought up to date.
824 	 */
825 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
826 	    vd = list_next(&spa->spa_dirty_list, vd)) {
827 		for (l = 0; l < VDEV_LABELS; l++) {
828 			if ((l & 1) == 0)
829 				continue;
830 			if ((error = vdev_sync_labels(vd, l, txg)) != 0)
831 				return (error);
832 		}
833 	}
834 
835 	/*
836 	 * Flush the new labels to disk.  This ensures that all odd-label
837 	 * updates are committed to stable storage before the next
838 	 * transaction group begins.
839 	 */
840 	zio = zio_root(spa, NULL, NULL,
841 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
842 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
843 	    vd = list_next(&spa->spa_dirty_list, vd)) {
844 		zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE,
845 		    NULL, NULL, ZIO_PRIORITY_NOW,
846 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
847 	}
848 	(void) zio_wait(zio);
849 
850 	/*
851 	 * Clear the dirty list.
852 	 */
853 	while (!list_is_empty(&spa->spa_dirty_list))
854 		vdev_config_clean(list_head(&spa->spa_dirty_list));
855 
856 #ifdef DEBUG
857 	for (c = 0; c < rvd->vdev_children; c++) {
858 		ASSERT(rvd->vdev_child[c]->vdev_is_dirty == 0);
859 	}
860 #endif
861 
862 	return (0);
863 }
864